
IPILlEXIU§

~'

SysV UNIX System Description

98-40111.0 Ver. A March 15, 1985

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1985
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may be
reproduced. transmitted. transcribed.
stored in a retrieval system, or
translated into any language, in any
form or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained herein is
subject to change without notice.
Therefore, Plexus Computers, Inc.
assumes no responsibility for the
accuracy of the information presented
in this document beyond its current
release date.

Printed in the United States of America

CONTENTS

1. Introduction

In trod uction ~l

Z. Kernel

Kernel ... 2-1

3. File System

File System ... 3-l

4. 110 System

I/O System .. .4-l

Ii. Shell

Shell ... 5-l

Plexus Sys5 UNIX . 1 - December 1984

INTRODUCTION CHAPTER 1

1. INTRODUCTION

1.0.1 Purpose

This document describes the liNLX operating system software. Software is
described both functionally (how the user sees it) alld specifically (the
implementation mechanisms used). Detailed descriptiolls of software facilities and
application add-ons can be found in other documents (see the UNIX System
Documentation Catalog or UNIX System Synopsis). Oilly those parts of the system
typically associated with the operating system itself are described (that is, the
kernel, file system, I/O system, and shell). More detailed informatioll about the
structure of the code can be found firsthand in the source libraries on your UNDC
system. Header files also describe the layouts for many tables and data structures
used by the kernel.

1.0.2 UNIX System Overview

In a UND<: System, the operating system oversees the execution of mallY Ilser
programs. These programs seem to execllte simultaneously because of the system's
ability to time-share the processor among all the programs. Actually, each
program will be scheduled (at the appropriate t.ime) to use the processor for a
short period of time, to the exclusioll of all other programs. This time-sharing
makes it possible for many users to be using the system simultaneously. But it
also makes some sort of accounting Ilecessary to manage the system properly. The
cOllcept of a process was developed to allow the operating system to keep track of
each program and its use of system resources. The process includes the program
executing and information about the various internal parts of the processor affected
by the program (such as memory registers, the Ilame of the current directory, the
status of open files, informatioll recorded at log-in time, etc.). This cOllcept is
described in more detail in Chapter 2.

The UNIX operating system software includes: the UND<: operating system kernel.
the "shell" command interpreter, the file system, and variolls user and system
commands. The kernel (comprising from 5 to 10 percent of the operating system
software) is the basic residellt software 011 which the entire system relies. [t is the
only permanently resident part of the system. The kernel consists of system
primitives including various facilities to maintain the file system, support system
calls, and manage system resources. The shell command interpreter, which is itself
a user process ex.ecuting under cOlltrol of the kernel, allows . the user to
communicate with the UNIX operating system. A user invokes processes by issuing
commands to the shell. Furthermore. a user can invoke another shell process using
the shell command (sh).

1.0.3 File System

The file system of the UNIX operating system cOllsists of a highly uniform set of
directories and files arranged in a tree-like structure. File structure is consistent
throughout, with all I/O and file accessing handled uniformly. Files can be
accessed by a "full pathllame" or "relative pathname". have independent
protection modes, are automatically allocated and deallocated. and can be linked
across directories. The system also allows the mounting and unmounting of any
number of file systems of any size anywhere in the tree structure.

SysV UNIX I-I

KERNEL CHAPTER 2

1. KERNEL

1.0.1 Genera.l

The UNIX operating system kernel is the software on which everything else
depends. It maintains the file system, slipports system caIls. and manages system
resources. The software for the kernel is always resident in primary memory (once
booted). This section of memory is for system use only and is not swappable.

The primary purpose of the kernel is to control system resources and user and
system processes. In the UNIX system, a user executes programs in an
environment called a user process. When a system function is required, the user
process enters the kernel by a processor trap. During this trap, there is a distinct
switch of environment. Beforehand, the process is in the "user mode"; afterwards.
the process is said to be in a "kernel mode". [n the normal definition of processes.
the user and kernel mode are different phases of the same process (they never
execute simultaneously). Each user can have many processes in the system
simultaneously. Each process is a distinct entity, able to execute and terminate
independently of all other processes. In fact, it is not always necessary for the
user to be logged into the system while those processes are executing. From a
strictly functional standpoint, it can be said there are no "system" processes:
instead, there are simply processes in either a user or kernel mode. Each system
process (or kernel mode of a user process) has its own stack.

1.0.2 Process Structure

When stored in primary memory, a IIser process occupies a specific address space.
The address space associated with the process has certain access permissions for
the user and the kerneL As a process changes mode from user to kernel and back,
the access permissions to various str'lctures in that address space change. Due to
the different access permissions, those various structures can be visualized as being
within either the user or kernel mode. These two modes can then be thought of as
different entities, both associated with one process. Thus, certain structures are
part of the kernel mode and certain structures are part of the user mode. This is
the approach taken in the following discussion. Figure 2- t illustrates this concept.

The user mode consists of several structures maintained by the kernel mode.
These structures (the text segment, the data segment, and the stack) consist of
text, data, or information needed by the kernel mode. A user mode has some
private read-write data contained in a data segment. The data segment only
grows or shrinks by explicit requests. [t has two sections: initialized data and
uninitialized data. The uninitialized data segment is called the bss segment and
all bytes in it are set to zero when the process is created. Also associated with the
user mode is a stack. The stack section can only grow. It is managed by the
kernel during the execution of subroutine linkage instructions.

A process in user mode may execute from a read-only text segment. which is
shared by all processes executing the same program. Use of shared text in the
UNIX operating system is beneficial to the user and the kerneL The memory
savings and swapping efficiencies are significant when large, commonly used
programs are shared. Shared text is also useful to interactive programs that tend
to be swapped while waiting for terminal input. The main benefit is that if two
processes are executing simultaneously from the same copy of a read-only segment.
only one copy needs to reside in primary memory. Therefore, less memory space
is required.

SysV UNIX 2-1

CHAPTER 2 KERNEL

PROCESS
,/

PROCESS SWAP
V-BLOCK TABLE CONTROL

EVENT I USER

WAIT f+- DATA

~----

USER TEXT
TEXT TABLE

......

Figure 2- L. Process Control Data Structure

All current read-only text segments in the system are maintained from the text
table. A text table entry holds the location of the text segment on secondary
memory. If the segment is loaded, that table also holds the primary memory
location and the count of the number of processes sharing this entry. If a process
needs to execute a segment, the kernel will check the text table for a pointer
associated with the shared text (attempting to match the pointer in the table with
the pointer being used by the attaching process). This pointer is the i-node pointer
discussed in Chapter 3. If a match is made. the count is incremented. Likewise,
when this count is reduced to zero. the entry is freed along with the primary
memory holding the segment. If the kernel does not find a text table entry with a
matching pointer, a new entry is created and the text is loaded from the file
system. In the file system, the text is stored in the noncontiguous blocks of a file
and must be loaded one block at a time. Once loaded, the text segment becomes
one contiguous image that can be copied much more efficiently.

