
IPILIEXIU§

(

(

(

Sys5 UNIX Programmer's Guide

98-05080.1 Ver. B May, 1986

PLEXUS COMPUTERS, INC.

3833 North First Street

San Jose, CA 95134

408/943-9433

Copyright 1986
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may
be reproduced, transmitted,
transcribed, stored in a
retrieval system, or translated
into any language, in any form
or by any means, without the
prior written consent of Plexus
Computers, Inc.

The information contained
herein is subject to change
without notice. Therefore,
Plexus Computers, Inc.
assumes no responsibility for
the accuracy of the information
presented in this document
beyond its current release
date.

Printed in the United States of America

CONTENTS

1. INTRODUCTION

(
2. C LANGUAGE

Tokens ... 2-1
Syntax Notation ... 2-3
Names ... 2-3
Objects and LValues ... 2-5
Conversions ... 2-5
Expressions .. 2-8
Declarations ... 2-18
Statements .. 2-29
External DeftnHions ... 2-33
Scope Rules ... 2-35
Compiler Control Unes ... 2-37
Implicit Declarations ... 2-39
Types RevisHed ... 2-40
Constant Expressions .. 2-43
PortabilHy Conslderatlons .. 2-44
Syntax Summary ... 2-45

3. C LIBRARIES

The C Ubrary .. 3-2

4. OBJECT AND MATH LIBRARIES

The Object File Library ... 4-1
The Math Library .. 4-4

5. COMPILER AND C LANGUAGE

Use of the Compiler .. 5-1
Compiler Options ... 5-2

6. A C PROGRAM CHECKER

Types of Messages ... 6-2

7. SYMBOLIC DEBUGGING PROGRAM

8. FORTRAN UNIX SYSTEM COMMANDS

9. FORTRAN 77

Usage ... 9-1
Language Extensions ... 9-1
Violations of the Standard .. 9-9
lnterprocedure Interface ... 9-1 O
File Format. ... 9-13

Plexus Sys5 UNIX - 1 - May 1986

CONTENTS

10. RATFOR

Usage .. 10-1
Statement Grouping .. 10-1
The if-else Construction .. 10-2
The switch Statement .. 10-4
The do Statement .. 10-5
The break And next Statement ... 10-5
The while Statement .. 10-6
The for Statement .. 10-6
The repeat-until Statement .. 10-7
The return Statement ... 10-8
The define Statement .. 10-8
The include Statement .. 10-9
Free-Form Input ... 10-9
Translations .. 10-10
Wamings ... 10-11
Examples of Ratfor Conversion , ... 10-12

11. PROGRAMMING LANGUAGE EFL

Lexical Form ... 11-1
Program Form .. 11-6
Data Types and Variables .. 11-8
Expressions ... 11-11
Declarations ... 11-18
Executable Statements ... 11-21
Procedures ... 11-31
Atavisms ... 11-33
Compiler Options .. 11-37
Examples .. 11-39
Portability .. 11-43
Differences Between Ratfor and EFL ... 11-44
Compiler .. 11-45
Constraints on EFL ... 11-47

12. CURSES & TERMINFO PACKAGE

List of Routines ... 12-13
Operation Detall.: .. : 12-30

13. CURSES EXAMPLES

Example Program editor ... 13-1
Example Program highlight ... 13-6
Example Program scatter ... 13-8
Example Program show .. 13-10
Example Program termhl 13-12
Example Program two ... 13-14
Example Program window .. 13-17

May 1986 - 2 - Plexus Sys5 UNIX

(

INTRODUCTION CHAPTER 1

1. INTRODUCTION

This volume describes two main programming languages supported on the
UNIX system. The languages include:

• C Language - A medium-level programming language which was
used to write most of the UNIX operating system. Chapter 2
describes the C language. Chapters 3 through 7 describe the
libraries and support tools available with the UNIX system for the
benefit of the C language programmer. These chapters contain the
following:

C LANGUAGE- Chapter 2 provides a summary of the grammar
and rules of the C programming language. Chapter 2 describes
the C language.

LIBRARIES- Chapters 3 and 4 describe functions and
declarations that support the C Language and how to use these
functions. Chapter 3 describes the C Library and Chapter 4
describes the Object File and Math Libraries.

THE "cc" COMMAND- Chapter 5 describes the command
used to compile C language programs, produce assembly
language programs, and produce executable programs.

A C PROGRAM CHECKER - "lint"- Chapter 6 describes a
program that attempts to detect compile-time bugs and non­
portable features in C programs.

A SYMBOLIC DEBUGGER - "sdb" - Chapter 7 describes a
symbolic debugging program that is used to debug compiled C
language programs.

• Fortran - Fortran 77, a rational Fortran preprocessor (Ratfor), and
EFL are described as follows:

UNIX SYSTEM COMMANDS FOR FORTRAN- Chapter 8
describes the various commands that may be used with Fortran
on a UNIX system.

FORTRAN 77 - Chapter 9 describes the implementation of
Fortran 77 on the UNIX system in terms of the variations from
the American National Standard.

• Trademark of "AT&T'.

Sys5 UNIX 1-1

CHAPTER 1 INTRODUCTION

RATFOR- Chapter 10 describes the Ratfor preprocessor. This /-·'\
preprocessor provides a means for writing Fortran in a fashion ~,/
similar to the C language. This preprocessor provides (among
other things) simplified control-flow statements.

EFL- Chapter 11 describes the programming language EFL.

Chapter 12 describes the curses and terminfo package that provides the
programmer with screen-oriented programming capabilities. Chapter 13
provides examples of curses programs.

It is assumed that the user of this document· has at least two years of
specialized training in computer-related fields. The user is also expected to
use the UNIX system for software development. Chapters 8, 9, 10 and 11
assume that the user is already familiar with Fortran 77. If not familiar,
review one of the many texts that describes Fortran 77. The following texts
are suggested:

FORTRAN 77
Harry Katzan, Jr.
Van Nostrand Reinhold

FORTRAN 77 - FEATURING STRUCTURED PROGRAMMING
Loren P. Meissner and Elliot I. Organick
Addison-Wesly

AMERICAN NATIONAL STANDARD PROGRAMMING
LANGUAGE FORTRAN

ANSI x3.9 - 1978
American National Standards Institute

Throughout this document, each reference of the form name(1 M), name(7),
or name(8) refers to entries in the UNIX System Administrator Reference
Manual. Each reference of the form name(1) and name(6) refers to entries
in the UNIX System Reference Manual. All other references to entries of
the form name(N), where possibly followed by a letter, refer to entry name
in section N of the UNIX System Programmer Reference Manual.

1-2 Sys5 UNIX

(,

C LANGUAGE CHAPTER 2

2. C LANGUAGE

There are six classes of tokens - identifiers, keywords, constants, strings,
operators, and other separators. Blanks, tabs, new-lines, and comments
(collectively, "white space") as described below are ignored except as they
serve to separate tokens. Some white space is required to separate
otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the
next token is taken to include the longest string of characters which could
possibly constitute a token.

2.1 Tokens

2.1.1 Comments

The characters /* introduce a comment which terminates with the characters
/fB*/. Comments do not nest.

2.1.2 Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be
a letter. The underscore (_) counts as a letter. Uppercase and lowercase
letters are different. Although there is no limit on the length of a name, only
initial characters are significant: at least eight characters of a non-external
name, and perhaps fewer for external names. Moreover, some
implementations may collapse case distinctions for external names.

2.1.3 Keywords

The following identifiers are reserved for use as keywords and may not be
used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char en um int static void
continue external long struct while
default float register switch

Some implementations also reserve the words fortran and asm.

2.1.4 Constants

There are several kinds of constants. Each has a type; an introduction to
types is given in "NAMES."

2.1.4.1 Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if
it begins with O (digit zero). An octal constant consists of the digits O

Sys5 UNIX 2-1

CHAPTER 2 C LANGUAGE

through 7 only. A sequence of digits preceded by Ox or OX (digit zero) is
taken to be a hexadecimal integer. The hexadecimal digits include a or A
through f or F with values 1 O through 15. Otherwise, the integer constant is
taken to be decimal. A decimal constant whose value exceeds the largest
signed machine integer is taken to be long; an octal or hex constant which
exceeds the largest unsigned machine integer is likewise taken to be long.
Otherwise, integer constants are int.

2.1.4.2 Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by I
(letter ell) or Lis a long constant. As discussed below, on some machines
integer and long values may be considered identical.

2.1.4.3 Character Constants

A character constant is a character enclosed in single quotes, as in 'x'. The
value of a character constant is the numerical value of the character in the
machine's character set.

Certain nongraphic characters, the single quote (') and the backslash (\),
may be represented according to the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \V

backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote \'

bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits
which are taken to specify the value of the desired character. A special
case of this construction is \0 (not followed by a digit), which indicates the
character NUL. If the character following a backslash is not one of those
specified, the behavior is undefined. A new-line character is illegal in a
character constant. The type of a character constant is int.

2.1.4.4 Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction
part, an e or E, and an optionally signed integer exponent. The integer and
fraction parts both consist of a sequence of digits. Either the integer part or
the fraction part (not both) may be missing. Either the decimal point or the e
and the exponent (not both) may be missing. Every floating constant has
type double.

2-2 Sys5 UNIX

/

(

C LANGUAGE CHAPTER 2

2.1.4.5 Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS") have type int.

2.1.5 Strings

A string is a sequence of characters surrounded by double quotes, as in
" .•• ". A string has type "array of char" and storage class static (see
"NAMES") and is initialized with the given characters. The compiler places
a null byte (\0) at the end of each string so that programs which scan the
string can find its end. In a string, the double quote character (") must be
preceded by a \; in addition, the same escapes as described for character
constants may be used.

A \ and the immediately following new-line are ignored. All strings, even
when written identically, are distinct.

2.2 Syntax Notation

Syntactic categories are indicated by italic type and literal words and
characters in bold type. Alternative categories are listed on separate lines.
An optional terminal or nonterminal symbol is indicated by the subscript
"opt," so that

({ expression opt }

(

indicates an optional expression enclosed in braces. The syntax is
summarized in "SYNTAX SUMMARY".

2.3 Names

The C language bases the interpretation of an identifier upon two attributes
of the identifier - its storage class and its type. The storage class
determines the location and lifetime of the storage associated with an
identifier; the type determines the meaning of the values found in the
identifier's storage.

2.3.1 Storage Class

There are four declarable storage classes:

•Automatic
• Static
• External
• Register.

Automatic variables are local to each invocation of a block (see "Compound
Statement or Block" in "STATEMENTS") and are discarded upon exit from
the block. Static variables are local to a block but retain their values upon
reentry to a block even after control has left the block. External variables

Sys5 UNIX 2-3

CHAPTER 2 C LANGUAGE

exist and retain their values throughout the execution of the entire program I ·"
and may be used for communication between functions, even separately \. _,/
compiled functions. Register variables are (if possible) stored in the fast
registers of the machine; like automatic variables, .they are local to each
block and disappear on exit from the block.

2.3.2 Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of the
implementation's character set. If a genuine character from that character
set is stored in a char variable, its value is equivalent to the integer code for
that character. Other quantities may be stored into character variables, but
the implementation is machine dependent. In particular, char may be
signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but
the implementation may make either short integers or long integers, or both,
equivalent to plain integers. · "Plain" integers have the natural size
suggested by the host machine architecture. The other sizes are provided
to meet special needs.

The properties of enum types (see "Structure, Union, and Enumeration / ',
Declarations" under "DECLARATIONS") are identical to those of some ., /
integer types. The implementation may use the range of values to
determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo
2n where n is the number of bits in the representation. .

Single-precision floating point (float) and double precision floating point
(double) may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as
numbers, they will be referred to as arithmetic types. Char, int of all sizes
whether unsigned or not, and enum will collectively be called integral types.
The float and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type
returned by functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite
class of derived types constructed from the fundamental types in the
following ways:

• Arrays of objects of most types
• Functions which return objects of a given type
• Pointers to objects of a given type

2-4 Sys5 UNIX

(-

C LANGUAGE CHAPTER 2

• Structures containing a sequence of objects of various types
• Unions capable of containing any one of several objects of various

types.

In general these methods of constructing objects can be applied recursively.

2.4 Objects and L values

An object is a manipulatable region of storage. An /value is an expression
referring to an object. An obvious example of an !value expression is an
identifier. There are operators which yield !values: for example, if E is an
expression of pointer type, then *E is an !value expression referring to the
object to which E points. The name "!value" comes from the assignment
expression E1 = E2 in which the left operand E1 must be an !value
expression. The discussion of each operator below indicates whe'her it
expects !value operands and whether it yields an !value.

2.5 Conversions

A number of operators may, depending on their operands, cause conversion
of the value of an operand from one type to another. This part explains the
result to be expected from such conversions. The conversions demanded
by most ordinary operators are summarized under "Arithmetic Conversions "
The summary will be supplemented as required by the discussion of each
operator.

2.5.1 Characters and Integers

A character or a short integer may be used wherever an integer may be
used. In all cases the value is converted to an integer. Conversion of a
shorter integer to a longer preserves sign. Whether or not sign-extension
occurs for characters is machine dependent, but it is guaranteed that a
member of the standard character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII
set are all non-negative. However, a character constant specified with an
octal escape suffers sign extension and may appear negative; for example,
\377' has the value -1.

When a longer integer is converted to a shorter integer or to a char, it is
truncated on the left. Excess bits are simply discarded.

2.5.2 Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a
float appears in an expression it is lengthened to double by zero padding
its fraction. When a double must be converted to float, for example by an
assignment, the double is rounded before truncation to float length. This
result is undefined if it cannot be represented as a float.

SysS UNIX 2-5

CHAPTER 2 C LANGUAGE

2.5.3 Floating and Integral

Conversions of floating values to integral type are rather machine
dependent. In particular, the direction of truncation of negative numbers
varies. The result is undefined if it will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss
of accuracy occurs if the destination lacks sufficient bits.

2.5.4 Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer;
in such a case, the first is converted as specified in the discussion of the
addition operator. Two pointers to objects of the same type may be
subtracted; in this case, the result is converted to an integer as specified in
the discussion of the subtraction operator.

2.5.5 Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain
integer is converted to unsigned and the result is unsigned. The value is the
least unsigned integer congruent to the signed integer (modulo 2wordsize). In
a 2's complement representation, this conversion is conceptual; and there is
no actual change in the bit pattern. ·

When an unsigned short integer is converted to long, the value of the result
is the same numerically as that of the unsigned integer. Thus the
conversion amounts to padding with zeros on the left.

2.5.6 Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar
way. This pattern will be called the "usual arithmetic conversions."

1 . First, any operands of type char or short are converted to int, and
any operands of type unsigned char or unsigned short are
converted to unsigned int.

2. Then, if either operand is double, the other is converted to double
and that is the type of the result.

3. Otherwise, if either operand is unsigned long, the other is converted
to unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long
and that is the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int,
they are both converted to unsigned long and that is the type of the
result. ·

2-6 Sys5 UNIX

/

(

C LANGUAGE CHAPTER 2

6. Otherwise, if either operand is unsigned, the other is converted to
unsigned and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the
result.

2.5.7 Void

The (nonexistent) value of a void object may not be used in any way, and
neither explicit nor implicit conversion may be applied. Because a void
expression denotes a nonexistent value, such an expression may be used
only as an expression statement (see "Expression Statement" under
"STATEMENTS") or as the left operand of a comma expression (see
"Comma Operator" under "EXPRESSIONS").

An expression may be converted to type void by use of a cast. For
example, this makes explicit the discarding of the value of a function call
used as an expression statement.

2.6 Expressions

The precedence of expression operators is the same as the order of the
major subsections of this section, highest precedence first. Thus, for
example, the expressions referred to as the operands of + (see "Additive
Operators") are those expressions defined under "Primary Expressions",
"Unary Operators". and "Multiplicative Operators". Within each subpart, the
operators have the same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence
and associativity of all the expression operators are summarized in the
grammar of "SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular,
the compiler considers itself free to compute subexpressions in the order it
believes most efficient even if the subexpressions involve side effects. The
order in which subexpression evaluation takes place is unspecified.
Expressions involving a commutative and associative operator (*, +, &, l ")
may be rearranged arbitrarily even in the presence of parentheses; to force
a particular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is
undefined. Most existing implementations of C ignore integer overflows;
treatment of division by O and all floating-point exceptions varies between
machines and is usually adjustable by a library function.

2.6.1 Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group
left to right.

Sys5 UNIX 2-7

CHAPTER 2

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression }
primary-expression (expression-list t)
primary-expression . identifier op
primary-expression -> identifier

expression-list:
expression
expression-list , expression

C LANGUAGE

An identifier is a primary expression provided it has been suitably declared
as discussed below. Its type is specified by its declaration. If the type of
the identifier is "array of ... ", then the value of the identifier expression is a
pointer to the first object in the array; and the type of the expression is
"pointer to ... ". Moreover, an array identifier is not an lvalue expression.
Likewise, an identifier which is declared "function returning ... ", when used
except in the function-name position of a call, is converted to "pointer to
function returning ... ".

A constant is a primary expression. Its type may be int, long, or double
depending on its form. Character constants have type int and floating
constants have type double.

A string is a primary expression. Its type is originally "array of char", but
following the same rule given above for identifiers, this is modified to
"pointer to char" and the result is a pointer to the first character in the
string. (There is an exception in certain initializers; see "Initialization" under
"DECLARATIONS.")

A parenthesized expression is a primary expression whose type and value
are identical to those of the unadorned expression. The presence of
parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a
primary expression. The intuitive meaning is that of a subscript. Usually,
the primary expression has type "pointer to ... ", the subscript expression is
int, and the type of the result is " ... ". The expression E1[E2] is identical
(by definition) to *((E1)+(E2)). All the clues needed to understand this
notation are contained in this subpart together with the discussions in
"Unary Operators" and "Additive Operators" on identifiers, * and +,
respectively. The implications are summarized under "Arrays, Pointers, and
Subscripting" under "TYPES REVISITED."

2-8 Sys5 UNIX

C LANGUAGE CHAPTER 2

A function call is a primary expression followed by parentheses containing a
possibly empty, comma-separated list of expressions which constitute the
actual arguments to the function. The primary expression must be of type
"function returning ... ," and the result of the function call is of type " ... ".
As indicated below, a hitherto unseen identifier followed immediately by a
left parenthesis is contextually declared to represent a function returning an
integer; thus in the most common case, integer-valued functions need not
be declared.

Any actual arguments of type float are converted to double before the call.
Any of type char or short are converted to int. Array names are converted
to pointers. No other conversions are performed automatically; in particular,
the compiler does not compare the types of actual arguments with ,those of
formal arguments. If conversion is needed, use a cast; see "Unary
Operators" and "Type Names" under "DECLARATIONS.··

In preparing for the call to a function, a copy is made of each actual
parameter. Thus, all argument passing in C is strictly by value. A function
may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer
on the understanding that the function may change the value of the object to
which the pointer points. An array name is a pointer expression. The order
of evaluation of arguments is undefined by the language; take note that the
various compilers differ. Recursive calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an
expression. The first expression must be a structure or a union, and the
identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an lvalue if the first
expression is an lvalue.

A primary expression followed by an arrow (built from - and >) followed by
an identifier is an expression. The first expression must be a pointer to a
structure or a union and the identifier must name a member of that structure
or union. The result is an lvalue referring to the named member of the
structure or union to which the pointer expression points. Thus the
expression E1->MOS is the same as (*E1).MOS. Structures and unions
are discussed in "Structure, Union, and Enumeration Declarations" under
"DECLARATIONS."

2.6.2 Unary Operators

Expressions with unary operators group right to left.

Sys5 UNIX 2-9

CHAPTER 2

unary-expression:
" expression
& /value
- expression
! expression

expression
+ + /value
--/value
/value++
/value --
(type-name) expression
sizeof expression
sizeof (type-name)

C LANGUAGE

The unary * operator means indirection ; the expression must be a pointer,
and the result is an lvalue referring to the object to which the expression
points. If the type of the expression is "pointer to ... ," the type of the result
is'' ... ''.

The result of the unary & operator is a pointer to the object referred to by
the lvalue. If the type of the lvalue is " ... ", the type of the result is "pointer
to ... ".

The result of the unary - operator is the negative of its operand. The usual
arithmetic conversions are performed. The negative of an unsigned quantity
is computed by subtracting its value from 2n where n is the number of bits
in the corresponding signed type.

There is no unary + operator.

The result of the logical negation operator ! is one if the value of its operand
is zero, zero if the value of its operand is nonzero. The type of the result is
int. It is applicable to any arithmetic type or to pointers.

The - operator yields the one's complement of its operand. The usual
arithmetic conversions are performed. The type of the operand must be
integral.

The object referred to by the lvalue operand of prefix + + is incremented.
The value is the new value of the operand but is not an lvalue. The
expression ++xis equivalent to x=x+1. See the discussions "Additive
Operators" and "Assignment Operators" for information on conversions.

The lvalue operand of prefix -- is decremented analogously to the prefix + +
operator.

When postfix + + is applied to an !value, the result is the value of the object
referred to by the !value. After the result is noted, the object is incremented

2-10 Sys5 UNIX

(

C LANGUAGE CHAPTER 2

in the same manner as for the prefix + + operator. The type of the result is
the same as the type of the lvalue expression.

When postfix -- is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented
in the manner as for the prefix -- operator. The type of the result is the
same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes
conversion of the value of the expression to the named type. This
construction is called a cast. Type names are described in "Type Names"
under "Declarations." ·

The sizeof operator yields the size in bytes of its operand. (A byte is
undefined by the language except in terms of the value of sizeof. However,
in all existing implementations, a byte is the space required to hold a char.)
When applied to an array, the result is the total number of bytes in the array.
The size is determined from the declarations of the objects in the
expression. This expression is semantically an unsigned constant and may
be used anywhere a constant is required. Its major use is in communication
with routines like storage allocators and 1/0 systems.

The sizeof operator may also be applied to a parenthesized type name. In
that case it yields the size in bytes of an object of the indicated type.

The construction sizeof(type) is taken to be a unit, so the expression
sizeof(type)-2 is the same as (sizeof(type))-2.

2.6.3 Multiplicative Operators

The multiplicative operators *, I, and % group left to right. The usual
arithmetic conversions are performed.

multiplicative expression:
expression* expression
expression I expression
expression% expression

The binary * operator indicates multiplication. The * operator is associative,
and expressions with several multiplications at the same level may be
rearranged by the compiler. The binary I operator indicates division.

The binary % operator yields the remainder from the division of the first
expression by the second. The operands must be integral.

When positive integers are divided, truncation is toward O; but the form of
truncation is machine-dependent if either operand is negative. On all
machines covered by this manual, the remainder has the same sign as the
dividend. It is always true that (a/b)*b + ao/ob is equal to a (if b is not 0).

Sys5 UNIX 2-11

CHAPTER 2 CLANGUAGE

2.6.4 Additive Operators

The additive operators + and - group left to right. The usual arithmetic
conversions are performed. There are some additional type possibilities for
each operator.

additive-expression:
expression + expression
expression - expression

The result of the + operator is the sum of the operands. A pointer to an
object in an array and a value of any integral type may be added. The latter
is in all cases converted to an address offset by multiplying it by the length
of the object to which the pointer points. The result is a pointer of the same
type as the original pointer which points to another object in the same array,
appropriately offset from the original object. Thus if P is a pointer to an
object in an array, the expression P + 1 is a pointer to the next object in the
array. No further type combinations are allowed for pointers.

The + operator is associative, and expressions with several additions at the
same level may be rearranged by the compiler.

The result of the - operator is the difference of the operands. The usual
arithmetic conversions are performed. Additionally, a value of any integral
type may be subtracted from a pointer, and then the same conversions for
addition apply.

If two pointers to objects of the same type are subtracted, the result is
converted (by division by the length of the object) to an int representing the
number of objects separating the pointed-to objects. This conversion will in
general give unexpected results unless the pointers point to objects in the
same array, since pointer5, even to objects of the same type, do not
necessarily differ by a multiple of the object length.

2.6.5 Shift Operators

The shift operators < < and > > group left to right. Both perform the usual
arithmetic conversions on their operands, each of which must be integral.
Then the right operand is converted to int; the type of the result is that of
the left operand. The result is undefined if the right operand is negative or
greater than or equal to the length of the object in bits.

shift-expression:
expression < < expression
expression > > expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are O filled. The value of E1>>E2 is E1 right-shifted E2 bit !
positions. The right shift is guaranteed to be logical (O fill) if E1 is unsigned; \, /

2-12 Sys5 UNIX

(··~

C LANGUAGE

otherwise, it may be arithmetic.

2.6.6 Relational Operators

The relational operators group left to right.

relational-ex press ion:
expression < expression
expression> expression
expression < = expression
expression > = expression

CHAPTER 2

The operators < (less than), > (greater than), < = (less than or equal to),
and > = (greater than or equal to) all yield 0 if the specified relation is false
and 1 if it is true. The type of the result is int. The usual arithmetic
conversions are performed. Two pointers may be compared; the result
depends on the relative locations in the address space of the pointed-to
objects. Pointer comparison is portable only when the pointers point to
objects in the same array.

2.6. 7 Equality Operators

equality-expression:
expression = = expression
expression!= expression

The = = (equal to) and the != (not equal to) operators are exactly
analogous to the relational operators except for their lower precedence.
(Thus a<b = = c<d is 1 whenever a<b and c<d have the same truth
value).

A pointer may be compared to an integer only if the integer is the constant
O. A pointer to which O has been assigned is guaranteed not to point to any
object and will appear to be equal to 0. In conventional usage, such a
pointer is considered to be null.

2.6.8 Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be
rearranged. The usual arithmetic conversions are performed. The result is
the bitwise AND function of the operands. The operator applies only to
integral operands.

2.6.9 Bitwise Exclusive OR Operator

exclusive-or-expression:
expression expression

SysS UNIX 2-13

CHAPTER 2 C LANGUAGE

The • operator is associative, and expressions involving • may be
rearranged. The usual arithmetic conversions are performed; the result is /
the bitwise exclusive OR function of the operands. The operator applies
only to integral operands.

2.6.1 O Bitwise Inclusive OR Operator

inclusive-or-expression:
expression I expression

The I operator is associative, and expressions involving I may be rearranged.
The usual arithmetic conversions are performed; the result is the bitwise
inclusive OR function of its operands. The operator applies only to integral
operands.

2.6.11 Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands
evaluate to nonzero, O otherwise. Unlike &, && guarantees left to right
evaluation; moreover, the second operand is not evaluated if the first
operand is 0.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

2.6.12 Logical OR Operator

logical-or-expression:
expression I expression

The I operator groups left to right. It returns 1 if either of its operands
evaluates to nonzero, O otherwise. Unlike l I guarantees left to right
evaluation; moreover, the second operand is not evaluated if the value of
the first operand is nonzero.

The operands need not have the same type, but each must have one of the
fundamental types or be a pointer. The result is always int.

2.6.13 Conditional Operator

conditional-expression:
expression ? expression: expression

Conditional expressions group right to left. The first expression is evaluated;
and if it is nonzero, the result is the value of the second expression,
otherwise that of third expression. If possible, the usual arithmetic
conversions are performed to bring the second and third expressions to a (
common type. If both are structures or unions of the same type, the result ,

2-14 Sys5 UNIX

_,,/

(

C LANGUAGE CHAPTER 2

has the type of the structure or union. If both pointers are of the same type,
the result has the common type. Otherwise, one must be a pointer and the
other the constant 0, and the result has the type of the pointer. Only one of
the second and third expressions is evaluated.

2.6.14 Assignment Operators

There are a number of assignment operators, all of which group right to left.
All require an lvalue as their left operand, and· the type of an assignment
expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place. The two parts of a
compound assignment operator are separate tokens.

assignment-expression:
/value = expression
/value + = expression
/value-= expression
/value*= expression
/value I= expression
/value%= expression
/value > > = expression
/value<<= expression
/value & = expression
/value·= expression
/value I= expression

In the simple assignment with =, the value of the expression replaces that
of the object referred to by the lvalue. If both operands have arithmetic
type, the right operand is converted to the type of the left preparatory to the
assignment. Second, both operands may be structures or unions of the
same type. Finally, if the left operand is a pointer, the right operand must in
general be a pointer of the same type. However, the constant O may be
assigned to a pointer; it is guaranteed that this value will produce a null
pointer distinguishable from a pointer to any object.

The behavior·of an expression of the form E1 op = E2 may be inferred by
taking it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only
once. In + = and -=, the left operand may be a pointer; in which case, the
(integral) right operand is converted as explained in "Additive Operators." All
right operands and all nonpointer left operands must have arithmetic type.

2.6.15 Comma Operator

comma-expression:
expression, expression

A pair of expressions separated by a comma is evaluated left to right, and
the value of the left expression is discarded. The type and value of the

Sys5 UNIX 2-15

CHAPTER 2 C LANGUAGE

result are the type and value of the right operand. This operator groups left
to right. In contexts where comma is given a special meaning, e.g., in lists \, j

of actual arguments to functions (see "Primary Expressions") and lists of
initializers (see "Initialization" under "DECLARATIONS"), the comma
operator as described in this subpart can only appear in parentheses. For
example,

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

2. 7 Declarations

Declarations are used to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the
identifier. Declarations have the form

declaration:
decl-specifiers declarator-list0 pt;

The declarators in the declarator-list contain the identifiers being declared.
The decl-specifiers consist of a sequence of type and storage class
specifiers.

decl-s pecifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers op~p

The list must be self-consistent in a way described below.

2.7.1 Storage Class Specifiers

The sc-specifiers are:

sc-s pecifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a "storage
class specifier" only for syntactic convenience. See "Typedef" for more
information. The meanings of the various storage classes were discussed in
"Names."

The auto, static, and register declarations also serve as definitions in that
they cause an appropriate amount of storage to be reserved. In the extern
case, there must be an external definition (see "External Definitions") for the
given identifiers somewhere outside the function in which they are declared.

2-16 Sys5 UNIX

(

(

('

C LANGUAGE CHAPTER 2

A register declaration is best thought of as an auto declaration, together
with a hint to the compiler that the variables declared will be heavily used.
Only the first few such declarations in each function are effective.
Moreover, only variables of certain types will be stored in registers. One
other restriction applies to register variables: the address-of operator &
cannot be applied to them. Smaller, faster programs can be expected if
register declarations are used appropriately, but future improvements in
code generation may render them unnecessary.

At most, one sc-specifier may be given in a declaration. If the sc-specifier is
missing from a declaration, it is taken to be auto inside a function, extern
outside. Exception: functions are never automatic.

2.7.2 Type Specifiers

The type-specifiers are

type-specifier:
struct ·or-union-specifier
typedef-name
enum-s pecifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

At most one of the words long or short may be specified in conjunction with
int; the meaning is the same as if int were not mentioned. The word long
may be specified in conjunction with float; the meaning is the same as
double. The word unsigned may be specified alone, or in conjunction with
int or any of its short or long varieties, or with char.

Otherwise, at most on type-specifier may be given in a declaration. In
particular, adjectival use of long, short, or unsigned is not permitted with
typedef names. If the type-specifier is missing from a declaration, it is
taken to be int.

Specifiers for structures, unions, and enumerations are discussed in
"Structure, Union, and Enumeration Declarations." Declarations with
typedef names are discussed in ''Typedef."

Sys5 UNIX 2-17

CHAPTER 2 C LANGUAGE

2.7.3 Declarators

The declarator-list appearing in a declaration is a comma-separated
sequence of declarators, each of which may have an initializer.

declarator-list:
init-declarator
init-declarator, declarator-list

init-declarator:
declarator initializer opt

Initializers are discussed in "Initialization". The specifiers in the declaration
indicate the type and storage class of the objects to which the declarators
refer. Declarators have the syntax:

declarator:
identifier
(declarator)
• declarator
declarator ()
declarator [constant-expression opt I

The grouping is the same as in expressions.

2.7.4 Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the
same form as the declarator appears in an expression, it yields an object of
the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is
declared. If an unadorned identifier appears as a declarator, then it has the
type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the
binding of complex declarators may be altered by parentheses. See the
examples below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose
this declaration makes the identifier have type " . . . T , " where the " ... " is
empty if D1 is just a plain identifier (so that the type of x in 'int x" is just
int). Then if D1 has the form

*D

the type of the contained identifier is " . . . pointer to T . "

2-18 Sys5 UNIX

(

(

C LANGUAGE CHAPTER 2

If 01 has the form

D()

then the contained identifier has the type" ... function returning T."

If 01 has the form

D[constant-expression)

or

D[)

then the contained identifier has type " ... array of T." In the first case, the
constant expression is an expression whose value is determinable at
compile time , whose type is int, and whose value is positive. (Constant
expressions are defined precisely in "Constant Expressions.") When several
"array of" specifications are adjacent, a multidimensional array is created;
the constant expressions which specify the bounds of the arrays may be
missing only for the first member of the sequence. This elision is useful
when the array is external and the actual definition, which allocates storage,
is given elsewhere. The first constant expression may also be omitted when
the declarator is followed by initialization. In this case the size is calculated
from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer,
from a structure or union, or from another array (to generate a
multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted.
The restrictions are as follows: functions may not return arrays or functions
although they may return pointers; there are no arrays of functions although
there may be arrays of pointers to functions. Likewise, a structure or union
may not contain a function; but it may contain a pointer to a function.

