

Sys3 UNIX Programmer's Manual·· vol1A

98-05045.8 Rev A September 24, 1984

PLEXUS COMPUTERS, INC.

3833 North First St.

San Jose, CA 95134

408/943-9433

r ·'
t' ,

, .. '/

Copyright 1984
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

REVISION RECORD

Plexus Sys3 UNIX Programmer's Manua/-- vol1A

REVISION LEVEL DATE DESCRIPTION
98-05046.1 December 23. 1982 First edition
98-05046.2 January 15, 1983 Editorial changes
98-05046.3 May 6, 1983 Removed unsupported graphics

utilities; other small editorial
changes

98-05046.4 June 20, 1983 Changes for Sys3 Rev. 3.0
(MC68000 version)

98-05046.5 August 19, 1983 New pages for the Plexus
Network Operating System (NOS);
other small additions and corrections

r 98-05046.6 November 18, 1983 Several new pages; other
small additions and corrections

./

98-05046.7 April 6, 1984 First typeset version;
additions and corrections

98-05046.8 September 24, 1984 Commands to support
new LP spooler; additions and corrections

r
~.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-~'~ II

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.~II
---- I

I
I
I
I
I

ACKNOWLEDGEMENTS

The form and much of the content of this manual come from the UNIX Programmer's Manual
Release 3.0 (Volume 1), edited by T. A. Dolotta, S. B. Olsson, and A. G. Petruccelli.

PLEXUS INTRODUCTION

This release of the Plexus Sys3 UNIX Programmer's Manual is designed for use with Plexus
Sys3. This manual includes a number of commands that are not part of stock SYSTEM III, plus
enhancements to SYSTEM III commands. The majority of these are in Section 1 ("Commands
and Application Programs"). Therefore, Volume 1 was separated into two different physical
volumes. Section 1 is now in physical Volume 1 A, and Sections 2 through 8 are in Volume 1 B.

Some SYSTEM III commands are designed for use with UNIX systems on specific hardware
such as the POP-11; these commands are inappropriate for use on Plexus systems. and are
thus not supported by Plexus. No source was provided for other SYSTEM III commands. The
following table lists all the SYSTEM III commands that are not supported by Plexus, along with
codes indicating why Plexus does not support them. The codes have the following meanings:

NA - Applicable to other hardware.
NI - Not implemented.
NS - No source available.

Command Function Code

as. pdp assembler for POP-11 NA
as.vax assembler for VAX-11 1780 NA
chess the game of chess NS
dj OJ-11 asynchronous multiplexor NA
dmc communications link with built-in OOCMP NA

protocol
dn ON-11 ACU interface NA
dpr off-line print NA
dqs 00S-11 interface for two-point BSC NA
du OU-11 synchronous line interface NA
dz OZ-11. OZ-11/KMC-11, OH-11 asynchronous NA

multiplexors
etp Equipment Test Package NA
Iget retrieve files from the HONEYWELL 6000 NA
Iget.demon file retrieval daemons NA
Iptrap floating point interpreter NA
Iscv convert files between POP-11 and NA

VAX-11/780 systems
'send send files to the HONEYWELL 6000 NA
gcat send phototypesetter output to the NA

HONEYWELL 6000
gcosmail . send mail to HIS user NA
gdev graphical device routines and filters NI
ged graphical editor NI
gps format of graphical files NI
graphics access graphical and numerical commands NI
gutil graphical utilities NI
hasp RJE (Remote Job Entry) to IBM NA
hp RP04,RPOSiRP06 moving-head disk NA
hs RH11iRJS03-RJS04 fixed-head disk file NA
ht TU16 magnetic tape interface NA
kas assembler for the KMC11 microprocessor NA
kl KL-11 or OL-11 asynchronous interface NA

- 5 -

kmc KMC11 microprocessor NA
kun un..:assembler for the KMC11/0MC11 NA

microprocessor
maze generate a maze NS
pcl parallel communications link interface NA
reversi a game of dramatic reversals NS
rf RF11/RS11 fixed-head disk file NA
rk RK-11/RK03 or RK05 disk NA
rl RL-11/RL01 disk NA
rp RP-11/RP03 moving-head disk NA
sdb symbolic debugger NA
sky obtain ephemerides NS
st synchronous terminal interface NA
stat statistical network for graphical commands NI
tm TM11/TU10 magnetic tape interface NA
toe graphical table of contents routines NI
vaxops VAX-11/780 console operations NA
vlx VAX-11/780 LSI console floppy interface NA

See the Introductions to each section for information on new commands.

- 6 -

BELL INTRODUCTION

(This Introduction was written by Bell Laboratories for the UNIX User's Manual Release 1.0.)

This manual describes the features of UNIX. It provides neither a general overview of UNIX (for
that, see "The UNIX Time-Sharing System," BSTJ, Vol. 57, No.6, Part 2, pp. 1905-29, by
D. M. Ritchie and K. Thompson), nor details of the implementation of the system (see "UNIX
Implementation," BSTJ, same issue, pp. 1931-46).

Not all commands, features, and facilities described in this manual are available in every UNIX
system; for example, yacc(1) is usually not available in a UNIX system running on a PDP-11/23.
When in doubt, consult your system's administrator.

This manual is divided into eight sections, some containing inter-filed sub-classes:

1. Commands and Application Programs:
1. General-Purpose Commands.
1 C. Communications Commands.
1 G. Graphics Commands.
1 M. System Maintenance Commands.

2. System Calls.
3. Subroutines:

3C. C and Assembler Ubrary Routines.
3M. Mathematical Ubrary Routines.
3S. Standard 1/0 Ubrary Routines.
3X. Miscellaneous Routines.

4. Special Files.
5. File Formats.
6. Games.
7. Miscellaneous Facilities.
8. System Maintenance Procedures.

Section 1 (Commands and Application Programs) describes programs intended to be invoked
directly by the user or by command language procedures, as opposed to subroutines, which are
intended to be called by the user's programs. Commands generally reside in the directory Ibin
(for binary programs). Some programs also reside in fusrfbin, to save space in fbin. These
directories are searched automatically by the command interpreter called the shell. Sub-class
1C contains communication programs such as cu, dpr, etc. These entries may differ from
system to system. Sub-class 1M contains system maintenance programs such as fsck, mids,
etc., which generally reside in the directory fetc; these commands are not intended for use by
the ordinary user due to their privileged nature. Some UNIX systems have a directory called
fusr/lbin, containing local commands.

Section 2 (System Calls) describes the entries into the UNIX supervisor, including the C
language interface. .

Section 3 (Subroutines) descnbes the available subroutines. Their binary versions reside in
various system libraries in the directories llib and fusrflib. See intro(3) for deSCriptions of these
libraries and the files in which they are stored.

Section 4 (Special Files) discusses the characteristics of each system file that actually refers to
an input/output device. The names in this section generally refer to the Digital Equipment
Corporation's device names for the hardware. rather than to the names of the special files
themselves.

Section 5 (File Formats) documents the structure of particular kinds of files; for example, the
format of the output of the link editor is given in a.out(5). Excluded are files used by only one

Plexus Sys3 UNIX -7- March 1984

Introduction

command (for example, the assembler's intermediate files). In general, the C language struct
declarations corresponding to these formats can be found in the directories lusr/include and
lusr/includelsys.

Section 6 (Games) describes the games and educational programs that, as a rule, reside in the
directory lusr/games.

Section 7 (Miscellaneous Facilities) contains a variety of things. Included are descriptions of
character sets, macro packages, etc.

Section 8 (System Maintenance Procedures) discusses crash recovery and boot procedures,
etc. Information in this section is not of great interest to most users.

Each section consists of a number of independent entries of a page or so each. The name of
the entry appears in the upper corners of its pages. Entries within each section are
alphabetized, with the exception of the introductory entry that begins each section. The page
numbers of each entry start at 1. Some entries may describe several routines, commands, etc.
In such cases, the entry appears only once, alphabetized under its "major" name.

All entries are based on a common format, not all of whose parts always appear:

The NAME part gives the name(s) of the entry and briefly states its purpose.

The SYNOPSIS part summarizes the use of the program being described. A few
conventions are used, particularly in Section 1 (Commands):

Boldface strings are literals and are to be typed just as they appear.

Italic strings usually represent substitutable argument prototypes and program names
found elsewhere in the manual (they are underlined in the typed version of the entries).

Square brackets [I around an argument prototype indicate that the argument is
optional. When an argument prototype is given as "name" or "file", it always refers to
a file name.

Ellipses ••• are used to show that the previous argument prototype may be repeated.

A final convention is used by the commands themselves. An argument beginning with
a minus -, plus +, or equal sign = is otten taken to be some sort of flag argument,
even if it appears in a position where a file name could appear. Therefore, it is unwise
to have files whose names begin with -, +, or =.

The DESCRIPTION part discusses the subject at hand.

The EXAMPLE(S) part gives example(s) of usage, where appropriate.

The FILES part gives the file names that are built into the program.

The SEE ALSO part gives pointers to related information.

The DIAGNOSTICS part discusses the diagnostic indications that may be produced.
Messages that are intended to be self-explanatory are not listed.

The WARNINGS part points out potential pitfalls.

The BUGS part gives known bugs and sometimes deficiencies. Occasionally, the suggested
fix is also described.

A table of contents and a permuted index derived from that table precede Section 1. On each
index line, the title of the entry to which that line refers is followed by the appropriate section
number in parentheses. This is important because there is considerable duplication of names
among the sections, arising principally from commands that exist only to exercise a particular
system call. On most systems, all entries are available on-line via the man(1) command, q.v.

March 1984 - 8 - Plexus Sys3 UNIX

HOW TO GET STARTED

This discussion provides the basic information you need to get started on UNIX: how to log in
and log out, how to communicate through your terminal, and how to run a program. (See UNIX
for Beginners by B. W. Kernighan for a more complete introduction to the system.)

Logging in. You must dial up UNIX from an appropriate terminal. UNIX supports full-duplex
ASCII terminals. You must also have a valid user name, which may be obtained (together with
the telephone number(s) of your UNIX system) from the administrator of your system. Common
terminal speeds are 10, 15,30, and 120 characters per second (110, 150,300, and 1,200 baud);
occasionally, speeds of 240, 480, and 960 characters per second (2,400, 4,BOO, and 9,600
baud) are also available. On some UNIX systems, there are separate telephone numbers for
each available terminal speed, while on other systems several speeds may be served by a
single telephone number. In the latter case, there is one "preferred" speed; if you dial in from a
terminal set to a different speed, you will be greeted by a string of meaningless characters (the
login: message at the wrong speed). Keep hitting the "break" or "attention" key until the login:
message appears. Hard-wired terminals usually are set to the correct speed.

Most terminals have a speed switch that should be set to the appropriate speed and a half-/full­
duplex switch that should be set to full-duplex. When a connection (at the speed of the
terminal) has been established, the system types login: and you then type your user name
followed by the "return" key. If you have a password (and you Should!), the system asks for it,
but does not print ("echo") it on the terminal. After you have logged in, the "return", "new-line",
and "line-feed" keys will give exactly the same result.

It is important that you type your login name in lower case if possible; if you type upper-case
letters, UNIX will assume that your terminal cannot generate lower-case letters and that you
mean all subsequent upper-case input to be treated as lower case. When you have logged in
successfully, the shell will type a $ to you. (The shell is described below under How to run a
program.)

For more information, consult login(1) and getty(B), which discuss the login sequence in more
detail, and stty(1), which tells you how to describe the characteristics of your terminal to the
system (profile(5) explains how to accomplish this last task automatically every time you log in).

Logging out. There are two ways to log out:

1. You can simply hang up the phone.
2. You can log out by typing an end-of-file indication (ASCII EOT character, usually typed

as "control-d") to the shell. The shell will terminate and the login: message will appear
again.

How to communicate through your terminal. When you type to UNIX, a gnome deep in the
system is gathering your characters and saving them. These characters will not be given to a
program until you type a "return" (or "new-line"), as described above in Logging in.

UNIX terminal input/output is full-duplex. It has full read-ahead, which means that you can type
at any time, even while a program is typing at you. Of course, if you type during output, the
output will have interspersed in it the input characters. However, whatever you type will be
saved and interpreted in the correct sequence. There is a limit to the amount of read-ahead,
but it is generous and not likely to be exceeded unless the system is in trouble. When the
read-ahead limit is exceeded, the system throws away all the saved characters.

On an input line from a terminal, the character @ "kills" all the characters typed before it. The
character # erases the last character typed. Successive uses of # will erase characters back
to, but not beyond, the beginning of the line; @ and # can be typed as themselves by preceding
them with \ (thus. to erase a \. you need two #s). These default erase and kill characters can

Plexus Sys3 UNIX -9- March 1984

How To Get Started

be changed; see stty(1).

The ASCII DC3 (control-s) character can be used to temporarily stop output. It is useful with CRT
terminals to prevent output from disappearing before it can be read. Output is resumed when a
DC1 (control-q) or a second DC3 (or any other character, for that matter) is typed. The OCt and
DC3 characters are not passed to any other program when used in this manner.

The ASCII DEL (a.k.a. "rubout") character is not passed to programs, but instead generates an
interrupt signal, just like the "break", "interrupt", or "attention" signal. This signal generally
causes whatever program you are running to terminate. It is typically used to stop a long
printout that you don't want. However, programs can arrange either to ignore this signal
altogether, or to be notified when it happens (instead of being terminated). The editor ed(1), for
example, catches interrupts and stops what it is doing, instead of terminating, so that an
interrupt can be used to halt an editor printout without losing the file being edited.

The quit Signal is generated by typing the ASCII FS character. It not only causes a running
program to terminate, but also generates a file with the "core image" of the terminated process.
Quit is useful for debugging.

Besides adapting to the speed of the terminal, UNIX tries to be intelligent as to whether you have
a terminal with the "new-line" function, or whether it must be simulated with a "carriage-return"
and "line-feed" pair. In the latter case, all input "carriage-return" characters are changed to
"line-feed" characters (the standard line delimiter), and a "carriage-return" and "line-feed" pair
is echoed to the terminal. If you get into the wrong mode, the stty(~) command will rescue you.

Tab characters are used freely in UNIX source programs. If your terminal does not have the tab
function, you can arrange to have tab characters changed into spaces during output, and
echoed as spaces during input. Again, the stty(1) command will set or reset this mode. The
system assumes that tabs are set every eight character positions. The tabs(1) command will
set tab stops on your terminal, if that is possible.

How to run a program. When you have succe,ssfully logged into UNIX, a program called the
shell is listening to your terminal. The shell reads the lines you type, splits them into a
command name and its arguments, and executes the command. A command is simply an
executable program. Normally, the shell looks first in your current directory (see The current
directory below) for a program with the given name, and if none is there, then in system
directories. There is nothing special about system-provided commands except that they are
kept in directories where the shell can find them. You can also keep commands in your own
directories and arrange for the shell to find them there.

The command name is the first word on an input line to the shell; the command and its
arguments are separated from one another by space and/or tab characters.

When a program terminates, the shell will ordinarily regain control and type a $ at you to
indicate that it is ready for another command. The shell has many other capabilities, which are
described in detail in sh(1).

The current directory. UNIX has a file system arranged in a hierarchy of directories. When the
system administrator gave you a user name, he or she also created a directory for you
(ordinarily with the same name as your user name, and known as your login or home directory).
When you log in, that directory becomes your current or working directory, and any file name
you type is by default assumed to be in that directory. Because you are the owner of this
directory, you have full permissions to read, write, alter, or destroy its contents. Permissions to
have your will with other directories and files will have been granted or denied to you by their
respective owners, or by the system administrator. To change the current directory use cd(1).

March 1984 - 10 - Plexus Sys3 UNIX

r--.
How To Get Started

Path names. To refer to files not in the current directory, you must use a path name. Full path
names begin with I, which is the name of the root directory of the whole file system. After the
slash comes the name of each directory containing the next sub-directory (followed by a I), until
finally the file name is reached (e.g., lusr/aelfilex refers to file .ilex in directory ae, while ae is
itself a subdirectory of usr; usr springs directly from the root directory). See intro(2) for a
formal defi nition of path name.

If your current directory contains subdirectories, the path names of files therein begin with the
name of the corresponding subdirectory (without a prefixed I). Without important exception, a
path name may be used anywhere a file name is required.

Important commands that modify the contents of files are cp(l), mv(l), and rm(l), which
respectively copy, move (Le., rename), and remove files. To find out the status of files or
directories, use Is(l). Use mkdir(l) for making directories and rmdir(l) for destroying them.

For a fuller discussion of the file system, see the references cited at the beginning of the
INTRODUCTION above. It may also be useful 'to glance through Section 2 of this manual, which
discusses system calls, even if you don't intend to deal with the system at that level.

Writing a program. To enter the text of a source program into a UNIX file, use ed(l). The four
principal languages available under UNIX are C (see cc(l», Fortran (see f77(1», bs (a
compilerlinterpreter in the spirit of Basic, see bs(l», and assembly language (see as(l». After
the program text has been entered with the editor and written into a file (whose name has the
appropriate suffix), you can give the name of that file to the appropriate language processor as
an argument. Normally, the output of the language processor will be left in a file in the current
directory named a.out (if that output is precious, use mv(l) to give it a less vulnerable name). If
the program is written in assembly language, you will probably need to load with it library
subroutines (see Id(l». Fortran and C call the loader automatically; programs written in bs(l)
are interpreted and, therefore, do not need to be loaded.

When you have finally gone through this entire process without provoking any diagnostics, the
resulting program can be run by giving its name to the shell in response to the $ prompt.

If any execution (run-time) errors occur, you will need adb(l) to examine the remains of your
program.

Your programs can receive arguments from the command line just as system programs do; see
exec (2).

Text processing. Almost all text is entered through the editor ed(l). The commands most
often used to write text on a terminal are cat(l), pr(l), and nroff(l). The cat(l) command
simply dumps ASCII text on the terminal, with no processing at all. The pr(l) command
paginates the text, supplies headings, and has a facility for multi-column output. Nroff(l) is an
elaborate text formatting program, and requires careful forethought in entering both the text and
the formatting commands into the input file; it produces output on a typewriter-like terminal.
Troff(l) is very similar to nroff(l), but produces its output on a phototypesetter (it was usetl to
typeset this manual). There are several "macro" packages (espeCially the so-called mm
package) that significantly ease the effort required to use nroff(l) and troff(l); Section 7 entries
for these packages indicate where you can find their detailed descriptions.

Surprises. Certain commands provide inter-user communication. Even if you do not plan to
use them, it would be well to learn something about them, because someone else may aim them
at you. To communicate with another user currently logged in, write (1) is used; mail(l) will
leave a message whose presence will be announced to another user when he or she next logs
in. The corresponding entries in this manual also suggest how to respond to these two
commands if you are their target.

Plexus Sys3 UNIX - 11 - March 1984

How To Get Started

When you log in, a message-of-the-day may greet you before the first $.

March 1984 - 12 - Plexus Sys3 ·UNIX

CONTENTS

1. Commands and Application Programs

introintroduction to commands and application programs
300 .. handle special functions of DASI 300 and 300s terminals
4014 ... paginator for the Tektronix 4014 terminal
450 ... handle special functions of the DASI 450 terminal
accept .. allow/prevent LP requests
aect ... overview of accounting and miscellaneous accounting commands
aectcms ... command summary from per-process accounting records
acctcom .. search and print process accounting file(s)
acctcon ... connect-time accounting
aectmerg ... merge or add total accounting files
aectprc .. process accounting
aectsh .. shell procedures for accounting
adb ...•... debugger
admin .. create and administer SCCS files
ar ... archive and library maintainer
arcv6 ... convert archives to new format
as.Zaooo .. Z8000 assembler
as.68000 ... MC68000 assembler
awk ... pattern scanning and processing language
banner ... make posters
basename , .. deliver portions of path names
bbanner ... print large banner on printer
be .. arbitrary-precision arithmetic language
beopyinteractive block copy
bdiff .. big diff
bfs ... big file scanner
bls .. Iist contents of directory
bs .. a compiler/interpreter for modest-sized programs
cal. ... print calendar
calendar .. reminder service
cat .. concate nate and print files
cb .. C program beautifier
cc ... C compiler
cd .. change working directory
cdc•..................................•...... change the delta commentary of an SCCS delta
chmod ..•.. change mode
chown ..•.. change owner or group
chroot•.................•................................ , change root directory for a command
clear ... clear ternfJnal screen
clri .. clear i-node
cmp ... compare two files
col ...•... filter reverse line-feeds
comb ... : combine SCCS deltas
comm ... select or reject lines common to two sorted files
copytape ... make an image copy of a tape
cp•.......................... , ..•.................... copy, link or move files
cpio•... copy file archives in and out
crash•...•.. examine system images
cref .. make cross-reference listing
cron ... clock daemon

Plexus Sys3 UNIX - 1 - September 1984

Contents

crypt ... encode/decode
csh ... a shell with C-like syntax
csplit .. context split
ct .. call terminal
ctags ... create a tags file
cu .. caII another UNIX system
cut ... cut out selected fields of each line of a file
cw .. prepare constant-width text for troff
date ... print and set the date
dc .. desk calculator
dd .. convert and copy a file
delta ... make a delta (change) to an SCCS file
deroff .. remove nroff/troff, tbl, and eqn constructs
devnm ... device name
elf ... report number of free disk blocks
diction .. print wordy sentences
diff .. differential file comparator
diff3 ... 3-way differential file comparison
diffmk .. mark differences between files
dircmp .. : directory comparison
dnld .. download program files
du ... summarize disk usage
dump ... incremental file system dump
dumpdir ... print the names of files on a dump tape
echo ... , ... echo arguments
ed .. text editor
edit.. .. text editor, variant of the ex editor for new or casual users
efl .. Extended Fortran Language
enable .. enable/disable LP printers
env ... set environment for command execution
eqn .. format mathematical text for nroff or troff
errdead .. extract error records from dump
errdemon ... error-Iogging daemon
errpt ... process a report of logged errors
errstop ... terminate the error-logging daemon
ex .. text editor
expr .. evaluate arguments as an expression
file .. determine file type
find .. find files
fsck .. .file system consistency check and interactive repair
fsdb .. file system debugger
fwtmp .. manipulate wtmp records
gef' ... get a version of an SCCS file
getopt .. parse command options
graph .. draw a graph
greek ... : select terminal filter
grep ... search a file for a pattern
head ... give first few lines of a stream
help .. ask for help
hp .. handle special functions of HP 2640 and 2621-series terminals
hyphen .. find hyphenated words
icpdmp ... take a core image of the ICP and transfer to a host file
id .. print user and group IDs and names

September 1984 - 2 - Plexus Sys3 UNIX

Contents

install ... install commands
join .. relational database operator
kill .. terminate a process
Id .. Iink editor
lex ... generate programs for simple lexical tasks
line ... read one line
link ... exercise link and unlink system calls
lint. ... a e program checker
login .. sign on
logname .. get login name
lorder .. .find ordering relation for an object library
Ip .. send/cancel requests to an LP line printer
Ipadmin ... configure the LP spooling system
Ipd ... Iine printer daemon
Iphold .. hold up print requests, re-enable them
Ipr .. Iine printer spooler
Ipsched ... start/stop the LP request scheduler and move requests
Ipstat. ... print LP status information
Is ... Iist contents of directories
m4 ... macro processor
mail .. send mail to users or read mail
make .. maintain, update, and regenerate groups of programs
man .. print entries in this manual
mesg ... permit or deny messages
mkdir .. make a directory
mkfs ... construct a file system
mknod .. build special file
mkstr ... create an error message file by massaging the e source
mm .. print out documents formatted with the MM macros
mmchek ... check usage of mm macros and eqn delimiters
mmt .. typeset documents, view graphs, and slides
more ... file perusal filter for eRT viewing
mount .. mount and dismount file system
mvdir .. move a directory
ncheck .. generate names from i-numbers
newgrp .. .log in to a new group
news .. print news items
nice ... run a command at low priority
nl .. line numbering filter
nm ... print name list
node .. enable or disable foreign hosts
nohup .. run a command immune to hangups and quits
od .. Octal dump
openup ... keep open key directories and files
pack .. compress and expand files
passwd ... change login password
paste .. merge same lines of several files or subsequent lines of one file
pr .. print files
printenv ... print out the environment
prof .. display profile data
profiler ... operating system profiler
prs .. print an sees file
ps ... report process status

Plexus Sys3 UNIX - 3 - September 1984

Contents

ptx .. permuted index
pwck .. passwordlgroup file checkers
pwd ... working directory name
ratfor .. rational Fortran dialect
reform ... reformat text file
regcmp .. regular expression compile
restor .. incremental file system restore
rjestat.. ... RJE status report and interactive status console
rm ... remove files or directories
rmdel. ... remove a delta from an sees file
rmount .. mount and dismount remote file system
rsh .. restricted shell (command interpreter)
runacct .. run daily accounting
sact ... print current sees file editing activity
sag ... system activity graph
sec ... e compiler for stand-alone programs
secsdiff ... compare two versions of an sees file
script ... make typescript of terminal session
sd!ff ... side-by-side difterenc~ program
sed ... stream editor
send ... gather files andior submit RJE jobs
setmnt .. establish mnttab table
sh .. shell, the standard command programming language
size ... : .. size of an object file
sleep ... suspend execution for an interval
sno .. SNOBOL interpreter
sort .. sort and/or merge files
spell ... · find spelling errors
spline ... interpolate smooth curve
split .. split a file into pieces
st .. synchronous terminal control
strings .. find printable strings in object or other binary file
strip ... remove symbols and relocation bits
sHy ... set the options for a terminal
$lyle ... analyze surface characteristics of a document
su ... become super-user or another user
sum .. sum and count blocks in a file
sync .. update the super block
tabs ... set tabs on a terminal
tail .. deliver the last part of a file
tape ... tape manipulation
tar ... tape file archiver
tbl .. format tables for nroft or troft
tc ... phototypesetter simulator
tee ... pipe fitting
test .. condition evaluation command
time .. time a command
timex .. time a command and generate a system activity report
topq ... put a print request at the head of the queue
touch ... update access and modification times of a file
tp ... manipulate tape archive
tplot. ... graphics filters
tr .. translate characters

September 1984 - 4 - Plexus Sys3 UNIX

Contents

trmtab ... make a new nroft terminal/printer driver table
troff ... typeset or format text
true ... provide truth values
tset .. set terminal modes
tsort .. topological sort
tty ... get the terminal's name
typo .. .find possible typographical errors
umask .. set file-creation mode mask
uname ... print name of current UNIX
unget .. undo a previous get of an SCCS file
uniq .. report repeated lines in a file

. units ... conversion program
update ... periodically update the super block
uuclean ... uucp spool directory Clean-up
uucp ... unix to unix copy
uustat.. .. uucp status inquiry and job control
uusub .. monitor uucp network
uuto .. public UNIX-to-UNIX file copy
uux ... unix to unix command execution
val ... validate SCCS file
vc ... version control
vi ... screen-oriented display editor based on ex
volcopy ... copy file systems with label checking
vpmc .. compiler for the virtual protocol machine
vpmstartIoad the KMC11-B; print VPM traces
vtty ... connect to a remote host via NOS
wait ... , .. await completion of process
wall .. write to all users
wc .. word count
what ... identify sees files
who .. who is on the system
whodo ... who is doing what
write ... write to another user
xargs ... construct argument list(s) and execute command
xref ... cross reference for e programs
xstr .. extract strings from e programs to implement shared strings
yacc .. yet another compiler-compiler

2. System Calls

introintroduction to system calls and error numbers
access ... determine accessibility of a file
acct ... enable or disable process accounting
alarm .. set a process's alarm clock
brk ... change data segment space allocation
chdir .. change working directory
chmod .. change mode of file
chown .. change owner and group of a file
chroot .. change root directory
close .. close a file descriptor
creat ... create a new file or rewrite an existing one
dup .. duplicate an open file descriptor
exec ... execute a file
exit .. terminate process

Plexus Sys3 UNIX - 5 - September 1984

Contents

fentl .. file control
fork .. create a new process
getpid ~ get process, process group, and parent process IDs
getuid ... get real user,effective user, real group, and effective group IDs
ioetl ... control device
kill .. send a signal to a process or a group of processes
link .. Iink to a file
lock ... 1ock a process in memory
locking .. provide exclusive file regions for reading or writing
Iseek .. , move read/write file pOinter
mknod ... make a directory, or a special or ordinary file
mount ... mount a file system
nice .. change priority of a process
open ... open for reading or writing
pause .. suspend process until signal
phys .. allow a process to access physical memory
pipe ... create an interprocess channel
profil .. execution time profile
ptrace .. '" process trace
read .. read from file
rmount ... mount a remote file system directory
rumount ; .. umount a remote file system directory
setpgrp ... set process group 10
setuid .. set user and group IDs
signal .. specify what to do upon receipt of a signal
stat ... get file status
stime .. set time
sync .. update super-block
syscall ... numeric id of system call
time .. get time
times ... get process and child process times
ugrow , ... change system stack limit
ulimit .. , ... get and set user limits
umask ... : set and get file creation mask
umount ... unmount a file system
uname .. get name of current UNIX system
unlink ... remove directory entry
ustat .. get file system statistics
utime .. set file access and modification times
wait.. ... wait for child process to stop or terminate
write ... write on a file

3. Subroutines

intro ... introduction to subroutines and libraries
a64I. .. convert between long and base-64 ASCII
abort ... generate an lOT fault
abs .. integer absolute value
assert ... program verification
atof .. convert ASCII to numbers
bessel .. bessel functions
bsearch ... binary search
cony .. ~ character translation
crypt ... DES encryption

September 1984 - 6 - Plexus Sys3 UNIX

Contents

ctermid .. generate file name for terminal
ctime .. convert date and time to ASCII
ctype ... character classification
curses ... screen functions with optimal cursor motion
cuserid ... character login name of the user
ecvt ... output conversion
end .. Iast locations in program
exp ... exponential, logarithm, power, square root functions
fclose .. close or flush a stream
ferror ... stream status inquiries
floor .. absolute value, floor, ceiling, remainder functions
fopen .. open a stream
fread ... buffered binary input;output
frexp ... split into mantissa and exponent
fseek ... reposition a stream
gamma .. .Iog gamma function
getc ... get character or word from stream
getenv ... value for environment name
getgrent ... get group file entry
getlogin ... get login name
getopt ... get option letter from argv
getpass ... read a password
getpw .. get name from UIO
getpwent ... get password file entry
gets .. get a string from a stream
hypot ... Euclidean distance
13tol... .. convert between 3-byte integers and long integers
logname ... 1ogin name of user
Isearch ... Iinear search and update
malloc ... main memory allocator
mktemp .. make a unique file name
monitor .. prepare execution profile
nlist ... get entries from name list
perror ... system error messages
plot ... graphics interface subroutines
popen .. .initiate I/O tOifrom a process
printf .. 0utput formatters
putc ... put character or word on a stream
putpwent ... write password file entry
puts ... put a string on a stream
qsort ... quicker sort
rand .. random number generator
regex .. regular expression compileiexecute
scanf .. .formatted input conversion
setbu ... assign buffering to a stream
setjmp .. non-local goto
sinh .. hyperbolic functions
sleep .. suspend execution for interval
ssignal ... software signals
stdio ... standard buffered input/output package
string .. string operations
swab , ... swap bytes
system .. issue a shell command

Plexus Sys3 UNIX - 7 - September 1984

Contents

.~
/

termlib ... terminal independent operation routines
tmpfile ... create a temporary file
tmpnam ... create a name for a temporary file
trig ... trigonometric fu nctions
ttyname ... find name of a terminal
ungetc .. ; push character back into input stream

. 4. Special Files

intro ... introduction to special files
dk ... pseudo disk driver
err ... error-Iogging interface
icp : ... Intelligent Communications Processor
imsp ... Intelligent Mass Storage Processor
is .. iSBC disk controller
Ip' ... line printer
mem .. memory devices
mt .. pseudo tape driver
nUll ... the null file
pd .. IMSC disk controller
pp ... paralleI port interface
prf ... operating system profiler
pt .. IMSC cartridge controller
rm ... Cipher Microstreamer tape drive
st ... synchronous terminal interface
swap ~ .. image of the swap area ~
trace .. : .. event-tracing driver
tty' .. general terminal interface
vpm ... the Virtual Protocol Machine

5. File Formats

intro , .. introduction to file formats
a.out .. assembler and link editor output
acct .. per-process accounting file format
ar ... archive file format
checklist.. .. list of file systems processed by fsck
core ... format of core image file
cpio ... format of cpio archive
D·hosts .. configuration file for NOS
dir .. format of directories
dump .. incremental dump tape format
errfile .. error-Iog file format
fs .. format of system volume
fspec ... format specification in text files
group .. group file
holidays ... define holidays and prime time for accounting
inittab .. control information for init
jnode ... t .. format of an finode
mnttab .. mounted file system table
passwd ... password file
plot .. graphics interface ~

pnch .. .1i1e format for card images I
printcap ... printer capability database
profile ... setting up an environment at login time

September 1984 - 8 - Plexus Sys3 UNIX

Contents

sccsfile ... format of SCCS file
termcap .. terminal capability data base
tp ... magnetic tape format
ttytype .. data base of terminal types by port
utmp ... utmp and wtmp entry format
vtconf .. configuration file for NOS Virtual Terminal facility

6. Games

intro .. introduction to games
arithmetic .. provide drill in number facts
back ... the game of backgammon
bj ... the game of black jack
craps .. the game of craps
fish .. the game of fish
hangman ... guess the word
moo ... guessing game
ttt ... tic-tac-toe
wump ... the game of hunt-the-wumpus

7. Miscellaneous Facilities

intro ... introduction to miscellany
ascii ... map of ASCII character set
environ .. user environment
eqnchar .. special character definitions for eqn and neqn
fcntl .. file control options
greek .. graphics for the extended TTY-37 type-box
man ... macros for formatting entries in this manual
mm ... the MM macro package for formatting documents
ms .. macros for formatting manuscripts
mv ... a macro package for making view graphs
regexp .. regular expression compile and match routines
stat ... data returned by stat system call
term ... conventional names
types .. primitive system data types

8. System Maintenance Procedures

intro .. introduction to system maintenance procedures
autoboot ... automatic reboot
crash ... what to do when the system crashes
dconfig .. configure logical disks
dformat ... disk formatter
fbackup ... make a fast tape backup of a file system
filesave ... daily/weekly UNIX file system backup
getty ... set the modes of a terminal
gettytab ... defining speed tables for getty
init .. process control initialization .
makekey .. generate encryption key
mk ... how to remake the system and commands
rc ... system initialization shell script
rje .. RJE (Remote Job Entry) to IBM
sar ... system activity report package
shutdown ... terminate all processing

Plexus Sys3 UNIX - 9 - September 1984

:~i

. I

I
I

I
I
I

~i

.~I .___ I

I
I

I

I
I
I

I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I
I
I
I

I

I

I
I
I
I

PERMUTED INDEX

/functions of HP 2640 and 2621-series terminals ... hp(1)
handle special functions of HP 2640 and 2621-seriesl hp: .. hp(1)

functions of DASI 300 and/ 300, 300s: handle special .. 300(1)
/special functions of DASI 300 and 300s terminals ... 300(1)

of DASI 300 and 300s1 300, 300s: handle special functions 300(1)
functions of DASI 300 and 300s terminals. ispecial ... 300(1)

13tol, Itol3: convert between 3-byte integers and longl ... 13tol(3C)
comparison. ditf3: 3-way differential file ... ditf3(1)

Tektronix 4014 terminal. 4014: paginator for the ... 4014(1)
paginator for the Tektronix 4014 terminal. 4014: .. 4014(1)
of the DASI 450 terminal. 450: handle special functions 450(1)

special functions of the DASI 450 terminal. 450: handle .. 450(1)
long and base-64 ASCII. a641, 164a: convert between a641(3C)

abort: generate an lOT fault. abort(3C)
abs: integer absolute value .. abs(3C)

abs: integer absolute value ... abs(3C)
floor, fabs, ceil, fmod: absolute value, floor,! ... floor(3M)

LP requests accept, reject: allow or prevent accept(1 M)
of a file. touch: update access and modification times touch(1)

utime: set file access and modification times utime(2)
accessibility of a file. access: determine .. access(2)

phys: allow a process to access physical memory .. phys(2)
access: determine accessibility of a file ... access(2)

acctcon: connect-time accounting ... acctcon(1 M)
acctprc: process accounting ... acctprc(1 M)

acctsh: shell procedures for accounting ... acctsh(1 M)
runacct: run daily accounting ... runacct(1 M)

enable or disable process accounting. acct: .. acct(2)
accounting; acct: overview of accounting and miscellaneous acct(1 M)

accounting and miscellaneous accounting commands. lof .. acct(1 M)
holidays and prime time for accounting. define .. holidays(5)

acct: per-process accounting file format. .. acct(5)
acctmerg: merge or add total accounting files ... acctmerg(1 M)

search and print process accounting file(s). acctcom: acctcom(1)
summary from per-process accounting records. -'command acctcms(1 M)

process accounting. acct: enable or disable ... acct(2)
and miscellaneous accounting/ acct: overview of accounting acct(1 M)

file format. acct: per-process accounting acct(5)
per-process accountingJ acctcms: command summary from acctcms(1 M)

process accounting file(s). acctcom: search and print ... acctcom(1)
accounting. acctcon: connect-ti.me .. acctcon(1 M)

accounting files. acctmerg: merge or add total acctmerg(1 M)
acctprc: process accounting acctprc(1 M)

accounting. acctsh: shell procedures for acctsh(1 M)
sin, cos, tan, asin. acos, atan, atan2:1 .. trig(3M)

sag: system activity graph ... sag(1 M)
sar: system activity report package ... sar(8)

command and generate a system activity report. ltime a .. timex(1)
current SCCS file editing activity. sact: print .. sact(1)

adb: debugger. , .. adb(1)
acctmerg: merge or add total accounting files ... acctrnerg(1 M)

SCCS files. admin: create and administer admin(1)
admin: create and administer SCCS files .. admin(1)

alarm: set a process's alarm clock .. alarm(2)
clock. alarm: set a process's alarm alarm(2)

change data segment space allocation. brk, sbrk: ... brk(2)
realloc, calloc: main memory allocator. malloc, free, ... malloc(3C)

physical memory phys: allow a process to access ... phys(2)
accept, reject: allow or prevent LP requests : accept(1 M)

of a document style: analyze surface characteristics style(1)
sort: sort and/or merge files ... sort(1)

send, gath: gather files and/or submit RJE jobs .. send(1C)
link editor output. a.out: assembler and .. a.out(5)

introduction to commands and application programs. intro: intro(1)

Plexus Sys3 UNIX - 1 - September 1984

Permuted Index

maintainer. ar: archive and library .. ar(1)
ar: archive file format. .. ar(5)

language. bc: arbitrary-precision arithmetic bc(1)
cpio: format of cpio archive ... cpio(5)
tp: manipulate tape archive ... tp(1)

maintainer. ar: archive and library .. ar(1)
ar: archive file format. .. ar(5)

VAX-11I7S0i arcv: convert archive files from PDP-11 to arcv(1)
tar: tape file archiver ... tar(1)

cpio: copy file archives in and out. .. cpio(1)
arcv6: convert archives to new format. .. arcv6(1)

from PDP-11 to VAX-11!7SOI arcv: convert archive files .. arcv(1)
format. arcv6: convert archives to new arcv6(1)

swap: image of the swap area ... swap(4)
command. xargs: construct argument list(s) and execute xargs(1)

echo: echo arguments ... echo(1)
expr: evaluate arguments as an expression expr(1)

getopt: get option letter from argv ... : getopt(3C)
bc: arbitrary-precision arithmetic language .. bc(1)

number facts. arithmetic: provide drill in ... arithmetic(6)
expr: evaluate arguments as an expression .. expr(1)

as.6S000: MC6S000 assembler as.6S000(1)
between long and base-64 ASCII. a641, 164a: convert ... a641(3C)

convert date and time to ASCII. !asctime, tzset: ... ctime(3C)
ascii: map of ASCII character set. ... ascii(7)

set. ascii: map of ASCII character ascii(7)
atot, atoi, atol: convert ASCII to numbers ... atot(3C)

and! ctime, localtime, gmtime. asctime, tzset: convert date ctime(3C)
trigonometric! sin, cos, tan, asin, acos, atan, atan2: .. trig(3M)

help: ask tor help ... help(1)
as.68000: MC6S000 assembler .. as.6S000(1)

as.Z8000: Z8000 assembler .. as.Z8000(1)
output. a.out: assembler and link editor ... a.out(5)

assert: program verification. assert(3X)
setbuf: assign buffering to a stream setbuf(3S)

as.Z8000· ZSOOO assembler as.Z8000(1)
sin, cos, tan, asin. acos, atan, atan2: trigonometric! ... trig(3M)

cos, tan, asin, acos, atan, atan2: trigonometric sin, ... trig(3M)
ASCII to numbers. atot, atoi, atol: convert .. atof(3C)

numbers. atof, atoi, atol: convert ASCII to ... atof(3C)
numbers. atof, atoi, atol: convert ASCII to ... atof(3C)

autoboot: automatic reboot. autoboot(8)
autoboot: automatic reboot. .. autoboot(8)

wait: await completion of process wait(1)
processing language. awk: pattern scanning and ... awk(1)

ungetc: push character back into input stream .. ungetc(3S)
back: the game of backgammon back(6)

back: the game of backgammon .. back(6)
daily/weekly UNIX file system backup. filesave, tapesave: filesave(8)

fbackup: make a fast tape backup of a file system. fbackup(8)
banner: make posters. . .. banner(1)

bbanner: print large banner on printer .. bbanner(1)
termcap: terminal capability data base ... termcap(5)

ttytype: data base of terminal types by port ttytype(5)
164a: convert between long and base-64 ASCII. a641, ... 'a641(3C)

screen-oriented display editor based on ex. vi: .. vi(1)
portions of path names. basename, dirname: deliver basename(1)

printer. bbanner: print large banner on bbanner(1)
arithmetic language. be: arbitrary-preciSion .. bc(1)

bcopy: interactive block copy bcopy(1 M)
bdiff: big dlff ... bdiff(~)

cb: C program beautifier .. cb(1)
jO, j1, jn, yO, y1, yn: bessel functions .. bessel(3M)

bfs: big file scanner .. bfs(1)
strings in an object, or other binary, file. ,find the printable strings(1)

fread, fwrite: buffered binary input/output. ... fread(3S)
bsearch: binary search .. bsearch(3C)

remove symbols and relocation bits. strip: .. strip(1)

September 1984 - 2 - Plexus Sys3 UNIX

Permuted Index

bj: the game of black jack .. bj(6)
bj: the game of black jack .. bj(6)

sync: update the super block .. sync(1 M)
bcopy: interactive block copy ... bcopy(1 M)

periodically update the super block. update: ... update(1 M)
df: report number of free disk blocks .. df(1)

sum: sum and count blocks in a file ... sum(1)
bls: list contents of directory bls(1)

unixboot: UNIX startup and boot procedures. unixboot(8)
space allocation. brk, sbrk: change data segment : brk(2)

modest-sized programs. bs: a compiler/interpreter for bs(1)
bsearch: binary search. bsearch(3C)

fread, fwrite: buffered binary inpuVoutput. fread(3S)
stdio: standard buffered inpuVoutput package stdio(3S)
setbuf: assign buffering to a stream. setbuf(3S)

mknod: build special file .. mknod(1 M)
swab: swap bytes. swab(3C)

cc, pec: C compiler ... cc(1)
programs. scc: C compiler for stand-alone .. scc(1)

cb: C program beautifier .. cb(1)
lint: a C program checker .. Iint(1)

xref: cross reference for C programs ... xref(1)
xstr: extract strings from C programs to implement shared/ xstr(1)

message file by massaging the C source. mkstr: create an error mkstr(1)
cal: print calendar ... cal(1)

dc: desk calculator ... dc(1)
cal: print calendar .. cal(1)

calendar: reminder service ~ calendar(1)
syscall: numeric id of system call. syscall(2)

cu: call another UNIX system .. cu(1C)
data returned by stat system call. stat: .. stat(7)

ct: call terminal. .. ct(1 C)
malloc, free, realloc, calloc: main memory allocator malloc(3C)

intro: introduction to system calls and error numbers ... intro(2)
link and unlink system calls. link, unlink: exercise ... link(1 M)

requests to an LP line: Ip, cancel: send/cancel print ... Ip(1)
termcap: terminal capability data base ... termcap(5)

printcap: printer capability database ... printcap(5)
pnch: file format for card images... ... pnch(5)

pt: IMSC cartridge controller .. pt(4)
of the ex editor for new or casual users. ,editor, variant edit(1)

. files. cat: concatenate and print ... cat(1)
cb: C program beautifier .. cb(1)
cc, pcc: C compiler. cc(1)
cd: change working directory cd(1)

commentary of an SCCS delta. cdc: change the delta ... cdc(1)
floor, ceiling,! floor, fabs, ceil, fmod: absolute value, ... floor(3M)

Ifmod: absolute value, floor, ceiling, remainder functions floor(3M)
ugrow: change system stack limit. ... ugrow(2)

delta: make a delta (change) to an SCCS file ... delta(1)
pipe: create an interprocess channel. ... pipe(2)

stream. ungetc: push character back into input ... ungetc(3S)
/isgraph, iscntrl, isascii: character classification ... ctype(3C)

and neqn. eqnchar: special character definitions for eqn eqnchar(7)
user. cuserid: character login name of the 'cuserid(3S)

igetchar, fgetc, getw: get character or word from stream getc(3S)
Iputchar, fputc, putw: put character or word on a stream putc(3S)

ascii: map of ASCII character set. .. ascii(7)
toupper, tolower, toascii: character translation ... conv(3C)

style: analyze surface characteristics of a document style(1)
tr: translate characters. tr(1)

directory. chdir: change working .. chdir(2)
fsck: file system consistency check and interactive repair fsck(1 M)

eqn delimiters. mmchek: check usage of mrtl macros and mrnchek(1)
constant-width text for! cw, checkcw: prepare ... cw(1)
text for nroff or' eqn, neqn, checkeq: format mathematical eqn(1)

lint: a C program checker .. lint(1)
grpck: password/group file checkers. pwck, ... pwck(1 M)

Plexus Sys3 UNIX - 3 - September 1984

Permuted Index

copy file systems with label checking. volcopy. labelit: .. volcopy(1 M) ~
systems processed by fsck. checklist: list of file .. checklist(5) ,

chown. chgrp: change owner or group chown(1)
times: get process and child process times ... times(2)

terminate. wait: wait for child process to stop or .. wait(2)
chmod: change mode .. chmod(1)
chmod: change mode of file : chmod(2)

of a file. chown: change owner and group chown(2)
group. chown. chgrp: change owner or chown(1)

for a command. chroot: change root directory chroot(1 M)
chroot: change root directory chroot(2)

rm: Cipher Microstreamer tape drive rm(4)
iscntrl. isascii: character classification. /isgraph .. ctype(3C)

uuclean: uucp spool directory clean-up: ... uuclean(1 M)
clear: clear terminal screen clear(1)

clri: clear i-node ... clri(1 M)
clear: clear terminal screen .. clear(1)

status/ ferror. feof. clearerr. fileno: stream ... ferror(3S)
csh: a shell with C-like syntax ... csh(1)

alarm: set a process's alarm clock .. alarm(2)
cron: clock daemon .. cron(1 M)

close: close a file descriptor ... close(2)
descriptor. close: close a file .. close(2)

fclose, fflush: close or flush a stream. ... fclose(3S)
clri: clear i-node .. clri(1 M)
cmp: compare two files .. cmp(1)

line-feeds. col: filter reverse ... col(1)
iii comb: combine SCCS deltas comb(1)

comb: combine SCCS deltas .. comb(1)
common to two sorted files. comm: select or reject lines comm(1)

system: issue a shell command. . .. system(3S)
test: condition evaluation command .. test(1)

time: time a command. time(1) "".
activity/ timex: time a command and generate a system timex(1) ,

. nice: run a command at low priority. nice(1)
change root directory for a command. chroot: .. chroot(1 M)

env: set environment for command execution ... env(1)
uux: unix to unix command execution ... uux(1C)

quits. nohup: run a command immune to hangups and nohup(1)
rsh: restricted shell (command interpreter) ... rSh(1)

getopt: parse command options ... getopt(1)
sh: shell. the standard command programming language sh(1)
per-process! acctcms: command summary from ... acctcms(1 M)

argument list(s) and execute command. xargs: construct xargs(1)
install: install commands ... install(1 M)

intro: introduction to commands and applicationl intro(1)
how to remake the system and commands. mk: .. mk(8)
and miscellaneous accounting commands. iof accounting .. acct(1 M)

cdc: change the delta commentary of an SCCS delta cdc(1)
comm: select or reject lines common to two sorted files .. comm(1)

icp: Intelligent Communications Processor icp(4)
diff: differential file comparator .. dlff(1)

cmp: compare two files ... cmp(1)
SCCS file. sccsdiff: compare two versions of an sccsdiff(1)

diff3: 3-way differential file comparison. diff3(1)
dircmp: directory comparison. dircmp(1)

regcmp: regular expression compile .. regcmp(1)
regexp: regular expression compile and match routines regexp(7)
regcmp: regular expression compile/execute. regex .. regex(3X)

cc, pec: C compiler ... cc(1)
programs. scc: C compiler for stand-alone .. scc(1)

protocol machine. vpmc: compiler for the virtual .. vpmc(1 C)
yacc: yet another compiler-compiler ... yacc(1)

modest-sized programs. bs: a compiler/interpreter for ... bs(1)
wait: await completion of process .. wait(1)

pack, pcat, unpack: compress and expand files .. pack(1) "".
cat: concatenate and print files ... cat(1) ~
test: condition evaluation command test(1)

September 1984 - 4 - Plexus Sys3 UNIX

Permuted Index

Virtual Terminal vtconf: configuration file for NOS ... vtconf(5)
Network Operating; D-hosts: configuration file for the .. D-hosts(5)

dconfig: configure logical disks .. dconfig(8)
Ipadmin: configure the LP spooling system Ipadmin(1 M)

vtty: connect to a remote host via NOS vtty(1)
acctcon: connect-time accounting .. acctcon(1 M)

interactive/ fsck: file system consistency check and .. fsck(1 M)
report and interactive status console. rjestat: RJE status rjestat(1 C)

cw, checkcw: prepare constant-width text for troff .. cw(1)
mkfs: construct a file system ... mkfs(1 M)

execute command. xargs: construct argument list(s) and xargs(1)
nroff/troff, tbl, and eqn constructs. deroff: remove ... deroff(1)

Is: list contents of directories .. Is(1)
bls: list contents of directory. bls(1)
csplit: context split. .. csplit(1)

fcntl: file control. ... fcntl(2)
st: synchronous terminal control. ... st(1 M)

vc: version control .. vc(1)
ioctl: control device .. ioctl(2)

inittab: control information for init. ... inittab(5)
init: process control initialization ... init(8)

fcntl: file control options .. fcntl(7)
uucp status inquiry and job control. uustat: .. uustat(1 C)

is: iSBC disk controller ... is(4)
pd: IMSC disk controller ... pd(4)

pt: IMSC cartridge controller ... pt(4)
term: conventional names. term(7)

ecvt, fcvt: output conversion ... ecvt(3C)
units: conversion program ... units(1)

sscanf: formatted input conversion. scanf, fscanf, .. scanf(3S)
dd: convert and copy a file ... dd(1)

PDP-11 to VAX-11/780! arcv: convert archive files from ... arcv(1)
arcv6: convert archives to new format. arcv6(1)

atof, atoi, atol: convert ASCII to numbers ... atof(3C)
integers and! 13tol, Itol3: convert between 3-byte ... 13tol(3C)

base-64 ASCII. a641, 164a: convert between long and ... a641(3C)
19mtime, asctime, tzset: convert date and time tOI ... ctime(3C)
bcopy: interactive block copy ... bcopy(1 M)

dd: convert and copy a file .. dd(1)
cpio: copy file archives in and out. cpio(1)

checking. volcopy, labelit: copy file systems with label volcopy(1 M)
cp, In, mv: copy, link or move files .. cp(1)

copytape: make an image copy of a tape ... copytape(1m)
uulog, uuname: unix to unix copy. uucp, ... uucp(1 C)

public UNIX-to-UNIX file copy. uuto, uupick: ... uuto(1C)
tape. copytape: make an image copy of a copytape(1 m)

file. core: format of core image .. core(5)
core: format of core image file ... core(5)

transfer to a/ icpdmp: take a core image of the ICP and ... icpdmp(1 m)
mem, kmem: core memory ... mem(4)

atan2: trigonometric! sin, cos, tan, asin, acos, atan, .. trig(3M)
functions. sinh, cosh, tanh: hyperbolic .. sinh(3M)

wc: word count. ... wc(1)
sum: sum and count blocks in a file ... sum(1)

files. cp, In, rnv: copy, link or move cp(1)
cpio: format of cpio archive ... cpio(5)

and out. cpio: copy file archives in ... cpio(1)
cpio: format of cpio archive cpio(5)

craps: the game of craps .. craps(6)
craps: the game of craps ... craps(6)
crash: examine system images crash(1 M)

rewrite an existing one. creat: create a new file or .. creat(2)
file. trnpnam: create a name for a temporary trnpnam(3S)

an existing one. creat: create a new file or rewrite .. creat(2)
fork: create a new process ... fork(2)

ctags: create a tags file ... ctags(1)
tmpfile: create a te~porary file ... trnpfile(3S)

massaging the C source. mkstr: create an error message file by mkstr(1)

Plexus Sys3 UNIX - 5 - September 1984

Permuted Index

September 1984

channel. pipe: create an interprocess ... pipe(2) .
files. admin: create and administer SCCS admin(1)

umask: set and get file creation mask. umask(2)
listing. cref: make cross-reference .. cref(1)

cron: clock daemon .. cron(1 M)
programs. xref: cross reference for C ... xref(1)

cref: make cross-reference listing .. cref(1)
more: file perusal filter for CRT viewing .. more(1)

crypt: encode/decode. crypt(1)
encryption. crypt, setkey, encrypt: DES crypt(3C)

csh: a shell with C-like syntax. csh(1)
csplit: context split. ... csplit(1)
ct: call terminal .. ct(1C)
ctags: create a tags file .. ctags(1)

for terminal. ctermid: generate file name ctermid(3S)
asctime, tzset: convert date! ctime, localtime, gmtime, .. ctime(3C)

cu: call another UNIX system cu(1 C)
m, cubic: tic-tac-toe. m(6)

activity. sact: print current SCCS file editing ... sact(1)
uname: print name of current UNIX ... uname(1)
uname: get name of current UNIX system .. uname(2)

optimal cursor motion curses: screen functions with curses(3C)
screen functions with optimal cursor motion curses: .. curses(3C)

spline: interpolate smooth curve .. spline(1 G)
of the user. cuserid: character login name cuserid(3S)

of each line of a file. cut: cut out selected fields ... cut(1)
each line of a file. cut: cut out selected fields of .. cut(1)
constant-width text fori cw, checkcw: prepare .. cw(1)

cron: clock daemon ... cron(1 M)
errdemon: error-logging daemon ... errdemon(1 M)

Ipd: line printer daemon ... Ipd(1c)
terminate the error-logging daemon. errstop: .. errstop(1 M)

runacct: run daily accounting : runacct(1 M)
backup. filesave, tapesave: daily/weekly UNIX file system filesave(8)
/handle special functions of DASI300 and 300s terminals 300(1)

special functions of the DASI450 terminal. :handle 450(1)
prof: display profile data .. prof(1)

termcap: terminal capability data base .. termcap(5)
port ttytype: data base of terminal types by ttytype(5)

call. stat: data returned by stat system stat(7)
brk, sbrk: change data segment space allocation brk(2)

types: primitive system data types. types(7)
printcap: printer capability database ... printcap(5)

join: relational database operator .. join(1)
date: print and set the date .. date(1)