Actually, the kernel maintains two different counts: the number 01' memory
resident processes using the shared segment, and the total number of processes
using the shared segment (resident and swapped). The resident count is
decremented as each user is swapped out; and eventually, when the resident count
reaches zero, the shared segment is swapped. The kernel maintains a flag in the i­
node table to indicate whether or not a current copy of the shared segment is in
swap space on secondary memory. [f there is a current copy available. the shared
segment need not be copied out and the swap merely releases the primary memory.
This mechanism works due to the fact the shared text is write protected and the
copy being used will not become out of date. The total user count is decremented

2-2 SysV UNIX

KERNEL CHAPTER 2

as each Ilser detaches from the shared t.ext (no longer is executing it l: and
eventually. when the total count reaches zero. the secondary copy is discarded.
Here again. the kernel maintains a 'sticky bit' to indicate whether or not this
copy should be discarded. This sticky bit is part of the shared text exec utable
image. Sticky text will only be forced out of memory by specific system calls
during sllch operations as unmollnting a file system.

Also associated and swapped with the user mode is a small fixed-size system data
segment called the u_area or 1.I_block. This segment contains all the data abollt the
environment of the mode (such as attributes and interfaces). Examples of the type
of data contained in the system data segment are: some central processor registers.
open file descriptors, accollilting information. and the scratch data area. The
!carea segment is not addressable from the Ilser mode and is therefore prot.ected.
These structures are only accessible to the kernel mode when the process is
running. They are mapped into the operating system addre~s space dllrin~ the
switch.

Finally, tying all these struct.ures together is a process table with one entry for
each active process. This process table is the focal point of all kernel access to the
structures mentioned before. .\5 long as the process is in the system. it has an
entry in the process table. Essentially, removing a process' entry in the table is
the final act that terminates that process. Therefore, not all processes listed in the
process table need to be running (for example, it could be sleeping). "Sleeping"
processes are in user mode in a non-runnable state waiting for some "event" to
occur so they can be scheduled again. The process switch mentioned above and
the various states of a process are discussed under Scheduling and Priority. Each
entry contains all the data needed by the system to manage the process. Examples
of this data are: the process id. the location of the other segments, and scheduling
information. The process table entry is allocated when the process is created and
freed when the process terminates. This process entry is always directly
addressable by the kernel. The process table is the definition of all processes
because all the data associated with a process may be accessed Ilsing the process
table entry as the starting point.

The kernel maintains a text segment. data segment, and stack associated with the
process. These structures are not within the user mode. but rather. contain
information that the kernel mode needs to manage the Ilser mode. The kernel
stack is saved when switching user processes. Since a process can be (and. in fact.
ultimately is) suspended while in the kernel mode, this stack must be saved to
allow resumption at' the kernel mode when the process is restarted.

1.0.3 Process Creation

A process is the execution of an image; most UNIX operating system commands
execute as separate processes. Processes are created (or spawned) by the system
primitive fork. Overlays, performed by the exec system call, do not create new
processes (exec is discussed later). But. execution of a shell command or shell
procedure involves both a fork and an overlay. Command execution is discussed
under Shell. Figure 2-2 illustrates the sequence involved in executing a program.
A. typical fork is shown as the first step. The newly created process (child) is a
copy of the image of the original process (parent). If the parent process is
executing from a read-only text segment, the child will share the text segment. In
other words, the child is executing the same program. Copies of all non-resident
parts of the parent process (such as the user data and stack segments) are made

SysV UNIX 2-3

CHAPTER 2 KER.'fEL

for the child process. The child process does receive a new lJ._arfa; but, most of
the variables in it are copied from the parent's 1~_'zrelL. :\. child inherits its
parent's permissions, working directory, root directory, open files. etc. This
mechanism permits processes to share common input streams in various ways.
Files that were open before the "ork are shared after the rork, The processes are
informed as to which is the parent and which is the child. Once the copying is
completed. the new (child) process is placed on the runnable queue to be scheduled.
The parent will then continue running; althollgh, the parent may wait for the
termination of any of its children. Usually the parent will wait ror the death of its
child at some point. since this wait call is used to free the process table entry used
by the child. See the discussion on process termination for more detail.

FORK
PROCESS 1

PROCESS 2
PROGRAM A

CHILD
PROGRAM B

EXIT

Figure 2-2. Ex.ecuting a Program

In some cases there will not be enough primary memory to copy the parent. In
these situations, the parent will be copied out to secondary memory. The
secondary memory copy will be marked as the child, ready to run when it is
swapped in. The parent can then continue to run from the primary memory
image. This function is similar to what swapper does. However, in this case the
primary image is not discarded. but continues to run as the parent. In any case,
the child and parent differ in three ways:

• The child will have a different process id.
• The child will have a different parent process id.
• All accounting variables are reset to appropriate values in the child.

2-4 SysV GNIX

KERNEL CHAPTER :!

1.0.4 Signals

The kernel provides several means by which processes can communicate with each
other including pipes. messages. shared memory. semaphores. and signals. Signals
are the most frequently used me:lns for a process to indicate the occurrence of
some event that may have an impact on another process. There are two specific
system calls involved in inter-process signaling: the kill system call used to send a
signal, and the signal system call Ilsed to specify how the signal will be handled.
Signals interrupt the normal How of control in a process. They can affect both the
user and the kernel mode. If a process is in kernel mode, the signal will not
interrupt the process -at leas.t until sleep is called. While a signal will interrupt
the kernel mode only at certain points, the Ilser mode must be prepared to handle
a signal at any time. A process must prearrange how it will handle signals via the
signal system call (the default action is termination). There are two categories of
signals. those generated ex:ternally, such as break from a terminal, and t.hose
generated internally (a process fault). Both types are treated identically. There
are several ways a signal can be generated. some of which are:

• A user mode attempting to write into protected memory.

• An error during a system call.

• Some condition raised at the controlling terminal of a process (such as break or
hangup).

• An ex:plicit system call to kill.

• Ex:piration of the alarm clock timer or the generation of the trap signal during
process tracing.

Signals do not directly affect the execution of a process; but rather. request that
the process take some action. The occurrence of the signal is recorded in the
process table entry of the receiving process. and is later recognized and acted Ilpon
by that process. During the posting of a signal. if it is sleeping at a low enough
priority. the receiving process is made runnable without a call to wakeup (that is.
swtch is called directly). This call to swtch puts the proress on the run queue so
that it can be scheduled, and thus, lind the signal. [t has not called wakeup.
however, and is really still a sleeping process. [f the signal is to be ignored, no
action is taken and the process continues sleeping. Signals are posted when they
occur, and are handled when the receiving process finds them. [t is possible that
the signal will not be found until the completion of a system call, the occurrence of
a process fault, or the resumption of a preempted user mode. When the process
finds a signal, execution may be interrupted immediately; or, if the process is
sleeping with a low enough priority. it may prematurely return from sleep as
shown above and branch directly to some signal-handling routine.

Signals are represented by integers. Each type of signal is associated with a
specific integer; for example, the hangup signal is the number 1. The signal
number is used as an index: into the signal array in the receiving process's tl_'Lrea.

This array contains the addresses of the appropriate signal-handlin~ routines
(assuming the user mode has defined these routines). [f no routine has been
defined, the entry will be 0 or 1. [f the value is one, the signal is set to be
ignored; and if zero, the default action will be taken. When the signal is
recognized (and if it is not to be defaulted or ignored), the associated address
replaces the program counter value saved in the user mode. The original program

SysV UNIX 2-;;

CHAPTER 2 KERNEL

counter value is placed on the stack in the user mode. When the mode resumes.
the handler routine will be accessed first. Finally, when the handler is finished, it
will return using the program counter value on the stack. A signal may be sent to
a 'process by another process. from the terminal. or by the UNLX system itself. For
most signals. a process can arrange to be terminated on receipt of a signal. to
ignore it completely, or to catch it and act appropriately. For example, an
INTERR UPT signal may be sent by depressing an appropriate key on the
terminal (delete, break. or mbout). The action taken depends on the requirements
of the specific program being executed. For example:

• The shell invokes most commands in such a way that they stop executing
immediately (die) when an interrupt is received. For example, the pr (print)
command normally dies, allowing the user to stop unwanted output.