As an example, the declaration

int i, *ip, f(), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an
integer, a function fip returning a pointer to an integer, and a pointer pfi to a
function which returns an integer. It is especially useful to compare the last
two. The binding of *fip() is *(fip()). The declaration suggests, and the
same construction in an expression requires, the calling of a function fip.
Using indirection through the (pointer) result to yield an integer. In the
declarator (*pfi)(), the extra parentheses are necessary, as they are also in
an expression, to indicate that indirection through a pointer to a function
yields a function, which is then called; it returns an integer.

Sys5 UNIX 2-19

CHAPTER 2

As another example,

float fa[17], *afp[17];

C LANGUAGE

declares an array of float numbers and an array of pointers to float
numbers. Finally,

static int x3d[3][5)[7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In
complete detail, x3d is an array of three items; each item is an array of five
arrays; each of the latter arrays is an array of _seven integers. Any of the
expressions x3d, x3d[i], x3d[i][j], x3d[i][j][k] may reasonably appear in an
expression. The first three have type "array" and the last has type int.

2.7.5 Structure and Union Declarations

A structure is an object consisting of a sequence of named members. Each
member may have any type. A union is an object which may, at a given
time, contain any one of several members. Structure and union specifiers
have the same form.

struct-or-union-s pecifier:
struct-or-union { struct-decl-/ist}
struct-or-union identifier { struct-decl-list}
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the
structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator ·fist ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a
structure or union. A structure member may also consist of a specified
number of bits. Such a member is also called a field ; its length, a non­
negative constant expression, is set off from the field name by a colon.

2-20 Sys5 UNIX

(

(

C LANGUAGE

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

CHAPTER 2

Within a structure, the objects declared have addresses which increase as
the declarations are read left to right. Each nonfield member of a structure
begins on an addressing boundary appropriate to its type; therefore, there
may be unnamed holes in a structure. Field members are packed into
machine integers; they do not straddle words. A field which does not fit into
the space remaining in a word is put into the next word. No field may be
wider than a word.

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts.
As a special case, a field with a width of 0 specifies alignment of the next
field at an implementation dependant boundary.

The language does not restrict the types of things that are declared as
fields, but implementations are not required to support any but integer fields.
Moreover, even int fields may be considered to be unsigned. For these
reasons, it is strongly recommended that fields be declared as unsigned. In
all implementations, there are no arrays of fields, and the address-of
operator & may not be applied to them, so that there are no pointers to
fields.

A union may be thought of as a structure all of whose members begin at
offset O and whose size is sufficient to contain any of its members. At most,
one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure
specified by the list. A subsequent declaration may then use the third form
of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags
also permit the long part of the declaration to be given once and used
several times. It is illegal to declare a structure or union which contains an
instance of itself, but a structure or union may contain a pointer to an
instance of itself.

Sys5 UNIX 2-21

CHAPTER 2 C LANGUAGE

The third form of a structure or union specifier may be used prior to a
declaration which gives the complete specification of the structure or union j
in situations in which the size of the structure or union is unnecessary. The
size is unnecessary in two situations: when a pointer to a structure or union
is being declared and when a typedef name is declared to be a synonym for
a structure or union. This, for example, allows the declaration of a pair of
structures which contain pointers to each other.

The names of members and tags do not conflict with each other or with
ordinary variables. A particular name may not be used twice in the same
structure, but the same name may be used in several different structures in
the same scope.

A simple but important example of a structure declaration is the following
binary tree structure:

struct tnode
{

char tword[20);
int count;
struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to /
similar structures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a
structure of the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;

s.left

refers to the left subtree pointer of the structures; and

s.right->tword[O)

refers to the first character of the tword member of the right subtree of s.

2.7.6 Enumeration Declarations

Enumeration variables and constants have integral type.

2-22 Sys5 UNIX

(

(

C LANGUAGE

enum-specifier:
enum { enum-fist }
enum identifier { enum-list }
enum identifier

enum-/ist:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier= constant-expression

CHAPTER 2

The identifiers in an enum-list are declared as constants and may appear
wherever constants are required. If no enumerators with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the
declaration is read from left to right. An enumerator with = gives the
associated identifier the value indicated; subsequent identifiers continue the
progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each
other and from those of ordinary variables.

The role of the identifier in the enum-specifier is entirely analogous to that of
the structure tag in a struct-specifier; it names a particular enumeration. For
example,

enum color {chartreuse, burgundy, claret=20, winedark };

enum color *Cp, col;

col= claret;
cp =&col;

if (*CP = = burgundy) ...

makes color the enumeration-tag of a type describing various colors, and
then declares cp as a pointer to an object of that type, and col as an object
of that type. The possible values are drawn from the set {0,1,20,21}.

2.7.7 Initialization

A declarator may specify an initial value for the identifier being declared.
The initializer is preceded by = and consists of an expression or a list of
values nested in braces.

Sys5 UNIX 2-23

CHAPTER 2

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

C LANGUAGE

All the expressions in an initializer for a static or external variable must be
constant expressions, which are described in "CONST ANT
EXPRESSIONS", or expressions which reduce to the address of a
previously declared variable, possibly offset by a constant expression.
Automatic or register variables may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start
off as zero. Automatic and register variables that are not initialized are
guaranteed to start off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic
type), it consists of a single expression, perhaps in braces. The initial value
of the object is taken from the expression; the same conversions as for
assignment are performed.

When the declared variable is an aggregate (a structure or array), the
initializer consists of a brace-enclosed, comma-separated list of initializers
for the members of the aggregate written in increasing subscript or member
order. If the aggregate contains subaggregates, this rule applies recursively
to the members of the aggregate. If there are fewer initializers in the list
than there are members of the aggregate, then the aggregate is padded
with zeros. It is not permitted to initialize unions or automatic aggregates.

Braces may in some cases be omitted. If the initializer begins with a left
brace, then the succeeding comma-separated list of initializers initializes the
members of the aggregate; it is erroneous for there to be more initializers
than members. If, however, the initializer does not begin with a left brace,
then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the
next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this
case successive characters of the string initialize the members of the array.

For example,

2-24 Sys5 UNIX

(

(-

C LANGUAGE CHAPTER 2

int x[] = { 1, 3, 5 } ;

declares and initializes x as a one-dimensional array which has three
members, since no size was specified and there are three initializers.

float y[4][3] =

{

};

{1,3,5},
{ 2, 4, 6 },
{ 3, 5, 7 },

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of
the array y[O], namely y[O)[O], y[0][1), and y[0][2]. Likewise, the next two
lines initialize y[1] and y[2). The initializer ends early and therefore y[3] is
initialized with 0. Precisely, the same effect could have been achieved by

float y[4][3] =

{
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer for y begins with a left brace but that for y[O] does not;
therefore, three elements from the list are used. Likewise, the next three
are taken successively for y[1) and y[2). Also,

float y[4)[3] =

{
{ 1 }, { 2 }, { 3 }, { 4}

};

initializes the first column of y (regarded as a two-dimensional array) and
leaves the rest 0.

Finally,

char msg[] = "Syntax error on line o/os\n";

shows a character array whose members are initialized with a string.

2.7.8 Type Names

In two contexts (to specify type conversions explicitly by means of a cast
and as an argument of sizeof), it is desired to supply the name of a data
type. This is accomplished using a "type name", which in essence is a
declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

Sys5 UNIX 2-25

CHAPTER 2

abstract-declarator:
empty
(abstract-declarator)
*abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression opt]

To avoid ambiguity, in the construction

(abstract-declarator)

C LANGUAGE

the abstract-declarator is required to be nonempty. Under this restriction, it
is possible to identify uniquely the location in the abstract-declarator where
the identifier would appear if the construction were a declarator in a
declaration. The named type is then the same as the type of the
hypothetical identifier. For example,

int
int*
int *[3]
int (*)[3]
int*()
int(*)()
int (*[31)()

name respectively the types "integer," "pointer to integer," "array of three
pointers to integers," "pointer to an array of three integers," "function
returning pointer to integer," "pointer to function returning an integer," and
"array of three pointers to functions returning an integer."

2.7.9 Typedef

Declarations whose "storage class" is typedef do not define storage but
instead define identifiers which can be used later as if they were type
keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier
appearing as part of any declarator therein becomes syntactically equivalent
to the type keyword naming the type associated with the identifier in the way
described in "Meaning of Declarators." For example, after

typedef int MILES, *KLICKSP;
typedef struct {double re, im;} complex;

the constructions

2-26 Sys5 UNIX

(

C LANGUAGE CHAPTER 2

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is
"pointer to int, " and that of z is the specified structure. The zp is a pointer
to such a structure.

The typedef does not introduce brand-new types, only synonyms for types
which could be specified in another way. Thus in the example above
distance is considered to have exactly the same type as any other int
object.

2.8 Statements

Except as indicated, statements are executed in sequence.

2.8.1 Expression Statement

Most statements are expression statements, which have the form

expression ;

Usually expression statements are assignments or function calls.

2.8.2 Compound Statement or Block

So that several statements can be used where one is expected, the
compound statement (also, and equivalently, called "block") is provided:

com pound-statement:
{ declaration-list t statement-list t} op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the
outer declaration is pushed down for the duration of the block, after which it
resumes its force.

Any initializations of auto or register variables are performed each time the
block is entered at the top. It is currently possible (but a bad practice) to
transfer into a block; in that case the initializations are not performed.
Initializations of static variables are performed only once when the program
begins execution. Inside a block, extern declarations do not reserve
storage so initialization is not permitted.

Sys5 UNIX 2-27

CHAPTER 2

2.8.3 Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

CLANGUAGE

In both cases, the expression is evaluated; and if it is nonzero, the first
substatement is executed. In the second case, the second substatement is
executed if the expression is 0. The "else" ambiguity is resolved by
connecting an else with the last encountered else-less if.

2.8.4 While Statement

The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the
expression remains nonzero. The test takes place before each execution of
the statement.

2.8.5 Do Statement

The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression
becomes 0. The test takes place after each execution of the statement.

2.8.6 For Statement

The for statement has the form:

for (exp-1 opt; exp-2opt; exp-3opt) statement

Except for the behavior of continue, this statement is equivalent to

exp-1 ;
while (exp-2)
{

}

statement
exp-3;

Thus the first expression specifies initialization for the loop; the second
specifies a test, made before each iteration, such that the loop is exited
when the expression becomes O. The third expression often specifies an
incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(1); other missing expressions are

2-28 Sys5 UNIX

(

C LANGUAGE

simply dropped from the expansion above.

2.8. 7 Switch Statement

CHAPTER 2

The switch statement causes control to be transferred to one of several
statements depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the
result must be int. The statement is typically compound. Any statement
within the statement may be labeled with one or more case prefixes as
follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in
the same switch may have the same value. Constant expressions are
precisely defined in "CONSTANT EXPRESSIONS."

There may also be at most one statement prefix of the form

default :

When the switch statement is executed, its expression is evaluated and
compared with each case constant. If one of the case constants is equal to
the value of the expression, control is passed to the statement following the
matched case prefix. If no case constant matches the expression and if
there is a default, prefix, control passes to the prefixed statement. If no
case matches and if there is no default, then none of the statements in the
switch is executed.

The prefixes case and default do not alter the flow of control, which
continues unimpeded across such prefixes. To exit from a switch, see
"Break Statement."

Usually, the statement that is the subject of a switch is compound.
Declarations may appear at the head of this statement, but initializations of
automatic or register variables are ineffective.

2.8.8 Break Statement

The statement

break;

causes termination of the smallest enclosing while, do, for, or switch
statement; control passes to the statement following the terminated
statement.

Sys5 UNIX 2-29

CHAPTER 2

2.8.9 Continue Statement

The statement

continue;

C LANGUAGE

causes control to pass to the loop-continuation portion of the smallest
enclosing while, do, or for statement; that is to the end of the loop. More
precisely, in each of the statements

while(...) do for (...)
{ { {

contin:; contin:; contin:;
} } while(...); }

a continue is equivalent to goto contin. (Following the contin: is a null
statement, see "Null Statement".)

2.8.10 Return Statement

A function returns to its caller by means of the return statement which has
one of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the
value of the expression is returned to the caller of the function. If required,
the expression is converted, as if by assignment, to the type of function in
which it appears. Flowing off the end of a function is equivalent to a return
with no returned value. The expression may be parenthesized.

2.8.11 Goto Statement

Control may be transferred unconditionally by means of the statement

goto identifier ;

The identifier must be a label (see "Labeled Statement"') located in the
current function.

2.8.12 Labeled Statement

Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. The only use of a label is as
a target of a goto. The scope of a label is the current function, excluding
any subblocks in which the same identifier has been redeclared. See
"SCOPE RULES."

2-30 Sys5 UNIX

C LANGUAGE CHAPTER 2

2.8.13 Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound
statement or to supply a null body to a looping statement such as while.

2.9 External Definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or
perhaps static, and a specified type. The type-specifier (see "Type
Specifiers" in "DECLARATIONS") may also be empty, in which case the
type is taken to be int. The scope of external definitions persists to the end
of the file in which they are declared just as the effect of declarations
persists to the end of a block. The syntax of external definitions is the same
as that of all declarations except that only at this level may the code for
functions be given.

2.9.1 External Function Definitions

Function definitions have the form

function-definition:
decl-specifiers opt function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or
static; see "Scope of Externals" in "SCOPE RULES" for the distinction
between them. A function declarator is similar to a declarator for a "function
returning ... " except that it lists the formal parameters of the function being
defined.

function-declarator:
declarator (parameter-list opt)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list opt com pound-statement

The identifiers in the parameter list, and only those identifiers, may be
declared in the declaration list. Any identifiers whose type is not given are
taken to be int. The only storage class which may be specified is register;
if it is specified, the corresponding actual parameter will be copied, if
possible, into a register at the outset of the function.

Sys5 UNIX 2-31

CHAPTER 2

A simple example of a complete function definition is

int max(a, b, c)

{

}

int a, b, c;

int m;

m = (a > b) ? a : b;
return((m > c) ? m : c);

C LANGUAGE

Here int is the type-specifier; max{a, b, c) is the function-declarator;
int a, b, c; is the declaration-list for the formal parameters; { ... } is the block
giving the code for the statement.

The C program converts all float actual parameters to double, so formal
parameters declared float have their declaration adjusted to read double.
All char and short formal parameter declarations are similarly adjusted to
read int. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the
array, declarations of formal parameters declared "array of ... " are adjusted
to read "pointer to "

2.9.2 External Data Definitions

An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or
static but not auto or register.

2.10 Scope Rules

A C program need not all be compiled at the same time. The source text of
the program may be kept in several files, and precompiled routines may be
loaded from libraries. Communication among the functions of a program
may be carried out both through explicit calls and through manipulation of
external data.

Therefore, there are two kinds of scopes to consider: first, what may be
called the lexical scope of an identifier, which is essentially the region of a
program during which it may be used without drawing "undefined identifier"
diagnostics; and second, the scope associated with external identifiers,
which is characterized by the rule that references to the same external
identifier are references to the same object.

2-32 Sys5 UNIX

(-

(

C LANGUAGE CHAPTER 2

2.10.1 Lexical Scope

The lexical scope of identifiers declared in external definitions persists from
the definition through the end of the source file in which they appear. The
lexical scope of identifiers which are formal parameters persists through the
function with which they are associated. The lexical scope of identifiers
declared at the head of a block persists until the end of the block. The
lexical scope of labels is the whole of the function in which they appear.

In all cases, however, if an identifier is explicitly declared at the head of a
block, including the block constituting a function, any declaration of that
identifier outside the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations" in
"DECLARATIONS") that tags, identifiers associated with ordinary variables,
and identities associated with structure and union members form three
disjoint classes which do not conflict. Members and tags follow the same
scope rules as other identifiers. The enum constants are in the same class
as ordinary variables and follow the same scope rules. The typedef names
are in the same class as ordinary identifiers. They may be redeclared in
inner blocks, but an explicit type must be given in the inner declaration:

typedef float distance;

{
auto int distance;

The int must be present in the second declaration, or it would be taken to
be a declaration with no declarators and type distance.

2.10.2 Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere
among the files or libraries constituting the complete program there must be
at least one external definition for the identifier. All functions in a given
program which refer to the same external identifier refer to the same object,
so care must be taken that the type and size specified in the definition are
compatible with those specified by each function which references the data.

It is illegal to explicitly initialize any external identifier more than once in the
set of files and libraries comprising a multi-file program. It is legal to have
more than one data definition for any external non-function identifier; explicit
use of extern does not change the meaning of an external declaration.

In restricted environments, the use of the extern storage class takes on an
additional meaning. In these environments, the explicit appearance of the
extern keyword in external data declarations of identities without
initialization indicates that the storage for the identifiers is allocated

SysS UNIX 2-33

CHAPTER 2 C LANGUAGE

elsewhere, either in this file or another file. It is required that there be
exactly one definition of each external identifier (without extern) in the set of
files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not
visible in other files. Functions may be declared static.

2.11 Compiler Control Lines

The C compiler contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning with #
communicate with this preprocessor. There may be any number of blanks
and horizontal tabs between the # and the directive. These lines have
syntax independent of the rest of the language; they may appear anywhere
and have effect which lasts (independent of scope) until the end of the
source program file.

2.11.1 Token Replacement

A compiler-control line of the form

#define identifier token-string opt

causes the preprocessor to replace subsequent instances of the identifier
with the given string of tokens. Semicolons in or at the end of the token­
string are part of that string. A line of the form

#define identifier(identifier, ...)token-string t
op

where there is no space between the first identifier and the (, is a macro
definition with arguments. There may be zero or more formal parameters.
Subsequent instances of the first identifier followed by a (, a sequence of
tokens delimited by commas, and a) are replaced by the token string in the
definition. Each occurrence of an identifier mentioned in the formal
parameter list of the definition is replaced by the corresponding token string
from the call. The actual arguments in the call are token strings separated
by commas; however, commas in quoted strings or protected by
parentheses do not separate arguments. The number of formal and actual
parameters must be the same. Strings and character constants in the
token-string are scanned for formal parameters, but strings and character
constants in the rest of the program are not scanned for defined identifiers
to replacement.

In both forms the replacement string is rescanned for more defined
identifiers. In both forms a long definition may be continued on another line
by writing \ at the end of the line to be continued.

This facility is most valuable for definition of "manifest constants," as in

2-34 Sys5 UNIX

(-

C LANGUAGE

#define TABSIZE 100

int table[TABSIZE];

A control line of the form

#undef identifier

CHAPTER 2

causes the identifier's preprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no
intervening #undef, then the two token-strings are compared textually. If
the two token-strings are not identical (all white space is considered as
equivalent), then the identifier is considered to be redefined.

2.11.2 File Inclusion

A compiler control line of the form

#include "filename "

causes the replacement of that line by the entire contents of the file
filename. The named file is searched for first in the directory of the file
containing the #include, and then in a sequence of specified or standard
places. Alternatively, a control line of the form

f #include <filename>

(

searches only the specified or standard places and not the directory of the
#include. (How the places are specified is not part of the language.)

#includes may be nested.

2.11.3 Conditional Compilation

A compiler control line of the form

#if restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero.
(Constant expressions are discussed in "CONSTANT EXPRESSIONS"; the
following additional restrictions apply here: the constant expression may not
contain sizeof casts, or an enumeration constant.)

A restricted constant expression may also contain the additional unary
expression

defined identifier
or
defined(identifier

which evaluates to one if the identifier is currently defined in the
preprocessor and zero if it is not.

SysS UNIX 2-35

CHAPTER 2 C LANGUAGE

All currently defined identifiers in restricted-constant-expressions are
replaced by their token-strings (except those identifiers modified by defined)
just as in normal text. The restricted constant expression will be evaluated
only after all expressions have finished. During this evaluation, all undefined
(to the procedure) identifiers evaluate to zero.

A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e.,
whether it has been the subject of a #define control line. It is equivalent to
#ildel{identifier). A control line of the form

#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if!defined{identifier).

All three forms are followed by an arbitrary number of lines, possibly
containing a control line

#else

and then by a control line

#end if

If the checked condition is true, then any lines between #else and #endif
are ignored. If the checked condition is false, then any lines between the
test and a #else or, lacking a #else, the #endif are ignored.

These constructions may be nested.

2.11.4 Line Control

For the benefit of other preprocessors which generate C programs, a line of
the form

#line constant "filename"

causes the compiler to believe, for purposes of error diagnostics, that the
line number of the next source line is given by the constant and the current
input file is named by "filename". If "filename" is absent, the remembered
file name does not change.

2.12 IMPLICIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in
external definitions and in declarations of formal parameters and structure
members. In a declaration inside a function, if a storage class but no type is
given, the identifier is assumed to be int; if a type but no storage class is

2-36 Sys5 UNIX

/

(

C LANGUAGE CHAPTER 2

indicated, the identifier is assumed to be auto. An exception to the latter
rule is made for functions because auto functions do not exist. If the type of
an identifier is "function returning ... ," it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is
contextually declared to be "function returning int.''

2.13 TYPES REVISITED

This part summarizes the operations which can be performed on objects of
certain types.

2.13.1 Structures and Unions

Structures and unions may be assigned, passed as arguments to functions,
and returned by functions. Other plausible operators, such as equality
comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right of the
·> or the . must specify a member of the aggregate named or pointed to by
the expression on the left. In general, a member of a union may not be
inspected unless the value of the union has been assigned using that same
member. However, one special guarantee is made by the language in order
to simplify the use of unions: if a union contains several structures that
share a common initial sequence and if the union currently contains one of
these structures, it is permitted to inspect the common initial part of any of
the contained structures. For example, the following is a legal fragment:

SysS UNIX 2-37

CHAPTER 2

union
{

} u;

struct
{

int type;
} n;
struct
{

int type;
int intnode;

} ni;
struct
{

int type;
float floatnode;

} nf;

u.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type = = FLOAT)
••• sin(u.nf.floatnode) ...

2.13.2 Functions

C LANGUAGE

There are only two things that can be done with a function m call it or take
its address. If the name of a function appears in an expression not in the
function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, one might say

int f{);

g(f);

Then the definition of g might read

g(funcp)
int (*funcp)();

{

(*funcp){);

}

Notice that f must be declared explicitly in the calling routine since its I
appearance in g(f) was not followed by (. <,
2-38 SysS UNIX

(

C LANGUAGE CHAPTER 2

2.13.3 Arrays, Pointers, and Subscripting

Every time an identifier of array type appears in an expression, it is
converted into a pointer to the first member of the array. Because of this
conversion, arrays are not lvalues. By definition, the subscript operator [) is
interpreted in such a way that E1[E2) is identical to *((E1)+(E2)). Because
of the conversion rules which apply to +, if E1 is an array and E2 an
integer, then E1[E2] refers to the E2 -th member of E1. Therefore, despite
its asymmetric appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multidimensional arrays. If E is
an n-dimensional array of rank ix j x ... x k, then E appearing in an expression
is converted to a pointer to an (n-1)-dimensional array with rank j x ... x k. If
the * operator, either explicitly or implicitly as a result of subscripting, is
applied to this pointer, the result is the pointed-to (n-1)-dimensional array,
which itself is immediately converted into a pointer.

For example, consider

int x[3)[5);

Here x is a 3 x 5 array of integers. When x appears in an expression, it is
converted to a pointer to (the first of three) 5-membered arrays of integers.
In the expression x[i), which is equivalent to *(x + i), x is first converted to a
pointer as described; then i is converted to the type of x, which involves
multiplying i by the length the object to which the pointer points, namely 5-
integer objects. The results are added and indirection applied to yield an
array (of five integers) which in turn is converted to a pointer to the first of
the integers. If there is another subscript, the same argument applies again;
this time the result is an integer.

Arrays in C are stored row-wise (last subscript varies fastest) and the first
subscript in the declaration helps determine the amount of storage
consumed by an array. Arrays play no other part in subscript calculations.

2.13.4 Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have
implementation-dependent aspects. They are all specified by means of an
explicit type-conversion operator, see "Unary Operators"
under"EXPRESSIONS" and "Type Names"under "DECLARATIONS."

A pointer may be converted to any of the integral types large enough to hold
it. Whether an int or long is required is machine dependent. The mapping
function is also machine dependent but is intended to be unsurprising to
those who know the addressing structure of the machine. Details for some
particular machines are given below.

Sys5 UNIX 2-39

CHAPTER 2 C LANGUAGE

An object of integral type may be explicitly converted to a pointer. The
mapping always carries an integer converted from a pointer back to the
same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The
resulting pointer may cause addressing exceptions upon use if the subject
pointer does not ref er to an object suitably aligned in storage. It is
guaranteed that a pointer to an object of a given size may be converted to a
pointer to an object of a smaller size and back again without change.

For example, a storage-allocation routine might. accept a size (in bytes) of
an object to allocate, and return a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0 I 7.0;

The alloc must ensure (in a machine-dependent way) that its return value is
suitable for conversion to a pointer to double; then the use of the function is
portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer
and measures bytes. The char's have no alignment requirements;
everything else must have an even address.

2.14 CONSTANT EXPRESSIONS

In several places C requires expressions that evaluate to a constant: after
case, as array bounds, and in initializers. In the first two cases, the
expression can involve only integer constants, character constants, casts to
integral types, enumeration constants, and sizeof expressions, possibly
connected by the binary operators

+ - * I % & 1 · < < > > = = ! = < > < = > = && I

or by the unary operators

or by the ternary operator

?:

Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides constant expressions as
discussed above, one can also use floating constants and arbitrary casts
and can also apply the unary & operator to external or static objects and to
external or static arrays subscripted with a constant expression. The unary

2-40 Sys5 UNIX

(

C LANGUAGE CHAPTER 2

& can also be applied implicitly by appearance of unsubscripted arrays and
functions. The basic rule is that initializers must evaluate either to a
constant or to the address of a previously declared external or static object
plus or minus a constant.

2.15 PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of
potential trouble spots is not meant to be all-inclusive but to point out the
main ones.

Purely hardware issues like word size and the properties of floating point
arithmetic and integer division have proven in practice to be not much of a
problem. Other facets of the hardware are reflected in differing
implementations. Some of these, particularly sign extension (converting a
negative character into a negative integer) and the order in which bytes are
placed in a word, are nuisances that must be carefully watched. Most of the
others are only minor problems.

The number of register variables that can actually be placed in registers
varies from machine to machine as does the set of valid types.
Nonetheless, the compilers all do things properly for their own machine;
excess or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is
exceedingly unwise to write programs that depend on any of these
properties.

The order of evaluation of function arguments is not specified by the
language. The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter
character constants may be permitted. The specific implementation is very
machine dependent because the order in which characters are assigned to a
word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on some
machines and left to right on other machines. These differences are
invisible to isolated programs that do not indulge in type punning (e.g., by
converting an int pointer to a char pointer and inspecting the pointed-to
storage) but must be accounted for when conforming to externally-imposed
storage layouts.

2.16 SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than

Sys5 UNIX 2-41

CHAPTER 2 C LANGUAGE

as an exact statement of the language.

2.16.1 Expressions \"-._ __ /

The basic expressions are:

expression:
primary
* expression
&/value
- expression
! expression

expression
++/value
--/value
/value++
/value --
sizeof expression
sizeof (type-name)
(type-name) expression
expression binop expression
expression? expression: expression
/value asgnop expression

"" expression , expression
., ..-' /

primary:
identifier
constant
string
(expression)
primary (expression-list t)
primary [expression } op
primary . identifier
primary -> identifier

/value:
identifier
primary [expression J
/value . identifier
primary -> identifier
*expression
(/value)

The primary-expression operators

() [] . ->
/ ' (
_

2-42 Sys5 UNIX

(_

(_

(

C LANGUAGE CHAPTER 2

have highest priority and group left to right. The unary operators

* & - ! - + + -- sizeof (type-name)

have priority below the primary operators but higher than any binary
operator and group right to left. Binary operators group left to right; they
have priority decreasing as indicated below.

binop:
* I %
+
>> <<
< > <= >=

!=
&

I
&&
I

The conditional operator groups right to left.

Assignment operators all have the same priority and all group right to left.

asgnop:
= + = -= *= /= o/o= >>= <<= &= '= I=

The comma operator has the lowest priority and groups left to right.

2.16.2 Declarations

declaration:
decl-specifiers init-declarator-list0pt;

decl-specifiers:
type-specifier decl-specifiers t
sc-specifier decl-specifiers op~P

sc-s pecifier:
auto
static
extern
register
typedef

Sys5 UNIX 2-43

CHAPTER 2 CLANGUAGE

type-specifier:
/-.,

struct-or-union-specifier "~/· typedef-name
enum-specifier

basic-type-specifier:
basic-type
basic-type basic-type-specifiers

basic-type:
char
short
int
long
unsigned
float
double
void

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list: '· enumerator
enum-list , enumerator

enumerator:
identifier
identifier= constant-expression

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer opt

declarator:
identifier
(declarator)
• declarator
declarator ()
declarator [constant-expression opt]

/' '

I

~

2-44 SysS UNIX

C LANGUAGE CHAPTER 2

(' struct-or-union-specifier:
struct { struct-decl-list}
struct identifier { struct-decl-list}
struct identifier
union { struct-decl-list}
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list;

struct-declarator-list:
struct-declarator
struct-declarator, struct-declarator-list

struct-declarator:
declarator
declarator: constant-expression
: constant-expression

(initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
• abstract-declarator
abstract-declarator()
abstract-declarator [constant-expression t j

op
typedef-name:

(
identifier

Sys5 UNIX 2-45

CHAPTER 2 C LANGUAGE

2.16.3 Statements

com pound-statement: " -- -

{ declaration-list t statement-list t }
op op

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
com pound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for (eXPop6exp0 p6exp0 pt) statement
switch (expression) statement
case constant-expression : statement
default : statement
break;
continue;
return;
return expression;
goto identifier ;
identifier : statement

2.16.4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
decl-specifier t function-declarator function-body

op
function-declarator:

declarator (parameter-list t)
op

I

'
2-46 Sys5 UNIX

(

(

C LANGUAGE

parameter-list:
identifier
identifier, parameter-list

function-body:
declaration-list opt com pound-statement

data-definition:
extern declaration ;
static declaration ;

2.16.5 Preprocessor

#define identifier token-string0 pt
#define identifier{identifier, ...)token-string t
#undef identifier op
#include "filename "
#include <filename>
#if restricted-constant-expression
#ifdef identifier
#ifndef identifier
#else
#end if
#line constant "filename"

SysS UNIX

CHAPTER 2

2-47

CLIBRARIES CHAPTER 3

3. C LIBRARIES

This chapter and Chapter 4 describe the libraries that are supported on the
UNIX operating system. A library is a collection of related functions and/or
declarations that simplify programming effort by linking only what is needed,
allowing use of locally produced functions, etc. All of the functions
described are also described in Part 3 of the Sys5 UNIX Programmer
Reference Manual. Most of the declarations described are in Part 5 of the
Sys5 UNIX Programmer Reference Manual. The three main libraries on the
UNIX system are:

C library This is the basic library for C language programs.

Object file

Math library

The C library is composed of functions and
declarations used for file access, string testing and
manipulation, character testing and manipulation, ·
memory allocation, and other functions. This library
is described later in this chapter.

This library provides functions for the access and
manipulation of object files. This library is described
in Chapter 4.

This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is described in Chapter 4.

Some libraries consist of two portions - functions and declarations. In some
cases, the user must request that the functions (and/or declarations) of a
specific library be included in a program being compiled. ln,other cases, the
functions (and/or declarations) are included automatically.

3.0.1 Including Functions

When a program is being compiled, the compiler will automatically search
the C language library to locate and include functions that are used in the
program. This is the case only for the C library and no other library. In
order for the compiler to locate and include functions from other libraries, the
user must specify these libraries on the command line for the compiler. For
example, when using functions of the math library, the user must request
that the math library be searched by including the argument -Im on the
command line, such as:

cc file.c -Im

The argument -Im must come after all files that reference functions in the
math library in order for the link editor to know which functions to include in
the a.out file.

Sys5 UNIX 3-1

CHAPTER 3 C LIBRARIES

This method should be used for all functions that are not part of the C
language library.

3.0.2 Including Declarations

Some functions require a set of declarations in order to operate properly. A
set of declarations is stored in a file under the /usr/include directory. These
files are referred to as header files. In order to include a certain header file,
the user must specify this request within the C language program. The
request is in the form:

#include <file.h>

where file.h is the name of the file. Since the header files define the type of
the functions and various preprocessor constants, they must be included
before invoking the functions they declare.

The remainder of this chapter describes the functions and header files of the
C Library. The description of the library begins with the actions required by
the user to include the functions and/or header files in a program being
compiled (if any). Following the description of the actions required is
information in three-column format of the form:

function reference(N) Brief description.

The functions are grouped by type while the reference refers to section 'N' in
the Sys5 UNIX Programmer Reference Manual. Following this, are
descriptions of the header files associated with these functions (if any).

3.1 THE C LIBRARY

The C library consists of several types of functions. All the functions of the
C library are loaded automatically by the compiler. Various declarations
must sometimes be included by the user as required. The functions of the
C library are divided into the following types:

• Input/output control
• String manipulation
• character manipulation
• Time functions
• Miscellaneous functions.