/asctime, tzset: convert date and time to ASCII. .. ctime(3C)
date: print and set the date .. date(1)
dc: desk calculator ... dc(1)
dconfig: configure logical disks dconfig(8)
dd: convert and copy a file .. dd(1)

adb: debugger ... adb(1)
fsdb: file system debugger ... fsdb(1 M)

for accounting. define holidays and prime time holidays(5)
gettytab: defining speed tables for getty : gettytab(8)

eqnchar: special character definitions for eqn and neqn. eqnchar(7)
usage of mm macros and eqn delimiters. mmchek: check .. mmchek(1)

names. basename, dirname: deliver portions of path .. basename(1)
file. tail: deliver the last part of a ... tail(1)

delta commentary of an SCCS delta. cdc: change the ... cdc(1)
file. delta: make a delta (change) to an SCCS delta(1)

delta. cdc: change the delta commentary of an SCCS cdc(1)
rmdel: remove a delta from an sees file ... rmdel(1)
to an sees file. delta: make a delta (change) delta(1)

comb: combine SCCS deltas ... comb(1)
mesg: permit or deny messages .. mesg(1)

tbl, and eqn constructs. deroff: remove nroff/troff, ... deroff(1)
crypt, setkey, encrypt: DES encryption ... crypt(3C)

close: close a file descriptor .. close(2)

- 6 - Plexus Sys3 UNIX

.~.
I

Permuted Index

dup: duplicate an open file descriptor .. dup(2)
dc: desk calculator .. dc(1)

file. access: determine accessibility of a access(2)
file: determine file type .. file(1)

ioctl: control device .. ioctl(2)
master: master device information table ... master(5)

liomem: local device 1/0 memory ... mem(4)
devnm: device name. devnm(1 M)

devnm: device name .. devnm(1 M)
blocks. df: report number of free disk df(1)

dformat: disk formatter ... dformat(8)
the Network Operating System! D-hosts: configuration file for D-hosts(5)

ratfor: rational Fortran dialect. ... ratfor(1)
interactive thesaurus for diction explain: ... diction(1)

diction: print wordy sentences diction(1)
bdiff: big diff .. bdiff(1)

comparator. diff: differential file ... diff(1)
comparison. diff3: 3-way differential file ... diff3(1)

sdiff: side-by-side difference program. .. sdiff(1)
diffmk: mark differences between files ... diffmk(1)

diff: differential file comparator .. diff(1)
diff3: 3-way differential file comparison ... diff3(1)

between files. diffmk: mark differences ... diffmk(1)
dir: format of directories ... dir(5)
dircmp: directory comparison dircmp(1)

dir: format of directories .. dir(5)
Is: list contents of directories .. Is(1)

rm, rmdir: remove files or directories .. rm(1)
openup: keep open key directories and files .. openup(1)

bls: list contents of directory .. bls(1)
cd: change working directory .. cd(1)

chdir: change working directory .. chdir(2)
chroot: change root directory .. chroot(2)

mkdir: make a directory .. mkdir(1)
mvdir: move a directory .. mvdir(1 M)

uuclean: uucp spool directory clean-up ... uuclean(1 M)
dircmp: directory comparison .. dircmp(1)

unlink: remove directory entry ... unlink(2)
chroot: change root directory for a command .. chroot(1 M)

pwd: working directory name .. pwd(1)
ordinary file. mknod: make a directory, or a special or .. mknod(2)

mount a remote file system directory rmount: .. rmount(2)
unmount a remote file system directory rumount: .. rumount(2)

path names. basename, dirname: deliver portions of basename(1)
printers enable, disable: enable or disable LP enable(1)
node: enable or disable foreign hosts .. node(1 M)

enable, disable: enable or disable LP printers ... enable(1)
acct: enable or disable process accounting acct(2)

df: report number of free disk blocks .. df(1)
is: iSBC disk controller .. is(4)

pd: IMSC disk controller .. pd(4)
dk: pseudo disk driver. ... dk(4)

dformat: disk formatter .. dformat(8)
du: summarize disk usage ... du(1)

dconfig: configure logical disks ... : dconfig(8)
mount, umount: mount and dismount file system. mount(1 M)

rmount, rumount: mount and dismount remote file system rmount(1)
vi: screen-oriented display editor based on ex ... vi(1)

prof: display profile data ... prof(1)
hypot: Euclidean distance ... hypot(3M)

dk: pseudo disk driver .. dk(4)
dnld: download program files. dnld(1 m)

surface characteristics of a document style: analyze .. style(1)
MM macros. mm: print out documents formatted with the mm(1)

macro package for formatting documents. mm: the MM ... mm(7)
slides. mmt, mvt: typeset documents, view graphs, and mmt(1)

whodo: who is doing what. .. whodo(1 M)
dnld: download program files .. dnld(1 m)

Plexus Sys3 UNIX - 7 - September 1984

Permuted Index

graph: draw a graph ... graph(1 G)
arithmetic: provide drill in number facts .. arithmetic(6)

rm: Cipher Microstreamer tape drive ... rm(4)
dk: pseudo disk driver ... dk(4)
mt: pseudo tape driver ... mt(4)

trace: event-tracing driver ... trace(4)
make a new nroff terminal/printer driver table trmtab: ... trmtab(1)

du: summarize disk usage ... du(1)
dump: incremental file system dump .. dump(1 M)

od: octal dump .. od(1)
extract error records from dump. errdead: ... errdead(1 M)

format. dump: incremental dump tape dump(S)
dump. dump: incremental file system dump(1 M)

print the names of files on a dump tape. dumpdir: .. dumpdir(1 m)
dump: incremental dump tape format. .. dump(S)

on a dump tape. dumpdir: print the names of files dumpdir(1 m)
descriptor. dup: duplicate an open file ... dup(2)

descriptor. dup: duplicate an open file ... dup(2)
echo: echo arguments .. echo(1)

echo: echo arguments ... echo(1)
ecvt, fcvt: output conversion. ecvt(3C)
ed: text editor .. ed(1)

program. end, etext, edata: last locations in ... end(3C)
ex editor for new or casual! edit: text editor, variant of the edit(1)
sact: print current SCCS file . editing activity ... sact(1)

ed: text editor .. ed(1)
ex: text editor .. ex(1)
Id: link editor .. Id(1)

sed: stream editor .. sed(1)
vi: screen-oriented display editor based on ex ... vi(1)

/text editor, variant of the ex editor for new or casual users edit(1)
for new or casual I edit: text editor, variant of the ex editor edit(1)

luser, real group, and effective group IDs. getuid(2)
and/ Igetegid: get real user, effective user, real group, .. getuid(2)

Language. efl: Extended Fortran .. efl(1)
for a pattern. grep, egrep, fgrep: search a file .. grep(1)
disable LP printers enable, disable: enable or ... enable(1)

node: enable or disable foreign hosts node(1 M)
enable, disable: enable or disable LP printers enable(1)

accounting. acct: enable or disable process ... acct(2)
crypt: encode/decode ... crypt(1)

crypt, setkey, encrypt: DES encryption .. crypt(3C)
crypt, setkey, encrypt: DES encryption ... crypt(3C)

. makekey: generate encryption key. makekey(8)
locations in program. end, etext, edata: last ... end(3C)

!getgrgid, getgrnam, setgrent, endgrent: get group filel ... getgrent(3C)
Igetpwuid, getpwnam, setpwent, endpwent: get password file! getpwent(3C)

nlist: get entries from name list. .. nlist(3C)
man: print entries in this manual. .. man(1)

man: macros for formatting entries in this manual. .. man(7)
putpwent: write password file entry ... putpwent(3C)

unlink: remove directory entry ... unlink(2)
utmp, wtmp: utmp and wtmp entry format. .. utmp(S)

endgrent: get group file entry. Igetgrnam, setgrent, ... getgrent(3C)
endpwent: get password file entry. Igetpwnam, setpwent, getpwent(3C)

rje: RJE (Remote Job Entry) to IBM ... rje(8)
command execution. env: set environment for .. env(1)

environ: user environment. .. environ(7)
environ: user environment. ... environ(7)

printenv: print out the environment. ... printenv(1)
profile: setting up an environment at login time ... profile(S)
execution. env: set environment for command ... env(1)

getenv: value for environment name .. getenv(3C)
character definitions for eqn and neqn .. special .. eqnchar(7)

remove nroff/troff, tbl, and eqn constructs. deroff: ... deroff(1)
check usage of mm macros and eqn delimiters. mmchek: ... mmchek(1)

mathematical text for nroff! eqn, neqn, checkeq: format eqn(1)
definitions for eqn and neqn. eqnchar: special character .. eqnchar(7)

September 1984 - 8 - Plexus Sys3 UNIX

Permuted Index

err: error-logging interface ... err(4)
from dump. errdead: extract error records errdead(1 M)

daemon. errdemon: error-logging ... errdemon(1 M)
format. errfile: error-log file ... errfile(5)

perror, sys_errlist, sys_nerr, errno: system error messages perror(3C)
the C source. mkstr: create an error message file by massaging mkstr(1)

sys_nerr, errno: system error messages. Isys_errlist, perror(3C)
to system calls and error numbers. !introduction intro(2)

errdead: extract error records from dump .. errdead(1 M)
errfile: error-log file format. .. errfile(5)

errdemon: error-logging daemon ... errdemon(1 M)
errstop: terminate the error-logging daemon ... errstop(1 M)

err: error-logging interface .. err(4)
process a report of logged errors. errpt: ... errpt(1 M)

spellout: find spelling errors. spell, spellin, ... spell(1)
find possible typographical errors. typo: .. typo(1)

logged errors. errpt: process a report of ... errpt(1 M)
error-logging daemon. errstop: terminate the ... errstop(1 M)

setmnt: establish mnttab table .. setmnt(1 M)
in program. end, etext, edata: last locations ... end(3C)

hypot: Euclidean distance ... hypot(3M)
expression. expr: evaluate arguments as an ... expr(1)

test: condition evaluation command .. test(1)
trace: event-tracing driver. ... trace(4)

edit: text editor, variant of the ex editor for new or casual; edit(1)
ex: text editor .. ex(1)

display editor based on ex. vi: screen-oriented ... vi(1)
crash: examine system images .. crash(1 M)

reading orl locking: provide exclusive file regions for .. lockf(2)
execlp, execvp: execute aJ execl, execv, execle, execve, exec(2)

execvp: executei execl, execv, execle, execve, execlp, .. exec(2)
execl, execv, execle, execve, execlp, execvp: execute aJ .. exec(2)

execve, execlp, execvp: execute a file. execle, ... exec(2)
construct argument list(s) and execute command. xargs: ... xargs(1)

uux: unix to unix command execution. uux{ 1 C)
set environment for command execution. env: ... env(1)

sleep: suspend execution for an interval. .. sleep(1)
sleep: suspend execution for interval. ... sleep(3C)

monitor: prepare execution profile. monitor(3C)
profil: execution time profile ... profil(2)

execvp: execute a/ execl, execv, execle, execve, execlp, exec(2)
execute! execl, execv, execle, execve, execlp, execvp: ... exec(2)

iexecv, execle, execve, execlp, execvp: execute a file .. exec(2)
system calls. link, unlink: exercise link and unlink .. link(1 M)

a new file or rewrite an existing one. creat: create ... creat(2)
exit: terminate process ... exit(2)

exponential, logarithm,; exp, log, pow, sqrt: ... exp(3M)
pcat, unpack: compress and expand files. pack, ... pack(1)

for diction explain: interactive thesaurus diction(1)
modf: split into mantissa and exponent. frexp, Idexp, .. frexp(3C)
square/ exp, log, pow, sqrt: exponential, logarithm, power, exp(3M)

expression. expr: evaluate arguments as an expr(1)
expr: evaluate arguments as an expression ... expr(1)

regcmp: regular expression compile ... regcmp(1)
routines. regexp: regular expression compile and match regexp(7)

regex, regcmp: regular expression compile/execute. regex(3X)
efl: Extended Fortran Language efl(1)

greek: graphics for the extended TTY-37 type-box .. greek(7)
dump. errdead: extract error records from .. errdead(1 M)

to implement shared/ xstr: extract strings from C programs xstr(1)
value, floor, ceiling,/ floor, fabs, ceil, fmod: absolute ... floor(3M)

true, false: provide truth values .. true(1)
system. fbackup: make a fast tape backup of a file .. fbackup(8)

abort: generate an lOT fault. ... abort(3C)
of a file system. fbackup: make a fast tape backup fbackup(8)

a stream. fclose, fflush: close or flush fclose(3S)
fcntl: file control. .. fcntl(2)
fcntl: file control options ... fcntl(7)

Plexus Sys3 UNIX - 9 - September 1984

Permuted Index

ecvt, fcvt: output conversion. ecvt(3C)
fopen, freopen, fdopen: open a stream ... fopen(3S)

status inquiries. ferror, feof, clearerr, fileno: stream ferror(3S)
fileno: stream status! ferror, feof, clearerr, ... ferror(3S)

head: give first few lines of a stream. ... head(1)
stream. fclose, fflush: close or flush a .. fclose(3S)

word from, getc, getchar, fgetc, getw: get character or getc(3S)
stream. gets, fgets: get a string from a .. gets(3S)

pattern. grep, egrep, fgrep: search a file for a ... grep(1)
chmod: change mode of file .. chmod(2)

core: format of core image file .. core(5)
ctags: create a tags file .. ctags(1)

dd: convert and copy a file .. dd(1)
get: get a version of an sees file .. get(1)

group: group file .. group(5)
link: link to a file .. Iink(2)

mknod: build special file. mknod(1 M)
null: the null file .. nulI(4)

passwd: password file .. passwd(5)
prs: print an sees file .. prs(1)

read: read from file. read(2)
reform: reformat text file .. reform(1)

sccsfile: format of sees file .. sccsfile(5)
size: size of an object file .. size(1)

sum: sum and count blocks in a file .. sum(1)
tmpfile: create a temporary file .. tmpfile(3S)

val: validate sees file .. val(1)
write: write on a file .. write(2)

determine accessibility of a file. access: ... access(2)
times. utlme: set file access and modification : utime(2)

tar: tape file archiver .. tar(1)
cpio: copy file archives in and out. .. cpio(1)

mkstr: create an error message file by massaging the e source mkstr(1)
pwck, grpck: password/group file checkers .. pwck(1 M)
change owner and group of a file. chown: .. chown(2)

diff: differential file comparator .. diff(1)
diff3: 3-way differential file comparison .. diff3(1)

fcntl: file control .. fcntl(2)
fcntl: file control options .. fcntl(7)

uuplck: public UNIX-to-UNIX file copy. uuto, .. uuto(1C)
umask: set and get file creation mask. umask(2)

fields of each line of a file. cut: cut out selected .. cut(1)
a delta (change) to an sces file. delta: make .. delta(1)

close: close a file descriptor .. close(2)
dup: duplicate an open file descriptor. dup(2)

file: determine file type ... file(1)
sact: print current sees file editing activity ... sact(1)

putpwent: write password file entry ... : putpwent(3C)
setgrent, endgrent: get group file entry. Igetgrnam, .. getgrent(3C)

endpwent: get password file entry. isetpwent, ... getpwent(3C)
execlp, execvp: execute a file. lexecv, execle, execve, exec(2)

in an object, or other binary, file. ,'find the printable strings strings(1)
grep, egrep, fgrep: search a file for a pattern .. grep(1)

vtconf: configuration file for NOS Virtual Terminal vtconf(5)
System! O-hosts: configuration file for the Network Operating 'O-hosts(5)

acct: per-process accounting file format. ... acct(5) .
ar: archive file format. ... ar(5)

errfile: error-log file format. ... errfile(5)
pnch: file format for card images ... pnch(5)

. intro: introduction to file formats : intro(5)
of the ICP and transfer to a host file. icpdmp: take a core image icpdmp(1 m)

split: split a file into pieces ... split(1)
or subsequent lines of one file. ,'lines of several files ... paste(1)

or a special or ordinary file .. 'make a directory, ... mknod(2)
mktemp: make a unique file name .. mktemp(3C)

ctermid: generate file name for terminal .. ctermid(3S)
one. creat: create a new file or rewrite an existing .. creat(2)

viewing. more: file perusal filter for eRT .. more(1)

September 1984 - 10 - Plexus Sys3 UNIX

Permuted Index

Iseek: move read,write file pointer .. , Iseek(2)
locking: provide exclusive file regions for reading or' .. lockf(2)

remove a delta from an sees file. rmdel: ... rmdel(1)
bfs: big file scanner .. bfs(1)

two versions of an sees file. sccsdiff: compare .. sccsdiff(1)
stat, fstat: get file status ... stat(2)

mkfs: construct a file system ... mkfs(1 M)
mount: mount a file system. mount(2)

umount: unmount a file system ... umount(2)
tapesave: daily'weekly UNIX file system backup. filesave, filesave(8)
and interactive repair. fsck: file system consistency check fsck(1 M)

fsdb: file system debugger .. fsdb(1 M)
rmount: mount a remote file system directory ... rmount(2)

rumount: unmount a remote file system directory ... rumount(2)
dump: incremental file system dump ... dump(1 M)

make a fast tape backup of a file system. fbackup: .. fbackup(8)
volume. file system: format of system fs(5)

umount: mount and dismount file system. mount, ... mount(1 M)
restor: incremental file system restore .. restor(1 M)

mount and dismount remote file system rmount, rumount: rmount(1)
ustat: get file system statistics .. ustat(2)

mnttab: mounted file system table .. mnttab(5)
fsck. checklist: list of file systems processed by ... checklist(5)
volcopy, labelit: copy file systems with label ... volcopy(1 M)

deliver the last part of a file. tail: .. tail(1)
create a name for a temporary file. tmpnam: ... tmpnam(3S)

and modification times of a file. touch: update access .. touch(1)
file: determine file type ... file(1)

undo a previous get of an sees file. unget: ... unget(1)
report repeated lines in a file. uniq: ... uniq(1)

umask: set file-creation mode mask ... umask(1)
ferror, feof. clearerr, fileno: stream status, .. ferror(3S)

cat: concatenate and print files. cat(1)
cmp: compare two files .. cmp(1)

cp, In, mv: copy, link or move files .. cpO)
dnld: download program files .. dnld(1 m)
. find: find files .. find(1)

intro: introduction to special files .. intro(4)
pr: print files. pr(1)

sort: sort and, or merge files .. sort(1)
what: identify sees files .. what(1)

and print process accounting file(s). acctcom: search ... acctcom(1)
merge or add total accounting files. acctmerg: ... acctmerg(1 M)

create and administer sees files. admin: .. admin(1)
send, gath: gather files and/or submit RJE jobs send(1C)

lines common to two sorted files. comm: select or reject comm(1)
mark differences between files. diffmk: ... diffmk(1)

arcv: convert archive files from PDP-11 tOi .. arcv(1)
format specification in text files. fspec: .. fspec(5)

dumpdir: print the names of files on a dump tape ... dumpdir(1 m)
keep open key directories and files. openup: .. openup(1)

rm, rmdir: remove files or directories ... rm(1)
(merge same lines of several files or subsequent lines ofl paste(1)

unpack: compress and expand files. pack, pcat, ... pack(1)
daily/weekly UNIX file system/ filesave, tapesave: ... : filesave(8)

greek: select terminal filter .. greek(1)
nl: line numbering filter .. nl(1)
more: file perusal filter for eRT viewing .. more(1)

col: filter reverse line-feeds ... col(1)
tplot: graphics filters .. tplot(1 G)

find: find files ... find(1)
find: find files ... find(1)

hyphen: find hyphenated words ... hyphen(1)
ttyname, isatty: find name of a terminal. ... ttyname(3e)

object library. lorder: find ordering relation for an lorder(1)
errors. typo: find possible typographical .. typo(1)

spell, spellin, spellout: find spelling errors .. spell(1)
object, or other' strings: find the printable strings in an strings(1)

Plexus Sys3 UNIX - 11 - September 1984

Permuted Index

fish: the game of fish ... fish(6)
fish: the game of fish .. fish(6)

tee: pipe fitting .. tee(1)
Iceil, fmod: absolute value, floor, ceiling, remainder/ ... floor(3M)

absolute value, floor,/ floor, fabs, ceil, fmod: ... floor(3M)
fclose, fflush: close or flush a stream ... fclose(3S)

ceiling,! floor, fabs, ceil, fmod: absolute value, floor, .. floor(3M)
stream. fopen, freopen, fdopen: open a fopen(3S)

node: enable or disable foreign hosts ... node(1 M)
fork: create a new process. fork(2)

ar: archive file format. ... ar(5)
arcv6: convert archives to new format. ... arcv6(1)
dump: incremental dump tape format. ... dump(5)

errfile: error-log file format. ... errfile(5)
tp: magnetic tape format. ... tp(5)

per-process accounting file format. acct: .. acct(5)
from PDP-11 to VAX-11I7S0 format. /convert archive files arcv(1)

pnch: file format for card images ... pnch(5)
nroff or! eqn, neqn, checkeq: format mathematical text for eqn(1)

inode: format of an inode .. inode(5)
core: format of core image file .. core(5)
cpio: format of cpio archive ... cpio(5)

dir: format of directories. dir(5)
sccsfile: format of SCCS file ... sccsfile(5)

file system: format of system volume .. fs(5)
files. fspec: format specification in text ... fspec(5)

troff. tbl: format tables for nroff or .. tbl(1)
troff, nroff: typeset or format text. .. troff(1)

wtmp: utmp and wtmp entry format. utmp, .. utmp(5)
intro: introduction to file formats .. intro(5)

scanf, fscanf, sscanf: formatted input conversion .. scanf(3S)
mm: print out documents formatted with the MM macros mm(1)

dformat: disk formatter .. dformat(S)
fprintf, sprintf: output formatters. printt, .. printf(3S)

mm: the MM macro package for formatting documents ... mm(7)
manual. man: macros for formatting entries in this ... man(7)

ms: macros for formatting manuscripts ... ms(7)
rattor: rational Fortran dialect. .. rattor(1)
efl: Extended Fortran Language ... efl(1)

formatter$. printt, fprintf, sprintf: output ... printt(3S)
word on a/ putc, putchar, fputc, putw: put character or putc(3S)

stream. puts, fputs: put a string on a ... puts(3S)
input/output. fread, fwrite: buffered binary.: tread(3S)

df: report number of free disk blocks ... df(1)
memory allocator. malloc, free, realloc, calloe: main ... malloc(3C)

stream. topen, freopen, fdopen: open a ... fopen(3S)
mantissa and exponent. frexp, Idexp, modf: split into frexp(3C) .
gets, fgets: get a string from a stream ... gets(3S)
rmdel: remove a delta from an SCCS file ... rmdel(1)

getopt: get option letter from argv ... getopt(3C)
errdead: extract error records from dump ... errdead(1 M)

read: read from file .. read(2)
ncheck: generate names from i-numbers ... ncheck(1 M)

nlist: get entries from name list. .. nlist(3C)
arcv: convert archive files from PDP-11 to VAX-11I7S0/ arcv(1)

.acctcms: command summary from per-process accountingl acctcms(1 M)
getw: get character or word from stream. Igetchar, fgetc, getc(3S)

getpw: get name from UID .. getpw(3C)
input conversion. scanf, fscanf, sscanf: formatted .. scanf(3S)

of file systems processed by fsck. checklist: list .. checklist(5)
check and interactive repair. fsck: file system consistency fsck(1 M)

fsdb: file system debugger ... fsdb(1 M)
reposition a stream. fseek, flell, rewind: .. fseek(3S)

text files. fspec: format specification in fspec(5)
stat, fstat: get file status. stat(2)

stream. fseek, ftell, rewind: reposition a .. fseek(3S)
gamma: log gamma function .. gamma(3M)

jO, j1, jn, yO, y1, yn: bessel functions .. bessel(3M)

September 1984 - 12 - Plexus Sys3 UNIX

Permuted Index

sinh. cosh. tanh: hyperbolic functions .. sinh(3M)
floor. ceiling. remainder functions. absolute value, ... floor(3M)

300, 300s: handle special functions of DASI 300 and 300s/ 300(1)
hp: handle special functions of HP 2640 and! ... hp(1)

terminal. 450: handle special functions of the DASI 450 .. 450(1)
logarithm, power, square root functions.sqrt: exponential, exp(3M)

atan, atan2: trigonometric functions. 'tan, asin, acos, ... trig(3M)
motion curses: screen functions with optimal cursor curses(3C)

input/output. fread, fwrite: buffered binary ... fread(3S)
wtmp records. fwtmp, wtmpfix: manipulate .. fwtmp(1 M)
moo: guessing game .. moo(6)

back: the game of backgammon ... back(6)
bj: the game of black jack ... bj(6)

craps: the game of craps ... craps(6)
fish: the game of fish .. fish(6)

wump: the game of hunt-the-wumpus ... wump(6)
intro: introduction to games .. intro(6)

gamma: log gamma function .. gamma(3M)
gamma: log gamma function gamma(3M)

submit RJE jobs. send, gath: gather files and/or ... send(1C)
jobs. send, gath: gather files andlor submit RJE send(1 C)

timex: time a command and generate a system activity .. timex(1)
abort: generate an lOT fault. ..•.. abort(3C)

makekey: generate encryption key .. makekey(8)
terminal. ctermid: generate file name for .. ctermid(3S)

ncheck: generate names from i-numbers ncheck(1 M)
lexical tasks. lex: generate programs for simple lex(1)

rand, srand: random number generator. .. rand(3C)
gets, fgets: get a string from a stream. .. gets(3S)

get: get a version of an SCCS file. get(1)
ulimit: get and set user limits .. ulimit(2)

getc, getchar, fgetc, getw: get character or word from getc(3S)
nlist: get entries from name list. ... nlist(3C)

umask: set and get file creation mask ... umask(2)
stat, fstat: get file status ... stat(2)

ustat: get file system statistics ... ustat(2)
file. get: get a version of an SCCS , ... get(1)

igetgrnam, setgrent, endgrent: get group file entry. getgrent(3C)
getlogin: get login name .. getiogin(3C)

logname: get login name .. logname(1)
getpw: get name from UID ... getpw(3C)

system. uname: get name of current UNIX .. uname(2)
unget: undo a previous get of an SCCS file ... unget(1)

getopt: get option letter from argv .. getopt(3C)
/getpwnam, setpwent, endpwent: get password file entry ... getpwent(3C)

times. times: get process and child process times(2)
and; getpid, getpgrp, getppid: get process. process group, getpid(2)

:geteuid, getgid, getegid: get real user, effective user,! getuid(2)
tty: get the terminal's name .. tty(1)

time: get time .. time(2)
get character or word froml getc, getchar, fgetc, getw: .. getc(3S)

character or word froml getc, getchar, fgetc, getw: get ... getc(3S)
getuid, geteuid, getgid, getegid: get real user,! ... getuid(2)

name. getenv: value for environment getenv(3C)
real user, effective/ getuid, geteuid. getgid. getegid: get getuid(2)

user,! getuid, geteuid, getgid. getegid: get real ... getuid(2)
setgrent, endgrent: get group/ getgrent, getgrgid, getgrnam, getgrant(3C)
endgrent: get group/ getgrent, getgrgid, getgrnam, setgrent, getgrent(3C)
get groupi getgrent, getgrgid, getgrnam, setgrent, endgrent: getgrent(3C)

getlogin: get login name ... getlogin(3C)
argv. getopt: get option letter from getopt(3C)

getopt: parse command options getopt(1)
getpass: read a password ... getpass(3C)

process group, and! getpid, getpgrp, getppid: get process, getpid(2)
process, process group, and,' getpid, getpgrp, getppid: get getpid(2)

r group, and/ getpid, getpgrp, getppid: get process, process getpid(2)
getpw: get name from UID ... getpw(3C)

setpwent, endpwent: getl' getpwent, getpwuid. getpwnam, getpwent(3C)

Plexus Sys3 UNIX - 13 - September 1984

Permuted Index

get getpwent. getpwuid.
endpwent: get! getpwent.

a stream.
defining speed tables for

terminal.
for getty.

getegid: get real user,!
fromi getc. getchar. fgetc.

head:
converV ctime. localtime.

setjmp. longjmp: non-local
graph: draw a

sag: system activity

tplot:
TTY-37 type-box. greek:

subroutines. plot:
plot:

mvt: typeset documents. view
macro package for making view

extended TTY -37 type-box.

file for a pattern.
chown. chgrp: change owner or

newgrp: log in to a new
:user. effective user. real

;getppid: get process. process
group:

setgrent. endgrent: get

setpgrp: set process
setuid. setgid: set user and

id: print user and
real group. and effective

chown: change owner and
a signal to a process or a

update. and regenerate
checkers. pwck.

ssignal.
hangman:

moo:
DASI300 and 300s! 300.300s:

the DASI450 terminal. 450:
2640 and 2621-series! hp:

nohup: run a command immune to
stream.

topq: put a print request at the
help: ask for

it Iphold. Iprun:
accounting. define

of the ICP and transfer to a
vtty: connect to a remote

node: enable or disable foreign
handle special functions of

of HP 2640 and 2621-seriesl
wump: the game of

sinh. cosh. tanh:

hyphen: find

rie: RJE (Remote Job Entry) to
icpdmp: take a core image of the

Processor.

September 1984

Ivprnsnap. vpmtrace: load the
ICP and transfer to a host file.

setpgrp: set process group

getpwnam. setpwent. endpwent: getpwent(3C)
getpwuid. getpwnam. setpwent. getpwent(3C)
gets. fgets: get a string from gets(3S)
getty. gettytab: .. gettytab(8)
getty: set the modes of a ... getty(8)
gettytab: defining speed tables gettytab(8)
getuid. geteuid. getgid, ... getuid(2)
getw: get character or word getc(3S)
give first few lines of a stream. head(1)
grntime. asctime. tzset: ... ctime(3C)
goto .. setjmp(3C)
graph ... graph(1 G)
graph. sage 1 M)
graph: draw a graph ... graph(1 G)
graphics filters ... tplot(1 G)
graphics for the extended .. greek(7)
graphics interface ... plot(3X)
graphics interface ... plot(5)
graphs, and slides. mmt •... mmt(1)
graphs. mv: a ... mv(7)
greek: graphics for the ... greek(7)
greek: select terminal filter ... greek(1)
grep, egrep. fgrep: search a grep(1)
group .. chown(1)
group ... newgrp(1)
group. and effective group' .. getuid(2)
group. and parent process IDs getpid(2)
group file ... group(5)
group file entry .. :getgrnam •....................................... getgrent(3C)
group: group file ... group(5)
group 10. . .. setpgrp(2)
group IDs. . .. setuid(2)
group IDs and names .. id(1)
group IDs. !effective user .. getuid(2)
group of a file .. chown(2)
group of processes. ,send .. kill(2)
gro,,!ps of programs .. :maintain make(1)
grpck: password:group file ... pwck(1 M)
gsignal: software Signals .. sSignal(3C)
guess the word ... hangman(6)
guessing game ... moo(6)
handle special functions of .. 300(1)
handle special functions of .. 450(1)
handle special functions of HP hp(1)
hangman: guess the word ... hangman(6)
hangups and quits .. nohup(1)
head: give first few lines of a head(1)
head of the queue .. topq(1 M)
help .. help(1)
help: ask for help .. help(1)
hold up print request. re-enable Iphold(1)
holidays and prime time for holidays(5)
host file. /take a core image icpdmp(1 m)
host via NOS .. vtty(1)
hosts .. node(1 M)
HP 2640 and 2621-seriesl hp: hp(1)
hp: handle special functions hp(1)
hunt-the-wumpus .. wump(6)
hyperbolic functions .. sinh(3M)
hyphen: find hyphenated words hyphen(1)
hyphenated words .. hyphen(1)
hypot: Euclidean distance .. hypot(3M)
IBM .. rje(8)
ICP and transfer to a host file icpdmp(1 m)
icp: Intelligent Communications icp(4)
ICP: print VPM traces. vpmstart(1 C)
icpdmp: take a core image of the icpdmp(1 m)
10 ... setpgrp(2)

- 14 - Plexus Sys3 UNIX

Permuted Index

syscall: numeric id of system call .. syscall(2)
and names. id: print user and group IDs id(1)

what: identify SCCS files .. what(1)
id: print user and group IDs and names. id(1)

group, and effective group IDs. ieffective user, real ... getuid(2)
group, and parent process IDs. iget process, process .. getpid(2)
setgid: set user and group IDs. setuid, .. setuid(2)

copytape: make an image copy of a tape ... copytape(1 m)
core: format of core image file ... core(5)

a host file. icpdmp: take a core image of the ICP and transfer to icpdmp(1 m)
swap: image of the swap area ... swap(4)

crash: examine system images ... crash(1 M)
pnch: file format for card images ... pnch(5)
nohup: run a command immune to hangups and qUits nohup(1)

/strings from C programs to implement shared strings ... xstr(1)
pt: IMSC cartridge controller ... pt(4)

pd: IMSC disk controller ... pd(4)
Processor imsp: Intelligent Mass Storage imsp(4)

dump: incremental dump tape format. dump(5)
restore. restor: incremental file system ... restor(1 M)

dump: incremental file system dump dump(1 M)
itgetstr, tgoto, tputs, terminal independent operation routines termlib(3C)

ptx: permuted index .. ptx(1)
Ipstat: print LP status information .. Ipstat(1)

control information for init. inittab: ... inittab(5)
initialization. init: process control .. init(8)

init: process control initialization .. init(8)
rc: system initialization shell script. .. rc(8)

process. popen, pclose: initiate to tOifrom a .. popen(3S)
for init. inittab: control information .. inittab(5)

clri: clear i-node .. clri(1M)
inode: format of an inode .. inode(5)

inode: format of an inode ... inode(5)
fscanf, sscanf: formatted input conversion. scanf, ... scanf(3S)
push character back into input stream. ungetc: ... ungetc(3S)

fread, fwrite: buffered binary inpuVoutput. : ... fread(3S)
stdio: standard buffered input/output package .. stdio(3S)

fileno: stream status inquiries .. feof, clearerr, ... ferror(3S)
uustat: uucp status inquiry and job control. ... uustat(1 C)

install: install commands .. install(1 M)
install: install commands .. install(1 M)

abs: integer absolute value. abs(3C)
111013: convert between 3-byte integers and long integers ... 13tol(3C)

3-byte integers and long integers. 'convert between .. 13tol(3C)
Processor. icp: Intelligent Communications .. icp(4)

Processor imsp: Intelligent Mass Storage .. imsp(4)
bcopy: interactive block copy ... bcopy(1 M)

system consistency check and interactive repair. (file .. fsck(1 M)
rjestat: RJE status report and interactive status console. . .. rjestat(1 C)

diction explain: interactive thesaurus for .. diction(1)
err: error-logging interface ... err(4)

plot: graphics interface ... plot(5)
pp: parallel port interface ... pp(4)

st: synchronous terminal interface ... st(4)
tty: general terminal interface ... : tty(4)

plot: graphics interface subroutines. . .. plot(3X)
spline: interpolate smooth curve ... spline(1 G)

rsh: restricted shell (command interpreter) .. rsh(1)
sno: SNOBOL interpreter .. sno(1)

pipe: create an interprocess channel. ... pipe(2)
sleep: suspend execution for interval. .. sleep(3C)

suspend execution for an interval. sleep: .. sleep(1)
commands and applicationl intro: introduction to .. intro(1)

subroutines and libraries. intro: introduction to .. intro(3)
miscellany. intro: introduction to .. intro(7)

formats. intro: introduction to file .. intro(5)
intro: introduction to games intro(6)

files. intro: introduction to special intro(4)

Plexus Sys3 UNIX - 15 - September 1984

Permuted Index

calls and error numbers. intro: introduction to system intro(2)
maintenance procedures. intro: introduction to system intro(S)

application programs. intro: introduction to commands and intro(1)
intro: introduction to file formats .. intro(5)
intro: introduction to games ... intro(6)
intro: introduction to miscellany ... intro(7)
intro: introduction to special files ... intro(4)

and libraries. intro: introduction to subroutines ... intro(3)
maintenance! intro: introduction to system .. intro(S)

and error numbers. intro: introduction to system calls intro(2)
ncheck: generate names from i-numbers .. ncheck(1 M)

liomem: local device liO memory ... mem(4)
popen, pclose: initiate I/O to/from a process ... popen(3S)

ioctl: control device ... ioctl(2)
abort: generate an lOT fault. .. abort(3C)

is: iSBC disk controller ... is(4)
Jislower, isdigit, isxdigit, isalnum, isspace, ispunct,l ... ctype(3C)

isdigit, isxdigit, isalnum,l isalpha, isupper, islower, .. ctype(3C)
isprint, isgraph, iscntrl, isascii: character' lispunct, .. ctype(3C)

terminal. ttyname, isatty: find name of a .. ttyname(3C)
is: iSBC disk controller .. is(4)

/ispunct, is print, isgraph, iscntrl, isascii: character! .. ctype(3C)
isalpha, isupper, islower, isdigit, isxdigit, isalnum,i ... ctype(3C)
lisspace, ispunct, isprint, isgraph, iscntrl, isascii:! .. ctype(3C)

isalnum,i isalpha, isupper, islower, isdigit, isxdigit, ... ctype(3C)
lisalnum, isspace, ispunct, isprint, isgraph, iscntrl,l .. ctype(3C)
lisxdigit, isalnum, isspace, ispunct, is print, isgraph,l .. ctype(3C)

iisdigit, isxdigit, isalnum, isspace, ispunct, isprint,! .. ctype(3C)
system: issue a shell command .. system(3S)

isxdigit, isalnum,l isalpha, isupper, islower, isdigit, .. ctype(3C)
lisupper, islower, isdigit, isxdigit, isalnum, isspace,/ ... ctype(3C)

news: print news items .. news(1)
functions. jO, j1, jn, yO, y1, yn: bessel .. bessel(3M)

functions. jO, j1, jn, yO, y1, yn: bessel ... bessel(3M)
bj: the game of black jack .. bj(6)

functions. jO, j1, jn, yO, y1, yn: bessel .. bessel(3M)
operator. join: relational database ... join(1)

files. openup: keep open key directories and openup(1)
makekey: generate encryption key ... rnakekey(8)

openup: keep open key directories and files ... openup(1)
process or a group ofl kill: send a signal to a .. kill(2)

kill: terminate a process ... kill(1)
mem, kmem: core memory .. mem(4)

3-byte integers and longl 13tol, Itol3: convert between 13tol(3C)
base-64 ASCII. a641, 164a: convert between long and a641(3C)

copy file systems with label checking. lIabelit: .. volcopy(1 M)
with label checking. volcopy, labelit: copy file systems : volcopy(1 M)

efl: Extended Fortran Language .. eft(1)
scanning and processing language. awk: pattern .. awk(1)

arbitrary-precision arithmetic . language. bc: .. be(1)
standard command programming language. sh: shell, the ... sh(1)

bbanner: print large banner on printer .. bbanner(1)
Id: link editor .. Id(1)

mantissa and exponent. frexp, Idexp, modf: split into ... frexp(3C)
getopt: get option letter from argv ... getopt(3C)

simple lexical tasks. lex: generate programs for .. lex(1)
generate programs for simple lexical tasks. lex: .. lex(1)

to subroutines and libraries. lintroduction ... intro(3)
relation for an object library. ifind ordering .. lorder(1)

ar: archive and library maintainer .. ar(1)
ugrow: change system stack limit. ... ugrow(2)

ulimit: get and set user limits ... ulimit(2)
line: read one line ... line(1)

nl: line numbering filter .. nl(1)
out selected fields of each line of a file. cut: cut ... cut(1)

Ip: line printer ... Ip(4)
print requests to an LP line printer Icancel: send/cancel Ip(1)

Ipd: line printer daemon. . .. Ipd(1 c)

September 1984 - 16 - Plexus Sys3 UNIX

Permuted Index

Ipr: line printer spooler. . .. Ipr(1)
line: read one line : ... line(1)

Isearch: linear search and update ... Isearch(3C)
col: filter reverse line-feeds ... col(1)

files. comm: select or reject lines common to two sorted comm(1)
uniq: report repeated lines in a file .. uniq(1)

head: give first few lines of a stream ... head(1)
of several files or subsequent lines of one file. /same lines paste(1)

subsequenV paste: merge same lines of several files or ... paste(1)
link, unlink: exercise link and unlink system calls link(1 M)

Id: link editor ... Id(1)
a.out: assembler and link editor output. .. a.out(5)

link: link to a file .. link(2)
cp, In, mv: copy, link or move files ... cp(1)

link: link to a file .. link(2)
and unlink system calls. link, unlink: exercise link .. link(1 M)

lint: a C program checker .. lint(1)
liomem: local device I/O memory mem(4)

nlist: get entries from name list. ... nlist(3C)
nm: print name list. ... nm(1)

Is: list contents of directories .. Is(1)
bls: list contents of directory. bls(1)

by fsck. checklist: list of file systems processed checklist(5)
cref: make cross-reference listing. cref(1)
xargs: construct argument list(s) and execute command xargs(1)

files. cp, In, mv: copy, link or move .. cp(1)
vpmstart, vpmsnap, vpmtrace: load the ICP; print VPM/ .. vpmstart(1C)

liomem: local device I/O memory .. mem(4)
tzset: convert date: ctime, localtime, gmtime, asctime, .. ctime(3C)

end, etext. edata: last locations in program ... end(3C)
lock: lock a process in memory .. lock(2)

lock: lock a process in memory lock(2)
regions for reading or writing. locking: provide exclusive file lockf(2)

gamma: log gamma function .. gamma(3M)
newgrp: log in to a new group ... newgrp(1)

logarithm, power, squarei exp, log, pow, sqrt: exponential, .. exp(3M)
Ilog, pow, sqrt: exponential, logarithm, power, square rooV exp(3M)

errpt: process a report of logged errors. . .. errpt(1 M)
dconfig: configure logical disks ... dconfig(8)

getlogin: get login name .. getlogin(3C)
logname: get login name .. logname(1)

cuserid: character login name of the user ... cuserid(3S)
logname: login name of user .. logname(3X)

passwd: change login password .. passwd(1)
login: sign on ... login(1)

setting up an environment at login time. profile: ... profile(5)
lognarne: get login name ... lognarne(1)
logname: login name of user logname(3X)

a641, 164a: convert between long and base-64 ASCII ... a641(3C)
between 3-byte integers and long integers. Iltol3: convert 13tol(3C)

setjmp, longjmp: non-local goto .. setjmp(3C)
for an object library. lorder: find ordering relation lorder(1)

nice: run a command at low priority ... nice(1)
requests to an LP line printer Ip, cancel: send/cancel print Ip(1)

Ip: line printer .. Ip(4)
send/cancel print requests to an LP line printer Ip, cancel: ... Ip(1)

disable: enable or disable LP printers enable, .. enable(1)
IIpshut, Ipmove: start/stop the LP request scheduler and move/ Ipsched(1 M)

accept, reject: allow or prevent LP requests ... accept(1 M)
Ipadmin: configure the LP spooling system .. Ipadmin(1 M)

Ipstat: print LP status information ... Ipstat(1)
spooling system Ipadmin: configure the LP .. Ipadmin(1 M)

Ipd: line printer daemon ... lpd(1c)
request, re-enable it Iphold, Iprun: hold up print ... Iphold(1)

scheduler and/ Ipsched, Ipshut, Ipmove: start/stop the LP request Ipsched(1 M)
Ipr: line printer spooler ... Ipr(1)

re-enable it Iphold, Iprun: hold up print request, Iphold(1)
start/stop the LP requesV Ipsched, Ipshut, Ipmove: .. Ipsched(1 M)

Plexus Sys3 UNIX - 17 - September 1984

Permuted Index

request scheduler and/ Ipsched,
information
directories.

update.
pointer.

integers and long! 13tol,

vpm: The Virtual Protocol
for the virtual protocol

documents. mm: the MM
graphs. mv: a

m4:
mmchek: check usage of mm

manuscripts. ms:
in this manual. man:

formatted with the MM
tp:

send mail to users or read
users or read mail.

mail, rmail: send
malloc, free, realloc, calloc:

regenerate groups off make:
ar: archive and library

intro: introduction to system
. SCCS file. delta:

mkdir:
or ordinary file. mknod:

mktemp:
cref:

regenerate groups off
banner:

key.
main memory allocator.

entries in this manual.
manual.

tp:
fwtrnp, wtmpfix:

tape: tape
frexp, Idexp, modf: split into

man: print entries in this
for formatting entries in this

ms: macros for formatting
ascII:

files. diffmk:
umask: set file-creation mode

set and get file creation
imsp: Intelligent

create an error message file by
table. master:

information table.
regular expression compile and

eqn, neqn, checkeq: format
memory

"mbiomem, mbmem:" Multlbus
"mbiomem, mbmem:"

"mbiomem,
as.68000:

September 1984

"mem, kmem:" core
"mem, kmem:"

"mem,
lock: lock a process in

liomem: local device 110
mem, kmem: core

free, realloc, calloc: main
a process to access physical

sort: sort and/or

Ipshut, Ipmove: start/stop the LP Ipsched(1 M)
Ipstat: print LP status .. Ipstat(1)
Is: list contents of .. Is(1)
Isearch: linear search and ... Isearch(3C)
Iseek: move readlwrite file ... Iseek(2)
Itol3: convert between 3-byte 13tol(3C)
m4: macro processor ... m4(1)
Machine ... vpm(4)
machine. vpmc: compiler ... vpmc(1 C)
macro package for formatting mm(7)
macro package for making view mv(7)
macro processor ... m4(1)
macros and eqn delimiters .. mmchek(1)
macros for formatting ... ms(7)
macros for formatting entries man(7)
macros. iprint out documents mm(1)
magnetic tape format. .. tp(5)
mail. mail, rmail: ... mail(1)
mail, rmail: sendmailto ... mail(1)
mail to users or read mail .. mail(1)
main memory allocator ... malloc(3C)
maintain, update, and ... make(1)
maintainer ... ar(1)
maintenance procedures. intro(8)
make a delta (change) to an delta(1)
make a directory ... mkdir(1)
make a directory, or a special mknod(2)
make a unique file name. mktemp(3C)
make cross-reference listing. cref(1)
make: maintain, update, and make(1)
make posters .. banner(1)
makekey: generate encryption makekey(8)
malloc, free, realloc, calloc: malloc(3C)
man: macros for formatting .. man(7)
man: print entries in this ... man(1)
manipulate tape archive ... tp(1)
manipulate wtmp records ... fwtrnp(1 M)
manipulation .. tape(1)
mantissa and exponent. ... frexp(3C)
manual. .. man(1)
manual. man: macros .. man(7)
manuscripts .. ; ms(7)
map of ASCII character set. ascii(7)
mark differences between .. diffrnk(1)
mask .. umask(1)
mask. umask: ... umask(2)
Mass Storage Processor ... imsp(4)
massaging the C source. mkstr: ~ mkstr(1)
master device information .. master(5)
master: master device .. master(5)
match routines. regexp: ... regexp(7)
mathematical text for nroft or/ eqn(1)
"mbiomem, mbmem:" Multlbus mem(4)
memory ... mem(4)
Multlbus memory ... mem(4)
mbmem:" Multlbus memory mem(4)
MC68000 assembler .. as.68000(1)
"mem, kmem:" core memory mem(4)
mem, kmem: core memory .. mem(4)
memory ... mem(4)
core memory ... mem(4)
kmem:" core memory ... mem(4)
memory ... lock(2)
memory ... mem(4)
memory ... mem(4)
memory allocator. malloc, ... malloc(3C)
memory phys: allow ... phys(2)
merge files .. sort(1)

- 18 - Plexus Sys3 UNIX

Permuted Index

r files. acctmerg: merge or add total accounting acctmerg(1 M)
files or subsequent· paste: merge same lines of several paste(1)

mesg: permit or deny messages mesg(1)
source. mkstr: create an error message file by massaging the C mkstr(1)

mesg: permit or deny messages .. mesg(1)
sys_nerr, errno: system error messages. /sys_errlist, .. perror(3C)

rm: Cipher Microstreamer tape drive .. rm(4)
and commands. mk: how to remake the system mk(8)

mkdir: make a directory ... mkdir(1)
mkfs: construct a file system. mkfs(1 M)
mknod: build special file ... mknod(1 M)

special or ordinary file. mknod: make a directory, or a mknod(2)
file by massaging the C source. mkstr: create an error message mkstr(1)

name. mktemp: make a unique file mktemp(3C)
formatting documents. mm: the MM macro package for .. mm(7)

mmchek: check usage of mm macros and eqn delimiters mmchek(1)
documents formatted with the MM macros. mm: print out .. mm(1)

formatted with the MM macros. mm: print out documents ... mm(1)
formatting documents. mm: the MM macro package for mm(7)

macros and eqn delimiters. mmchek: check usage of mm mmchek(1)
view graphs, and slides. mmt, mvt: typeset documents, mmt(1)

table. mnttab: mounted file system mnttab(5)
setmnt: establish mnttab table .. setmnt(1 M)

chmod: change mode .. chmod(1)
umask: set file-creation mode mask ... umask(1)

chmod: change mode of file ... chmod(2)
tset: set terminal modes... ... tset(1)

getty: set the modes of a terminal. ... getty(8)
bs: a compiler;interpreter for modest-sized programs ... bs(1)

exponent. frexp, Idexp, modf: split into mantissa and frexp(3C)
utime: set file access and modification times ... utime(2)
touch: update access and modification times of a file ... touch(1)

profile. monitor: prepare execution .. monitor(3C)
uusub: monitor uucp network ... uusub(1 M)

moo: guessing game .. moo(6)
viewing. more: file perusal filter for CRT more(1)

functions with optimal cursor motion curses: screen ... curses(3C)
mount: mount a file system .. mount(2)

directory rmount: mount a remote file system rmount(2)
system. mount, umount: mount and dismount file ... mount(1 M)

system rmount, rumount: mount and dismount remote file rmount(1)
mount: mount a file system .. mount(2)

dismount file system. mount, umount: mount and .. mount(1 M)
mnttab: mounted file system table .. mnttab(5)

mvdir: move a directory ... mvdir(1 M)
cp, In, mv: copy, link or move files .. cp(1)

Iseek: move read/write file pointer Iseek(2)
the lP request scheduler and move requests ilpmove: start/stop Ipsched(1M)

manuscripts. ms: macros for formatting .. ms(7)
mt: pseudo tape driver ... mt(4)

view graphs. mv: a macro package for making mv(7)
cp, In, mv: copy, link or move files cp(1)

mvdir: move a directory ... mvdir(1 M)
graphs, and slides. mmt, mvt: typeset documents, view mmt(1)

dumpdir: print the names of files on a dump tape dumpdir(1 m)
i-numbers. ncheck: generate names from ncheck(1 M)

mathematical text fort eqn, neqn, checkeq: format ... eqn(1)
definitions for eqn and neqn. Ispecial character .. eqnchar(7)

uusub: monitor uucp network .. uusub(1 M)
/configuration file for the Network Operating System (NOS) O-hosts(5)

newgrp: log in to a new group newgrp(1)
news: print news items .. news(1)

news: print news items ... news(1)
process. nice: change priority of a ... nice(2)
priority. nice: run a command at low nice(1)

nl: line numbering filter ... nl(1)
list. nlist: get entries from name nlist(3C)

nm: print name list. ... nm(1)

Plexus Sys3 UNIX - 19 - September 1984

Permuted Index

hosts node: enable or disable foreign node(1 M) ~
hangups and quits, nohup: run a command immune to nohup(1)'"

seijmp. longjmp: non-local goto. setjmp(3C)
for the Network Operating System (NOS) /configuration file .. 0-hosts(5)

vtconf: configuration file for NOS Virtual Terminal ... vtconf(5)
connect to a remote host via NOS vtty: .. vtty(1)

tbl: format tables for "roft or troft ... tbl(1)
format mathematical text for nroft or troft.'checkeq: .. eqn(1)

table trmtab: make a new nroft terminal!printer driver ... trrntab(1)
troft. nroft: typeset or format text. troft(1)

constructs. deroft: remove nroft/troft. tbl. and eqn .. deroft(1)
null: the null file ... null(4)

null: the null file ... nUII(4)
nl: line numbering filter ... nl(1)

syscall: numeric id of system call ... syscall(2)
size: size of an object file ... size(1)

find ordering relation for an object library. lorder: .. lorder(1)
!find the printable strings in an object. or other binary, file ... strings(1)

ad: octal dump .. od(1)
ad: octal dump .. od(1)

fopen. freopen, 'dopen: open a stream ... fopen(3S)
dup: duplicate an open file descriptor, .. dup(2)

open: open for reading or writing ... open(2)
openup: keep open key directories and files openup(1)

writing. open: open for reading or .. open(2)
and flies. openup: keep open key directories openup(1)

!file for the Network Operating System (NOS) ... 0-hosts(5)
prf: operating system profiler ... prf(4)

Iprfdc. prfsnap. prfpr: operating system profiler. profiler(1 M)
tputs. terminal independent operation routines. Itgoto, .. termlib(3C)

strcspn. strtok: string operations. istrpbrk. strspn string(3C)
join: relational database operator ... join(1)

curses: screen fun~:~~;t:~~ ~~!:~~\;~~:~;o~:;;:·::: ~~~~~~gg) ~
fcntl: file control options ... fcntl(7)

getopt: parse command options ... getopt(1)
stty: set the options for a terminal. .. stty(1)

object library. lorder: find ordering relation for an ... lorder(1)
a directory. or a special or ordinary file, mknod: make .. mknod(2)
assembler and link editor output. a.out: .. a.out(5)

ecvt. fcvt: output conversion ... ecvt(3C)
printf, fprlntf, sprintf: output formatters .. printf(3S)

miscellaneous" aect: overview of accounting and acct(1 M)
chown: change owner and group of a file ... chown(2)

chown, chgrp: change owner or group ... chown(1)
and expand files. pack, peat, unpack: compress pack(1)

sar: system activity report package ... sar(S)
documents. mm: the MM macro package for formatting ... mm(7)

graphs. rnv: a macro package for making view ... mv(7)
standard buftered input'output package. stdio: ... stdio(3S)

4014 terminal. 4014: paginator for the Tektronix ... 4014(1)
pp: parallel port interface .. pp(4)

process, process group, and parent process 105. Iget .. getpid(2)
getopt: parse command options. getopt(1)

passwd: change login password passwd(1)
passwd: password file .. passwd(5)

getpass: read a password... .. getpass(3C)
passwd: change login password ... passwd(1)

passwd: password file ... passwd(5)
/setpwent. endpwent: get password file entry. getpwent(3C)

putpwent: write password file entry ... putpwent(3C)
pwck. grpck: password/group file checkers pwck(1 M)

several files or subsequent! paste: merge same lines of paste(1)
dirname: deliver portions of path names. basename ... basename(1)

fgrep: search a file for a pattern. grep. egrep, .. grep(1)
processing language. awk: pattern scanning and ... awk(1) ~,

signal. pause: suspend process until pause(2),
expand files. pack. pcat. unpack: compress and pack(1)

September 1984 - 20 - Plexus Sys3 UNIX

Permuted Index

cc, pcc: C compiler. .. cc(1)
process. popen, pclose: initiate 1/0 to/from a popen(3S)

pd: IMSC disk controller ... pd(4)
Iconvert archive files from PDP-11 to VAX-11I7BO format. arcv(1)

block. update: periodically update the super update(1 M)
mesg: permit or deny messages .. mesg(1)

. ptx: . permuted index ... ptx(1)
acctcms: command summary from per-process accountingl .. acctcms(1 M)

format. acct: per-process accounting file .. acct(5)
errno: system error messages. perror, sys_errlist, sys_nerr, perror(3C)

more: file perusal filter for CRT viewing more(1)
tc: phototypesetter simulator ... tc(1)

physical memory phys: allow a process to access phys(2)
phys: allow a process to access physical memory ... phys(2)

split: split a file into pieces... ... split(1)
channel. pipe: create an interprocess pipe(2)

tee: pipe fitting .. tee(1)
subroutines. plot: graphics interface ... plot(3X)

images.
Iseek: move read/write file

to/from a process.
pp: parallel

data base of terminal types by
basename, dirname: deliver

banner: make
logarithm, power,! exp, log,

/sqrt: exponential. logarithm,

for trott. cw, checkcw:
monitor:

accept, reject: allow or
unget: undo a

profiler.
operating/ prfld, prfstat.

prfsnap. prfpr: operating!
.'prfstat, prfdc. prfsnap.

system prfld. prfstat, prfdc,
prfpr: operating/ prfld.

define holidays and
types:

prs:
date:

cal:
editing activity. sact:

man:
cat: concatenate and

pr:
bbanner:

Ipstat:
nm:

uname:
news:

with the MM macros. mm:
printenv:

file(s). acctcom: search and
queue topq: put a

Iphold. Iprun: hold up
printer Ip. cancel: send/cancel

dump tape. dumpdir:
names. id:

vpmtrace: load the ICP:
diction:

or other/ strings: find the
database

environment.
bbanner: print large banner on

Plexus Sys3 UNIX

plot: graphics interface ... plot(5)
pnch: file format for card .. pnch(5)
pointer ... Iseek(2)
popen, pclose: initiate 1:0 .. popen(3S)
port interface ... pp(4)
port ttytype: ... ttytype(5)
portions of path names .. basename(1)
posters ... banner(1)
pow, sqrt: exponential, ... exp(3M)
power, square root functions exp(3M)
pp: parallel port interface ... pp(4)
pr: print files .. pr(1)
prepare constant-width text cw(1)
prepare execution profile ... monitor(3C)
prevent lP requests : accept(1 M)
previous get of an SCCS file. unget(1)
prf: operating system .. prf(4)
prfdc, prfsnap, prfpr: ... profiler(1 M)
prfld, prfstat. prfdc, ... profiler(1 M)
prfpr: operating systel'Tll ... profiler(1 M)
prfsnap, prfpr: operating .. profiler(1 M)
prfstat, prfdc, prfsnap, .. profiler(1 M)
prime time for accounting .. holidays(5)
primitive system data types. types(7)
print an SCCS file ... prs(1)
print and set the date ... date(1)
print calendar .. cal(1)
print current SCCS file ... sact(1)
print entries in this manual ... man(1)
print files. cat(1)
print files .. pr(1)
print large banner on printer. bbanner(1)
print lP status information ... Ipstat(1)
print name list. .. nm(1)
print name of current UNIX .. uname(1)
print news items ... , news(1)
print out documents formatted mm(1)
print out the environment. .. printenv(1)
print process accounting .. acctcom(1)
print request at the head of the topq(1 M)
print request, re-enable it ... Iphold(1)
print requests to an lP line Ip(1)
print the names of files on a dumpdir(1 m)
print user and group IDs and id(1)
print VPM traces .. vpmsnap, vpmstart(1 C)
print wordy sentences .. diction(1)
printable strings in an object, strings(1)
printcap: printer capability .. printcap(5)
printenv: print out the ... printenv(1)
printer. bbanner(1)

- 21 - September 1984

Permuted Index

.Ip: line printer .. Ip(4)
printcap: printer capability database ... printcap(5)
Ipd: line printer daemon ... Ipd(1c)

print requests to an LP line printer Ip, cancel: send/cancel Ip(1)
Ipr: line printer spooler ... Ipr(1)

disable: enable or disable LP printers enable, .. enable(1)
output formatters. printf, fprintf, sprintf: .. printf(3S)

nice: run a command at low priority .. nice(1)
nice: change priority of a process .. nice(2)

exit: terminate process .. exit(2)
fork: create a new process .. fork(2)

kill: terminate a process .. kill(1)
nice: change priority of a process .. nice(2)
wait: await completion of process .. wait(1)

errors. errpt: process a report of logged .. errpt(1 M)
acct: enable or disable process accounting. acct(2)

acctprc: process accounting .. acctprc(1 M)
acctcom: search and print process accounting file(s) .. acctcom(1)

times. times: get process and child process ... times(2)
initialization. init: process control ... init(8)

/getpgrp, getppid: get process, process group, and parenti getpid(2)
setpgrp: set process group ID .. setpgrp(2)

process group, and parent process IDs. /get process, .. getpid(2)
lock: lock a process in memory ... lock(2)

kill: send a signal to a process or a group ofl .. kill(2)
pclose: Initiate I/O to/from a process. popen, ... popen(3S)

getpid, getpgrp, getppid: get process, process group, and/ getpid(2)
ps: report process status .. ps(1)

times: get process and child process times .. times(2)
phys: allow a process to access physical memory phys(2)

wait: wait for child process to stop or terminate wait(2)
ptrace: process trace .. ptrace(2)

pause: suspend process until signal. .. pause(2)
list of file systems processed by fsck. checklist: checklist(S)

to a process or a group of processes. /send a signal ... kill(2)
shutdown: terminate all processing ... shutdown(8)

awk: pattern scanning and processing language .. awk(1)
icp: Intelligent Communications Processor .. icp(4)
imsp: Intelligent Mass Storage Processor .. imsp(4)

m4: macro processor .. m4(1)
alarm: set a process's alarm clock ... alarm(2)

prof: display profile data. prof(1)
profile. profil: execution time .. profil(2)

monitor: prepare execution profile ... monitor(3C)
profil: execution time profile ... profil(2)

prof: display profile data .. prof(1)
environment at login time. profile: setting up an ... profile(5)

prf: operating system profiler ... prf(4)
prfpr: operating system profiler. Iprfdc, prfsnap, ... profiler(1 M)

dnld: download program files ... dnld(1 m)
shell, the standard command programming language. sh: sh(1)

xstr: extract strings from C programs to implementsharedl xstr(1)
vpm: The Virtual Protocol Machine .. vpm(4)

vpmc: compiler for the virtual protocol machine .. vpmc(1C)
arithmetic: provide drill in number facts. arithmetic(6)

for reading or writing. locking: provide exclusive file regions lockf(2)
true, false: provide truth values .. true(1)

prs: print an SCCS file ... prs(1)
ps: report process status ... ps(1)

dk: pseudo disk driver .. dk(4)
mt: pseudo tape driver ... mt(4)

pt: IMSC cartridge controller pt(4)
ptrace: process trace. ptrace(2)
ptx: permuted index .. ptx(1)

stream. ungetc: push character back into input ungetc(3S)
of the queue topq: put a print request at the head topq(1 M)

put character or word on ai putc, putchar, fputc, putw: .. putc(3S)
character or word on ai putc, putchar, fputc, putw: put ... putc(3S)

September 1984 - 22- Plexus Sys3 UNIX

Permuted Index

entry. putpwent: write password file putpwent(3C)
stream. puts, fputs: put a string on a puts(3S)

aJ putc, putchar, fputc, putw: put character or word on•.................. putc(3S)
file checkers. pwck, grpck: password/group pwck(1 M)

pwd: working directory name pwd(1)
qsort: quicker sort. qsort(3C)

print request at the head of the queue topq: put a ... topq(1 M)
qsort: quicker sort. qsort(3C)

command immune to hangups and quits. nohup: run a ... nohup(1)
generator. rand, srand: random number rand(3C)

rand, srand: random number generator ... rand(3C)
dialect. ratfor: rational Fortran .. ratfor(1)
ratfor: rational Fortran dialect ... ratfor(1)

shell script. rc: system initialization ... rc(8)
getpass: read a password ... getpass(3C)

read: read from file ... read(2)
rmail: sendmailtousersorreadmail.mail •... mail(1)

line: read one line ... line(1)
read: read from file ... read(2)

open: open for reading or writing .. open(2)
exclusive file regions for reading or writing. /provide .. lockf(2)

Iseek: move read/write file pointer .. Iseek(2)
allocator. malloc, free, realloc, calloc: main memory malloc(3C)

autoboot: automatic reboot. ... autoboot(8)
specify what to do upon receipt of a signal. signal: ... signal(2)

from per-process accounting records. icommand summary acctcms(1 M)
errdead: extract error records from dump ... errdead(1 M)

wtmpfix: manipulate wtmp records. fwtmp, ... fwtmp(1 M)
Iprun: hold up print request, re-enable it Iphold, ... Iphold(1)

xref: cross reference for C programs .. xref(1)
reform: reformat text file ... reform(1)

reform: reformat text file .. reform(1)
compile. regcmp: regular expression regcmp(1)

compile/execute. regex, regcmp: regular expression regex(3X)
make: maintain, update, and regenerate groups of programs make(1)
expression compileiexecute. regex, regcmp: regular ... regex(3X)
compile and match routines. regexp: regular expression .. regexp(7)

locking: provide exclusive file regions for reading or writing lockf(2)
regex, regcmp: regular expressioni ... regex(3X)

regcmp: regular expression compile .. regcmp(1)
match routines. regexp: regular expression compile and regexp(7)

requests accept, reject: allow or prevent lP ... accept(1 M)
sorted files. comm: select or reject lines common to two .. comm(1)

lorder: find ordering relation for an object! ... lorder(1)
join: relational database operator•............ join(1)

strip: remove symbols and relocation bits .. strip(1)
value, floor, ceiling, remainder functions. labsolute floor(3M)

commands. mk: how to remake the system and ... mk(8)
calendar: reminder service ... calendar(1)

rmount: mount a remote file system directory rmount(2)
rumount: unmount a remote file system directory rumount(2)

rumount: mount and dismount remote file system rmount, .. rmount(1)
vtty: connect to a remote host via NOS .. vtty(1)

rje: RJE (Remote Job Entry) to IBM .. rje(8)
file. rmdel: remove a delta from an SCCS rrndel(1)

unlink: remove directory entry ... unlink(2)
rm, rrndir: remove files or directories. rm(1)

eqn constructs. deroff: remove nroffltroff, tbl, and .. deroff(1)
bits. strip: remove symbols and relocation strip(1)

check and interactive repair. /system conSistency fsck(1 M)
uniq: report repeated lines in a file .. uniq(1)

console. rjestat: RJE status report and Interactive status rjestat(1C)
blocks. df: report number of free disk•................................ df(1)

errpt: process a report of logged errors. errpt(1 M)
sar: system activity report package .. sar(8)

ps: report process status ... ps(1)
file. uniq: report repeated lines in a ... uniq(1)

and generate a system activity report. timex: time a command timex(1)

Plexus Sys3 UNIX - 23 - September 1984

Permuted Index

fseek, ftell, rewind: reposition a stream ... fseek(3S)
topq: put a print request at the head of the queue topq(1 M)

Iphold, Iprun: hold up print request, re-enable it ... Iphold(1)
/Ipshut, Ipmove: starVstop the LP request scheduler and move/ Ipsched(1 M)

reject: allow or prevent LP requests accept, ... accept(1 M)
the LP request scheduler and move requests ilpmove: starVstop Ipsched(1 M)

Ip, cancel: send/cancel print requests to an LP line printer Ip(1)
system restore. restor: incremental file .. restor(1 M)

incremental file system restore. restor: .. restor(1 M)
interpreter). rsh: restricted shell (command .. rsh(1)

stat: data returned by stat system call stat(7)
col: filter reverse line-feeds ... col(1)

fseek, ftell, rewind: reposition a stream fseek(3S)
creat: create a new file or rewrite an existing one ... creat(2)
gather files and/or submit RJE jobs. send, gath: .. send(1 e)

rje: RJE (Remote Job Entry) to IBM rje(S) .
IBM. rje: RJE (Remote Job Entry) to rje(S) .

interactive statusl rjestat: RJE status report and .. rjestat(1 e)
interactive status console. rjestat: RJE status report and rjestat(1 e)

drive. rm: eipher Microstreamer tape rm(4)
directories. rm, rmdir: remove files or ... rm(1)

read mail. mail, rmail: sendmailtousersor mail(1)
sees file. rmdel: remove a delta from an rmdel(1)

directories.' rm, rmdir: remove files or ... rm(1)
system directory rmount: mqunt a remote file rmount(2)

dismount remote file system rmount, rumount: mount and rmount(1)
chroot: change root directory ... chroot(2)
chroot: change root directory for a command chroot(1 M)

logarithm, power, square root functions. /exponential, exp(3M)
expression compile and match routines. regexp: regular ... regexp(7)
terminal independent operation routines. ;tgetstr, tgoto, tputs, termlib(3e)

interpreter). rsh: restricted shell (command rSh(1)
remote file system rmount, rumount: mount and dismount rmount(1)

system directory rumount: unmount a remote file rumount(2)
nice: run a command at low priority nice(1)

hang ups and quits. nohup: run a command immune to .. nohup(1)
runacct: run daily accounting ... runacct(1 M)

runacct: run daily accounting runacct(1 M)
editing activity. sact: print current sees file ; .. sact(1)

sag: system activity graph ... sag(1 M)
package. sar: system activity report .. sar(S)

space allocation. brk, sbrk: change data segment brk(2)
formatted input conversion. scanf, fscanf, sscanf: .. scanf(3S)

bfs: big file' scanner ... bfs(1)
language. awk: pattern scanning and processing ... awk(1)
stand-alone programs. scc: e compiler for ... scc(1)

the delta commentary of an sees delta. cdc: change .. cdc(1)
comb: combine sees deltas ... comb(1)

get: get a version of an sees file. get(1)
prs: print an sees file ... prs(1)

rmdel: remove a delta from an sees file ... rmdel(1)
sccsfile: format of sees file ... sccsfile(5)

val: validate sees file ... val(1)
make a delta (change) to an sees file. delta: ... delta(1)

sact: print current sees file editing activity .. sact(1)
compare two versions of an sees file. sccsdiff: .. sccsdiff(1)

undo a previous get of an sees file. unget: ... unget(1)
admin: create and administer sees files ... admin(1)

what: identify sees files ... what(1)
of an sees file. sccsdiff:compare two versions sccsdiff(1) .

sccsfile: format of sees file sccsfile(5)
IIpmove: starVstop the LP request scheduler and move requests Ipsched(1 M)

clear: clear terminal screen .. clear(1)
cursor motion curses: screen functions with optimal curses(3C)

based on ex. vi: screen-oriented display editor vi(1)
terminal session. script: make typescript of ... script(1)

system initialization shell script. rc: ... rc(S)
program. sdiff: side-by-side difference sdiff(1)

September 1984 - 24 - Plexus Sys3 UNIX

Permuted Index

bsearch: binary search .. bsearch(3C)
grep, egrep, fgrep: search a file for a pattern ... grep(1)

accounting file(s). acctcom: search and print process ... acctcom(1)
Isearch: linear search and update ... Isearch(3C)

sed: stream editor ... sed(1)
brk. sbrk: change data segment space allocation .. brk(2)

to two sorted files. comm: select or reject lines common comm(1)
greek: select terminal filter .. greek(1)

of a file. cut: cut out selected fields of each line .. cut(1)
a group of processes. kill: send a signal to a process or kill(2)

and/or submit RJE jobs. send. gath: gather files ... send(1 C)
mail. mail. rmail: sendmailtousersorread ... mail(1)

LP line printer Ip. cancel: send/cancel print requests to an Ip(1)
diction: print wordy sentences .. diction(1)

make typescript of terminal session. script: ... script(1)
tset: set terminal modes ... tset(1)

stream. setbuf: assign buffering to a setbuf(3S)
IDs. setuid. setgid: set user and group ... setuid(2)

getgrent. getgrgid. getgrnam, setgrent, endgrent: get group/ getgrent(3C)
goto. setjmp, longjmp: non-local ... se~mp(3C)

encryption. crypt, setkey, encrypt: DES .. crypt(3C)
table. setmnt: establish mnttab .. setmnt(1 M)

setpgrp: set process group 10 setpgrp(2)
getpwent, getpwuid. getpwnam. setpwent. endpwent: get! ... getpwent(3C)

login time. profile: setting up an environment at profile(5)
group IDs. setuid. setgid: set user and setuid(2)

command programming language. sh: shell. the standard .. sh(1)
from C programs to implement shared strings. 'extract strings xstr(1)

system: issue a shell command .. system(3S)
rsh: restricted shell (command interpreter) rsh(1)

accounting. acctsh: shell procedures for ... acctsh(1 M)
rc: system initialization shell script. .. rc(8)

programming language. sh: shell, the standard command sh(1)
csh: a shell with C-like syntax ... csh(1)

processing. shutdown: terminate all .. shutdown(8)
program. sdiff: side-by-side difference ... sdiff(1)

login: sign on ... login(1)
pause: suspend process until signal. .. pause(2)
what to do upon receipt of a signal. signal: specify ... signal(2)

upon receipt of a signal. signal: specify what to do .. signal(2)
of processes. kill: send a signal to a process or a group kill(2)
ssignal. gsignal: software signals ... ssignal(3C)

lex: generate programs for simple lexical tasks ... lex(1)
tc: phototypesetter simulator .. tc(1)

atan, atan2: trigonometricl sin, cos, tan, asin, acos, .. trig(3M)
functions. sinh. cosh. tanh: hyperbolic sinh(3M)

size: size of an object file ... size(1)
size: size of an object file ... size(1)

an interval. sleep: suspend execution for sleep(1)
interval. sleep: suspend execution for sleep(3C)

documents. view graphs. and slides. mmt, mvt: typeset ... mmt(1)
spline: interpolate smooth curve .. spline(1G)

sno: SNOBOL interpreter ... sno(1)
sno: SNOBOL interpreter ... sno(1)

ssignal. gsignal: software Signals .. sSignal(3C)
qsort: quicker sort ... qsort(3C)

tsort: topological sort... .. tsort(1)
sort: sort and/or merge files ... sort(1)

sort: sort and/or merge files sort(1)
or reject lines common to two sorted files. comm: select .. comm(1)

message file by massaging the C source. mkstr: create an error mkstr(1)
brk. sbrk: change data segment space allocation .. brk(2)

fspec: format specification in text files ... fspec(5)
receipt of a signal. signal: specify what to do upon ... signal(2)

gettytab: defining speed tables for getty ... gettytab(8)
spelling errors. spell. spellin. spellout: find ... spell(1)

spelling errors. spell. spellin. spellout: find ... spell(1)
spell, spellin. spellout: find spelling errors ... spell(1)

Plexus Sys3 UNIX - 25 - September 1984

Permuted Index

errors. spell, spellin,
curve.

csplit: context
split:

exponent. frexp, Idexp, modf:
pieces.

uuclean: uucp
Ipr: line printer

Ipadmin: configure the LP
printf, fprintf,

power, squarei exp, log, pow,
exponential, logarithm, power,

generator. rand,
conversion. scanf, fscanf,

signals.
control.

interface.
ugrow: change system

scc: C compiler for
package. stdio:

language. sh: shell, the
Ipsched, Ipshut, Ipmove:

unixboot: UNIX
system call.

stat: data returned by
ustat: get file system

ps: report process
stat, fstat: get file

status report and interactive
Ipstat: print LP

feof. clearerr, fileno: stream
control. uustat: uucp

status console. rjestat: RJE
Inputloutput package.

walt tor child process to
imsp: Intelligent Mass

strncmp, strcpy, strncpy,/
istrcpy, strncpy, strlen,

strncpy,! strcat, strncat,
Istrncat, strcmp, strncmp,

Istrrchr, strpbrk, strspn,
topen, freopen, fdopen: open a

head: give first few lines of a
puts, fputs: put a string on a
setbut: assign buffering to a

sed:
fflush: close or flush a

ftell, rewind: reposition a
get character or word from

tgets: get a string from a
put character or word on a

/feot, clearerr, fileno:
push character back into input

gets, tgets: get a
puts, fputs: put a

strspn, strcspn, strtok:
C programs to implement shared

strings in an object, or otherl
implement shared! xstr: extract

strings: find the printable
relocation bits.

September 1984

Istrncmp, strcpy, strncpy,
strcpy, strncpy,l strcat,
strcat, strncat, strcmp,

Istrcmp, strncmp, strcpy,
Istrlen, strchr, strrchr,

spellout: find spelling .. spell(1)
spline: interpolate smooth .. spline(1 G)
split. ... csplit(1)
split a file into pieces .. split(1)
split into mantissa and ... frexp(3C)
split: split a file into ... split(1)
spool directory clean-up ... uuclean(1 M)
spooler. Ipr(1)
spooling system .. Ipadmin(1 M)
sprintf: output formatters. printf(3S)
sqrt: exponential, logarithm, exp(3M)
square root functions. /sqrt: exp(3M)
srand: random number .. -and(3C)
sscanf: formatted input ... scanf(3S)
ssignal, gsignal: software ... ssignal(3C)
st: synchronous terminal .. st(1 M)
st: synchronous terminal .. st(4)
stack limit. ... ugrow(2)
stand-alone programs .. scc(1)
standard buffered inputloutput stdio(3S)
standard command programming sh(1)
star1lstop the LP request! ... Ipsched(1 M)
startup and boot procedures unixboot(8)
stat: data returned by stat .. stat(7)
stat, fstat: get file status ... stat(2)
stat system call. stat(7)
statistics ... ustat(2)
status. ps(1)
status ... stat(2)
status console. rjestat: RJE rjestat(1 C)
status information ... Ipstat(1)
status inquiries. ferror .. ferror(3S)
status Inquiry and job ... uustat(1 C)
status report and Interactive , rjestat(1C)
stdlo: standard buffered ... stdio(3S)
stime: set time ... stime(2)
stop or terminate. wait: .. wait(2)
Storage Processor ... imsp(4)
strcat, strncat, strcmp, .. string(3C)
strchr, strrchr, strpbrk,l ... string(3C)
strcmp, strncmp, strcpy, ... string(3C)
strcpy, strncpy, strlen,l ... string(3C)
strcspn, strtok: strlngl ... string(3C)
stream. fopen(3S)
stream. head(1)
stream. puts(3S)
stream. setbut(3S)
stream editor ... sed(1)
stream. fclose, .. fclose(3S)
stream. fseek, ... fseek(3S)
stream. Igetchar, fgetc, getw: getc(3S)
stream. gets, ... gets(3S)
stream. Iputchar, fputc. putw: putc(3S)
stream status inquiries. ferror(3S)
stream. ungetc: .. ungetc(3S)
string from a stream. gets(3S)
string on a stream. puts(3S)
string operations. Istrpbrk, ... string(3C)
strings. lextract strings from xstr(1)
strings: find the printable .. strings(1)
strings from C programs to .. xstr(1)
strings in an object, or otherl strings(1)
strip: remove symbols and ... strip(1)
strlen, strchr, strrchr,! ... string(3C)
strncat, strcmp. strncmp, .. string(3C)
strncmp, strcpy, strncpy,l ... string(3C)
strncpy. strlen, strchr,! .. string(3C)
strpbrk, strspn, strcspn,! .. string(3C)

- 26- Plexus Sys3 UNIX

Permuted Index

/strncpy, strlen, strchr, strrchr, strpbrk, strspn,/ .. string(3C)
/strchr, strrchr, strpbrk, strspn, strcspn, strtok:1 ... string(3C)

/strpbrk, strspn, strcspn, strtok: string operations .. string(3C)
terminal. stty: set the options for a ... stty(1)

characteristics of a document style: analyze surface .. style(1)
another user. su: become super-user or ... su(1)

gath: gather files and/or submit RJE jobs. send, .. send(1 C)
plot: graphics interface subroutines. plot(3X)

intro: introduction to subroutines and libraries .. intro(3)
/same lines of several files or subsequent lines of one file paste(1)

file. sum: sum and count blocks in a ... sum(1)
file. sum: sum and count blocks in a sum(1)
du: summarize disk usage ... du(1)

accounting/ acctcms: command summary from per-process acctcms(1 M)
sync: update the super block ... sync(1 M)

update: periodically update the super block. update(1 M)
sync: update super-block. sync(2)
su: become super-user or another user .. su(1)

document style: analyze surface characteristics of a .. style(1)
interval. sleep: suspend execution for .. sleep(3C)
interval. sleep: suspend execution for an .. sleep(1)

pause: suspend process until signal. pause(2)
swab: swap bytes. swab(3C)

swap: image of the swap area ... swap(4)
swab: swap bytes .. swab(3C)

swap: image of the swap area swap(4)
strip: remove symbols and relocation bits strip(1)

sync: update super-block ... sync(2)
sync: update the super block sync(1 M)

st: synchronous terminal control st(1 M)
st: synchronous terminal interface st(4)

csh: a shell with C-like syntax .. csh(1)
call. syscall: numeric id of system syscall(2)

system errori perror, sys_errlist, sys_nerr, errno: perror(3C)
perror, sys_errlist, sys_nerr, errno: system error/ perror(3C)

syscall: numeric id of system call .. syscall(2)
rmount: mount a remote file system directory ... rmount(2)

rumount: unmount a remote file system directory ... rumount(2)
make a fast tape backup of a file system. fbackup: .. fbackup(8)

configure the LP spooling system Ipadmin: ... Ipadmin(1 M)
file for the Network Operating System (NOS) Iconfiguration O-hosts(5)

mount and dismount remote file system rmount, rumount: ... rmount(1)
ugrow: change system stack limit. ugrow(2)

mnttab: mounted file system table ... mnttab(5)
setmnt: establish mnttab table ... setmnt(1 M)

master device information table. master: .. master(5)
new nroft terminaVprinter driver table trmtab: make a .. trmtab(1)

gettytab: defining speed tables for getty .. gettytab(8)
tbl: format tables for nroft or trofl. ... tbl(1)

tabs: set tabs on a terminal ... tabs(1)
tabs: set tabs on a terminal tabs(1)

ctags: create a tags file .. ctags(1)
a file. tail: deliver the last part of .. tail(1)

trigonometric/ sin, cos, tan, asin, acos, atan, atan2: trig(3M)
sinh, cosh, tanh: hyperbolic functions .. sinh(3M)

copytape: make an image copy of a tape .. copytape(1m)
tp: manipulate tape archive .. tp(1)

fbackup: make a fast tape backup of a file system fbackup(8)
rm: Cipher Microstreamer tape drive .. rm(4)

mt: pseudo tape driver ... mt(4)
the names of files on a dump tape. dumpdir: print .. dumpdir(1m)

tar: tape file archiver ... tar(1)
dump: incremental dump tape format. ... dump(5)

tp: magnetic tape format. ... tp(5)
tape: tape manipulation ... tape(1)

tape: tape manipulation .. tape(1)
file system backup. filesave, tapesave: daily/weekly UNIX fllesave(8)

tar: tape file archiver .. tar(1)

Plexus Sys3 UNIX - 27- September 1984

Permuted Index

programs for simple lexical tasks. lex: generate ... lex(1)
deroff: remove nroff/trott, tbl, and eqn constructs ... deroff(1)

or troff. tbl: format tables for nroff ... tbl(1)
tc: phototypesetter simulator tC(1)
tee: pipe fitting. . .. tee(1)

4014: paginator for the Tektronix 4014 terminal. .. 4014(1)
tmpfile: create a temporary file .. tmpfile(3S)

tmpnam: create a name for a temporary file .. tmpnam(3S)
term: conventional names ... term(7)

base. termcap: terminal capability data termcap(5)
ct: call terminal. ... ct(1 C)

getty: set the modes of a terminal .. getty(8)
stty: set the options for a terminal. ... stty(1)

tabs: set tabs on a terminal. ... tabs(1)
for the Tektronix 4014 terminal. 4014: p~ginator ... 4014(1)

functions of the DASI450 terminal. 450: handle special 450(1)
termcap: terminal capability data base termcap(5)

st: synchronous terminal control. .. st(1 M)
generate file name for terminal. ctermid: .. ctermid(3S)

greek: select terminal filter ... greek(1)
itgetflag, tgetstr, tgoto, tputs, terminal independent operationl termlib(3C)

st: synchronous terminal interface ... : .. st(4)
tty: general terminal interface .. tty(4)

tset: set terminal modes ... tset(1)
clear: clear terminal screen. clear(1)

script: make typescript of terminal session .. script(1)
isatty: find name of a terminal. ttyname, ... ttyname(3C)
ttytype: data base of terminal types by port ... ttytype(5)

file for NOS Virtual Terminal vtconf: configuration vtconf(5)
trmtab: make a new nroff terminaliprinter driver table .. trmtab(1)

functions of DASI300 and 300s terminals. ,handle special .. 300(1)
tty: get the terminal's name .. tty(1)

of HP 2640 and 2621-series terminals. ispecial functions hp(1)
kill: terminate a process .. kill(1)

shutdown: terminate all processing ... shutdown(8)
exit: terminate process ... exit(2)

daemon. errstop: terminate the error-logging : errstop(1 M)
for child process to stop or terminate. wait: wait ... wait(2)

tgetflag, tgetstr, tgoto, tputs,/ termlib: tgetent, tgetnum, ... termlib(3C)
command. test: condition evaluation ... teste 1)

ed: text editor .. ed(1)
ex: text editor .. ex(1)

editor for new or casuall edit: text editor, variant of the ex edit(1)
reform: reformat text file ... reform(1)

fspec: format specification in text files ... fspec(5)
Icheckeq: format mathematical text fornroff or troff. ... eqn(1)

prepare constant-width text for troff. cw, checkcw: ... cw(1)
nroff: typeset or format text. troff, ... troff(1)

tgetstr, tgoto, tputs,! termllb: tgetent, tgetnum, tgetflag, .. termlib(3C)
termllb: tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs,1 termlib(3C)

tgoto, tputs,1 termllb: tgetent, tgetnum, tgetflag, tgetstr, ... termlib(3C)
Itgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs, terminal! termlib(3C)
tgetnum, tgetflag, tgetstr, tgoto, tputs, terminall Itgetent, termlib(3C)

explain: interactive thesaurus for diction ... diction(1)
m, cubic: tic-tac-toe .. m(6)
stime: set time .. stime(2)
time: get time .. time(2)

time: time a command ... tirne(1)
system activlty/ timex: time a command and generate a tirnex(1)

time: get time .. time(2)
profil: execution time profile ... profil(2)

up an environment at login time. profile: setting .. profile(5)
time: time a command .. time(1)

tzset: convert date and time to ASCII. lasctime, ... ctime(3C)
process times. times: get process and child times(2)

update access and modification times of a file. touch: .. touch(1)
get process and child process times. times: ... tirnes(2)

file access and modification times. utime: set " ... utime(2)

September 1984 - 28 - Plexus Sys3 UNIX

Permuted Index

generate a system activity! timex: time a command and timex(1)
file. tmpfile: create a temporary .. tmpfile(3S)

temporary file. tmpnam: create a name for a tmpnam(3S)
toupper, tolower, toascii: character! ... conv(3C)

popen, pclose: initiate I/O to'from a process .. popen(3S)
translation. toupper, tolower, toascii: character .. conv(3C)

tsort: topological sort .. tsort(1)
head of the queue topq: put a print request at the topq(1 M)

acctmerg: merge or add total accounting files ... acctmerg(1 M)
modification times of a file. touch: update access and .. touch(1)

character translation. toupper, tolower, toascii: .. conv(3C)
tp: magnetic tape format. ... tp(5)
tp: manipulate tape archive tp(1)
tplot: graphics filters ... tplot(1 G)

Itgetflag, tgetstr, tgoto, tputs, terminal independent! termlib(3C)
tr: translate characters. tr(1)

ptrace: process trace ... ptrace(2)
trace: event-tracing driver .. trace(4)

load the ICP; print VPM traces. :vpmsnap, vpmtrace: vpmstart(1C)
take a core image of the ICP and transfer to a host file. icpdmp: icpdmp(1 m)

tr: translate characters .. tr(1)
tolower, toascii: character translation. toupper, ... conv(3C)

tan, asin, acos, atan, atan2: trigonometric functions. iCOS, trig(3M)
terminal/printer driver table trmtab: make a new nroff ... trmtab(1)

constant-width text for troff. cw, checkcw: prepare cw(1)
mathematical text for nroff or troff. Ineqn, checkeq: format eqn(1)

format text. troff, nroff: typeset or .. troff(1)
format tables for nroff or troff. tbl: ... tbl(1)

values. true, false: provide truth ... true(1)
true, false: provide truth values ... true(1)

tset: set terminal modes. tset(1)
tsort: topological sort. tsort(1)
m, cubic: tic-tac-toe .. m(6)

interface. tty: general terminal .. tty(4)
tty: get the terminal's name tty(1)

graphics for the extended TIY -37 type-box. greek: ... greek(7)
a terminal. ttyname, isatty: find name of ttyname(3C)

types by port tty type: data base of terminal ttytype(5)
file: determine file type .. file(1)

for the extended TIY -37 type-box. greek: graphics .. greek(7)
types: primitive system data types .. types(7)

ttytype: data base of terminal types by port ... ttytype(5)
types. types: primitive system data types(7)

script: make typescript of terminal session script(1)
graphs, and slides. mmt, mvt: typeset documents, view .. mmt(1)

troff, nroff: typeset or format text. .. troff(1)
typographical errors. typo: find possible ... typo(1)

typo: find possible typographical errors ... typo(1)
Ilocaitime, gmtime, asctime, tzset: convert date and time! ctime(3C)

ugrow: change system stack limit. ugrow(2)
getpw: get name from UID ... getpw(3C)

limits. ulimit: get and set user ... ulimit(2)
creation mask. umask: set and get file ... umask(2)

mask. umask: set file-creation mode umask(1)
file system. mount, umount: mount and dismount mount(1 M)

umount: unmount a file system. umount(2)
UNIX system. uname: get name of current uname(2)

UNIX. uname: print name of current uname(1)
file. unget: undo a previous get of an SCCS unget(1)

an SCCS file. unget: undo a previous get of unget(1)
into input stream. ungetc: push character back ungetc(3S)

a file. uniq: report repeated lines in uniq(1)
mktemp: make a unique file name ... mktemp(3C)

units: conversion program. units(1)
boot procedures. unixboot: UNIX startup and unixboot(8)

uuto, uupick: public UNIX-to-UNIX file copy .. uuto(1C)
unlink system calls. link, unlink: exercise link and ... Iink(1 M)

entry. unlink: remove directory ... unlink(2)

Plexus Sys3 UNIX - 29- September 1984

Permuted Index

unlink: exercise link and unlink system calls. link, .. Iink(1 M)
umount: unmount a file system. . .. umount(2)

directory rumount: unmount a remote file system rumount(2)
files. pack, pcat, unpack: compress and expand pack(1)

Isearch: linear search and update ... Isearch(3C)
times of a file. touch: update access and modification touch(1)

of programs. make: maintain, update, and regenerate groups make(1)
super block. update: periodically update the update(1 M)

sync: update super-block ... sync(2)
sync: update the super block .. sync(1 M)

update: periodically update the super block .. update(1 M)
du: summarize disk usage ... du(1)

delimiters. mmchek: check usage of mm macros and eqn mmchek(1)
logname: login name of user .. logname(3X)

write: write to another user .. write(1)
setuid, setgid: set user and group IDs .. setuid(2)

id: print user and group IDs and names id(1)
character login name of the user. cuserid: .. cuserid(3S)

/getgid, getegid: get real user, effective user, real/ ... getuid(2)
environ: user environment. ... environ(7)

ulimit: get and set user limits .. ulimit(2)
Iget real user, effective user, real group, and/ ... getuid(2)

become super-user or another user. su: .. su(1)
wall: write to all users .. wall(1 M)

mail, rmail: sendmailtousersorreadmail .. mail(1)
the ex editor for new or casual users. ftext editor, variant of edit(1)

statistics. ustat: get file system .. ustat(2)
modification times. utime: set file access and .. utime(2)

utmp, wtmp: utmp and wtmp entry format. utmp(5)
entry format. utmp, wtmp: utmp and wtmp utmp(5)

clean-up. uuclean: uucp spool directory uuclean(1 M)
uusub: monitor uucp network ... uusub(1 M)

uuclean: uucp spool directory clean-up uuclean(1 M)
control. uustat: uucp status inquiry and job .. uustat(1 C)

unix copy. uucp, uulog, uuname: unix to uucp(1C)
copy. uucp, uulog, uuname: unix to unix uucp(1C)
uucp, uulog, uuname: unix to unix copy ... uucp(1 C)

file copy. uuto, uupick: public UNIX-to-UNIX uuto(1C)
and job control. uustat: uucp status inquiry ... uustat(1 C)

uusub: monitor uucp network uusub(1 M)
UNIX-to-UNIX file copy. uuto, uupick: public ... uuto(1C)

execution. uux: unix to unix command .. uux(1C)
val: validate SCCS file .. val(1)

val: validate SCCS file ... val(1)
abs: integer absolute value .. abs(3C)

fabs, cell, fmod: absolute value, floor, ceiling,! floor, .. floor(3M)
getenv: value for environment name getenv(3C)

true, false: provide truth values .. true(1)
or casual! edit: text editor, variant of the ex editor for new edit(1)

archive files from POP-11 to VAX-111780 format. /convert arcv(1)
vc: version control. ... vc(1)

assert: program verification. assert(3X)
vc: version control. ... vc(1)

get: get a version of an SCCS file .. get(1)
sccsdiff: compare two versions of an SCCS file .. sccsdlff(1)

editor based on ex. vi: screen-oriented display ... vi(1)
vtty: connect to a remote host via NOS ... vtty(1)

mv: a macro package for making view graphs ... mv(7)
mmt, mvt: typeset documents, view graphs, and slides ... mmt(1)

more: file perusal filter for CRT viewing .. more(1)
vpm: The Virtual Protocol Machine .. vpm(4)

vpmc: compiler for the virtual protocol machine ... vpmc(1C)
configuration file for NOS Virtual Terminal vtconf: .. vtconf(5)

systems with label checking. volcopy, labelit: copy file .. volcopy(1 M)
file system: format of system volume ... fs(5)

Machine. vpm: The Virtual Protocol .. vpm(4)
load the ICP; print VPM traces. IVpmtrace: ... vpmstart(1 C)
protocol machine. vpmc: compiler for the virtual vpmc(1C)

September 1984 - 30 - Plexus Sys3 UNIX

PermutecJ Index

ICP; print VPM, vpmstart, vpmsnap, vpmtrace: load the vpmstart(1C)
load the ICP; print VPM! vpmstart, vpmsnap, vpmtrace: vpmstart(1 C)

print VPMI vpmstart, vpmsnap, vpmtrace: load the ICP; ... vpmstart(1 C)
NOS Virtual Terminal vtconf: configuration file for .. vtconf(5)

via NOS vtty: connect to a remote host vtty(1)
process. wait: await completion of .. wait(1)

or terminate. wait: wait for child process to stop wait(2)
to stop or terminate. wait: wait for child process ... wait(2)

wall: write to all users ... wall(1 M)
we: word count. ... wc(1)
what: identify SCCS files .. what(1)

signal. signal: specify what to do upon receipt of a signal(2)
whodo: who is doing what. .. whodo(1 M)

who: who is on the system ... who(1)
who: who is on the system. who(1)
whodo: who is doing what. .. whodo(1 M)

diction: print wordy sentences .. diction(1)
cd: change working directory .. ed(1)

chdir: change working directory .. chdir(2)
pwd: working directory name .. pwd(1)
write: write on a file .. write(2)

putpwent: write password file entry .. putpwent(3C)
wall: write to all users ... wall(1 M)

write: write to another user .. write(1)
write: write on a file .. write(2)
write: write to another user .. write(1)

open: open for reading or writing .. open(2)
file regions for reading or writing. !provide exclusive ... lockf(2)

utmp, wtmp: utmp and wtmp entry format. .. utmp(5)
fwtmp, wtmpfix: manipulate wtmp records .. fwtmp(1 M)

format. utmp, wtmp: utmp and wtmp entry utmp(5)
records. fwtmp, wtmpfix: manipulate wtmp .. fwtmp(1 M)

hunt-the-wumpus. wump: the game of ... wump(6)
list(s) and execute command. xargs: construct argument ... xargs(1)

programs. xref: cross reference for C ... xref(1)
programs to implement sharedi xstr: extract strings from C .. xstr(1)

jO, j1, jn, yO, y1, yn: bessel functions bessel(3M)
jO, j1, jn, yO, y1, yn: bessel functions ... bessel(3M)

compiler-compiler. yace: yet another .. yacc(1)
jO, j1, jn, yO, y1, yn: bessel functions .. bessel(3M)

as.ZaOOO: zaooo assembler .. as.ZaOOO(1)

Plexus Sys3.UNIX - 31 . September 1984

'~
/

INTRO(1) INTRO(1)

NAME
intro - introduction to commands and application programs

DESCRIPTION
This section describes, in alphabetical order, publicly-accessible commands. Certain distinctions
of purpose are made in the headings:

(1) Commands of general utility.
(1 C) Commands for communication with other systems.
(1 G) Commands used primarily for graphics and computer-aided design.
(1 M) Commands useclprimarily for system maintenance.

COMMAND SYNTAX

NOTES

Page 1

Unless otherwise noted, commands described in this section accept options and other argu­
ments according to the following syntax:

name [option(s)] [cmdarg(s)]
where:

name

option

The name of an executable file.

- noargleter(s) or,
- arg/etter< >optarg
where < > is optional white space.

A single letter representing an option without an argument.

A single letter representing an option requiring an argument.

Argument (character string) satisfying preceding arg/etter.

noarg/etter

arg/etter

optarg

cmdarg Path name (or other command argument) not beginning with - or, - by itself indi­
cating the standard input.

Plexus h~s made the following major changes affecting this section.

File system block size is 1024 bytes, not 512.

The system namelist is sys3, not unix.

New commands have been added. Some are based on similar commands from the University
of California at Berkeley (signalled by B in the list below); others are Plexus additions (P); some
are of UNIX Version 7 origin (V7). The new commands are the following:

accept(1 M) Allow or prevent LP requests. (P)

arcv6(1)

bbanner(1)

bls(1)

Convert archives to new format. (V7)

Another version of banner(1). (B)

List contents of directory. (B)

clear(1) Clear terminal screen. (B)

copytape(1 M) Make an image copy of a tape. (P)

csh(1) A shell (command interpreter) with C-like syntax. (B)

ctags(1) Create a tags file. (B)

diction(1), explain(1)
Print wordy sentences; interactive thesaurus for diction. (V7)

dnld(1 M) Download program files. (P)

dumpdir(1 M) Print the names of files on a dump tape. (V7)

September 24, 1984

INTRO(1)

edit(1)

enable(1)

ex(1)

head(1)

icpdmp(1M)

1P(1)

Ipadmin(1 M)

Iphold(1)

Ipsched(1 M)

Ipstat(1)

mkstr(1)

more(1)

node(1M)

openup(1M)

printenv(1)

rmount(1M)

script(1)

strings(1)

style(1)

tape(1)

topq(1M)

tset(1)

update(1M)

vi(1)

vtty(1)

xstr(1)

Text editor. Variant of the ex editor for new or casual users. (8)

Enable or disable LP printers. (P)

Text editor. (8)

Give first few lines of a stream. (8)

Take a core image of the ICP and transfer to a host file. (P)

Sand or cancel requests to an LP line printer. (P)

Configure the LP spooling system. (P)

Hold up print request, re-enable it. (P)

Start or stop the LP request scheduler and move requests. (P)

Print LP status information. (P)

Create an error message file by massaging the C source. (8)

File perusal filter for CRT viewing. (8)

INTRO(1) .

Enable or disable foreign hosts. Available with the Network Operating System
(NOS) only. (P)

Keep open key directories and files. (P)

Print out the environment. (8)

Mount and dismount remote file system directory. Available with the Network
Operating System (NOS) only. (P)

Make typescript of terminal session. (8)

Find the printable strings in an object, or other binary, file. (8)

Analyze surface characteristics of a document. (V7)

Tape manipulation. (P)

Put a print request at the head of the queue. (P)

Set terminal modes. (8)

Periodically update the super block. (V7)

Screen-oriented (visual) display editor based on ex. (8)

Contact a remote system via the Network Operating System (NOS). (P)

Extract strings from C programs to implement shared strings. (8)

Some commands, which are relevant to non-Plexus hardware only, have been deleted. These
are

as(1)

kun(1)

orjestat(1 C)

vlx(1M)

PDP-11 assembler.

Un-assembler for KMC1/DMC11 microprocessor.

RJE status and inquiries.

VAX console floppy interface.

In stock SYSTEM III, the as command is the assembler for the PDP-11; here it is the assembler
for the Z8000 processor.

The command Ipd replaces dpd and odpd.

The command factor is not provided because no source was provided in the stock SYSTEM III~
UNIX release.

September 20, 1984 Page 2

INTRO(1) INTRO(1) .

SEE ALSO
getopt(1), getopt(3C).
Section 6 of this volume for computer games.
How to Get Started, at the front of this volume.

DIAGNOSTICS

BUGS

Page 3

Upon termination, each command returns two bytes of status, one supplied by the system and
giving the cause for termination, and (in the case of "normal" termination) one supplied by the
program (see wait(2) and exit(2». The former byte is 0 for normal termination; the latter is cus­
tomarily 0 for successful execution and non-zero to indicate troubles such as erroneous parame­
ters, bad or inaccessible data, or other inability to cope with the task at hand. It is called vari­
ously "exit code", "exit status", or "return code", and is described only where special conven­
tions are involved.

Regrettably, many commands do not adhere to the aforementioned syntax.

September 20, 1984

300(1) 300(1)

DESCRIPTION
300, 300s - handle special functions of OASI 300 and 300s terminals

SYNOPSIS
300 [+12] [-n] [-dt.l,c]

300s [+12] [-n] [-dt,l.c]

DESCRIPTION

Page 1

300 supports special functions and optimizes the use of the OASI 300 (GSI 300 or OTC 300) ter­
minal; 300s performs the same functions for the OASI 300s (GSI 300s or OTC 300s) terminal. It
converts half-line forward. half-line reverse. and full-line reverse motions to the correct vertical
motions. It also attempts to draw Greek letters and other special symbols. It permjts con­
venient use of 12-pitch text. It also reduces printing time 5 to 70%. 300 can be used to print
equations neatly. in the sequence:

neqn fi Ie ••• I nroft I 300

WARNING: if your terminal has a PLOT switch. make sure it is turned on before 300 is used.

The behavior of 300 can be modified by the optional flag arguments to handle 12-pitch text,
fractional line spacings, messages. and delays.

+12 permits use of 12-pitch. 6 lines/inch text. OASI 300 terminals normally allow only two
combinations: 10-pitch, 6 lines/inch, or 12-pitch, 8 lines/inch. To obtain the 12-pitch,
6 lines per inch combination. the user should turn the PITCH switch to 12. and use the
+12 option.

-n controls the size of half-line spacing. A half-line is, by default, equal to 4 vertical plot
increments. Because each increment equals 1/48 of an inch. a 10-pitch line-feed
requires 8 increments, while a 12-pitch line-feed needs only 6. The first digit of n
overrides the default value, thus allowing for individual taste in the appearance of sub­
scripts and superscripts. For example. nroff(1) half-lines could be made to act as
quarter-lines by using -2. The user could also obtain appropriate half-lines for 12-
pitch, 8 lines/inch mode by using the option -3 alone, having set the PITCH switch to
12-pitch.

-dt,l,o controls delay factors. The default setting is -d3,90,30. OASI 300 terminals some­
times produce peculiar output when faced with very long lines. too many tab charac­
ters. or long strings of blankless. non-identical characters. One null (delay) character
is il')serted in a line for every set of t tabs. and for every contiguous string of 0 non­
blank, non-tab characters. If a line is longer than I bytes, 1 +(total length)/20 nulls are
inserted at the end of that line. Items can be omitted from the end of the list, implying
use of the default values. Also, a value of zero for t (0) results in two null bytes per
tab (character). The former may be needed for C programs, the latter for files like
/etc/passwd. Because terminal behavior varies according to the specific characters
printed and the load on a system, the user may have to experiment with these values
to get correct output. The -d option exists only as a last resort for those few cases
that do not otherwise print properly. For example. the file letc/passwd may be printed
using -d3,30,5. The value -d0,1 is a good one to use for C programs that have many
levels of indentation.

Note that the delay control interacts heavily with the prevailing carriage return and
line-feed delays. The stty(1) modes nlO cr2 or nlO cr3 are recommended for most
uses.

300 can be used with the nroff -s flag or .reI requests, when it is necessary to insert paper ~
manually or change fonts in the middle of a document. Instead of hitting the return key in these ,
cases, you must use the line-feed key to get any response.

January 19. 1984

r
300(1)

In many (but not all) cases, the following sequences are equivalent:

nroft -T300 files .•• and nroft files . •. I 300
nroft -T300-12 files •. • and. nrott files •.• I 300 + 12

300(1)

The use of 300 can thus often be avoided unless special delays or options are required; in a few
cases, however, the additional movement optimization of 300 may produce better-aligned out­
put.

The neqn(1) names of, and resulting output for, the Greek and special characters supported by
300 are shown in greek(7).

----SEE ALSO

BUGS

450(1), eqn(1), graph(1G), mesg(1), stty(1), tabs(1), tbl(1), tplot(1G), trott(1), greek(7).

Some special characters cannot be correctly printed in column 1 because the print head cannot
be moved to the left from there.
If your output contains Greek and/or reverse line-feeds, use a friction-feed platen instead of a
forms tractor; although good enough for drafts, the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line of text after one or more
reverse line-feeds.

January 19, 1984 Page 2

4014(1) 4014(1) .

NAME
4014 - paginator for the Tektronix 4014 terminal

SYNOPSIS
4014 [-t] [-n] [-eN] [-pL] [file]

DESCRIPTION
The output of 4014 is intended for a Tektronix 4014 terminal; 4014 arranges for 66 lines to fit on
the screen, divides the screen into N columns, and contributes an eight-space page offset in the
(default) single-column case. Tabs, spaces, and backspaces are collected and plotted when
necessary. TELETYPE~ Model 37 half- and reverse-line sequences are interpreted and plotted.
At the end of each page, 4014 waits for a new-line (empty line) from the keyboard before con­
tinuing on to the next page. In this wait state, the command !cmd will send the cmd to the
shell.

The command line options are:

-t Don't wait between pages (useful for directing output into a file).

-n Start printing at the current cursor position and never erase the screen.

-eN Divide the screen into N columns and wait after the last column.

-pL Set page length to L; L accepts the scale factors i (inches) and I (lines); default is lines.

SEE ALSO
pr(1), tc(1), troff(1).

Page 1 January 19, 1984

450(1) 450(1)"

NAME
450 - handle special functions of the DASI450 terminal

SYNOPSIS
450

DESCRIPTION
450 supports special functions of, and optimizes the use of. the DASI 450 terminal. or any termi­
nal that is functionally identical. such as the DIABLO 1620 or XEROX 1700. It converts half-line
forward. half-line reverse. and full-line reverse motions to the correct vertical motions. It also
attempts to draw Greek letters and other special symbols in the same manner as 300(1). 450
can be used to print equations neatly, in the sequence:

neqn file ... I nroff I 450

WARNING: make sure that the PLOT switch on your terminal is ON before 450 is used. The
SPACING switch should be put in the desired position (either 10- or 12-pitch). In either case.
vertical spacing is 6 lines/inch. unless dynamically changed to 8 lines per inch by an appropriate
escape sequence,

450 can be used with the nroff(1) -s flag or .rd requests. when it is necessary to insert paper
manually or change fonts in the middle of a document. Instead of hitting the return key in these
cases, you must use the line-feed key to get any response.

In many (but not all) cases. the use of 450 can be eliminated in favor of one of the following:

nroff -T450 files ...
or

nroff -T 450-12 files ...

The use of 450 can thus often be avoided unless special delays or options are required; in a few
cases. however. the additional movement optimization of 450 may produce better-aligned out­
put.

The neqn(1) names of. and resulting output for. the Greek and special characters supported by
450 are shown in greek(7).

SEE ALSO

BUGS

Page 1

300(1). eqn(1). graph(1 G). mesg(1). stty(1). tabs(1). tbl(1). tplot(1 G). troff(1). greek(7).

Some special characters cannot be correctly printed in column 1 because the print head cannot
be moved to the left from there.
If your output contains Greek and/or reverse line-feeds. use a friction-feed platen instead of a
forms tractor; although good enough for drafts. the latter has a tendency to slip when reversing
direction, distorting Greek characters and misaligning the first line of text after one or more
reverse line-feeds.

January 19, 1984

ACCEPT(1M) (MC68000 only) ACCEPT(1M)

NAME
accept, reject - allow/prevent LP requests

SYNOPSIS
/usr/lib/accept destinations
/usrllib/reject [-r[reason]] destinations

DESCRIPTION

. FILES

Accept allows /p(1) to accept requests for the named destinations. A destination can be either
a printer or a class of printers. Use /pstat(1) to find the status of destinations.

Reject prevents /p(1) from accepting requests for the named destinations. A destination can be
either a printer or a class of printers: Use /pstat(1) to find the status of destinations. The fol­
lowing option is useful with reject.

-r[reason] Associates a reason with preventing /p from accepting requests. This reason
applies to all printers mentioned up to the next -r option. Reason is reported by /p
when users direct requests to the named destinations and by /pstat(1). If the -r
option is not present or the -r option is given without a reason, then a default rea­
son will be used .

/usrlspool/lp/*

NOTES
This is a Plexus command. It is not part of standard SYSTEM III.

SEE ALSO
enable(1), Ip(1), Ipadmin(1 M), Ipsched(1 M), Ipstat(1).

Page 1 September 20, 1984

ACCT(1M) ACCT(1M)

NAME
aect - overview of accounting and miscellaneous accounting commands

SYNOPSIS
lusr/lib/acctlacctdisk

lusrliblacctlacctdusg [-u file] [-p file] > dtmp-file

lusrlliblacctlaccton [file]

lusr/liblacctlacctwtmp [name[line)) > >/usr/adm/wtmp

DESCRIPTION

FILES

Accounting software is structured as a set of tools (consisting of both C programs and shell pro­
cedures) that can be used to build accounting systems. Acctsh(1 M) describes the set of shell
procedures built on top of the C programs.

Connect time accounting is handled by various programs that write records into lusr/adm/utmp,
as described in utmp(5). The programs described in acctcon(1 M) convert this file into session
and charging records, which are then summarized by acctmerg(1 M).

Process accounting is performed by the UNIX kernel. Upon termination of a process, one record
per process is written to a file (normally lusr/adm/pacct). The programs in acctprc(1 M) sum­
marize this data for charging purposes; acctcms(1 M) is used to summarize command usage.
Current process data may be examined using acctcom(1).

Process accounting and connect time accounting (or any accounting records in the format
described in acct(5» can be merged and summarized into total accounting records byacctmerg
(see tacet format in acct(5». Prtacct (see acctsh(1 M» is used to format any or all accounting
records.

Acctdisk reads lines that contain user 10, login name, and number of disk blocks and converts
them to total accounting records that can be merged with other accounting records.

Acctdusg reads its standard input (usually from find I-print) and computes disk resource con­
sumption (including indirect blocks) by login. If -u is given, records consisting of those file
names for which acctdusg charges no one are placed in file (a potential source for finding users
trying to avoid disk charges). If -p is given, file is the name of the password file. This option is
not needed if the password file is letc/passwd.

Accton alone turns process accounting off. If file is given, it must be the name of an existing
file, to which the kernel appends process accounting records (see acct(2) and acct(5».

Acctwtmp writes a wtmp(5) record to its standard output. The record contains the current time,
name, and line. If line is omitted, a value is emitted that is interpreted by other programs as a
reboot. For more precise accounting, the following are recommended for use in reboot and
shutdown procedures, respectively:

acctwtmp 'uname' > >/usr/adm/wtmp
acctwtmp reason> >/usr/adm/wtmp

letclpasswd used for login name to user 10 conversions
lusr/lib/acct holds all accounting commands listed in

sub-class 1 M of this manual
lusr/adm/pacct current process accounting file
lusr/adm/wtmp Iogin/logoff history file

SEE ALSO

Page 1

acctcms(1 M), acctcom(1), acctcon(1 M), acctmerg(1 M), acctprc(1 M), acctsh(1 M), fwtmp(1 M),
runacct(1 M), acct(2), acct(5), utmp(5).
The UNIX Accounting System by H. S. McCreary.

January 19, 1984

ACCT(1M) ACCT(1M)"

DIAGNOSTICS
"permission denied - you must be root or adm" may be printed by Beeton if adm does not own
lusr/admlpacct.

January 19, 1984" Page 2

ACCTCMS(1M) ACCTCMS(1 Ml

NAME
acctcms - command summary from per-process accounting records

SYNOPSIS
lusr/nblacctlacctcms [options] files

DESCRIPTION
Acctcms reads one or more files, normally in the form described in Bcct(S). It adds all records
for processes that executed identically-named commands, sorts them, and writes them to the
standard output, normally using an internal summary format. The options are:

-a Print output in ASCII rather than in the internal summary format. The output includes
command name, number of times executed, total kcore-minutes, total CPU minutes,
total real minutes, mean size (in K), mean CPU minutes per invocation, and "hog factor",
as in Bcctcom(1). Output is normally sorted by total kcore-minutes.

-c Sort by total CPU time, rather than total kcore-minutes.
-j Combine all commands invoked only once under "* .. other".
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal summary format.

A typical sequence for performing daily command accounting and for maintaining a running total
is:

acctcms file ... > today
cp total previoustotal
acctcms -s today previoustotal > total
acotcms -a -s today

SEE ALSO

Page 1

acct(1 M), acctcom(1), acctcon(1 M), acctmerg(1 M), acctprc(1 M), acctsh(1 M), fwtmp(1 M),
runacot(1 M), acct(2), acot(S), utmp(S).