• The shell itself ignores interrupts when reading from the terminal because the
shell should continue execution even when the user terminates a command like
pro

• The editor ed chooses to catch interrupts so that it can halt its current action
(especially printing) without allowing itself to be terminated.

A child process inherits the actions of the parent for the defaulted and ignored
signals. Caught signals are reset to the default action in the child process. This is
necessary since the address linkage for signal-handling routines specified in the
parent are no longer appropriate in the child.

1.0.5 Seheduling and Priority

Process scheduling allows many processes sharing one Central Processing {Jnit
(CPU) to be synchronized. [t is accomplished with the sleep/wakeup mechanism.
This mechanism allows coordination and optimization of the actions of some
unknown number of processes. All active processes will be either ,;Ieeping (non­
runnable and waiting on some event), on the run queue. or actually running (only
one process at a time can run). Any process may be resident (in primary memory)
or swapped (in secondary memory) at any point in time. The run status and
residence status is maintained from the process table.

The sleep call involves two steps: first it records which event will wake up the
process, and then calls the swtch primitive. Likewise, the wakeup call involves
first, reading the event set by sleep and then calling the setrun primitive. ""'nile
swtch makes a process non-runnable, setrun will make a process runnable.
Under certain situations, both can be used directly without calls to sleep/wakeup,
but usually are not. When a process recognizes that a needed resource is
unavailable, it will call sleep and wait for an event indicating that resource is
available. Included in this call is a priority value to be used by the scheduler
when the process wakes up. [ts relative value to other priorities in the system is a
measure of the importance of the associated resource. As an example, the
structure used for process tracing is deemed less important than system buffers.
Thus, a process needing a buffer will call sleep with a higher priority than another
process that just went to sleep while tracing. The process selected out of the run
queue to be switched to will have the highest priority. The only action of an event
is to change a set of processes from the sleep state to the wakeup (or runnable)
state. The sleep/wakeup software in the kernel is like a co-routine linkage. At
any time, all but one process has either called sleep or is waiting on the run queue
to be scheduled. The remaining process is the one currently executing. 'Nnen that

2-6 SysV UNIX

KER;\fEL CHAPTER 2

process (or possibly an interrupt routine) recognizes that some resource has become
available. it will call sleep and signal the event associated with the reSOllrce. Any
process waiting on that event will wake up and be placed on the run quelle. This
reserve&that event for any particu·lar process. The event indicates the resource is
available. But. if one process takes the resource before some other runnable
process wanting that resource can be scheduled. the lower priority process will
have to return to sleep and wait on the event again. By having processes which
are not runnable wait for events. process execution can be synchronized. The
sequence that occurs when sleep or wakeup is called is shown in Figure 2-3.

POST
EVENT

r-----
I
I
I
~- A

I
L_

'I... __ ~I
SLEEPING

EVENT NAME

-----,
L--__ J---, I

CALL
WAKEUP ..

..
HIGH

LOW

· · •

SWITCH I

~ -----.0
, I

EXECUTING

f PRIORITY

''--__ ..II

RUN
QUEUE

Figure 2-3. Sleep! Wakeup Sequence

An event is represented by an arbitrary integer. There is no memory associated
with that event. Signaling an event on which no process is waiting has no effect.
Similarly, signaling an event on which many processes are waiting will wake all of
them up. No notion of quantity can be signaled via the event mechanism. For
example, processes that want memory might wait on an event associated with
memory allocation. When any amount of memory becomes available. the event
will be signaled. All the competing processes will then wake up to contend for the
new memory. In reality, the swapping process is the only process that waits for
primary memory to become available. If an event occurs between the time a
process decides to wait for that event and the time that process enters the :;leep
state, then the process will wait on an event that has already happened (and may
never happen again). But since processes are switched in the kernel mode by
explicit calls to swteh and due to the ability to delay servicing of interrupt
requests, this never becomes a problem. The event cannot "occur" until after the
process enters the sleep state.

SysV UNIX 2-7

CHAPTER 2 KERNEL

vl/bich 01' the many possible processes is to run next? Associated with each process
is a priority. The priority of a system process is assigned by the software issuing
the wait on an event. This is roughly equivalent to the response that one would
expect on such an event. Disk events have high priority, interactive terminal
events are low, and alarm events (performed at a certain time of day) are very
low. All user process priorities are lower than the lowest system priority. This
means kernel processes will always run before any user process. Also, the priority
of kernel processes are not affected by CPU usage. Therefore, their priority
remains constant unless a return to user mode is made, in which case the
algorithm below will be used to calculate priority. User process priorities are
assigned by an algorithm based on the amount of recent compute time consumed
by the process. This priority is computed as follows:

priority = p_cpn ,: 2 i- nice i- base

Tbe p_cpu element is incremented by the system clock (60 or 100 times per second.
depending on the hardware I at regular intervals during process e:<ecution. Thus.
the value of this element represents CPU usage. To ensure that it accurately
represents recent CPU usage, its value is divided by 2 every second. The priority
number is also recalculated each second. A process that has used a large amount
of compute time in the last real-time unit is assigned a low user priority (a large
number in the above formula). Because interactive processes are characterized by
low ratios of compute to real time (that is, the amount of CPU usage in each 1-
second interval is small), interactive response is maintained without any special
arrangements. The nice and base elements provide a mechanism to adjust the
priority of certain processes (for e:<ample, to prevent long running, CPl:-bound
processes from adversely effecting the rest of the system's workload).

The scheduling algorithm simply picks the process with the highest priority (or
lowest number), thus picking all system processes first and user processes ,econd.
Hence, all other things being equal, CPU bound user processes shollld be scheduled
round-robin with a I-second quantum. Owing to the negative feedback
characteristic of the scheduling algorithm, if a process uses its hi~h priority to hog
the processor, its priority will drop. A high-priority process waking up will
preempt a running, low-priority process. At the same time. if a low-priority
process is ignored for a long time, its priority will rise. But. regardless of its
priority, a swapped out process will never be scheduled until it is again resident.

So, how is a running process preempted by another process with a higher priority?
A process switch takes place: the image of the current process is replaced by the
image of the new process. The actual switching of the processes occurs while in
the kernel mode. Thus, when the switch is requested (for example, by an L 0
device interrupt or system clock interrupt), the first thing to happen is a mode
switch to the kernel mode. This is not the same as the process switch, which may
involve a number of mode switches. First. the user mode is saved and includes the
general registers, program counter. processor status word and some memory
management information. This is the same information that is saved during a
system call, which also involves a mode switch to kernel. After the switch to
kernel mode, the kernel mode is saved in the process's u,_area. The next process is
now selected by the aforementioned algorithm. Then the environment of the new
process is restored; and finally, the new process resumes in the kernel mode. Since
this new process was previously saved in the kernel mode, it restarts precisely
where it stopped and the entire call to swtch (the new process called swtch when

2-8 SysV UNIX

r

KER-"fEL

it was preempted) is effectively just a delay.