3.1.1 Input/Output Control

These functions of the C library are automatically included as needed during
the compiling of a C language program. No command line request is
needed.

The header file required by the inputioutput functions should be included in
the program being compiled. This is accomplished by including the line:

3-2 Sys5 UNIX

C LIBRARIES CHAPTER 3

(#include <stdio.h>

near the beginning of each file that references an input or output function.

The input/output functions are grouped into the following categories:

• File access
• File status
• Input
• Output
• Miscellaneous.

3.1.2 File Access Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fclose fclose(3S) Close an open stream.

fdopen fopen(3S) Associate stream with
an oeen(2) ed file.

fileno ferror(3S) File descriptor associated
with an open stream.

fopen fopen(3S) Open a file with
specified permissions.

(
Fopen returns a pointer
to a stream which is
used in subsequent
references to the file.

freopen fopen(3S) Substitute named file
in place of open
stream.

fseek fseek(3S) Reposition the file
pointer.

pc lose popen(3S) Close a stream opened
b}'. eoeen.

po pen popen(3S) Create pipe as a stream
between calling process
and command.

rewind fseek(3S) Reposition file
pointer at beginning
of file.

setbuf setbuf(3S) Assign buffering to
stream.

vsetbuf setbuf(3S) Similar to setbuf, but

(allowing finer control.

SysS UNIX 3-3

CHAPTER 3

3.1.3 File Status Functions

FUNCTION REFERENCE
clearerr ferror(3S)

feof ferror(3S)

terror ferror(3S)

ft ell fseek(3S)

3.1.4 Input Functions

FUNCTION REFERENCE
fgetc getc(3S)

fgets gets(3S)
tread fread(3S)

fscanf scanf(3S)

getc getc(3S)

getchar getc(3S)

gets gets(3S)
getw getc(3S)
scanf scanf(3S)

sscanf scanf(3S)

ungetc ungetc(3S)

3·4

C LIBRARIES

BRIEF DESCRIPTION
Reset error condition on
stream.
Test for "end of file"
on stream.
Test for error condition
on stream.

Return current position
in the file.

BRIEF DESCRIPTION
True function for getc
(3$.

Read string from stream.

General buffered read
from stream.

Formatted read from
stream.

Read character from
stream.
Read character from
standard input.

Read string from standard input.

Read word from stream.
Read using format from
standard input.
Formatted from
strin .

Put back one character on
stream.

SysS UNIX

C LIBRARIES CHAPTER 3

(· 3.1.5 Output Functions

FUNCTION REFERENCE BRIEF DESCRIPTION
ff lush fclose(3S) Write all currently buffered

characters from stream.
fprintf printf(3S) Formatted write to

stream.
fputc putc(3S) True function for putc

3S.

teuts euts(3S} Write string to stream.
fwrite fread(3S) General buffered write to

stream.
printf printf(3S) Print using format to

standard output.
putc putc(3S) Write character to

standard output.
putchar putc(3S) Write character to

standard output.
puts puts(3S) Write string to

(
standard output.

eutw eutc(3S} Write word to stream.
sprintf printf(3S) Formatted write to

string.
vfprintf vprint(3C) Print using format to

stream by varargs(5)
argument list.

vprintf vprint(3C) Print using format to
standard output by
varargs(5) argument list.

vsprintf vprintf(3C) Print using format to
stream string by
varargs(5) argument list.

3.1.6 Miscellaneous Functions

FUNCTION REFERENCE BRIEF DESCRIPTION
ctermid ctermid(3S) Return file name for

controlling terminal.
cuserid cuserid(3S) Return login name for

(
owner of current process.

Sys5 UNIX 3-5

CHAPTER 3 C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION / ... '·

system system(3S) Execute shell command. ./
tempnam tempnam (3S)

tmpnam tmpnam(3S)

tmpfile tmpfile(3S)

3.1. 7 String Manipulation Functions

Create temporary file ·
name using directory and
prefix.
Create temporary file
name.
Create temporary file.

These functions are used to locate characters within a string, copy,
concatenate, and compare strings. These functions are automatically
located and loaded during the compiling of a C language program. No
command line request is needed since these functions are part of the C
library. The string manipulation functions are declared in a header file that
may be included in the program being compiled. This is accomplished by
including the line:

#include <string.h>

near the beginning of each file that uses one of these functions.

FUNCTION REFERENCE

strcat string(3C)

strchr string(3C)

strcmp . string(3C)
strcpy striilg(3C)

strcspn string(3C)

strlen string(3C)
strncat string(3C)

strncmp string(3C)

strncpy string(3C)

strpbrk string(3C)

BRIEF DESCRIPTION
Concatenate two strings.
Search string for
character .
Compares two strings.
Copy string.
Length of initial string
not containing set of
characters.
Length of string.
Concatenate two strings
with a maximum length.
Compares two strings
with a maximum length.
Copy string over string
with a maximum length.
Search string for any
set of characters.

Sys5 UNIX

/

(

(

C LIBRARIES CHAPTER 3

FUNCTION REFERENCE BRIEF DESCRIPTION
strrchr string(3C) Search string backwards

for character.
strspn string(3C) Length of initial string

containing set of
characters.

strtok string(3C) Search string for token
separated by any of a
set of characters.

3.1.8 Character Manipulation

The following functions and declarations are used for testing and translating
ASCII characters. These functions are located and loaded automatically
during the compiling of a C language program. No command line request is
needed since these functions are part of the C library.

The declarations associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <ctype.h>

near the beginning of the file being compiled.

3.1.9 Character Testing Functions

These functions can be used to identify characters as uppercase or
lowercase letters, digits, punctuation, etc.

FUNCTION REFERENCE
isalnum ctype(3C)

isalpha ctype(3C)
isascii ctype(3C)

iscntrl ctype(3C)

isdigit ctype(3C)
isgraph ctype(3C)

is lower ctype(3C)

SysS UNlX

BRIEF DESCRIPTION

Is character
alphanumeric?
Is character alphabetic?
Is integer ASCII
character?
Is character a control
character?
Is character a digit?

Is character a printable
character?
Is character a
lowercase letter?

3-7

CHAPTER 3 C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
isprint ctype(3C) Is character a printing

character including
space?

ispunct ctype(3C) Is character a
punctuation character?

isspace ctype(3C) Is character a white
space character?

isupper ctype(3C) Is character an uppercase
letter?

isxdigit ctype(3C) Is character a hex digit?

3.1.10 Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to
uppercase, and integer to ASCII.

FUNCTION
toascii

to lower

toupper

3.1.11 Time Functions

REFERENCE
conv(3C)

conv(3C)

conv(3C)

BRIEF DESCRIPTION
Convert integer to
ASCII character.
Convert character to
lowercase.
Convert character to
uppercase.

These functions are used for accessing and reformatting the systems idea
of the current date and time. These functions are located and loaded
automatically during the compiling of a C language program. No command
line request is needed since these functions are part of the C library.

The header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <time.h>

near the beginning of any file using the time functions. These functions
(except tzset) convert a time such as returned by time(2).

3-8 Sys5 UNIX

'"'--

(

('

C.LIBRARIES

FUNCTION REFERENCE
asctime ctime(3C)

ctime ctime(3C)

gm time ctime(3C)

localtime ctime(3C)
tzset ctime(3C)

3.1.12 Miscellaneous Functions

CHAPTER 3

BRIEF DESCRIPTION
Return string
representation
of date and time.
Return string
representation of
date and time, given
integer form.
Return Greenwich
Mean Time.
Return local time.
Set time zone field
from environment
variable.

These functions support a wide variety of operations. Some of these are
numerical conversion, password file and group file access, memory
allocation, random number generation, and table management. These
functions are automatically located and included in a program being
compiled. No command line request is needed since these functions are
part of the C library.

Some of these functions require declarations to be included. These are
described following the descriptions of the functions.

3.1.13 Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION
a641 a641(3C) Convert string to

base 64 ASCII.
at of atof(3C) Convert string to

floating.
atoi atof(3C) Convert string to

integer.
atol atof(3C) Convert string to long.
frexp frexp(3C) Split floating into

mantissa and exEonent.
13tol 13tol(3C) Convert 3-byte integer

to long.

Sys5 UNIX 3-9

CHAPTER 3 C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
ltol3 13tol(3C) Convert long to 3-byte

integer.
ldexp frexp(3C) Combine mantissa and

exponent.

1648 a641(3C) Convert base 64 ASCII
to string.

modf frexp(3C) Split mantissa into
integer and fraction.

3.1.14 DES Algorithm Access

The following functions allow access to the Data Encryption Standard (DES)
algorithm used on the UNIX operating system. The DES algorithm is
implemented with variations to frustrate use of hardware implementations of
the DES for key search.

FUNCTION REFERENCE
crypt crypt(3C)
encrypt crypt(3C)

set key crypt(3C)

3.1.15 Group File Access

BRIEF DESCRIPTION

Encode string.
Encode/decode string of
Os and 1s.
Initialize for subsequent
use of encrypt.

The following functions are used to obtain entries from the group file.
Declarations for these functions must be included in the program being
compiled with the line:

#include <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endgrent getgrent (3C) Close group file being
erocessed.

getgrent getgrent (3C) Get next group file
ent .

getgrgid getgrent (3C) Return next group with
matching gid.

3-10 SysS UNIX

"

(

(~

C LIBRARIES

FUNCTION REFERENCE

getgrnam getgrent (3C)

setgrent getgrent(3C)

fgetgrent getgrent(3C)

3.1.16 Password File Access

CHAPTER 3

BRIEF DESCRIPTION

Return next group with
matching name.
Rewind group file being
processed.
Get next group file entry
from a specified file.

These functions are used to search and access information stored in the
password file (/etc/passwd). Some functions require declarations that can
be included in the program being compiled by adding the line:

#include <pwd.h>

FUNCTION REFERENCE BRIEF DESCRIPTION

endpwent getpwent (3C) Close password file
being processed.

getpw getpw(3C) Search password file
for uid.

getpwent getpwent (3C) Get next password file
ent

getpwnam getpwent (3C) Return next entry with
matching name.

getpwuid getpwent(3C) Return next entry with
matching uid.

eutpwent putewent(3C) Write ent~ on stream.
setpwent getpwent(3C) Rewind password file

being accessed.
fgetpwent getpwent(3C) Get next password file

entry from a specified
file.

Sys5 UNIX 3-11

CHAPTER 3 C LIBRARIES

3.1.17 Parameter Access

The following functions provide access to several different types of
paramenters. None require any declarations.

FUNCTION REFERENCE BRIEF DESCRIPTION
getopt getopt(3C) Get next option from

oetion list.
getcwd getcwd(3C) Return string

representation of
current working directory.

getenv getenv(3C) Return string value
associated with
environment variable.

get pass getpass(3C) Read string from terminal
without echoing.

putenv putenv(3C) Change or add value
of an environment
variable.

3.1.18 Hash Table Management

The following functions are used to manage hash search tables. The
header file associated with these functions should be included in the
program being compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE

hcreate hsearch(3C)
hdestroy hsearch(3C)

hsearch hsearch(3C)

3.1.19 Binary Tree Management

BRIEF DESCRIPTION

Create hash table.
Destroy hash table.
Search hash table for
entry.

The follc;:>wing functions are used to manage a binary tree. The header file
associated with these functions should be included in the program being
compiled. This is accomplished by including the line:

#include <search.h>

near the beginning of any file using the search functions.

3-12 Sys5 UNIX

(

(-

(

C LIBRARIES CHAPTER 3

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete tsearch (3C) Deletes nodes from

bina~ tree.
tfind tsearch(3C) Find element in

bina~ tree.
tsearch tsearch(3C) Look for and add

element to binary
tree.

twalk tsearch(3C) Walk binary tree.

3.1.20 Table Management

The following functions are used to manage a table. Since none of these
functions allocate storage, sufficient memory must be allocated before using
these functions. The header file associated with these functions should be
included in the program being compiled. This is accomplished by including
the line:

#include <search.h>

near the beginning of any file using the search functions.

FUNCTION REFERENCE
bsearch bsearch (3C)

If ind lsearch(3C)

I search I search (3C)

qsort qsort(3C)

3.1.21 Memory Allocation

BRIEF DESCRIPTION
Search table using
binary search.
Find element in
library tree.
Look for and add
element in binary
tree.
Sort table using
quick-sort algorithm.

The following functions provide a means by which memory can be
dynamically allocated or freed.

FUNCTION REFERENCE
calloc malloc(3C)
free malloc(3C)

Sys5 UNIX

BRIEF DESCRIPTION
Allocate zeroed storage.
Free previously allocated
storage.

3-13

CHAPTER3 C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
malloc malloc(3C} Allocate storage.
realloc malloc(3C) Change size.of allocated

storage.

The following is another set of memory allocation functions available.

FUNCTION REFERENCE
canoe malloc(3X) ·

free malloc(3X)

malloc malloc(3X)
mallopt malloc(3X)

mallinfo malloc(3X)
realoc malloc(3X)

3.1.22 Pseudorandom Number Generation

BRIEF DESCRIPTION
Allocate zeroed storage.
Free previously allocated
storage.
Allocate storage.
Control allocation
algorithm.

Space usage.
Change size of
allocated storage.

The following functions are used to generate pseudorandom numbers. The
functions that end with 48 are a family of interfaces to a pseudorandom
number generator based upon the linear congruent algorithm and 48-bit
integer arithmetic. The rand and srand functions provide an interface to a
multiplicative congruential random number generator with period of 232.

FUNCTION REFERENCE
drand48 drand48(3C)

lcong48 drand48(3C)

lrand48 drand48(3C)

mrand48 drand48(3C)

rand rand(3C)

3-14

BRIEF DESCRIPTION
Random double over
the interval (0 to 1).
Set parameters for
drand48, lrand48,
and mrand48.
Random long over the
interval [Oto 231).

Random long over the
interval[-~,- to 231).

Random integer over the
interval [O to 32767).

Sys5 UNIX

"'

'

--

(

(

C LIBRARIES CHAPTER 3

FUNCTION REFERENCE BRIEF DESCRIPTION

seed48 drand48 (3C) Seed the generator for
drand48, lrand48, and
mrand48.

srand rand(3C) Seed the generator
for rand.

srand48 drand48(3C) Seed the generator for
drand48, lrand48, and
mrand48 using a long.

3.1.23 Signal Handling Functions

The functions gsignal and ssignal implement a software facility similar to
signal(2) in the Sys5 UNIX Programmer Reference Manual. This facility
enables users to indicate the disposition of error conditions and allows users
to handle signals for their own purposes. The declarations associated with
these functions can be included in the program being complied by the line

#include <signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION REFERENCE
gsignal ssignal (3C)
ssignal ssignal (3C)

3.1.24 Miscellaneous

BRIEF DESCRIPTION
Send a software signal.
Arrange for handling
of software signals.

The following functions do not fall into any previously described category.

FUNCTION REFERENCE BRIEF DESCRIPTION
abort abort(3C) Cause an IOT signal

to be sent to the
~rocess.

abs abs(3C) Return the absolute
integer value.

ecvt ecvt(3C) Convert double to
strin .

fcvt ecvt(3C) Convert double to
string using Fortran
Format.

Sys5 UNIX 3-15

CHAPTER 3 C LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION
gcvt ecvt(3C) Convert double to

string using Fortran
F or E format.

isatty ttyname(3C) Test whether integer
file descriptor is
associated with a
terminal.

mktemp mktemp(3C) Create file name
using temelate.

monitor monitor(3C) Cause process to record
a histogram of program
counter location.

swab swab(3C} Swae and copy b~es.
ttyname ttyname (3C) Return pathname of

terminal associated with
integer file descriptor.

3-16 Sys5 UNIX

(_

(-

THE OBJECT AND MATH LIBRARIES CHAPTER 4

4. OBJECT AND MATH LIBRARIES

This chapter describes the Object and Math Libraries that are supported on
the UNIX operating system. A library is a collection of related functions
and/or declarations that simplify programming effort. All of the functions
described are also described in Part 3 of the UNIX System Programmer
Reference Manual. Most of the declarations described are in Part 5 of the
UNIX System Programmer Reference Manual. The three main libraries on
the UNIX system are:

C library This is the basic library for C language programs.

Object file

Math library

The C library is composed of functions and
declarations used for file access, string testing and
manipulation, character testing and manipulation,
memory allocation, and other functions. This library
is described in Chapter 3.

This library provides functions for the access and
manipulation of object files. This library is described
later in this chapter.

This library provides exponential, bessel functions,
logarithmic, hyperbolic, and trigonometric functions.
This library is also described later in this chapter.

4.1 THE OBJECT FILE LIBRARY

The object file library provides functions for the access and manipulation of
object files. Some functions locate portions of an object file such as the
symbol table, the file header, sections, and line number entries associated
with a function. Other functions read these types of entries into memory.
For a description of the format of an object file, see 'The Common Object
File Format" in the UNIX System Support Tools Guide.

This library consists of several portions. The functions reside in
/usrllib/libld.a and are located and loaded during the compiling of a C
language program by a command line request. The form of this request is:

cc file ·lld

which causes the link editor to search the object file library. The argument
·lld must appear after all files that reference functions in /ibid.a.

In addition, various header files must be included. This is accomplished by
including the line:

Sys5 UNIX 4-1

CHAPTER 4

#include <stdio.h>
#include <a.out.h>
#include <ldfcn.h>

FUNCTION
ldaclose

ldahread
ldaopen

Ide lose

ldfhread

ldgetname

ldlinit

Id lit em

ldlread

Id I seek

ldnlseek

ldnrseek

ldnshread

4-2

THE OBJECT AND MATH LIBRARIES

REFERENCE BRIEF DESCRIPTION
ldclose (3X) Close object file being

~rocessed.

ldahread (3X) Read archive header.
ldopen(3X) Open object file for

reading.
ldclose(3X) Close object file being

~rocessed.
ldfhread (3X) Read file header of

object file being
~rocessed.

ldgetname(3X) Retrieve the name of
an object file symbol
table ent~.

ldlread(3X) Prepare object file for /."

reading line number
entries via ldlitem.

ldlread(3X) Read line number entry
from object file after
ldlinit.

ldlread(3X) Read line number entry
from object file.

ldlseek(3X) Seeks to the line number
entries of the object
file being ~rocessed.

ldlseek(3X) Seeks to the line number
entries of the object file
being processed given
the name of a section.

ldrseek(3X) Seeks to the relocation
entries of the object file
being processed given
the name of a section.

ldshread(3X) Read section header of
the named section of the (- '
object file being
processed.

~ /

Sys5 UNIX

THE OBJECT AND MATH LIBRARIES CHAPTER 4

(FUNCTION REFERENCE BRIEF DESCRIPTION
ldnsseek ldsseek (3X) Seeks to the section of

the object file being
processed given the
name of a section.

ldohseek ldohseek(3X) Seeks to the optional
file header of the object
file being erocessed.

ldopen ldopen(3X) Open object file for
reading.

ldrseek ldrseek (3X) Seeks to the relocation
entries of the object file
being erocessed.

ldshread ldshread (3X) Read section header of
an object file being
erocessed.

ldsseek ldsseek(3X) Seeks to the section of
the object file being
erocessed.

ldtbindex ldtbindex (3X) Returns the long index

(of the symbol table entry
at the current position of
the object file being
erocessed.

ldtbread ldtbread(3X) Reads a specific
symbol table entry
of the object file
being erocessed.

ldtbseek ldtbseek (3X) Seeks to the symbol
table of the object file
being erocessed.

sgetl sputl(3X) Access long integer data
in a machine independant
format.

sputl sputl(3X) Translate a long integer
into a machine
independant format.

4.1.1 Common Object File Interface Macros (ldfcn.h)

(- The interface between the calling program and the object file access
routines is based on the defined type LDFILE which is defined in the header
file ldfcn.h (see ldfcn(4)). The primary purpose of this structure is to

SysS UNIX 4-3

CHAPTER 4 THE OBJECT AND MATH LIBRARIES

provide uniform access to both simple object files and to object files that are
members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and
returns a pointer to the structure to the calling program. The fields of the
LDFILE structure may be accessed individually through the following
macros: the type macro returns the magic number of the file, which is used
to distinguish between archive files and simple object files. The OPTR
macro returns the file pointer which was opened by ldopen(3X) and is used
by the input/output functions of the C library. The OFFSET macro returns
the file address of the beginning of the object file. This value is non-zero
only if the object file is a member of the archive file. The HEADER macro
accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros
parallel the input/output functions in the C library; each macro translates a
reference to an LDFILE structure into a reference to its file descriptor field.
The available macros are described in ldfcn(4) in the UNIX System
Reference Manual.

4.2 THE MATH LIBRARY

The math library consists of functions and a header file. The functions are
located and loaded during the compiling of a C language program by a
command line request. The form of this request is:

cc file -Im

which causes the link editor to search the math library. In addition to the
request to load the functions, the header file of the math library should be
included in the program being compiled. This is accomplished by including
the line:

#include <math.h>

near the beginning of the (first) file being compiled.

The functions are grouped into the following categories:

• Trigonometric functions

• Bessel functions

• Hyperbolic functions

• Miscellaneous functions.

4-4 Sys5 UNIX

(

(

THE OBJECT AND MATH LIBRARIES CHAPTER 4

4.2.1 Trigonometric Functions

These functions are used to compute angles (in radian measure), sines,
cosines, and tangents. All of these values are expressed in double
precision,

FUNCTION REFERENCE BRIEF DESCRIPTION
acos tri9{3M) Return arc cosine.
asin trig{3M) Return arc sine.
atan tri9{3M) Return arc tangent.
atan2 trig(3M) Return arc tangent of

a ratio.
cos trig(3M) Return cosine.
sin trig(3M) Return sine.
tan trig(3M) Return tangent.

4.2.2 Bessel Functions

These functions calculate bessel functions of the first and second kinds of
several orders for real values. The bessel functions are jO, j1, jn, yO, y1,
and yn. The functions are located in section bessel(3M).

4.2.3 Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and
tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION
cosh sinh(3M) Return hyperbolic cosine.
sinh sinh(3M) Return hyperbolic sine.
tanh sinh(3M) Return hyperbolic tangent.

4.2.4 Miscellaneous Functions

These functions cover a wide variety of operations, such as natural
logarithm, exponential, and absolute value. In addition, several are provided
to truncate the integer portion of double precision numbers.

Sys5 UNIX 4-5

CHAPTER 4 THE OBJECT AND MATH LIBRARIES

FUNCTION REFERENCE BRIEF DESCRIPTION

ceil floor(3M) Returns the smallest
integer not less .than a
given value.

exp exp(3M) Returns the exponential
function of a given value.

fabs floor(3M) Returns the absolute value
of a given value.

floor floor(3M) Returns the largest integer
· not greater than a given

value.

fmod floor(3M) Returns the remainder
produced by the division of
ti.Yo given values.

gamma gamma(3M) Returns the natural log of
the absolute value of the
result of applying the
gamma function to a
given value.

hypot hypot(3M) Return the square root
of the sum of the squares /

/ " \
of two numbers.

log exp(3M) Returns the natural
logarithm of a given
value.

log10 exp(3M) Returns the lorarithm base
ten of a given value.

matherr matherr(3M) Error-handling function.

pow exp(3M) Returns the result of a
given value raised to
another given value.

sqrt exp(3M) Returns the square root
of a given value.

4-6 Sys5 UNIX

(

COMPILER AND C LANGUAGE CHAPTER 5

5. COMPILER AND C LANGUAGE

This chapter describe the UNIX System's C compiler, cc, and the C
programming language that the compiler translates. The compiler is part of
the UNIX System Software Generation System (SGS).

The SGS is a package of tools used to create and test programs for UNIX
Systems. These tools allow high-level program coding and source-level
testing of code. The C language is implemented for high-level programming;
it contains many control and structuring facilities that greatly simplify the
task of algorithm construction. Within the SGS, a C compiler converts C
programs into assembly language programs that are ultimately translated
into object files by the assembler, as. The link editor, Id, collects and
merges object files into executable load modules. Each of these tools
preserves all symbolic information necessary for meaningful symbolic testing
at C-language source level. In addition, a utility package aids in testing and
debugging.

The current manual page for the C compiler can be obtained with the SGS
command:

man cc

5.1 USE OF THE COMPILER

The main command of the SGS is cc; it operates much like the UNIX
system cc command. To use the compiler, first creat a file (typically by
using the UNIX system text editor) containing C source code. The name of
the file created must have a special format; the last two characters of the file
name must be .c as in file1.c.

Next, enter the SGS command

cc options file.c

to invoke the compiler on the C source file file.c with the appropriate options
selected. The compilation process creates an absolute binary file named
a.out that reflects the contents of file.c and any referenced library routines.
The resulting binary file, a.out, can then be executed on the target system.

Options can control the steps in the compilation process. When none of the
controlling options are used, and only one file is named, cc automatically
calls the assembler, as, and the link editor, Id, thus resulting in an
executable file, named a.out. If more than one file is named in a command,

cc file1 .c file2.c file3.c

then the output will be placed on files file1.o, file2.o, and file3.o. These files
can then be linked and executed through the Id command.

Sys5 UNIX

CHAPTER 5 COMPILER AND C LANGUAGE

The cc compiler also accepts input file names with the last two characters
.s. The .s signifies a source file in assembly language. The cc compiler
passes this type of file directly to as, which assembles the file and places
the output on a file of the same name with .o substituted for .s.

Cc is based on a portable C compiler and translates C source files into
assembly code. Whenever the command cc is used, the standard C
preprocessor (which resides on the file /lib/cpp) is called. The preprocessor
performs file inclusion and macro substitution. The preprocessor is always
invoked by cc and need not be called directly by the programmer. Then,
unless the appropriate flags are set, cc calls the assembler and the link
editor to produce an executable file.

5.2 COMPILER OPTIONS

All options recognized by the cc command are listed below:

Option Argument
-c none

-g none

-p none
-0 identifier[= constant]

-E none

5-2

Description
Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.
Produce symbolic debugging
information.
Reserved for invoking a profiler.
Define the external symbol identifier
to the preprocessor, and
give it the value constant
(if specified).
Same as the -P option except
output is directed to the
standard output.

Sys5 UNIX

(

(

(

COMPILER AND C LANGUAGE CHAPTER 5

Option Argument Descri~tion

-I directory Change the algorithm that searches
for #include files whose names
do not begin with I to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in "" are searched for
first in the directory of the file
being compiled, then in directories
named by the -I options, and last
in directories on the standard list.
For #include files whose names are
enclosed in < >, the directory of the
file argument is not searched.

-0 none Invoke an object code optimizer.

-P none Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

-u identifier Undefine the named identifier to
the ~re~rocessor.

-V none Print the version of the assembler
that is invoked.

-W c,arg1 [,arg2 ...] Pass along the argument(s) argi
to pass c, where c is one of
(p012al), indicating preprocessor,·
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

This part provides additional information for those options not completely
described above.

By using appropriate options, compilation can be terminated early to
produce one of several intermediate translations such as relocatable object
files (-c option), assembly source expansions for C code (-S option), or the
output of the preprocessor (-P option). In general, the intermediate files
may be saved and later resubmitted to the cc command, with other files or
libraries included as necessary.

Sys5 UNIX 5-3

CHAPTER 5 COMPILER AND C LANGUAGE

When compiling C source files, the most common practice is to use the -c
option to save relocatable files. Subsequent changes to one file do not then
require that the others be recompiled. A separate call to cc without the -c
option then creates the linked executable a.out file. A relocatable object file
created under the -c option is named by adding a .o suffix to the source file
name.

The -W option provides the mechanism to specify options for each step that
is normally invoked from the cc command line. These steps are
preprocessing, the first pass of the compiler, the second pass of the
compiler, optimization, assembly, and link editing. At this time, only
assembler and link editor options can be used with the -W option. The most
common example of use of the -W option is "·Wa,-m", which passes the -m
option to the assembler. Specifying "·wl,-m" passes the -m option to the
link editor.

When the -P option is used, the compilation process stops after only
preprocessing, with output left on file.i. This file will be unsuitable for
subsequent processing by cc.

The -0 option decreases the size and increases the execution speed of
programs by moving, merging, and deleting code. However, line numbers
used for symbolic debugging may be transposed when the optimizer is
used.

The -g option produces information for a symbolic debugger. The SGS
currently supports the SDB symbolic debugger.

5-4 Sys5 UNIX

(_

(

A C PROGRAM CHECKER-"lint" CHAPTER 6

6. AC PROGRAM CHECKER (lint)

The lint program examines C language source programs detecting a
number of bugs and obscurities. It enforces the type rules of C language
more strictly than the C compiler. It may also be used to enforce a number
of portability restrictions involved in moving programs between different
machines and/or operating systems. Another option detects a number of
wasteful or error prone constructions which nevertheless are legal. The lint
program accepts multiple input files and library specifications and checks
them for consistency.

6.0.1 Usage

The lint command has the form:

lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages;
files are the files to be checked which end with .c or .In; and library­
descriptors are the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a

-b

-c

-h

-n

-0 name

-p

-u

-v

-x

Suppress messages about assignments of long values to
variables that are not long.

Suppress messages about break statements that cannot be
reached.

Only check for intra-file bugs; leave external information in files
suffixed with .In.

Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste).

Do not check for compatibility with either the standard or the
portable lint library.

Create a lint library from input files named llib-lname.ln.

Attempt to check portability to other dialects of C language.

Suppress messages about function and external variables
used and not defined or defined and not used.

Suppress messages about unused arguments in functions.

Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single
argument, such as, -ab or -xha.

Sys5 UNIX 6-1

CHAPTER 6 A C PROGRAM CHECKER-"lint"

The names of files that contain C language programs should end with the
suffix .c which is mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the C
language program. The source code is tested for compatibility with these
libraries. This is done by accessing library description files whose names
are constructed from the library arguments. These files all begin with the
comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical
parts of these definitions are the declaration of the function return type,
whether the dummy function returns a value, and the number and types of
arguments to the function. The VARARGS and ARGSUSED comments can
be used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files.
The only difference is that functions which are defined on a library file but
are not used on a source file do not result in messages. The lint program
does not simulate a full library search algorithm and will print messages if '
the source files contain a redefinition of a library routine. \. /

By default, lint checks the programs it is given against a standard library file
which contains descriptions of the programs which are normally loaded
when a C language program is run. When the -p option is used, another
file is checked containing descriptions of the standard library routines which
are expected to be portable across various machines. The -n option can be
used to suppress all library checking.

6.1 TYPES OF MESSAGES

The following paragraphs describe the major categories of messages printed
by lint.

6.1.1 Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for
external variables or even entire functions to become unnecessary and yet
not be removed from the source. These types of errors rarely cause
working programs to fail, but are a source of inefficiency and make
programs harder to understand and change. Also, information about such
unused variables and functions can occasionally serve to discover bugs.

6-2 SysS UNIX

(

A C PROGRAM CHECKER-"lint" CHAPTER 6

The lint program prints messages about variables and functions which are
defined but not otherwise mentioned. An exception is variables which are
declared through explicit extern statements but are never referenced; thus
the statement

extern double sin();

will evoke no comment if sin is never used. Note that this agrees with the
semantics of the C compiler. In some cases, these unused external
declarations might be of some interest and can be discovered by using the
-x option with the lint command.

Certain styles of programming require many functions to be written with
similar interfaces; frequently, some of the arguments may be unused in
many of the calls. The -v option is available to suppress the printing of
messages about unused arguments. When-vis in effect, no messages are
produced about unused arguments except for those arguments which are
unused and also declared as register arguments. This can be considered an
active (and preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by
adding the comment:

I* ARGSUSED */

to the program before the function. This has the effect of the -v option for
only one function. Also, the comment:

I* VARARGS */

can be used to suppress messages about variable number of arguments in
calls to a function. The comment should be added before the function
definition. In some cases, it is desirable to check the first several arguments
and leave the later arguments unchecked. This can be done with a digit
giving the number of arguments which should be checked. For example:

I* VARARGS2 */

will cause only the first two arguments to be checked.

There is one case where information about unused or undefined variables is
more distracting than helpful. This is when lint is applied to some but not all
files out of a collection which are to be loaded together. In this case, many
of the functions and variables defined may not be used. Conversely, many
functions and variables defined elsewhere may be used. The -u option may
be used to suppress the spurious messages which might otherwise appear.

6.1.2 Set/Used Information

The lint program attempts to detect cases where a variable is used before it
is set. The lint program detects local variables (automatic and register

Sys5 UNIX 6-3

CHAPTERS A C PROGRAM CHECKER-"lint"

storage classes) whose first use appears physically earlier in the input file
than the first assignment to the variable. It assumes that taking the address ./
of a variable constitutes a "use", since the actual use may occur at any later
time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the
algorithm very simple and quick to implement since the true flow of control
need not be discovered. It does mean that lint can print messages about
some programs which are legal, but these programs would probably be
considered bad on stylistic grounds. Because static and external variables
are initialized to zero, no meaningful information can be discovered about
their uses. The lint program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables
which are set and never used. These form a frequent source of
inefficiencies and may also be symptomatic of bugs~

6.1.3 Flow of Control

The lint program attempts to detect unreachable portions of the programs
which it processes. It will print messages about unlabeled statements
immediately following goto, break, continue, or return statements. An
attempt is made to detect loops which can never be left at the bottom and to
recognize the special cases while(1) and for(;;) as infinite loops. The lint
program also prints messages about loops which cannot be entered at the
top. Some valid programs may have such loops which are considered to be
bad style at best and bugs at worst.