January 19, 1984

ACCTCOM(1) ACCTCOM(1)

NAME
acctcom - search and print process accounting file(s)

SYNOPSIS
acctcom [[options][file]] ...

DESCRIPTION

Page 1

Acctcom reads file, the standard input, or lusr/adm/pacct, in the form described by acct(5) and
writes selected records to the standard output. Each record represents the execution of one
process. The output shows the COMMAND NAME, USER, TIVNAME, START TIME, END TIME,
REAL (SEC), CPU (SECir-- MEAN SIZE(K), and optionally, F (the fork/exec flag: 1 for fork without
exec) and STAT (the system exit status).

The command name is prepended with a =I if it was executed with super-user privileges. If a
process is not associated with a known terminal, a ? is printed in the TIVNAME field.

If no files are specified, and if the standard input is associated with a terminal or Idey/null (as is
the case when using & in the shell), lusr/adm/pacct is read, otherwise the standard input is
read.

If any file arguments are given, they are read in their respective order. Each file is normally
read forward, i.e., in chronological order by process completion time. The file lusr/adm/pacct is
usually the current file to be examined; a busy system may need several files, in which case all
but the current will be found in lusr/admlpacct? The options are:

-b Read backwards, showing latest commands first.
-f Print the fork/exec flag and system exit status columns in the output.
-h Instead of mean memory size, show the fraction of total available CPU time con-

-I
-k
-m
-r
-t
-y

-I line
-u user

-g group

sumed by the process during its execution. This "hog factor" is computed as:
(total CPU time)/(elapsed time).

Print columns containing the VO counts in the output.
Instead of memory size, show total kcore-minutes.
Show mean core size (the default).
Show CPU factor (user time/(system-time + user-time).
Show separate system and user CPU times.
Exclude column headings from the output.
Show only processes belonging to terminal/dey/line.
Show only processes belonging to user that may be specified by: a user 10, a login
name that is then converted to a user 10, a " which designates only those
processes executed with super-user privileges, or? which designates only those
processes associated with unknown user IDs.
Show only processes belonging to group. The group may be designated by either
the group 10 or group name.

-d mm/dd Any time arguments following this flag are assumed to occur on the given month
and day, rather than during the last 24 hours. This is needed for looking at old
files.

-8 time

-e time

Show only those processes that existed on or after time, given in the form
hr:mln:sec. The :sec or :min:sec may be omitted.
Show only those processes that existed on or before time. Usi ng the same time
for both -8 and -e shows the processes that existed at time.

-n pattern Show only commands matching pattern that may be a regular expression as in

-H factor

-0 time
-C time

ed(1) except that + means one or more occurrences.
Show only processes that exceed factor, where factor is the "hog factor" as

explained in option -h above.
Show only those processes with operating system CPU time that exceeds time.
Show only those processes that exceed time that indicates the total CPU time.

January 19, 1984

ACCTCOM(1) ACCTCOM(1)

FilES

Usting options together has the effect of a logical and.

lete/passwd
lusr/adm/pacct
lete/group

SeE ALSO

BUGS

acct(1M), acctcms(1M), acctcon(1M), acctmerg(1M), acctprc(1M), acctsh(1M), fwtmp(1M), ps(1),
runacct(1 M), su(1), acct(2), acct(S), utmp(S).

Acctcom only reports on processes that have terminated; use ps(1) for active processes.

January 19, 1984 Page 2

ACCTCON(1 M) ACCTCON{ 1 M)

NAME
acctcon - connect-time accounting

SYNOPSIS
acctcon1 [options]

acctcon2

DESCRIPTION
Acctcon1 converts a sequence of login/logoff records read from its standard input to a
sequence of records, one per login session. Its input should normally be redirected from
/usr/adm/wtmp. Its output is ASCII, giving device, user 10, login name, prime connect time
(seconds), non-prime connect time (seconds), session starting time (numeric), and starting date
and time. The options are:

-p Print input only, showing line name, login name, and time (in both numeric and date/time
formats).

-t Acctcon1 maintains a list of lines on which users are logged in. When it reaches the end
of its input, it emits a session record for each line that still appears to be active. It nor­
mally assumes that its input is a current file, so that it uses the current time as the end­
ing time for each session still in progress. The -t flag causes it to use, instead, the last
time found in its input, thus assuring reasonable and repeatable numbers for non-current
files.

-I file File is created to contain a summary of line usage showing line name, number of
minutes used, percentage of total elapsed time used, number of sessions charged,
number of logins, and number of logoffs. This file helps track line usage, identify bad
lines, and find software and hardware oddities. Both hang-up and termination of the
login shell generate a logoff record, so that the number of logoffs is often twice the
number of sessions.

-0 file File is filled with an overall record for the accounting period, giving starting time, ending
time, number of reboots, and number of date changes.

Acctcon1 reads the file /usrllib/acctlholidays for the current year and the current year's holi­
days. It assumes default values if the file does not exist. See holldays(5).

Acctcon2 expects as input a sequence of login session records and converts them into total
accounting records (see tacct format in acct(5».

EXAMPLES

FilES

These commands are typically used as shown below. The file ctmp is created only for the use
of acctprc(1M) commands:

acctcon1 -t -I Ii neuse -0 reboots <wtmp I sort +1 n +2 >ctmp
acctcon2 <ctmp I acctmerg >ctacct

/usr/adm/wtmp
/usrllib/acctlholidays

SEE ALSO

BUGS

Page 1

acct(1 M), acctcms(1 M), acctcom(1), acctmerg(1 M), acctprc(1 M), acctsh(1 M), fwtmp(1 M),
runacct(1 M), acct(2), acct(5), holidays(5), utmp(5).

The line usage report is confused by date changes. Use wtmpfix (see fwtmp(1 M» to correct
this situation.

January 19, 1984

ACCTMERG(1 M) ACCTMERG(1Mr

NAME
acctmerg - merge or add total accounting files

SYNOPSIS
acctmerg [options] [file] ...

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in the taeet format (see
acct(5», or an ASCII version thereof. It merges these inputs by adding records whose keys
(normally user 10 and name) are identical, and expects the inputs to be sorted on those keys.
Options are:

-a Produce output in ASCII version of tacct.
-i Input files are in ASCII version of tacct.
-p Print input with no processing.
-t Produce a single record that totals all input.
-u Summarize by user 10, rather than user 10 and name.
-y Produce output in verbose ASCII format, with more precise notation for floating point

numbers.

The following sequence is useful for making "repairs" to any file kept in this format:

acctmerg -v <file1 >file2
edit file2 as desired ...

acctmerg -a <file2 >file1

SEE ALSO

Page 1

acct(1 M), acctcms(1 M), acctcom(1), acctcon(1 M), acctprc(1 M), acctsh(1 M), fwtmp(1 M),
runacct(1 M), acct(2), acct(5), utmp(5).

January 19, 1984

ACCTPRC(1 M) ACCTPRC(1M)

NAME
acctprc - process accounting

SYNOPSIS
lusr/lib/acctJacctprc1 [ctmp]

lusrlliblacctJacctprc2

DESCRIPTION

FILES

Acctprc1 reads input in the form described byacct(S), adds login names corresponding to user
IDs, then writes for each process an ASCII line giving user 10, login name, prime CPU time (tics),

. non-prime CPU time (tiCS>, and mean memory size (in 2048-byte units). If ctmp is given, it is
expected to contain a list of login sessions, in the form described in acctcon(1 M), sorted by
user 10 and login name. If this file is not supplied, it obtains login names from the password file.
The information in ctmp helps it distinguish among different login names that share the same
user 10.

Acctprc1 reads the file lusr/lib/acctJholidays for the current year and the current year's holi­
days. It assumes default values if the file does not exist. See hol/days(S).

Acctprc2 reads records in the form written by acctprc1, summarizes them by user 10 and
name, then writes the sorted summaries to the standard output as total accounting records. It
writes in the form of tacet. See acct(S).

These commands are typically used as shown below:

acetprc1 ctmp </usr/adm/pacct I acctprc2 > ptacet

letc/passwd

NOTES
Plexus uses 2048-byte units for mean memory size.

SEE ALSO

BUGS

Page 1

acet(1 M), acctcms(1 M), acctcom(1), acctcon(1 M), acctmerg(1 M), acctsh(1 M), fwtmp(1 M),
runacct(1 M), acet(2), aect(S), holidays(S), utmp(S).

Although it is possible to distinguish among login names that share user IDs for commands run
normally, it is difficult to do this for those commands run from cron(1 M), for example. More pre­
cise conversion can be done by faking login sessions on the console via the acctwtmp program
in acct(1 M).

January 19, 1984

ACCTSH(1M) ACCTSH(1M)

NAME
acctsh - shell procedures for accounting

SYNOPSIS
lusr/lib/acctlchargefee login-name number

lusr/lib/acctlckpacct [blocks]

lusrllib/acctldodisk

lusrllib/acctllastlogin

lusr/lib/acctlmonacct number

lusr/lib/acctlnulladm fi Ie

lusr/lib/acctlprctmp

lusr/liblacctlprdaily

lusr/lib/acctlprtacct file [-heading-]

lusr/lib/acctlrunacct [mmdd] [mmdd state]

lusr/lib/acctlshutacct [BreasonB]

lusr/lib/acctlstartup

lusr/lib/acctlturnacct [on I off I switch]

DESCRIPTION

Page 1

Chargefee is invoked to charge number dollars to login-name. A record is written to
lusr/admlfee, to be merged with other accounting records during the night.

Ckpacet is initiated via eron. It periodically checks the size of lusr/adm/pacct. If the size
exceeds blocks, 1000 by default, turnaeet will be invoked with argument switch.

Dodisk is invoked byeron to perform the disk accounting functions.

Lastlogin is invoked by runaeet to update lusr/adm/acctlsumlloginlog, which shows the last
date on which each person logged in.

Monaeet should be invoked once each month or each accounting period. Number indicates
which month or period it is. It creates summary files in lusr/adm/acctlfiscal and restarts sum­
mary file in lusr/admlacctlsum. Nulladm creates file with mode 644 and insures owner is adm.
It is called by lastlogin, runaeet, and turnaeet.

Pretmp can be used to print the session record file (normally lusr/admlacctlnite/ctmp created
byaeeteon1 (see aeeteon(1M».

Prdaily is invoked by runaeet to print a report of the previous day's accounting. The report
resides in lusr/adm/acctisum/rpftxxxx where xxxx is the month and day of the report. The
daily accounting reports may be printed (by the command "cat lusr/adm/acct/sum/rprt.') as
often as desi red and they must be explicitly deleted when no longer needed.

Prtaeet can be used to format and print any total accounting file.

Runaeet performs the accumulation of connect, process, fee, and disk accounting on a daily
basis. It also creates summaries of command usage. For more information, see runaeet(1M).

Shutacet should be invoked during a system shutdown to turn process accounting off and
append a "reason" record to lusr/admlwtmp. Startup should be called by re(8) to turn the
accounting on whenever the system is brought up.

Tumaeet is an interface to aeeton (see aeet(1M» to'turn process accounting on or off. The
switch argument moves the current lusr/admlpacct to the next free name in
lusr/admlpacct[1-9J, turns accounting off, then turns it back on again. This procedure is called
by ekpaeet via the eron to keep the pacct file size smaller.

January 19, 1984

ACCTSH(1M)

FILES
lusr/adm/fee
lusr/adm/pacct
lusr/adm/pacct[1-9]

lusr/adm/wtmp
lusr/adm/wtmp[1-9]
lusr/adm/acctlnite
lusr/lib/acct

lusr/adm/acctlsum

SEE ALSO

accumulator for fees
current file for per-process accounting
used if pacct gets large and during
execution of daily accounting procedure
login/logoff summary
used during daily accounting procedure
world ng di rectory
holds all accounting commands listed in

. sub-class 1 M of this manual
summary directory, should be saved

ACCTSH(1M) .

acct(1 M), acctcms(1 M). acctcom(1). acctcon(1 M), acctmerg(1 M), acctprc(1 M). fwtmp(1 M).
runacct(1 M). acct(2). acct(5). utmp(5).

January 19, 1984 Page 2

ADB(1) ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of UNIX programs.

Oblil is normally an executable program file, preferably containing a symbol table; if not then
the symbolic features of adb cannot be used although the file can still be examined. The default
for oblil is a.out. Cortif is assumed to be a core image file produced after executing oblil; the
default for cortil is core.

Requests to adb are read from the standard input and responses are to the standard output. If
the -w flag is present then both oblif and cortil are created if necessary and opened for reading
and writing so that files can be modified using adb. Adb ignores QUIT; INTERRUPT causes
return to the next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initia"y dot is set to O. For most commands
count specifies how many times the command wi" be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it is used in. If a subprocess is being
debugged then addresses are interpreted in the usual way in the address space of the subpro­
cess. For further details of address mapping see ADDRESSES.

EXPRESSIONS

Page 1

+
A

•
integer

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

The last address typed .

An octal number if integer begins with a 0; a hexadecimal number if preceded by #;
otherwise a decimal number.

integer .'raction
A 32 bit floating point number .

• cccc· The ASCII value of up to 4 characters. \ may be used to escape a '.

< name The value of name, which is either a variable name or a register name. Adb main­
tains a number of variables (see VARIABLES) named by single letters or digits. If
name is a register name then the value of the register is obtained from the system
header in cortil. The register names are rO ••• r15 few seg pc for the zeooo, dO ••• d7
aO .•• a7 ps pc for the MC68000.

symbol A symbol is a sequence of upper or lower case letters, underscores or digits, not
starting with a digit. The value of the symbol is taken from the symbol table in oblil.
An initial_ or - will be prepended to symbol if needed.

_ symbol In C, the ''true name" of an external symbol begins with _. It may be necessary to
utter this name to distinguish it from internal or hidden variables of a program.

routine .name
The address of the variable name in the specified C routine. Both routine and name
are symbols. If name is omitted the value is the address of the most recently

January 19, 1984

ADB(1) ADB(1)

activated C stack frame corresponding to routine. (Not implemented in the
MC68000.)

(exp) The value of the expression expo

Monadic operators:

.exp The contents of the location addressed by exp in corli!.

aexp The contents of the location addressed byexp in ob/il.

-exp Integer negation .

... exp Bitwise complement.

DYadic operators are left associative and are less binding than monadic operators.

e1 +e2 Integer addition.

e1-e2

e1.e2

e1%92

e1&e2

e11e2

e1#e2

Integer subtraction.

Integer multiplication.

Integer division.

Bitwise conjunction.

Bitwise disjunction.

E1 rounded up to the next multiple of e2.

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs
are available. (The commands? and I may be followed by.; see ADDRESSES for further
~~ ~
?f Locations starting at address in ob/il are printed according to the format f. dot is incre­

mented by the sum of the increments for each format letter (q.v.).

If Locations starting at address in corlll are printed according to the format f and dot is
incremented as for?

-f The value of address itself is printed in the styles indicated by the format f. (For I for-
mat? is printed for the parts of the instruction that reference subsequent words.)

A format consists of one or more characters that specify a style of printing. Each format char­
acter may be preceded by a decimal integer that is a repeat count for the format character.
While stepping through a format dot is incremented by the amount given for each format letter.
If no format is given then the last format is used. The format letters available are as follows:

o 2 Print 2 bytes in octal. All octal numbers output by adb are preceded by O.
o 4 Print 4 bytes in octal.
q 2 Print in signed octal.
Q 4 Print long signed octal.
d 2 Print in decimal.
D 4 Print long decimal.
x 2 Print 2 bytes in hexadecimal.
X 4 Print 4 bytes in hexadecimal.
u 2 Print as an unsigned decimal number.
U 4 Print long unsigned decimal.
f 4 Print the 32 bit value as a floating point number.
F 8 Print double floating point.
b 1 Print the addressed byte in octal.
e 1 Print the addressed character.

January 19. 1984 Page 2

ADB(1)

r

Page 3

ADB(1)

C 1 Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as 0 followed by the corresponding character in
the range 0100 to 0140. The character 0 is printed as QQ.

s n Print the addressed characters until a zero character is reached.
S n Print a string using the 0 escape convention. n is the length of the string

including its zero terminator.
Y 4 Print 4 bytes in date format (see ctime(3C».
i n Print as Z8000 instructions. n is the number of bytes occupied by the instruc­

tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.

Z n Prints as Z8000 assembler listing. (Not available on the MC68000.)
8 0 Print the value of dot in symbolic form. Symbols are checked to ensure that

they have an appropriate type as indicated below.

/ local or global data symbol
? local or global text symbol
= local or global absolute symbol

P 2 Print the addressed value in symbolic form using the same rules for symbol
lookup as 8.

t 0 When preceded by an integer tabs to the next appropriate tab stop. For exam­
ple, at moves to the next 8-space tab stop.

r 0
n 0

Print a space.
Print a new-line.
Print the enclosed string. • ... ·0

"

+
Dot is decremented by the current increment. Nothing is printed.
Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

new-line
Repeat the previous command with a count of 1.

[?/]I value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If L is used then the match is for 4 bytes at a time instead of 2. If no match is
found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If the command is W, write 4 bytes.
Odd addresses are not allowed when writing to the subprocess address space.

[?/]m b1 e1 f1[?/]

> name

New values for (b1, e1, f1) are recorded. If less than three expressions are given then
the remaining map parameters are left unchanged. If the? or / is followed by. then the
second segment (b2 , e2 , f2) of the mapping is changed. If the list is terminated by ? or
/ then the file (oblil or corfil respectively) is used for subsequent requests. (So that, for
example, /m? will cause / to refer to oblil.)

Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following I.

$modifier
Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

January 19, 1984

ADS(1) ADS(1) .

>t Send output to the file t, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is set to

pc .
. f Print the registers as double precision values.
b Print all breakpoints and their associated counts and commands.
c C stack backtrace. If address is given then it is taken as the address of the

current frame (instead of r14 (ZSOOO) or fp (MC68000). If C is used then the
names and (16 bit) values of all automatic and static variables are printed for
each active function (ZSOOO only). If count is given then only the first count

. frames are printed.
e The names and values of external variabl~s are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
x Changes default output to hexadecimal.
d Reset integer input as described in EXPRESSIONS.
q Exit from· adb.
v Print all non zero variables in octal.
m Print the address map.

:modifier
Manage a subprocess. Available modifiers are:

be Set breakpoint at address. The breakpoint is executed count-1 times before
causing a stop. Each time the breakpoint is encountered the command c is
executed. If this command sets dot to zero then the breakpoint causes a stop.

d Delete breakpoi nt at address.

x

e

p

q

r

cs

as

Delete all breakpoints.

If address is given, set breakpoint upon exit from the routine on stack whose
address is address. If address is not given, set breakpoint upon exit from
current routine. This is useful for looking at the values returned (in r7 or rr6 or
rg4) by a procedure.

Similar to b, except that address is assumed to be a procedure name, and the
breakpoint is positioned after the stack frame has been set up.

Does for p what d does for b.

Run obI" as a subprocess. If address is given explicitly then the program is
entered at this point; otherwise the program is entered at its standard entry
point. count specifies how many breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the same line as the com­
mand. An argument starting with < or > causes the standard input or output
to be established for the command. All signals are turned on on entry to the
subprocess.

The subprocess is continued with signal s (see signa/(2)). If address is given
then the subprocess is continued at this address. If no signal is specifiec! then
the signal that caused the subprocess to stop is sent. Breakpoint skipping is
the same as for r.
As for c except that the subprocess is single stepped count times. If there is no
current subprocess then oblil is run as a subprocess as for r. In this case no
signal can be sent; the remainder of the line is treated as arguments to the sub­
process.

January 19, 1984 Page 4

ADB(1) ADB(1) -

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially byadb but are not used
subsequently. Numbered variables are reserved for communication as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfit. If corfil does not appear to
be a core file then these values are set from oblil.

b The base address of the data segment.
d The data segment size.
e The entry poi nt.
m The "magic" number (0405,0407,0410 or 0411).
s The stack segment size.
t The text segment size.

ADDRESSES

FILES

NOTES

The address in a file associated with a written address is determined by a mapping associated
with that file. Each mapping is represented by two triples (b1, e1, f1) and (b2, e2, f2) and the
file address corresponding to a written address is calculated as follows:

b1 ~address <e1 => file address=address+f1-b1
otherwise

b2 ~address <e2 => file address=address+f2-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with separated
I and 0 space) the two segments for a file may overlap. If a ? or I is followed by an • then only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is
not of the kind expected then, for that file, b1 is set to 0, e1 is set to the maximum file size and
f1 is set to 0; in this way the whole file can be examined with no address translation.

In order for adb to be used on large files all appropriate values are kept as signed 32 bit
integers.

/dev/mem
/dev/swap
a.out
core

Plexus adb differs from the standard SYSTEM III adb in the following ways.
The number of registers and certai n register names have changed.
Format option i prints zeooo or MC68000 instructions instead of PDP-11 instructions.
A new z format option is provided for disassembly (ZeOOO only).
The a (ALGOL stack backtrace) modifier is not supported.
A new modifier x changes default output to hexadecimal.
Four new modifier options are provided: e, p, q, and x (e available on zeooo only).

SEE ALSO
ptrace(2), a.out(5), core(5).

DIAGNOSTICS

Page 5

"Adb" when there is no current command or format. Comments about inaccessible files, syntax
errors, abnormal termination of commands, etc. Exit status is 0, unless last command failed or

January 19, 1984

ADS(1)

SUGS

ADS(1)

returned nonzero status.

A breakpoint set at the entry point is not effective on initial entry to the program.
Local variables whose names are the same as an external variable may foul up the accessing of
the external.
The MC68000 disassembly (i option) is not always correct.

January 19, 1984 PageS

ADMIN(1) ADMIN(1)

~
\ NAME

admin - create and administer sees files

SYNOPSIS
admin [-Il] [-i[name)) [-rrel] [-t[name)) [-fflag[flag-val)) [-dflag[flag-val)) [-alogin] [-elogin]
[-m[mrlist)) [-y[comment)) [-h] [-z] files

DESCRIPTION

Page 1

Admin is used to create new sees files and change parameters of existing ones. Arguments to
admin, which may appear in any order, consist of key letter arguments, which begin with -, and
named files (note that-sceS file names must begin with the characters s.). If a named file
doesn't exist, it is created, and its parameters are initialized according to the specified key letter
arguments. Parameters not initialized by a keyletter argument are assigned a default value. If a
named file does exist, parameters corresponding to specified key letter arguments are changed,
and other parameters are left as is.

If a directory is named, admin behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard input is read;
each line of the standard input is taken to be the name of an sees file to be processed. Again,
non-sees files and unreadable files are silently ignored.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed since the effects of the arguments apply independently to each named file.

-n
-i[name]

-rrel

-t[name]

-fflag

b

This keyletter indicates that a new sees file is to be created.

The name of a file from which the text for a new sees file is to be taken.
The text constitutes the first delta of the file (see ·r key letter for delta
numbering scheme). If the i keyletter is used, but the file name is omit­
ted, the text is obtained by reading the standard input until an end-of-file
is encountered. If this keyletter is omitted, then the sees file is created
empty. Only one sees file may be created by an admin command on
which the i keyletter is supplied. Using a single admin to create two or
more sees files require that they be created empty (no -i keyletter). Note
that the -i key letter implies the -n keyletter.

The release into which the initial delta is inserted. This keyletter may be
used only if the -i key letter is also used. If the -r keyletter is not used, the
initial delta is inserted into release 1. The level of the initial delta is
always 1 (by default initial deltas are named 1.1).

The name of a file from which descriptive text for the sees file is to be
taken. If the -t keyletter is used and admin is creating a new sees file
(the -n and/or -i keyletters also used), the descriptive text file name must
also be supplied. In the case of existing sees files: (1) a -t key letter
without a file name causes removal of descriptive text (if any) currently in
the sees file, and (2) a -t keyletter with a file name causes text (if any) in
the named file to replace the descriptive text (if any) currently in the sees
file.

This keyletter sPeCifies a flag, and, possibly, a value for the flag, to be
placed in the sees file. Several f keyletters may be supplied on a single
admin command line. The allowable flags and their values are:

Allows use of the -b keyletter on a get(1) command to create branch del­
tas.

January 19, 1984

ADMIN(1) ADMIN(1)·

cce/l The highest release (Le., "ceiling"), a number less than or equal to 9999,
which may be retrieved by a get(1) command for editing. The default
value for an unspe(!ified c flag is 9999.

Ifloor The lowest release (Le., "floor"), a number greater than 0 but less than
9999, which may be retrieved by a get(1) command for editing. The
default value for an unspecified f flag is 1.

dSID The default delta number (SID) to be used by a get(1) command.

i Causes the "No id keywords (ge6)" message issued by get(1) or delta(1)
to be treated as a fatal error. In the absence of this flag, the message is
only a warning. The message is issued if no sees identification key­
words (see get(1» are found in the text retrieved or stored in the sees
file.

Allows concurrent get(1) commands for editing on the same SID of an
sees file. This allows multiple concurrent updates to the same version of
the sees file.

IIlst A list of releases to which deltas can no longer be made (get -e against
one of these "locked" releases fails). The list has the following syntax:

<list> ::= <range> I <list> , <range>
<range> ::= RELEASE NUMBER I a

The character a in the list is equivalent to specifying all releases for the
named sees file.

n Causes delta (1) to create a "null" delta in each of those releases (if any)
being skipped when a delta is made in a new release (e.g., in making
delta 5.1 atter delta 2.7, releases 3 and 4 are skipped). These null deltas
serve as "anchor points" so that branch deltas may later be created from
them. The absence of this flag causes skipped releases to be non­
existent in the sees file preventing branch deltas from being created from
them in the future.

qtext User definable text substituted for all occurrences of the keyword in
sees file text retrieved by get(1).

mmod Mod ule name of the sees file substituted for all occurrences of the
admin.1 keyword in sees file text retrieved by get(1). If the m flag is not
specified, the value assigned is the name of the sees file with the leading
s. removed. .

ttype Type of module in the sees file substituted for all occurrences of
keyword in sees file text retrieved by get(1).

v[pgm]
Causes de/ta(1) to prompt for Modification Request (MR) numbers as the
reason for creating a delta. The optional value specifies the name of an
MR number validity checking program (see de/ta(1». (If this flag is set
when creating an sees file, the m keyletter must also be used even if its
value is null).

-dflag Causes removal (deletion) of the specified flag from an sees file. The ~
keyletter may be specified only when processing existing sees files.
Several -d keyletters may be supplied on a single admin command. See ~
the ·f keyletter for allowable flag names. '7

January 19, 1984 Page 2

AOMIN(1) AOMIN(1)

FILES

Page 3

lIist

-alogin

-eIogin

-y[comment]

-m[mrlist]

-h

-z

A list of releases to be "unlocked". See the -f key letter for a description
of the I flag and the syntax of a list.

A login name, or numerical UNIX group 10, to be added to the list of users
which may make deltas (changes) to the sees file. A group 10 is
equivalent to specifying all login names common to that group 10. Several
a keyletters may be used on a single admin command line. As many
logins, or numerical group IDs, as desired may be on the list simultane­
ously. If the list of users is empty, then anyone may add deltas.

A login name, or numerical group 10, to be erased froin the list of users
allowed to make deltas (changes) to the sees file. Specifying a group 10
is equivalent to specifying all login names common to that group 10.
Several e keyletters may be used on a single admin command line.

The comment text is inserted into the sees file as a comment for the ini­
tial delta in a manner identical to that of de/ta(1). Omission of the -y
key letter results in a default comment line being inserted in the form:

date and time created YY/MM/DD HH:MM:SS by login

The -y keyletter is valid only if the -i and/or -n keyletters are specified
(i.e., a new sees file is being created).

The list of Modification Requests (MR) numbers is inserted into the sees
file as the reason for creating the initial delta in a manner identical to
delta(1). The v flag must be set and the MR numbers are validated if the
v flag has a value (the name of an MR number validation program). Diag­
nostics will occur if the v flag is not set or MR validation fails.

Causes admin to check the structure of the sees file (see sccsfile(5» ,
and to compare a newly computed check-sum (the sum of all the charac­
ters in the sees file except those in the first line) with the check-sum that
is stored in the first line of the sees file. Appropriate error diagnostics
are produced.

This keyletter inhibits writing on the file, so that it nullifies the effect of any
other key letters supplied, and is, therefore, only meaningful when pro­
cessing existing files.

The sees file check-sum is recomputed and stored in the first line of the
sees file (see -h, above).

Note that use of this keyletter on a truly corrupted file may prevent future
detection of the corruption.

The last component of all sees file names must be of the form s.file-name. New see~ files are
given mode 444 (see chmod(1». Write permission in the pertinent directory is, of course,
required to create a file. All writing done by admin is to a temporary x-file, called x.file-name,
(see get(1», created with mode 444 if the admin command is creating a new sees file, or with
the same mode as the sees file if it exists. After successful execution of admin, the sees file
is removed (if it exists), and the x-file is renamed with the name of the sees file. This ensures
that changes are made to the sees file only if no errors occurred.

It is recommended that directories containing sees files be mode 755 and that sees files them­
selves be mode 444. The mode of the directories allows only the owner to modify sees files
contained in the directories. The mode of the sees files prevents any modification at all except
by sees commands.

January 19, 1984

ADMIN(1) ADMIN(1)

If it should be necessary to patch an SCCS file for any reason, the mode may be changed to 644
by the owner allowing use of ed(1). Care must be taken! The edited file should always be pro­
cessed by an admin -h to check for corruption followed by an admin -z to generate a proper
check-sum. Another admin -h is recommended to ensure the SCCS file is valid.

Admin also makes use of a transient lock file (called z.file-name), which is used to prevent
simultaneous updates to the SCCS file by different users. See get(1) for further information.

SEE ALSO
delta(1). ed(1), get(1), help(1), prs(1), what(1), sccsfile(S).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

January 19, 1984 Page 4

AR(1) AR(1)

NAME
ar - archive and library maintainer

SYNOPSIS
ar key [posname] afile name ...

DESCRIPTION

FilES

At maintains groups of files combined into a single archive file. Its main use is to create and
update library files as used by the link editor. It can be used, though, for any similar purpose.

At can read archive fileJlproduced in either Z8000 or 68000 format (see ar(5». However, when
ar creates an archive, it always creates the header in the format of the local system. A conver­
sion program exists to convert Z8000 archives to 68000 archive format (see arcv(1». This
feature is useful only for source archive files. Individual files are inserted without conversion
into the archive file.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
yuaibcl. Alile is the archive file. The names are constituent files in the archive file. The mean­
ings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is used with r,
then only those files with modified dates later than the archive files are replaced. If an
optional positioning character from the set abi is used, then the posname argument
must be present and specifies that new files are to be placed after (a) or before (b or i)
posname. Otherwise new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional positioning char­
acters are invalid. The command does not check whether the added members are
already in the archive. Useful only to avoid quadratic behavior when creating a large
archive piece-by-piece.

t Print a table of contents of the archive file. If no names are given, all files in the archive
are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is present,
then the posname argument must be present and, as in r, specifies where the files are
to be moved.

x Extract the named files. If no names are given, all files in the archive are extracted. In
neither case does x alter the archive file.

y Verbose. Under the verbose option, ar gives a file-by-file description of the making of a
new archive file from the old archive and the constituent files. When used with t, it
gives a long listing of all information about the files. When used with x, it precedes
each file with a name.

c Create. Normally ar will create afile when it needs to. The create option suppresses
the normal message that is produced when afile is created.

Local. Normallyar places its temporary files in the directory Itmp. This option causes
them to be placed in the local directory.

Itmplv. temporaries

NOTES
Plexus ar reads archive files produced in zeooo or 68000 format (not PDP-11 or VAX format).

Page 1 January 19, 1984

AR(1) AR(1) .

SEE ALSO
arcv(1), Id(1), lorder(1), ar(5).

BUGS
If the same file is mentioned twice in an argument list, it may be put in the archive twice.

January 19, 1984 Page 2

ARCV6(1)

NAME
arev6 - convert archives to new format

SYNOPSIS
arcv6 file ...

DESCRIPTION

(Plexus) ARCV8(1l

Arcv6 converts archive files (see ar(1). ar(5» from 6th edition to 7th edition format. The conver­
sion is done in place. and the command refuses to alter a file not in old archive format.

FILES

Old archives are marked with a magic number of 0177555 at the start; new archives have
0177545.

Itmplv·. temporary copy

SEE ALSO
ar(1). ar(5).

Page 1 January 19. 1984

AS(1) (Z8000 only) AS(1)

NAME
as - zeooo assembler

SYNOPSIS
as [-I] [-m] [-n] [-0 OBJFILE] [-u] [-v] [-x] FILE

DESCRIPTION

FILES

As assembles the concatenation of the named files. The options may be placed in any order.

The "-I" option causes a listing to be cre~ted on the standard output.

The "-m" option places a tab at the left margin of each line when the listing option "_I" has
been selected.

The "-n" option causes a listing to be created on the standard output, but causes a narrower
listing than the "-I" option. This is sometimes useful for eo column paper, but does not contain
line numbers.

The "_un option causes all undefined symbols in the current assembly to be made undefined­
external.

The "-v" option puts the assembler in verbose mode, which causes the files to be listed during
the first pass, along with the errors encountered.

The "-x" option causes a cross refererence to be created on the file named "xref". The cross
reference consists of an alphabetical listing of all user symbols along with the value, line
number, and line numbers for all references. ~

The output of the assembler is by default placed on the file "a.out" in the current directory; the
"-0" flag causes the output to be placed on the named file. If there were no unresolved external
references, and no errors detected, the output file is marked executable; otherwise, if it is pro-
duced at all, it is made non-executable.

/usr/tmp/as*
a.out
xref

temporary
object
cross reference

SEE ALSO
Id(1), nm(1), adb(1), a.out(S)
UNIX Z8000 Assembler Reference Manual by Craig C. Forney

DIAGNOSTICS

BUGS

Page 1

Diagnostics are meant to be self explanatory and are accompanied by either the offending file or
the appropriate line number. If the listing option is used, then the error messages also are
placed in the listing file.

Cross reference ("-X" option) is not implemented. Only a single file may be assembled at a
time.

March 22, 1984

AS(1) (MC68000 only) AS(1)

NAME
as - MC68000 assembler

SYNOPSIS
as [-g) [-0 OBJFILE] [-e) [-I] FILE

DESCRIPTION

FilES

As assembles the concatenation of the named files. The options may be placed in any order.

The 8_ln option causes a listing to be created in a file whose name has 8.listn substituted for

The "-g" option causes undefined symbols to be made global.

The "_en option causes only external symbols to be placed in the n.o" file.

The output of the assembler is by default placed on the file with ".0" substituted for n .s" in the
current directory; the "_0" flag causes the output to be placed on the named file. If there were
no unresolved external references, and no errors detected, the output file is marked executable;
otherwise, if it is produced at all, it is made non-executable.

/usr/tmp/as*
a.out
xref

temporary
object
cross reference

SEE ALSO
Id(1), nm(1), adb(1), a.out(5)
UNIX MC68000 Assembler Reference Manual

DIAGNOSTICS

Page 1

Diagnostics are meant to be self explanatory and are accompanied by either the offending file or
the appropriate line number. If the listing option is used, then the error messages also are
placed in the listing file.

March 22, 1984

AWK(1) AWK(1)'

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-Fc] [-f file] [prog] [files]

DESCRIPTION

Page 1

Awk scans each input file for lines that match any of a set of patterns specified in prog. With
each pattern in prog there can be an associated action that will be performed when a line of a
file matches the pattern. The set of patterns may appear literally as prog, or in a file specified
as -f file. The prog string should be enclosed in single quotes (#) to protect it from the shell.

Files are read in order; if there are no files, the standard input is read. The file name - means
the standard input. Each line is matched against the pattern portion of every pattern-action
statement; the associated action is performed for each matched pattern.

An input line is made up of fields separated by white space. (This default can be changed by
using FS, see below). The fields are denoted $1, $2, ... ; $0 refers to the entire line.

A pattern-action statement has the form:

pattern { action }

A missing action means print the line; a missing pattern always matches. An action is a
sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement ""
break ''''j)
continue
{ [statement] ... }
variable' expression
print [expression-list] [>expression]
printf format [, expression-list] [>expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, new-lines, or right braces. An empty expression-list
stands for the whole line. Expressions take on string or numeric values as appropriate, and are
built using the operators +, -, *, /, %, and concatenation (indicated by a blank). The C opera­
tors ++, -, +=, -=, *=, /=, and %= are also available in expressions. Variables may be
scalars, array elements (denoted xli)) or fields. Variables are initialized to the null string. Array
subscripts may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted (B).

The print statement prints its arguments on the standard output (or on a file if >.expr is
present), separated by the current output field separator, and terminated by the output record
separator. The printf statement formats its expression list according to the format (see
printf(3S».

The built-in function length returns the length of its argument taken as a string, or of the whole
line if no argument. There are also built-in functions exp, log, sqrt, and int. The last truncates
its argument to an integer; substr(s, m, n) returns the n-character substring of s that begins at
position m. The function sprintf(fmt, expr, expr, ...) formats the expressions according to the
printf(3S) format given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations (!, II, &&, and parentheses) of regular expressions
and relational expressions. Regular expressions must be surrounded by slashes and are as in
egrep (see grep(1». Isolated regular expressions in a pattern apply to the entire line. Regular

March 22, 1984

AWK(1) AWK(1) .

expressions may also occur in relational expressions. A pattern may consist of two patterns
separated by a comma; in this case, the action is performed for all lines between an occurrence
of the first pattern and the next occurrence of the s~nd.

A relational expression is one of the following:

. expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either" (for contains)
or ,- (for does not contain). A conditional is an arithmetic expression, a relational expression,
or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is
read and after the last. BEGIN must be the first pattern, END the last.

A single character c may be used to separate the fields by starting the program with:

BEGIN { FS = c }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in the current
record; NA, the ordinal number of the current record; FILENAME, the name of the current input
file; OFS, the output field separator (default blank); OAS, the output record separator (default
new-line); and OFMT, the output format for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END {print "sum is", s, " average is", s/NA }

Print fields in reverse order:

{ for (i = NF; i > 0; --i) print $i }

Print all lines between start/stop pairs:

/startl, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO
grep(1), lex(1), sed(1).
Awk-A Pattern Scanning and Processing Language by A. V. Aho, B. W. Kernighan, and P. J.
Weinberger.

March 22, 1984 Page 2

AWK(1) AWK(1)

BUGS

Page 3

Input white space is not preserved on output if fields are involved.
There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate the null string
(W W) to it.

March 22,1984

BANNER(1)

~ NAME
banner - make posters

SYNOPSIS
banner strings

DESCRIPTION

BANNER(1)

Banner prints its arguments (each up to 10 characters long) in large letters on the standard out­
put.

SEE ALSO
bbanner(1).

Page 1 January 19, 1984

BASENAME(1)

NAME
basename, dimame • deliver portions of path names

SYNOPSIS
basename string [suffix)
dimame string

DESCRIPTION

BASENAME(1)'

Basename deletes any prefix ending in I and the suffix (if present in string) from string, and
prints the result on the standard output. It is normally used inside substitution marks (' ')
within shell procedures. .

Dlmame delivers all but the last level of the path name in string.

EXAMPLES
The following example, invoked with the argument lusrlsrc/crnd/cat.c, compiles the named file
and moves the output toa file named cat in the current directory:

cc $1
mv a.out \ basename $1 .c \

The following example will set the shell variable NAME to lusrlsrc/cmd:

SEE ALSO
sh(1).

Page 1

NAME= \ dimame lusrlsrc/cmd/caLc \

January 19, 1984

BBANNER(1) (Plexus) BBANNER(1) .

NAME
bbanner - print large banner on printer

SYNOPSIS
/usr/plx/bbanner [-wn] message ...

DESCRIPTION

NOTES

Bbanner prints a large, high quality banner on the standard output. If the message is omitted, it
prompts for and reads one line of its standard input. If -w is given, the output is scrunched
down from a width of 132 to n , suitable for a narrow terminal. If n is omitted, it defaults to 80.

The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks
between the pages. The volume is enough that you want a printer or a fast hardcopy terminal,
but if you are patient, a DECwriter or other 300 baud terminal will do.

The Plexus version of this command is based on the one developed at the University of Califor­
nia at Berkeley.

SEE ALSO
banner(1).

BUGS

Page 1

Several ASCII characters are not defined, notably <, >. [.]. \' A, _, {, }, I, and "". Also, the
characters ft, '. and & are funny looking (but in a useful way.)

The -w option is implemented by skipping some rows and columns. The smaller it gets, the
grainier the output. Sometimes it runs letters together.

January 19, 1984

BC(1) BC(1)

NAME
be - arbitrary-precision arithmetic language

SYNOPSIS
bc[-c][-I][file ...]

DESCRIPTION

Page 1

Be is an interactive processor for a language that resembles C but provides unlimited preciSion
arithmetic. It takes input from any files given. then reads the standard input. . The -I argument
stands for the name of an ·arbitrary precision math library. The syntax for be programs is as fol­
lows; L means letter a-z. E means expression. 5 means statement.

Comments
are enclosed in I. and .1.

Names
simple variables: L
array elements: L [E]
The words "ibase". "abase". and "scale"

Other operands
arbitrarily long numbers with optional sign and decimal pbint.
(E)
sqrt(E)
length (E)
scale (E)
L(E •...• E)

number of significant decimal digits
number of digits right of decimal point

Operators
+ -• 1 % " (% is remainder; " is power)
++ - (prefix and postfix; apply to names)
== <= >=!= < >
= =+ =-=. -I =0/0 ="

5tatements
E
{5; ... ; 5}
if(E) 5
while(E)5
for (E ; E ; E) 5
null statement
break
quit

Function definitions
define L (L •...• L) {

auto L •...• L
5; ... 5
return (E)

}

Functions in -I math library
s(x) sine
c(x) cosine
e(x) exponential
I(x) log
a(x) arctangent
j(n.x) Bessel function

. January 19. 1984

BC(l) BC(l)

r All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main operator is an assign­
ment. Either semicolons or new-lines may separate statements. Assignment to scale influ­
ences the number of digits to be retained on arithmetic operations in the manner of dc(l).
Assignments to ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. "Auto" variables are pushed down during function calls.
When using arrays as function arguments or defining them as automatic variables empty square
brackets must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the -c (compile
only) option is present. In this case the dc input is sent to the standard output instead.

EXAMPLE

FILES

scale = 20
define e(x){

auto a, b, C, i, s
a=1
b=l
s=l
for(i=l; 1 ==1; i++){

}
}

a = a*x
b =b*i
c = alb
if(c == 0) return(s)
s=s+c

defines a function to compute an approximate value of the exponential function and

for(i=l; i<=10; i++) e(i)

prints approximate values of the exponential function of the first ten integers.

/usr/lib/lib.b
lusr/bin/dc

mathematical library
desk calculator proper

SEE ALSO
dc(l).

BUGS

BC - An Arbitrary Precision Desk -Calculator Language
by L. L. Cherry and R. Morris.

No &&, II yet.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

January 19, 1984 Page 2

BCOPY(1M) (Obsolescent) BCOPY(1M) -

NAME
bcopy - interactive block copy

SYNOPSIS
letc/bcopy

DESCRIPTION
Bcopy dates from a time when neither the UNIX file system nor the DEC disk drives were as reli­
able as they are now. Bcopy copies from and to files starting at arbitrary block (S12-byte)
boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting "to" block number).
from: (you name the file or device to be copied from).
offset: (you provide the starting "from" block number).
count: (you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a chance to concatenate
blocks at the to+offset+count location). If you answer from with a carriage return, everything
starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1), dd(1).

Page 1 January 19, 1984

--~

BDIFF(1) BDIFF(1)

NAME
bdiff - big diff

SYNOPSIS
bdiff file1 file2 [nl [-51

DESCRIPTION

FILES

Bdiff is used in a manner analogous to diff(1) to find which lines must be changed in two files to
bring them into agreement. Its purpose is to allow processing of files which are too large for
ditt. Bdiff ignores lines common to the beginning of both files, splits the remainder of each file
into n-line segments, and invokes diff upon corresponding segments. The value of n is 3500 by
default. If the optional third argument is given, and it is numeric, it is used as the value for n.
This is useful in those cases in which 3500-line segments are too large for diff, causing it to fail.
If tilel (ti/e2) is -, the standard input is read. The optional -5 (silent) argument specifies that no
diagnostics are to be printed by bdiff (note, however, that this does not suppress possible excla­
mations by diff. If both optional arguments are specified, they must appear in the order indi­
cated above.

The output of bdiff is exactly that of diff, with line numbers adjusted to account for the segment­
ing of the files (that is, to make it look as if the files had been processed whole). Note that
because of the segmenting of the files, bdiff does not necessarily find a smallest sufficient set of
file differences.

Itmplbd?????

SEE ALSO
diff(1).

DIAGNOSTICS
Use he/p(1) for explanations.

Page 1 January 19, 1984

BFS(1) BFS(1)

NAME
bfs - big file scanner

SYNOPSIS
bfs [-] name

DESCRIPTION

Page 1

Bfs is (almost) like ed(1) except that it is read-only and processes much larger files. Files can
be up to 1024K bytes (the maximum possible size) and 32K lines, with up to 255 characters per
line. Bfs is usually more efficient than ed for scanning a file, since the file is not copied to a
buffer. It is most useful for identifying sections of a large file where csplit(1) can be used to
divide it into more manageable pieces for editing.

Normally, the size of the file being scanned is printed, as is the size of any file written with the W
command. The optional - suppresses printing of sizes. Input is prompted with * if P and a car­
riage return are typed as in ed. Prompting can be turned off again by inputting another P and
carriage return. Note that messages are given in response to errors if prompting is turned on.

All address expressions described under ed are supported. In addition, regular expressions
may be surrounded with two symbols besides / and ?: > indicates downward search without
wrap-around, and < indicates upward search without wrap-around. Since bfs uses a different
regular expression-matching routine from ed, the regular expressions accepted are slightly
wider in scope (see regex(3X)). There is a slight difference in mark names: only the letters a
through z may be used, and all 26 marks are remembered.

The e, g, v, k, ", p, q, W, =, ! and null commands operate as described under ed. Commands
such as ••• , +++., +++=, ·12, and +4p are accepted. Note that 1,10p and 1,10 will both
print the first ten lines. The f command only prints the name of the file being scanned; there is ""'"
no remembered file name. The w command is independent of output diversion, truncation, or ,
crunching (see the xo, xt and xc commands, below). The following additional commands are
available:

xf file
Further commands are taken from the named file. When an end-of-file is reached,
an interrupt signal is received or an error occurs, reading resumes with the file con­
taining the xf. Xf commands may be nested to a depth of 10.

xo [file]
Further output from the p and null commands is diverted to the named file, which, if
necessary, is created mode 666, If file is missing, output is diverted to the standard
output. Note that each diversion causes truncation or creation of the file.

: label
This positions a label in a command file, The label is terminated by new-line, and
blanks between the : and the start of the label are ignored, This command may also
be used to insert comments into a command file, since labels need not be refer­
enced.

(• , .)xb/regular expression/label
A jump (either upward or downward) is made to label if the command succeeds. It
fails under any of the followiJ:lg conditions:

1. Either address is not between 1 and $.
2. The second address is less than the first.
3. The regular expression doesn't match at least one line in the specified
range, including the first and last lines.

On success, • is set to the line matched and a jump is made to label. This com­
mand is the only one that doesn't issue an error message on bad addresses, so it

January 19, 1984

BFS(1) BFS(1)

may be used to test whether addresses are bad before other commands are exe­
cuted. Note that the command

xbtl label

is an unconditional jump.
The xb command is allowed only if it is read from someplace other than a terminal.
If it is read from a pipe only a downward jump is possible.

xtnumber
Output from the p and null commands is truncated to at most number characters.
The initial number is 255.

xv[digit] [spaces] [value]
The variable name is the'specified digit following the xv. xv5100 or xv5 100 both
assign the value 100 to the variable 5. Xv61,100p assigns the value 1,100p to the
variable 6. To reference a variable, put a % in front of the variable name. For exam­
ple, using the above assignments for variables 5 and 6:

1,%5p
1,%5
%6

will all print the first 100 lines.

g/%5/p

would globally search for the characters 100 and print each line containing a match.
To escape the special meaning of %, a \ must precede it.

gift. *\ %[cds]/p

could be used to match and list lines containing printf of characters, decimal
integers, or strings.
Another feature of the xv command is that the first line of output from a UNIX com­
mand can be stored into a variable. The only requirement is that the first character
of value be an!. For example:

xv5!cat junk
Inn junk
!echo -%5-
xv61expr %6 + 1

would put the current line into variable 5, print it, and increment the variable 6 by
one. To escape the special meaning of I as the first character of value, precede it
with a \.

xv7\!date

stores the value !date into variable 7.

xbz label

xbn label
These two commands will test the last saved return code from the execution of a
UNIX command (Icommand) or nonzero value, respectively, to the specified label.
The two examples below both search for the next five lines containing the string size.

January 19, 1984 Page 2

BFS(1)

xc [switch]

xv55
: I
/size/
xv5!expr %5 - 1
!if 0%5 != 0 exit 2
xbn I
xv45
: I
/size/
xv4!expr %4 - 1
!if 0%4 = 0 exit 2
xbz I

BFS(1)'

If switch is 1, output from the p and null commands is crunched; if switch is 0 it isn't.
Without an argument, xc reverses switch. Initially switch is set for no crunching.
Crunched output has strings of tabs and blanks reduced to one blank and blank lines
suppressed.

SEE ALSO
csplit(1), ed(1), regex(3X).

DIAGNOSTICS

BUGS

Page 3

? for errors in commands, if prompting is turned off. Self-explanatory error messages when
prompting is on.

Bls does unpredictable things with lines greater than 255 characters.

January 19, 1984

r

~

BlS(1) (Plexus) BlS(1)"

NAME
bls - list contents of di rectory

SYNOPSIS
lusr/plxlbls [-abcdfgilmqrstux1 CFR] name ...

DESCRIPTION

Page 1

For each directory argument, bls lists the contents of the directory; for each file argument, bls
repeats its name and any other information requested. By default, the output is sorted alphabet­
ically. When no argument is given, the current directory is listed. When several arguments are
given, the arguments are first sorted appropriately, but file arguments appear before directories
and their contents.

There are three major listing formats. The format chosen depends on whether the output is
going to a teletype, and may also be controlled by option flags. The default format for a teletype
is to list the contents of directories in multi-column format, with the entries sorted down the
columns. (Files that are not the contents of a directory being interpreted are always sorted
across the page rather than down the page in columns. This is because the individual file
names may be arbitrarily long.) If the standard output is not a teletype, the default format is to
list one entry per line. Finally, there is a stream output format in which files are listed across the
page, separated by',' characters. The -m flag enables this format.

This command has many options:

-I List in long format, giving mode, number of links, owner, size in bytes, and time of last
modification for each file. (See below.) If the file is a special file the size field will
instead contain the major and minor device numbers.

-t

-8

-8

-d

-r

-u

-c
-i

-f

-g

-m

-1

-C

-q

-b

-x

Sort by time modified (latest first) instead of by name, as is normal.

List all entries; usually',' and '.,' are suppressed.

Give size in (1024-byte) blocks, including indirect blocks, for each entry.

If argument is a directory, list only its name, not its contents (mostly used with -I to get
status on directory).

Reverse the order of sort to get reverse alphabetic or oldest first as appropriate.

Use time of last access instead of last modification for sorting (-t) or printing (-I).

Use time of file creation for sorting or printing.

Print i-number in first column of the report for each file listed.

Force each argument to be interpreted as a directory and list the name found in each
slot. This option turns off -I, -t, -8, and -r, and turns on -a; the order is the order in
which entries appear in the directory.

Give group 10 instead of owner 10 in long listing.

Force stream output format.

Force one entry per line output format, e.g. to a teletype.

Force multi-column output, e.g. to a file or a pipe.

Force printing of non-graphic characters in file names as the character '?'; this normally
happens only if the output device is a teletype.

Force printing of non-graphic characters to be in the \ddd rotation, in octal.

Force columnar printing to be sorted across rather than down the page; this is the
default if the last character of the name the program is invoked with is an 'x'.

January 19, 1984

BlS(1)

FilES

NOTES

BUGS

(Plexus) BlS(1)

·F Cause directories to be marked with a trailing 'I' and executable files to be marked with
a trailing '.'; this is the default if the last character of the name the program is invoked
with is a 'f'.

·R Recursively list subdirectories encountered.

The mode printed under the -I option contains 11 characters, which are interpreted as follows:
the first character is

d it the entry is a directory;
b if the entry is a block-type special file;
c if the entry is a character-type special file;
m if the entry is a multiplexor-type character special file;
• if the entry is a plain tile.

The next 9 characters are interpreted as three sets of three bits each. The first set refers to
owner permissions; the next to permissions to others in the same user-group; and the last to all
others. Within each set the three characters indicate permission respectively to read, to write,
or to execute the file as a program. for a directory, 'execute' permission is interpreted to mean
permission to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;
• if the indicated permission is not granted.

The group-execute permission character is given as s if the file has set-group-IO mode; like­
wise the user-execute permission character is given as s if the file has set-user-IO mode.

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the mode is on. See 1
chmod(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, including indirect
blocks is printed.

letclpasswd
letclgroup

to get user 10's for 'bls -I'.
to get group 10's for 'bls -g'.

This command is based on the Is command from the University of California at Berkeley.

Newline and tab are considered printing characters in file names.

The output device is assumed to be 80 columns wide.

The option setting based on whether the output is a teletype is undesirable, because "bls -s" is
very different from "bls -s Ilpr". On the other hand, not doing this setting would make old shell
scripts that used Is almost certain not to work.

Column widths choices are poor for terminals that can tab.

January 19, 1984 Page 2

8S(1) 8S(1)

NAME
bs - a compiler/interpreter for modest-sized programs

SYNOPSIS
bs [file [args]]

DESCRIPTION

Page 1

Bs is a remote descendant of Basic and Snobol4 with a little C language thrown in. Bs is
designed for programming tasks where program development time is as important as the result­
ing speed of execution. Formalities of data declaration and file/process manipulation are minim­
ized. Une-at-a-time debugging, the trace and dump statements, and useful run-time error
messages all simplify program testing. Furthermore, incomplete programs can be debugged;
inner functions can be tested before outer functions have been written and vice versa.

If the command line file argument is provided, the file is used for input before the console is
read. By default, statements read from the file argument are compiled for later execution. Uke­
wise, statements entered from the console are normally executed immediately (see compile and
execute below). Unless the final operation is assignment, the result of an immediate expression
statement is printed.

Bs programs are made up of input lines. If the last character on a line is a \' the line is contin­
ued. Bs accepts lines of the following form:

statement
label statement

A label is a name (see below) followed by a colon. A label and a variable can have the same
name.

A label in execute mode (see below) produces an ninvalid expressionn message.

A bs statement is either an expression or a keyword followed by zero or more expressions.
Some keywords (clear, compile, I, execute, include, ibase, obase, and run) are always exe­
cuted as they are compiled.

Statement Syntax:

expression
The expression is executed for its side effects (value, assignment or function call). The
details of expressions follow the description of statement types below.

break
Break exits from the inner-most for/while loop.

clear
Clears the symbol table and compiled statements. Clear is executed immediately.

compile [expression]
Succeeding statements are compiled (overrides the immediate execution default). The
optional expression is evaluated and used as a file name for further input. A clear is associ­
ated with this latter case. Compile is executed immediately.

continue
Continue transfers to the loop-continuation of the current for/while loop.

dump
The name and current value of every non-local variable is printed. After an error or interrupt,
the number of the last statement and (possibly) the user-function trace are displayed.

exit [expression]
Return to system level. The expression is returned as process status.

execute
Change to immediate execution mode (an interrupt has a similar effect). This statement

March 22, 1984

85(1) 85(1) .

does not cause stored statements to execute (see run below).

for name = expression expression statement
for name = expression expression

next

for expression , expression, expression statement
for expression, expression, expression

next
The for statement repetitively executes a statement (first form) or a group of statements
(second form) under control of a named variable. The variable takes on the value of the first
expression, then is incremented by one on each loop, not to exceed the value of the second
expression. The third and fourth forms require three expressions separated by commas.
The first of these is the initialization, the second is the test (true to continue), and the third is
the loop-continuation action (normally an increment).

fun f([a, •..]) [v, ...]

nut
Fun defines the function name, arguments, and local variables for a user-written function.
Up to ten arguments and local variables are allowed. Such names cannot be arrays, nor can
they be I/O associated. Function definitions may not be nested.

freturn
A way to signal the failure of a user-written function. See the interrogation operator (1)
below. If Interrogation is not present, fretum merely returns zero. When interrogation is .~
active, fretum transfers to that expression (possibly by-passing intermediate function
returns).

lbase N
Ibase sets the input base (radix) to N. The only supported values for N are 8, 10 (the
default), and 16. Hexadecimal values 10-15 are entered as a-f. A leading digit is required
(i.e., fOa must be entered as OfOa). Ibase (and abase, below) are executed immediately.

goto name
Control is passed to the internally stored statement with the matching label.