1.0.6 Swapping

CHAPTER 2

One separate process in the kernel. the swapping process. simply swaps Ilser
processes in and out of primary memory. Swapping out simply means the image is
copied to secondary memory and the primary memory it occupied is freed.
Swapping in involves allocating primary memory for that process and reading its
segments into primary memory where that process will compete for the central
processor with other loaded processes. The swapping process is created at system
initialization time for this one purpose. It determines which process is to be
swapped in or out, based on information in the process table. There are two
specific algorithms to the swapping process. First, which of the possibly many
processes that are swapped Ollt is to be swapped in? This is decided by secondary
storage residence time. The one with the longest time out is swapped in first.
Also, which of the possibly many processes that are loaded is to be swapped out?
Processes that are waiting for slow events (that is, not currently running or
waiting for disk [,0) are picked first, by age in primary memory. The other
processes are examined by the same age algorithm, but are not removed unless
they are at least of some age. This results in a delay in the swapping of "younger"
processes and prevents thrashing. Thrashing is a situation where newly created
processes are swapped out prematurely, only to be swapped in again moments
later. enless this is prevented, ex.cessive processor time is spent needlessly
swapping processes.

The major data associated with a process (the user data segment, the u_ area
segment, and the text segment) are swapped to and from secondary memory. as
needed. .'vfemory layout is illustrated in Figure 2-·1. All segments are paged; thus.
each segment occupies only certain pages in the memory space. These pages are
virtually contiguous. but are physically noncontiguous. The size of the page in
bytes depends on the processor the system is on. The system maintains a jree/i"t
of all pages not in use. When a process grows. new memory pages are added to its
address space as needed. The process data is not copied. and any previously
allocated pages remain the same. If enough free pages are not available, the
process will be swapped to secondary memory. The pages it previously occupied
will be freed.

As stated under Process Creation, when there is not enough primary memory to
fork a child, a copy of the parent will be made in secondary memory without
swapping out any other processes. This takes place as follows: The parent will
link to the xsehed queue, signal an event indicating it is ready to be "swapped",
and then directly call swtch. The event will cause the xsched process (referred
to as the second swap per) to wake up and swap out the process on its queue. This
swapping process remembers which process is swapped out. so it can restart it
later. This is necessary because the "swapped out" process does not sleep on some
event, but instead relies on xsched to place it back on the run queue when the
copying is finished. The "second swapper" process demonstrates how primitives
(such as swtch and setrun) can be used directly to avoid the overhead associated
with generalized mechanisms (in this case, sleep/wakeup). Here, the fact that only
one process is involved makes it possible to bypass the general sleep/wakeup
mechanism.

SysV UNIX 2-9

CHAPTER :!

INTER­
PROCESS
COMMUN.

SYSTEM
PROCESSES

USER
PROCESSES

SWAP
SPACE

FILE
SPACE

KERNEL

'~ __________ ,-__________ ~A~ __________ ~ __________ J/

1.0.7 Overlays

PRIMARY
MEMORY

SECONDARY
MEMORY

Figure 2-4. ~emory Layout

A process may exec (cause execution of) a file. This consists of exchanging the
current text and data segments of the process for new text and data segments
specified in the file. The old segments are discarded. Doing an exec does not
change the process id; the process that did the exec persists. but after the exec it
is executing a different program. Files that were open before the exec remain
open afterwards. If a program (for example. the first pass of a compiler) wishes to
overlay itself with another program (for example, the second pass), then it simply
execs the second program. This is analogous to a "goto" in programming. [f a
program wishes to regain control after exec-ing a second program. it should fork
a child process, have the child exec the second program, and have the parent.
wait for the child. This is analogous to a "call."

Wben exec is called, the environment is passed to the new program via the user
stack segment of the process. The top of the stack is then modified to appear as
though a call to the entry point of that process has occurred, along with three
system-supplied arguments. These are the number of command line arguments.
the address of the argument strings, and the address of the environment variables
(argc, argv, and envp). There are basically i steps involved in this.

1. The new program file is located and permissions are checked (to ensure the
invoker can execute it). Also, there cannot be another process currently
modifying it and it must not exceed the address space allowed.

2-10 SysV UNIX

KERNEL CHAPTER 2

.J Initial characteristics such as t he size and location of the segments and the
point of entry is determined.

3. The environment of the old image is saved in swap space.

4. The address space associated with the old image is released.

5. Space is allocated for the new image, any shared text is attached, initialized
data is read from the file, and uninitialized data is zeroed.

6. The environment is restored to the stack of the new image.

i. Finally, registers are reinitialized. permissions set appropriately, and the
program counter is set to the entry point as mentioned earlier.

1.0.8 Process TerIllination

A process will terminate for one of two reasons: an explicit call to exit, or due to
the default action of some signal. As stated previously, after finding a signal. a
process looks for some handling routine. If none is found, the process is forced to
call exit.

If a signal caused the termination. the first thing to occur is an attempt to dump
an image of the core. When a process terminates, it can set an eight-bit exit
status code that is available to its parent. Even though this code is Ilsually IIsed
to indicate success (zero) or failure (non-zero), it can be 1lsed in any manner the
user wishes. If a signal caused the termination. this exit code is modified to
indicate which signal terminated the process and whether or not the core dump
was made. Next, resources owned by the process are released. and all signals are
set to be ignored. Resources released include open files, working directory. shared
text, memory space for the Ilser data and stack segments. The u_area and kernel
stack are not released until the next process switch occurs. The terminating
process is now considered a 'zombie" process. All that remains of it is its process
table entry; and that is unavailable for use until the process has finally terminatp.d.

:.-.text, the process table is searched for any child or wmbie processes belonging to
the terminating process. Those children will then be adopted by init (that is.
their parent process ID will be changed to one). This is necessary since there must
be a parent to record the death of the child. The last function of exit. before
calling swtch to bring in the next process. is to record the accounting information
and exit code for the terminated process in the • zombie' process table entry and
to send the parent the death-of-child signal. It is interesting to note that since the
terminated process can never be scheduled again, the final call to swtch from exit
will never return. Sometimes the parent will want to wait until a child terminates
before continuing execution. To this end, the parent will call wait, which causes
the parent to sleep until a child zombie is found (meaning the child terminated).
When the child terminates, the death-of-child signal is returned to the parent.
Although the parent normally ignores this signal, it will continue to search for
child zombies. The terminated child will be found; at which time. the child's exit
status and accounting information is recorded in the parent (remember the call to
exit in the child put this information in the child's process table entry) and the
zombie process table entry is freed. 0iow the parent can wake up and continue
executing.

SysV UNIX 2-[[

/'

FILE SYSTEM CHAPTER 3

1. FILE SYSTEM

1.0.1 General

One of the most important roles of an operating system is to provide a file system.
This file system should be consistent, orderly, and easily accessed. As illustrated
in Figure 3-1, the UNIX operating system does this with a tree-like file system
composed of directories of files. Using this "tree" structure, files can be attached
anywhere onto a hierarchy of directories. To the UNIX system. all files are
physically the same (a one-dimensional array of bytes ending with EOF). But the
UNIX operating system does keep track of the file type in the file's i-node
(discussed under File System Implementation). Files are named by sequences of 14
or fewer characters (file names).