The lint program has no way of detecting functions which are called and
never returned. Thus, a call to exit may cause an unreachable code which
lint does not detect. The most serious effects of this are in the
determination of returned function values (see "Function Values"). If a
particular place in the program cannot be reached but it is . not apparent to
lint, the comment

I* NOTREACHED */

can be added at the appropriate place. This comment will inform lint that a
portion of the program cannot be reached.

The lint program will not print a message about unreachable break
statements. Programs generated by yacc and especially lex may have
hundreds of unreachable break statements. The -0 option in the C
compiler will often eliminate the resulting object code inefficiency. Thus,
these unreached statements are of little importance. There is typically
nothing the user can do about them, and the resulting messages would
clutter up the lint output. If these messages are desired, lint can be 1·
invoked with the -b option. _ . ./

6-4 Sys5UNIX

(~

(~

A C PROGRAM CHECKER-"lint" CHAPTER 6

6.1.4 Function Values

Sometimes functions return values that are never used. Sometimes
programs incorrectly use function "values" that have never been returned.
The lint program addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return ;

statements is cause for alarm; the lint program will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is
implied by flow of control reaching the end of the function. This can be seen
with a simple example:

f (a){
if (a) return (3);
g ();
}

Notice that, if a tests false, f will call g and then return with no defined
return value; this will trigger a message from lint. If g, like exit, never
returns, the message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this
feature.

On a global scale, lint detects cases where a function returns a value that is
sometimes or never used. When the value is never used, it may constitute
an inefficiency in the function definition. When the value is sometimes
unused, it may represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

6.1.5 Type Checking

The lint program enforces the type checking rules of C language more
strictly than the compilers do. The additional checking is in four major
areas:

• Across certain binary operators and implied assignments

• At the structure selection operators

• Between the definition and uses of functions

SysS UNIX 6-5

CHAPTER 6 A C PROGRAM CHECKER-"lint"

• In the use of enumerations.

There are a number of operators which have an implied balancing between
types of the operands. The assignment, conditional (?:), and relational
operators have this property. The argument of a return statement and
expressions used in initialization suffer similar conversions. In these
operations, char, short, int, long, unsigned, float, and double types may
be freely intermixed. The types of pointers must agree exactly except that
arrays of x's can, of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the . be a
structure, and the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is done for
references to unions.

Strict rules apply to function argument and return value matching. The
types float and double may be freely matched, as may the types char,
short, int, and unsigned. Also, pointers can be matched with the
associated arrays. Aside from this, all actual arguments must agree in type
with their declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and that the
only operations applied are =, initialization, = =, ! =, and function arguments
and return values.

If it is desired to turn off strict type checking for an expression, the comment

I* NOSTRICT */

should be added to the program immediately before the expression. This
comment will prevent strict type checking for only the next line in the
program.

6.1.6 Type Casts

The type cast feature in C language was introduced largely as an aid to
producing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. The lint program will print a message as a
result of detecting this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer.
The programmer obviously had a strong motivation for doing this and has
clearly signaled his intentions. It seems harsh for lint to continue to print
messages about this. On the other hand, if this code is moved to another

6-6 Sys5 UNIX

(

A C PROGRAM CHECKER-"lint" CHAPTER 6

machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as
though they were assignments subject to messages; otherwise, all legal
casts are passed without comment, no matter how strange the type mixing
seems to be.

6.1.7 Nonportable Character Use

On some systems, characters are signed quantities with a range from -128
to 127. On other C language implementations, characters take on only
positive values. Thus, lint will print messages about certain comparisons
and assignments as being illegal or nonportable. For example, the fragment

char c;

if((c = getchar()) < O) ...

will work on one machine but will fail on machines where characters always
take on positive values. The real solution is to declare c as an integer since
getchar is actually returning integer values. In any case, lint will print the
message "nonportable character comparison".

A similar issue arises with bit fields. When assignments of constant values
are made to bit fields, the field may be too small to hold the value. This is
especially true because on some machines bit fields are considered as
signed quantities. While it may seem logical to consider that a two-bit field
declared of type int cannot hold the value 3, the problem disappears if the
bit field is declared to have type unsigned

6.1 _8 Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which will truncate
the contents. This may happen in programs which have been incompletely
converted to use typedefs. When a typedef variable is changed from int to
long, the program can stop working because some intermediate results may
be assigned to ints, which are truncated. Since there are a number of
legitimate reasons for assigning longs to ints, the detection of these
assignments is enabled by the -a option.

6.1.9 Strange Constructions

Several perfectly legal, but somewhat strange, constructions are detected by
lint. The messages hopefully encourage better code quality, clearer style,
and may even point out bugs. The -h option is used to supress these
checks. For example, in the statement

*p++;

Sys5 UNIX 6-7

CHAPTER 6 A C PROGRAM CHECKER-"lint"

the* does nothing. This provokes the message "null effect" from lint. The /"--\
following program fragment:

unsigned x;
if(x < 0) ...

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if(x != 0)

which may not be the intended action. The lint program will print the
message "degenerate unsigned comparison" in these cases. If a program
contains something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context" since the
comparison of 1 with O gives a constant result.

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can
be accentuated by spacing and formatting, making such bugs extremely
hard to find. For example, the statement

if(x&077 = = O) ...

or

x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize
such expressions, and lint encourages this by an appropriate message.

Finally, when the -h option has not been used, lint prints messages about
variables which are redeclared in inner blocks in a way that conflicts with
their use in outer blocks. This is legal but is considered to be bad style,
usually unnecessary, and frequently a bug.

6.1.1 O Old Syntax

Several forms of older syntax are now illegal. These fall into two classes -
assignment operators and initialization.

The older forms of assignment operators (e.g., = +, =-, ...) could cause
ambiguous expressions, such as:

a =-1;

which could be taken as either

6-8 SysS UNIX

(

(

A C PROGRAM CHECKER-"lint" CHAPTER 6

a =-1;

or

a = -1

The situation is especially perplexing if this kind of ambiguity arises as the
result of a macro substitution. The newer and preferred operators (e.g.,
+ =, -=, ...) have no such ambiguities. To encourage the abandonment of
the older forms, lint prints messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int x 1 ;

to initialize x to 1. This also caused syntactic difficulties. For example, the
initialization

int x (-1) ;

looks somewhat like the beginning of a function definition:

int x (y) { ...

and the compiler must read past x in order to determine the correct
meaning. Again, the problem is even more perplexing when the initializer
involves a macro. The current syntax places an equals sign between the
variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

6.1.11 Pointer Alignment

Certain pointer assignments may be reasonable on some machines and
illegal on others due entirely to alignment restrictions. The lint program tries
to detect cases where pointers are assigned to other pointers and such
alignment problems might arise. The message "possible pointer alignment
problem" results from this situation.

6.1.12 Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate
subexpressions may be highly machine dependent. For example, on
machines (like the PDP-11) in which the stack runs backwards, function
arguments will probably be best evaluated from right to left. On machines
with a stack running forward, left to right seems most attractive. Function
calls embedded as arguments of other functions may or may not be treated
similarly to ordinary arguments. Similar issues arise with other operators
which have side effects, such as the assignment operators and the
increment and decrement operators.

Sys5 UNIX 6-9

CHAPTER 6 A C PROGRAM CHECKER-"lint"

In order that the efficiency of C language on a particular machine not be
unduly compromised, the C language leaves the order of evaluation of
complicated expressions up to the local compiler. In fact, the various C
compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is changed
by a side effect and also used elsewhere in the same expression, the result
is explicitly undefined.

The lint program checks for the important special case where a simple
scalar variable is affected. For example, the statement

a[i] = b[i+ +];

will cause lint to print the message

warning: i evaluation order undefined

in order to call attention to this condition.

6-10 Sys5 UNIX

(

sdb CHAPTER 7

7. sdb

The symbolic debugger sdb(1) is not implemented by Plexus.

If you have purchased a version of COB separately you may want to include
that information in this section.

Sys5 UNIX 7-1

(

FORTRAN UNIX SYSTEM COMMANDS CHAPTER 8

8. FORTRAN UNIX SYSTEM COMMANDS

A UNIX system Fortran 77 user should be familiar with the following
commands:

• f77 [options] files - This command invokes the UNIX system Fortran 77
compiler

• ratfor [options] [files) - This command invokes the Ratfor preprocessor

• efl [options] [files] - This command compiles a program written in
Extended Fortran Language (EFL) into clean Fortran

• asa [files] - This command interprets the output of Fortran programs that
utilize ASA carriage control characters

• fsplit options files - This command splits the named file(s) into separate
files, with one procedure per file.

For more information about the above commands, see the UNIX System
User Reference Manual.

SysS UNIX 8-1

(

(

FORTRAN 77 CHAPTER 9

9. FORTRAN 77

This chapter describes the compiler and run-time system for Fortran 77 as
implemented on the UNIX system. This chapter also describes the
interfaces between procedures and the file formats assumed by the 1/0
system.

9.1 USAGE

The command to run the compiler is

f77 options file

The m(1) command is a general purpose command for compiling and
loading Fortran and Fortran-related files into an executable module. EFL
(compiler) and Ratfor (preprocessor) source files will be translated into
Fortran before being presented to the Fortran compiler. The f77 command
invokes the C compiler to translate C source files and invokes the
assembler to translate assembler source files. Object files will be link
edited. [The f77(1) and cc(1) commands have slightly different link editing
sequences. Fortran programs need two extra libraries (libl77.a, libF77.a)
and an additional startup routine.] The following file name suffixes are
understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.c C language source file

.s Assembler source file

.o Object file.

9.2 LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most
important additions are a character string data type, file-oriented inpuUoutput
statements, and random access 1/0. Also, the language has been cleaned
up considerably.

In addition to implementing the language specified in the Fortran 77
American National Standard, this compiler implements a few extensions.
Most are useful additions to the language. The remainder are extensions to
make it easier to communicate with C language procedures or to permit
compilation of old (1966 Standard Fortran) programs.

SysS UNIX 9-1

CHAPTER 9 FORTRAN77

9.2.1 Double Complex Data Type

The data type double complex is added. Each datum is represented by a
pair of double-precision real variables. A double complex version of every
complex built-in function is provided.

9.2.2 Internal Files

The Fortran 77 American National Standard introduces internal files
(memory arrays) but restricts their use to formatted sequential 110
statements. This 1/0 system also permits internal files to be used in direct
and unformatted reads and writes.

9.2.3 Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in a type
statement is integer if its first letter is i, j, k, I, m or n. Otherwise, it is real.
Fortran 77 has an implicit statement for overriding this rule. An additional
type statement, undefined, is permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a
diagnostic for each variable that is used but does not appear in a type
statement. Specifying the -u compiler option is equivalent to beginning each
procedure with this statement.

9.2.4 Recursion

Procedures may call themselves directly or through a chain of other
procedures.

9.2.5 Automatic Storage

Two new keywords recognized are static and automatic. These keywords
may appear as ''types" in type statements and in implicit statements. Local
variables are static by default; there is exactly one copy of the datum, and
its value is retained between calls. There is one copy of each variable
declared automatic for each invocation of the procedure. Automatic
variables may not appear in equivalence, data, or save statements.

9.2.6 Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to
be in a 72-column format: except in comment lines, the first five characters
are the statement number, the next is the continuation character, and the
next 66 are the body of the line. (If there are fewer than 72 characters on a
line, the compiler pads it with blanks; characters after the first 72 are
ignored.) In order to make it easier to type Fortran programs, this compiler
also accepts input in variable length lines. An ampersand (&) in the first
position of a line indicates a continuation line; the remaining characters form

9-2 Sys5 UNIX

(~
/

FORTRAN 77 CHAPTER 9

the body of the line. A tab character in one of the first six positions of a line
signals the end of the statement number and continuation part of the line;
the remaining characters form the body of the line. A tab elsewhere on the
line is treated as another kind of blank by the compiler.

In the Fortran 77 Standard, there are only 26 letters

- Fortran is a one-case language. Consistent with ordinary system usage,
the new compiler expects lowercase input. By default, the compiler
converts all uppercase characters to lowercase except those inside
character constants. However, if the -U compiler option is specified,
uppercase letters are not transformed. In this mode, it is possible to specify
external names with uppercase letters in them and to have distinct variables
differing only in case. Regardless of the setting of the option, keywords will
only be recognized in lowercase.

9.2. 7 Include Statement

The statement

include "stuff"

is replaced by the contents of the file stuff. Includes may be nested to a
reasonable depth, currently ten.

9.2.8 Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by
a binary constant, denoted by a letter followed by a quoted string. If the
letter is b, the string is binary, and only zeroes and ones are permitted. If
the letter is o, the string is octal with digits zero through seven. If the letter
is z or x, the string is hexadecimal with digits zero through nine, a through f.
Thus, the statements

integer a(3)
data a/b'101 O',o'12',z'a'/

initialize all three elements of a to ten.

9.2.9 Character Strings

For compatibility with C language usage, the following backslash escapes
are recognized:

\n New-line

\t Tab

\b Backspace

\f Form feed

SysS UNIX 9-3

CHAPTER 9 FORTRAN 77

\0 Null

\' Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\X Where x is any other character.

Fortran 77 only has one quoting character - the apostrophe ('). This
compiler and 1/0 system recognize both the apostrophe and the double
quote ("). If a string begins with one variety of quote mark, the other may
be embedded. within it without using the repeated quote or backslash
escapes.

Every unequivalenced scalar local character variable and every character
string constant is aligned on an integer word boundary. Each character
string constant appearing outside a data statement is followed by a null
character to ease communication with C language routines.

9.2.1 O Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new
Standard recommends implementing the old Hollerith feature in order to
improve compatibility with old programs. In this compiler, Hollerith data may
be used in place of character string constants and may also be used to
initialize non character variables in data statements.

9.2.11 Equivalence Statements

This compiler permits single subscripts in equivalence statements under the
interpretation that all missing subscripts are equal to 1. A warning message
is printed for each such incomplete subscript.

9.2.12 One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do
loop not be performed if the initial value is already past the limit value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement was
undefined, but it was common practice that the range of a do loop would be
performed at least once. In order to accommodate old programs though
they were in violation of the 1966 Standard, the -onetrip compiler option
causes nonstandard loops to be generated.

9-4 Sys5 UNIX

\
'- /

(

(

(

FORTRAN 77 CHAPTER 9

9.2.13 Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Fortran 77 American
National Standard when it seems worthwhile. When doing a formatted read
of non-character variables, commas may be used as value separators in the
input record overriding the field lengths given in the format statement. Thus,
the format

(i10, f20. 10, i4)

will read the record

-345,.0Se-3, 12

oorrectly.

9.2.14 Short Integers

On machines that support half word integers, the compiler accepts
declarations of type integer*2. (Ordinary integers follow the Fortran rules
about occupying the same space as a REAL variable; they are assumed to
be of C language type long int; half word integers are of C language type
short int.) An expression involving only objects of type integer*2 is of that
type. Generic functions return short or long integers depending on the
actual types of their arguments. If a procedure is compiled using the -12
flag, all small integer constants will be of type integer*2. If the precision of
an integer-valued intrinsic function is not determined by the generic function
rules, one will be chosen that returns the prevailing length (integer*2 when
the -12 command flag is in effect). When the -12 option is in effect, all
quantities of type logical will be short. Note that these short integer and
logical quantities do not obey the standard rules for storage association.

9.2.15 Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran
77 Standard. In addition, there are functions for performing bitwise Boolean
operations (or, and, xor, and not) and for accessing the command
arguments (getarg and iargc).

The following lists the Fortran intrinsic function library plus some additional
functions. These functions are automatically available to the Fortran
programmer and require no special invocation of the compiler. The asterisk
(*) beside some of the commands indicate they are not part of standard
F77. In parenthesis beside each function description listed below is the
location for the command in the Sys5 UNIX Programmer Reference Manual.
These functions are as follows:

abort*
abs

Sys5 UNIX

Terminate program (ABORT(3F))
Absolute value (MAX(3F)

9-5

CHAPTER 9 FORTRAN 77

acos Arccosine (ACOS(3F)) / '

aimag Imaginary part of complex argument (AIMAG(3F))
aint Integer part (AINT(3F))
a log Natural logarithm (LOG(3F))
alog10 Common logarithm (ALOG10(3F))
amaxo Maximum value (MAX(3F))
amax1 Maximum value (MAX(3F))
amino Minimum value (MIN(3F))
amin1 Minimum value (MIN(3F))
a mod Remaindering (MOD(3F))
and* Bitwise boolean (BOOL(3F))
anint Nearest integer (ROUND(3F))
as in Arcsine (ASIN(3F))
atan Arctangent (ATAN(3F))
atan2 Arctangent (ATAN2(3F))
cabs Complex absolute value (ABS(3F))
ccos Complex cosine (COS(3F))
cexp Complex exponential (EXP(3F))
char Explicit type conversion (FTYPE(3F))
clog Complex natural logarithm (LOG(3F))
cm pix Explicit type conversion (FTYPE(3F))
con jg Complex conjugate (CONJG(3F))
cos Cosine (COS(3F)) '• /

cosh Hyperbolic cosine (COSH(3F))
cs in Complex sine (SIN(3F))
csqrt Complex square root (SQRT(3F))
dabs Absolute value (ABS(3F))
dacos Arccosine (ACOS(3F))
dasin Arcsine (ASIN(3F))
datan Arctangent (ATAN(3F))
datan2 Double precision arctangent (ATAN2(3F))
dble Explicit type conversion (FTYPE(3F))
dcmplx* Explicit type conversion (FTYPE(3F))
dconjg• Complex conjugate (CONJG(3F))
QCOS Cosine (DCOS(3F))
dcosh Hyperbolic cosine (COSH(3F))
ddim Positive difference (DIM(3F))
dexp Exponential (EXP(3F))
dim Positive difference (DIM(3F))
dimag• Imaginary part of complex argument ((AIMAG(3F))
dint Integer part (AINT(3F))
dlog Natural logarithm (LOG(3F))
dlog10 Common logarithm (LOG10(3F)) (

dmax1 Maximum value (MAX(3F)) .____ ,

9-6 SysS UNIX

FORTRAN 77 CHAPTER 9

(- dmin1 Minimum value (MIN(3F))
dmod Remaindering (DMOD(3F))
dnint Nearest integer (ROUND(3F))
dprod Double precision product (DPROD(3F))
dsign Transfer of sign (SIGN(3F))
dsin Sine (SIN(3F))
dsinh Hyperbolic sine (SINH(3F))
dsqrt Square root (SQRT(3F))
dtan Tangent (TAN(3F))
dtanh Hyperbolic tangent (TANH(3F))
exp Exponential (EXP(3F))
float Explicit type conversion (FTYPE(3F))
getarg* Return command-line argument (GETARG(3F))
getenv* Return environment variable (GETENV(3F))
iabs Absolute value (ABS(3F))
iargc Return number of arguments (IARGC(3F))
ichar Explicit type conversion (FTYPE(3F))
idim Positive difference (DIM(3F))
idint Explicit type conversion (FTYPE(3F))
idnint Nearest integer (ROUND(3F))
ifix Explicit type conversion (FTYPE(3F))

(. index Return location of substring (INDEX(3F))
int Explicit type conversion (FTYPE(3F))
irand* Random number generator
isign Transfer of sign (SIGN(3F))
len Return location of string (LEN(3F))
lge String comparison (STRCMP(3F))
lgt String comparison (STRCMP(3F))
lie String comparison (STRCMP(3F))
lit String comparison (STRCMP(3F))
log Natural logarithm (LOG(3F))
log10 Common logarithm (LOG10(3F))
lshift* Bitwise boolean (BOOL(3F))
max Maximum value (MAX(3F))
maxo Maximum value (MAX(3F))
max1 Maximum value (MAX(3F))
mclock* Return Fortran time accounting (MCLOCK(3F))
min Minimum value (MIN(3F))
minO Minimum value (MIN(3F))
min1 Minimum value (MIN(3F))
mod Remaindering (MOD(3F))
nint Nearest integer (BOOL(3F))

(not* Bitwise boolean (BOOL(3F))
or* Bitwise boolean (BOOL(3F))

Sys5 UNIX 9-7

CHAPTER 9

rand*
real
rshift*
sign
signal*

sin
sinh
sngl
sqrt
srand*
system*
tan
tanh
xor*
zabs*

Random number generator (RAND(3F))
Explicit type conversion (FTYPE(3F))
Bitwise boolean (BOOL(3F))
Transfer of sign (SIGN(3F))
Specify action on receipt of system signal
(SIGNAL(3F))
Sine (SINE(3F))
Hyperbolic sine (SINH(3F))
Explicit type conversion (FTYPE(3F))
Square root (SQRT(3F))
Random number generator (RAND(3F))
Issue a shell command (SYSTEM(3F))
Tangent (TAN(3F))
Hyperbolic tangent (TANH(3F))
Bitwise boolean (BOOL(3F))
Complex absolute value (ABS(3F)).

FORTRAN 77

For more information on the Fortran intrinsic function commands, see the
Sys5 UNIX Programmer Reference Manual.

9.3 VIOLATIONS OF THE STANDARD

The following paragraphs describe only three known ways in which the UNIX
system implementation of Fortran 77 violates the new American National
Standard.

9.3.1 Double Precision Alignment

The Fortran 77 American National Standard permits common or
equivalence statements to force a double precision quantity onto an odd
word boundary, as in the following example:

real a(4)
double precision b,c
equivalence (a(1),b), (a(4),c)

Some machines require that double precision quantities be on double word
boundaries; other machines run inefficiently if this alignment rule is not
observed. It is possible to tell which equivalenced and common variables
suffer from a forced odd alignment, but every double-precision argument
would have to be assumed on a bad boundary. To load such a quantity on
some machines, it would be necessary to use two separate operations. The
first operation would be to move the upper and lower halves into the halves
of an aligned temporary. The second would be to load that double-precision
temporary. The reverse would be needed to store a result. All double­
precision real and complex quantities are required to fall on even word
boundaries on machines with corresponding hardware requirements and to

9-8 SysS UNIX

(/

(

FORTRAN 77 CHAPTER 9

issue a diagnostic if the source code demands a violation of the rule.

9.3.2 Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure
arguments of that procedure must be declared in an external statement.
This requirement arises as a subtle corollary of the way we represent
character string arguments. A warning is printed if a dummy procedure is
not declared external. Code is correct if there are no character arguments.

9.3.3 T and TL Formats

The implementation of the t (absolute tab) and ti (leftward tab) format codes
is defective. These codes allow rereading or rewriting part of the record
which has already been processed. The implementation uses "seeks"; so if
the unit is not one which allows seeks (such as a terminal) the program is in
error. A benefit of the implementation chosen is that there is no upper limit
on the length of a record nor is it necessary to predeclare any record
lengths except where specifically required by Fortran or the operating
system.

9.4 INTERPROCEDURE INTERFACE

To be able to write C language procedures that call or are called by Fortran
procedures, it is necessary to know the conventions for procedure names,
data representation, return values, and argument lists that the compiled
code obeys.

9.4.1 Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure has
an underscore appended to it by the compiler to distinguish it from a C
language procedure or external variable with the same user-assigned name.
Fortran library procedure names have embedded underscores to avoid
clashes with user-assigned subroutine names.

9.4.2 Data Representations

The following is a table of corresponding Fortran and C language
declarations:

Sys5 UNIX

Fortran
integer*2 x
integer x
logical x
real x
double precision x
complex x

C Language
short int x;
long int x;
long int x;
float x;
double x;
struct {float r, i;} x;

9-9

CHAPTER 9 FORTRAN 77

double complex x
character*& x

struct {double dr, di; } x;
char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same
amount of memory.

9.4.3 Return Values

A function of type integer, logical, real, or double precision declared as a
C language function returns the corresponding type. A complex or double
complex function is equivalent to a C languaQf} routine with an additional
initial argument that points to the place where the return value is to be
stored. Thus, the following:

complex function f(...)

is equivalent to

struct { float r, i; } temp;
f_(&temp, ...)

A character-valued function is equivalent to a C language routine with two
extra initial arguments - a data address and a length. Thus,

character*15 function g(...)

is equivalent to

char result[];
long int length;
g_(result, length, ...)

and could be invoked in C language by

char chars[15];

g_(chars, 1 SL, ...);

Subroutines are invoked as if they were integer-valued functions whose
value specifies which alternate return to use. Alternate return arguments
(statement labels) are not passed to the function but are used to do an
indexed branch in the calling procedure. (If the subroutine has no entry
points with alternate return arguments, the returned value is undefined.) The
statement

call nret(*1, *2, *3)

is treated exactly as if it were the computed goto

9-10 Sys5 UNIX

(~

FORTRAN 77

goto (1, 2, 3), nret()

9.4.4 Argument Lists

CHAPTER 9

All Fortran arguments are passed by address. In addition, for every
argument that is of type character or that is a dummy procedure, an
argument giving the length of the value is passed. (The string lengths are
long int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character*? s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int f();
char s[7];
long int b[3];

sam_(f, &b[1], S, OL, 7L);

Note that the first element of a C language array always has subscript 0, but
Fortran arrays begin at 1 by default. Fortran arrays are stored in column­
major order; C language arrays are stored in row-major order.

9.5 FILE FORMATS

9.5.1 Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and
unformatted, and direct formatted and unformatted. On UNIX systems,
these are all implemented as ordinary files which are assumed to have the
proper internal structure.

Fortran 1/0 is based on "records." When a direct file is opened in a Fortran
program, the record length of the records must be given; and this is used by
the Fortran 1/0 system to make the file look as if itis made up of records of
the given length. In the special case that the record length is given as 1, the
files are not considered to be divided into records but are treated as byte­
addressable byte strings; i.e., as ordinary files on the UNIX system. (A read
or write request on such a file keeps consuming bytes until satisfied rather
than being restricted to a single record.)

Sys5 UNIX 9-11

CHAPTER 9 FORTRAN 77

The peculiar requirements on sequential unformatted files make it unlikely
that they will ever be read or written by any means except Fortran 1/0
statements. Each record is preceded and followed by an integer containing
the record's length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while
reading by using each new-line as a record separator. The result of reading
off the end of a record is undefined according to the Fortran 77 American
National Standard. The 1/0 system is permissive and treats the record as
being extended by blanks. On output, the 1/0 system will write a new-line at
the end of each record. It is also possible for programs to write new-lines
for themselves. This is an error, but the only effect will be that the single
record the use~ thought was written will be treated as more than one record
when being read or backspaced over.

9.5.2 Preconnected Files and File Positions

Units 5, 6, and O are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard output,
and unit O is connected to the standard error unit. All are connected for
sequential formatted 1/0.

All the other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist nor will they be / '\
created unless their units are used without first executing an open. The ',, ~
default connection is for sequential formatted 1/0.

The Fortran 77 Standard does not specify where a file which has been
explicitly opened for sequential 1/0 is initially positioned. In fact, the 1/0
system attempts to position the file at the end. A write will append to the
file and a read will result in an "end of file" indication. To position a file to
its beginning, use a rewind statement. The preconnected units 0, 5, and 6
are positioned as they come from the parent process.

9-12 SysS UNIX

(

RATFOR CHAPTER 10

10. RATFOR

This chapter describes the Ratfor(1) preprocessor. It is assumed that the
user is familiar with the current implementation of Fortran 77 on the UNIX
system.

The Ratfor language allows users to write Fortran programs in a fashion
similar to C language. The Ratfor program is implemented as a
preprocessor that translates this "simplified" language into Fortran. The
facilities provided by Ratfor are:

• Statement grouping
• if-else and switch for decision making
• while, for, do, and repeat-until for looping
• break and next for controlling loop exits
• Free form input such as multiple statements/lines and automatic

continuation
• Simple comment convention
•Translation of>,>=. etc., into .gt., .ge., etc.
• return statement for functions
• define statement for symbolic parameters
• include statement for including source files.

10.1 USAGE

The Ratfor program takes either a list of file names or the standard input
and writes Fortran on the standard output. Options include -6x, which uses
x as a continuation character in column 6 (the UNIX system uses & in
column 1), -h, which causes quoted strings to be turned into nH constructs
and -C, which causes Ratfor comments to be copied into the generated
Fortran.

10.2 STATEMENT GROUPING

The Ratfor language provides a statement grouping facility. A group of
statements can be treated as a unit by enclosing them in the braces { and } .
For example, the Ratfor code

if (x > 100)
{ call error("x> 100"); err = 1 ; return }

will be translated by the Ratfor preprocessor into Fortran equivalent to

10

if (x .le. 100) goto 10
call error(Shx> 100)
err= 1
return

Sys5 UNIX 10-1

CHAPTER10 RATFOR

which should simplify programming effort. By using { and }, a group of /
statements can be used instead of a single statement.

Also note in the previous Ratfor example that the character > was used
instead of .GT. in the if statement. The Ratfor preprocessor translates this
C language type operator to the appropriate Fortran operator. More on
relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like
"x> 100"). But others, like ANSI Fortran 66, do not. Ratfor converts it into
the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere on a
line, and several may appear on one line if they are separated by
semicolons. The previous example could also be written as

if (x > 100) {

}

call error("x> 100")
err= 1
return

which shows grouped statements spread over several lines. In this case, no
semicolon is needed at the end of each line because Ratfor assumes there
is one statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement, no
braces are needed.

10.3 THE "if-else" CONSTRUCTION

The Ratfor language provides an else statement. The syntax of the if-else
construction is:

if (legal Fortran condition)
ratfor statement

else
ratfor statement

where the else part is optional. The legal Fortran condition is anything
that can legally go into a Fortran Logical F statement. The Ratfor
preprocessor does not check this clause since it does not know enough
Fortran to know what is permitted. The "ratfor" statement is any Ratfor or
Fortran statement or any collection of them in braces. For example:

if(a<=b)
{ sw = O; write(6, 1) a, b}

else
{ sw = 1; write(6, 1) b, a }

10-2 Sys5 UNIX

RATFOR CHAPTER 10

is a valid Ratfor if-else construction. This writes out the smaller of a and b,
then the larger, and sets sw appropriately.

As before, if the statement following an if or an else is a single statement,
no braces are needed.

10.3.1 Nested "if" Stat em en ts

The statement that follows an if or an else can be any Ratfor statement
including another if or else statement. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor language also
provides a switch statement which could be used instead, under certain
conditions.) The last else handles the "default" condition. If there is no
default action, this final else can be omitted. Thus, only the actions
associated with the valid condition are performed. For example:

if (x < 0)
x=O

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In Ratfor
when there are more if statements than else statements, else statements
are associated with the closest previous if statement that currently does not
have an associated else statement. For example:

if (x > 0)
if (y > 0)
write(6, 1) x, y
else
write(6,2) y

is interpreted by the Ratfor preprocessor as

if (x > 0) {

}

if (y > 0)
write(6, 1) x, y

else
write(6, 2) y

in which the braces are assumed. If the other association is desired it must
be written as

Sys5 UNIX 10-3

CHAPTER10 RATFOR

if (x > 0) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

with the braces specified.

10.4 THE "switch" STATEMENT

The switch statement provides a way to express multiway branches which
branch on the value of some integer-valued expression. The syntax is

switch (expression) {

}

case expr1 :
statements
case expr2, expr3 :
statements

default:
statements

where each case is followed by an integer expression (or several integer
expressions separated by commas). The switch expression is compared to
each case expr until a match is found. Then the statements following that
case are executed. If no cases match expression, then the statements
following default are executed. The default section of a switch is optional.

When the statements associated with a case are executed, the entire
switch is exited immediately. This is different from C language.

10.5 THE "do" STATEMENT

The do statement in Ratfor is quite similar to the DO statement in Fortran
except that it uses no statement number (braces are used to mark the end
of the do instead of a statement number). The syntax of the ratfor do
statement is

do legal-Fortran-DO-text {
ratfor statements

}

The legal-Fortran-DO-text must be something that can legally be used in a
Fortran DO statement. Thus if a local version of Fortran allows DO limits to
be expressions (which is not currently permitted in ANSI Fortran 66), they
can be used in a ratfor do statement. The ratfor statements are enclosed
in braces; but as with the if, a single statement need not have braces

10-4 Sys5 UNIX

(

RATFOR CHAPTER 10

around it. For example, the following code sets an array to zero:

do i = 1, n
x(i) = 0.0

and the code

doi=1,n
doj=1,n

m(i, j) = o
sets the entire array m to zero.

10.6 THE "break" AND "next" STATEMENTS

The Ratfor break and next statements provide a means for leaving a loop
early and one for beginning the next iteration. The break causes an
immediate exit from the do; in effect, it is a branch to the statement after the
do. The next is a branch to the bottom of the loop, so it causes the next
iteration to be done. For example, this code skips over negative values in
an array

doi=1,n{

}

if (x(i) < 0.0)
next

process positive element

The break and next statements will also work in the other Ratfor looping
constructions and will be discussed with each looping construction.

The break and next can be followed by an integer to indicate breaking or
iterating that level of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

10.7 THE "while" STATEMENT

The Ratfor language provides a while statement. The syntax of the while
statement is

while (legal-Fortran-condition)
ratfor statement

SysS UNIX 10-5

CHAPTER10 RATFOR

As with the if, legal-Fortran-condition is something that can go into a
Fortran Logical F, and ratfor statement is a single statement which may be , ,
multiple statements enclosed in braces.