If expression statement
if expression

[else
...]

II
The statement (first form) or group of statements (second form) is executed if the expression
evaluates to non-zero. The strings 0 and nn (null) evaluate as zero. In the second form, an
optional else allows for a group of statements to be executed when the first group is not.
The only statement permitted on the same line with an else is an if; only other ffs can be on
the same line with a fi. The elision of else and if into an elif is supported. Only a single fi is
required to close an if ... elif ... [else ...] sequence.

include expression
The expression must evaluate to a file name. The file must contain bs Such statements
become part of the program being compiled. source statements. Include statements may ~1"
not be nested.,

obaseN
~base sets the input base to N (see ibase above).

March 22, 1984 Page 2

88(1)

Page 3

onintr label
onintr

88(1)"

The onintr command provides program control of interrupts. In the first form, control will
pass to the label given, just as if a goto had been executed at the time onintr was executed.
The effect of the statement is cleared after each interrupt. In the second form, an interrupt
will cause bs to terminate.

return [expression]
The expression is evaluated and the result is passed back as the value of a function call. If
no expression is given, zero is returned.

run
The random number generator is reset. Control is passed to the first internal statement. If
the run statement is contained in a file, it should be the last statement.

stop
Execution of internal statements is stopped. Bs reverts to immediate mode.

trace [expression]
The trace statement controls function tracing. If the expression is null (or evaluates to zero),
tracing is turned off. Otherwise, a record of user-function calls/returns will be printed. Each
return decrements the trace expression value.

while expression statement
while expression

next
While is similar to for except that only the conditional expression for loop-continuation is
given.

I shell command
An immediate escape to the Shell.

...
This statement is ignored. It is used to interject commentary in a program.

Expression Syntax:

name
A name is used to specify a variable. Names are composed of a letter (upper or lower case)
optionally followed by letters and digits. Only the first six characters of a name are signifi­
cant. Except for names declared in fun statements, all names are global to the program.
Names can take on numeric (double float) values, string values, or can be associated with
input/output (see the built-in function open () belOW).

name ([expression [, expression] ...])
Functions can be called by a name followed by the arguments in parentheses separated by
commas. Except for built-in functions (listed below), the name must be defined with a fun
statement. Arguments to functions are passed by value.

name [expression [, expression] . ..]
This syntax is used reference either arrays or tables (see built-in table functions below). For
arrays, each expression is truncated to an integer and used as a specifier for the name. The
resulting array reference is syntactically identical to a name; 8[1,2] is the same as 8[1][2].
The truncated expressions are restricted to values between 0 and 32767.

number
A number is used to represent a constant value. A number is written in Fortran style, and
contains digits, an optional decimal point, and possibly a scale factor consisting of an e fol­
lowed by a possibly signed exponent.

March 22, 1984

88(1) 88(1)

string
Character strings are delimited by II characters. The \ escape character allows the double
quote (\11), new-line (\n), carriage return (\r), backspace (\b), and tab (\t) characters to
appear in a string. Otherwise, \ stands for itself.

(expression)
Parentheses are used to alter the normal order of evaluation.

(expression, expression [, expression ... I) [expression]
The bracketed expression is used as a subscript to select a comma-separated expression
from the parenthesized list. Ust elements are numbered from the left, starting at zero. The
expression:

(False, True)[a == b]

has the value True if the comparison is true.

? expression
The interrogation operator tests for the success of the expression rather than its value. At
the moment, it is useful for testing end-of-file (see examples in the Programming Tips sec­
tion below), the result of the eval built-in function, and for checking the return from user­
written functions (see fretum). An interrogation "trap" (end-of-file, etc.) causes an immedi­
ate transfer to the most recent interrogation, possibly skipping assignment statements or
intervening function levels .

• expression
The result is the negation of the expression.

++name
Increments the value of the variable (or array reference). The result is the new value.

-name
Decrements the value of the variable. The result is the new value.

I expression
The logical negation of the expression. Watch out for the shell escape command.

expression operator expression
Common functions of two arguments are abbreviated by the two arguments separated by an
operator denoting the function. Except for the assignment, concatenation, and relational
operators, both operands are converted to numeric form before the function is applied.

Binary Operators (in increasing precedence):

= is the assignment operator. The left operand must be a name or an array element. The
result is the right operand. Assignment binds right to left, all other operators bind left to
right.

_ (underscore) is the concatenation operator.

& ~ (logical and) has result zero if either of its arguments are zero. It has result one if both of
its arguments are non-zero; I (logical or) has result zero if both of its arguments are zero. It
has result one if either of its arguments is non-zero. Both operators treat a null string as a
zero.

< <= > >= == !=
The relational operators « less than, < = less than or equal, > greater than, > = greater
than or equal, == equal to, != not equal to) return one if their arguments are in the speci­
fied relation. They return zero otherwise. Relational operators at the same level extend as

March 22, 1984 Page 4

88(1) 88(1)

follows: a>b>c is the same as a>b & b>c. A string comparison is made if both operands
are strings.

+ -

PageS

Add and subtract.

* I %
Multiply, divide, and remainder.

A

Exponentiation.

Built-in Functions:

Dealing with arguments

arg(i)
is the value of the i-th actual parameter on the current level of function call. At level zero,
arg returns the i-ttl command-line argument (arg(O) returns bs).

narg()
returns the number of arguments passed. At level zero, the command argument count is
returned.

Mathematical

abs(x)
is the absolute value of x.

atan(x)
is the arctangent of x. Its value is between -1r12 and 1r12.

ceil(x)
returns the smallest integer not less than x.

cos{x)
is the cosine of x (radians).

exp(x)
is the exponential function of x.

floor(x)
returns the largest integer not greater than x.

log(x)
is the natural logarithm of x.

rand()
is a uniformly distributed random number between zero and one.

sin(x)
is the sine of x (radians).

sqrt(x)
is the square root of x.

March 22, 1984

8S(1) 8S(1) .

String operations

size(s)
the size (length in bytes) of s is returned.

format(f, a)
returns the formatted value of a. F is assumed to be a format specification in the style of
printf(3S). Only the % .•• f, % .•• e, and % •.• s types are safe.

index(x, y)
returns the number of the first position in x that any of the characters from y matches. No
match yields zero.

trans(s, f, t)
Translates characters of the source s from matching characters in f to a character in the
same position in t. Source characters that do not appear in f are copied to the result. If the
string f is longer than t, source characters that match in the excess portion of f do not
appear in the result.

substr(s, start, width)
returns the sub-string of s defined by the starting position and width.

match(string, pattern)
mstring(n)

The pattern is similar to the regular expression syntax of the ed(1) command. The charac­
ters ., [,], A (inside braCkets), • and $ are special. The mstring function returns the n-th (1
<= n <= 10) substring of the subject that occurred between pairs of the pattern symbols
\(and \) for the most recent call to match. To succeed, patterns must match the beginning
of the string (as if all patterns began with A). The function returns the number of characters
matched. For example:

match("a123ab123", ".*\([a-zJ\)") == 6
mstring(1) == "bn

open(name, file, function)
close(name)

File handling

The name argument must be a bs variable name (passed as a string). For the open, the file
argument may be 1) a 0 (zero), 1, or 2 representing standard input, output, or error output,
respectively, 2) a string representing a file name, or 3) a string beginning with an ! represent­
ing a command to be executed (via sh -c). The fUnction argument must be either r (read), w
(write). W (write without new-line). or a (append). After a close, the name reverts to being
an ordinary variable. The initial associations are:

open(ngetn, 0, nrn)
open(nputn, 1, nwn)
open(nputerrn, 2, own)

Examples are given in the following section.

access(s, m)
executes access (2).

ftype(s)
returns a single character file type indication: f for regular file, d for directory, b for block spe­
cial, or c for character special.

March 22,1984 Page 6

8S(1)

Page 7

8S(1) .

Tables

table(name, size)
A table in bs is an associatively accessed, single-dimension array. "Subscripts" (called
keys) are strings (numbers are converted). The name argument must be a bs variable name
(passed as a string). The size argument sets the minimum number of elements to be allo­
cated. Bs prints an error message and stops on table overflow.

item(name, i)

keyO
The item function accesses table elements sequentially (in normal use, there is no orderly
progression of key values). Where the item function accesses values, the key function
accesses the "subscript" of the previous item call. The name argument should not be
quoted. Since exact table sizes are not defined, the interrogation operator should be used to
detect end-of-table, for example:

table("t", 100)

#= If word contains "party", the following expression adds one to the count
#= of that word:
++t[word]

#= To print out the the key/value pairs:
for i = 0, ?(s = item(t, i», ++i if keyO put = keY(L ":"_s

iskey(name, word)
The iskey function tests whether the key word exists in the table name and returns one for
true, zero for false.

Odds and ends

eval(s)
The string argument is evaluated as a bs expression. The function is handy for converting
numeric strings to numeric internal form. Eval can also be used as a crude form of indirec­
tion, as in:

name = "xyz"
eval("++" _ name)

which increments the variable xyz. In addition, eval preceded by the interrogation operator
permits the user to control bs error conditions. For example:

?eval("open(\ "X\", \ "XXX\", \ flr\ H)")

returns the value zero if there is no file named "XXX" (instead of halting the user's program).
The following executes a goto to the label L (if it exists):

label="L"
if !(?eval("goto" label» puterr = "no label"

plot(request, args)
The plot function produces output on devices recognized by tplot(1 G). The requests are as
follows:

Call

plot(O, term)

plot(1)

plot(2, string)

Function

causes further plot output to be piped into tplot(1G) with
an argument of -Tterm.

"erases" the plotter.

labels the current point with string.

March 22, 1984

88(1) 88(1)

plot(3, x1, y1, x2, y2) draws the line between (x1,y1) and (x2,y2).

plot(4, X, y, r) draws a circle with center (x,y) and radius r.

plot(5, x1, y1, x2, y2, x3, y3) draws an arc (counterclockwise) with center (x1,y1) and
endpoints (x2,y2) and (x3,y3).

plot(6)

plot(7, x, y)

plot(8, x, y)

plot(9, x, y)

. plot(10, string)

plot(11, x1, y1, x2, y2)

plot(12, x1, y1, x2, y2)

is not implemented.

makes the current point (x,y).

draws a line from the current point to (x,y).

draws a point at (x,y) .

sets the line mode to string.

makes (x1,y1) the lower left corner of the plotting area
and (x2,y2) the upper right corner of the plotting area.

causes subsequent x (y) coordinates to be multiplied by
x1 (y1) and then added to x2 (y2) before they are plot-
ted. The initial scaling is plot(12, 1.0, 1.0,0.0,0.0).

Some requests do not apply to all plotters. All requests except zero and twelve areimple­
mented by piping characters to tp'ot(1G). See plot(5) for more details.

last()
in immediate mode, last returns the most recently computed value.

PROGRAMMING TIP8
Using bs as a calculator:

$bs * Distance (inches) light travels in a nanosecond.
186000 • 5280 • 12/1e9
11.78496

* Compound interest (6% for 5 years on $1,000).
int = ;06/4
bal = 1000
for i = 1 5.4 bal = bal + bal.int
bal- 1000
346.855007

exit

The outline of a typical bs program:

* initialize things:

March 22, 1984

var1 = 1
open{BreadB, BinfileB, BrB)

* compute:
while ?(str = read)

next '* clean up:
close(BreadB)

'* last statement executed (exit or stop):

Page 8

8S(1)

exit
last input line:
run

Input/Output examples:

Copy "oldfile" to "newfile".
open(" read " , " oldfile " , Or")
open("write", "newfile", Ow")

while ?(write = read)

close "read" and "write":
close(" read ")
close("write")

Pipe between commands.
open("ls", "!Is .", Or")
open("pr", "!pr -2 -h 'Ust'", own)
while ?(pr = Is) ...

be sure to close (wait for) these:
close(" Is n)
close("pr")

8S(1)

SEE ALSO

Page 9

ed(1), sh(1), tplot(1 G), access (2) , printf(3S), stdio(3S), Section 3 of this volume for further
description of the mathematical functions (pow, see exp(3), is used for exponentiation), plot(5).
Bs uses the Standard Input/Output package.

March 22, 1984

CAL(1) CAL(1)"

NAME
cal - print calendar

SYNOPSIS
cal [month] year

DESCRIPTION

BUGS

Page 1

Cal prints a calendar for the specified year. If a month is also specified, a calendar just for that
month is printed. Yeaf can be between 1 and 9999. The month is a number between 1 and 12.
The calendar produced is that for England and her colonies.

Try September 1752.

The year is always considered to start in January even though this is historically naive.
Beware that "cal 78" refers to the early Christian era, not the 20th century.

January 19, 1984

CAlENDAR(1) CALENDAR(1)'

NAME
calendar· reminder service

SYNOPSIS
calendar [•]

DESCRIPTION

FilES

Calendar consults the file calendar in the current directory and prints out lines that contain
today's or tomorrow's date anywhere in the line. Most reasonable month-day dates such as
"Dec. 7," "december 7," "1217," etc., are recognized, but not "7 December' or "7/12". On week·
ends ''tomorrow'' extends through Monday.

When an argument is present, calendar does its job for every user who has a file calendar in
his login directory and sends him any positive results by mail(1). Normally this is done daily in
the wee hours under control of cron(1 M).

calendar
lusr/lib/calprog to figure out tOOay's and tomorrow's dates
letclpasswd
Itmp/cal.
lusr/lib/crontab

SEE ALSO

BUGS

Page 1

cron(1 M), mail(l).

Your calendar must be public information for you to get reminder service.
calendar's extended idea of "tomorrow" does not account for holidays.

January 19, 1984

CAT(1) CAT(1)

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [..] file .•.

DESCRIPTION

NOTES

Cat reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file. and:

cat file·1 file2 >file3

concatenates the first two files and places the result on the third.

If no input file is given. or if the argument - is encountered. cat reads from the standard input
file. Output is buffered in S12-byte blocks unless the -u option is specified. The -8 option
makes cat silent about non-existent files. No input file may be the same as the output file
unless it is a special file.

Plexus provides a standalone version of cat in addition to the one that runs under Sys3.

SEE ALSO
cp(1). pr(1).

Page 1 January 19. 1984

CB(1)

NAME
cb - C program beautifier

SYNOPSIS
cb [file)

DESCRIPTION

CB(1)

Cb places a copy of the C program in file (standard input if file is not given) on the standard
output with spacing and indentation that displays the structure of the program.

Page 1 January 19, 1984

CC(1) CC(1)'

NAME
cc, pec - C compiler

SYNOPSIS
cc [option] ... file .. .
pcc [option] ... file .. .
ncc [option] ... file .. .

' ..
, "

DESCRIPTION

Page 1

Ce is the UNIX C compiler. Pee is another name for ee. Nee is a SYSTEM III-compatible ver­
sion of the C compiler; its optimizer does a slightly better job. Nee represents the latest version
of ee and may not be available in some releases. These commands accept several types of
arguments:

Arguments whose names end with .c are taken to be C source programs; they are compiled,
and each object program is left on the file whose name is that of the source with .0 substituted
for .c. The.o file is normally deleted, however, if a single C program is compiled and loaded all
at one go.

In the same way, arguments whose names end with .s are taken to be assembly source 'pro­
grams and are assembled, producing a .0 file.

The following options are interpreted byee and pee. See Id(1) for link editor options.

-c Suppress the link edit phase of the compilation, and force an object file to be produced

-p

. even if only one program is compiled.

Arrange for the compiler to produce code that counts the number of times each routine
is called; also, if link editing takes place, replace the standard startoff routine by one
that automatically calls monitor(3C) at the start and arranges to write out a mon.out file
at normal termination of execution of the object program. An execution profile can then
be generated by use of prof(1). (ZSaaa only)

-0 Invoke an object-code optimizer.

-5 Compile the named C programs, and leave the assembler-language output on
corresponding files suffixed .s.

-E Run only the macro preprocessor on the named C programs, and send the result to the
standard output.

-p Run only the macro preprocessor on the named C programs, and leave the result on
corresponding files suffixed .i.

-e Comments are not stripped by the macro preprocessor.

-Dname=def
-Dname Define the name to the preprocessor, as if by "define. If no definition is given, the

name is defined as 1.

-Uname Remove any initial definition of name.

-Idir Change the algorithm for searching for "include files whose names do not begin with I
to look in dir before looking in the directories on the standard list. Thus, lIinclude files
whose names are enclosed in "" will be searched for first in the directory of the file
argument, then in directories named in -I options, and last in directories on a standard
list. For "include fi les whose names are enclosed in < >, the di rectory of the file
argument is not searched.

Other arguments are taken to be either link editor option arguments, or C-compatible object pro- ~
grams, typically produced by an earlier ee or pee run, or perhaps libraries of C-compatible rou-
tines. These programs, together with the results of any compilations specified, are linked (in the

January 19, 1984

~
"' . ./

CC(1)

FILES

CC(1) .

order given) to produce an executable program with the name a.out.

The loader (ld(1)) accepts 8-character symbols, and the first character of each symbol is an
underbar ('_'), which cc prefixes at compile time. Therefore, symbol names in program modules
that are to be linked must be unique within the first seven characters.

Ales with '[n)' are ncc versions.

lile.c
lile.o
aout
/lib/cpp
lusr/lib/[n)ccom
/lb/[n)c2
/lib/crtO.o
IIb/mcrtO.o
/lib/libc[n).a
rosr/include

input file
object file
linked output
preprocessor
compiler, pec
optional optimizer
runtime startoff
startoff for profiling
standard library, see (3)
standard directory for "include files

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
B. W. Kernighan, Programming in C-A Tutorial.
D. M. Ritchie, C Reference Manual.
adb(1), as(1), Id(1), prof(1), monitor(3C).

DIAGNOSTICS

BUGS

The diagnostics produced by C itself are intended to be self-explanatory. Occasional messages
may be produced by the assembler or the link editor.

If a Idefine line contains a continuation (\ newline), cc miscounts the number of lines in the
program.

The following SYSTEM III options are not supported: -f, -g, -d. -B, and -t.

ec does not allow more than 250 switches in a case statement. (Z8000 only)

January 19, 1984 Page 2

CD(1) CD(1)

NAME
cd - change working directory

SYNOPSIS
cd [di rectory]

DESCRIPTION
If specified, directory becomes the new working directory; otherwise, the value of the shell
parameter SHOME is used. The process must have execute (search) permission in directory.

Because a new process is created to execute each command, cd would be ineffective if it were
written as a normal command; therefore, it is recognized and executed by the shell.

SEE ALSO
pwd(1), sh(1), chdir(2).

Page 1 January 19, 1984

CDC(1) CDC(1)

NAME
ccIc - change the delta commentary of an sces delta

SYNOPSIS
cdc -rSID [-m[mrlist]] [-y[comment)) files

DESCRIPTION

Page 1

Cdc changes the delta commentary, for the SID specified by the -r key letter, of each named
sees file.

Delta commentary is defined to be the Modification Request (MR) and comment information nor­
mally specified via the de/ta(1) command (-m and -y keyletters).

If a directory is named, cdc behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard input is read (see
WARNINGS); each line of the standard input is taken to be the name of an sees file to be pro­
cessed.

Arguments to cdc, which may appear in any order, consist of key/etter arguments, and file
names.

All the described keyletter arguments apply independently to each named file:

-rSID Used to specify the sees IDentification (SID) string of a delta for which
the delta commentary is to be changed.

-m[mrlist] If the sees file has the v flag set (see admin(1» then a list of MR
numbers to be added and/or deleted in the delta commentary of the SID
specified by the -r keyletter may be supplied. A null MR list has no effect.

-y[comment]

MR entries are added to the list of MRs in the same manner as that of
de/ta(1). In order to delete an MR, precede the MR number with the char­
acter I (see EXAMPLES). If the MR to be deleted is currently in the list of
MRs, it is removed and changed into a "comment" line. A list of all
deleted MRs is placed in the comment section of the delta commentary
and preceded by a comment line stating that they were deleted.

If -m is not used and the standard input is a terminal, the prompt MRS? is
issued on the standard output before the standard input is read; if the
standard input is not a terminal, no prompt is issued. The MRs? prompt
always precedes the comments? prompt (see -y keyletter).

MRs in a list are separated by blanks and/or tab characters. An unes­
caped new-line character terminates the MR list.

Note that if the v flag has a value (see admin(1}), it is taken to be the
name of a program (or shell procedure) which validates the correctness of
the MR numbers. If a non-zero exit status is returned from the MR
number validation program, cdc terminates and the delta commentary
remains unchanged.

Arbitrary text used to replace the comment(s} already existing for the
delta specified by the -r keyletter. The previous comments are kept and
preceded by a comment line stating that they were changed. A null com­
ment has no effect.

If -y is not specified and the standard input is a terminal, the prompt com­
ments? is issued on the standard output before the standard input is
read; if the standard input is not a terminal, no prompt is issued. An
unescaped new-line character terminates the comment text.

January 19, 1984

CDC(1) CDC(1) .

The exact permissions necessary to modify the SCCS file are documented in the Source
Code Control System User's Guide. Simply stated. they are either (1) if you made the
delta. you can change its delta commentary; or (2) if you own the file and directory you
can modify the delta commentary.

EXAMPLES
cdc -r1.6 -m "bI78-12345 !bl77 -54321 bI79-00001" -ytrouble s.file

adds b178-12345 and b179-00001 to the MR list. removes bl77 -54321 from the MR list. and adds
the comment trouble to delta 1.6 of s.file.

cdc -r1.6 s.file
MRs? !bl77 -54321 b178-12345 b179-00001
comments? trouble

does the same thing.

WARNINGS
If SCCS file names are supplied to the cdc command via the standard input (- on the command
line). then the -m and -y keyletters must also be used.

FILES
x-file (see de/ta(1»
z-file (see de/ta(1»

SEE ALSO
admin(1). delta(1). get(1). help(1). prs(1). sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS
Use help(1) for explanations.

January 19. 1984 Page 2

CHMOD(1) CHMOD(1)"

NAME
chmod - change mode

SYNOPSIS
chmod mode file ...

DESCRIPTION
The permissions of each named file are changed according to mode, which may be absolute or
symbolic. An absolute mode is an octal number constructed from the OR of the following
modes:

4000 set user 10 on execution
2000 set group 10 on execution
1000 sticky bit, see chmod(2)
0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:

[who] op permission [op permission]

The who part is a combination of the letters u (for user's permissions), 9 (group) and 0 (other).
The letter a stands for ugo, the default if who is omitted.

Op can be + to add permission to the file's mode, - to take away permission, or = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), s (set owner or
group 10) and t (save text - sticky); u, 9 or 0 indicate that permission is to be taken from the
current mode. Omitting permission is only useful with = to take away all permissions.

Multiple symbolic modes separated by commas may be given. Operations are performed in the
order specified. The letter s is only useful with u or 9 and t only works with u.

Only the owner of a file (or the super-user) may change its mode.

EXAMPLES
The first example denies write permission to others, the second makes a file executable:

chmod o-w file

chmod +x file

SEE ALSO
18(1), chmod(2).

Page 1 January 19, 1984

CHOWN(1)

NAME
chown. chgrp - change owner or group

SYNOPSIS
chown owner file .. .

chgrp group file .. .

DESCRIPTION

CHOWN(1)

Chown changes the owner of the files to owner. The owner may be either a decimal user 10 or
a login name found in the password file.

FILES

Chgrp changes the group 10 of the files to group. The group may be either a decimal group 10
or a group name found in the group file.

letc/passwd
letclgroup

SEE ALSO
chown(2). group(5). passwd(5).

Page 1 January 19, 1984

CHROOT(1M)

NAME
chroot - change root directory for a command

SYNOPSIS
chroot newroot command

DESCRIPTION

CHROOT(1M)

The given command is executed relative to the new root. The meaning of any initial slashes (I)
in path names is changed for a command and any of its children to newroot. Furthermore, the
initial working directory is newroot.

Notice that:

chroot new root command > x

will create the file x relative to the original root, not the new one.

This command is restricted to the super-user and should begin with a slash (/).

The new root path name is always relative to the current root: even if a chroot is currently in
effect, the newroot argument is relative to the current root of the running process.

SEE ALSO
chdir(2).

BUGS
One should exercise extreme caution when referencing special files in the new root file system.

Page 1 January 19, 1984

CLEAR(1)

\

NAME
clear - clear terminal screen

SYNOPSIS
lusr/plxlclear

DESCRIPTION

(Plexus) CLEAR(1)"

Clear clears your screen if this is possible. It looks in the environment for the terminal type and
then in letcltermcap to figure out how to clear the screen.

FILES
letc/termcap terminal capability data base

NOTES
This command is based on a similar one developed at the University of California at Berkeley.

Page 1 January 19. 1984

ClRI(1M) ClRI(1M) .

(""
/ NAME

clri - clear i-node

SYNOPSIS
letc/clri file-system i-number ...

DESCRIPTION
Clrl writes zeros on the 64 bytes occupied by the i-node numbered i-number. File-system must
be a special file name referring to a device containing a file system. After elri is executed. any
blocks in the affected file will show up as "missing" in an fsek(1M) of the file-system. This com­
mand should only be used in emergencies and extreme care should be exercised.

Read and write permission is required on the specified file-system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory. care should be taken
to track down the entry and remove it. Otherwise. when the i-node is reallocated to some new
file. the old entry will still point to that file. At that point removing the old entry will destroy the
new file. The new entry will again point to an unallocated i-node. so the whole cycle is likely to
be repeated again and again.

SEE ALSO
fsck(1 M). fsdb(1 M). ncheck(1 M). fs(5).

BUGS
If the file is open, elri is likely to be ineffective.

Page 1 January 19. 1984

CMP(1) CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [-I] [-s] file1 file2

DESCRIPTION
The two files are compared. (If filet is ., the standard input is used.) Under default options,
cmp makes no comment if the files are the same; if they differ, it announces the byte and line
number at which the difference occurred. If one file is an initial subsequence of the other, that
fact is noted.

Options:

-I Print the byte number (decimal) and the differing bytes (octal) for each difference.

-s Print nothing for differing files; return codes only.

SEE ALSO
comm(1), diff(1).

DIAGNOSTICS

Page 1

Exit code 0 is returned for identical files, 1 for different files, and 2 for an inaccessible or missing
argument

January 19, 1984

COl(1) COl(1)

('" NAME
col - filter reverse line-feeds

SYNOPSIS
col [-bfpx]

DESCRIPTRON
Col reads from the standard input and writes onto the standard output. It performs the line over­
lays implied by reverse line feeds (ASCII code ESC-7), and by forward and reverse half-line­
feeds (ESC-9 and ESC-8). Col is particularly useful for filtering multicolumn output made with
the .rt command of nroff(1) and output resulting from use of the tbl(1) preprocessor.

If the -b option is given, col assumes that the output device in use is not capable of backspac­
ing. In this case, if two or more characters are to appear in the same place, only the last one
read will be output.

Although col accepts half-line motions in its input, it normally does not emit them on output.
Instead, text that would appear between lines is moved to the next lower full-line boundary.
This treatment can be suppressed by the -f (fine) option; in this case, the output from col may
contain forward half-line-feeds (ESC-9), but will still never contain either kind of reverse line
motion.

Unless the -x option is given, col will convert white space to tabs on output wherever possible to
shorten printing time.

The ASCII control characters SO (\017) and SI (\016) are assumed by col to start and end text in
an alternate character set. The character set to which each input character belongs is remem­
bered, and on output SI and SO characters are generated as appropriate to ensure that each
character is printed in the correct character set.

On input, the only control characters accepted are space, backspace, tab, return, new-line, SI,
SO. VT (\013). and ESC followed by 7, 8. or 9. The VT character is an alternate form of full
reverse line-feed, included for compatibility with some earlier programs of this type. All other
non-printing characters are ignored.

Normally, col will ignore any unknown to it escape sequences found in its input; the -p option
may be used to cause col to output these sequences as regular characters, subject to overprint­
ing from reverse line motions. The use of this option is highly discouraged unless the user is
fully aware of the textual position of the escape sequences.

SEE ALSO

NOTES

BUGS

Page 1

nroff(1), tbl(1).

The input format accepted by col matches the output produced by nroff(1) with either the -T37
or -Tip options. Use -T37 (and the -f option of col) if the ultimate disposition of the output of col
will be a device that can interpret half-line motions, and -Tip otherwise.

Cannot back up more than 128 lines.
Allows at most 800 characters, including backspaces, on a line.
Local vertical motions that would result in backing up over the first line of the document are
ignored. As a result, the first line must not have any superscripts.

January 19, 1984

COMB(1) COMB(1) .

NAME
comb - combine sees deltas

SYNOPSIS
comb [-0] [-S] [-psi d) [melist] files

DESCRIPTION

FilES

Comb generates a shell procedure (see sh(1» which, when run, will reconstruct the given sees
files. The reconstructed files will, hopefully, be smaller than the original files. The arguments
may be specified in any order, but all keyletter arguments apply to all named sees files. If a
directory is named, comb behaves as though each file in the directory were specified as a
named file, except that non-sees files (last component of the path name does not begin with s.)
and unreadable files are silently ignored. If a name of - is given, the standard input is read;
each line of the standard input is taken to be the name of an sees file to be processed; non­
sees files and unreadable files are silently ignored.

The generated shell procedure is written on the standard output.

The keyletter arguments are as follows. Each is explained as though only one named file is to
be processed, but the effects of any keyletter argument apply independently to each named file.

-pSID The sees IDentification string (SID) of the oldest delta to be preserved. All older del­
tas are discarded in the reconstructed file.

-C/ist· A list (see get(1) for the syntax of a list) of deltas to be preserved. All other deltas are
discarded.

-0 For each get -e generated, this argument causes the reconstructed file to be accessed
at the release of the delta to be created, otherwise the reconstructed file would be
accessed at the most recent ancestor. Use of the -0 key letter may decrease the size
of the reconstructed sees file. It may also alter the shape of the delta tree of the origi­
nal file.

-s This argument causes comb to generate a shell procedure which, when run,
will produce a report giving, for each file: the file name, size (in blocks) after
combining, Original size (also in blocks), and percentage change computed by:

100. (original - combined) / Original
It is recommended that before any sees files are actually combined, one
should use this option to determine exactly how much space is saved by the
combining process.

If no keyletter arguments are specified, comb will preserve only leaf deltas and the
minimal number of ancestors needed to preserve the tree.

S.COMB The name of the reconstructed sees file.
comb????? Temporary.

SEE ALSO
admin(1), delta(1), get(1), help(1), prs(1), sccsfile(5).
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi.

DIAGNOSTICS

BUGS

Page 1

Use help(1) for explanations.

Comb may rearrange the shape of the tree of deltas. It may not save any space; in fact, it is
possible for the reconstructed file to actually be larger than the Original.

January 19, 1984

COMM(1) COMM{1)

NAME
comm - select or reject lines common to twa sorted files

SYNOPSIS
comm [- [123 I I file1 file2

DESCRIPTION
Camm reads filet and file2, which should be ordered in ASCII collating sequence (see sort(1)),
and produces a three-column output: lines only in filet; lines only in file2; and lines in both files.
The file name - means the standard input.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus comm -12 prints only the
lines common to the two files; comm -23 prints only lines in the first file but not in the second;
comm -123 is a no-op.

SEE ALSO
cmp(1), diff(1), sort(1), uniq(1).

Page 1 January 19, 1984

COPYTAPE(1M) (Plexus) COPYTAPE(1M)

NAME
copytape - make an image copy of a tape

SYNOPSIS
lusr/plxlcopytape [-rwv] [-p numfiles] [-f filenum] [-d descfile] [-i] srcfile [-0]
dstfile

DESCRIPTION
Copytape is used for duplicating tapes. It preserves blocking and file marks. The -r option
specifies that srcfile (presumably a tape) is to be read and its data placed on dstfile. If not oth­
erwise specified, standard output contains the blocking and file mark information. The -w option
(default) specifies that srcfile is to be read and dstfile (presumably a tape) is to be written
according to information given as standard input.

The -v option (used with the -r option) specifies that variable size blocks may occur within a tape
file.

The -p option must be used for the streaming tape drive, and the number of files to be read
must be specified. A raw disk file system (e.g, Idev/rdk3), as opposed to a file, MUST be used
when the streaming tape drive -p option is specified.

The -f option specifies that a single file is to be read from or written to tape. The filenum selects
the file from the srcfile, starting with file number O.

-i Signals the input file, while -0 means the output file.

EXAMPLES

Page 1

The command

copytape -r Idev/rmtO tapeimage > descfile

makes an image of the tape in drive 0 in the file tapeimage while creating a deSCription file
called descfile. By loading a new tape and issuing the command

copytape -w tapeimage Idev/nrmtO < descfile

an exact image of the tape will be created. Notice that Idev/nrmtO is used instead of Idev/rmtO.
This is required so that the tape will not rewind between files. Also notice that tapefile may be
very large, and that there must be enough room in the file system to hold it before this will work.
It is also possible to use logical disk drives (e.g., Idev/dk5), but this can be extremely
dangerous if used incorrectly. Note that a cartridge tape will operate in streaming mode only if a
raw logical disk is specified.

January 19, 1984

COPYTAPE(1M) (Plexus) COPYTAPE(1M)

NOTES
This command is a Plexus feature; it is not part of standard System III.

BUGS
The ~v option doesn't work for streaming cartridge tape drives.

~.

January 19, 1984 Page 2

CP(1) CP(1) .

NAME
cp, In, mv - copy, link or move files

SYNOPSIS
cp file1 [file2 ... J target
In file1 [file2 ... J target
mv file1 [file2 ... J target

DESCRIPTION
File1 is copied (linked, moved) to target. Under no circumstance can flle1 and target be the
same. If target is a directory, then one or more files are copied (linked, moved) to that direc­
tory.

If mv determines that the mode of target forbids writing, it will print the mode (see chmod(2»
and read the standard input for one line (if the standard input is a terminal); if the line begins
with y, the move takes place; if not, mv exits.

Only mv will allow file1 to be a directory, in which case the directory rename will occur only if
the two directories have the same parent.

SEE ALSO

BUGS

Page 1

cpio(1), link(1 M), rm(1), chmod(2).

If flle1 and target lie on different file systems, mv must copy the file and delete the original. In
this case the owner name becomes that of the copying process and any linking relationship with
other fi les is lost.

Ln will not link across file systems.

January 19, 1984

CPIO(1) CPIO(1) .

NAME
cpio - copy file archives in and out

SYNOPSIS
cpio -0 [BcBv]

cpio -i [Bcdmrtuv6s] [patterns]

cpio -p [adlmruv] directory

DESCRIPTION
Cpio -0 (copy out) reads the standard input to obtain a list of path names and copies those files
onto the standard output together with path name and status information.

Cpio -j (copy in) extracts from the standard input (which is assumed to be the product of a pre­
vious cpio -0) the names of files selected by zero or more patterns given in the name­
generating notation of sh(1). In patterns, meta-characters ?, *, and [... J match the slash I
character. The default for patterns is • (i.e., select a" files).

Cpio -p (pass) copies out and in in a single operation. Destination path names are interpreted
relative to the named directory.

When copying regular files into a directory, cpio normally uses the creat(2) system ca", which
preserves links to the files copied.

The meanings of the available options are:

a Reset access times of input files after they have been copied.
B Input/output is to be blocked 5,120 bytes to the record (does not apply to the pass

option; meaningful only with data directed to or from Idev/rmt?).
d Directories are to be created as needed.
c Write header information in ASCII character form for portability.
r Interactively rename files. If the user types a null line, the file is skipped.
t Print a table of contents of the input. No files are created.
u Copy unconditionally (norma"y, an older file will not replace a newer file with the same

name). If the owner of the file being copied does not have write permission on the file,
all links to it are removed.

v Verbose: causes a list of file names to be printed. When used with the t option, the
table of contents looks like the output of an Is -I command (see Is(1».
Whenever possible, link files rather than copying them. Usable only with the -p option.

m Retain previous file modification time. This option is ineffective on directories that are
being copied.

6 Process an old (i.e., UNIX Sixth Edition format) file. Only useful with -i (copy in).
s Swap bytes. This option cannot be used in combination with c.

When extracting from standard input (-i option) into a directory, cpio does not change the mode
of files if they exist already in the directory. It does not change the owner or group of directories
if they already exist, nor does it change a special file if it already exists.

EXAMPLES
The first example below copies the contents of a directory into an archive; the second duplicates
a directory hierarchy:

Is I cpio -0 >/dev/mtO

cd olddir
find _ -print I cpio -pdl newdir r The trivial case "find. -print I cpio -oB >/dev/rmtO" can be handled more effiCiently by:

Page 1 January 19, 1984

CPIO(1) CPIO(1)

find • -cpio Idev/nntO

SEE ALSO

BUGS

ar(1), find(1), cpio(5).

Path names are restricted to 128 characters.

If there are too many unique linked files, the program runs out of memory to keep track of them
and, thereafter, linking information is lost.

Only the super-user can copy special files.

When you attempt a cpio -id from a read-only directory, the message "Cannot chdir (no 'd'
option)" is issued --even though you have specified the 'd' option -- since you can't create
directories within the original read-only directory.

January 19, 1984 Page 2

~ (it

CRASH(lM) CRASH(lM)

NAME
crash - examine system images

SYNOPSIS
letc/crash [system [namelist [physaddr]]]

DESCRIPTION
Crash is an interactive utility for examining an operating system core image. It has facilities for
interpreting and formating the various control structures in the system and certain miscellaneous
functions that are useful when perusing a dump.

The arguments to crash are the file name where the system image can be found, a namelist file
to be used for symbol values, and the segment address of the initial process to be examined.
The current process can be changed via subsequent commands. The default values are
Idev/mem, Isys3, and the location of the swapper, process 0; hence, crash with no arguments
can be used to examine an active system. If a system image file is given, it is assumed to be a
system core dump and the initial process is set to be that of the process running at the time of
the crash. This is determined by the value of physaddr stored in a fixed location by the system
dump mechanism.

COMMANDS

Page 1

Input to crash is typically of the form:
command [options] [structures to be printed].

When allowed, options will modify the format of the printout. If no specific structure elements
are specified, all valid entries will be used. As an example, proc - 12 153 would print process
table slots 12, 15 and 3 in a long format, while proc would print the entire process table in the
standard format. The current repertory consists of:

physaddr [physical address]
Print the location of the current process if no argument is given, or set the location to
that of the supplied value.

u Print the user structure of the current process as determined by the value of physaddr.

trace[-r]
Generate a kernel stack trace of the current process. If the -r option is used, the trace
begins at the saved stack frame pOinter. Otherwise the trace starts at the bottom of the
stack and attempts to find valid stack frames deeper in the stack.

fp [stack frame poi nter]
Print the program's idea of the start of the current stack frame (set initially from a fixed
location in the dump) if no argument is given, or set the frame pointer to the supplied
value.

stack Format an octal dump of the kernel stack of the current process. The addresses shown
are virtual system data addresses rather than true physical locations.

proc [-[r]] [list of process table entries]
Format the process table. The -r option causes only runnable processes to be printed.
The - alone generates a longer listing.

inode [-] [list of inode table entries]
Format the inode table. The - option will also print the inode data block addresses.

file [list of file table entries]
Format the file table.

mount [list of mount table entries]

January 19, 1984

CRASH(1M) CRASH(1M) .

Format the mount table.

text [list of text table entries]
Format the text table.

tty [type] [•] [list of tty entries]
Print the tty structures. The type argument determines which structure will be used
(such as us or sp; the last type is remembered). The· option prints the stty parame­
ters for the given line.

stat Print certain statistics found in the dump. These include the panic string, time of crash,
system name, and the registers saved in low memory by the dump mechanism.

var Print the tunable system parameters.

buf [list of buffer headers]
Format the system buffer headers.

buffer [format] [list of buffers]
Print the data in a system buffer according to format. Valid formats include hex,
decimal, octal, character, byte, directory, inode, and write. The last creates a file
containing the buffer data.

callout Print all entries in the callout table.

map list of map names
Format the named system map structures.

nm list of symbols
Print symbol value and type as found in the namelist file.

ts list of text addresses
Find the closest text symbols to the given addresses.

ds list of data addresses
Find the closest data symbols to the given addresses.

od symbol or data address [count [format]]
Dump count data values starting at the symbol value or address given according to for­
mat. Allowable tormats are hex, octal, decimal, character, or byte.

I Escape to shell.

q Exit from crash.

? Print synopsis of commands.

ALIASES

FILES

NOTES

There are built in aliases for many of the commands and formats. In general, the first letter of a
name is satisfactory, thus, k is a shorthand notation for kernel. Exceptions are x for text and e
for decimal.

/dev/mem
/sys3
but.#:

default system image file
default namelist file
files created containing buffer data

This program has been changed to reflect Plexus hardware.

SEE ALSO
crash(8).

January 19, 1984 Page 2

CRASH{1M) CRASH{1M) .

BUGS

Page 3

This program is not completely implemented on Plexus hardware. Specifically, the physaddr, v,
trace, (p, stack, and tty commands are either missing or incomplete. Not all commands print In
hexadecimal.

January 19, 1984

CREF(1) CREF(1)

NAME
cref - make cross-reference listing

SYNOPSIS
eref [-acilnostux123] files

DESCRIPTION

FilES

Page 1

Cref makes a cross-reference listing of assembler or C programs; files are searched for sym­
bols in the appropriate syntax.

The output report is in four columns:

1. symbol;
2. file name;
3. see below;
4. text as it appears in the file.

Cref uses either an ignore file or an only file. If the -i option is given, the next argument is
taken to be an ignore file; if the -0 option is given, the next argument is taken to be an only file.
Ignore and only files are lists of symbols separated by new-lines. All symbols in an ignore file
are ignored in columns 1 and 3 of the output. If an only file is given, only symbols in that file will
appear in column 1. Only one of these options may be given; the default setting is -i using the
default ignore file (see FILES below). Assembler pre-defined symbols or C keywords are
ignored.

The -s option causes current symbols to be put in column 3. In the assembler, the current sym­
bol is the most recent name symbol; in C, the current function name. The -I option causes the
fine number within the file to be put in column 3.

The -t option causes the next available argument to be used as the name of the intermediate We
(instead of the temporary file Itmp/crt??). This file is created and is not removed at the end of
the process.

The eref options are:

a assembler format (default)
c C format input

use an ignore file (see above)
put line number in column 3 (instead of current symbol)

n omit column 4 (no context)
o use an only file (see above)
s current symbol in column 3 (default)
t user-supplied temporary file
u print only symbols that occur exactly once
x pri nt only C external symbols
1 sort output on column 1 (default)
2 sort output on column 2
3 sort output on column 3.

/tmp/crt??
lusrllib/cref/aign
Ius r/li b/crefl atab
lusr/lib/cref/cign
lusr/lib/cref/ctab
lusr/lib/cref/crpost
lusr/lib/cref/upost

temporaries
default assembler ignore file
grammar table for assembler files
default C ignore file
grammar table for C files
post-processor
post-processor for -u option

January 19, 1984

CREF(1) CREF(1)

SEE ALSO
as(1), cc(1), SQrt(1), xref(1).

BUGS
eref inserts an ASCII DEL character into the intermediate file after the eighth character of each
name that is. eight or more characters long in the source file.

January 19, 1984 Page 2

CRON(1M) CRON(1M) .

NAME
cron - clock daemon

SYNOPSIS
letc/eron

DESCRIPTION

FILES

Cran executes commands at specified dates and times according to the instructions in the file
lusrllib/erontab. Because eron never exits, it should be executed only once. This is best done
by running eran from the initialization process through the file lete/rc (see init(8».

The file erontab consists of lines of six fields each. The fields are separated by spaces or tabs.
The first five are integer patterns that specify the minute (0-59), hour (0-23), day of the month
(1-31), month of the year (1-12), and day of the week (0-6, with O=Sunday). Each of these
patterns may contain:

a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these numbers); or
an asterisk (meaning all legal values).

"0" is a valid entry for the day-of-month and month-of-year fields, even though it is out of range
for these fields. It means "never" and can be used to turn off processes.

The sixth field is a string that is executed by the shell at the specified time(s). A % in this field
is translated into a new-line character. Only the first line (up to a % or the end of line) of the
command field is executed by the shell. The other lines are made available to the command as
standard input.

Cran examines erontab once a minute to see if it has changed; if it has, eran reads it. Thus it ~
takes only a minute for entries to become effective.!

Cran ignores a line in erontab if one of the fields has an invalid value.

lusrllib/crontab
lusr/lib/cronlog

SEE ALSO
sh(1), init(8).

DIAGNOSTICS

BUGS

Page 1

A history of all actions byeran are recorded in lusr/lib/eronlog.

Cran reads erontab only when it has changed, but it reads the in-core version of that table once
a minute. A more efficient algorithm could be used. The overhead in running eron is about one
percent of the CPU, exclusive of any commands executed by eron.
Changing the date by a few hours or more can cause eran to execute commands like crazy try­
ing to catch up. This can load down and even harm your system if eron tries to run incompati­
ble processes at once.

January 19, 1984

CRVPT(1) CRVPT(1)

NAME
crypt - encode/decode

SYNOPSIS
crypt [password]

DESCRIPTION

FILES

Crypt reads from the standard input and writes on the standard output. The password is a key
that selects a particular transformation. If no password is given, crypt demands a key from the
terminal and turns off printing while the key is being typed in. Crypt encrypts and decrypts with
the same key:

crypt key < clear > cypher
crypt key < cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ed in encryption mode.

The security of encrypted files depends on three factors: the fundamental method must be hard
to solve; direct search of the key space must be infeasible; "sneak paths" by which keys or
clear text can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German Enigma, but with
a 2S6-element rotor. Methods of attack on such machines are known, but not widely; moreover
the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately designed to
be expensive, i.e. to take a substantial fraction of a second to compute. However, if keys are
restricted to (say) three lower-case letters. then encrypted files can be read by expending only a
substantial fraction of five minutes of machine time.

Since the key is an argument to the crypt command, it is potentially visible to users executing
ps(1) or a derivative. To minimize this possibility, crypt takes care to destroy any record of the
key immediately upon entry. The choice of keys and key security are the most vulnerable
aspect of crypt.

/dev/tty for typed key

SEE ALSO

BUGS

Page 1

ed(1), makekey(8).

If output is piped to nroff(1) and the encryption key is not given on the command line, crypt can
leave terminal modes in a strange state (see stty(1)).

January 19, 1984

CSH(1) (Plexus) CSH(1)

NAME
csh - a shell (command interpreter) with C-like syntax

SYNOPSIS
lusr/plxlcsh [-cef instvVxX] [arg ...

DESCRIPTION

Page 1

Csh is a command language interpreter. When you invoke it, it first executes commands from
the file .cshrc in your home directory. If you are logging in, it also executes commands from the
file .login there. Normally the shell then begins reading commands from the terminal, prompting
with % (a per cent sign followed by a blank). Later in this manual entry, we will describe how
the shell processes arguments and command scripts.

The shell repeatedly reads a line of command input and breaks the line into words; places the
sequence of words on the command history list and parses it; and finally executes each com­
mand in the current line.

When a login C-shell terminates, it executes commands from the file .logout in your home
directory.

Lexical Structure

The shell usually splits input lines into words at blanks and tabs. The characters &, I, ;, <, >, (,
and) are exceptions, however; they all form separate words. If doubled, as in &&, II, < <, or
> >, these pairs form single words. These parser metacharacters may be made part of other
words; their special meaning may be turned off by preceding them with \. A newline preceded
by a \ is equivalent to a blank.

In addition, strings enclosed in matched pairs of quotations, " " or H, form parts of a word;
metacharacters in these strings, including blanks and tabs, do not form separate words. The
semantics of these quotations are described below. Within pairs of \ or " characters, a newline
preceded by a \ gives a true newline character.

When the shell's input is not a terminal, the character # introduces a comment, which continues
to the end of the input line. It is prevented this special meaning when preceded by \ and in
quotations usi ng " " and ".

Commands

A simple command is a sequence of words, the first of which specifies the command to be exe­
cuted. A simple command or a sequence of simple commands separated by I characters forms
a pipeline. In a pipeline, the output of each command becomes the input of the next. A com­
mand line may contain sequences of pipelines; separate the pipelines by;, and they are then
executed sequentially. You do not necessarily have to wait for a sequence of pipelines to finish
executing before you issue another command: by following the command with an ampersand
(&), the sequence of pipelines (0 or more) is executed in background mode, and you receive
another shell prompt immediately. A command sequence followed by an ampersand is not ter­
minated by a hangup signal; the nohup command need not be used.

Commands or pipelines may be placed in parentheses () to form another simple command
(which may be a component of a pipeline, etc.) You may also separate pipelines with II or &&
indicating, as in the C language, that the second component is to be executed only if the first
fails or succeeds respectively. (See Expressions.)

Substitutions

The shell performs various transformations on its input.

History Substitutions

History substitutions reintroduce sequences of words from previous commands. They may also
perform modifications on these words. Thus history substitutions provide a generalization of a

January 19, 1984

~
(

r
CSH(1) (Plexus) CSH(1)

redo function.

History substitutions begin with the character! and may begin anywhere in the input stream if a
history substitution is not already in progress. This! may be preceded by an \ to prevent its
special meaning; a! is passed unchanged when it is followed by a blank, tab, newline, = or (.
History substitutions also occur when an input line begins with t. This special abbreviation is
described later.

Input lines containing history substitution metacharacters are echoed on the terminal before
being executed. The echoed version shows the command line as it could have been typed
without history substitution.

The history mechanism saves some number of commands input from the terminal. The size of
the history list thus created is controlled by the history variable. The immediately previous com­
mand is always retained. Commands are numbered sequentially from 1.

For example" consider the following output from the history command:

9 write michael
10 ex write.c
11 cat oldwrite.c
12 diff *write.c

The commands are shown with their event numbers. You don't always need to use event
numbers when you use the history mechanism; if you want to see them for each command, the
current event number can be made part of the prompt by placing an ! in the prompt string.

If the current event is number 13, you can refer to event 11 by its event number as in !11; by its
event number relative to the current event number as in !-2; by a prefix of a command word as
in !e; or by a string contained in a word in the command as in !?old? These forms, without
further modification, simply repeat the command line of event 11. As a special case !! refers to
the previous command; thus!! alone is essentially a redo. The form !# refers to the current
command (the one being typed in). See below for an example of this in use.

To select words from a previous command line, use a colon (:) and a designator for the desired
words. The words of a input line are numbered from 0, the first (usually command) word being
0, the second word (first argument) being 1, etc. The basic word designators are:

o first (command) word
n n 'th argument
t first argument, i.e. "1"
$ last argument
% word matched by (immediately preceding) ?s? search
x -y range of words
-y abbreviates "O-y"
* abbreviates "t-$", or nothing if only 1 word in event
x. abbreviates "x-$"
x- like "x." but omitting word "$"

Thus the command

diff lusr/man/does/vpm1.0 lusr/man/docs/vpm2.0 ; vi 1#:1

uses both the "!#" convention for the current command line, and the ":n" convention for argu­
ment number. The effect of this command is to display the differences between the two files on
the standard output, and then summon the editor vi for use on the first file (argument number 1).

The : separating the event specification from the word designator can be omitted if the argu­
ment selector begins with a t, $, $, a, or %. So, in the example above, the vi portion could have
been equivalently typed

January 19, 1984 Page 2

CSH(1)

Page 3

(Plexus) CSH(1) .

vi !/t
A sequence of modifiers can be placed after the optional word designator. Each modifier is pre­
ceded by a:. The following modifiers are defined:

h Remove a trailing pathname component, leaving the head.
r Remove a trailing .xxx component, leaving the root name.
sll If! Substitute I for r
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
9 Apply the change globally, prefixing the above, e.g. g&.
p Print the new command but do not execute it.
q Quote the substituted words, preventing further substitutions.
x Like q, but break into words at blanks, tabs and newlines.

Unless preceded by a g the modification is applied only to the first moqifiable word. It is always
an error for no word to be applicable.

Expressions on the left hand side of substitutions are not regular expressions in the sense of the
editors; rather, they are strings. Any character may be used as the delimiter in place of I; a \
quotes the delimiter. The character & in the right hand side is replaced by the text from the left.
A \ quotes & also. A null I (left hand side expression) uses the previous string either from a I or
from a contextual scan string s in !?s? The trailing delimiter in the substitution may be omitted
if a newline follows immediately; the same goes for the trailing? in a contextual scan.

You can use a history reference without an event speCification, e.g. !$. In this case the refer­
ence is to the previous command unless a previous history reference occurred on the same line
in which case this form repeats the previous reference. Thus l?fo01t 1$ gives the first and last
arguments from the command matching 1fo01.

A special abbreviation of a history reference occurs when the first non-blank character of an
input line is a t. This is equivalent to I:st, providing a convenient shorthand for substitutions on
the text of the previous line. Thus tlbtlib fixes the spelling of lib in the previous command.
Finally, a history substitution may be surrounded with { and} to insulate it from the characters
that follow. Thus, after Is -sandy we might do 1{1}1 to get Is -sandy1, while 111 would look for
a command starting 11.

Quotations with ' and II

The quotation of strings by , and II can prevent all or some substitutions. Strings enclosed in '
are prevented any further interpretation. Strings enclosed in II are variable and command
expanded as described below.

In both cases the resulting text becomes (all or part of) a single word; only in one special case
(see Command Substitition below) does a II quoted string yield parts of more than one word; ,
quoted strings never do.

Alias Substitution

The shell maintains a list of aliases that can be established, displayed and modified by the alias
and unalias commands. After scanning a command line, the C shell parses it into distinct com­
mands and checks the first word of each command, left-to-right, to see if it has an alias. If it
does, then the text that is the alias for that command is reread as though that command were
the previous input line. The history mechanism remains fully operational within aliasing. The
resulting words replace the command and argument list.

Thus if the alias for Is is Is -I, the command Is /usr becomes Is -I lusr. The argument list here
is undisturbed. Similarly if the alias for lookup is grep !t letc/passwd, then lookup bill
becomes grep bill letc/passwd. ~

January 19, 1984

CSH(t) (Plexus) CSH(t) .

If the C shell finds an alias, it transforms the words of the input text and begins the aliasing pro­
cess again on the reformed input line. If the first word of the new text is the same as the old,
the shell flags it to prevent further aliasing. Other loops are detected and cause an error.

Note that the mechanism allows aliases to introduce parser metasyntax. Thus we can alias
print \f1pr \!. Ilpr\f1 to make a command that prs its arguments to the line printer.

Variable Substitution

The shell maintains a set of variables, each of which has as value a list of zero or more words.
Some of these variables are set by the shell or referred to by it. For instance, the argv variable
is an image of the shell's argument list, and words of this variable's value are referred to in spe­
cial ways. For a complete list of the shell's pre-defined variables, see the section Pre-defined
Variables towards the end of this manual entry.

The values of variables may be displayed and changed by using the set and unset commands.
A number of the variables referred to by the shell are toggles; the shell does not care what their
value is, only whether they are set or not. For instance, the verbose variable is a toggle that
causes command input to be echoed. The setting of this variable results from the -v command
line option.

Other operations treat variables numerically. The @ command permits numeric calculations to
be performed and the result assigned to a variable. Variable values are, however, always
represented as (zero or more) strings. For the purposes of numeric operations, the null string is
considered to be zero, and the second and subsequent words of multiword values are ignored.

After alaising and parsing the input line, and before executing each command, the shell per­
forms variable substitution, keyed by $ characters. This expansion can be prevented by preced­
ing the $ with a \' except within always occurs, and within "Rs where it never occurs. Strings
quoted by • are interpreted later (see Command Substitution below) so $ substitution does not
occur there until later, if at all. A $ is passed unchanged if followed by a blank, tab, or end-of­
line.

Input'output redirections are recognized before variable expansion, and are variable-expanded
separately. With no I/O redirection, the command name and entire argument list are expanded
together. Thus the first (command) word may generate more than one word, the first of which
becomes the command name, and the rest of which become arguments.