1.0.2 File Types

There are three types of files: ordinary files, directory files. and special files. [n the
UNIX system, files normally reside on a disk. The kernel accesses all three types of
files in the same way (remember. to the operating system any file is simply a string
of bytes). The Ilser and user application programs must interpret the file
appropriately.

Since no particular structuring is ex:pected by the system. an ordinary file contains
whatever information the user places in it (for ex:ample, English tex:t, source
programs, or binary object programs). AllY file that is not a directory or a special
file is an ordinary file.

Directory files (also referred to as directories) provide the mapping (paths) between
the names of files and the files themselves and thus induce a map-like structure on
the file system as a whole. Each user has a directory of files. The user may also
create subdirectories to contain groups of files conveniently treated together.
Although a directory behaves ex:actly like an ordinary file, since it can only be
written by the system, the system controls the structure of directories. The
system also maintains several directories for its own use. One of these is the root
directory (which may be considered the base directory). Anyone of the files in the
system can be found by tracing a path through a chain of directories until the
desired file is reached. Other system directories contain all the programs (files)
provided for general use; that is, all the commands.

Special files constitute the most unusual feature of the file system. Each supported
input/output device is associated with at least one special file. Special files are
read and written just like ordinary files, but requests to read or write result in
activation of the associated device handler rather than the normal file access
mechanism. An entry for each special file normally resides in some subdirectory of
/dev, although a link may be made to one of these files just as it may to an
ordinary file. So for example: to write on a magnetic tape (mt) device, one may
write on a file in the directory /dev/mt. Special files exist for peripheral devices
such as video terminals, disk drives, primary memory, magnetic tape drives.
communication links, multiplex:ers, etc. Of course, the active disks and the
memory special files are protected from indiscriminate access by appropriate read
and write permissions. There are several advantages in treating input/output
devices this way:

SysV UNIX 3-1

FILE
X

FILE
Y

LEGEND o . OIREOTORV FILE

D . ORDINARV filE

SEND

FILE
Z

JUNK

IF YOU ARE HERE.
YOUR CURRENT
DIRECTORY
IS/USR

FILE SYSTEM CHAPTER .3

(I) File and device input.'ol1tPllt are as similar as possible.

(2) File and device names have the same syntax and meaning, so that a
program expecting a file name as a parameter can be passed a device name.

(3) Special files are subject to the same protection mechanism as ordinary or
directory files.

(4) All I/O is treated uniformly; therefore, the same system calls can be used
on all file types.

1.0.3 Pathnames

When the name of a file is specified to the system, it may be specified as a
pathname, which is a sequence of directory names separated by slashes, '!', and
ending in a file name. This sequence of directories preceding the filename is called
a prefix. The UNLX operating system uses certain conventions when reading the
prefix: If the prefix begins with a slash, the search begins in the root directory.
This is called a pathname. The pathname

i usr ibin/ send

causes the system to search the root directory for directory 'usr'. then to search
'usr' for 'bin'. finally to find file 'send' in 'bin'. The file 'send' may be an
ordinary file, a directory. or a special file. As a limiting case. the name .,'. refers
to the root directory itself .

..\. null prefix (or in fact. any prefix that does not begin with ',"j causes the
system to begin the search in the current user directory. The simplest form of
pathname (for example, 'send") refers to a file that is round in the current
directory. This pathname allows a user to quickly specify a subdirectory without
needing to know (or input) the full pathname. This is just one of several
mechanisms built into the file system to alleviate the need to remember
pathnames. For example, files can be linked across directories. Therefore, by
linking a file to your current directory, you need not supply a prefix when
accessing the file. Also. the prefix period, " .•. refers to the current directory.
This is most useful when copying and moving files. In the above example. the
current directory is ! usr'bin. And also by convention. the prefix' .. " refers to the
parent directory (the directory containing the current directory). When a process
is created, a current directory and a root directory are associated with that
process. These are unique to the process and can be different in other processes.
Processes are discussed in the section Kernel.

Although the root directory of the file system is always stored on a single device
(usually disk drive 0), it is not necessary that the entire file system hierarchy
reside on this device. Furthermore, while several file systems can be tied into the
system at the same time, not all of them have to reside on the same device (and in
fact usually do not). Another file system can be mounted as a directory of the
main file system, which in the UNIX operating system is the file system that
contains the directory root (that is, '/'). In Fig. 3.1 for example, another branch
could be added to the root directory. This new branch could be as large as, or
even larger than, the other main branches. File systems can be mOllnted and
unmounted in any place as required. Using the mount system request, any
directory file can be replaced by a whole new directory tree.

SysV UNIX 3-3

CHAPTER 3 FILE SYSTEM

1.0.4 File Prot.ect.ion

Although the access (read. write, and execute) protection scheme is quite simple. it
has some unusual features. Each user of the system is usually assigned a unique
user identification (ID) number as well as a shared group identification. Wnen a
file is created, it is marked with the user ID and group ID of its owner. Also given
Cor new files is a set of protection bits that specify independent read, write. and
execute permission for the owner of the file. for other members of the group, and
for all other remaining users. The execute permission bit for a directory file is
interpreted as "search" permission in that directory. The two highest order bits in
the permission field of a file's i-node are the "set user ID" and "set group [0" bits.

1.0.5 File 110

To read or write a file, it must first exist and then it must be opened. Opening a
file makes it accessible to the user process. Various system calls allow the user to
create a file, open or close a file, create a directory, delete a file or directory, make
a link to a file. etc. Associated with any open file is a file descriptor and file
pointer. The file descriptor is an integer used by the user process to identify the
file without referring to its name. The file pointer shows which byte in that file is
next to be read or written.

Reading and writing within a file is normally sequential. This means that if a
particular byte in the file was the last byte written (or read) the next input/output
call implicitly refers to the immediately following byte. IC n bytes are read or
written, the file pointer advances by "n" bytes. Files may be accessed randomly
(direct access) by offsetting or positioning the file pointer to the appropriate
location in the file with a seek call. Any read or write may be terminated by the
file pointer encountering the end-of-file (EOF) condition. The EOF indicates the
file pointer is equal to the current size of the file.

The file system maintains no locks visible to the user, nor is there any restriction
on the number of users who may have a file open for reading or writing. There
are sufficient internal interlocks to maintain the logical consistency of the file
system when two users engage simultaneously in activities such as writing on the
same file, creating files in the same directory, or deleting open files belonging to the
other user. Z'fevertheless, writing, deleting, or moving files also accessed by
another user may very likely create problems for that user when Curther changes
are attempted.

1.0.6 File System Implementation

The UNIX system file system is a disk data structure accessed completely through
the block I/O subsystem. A disk is considered a randomly addressable array of
blocks. The operating system actually views memory physically as 512-byte
sectors and converts the sector numbers to the logical block numbers. This is
invisible to the user. The first sector, set aside for booting procedures. is unused
by the file system. The second sector is the so-called "super block". See Figure
3-2.

The super block contains a description of the file system (or volume) and includes:

• Size of the i-list and the entire volume

• Free block list and the number of free blocks

3-4 SysV UNIX

FILE SYSTEM CHAPTER a

• Free i-node list and the number of free i-nodes

• Read-only status

• Mount device. pack name. and file system name

• File system type.