For example, suppose nextch is a function which returns the next input
character both as a function value and in its argument. Then a while loop
to find the first nonblank character could be

while (nextch(ich) = = iblank)

where a semicolon by itself is a null statement ·(which is necessary here to
mark the end of the while). If the semicolon were not present, the while
would c<'ntrol the next statement. When the loop is exited, ich contains the
first nonL .ank.

10.8 THE "for" STATEMENT

The for statement is another Ratfor loop. A for statement allows explicit
initialization and increment steps as part of the statement.

The syntax of the for statement is

for (init ; condition ; increment)
ratfor statement

where init is any single Fortran statement which is executed once before the
loop begins. The increment is any single Fortran statement that is
executed at the end of each pass through the loop before the test. The
condition is again anything that is legal in a Fortran Logical F. Any of init,
condition, and increment may be omitted although the semicolons must
always be present. A nonexistent condition is treated as always true, so

for (;;)

is an infinite loop.

For example, a Fortran DO loop could be written as

for (i = 1; i < = n; i = i + 1) ...

which is equivalent to

i = 1
while (i <= n) {

i = i + 1
}

The initialization and increment of i have been moved into the for statement.

10-6 Sys5 UNIX

(

RATFOR CHAPTER 10

The for, do, and while versions have the advantage that they will be done
zero times if n is less than 1. In addition, the break and next statements
work in a for loop.

The increment in a for need not be an arithmetic progression. The program

sum= 0.0
for (i = first; i > O; i = ptr(i))

sum = sum + value(i)

steps through a list (stored in an integer array ptr) until a zero pointer is
found while adding up elements from a parallel array of values. Notice that
the code also works correctly if the list is empty.

10.9 THE "repeat-until" STATEMENT

There are times when a test needs to be performed at the bottom of a loop
after one pass through. This facility is provided by the repeat-until
statement. The syntax for the repeat-until statement is

repeat
ratfor statement

until (legal-Fortran-condition)

where ratfor-statement is done once, then the condition is evaluated. If it
is true, the loop is exited; if it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat­
until loop can be exited by the use of a stop, return, or break statement or
an implicit stop such as running out of input with a READ statement.

As stated before, a break statement causes an immediate exit from the
enclosing repeat-until loop. A next statement will cause a skip to the
bottom of a repeat-until loop (i.e., to the until part).

10.10 THE "return" STATEMENT

The standard Fortran mechanism for returning a value from a routine uses
the name of the routine as a variable. This variable can be assigned a
value. The last value stored in it is the value returned by the function. For
example, in a Fortran routine named equal, the statements

equal= O
return

cause equal to return zero.

The Ratfor language provides a return statement similar to the C language
return statement. In order to return a value from any routine, the return
statement has the syntax

SysS UNIX 10-7

CHAPTER 10 RATFOR

return (expression)

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is returned.

10.11 THE "define" STATEMENT

The Ratfor language provides a define statement similar to the C language
version. Any string of alphanumeric characters can be defined as a name.
Whenever that name occurs in the input (delimited by nonalphanumerics), it
is replaced by the rest of the definition line. (Comments and trailing white
spaces are stripped off.) A defined name can be arbitrarily long and must
begin with a letter.

Usually the define statement is used for symbolic parameters. The syntax
of the define statement is

define name value

where name is a symbolic name that represents the quantity of value. For
example:

define ROWS 100
define CLOS 50
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

causes the preprocessor to replace the name ROWS with the value 100 and
the name COLS with the value 50. Alternately, definitions may be written
as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right
parenthesis. This allows multiple-line definitions.

10.12 THE "include" STATEMENT

The Ratfor language provides an include statement similar to the #include
< ... > statement in C language. The syntax for this statement is

include file

which inserts the contents of the named file into the Ratfor input file in
place of the include statement. The standard usage is to place COMMON
blocks on a file and use the include statement to include the common code
whenever needed.

10.13 FREE-FORM INPUT

In Ratfor, statements can be placed anywhere on a line. Long statements
are continued automatically as are long conditions in if, for, and until

10-8 Sys5 UNIX

(

(

RATFOR CHAPTER 10

statements. Blank lines are ignored. Multiple statements may appear on
one line if they are separated by semicolons. No semicolon is needed at the
end of a line if Ratfor can make some reasonable guess about whether the
statement ends there. Lines ending with any of the characters

=+-*,I&(_

are assumed to be continued on the next line. Underscores are discarded
wherever they occur. All other characters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a
Fortran label and placed in columns 1 through 5 upon output. Thus:

write(6, 100); 100 format("hello'1

is converted into

write(6, 100)
100 format(Shhello)

10.14 TRANSLATIONS

When the -h option is chosen, text enclosed in matching single or double
quotes is converted to nH... but is otherwise unaltered (except for
formatting - it may get split across card boundaries during the reformatting
process). Within quoted strings, the backslash (\) serves as an escape
character; i.e., the next character is taken literally. This provides a way to
get quotes and the backslash itself into quoted strings. For example:

'\'"

is a string containing a backslash and an apostrophe. (This is not the
standard convention of doubled quotes, but it is easier to use and more
general.)

Any line that begins with the character o/o is left absolutely unaltered except
for stripping off the o/o and moving the line one position to the left. This is
useful for inserting control cards and other things that should not be
preprocessed (like an existing Fortran program). Use o/o only for ordinary
statements not for the condition parts of if, while, etc., or the output may
come out in an unexpected place.

The following character translations are made (except within single or double
quotes or on a line beginning with a o/o):

Sys5 UNIX 10-9

CHAPTER 10 RATFOR

== .eq.

!= .ne.

> .gt.

>= .ge.

< .It.

<= .le.

& .and .

. or .

. not.

In addition, the following translations are provided for input devices with
restricted character sets:

{

}

$({

$) }

10.15 WARNINGS

The Ratfor preprocessor catches certain syntax errors (such as m1ss1ng
braces), else statements without if statements, and most errors involving
missing parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the
Fortran compiler prints messages in terms of generated Fortran code and
not in terms of the Ratfor code. This makes it difficult to locate Ratfor
statements that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable names
will cause considerable problems. Likewise, spaces within keywords and
use of the Arithmetic F will cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes
instead.

10-10 Sys5 UNIX

(

RATFOR CHAPTER 10

10.16 EXAMPLE OF RATFOR CONVERSION

As an example of how to use the Ratfor program, the following program
prog.r (where the .r indicates a Ratfor source program), is written in the
Ratfor language:

ICNT=O
10 WRITE(6,31)
31 FORMAT("INPUT FIRST NUMBER")

READ(5,32) A
32 FORMAT(F10.2)

WRITE(6,33)
33 FORMAT("INPUT SECOND NUMBER")

READ(S,34) B
34 FORMAT(F10.2)

IF(A<B)
WRITE(6,36) A,B

ELSE WRITE(6,37)A,B
36 FORMAT{F10.2," < ",F10.2)
37 FORMAT{F10.2," >= ",F10.2)

ICNT = ICNT + 1
IF{ICNT.EQ.5)

GOTO 100
GOTO 10

100 END

The command

ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The Ratfor
program prog.r remains intact.) The Fortran program prog.f follows:

Sys5 UNIX 10-11

CHAPTER 10

icnt=O
1 O write(6,31)
31 format{"INPUT FIRST NUMBER")

read{S,32) a
32 format{f10.2)

write{6,33)
33 format{"INPUT SECOND NUMBER")

read{S,34) b
34 format(f10.2)

if(.not.{a.lt.b))goto 23000
write{6,36) a,b
goto 23001

23000 continue
write{6,37)a,b

23001 continue
36 format(f10.2," < ",f10.2)
37 format{f10.2," > = ",f10.2)

icnt = icnt + 1
if(.not.(icnt.eq.5))goto 23002
goto 100

23002 continue
goto 10

100 end

The Fortran program prog.f is compiled using the command

f77 prog.f

RATFOR

An object program file prog.o and a final output file a.out are produced.
Since the output file a.out is an executable file, the command

a.out

causes the program to run.

The Ratfor program prog.r can also be translated and compiled with the
single command

f77 prog.r

where the .r indicates a Ratfor source program. An object file prog.o and a
final output file a.out are produced.

10-12 Sys5 UNIX

(

EFL CHAPTER 11

11. EFL

EFL is a clean, general purpose computer language intended to encourage
portable programming. It has a uniform and readable syntax and good data
and control flow structuring. EFL programs can be translated into efficient
Fortran code, so the EFL programmer can take advantage of the ubiquity of
Fortran, the valuable libraries of software written in that language, and the
portability that comes with the use of a standardized language, without
suffering from Fortran's many failings as a language. It is especially useful
for numeric programs. Thus, the EFL language permits the programmer to
express complicated ideas in a comprehensible way, while permitting access
to the power of the Fortran environment.

The name EFL originally stood for "Extended Fortran Language." The
current compiler is much more than a simple preprocessor: it attempts to
diagnose all syntax errors, to provide readable Fortran output, and to avoid
a number of niggling restrictions.

In examples and syntax specifications, boldface type is used to indicate
literal words and punctuation, such as while. Words in italic type indicate
an item in a category, such as an expression. A construct surrounded by
double brackets represents a list of one or more of those items, separated
by commas. Thus, the notation

[item J
could refer to any of the following:

item
item, item
item, item, item

The reader should have a fair degree of familiarity with some procedural
language. There will be occasional references to Ratfor and to Fortran
which may be ignored if the reader is unfamiliar with those languages.

11.1 LEXICAL FORM

11.1.1 Character Set
The following characters are legal in an EFL program:

Sys5 UNIX

letters

digits
white space
quotes
sharp
continuation

abcdefghijklm
nopqrstuvwxyz
0123456789
blank tab , ..
II

11-1

CHAPTER 11

braces
parentheses
other

{ }
()

' ' = <
. + - * I
> & I $

EFL

Letter case (upper or lower) is ignored except within strings, so "a" and "A"
are treated as the same character. All of the examples below are printed in
lower case. An exclamation mark (''!'') may be used in place of a tilde (" ").
Square brackets (''(" and ")") may be used in place of braces ("{" and "}").

11.1.2 Lines
EFL is a line-oriented language. Except in special cases (discussed below),
the end of a line marks the end of a token and the end of a statement. The
trailing portion of a line may be used for a comment. There is a mechanism
for diverting input from one source file to another, so a single line in the
program may be replaced by a number of lines from the other file.
Diagnostic messages are labeled with the line number of the file on which
they are detected.

11.1.2.1 White Space
Outside of a character string or comment, any sequence of one or more
spaces or tab characters acts as a single space. Such a space terminates
a token.

11.1.2.2 Comments
A comment may appear at the end of any line. It is introduced by a sharp
(#) character, and continues to the end of the line. (A sharp inside of a
quoted string does not mark a comment.) The sharp and succeeding
characters on the line are discarded. A blank line is also a comment.
Comments have no effect on execution.

11.1.2.3 Include Files
It is possible to insert the contents of a file at a point in the source text, by
referencing it in a line like

include joe

No state_ment or comment may follow an include on a line. In effect, the
include line is replaced by the lines in the named file, but diagnostics refer
to the line number in the included file. Includes may be nested at least ten
deep.

11.1.2.4 Continuation
Lines may be continued explicitly by using the underscore (_) character. If
the last character of a line (after comments and trailing white space have
been stripped) is an underscore, the end of a line and the initial blanks on /
the next line are ignored. Underscores are ignored in other contexts (except
inside of quoted strings). Thus

11-2 Sys5 UNIX

(

c·

EFL

1_000_000_
000

9 equals 10.

CHAPTER 11

There are also rules for continuing lines automatically: the end of line is
ignored whenever it is obvious that the statement is not complete. To be
specific, a statement is continued if the last token on a line is an operator,
comma, left brace, or left parenthesis. (A statement is not continued just
because of unbalanced braces or parentheses.) Some compound
statements are also continued automatically; these points are noted in the
sections on executable statements.

11.1.2.5 Multiple Statements on a Line
A semicolon terminates the current statement. Thus, it is possible to write
more than one statement on a line. A line consisting only of a semicolon, or
a semicolon following a semicolon, forms a null statement.

11.1.3 Tokens
A program is made up of a sequence of tokens. Each token is a sequence
of characters. A blank terminates any token other than a quoted string.
End of line also terminates a token unless explicit continuation (see above)
is signaled by an underscore.

11.1.3.1 Identifiers
An identifier is a letter or a letter followed by letters or digits. The following
is a list of the reserved words that have special meaning in EFL. They will
be discussed later.

SysS UNIX 11-3

CHAPTER 11 EFL

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write
equivalence option writebin

The use of these words is discussed below. These words may not be used
for any other purpose.

11. 1.3.2 Strings
A character string is a sequence of characters surrounded by quotation
marks. If the string is bounded by single-quote marks ('), it may contain
double quote marks ("), and vice versa. A quoted string may not be
broken across a line boundary.

'hello there'
"ain't misbehavin'"

11.1.3.3 Integer Constants
An integer constant is a sequence of one or more digits.

0
57
123456

11.1.3.4 Floating Point Constants
A floating point constant contains a dot and/or an exponent field. An
exponent field is a letter d or e followed by an optionally signed integer
constant. If I and J are integer constants and E is an exponent field, then a
floating constant has one of the following forms:

11-4 Sys5 UNIX

(/

EFL

.I
I.
l.J
IE
l.E
.IE
l.JE

11.1.3.5 Punctuation

CHAPTER 11

Certain characters are used to group or separate objects in the language.
These are

parentheses ()
braces { }
comma
semicolon
colon
end-of-line

The end-of-line is a token (statement separator) when the line is neither
blank nor continued.

11.1.3.6 Operators
The EFL operators are written as sequences of one or more non­
alphanumeric characters.

+ - * I **
< <= > >=
&& II & I
+= -=
&&= II=
-> . $

I= **=
&= I=

A dot(".") is an operator when it qualifies a structure element name, but not
when it acts as a decimal point in a numeric constant. There is a special
mode (see "ATAVISMS") in which some of the operators may be
represented by a string consisting of a dot, an identifier, and a dot (e.g., .It.
).

11.1.4 Macros
EFL has a simple macro substitution facility. An identifier may be defined to
be equal to a string of tokens; whenever that name appears as a token in
the program, the string replaces it. A macro name is given a value in a
define statement like

define count n + = 1

Any time the name count appears in the program, it is replaced by the

Sys5 UNIX 11-5

CHAPTER 11

statement

n+=1

A define statement must appear alone on a line; the form is

define name rest-of-line

Trailing comments are part of the string.

11.2 PROGRAM FORM

11.2.1 Files

EFL

A file is a sequence of lines. A file is compiled as a single unit. It may
contain one or more procedures. Declarations and options that appear
outside of a procedure affect the succeeding procedures on that file.

11.2.2 Procedures
Procedures are the largest grouping of statements in EFL Each procedure
has a name by which it is invoked. (The first procedure invoked during
execution, known as the main procedure, has the null name.) Procedure
calls and argument passing are discussed in "PROCEDURES."

11.2.3 Blocks
Statements may be formed into groups inside of a procedure. To describe
the scope of names, it is convenient to introduce the ideas of block and of
nesting level. The beginning of a program file is at nesting level zero. Any
options, macro definitions, or variable declarations are also at level zero.
The text immediately following a procedure statement is at level 1. After
the declarations, a left brace marks the beginning of a new block and
increases the nesting level by 1 ; a right brace drops the level by 1. (Braces
inside declarations do not mark blocks.) (See "Blocks" under
"EXECUTABLE STATEMENTS.") An end statement marks the end of the
procedure, level 1, and the return to level 0. A name (variable or macro)
that is defined at level K is defined throughout that block and in all deeper
nested levels in which that name is not redefined or redeclared. Thus, a
procedure might look like the following:

11-6 SysS UNIX

EFL

block o
procedure george
real x
x=2

if(x > 2)
{ #new block
integer x # a different variable
do x = 1,7

write(,x)

} # end of block
end II end of procedure, return to block 0

11.2.4 Statements

CHAPTER 11

A statement is terminated by end of line or by a semicolon. Statements are
of the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in "COMPILER OPTIONS". The
include, define, and end statements have been described above; they may
not be followed by another statement on a line. Each procedure begins with
a procedure statement and finishes with an end statement; these are
discussed in "PROCEDURES". Declarations describe types and values of
variables and procedures. Executable statements cause specific actions to
be taken. A block is an example of an executable statement; it is made up
of declarative and executable statements.

11.2.5 Labels
An executable statement may have a label which may be used in a branch
statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal("bad input")

Sys5 UNIX 11-7

CHAPTER 11 EFL

11.3 DATA TYPES AND VARIABLES

EFL supports a small number of basic ·(scalar) types. The programmer may
define objects made up of variables of basic type; other aggregates may
then be defined in terms of previously defined aggregates.

11.3.1 Basic Types
The basic types are

logical
integer
field(m :n)
real
complex
long real
long complex
character(n)

A logical quantity may take on the two values true and false. An integer
may take on any whole number value in some machine-dependent range. A
field quantity is an integer restricted to a particular closed interval ([m :n]). A
"real" quantity is a floating point approximation to a real or rational number.
A long real is a more precise approximation to a rational. (Real quantities
are represented as single precision floating point numbers; long reals are
double precision floating point numbers.) A complex quantity is an
approximation to a complex number, and is represented as a pair of reals.
A character quantity is a fixed-length string of n characters.

11.3.2 Constants
There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally preceded by
a plus or minus sign, as in

17
-94
+6
0

A long real ("double precision") constant is a floating point constant
containing an exponent field that begins with the letter d. A real ("single
precision") constant is any other floating point constant. A real or long real
constant may be preceded by a plus or minus sign. The following are valid
real constants:

11-8 Sys5 UNIX

/

-~- _,/

(

EFL

17.3
-.4
7.9e-6 (= 7.9x 10 6)

14e9 (= 1.4X 1010

The following are valid long real constants

7.9d-6 (= 7.9X 10 6)

5d3

A character constant is a quoted string.

11.3.3 Variables

CHAPTER 11

A variable is a quantity with a name and a location. At any particular time
the variable may also have a value. (A variable is said to be undefined
before it is initialized or assigned its first value, and after certain indefinite
operations are performed.) Each variable has certain attributes:

11.3.3.1 Storage Class
The association of a name and a location is either transitory or permanent.
Transitory association is achieved when arguments are passed to
procedures. Other associations are permanent (static). (A future extension
of EFL may include dynamically allocated variables.)

11.3.3.2 Scope of Names
The names of common areas are global, as are procedure names: these
names may be used anywhere in the program. All other names are local to
the block in which they are declared.

11.3.3.3 Precision
Floating point variables are either of normal or long precision. This attribute
may be stated independently of the basic type.

11.3.4 Arrays
It is possible to declare rectangular arrays (of any dimension) of values of
the same type. The index set is always a cross-product of intervals of
integers. The lower and upper bounds of the intervals must be constants for
arrays that are local or common. A formal argument array may have
intervals that are of length equal to one of the other formal arguments. An
element of an array is denoted by the array name followed by a
parenthesized comma-separated list of integer values, each of which must
lie within the corresponding interval. (The intervals may include negative
numbers.) Entire arrays may be passed as procedure arguments or in
input/output lists, or they may be initialized; all other array references must
be to individual elements.

11.3.5 Structures
It is possible to define new types which are made up of elements of other
types. The compound object is known as a structure; its constituents are

SysS UNIX 11-9

CHAPTER 11 EFL

called members of the structure. The structure may be given a name, which
acts as a type name in the remaining statements within the scope of its "­
declaration. The elements of a structure may be of any type (including
previously defined structures), or they may be arrays of such objects. Entire
structures may be passed to procedures or be used in input/output lists;
individual elements of structures may be referenced. The uses of structures
will be detailed below. The following structure might represent a symbol
table:

struct tableentry
{
character(S) name
integer hashvalue
integer numberofelements
field(0:1) initialized, used, set
field{0:10) type
}

11.4 EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression may have
any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines. The
meanings of these operators are described in ''Unary Operators" and "Binary
Operators" under "EXPRESSIONS".

->

**
* I unary + - + + -
+ -
< <= > >= ==
& &&
I II
$
= += -= *= I= **= &= I= &&= II=

Examples of expressions are

a<b && b<c
-(a + sin(x)) I (5+cos(x))**2

11-10 Sys5 UNIX

EFL CHAPTER 11

11.4.1 Primaries
Primaries are the basic elements of expressions. They include constants,
variables, array elements, structure members, procedure invocations,
input/output expressions, coercions, and sizes.

11.4.1.1 Constants
Constants are described in "Constants" under "DATA TYPES AND
VARIABLES".

11.4.1.2 Variables
Scalar variable names are primaries. They may appear on the left or the
right side of an assignment. Unqualified names of aggregates (structures or
arrays) may appear only as procedure arguments and in input/output lists.

11.4.1.3 Array Elements
An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared
dimension:

a(5)
b{6,-3,4)

11.4.1.4 Structure Members
A structure name followed by a dot followed by the name of a member of
that structure constitutes a reference to that element. If that element is itself
a structure, the reference may be further qualified.

a.b
x(3).y(4).z(5)

11.4.1.5 Procedure Invocations
A procedure is invoked by an expression of one of the forms

procedurename {)
procedurename {expression)
procedurename (expression-1, ... , expression-n)

The procedurename is either the name of a variable declared external or it
is the name of a function known to the EFL compiler (see "Known Functions"
under "PROCEDURES"), or it is the actual name of a procedure, as it
appears in a procedure statement. If a procedurename is declared
external and is an argument of the current procedure, it is associated with
the procedure name passed as actual argument; otherwise it is the actual
name of a procedure. Each expression in the above is called an actual
argument. Examples of procedure invocations are

Sys5 UNIX

CHAPTER 11

f(x)
work()
g(x, y+3, 'xx')

EFL

When one of these procedure invocations is to be performed, each of the
actual argument expressions is first evaluated. The types, precisions, and
bounds of actual and formal arguments should agree. If an actual argument
is a variable name, array element, or structure member, the called
procedure is permitted to use the corresponding formal argument as the left
side of an assignment or in an input list; otherwise it may only use the value.
After the formal and actual arguments are associated, control is passed to
the first executable statement of the procedure. When a return statement is
executed in that procedure, or when control reaches the end statement of
that procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the attributes
of the procedurename that are declared or implied in the calling procedure,
which must agree with the attributes declared for the function in its
procedure. In the special case of a generic function, the type of the result is
also affected by the type of the argument. See "PROCEDURES".

11.4.1.6 Input/Output Expressions
The EFL input/output syntactic forms may be used as integer primaries that
have a non-zero value if an error occurs during the input or output. See
"Input/Output Statements" under "EXECUTABLE STATEMENTS".

11.4.1. 7 Coercions
An expression of one precision or type may be converted to another by an
expression of the form

attributes (expression)

At present, the only attributes permitted are prec1s1on and basic types.
Attributes are separated by white space. An arithmetic value of one type
may be coerced to any other arithmetic type; a character expression of one
length may be coerced to a character expression of another length; logical
expressions may not be coerced to a nonlogical type. As a special case, a
quantity of complex or long complex type may be constructed from two
integer or real quantities by passing two expressions (separated by a
comma) in the coercion. Examples and equivalent values are

integer(S.3) = 5
long real(S) = 5.0dO
complex(S,3) = 5+ 3i

Most conversions are done implicitly, since most binary operators permit
operands of different arithmetic types. Explicit coercions are of most use
when it is necessary to convert the type of an actual argument to match that
of the corresponding formal parameter in a procedure call.

11-12 SysS UNIX

('

\ /

/
\

(/

EFL CHAPTER 11

11.4.1.8 Sizes
There is a notation which yields the amount of memory required to store a
datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element, or
structure member. The value of sizeof is an integer, which gives the size in
arbitrary units. H the size is needed in terms of the size of some specific
unit, this can be computed by division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some machines.
The lengthof operator gives this larger value, again in arbitrary units. The
syntax is

lengthof (leftside)
lengthof (attributes)

11.4.2 Parentheses
An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of which
it is a part is evaluated.

11.4.3 Unary Operators
All of the unary operators in EFL are prefix operators. The result of a unary
operator has the same type as its operand.

11.4.3.1 Arithmetic
Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator + + adds one to its operand. The prefix operator -
subtracts one from its operand. The value of either expression is the result
of the addition or subtraction. For these two operators, the operand must be
a scalar, array element, or structure member of arithmetic type. (As a side
effect, the operand value is changed.)

11.4.3.2 Logical
The only logical unary operator is complement (). This operator is defined
by the equations

true= false
false= true

Sys5UNIX 11-13

CHAPTER 11 EFL

11.4.4 Binary Operators I
Most EFL operators have two operands, separated by the operator. \. ,/
Because the character set must be limited, some of the operators are
denoted by strings of two or three special characters. All binary operators
except exponentiation are left associative.

11.4.4.1 Arithmetic
The binary arithmetic operators are

+

*
I

**

addition
subtraction

multiplication
division
exponentiation

Exponentiation is right associative: a**b**C = a**(b**C) = a<b.l The
operations have the conventional meanings: 8+2 = 10, 8-2 = 6,
8*2 = 16, 8/2 = 4, 8**2 = 82 = 64.

The type of the result of a binary operation A op B
types of its operands:

Type of B

T of A r I r

i
r

I r
c
le

i r
r r
I r I r
c c
le le

i =integer
r = real
I r = long real
c =complex

I r
I r
I r
le
le

I c = long complex

c

c
c
le
c
le

is determined by the

le

le
le
le
le
le

If the type of an operand differs from the type of the result, the calculation is
done as if the operand were first coerced to the type of the result. If both
operands are integers, the result is of type integer, and is computed exactly.
(Quotients are truncated toward zero, so 813=2.)

11-14 Sys5 UNIX

/

(

EFL CHAPTER 11

11.4.4.2 Logical
The two binary logical operations in EFL, and and or, are defined by the
truth tables:

A
false
false
true
true

B
false
true
false
true

A and B A or B
false false
false true
false true
true true

Each of these operators comes in two forms. In one form, the order of
evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is false
and b is not evaluated; otherwise, the expression has the value of b. The
expression

a 11 b

is evaluated by first evaluating a; if it is true then the expression is true and
b is not evaluated; otherwise, the expression has the value of b. The other
forms of the operators (& for and and I for or) do not imply an order of
evaluation. With the latter operators, the compiler may speed up the code
by evaluating the operands in any order.

11.4.4.3 Relational Operators
There are six relations between arithmetic quantities. These operators are
not associative.

EFL Oeerator Meaning

< < less than
<= ::5 less than or equal to

equal to
not equal to

> > greater than
>= ::;:: greater than or equal

Since the complex numbers are not ordered, the only relational operators
that may take complex operands are = = and = . The character collating
sequence is not defined.

11.4.4.4 Assignment Operators
All of the assignment operators are right associative. The simple form of
assignment is

Sys5 UNIX 11-15

CHAPTER 11 EFL

basic-left-side = expression

A basic-left-side is a scalar variable name, array element, or structure
member of basic type. This statement computes the expression on the right
side, and stores that value (possibly after coercing the value to the type of
the left side) in the location named by the left side. The value of the
assignment expression is the value assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary
arithmetic and logical operator. In each case, a op= b is equivalent to
a = a op b . (The operator and equal sign must not be separated by
blanks.) Thus, n+ =2 adds 2 ton. The location of the left side is evaluated
only once.

11.4.5 Dynamic Structures
EFL does not have an address (pointer, reference) type. However, there is
a notation for dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by structurename but
starting at the location of leftside. In effect, this overlays the structure
template at the specified location. The leftside must be a variable, array,
array element, or structure member. The type of the leftside must be one of
the types in the structure declaration. An element of such a structure is
denoted in the usual way using the dot operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the ;th element of the
array place.

11.4.6 Repetition Operator
Inside of a list, an element of the form

integer-constant-expressiQn $constant-expression

is equivalent to the appearance of the expression a number of times equal
to the first expression. Thus,

(3, 3$4, 5)

is equivalent to

(3, 4, 4, 4, 5)

11.4. 7 Constant Expressions
If an expression is built up out of operators (other than functions) and
constants, the value of the expression is a constant, and may be used
anywhere a constant is required.

11-16 SysS UNIX

EFL CHAPTER 11

(11.5 DECLARATIONS

(

Declarations statement describe the meaning, shape, and size of named
objects in the EFL language.

11.5. 1 Syntax
A declaration statement is made up of attributes and variables. Declaration
statements are of two forms:

attributes variable-list
attributes { declarations }

In the first case, each name in the variable-list has the specified attributes.
In the second, each name in the declarations also has the specified
attributes. A variable name may appear in more than one variable list, so
long as the attributes are not contradictory. Each name of a nonargument
variable may be accompanied by an initial value specification. The
declarations inside the braces are one or more declaration statements.
Examples of declarations are

integer k=2

long real b(7 ,3)

common(cname)
{
integer i
long real array(S,0:3) x, y
character(7) ch
}

11.5.2 Attributes

11.5.2.1 Basic Types
The following are basic types in declarations

logical
integer
field(m :n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k >O and n >m.

11.5.2.2 Arrays
The dimensionality may be declared by an array attribute

Sys5 UNIX 11-17

CHAPTER 11 EFL

Each of the b; may either be a single integer expression or a pair of integer
expressions separated by a colon. The pair of expressions form a lowe.r
and an upper bound; the singfe expression is an upper bound with an
implied lower bound of 1. The number of dimensions is equal to n. the
number of bounds. All of the integer expressions must be constants. An
exception is permitted only if all of the variables associated with an array
declarator are formal arguments of the procedure; in this case, each bound
must have the property that upper -lower+ 1 is equal to a formal argument
of the procedure. (The compiler has limited ability to simplify expressions,
but it will recognize important cases such as (O:n-1). The upper bound for
the last dimension (bn) may be marked by an asterisk (•) if the size of the
array is not known. The following are legal array attributes:

array(5)
array(5, 1 :5, -3:0)
array(5, •)
array(O:m-1, m)

11.5.2.3 Structures
A structure declaration is of the form

struct structname { declaration statements }

The structname is optional; if it is present, it acts as if it were the name of a
type in the rest of its scope. Each name that appears. inside the
declarations is a member of the structure, and has a special meaning when
used to qualify any variable declared with the structure type. A name may
appear as a member of any number of structures, and may also be the
name of an ordinary variable, since a structure member name is used only
in contexts where the parent type is known. The following are valid
structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three xx' s and a
character string.

11.5.2.4 Precision
Variables of floating point (real or complex) type may be declared to be
long to ensure they have higher precision than ordinary floating point / ,
variables. The default precision is short.

11-18 Sys5 UNIX

EFL CHAPTER 11

11.5.2.5 Common
Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name using a

common (commonareaname)

attribute. All of the variables declared with a particular common attribute
are in the same block; the order in which they are declared is significant.
Declarations for the same block in differing procedures must have the
variables in the same order and with the same types, precision, and shapes,
though not necessarily with the same names.

11.5.2.6 External
If a name is used as the procedure name in a procedure invocation, it is
implicitly declared to have the external attribute. If a procedure name is to
be passed as an argument, it is necessary to declare it in a statement of the
form

external [name D

If a name has the external attribute and it is a formal argument of the
procedure, then it is associated with a procedure identifier passed as an
actual argument at each call. If the name is not a formal argument, then
that name is the actual name of a procedure, as it appears in the
corresponding procedure statement.

11.5.3 Variable List
The elements of a variable list in a declaration consist of a name, an
optional dimension specification, and an optional initial value specification.
The name follows the usual rules. The dimension specification is the same
form and meaning as the parenthesized list in an array attribute. The initial
value specification is an equal sign (=) followed by a constant expression.
If the name is an array, the right side of the equal sign may be a
parenthesized list of constant expressions, or repeated elements or lists; the
total number of elements in the list must not exceed the number of elements
of the array, which are filled in column-major order.

11.5.4 The Initial Statement
An initial value may also be specified for a simple variable, array, array
element, or member of a structure using a statement of the form

initial [var = val D

The var may be a variable name, array element specification, or member of
structure. The right side follows the same rules as for an initial value
specification in other declaration statements.

Sys5 UNIX 11-19

CHAPTER 11 EFL

11.6 EXECUTABLE STATEMENTS

Every useful EFL program contains executable statements, otherwise it
would not do anything and would not need to be run. Statements are fre­
quently made up of other statements. Blocks are the most obvious case,
but many other forms contain statements as constituents.

To increase the legibility of EFL programs, some of the statement forms can
be broken without an explicit continuation. A square (o) in the syntax
represents a point where the end of a line will be ignored.

11.6.1 Expression Statements

11.6.1.1 Subroutine Call
A procedure invocation that returns no value is known as a subroutine call.
Such an invocation is a statement. Examples are

work(in, out)
run()

Input/output statements (see "Input/Output Statements" under
"EXECUTABLE STATEMENTS") resemble procedure invocations but do not
yield a value. If an error occurs the program stops.