Unless enclosed in II or given the :q modifier, the results of variable substitution may eventually
be command and filename substituted. Within ", a variable whose value consists of multiple
words expands to a (portion of) a single word, with the words of the variable's value separated
by blanks. When the :q modifier is applied to a substitution, the variable expands to multiple
words, with each word separated by a blank and quoted to prevent later command or filename
substitution.

The following metasequences are provided for introducing variable values into the shell input.
Except as noted, it is an error to refer to a variable that is not set.

$name
${name}

Are replaced by the words of the value of variable name, each separated by a blank.
Braces insulate name from following characters that would otherwise be part of it. Shell
variables have names consisting of up to 20 letters, digits, and underscores.

If name is not a shell variable, but is set in the environment, then that value is returned
(but: modifiers and the other forms given below are not available in this case).

$name[selector]
${name[selector]}

May be used to select only some of the words from the value of name. The selector is sub­
jected to $ substitution and may consist of a single number or two numbers separated by a

January 19, 1984 Page 4

CSH(1)

PageS

(Plexus) CSH(1)

-. The first word of a variable's value is numbered 1. If the first number of a range is omit­
ted, it defaults to 1. If the last member of a range is omitted, it defaults to $#f1ame. The
selector * selects all words. It is not an error for a range to be empty if the second argu­
ment is omitted or in range.

$#name
${#name}

Gives the number of words in the variable. This is useful for later use in a [selector}.

$0
Substitutes the name of the file from which command input is being read. An error occurs
if the name is not known.

$number
${number}

Equivalent to $argv[number}.

Equivalent to $argv[*}.

The modifiers :h, :t, :r, :q and :x may be applied to the substitutions above as may :gh, :gt and
:gr. If braces { } appear in the command form, the modifiers must appear within the braces.
The current implementation allows only one: modifier on each $ expansion.

The following substitutions may not be modified with: modifiers.

$?name
${?name}

Substitutes the string "1" if name is set, "0" if it is not.

$?O
Substitutes "1" if the current input filename is known, "0" if it is not.

$$
Substitute the (decimal) process number of the (parent) shell.

Command and Filename Substitution

Command and filename substitutions are applied selectively to the arguments of built-in com­
mands. This means that portions of expressions that are not evaluated are not subjected to
these expansions. For commands not internal to the shell, the command name is substituted
separately from the argument list. This occurs very late, after input-output redirection is per­
formed, and in a child of the main shell.

Command Substitution

Enclosing a command in • indicates command substitution. The shell breaks the output from
such a command into separate words at blanks, tabs and newlines; it discards null words. It
then replaces the original string with this text. Within "s, only newlines force new words; blanks
and tabs are preserved.

In any case, the single final newline does not force a new word. Thus a command substitution
may yield only part of a word, even if the command outputs a complete line.

Filename Substitution

If a word contains any of the characters *, ?, [or { or begins with the character -, then that·
word is a candidate for filename substitution, also known as globbing. This word is then
regarded as a pattern, and replaced with an alphabetically sorted list of file names that match
the pattern. If several words on the same command line specify filename substitution, the C
shell returns an error only if no pattern matches an existing file name. It does not return an error .. ""
if some matches are successful and others are not. Only the metacharacters *, ? and [imply }
pattern matching; the characters - and { being more akin to abbreviations.

January 19, 1984

CSH(1) (Plexus) CSH(1)

In matching filenames, the character. at the beginning of a filename or immediately following a
I, as well as the character I, must be matched explicitly. The character. matches any string of
characters, including the null string. The character? matches any single character. The
sequence [.••] matches anyone of the characters enclosed. Within [..• J, a pair of characters
separated by - matches any character lexically between the two.

The character'" at the beginning of a filename refers to home directories. Standing alone, i.e.
N, it expands to the invoker's home directory as reflected in the value of the variable home.
When followed by a name consisting of letters, digits and - characters the shell searches for a
user with that name and substitutes his home directory; thus -ken might expand to lusr/ken
and -ken/chmach to /usr/ken/chmach. If the character'" is followed by a character other than
a letter or / or appears someplace other than at the beginning of a word, it is left undisturbed.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. The shell preserves left to right
order, and sorts the results of matches separately at a low level to preserve this order. This
construct may be nested. Thus, "'source/s1/{oldls,ls}.c expands to /usrlsource/s1/oldls.c
/usrlsource/s1/Is.c. This works whether or not these files exist. There is no chance of error if
the home directory for source is lusr/source. Similarly .. /{memo,.box} might expand to
.. /memo . .lbox . .lmbox. (Note that memo is not sorted with the results of matching .box.) As a
special case {, } and {} are passed undistUrbed.

Input'Output

The standard input and standard output of a command may be redirected with the following syn·
tax:

< name
Open file name (which is first variable, command and filename expanded) as the standard
input.

« word
Read the shell input up to a line identical to word. The shell does not perform variable,
filename or command substitution on word. It compares each input line to word before
doing any substitutions on this input line, Unless a quoting \' ", • or • appears in word,
the shell performs variable and command substitution on the intervening lines, allowing \
to quote $, \ and '. Commands that are substituted have all blanks, tabs, and newlines
preserved, except for the final newline, which is dropped. The shell places the resultant
text in an anonymous temporary file, which it then gives to the command as standard
input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not exist, it is created; if the file
exists, its previous contents are lost.

The variable noe/obber is designed to prevent accidental overwriting of files by ">". If
the variable noe/obber is set, then the file named by name must either not exist or be a
character special file (e.g. a terminal or Idev/nu//); otherwise, noe/obber prevents the
redirection and issues an error message. The! forms suppress this check.

The forms involving & route the diagnostic output into the specified file as well as the stan­
dard output. Name is expanded in the same way as < input filenames are.

» name
»& name
»! name

January 19, 1984 PageS

CSH(1)

Page 7

(Plexus) CSH(1) .

»&! name
Uses file name as standard output like> but places output at the end of the file. If the
variable noc/obber is set, then it is an error for the file not to exist unless one of the 1
forms is given. Otherwise similar to >.

If a simple command is run in foreground mode, without being followed by &, its environment is
that of the shell that runs it. If a shell procedure is run in foreground mode, without being fol­
lowed by &, each command within the procedure receives the environment in which the pro­
cedure was invoked. In other words, the shell spawned by the shell procedure inherits the
environment of the shell that spawned it. This environment may be modified by command-line
factors such as input-output parameters or the presence of the command in a pipeline. Thus
commands run from within a shell procedure receive the standard input of the shell that is run­
ning the script; commands within a shell script know nothing about each other. Since we often
want a command within a shell script to receive standard input not from the shell that runs the
script but from within the script itself, we need a way to present such inline data. The < <
mechanism serves this function. It permits shell command scripts to function as components of
pipelines and allows the shell to block read its input. See An Introduction to the C Shell for
examples of the use of the < < mechanism.

If a command or shell procedure is run detached (followed by &), its default standard input is the
empty file Idevlnull.

Diagnostic output may be directed through a pipe with the standard output. Simply use the form
I & rather than just I.
Expressions

A number of the shell's built-in commands (described in the section "Built-in Commands"
below) take expressions, in which the operators are similar to those of C, with the same pre­
cedence. Built-in commands that take expressions include @, exit, if, and while. The following
operators are avai lable for use withi n expressions:

II && I i & == != <= >= < >
« » + _ * I % ! N ()

In this list the precedence increases to the right, and down, == and 1=, <= >= < and >,
< < and> >, + and ., • I and % being, in groups, at the same level. The == and 1=
operators compare their arguments as strings; all others operate on numbers. Strings that begin
with 0 are considered octal numbers. The shell evaluates null'or missing arguments as O. The
results of all expressions are strings, which represent decimal numbers. Components of expres­
sions should be surrounded by spaces; this always matters, except when components are adja­
cent to &, I, <, >, (, or), which are syntactically significant to the parser.

Command executions enclosed in { and} and file enquiries are also available in expressions as
primitive operands. File enquiries take the form ". I name", where I is one of:

r read access
w write access
x execute access
e existence
0 ownership
z zero size
f plain file
d directory

"Name" is command and filename expanded and then tested to see if it has the specified rela­
tionship to the real user. If the file does not exist or is inaccessible, all enquiries return false,
i.e.,O. ~

January 19, 1984

CSH(1) (Plexus) CSH(1)

Command executions succeed, returning true, i.e., 1, if the command exits with status 0; other­
wise they fail, returning false, i.e. O. If you want more detailed status information about a com­
mand, execute the command outside of an expression and examine the variable status.

Control Flow

The shell contains commands that can regulate the flow. of control in command files (shell
scripts) and (in limited but useful ways) from terminal input. These commands all operate by
forcing the shell to reread or skip in its input. Due to the implementation, the shell restricts the
placement of some of the commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if statement
require that the major keywords appear in a single simple command on an input line as shown
below.

If the shell's input is not seekable, the shell buffers up input whenever a loop is being read and
performs seeks in this internal buffer to accomplish the rereading implied by the loop. (To the
extent that this allows, backward goto's succeed on non-seekable inputs.)

Built-in Commands

Built-in commands are executed within the shell. If a built-in command occurs as any com­
ponent of a pipeline except the last, it is executed in a subs hell.

alias
alias name
alias name wordlist

The first form prints all aliases. The second form prints the alias for "name". The final
form assigns the specified wordlist as the alias of name; wordlist is command and
filename substituted. Name may not be alias or unalias

break
Causes execution to resume after the end of the nearest enclosing forall or while. The
remaining commands on the current line are executed. Multi-level breaks are thus possi­
ble by writing them all on one line.

breaksw
Causes a break from a switch, resuming after the endsw.

case label:
A label in a switch statement as discussed below.

cd
cd name
chdir
chdir name

Change the shell's working directory to directory name. If no argument is given then
change to the home directory of the user.

If name is not found as a subdirectory of the current directory (and does not begin with f,
_f, or .• f), each component of the variable cdpath is checked to see if it has a subdirectory
name. Finally, if all else fails but name is a shell variable whose value begins with f, then
this is tried to see if it is a directory.

continue
Continue execution of the nearest enclosing while or foreach. The rest of the commands
on the current line are executed.

default:
Labels the default case in a switch statement. The default should come after all case
labels.

January 19, 1984 Page 8

CSH(1)