As mentioned previously, several file systems can be mOlmted simultaneously on
different devices. Each mounted file system has a super block and i-list. The i-list
is after the superblock. It is nothing more than a list of file definitions. Each file
definition is a multibyte structure called an i-node. The UNLX system user accesses
a file with a pathname: but. the system itself uses the i-node to do the accessing.

The offset (or index number) of a particular i-node within the i-list is called its i­
number. The combination of device name (major and minor numbers) and i­
number serves to 110iquely name a particular file. To speed up the allocating of i­
nodes, an i-node array and i-node list is maintained in primary memory in addition
to the information contained in the i-node itself in secondary memory. The list
and array work together to provide a buffer of up to lOO free i-nodes that can be
allocated and freed quickly and efficiently. When an i-node is allocated. it is
removed from the list. When an i-node is freed, it is added to the list. If the list
has reached its maximum size of 100 when the i-node is freed, no entry is made.
The i-node itself still maintains status information indicating it has been freed.
A.rter the i-list and to the end of the disk are located free storage blocks available
for the contents of files. These files constitute the file system mentioned
previously. Pointers to these blocks are maintained in the free list array in the
super block. This array has up to i)0 pointers to free blocks on the disk. As
shown in Figure 3-3, the first pointer in the array points to the fir.5t chain member.
As blocks are allocated, the current size of the array is decremented. When the
size reaches zero (not including the first pointer), the next chain member is copied
into the a.rray and its size is put into the current array size. As the blocks pointed
to by each chain member are allocated, successive chain members are copied in
until the last member is ex.hausted. At that point, all free blocks are allocated
(indicated by the first block pointer in the array being zero). As blocks are freed.
this mechanism is reversed. The pointer to the freed block is placed in the array
and the current size is incremented. When the size reaches i)O, the array is copied
out into the first (or second, third. etc.) chain member and the current size is reset
to zero.

An i-node contains a description of the file it points to:

• The user and group ID of the file owner

• The file protection bits

• The physical disk addresses for the file contents

• The file size

• Time of creation, last Ilse, and last modification

• The number of links to the file: that is, the number of times it appears in a
directory.

SysV UNIX 3-5

CHAPTER 3

ONE I-NODE [
64 BYTES

3-6

~ INDEXED BY
I-HUI'IBER

OWNER. PHYSICAL] ADDRESS. SIZE.
FILE TYPE. ETC. ADDRESS

OF FILE
CONTENTS

ONE FILE ENTRY. [
FILE DEVICE SAI'IE

AS DEVICE DIRECTORY
RESIDES ON.

FILE SYSTEM

r-----------,
I 512-BYTE OR ORDINARY I
I 1024-BYTE BLOCKS FILE I
I I
I I SPECIAL
I I/O DEVICE FILE I

Do I I
I I ill· IJ DIRECTORY I I
I I

L-T'--------.J
14-BYTE FIlENAI'IE

2-BYTE I -NUI'IBER

I I'IOUNT I
TABLE

OR t
'-,-J

I-HUI'IBER AHO DEVICE OF
NEX T PA THNAI'IE COI'IPDNENT

Figure 3-2. I-Node Access Scheme

SysV UNIX

~

FILE SYSTEM

CURRENT SIZE
,,.-----""'\

,

n

POINTER

POINTERS
TO

FREE
BLOCKS

FREE
LIST

ARRAY

-+

1 \

n

POINTER

FIRST
CHAIN
MEMBER

~ n

POINTER r-

1

,'--____ --11

SECONO
CHAIN

MEMBER

Figure 3-3. Free Block List

CHAPTER 3

.. n

•

'\.. _____ JI

LAST
CHAIN

MEMBER

The i-node contains 13 disk addresses. The first 10 of these addresses point
directly to the first 10 blocks of a file. If a file is larger than 10 blocks. then the
eleventh address points to a block that contains the addresses of the nex.t 128
blocks of the file. If the file is still larger than this. then the twelfth address (a
double indirect address) points to a block of 128 addresses. Each of these
addresses points to another block which then. in turn. points to IIp to 1:.!8 blocks of
the file. If the file is too large for double indirect addressing, the file mapping
algorithm allows only one more address, which is a "triple indirect" address.

The hierarchical file structure is made possible by using a directory file to maintain
the links to the files. These links impart a logical continuity to the entire file
system. Both directory files and ordinary files are linked this way. A file may
even have links in more than one directory, thus eliminating the need to duplicate
certain files that will be accessed from several directories. Because the linking
mechanism is the same, a directory can be accessed in exactly the same way as an
ordinary file. It contains 16-byte entries consisting of a 14-byte name and an i­
number. This i-number is the index to the i-list contained in block 2 of the disk
on which the directory resides (unless it is the i-number of the root of a mounted
file system). Because the i-node defines a file, the implementation of the file
system centers around access to the i-node. See Figure 3-4. The system maintains
a table of all active i-nodes. As a new file is accessed, the system locates the
corresponding i-node. allocates an i-node table entry, and reads the i-node into
primary memory. The table entry is considered to be the current version of the i­
node. Modifications to the i-node are made to the table entry. When the last
access to the i-node goes away, the table entry is copied back to the secondary

SysV UNIX 3-7

CHAPTER 3 FILE SYSTEM

store i-list and the table entry is freed.

All [f0 operations on files are carried out with the aid of the corresponding i-node
table entry. The accessing of a file is a straightforward implementation of the
algorithms mentioned previously. References to the file system are made in terms
of pathnames of the directory tree. Converting a pathname into an i-node table
entry is also straightforward. Starting at some known i-node (the root or the
current directory of some process), the next component of the pathname is
searched by reading the directory. See Figure 3-2. The file entry will give an i­
number and an implied device (that of the directory). This i-number and device
(the i-node) point to the next i-node table entry to be accessed. If that was the
last component of the pathname, then this i-node is the result. If. not, this i-node
is the directory needed to look up the next component of the pathname. and the
algorithm is repeated.

When another file system is mounted on the file system hierarchy. that system
simply becomes an extension of the current file system. To allow mounting of
other file systems (and easily unmounting them), a mount table is maintained.
The mount table contains pairs of designated i-nodes and block devices. At each
of the i-nodes listed, a file system is mounted (mounted on r.he device indicated).
When converting a pathname component into an i-node. a check is made to see if
the new i-node is one of those designated in the mount table. [f it is. the i-node of
the root of the mounted block device replaces it. The mount device and the root
i-node are used to search the next component of the pathname.

The user process accesses the file system with certain primitives. The most
common of these are open, create, read. write, seek, and dose. The data
structures maintained are shown in Figure 3-3. In the u-block segment associated
with a user, there is roo·m for some (usually about 20) open files. This open file
table consists of pointers to the system file table. The system file table contains a
list of all open files and pointers that can be used to access corresponding i-node
table entries. Associated with each of these open files is an offset I/O pointer (file
pointer). This is a byte offset of the nex.t read/write operation on the file. The
system treats each read/write request as random with an implied seek to the file
pointer. The user usually thinks of the file as sequential with the file pointer
automatically counting the number of bytes that have been read/written from the
file. The user may, of course, perform random I/O by setting the file pointer
before reads/ writes.

With file sharing, it is necessary to allow related processes to share a common file
pointer and yet have separate file pointers for independent processes that access
the same file. This is necessary to allow the two processes to do I/O on the file at
different places in the file. With these two conditions, the file pointer cannot reside
in the i-node table. If it did. all processes accessing that file would be forced to
use the same file pointer. Nor can it reside in the list of open files for the process.
The file table is incorporated in the structure for the sole purpose of holding the
file pointer. Processes that share the same open file (the result of forks) share a
common file table entry. A separate open of the same file will only share the i­
node table entry. Each open will have a distinct open file table entry.