11.6.1.2 Assignment Statements
An expression that is a simple assignment (=) or a compound assignment
(+ = etc.) is a statement:

a=b
a = sin(x)/6
x *= y

11.6.2 Blocks
A block is a compound statement that acts as a statement. A block begins
with a left brace, optionally followed by declarations, optionally followed by
executable statements, followed by a right brace. A block may be used
anywhere a statement is permitted. A block is not an expression and does
not have a value. An example of a block is

{
integer i # this variable is unknown

outside the braces

big= 0
do i = 1,n

if(big < a(i))
big= a(i)

}

11-20 SysS UNIX

(

EFL CHAPTER 11

11.6.3 Test Statements
Test statements permit execution of certain statements conditional on the
truth of a predicate.

11.6.3.1 If Statement
The simplest of the test statements is the if statement, of form

if (logical-expression) o statement

The logical expression is evaluated; if it is true, then the statement is
executed.

11.6.3.2 If-Else
A more general statement is of the form

if (logical-expression) o statement-1 o
else o statement-2

If the expression is true then statement-1 is executed, otherwise,
statement-2 is executed. Either of the consequent statements may itself be
an if-else so a completely nested test sequence is possible:

if(x<y)
if(a<b)

k=1
else

k=2
else

if(a<b)
m = 1

else
m = 2

An else applies to the nearest preceding un-elsed if. A more common use
is as a sequential test:

if(x==1)
k=1

else if(x= =3 I x= =5)
k=2

else
k=3

11.6.3.3 Select Statement
A multiway test on the value of a quantity is succinctly stated as a select
statement, which has the general form

select(expression) o block

Inside the block two special types of labels are recognized. A prefix of the

Sys5 UNIX 11-21

CHAPTER 11 EFL

form

case [constant I :
marks the statement to which control is passed if the expression in the
select has a value equal to one of the case constants. If the expression
equals none of these constants, but there is a label default inside the
select, a branch is taken to that point; otherwise the statement following the
right brace is executed. Once execution begins at a case or default label, it
continues until the next case or default is encountered. The else-if
example above is better written as

select(x)
{
case 1:

k = 1
case 3,5:

k=2
default:

k=3
}

Note that control does not "fall through" to the next case.

11.6.4 Loops
The loop forms provide the best way of repeating a statement or sequence
of operations. The simplest (while) form is theoretically sufficient, but it is
very convenient to have the more general loops available, since each
expresses a mode of control that arises frequently in practice.

11.6.4.1 While Statement
This construct has the form

while (logical-expression) o statement

The expression is evaluated; if it is true, the statement is executed, and then
the test is performed again. If the expression is false, execution proceeds to
the next statement.

11.6.5 For Statement
The for statement is a more elaborate looping construct. It has the form

for (initial-statement , o logical-expression ,
o iteration-statement) o body-statement

Except for the behavior of the next statement (see "Branch Statement"
under "EXECUTABLE STATEMENTS"), this construct is equivalent to

11-22 Sys5 UNIX

EFL CHAPTER 11

initial-statement
while (logical-expression)

{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various pointer­
type operations. The sum of the integers from 1 to 100 can be computed by
the fragment

n=O
for(i = 1, i < = 100, i + = 1)

n += i

Alternatively, the computation could be done by the single statement

for({ n = 0 ; i = 1 }, i< = 100 , { n + = i ; + + i })

Note that the body of the for loop is a null statement in this case. An
example of following a linked list will be given later.

11.6.5.1 Repeat Statement
The statement

repeat o statement

executes the statement, then does it again, without any termination test.
Obviously, a test inside the statement is needed to stop the loop.

11.6.5.2 Repeat ... Until Statement
The while loop performs a test before each iteration. The statement

repeat o statement o until (logical-expression)

executes the statement, then evaluates the logical; if the logical is true the
loop is complete; otherwise, control returns to the statement. Thus, the
body is always executed at least once. The until refers to the nearest
preceding repeat that has not been paired with an until. In practice, this
appears to be the least frequently used looping construct.

11.6.5.3 Do Loop
The simple arithmetic progression is a very common one in numerical
applications. EFL has a special loop form for ranging over an ascending
arithmetic sequence

do variable = expression-1, expression-2, expression-3
statement

The variable is first given the value expression-1. The statement is

Sys5 UNIX 11-23

CHAPTER 11 EFL

executed, then expression-3 is added to the variable. The loop is repeated
until the variable exceeds expression-2. If expression-3 and the preceding
comma are omitted, the increment is taken to be 1. The loop above is
equivalent to

t2 = expression-2
t3 = expression-3
for(variable=expression-1, variable< =t2, variable+ =t3)

statement

(The compiler translates EFL do statements into Fortran DO statements,
which are in turn usually compiled into excellent code.) The do variable may
not be changed inside of the loop, and expression-1 must not exceed
expression-2. The sum of the first hundred positive integers could be
computed by

n=O
do i = 1, 100

n += i

11.6.6 Branch Statements
Most of the need for branch statements in programs can be averted by
using the loop and test constructs, but there are programs where they are
very useful.

11.6.6.1 Goto Statement
The most general, and most dangerous, branching statement is the simple
unconditional

goto label

After executing this statement, the next statement performed is the one
following the given label. Inside of a select the case labels of that block
may be used as labels, as in the following example:

select(k)
{
case 1:

error(7)

case 2:
k=2
goto case 4

case 3:
k=S
goto case 4

11-24 Sys5 UNIX

(

EFL

case 4:

default:

}

fixup(k)
goto default

prmsg("ouch")

CHAPTER 11

(If two select statements are nested, the case labels of the outer select are
not accessible from the inner one.)

11.6.6.2 Break Statement
A safer statement is one which transfers control to the statement following
the current select or loop form. A statement of this sort is almost always
needed in a repeat loop:

repeat
{
do a computation
if (finished)

break
}

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or select
surrounding the statement. It is possible to specify which type of construct
(for, while, repeat, do, or select) is to be counted. The statement

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

11.6.6.3 Next Statement
The next statement causes the first surrounding loop statement to go on to
the next iteration: the next operation performed is the test of a while, the
iteration-statement of a for, the body of a repeat, the test of a
repeat •.. until, or the increment of a do. Elaborations similar to those for
break are available:

Sys5 UNIX 11-25

CHAPTER 11

next
next3
next 3 for
next for 3

A next statement ignores select statements.

11.6.6.4 Return

EFL

The last statement of a procedure is followed by a return of control to the
caller. If it is desired to effect such a return from any other point in the
procedure, a

return

statement may be executed. Inside a function procedure, the function value
is specified as an argument of the statement:

return (expression)

11.6. 7 Input/Output Statements
EFL has two input statements (read and readbin), two output statements
(write and writebin), and three control statements (endfile, rewind, and
backspace). These forms may be used either as a primary with a integer
value or as a statement. If an exception occurs when one of these forms is
used as a statement, the result is undefined but will probably be treated as a
fatal error. If they are used in a context where they return a value, they
return zero if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. The input/output part of
EFL very strongly reflects the facilities of Fortran.

11.6. 7 .1 Input/Output Units
Each 1/0 statement refers to a "unit," identified by a small positive integer.
Two special units are defined by EFL, the standard input unit and the
standard output unit. These particular units are assumed if no unit is
specified in an 1/0 transmission statement.

The data on the unit are organized into records. These records may be
read or written in a fixed sequence, and each transmission moves an
integral ~umber of records. Transmission proceeds from the first record
until the end of file.

11.6.7.2 Binary Input/Output
The readbin and writebin statements transmit data in a machine-dependent
but swift manner. The statements are of the form

writebin(unit , binary-output-list)
readbin(unit, binary-input-list)

Each statement moves one unformatted record between storage and the
device. The unit is an integer expression. A binary-output-list is an iolist

11-26 SysS UNIX

EFL CHAPTER 11

(see below) without any format specifiers. A binary-input-list is an iolist
without format specifiers in which each of the expressions is a variable
name, array element, or structure member.

11.6. 7.3 Formatted Input/Output
The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines). Numbers
are translated into decimal notation. The exact form of the lines is
determined by format specifications, whether provided explicitly in the
statement or implicitly. The syntax of the statements is

write(unit , formatted-output-list)
read(unit , formatted-input-list)

The lists are of the same form as for binary 1/0, except that the lists may
include format specifications. If the unit is omitted, the standard input or
output unit is used.

11.6. 7 .4 lolists
An iolist specifies a set of values to be written or a set of variables into
which values are to be read. An iolist is a list of one or more ioexpressions
of the form

expression
{ iolist}
do-specification { iolist }

For formatted 1/0, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect:
the values in the braces are transmitted repeatedly until the do execution is
complete.

11.6.7.5 Formats
The following are permissible format-specifiers. The quantities w, d, and k
must be integer constant expressions.

i(w)
f(w,d)

e(w,d)

l(w)

Sys5 UNIX

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked
with the letter e
logical field of width w characters,
the first of which is t or f

11-27

CHAPTER 11

c

c(w)
s(k)
x(k)
"

(the rest are blank on output, ignored on input)
standing for true and false respectively
character string of width equal to
the length of the datum
character string of width w
skip k lines
skip k spaces
use the characters inside the
string as a Fortran format

EFL

If no format is specified for an item in a formatted input/output statement, a
default form is chosen.

If an item in a list is an array name, then the entire array is transmitted as a
sequence of elements, each with its own format. The elements are
transmitted in column-major order, the same order used for array
initializations.

11.6. 7 .6 Manipulation Statements
The three input/output statements

backspace(unit)
rewind(unit)
endfile(unit)

look like ordinary procedure calls, but may be used either as statements or
as integer expressions which yield non-zero if an error is detected.
backspace causes the specified unit to back up, so that the next read will
re-read the previous record, and the next write will over-write it. rewind
moves the device to its beginning, so that the next input statement will read
the first record. endfile causes the file to be marked so that the record
most recently written will be the last record on the file, and any attempt to
read past is an error.

11.7 PROCEDURES

Procedures are the basic unit of an EFL program, and provide the means of
segmenting a program into separately compilable and named parts.

11.7.1 Procedures Statement
Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([name B)

The first case specifies the main procedure, where execution begins. In the
two other cases, the attributes may specify precision and type, or they may

11-28 SysS UNIX

EFL CHAPTER 11

be omitted entirely. The prec1s1on and type of the procedure may be
declared in an ordinary declaration statement. If no type is declared, then
the procedure is called a subroutine and no value may be returned for it.
Otherwise, the procedure is a function and a value of the declared type is
returned for each call. Each name inside the parentheses in the last form
above is called a formal argument of the procedure.

11.7.2 End Statement
Each procedure terminates with a statement

end

11.7.3 Argument Association
When a procedure is invoked, the actual arguments are evaluated. If an
actual argument is the name of a variable, an array element, or a structure
member, that entity becomes associated with the formal argument, and the
procedure may reference the values in the object, and assign to it.
Otherwise, the value of the actual is associated with the formal argument,
but the procedure may not attempt to change the value of that formal
argument.

If the value of one of the arguments is changed in the procedure, it is not
permitted that the corresponding actual argument be associated with
another formal argument or with a common element that is referenced in
the procedure.

11.7.4 Execution and Return Values
After actual and formal arguments have been associated, control passes to
the first executable statement of the procedure. Control returns to the
invoker either when the end statement of the procedure is reached or when
a return statement is executed. If the procedure fs a function (has a
declared type), and a return(va/ue) is executed, the value is coerced to the
correct type and precision and returned.

11.7.5 Known Functions
A number of functions are known to EFL, and need not be declared. The
compiler knows the types of these functions. Some of them are generic;
i.e., they name a family of functions that differ in the types of their
arguments and return values. The compiler chooses which element of the
set to invoke based upon the attributes of the actual arguments.

11.7.5.1 Minimum and Maximum Functions
The generic functions are min and max. The min calls return the value of
their smallest argument; the max calls return the value of their largest
argument. These are the only functions that may take different numbers of
arguments in different calls. If any of the arguments are long real then the
result is long real. Otherwise, if any of the arguments are real then the
result is real; otherwise all the arguments and the result must be integer.

Sys5 UNIX 11-29

CHAPTER 11

Examples are

min{5, x, -3.20)
max{i, z)

11.7.5.2 Absolute Value

EFL

The abs function is a generic function that returns the magnitude of its
argument. For integer and real arguments the type of the result is identical
to the type of the argument; for complex arguments the type of the result is
the real of the same precision.

11.7.5.3 Elementary Functions
The following generic functions take arguments of real, long real, or
complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

sine function
cosine function

exponential function (ex).
natural (base e) logarithm
common (base 10) l°-9arithm

square root function (v' x).

In addition, the following functions accept only real or long real arguments:

atan atan (x) =tan 1 x

atan2 atan2(x ,y)=tan 1~

y
11. 7 .5.4 Other Generic Functions
The sign functions takes two arguments of identical type;
sign(x ,y) = sgn (y)lx I. The mod function yields the remainder of its first
argument when divided by its second. These functions accept integer and
real arguments.

11.8 ATAVISMS

Certain facilities are included in the EFL language to ease the conversion of
old Fortran or Ratfor programs to EFL.

11.8.1 i;scape Lines
In order to make use of nonstandard features of the local Fortran compiler, it
is occasionally necessary to pass a particular line through to the EFL
compiler output. A line that begins with a percent sign ("%") is copied
through to the output, with the percent sign removed but no other change.
Inside of a procedure, each escape line is treated as an executable
statement. If a sequence of lines constitute a continued Fortran statement,
they should be enclosed in braces.

11-30 Sys5 UNIX

('

EFL CHAPTER 11

11.8.2 Call Statement
A subroutine call may be preceded by the keyword call.

calljoe
call work(17)

11.8.3 Obsolete Keywords
The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine

11.8.4 Numeric Labels

EFL

long real
procedure
procedure (untyped)

Standard statement labels are identifiers. A numeric (positive integer
constant) label is also permitted; the colon is optional following a numeric
label.

11.8.5 Implicit Declarations
If a name is used but does not appear in a declaration, the EFL compiler
gives a warning and assumes a declaration for it. If it is used in the context
of a procedure invocation, it is assumed to be a procedure name; otherwise
it is assumed to be a local variable defined at nesting level 1 in the current
procedure. The assumed type is determined by the first letter of the name.
The association of letters and types may be given in an implicit statement,
with syntax

implicit (letter-list) type

where a letter-fist is a list of individual letters or ranges (pair of letters
separated by a minus sign). If no implicit statement appears, the following
rules are assumed:

implicit (a-h, o-z) real
implicit (i-n) integer

11.8.6 Computed Goto
Fortran contains an indexed multi-way branch; this facility may be used in
EFL by the computed GOTO:

goto ([label B), expression

The expression must be of type integer and be positive but be no larger than
the number of labels in the list. Control is passed to the statement marked
by the label whose position in the list is equal to the expression.

Sys5 UNIX 11-31

CHAPTER 11 EFL

11.8. 7 Goto Statement
In unconditional and computed goto statements, it is permissible to separate
the go and to words, as in

go to xyz

11.8.8 Dot Names
Fortran uses a restricted character set, and represents certain operators by
multi-character sequences. There is an option (dots=on; see "COMPILER
OPTIONS") which forces the compiler to recognize the forms in the second
column below:

< .It.
<= .le.
> .gt.
>= .ge •

. eq .

. ne •
& • and.
I .or .
&& • andand.
II .oror •

• not •
true • true.
false .false.

In this mode, no structure element may be named It, le, etc. The readable
forms in the left column are always recognized.

11.8.9 Complex Constants
A complex constant may be written as a parenthesized list of real quantities,
such as

(1.5, 3.0)

The preferred notation is by a type coercion,

complex(1.5, 3.0)

11.8.1 O Function Values
The preferred way to return a value from a function in EFL is the
return(va/ue) construct. However, the name of the function acts as a
variable to which values may be assigned; an ordinary return statement
returns the last value assigned to that name as the function value.

11.8.11 Equivalence
A statement of the form

equivalence v 1' v 2• ... ' v n

11-32 Sys5 UNIX

EFL CHAPTER 11

declares that each of the v; starts at the same memory location. Each of
the V; may be a variable name, array element name, or structure member.

11.8.12 Minimum and Maximum Functions
There are a number of non-generic functions in this category, which differ in
the required types of the arguments and the type of the return value. They
may also have variable numbers of arguments, but all the arguments must
have the same type.

Function
amino
amin1
minO
min1
dmin1

amaxO
amax1
maxo
max1
dmax1

11.9 COMPILER OPTIONS

Argument Type
integer
real
integer
real
long real

integer
real
integer
real
long real

Result Type
real
real
integer
integer
long real

real
real
integer
integer
long real

A number of options can be used to control the output and to tailor it for
various compilers and systems. The defaults chosen are conservative, but
it is sometimes necessary to change the output to match peculiarities of the
target environment.

Options are set with statements of the form

option (opt I
where each opt is 9f one of the forms

optionname
optionname = optionvalue

The optionva/ue is either a constant (numeric or string) or a name
associated with that option. The two names yes and no apply to a number
of options.

11.9.1 Default Options
Each option has a default setting. It is possible to change the whole set of
defaults to those appropriate for a particular environment by using the
system option. At present, the only valid values are system= unix and
system =gcos.

Sys5 UNIX 11·33

CHAPTER,11 EFL

11.9.2 Input Language Options
The dots option determines whether the compiler recognizes .It. and similar \ ___ .--/
forms. The default setting is no.

11.9.3 Input/Output Error Handling
The ioerror option can be given three values: none means that none of the
1/0 statements may be used in expressions, since there is no way to detect
errors. The implementation of the ibm form uses ERR= and END=
clauses. The implementation of the fortrann form uses IOSTAT= clauses.

11.9.4 Continuation Converitions .
By default, continued Fortran statements are indicated by a character in
column 6 (Standard Fortran). The option continue=column1 puts an
ampersand(&) in the first column of the continued lines instead.

11.9.5 Default Formats
If no format is specified for a datum in an iolist for a read or write
statement, a default is provided. The default formats can be changed by
setting certain options

Option
iformat
rformat
dformat
·zformat
zdformat
!format

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat=f22.6

11.9.6 Alignments and Sizes
In order to implement character variables, structures, and the sizeof and
lengthof operators, it is necessary to know how much space various Fortran
data types require, and what boundary alignment properties they demand.
The relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
rsize
dsize
zsize
I size

Alignment Option
ialign
ralign
dalign
zalign
lalign

The sizes are given in terms of an arbitrary unit; the alignment is given in
the same units. The option charperint gives the number of characters per
integer variable.

11-34 Sys5 UNIX

'- J

(--.·.·

/

(

EFL CHAPTER 11

11.9.7 Default Input/Output Units
The options ftnin and ftnout are the numbers of the standard input and
output units. The default values are ftnin=S and ftnout=6.

11.9.8 Miscellaneous Output Control Options
Each Fortran procedure generated by the compiler will be preceded by the
value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if hollincall =no
is specified.

The Fortran statement numbers normally start at 1 and increase by 1. It is
possible to change the increment value by using the deltastno option.

11.10 EXAMPLES

In order to show the flavor or programming in EFL, we present a few
examples. They are short, but show some of the convenience of the
language.

11.10.1 File Copying
The following short program copies the standard input to the standard
output, provided that the input is a formatted file containing lines no longer
than a hundred characters.

procedure # main program
character(100) line

while(read(, line) = = O)
write(, line)

end

Since read returns zero until the end of file (or a read error), this program
keeps reading and writing until the input is exhausted.

11.10.2 Matrix Multiplication
The following procedure multiplies the m x n matrix a by the n x p matrix b
to give the m x p matrix c. The calculation obeys the formula
C;i = 2,a;kbki"

Sys5 UNIX 11-35

CHAPTER 11

procedure matmul{a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a{m,n), b{n,p), c(m,p)

do i = 1,m
do j = 1,p

end

{
c{i,j) = O
do k = 1,n

}
c(i,j) + = a(i,k) • b(k,j)

11.10.3 Searching a Linked List

EFL

Assume we have a list_ of pairs of numbers (x ,y). The list is stored as a
linked list sorted in ascending order of x values. The following procedure
searches this list for a particular value of x and returns the corresponding y
value.

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(•)

integer first, p; arg

for(p = first , p =LAST && list(p).x< = x ,
p = list(p).nextindex)

if(list(p).x = = x)

return(NOTFOUND)
end

return(list(p).y)

The search is a single for loop that begins with the head of the list and
examines items until either the list is exhausted (p= =LAST) or until it is
known that the specified value is not on the list (list(p).x > x). The two tests
in the conjunction must be performed in the specified order to avoid using

11-36 Sys5 UNIX

(

(

EFL CHAPTER 11

an invalid subscript in the list(p) reference. Therefore, the && operator is
used. The next element in the chain is found by the iteration statement
p= list(p).nextindex.

11.10.4 Walking a Tree
As an example of a more complicated problem, let us imagine we have an
expression tree stored in a common area, and that we want to print out an
infix form of the tree. Each node is either a leaf (containing a numeric
value) or it is a binary operator, pointing to a left and a right descendant. In
a recursive language, such a tree walk would be implement by the following
simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit
stack to keep track of the current state of the computation. The following
procedure calls a procedure outch to print a single character and a
procedure outval to print a value.

Sys5 UNIX 11-37

CHAPTER 11

procedure walk(first) # print an expression tree

in~eger first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

struct

{
character(1) op
integer leftp, rightp
real val
} tree(100) # array of structures

{
integer nextstate
integer nodep
} stackframe(100)

define NODE tree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

11-38

EFL

Sys5 UNIX

c:

(

EFL

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep =first

while(stackdepth > 0)

end

{
currentnode = STACK.nodep
select(STACK.nextstate)

}

{
case DOWN:

if(NODE.op = = " '1 # a leaf
{
outval(NODE.val)
stackdepth -= 1
}

else { # a binary operator node
outch("(")
STACK.nextstate = LEFT
stackdepth + = 1
STACK.nextstate = DOWN
STACK.nodep = NODE.leftp
}

case LEFT:
outch(NODE.op)
STACK.nextstate =RIGHT
stackdepth + = 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:

}

outch(")")
stackdepth -= 1

11.11 PORTABILITY

CHAPTER 11

One of the major goals of the EFL language is to make it easy to write
portable programs. The output of the EFL compiler is intended to be
acceptable to any Standard Fortran compiler (unless the fortrann option is
specified).

Sys5 UNIX 11-39

CHAPTER 11 EFL

11.11.1 Primitives
Certain EFL operations cannot be implemented in portable Fortran, so a few
machine-dependent procedures must be provided in each environment.

11.11.1. 1 Character String Copying
The subroutine ef1asc is called to copy one character string to another. If
the target string is shorter than the source, the final characters are not
copied. If the target string is longer, its end is padded with blanks. The
calling sequence is

subroutine ef1asc(a, la, b, lb)
integer a(*), la, b(*), lb

and it must copy the first lb characters from b to the first la characters of a.

11.11.1.2 Character String Comparisons
The function ef1cmc is invoked to determine the order of two character
strings. The declaration is

integer function ef1 cmc(a, la, b, lb)
integer a(*), la, b(*), lb

The function returns a negative value if the string a of length la precedes the
string b of length lb. It returns zero if the strings are equal, and a positive
value otherwise. If the strings are of differing length, the comparison is
carried out as if the end of the shorter string were padded with blanks.

11.12 DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratfor and EFL, since EFL is a
defined language while Ratfor is the union of the special control structures
and the language accepted by the underlying Fortran compiler. Ratfor
running over Standard Fortran is almost a subset of EFL Most of the
features described in the "ATAVISMS" are present to ease the conversion of
Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is slightly
different in the two languages: the three clauses are separated by
semicolons in Ratfor, but by commas in EFL. (The initial and iteration
statements may be compound statements in EFL because of this change).
The input/output syntax is quite different in the two languages, and there is
no FORMAT statement in EFL. There are no ASSIGN or assigned GOTO
statements in EFL

The major linguistic additions are character data, factored declaration
syntax, block structure, assignment and sequential test operators, generic
functions, and data structures. EFL permits more general forms for
expressions, and provides a more uniform syntax. (One need not worry

11-40 Sys5 UNIX

EFL CHAPTER 11

about the Fortran/Ratfor restrictions on subscript or DO expression forms,
for example.)

11.13 COMPILER

11.13.1 Current Version
The current version of the EFL compiler is a two-pass translator written in
portable C. It implements all of the features of the language described
above except for long complex numbers.

11.13.2 Diagnostics
The EFL compiler diagnoses all syntax errors. It gives the line and file name
(if known) on which the error was detected. Warnings are given for
variables that are used but not explicitly declared.

11.13.3 Quality of Fortran Produced
The Fortran produced by EFL is quite clean and readable. To the extent
possible, the variable names that appear in the EFL program are used in the
Fortran code. The bodies of ·loops and test constructs are indented.
Statement numbers are consecutive. Few unneeded GOTO and
CONTINUE statements are used. It is considered a compiler bug if
incorrect Fortran is produced (except for escaped lines). The following is
the Fortran procedure produced by the EFL compiler for the matrix
multiplication example (See "EXAMPLES".)

Sys5 UNIX 11-41

CHAPTER 11

subroutine matmul{a, b, c, m, n, p)
integer m, n, p
double precision a{m, n), b{n, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, p
c{i, j) = o
do 1 k = 1, n

c{i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

The following is the procedure for the tree walk:
.subroutine walk(first)
integer first
common /nodes/ tree
integer tree{4, 100)
real tree1{4, 100)
integer staame(2, 100), stapth, curode
integer const1 (1)
equivalence (tree(1, 1); tree1(1,1))
data const1(1)/4h I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staame(1, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if (tree(1, curode) .ne. const1(1)) goto 3

c a leaf
call outval(tree1(4, curode))

stapth = stapth-1
goto 4

3 call outch(1h()
c a binary operator node

11-42

staame(1, stapth) 2
stapth = stapth+ 1
staame(1, stapth) = 1

EFL

Sys5 UNIX

EFL

staame(2, stapth) = tree(2, curode)
4 goto 8
5 call outch(tree(1, curoc:le))

staame(1, stapth) = 3
stapth = stapth+ 1
staame(1, stapth) 1
staame(2, stapth) = tree(3, curode)
goto 8

6 call outch(1 h))
stapth = stapth-1
goto 8

7 if (staame(1, stapth) .eq. 3) goto 6
if (staame(1, stapth) .eq. 2) goto 5
if (staame(1, stapth) .eq. 1) goto 2

8 continue
goto 1

9 continue
end

11.14 CONSTRAINTS ON EFL

CHAPTER 11

Although Fortran can be used to simulate any finite computation, there are
realistic limits on the generality of a language that can be translated into
Fortran. The design of EFL was constrained by the implementation strategy.
Certain of the restrictions are petty (six character external names), but
others are sweeping (lack of pointer variables). The following paragraphs
describe the major limitations imposed by Fortran.

11.14.1 External Names
External names (procedure and COMMON block names) must be no longer
than six characters in Fortran. Further, an external name is global to the
entire program. Therefore, EFL can support block structure within a
procedure, but it can have only one level of ·external name if the EFL
procedures are to be compilable separately, as are Fortran procedures.

11.14.2 Procedure Interface
The Fortran standards, in effect, permit arguments to be passed between
Fortran procedures either by reference or by copy-in/copy-out. This
indeterminacy of specification shows through into EFL A program that
depends on the method of argument transmission is illegal in either
language.

There are no procedure-valued variables in Fortran: a procedure name may
only be passed as an argument or be invoked; it cannot be stored. Fortran
(and EFL) would be noticeably simpler if a procedure variable mechanism
were available.

SysS UNIX 11-43

CHAPTER 11 EFL

11.14.3 Pointers
The most grievous problem with Fortran is its lack of a pointer-like data type.
The implementation of the compiler would have been far easier if certain
hard cases could have been handled by pointers. Further, the language
oould have been simplified considerably if pointers were accessible in
Fortran. (There are several ways of simulating pointers by using subscripts,
but they founder on the problems of external variables and initialization.)

11.14.4 Recursion
Fortran procedures are not recursive, so it was not practical to permit EFL
procedures to be recursive. (Recursive procedures with arguments can be
simulated only with great pain.)

11.14.5 Storage Allocation
The definition of Fortran does not specify the lifetime of variables. It would
be possible but cumbersome to implement stack or heap storage disciplines
by using COMMON blocks.

11-44 Sys5 UNIX

(

('

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

12. CURSES AND TERMINFO PACKAGE

This chapter is an introduction to curses(3X) and terminfo(4). It is intended
for the programmer who must write a screen-oriented program using the
curses package. Several example programs are discussed. The example
programs can be found in Chapter 13. This chapter also documents each
curses function. It is intended as a reference.

For curses to be able to produce terminal dependent output, it has to know
what kind of terminal you have. The UNIX system convention for this is to
put the name of the terminal in the variable TERM in the environment.
Thus, a user on a DEC VT100 would set TERM=vt100 when logging in.
Curses uses this convention.

12.0.1 Output
A program using curses always starts by calling initscrO. (See Figure 12-
1.) Other modes can then be set as needed by the program. Possible
modes include cbreakO, and idlok(stdscr, TRUE). These modes will be
explained later. During the exeeution of the program, output to the screen is
done with routines such as addch(ch) and printw(fmt,args). (These
routines behave just like putchar and printf except that they go through
curses.) The cursor can be moved with the call move(row,col). These
routines only output to a data structure called a window, not to the actual
screen. A window is a representation of a CRT screen, containing such
things as an array of characters to be displayed on the screen, a cursor, a
current set of video attributes, and various modes and options. You don't
need to worry about windows unless you use more than one of them, except
to realize that a window is buffering your requests to output to the screen.

To send all accumulated output, it is necessary to call refresh(). (This can
be thought of as a flush.) Finally, before the program exits, it should call
endwinO, which restores all terminal settings and positions the cursor at the
bottom of the screen.

Sys5 UNIX 12-1

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

#include <curses.h>

initscrO; I* Initialization */

cbreakO;/* Various optional mode settings*/
nonlO;
noecho();

while (!done) { /* Main body of program */ ··

}

I* Sample calls to draw on screen */
move(row, col);
addch(ch);
printw("Formatted print with value %d\n'', value);

/*Flush output*/
refresh();

endwinO; /*Clean up*/
exit(O);

Figure 12·1. Framework of a Curses Program

See the program scatter in Chapter 13 for an example program. This
program reads a file, and displays the file in a random order on the screen.
Some programs assume all screens are 24 lines by 80 columns. It is
important to understand that many are not. The variables LINES and COLS
are defined by initscr with the current screen size. Programs should use
them instead of assuming a 24x80 screen.

No output to the terminal actually happens until refresh is called. Instead,
routines such as move and addch draw on a window data structure called
stdscr (standard screen). Curses always keeps track of what is on the
physical screen, as well as what is in stdscr.

When refresh is called, curses compares the two screen images and sends
a stream of characters to the terminal that will turn the current screen into
what is desired. Curses considers many different ways to do this, taking
into account the various capabilities of the terminal, and similarities between
what is on the screen and what is desired. It usually outputs as few

12-2 Sys5 UNIX

\

(

(~.

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

characters as is possible. This function is called cursor optimization and is
the source of the name of the curses package.

NOTE: Due to the hardware scrolling of terminals, writing to the lower
righthand character position is impossible.

12.0.2 Input
Curses can do more than just draw on the screen. Functions are also
provided for input from the keyboard. The primary function is getch() which
waits for the user to type a character on the keyboard, and then returns that
character. This function is like getchar except that it goes through curses.
Its use is recommended for programs using the cbreak() or noecho()
options, since several terminal or system dependent options become
available that are not possible with getchar.

Options available with getch include keypad which allows extra keys such
as arrow keys, function keys, and other special keys that transmit escape
sequences, to be treated as just another key. (The values returned for
these keys are listed below.) KEY _LEFT in curses.h. The values for these
keys are over octal 400, so they should be stored in a variable larger than a
char.) nodelay mode causes the value -1 to be returned if there is no input
waiting. Normally, getch will wait until a character is typed. Finally, the
routine getstr(str) can be called, allowing input of an entire line, up to a
newline. This routine handles echoing and the erase and kill characters of
the user. Examples of the use of these options are in later example
programs.

The following function keys might be returned by getch if keypad has been
enabled. Note that notall of these are currently supported, due to lack of
definitions in term info or the terminal not transmitting a unique code when
the key is pressed.

Name Value Key name
KEY_BREAK 0401 Break key (unreliable)
KEY_DOWN 0402 The four arrow keys ...
KEY_UP 0403
KEY_LEFT 0404
KEY_RIGHT 0405
KEY_HOME 0406 Home key (upward+ left arrow)
KEY_BACKSPACE 0407 Backspace (unreliable)
KEY_FO 0410 Function keys. Space for

64 keys is reserved.
KEY_F(n) (KEY _FO+ (n)) Formula for fn.
KEY_DL 0510 Delete line
KEY_IL 0511 Insert line
KEY_DC 0512 Delete character

Sys5 UNIX 12-3

CHAPTER 12

KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

THE CURSES AND TERMINFO PACKAGE

Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
Soft (partial) reset (unreliable)
Reset or hard reset (unreliable)
Print or copy
Home down or bottom
(lower left)

See the program show in Chapter 13 for an example use of getch. Show
pages through a file, showing one screen full each time the user presses the
space bar. By creating an input file for show made up of 24 line pages,
each segment. varying slightly from the previous page, nearly any exercise
for curses can be created. Such input files are called show scripts.

In the show program, cbreak is called so that the user can press the space
bar without having to hit return. The noecho function is called to prevent
the space from echoing in the middle of a refresh, messing up the screen.
The nonl function is called to enable more. screen optimization. The idlok
function is called to allow insert and delete line, since many show scripts are
constructed to duplicate bugs caused by that feature. The clrtoeol and
clrtobot functions clear from the cursor to the end of the line and screen,
respectively.