Page 9

-(Plexus) CSH(1)

~~~ ~ 
The specified words are written to the shell's standard output. A \c causes the echo to 
complete without printing a newline, akin to the \c in nroff(1). A \n in wordlist causes a 
newline to be printed. 

else 
end 
endif 
endsw 

See the description of the foreach, if, switch, and while statements below. 

exec command 
The specified command is executed in place of the current shell. 

exit 
exit(expr) 

The shell exits either with the value of the status variable (first form) or with the value of 
the specified expr (second form). 

foreach name (wordlist) 

end 
The variable name is successively set to each member of wordlist and the sequence of 
commands between this command and the matching end are executed. (Both foreach 
and end must appear alone on separate lines.) 

The built-in command continue continues the loop prematurely and the built-in command 
break terminates it prematurely. When the C shell reads a foreach command from the ter­
minal, it reads the loop once and prompts with? before executing any statements in the 
loop. If you make a mistake typing in a loop at the terminal, you can rub it out. 

glob wordlist 
Like echo but no \ escapes are recognized and words are delimited by null characters in 
the output. Useful for programs that use the shell to filename expand a list of words. 

goto word 
The specified word is filename and command expanded to yield a string of the form label. 
The shell rewinds its input as much as possible and searches for a line of the form label:, 
possibly preceded by blanks or tabs. Execution continues after the label line. 

history 
Displays the history event list. 

if (expr) command 
If the specified expression evaluates true, then the single command with arguments is 
executed. Variable substitution on command happens early, at the same time as for the 
rest of the if command. Command must be a simple command--not a pipeline, a com­
mand list, or a parenthesized command list. Input/output redirection occurs even if expr is 
false, when command is not executed (this is a bug). 

if (expr) then 

else if (expr2) then 

else 

endif 
If the specified expr is true then all the commands up to the first else are executed; if '1 
expr2 is true then the commands to the second else are executed, etc. Any number of 

January 19, 1984 



CSH(1 ) 

login 

(Plexus) CSH(1 ) 

else-if pairs are possible; only one endif is needed. The else part is likewise optional. 
(The words else and endif must appear at the beginning of input lines; the if must appear 
alone on its input line or after an else.) 

Terminate a login shell, replacing it with an instance of Ibin/login. This is one way to log 
off, included for compatibility with /bin/sh. 

logout 
Terminate a login shell. Especially useful if ignoreeof is set. 

nice 
nice +number 
nice command 
nice +number command 

The first form sets the nice for this shell to 4. The second form sets the nice to the given 
number. The final two forms run command at priority 4 and number respectively. The 
super-user may specify negative niceness by using nice -number .... Command is always 
executed in a sub-shell, and the restrictions on commands in simple if statements apply. 

nohup 
nohup command 

Shell scripts use the first form to cause hangups to be ignored for the remainder of the 
script. The second form causes the specified command to be run with hangups ignored. 
Unless the shell is running detached, nohup has no effect. All processes detached with & 
are automatically nohuped. (Thus, nohup is not really needed.) 

The SYSTEM III utility /bin/nohup is incompatible with the csh nohup. Therefore, to use 
the SYSTEM III command, you must invoke it with its full pathname. 

onintr 
onintr -
onintr label 

Control the action of the shell on interrupts. The first form restores the default action of 
the shell on interrupts (Le., to terminate shell scripts or return to the terminal command 
input level). The second form onintr - causes all interrupts to be ignored. The final form 
causes the shell to execute a goto label when an interrupt is received or a child process 
terminates because it was interrupted. 

In any case, if the shell is running detached and interrupts are being ignored, all forms of 
onintr have no meaning and interrupts continue to be ignored by the shell and all invoked 
commands. 

rehash 
Causes the internal hash table of the contents of the directories in the path variable to be 
recomputed. This is needed if new commands are added to directories in the path while 
you are logged in. This should only be necessary if you add commands to one of your own 
directories, or if a systems programmer changes the contents of one of the system direc­
tories. 

repeat count command 

set 

The specified command (which is subject to the same restrictions as the command in the 
one-line if statement above), is executed count times. I/O redirection occurs exactly once, 
even if count is O. 

set name 
set name=word 

January 19, 1984 Page 10 



CSH(1) (Plexus) CSH(1 ). 

set name[index]=word 
set name=(wordlist) 

The first form of the command shows the value of all shell variables. Variables that have 
other than a single word as value print as a parenthesized word list. The second form sets 
name to the null string. The third form sets name to the single word. The fourth form sets 
the indexth component of name to word; this component must already exist. The final 
form sets name to the list of words in wordlist. In all cases the value is command and 
filename expanded. 

These arguments may be repeated to set multiple values in a single set command. Note 
however, that variable expansion happens for all arguments before any setting occurs. 

setenv name value 

shift 

(Version 7 systems only.) Sets the value of environment variable name to be value, a sin­
gle string. Useful environment variables are TERM. the type of your terminal, and SHELL, 
the shell you are using. 

shift variable 
The members of argv are shifted to the left, discarding argv[1 J. It is an error for argv not to 
be set or to have less than one word as value. The second form performs the same func­
tion on the specified variable. 

source name 
The shell reads commands from name. Source commands may be nested; if they are 
nested too deeply the shell may run out of file descriptors. An error in a source at any 
level terminates all nested source commands. Input during source commands is never 
placed on the history list. 

switch (string) ~ . 
case str1: 

breaksw 

default: 

breaksw 
endsw 

time 

Each case label is successively matched against the specified string, which is first com­
mand and filename expanded. The file metacharacters ., ? and [ •.• J may be used in the 
case labels, which are variable expanded. If none of the labels match before a default 
label is found, then the execution begins after the default label. Each case label and the 
default label must appear at the beginning of a line. The command breaksw causes exe­
cution to continue after the endsw. Otherwise control may fall through case labels and 
default labels as in C. If no label matches and there is no default, execution continues 
after the endsw. . 

time command 
With no argument, the shell prints a summary of time used by this shell and its children. 
With arguments, the shell times the specified simple command and prints a time summary 
as described under the time variable. If necessary, an extra shell is created to print the 
time statistic when the command completes. 

umask 
umask value 

The file creation mask is displayed (first form) or set to the specified value (second form). 
The mask is given in octal. Common values for the mask are 002, giving all access to the 

Page 11 January 19, 1984 



CSH{1 ) (Plexus) CSH(1 ) 

group and read and execute access to others; or 022, giving all access except no write 
access for users in the group or others. 

una lias pattern 
The shell discards all aliases whose names match the specified pattern. Thus all aliases 
are removed by unalias *. It is not an error for nothing to be unaliased. 

unhash 
Use of the internal hash table to speed location of executed programs is disabled. 

unset pattern 

wait 

The shell removes all variables whose names match the specified pattern. Thus all vari­
ables are removed by unset *; this can have distasteful side-effects. It is not an error for 
nothing to be unset. 

The shell waits for all child processes. If the shell is interactive, then an interrupt can dis­
rupt the wait, at which time the shell prints names and process numbers of all children 
known to be outstanding. 

while (expr) 

end 

@ 

While the specified expression evaluates non-zero, the commands between the while and 
the matching end are evaluated. Break and continue can terminate or continue the loop 
prematurely. (The while and end must appear alone on their input lines.) If the input is 
from a terminal, prompting occurs here the first time through the loop as for the foreach 
statement. 

o name = expr 
@ name[index] = expr 

The first form prints the values of all the shell variables. The second form sets the speci­
fied name to the value of expr. If the expression contains <, >, & or I, then at least this 
part of the expression must be placed within parentheses (). The third form assigns the 
value of expr to the indexth argument of name. Both name and its indexth component 
must already exist. 

The operators *=, +=, etc are available as in C. The space separating the name from 
the assignment operator is optional. Spaces are, however, mandatory in separating com­
ponents of expr that would otherwise be single words. 

Special postfix ++ and -- operators increment and decrement name respectively, i.e. @ 

i++. 
Pre-defined Variables 

The following variables have special meaning to the shell. Of these, the shell always s~ts argv, 
child, home, path, prompt, shell and status. This setting occurs only at initialization, except for 
child and status. Variables set by the shell are not subsequently modified by the shell, though 
the user may explicitly modify them. 

The shell copies the environment variable PATH into the variable path, and copies the value 
back into the environment whenever path is set. Thus you need not worry about its setting 
other than in the file .cshrc, because inferior csh processes import the definition of path from 
the envi ronment. 

argv Set to the arguments to the shell, it is from this variable that positional parame­
ters are substituted, i.e. $1 is replaced by $argv[1 I, etc. 

January 19, 1984 Page 12 



CSH(1) 

cdpath 

child 

echo 

histchars 

history 

home 

ignoreeof 

mail 

noclobber 

noglob 

nonomatch 

path 

prompt 

Page 13 

(Plexus) CSH(1) 

Specifies a list of alternate directories to be searched by chdir commands. 

The process number printed when the last command was forked with &. This 
variable is unset when this process terminates. 

Set when the -x command line option is given. Causes each command and its 
arguments to be echoed just before it is executed. For non-built-in commands. 
all expansions occur before echoing. Builtin commands are echoed before 
command and filename substitution. since these substitutions are then done 
selectively. 

Can be assigned a two character string. The first character is used as a history 
character in place of I, the second character is used in place of the A substitu­
tion mechanism. For example, set histchars=",;" makes the history charac­
ters a comma and semicolon. 

Takes a numeric value that controls the size of the history list. The shell does 
not discard any command referenced in this many events. Too large values of 
history may run the shell out of memory. The last executed command is 
always saved on the history list. 

The home directory of the invoker, initialized from the environment. The 
filename expansion of" refers to this variable. 

If set, the shell ignores end-of-file from input devices that are terminals. This 
prevents shells from accidentally being killed by control-Os. 

The files where the shell checks for mail. The shell checks for mail after each 
command completion that results in a prompt, if a specified interval has 
elapsed. If any of these files exists with an access time not greater than its 
modify time, the shell sends the message "You have new mail." 

If the first word of the value of mail is numeric it specifies a mail checking inter­
val, in seconds, different from the default, which is 10 minutes. 

If multiple mail files are specified, then the shell says New mail in name when 
there is mail in the file name. 

As described in the section on Input/output, restrictions are placed on output 
redirection to insure that files are not accidentally destroyed, and that > > 
redirections refer to existing files. 

If set, filename expansion is inhibited. This is most useful in shell scripts that 
do not deal with filenames, or after a list of filenames has been obtained and 
further expansions are not desirable. 

If set, it is not an error for a filename expansion to not match any existing files; 
rather the primitive pattern is returned. It is still an error for the primitive pat­
tern to be malformed, i.e. echo [ still gives an error. 

Each word of the path variable specifies a directory in which commands are to 
be sought for execution. A null word specifies the current directory. If no path 
variable is specified, only full path names work. The usual search path is ., Ibin 
and lust/bin, but this may vary from system to system. For the super-user the 
default search path is /etc, /bin and lusr/bin. A shell that is given neither the-c 
nor the -t option will normally hash the contents of the directories in the path 
variable after reading .cshrc, and each time the path variable is reset. If new 
commands are added to these directories while the shell is active, it may be 
necessary to give the rehash or the commands may not be found. 

The string printed before each command is read from an interactive terminal 
input. If a I appears in the string it is replaced by the current event number 

January 19, 1984 



CSH(1 ) 

shell 

status 

time 

verbose 

(Plexus) CSH(1 ) 

unless a preceding \ is given. Default is % , or # for the super-user. 

The file in which the shell resides. This is used in forking shells to interpret 
files which have execute bits set, but which are not executable by the system. 
(See the description of Non-built-in Command Execution below.) Initialized to 
the (system-dependent) home of the shell. 

The status returned by the last command. If it terminated abnormally, then 
0200 is added to the status. Built-in commands that fail return exit status 1, all 
other built-in commands set status O. 

Controls automatic timing of commands. Time takes a numeric argument, 
which stands for some number of CPU seconds. If time is set, the shell prints 
a line of information when any command taking more than this many CPU 
seconds terminates. The line gives user, system, and real times, and a utiliza­
tion percentage, which is the ratio of user plus system times to real time. 

Set by the -v command line option, causes the words of each command to be 
printed after history substitution. 

Non-built-in Command Execution 

When the shell finds that a command to be executed is not a built-in command, it tries to exe­
cute the command via exec(2). Each word in the variable path names a directory from which 
the shell attempts to execute the command. If it is given neither a -c nor a -t option, the shell 
hashes the names in these directories into an internal table so that it only tries an exec in a 
directory if there is a possibility that the command resides there. This greatly speeds command 
location when the search path contains a large number of directories. If this mechanism has 
been turned off (via unhash), or if the shell is given a -c or -t argument, and in any case for 
each directory component of path that does not begin with a I, the shell tries to concatenates all 
the path entries with the given command name to form a path name of a file, which it then 
attempts to execute. 

Parenthesized commands are always executed in a subshell. Thus (cd; pwd); pwd does not 
leave you in the home directory; it leaves you where you are, and prints the home directory 
name followed by the name of the directory you are in. cd; pwd, on the other hand, leaves you 
in the home directory. Parenthesized commands are most often used to prevent chdir from 
affecting the current shell. 

If the file has execute permissions but is not an executable binary to the system, then it is 
assumed to be a file containing shell commands and a new shell is spawned to read it. 

If there is an alias for shell then the words of the alias are prepended to the argument list to 
form the shell command. The first word of the alias should be the full path name of the shell 
(e.g. $she/l). Note that this is a special, late-occurring, case of alias substitution, and only 
allows words to be prepended to the argument list without modification. 

Argument List Processing 

If argument 0 to the shell is -, then this shell is a login shell. The flag arguments are interpreted 
as follows: 

-c Commands are read from the (single) following argument, which must be present. Any 
remaining arguments are placed in argv. 

-e The shell exits if any invoked command terminates abnormally or yields a non-zero exit 
status. 

-f The shell starts faster, because it neither searches for nor executes commands from the 
file .cshrc in the invoker's home directory. 

January 19, 1984 Page 14 



CSH(1 ) 

FILES 

(Plexus) CSH(1) . 

-i The shell is interactive and prompts for its top-level input, even if it appears not to be a ~ 
terminal. Shells are interactive without this option if their inputs and outputs are terminals. 

-n Commands are parsed, but not executed. This may aid in syntactic checking of shell 
scripts. 

-s Command input is taken from the standard input. 

-t A single line of input is read and executed. A \ escapes the newline at the end of this line 
to continue onto another line. 

-v Causes the verbose variable to be set, so command input is echoed after history substitu­
tion. 

-x Causes the echo variable to be set, so commands are echoed immediately before execu-
tion. 

-y Causes the verbose variable to be set even before .cshrc is executed. 

-X Is to -x as -Y is to -v. 

After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t options is 
given. the first argument is taken as the name of a file of commands to be executed. The shell 
opens this file, and saves its name for possible resubstitution by $0. Many system shell pro­
cedures are written for use with either the standard Sys3 or Version 7 shells, whose shell scripts 
are not compatible with this shell. Therefore, the C shell executes such a standard shell if the 
first character of a script is not a II. Le., if the script does not start with a comment. Remaining 
arguments initialize the variable argv. 

Signal Handling 

The shell normally ignores quit signals. It ignores interrupt signals as well if the command is fol­
lowed by &; otherwise the signals have the values the shell inherited from its parent. The shell's 
handling of interrupts can be controlled by onintr. Login shells catch the terminate signal; other­
wise this signal is passed on to children from the state in the shell's parent. No interrupts are 
allowed when a login shell is reading the file .Iogout. 

"'I.cshrc 
"'I. logi n 
"'/.logout 
Ibinlsh 

Itmp/sh* 
Idev/null 
letc/passwd 

Read at beginning of execution by each shell. 
Read by login shell, after .cshrc at login. 
Read by login shell, at logout. 
Standard shell, for shell scripts not 
starting with a II. 
Temporary file for < < . 
Source of empty file. 
Source of home directories for N name. 

LIMITATIONS 

NOTES 

Words can be no longer than 512 characters. The number of characters in an argument varies 
from system to system. The number of arguments to a command involving filename expansion 
is limited to 1/Sth the number of characters allowed in an argument list. Also command substitu­
tions may SUbstitute no more character~ than are allowed in an argument list. 

To detect looping, the shell restricts the number of alias substititutions on a single line to 20. 

The Plexus version of the C Shell is based on the one from the University of California at Berke­
ley. 

SEE ALSO 
access(2), exec(2), fork(2), pipe(2), signal(2), umask(2), wait(2), a.out(5), environ(5), An Intro- ~ 
duction to the C Shell. 

Page 15 January 19. 1984 



CSH(1) 

BUGS 

(Plexus) CSH(1) . 

Control structure should be parsed rather than being recognized as built-in commands. This 
would allow control commands to be placed anywhere, to be combined with I, and to be used 
with & and; metasyntax. 

Commands within loops, prompted for by?, are not placed in the history list. 

It should be possible to use the : modifiers on the output of command substitutions. More than 
one: modifier should be allowed on $ substitutions. 

Some commands should not touch status or it may be so transient as to be almost useless. 
Or-ing in 0200 to status on abnormal termination is not elegant. 

The new exec command inherits several open files other than the normal standard input and 
output and diagnostic output. If the input and output are redirected and the new command does 
not close these files, some files may be held open unnecessarily. 

A number of bugs are associated with the importing/exporting of the PATH. For example, direc­
tories in the path using the ~ syntax are not expanded in the PATH. Unusual paths, such as 0, 
can cause csh to dump core. 

This version of csh does not support or use the process control features of the 4th Berkeley Dis­
tribution. It contains a number of known bugs that have been fixed in the process control ver­
sion. 

January 19, 1984 Page 16 



CSPLIT(1) CSPLlT(1) 

NAME 
csplit - context split 

SYNOPSIS 
capUt [-a] [-k] [-f prefix) file arg1 [ ••• argn] 

DESCRIPTION 
esp/it reads file and separates it into n+1 sections, defined by the arguments arg1 • •• argn. 
By default the sections are placed in xxOO ••• xxn (n may not be greater than 99). These 
sections get the following pieces of file: 

00: From the start of file up to (but not including) the line referenced byarg1. 
01: From the line referenced by arg1 up to the. line referenced by arg2. 

n+1: From the line referenced byargn to the end of file. 

The options to csp/it are: 

-a esp/it normally prints the character counts for each file created. If the -a option 
is present, csp/it suppresses the printing of all character counts. 

-k esp/it normally removes created files if an error occurs. If the -k option is 
present, csp/it leaves previously created files intact. 

-f prefix If the -f option is used, the created files are named prefixOO ••• prefixn. The 
default is xxOO • •• xxn. 

The arguments (arg1 ••• argn) to csp/it can be a combination of the following: 

.~ 

/rexp/ A file is to be created for the section from the current line up to (but not includ- "" .. 
ing) the line containing the regular expression rexp. The current line becomes J 
the line containing rexp. This argument may be followed by an optional +or -

o/orexp% 

some number of lines (e.g., /Page/-S). 

This argument is the same as /rexp/, except that no file is created for the sec­
tion. 

Inno A file is to be created from the current line up to (but not including) Inno. The 
current line becomes Inno. 

{num} Repeat argument. This argument may follow any of the above arguments. If it 
follows a rexp type argument, that argument is applied num more times. If it fol­
lows Inno, the file will be split every Inno lines (num times) from that point. 

Enclose all rexp type arguments that contain blanks or other characters meaningful to the Shell 
in the appropriate quotes. Regular expressions may not contain embedded new-lines. esp/it 
does not affect the Original file; it is the users responsibility to remove it. 

EXAMPLES 

Page 1 

csplit -f cobol file • /procedure division/' /parS.! /par16.! 

This example creates four. files, cobolOO ••• cobol03. After editing the "split" files, they can 
be recombined as follows: 

cat coboI0[0-3] > file 

Note that this example overwrites the original file. 

csplit -k file 100 {99} 

. January 19, 1984 



r 

CSPlIT(1) CSPLlT(1) 

This example would split the file at every 100 lines. up to 10.000 lines. The -k option causes the 
created files to be retained if there are less than 10.000 lines; however. an error message would 
still be printed. 

csplit -k prog.c '%main(%' 't}/+1' {20} 

Assuming that prog.c follows the normal C coding convention of ending routines with a } at the 
beginning of the line. this example will create a file containing each separate C routine (up to 
21) in prog.c. 

SEE ALSO 
ed(1). sh(1). regexp(7). 

DIAGNOSTICS 
Self explanatory except for: 

arg - out of range 
which means that the given argument did not reference a line between the current position and 
the end of the file. 

January 19. 1984 Page 2 



CT(1C) CT(1C) . 

NAME 
ct - call terminal 

SYNOPSIS 
ct [ -h ] [ -v ] [ -wn ] [ -sspeed ] telno 

DESCRIPTION 

FilES 

Ct dials the phone number of a modem that is attached to a terminal, and spawns a login pro­
cess to that terminal. Telno is the telephone number, with minus signs at appropriate places for 
delays. 

Ct determines which dialers are associated with lines that are set to the appropriate speed by 
examining the file /usrllib/uucp/L-devices. If all such available dialers are busy, ct will ask if it 
should wait for a line, and if so, for how many minutes it should wait before it gives up. Ct will 
continue to try to open the dialers at one-minute intervals until the specified limit is exceeded. 
The dialogue may be overridden by specifying the -wn option, where n is the maximum number 
of minutes that ct is to wait for a line. 

Normally, ct will hang up the current line, so that that line can answer the incoming call. The-h 
option will prevent this action. If the -v option is used, ct will send a running narrative to stan­
dard error. 

The data rate may be set with the -s option, where speed is expressed in baud. The default 
rate is 300. 

The destination terminal must be attached to a modem that can answer the telephone. 

/usr/libiuucp/L-devices 

SEE ALSO 
cu(1C), login(1), uucp(1 C), dn(4), getty(8). 

Page 1 January 19, 1984 



CTAGS(1) (Plexus) CTAGS(1) . 

NAME 
ctags - create a tags fi Ie 

SYNOPSIS 
lusr/plxlctags [ -u ] [ -w ] [ -x ] name ... 

DESCRIPTION 

FILES 

NOTES 

Ctags makes a tags file for ex(1) from the specified C, Pascal and Fortran sources. A tags file 
gives the locations of specified objects (in this case functions) in a group of files. Each line of 
the tags file contains the function name, the file in which it is defined, and a scanning pattern 
used to find the function definition. These are given in separate fields on the line, separated by 
blanks or tabs. Using the tags file, ex can quickly find these function definitions. 

If the -x flag is given, ctags produces a list of function names, the line number and file name on 
which each is defined, as well as the text of that line and prints this on the standard output. This 
is a simple index which can be printed out as an off-line readable function index. 

Files whose name ends in .c or .h are assumed to be C source files and are searched for C rou­
tine and macro definitions. Others are first examined to see if they contain any Pascal or For­
tran routine definitions; if not, they are processed again looking for C definitions. 

Other options are: 

-w suppressing warning diagnostics. 

-u causing the specified files to be updated in tags, that is, all references to them are 
deleted, and the new values are appended to the file. (Beware: this option is implemented 
in a way that is rather slow; it is usually faster to simply rebuild the tags file.) 

The tag main is treated specially in C programs. The tag formed is created by prepending M to 
the name of the file, with a trailing .c removed, if any, and leading pathname components also 
removed. This makes use of ctags practical in directories with more than one program. 

tags output tags file 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 

BUGS 

Page 1 

ex(1), vi(1). 

Recognition of functions, subroutines and procedures for FORTRAN and Pascal is done is a 
very simpleminded way. No attempt is made to deal with block structure; if you have two Pas­
cal procedures in different blocks with the same name, it won't work. 

The method of deciding whether to look for C or Pascal and FORTRAN functions is not very 
sophisticated. 

March 22, 1984 



CU(1C) CU(1C) 

NAME 
cu - call another UNIX system 

SYNOPSIS 
cu [-sspeed] [-aacu] [-lIine] [-h] [-ol-e] telno I dir 

DESCRIPTION 

Page 1 

Cu calls up another UNIX system. a terminal, or possibly a non-UNIX system. It manages an 
interactive conversation with possible transfers of ASCII files. Speed gives the transmission 
speed (110. 150. 300, 1200. 4800, 9600); 300 is the default value. Most of our modems restrict 
us to choose between 300 and 1200. Directly connected lines may be set to other speeds. 

The -a and -I values may be used to specify device names for the Automatic Call Unit (ACU) and 
communications line devices. They can be used to override searching for the first available ACU 
with the right speed. The -h option emulates local echo. supporting calls to other computer sys­
tems which expect terminals to be in half-duplex mode. The -e (-0) option designates that even 
(odd) parity is to be generated for data sent to the remote. Telno is the telephone number. with 
equal signs for secondary dial tone or minus signs for delays. at appropriate places. The string 
dir for telno must be used for directly connected lines. and implies a null ACU. 

CU will try each line listed in the file lusr/Ub/uucp/L-devices until it finds an available line with 
appropriate attributes or runs out of entries. After making the connection, cu runs as two 
processes: the transmit process reads data from the standard input and, except for lines begin­
ning with .... passes it to the remote system; the receive process accepts data from the remote 
system and. except for lines beginning with .... passes it to the standard output. Normally, an 
automatic DC3/DC1 protocol is used to control input from the remote so the buffer is not overrun. 
Unes beginning with'" have special meanings. 

If the ACU specified in lusr/llb/uucp/L-devices is not a special file, it is executed by cu with the -'7 
line. speed. and telno as arguments. This feature can be used to initiate a calling sequence on 
most auto-dial modems. A return value of 0 means the call was initiated successfully. 

The transmit process interprets the following: 

"'1 

"'!cmd .. . 

'"$cmd .. . 

"'%take from [ to ] 

terminate the conversation. 

escape to an interactive shell on the local system. 

run cmd on the local system (via sh -c). 

run cmd locally and send its output to the remote system. 

copy file from (on the remote system) to file to on the local system. If to 
is omitted, the from argument is used in both places. 

"'%put from [ to] copy fileJrom (on local system) to file to on remote system. If to is omit­
ted. the from argument is used in both places. 

send the line .... .. to the remote system. 

'"%nostop tum off the DC3/DC1 input control protocol for the remainder of the ses­
sion. This is useful in case the remote system is one which does not 
respond properly to the DC3 and DC1 characters, 

The receive process normally copies data from the remote system to its standard output. A line 
from the remote that begins with "'> initiates an output diversion to a file. The complete 
sequence is: 

'">[>]:file 
zero or more Ii nes to be written to file 
"'> 

Data from the remote is diverted (or appended. if > > is used) to file. The trailing '" > ter­
minates the diversion. 

July 9,1984 



CU(1C) 

FilES 

NOTES 

CU(1C) 

The use of "'%put requires stty(1) and cat(1) on the remote side. It also requires that the 
current erase and kill characters on the remote system be identical to the current ones on the 
local system. Backslashes are inserted at appropriate places. 

The use of "'%take requires the existence of echo(1) and cat(1) on the remote system. Also, 
stty tabs mode should be set on the remote system if tabs are to be copied without expansion. 

lusr/lib/uucp/L -devices 
lusrlspool/uucp/LCK .. (tty-device ) 
Idev/null 

Executing the ACU file specified in lusrllib/uucp/L-devices is not a standard feature and may 
not be available on other UNIX systems. 

Users who write their own dialer program must link (ld(1» it with the "-N" option (no shared 
text). 

SEE ALSO 
cat(1), echo(1), stty(1), uucp(1 C), tty(4). 

D. A. Nowitz, UUCP Implementation Description. 
This document, in Volume 2B of the Plexus Sys3 UNIX Programmer's Manual, describes how to 
set up the file lusr/lib/uucp/L-devices. 

DIAGNOSTICS 

BUGS 

Exit code is zero for normal exit, non-zero (various values) otherwise. 

There is an artificial slowing of transmission by cu during the "'%put operation so that loss of 
data is unlikely. 

If the transported file does not end in a newline character, cu appears to hang; typing a control­
o completes the file transporting and restores the user's terminal to its normal state. Typing a 
delete character instead of control-D leaves the user's terminal in a weird mode. 

July 9,1984 Page 2 



CUT(1) CUT(1) . 

NAME 
cut -cut out selected fields of each line of a file 

SYNOPSIS 
cut -clist [file1 file2 ... ] 
cut -flist [-dchar] [-5] [file1 file2 ... ] 

DESCRIPTION 

HINTS 

Use cut to cut out columns from a table or fields from each line of a file; in data base parlance, 
it implements the projection of a relation. The fields as specified by list can be fixed length, i.e., 
character positions as on a punched card (-c option), or the length can vary from line to line and 
be marked with a field delimiter character like tab (-f option). Cut can be used as a filter; if no 
files are given, the standard input is used. 

The meanings of the options are: 

list A comma-separated list of integer field numbers (in increasing order), with optional - to 
indicate ranges as in the -0 option of nroff/troff for page ranges; e.g., 1,4,7; 1-3,8; -5,10 
(short for 1-5,10); or 3- (short for third through last field). 

-clist The list following -c (no space) specifies character positions (e.g., -c1-72 would pass 
the first 72 characters of each line) . 

..flist The list following -f is a list of fields assumed to be separated in the file by a delimiter 
character (see -d ); e.g. , -f1,7 copies the first and seventh field only. Unes with no 
field delimiters will be passed through intact (useful for table subheadings), unless -5 is 
specified. 

-dchar The character following -d is the field delimiter (-f option only). Default is tab. Space or 
other characters with special meaning to the shell must be quoted. 

-s Suppresses lines with no delimiter characters in case of -f option. Unless specified, 
lines with no delimiters will be passed through untouched. 

Either the -c or -f option must be specified. 

Use grep(1) to make horizontal "cuts" (by context) through a file, or paste(1) to put files 
together column-wise (i.e., horizontally). To reorder columns in a table, use cut and paste. 

EXAMPLES 
cut -d: -f1,5 letc/passwd mappi ng of user IDs to names 

name= \ who am i I cut -f1 -d" n \ to set name to current login name. 

DIAGNOSTICS 
line too long A line can have no more than 511 characters or fields. 

bad list for c I f option 
Missing -c or -f option or incorrectly specified list. No error occurs·if a line 
has fewer fields than the list calls for. 

no fields The list is empty. 

SEE ALSO 
grep(1), paste(1). 

Page 1 January 19, 1984 



CW(1) CW(1) . 

NAME 
cw, checkcw - prepare constant-width text for troff 

SYNOPSiS 
cw [ -Ixx ] [ -rxx ] [ -fn ] [ -t ] [ +t ] [ -d ] [ files ] 

checkcw [ -Ixx ] [ -rxx ] files 

DESCRIPTION 

Page 1 

Cw is a preprocessor for troff(1) input files that contain text to be typeset in the constant-width 
(CW) font. 

Text typeset with the CW font resembles the output of terminals and of line printers. This font is 
used to typeset examples of programs and of computer output in user manuals, programming 
texts, etc. (An earlier version of this font was used in typesetting The C Programming 
Language by B. W. Kernighan and D. M. Ritchie). It has been designed to be quite distinctive 
(but not overly obtrusive) when used together with the Times Roman font. 

Because the CW font contains a "non-standard" set of characters and because text typeset with 
it requires different character and inter-word spacing than is used for "standard" fonts, docu­
ments that use the CW font must be preprocessed by cw. 

The CW font contains the 94 printing ASCII characters: 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUViXYZ 
0123456789 
! $ ~ () ..... +@. , / : ; =? [] I __ .. N n<>{ l#\ 

plus eight non-ASCII characters represented by four-character troff(1) names (in some cases 
attaching these names to "non-standard" graphics), as follows: 

Character Symbol Troff Name 
"Cents" sign ¢ (ct 

EBCDIC "not" sign .., (no 
Left arrow - ( < -

Right arrow -+ (-> 
Down arrow ! (da 

Vertical single quote (fm 
Control-shift indicator t (dg 

Visible space indicator 0 (sq 
Hyphen (hy 

The hyphen is a synonym for the unadorned minus sign (-). Certain versions of cw recognize 
two additional names: \(ua for an up arrow and \(Ih for a diagonal left-up (home) arrow. 

Cw recognizes five request lines, as well as user-defined delimiters. The request lines look like 
troff(1) macro requests, and are copied in their entirety by cw onto its output; thus, they can be 
defined by the user as troff(1) macros; in fact, the .CW and .CN macros should be so·defined 
(see HINTS below). 

The five requests are: 

· c, Start of text to be set in the CW font; .CW causes a break; it can take precisely the 
same options, in precisely the same format. as are available on the cw command line. 

· c. End of text to be set in the CW font; .CN causes a break; it can take the same options 
as are available on the cw command line. 

• CD Change delimiters and/or settings of other options; takes the same options as are avail­
able on the cw command line. 

March 23. 1984 



CW(1) CW(1) 

. c p arg1 arg2 arg3 . . . argn ~ 
All the arguments (which are delimited like troff(1) macro arguments) are concatenated, 
with the odd-numbered arguments set in the CW font and the even-numbered ones in 
the prevaili ng font. 

• pc arg 1 arg2 arg3 •.. . argn 
Same as .CP"except that the even-numbered (rather than odd-numbered) arguments 
are set in the CW font. 

The .CW and .CN requests are meant to bracket text (e.g., a program fragment) that is to be 
typeset in the CW font "as is." Normally, cw operates in the transparent mode. In that mode, 
except for the .CD request and the nine special four-character names listed in the table above, 
every character between .CW and .CN request lines stands for itself. In particular, cw arranges 
for periods (.) and apostrophes (.) at the beginning of lines, and backslashes () and ligatures 
(fi, ff, etc.) everywhere to be "hidden" from troff(1). The transparent mode can be turned off 
(see below), in which case normal troff(1) rules apply. In any case, cw hides from the user the 
effect- of the font changes generated by the .CWand .CN requests. 

The only purpose of the .CD request is to allow the changing of various options other than just 
at the beginning of a document. 

The user can also define delimiters. The left and right delimiters perform the same function as 
the .CW I.CN requests; they are meant, however, to enclose CW "words" or "phrases" in running 
text (see the example under BUGS belOW). Cw treats text enclosed by delimiters in precisely 
the same manner as text bracketed by .CW I.CN pairs, except that, for aesthetic reasons, 
spaces in text bracketed by .CW I.CN pairs have the same width as any other CW character, 
while spaces between delimiters are half as wide, so that they have the same width as spaces 
in the prevailing text (but are not adjustable). 

Delimiters have no special meaning inside .CW I.CN pairs. 

The options are: 

-!XX The one- or two-character string xx becomes the left delimiter; if xx is omitted, the left 
delimiter becomes undefined, which it is initially. 

- r xx Same for the right delimiter. The left and right delimiters may (but need not) be dif­
ferent. 

- f n The CW font is mounted in font position n; acceptable values for n are 1, 2, and 3 
(default is 3, replacing the bold font). This option is only useful at the beginning of a 
document. 

- t Turn transparent mode off. 

+ t Turn transparent mode on (this is the initial default). 

- d Print current option settings on file deSCriptor 2 in the forril of troff(1) comment lines. 
This option is meant for debugging. 

Cw reads the standard input when no files are specified, so it can be used as a filter. Typical 
usage is: 

cw files I troff ... 

Checkcw checks that left and right delimiters, as well as the .CW I.CN pairs, are properly bal­
anced. It prints out all offending lines. 

March 23, 1984 Page 2 



CW(1) 

HINTS 

FilES 

CW(1) 

Typical definitions of the .CW and .CN macros meant to be used with the mm(7) macro pack­
age: 

.de Ci 

.DS I 

. P B 9 

.VB 10.5p 

. t a 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u 96m/3u ... 

.de CN 

.ta 0.5i 1i 1.51 2i 2.51 31 3.51 41 4.51 5i 5.51 61 

.VB 

.pB 

.DE 

At the very least, the .CW macro should invoke the troff(1) no-fill (.nf) mode. 

When set in running text, the CW font is meant to be set in the same point size as the rest of the 
text. In displayed matter, on the other hand, it fan often be profitably set one point smaller than 
the prevailing point size (the displayed definitiors of .CW and .CN above are one point smaller 
than the running text on this page). The CW fo~t is sized so that, when it is set in 9-point, there 
are 12 characters per inch. I 
Documents that contain CW text may also contain tables and/or equations. If this is the case, 
the order of preprocessing should be: cw, tb/, land eqn. Usually, the tables contained in such 
documents will not contain any CW text, althou~h it is entirely possible to have elements of the 
table set in the CW font; of course, care mus~ be taken that tb/(1) format information not be 
modified by CW. Attempts to set equations in the CW font are not likely to be either pleasing or 
successful. I 

In the CW font, overstriking is most easily acco~plished with backspaces: letting - represent a 
backspace, d--dg yields tI. Because space, (and, therefore backspaces) are half as wide 
between delimiters as inside .CW /.CN pairs (see above), two backspaces are required for each 
overstrike between delimiters. 

/usr/lib/fontlftCW CW font-width table 
, 

SEE ALSO I 

I 
eqn(1), mmt(1), tbl(1), troff(1), mm(7), mv(7). 

WARNINGS I 
If text preprocessed by cw is to make any sen~e, it must be set on a typesetter equipped with 
the CW font or on the MHCC STARE facility; on the latter, the CW font appears as bold, but with 

BUGS 

Page 3 

the proper CW spacing. I 
, 

Only a masochist would use periods (.) or backs~shes 0 as delimiters. 
Certain CW characters don't concatenate grace lIy with certain Times Roman characters, e.g., 
a CW ampersand (&) followed by a Times Ro an comma(,); in such cases, judicious use of 
troff(1) half- and quarter-spaces ( and) is most salutary, e.g., one should use _&_, (rather than 
just plain _&_,) to obtain &, (assuming that _ is ~sed for both delimiters). 
Using cw with nroff is silly. 
The output of cw is hard to read. 
See also BUGS under troff(1). 

March 23, 1984 



· DATE(1) DATE(1) . 

NAME 
date - pri nt and set the date 

SYNOPSIS 
date [ mmddhhmm[yy] ] [ +format ] 

DESCRIPTION 
If no argument is given. or if the argument begins with +. the current date and time are printed. 
Otherwise. the current date is set. The first mm is the month number; dd is the day number in 
the month; hh is the hour number (24 hour system); the second mm is the minute number; yy is 
the last 2 digits of the year number and is optional. For example: 

date 10080045 

sets the date to Oct 8, 12:45 AM. The current year is the default if no year is mentioned. The 
system operates in GMT. Date takes care of the conversion to and from local standard and day­
light time. 

If the argument begins with +, the output of date is under the control of the user. The format 
for the output is similar to that of the first argument to printf(3S). All output fields are of fixed 
size (zero padded if necessary). Each field descriptor is preceded by % and will be replaced in 
the output by its corresponding value. A single % is encoded by %%. All other characters are 
copied to the output without change. The string is always terminated with a new-line character. 

Field Descriptors: 
n insert a new-line character 
t insert a tab character 
m month of year - 01 to 12 
d day of month - 01 to 31 
y last 2 digits of year - 00 to 99 
o date as mm/dd/yy 
H hour - 00 to 23 
M minute - 00 to 59 
S second - 00 to 59 
T time as HH:MM:SS 
j Julian date - 001 to 366 
w day of week - Sunday = 0 
a abbreviated weekday - Sun to Sat 
h abbreviated month - Jan to Dec 
r time in AM/PM notation 

EXAMPLE 
date '+DATE: %m/%d/%y%nTIME: %H:%M:%S' 

would generate as output: 
DATE: 08/01/76 
TIME: 14:45:05 

DIAGNOSTICS 
No permission if you aren't the super-user and you try to change the date; 
bad conversion if the date set is syntactically incorrect; 
bad format character if the field descriptor is not recognizable. 

FILES 
Idev/kmem 

Page 1 January 19, 1984 



r 

DC(1) DC(1)" 

NAME 
de - desk calculator 

SYNOPSIS 
de [ file] 

DESCRIPTION 

Page 1 

Dc is an arbitrary precision arithmetic package. Ordinarily it operates on decimal integers, but 
one may specify an input base, output base, and a number of fractional digits to be maintained. 
The overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, 
input is taken from that file until its end, then from the standard input. The following construc­
tions are recognized: 

number 
The value of the number is pushed on the stack. A number is an unbroken string of the 
digits 0-9. It may be preceded by an underscore L) to input a negative number. 
Numbers may contain decimal points. 

+-,.%" 
The top two values on the stack are added (+), subtracted (-), multiplied (.), divided (f), 
remaindered (%), or exponentiated n. The two entries are popped off the stack; the 
result is pushed on the stack in their place. Any fractional part of an exponent is ignored. 

sx The top of the stack is popped and stored into a register named x, where x may. be any 

Ix 

d 

p 

f 

q 

character. If the s is capitalized, x is treated as a stack and the value is pushed on it. 

The value in register x is pushed on the stack. The register x is not altered. All registers 
start with zero value. If the I is capitalized, register x is treated as a stack and its top 
value is popped onto the main stack. 

The top value on the stack is duplicated. 

The top value on the stack is printed. The top value remains unchanged. P interprets 
the top of the stack as an ASCII string, removes it, and prints it. 

All values on the stack are printed. 

exits the program. If executing a string, the recursion level is popped by two. If q is cap­
italized, the top value on the stack is popped and the string execution level is popped by 
that value. 

x treats the top element of the stack as a character string and executes it as a string of dc 
commands. 

X replaces the number on the top of the stack with its scale factor. 

[ ... ) puts the bracketed ASCII string onto the top of the stack. 

<x >x =x 

v 

e 

The top two elements of the stack are popped and compared. Register x is evaluated if 
they obey the stated relation. 

replaces the top element on the stack by its square root. Any existing fractional part of 
the argument is taken into account, but otherwise the scale factor is ignored. 

interprets the rest of the line as a UNIX command. 

All values on the stack are popped. 

The top value on the stack is popped and used as the number radix for further input. 
pushes the input base on the top of the stack. 

January 19, 1984 



DC(1) 

o 
o 
k 

z 

z 
? 

, . 

DC(1) 

The top value on the stack is popped and used as the number radix for further output. 

pushes the output base on the top of the stack. 

the top of the stack is popped, and that value is used as a non-negative scale factor: the 
appropriate number of places are printed on output, and maintained during multiplication, 
division, and exponentiation. The interaction of scale factor, input base, and output base 
will be reasonable if all are changed together. 

The stack level is pushed onto the stack. 

replaces the number on the top of the stack with its length. 

A line of input is taken from the input source (usually the terminal) and executed. 

are used by be for array operations. 

EXAMPLE 
This example prints the first ten values of n!: 

[Ia 1 +dsa*pla 10> y]sy 
Osa1 
Iyx 

SEE ALSO 
bc(1), which is a preprocessor for de providing infix notation and a C-like syntax which imple­
ments functions and reasonable control structures for programs. 

DIAGNOSTICS 
x is unimplemented 

where x is an octal number. 

stack empty 
for not enough elements on the stack to do what was asked. 

Out of space 
when the free list is exhausted (too many digits). 

Out of headers 
for too many numbers being kept around. 

Out of pushdown 
for too many items on the stack. 

Nesting Depth 
for too many levels of nested execution. 

January 19, 1984 Page 2 



00(1) 00(1) 

".... NAME 
dd - convert and copy a file 

SYNOPSIS 
dd [option value] ... 

DESCRIPTION 
Dd copies the specified input file to the specified output with possible conversions. The stan­
dard input and output are used by default. The input and output block size may be specified to 
take advantage of raw physical 110. 

option values 
if=file input file name; standard input is default 
of=file output file name; standard output is default 
ibs-n input block size n bytes (default 512) 
obs=n output block size (default 512) 
bs=n set both input and output block size, superseding ibs and obs; also, if no 

conversion is specified, it is particularly efficient since no in-core copy need be 
done 

cbs=n conversion buffer size 
skip n skip n input blocks before starting copy 
seek=n seek n blocks from beginning of output file before copying 
count=n copy only n input blocks 
conv=8scii convert EBCDIC to ASCII 

ebcdic convert ASCII to EBCDIC 
ibm slightly different map of ASCII to EBCDIC 
Icase map alphabetics to lower case 
ucase map alphabetics to upper case 
swab swap every pair of bytes 
noerror do not stop processing on an error 
sync pad every input record to ibs 
••• , ••• several comma-separated conversions 

Where sizes are specified, a number of bytes is expected. A number may end with k, b, or w to 
specify multiplication by 1024, 512, or 2 respectively; a pair of numbers may be separated by x 
to indicate a product. 

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs characters 
are placed into the conversion buffer, converted to ASCII, and trailing blanks trimmed and new­
line added before sending the line to the output. In the latter case ASCII characters are read into 
the conversion buffer, converted to EBCDIC, and blanks added to make up an output record of 
size cbs. 

After completion, dd reports the number of whole and partial input and output blocks. 

EXAMPLE 

Page 1 

This command will read an EBCDIC tape blocked ten eO-byte EBCDIC card images per record 
into the ASCII fi Ie x : 

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=8Scii,lcase 

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical devices 
because it allows reading and writing in arbitrary record sizes. 

The command 

dd if=idev/rmtO conv=swab bs=20b I tar xvf ... 

is used to read tar format files from machines (e.g., DEC machines) that are byte-swapped with 
respect to the zaOOO. 

July 9, 1984 



-
00(1) 00(1)' 

NOTES 
Plexus provides a standalone version of dd in addition to the one that runs under Sys3. 

SEE ALSO 
cp(1). 

DIAGNOSTICS 

BUGS 

'+p records in(out) numbers of full and partial blocks read(written) 

The ASCII/EBCDIC conversion tables are taken from the 256 character standard in the CACM 
Nov, 1968. The ibm conversion, while less blessed as a standard, corresponds better to certain 
IBM print train conventions. There is no universal solution. 

New-lines are inserted only on conversion to ASCII; padding is done only on conversion to 
EBCDIC. These should be separate options. 

The swab option cannot be used in the same dd command with either ibm or ebcdic. 

July 9,1984 Page 2 



DELTA(1) DELTA(1) . 

r" NAME 
delta - make a delta (change) to an sees file 

SYNOPSIS 
delta [-rSID) [-5) [-n) [-glist) [-m[mrlist)) [-y[comment)) [-p] files 

DESCRIPTION 
Delta is used to permanently introduce into the named sees file changes that were made to the 
file retrieved by get(1} (called the g-file, or generated file). 

Delta makes a delta to each named sees file. If a directory is named, delta behaves as though 
each file in the directory were specified as a named file, except that non-sees files (last com­
ponent of the path name does not begin with 5.) and unreadable files are silently ignored. If a 
name of - is given, the standard input is read (see WARNINGS); each line of the standard input is 
taken to be the name of an sees file to be processed. 

Delta may issue prompts on the standard output depending upon certain key letters specified 
and flags (see admin(1)} that may be present in the sees file (see -m and -y keyletters below). 

Keyletter arguments apply independently to each named file. 

-rSID Uniquely identifies which delta is to be made to the sees file. The use of 
this key letter is necessary only if two or more outstanding gets for editing 
(get -e) on the same sees file were done by the same person (login 
name). The SID value specified with the -r key letter can be either the SID 
specified on the get command line or the SID to be made as reported by 
the get command (see get(1 }). A diagnostic results if the specified SID is 
ambiguous, or, if necessary and omitted on the command line. 

-5 Suppresses the issue, on the standard output, of the created delta's SID, 
as well as the number of lines inserted, deleted and unchanged in the 
sees file. 

-n 

-glist 

-m[mrlistJ 

Specifies retention of the edited g-file (normally removed at completion of 
delta processing). 

Specifies a list (see get(1) for the definition of list} of deltas which are to 
be ignored when the file is accessed at the change level (SID) created by 
this delta. 

If the sees file has the v flag set (see admin(1)} then a Modification 
Request (MR) number must be supplied as the reason for creating the 
new delta. 

If -m is not used and the standard input is a terminal, the prompt MRs? is 
issued on the standard output before the standard input is read; if the 
standard input is not a terminal, no prompt is issued. The MRS? prompt 
always precedes the comments? prompt (see -y keyletter). 

MRs in a list are separated by blanks and/or tab characters. An unes­
caped new-line character terminates the MR list. 

Note that if the v flag has a value (see admin(1)}, it is taken to be the 
name of a program (or shell procedure) which will validate the correctness 
of the MR numbers. If a non-zero exit status is returned from MR number 
validation program, delta terminates (it is assumed that the MR numbers 
were not all valid). 

-y[commentJ Arbitrary text used to describe the reason for making the delta. A null 
string is considered a valid comment. 

Page 1 September 24, 1984 



DELTA(1) DELTA(1) 

FILES 

-p 

If -y is not specified and the standard input is a terminal, the prompt 
comments? is issued on the standard output before the standard input is 
read; if the standard input is not a terminal, no prompt is issued~ An 
unescaped new-line character terminates the comment text. 

Causes delta to print (on the standard output) the sees file differences 
before and after the delta is applied in a diff(1) format. 

All files of the form ?-file are explained in the Source Code Control System User's Guide. The 
naming convention for these files is also described there. 

g-file Existed before the execution of delta; removed after completion of delta. 
p-file Existed before the execution of delta; may exist after completion of delta. 
q-file Created during the execution of delta; removed after completion of delta. 
x-file Created during the execution of delta; renamed to sees file after completion of 

z-file 
d-file 
/usr/bin/bdiff 

delta. 
Created during the execution of delta; removed during the execution of delta. 
Created during the execution of delta; removed after completion of delta. 
Program to compute differences between the "gotten" file and the g-file. 

WARNINGS 
Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the sees file 
unless the SOH is escaped. This character has special meaning to sees (see sccsfile(5)) and 
will cause an error. 

A get of many sees files, followed by a delta of those files, should be avoided when the get 
generates a large amount of data. Instead, multiple get/delta sequences should be used. 

If the standard input (-) is specified on the delta command line, the -m (if necessary) and -y 
keyletters must also be present. Omission of these keyletters causes an error to occur. 

SEE ALSO 
admin(1), bdiff(1), get(1), help(1), prs(1), sccsfile(5). 
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi. 

DIAGNOSTICS 
Use help(1) for explanations. 

September 24, 1984 Page 2 



DEROFF(1) DEROFF(1) 

NAME 
derott - remove nrott/trott, tbl, and eqn constructs 

SYNOPSIS 
deroff [ -w 1 [ -mx ] [ files] 

DESCRIPTION 
Deroff reads each of the files in sequence and removes all troff(1) requests, macro calls, 
backslash constructs, eqn(1) constructs (between .EQ and .EN lines, and between delimiters), 
and tb/(1) descriptions, and writes the remainder of the file on the standard output. Deroff fol­
lows chains of included files (.so and .nx froff commands); if a file has already been included, a 
.so naming that file is ignored and a .nx naming that file terminates execution. If no input file is 
given, deroff reads the standard input. 

The -m option may be followed by an m, s, or I. The resulting -mm or -ms option causes the 
mm or ms macros to be interpreted so that only running text is output (i.e., no text from macro 
lines.) The -ml option forces the -mm option and also causes deletion of lists associated with 
the mm macros. 

If the -w option is given, the output is a word list, one "word" per line, with all other characters 
deleted. Otherwise, the output follows the Original, with the deletions mentioned above. In text, 
a "word" is any string that contains at least two letters and is composed of letters, digits, amper­
sands (&), and apostrophes ('); in a macro call, however, a "word" is a string that begins with 
at least two letters and contains a total of at least three letters. Delimiters are any characters 
other than letters, digits, apostrophes, and ampersands. Trailing apostrophes and ampersands 
are removed from "words." 

SEE ALSO 

BUGS 

Page 1 

eqn(1), tbl(1), trott(1). 

Deroff is not a complete froff interpreter, so it can be confused by subtle constructs. In particu­
lar, the output of .tl requests is a bit bizarre. Most such errors result in too much rather than too 
little output. 
The -ml option does not handle nested lists correctly. 

January 19, 1984 



DEVNM(1M) 

NAME 
devnm - device name 

SYNOPSIS 
/etc/devnm [names] 

DESCRIPTION 

DEVNM(1M) . 

Devnm identifies the special file associated with the mounted file system where the argument 
name resides. name must be a full path name. 

This command is most commonly used by /etc/rc (see rc(8» to construct a mount table entry 
for the root device. 

EXAMPLE 

FILES 

The command: 
/etc/devnm lusr 

produces 
rp1 lusr 

if lusr is mounted on /dev/rp1. 

/dev/rp* 
/etc/mnttab 

SEE ALSO 
setmnt(1 M). 

Page 1 January 19, 1984 



;e-. .. 

DF(1) DF(1) 

NAME 
df - report number of free disk blocks 

SYNOPSIS 
df [ -t ] [ -f ] [ file-systems ] 

DESCRIPTION 

FILES 

NOTES 

Of prints out the number of free blocks and free i-nodes available for on-line file systems by 
examining the counts kept in the super-blocks; file-systems may be specified either by device 
name (e.g., /dev/rp1) or by mounted directory name (e.g., lusr). If the file-systems argument is 
unspecified, the free space on all of the mounted file systems is printed. Blocks are 1024 bytes 
long. 

The -t flag causes the total allocated block figures to be reported as well. 

If the -I flag is given, only an actual count of the blocks in the free list is made (free i-nodes are 
not reported). With this option, df will report on raw devices. 

Idev/rf* 
Idev/rk* 
Idev/rp* 
letc/mnttab 

Blocks are 1024 bytes long. 

SEE ALSO 
fsck(1 M), fs(5), mnttab(5). 

Page 1 January 19, 1984 



DICTION(1) (Plexus) DICTION(1) 

NAME 
diction - print wordy sentences 

. explain - interactive thesaurus for diction 

SYNOPSIS 
lusr/plxldiction [ -ml ] [ -mm ] [ -n ] [ -f pfile ] file ... 
lusr/plxlexplain 

DESCRIPTION 
Diction finds all sentences in a document that contain phrases from a data base of bad or wordy 
diction. Each phrase is bracketed with []. Because diction runs deroff before looking at the 
text, formatting header files should be included as part of the input. The default macro package 
-ms may be overridden with the flag -mm. The flag -ml which causes deroff to skip lists, should 
be used if the document contains many lists of non-sentences. The user may supply her/his 
own pattern file to be used in addition to the default file with -f pfi/e. If the flag -n is also supplied 
the default file will be suppressed. 

Explain is an interactive thesaurus for the phrases found by diction. 

SEE ALSO 
deroff(1 ) 

BUGS 
Use of non-standard formatting macros may cause incorrect sentence breaks. 

Page 1 January 20, 1984 



DIFF(1 ) DIFF(1 ) 

NAME 
diff - differential file comparator 

SYNOPSIS 
diff [ -efbh ] file1 file2 

DESCRIPTION 

FilES 

Diff tells what lines must be changed in two files to bring them into agreement. If file1 (file2) is 
., the standard input is used. If file1 (file2) is a directory, then a file in that directory with the 
name file2 (file 1 ) is used. The normal output contains lines of these forms: 

n1 a n3,n4 
n1,n2 d n3 
n1,n2 c n3,n4 

These lines resemble ed commands to convert file1 into file2. The numbers after the letters 
pertain to file2. In fact, by exchanging a for d and reading backward one may ascertain equally 
how to convert file2 into file1. As in ed, identical pairs where n1 = n2 or n3 = n4 are abbrevi­
ated as a single number. 

Following each of these lines come all the lines that are affected in the first file flagged by <, 
then all the lines that are affected in the second file flagged by >. 
The -b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks 
to compare equal. 

The -e option produces a script of a, c and d commands for the editor ed, which will recreate 
file2 from file1. The·f option produces a similar script, not useful with ed, in the opposite order. 
In connection with -e, the following shell program may help maintain multiple versions of a file. 
Only an ancestral file ($1) and a chain of version-to-version ed scripts ($2,$3, ... ) made by diff 
need be on hand. A "latest version" appears on the standard output. 

(shift; cat $*; echo '1,$p') led - $1 

Except in rare circumstances, diff finds a smallest sufficient set of file differences. 

Option -h does a fast, half-hearted job. It works only when changed stretches are short and well 
separated, but does work on files of unlimited length. Options -e and -f are unavailable with ·h. 

/tmp/d????? 
/usrJlib/diffh for -h 

SEE ALSO 
cmp(1), comm(1), ed(1), bdiff(1), diff3(1), sdiff(1), diffmk(1). 

DIAGNOSTICS 

BUGS 

Page 1 

Exit status is 0 for no differences, 1 for some differences, 2 for trouble. 

Editing scripts produced under the -e or ·f option are naive about creating lines consisting of a 
single period (.). 

January 19, 1984 



DIFF3(1) DlFF3(1) . 

NAME 
diff3 - 3-way differential file comparison 

SYNOPSIS 
diff3 [ -ex3 ] file1 file2 file3 

DESCRIPTION 

FilES 

Diff3 compares three versions of a file, and publishes disagreeing ranges of text flagged with 
these codes: 

--------
====1 

====2 

====3 

all three files differ 

file 1 is diffe~ent 

file2 is different 

file3 is different 

The type of change suffered in converting a given range of a given file to some other is indi­
cated in one of these ways: 

f : n1 a Text is to be appended after line number n1 in file f, where f = 1, 2, 
or 3. 

f : n1 ,n2 c Text is to be changed in the range line n1 to line n2. If n1 = n2, the 
range may be abbreviated to n1. 

The original contents of the range follows immediately after a c indication. When the contents 
of two files are identical, the contents of the lower-numbered file is suppressed. 

Under the -e option, diff3 publishes a script for the editor ed that will incorporate into file 1 all 
changes between file2 and file3, i.e., the changes that normally would be flagged ==== and ~ 
====3. Option -x (-3) produces a script to incorporate only changes flagged ==== 
(====3). The following command will apply the resulting script to file1. 

(cat script; echo '1 ,$p') I ed - file1 

Itmp/d3. 
lusr/lib/diff3prog 

SEE ALSO 

BUGS 

Page 1 

diff(1 ). 

Text lines that consist of a single. will defeat-e. 
Files longer than 64K bytes won't work. 

January 19, 1984 



DIFFMK(1) DIFFMK(1 ) 

NAME 
diffmk • mark differences between files 

SYNOPSIS 
diffmk name1 name2 name3 

DESCRIPTION 
Diffmk compares two versions of a file and creates a third file that includes "change mark" com· 
mands for nroff(1) or troff(1). Name1 and name2 are the old and new versions of the file. 
Diffmk generates name3. which contains the lines of name2 plus inserted formatter "change 
mark" (.mc) requests. When name3 is formatted. changed or inserted text is shown by I at the 
right margin of each line. The position of deleted text is shown by a single •. 

If anyone is so inclined. he can use diffmk to produce listings of C (or other) programs with 
changes marked. A typical command line for such use is: 

diffmk old.c new.c tmp; nroff macs tmp I pr 

where the file macs contains: 

.pl 1 
.11 77 
.nf 
.eo 
.nc \ 

The .11 request might specify a different line length. depending on the nature of the program 
being printed. The .eo and .nc requests are probably needed only for C programs. 

If the characters I and • are inappropriate. a copy of diffmk can be edited to change them 
(diffmk is a shell procedure). 

SEe ALSO 

BUGS 

Page 1 

diff(1), nroff(1). 

Aesthetic considerations may dictate manual adjustment of some output. File differences involv­
ing only formatting requests may produce undesirable output, i.e., replacing .sp by .sp 2 will 
produce a "change mark" on the preceding or following line of output. 

January 19, 1984 



DIRCMP(1) DlRCMP(1) 

NAME 
dircmp - directory comparison 

SYNOPSIS 
dircmp [ -d ] [ -8 ] dir1 dir2 

DESCRIPTION 
Dircmp examines dlr1 and dlr2 and generates various tabulated information about the contents 
of the directories. Ustings of files that are unique to each directory are generated in addition to a 
list that indicates whether the files common to both directories have the same contents. 

The -d option causes dircmp to do a diff(1) of all the files of the same file name that are found 
to be different. 

The -8 option reports only files that are unique to one of the other directories, and files that have 
the same file names but are different. It does not report on files that are the same, or on direc­
tories. 

SEE ALSO 
cmp(1), diff(1). 

Page 1 March 13, 1984 



~ 

DNLD(1M) (Plexus) DNLD(1M) 

NAME 
dnld - download program files 

SYNOPSIS 
letcldnld [ options ] 

DESCRIPTION 

Page 1 

This program transfers program files from the UNIX system to either the EH 4A1BPS4 prom pro­
grammer or a DATA I/O prom programmer or a Plexus system that is running a debugging pro­
gram. The program options are as follows: 

-8 XXXX 

-bxxxx 

-j 

-c 

-t info 

-ooutf 
-f inf 

Sets xxxx as tne base address for text relocation. xxxx is a hex number. This 
address is also sent to the Plexus monitor if the program is in that mode. 
Sets xxxx as the base address for bss relocation. xxxx is a hex number. This 
address is also sent to the Plexus monitor if the program is in that mode. 
Initializes the EH-4A PROM programmer, does the dnld, and programs the PROM. 
Puts a checksum (so that the words will sum to 0) at location OxOffe. Used for 
making PROMs so that they can be checked for integrity. 
If the output file is a tty then info is used to set up the terminals options. This is 
done by first opening the terminal and then issuing an stty command to it with info 
as the parameters. 
Sets the output file name to outf. 
Sets the input fi Ie name to info 

-k promsize 

-I 

-h 

-p 
-z 
-5 XXXX 

-u 
-v 
-y xxxx 
-d 
-8 
-D 
-F xxyy 

-L 

Determines the size of the proms being programmed. 
Causes the low byte of each instruction in inf to be output to outf. Used only for 
prom programming. 
Causes the high byte of each instruction in inf to be output to outf. Used only for 
prom programming. 
Sets the program to output data in the format used by the EH prom programmer. 
Sets the program to output data in the format used by the Plexus monitor. 
Sets the segment number sent to the Plexus monitor. xxxx is a hex number. 
Used for downloading UNIX thru the boot program, 
Used for the 2732As. 
Sets the communications address for loading the SIOC. 
Used for downloading the ICP. 
Used for 4B/BPS4 PROM programmer. 
Used for the DATA I/O 29A programmer. 
Used only for the DATA I/O programmer and must be present if the -0 switch is. 
xx is the family and yy is the pinout code (e.g. 1924 for 2732DC). 
Object file header contains LONGs as in 68000 type object files. 

The default options are: 

-a 0000 
-b 0000 
-t 1200 
-0 /dev/promio 
-f a.out 
-I 
-p 
-s 0000 
-y f800 

January 19, 1984 



ONLO(1M) (Plexus) 

FILES 
Idev/promio 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM 111. 

SEE ALSO 
icpdmp(1M) 

BUGS 
Some of the options may not work for programming proms. 

January 19, 1984 

ONLO(1M) . 

Page 2 



DU(1) DU(1) . 

NAME 
du - summarize disk usage 

SYNOPSIS 
du [ -ars ] [ names ] 

DESCRIPTION 

NOTES 

BUGS 

Page 1 

Du gives the number of blocks contained in all files and (recursively) directories within each 
directory and file specified by the names argument. The block count includes the indirect blocks 
of the file. If names is missing, • is used. Blocks are 1024 bytes long. 

The optional argument -s causes only the grand total (for each of the specified names) to be 
given. The optional argument -a causes an entry to be generated for each file. Absence of 
either causes an entry to be generated for each di rectory only. 

Du is normally silent about directories that cannot be read, files that cannot be opened, etc. 
The -, option will cause du to generate messages in such instances. 

A file with two or more links is counted only once. 

Plexus provides a standalone version of du in addition to the one that runs under Sys3. 

If the -a option is not used, non-directories given as arguments are not listed. 
If there are too many distinct linked files, du will count the excess files more than once. 
Files with holes in them will get an incorrect block count. 

January 19, 1984 



DUMP(1M) ( Obsolescent) DUMP(1M) 

NAME 
dump - incremental file system dump 

SYNOPSIS 
dump [ key [ arguments] file-system] 

DESCRIPTION 

FilES 

Dump copies to magnetic tape all files changed after a certain date in the file-system. The key 
specifies the date and other options about the dump. Key consists of characters from the set 
0123456789fusd. 

f Place the dump on the next argument file instead of the tape. 
u If the dump completes successfully, write the date of the beginning of the dump on file 

/etc/ddate. This file records a separate date for each file system and each dump level. 
0-9 This number is the "dump level". All files modified since the last date stored in the file 

/etc/ddate for the same file system at lesser levels will be dumped. If no date is deter­
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire 
file system to be dumped. 

s The size of the dump tape is specified in feet. The number of feet is taken from the next 
argument. When the specified size is reached, the dump will wait for reels to be changed. 
The default size is 2,300 feet. 

d The density of the tape, expressed in BPI, is taken from the next argument. This is used 
in calculating the amount of tape used per write. The default is 1600. 

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to 
the default tape. 

Now a short suggestion on how to perform dumps. Start with a full level-O dump: dump Ou. 
Next, periodic level-9 dumps should be made on an exponential progression of tapes. (Some­
times called Tower of Hanoi: 1,2, 1,3, 1,2, 1, 4, ... ; tape 1 used every other time, tape 2 is 
used every fourth, tape 3 is used every eighth, etc.): dump 9u. When the level-9 incremental 
approaches a full tape (about 78,000 blocks at 1600 BPI blocked 10 1024-byte blocks per 
record), a level-1 dump should be made: dump 1 u. After this, the exponential series should 
progress as if uninterrupted. These level-9 dumps are based on the level-1 dump, which is 
based on the level-O full dump. This progression of levels of dumps can be carried as far as 
desired. 

default file system and tape vary with installation. 
/etclddate: record dump dates of file system/level. 

SEE ALSO 
cpio(1), dumpdir(1 M), restor(1 M), volcopy(1 M), dump(5). 

DIAGNOSTICS 

BUGS 

Page 1 

If the dump requires more than one tape, it will a~k you to change tapes. Reply with a new-line 
after this has been done. 

Sizes are based on 1600 BPI blocked tape. The raw magnetic tape device has to be used to 
approach these densities. Read errors on the file system are ignored. Write errors on the mag­
netic tape are usually fatal. 

January 19, 1984 



r 

DUMPDIR(1M) (Plexus) DUMPDIR(1M) 

NAME 
dumpdir - print the names of files on a dump tape 

SYNOPSIS 
dumpdir [ f filename I 

DESCRIPTION 

FilES 

Dumpdir is used to read magtapes dumped with the dump command and list the names and 
inode numbers of all the files and directories on the tape. 

The f option makes filename the name of the tape instead of the default. 

Default tape unit varies with installation. 
rst* 

SEE ALSO 
dump(1). restor(1) 

DIAGNOSTICS 

BUGS 

Page 1 

If the dump extends over more than one tape. it may ask you to change tapes. Reply with a 
new-line when the next tape has been mounted. 

There is redundant information on the tape that could be used in case of tape reading problems. 
Unfortunately. dumpdir doesn't use it. 

Dumpdir cannot report correctly on a file having a very long directory path (greater than 15 
directories). 

September 19. 1984 



ECHO(1) ECHO(1)' 

NAME 
echo· echo arguments 

SYNOPSIS 
echo [ arg ] '" 

DESCRIPTION 
Echo writes its arguments separated by blanks and terminated by a new-line on the standard 
output. It also understands C-like escape conventions; beware of conflicts with the shell's use 
of \: 

\b backspace 
\c print line without new-line 
\1 form-feed 
\n new-line 
\r carriage return 
\t tab 
\ \ backslash 
\n the 8-bit character whose ASCII code is the 1-, 2- or 3-digit octal number n, 

which must start with a zero. 

Echo is useful for producing diagnostics in command files and for sending known data into a 
pipe. 

SEE ALSO 
sh(1). 

Page 1 January 19, 1984 



ED(1) ED(1)" 

NAME 
ed - text editor 

SYNOPSIS 
ed [ - ] [ -x ] [ file ] 

DESCRIPTION 

Page 1 

Ed is the standard text editor. If the file argument is given, ed simulates an e command (see 
below) on the named file; that is to say, the file is read into ed's buffer so that it can be edited. 
The optional - suppresses the printing of character counts bye, r, and w commands, of diag­
nostics from e and q commands, and of the ! prompt after a Ishell command. If -x is present, 
an x command is simulated first to handle an encrypted file. Ed operates on a copy of the file it 
is editing; changes made to the copy have no effect on the file until a w (write) command is 
given. The copy of the text being edited resides in a temporary file called the buffer. There is 
only one buffer. 

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by 
a single-character command, possibly followed by parameters to that command. These 
addresses specify one or more lines in the buffer. Every command that requires addresses has 
default addresses, so that the addresses can very often be omitted. 

In general, only one command may appear on a line. Certain commands allow the input of text. 
This text is placed in the appropriate place in the buffer. While ed is accepting text, it is said to 
be in input mode. In this mode, no commands are recognized; all input is merely collected. 
Input mode is left by typing a period (.) alone at the beginning of a line. 

Ed supports a limited form of regular expression notation; regular expressions are used in 
addresses to specify lines and in some commands (e.g., s) to specify portions of a line that are 
to be substituted. A regular expression (RE) specifies a set of character strings. A member of 
this set of strings is said to be matched by the RE. The REs allowed by ed are constructed as 
follows: 

The following one-character REs match a single character: 

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character RE that 
matches itself. 

1.2 A backs lash (\) followed by any special character is a one-character RE that matches the 
special character itself. The special characters are: 

a. " *, [, and \ (period, asterisk, left square bracket, and backslash, respectively), which 
are always special, except when they appear within square brackets ([]; see 1.4 
below). 

b. "(caret or circumflex), which is special at the beginning of an entire RE (see 3.1 and 
3.2 belOW), or when it immediately follows the left of a pair of square brackets ([]) 
(see 1.4 below). 

c. $ (currency symbol), which is special at the end of an entire RE (see 3.2 below). 

d. The character used to bound (Le., delimit) an entire RE, which is special for that RE 
(for example, see how slash (I) is used in the g command, belOW.) 

1.3 A period (.) is a one-character RE that matches any character except new-line. 

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one­
character RE that matches anyone character in that string. If, however, the first 
character of the string is a circumflex (,,), the one-character RE matches any charac­
ter except new-line and the remaining characters in the string. The .. has this spe­
cial meaning only if it occurs first in the string. The minus (-) may be used to indi­
cate a range of consecutive ASCII characters; for example, [0-9] is equivalent to 

January 19, 1984 



ED(1) ED(1) 

[0123456789]. The - loses this special meaning if it occurs first (after an initial A, if 
any) or last in the string. The right square bracket (]) does not terminate such a 
string when it is the first character within it (after an initial A, if any); e.g., []a-f] 
matches either a right square bracket (]) or one of the letters a through f inclusive. 
The four characters listed in 1.2.a above stand for themselves within such a string of 
characters. 

The following rules may be used to construct REs from one-character REs: 

2.1 A one-character RE is a RE that matches whatever the one-character RE matches. 

2.2 A one-character RE followed by an asterisk (_) is a RE that matches zero or more 
occurrences of the one-character RE. If there is any choice, the longest leftmost 
string that permits a match is chosen. 

2.3 A one-character RE followed by \{m\}, \{m, \}' or \{m,n\} is aRE that matches 
a range of occurrences of the one-character RE. The values of m and n must be 
non-negative integers less than 256; \{m\} matches exactly m occurrences; 
\{ m, \} matches at least m occurrences; \{ m,n \} matches any number of 
occurrences between m and n inclusive. Whenever a choice exists, the RE 
matches as many occurrences as possible. 

2.4 The concatenation of REs is a RE that matches the concatenation of the strings 
matched by each component of the RE. 

2.5 A RE enclosed between the character sequences \( and \) is a RE that matches 
whatever the unadorned RE matches. 

2.6 The expression \n matches the same string of characters as was matched by an 
expression enclosed between \( and \) earlier in the same RE. Here n is a digit; 
the sub-expression specified is that beginning with the n-th occurrence of \( count­
ing from the left. For example, the expression A \(._\)\ 1$ matches a line consisting 
of two repeated appearances of the same stri ng. 

Finally, an entire RE may be constrained to match only an initial segment or final segment 
of a line (or both): 

3.1 A circumflex (A) at the beginning of an entire RE constrains that RE to match an ini­
tial segment of a line. 

3.2 A currency symbol ($) at the end of an entire RE constrains that RE to match a final 
segment of a line. The construction Aentire RE$ constrains the entire RE to match 
the entire line. 

The null RE (e.g., II) is equivalent to the last RE encountered. See also the last paragraph 
before FILES below. 

To understand addressing in ed it is necessary to know that at any time there is a current 
line. Generally speaking, the current line is' the last line affected by a command; the exact 
effect on the current line is discussed under the deSCription of each command. 
Addresses are constructed as follows: 

1. The character. addresses the current line. 

2. The character $ addresses the last line of the buffer. 

3. A decimal number n addresses the n-th line of the buffer. 

4. 'x addresses the line marked with the mark name character x, which must be a 
lower-case letter. Unes are marked with the k command described below. 

January 19, ·1984 Page 2 



EO(1 ) 

Page 3 

EO(1) 

5. A RE enclosed by slashes (I) addresses the first line found by searching forward 
from the line following the current line toward the end of the buffer and stopping at 
the first line containing a string matching the RE. If necessary, the search wraps 
around to the beginning of the buffer and continues up to and including the current 
line, so that the entire buffer is searched. See also the last paragraph before FILES 
below. 

6. A RE enclosed in question marks (?) addresses the first line found by searching 
backward from the line preceding the current line toward the beginning of the buffer 
and stopping at the first line containing a string matching the RE. If necessary, the 
search wraps around to the end of the buffer and continues up to and including the 
current line. See also the last paragraph before FILES below. 

7. An address followed by a plus sign (+) or a minus sign (-) followed by a decimal 
number specifies that address plus (respectively minus) the indicated number of 
lines. The plus sign may be omitted. 

8. If an address begins with + or -, the addition or subtraction is taken with respect to 
the current line; e.g, -5 is understood to mean .-5. 

9. If an address ends with + or -, then 1 is added to or subtracted from the address, 
respectively. As a consequence of this rule and of rule 8 immediately above, the 
address - refers to the line preceding the current line. (To maintain compatibility 
with earlier versions of the editor, the character • in addresses is entirely equivalent 
to -.) Moreover, trailing + and - characters have a cumulative effect, so -- refers to 
the current line less 2. 

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) 
stands for the pair .,$. 

Commands may require zero, one, or two addresses. Commands that require no 
addresses regard the presence of an address as an error. Commands that accept one or 
two addresses assume default addresses when an insufficient number of addresses is 
given; if more addresses are given than such a command requires, the last one(s) are 
used. 

Typically, addresses are separated from each other by a comma (,). They may also be 
separated by a semicolon (;). In the latter case, the current line (.) is set to the first 
address, and only then is the second address calculated. This feature can be used to 
determine the starting line for forward and backward searches (see rules 5. and 6. above). 
The second address of any two-address sequence must correspond to a line that follows, 
in the buffer, the line corresponding to the first address. 

In the following list of ed commands, the default addresses are shown in parentheses. 
The parentheses are not part of the address; they show that the given addresses are the 
default. 

It is generally illegal for more than one command to appear on a line. However, any com­
mand (except e, f, r, or w) may be suffixed by p or by I, in which case the current line is 
either printed or listed, respectively, as discussed below under the p and' commands. 

(.)a 
<text> 

The append command reads the given text and appends it after the addressed 
line; • is left at the last inserted line, or, if there were none, at the addressed line. 
Address 0 is legal for this command: it causes the "appended" text to be placed at 
the begi nni ng of the buffer. 

January 19, 1984 



EO(1) 

(.)c 
<text> 

(. , . )d 

e file 

E file 

f file 

EO(1 ). 

The change command deletes the addressed lines, then accepts input text that 
replaces these lines; • is left at the last line input, or, if there were none, at the first 
line that was not deleted. 

The delete command deletes the addressed lines from the buffer. The line after 
the last line deleted becomes the current line; if the lines deleted were originally at 
the end of the buffer, the new last line becomes the current line. 

The edit command causes the entire contents of the buffer to be deleted, and then 
the named file to be read in; • is set to the last line of the buffer. If no file name is 
given, the currently-remembered file name, if any, is used (see the f command). 
The number of characters read is typed; file is remembered for possible use as a 
default file name in subsequent e, r, and w commands. If file begins with !, the 
rest of the line is taken to be a shell (sh(1» command whose output is to be read. 
Such a shell command is not remembered as the current file name. See also 
DIAGNOSTICS below. 

The Edit command is like e, except that the editor does not check to see if any 
changes have been made to the buffer since the last w command. 

If file is given, the file-name command changes the currently-remembered file ""._ 
name to file; otherwise, it prints the currently-remembered file name., 

(1, $ )g/RElcommand list 
In the global command, the first step is to mark every line that matches the given 
RE. Then, for every such line, the given command list is executed with. initially 
set to that line. A single command or the first of a list of commands appears on 
the same line as the global command. All lines of a multi-line list except the last 
line must be ended with a \; a, i, and c commands and associated input are per­
mitted; the. terminating input mode may be omitted if it would be the last line of 
the command list. An empty command list is equivalent to the p command. The 
g, G, v, and V commands are not permitted in the command list. See also BUGS 
and the last paragraph before FILES below. 

(1,$)GIREI . 

h 

In the interactive Global command, the first step is to mark every line that 
matches the given RE. Then, for every such line, that line is printed, • is changed 
to that line, and anyone command (other than one of the a, c, i, g, G, v, and V 
commands) may be input and is executed. After the execution of that command, 
the next marked line is printed, and so on; a new-line acts as a null command; an 
& causes the re-execution of the most recent command executed within the 
current invocation of G. Note that the commands input as part of the execution of 
the G command may address and affect any lines in the buffer. The G command 
can be terminated by an interrupt signal (ASCII DEL or BREAK). 

The help command gives a short error message that explains the reason for the 
most recent? diagnostic. 

January 19, 1984 Page 4 



ED(1) 

PageS 

H 

(. )i 
<text> 

EO(1 ) 

The Help command causes ed to enter a mode in which error messages are 
printed for all subsequent? diagnostics. It will also explain the previous? if there 
was one. The H command alternately turns this mode on and off; it is initially off. 

The insert command inserts the given text before the addressed line; . is left at 
the last inserted line, or, if there were none, at the addressed line. This command 
differs from the a command only in the placement of the input text. Address 0 is 
not legal for this command. 

(.,.+1)j 

(.)kx 

( • , • )1 

The join command joins contiguous lines by removing the appropriate new-line 
characters. If only one address is given, this command does nothing. 

The mark command marks the addressed line with name x, which must be a 
lower-case letter. The address 'x then addresses this line; • is unchanged. 

The list command prints the addressed lines in an unambiguous way: a few non­