The main file system primitives are implemented as follows. The open command
converts a file system pathname into an i-node table entry. A pointer to the i­
node table entry is placed in a newly created file table entry. A pointer to the file
table entry is placed in the u-block open file table for the process. The create

3-8 SysV UNDC

FILE SYSTEM CHAPTER 3

command first creates a new i-node entry. writes the i-number into a directory.
and then builds the same structure as ror an open. The read and write
commands access the i-node entry as described above. The seek command simply
manipulates the file pointer; no physical seeking is done. The close command frees
the structures built by open and create. Rel'erence counts are kept on the open
file table entries and the i-node table entries to free these structures after the last
reference goes away. The unlink command simply decrements the count of the
number of directories pointing at the given i-node. When the last reference to an
i-node table entry goes away. if the i-node has no directories pointing to it. then
the file is removed and the i-node is freed. This delayed removal of files prevents
problems arising from removing active files. A file may be removed while still
open; afterwards. the resulting unnamed file vanishes when it is closed. This is a
method of obtaining temporary files.

SysV UNIX 3-9

CHAPTER 3 FILE SYSTEM

---eo

3-10

PROCESS 1
OPEN FILE TABLE

X OPEN

PROCESS 2
OPEN FILE TABLE

r--- X OPEN

• • • • • •

OPEN FILE TABLE ACTIVE I-NODE TABLE

X OPEN, PROC 2 FILE X
+--I-NODE

X OPEN, PROC 1
• • • • • •

~ PHYSICAL
FILE :£. -9'

ADDRESS
POINTERS

SECONDARY ~E~DRY

• •
•

\ ,
FILE X
~ I-NODE

• •
• FILE ~APPI~

ALGORIT~S
] CONT FILE X

Figure 3-4. Open File Table Structure

ENTS

SysV UNIX

I/O SYSTEM CHAPTER 4

1. ItO SYSTEM

1.0.1 General

The input/output (1;0) system is divided into two completely separate subsystems:
the block I/O subsystem (structured liD) and the character I/O subsystem
(unstructured I/O).

The user communicates with the peripheral devices by system calls. The system
calls to input or output are designed to eliminate the differences between the
various devices and styles of access. There is no distinction between "random"
and "sequential" 110, nor is any logical record size imposed by the system. The
UNIX system also attempts to eliminate differences between ordinary disk files and
I/O devices such as terminals, tape drives, and line printers.

An entry appears in the file system hierarchy for each supported device. so that
the structure of device names is the same as that of file names. :"l"ot only do the
same read and write system calls apply to devices and disk files; but also, the same
protection mechanisms apply. Figure -l-1 illustrates the functional layout of the
I/O system.

1.0.2 Block I/O

The model block [10 device consists of randomly addressable, secondary memory
blocks of 512 (or 1024) bytes each. The blocks are uniformly addressed 0, 1, 2, ...
up to the size of the device. The block device driver has the job of emulating this
model on a physical device.

The block Ii 0 devices are accessed through a layer of buffering software. The
system maintains a list of buffers (typically between 100 and 200) each assigned a
device name and a device address. This buffer pool constitutes a data cache for
the block devices. On a read request, the cache is searched for the desired block.
If the block is found, the data is made available to the requester without any
physical I/O. If the block is not in the cache, the least recently used block in the
cache is renamed, the correct device driver is called to fill up the renamed buffer,
and then the data is made available. Write requests are handled in an analogous
manner. The correct buffer is found and relabeled if necessary. The write is
performed simply by marking the buffer as "dirty'. The physical I/O is then
deferred until the buffer is renamed.

1.0.3 Character 110

The character I/O device drivers handle any physical devices that do not fit the
block I/O model. This includes the "classical" character devices such as
communications lines and line printers. It also includes magnetic tape and disks
when they are not used in a stereotyped way; for example, 80-byte physical
records on tape and track-at-a-time disk copies. Although an I/O request from the
user is sent to the device driver unaltered, the execution of these requests is, of
course, up to the device driver. To this end, there are guidelines and conventions
to help in the creating of certain types of device drivers.

1.0.4 Device Drivers

Each supported I/O device is associated with at least one special file and one
device driver. Special files are read and written just like ordinary disk files, but
requests to read or write result in activation of the associated device by the driver.
See File System for more on special files.

SysV UNIX 4-1

CHAPTER -4 [/0 SYSTEM

Devices are characterized by a major device number, a minor device number, and
a class (block or character). For each class. there is an array of entry points
(configuration table) into the device drivers. The major device number is used to
index. the array when calling the software for a particular device driver. The
minor device number is passed to the device driver as an argument. The minor
number has no significance other than that attributed to it by the driver. Usually,
the driver uses the minor number to access one of several identical physical
devices.

The general disk driver makes it possible to use the disk as a block device, a
character device, or a swap device. The driver creates a queue of records that
contain a primary memory address, a secondary memory address, a count of the
number of bytes to be transferred. and a read/write flag. Swapping is done by
passing each record to the swapping device driver. Block I/O is done by passing
each record to the device driver with a request for a system buffer (in the data
cache described above). Character [/0 is done by creating a record that points
directly into the user address space, and passing that record to the device dri ver.
The driver will insure the user is not swapped during the [/0.

Real character-oriented device drivers use a queue of characters (a character list)
to store characters to be transferred. Space for a queue is allocated as characters
are added and released as characters are removed from the queue.

A typical character-output device (for example. line printer) is implemented by
passing characters from the user onto a character queue until some maximum
number of characters is on the queue. The driver then gets the characters from
the queue and sends them to the hardware serially. The number of characters on
the queue is checked and, as the count falls through some intermediate level, an
event (the queue address) is signaled. The process that is passing characters from
the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs. Reading from an input device is handled in a
similar fashion.

Another class of character devices is the terminal class. A terminal is represented
by two input queues and one output queue. The device driver sot'tware must (in
addition to reading and writing to the terminal) be able to handle escape sequences
and control characters.

4-2 SysV UNIX

I/O SYSTEM

110
DATA

SysV UNIX

USER OR SYSTE" PROCESS

BLOCK
110 CLASS

CHARACTER QUEUES '---,---,_-'----,_,---'
ASSIGNED TO DRIVERS
AS NEEDED ,----,

I I

DATA CACHE
BUFFERS ASSIGNED

TO DRIVERS AS
NEEDED

DATA PASSED
TO DRIVER

Figure 4-1. I/O System

CHAPTER 4

]

SI"ILAR DEVICES.
ONE SELECTED BY
"INOR NU"BER

4-3

SHELL CHAPTER 5

1. SHELL

1.0.1 General

The user communicates with the liNIX operating system (usually via a terminal)
with the aid of a command programming language called the shell. The shell is a
command-line interpreter; it reads lines entered by the user and interprets the lines
as requests to execute other programs. The shell also provides conditional
execution and flow control features. Thus, it is also a powerful programming
language (not dissimilar to C-language).