12.0.3 Highlighting
The function addch always draws two things on a window. In addition to
the character itself, a set of attributes is associated with the character.
These attributes cover various forms of highlighting of the character. For
example, the character can be put in reverse video, bold, or be underlined.
You can think of the attributes as the color of the ,ink used to draw the
character.

A window always has a set of current attributes associated with it. The
current attributes are associated with each character as it is written to the
window. The current attributes can be changed with a call to attrset(attrs).
(Think of this as dipping the window's pen in a particular color ink.) The

12-4 Sys5 UNIX

\,, ---

(_

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

names of the attributes are A_STANDOUT, A_REVERSE, A_BOLD,
A_DIM, A_INVIS, and A_UNDERLINE. For example, to put a word in bold,
the code in Figure 12-2 might be used. The word "boldface" will be shown
in bold.

printw("A word in');
attrset(A_BOLD);
printw(''boldface');
attrset(O);
printw(" really stands out.\n');

refresh();

Figure 12-2. Use of attributes

Not all terminals are capable of displaying all attributes. If a particular
terminal cannot display a requested attribute, curses will attempt to find a
substitute attribute. If none is possible, the attribute is ignored.

One particular attribute is called standout. This attribute is used to make
text attract the attention of the user. The particular hardware attribute used
for standout varies from terminal to terminal, and is chosen to be the most
visually pleasing attribute the terminal has. Standout is typically
implemented as reverse video or bold. Many programs don't really need a
specific attribute, such as bold or inverse video, but instead just need to
highlight some text. For such applications, the A_STANDOUT attribute is
recommended. Two convenient functions, standout() and standend() turn
on and off this attribute.

Attributes can be turned on in combination. Thus, to turn on blinking bold
text, use attrset(A_BLINKIA_BOLD). Individual attributes can be turned on
and off with attron and attroff without affecting other attributes.

For an example program using attributes, see highlight. The program
takes a text file as input and allows embedded escape sequences to control
attributes. In this example program, \U turns on underlining, \B turns on
bold, and \N restores normal text. Note the initial call to scrollok. This
allows the terminal to scroll if the file is longer than one screen. When an
attempt is made to draw past the bottom of the screen, curses will
automatically scroll the terminal up a line and call refresh.

Highlight comes about as close to being a filter as is possible with curses.
It is not a true filter, because curses must "take over" the CRT screen. In

Sys5 UNIX 12-5

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

order to determine how to update the screen, it must know what is on the
screen at all times. This requires curses to clear the screen in the first call
to refresh, and to know the cursor position and screen contents at all times.

12.0.4 Multiple Windows
A window is a data structure representing all or part of the CRT screen. It
has room for a two dimensional array of characters, attributes for each
character (a total of 16 bits per character: 7 for text and 9 for attributes) a
cursor, a set of current attributes, and a number of flags. Curses provides a
full screen window, called stdscr, and a set of functions that use stdscr.
Another window is provided called curscr, representing the physical screen.

It is important to understand that a window is only a data structure. Use of
more than one window does not imply use of more than one terminal, nor
does it involve more than one process. A window is merely an object which
can be copied to all or part of the terminal screen. The current
implementation of curses does not allow windows which are bigger than the
screen.

The programmer . can create additional windows with the function
newwin(lines, cols, begin_row, begin_col) will return a pointer to a newly
created window. The window will be lines by cols, and the upper left corner
of the window will be at screen position (begin_row, begin_col). All
operations that affect stdscr have corresponding functions that affect an
arbitrary named window. Generally, these functions have names formed by
putting a "w" on the front of the stdscr function, and the window name is
added as the first parameter. Thus, waddch(mywin, c) would write the
character c to window mywin. The wrefresh(win) function is used to flush
the contents of a window to the screen.

Windows are useful for maintaining several different screen images, and
alternating the user among them. Also, it is possible to subdivide the screen
into several windows, refreshing each of them as desired. When windows
overlap, the contents of the screen will be the more recently refreshed
window.

In all cases, the non-w version of the function calls the w version of the
function,· using stdscr as the additional argument. Thus, a call to addch(c)
results in a call to waddch(stdscr, c).

The program window is an example of the use of multiple windows. The
main display is kept in stdscr. When the user temporarily wants to put
something else on the screen, a new window is created covering part of the
screen. A call to wrefresh on that window causes the window to be written
over stdscr on the screen. Calling refresh on stdscr results in the· original
window being redrawn on the screen. Note the calls to touchwin before
writing out an overlapping window. These are necessary to defeat an

12-6 SysS UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

optimization in curses. If you have trouble refreshing a new window which
overlaps an old window, it may be necessary to call touchwin on the new
window to get it completely written out.

For convenience, a set of "move" functions are also provided for most of the
common functions. These result in a call to move before the other function.
For example, mvaddch(row, col, c) is the same as move(row, col);
addch(c). Combinations, e.g. mvwaddch(row, col, win, c) also exist.

12.0.5 Multiple Terminals
Curses can produce output on more than one terminal at once. This is
useful for single process programs that access a common database, such
as multi-player games. Output to multiple terminals is a difficult business,
and curses does not solve all the problems for the programmer. It is the
responsibility of the program to determine the file name of each terminal
line, and what kind of terminal is on each of those lines. The standard
method, checking $TERM in the environment, does not work, since each
process can only examine its own environment. Another problem that must
be solved is that of multiple programs reading from one line. This situation
produces a race condition and should be avoided. Nonetheless, a program
wishing to take over another terminal cannot just shut off whatever program
is currently running on that line. (Usually, security reasons would also make
this inappropriate. However, for some applications, such as an inter­
terminal communication program, or a program that takes over unused tty
lines, it would be appropriate.) A typical solution requires the user logged in
on each line to run a program that notifies the master program that the user
is interested in joining the master program, telling it the notification
program's process id, the name of the tty line and the type of terminal being
used. Then the program goes to sleep until the master program finishes.
When done, the master program wakes up the notification program, and all
programs exit.

Curses handles multiple terminals by always having a current terminal. All
function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own
variables. When it wishes to affect a terminal, it should set the current
terminal as desired, and then call ordinary curses routines.

References to terminals have type struct screen *. A new terminal is
initialized by calling newterm(type, fd). newterm returns a screen
reference to the terminal being set up. type is a character string, naming
the kind of terminal being used. fd is a stdio file descriptor to be used for
input and output to the terminal. (If only output is needed, the file can be
open for output only.) This call replaces the normal call to initscr, which
calls newterm(getenv{"TERM"), stdout).

Sys5 UNIX 12-7

CHAPTER12 THE CURSES AND TERMINFO PACKAGE

To change the current terminal, call "set_term(sp)" where sp is the screen
reference to be made current. set_term returns a reference to the previous ',
terminal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newterm.
Options such as cbreak and noecho must be set separately for each
terminal. The functions endwin and refresh must be called separately for
each terminal. See Figure 12-3 for a typical scenario to output a message
to each terminal.

for (i=O; i<nterm; i++) {
set_term(terms[i]);

}

mvaddstr(O, 0, "Important message");
refresh();

Figure 12-3. Sending a message to several terminals

See the sample program two for a full example. This program pages
through a file, showing one page to the first terminal and the next page to
the second terminal. It then waits for a space to be typed on either terminal,
and shows the next page to the terminal typing the space. Each terminal
has to be separately put into nodelay mode. Since no standard multiplexor
is available in current versions of the UNIX system, it is necessary to either
busy wait, or call sleep_(1);, between each check for keyboard input. This
program sleeps for a second between checks.

The two program is just a simple example of two terminal curses. It does
not handle notification, as described above, instead it requires the name and
type of the second terminal on the command line. As written, the command
sleep 100000 must be typed on the second terminal to put it to sleep while
the program runs, and the first user must have both read and write
permission on the second terminal.

12.0.6 Low Level Terminfo Usage
Some programs need to use lower level primitives than those offered by
curses. For such programs, the terminfo level interface is offered. This
interface does not manage your CRT screen, but rather gives you access to
strings and capabilities which you can use yourself to manipulate the
terminal.

12-8 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

Programmers are discouraged from using this level. Whenever possible, the
higher level curses routines should be used. This will make your program
more portable to other UNIX systems and to a wider class of terminals.
Curses takes care of all the glitches and misfeatures present in physical
terminals, but at the terminfo level you must deal with them yourself. Also, it
cannot be guaranteed that this part of the interface will not change or be
upward compatible with previous releases.

There are two circumstances when it is proper to use terminfo. The first is
when you are writing a special purpose tool that sends a special purpose
string to the terminal, such as programming a function key, setting tab
stops, sending output to a printer port, or dealing with the status line. The
second situation is when writing a filter. A typical filter does one
transformation on the input stream without clearing the screen or addressing
the cursor. If this transformation is terminal dependent and clearing the
screen is inappropriate, use of terminfo is indicated.

A program writing at the terminfo level uses the framework shown in Figure
12-4.

#include <curses.h>
#include <term.h>

setupterm(O, 1, O);

putp(clear _screen);

reset_shell_mode();
exit(O);

Figure 12-4. Terminfo level framework

Initialization is done by calling setupterm. Passing the values 0, 1, and O
invoke reasonable defaults. If setupterm can't figure out what kind of
terminal you are on, it will print an error message and exit. The program
should call reset_shell_mode before it exits.

Global variables with names like clear _screen and cursor _address are
defined by the call to setupterm. They can be output using putp, or also
using tputs, which allows the programmer more control. These strings
should not be directly output to the terminal using printf since they contain
padding information. A program that directly outputs strings will fail on
terminals that require padding, or that use the xon/xoff flow control protocol.

SysS UNIX 12-9

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

In the terminfo level, the higher level routines described previously are not
available. It is up to the programmer to output whatever is needed. For a
list of capabilities and a description of what they do, see terminfo(4).

The example program termhl shows simple use of terminfo. It is a version
of highlight that uses terminfo instead of curses. This version can be used
as a filter. The strings to enter bold and underline mode, and to turn off au
attributes, are used.

This program is more complex than it need be in order to illustrate some
properties of terminfo. The routine vidattr coulQ have been used instead of
directly outputting enter _bold_mode, enter _underline_mode, and
exit_attribute_mode. In fact, the program would be more robust if it did
since there are several ways to change video attribute modes. This
program was written to illustrate typical use of terminfo.

The function tputs(cap, affcnt, outc) applies padding information. Some
capabilities contain strings like $<20>, which means to pad for 20
milliseconds. tputs generates enough pad characters to delay for the
appropriate time. The first parameter is the string capability to be output.
The second is the number of lines affected by the capability. (Some
capabilities may require padding that depends . on the number of lines
affected. For example, insert_line may have to copy all lines below the
current line, and may require time proportional to the number of lines copied.
By convention affcnt is 1 if no lines are affected. The value 1 is used,
rather than 0, for safety, since affcnt is multiplied by the amount of time per
item, and anything multiplied by O is 0.) The third parameter is a routine to
be called with each character.

For many simple programs, affcnt is always 1 and outc always just calls
putchar. For these programs, the routine putp(cap) is a convenient
abbreviation. termhl could be simplified by using putp.

Note also the special check for the underline_char capability. Some
terminals, rather than having a code to start underlining and a code to stop
underlining, have a code to underline the current character. termhl keeps
track of the current mode, and if the current character is supposed to be
underlined, will output underline_char if necessary. Low level details such
as this are precisely why the curses level is recommended over the terminfo
level. Curses takes care of terminals with different methods of underlining
and other CRT functions. Programs at the terminfo level must handle such
details themselves.

12.0. 7 A Larger Example
For a final example, see the program editor. This program is a very simple
screen editor, patterned after the vi editor. The program illustrates how to
use curses to write a screen editor. This editor keeps the buffer in stdscr

12-10 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

to keep the program simple - obviously a real screen editor would keep a
separate data structure. Many simplifications have been made here - no
provision is made for files of any length other than the size of the screen, for
lines longer than the width of the screen, or for control characters in the file.

Several points about this program are worth making. The routine to write
out the file illustrates the use of the mvinch function, which returns the
character in a window at a given position. The data structure used here
does not have a provision for keeping track of the number of characters in a
line, or the number of lines in the file, so trailing blanks are eliminated when
the file is written out.

The program uses built-in curses functions insch, delch, insertln, and
deleteln. These functions· behave much as the similar functions on
intelligent terminals behave, inserting and deleting a character or line.

The command interpreter accepts not only ASCII characters, but also
special keys. This is important - a good program will accept both. (Some
editors are modeless, using nonprinting characters for commands. This is
largely a matter of taste - the point being made here is that both arrow keys
and ordinary ASCII characters should be handled.) It is important to handle
special keys because this makes it easier for a new user to learn to use
your program if he can use the arrow keys, instead of having to memorize
that "h" means left, "j" means down, "k" means up, and "I" means right. On
the other hand, not all terminals have arrow keys, so your program will be
usable on a larger class of terminals if there is an ASCII character which is
a synonym for each special key. Also, experienced users dislike having to
move their hands from the "home row" position to use special keys, since
they can work faster with alphabetic keys.

Note the call to mvaddstr in the input routine. addstr is roughly like the C
fputs function, which writes out a string of characters. Like fputs, addstr
does not add a trailing newline. It is the same as a series of calls to addch
using the characters in the string. mvaddstr is the mv version of addstr,
which moves to the given location in the window before writing.

The control-L command illustrates a feature most programs using curses
should add. Often some program beyond the control of curses has written
something to the screen, or some line noise has messed up the screen
beyond what curses can keep track of. In this case, the user usually types
control-L, causing the screen to be cleared and redrawn. This is done with
the call to clearok(curscr), which sets a flag causing the next refresh to
first clear the screen. Then refresh is called to force the redraw.

Note also the call to flash(), which flashes the screen if possible, and
otherwise rings the bell. Flashing the screen is intended as a bell
replacement, and is particularly useful if the bell bothers someone within

Sys5 UNIX 12-11

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

earshot of the user. The routine beep() can be called when a real beep is ·
desired. (If for some reason the terminal is unable to beep, but able to
flash, a call to beep will flash the screen.)

Another important point is that the input command is terminated by control­
D, not escape. It is very tempting to use escape as a command, since
escape is one of the few special keys which is available on every keyboard.
(Return and break are the only others.) However, using escape as a
separate key introduces an ambiguity. Most terminals use sequences of
characters beginning with escape ("escape sequences") to control the
terminal, and have special keys that send escape sequences to the
computer. If the computer sees an escape coming from the terminal, it
cannot tell for sure whether the user pushed the escape key, or whether a
special key was pressed. Curses handles the ambiguity by waiting for up to
one second. If another character is received during this second, and if that
character might be the beginning of a special key, more input is read
(waiting for up to one second for each character) until either a full special
key is read, one second passes, or a character is received that could not
have been generated by a special key. While this strategy works most of
the time, it is not foolproof. It is possible for the user to press escape, then
to type another key quickly, which causes curses to think a special key has
been pressed. Also, there is a one second pause until the escape can be
passed to the user program, resulting in slower response to the escape key.
Many existing programs use escape as a fundamental command, which
cannot be changed without infuriating a large class of users. Such
programs cannot make use of special keys without dealing with this
ambiguity, and at best must resort to a timeout solution. The moral is clear:
when designing your program, avoid the escape key.

12.1 LIST OF ROUTINES

This section describes all the routines available to the programmer in the
curses package. The routines are organized by function. For an
alphabetical list, see curses(3X) .

. 12.1.1 · Structure
All programs using curses should include the file <curses.h>. This file
defines several curses functions as macros, and defines several global
variables and the datatype WINDOW. References to windows are always of
type WINDOW *. Curses also defines WINDOW * constants stdscr (the
standard screen, used as a default to routines expecting a window), and
curscr (the current screen, used only for certain low level operations like
clearing and redrawing a garbaged screen). Integer constants LINES and
COLS are defined, containing the size of the screen. Constants TRUE and
FALSE are defined, with values 1 and 0, respectively. Additional constants
which are values returned from most curses functions are ERR and OK.

12-12 SysS UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

OK is returned if the function could be properly completed, and ERR is
returned if there was some error, such as moving the cursor outside of a
window.

The include file <curses.h> automatically includes <stdio.h> and an
appropriate tty driver interface file, currently either <sgtty.h*> or
<termio.h>. Including <stdio.h> again is harmless but wasteful, including
<sgtty.h> again will usually result in a fatal error.

A program using curses should include the loader option -lcurses in the
makefile. This is true for both the terminfo level and the curses level. The
compilation flag -DMINICURSES can be included if you restrict your
program to a small subset of curses concerned primarily with screen output
and optimization. The routines possible with mini-curses are listed in 'Mini·
Curses" under "OPERATION DETAILS."

12.1.2 Initialization
These functions are called when initializing a program.

initscr()
The first function called should always be initscr. This will determine the
terminal type and initialize curses data structures. initscr also arranges
that the first call to refresh will clear the screen.

endwin()
A program should always call endwin before exiting. This function will
restore tty modes, move the cursor to the lower left corner of the screen,
reset the terminal into the proper non-visual mode, and tear down all
appropriate data structures.

newterm(type, fd)
A program which outputs to more than one terminal should use newterm
instead of initscr. newterm should be called once for each terminal. It
returns a variable of type SCREEN * which should be saved as a reference
to that terminal. The arguments are the type of the terminal (a string) and a
stdio file descriptor (FILE*) for output to the terminal. The file descriptor
should be open for both reading and writing if input from the terminal is
desired. The program should also call endwin for each terminal being used
(see set_term below). If an error occurs, the value NULL is returned.

• The driver interface <sgtty.h> is a tty driver interface used in other versions of the UNIX
system.

Sys5 UNIX 12-13

CHAPTER12 THE CURSES AND TERMINFO PACKAGE

set_term(new)
This function is used to switch to a different terminal. The screen reference
new becomes the new current terminal. The previous terminal is returned
by the function. All other calls affect only the current terminal.

longname()
This function returns a pointer to a static area containing a verbose
description of the current terminal. It is defined only after a call to initscr,
newterm, or setupterm.

12.1.3 Option Setting .
These functions set options within curses. In each case, win is the window
affected, and bf is a boolean flag with value TRUE or FALSE indicating
whether to enable or disable the option. All options are initially FALSE. It is
not necessary to turn these options off before calling endwin.

clearok(win,bf)
If set, the next call to wrefresh with this window will clear the screen and
redraw the entire screen. If win is curscr, the next call to wrefresh with
any window will cause the screen to be cleared. This is useful when the
contents of the screen are uncertain, or in some cases for a more pleasing
visual effect. ·

idlok(win,bf)
If enabled, curses will consider using the hardware insert/delete line feature
of terminals so equipped. If disabled, curses will never use this feature.
The insert/delete character feature is always considered. Enable this option
only if your application needs insert/delete line, for example, for a screen
editor. It is disabled by default because insert/delete line tends to be
visually annoying when used in applications where it isn't really needed. If
insert/delete line cannot be used, curses will redraw the changed portions of
all lines that do not match the desired line.

keypad(win,bf)
This option enables the keypad of the users terminal. If enabled, the user
can press a function key (such as an arrow key) and getch will return a
single value representing the function key. If disabled, curses will not treat
function· keys specially. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this option will
turn on the terminal keypad.

leaveok(win,bf)
Normally, the hardware cursor is left at the location of the window cursor
being refreshed. This option allows the cursor to be left wherever the

12-14 SysS UNIX

(~

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

update happens to leave it. It is useful for applications where the cursor is
not used, since it reduces the need for cursor motions. If possible, the
cursor is made invisible when this option is enabled.

meta(win,bf)
If enabled, characters returned by getch are transmitted with all 8 bits,
instead of stripping the highest bit. The value OK is returned if the request
succeeded, the value ERR is returned if the terminal or system is not
capable of 8-bit input.

Meta mode is useful for extending the non-text command set in applications
where the terminal has a meta shift key. Curses takes whatever measures
are necessary to arrange for 8-bit input. On other versions of UNIX
systems, raw mode will be used. On our systems, the character size will be
set to 8, parity checking disabled, and stripping of the 8th bit turned off.

Note that 8-bit input is a fragile mode. Many programs and networks only
pass 7 bits. If any link in the chain from the terminal to the application
program strips the 8th bit, 8-bit input is impossible.

nodelay(win,bf)
This option causes getch to be a non-blocking call. If no input is ready,
getch will return -1. If disabled, getch will hang until a key is pressed.

intrflush(win,bf)
If this option is enabled when an interrupt key is pressed on the keyboard
(interrupt, quit, suspend), all output in the tty driver queue will be flushed,
giving the effect of faster response to the interrupt but . causing curses to
have the wrong idea of what is on the screen. Disabling the option prevents
the flush. The default is for the option to be enabled. This option depends
on support in the underlying teletype driver.

typeahead(fd)
Sets the file descriptor for typeahead check. fd should be an integer
returned from open or fileno. Setting typeahead to -1 will disable
typeahead check. By default, file descriptor O (stdin) is used. Typeahead is
checked independently for each screen, and for multiple interactive
terminals it should probably be set to the appropriate input for each screen.
A call to typeahead always affects only the current screen.

scrollok(win,bf)
This option controls what happens when the cursor of a window is moved off
the edge of the window, either from a newline on the bottom line, or typing
the last character of the last line. If disabled, the cursor is left on the bottom
line. If enabled, wrefresh is called on the window, and then the physical
terminal and window are scrolled up one line. Note that in order to get the
physical scrolling effect on the terminal, it is also necessary to call idlok.

SysS UNIX 12-15

CHAPTER 12

setscrreg{t,b)
wsetscrreg(win,t,b)

THE CURSES AND TERMINFO PACKAGE

These functions allow the user to set a software scrolling region in a window
win or stdscr. t and b are the line numbers of the top and bottom margin of
the scrolling region. (Line O is the top line of the window.) If this option and
scrollok are enabled, an attempt to move off the bottom margin line will
cause all lines in the scrolling region to scroll up one line. Note that this has
nothing to do with use of a physical scrolling region capability in the terminal,
like that in the VT100. Only the text of the window is scrolled. If idlok is
enabled and the terminal has either a scrolling region or insert/delete line
capability, they will probably be used by the output routines.

12.1.4 Terminal Mode Setting
These functions are used to set modes in the tty driver. The initial mode
usually depends on the setting when the program was called: the initial
modes documented here represent the normal situation.

cbreak()
nocbreak()
These two functions put the terminal into and out of CBREAK mode. In this
mode, characters typed by the user are immediately available to the
program. When out of this mode, the teletype driver will buffer characters
typed until newline is typed. Interrupt and flow control characters are
unaffected by this mode. Initially the terminal is not in CBREAK mode.
Most interactive programs using curses will set this mode.

echo()
noecho()
These functions control whether characters typed by the user are echoed as
typed. Initially, characters typed are echoed by the teletype driver. Authors
of many interactive programs prefer to do their own echoing in a controlled
area of the screen, or not to echo at all, so they disable echoing.

nl()
non I()
These functions control whether newline is translated into carriage return
and linefeed on output, and whether return is translated into newline on
input. Initially, the translations do occur. By disabling these translations,
curses is able to make better use of the linefeed capability, resulting in
faster cursor motion.

raw()
noraw()
The terminal is placed into or out of raw mode. Raw mode is similar to
cbreak mode in that characters typed are immediately passed through to the
user program. The differences are that in RAW mode, the interrupt, quit,
and suspend characters are passed through uninterpreted instead of

12-16 Sys5 UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER12

generating a signal. RAW mode also causes 8 bit input and output. The
behavior of the BREAK key may be different on different systems.

resetty()
savetty()
These functions save and restore the state of the tty modes. savetty saves
the current state in a buffer, resetty restores the state to what it was at the
last call to savetty.

12.1.5 Window Manipulation
newwin(num_lines, num_cols, beg_row, beg_col)
Create a new window with the given number of lines and columns. The
upper left corner of the window is at line beg_row column beg_col. If either
num_lines or num_cols is zero, they will be defaulted to LINES-beg_row
and COLS-beg_col. A new full-screen window is created by calling
newwin(0,0,0,0).

newpad(num_lines, num_cols)
Creates a new pad data structure. A pad is like a window, except that it is
not restricted by the screen size, and is not associated with a particular part
of the screen. Pads can be used when a large window is needed, and only
a part of the window will be on the screen at one time. Automatic refreshes
of pads (e.g. from scrolling or echoing of input) do not occur. It is not legal
to call refresh with a pad as an argument, the routines prefresh or
pnoutrefresh should be called instead. Note that these routines require
additional parameters to specify the part of the pad to be displayed and the
location on the screen to be used for display.

subwin(orig, num_lines, num_cols, begy, begx)
Create a new window with the given number of lines and columns. The
window is at position (begy, begx) on the screen. (It is relative to the
screen, not orig.) The window is made in the middle of the window orig, so
that changes made to one window will affect both windows. When using
this function, often it will be necessary to call touchwin before calling
wrefresh.

delwin(win)
Deletes the named window, freeing up all memory associated with it. In the
case of overlapping windows, subwindows should be deleted before the
main window.

mvwin(win, br, be)
Move the window so that the upper left corner will be at position {br, be). If
the move would cause the window to be off the screen, it is an error and the
window is not moved.

Sys5 UNIX 12-17

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

touchwin(win)
Throw away all optimization information about which parts of the window
have been touched, by pretending the entire window has been drawn on.
This is sometimes necessary when using overlapping windows, since a
change to one window will affect the other window, but the records of which
lines have been changed in the other window will not reflect the change.

overlay(win1, win2)
overwrite(win1, win2)
These functions overlay win1 on top of win2; that is, all text in win1 is
copied into win2. The difference is that overlay is nondestructive (blanks
are not copied) while overwrite is destructive.

12.1.6 Causing Output to the Terminal
refresh()
wrefresh(win)
These functions must be called to get any output on the terminal, as other
routines merely manipulate data structures. wrefresh copies the named
window to the physical terminal screen, taking into account what is already
there in order to do optimizations. refresh is the same, using stdscr as a
default screen. Unless leaveok has been enabled, the physical cursor of
the terminal is left at the location of the window's cursor.

doupdate()
wnoutrefresh(win)
These two functions allow multiple updates with more efficiency than
wrefresh. To use them, it is important to understand how curses works. In
addition to all the window structures, curses keeps two data structures
representing the terminal screen: a physical screen, describing what is
actually on the screen, and a virtual screen, describing what the
programmer wants to have on the screen. wrefresh works by first copying
the named window to the virtual screen (wnoutrefresh), and then calling the
routine to update the screen (doupdate). If the programmer wishes to
output several windows at once, a series of calls to wrefresh will result in
alternating calls to wnoutrefresh and doupdate, causing several bursts of
output to the screen. By calling wnoutrefresh for each window, it is then
possible· to call doupdate once, resulting in only one burst of output, with
probably fewer total characters transmitted.

prefresh{pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)
pnoutrefresh{pad,pminrow,pmincol,sminrow,smincol,smaxrow,smaxcol)
These routines are analogous to wrefresh and wnoutrefresh except that
pads, instead of windows, are involved. The additional parameters are
needed to indicate what part of the pad and screen are involved. pminrow
and pmincol specify the upper left corner, in the pad, of the rectangle to be
displayed. sminrow, smincol, smaxrow, and smaxcol specify the edges,

12-18 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

on the screen, of the rectangle to be displayed in. The lower right corner in
the pad of the rectangle to be displayed is calculated from the screen
coordinates, since the rectangles must be the same size. Both rectangles
must be entirely contained within their respective structures.

12.1.7 Writing on Window Structures
These routines are used to "draw" text on windows. In all cases, a missing
win is taken to be stdscr. y and x are the row and column, respectively.
The upper left corner is always (0,0), not (1, 1). The mv functions imply a
call to move before the call to the other function.

12.1.7.1 Moving the Cursor
move{y, x)
wmove(win, y, x)
The cursor associated with the window is moved to the given location. This
does not move the physical cursor of the terminal until refresh is called.
The position specified is relative to the upper left corner of the window.

12.1.7.2 Writing One Character
addch{ch)
waddch(win, ch)
mvaddch{y, x, ch)
mvwaddch(win, y, x, ch)
The character ch is put in the window at the current cursor position of the
window. If ch is a tab, newline, or backspace, the cursor will be moved
appropriately in the window. If ch is a different control character, it will be
drawn in the ·x notation. The position of the window cursor is advanced. At
the right margin, an automatic newline is performed. At the bottom of the
scrolling region, if scrollok is enabled, the scrolling region will be scrolled up
one line.

The ch parameter is actually an integer, not a character. Video attributes
can be combined with a character by or-ing them into the parameter. This
will result in these attributes also being set. (The intent here is that text,
including attributes, can be copied from one place to another with inch and
addch.)

12.1.7.3 Writing a String
addstr(str)
waddstr(win,str)
mvaddstr{y,x,str)
mvwaddstr(win,y,x,str)
These functions write all the characters of the null terminated character
string str on the given window. They are identical to a series of calls to
addch.

Sys5 UNIX 12-19

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

12.1. 7.4 Clearing Areas of the Screen
erase()
werase(win)
These functions copy blanks to every position in the window.

clear()
wclear(win)
These functions are like erase and werase but they also call clearok,
arranging that the screen will be cleared on the next call to refresh for that
window.

clrtobot()
wclrtobot(win)
All lines below the cursor in this window are erased. Also, the current line to
the right of the cursor is erased.

clrtoeol()
wclrtoeol(win)
The current line to the right of the cursor is erased.

12.1. 7.5 Inserting and Deleting Text
de I ch()
wdelch(win)
mvdelch{y,x)
mvwdelch{win, y ,x)
The character under the cursor in the window is deleted. All characters to
the right on the same line are moved to the left one position. This does not
imply use of the hardware delete character feature.

deleteln()
wdeleteln(win)
The line under the cursor in the window is deleted. All lines below the
current line are moved up one line. The bottom line of the window is
cleared. This does not imply use of the hardware delete line feature.

insch(c)
winsch(win, c)
mvinsch{y,x,c)
mvwinsch(win,y,x,c)
The character c is inserted before the character under the cursor. All
characters to the right are moved one space to the right, possibly losing the
rightmost character on the line. This does not imply use of the hardware
insert character feature.

12-20 Sys5 UNIX

(

(

THE CURSES AND TERMINFO PACKAGE

insertln()
winsertln(win)

CHAPTER 12

A blank line is inserted above the current line. The bottom line is lost. This
does not imply use of the hardware insert line feature.

12.1. 7 .6 Formatted Output
printw(fmt, args)
wprintw(win, fmt, args)
mvprintw(y, x, fmt, args)
mvwprintw(win, y, x, fmt, args)
These functions correspond to printf. The characters which would be
output by printf are instead output using waddch on the given window.

12.1.7.7 Miscellaneous
box(win, vert, hor)
A box is drawn around the edge of the window. vert and hor are the
characters the box is to be drawn with.

scroll(win)
The window is scrolled up one line. This involves moving the lines in the
window data structure. As an optimization, if the window is stdscr and the
scrolling region is the entire window, the physical screen will be scrolled at
the same time.

12.1.8 Input from a Window
getyx(win,y,x)
The cursor position of the window is placed in the two integer variables y
and x. Since this is a macro, no & is necessary.

inch()
winch(win)
mvinch(y,x)
mvwinch(win,y,x)
The character at the current position in the named window is returned. If
any attributes are set for that position, their values will be or-ed into the
value returned. The predefined constants A_ATTRIBUTES and
A_CHARTEXT can be used with the & operator to extract the character or
attributes alone.

12.1.9 Input from the Term in al

Sys5 UNIX 12-21

CHAPTER12

get ch()
wgetch(win)
mvgetch(y,x)
mvwgetch(win, y ,x)

THE CURSES AND TERMINFO PACKAGE

A character is read from the terminal associated with the window. In
nodelay mode, if there is no input waiting, the value -1 is returned. In delay
mode, the program will hang until the system passes text through to the
program. Depending on the setting of cbreak, this will be after one
character, or after the first newline.

If keypad mode is enabled, and a function key is pressed, the code for that
function key will be returned instead of the raw characters. Possible
function keys are defined with integers beginning with 0401, whose names
begin with KEY_. These are listed in "Input" under "INTRODUCTION." If a
character is received that could be the beginning of a function key (such as
escape), curses will set a 1-second timer. If the remainder of the sequence
does not come in within 1 second, the character will be passed through,
otherwise the function key value will be returned. For this reason, on many
terminals, there will be a one second delay after a user presses the escape
key. (Use by a programmer of the escape key for a single character
function is discouraged.)

getstr(str)
wgetstr(win,str)
mvgetstr(y ,x,str)
mvwgetstr(win, y ,x,str)
A series of calls to getch is made, until a newline is received. The resulting
value is placed in the area pointed at by the character pointer str. The
users' erase and kill characters are interpreted.

scanw(fmt, args)
wscanw(win, fmt, args)
mvscanw{y, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
This function corresponds to scanf. wgetstr is called on the window, and
the resulting line is used as input for the scan.

12.1.10 Video Attributes

12-22 SysS UNIX

THE CURSES AND TERMINFO PACKAGE

attroff{at)
wattroff{win, attrs)
attron{at)
wattron(win, attrs)
attrset{at)
wattrset{win, attrs)
standout{)
standend{)
wstandout{win)
wstandend{win)

CHAPTER 12

These functions set the current attributes of the named window. These
attributes can be any combination of A_STANDOUT, A_REVERSE,
A_BOLD, A_DIM, A_BLINK, and A_UNDERLINE. These constants are
defined in <curses.h> and can be combined with the CI (or) operator.

The current attributes of a window are applied to all characters that are
written into the window with waddch. Attributes are a property of the
character, and move with the character through any scrolling and
insert/delete line/character operations. To the extent possible on the
particular terminal, they will be displayed as the graphic rendition of
characters put on the screen.

attrset(at) sets the current attributes of the given window to at. attroff(at)
turns off the named attributes without affecting any other attributes.
attron(at) turns on the named attributes without affecting any others.
standout is the same as attron(A_ST ANDOUT) standend is the same as
attrset(O), that is, it turns off all attributes.

12.1.11 Bells and Flashing Lights
beep{)
flash{)
These functions are used to signal the programmer. beep will sound the
audible alarm on the terminal, if possible, and if not, will flash the screen
(visible bell), if that is possible. flash will flash the screen, and if that is not
possible, will sound the audible signal. If neither signal is possible nothing
will happen. Nearly all terminals haye an audible signal (bell or beep) but
only some can flash the screen.

12.1.12 Portability Functions
These functions do not directly involve terminal dependent character output
but tend to be needed by programs that use curses. Unfortunately, their

t UNIX is a Trademark of Bell Laboratories

Sys5 UNIX 12-23

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

implementation varies from one version of UNIXt to another. They have
been included here to enhance the portability of programs using curses.

baudrate()
baudrate returns the output speed of the terminal. The number returned is
the integer baud rate, for example, 9600, rather than a table index such as
89600.

erasechar()
The erase character chosen by the user is returned. This is the character
typed by the user to erase the character just typed.

killchar()
The line kill character chosen by the user is returned. This is the character
typed by the user to forget the entire line being typed.

flushinp()
flushinp throws away any typeahead that has been typed by the user and
has not yet been read by the program.

12.1.13 Delays
These functions are highly unportable, but are often needed by programs
that use curses, especially real time response programs. Some of these
functions require a particular operating system or a modification to the
operating system to work. In all cases, the routine will compile and return
an error status if the requested action is not possible. It is recommended
that programmers avoid use of these functions if possible.

draino(ms) The program is suspended until the output queue has drained
enough to complete in ms additional milliseconds. Thus, draino(50) at 1200
baud would pause until there are no more than 6 characters in the output
queue, because it would take 50 milliseconds to output the additional 6
characters. The purpose of this routine is to keep the program (and thus the
keyboard) from getting ahead of the screen. If the operating system does
not support the ioctls needed to implement draino, the value ERR is
returned; otherwise, OK is returned.

napms(ms) This function suspends the program for ms milliseconds. It is
similar to sleep except with higher resolution. The resolution actually
provided will vary with the facilities available in the operating system, and
often a change to the operating system will be necessary to produce good
results. If resolution of at least .1 second is not possible, the routine will
round to the next higher second, call sleep, and return ERR. Otherwise, the
value OK is returned. Often the resolution provided is 1160th second.

12.1.14 Lower Level Functions
These functions are provided for programs not needing the screen
optimization capabilities of curses. Programs are discouraged from working

12-24 Sys5 UNIX

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

at this level, since they must handle various glitches in certain terminals.
However, a program can be smaller if it only brings in the low level routines.

12.1.14.1 Cursor Motion
mvcur(oldrow, oldcol, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol) to (newrow,
newcol). The user program is expected to keep track of the current cursor
position. Note that unless a full screen image is kept, curses will have to
make pessimistic assumptions, sometimes resulting in less than optimal
cursor motion. For example, moving the cursor a few spaces to the right
can be done by transmitting the characters being moved over, but if curses
does not have access to the screen image, it doesn't know what these
characters are.

12.1.14.2 Terminfo Level
These routines are called by low level programs that need access to specific
capabilities of terminfo. A program working at this level should include both
<curses.h> and <term.h> in that order. After a call to setupterm, the
capabilities will be available with macro names defined in <term.h>. See
terminfo(4) for a detailed description of the capabilities.

Boolean valued capabilities will have the value 1 if the capability is present,
0 if it is not. Numeric capabilities have the value -1 if the capability is
missing, and have a value at least O if it is present. String capabilities (both
those with and without parameters) have the value NULL if the capability is
missing, and otherwise have type char * and point to a character string
containing the capability. The special character codes involving the , and ·
characters (such as \r for return, or ·A for control A) are translated into the
appropriate ASCII characters. Padding information (of the form $<time>)
and parameter information (beginning with %) are left uninterpreted at this
stage. The routine tputs interprets padding information, and tparm
interprets parameter information.

If the program only needs to handle one terminal, the definition -DSINGLE
can be passed to the C compiler, resulting in static references to capabilities
instead of dynamic references. This can result in smaller code, but prevents
use of more than one terminal at a time. Very few programs use more than
one terminal, so almost all programs can use this flag.

setupterm(term, filenum, errret)
This routine is called to initialize a terminal. term is the character string
representing the name of the terminal being used. filenum is the UNIX file
descriptor of the terminal being used for output. errret is a pointer to an
integer, in which a success or failure indication is returned. The values
returned can be 1 (all is well), 0 (no such terminal), or -1 (some problem
locating the terminfo database).

SysS UNIX 12-25

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

The value of term can be given as 0, which will cause the value of TERM in
the environment to be used. The errret pointer can also be given as 0,
meaning no error code is wanted. If errret is defaulted, and something goes
wrong, setupterm will print an appropriate error message and exit, rather
than returning. Thus, a simple program can call setupterm{O, 1, 0) and not
worry about initialization errors.

If the variable TERMINFO is set in the environment to a path name,
setupterm will check for a compiled terminfo description of the terminal
under that path, before checking /etc/term. Otherwise, only /etc/term is
checked.

setupterm will check the tty driver mode bits, using filenum, and change
any that might prevent the correct operation of other low level routines.
Currently, the mode that expands tabs into spaces is disabled, because the
tab character is sometimes used for different functions by different
terminals. (Some terminals use it to move right one space. Others use it to
address the cursor to row or column 9.) If the system is expanding tabs,
setupterm will remove the definition of the tab and backtab functions,
making the assumption that since the user is not using hardware tabs, they
may not be properly set in the terminal. Other system dependent changes,
such as disabling a virtual terminal driver, may be made here.

As a side effect, setupterm initializes the global variable ttytype, which is
an array of characters, to the value of the list of names for the terminal.
This list comes from the beginning of the terminfo description.

After the call to setupterm, the global variable cur_term is set to point to
the current structure of terminal capabilities. By calling setupterm for each
terminal, and saving and restoring cur_term, it is possible for a program to
use two or more terminals at once.

The mode that turns newlines into CRLF on output is not disabled.
Programs that use cursor _down or scrolUorward should avoid these
capabilities if their value is linefeed unless they disable this mode.
setupterm calls reset_prog_mode after any changes it makes.

reset_prog_mode()
reset_shell_mode()
def _prog_mode()
def_shell_mode()
These routines can be used to change the tty modes between the two
states: shell (the mode they were in before the program was started) and
program (the mode needed by the program). def_prog_mode saves the
current terminal mode as program mode. setupterm and initscr call
def_shell_mode automatically. reset_prog_mode puts the terminal into
program mode, and reset_shell_mode puts the terminal into normal mode.

12-26 Sys5 UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

A typical calling sequence is for a program to call initscr (or setupterm if a
terminfo level program), then to set the desired program mode by calling
routines such as cbreak and noecho, then to call def_prog_mode to save
the current state. Before a shell escape or control-Z suspension, the
program should call reset_shell_mode, to restore normal mode for the
shell. Then, when the program resumes, it should call reset_prog_mode.
Also, all programs must call reset_shell_mode before they exit. (The
higher level routine endwin automatically calls reset_shell_mode.)

Normal mode is stored in cur_term->Ottyb, and program mode is in
cur_term->Nttyb. These structures are both of type SGTTYB (which
varies depending on the system). Currently the possible types are struct
sgttyb (on some other systems) and struct termio (on this version of the
UNIX system). def_prog_mode should be called to save the current state
in Nttyb.

vidputs(newmode, putc)
newmode is any combination of attributes, defined in <curses.h>. putc is
a putchar-like function. The proper string to put the terminal in the given
video mode is output. The previous mode is remembered by this routine.
The result characters are passed through putc.

vidattr(newmode)
The proper string to put the terminal in the given video mode is output to
stdout.

tparm(instring, p1, p2, p3, p4, p5, p6, p7, p8, p9)
tparm is used to instantiate a parameterized string. The character string
returned has the given parameters applied, and is suitable for tputs. Up to
9 parameters can be passed, in addition to the parameterized string.

tputs(cp, affcnt, outc)
A string capability, possibly containing padding information, is processed.
Enough padding characters to delay for' the specified time replace the
padding specification, and the resulting string is passed, one character at a
time, to the routine outc, which should expect one character parameter.
(This routine often just calls putchar.) cp is the capability string. affcnt is
the number of units affected by the capability, which varies with the
particular capability. (For example, the affcnt for insert_line is the number
of lines below the inserted line on the screen, that is, the number of lines
that will have to be moved by the terminal.) affcnt is used by the padding
information of some terminals as a multiplication factor. If the capability
does not have a factor, the value 1 should be passed.

SysS UNIX 12-27

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

putp(str)
This is a convenient function to output a capability with no affcnt. The string
is output to putchar with an affcnt of 1. It can be used in simple
applications that do not need to process the output of tputs.

delay _output(ms)
A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts sufficient pad characters
for the delay. This should not be used in place of a high resolution sleep,
but rather for delay effects in the output. Due to buffering in the system, it is
unlikely that this call will result in the process actually sleeping. Since large
numbers of pad characters can be output, it is recommended that ms not
exceed 500.

12.2 OPERATION DETAILS

These paragraphs describe many of the details of how the curses and
terminfo package operates.

12.2.1 Insert and Delete Line and Character
The algorithm used by curses takes into account insert and delete line and
character functions, if available, in the terminal. Calling the routine

idlok(stdscr, TRUE);

will enable insert/delete line. By default, curses will not use insert/delete
line. This was not done for performance reasons, since there is no speed
penalty involved. Rather, experience has shown that some programs do not
need this facility, and that if curses uses insert,delete line, the result on the
screen can be visually annoying. Since many simple programs using
curses do not need this, the default is to avoid insert/delete line.
lnsert,delete character is always considered.

12.2.2 Additional Terminals
Curses will work even if absolute cursor addressing is not possible, as long
as the cursor can be moved from any location to any other location. It
considers local motions, parameterized motions, home, and carriage return.

Curses is aimed at full duplex, alphanumeric, video terminals. No attempt is
made to handle half-duplex, synchronous, hard copy, or bitmapped
terminals. Bitmapped terminals can be handled by programming the
bitmapped terminal to emulate an ordinary alphanumeric terminal. This
does not take advantage of the bitmap capabilities, but it is the fundamental
nature of curses to deal with alphanumeric terminals.

The curses handles terminals with the "magic cookie glitch" in their video
attributes. The term "magic cookie" means that a change in video attributes
is implemented by storing a "magic cookie" in a location on the screen.
This "cookie" takes up a space, preventing an exact implementation of what

12-28 SysS UNIX

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

the programmer wanted. Curses takes the extra space into account, and
moves part of the line to the right, as necessary. In some cases, this will
unavoidably result in losing text from the right hand edge of the screen.
Advantage is taken of existing spaces.

12.2.3 Multiple Terminals
Some applications need to display text on more than one terminal,
controlled by the same process. Even if the terminals are of different types,
curses can handle this.

All information about the current terminal is kept in a global variable

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler will
accept declarations of variables which are pointers. The user program
should declare one screen pointer variable for each terminal it wishes to
handle. The routine

struct screen *
newterm(type, fd}

will set up a new terminal of the given terminal type which does output on
file descriptor fd. A call to initscr is essentially
newterm{getenv("TERM"),stdout}. A program wishing to use more than
one terminal should use newterm for each terminal and save the value
returned as a reference to that terminal.

To switch to a different terminal, call

set_term(term}

The old value of SP will be returned. The programmer should not assign
directly to SP because certain other global variables must also be changed.

All curses routines always affect the current terminal. To handle several
terminals, switch to each one in turn with set_term, and then access it.
Each terminal must be set up with newterm, and closed down with endwin.

12.2.4 Video Attributes
Video attributes can be displayed in any combination on terminals with this
capability. They are treated as an extension of the standout capability,
which is still present.

Each character position on the screen has 16 bits of information associated
with it. Seven of these bits are the character to be displayed, leaving
separate bits for nine video attributes. These bits are used for standout,
underline, reverse video, blink, dim, bold, blank, protect, and alternate
character set. Standout is taken to be whatever highlighting works best on
the terminal, and should be used by any program that does not need

Sys5 UNIX 12-29

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

specific or combined attributes. Underlining, reverse video, blink, dim, and
bold are the usual video attributes. Blank means that the character is
displayed as a space, for security reasons. Protected and alternate
character set depend on the particular terminal. The use of these last three
bits is subject to change and not recommended. Note also that not all
terminals implement all attributes - in particular, no current terminal
implements both dim and bold.

The routines to use these attributes include

attrset(attrs)
attron(attrs)
attroff(attrs)
standout()
standend()

wattrset(wln, attrs)
wattron(wln, attrs)
wattroff(wln, attrs)
wstandout(wln)
wstandend{wln)

Attributes, if given, can be any combination of A_STANDOUT,
A_UNDERLINE, A_REVERSE, A_BLINK, A_DIM, A_BOLD, A_INVIS,
A_PROTECT, and A_AL TCHARSET. These constants, defined in
curses.h, can be combined with the C I (or) operator to get multiple
attributes. attrset sets the current attributes to the given attrs; attron turns
on the given attrs in addition to any attributes that are already on; attroff ·
turns off the given attributes, without affecting any others. standout and
standend are equivalent to attron(A_STANDOUT) and
attrset(A_NORMAL).

If the particular terminal does not have the particular attribute or combination
requested, curses will attempt to use some other attribute in its place. If
the terminal has no highlighting at all, all attributes will be ignored.

12.2.5 Special Keys
Many terminals have special keys, such as arrow keys, keys to erase the
screen, insert or delete text, and keys intended for user functions. The
particular sequences these terminals send differs from terminal to terminal.
Curses allows the programmer to handle these keys.

A program using special keys should turn on the keypad by calling

keypad(stdscr, TRUE)

at initialization. This will cause special characters to be passed through to
the program by the function getch. These keys have constants which are
listed in "Input" under "INTRODUCTION." They have values starting at
0401, so they should not be stored in a char variable, as significant bits will
be lost.

A program using special keys should avoid using the escape key, since
most sequences start with escape, creating an ambiguity. Curses will set a
one second alarm to deal with this ambiguity, which will cause delayed

12-30 Sys5 UNIX

."' 7

(

(_

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

response to the escape key. It is a good idea to avoid escape in any case,
since there is eventually pressure for nearly any screen oriented program to
accept arrow key input.

12.2.6 Scrolling Region
There is a programmer accessible scrolling region. Normally, the scrolling
region is set to the entire window, but the calls

setscrreg(top, bot)
wsetscrreg(win, top, bot)

set the scrolling region for stdscr or the given window to any combination of
top and bottom margins. When scrolling past the bottom margin of the
scrolling region, the lines in the region will move up one line, destroying the
top line of the region. If scrolling has been enabled with scrollok, scrolling
will take place only within that window. Note that the scrolling region is a
software feature, and only causes a window data structure to scroll. This
may or may not translate to use of the hardware scrolling region feature of a
terminal, or insert/delete line.

12.2. 7 Mini-Curses
Curses copies from the current window to an internal screen image for every
call to refresh. If the programmer is only interested in screen output
optimization, and does not want the windowing or input functions, an
interface to the lower level routines is available. This will make the program
somewhat smaller and faster. The interface is a subset of full curses, so
that conversion between the levels is not necessary to switch from mini­
cu rses to full curses.

The following functions of curses and terminfo are available to the user of
minicurses:

addch(ch)
attrset(at)
move(y, x)
refresh()

Sys5 UNIX

addstr(str)
clear()
mvaddch(y,x,ch)
standend()

attroff(at)
erase()
mvaddstr(y ,x,str)
standout()

attron(at)
initscr
newterm

12-31

CHAPTER12 THE CURSES ANDTERMINFO PACKAGE

The following functions of curses and term info are not available to the user
of minicurses:

box clrtobot clrtoeol delch
deleteln delwin get ch getstr
inch insch insertln long name
make new mvdelch mvgetch mvgetstr
mvinch mvinsch mvprintw mvscanw
mvwaddch mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch mvwinsch
mvwprintw mvwscanw newwin overlay
overwrite printw putp scanw
scroll setscrreg subwin touchwin
vidattr waddch waddstr wclear
wclrtobot wclrtoeol wdelch wdeleteln
werase wgetch wgetstr winsch
winsertln wmove wprintw wrefresh
wscanw wsetscrreg

The subset mainly requires the programmer to avoid use of more than the
one window stdscr. Thus, all functions beginning with "w" are generally
undefined. Certain high level functions that are convenient but not essential
are also not available, including printw and scanw. Also, the input routine
getch cannot be used with mini-curses. Features implemented at a low
level, such as use of hardware insert/delete line and video attributes, are
available in both versions. Also, mode setting routines such as crmode and
noecho are aHowed.

To access mini-curses, add -DMINICURSES to the CFLAGS in the
makefile. If routines are requested that are not in the subset, the loader will
print error messages such as

Undefined:
m_getch
m_waddch

to tell you that the routines getch and waddch were used but are not
available in the subset. Since the preprocessor is involved in the
implementation of mini-curses, the entire program must be recompiled when
changing from one version to the other.

12.2.8 TTY Mode Functions
In addition to the save/restore routines savetty() and resetty(), standard
routines are available for going into and out of normal tty mode. These
routines are resetterm(), which puts the terminal back in the mode it was in
when curses was started; fixterm(), which undoes the effects of resetterm,

12-32 SysS UNIX

(

(

THE CURSES AND TERMINFO PACKAGE CHAPTER 12

that is, restores the "current curses mode"; and saveterm(), which saves
the current state to be used by fixterm(). endwin automatically calls
resetterm, and the routine to handle control-Z (on other systems that have
process control) also uses resetterm and fixterm. Programmers should
use these routines before and after shell escapes, and also if they write their
own routine to handle control-Z. These routines are also available at the
terminfo level.

12.2.9 Typeahead Check
If the user types something during an update, the update will stop, pending
a future update. This is useful when the user hits several keys, each of
which causes a good deal of output. For example, in a screen editor, if the
user presses the "forward screen" key, which draws the next screen full of
text, several times rapidly, rather than drawing several screens of text, the
updates will be cut short, and only the last screen full will actually be
displayed. This feature is automatic and cannot be disabled. The feature
only works on versions of the UNIX system with the necessary support in
the operating system.

12.2.1 O getstr
No matter what the setting of echo is, strings typed in here are echoed at
the current cursor location. The users erase and kill characters are
understood and handled. This makes it unnecessary for an interactive
program to deal with erase, kill, and echoing when the user is typing a line
of text.

12.2.11 longname
The longname function does not need any arguments. It returns a pointer
to a static area containing the actual long name of the terminal.

12.2.12 Nodelay Mode
The call

nodelay(stdscr, TRUE)

will put the terminal in "nodelay mode". While in this mode, any call to
getch will return -1 if there is nothing waiting to be read immediately. This
is useful for writing programs requiring "real time" behavior where the users
watch action on the screen and press a key when they want something to
happen. For example, the cursor can be moving across the screen, in real
time. When it reaches a certain point, the user can press an arrow key to
change direction at that point.

12.2.13 Portability
Several useful routines are provided to improve portability. The
implementation of these routines is different from system to system, and the
differences can be isolated from the user program by including them in
curses.

Sys5 UNIX 12-33

CHAPTER 12 THE CURSES AND TERMINFO PACKAGE

Functions erasechar() and killchar() return the characters which erase one
character, and kill the entire input line, respectively. The function baudrate()
will return the current baud rate, as an integer. (For example, at 9600 baud,
the integer 9600 will be returned, not the value 89600 from <sgtty.h>.)
The routine flushinp() will cause all typeahead to be thrown away.

12-34 Sys5 UNIX

(

CURSES EXAMPLE CHAPTER 13

13. CURSES EXAMPLE

The following examples are provided to demonstrate uses of curses. They
are for illustration purposes only. A good programmer would expand the
programs presented here before using them.

13.1 EXAMPLE PROGRAM 'editor'

/*
* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
*the program.
*/

#include <curses.h>

#define CTRL(c) ('c' & 037)

main(argc, argv)
char **argv;
{

inti, n, I;
int c;
FILE *fd;

if (argc != 2) {

}

fprintf(stderr, "Usage: edit fileO);
exit(1);

fd = fopen(argv[1J, "r");
if (fd = = NULL) {

perror(argv[1]);
exit(2);

}

initscr();
cbreak();
nonl();
noecho();
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

(I* Read in the file * !

Sys5 UNIX 13-1

CHAPTER 13 CURSES EXAMPLE

}

while ((c = getc(fd)) != EOF)
addch(c);

fclose(fd);

move(O,O);
refresh();
edit();

I* Write out the file *I
fd = fopen(argv[1], "w");
for (l=O; 1<23; I++) {

n = len(I);
for (i=O; i<n; i+ +)

putc(mvinch(I, i), fd);
putc('O, fd);

}
fclose(fd);

endwin();
exit(O);

len(lineno)
int lineno;
{

}

int linelen = COLS-1 ;

while (linelen > =O && mvinch(lineno, tinelen) = = ' ')
linelen--;

return linelen + 1 ;

/*Global value of current cursor position*/
int row, col;

edit()
{

int c;

for (;;) {

13-2

move(row, col);
refresh();
c = getch();
switch (c) { I* Editor commands*/

Sys5 UNIX

CURSES EXAMPLE CHAPTER 13

(/* hjkl and arrow keys: move cursor *I
I* in direction indiated *I
case 'h':
case KEY _LEFT:

if (col> 0)
col--;

break;

case 'j':
case KEY _DOWN:

if (row < LINES-1)
row++;

break;

case 'k':
case KEY _UP:

if (row> 0)
row--; -

break;

case 'I':

(case KEY _RIGHT:
if (col< COLS-1)

col++;
break;

/* i: enter input mode *I
case KEY _IC:
case 'i':

input();
break;

/* x: delete current character*/
case KEY _DC:
case 'x':

delch();
break;

I* o: open up a new line and enter input mode *I
case KEY _IL:
case 'o':

move(++ row, col=O);
(~ insertln();

input();

Sys5 UNIX 13-3

CHAPTER 13

}
}

/*

break;

/* d: delete current line*/
case KEY _DL:
case 'd':

deleteln();
break;

/* ·L: redraw screen*/
case KEY _CLEAR:
case CTRL(L):

clearok(curscr);
refresh();
break;

I* w: write and quit *I
case 'w':

return;

/* q: quit without writing */
case 'q':

endwin();
exit(1);

default:

}

flash();
break;

* Insert mode: accept characters and insert them.
* End with ·o or EiC
*/

input() _
{

13-4

int c;

standout();
mvaddstr(LINES-1, COLS-20, "INPUT MODE");
standend();
move(row, col);
refresh();
for (;;) {

CURSES EXAMPLE

Sys5 UNIX

(

(

(

CURSES EXAMPLE

}

}

c = getch();
if (c = = CTRL(D) I c = = KEY _EiC)

break;
insch(c);
move(row, ++col);
refresh();

move(LINES-1, COLS-20);
clrtoeol();
move(row, col);
refresh();

SysS UNIX

CHAPTER 13

13-5

CHAPTER 13

13.2 EXAMPLE PROGRAM 'highlight'

/*
*highlight: a program to turn U, B, and
* N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <curses.h>

main(argc, argv)
char **argv;
{

13-6

FILE *fd;
int c, c2;

if (argc != 2) {

}

fprintf(stderr, "Usage: highlight fileO);
exit(1);

fd = fopen(argv[1], "r");
if (fd = = NULL) {

perror(argv[1]) ;
exit(2);

}

initscr();
scrollok(stdscr, TRUE);

for (;;) {
c = getc(fd);
if (c == EOF)

break;
if (c = = \') {

c2 = getc(fd);
switch (c2) {
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':
attrset(O);

CURSES EXAMPLE

SysS UNIX

(~

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' ,.,.- "'-

/* ·'I...__ ,,,.

* SCATTER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];/* ·Screen Array */

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr();
for(row=O;row<MAXLINES;row+ +)

for(col=O;col<MAXCOLS;col+ +)
s[row][col]= • ';

row= O;
I* Read screen in *I
while((c=getchar()) != EOF && row< LINES) {

if(c != 'O) {
I* Place char in screen array *I
s[row][col++] = c;
if(c != ' ')

char_count+ +;
} else {

col=O;
row++;

}
}

time(&t); I* Seed the random number generator*/ /

srand((int)(t&0177777L));
" / ..

13-8 Sys5 UNIX

(

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER 13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' / ··-,

/*
\~ __ __;·

* SCA TIER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES][MAXCOLS];/* Screen Array*/

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr(); /

for(row=O;row<MAXLINES;row+ +)
for(col=O;col<MAXCOLS;col+ +)

s[row][col]=' ';

row= O;
/* Read screen in *I
while((c=getchar()) != EOF && row < LINES) {

if(c != 'O) {
I* Place char in screen array */
s[row][col+ +] = c;
if(c != · ')

char_count+ +;
} else {

col=O;
row++;

}
}

time(&t); /*Seed the random number generator*/ ,1(. -,

srand((int)(t&0177777L)); '· ', '- ... /

13-8 Sys5 UNIX

(

(

CURSES EXAMPLE

}

continue;
}
addch(c);
addch(c2);

}
else

addch(c);
}
fclose(fd);
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-7

CHAPTER 13 CURSES EXAMPLE

13.3 EXAMPLE PROGRAM 'scatter' /

/* ""'-, ___ ,.....-'

* SCATTER. This program takes the first
* 23 lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINESJ[MAXCOLS];/* Screen Array*/

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZ];

initscr();
for(row=O;row<MAXLINES;row+ +)

for(col=O;col<MAXCOLS;col+ +)
s[row][col]=' ';

row= O;
I* Read screen in *I
while((c=getchar()) != EOF && row < LINES) {

if(c != 'O) {
I* Place char in screen array *I
s[row][col+ +] = c;
if(c != ' ')

char _count+ +;
} else {

col=O;
row++;

}
}

time(&t); /*Seed the random number generator*/
(
/ -,

srand((int)(t&O 177777L)); c,,

13·8 Sys5 UNIX

CURSES EXAMPLE

}

while(char_count) {
row=rand() % LINES;
col=(rand()>>2) % COLS;
if(s[row][col] != ' ')
{

}
}
endwin();
exit(O);

move(row, col);
addch(s[row][col]);
s[row][col]=EOF;
char_count--;
refresh();

Sys5 UNIX

CHAPTER 13

13-9

CHAPTER 13 CURSES EXAMPLE

13.4 EXAMPLE PROGRAM 'show'

#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv[];
{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if(argc != 2)
{

}

fprintf(stderr,"usage: %s fileO, argv[O]);
exit(1);

if((fd=fopen(argv[1],"r")) ==NULL)
{

perror(argv[1]);
exit(2);

}
signal(SIGINT, done);

initscr();
noecho();
cbreak();
nonl();
idlok(stdscr, TRUE);

while(1)
{

move(O,O);
for(line=O; line< LINES; line++)
{

}

if(fgets(linebuf, sizeof linebuf, fd) = = NULL)
{

}

clrtobot();
done();

move(line, O);
printw("%s", linebuf);

13-10 SysS UNIX

(

CURSES EXAMPLE

}
}

refresh();
if(getch() = = 'q')

done();

void
done()
{

}

move(LINES-1, O);
clrtoeol();
refresh();
endwin();
exit(O);

Sys5 UNIX

CHAPTER 13

13-11

CHAPTER 13 CURSES EXAMPLE

13.5 EXAMPLE PROGRAM 'termhl'

/* ""'
* A terminfo level version of highlight.
*/

#include <curses.h>
#include <term.h>

int ulmode = O; /* Currently underlining *I

main(argc, argv)
char **argv;
{

FILE *fd;
int c, c2;
int outch();

if (argc > 2) {
fprintf(stderr, "Usage: termhl [file]O);
exit(1);

}

if (argc = = 2) {
fd = fopen(argv[1], "r");
if (fd = = NULL) {

perror(argv[1]) ;
exit(2);

}
} else {

fd = stdin;
}

setupterm(O, 1, O);

for (;;) {
· c = getc(fd);

if (c = = EOF)
break;

if (c = = '\') {
c2 = getc(fd);
switch (c2) {
case 'B':

tputs(enter_bold_mode, 1, outch);
continue;

case 'U': ',,_

13-12 Sys5 UNIX

(

(

CURSES EXAMPLE CHAPTER 13

}

tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case 'N':

}

tputs(exit_attribute_mode, 1, outch);
ulmode = O;
continue;

putch(c);
putch(c2);

}
else

putch(c);
}
fclose(fd);
fflush(stdout);
resetterm ();
exit(O);

/*
* This function is like putchar, but it checks for underlining.
*/

putch(c)
int c;
{

}

/*

outch(c);
if (ulmode && underline_char) {

outch('
tputs(underline_char, 1, outch);

}

* Outchar is a function version of putchar that can be passed to
* tputs as a routine to call.
*/

outch(c)
int c;
{

putchar(c);
}

Sys5 UNIX 13-13

CHAPTER 13 CURSES EXAMPLE

13.6 EXAMPLE PROGRAM 'two'

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *set_term();

FILE *fd, *fdyou;
char linebuf[512];

main(argc, argv)
char **argv;
{

int done();
int c;

if (argc != 4) {
fprintf(stderr, "Usage: two othertty otherttytype inputfileO);
exit(1);

}

fd = fopen(argv[3], "r");
fdyou = fopen(argv[1], "w+");
signal(SIGINT, done); /* die gracefully */

me = newterm(getenv("TERM"), stdout);/* initialize my tty*/
you = newterm(argv[2], fdyou);/* Initialize his terminal*/

set_term(me);
noecho();
cbreak();
nonl();

/* Set modes for my terminal ·I
I* turn off tty echo */
/* enter cbreak mode *I

I* Allow linefeed*/
nodelay(stdscr, TRUE); I* No hang on input *I

set_term(you); I* Set modes for other terminal*/
noecho();
cbreak();
nonl();
nodelay(stdscr,TRUE);

/*Dump first screen full on my terminal*/
dump_page(me);

/*Dump second screen full on his terminal*/

13-14 Sys5 UNIX

CURSES EXAMPLE

(dump_page(you);

}

for(;;) { /*for each screen full*/

}

set_term(me);
c = getch();
if (c = = 'q') /*wait for user to read it */

done();
if (c = = '')

dump_page(me);

set_term(you);
c = getch();
if (c = = 'q') /*wait for user to read it*/

done();
if (c = = ' ')

dump_page(you);
sleep(1);

dump_page(term)
struct screen *term;
{

}

int line;

set_term(term);
move(O, O);
for (line=O; line<LINES-1; line++) {

}

if (fgets(linebuf, sizeof linebuf, fd) = = NULL) {
clrtobot();
done();

}
mvprintw(line, 0, "%s", linebuf);

standout();
mvprintw(LINES-1, 0, "--More--");
standend();
refresh(); /* sync screen */

/*
* Clean up and exit.
*/

done()

Sys5 UNIX

CHAPTER 13

13-15

CHAPTER13

{

}

I* Clean up first terminal */
set_term(you);
move(LINES-1,0); /*to lower left corner*/
clrtoeol(); /*clear bottom line*/
refresh(); /*flush out everything */
endwin(); I* curses cleanup*/

I* Clean up second terminal *I
set_term(me);
move(LINES-1,0); /*to lower left corner*/
clrtoeol(); I* clear bottom line*/
refresh(); /*flush out everything */
endwin(); I* curses cleanup *I

exit(O);

13-16

CURSES EXAMPLE

SysS UNIX

(

CURSES EXAMPLE

13.7 EXAMPLE PROGRAM 'window'

#include <curses.h>

WINDOW *cmdwin;

main()
{

inti, c;
char buf[120];

initscr();
nonl();
noecho();
cbreak();

cmdwin = newwin(3, COLS, 0, O);/* top 3 lines *I
for (i=O; i<LINES; i+ +)

mvprintw(i, O, 'This is line %d of stdscr", i);

for (;;) {
refresh();
c = getch();
switch (c) {
case 'c': /*Enter command from keyboard*/

werase(cmdwin);

Sys5 UNIX

wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, O);
for (i=O; i<COLS; i+ +)

waddch(cmdwin, ' -');
wmove(cmdwin, 1, O);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, but);
touchwin(stdscr);
/*
* The command is now in buf.
* It should be processed here.

CHAPTER 13

13-17

CHAPTER13

}
}

13-18

*/
break;

case 'q':
endwin(};
exit(O);

}

CURSES EXAMPLE

Sys5 UNIX