When a Ilser logs into the system and before executing the shell, the login process
sets up an execution environment. System default and user-specified profile files
are read, and then the appropriate shell program is executed. The environment
determines (among other things) what commands the user has access to.
Normally, a user will log into the system with one process associated with his or
her user name. This process is the user's shell and will become the parent of all
other processes the user creates. Although the UNIX system is set up to allow any
program to be used as a shell, the actual shell program is normally used. The
basic function of the shell from the operating system's point of view is simply to
parent child processes, and a process need not be the shell program to do this.
From the user's viewpoint, the shell should accept user input, execute commands.
provide output, and access files.

There is a small subset of shell commands that are "built in" and differ from other
commands primarily in that no separate process is created to execute these
commands. They are part of the standard shell program and include all the
execution and flow control constructs. All other commands are either functions,
utility programs, or application programs. All commands listed in the UNIX
System V User Reference Manual can be considered utility or application programs.
Execution, termination, and input/output is handled uniformly among all
commands (with only minor exceptions as noted in the ('NIX System V User
Reference Manua~. The shell provides the flexibility the user needs to make the
utility and application programs quickly fit his or her needs. The normal sequence
of executing a command involves five steps:

1. The command is parsed by the shell (that is, command and parameter
substitution, filename generation, and I/O redirection is done). Certain
built-in commands are not parsed.

2. The PATH parameter, or hash table if hashing is implemented, is searched to
find the command file (see description under Commands).

3. [f the file is a compiled machine language file, the parent process (in this case
the shell) forks a copy of itself to become the child. The file is then execed,
changing the child from simply a copy of the parent into a totally different
image.

[f the file is a shell script, the parent forks a shell as its child to read the file,
and the entire sequence begins again as each command in the file is executed
by the child (then acting as parent).

4. Next, command line arguments and environment variables are passed to the
child process via the user stack. The built-in command export determines
which environment variables will be passed to the child.

SysV UNIX 5-1

CHAPTER 5 SHELL

5. The child is now an independent process capable of running, sleeping, or
swapping as need be. It will be scheduled when its priority allows.

If the command is a function (functions are available only on certain versions), a
new process is not forked; but rather, the command becomes part of the parent
process. In any case, the shell expands'. ? and :; filename patterns by reading
directory entries and comparing the filenames to the pattern. In some versions this
is done using buffered reads of many entries at once. In other versions. the
directory entries are read one at a time. The command substitution is simply an
in-line replacement of the command string with the output of the command
(interpolation). Parameter substitution requires the shell to search the current
environment for the parameter name and interpolate all references to defined
parameters with the value of those parameters. A reference to a parameter not
defined will result in a null string being interpolated.

1.0.2 Commands

Commands may be read from either a terminal or from a file (which allows
commands to be stored for later use). In simplest form, a command line consists
of the command name followed by arguments to the command (all separated by
spaces). For example:

command argl arg2 .. argn

The shell divides the command line into the command name string ($0) and as
many arguments strings as given ($1, $2, $3, etc.). Then a file with the name
command is sought; command may be a pathname including the .:. character to
specify any file in the system. The simplest mechanism for finding command is to
search through a sequence of directories specified by the PATH parameter until the
command is found. By default, this parameter specifies the standard system
command bins but it can be changed by the user. The search could take
considerable time if the command is not commonly used (that is, it's in one of the
last directories searched). If command is found, it is brought into memory and
executed. The arguments collected by the shell are accessible to the command.
When the command is finished. the shell resumes its own execution and indicates
its readiness to accept another command by returning a prompt character on the
input.' output terminal.

In some versions of the shell, commands are hashed. This simply means the
directory containing any particular command is recorded in a table for immediate
retrieval when the command is executed. This will speed up the mechanism
described above. The location of the command is determined on the first
invocation using the access system call. Prior to forking a child, that location is
saved in the table. The subsequent exec and all following invocations of the
command will look at the hash table first when trying to determine the location of
the command. Since it is still desirable to specify a directory for finding the
command, this hashing is not done when the command is specified with a full
pathname. Also, since search directories may change or new commands may be
added, there is a built-in hash command available to clear or update the hash
table.

Built-in commands (that is, part of the shell program) are included in the hash
table; but, are marked as built-in and will not show up when the table is printed.
Therefore, unless a full pathname is used, a built-in command will always be
executed in preference to a user-defined command of the same name. In UNIX

5-2 SysV UNIX

r
SHELL CHAPTER 5

System versions without hashing, you can make the shell use your version without
needing a full pathname by changing the PATH parameter appropriately.

1.0.3 InputiOutput

Programs executed by the shell start off with three open files with file descriptors
0, 1. and 2. When a program begins. is open for writing and is known as the
standard output. Conversely, starts off open for reading, and programs that wish
to input messages entered by the user read file 0, (known as the standard input).
File descriptor:! starts off open for writing and is known as standard error. File 0,
file 1, and file 2 are normally attached to the user's terminal. Input is taken from
the terminal and output is sent to the terminal.

The shell is able to change the standard assignments of these file descriptors from
the user's terminal display and keyboard. If an argument to a command is
prefixed by • >,. file descriptor 1 will, for the duration of the command, refer to
the file named after the >. Conversely, preceding a filename with • <' will
reassign file descriptor O.

Although the file name following • <. or • >. appears to be an argument to the
commandj it is in fact, interpreted by the shell and not passed to the command at
all. Therefore no special coding to handle input/output redirection is needed
within each command; the command need merely use the standard file descriptors
o (read), 1 (write), or 2 (error) where appropriate.

1.0.4 Pipelines

An extension of the standard input/output notion is Ilsed to direct (or pass) the
output from one command to the input of another without the use of temporary
files maintained by the user. A sequence of commands separated by vertical bars
causes the shell to execute all the commands and to arrange that the standard
output of each command be delivered (piped) to the standard input of the next
command in the sequence. This • pipeline· will cause the shell to fork a group of
child processes (one for each command) with the last command in the pipeline
acting as the controlling process for the group. enless the pipeline is executed
asynchronously (in the background), the parent will wait on this controlling
process. The exit status returned to the parent is the exit status of this process.

1.0.5 Background Processes

A related shell feature, the '&', allows asynchronous execution of commands and
pipelines. If the pipeline is followed by • &., the parent will not wait for the
controlling process to exit before prompting the user for the next input. Also, the
shell will output the process number of the controlling process to allow the user to
track the progress of the command.

1.0.6 Command Lists

More than one command may be entered on the same line but the commands must
be separated by one of the following: 'j', '&', '&&', or '1'. Furthermore. any of the
commands can be a pipeline (actually, a single command can be viewed as the
simplest form of a pipeline). By default, the <cr> delimits commands in a list.
The < cr > and j cause each command to be executed sequentially as follows: As
each command in the list is read. the parent will fork a child to execute that
command, and then wait for the child to terminate before executing the next
command. The && tD directs the shell to execute the remainder of the list only if

SysV UNIX 5-3

CHAPTER 5

the preceding command returns a zero (non-zero) exit status.

1.0.7 Shell Procedures

SHELL

The shell can execute commands from a file. The commands are executed
sequentially until an EOF is enconntered or an exit command is executed. This
feature allows the user to take advantage of the programming power of the shell.
For more information on the shell program, refer to ah(l) in the UNIX System V
User Reference Manual, the UNlX System Programming Guide, or the UNlX System
User's Guide.

5-4 SysV UNIX

	Contents
	Introduction
	Kernel
	File System
	I/O System
	Shell