printing characters (e.g., tab, backspace) are represented by (hopefully) 
mnemonic overstrikes, all other non-printing characters are printed in octal, and 
long lines are folded. An I command may be appended to any other command 
other than e, " r, or w. 

(.,.)ma 

(.,.)n 

(. , • )p 

P 

q 

Q 

The move command repositions the addressed line(s) after the line addressed by 
a. Address 0 is legal for a and causes the addressed line(s) to be moved to the 
beginning of the file; it is an error if address a falls within the range of moved 
lines; • is left at the last line moved. 

The number command prints the addressed lines, preceding each line by its line 
number and a tab character; . is left at the last line printed. The n command may 
be appended to any other command other than e, " r, or w. 

The print command prints the addressed lines; . is left at the last line printed. The 
p command may be appended to any other command other than e, " r, or w; for 
example, dp deletes the current line and prints the new current line. 

The editor will prompt with a * for all subsequent commands. The P command 
alternately turns this mode on and off; it is initially off. 

The quit command causes ed to exit. No automatic write of a file is done (but 
see DIAGNOSTICS below): 

The editor exits without checking if changes have been made in the buffer since 
the last w command. 

($)r 'ile 
The read command reads in the given file after the addressed line. If no file name 
is given, the currently-remembered file name, if any, is used (see e and , 

January 19, 1984 



EO(1) EO(1 ) 

commands). The currently-remembered file name is not changed unless file is 
the very first file name mentioned since ed was invoked. Address 0 is legal for r 
and causes the file to be read at the beginning of the buffer. If the read is suc­
cessful, the number of characters read is typed; 0 is set to the last line read in. If 
file begins with I, the rest of the line is taken to be a shell (sh(1» command whose 
output is to be read. Such a shell command is not remembered as the current file 
name. 

( 0 , 0 )s/RElrepiacementi or 
(0,0 )s/RElrepiacementlg 

(o,o)ta 

u 

The substitute command searches each addressed line for an occurrence of the 
specified RE. In each line in which a match is found, all (non-overlapped) 
matched strings are replaced by the rep/acement if the global replacement indica­
tor 9 appears after the command. If the global indicator does not appear, only the 
first occurrence of the matched string is replaced. It is an error for the substitution 
to fail on all addressed lines. Any character other than space or new-line may be 
used instead of I to delimit the RE and the replacement; 0 is left at the last line on 
which a substitution occurred. See also the last paragraph before FILES below. 

An ampersand (&) appearing in the rep/a cement is replaced by the string match­
ing the RE on the current line. The special meaning of & in this context may be 
suppressed by preceding it by \. As a more general feature, the characters \n, 
where n is a digit, are replaced by the text matched by the n-th regular subex­
pression of the specified RE enclosed between \( and \). When nested 
parenthesized subexpressions are present, n is determined by counting 
occurrences of \( starting from the left. When the character % is the only charac­
ter in the replacement, the replacement used in the most recent substitute com­
mand is used as the replacement in the current substitute command. The % 
loses its special meaning when it is in a replacement string of more than one char­
acter or is preceded by a \. 

A line may be split by substituting a new-line character into it. The new-line in the 
rep/acement must be escaped by preceding it by \. Such substitution cannot be 
done as part of a g or v command list. 

This command acts just like the m command, except that a copy of the addressed 
lines is placed after address a (which may be 0); 0 is left at the last line of the 
copy. 

The undo command nullifies the effect of the most recent command that modified 
anything in the buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, v, G, or V 
command. 

( 1 ,$ )vlRElcommand list 
This command is the same as the global command g except that the command 
list is executed with. initially set to every line that does not match the RE. 

(1,$)V/REI 
This command is the same as the interactive global command G except that the 
lines that are marked during the first step are those that do not match the RE. 

(1, $)w file 
The write command writes the addressed lines into the named file. If the file does 
not exist, it is created with mode 666 (readable and writable by everyone), unless 
your umask setting (see sh(l» dictates otherwise. The currently-remembered file 

January 19, 1984 Page 6 



EO(1) 

FilES 

x 

($)= 

EO(1) 

name is not changed unless file is the very first file name mentioned since ed was 
invoked. If no file name is given, the currently-remembered file name, if any, is 
used (see e and f commands); • is unchanged. If the command is successful, the 
number of characters written is typed. If file begins with I, the rest of the line is 
taken to be a shell (sh(1)) command whose output is to be read. Such a shell 
command is not remembered as the current file name. 

A key string is demanded from the standard input. Subsequent e, r, and w com­
mands will encrypt and decrypt the text with this key by the algOrithm of crypt(1). 
An explicitly empty key turns off encryption. 

The line number of the addressed line is typed; . is unchanged by this command. 

!shell command 
The remainder of the line after the! is sent to the UNIX shell (sh(1)) to be inter­
preted as a command. Within the text of that command, the unescaped character 
% is replaced with the remembered file name; if a ! appears as the first character 
of the shell command, it is replaced with the text of the previous shell command. 
Thus, !! will repeat the last shell command. If any expansion is performed, the 
expanded line is echoed; . is unchanged. 

{.+1 ) <new-line> 
An address alone on a line causes the addressed line to be printed. A new-line 
alone is equivalent to .+ 1p; it is useful for stepping forward through the buffer. 

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its com­
mand level. 

Some size limitations: 512 characters per line, 256 characters per global command list, 64 
characters per file name, and 128K characters in the buffer. The limit on the number of 
lines depends on the amount of user memory: each line takes 1 word. 

When reading a file, ed discards ASCII NUL characters and all characters after the last 
neW-line. Files (e.g., a.out) that contain characters not in the ASCII set (bit 8 on) cannot 
be edited by ed. 

If the closing delimiter of a RE or of a replacement string (e.g., I) would be the last charac­
ter before a new-line, that delimiter may be omitted, in which case the addressed line is 
printed. The following pairs of commands are equivalent: 

s/s1/s2 s/s1/s2/p 
g/s1 g/s1/p 
?s1 ?s1? 

Itmpie# 
ed.hup 

DIAGNOSTICS 
? 

temporary; # is the process number. . 
work is saved here if the terminal is hung up. 

for command errors. 
for an inaccessible file. 

Page 7 

?file 
(use the help command for detailed explanations). 

If changes have been made in the buffer since the last w command that wrote the entire buffer, 
ed warns the user if an attempt is made to destroyed's buffer via the e or q commands: it 
prints? and allows one to continue editing. A second e or q command at this point will take 
effect. The - command-line option inhibits this feature. 

January 19, 1984 



ED(1) ED(1) . 

SEE ALSO 
Crypt(1). grep(1). sed(1). sh(1). 
A Tutorial Introduction to the UNIX Text Editor by B. W. Kernighan. 
Advanced Editing on UNIX by B. W. Kernighan. 

CAVEATS AND BUGS 
A! command cannot be subject to a g or a v command. 
The I command and the ! escape from the e. r. and w commands cannot be used if the the edi­
tor is invoked from a restricted shell (see sh(1». 
The sequence \n in a RE does not match any character. 
The I command mishandles DEl. 
Files encrypted directly with the crypt(1) command with the null key cannot be edited. 
Because 0 is an illegal address for the w command. it is not possible to create an empty file 
with ed. 

January 19. 1984 Page 8 



EDIT(1 ) (Plexus) EDIT(1) 

NAME 
edit - text editor (variant of the ex editor for new or casual users) 

SYNOPSIS 
lusr/plxledit [ -r I name ... 

DESCRIPTION 
Edit is a variant of the text editor ex recommended for new or casual users who wish to use a 
command oriented editor. The following brief introduction should help you get started with edit. 
A more complete basic introduction is provided by Edit: A tutorial. A Ex/edit command summary 
(version 2.0) is also very useful. See ex(1) for other useful documents; in particular, if you are 
using a CRT terminal you will want to learn about the display editor vi. 

BRIEF INTRODUCTION 

Page 1 

To edit the contents of an existing file you begin with the command "edit name" to the shell. 
Edit makes a copy of the file, and tells you how many lines and characters are in the file; you 
can then edit it. To create a new file, just make up a name for the file and try to run edit on it; 
you will cause an error diagnostic, but don't worry. 

Edit prompts for commands with the character ':', which you should see after starting the editor. 
If you are editing an existing file, then you will have some lines in edit's "buffer" (its name for 
the copy of the file you are editing). Most commands to edit use its "current line" if you don't 
tell them which line to use. Thus if you say print (which can be abbreviated p) and hit carriage 
return (as you should after all edit commands) this current line will be printed. If you delete (d) 
the current line, edit will print the new current line. When you start editing, edit makes the last 
line of the file the current line. If you delete this last line, then the new last line becomes the 
current one. In general, after a delete, the next line in the file becomes the current line. (Delet­
ing the last line is a special case.) 

If you start with an empty file, or wish to add some new lines, then the append (a) command 
can be used. After you give this command (typing a carriage return after the word append) edit 
will read lines from your terminal until you give a line consisting of just a ..... , placing these lines 
after the current line. The last line you type then becomes the current line. The command 
insert (i) is like append but places the lines you give before, rather than after, the current line. 

Edit numbers the lines in the buffer, with the first line having number 1. If you give the com­
mand "1" then edit will type this first line. If you then give the command delete edit will delete 
the first line, and line 2 will become line 1, and edit will print the current line (the new line 1) so 
you can see where you are. In general, the current line will always be the last line affected by a 
command. 

You can make a change to some text within the current line by using the substitute (s) com­
mand. You say "s/old Inew/" where old is replaced by the old characters you want to get rid of 
and new is the new characters you want to replace it with. 

The command file (f) will tell you how many lines there are in the buffer you are editing and will 
say "[Modified)" if you have changed it. After modifying a file you can put the buffer text back to 
replace the file by giving a write (w) command. You can then leave the editor by issuing a quit 
(q) command. If you run edit on a file, but don't change it, it is not necessary (but does no 
harm) to write the file back. If you try to quit from edit after modifying the buffer without writing 
it out, you will be warned that there has been "No write since last change" and edit will await 
another command. If you wish not to write the buffer out then you can issue another quit com­
mand. The buffer is then irretrievably discarded, and you return to the shell. 

By using the delete and append commands, and giving line numbers to see lines in the file you 
can make any changes you desire. You should learn at least a few more things, however, if you 
are to use edit more than a few times. 

January 19, 1984 



EDIT(1) (Plexus) EDIT(1 ) 

NOTES 

The change (c) command will change the current line to a sequence of lines you supply (as in 
append you give lines up to a line consisting of only a "."). You can tell change to change 
more than one line by giving the line numbers of the lines you want to change, i.e. "3,5change". 
You can print lines this way too. Thus "1,23p" prints the first 23 lines of the file. 

The undo (u) command will reverse the effect of the last command you gave which changed the 
buffer. Thus if give a substitute command which doesn't do what you want, you can say undo 
and the old contents of the line will be restored. You can also undo an undo command so that 
you can continue to change your mind. Edit will give you a warning message when commands 
you do affect more than one line of the buffer. If ,the amount of change seems unreasonable, 
you should consider doing an undo and looking to see what happened. If you decide that the 
change is ok, then you can undo again to get it back. Note that commands such as write and 
quit cannot be undone. 

To look at the next line in the buffer you can just hit carriage return. To look at a number of 
lines hit AO (control key and, while it is held down, 0 key, then let up both) rather than carriage 
return. This will show you a half screen of lines on a CRT or 12 lines on a hardcopy terminal. 
You can look at the text around where you are by giving the command "Z.". The current line will 
then be the last line printed; you can get back to the line where you were before the "z." com­
mand by saying'" "'. The z command can also be given other following characters "z-" prints a 
screen of text (or 24 lines) ending where you are; "z+" prints the next screenful. If you want 
less than a screenful of lines do, e.g., "z.12" to get 12 lines total. This method of giving counts 
works in general; thus you can delete 5 lines starting with the current line with the command 
"delete 5". 

To find things in the file you can use line numbers if you happen to know them; since the line 
numbers change when you insert and delete lines this is somewhat unreliable. You can search 
backwards and forwards in the file for strings by giving commands of the form Itextl to search 
forward for text or ?text? to search backward for text. If a search reaches the end of the file 
without finding the text it wraps, end around, and continues to search back to the line where you 
are. A useful feature here is a search of the form ttextl which searches for text at the begin­
ning of a line. Similarly Itext$! searches for text at the end of a line. You can leave off the trail­
ing I or ? in these commands. 

The current line has a symbolic name "."; this is most useful in a range of lines as in ".,$print" 
which prints the rest of the lines in the file. To get to the last line in the file you can refer to it by 
its symbolic name "$". Thus the command "$ delete" or u$d" deletes the last line in the file, no 
matter which line was the current line before. Arithmetic with line references is also possible. 
Thus the line U$_5" is the fifth before the last, and ".+20" is 20 lines after the present. 

You can find out which line you are at by doing ".=". This is useful if you wish to move or copy 
a section of text within a file or between files. Find out the first and last line numbers you wish 
to copy or move (say 10 to 20). For a move you can then say "10,20move naIf which deletes 
these lines from the file and places them in a buffer named a. Edit has 26 such buffers named a 
through z. You can later get these lines back by doing "na move ." to put the contents of buffer 
a after the current line. If you want to move or copy these lines between files you can give an 
'edit (e) command after copying the lines. following it with the name of the other file you wish to 
edit, i.e. "edit chapter2". By changing move to copy above you can get a pattern for copying 
lines. If the text you wish to move or copy is all within one file then you can just say 
"10,20move $" for example. It is not necessary to use named buffers in this case (but you can 
if you wish). 

This command is based on one developed at the University of California at Berkeley. 

January 19, 1984 Page 2 



EDlT(1 ) (Plexus) EDIT(1 ) 

~\ SEE ALSO 
ex (1), vi (1), 'Edit: A tOtorial', by Ricki Blau and James Joyce 

BUGS 
See ex(1). 

Page 3 January 19, 1984 



EFL(1) EFL(1) . 

NAME 
efl - Extended Fortran Language 

SYNOPSIS 
efl [ options ] [ files ] 

DESCRIPTION 

Page 1 

Eft compiles a program written in the EFL language into clean Fortran on the standard output. 
Efl provides the C-like control constructs of ratfor(1): 

statement grouping with braces. 

decision-making: 
if, if-else, and select-case (also known as switch-case); 
while, for, Fortran do, repeat, and repeat ... until loops; 
multi-level break and next. 

EFL has C-like data structures, e.g.: 

struct 
{ 
integer flags(3) 
character(8) name 
long real coords(2) 
} table(100) 

The language offers generic functions, assignment operators (+=, &=, etc.), and sequentially 
evaluated logical operators (&& and II). There is a uniform input/output syntax: 

write(6,x,y:f(7,2), do i=1,10 { a(i,j),z.b(i) }) 

EFL also provides some syntactic "sugar": 

free-form input: 
multiple statements per line; automatic continuation; statement label names (not 
just numbers). 

comments: 
1/= this is a comment. 

translation of relational and logical operators: 
>, > =, &, etc., become .GT., .GE., .AND., etc. 

return expression to caller from function: 
return (expression) 

defines: 
define name replacement 

includes: 
include file 

Efl understands several option arguments: -w suppresses warning messages, -1/= suppresses 
comments in the generated program, and the default option -C causes comments to be included 
in the generated program. 

An argument with an embedded = (equal sign) sets an EFL option as if it had appeared in an 
option statement at the start of the program. Many options are described in the reference 
manual. A set of defaults for a particular target machine may be selected by one of the choices: 
system=unix, system=gcos, or system=cray. The default setting of the system option is 
the same as the machine the compiler is running on. Other specific options determine the style 
of input/output, error handling, continuation conventions, the number of characters packed per 

January 19, 1984 . 



EFl(1) EFL(1)· 

~. word, and default formats. 

Efl is best used with 177(1), Plexus product number 4214A (for P/35 and P/SO) and 4108A (for 
P/25 and P/40). 

SEE ALSO 
cc(1), ratfor(1). 
The Programming Language EFL by S.1. Feldman. 

January 19, 1984 Page 2 



ENABLE(1) (MC68000 only) ENABLE(1) 

NAME '1 
enable, disable - enable/disable LP printers 

SYNOPSIS 
enable printers 
disable [-c) [-r[ reason]] printers 

DESCRIPTION 

FILES 

Enable activates the named printers, enabling them to print requests taken by Ip(1). Use 
Ipstat(1) to find the status of printers. 

Disable deactivates the named printers, disabling them from printing requests taken by /p (1 ). 
By default, any requests that are currently printing on the designated printers will be reprinted in 
their entirety either on the same printer or on another member of the same class. Use /pstat(1) 
to find the status of printers. Options useful with disable are: 

-c Cancel any requests that are currently printing on any of the designated printers. 

-r[ reason] Associates a reason with tl\e deactivation of the printers. This reason applies to aU 
printers mentioned up to the next -roption. If the -r option is not present or the -r 
option is given without a reason, then a default reason will be used. Reason is 
reported by Ipstat(1). . 

/usrispooi/ip/* 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
Ip(1), Ipstat(1). 

Page 1 September 20. 1984 



ENV(1) ENV(1) 

NAME 
env - set environment for command execution 

SYNOPSIS 
env [-] [ name=value ]... [command args ] 

DESCRIPTION 
Env obtains the current environment, modifies it according to its arguments, then executes the 
command with the modified environment. Arguments of the form name=value are merged into 
the inherited environment before the command is executed. The - flag causes the inherited 
environment to be ignored completely, so that the command is executed with exactly the 
environment specified by the arguments. 

If no command is specified, the resulting environment is printed, one name-value pair per line. 

Variables can be added to the environment by the export command inherent within shell. 

SEE ALSO 
sh(1), exec(2), profile(5), environ(7). 

Page 1 January 19, 1984 



EON(1) EON(1) . 

NAME 
eqn, neqn, checkeq - format mathematical text for moff or troff 

SYNOPSIS 
eqn [ -dxy ] [ -pn ] [ -sn ] [ -fn ] [ files ] 

neqn [ -dxy ] [ -pn ] [ -sn ] [ -fn ] [ files ] 

checkeq [ files ] 

DESCRIPTION 
Eqn is a troff(1) preprocessor for typesetting mathematical text on a Wang Laboratories, Inc. 
e/AIT phototypesetter, while neqn is used for the same purpose with nroff(1) on typewriter-like 
terminals. Usage is almost always: 

eqn files I troff 
neqn files I nroff 

or equivalent. 

If no files are specified, these programs read from the standard input. A line beginning with .EO 
marks the start of an equation; the end of an equation is marked by a line beginning with .EN. 
Neither of these lines is altered, so they may be defined in macro packages to get centering, 
numbering, etc. It is also possible to designate two characters as delimiters; subsequent text 
between delimiters is then treated as eqn input. Delimiters may be set to characters x and y 
with the command-line argument -dxy or (more commonly) with delim xy between .EO and .EN. 
The left and right delimiters may be the' same character; the dollar sign is often used as such a 
delimiter. Delimiters are turned off by delim off. All text that is neither between delimiters nor 
between .EO and .EN is passed through untouched. 

The program checkeq reports missing or unbalanced delimiters and .EQ/.EN pairs. 

Tokens within eqn are separated by spaces, tabs, neW-lines, braces, double quotes, tildes, and 
circumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character 
such as x could appear, a complicated construction enclosed in braces may be used instead. 
Tilde (-) represents a full space in the output, circumflex (") half as much. 

Subscripts and superscripts are produced with the keywords sub and sup. Thus x sub j makes 
2 2 • 

Xi' a sub k sup 2 produces ak , while ell I Y is made with e sup {x sup 2 + Y sup 2}. Frac-
a 

tions are made with over: a over b yields -; sqrt makes square roots: 
1 b 

1 over sqrt {ax sup 2+bx+c} results in ----­
y' ax2+bx +c 

n 

The keywords from and to introduce lower and upper limits: lim LXi is made with 
n..x 0 

lim from {n -> inf} sum from 0 to n x sub i. Left and right brackets, braces, etc., of the right 
height are made with left and right: left [ x sup 2 + Y sup 2 over alpha right 1 -=- 1 

produces [X2 + :21 = 1. Legal chara~ters after left and right are braces, brackets, bars, C 

and f for ceiling and floor, and .... for nothing at all (useful for a right-side-only bracket). A left 
thing need not have a matching right thing. 

Vertical piles of things are made with pile, Ipile, cpile, and rpile: pile {a above b above c} 
a 

produces b. Piles may have arbitrary numbers of elements; Ipile left-justifies, pile and cpile 
c 

center (but with different vertical spacing), and rpile right justifies. Matrices are made with 
Xi 1 

matrix: matrix { Icol { x sub i above y sub 2 } ccol { 1 above 2 } } produces 2' In addition, 
Y2 

Page 1 September 24, 1984 



EQN(1) EQN(1) . 

there is rcol for a right-justified column. 

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, dyad, and under: 
x dot = f(t) bar is x = f11}, Y dotdot bar - = - n under is y = a., and x vec - = - y dyad is 
x = 'I. 
Point sizes and fonts can be changed with size n or size ±n, roman, italic, bold, and font n. 
Point sizes and fonts can be changed globally in a document by gsize nand gfont n, or by the 
command-line arguments -sn and -fn. 

Normally, subscripts and superscripts are reduced by 3 pOints from the previous size; this may 
be changed by the command-line argument -pn. 

Successive display arguments can be lined up. Place mark before the desired lineup point in 
the first equation; place lineup at the place that is to line up vertically in subsequent equations. 

Shorthands may be defined or existing keywords redefined with define: 

define thing % replacement % 

defines a new token called thing that will be replaced by replacement whenever it appears 
thereafter. The % may be any character that does not occur in replacement. 

Keywords such as sum (~), int (f), inf (00), and shorthands such as > = (~), ! = ( ), and -> 
(-) are recognized. Greek letters are spelled out in the desired case, as in alpha (0:), or GAMMA 
(f). Mathematical words such as sin, cos, and log are made Roman automatically. Troff(1) 
four-character escapes such as \(dd (:j:) and \(bs 0 may be used anywhere. Strings enclosed in 
double quotes (" ... ") are passed through untouched; this permits keywords to be entered as 
text, and can be used to communicate with troff(1) when all else fails. Full details are given in 
the manual cited below. 

SEE ALSO 

BUGS 

Typesetting Mathematics-User's Guide by B. W. Kernighan and L. L. Cherry. 
New Graphic Symbols for EON and NEON by C. Scrocca. 
mm(1), mmt(1), tbl(1), troff (1), eqnchar(7), mm(7), mv(7). 

To embolden digits, parentheses, etc., it is necessary to quote them, as in bold "12.3". 
See also BUGS under troff(1). 

September 24, 1984 Page 2 



ERRDEAD(1M) ERRDEAD(1M) 

NAME 
errdead - extract error records from dump 

SYNOPSIS 
letclerrdead dumpfile [ namelist ] 

DESCRIPTION 

FILES 

When hardware errors are detected by the system, an error record that contains information per­
tinent to the error is generated. If the error-logging daemon errdemon(1 M) is not active or if the 
system crashes before the record can be placed in the error file,the error information is held by 
the system in a local buffer. Errdead examines a system dump (or memory), extracts such 
error records, and passes them to errpt(1 M) for analysis. 

The dumpflle specifies the file (or memory) that is to be examined. The system namelist is 
specified by namelist; if not given, Isys3 is used. 

Isys3 system namelist 
lusr/bin/errpt analysis program 
lusr/tmp/errXXXXXX temporary file 

DIAGNOSTICS 
Diagnostics may come from either errdead or errpt. In either case, they are intended to be 
self -explanatory. 

SEE ALSO 
errdemon(1 M), errpt(1 M). 

Page 1 January 20, 1984 



ERRDEMON(1M) ERRDEMON(1M) 

NAME 
errdemon - error-logging daemon 

SYNOPSIS 
lusrllib/errdemon [ file ] 

DESCRIPTION 

FilES 

The error logging daemon errdemon collects error records from the operating system by reading 
the special file /dev/error and places them in file. If file is not specified when the daemon is 
activated, /usr/adm/errfile is used. Note that file is created if it does not exist; otherwise, error 
records are appended to it, so that no previous error data is lost. No analysis of the error 
records is done by errdemon; that responsibility is left to errpt(1 M). The error-logging daemon 
is terminated by sending it a software kill signal (see signa/(2)). Only the super-user may start 
the daemon, and only one daemon may be active at any time. 

/usr/lib/error source of error records 
/usr/adm/errfile repository for error records 

DIAGNOSTICS 
The diagnostics produced byerrdemon are intended to be self-explanatory. 

SEE ALSO 
errpt(1 M), errstop(1 M), ki"(1), err(4). 

Page 1 January 20, 1984 



ERRPT(1M) ERRPT(1M) . 

NAME 
errpt - process a report of logged errors 

SYNOPSIS 
errpt [-a] [-dev]... [ -int] [ -mem ) [-s date] [-e date] [-pn] [ -f ) [files] 

DESCRIPTION· 

FILES 

Errpt processes data collected by the error logging mechanism (errdemon(1 M» and generates a 
report of that data. The default report is a summary of all errors posted in the files named. 
Options apply to all files and are described below. If no files are specified, errpt attempts to use 
lusr/adm/errfile as file. 

A summary report notes the options that may limit its completeness, records the time stamped 
on the earliest and latest errors encountered, and gives the total number of errors of one or 
more types. Each device summary contains the total number of unrecovered errors, recovered 
errors, errors unabled to be logged, 110 operations on the device, and miscellaneous activities 
that occurred on the device. The number of times that errpt has difficulty reading input data is 
included as read errors. 

Any detailed report contains, in addition to specific error information, all instances of the error 
logging process being started and stopped, and any time changes (via date (1 » that took place 
during the interval being processed. A summary of each error type included in the report is 
appended to a detai led report. 

A report may be limited to certain records in the following ways: 

-s date Ignore all records posted earlier than date, where date has the form 
mmddhhmmyy, consistent in meaning with the date(1) command. 

-e date 

-a 
-dev 

-int 

-mem 

-pn 

-f 

Ignore all records posted later than date, whose form is as described above. 

Produce a detailed report that includes all error types. 

A detailed report is limited to dev, a block device identifier. Errpt is familiar 
with the common form of identifiers (e.g., PO, is; see Section 4 of this 
volume). Currently, the block devices for which errors are logged are PO, PT, 
IS, and RM. 

Include in a detailed report errors of the stray-interrupt type. 

Include in a detailed report errors of the memory-parity type. 

Umit the size of a detailed report to n pages. 

In a detailed report, limit the reporting of block device errors to unrecovered 
errors. 

lusr/adm/errfile default error file 

SEe ALSO 
errdemon(1M), errfile(5). 

BUGS 
The information about block devices is iAcomplete, and may be incorrect. 

Page 1 January 20, 1984 



ERRSTOP(1M) 

NAME 
errstop - terminate the error-logging daemon 

SYNOPSIS 
letc/errstop [ namelist 1 

DESCRIPTION 

ERRSTOP(1M) . 

The error-logging daemon errdemon(1 M) is terminated by using errstop. This is accomplished 
by executing ps(1) to determine the daemon's identity and then sending it a software kill signal 
(see signa/(2»; Isys3 is used as the system namelist if none is specified. Only the super-user 
may use errstop. 

FILES 
/sys3 default system namelist 

DIAGNOSTICS 
The diagnostics produced by errs top are intended to be self-explanatory. 

SEE ALSO 
errdemon(1 M), ps(1), kill(2). 

Page 1 January 20, 1984 



EX(1) (Plexus) EX(1) 

NAME 
ex - text editor 

SYNOPSIS 
lusr/plxlex [ - ] [ -v ] [ -t tag ] [ -r ] [ +Iineno ] name ... 

DESCRIPTION 
Ex is the root of a family of editors: edit, ex and vi. Ex is a superset of ed, with the most notable 
extension being a display editing facility. Display based editing is the focus of vi. 

If you have not used ed, or are a casual user, you may find that the editor edit is most con­
venient for you. It avoids some of the complexities of ex used mostly by systems programmers 
and persons very familiar with ed. 

If you have a CRT terminal, you may wish to use a display based editor; in this case see vi(1), 
which is a command which focuses on the display editing portion of ex. 

DOCUMENTATION 
for edit and ex see the Ex/edit command summary - Version 2.0. The document Edit: A tutorial 
provides a comprehensive introduction to edit assuming no previous knowledge of computers or 
the UNIX system. 

The Ex Reference Manual - Version 2.0 is a comprehensive and complete manual for the com­
mand mode features of ex, but you cannot learn to use the editor by reading it. for an introduc­
tion to more advanced forms of editing using the command mode of ex, see the editing docu­
ments written by Brian Kernighan for the editor ed; the material in the introductory and 
advanced documents works also with ex. 

An Introduction to Display Editing with Vi introduces the display editor vi and provides reference 
material on vi. The Vi Quick Reference card summarizes the commands of vi in a useful, func­
tional way, and is useful with the Introduction. 

FOR ED USERS 

Page 1 

If you have used ed you will find that ex has a number of new features useful on CRT terminals. 
Intelligent terminals and high speed terminals are very pleasant to use with vi. Generally, the 
editor uses far more capabilities of terminals than ed does. It also uses the terminal capability 
data base termcap(1) and the type of the terminal you are using from the variable TERM in the 
environment to determine how to drive your terminal effiCiently. The editor makes use of 
features such as insert and delete character and line in its visual command (which can be 
abbreviated vi) and which is the central mode of editing when using vi(1). There is also an 
interline editing open (0) command which works on all terminals. 

Ex contains a number of new features for easily' viewing the text of the file. The z command 
gives easy access to windows of text. Hitting D causes the editor to scroll a half-window of 
text and is more useful for quickly stepping through a file than just hitting return. Of course, the 
screen oriented visual mode gives constant access to editing context. 

Ex gives you more help when you make mistakes. The undo (u) command allows you to 
reverse any single change which goes astray. Ex gives you a lot of feedback, normally printing 
changed lines, and indicates when more than a few lines are affected by a command so that it 
is easy to detect when a command has affected more lines than it should have. 

The editor also normally prevents overwriting existing files unless you edited them so that you 
don't accidentally clobber with a wrIte a file other than the one you are editing. If the system (or 
editor) crashes, or you aCCidentally hang up the phone, you can use the editor recover com­
mand to retrieve your work. This will get you back to within a few lines of where you left off. 

Ex has several features for dealing with more than one file at a time. You can give it a list of '" 
files on the command line and use the next (n) command to deal with each in turn. The next I 
command can also be given a list of file names, or a pattern as used by the shell to specify a 
new set of files to be dealt with. In general, filenames in the editor may be formed with full shell 

January 20, 1984 



EX(1) 

FilES 

NOTES 

(Plexus) EX(1) 

metasyntax. The metacharacter '%' is also available in forming filenames and is replaced by the 
name of the current file. For editing large groups of related files you can use ex's tag command 
to quickly locate functions and other important points in any of the files. This is useful when 
working on a large program when you want to quickly find the definition of a particular function. 
The command ctags(1) builds a tags file or a group of C programs. 

For moving text between files and within a file the editor has a group of buffers, named a 
through z. You can place text in these named buffers and carry it over when you edit another 
file. 

There is a command & in ex which repeats the last substitute command. In addition there is a 
confirmed substitute command. You give a range of substitutions to be done and the editor 
interactively asks whether each substitution is desired. 

You can use the substitute command in ex to systematically convert the case of letters 
between upper and lower case. It is possible to ignore case of letters in searches and substitu­
tions. Ex also allows regular expressions which match words to be constructed. This is con­
venient, for example, in searching for the word "edit" if your document also contains the word 
"editor." 

Ex has a set of options which you can set to tailor it to your liking. One option which is very 
useful is the autoindent option which allows the editor to automatically supply leading white 
space to align text. You can then use the AD key as a backtab and space and tab forward to 
align new code easily. 

Miscellaneous new useful features include an intelligent join (j) command which supplies white 
space between joined lines automatically, commands < and> which shift groups of lines, and 
the ability to filter portions of the buffer through commands such as sort. 

/usr/lib/ex2.0strings 
lusrllib/ex2.0recover 
/usr/lib/ex2.0preserve 
letc/termcap 
NI.exrc 
Itmp/Exnnnnn 
Itmp/Rxnnnnn 
lusr/preserve 

error messages 
recover command 
preserve command 
describes capabilities of terminals 
editor startup file 
editor temporary 
named buffer temporary 
preservation directory 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 

BUGS 

awk(1), ed(1), grep(1), sed(1), edit(1), grep(1), termcap(5), vi(1) 

The undo command causes all marks to be lo~t on lines changed and then restored if the 
marked lines were changed. 

Undo never clears the buffer modified condition. 

The z command prints a number of logical rather than physical lines. More than a screen full of 
output may result if long lines are present. 

File input/output errors don't print a name if the command line '.' option is used. 

There is no easy way to do a single scan ignoring case. 

Because of the implementation of the arguments to next, only 512 bytes of argument list are 
allowed there. 

January 20, 1984 Page 2 



EX(1) 

Page 3 

(Plexus) EX(1) . 

The format of letcltermcap and the large number of capabilities of terminals used by the editor 
cause terminal type setup to be rather slow. 

The editor does not warn if text is placed in named buffers and not used before exiting the edi­
tor. 

Null characters are discarded in input files, and cannot appear in resultant files. 

January 20, 1984 



EXPR(1) EXPR(1) . 

~ NAME 
expr - evaluate arguments as an expression 

SYNOPSIS 
expr arguments 

DESCRIPTION 
The arguments are taken as an expression. After evaluation, the result is written on the stan­
dard output. Terms of the expression must be separated by blanks. Characters special to the 
shell must be escaped. Note that 0 is returned to indicate a zero value, rather than the null 
string. Strings containing blanks or other special characters should be quoted. Integer-valued 
arguments may be preceded by a unary minus sign. Internally, integers are treated as 32-bit, 
2's complement numbers. 

The operators and keywords are listed below. Characters that need to be escaped are pre­
ceded by \. The list is in order of increasing precedence, with equal precedence operators 
grouped within {} symbols. 

expr \ I expr . 
returns the first expr if it is neither null nor 0, otherwise returns the second expr. 

expr \& expr 
returns the first expr if neither expr is null or 0, otherwise returns O. 

expr { =, \>, \>=, \<, \<=, != } expr 
returns the result of an integer comparison if both arguments are integers, otherwise 
returns the result of a lexical comparison. 

expr { +, -} expr 
addition or subtraction of integer-valued arguments. 

expr { \*, I, % } expr 
multiplication, division, or remainder of the integer-valued arguments. 

expr: expr 
The matching operator: compares the first argument with the second argument which 
must be a regular expression; regular expression syntax is the same as that of ed(1), 
except that all patterns are "anchored" (Le., begin with ") and, therefore, " is not a spe­
cial character, in that context. Normally, the matching operator returns the number of 
characters matched (0 on failure). Alternatively, the \( ••• \) pattern symbols can be 
used to return a portion of the first argument. 

EXAMPLES 
1. a= ' expr $a + l' 

Page 1 

adds 1 to the shell variable a. 

2. =I' For $a equal to either "/usr/abc/file" or just "file" , 
expr $a : '.*1\(.*\)' \ I $a 

returns the last segment of a path name (Le., file). Watch out for I alone as an 
argument: expr will take it as the division operator (see BUGS below). 

3. :# A better representation of example 2. 
expr II$a : '.*1\(.*\) I 

The addition of the II characters eliminates any ambiguity about the division 
operator and simplifies the whole expression. 

4. expr $V AR : I...' 
returns the number of characters in SVAR. 

January 20, 1984 



EXPR(1) EXPR(1) 

SEE ALSO 
ed(1), sh(1). 

EXIT CODE 
As a side effect of expression evaluation, expr returns the following exit values: 

o if the expression is neither null nor 0 
1 if the expression is null or 0 
2 for invalid expressions. 

DIAGNOSTICS 
syntax error for operator/operand errors 
non-numeric argument if arithmetic is attempted on such a string 

BUGS 
After argument processing by the shell, expr cannot tell the difference between an operator and 
an operand except by the value. If $a is an =, the command: 

expr $a - '=' 

looks like: 

expr=== 

as the arguments are passed to expr (and they will all be taken as the = operator). The follow­
ing works: 

expr X$a = X= 

January 20, 1984 Page 2 



FllE(1 ) FllE(1 ) 

NAME 
file - determine file type 

SYNOPSIS 
Iile [-I] file ... 

DESCRIPTION 

Page 1 

File performs a series of tests on each argument in an attempt to classify it. If an argument 
appears to be ASCII, file examines the first 512 bytes and tries to guess its language. If an 
argument is an executable a.out, file will print the version stamp, provided it is greater than 0 
(see the description of the -V option in Id(1 ». 
If the -I option is given, the next argument is taken to be a file containing the names of the files 
to be examined. 

January 20, ·1984 



FIND(1 ) FIND(1) . 

NAME 
find - find files 

SYNOPSIS 
find path-name-list expression 

DESCRIPTION 
Find recursively descends the directory hierarchy for each path name in the path-name-list (Le .• 
one or more path names) seeking files that match a boolean expression written in the primaries 
given below. In the descriptions. the argument n is used as a decimal integer where +n means 
more than n. -n means less than nand n means exactly n. 

-name file True if file matches the current file name. Normal shell argument syntax may 
be used if escaped (watch out for [. ? and .). 

-perm onum 

-type c 

-links n 

True if the file permission flags exactly match the octal number onum (see 
chmod(1». If anum is prefixed by a minus sign. more flag bits (017777. see 
stat(2» become significant and the flags are compared: 

(flags&onum)==onum 

True if the type of the file is c. where c is b. C. d. f. or p for block special file. 
character special file. directory. fifo (a.k.a named pipe). or plain file. 

True if the file has n links. 

-user uname True if the file belongs to the user uname. If uname is numeric and does not 
appear as a login name in the letc/passwd file. it is taken as a user 10. 

~ 
J 

-group gname True if the file belongs to the group gname. If gname is numeric and does not 
appear in the letc/group file. it is taken as a group 10. ~ 

Page 1 

-size n True if the file is n blocks long (1024 bytes per block). 

-atime n True if the file has been accessed in n days. 

-mtime n True if the file has been modified in n days. 

-ctime n True if the inode of the file has been modified in n days. Inodes are changed 
by chmod, chown. chgrp, In. rm. and by changing the length of the file. 

-exec cmd True if the executed cmd returns a zero value as exit status. The end of cmd 
must be punctuated by an escaped semicolon. A command argument {} is 
replaced by the current path name. 

-ok cmd Like -exec except that the generated command line is printed with a question 
mark first. and is executed only if the user responds by typing y. 

-print Always true; causes the current path name to be printed. 

-epio device Write the current file on device in cpio (5) format (5120 byte records). 

-newer file True if the current file has been modified more recently than the argument file. 

-inum n True if the inode number of the current path name is n. 
( expression ) True if the parenthesized expression is true (parentheses are special to the 

shell and must be escaped). 

The primaries may be combined using the following operators (in order of decreasing pre­
cedence): 

1) The negation of a primary (! is the unary not operator). 

2) Concatenation of primaries (the and operation is implied by the juxtaposition of two pri- ~ 
maries). 

February 15. 1984 



FIND(1 ) 

3) Alternation of primaries (-0 is the or operator). 

EXAMPLE 
To remove all files named a.out or •. 0 that have not been accessed for a week: 

find I \( -name a.out -0 -name ' •. 0' \) -atime +7 -exec rm {} \; 

FILES 
letclpasswd, letc/group 

SEE ALSO 
cpio(1), sh(1), test(1), stat(2), cpio(5), fs(5). 

February 15, 1984 

FIND(1 ) 

Page 2 



FSCK(lM) FSCK(lM) 

NAME 
fsck - file system consistency check and interactive repair 

SYNOPSIS 
letc/fsck [ -y ] [ -n ] [ -sX ] .[ -SX ] [ -t file ] [ file-system ] ... 

DESCRIPTION 

Page 1 

Fsck audits and interactively repairs inconsistent conditions for UNIX file systems. If the file sys­
tem is consistent then the number of files, number of blocks used, and number of blocks free 
are reported. If the file system is inconsistent the operator is prompted for concurrence before 
each correction is attempted. It should be noted that most corrective actions will result in some 
loss of data. The amount and severity of data lost may be determined from the diagnostic out­
put. The default action for each consistency correction is to wait for the operator to respond yes 
or no. If the operator does not have write permission fsck will default to a -n action. 

Fsck has more consistency checks than its predecessors check, dcheck, fcheck, and icheck 
combined. 

The following flags are interpreted by fsck. 

-y Assume a yes response to all questions asked by fsck. 

-n Assume a no response to all questions asked by fsck; do not open the file system for 
writing. 

-sX Ignore the actual free list and (unconditionally) reconstruct a new one by rewriting the 
super-block of the file system. The file system' should be unmounted while this is done; if 
this is not possible, care should be taken that the system is quiescent and that it is 
rebooted immediately afterwards. This precaution is necessary so that the old, bad, in­
core copy of the superblock will not continue to be used, or written on the file system. 

The -sX option allows for creating an optimal free-list organization. The following form of 
X is supported: 

-sBlocks-per-cylinder:Blocks-to-skip (for anything else) 

If X is not given, the values used when the file system was created are used. If these 
values were not specified, then the value 400:9 is used. 

-SX Conditionally reconstruct the free list. This option is like -sX above except that the free list 
is rebuilt only if there were no discrepancies discovered in the file system. Using -S will 
force a no response to all questions asked by fsck. This option is useful for forcing free 
list reorganization on uncontaminated file systems. 

-t If fsck cannot obtain enough memory to keep its tables, it uses a scratch file. If the -t 
option is specified, the file named in the next argument is used as the scratch file, if 
needed. Without the -t flag, fsck will prompt the operator for the name of the scratch file. 
The file chosen should not be on the file system being checked, and if it is not a special 
file or did not already exist, it is removed when fsck completes. 

If no file-systems are specified, fsck will read a list of default file systems from the file 
letc/checklist. 

March 22, 1984 



FSCK(1M) FSCK(1M) 

FilES 

Inconsistencies checked are as follows: 

1. Blocks claimed by more than one inode or the free list. 
2. Blocks claimed by an inode or the free list outside the range of the file system. 
3. Incorrect link counts. 
4. Size checks: 

Incorrect number of blocks. 
Directory size not 16-byte aligned. 

5. Bad inode format. 
6. Blocks not accounted for anywhere. 
7. Directory checks: 

File pointing to unallocated inode. 
Inode number out of range. 

8. Super Block checks: 
More than 65536 inodes. 
More blocks for inodes than there are in the file system. 

9. Bad free block list format. 
10. Total free block and/or free inode count incorrect. 

Orphaned files and directories (allocated but unreferenced) are, with the operator's concurrence, 
reconnected by placing them in the lost+found directory. The name assigned is the inode 
number. The only restriction is that the directory lost+found must preexist in the root of the 
file system being checked and must have empty slots in which entries can be made. This is 
accomplished by making lost+found, copying a number of files to the directory, and then 
removing them (before fsck is executed). 

Checking the raw device is almost always faster. 

/etc/checklist contains default list of file systems to check. 

DIAGNOSTICS 

NOTES 

The diagnostics produced by fsck are intended to be self-explanatory. 

Fsck can generate the message "possible file size error" with an inode number. This message 
may be given when fsck encounters a file containing a large group of null characters between 
areas of text (the file has "holes" in it). UNIX does not allocate disk blocks for the nulls, so the 
size of the file as determined by fsck looks smaller than it should be. To figure out if you really 
have a problem. run ncheck with the -i option to determine which file is at fault. Then check the 
file; if it contains lots of nulls together, the file system is probably okay. 

In addition to the stock fsck, Plexus provides a standalone version. 

SEE ALSO 

BUGS 

checklist (5), fs(5), crash(8). 
FSCK - The UNIX/TS File System Check Program, by T. J. Kowalski. 

Inode numbers for. and •• in each directory should be checked for validity. 

-g and -b options from check should be available in fsck. 

Fsck does not handle fifos properly. 

Fsck prints a message to reboot the system with no sync when it corrects the root file system. 
Rebooting too quickly after that message invalidates the corrections. 

The standalone version of fsck can handle at most five file systems. 

March 22. 1984 Page 2 



FSDB(1M) FSDB(1M) . 

NAME 
fsdb - fi Ie system debugger 

SYNOPSIS 
letc/fsdb special [ - ] 

DESCRIPTION 

Page 1 

Fsdb can be used to patch up a damaged file system after a crash. It has conversions to 
translate block and i-numbers into their corresponding disk addresses. Also included are 
mnemonic offsets to access different parts of an i-node. These greatly simplify the process of 
correcting control block entries or descending the file system tree. 

Fsdb contains several error checking routines to verify i-node and block addresses. These can 
be disabled if necessary by invoking fsdb with the optional - argument or by the use of the 0 
symbol. (Fsdb reads the i-size and f-size entries from the superblock of the file system as the 
basis for these checks.) 

Numbers are considered decimal by default. Octal numbers must be prefixed with a zero. Dur­
ing any assignment operation. numbers are checked for a possible truncation error due to a size 
mismatch between source and destination. 

Fsdb reads a block at a time and will therefore work with raw as well as block I/O. A buffer 
management routine is used to retain commonly used blocks of data in order to reduce the 
number of read system calls. All assignment operations result in an immediate write-through of 
the corresponding block. 

The symbols recognized by fsdb are: 

. If. 
i 
b 
d 
+.­
q 
>.< 

=+ 
=-

o 
P 
f 
B 
W 
o 
I 

absolute address 
convert from i-number to i-node address 
convert to block address 
di rectory slot offset 
address arithmetic 
quit 
save. restore an address 
numerical assignment 
incremental assignment 
decremental assignment 
character string assignment 
error checking flip flop 
general print facilities 
file print facility 
byte mode 
word mode 
double word mode 
escape to shell 

The print facilities generate a formatted output in various styles. The current address is normal­
ized to an appropriate boundary before printing begins. It advances with the printing and is left 
at the address of the last item printed. ,The output can be terminated at any time by typing the 
delete character. If a number follows the p symbol. that many entries are printed. A check is 
made to detect block boundary overflows since logically sequential blocks are generally not phy­
sically sequential. If a count of zero is used. all entries to the end of the current block are 
printed. The print options available are: 

I print as i-nodes 
d print as directories 
o print as octal words 

January 20, 1984 



FSDB(1M) 

e 
c 
b 

print as decimal words 
print as characters 
print as octal bytes 

FSDB(1M) . 

The f symbol is used to print data blocks associated with the current i-node. If followed by a 
number, that block of the file is printed. (Blocks are numbered from zero.) The desired print 
option letter follows the block number, if present, or the f symbol. This print facility works for 
small as well as large files. It checks for special devices and that the block pointers used to find 
the data are not zero. 

Dots, tabs and spaces may be used as function delimiters but are not necessary. A line with 
just a new-line character will increment the current address by the size of the data type last 
printed. That is, the address is set to the next byte, word, double word, directory entry or i­
node, allowing the user to step through a region of a file system. Information is printed in a for­
mat appropriate to the data type. Bytes, words and double words are displayed with the octal 
address followed by the value in octal and decimal. A.B or .0 is appended to the address for 
byte and double word values, respectively. Directories are printed as a directory slot offset fol­
lowed by the decimal i-number and the character representation of the entry name. Inodes are 
printed with labeled fields describing each element. 

The following mnemonics are used for i-node examination and refer to the current working i­
node: 

EXAMPLES 
386i 

In=+1 

fc 

2i.fd 

d5i.fc 

1b.pOo 

md 
In 
uid 
gid 
sO 
s1 
a# 
at 
mt 
maj 
min 

2i.aOb.d7 =3 

mode 
link count 
user 10 number 
group 10 number 
high byte of file size 
low word of file size 
data block numbers (0 - 12) 
access time 
modification time 
major device number 
minor device number 

prints i-number 386 in an i-node format. This now becomes the current work­
ing i-node. 

changes the link count for the working i-node to 4. 

increments the link count by 1. 

prints, in ASCII, block zero of the file associated with the working i-node. 

prints the first 64 directory entries for the root i-node of this file system. 

changes the current i-node to that associated with the 5th directory entry 
(numbered from zero) found from the above command. The first 1024 bytes 
of the file are then printed in ASCII. 

prints the superblock of this file system in octal. 

changes the i-number for the seventh directory slot in the root directory to 3. 
This example also shows how several operations can be combined on one 
command line. 

d7.nm="name" changes the name field in the directory slot to the given string. Quotes are 
optional when used with nm if the first character is alphabetic. 

January 20, 1984 Page 2 



FSDB(1M) FSDB(1M) 

NOTES 
Plexus provides a standalone version of fsdtJ in addition to the one that rur,ls under Sys3. 

SEE ALSO 
'fsck(1 M), dir(5), Is(5). 

Page 3 January 20, 19~ 



FWfMP(1M) FWfMP(1M) 

NAME 
fwtmp, wtmpfix - manipulate wtmp records 

SYNOPSIS 
lusr/lib/acctlfwtmp [-ic] 
lusr/liblacctlwtmpflx [files] 

DESCRIPTION 
Fwtmp 

Fwtmp reads from the standard input and writes to the standard output, converting binary 
records of the type found in wtmp to formated ASCII records. The ASCII version is useful to 
enable editing, via ed(1), bad records or general purpose maintenance of the file. 

The argument -ic is used to denote that input is in ASCII form, and output is to be written in 
binary form. 

Wtmpfix 

FilES 

Wtmpfix examines the standard input or named files in wtmp format, corrects the time/date 
stamps to make the entries consistent, and writes to the standard output. A - can be used in 
place of files to indicate the standard input. If time/date corrections are not made, acctcon1 will 
fault when it encounters certain date change records. 

Each time the date is set while operating in multi-user mode, a pair of date change records are 
written to lusr/admlwtmp. The first record is the old date denoted by I in the name field. The 
second record specifies the new date and is denoted by a { in the name field. Wtmpfix uses 
these records to synchronize all time stamps in the file. 

/usr/adm/wtmp 
lusriinclude/utmp. h 

SEE ALSO 

Page 1 

acct(1 M), acctcms(1 M), acctcom(1), acctcon(l M), acctmerg(1 M), acctprc(1 M), acctsh(1 M), 
runacct(1 M), acct(2), acct(5), utmp(5). 

January 20, 1984 



GET(1) GET(1) . 

NAME 
get - get a version of an sees file 

SYNOPSIS 
get [-r810] [-ccutoff] [-ilist] [-xlist] [-aseq-no.] [-k] [-e) [-I[p)) [-p] [-m] [-n] [-s] [-b) [-g] [-t] file 

DESCRIPTION 

Page 1 

Get generates an ASCII text file from each named sees file according to the specifications given 
by its key letter arguments, which begin with -. The arguments may be specified in any order, 
but all keyletter arguments apply to all named sees files. If a directory is named, get behaves 
as though each file in the directory were specified as a named file, except that non-sees files 
(last component of the path name does not begin with s.) and unreadable files are silently 
ignored. If a name of - is given, the standard input is read; each line of the standard input is 
taken to be the name of an sees file to be processed. Again, non-SeeS files and unreadable 
files are silently ignored. 

The generated text is normally written into a file called the g-file whose name is derived from 
the sees file name by simply removing the leading s.; (see also FILES, below). 

Each of the· key letter arguments is explained below as though only one sees file is to be pro­
cessed, but the effects of any key letter argument applies independently to each named file. 

-rSID The sees IDentification string (SID) of the version (delta) of an sees file to be 
retrieved. Table 1 below shows, for the most useful cases, what version of an sees 
file is retrieved (as well as the SID of the version to be eventually created by delta (1 ) 
if the -e keyletter is also used), as a function of the SID specified. 

-ccutoff Cutoff date-time, in the form: 

YV[MM[DD[HH[MM[SSIl]]] 

No changes (deltas) to the sees file which were created after the specified cutoff 
date-time are included in the generated ASCII text file. Units omitted from the date­
time default to their maximum possible values; that is, -c7502 is equivalent to 
-c750228235959. Any number of non-numeric characters may separate the various 
2 digit pieces of the cutoff date-time. This feature allows one to specify a cutoff date 
in the form: "-c77/2J29:22:25". Note that this implies that one may use the %E% 
and %U% identification keywords (see below) for nested gets within, say the input to 
a send(1C) command: 

N!get "-c%E% %U%" s.file 

-e Indicates that the get is for the purpose of editing or making a change (delta) to the 
sees file via a subsequent use of delta (1 ). The -e keyletter used in a get for a par­
ticular version (SID) of the sees file prevents further gets for editing on the same SID 
until delta is executed or the j (joint edit) flag is set in the sees file (see admin(1». 
Concurrent use of get -e for different SIDs is always allowed. 

-b 

If the g-file generated by get with an -e key letter is aCCidentally ruined in the process 
of editing it, it may be regenerated by re-executing the get command with the -k 
key letter in place of the -e keyletter. 

sees file protection specified via the ceiling, floor, and authorized user list stored in 
the sees file (see admin(1» are enforced when the -8 key letter is used. 

Used with the -8 key letter to indicate that the new delta should have an SID in a new 
branch as shown in Table 1. This key letter is ignored if the b flag is not present in 
the file (see admin(1» or if the retrieved delta is not a leaf delta. (A leaf delta is one 
that has no successors on the sees file tree.) 
Note: A branch delta may always be created from a non-leaf delta. 

March 12, 1984 



GET(1) 

-ilist 

GET(1) . 

A list of deltas to be included (forced to be applied) in the creation of the generated 
file. The list has the following syntax: 

<list> ::= <range> I <list> , <range> 
<range> ::= SID I SID - SID 

SID, the sees Identification of a delta, may be in any form shown in the "SID Speci­
fied" column of Table 1. Partial SIDs are interpreted as shown in the "SID Retrieved" 
column of Table 1. 

-xlist A list of deltas to be excluded (forced not to be applied) in the creation of the gen­
erated file. See the -i key letter for the list format. 

-k Suppresses replacement of identification keywords (see below) in the retrieved text 
by their value. The -k keyletter is implied by the -e keyletter. 

-I[pJ Causes a delta summary to be written into an I-file. If -Ip is used then an I-file is not 
created; the delta summary is written on the standard output instead. See FILES for 
the format of the I-file. 

-p Causes the text retrieved from the sees file to be written on the standard output. No 
g-file is created. All output which normally goes to the standard output goes to file 
descriptor 2 instead, unless the -s keyletter is used, in which case it disappears. 

-s Suppresses all output normally written on the standard output. However, fatal error 
messages (which always go to file descriptor 2) remain unaffected. 

-m Causes each text line retrieved from the sees file to be preceded by the SID of the 
delta that inserted the text line in the sees file. The format is: SID, followed by a 
horizontal tab, followed by the text line. 

-n Causes each generated text line to be preceded with the %M% identification key­
word value (see below). The format is: %M% value, followed by a horizontal tab, fol­
lowed by the text line. When both the -m and -n keyletters are used, the format is: 
%M% value, followed by a horizontal tab, followed by the -m key letter generated for­
mat. 

-g Suppresses the actual retrieval of text from the sees file. It is primarily used to gen­
erate an I-file, or to verify the existence of a particular SID. 

-t Used to access the most recently created (''top'') delta in a given release (e.g., -r1), 
or release and level (e.g., -r1.2). 

-aseq-no. The delta sequence number of the sees file delta (version) to be retrieved (see 
sccsfile(5)). This keyletter is used by the comb(1) command; it is not a generally 
useful keyletter, and users should not use it. If both the -r and -a key letters are 
specified, the -a keyletter is used. Care should be taken when using the -a key letter 
in conjunction with the -e key letter, as the SID of the delta to be created may not be 
what one expects. The -r key letter can be used with the -a and -e keyletters to con-
trol the naming of the SID of the delta to be created. . 

For each file processed, get responds (on the standard output) with the SID being accessed and 
with the number of lines retrieved from the sees file. 

If the -e keyletter is used, the SID of the delta to be made appears after the SID accessed and 
before the number of lines generated. If there is more than one named file or if a directory or 
standard input is named, each file name is printed (preceded by a new-line) before it is pro­
cessed. If the -i key letter is used included deltas are listed following the notation "Included"; if 

March 12, 1984 Page 2 



GET(1) GET(1) 

the -x keyletter is used, excluded deltas are listed following the notation "Excluded". 

TABLE 1. Determination of sees Identification String 

SID* -b Keyletter Other SID SID of Delta 
Specified Usedt Conditions Retrieved to be Created 

nonet 
nonet 

R 
R 
R 
R 

R 

R 

R.L 
R.L 

R.L 

R.L.B 
R.L.B 

R.L.B.S 
R.L.B.S 
R.L.B.S 

no R defaults to mR mR.mL mR.(mL+1) 
yes R defaults to mR mR.mL mR.mL.(mB+ 1 ).1 

no R > mR mR.mL R.1 *** 

no R=mR mR.mL mR.(mL+1) 
yes R > mR mR.mL mR.mL.(mB+ 1).1 
yes R=mR mR.mL mR.mL.(mB+1).1 

R < mRand hR.mLu hR.mL.(mB+ 1 ).1 
R does not exist 
Trunk succ.# 
in release> R R.mL R.mL.(mB+ 1).1 
and R exists 

no No trunk succ. R.L R.(L+1} 
yes No trunk succ. R.L R.L.(mB+ 1 ).1 

Trunk succ. 
R.L R.L.(mB+1).1 

in release > R 

no No branch succ. R.L.B.mS R.L.B.(mS + 1} 

yes No branch succ. R.L.B.mS R.L.(mB + 1 ).1 

no No branch succ. R.L.B.S R.L.B.(S+ 1} 
yes No branch succ. R.L.B.S R.L.(mB+1).1 

Branch succ. R.L.B.S R.L.(mB+1).1 

* "R", "L", "B", and "S" are the "release", "level", "branch", and "sequence" components of 
the SID, respectively; "m" means "maximum". Thus, for example, "R.mL" means "the max­
imum level number within release R"; "R.L.(mB+ 1 }.1 "means "the first sequence number 
on the new branch (Le., maximum branch number plus one) of level L within release R". 
Note that if the SID specified is of the form "R.L", "R.L.B", or "R.L.B.S", each of the speci­
fied components must exist. 

** "hR" is the highest existing release that is lower than the s'pecified, nonexistent, release R. 
m This is used to force creation of the first delta in a new release. 
# Successor. 
t The -b key letter is effective only if the b flag (seeadmin (1» is present in the file. An entry 

of - means "irrelevant". 
t This case applies if the d (default SID) flag is not present in the file. If the d flag is present 

in the file, then the SID obtained from the d flag is interpreted as if it had been specified on 
the command line. Thus, one of the other cases in this table applies. 

IDENTIFICATION KEYWORDS 

Page 3 

Identifying information is inserted into the text retrieved from the sees file by replacing identifi­
cation keywords with their value wherever they occur. The following keywords may be used in 
the text stored in an sees file: 

Keyword Value 
%M% Module name: either the value of the m flag in the file (see admin(1», or if absent, 

the name of the sees file with the leading s. removed. 
%1% sees identification (SID) (%R%.%L%.%B%.%S%) of the retrieved text. 
%R% Release. 

March 12, 1984 



~ 

GET(1) 

FILES 

%L% 
%8% 
%8% 
%0% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%Pk 
%P% 
%Q% 
%C% 

%Z% 
%W% 

%A% 

Level. 
Branch. 
Sequence. 
Current date (VY/MMlDD). 
Current date (MM/DDIYY). 
Current time (HH:MM:SS). 
Date newest applied delta was created (VY/MMlDD). 
Date newest applied delta was created (MM/DDIYY). 
Time newest applied delta was created (HH:MM:SS). 
Module type: value of the t flag in the sees file (see admin(1». 
sees file name. 
Fully qualified sees file name. 
The value of the q flag in the file (see admin(1». 

GET(1) 

Current line number. This keyword is intended for identifying messages output by the 
program such as "this shouldn't have happened" type errors. It is not intended to be 
used on every line to provide sequence numbers. 
The 4-character string 0{1f.) recognizable by what(1). 
A shorthand notation for constructing what(1) strings for UNIX program files. %W% 
= %Z%%M%< horizontal-tab >%1% 
Another shorthand notation for constructing what(1) strings for non-UNIX program 
files. %A% = %Z%% YOlo %M% %I%%Z% 

Several auxiliary files may be created by get, These files are known generically as the g-file, 1-
file, p-file, and z-file. The letter before the hyphen is called the tag. An auxiliary file name is 
formed from the sees file name: the last component of all sees file names must be of the form 
s.module-name, the auxiliary files are named by replacing the leading s with the tag. The g-fi/e 
is an exception to this scheme: the g-file is named by removing the s. prefix. For example, 
s.xyz.c, the auxiliary file names would be xyz.c, I.xyz.c, p.xyz.c, and z.xyz.c, respectively. 

The g-file, which contains the generated text, is created in the current directory (unless the -p 
keyletter is used). A g-file is created in all cases, whether or not any lines of text were gen­
erated by the get. It is owned by the real user. If the -k key letter is used or implied its mode is 
644; otherwise its mode is 444. Only the real user need have write permission in the current 
directory. 

The I-file contains a table showing which deltas were applied in generating the retrieved text. 
The I-file is created in the current directory if the -I key letter is used; its mode is 444 and it is 
owned by the real user. Only the real user need have write permission in the current directory. 

Unes in the I-file have the following format: 

a. 

b. 

c. 

d. 
e. 
f. 
g. 
h. 

A blank character if the delta was applied; 
• otherwise. 
A blank character if the delta was applied or wasn't applied and ignored; 
• if the delta wasn't applied and wasn't ignored. 
A code indicating a "special" reason why the delta was or was not applied: 

"I": Included. 
"X": Excluded. 
"C": Cut off (by a -c keyletter). 

Blank. 
sees identification (SID). 
Tab character. 
Date and time (in the form VY/MMIDD HH:MM:SS) of creation. 
Blank. 

March 12, 1984 Page 4 



GET(1) GET(1) . 

i. Login name of person who created delta. 

The comments and MR data follow on subsequent lines, indented one horizontal tab 
character. A blank line terminates each entry. 

The p-file is used to pass information resulting from a get with an -e keyletter along to delta. 
Its contents are also used to prevent a subsequent execution of get with an -e key letter for the 
same SID until delta is executed or the joint edit flag, j, (see admin(1» is set in the sees file. 
The p-file is created in the directory containing the sees file and the effective user must have 
write permission in that directory. Its mode is 644 and it is owned by the effective user. The 
format of the p-file is: the gotten SID, followed by a blank, followed by the SID that the new delta 
will have when it is made, followed by a blank, followed by the login name of the real user, fol­
lowed by a blank, followed by the date-time the get was executed, followed by a blank and the-i 
key letter argument if it was present, followed by a blank and the -x keyletter argument if it was 
present, followed by a new-line. There can be an arbitrary number of lines in the p-file at any 
time; no two lines can have the same new delta SID. 

The z-file serves as a lock-out mechanism against simultaneous updates. Its contents are the 
binary (2 bytes) process 10 of the command (i.e., get) that created it. The z-file is created in the 
directory containing the sees file for the duration of get. The same protection restrictions as 
those for the p-file apply for the z-file. The z-file is created mode 444. 

SEE ALSO 
admin(1), delta(1), help(1), prs(1), what(1), sccsfile(S). 
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi. 

DIAGNOSTICS 

BUGS 

PageS 

Use help(1) for explanations. 

If the effective user has write permission (either explicitly or implicitly) in the directory containing 
the sees files, but the real user doesn't, then only one file may be named when the -e keyletter 
is used. 

March 12, 1984 



GETOPT(1) GETOPT(1) . 

r NAME 
getopt - parse command options 

SYNOPSIS 
set - 'getopt optstring $.' 

DESCRIPTION 
Getopt is used to break up options in command lines for easy parsing by shell procedures, and 
to check for legal options. Optstring is a string of recognized option letters (see getopt(3C»; if a 
letter is followed by a colon, the option is expected to have an argument which mayor may not 
be separated from it by white space. The special option - is used to delimit the end of the 
options. Getopt will place - in the arguments at the end of the options, or recognize it if used 
explicitly. The shell arguments ($1 $2 ... ) are reset so that each option is preceded by a • and 
in its own shell argument; each option argument is also in its own shell argument. 

DIAGNOSTICS 
Getopt prints an error message on the standard error when it encounters an option letter not 
included in optstring. 

EXAMPLE 
The following code fragment shows how one might process the arguments for a command that 
can take the options a and b, and the option 0, which requires an argument. 

set -- 'getopt abo: $.' 
if [ $? != 0 ] 
then 

fi 

echo $USAGE 
exit 2 

for i in $. 
do 

case $i in 
-a I -b) FLAG=$i; shift;; 
-0) OARG=$2; shift; shift;; 
--) shift; break;; 
esae 

done 

This code will accept any of the following as equivalent: 

emd -aoarg file file 
cmd -a -0 arg file fi Ie 
cmd -oarg -a file file 
emd -a -oarg -- file file 

SEE ALSO 
sh(1), getopt(3C). 

Page 1 January 20, 1984 



GRAPH(1G) GRAPH(1G) 

NAME 
graph - draw a graph 

SYNOPSIS 
graph [ options ] 

DESCRIPTION 
Graph with no options takes pairs of numbers from the standard input as abscissas and ordi­
nates of a graph. Successive points are connected by straight lines. The graph is encoded on 
the standard output for display by the tplot(1G) filters. 

If the coordinates of a point are followed by a non-numeric string, that string is printed as a label 
beginning on the point. Labels may be surrounded with quotes ., in which case they may be 
empty or contain blanks and numbers; labels never contain new-lines. 

The following options are recognized, each as a separate argument: 

-8 Supply abscissas automatically (they are missing from the input); spacing is given by 

-b 
-c 
-9 
-I 
-m 

-$ 

-x [ I ] 

the next argument (default 1). A second optional argument is the starting point for 
automatic abscissas (default 0 or lower limit given by -x). 
Break (disconnect) the graph after each label in the input. 
Character string given by next argument is default label for each point. 
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default). 
Next argument is label for graph. 
Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected 
(default). Some devices give distinguishable line styles for other small integers (e.g., 
the Tektronix 4014: 2=dotted, 3=dash-dot, 4=short-dash, 5=long-dash). 
Save screen, don't erase before plotting. 
If I is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x 
limits. Third argument, if present, is grid spacing on x axis. Normally these quanti-
ties are determined automatically. 

-y [ I ] Si milarly for y. 
-h Next argument is fraction of space for height. 
-w Similarly for width. 
-r Next argument is fraction of space to move right before plotting. 
-u Similarly to move up before plotting. 
-t Transpose horizontal and vertical axes. (Option -x now applies to the vertical axis.) 
A legend indicating grid range is produced with a grid unless the -$ option is present. If a speci­
fied lower limit exceeds the upper limit, the axis is reversed. 

SEE ALSO 

BUGS 

Page 1 

graphics(1 G). spline(1 G). tplot(1 G). 

Graph stores all points internally and drops those for which there isn't room. 
Segments that run out of bounds are dropped, not .windowed, 
LogarithmiC axes may not be reversed. 

January 20, 1984 



GREEK(1 ) GREEK(1) 

NAME 
greek - select terminal filter 

SYNOPSIS 
greek [ -Tterminal ] 

DESCRIPTION 

FILES 

Greek is a filter that reinterprets the extended character set. as well as the reverse and half-line 
motions. of a 128-character TELETYPE'!) Model 37 terminal (which is the nroff(1) default termi­
nal) for certain other terminals. Special characters are simulated by overstriking. if necessary 
and possible. If the argument is omitted. greek attempts to use the environment variable $TERM 
(see environ(7)). The following terminals are recognized currently: 

300 DASI 300. 
300-12 DASI300 in 12-pitch. 
3005 DASI 3005. 
3005-12 DASI300s in 12-pitch. 
450 DASI 450. 
450-12 DASI450 in 12-pitch. 
1620 Diablo 1620 (alias DASI450). 
1620-12 Diablo 1620 (alias DASI 450) in 12-pitch. 
2621 Hewlett-Packard 2621. 2640. and 2645. 
2640 Hewlett-Packard 2621. 2640. and 2645. 
2645 Hewlett-Packard 2621. 2640. and 2645. 
4014 Tektronix 4014. 
hp Hewlett-Packard 2621. 2640. and 2645. 
tek Tektronix 4014. 

lusr/bini300 
lusr/bi n/300s 
lusr/bini4014 
lusr/bin/450 
lusr/bin/hp 

SEE ALSO 

Page 1 

300(1). 300s(1). 4014(1). 450(1). eqn(1). greek(7). hp(1). mm(1). nroff(1). tplot(1 G), environ(7). 
term(7). 

January 20. 1984 



GREP(1) GREP(1) , 

NAME 
grep, egrep, fgrep - search a file for a pattern 

SYNOPSIS 
grep [ options ] expression [ files ] 

egrep [ options] [ expression] [ files] 

fgrep [ options ] [ strings ] [ files ] 

DESCRIPTION 
Commands of the grep family search the input files (standard input default) for lines matching a 
pattern. Normally, each line found is copied to the standard output. 

The three flavors of grep find different kinds of patterns. Grep patterns are limited regular 
expressions in the style of ed(1); it uses a compact non-deterministic algorithm. Egrep pat­
terns are full regular expressions; it uses a fast deterministic algOrithm that sometimes needs 
exponential space. Fgrep patterns are fixed strings; it is fast and compact. Grep cannot find 
patterns in a.out files, though egrep and fgrep can. 

The following options are recognized: 

-v All lines but those matching are printed. 
-x (Exact) only lines matched in their entirety are printed (fgrep only). 
-c Only a count of matching lines is printed. 
-I Only the names of files with matching lines are listed (once), separated by new-lines. 
-n Each line is preceded by its relative line number in the file. 
-b Each line is preceded by the block number on which it was found. This is sometimes 

useful in locating disk block numbers by context. 
-s The error messages produced for nonexistent or unreadable files are suppressed (grep 

only). 
-e expression 

Same as a simple expression argument, but useful when the expression begins with a -
(does not work with grep). 

-f file The regular expression (egrep) or strings list (fgrep) is taken from the file. 

In all cases, the file name is output if there is more than one input file. Care should be taken 
when using the characters $, *, [, ", I, (, ), and \ in expression, because they are also meaning­
ful to the shell. It is safest to enclose the entire expression argument in single quotes - ... -. 

Fgrep searches for lines that contain one of the strings separated by neW-lines. 

Egrep accepts regular expressions as in ed(1), except for \( and \), with the addition of: 

1. A regular expression followed by + matches one or more occurrences of the regular 
expression. 

2. A regular expression followed by ? matches 0 or 1 occurrences of the regular expression. 
3. Two regular expressions separated bYI or by a neW-line match strings that are matched 

by either. 
4. A regular expression may be enclosed in parentheses () for grouping. 

The order of precedence of operators is ,[)' then * ? +, then concatenation, then I and new-line. 

SEE ALSO 
ed(1), sed(1), sh(1). 

DIAGNOSTICS 

BUGS 

Page 1 

Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inaccessible files. 

Ideally there should be only one grep, but we don't know a single algOrithm that spans a wide 
enough range of space-time tradeoffs. 

July 23, 1984 



GREP(1) GREP(1) . 

Lines are limited to 256 characters; longer lines are truncated. 
Egrep does not recognize ranges, such as [a-z). in character classes. 

July 23,1984 Page 2 



HEAD(1) 

NAME 
head· give first few lines of a stream 

SYNOPSIS 
lusr/plxlhead [ -count ] [ file •.• ] 

DESCRIPTION 

(Plexus) HEAD(1) 

This filter gives the first count lines of each of the specified files, or of the standard input. If 
count is omitted it defaults to 10. 

NOTES 
This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
tail(1 ) 

Page 1 January 20, 1984 



HElP(1 ) HElP(1 ) 

NAME 
help - ask for help 

SYNOPSIS 
help [args] 

DESCRIPTION 

FILES 

Help finds information to explain a message from a command or explain the use of a command. 
Zero or more arguments may be supplied. If no arguments are given, help will prompt for one. 

The arguments may be either message numbers (which normally appear in parentheses follow­
ing messages) or command names, of one of the following types: 

type 1 

type 2 

type 3 

Begins with non-numerics, ends in numerics. The non-numeric prefix is 
usually an abbreviation for the program or set of routines which produced 
the message (e.g., ge6, for message 6 from the get command). 

Does not contain numerics (as a command, such as get) 

Is all numeric (e.g., 212) 

The response of the program will be the explanatory information related to the argument, if there 
is any. 

When all else fails, try "help stuck". 

/usr/lib/help directory containing files of message text. 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 1 January 20, 1984 



HP(l) HP(l) . 

NAME 
hp - handle special functions of HP 2640 and 2621-series terminals 

SYNOPSIS 
hp[-e][-m] 

DESCRIPTION 
Hp supports special functions of the Hewlett-Packard 2640 series of terminals. with the primary 
purpose of producing accurate representations of most nroff(1) output. Typical uses are: 

nroff -h files ... I hp 
nroff -h -s ... files I hp 

In the latter case. nroff will stop at the beginning of each page (including the first) and wait for 
you to hit line-feed (control-j) before resuming output. 

Regardless of the hardware options on your terminal. hp tries to do sensible things with under­
lining and reverse line-feeds. If the terminal has the "display enhancements" feature, subscripts 
and superscripts can be indicated in distinct ways. If it has the "mathematical-symbol" feature. 
Greek and other special characters can be displayed. 

The flags are as follows: 

-e It is assumed that your terminal has the "display enhancements" feature. and so maxi­
mal use is made of the added display modes. Overstruck characters are presented in 
the Underline mode. Superscripts are shown in Half -bright mode. and subscripts in 
Half-bright. Underlined mode. If this flag is omitted. hp assumes that your terminal 
lacks the "display enhancements" feature. In this case, all overstruck characters. sub­
scripts. and superscripts are displayed in Inverse Video mode. i.e., dark-on-light. rather 
than the usual light-on-dark. 

-m Requests minimization of output by removal of new-lines. Any contiguous sequence of 
3 or more new-lines is converted into a sequence of only 2 new-lines; i.e .• any number 
of successive blank lines produces only a single blank output line. This allows you to 
retain more actual text on the screen. 

With regard to Greek and other special characters, hp provides the same set as does 300(1). 
except that "not" is approximated by a. right arrow. and only the top half of the integral sign is 
shown. The display is adequate for examining output from neqn(1). 

DIAGNOSTICS 
"line too long" if the representation of a line exceeds 1,024 characters. 
The exit codes are 0 for normal termination. 2 for all errors. 

SEE ALSO 

BUGS 

Page 1 

300(1). col(1). greek(1). neqn(1). tbl(1). troff(1). 

An "overstriking sequence" is defined as a printing character followed by a backspace followed 
by another printing character. In such sequences. if either printing character is an underscore. 
the other printing character is shown underlined or in Inverse Video; otherwise. only the first 
printing character is shown (again. und~rlined or in Inverse Video). Nothing special is done if a 
backspace is adjacent to an ASCII control character. Sequences of control characters (e.g .• 
reverse line-feeds, backspaces) can make text "disappear"; in particular. tables generated by 
tb/(1) that contain vertical lines will often be missing the lines of text that contain the "foot" of a 
vertical line. unless the input to hp is piped through co/(1). 
Although some terminals do provide numerical superscript characters. no attempt is made to 
display them. 

January 20. 1984 



HYPHEN(1 ) HYPHEN(1) . 

NAME 
hyphen - find hyphenated words 

SYNOPSIS 
hyphen files 

DESCRIPTION 

BUGS 

Page 1 

Hyphen finds all the hyphenated words in files and prints them on the standard output. If no 
arguments are given, the standard input is used. Thus hyphen may be used as a filter. 

Hyphen can't cope with hyphenated italic (Le., underlined) words; it will often miss them com­
pletely, or mangle them. 
Hyphen occasionally gets confused, but with no ill effects other than spurious extra output. 

January 20,1984 



ICPDMP(1M) (Plexus) ICPDMP(1M) 

NAME 
icpdmp • take a core image of the ICP and transfer to a host file 

SYNOPSIS 
letc/icpdmp device filename 

DESCRIPTION 

FILES 

NOTES 

/cpdmp takes a core image of the Intelligent Communications Processor (Iep) and transfers it 
to a host file.· Device is the download device for the ICP, Idev/ic[O-3]. 

This command is accessible only to the system administrator and has an important side effect: it 
does not leave the ICP intact. You must download, (using dn/d(1 M», the ICP again before the 
ICP is usable. Normally, this means rebooting the system. 

This command dumps all of the ICP RAM (4000 hex to BFFF hex -- 32K-bytes). 

This command is rarely useful except if the ICP crashes hard. 

/dev/ic[O-3) 

This is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
dnld(1 M), tty(4) 

Page 1 . January 20, 1984 



10(1 ) 

NAME 
id - print user and group IDs and names 

SYNOPSIS 
id 

DESCRIPTION 

10(1 ) 

Id writes a message on the standard output giving the user and group IDs and the correspond­
ing names of the invoking process. If the effective and real IDs do not match, both are printed. 

SEE ALSO 
logname(1), getuid(2), getgid(2). 

Page 1 January 20, 1984 



INSTALL(1 M) INSTALL(1M)' 

NAME 
install- install commands 

SYNOPSIS 
install [-c dira] [-f dirb] [ -i ] [-n dirc] [ -0 ] [ -s ] file [ dirx ... ] 

DESCRIPTION 
Install is a command most commonly used in "makefiles" (see make(1» to install a file (updated 
target file) in a specific place within a file system. Each file is installed by copying it into the 
appropriate directory, thereby retaining the mode and owner of the original command. The pro­
gram prints messages telling the user exactly what files it is replacing or creating and where 

,they are going. 

If no options or directories (dirx ... ) are given, install will search (using find(1» a set of default 
directories (fbin, lusr/bin, letc, llib, and lusrllib, in that order) for a file with the same name as 
file. When the first occurrence is found, install issues a message saying that it is overwriting 
that file with file, and proceeds to do so. If the file is not found, the program states this and 
exits without further action. 

If one or more directories (dirx ... ) are specified after file, those directories will be searched 
before the directories specified in the default list. 

The meanings of the options are: . 

":c dira 

-f dirb 

-i 

-n dire 

-0 

-8 

Installs a new command in the directory specified in dira. Looks for file in 
dira and installs it there if it is not found. If it is found, install issues a 
message saying that the file already exists, and exits without overwriting 
it. May be used alone or with the -s option. 

Forces file to be installed in given directory, whether or not one already 
exists. If the file being installed does not already exist, the mode and 
owner of the new file will be set to 755 and bin, respectively. If the file 
already exists, the mode and owner will be that of the already existing file. 
May be used alone or with the -0 or -8 options. 

Ignores default directory list, searching only through the given directories 
(dirx ... ). May be used alone or with any other options other than -c and 
-f. 

If file is not found in any of the searched directories, it it put in the direc­
tory specified in dire. The mode and owner of the new file will be set to 
755 and bin. respectively. May be used alone or with any other options 
other than -c and -f. 

If file is found, this option saves the ''found'' file by copying it to OLDfile in 
the directory in which it was found. May be used alone or with any other 
options other than -c. 
Suppresses printing of messages other than error messages. May be 
used alone or with any other options. 

SEE ALSO 
mk(8). 

Page 1 January 20, 1984 



,.-. 

JOIN(1) JOIN(1) . 

NAME 
join - relational database operator 

SYNOPSIS 
join [ options] file1 file2 

DESCRIPTION 
Join forms, on the standard output, a join of the two relations specified by the lines of file1 and 
"/e2. If file1 is -, the standard input is used. 

File1 and file2 must be sorted in increasing ASCII collating sequence on the fields on which they 
are to be joined, normally the first in each line. 

There is one line in the output for each pair of lines in file1 and file2 that have identical join 
fields. The output line normally consists of the common field, then the rest of the line from file 1 , 
then the rest of the line from file2. 

Fields ar~ normally separated by blank, tab or new-line. In this case, multiple separators count 
as one, and leading separators are discarded. 

These options are recognized: 

-an 

-as 

-jnm 

-0 list 

-Ie 

In addition to the normal output, produce a line for each unpairable line in file n, where 
n is 1 or 2. 

Replace empty output fields by string s. 

Join on the mth field of file n. If '! is missing, use the mth field in each file. 

Each output line comprises the fields specifed in list, each element of which has the 
form n.m, where n is a file number and m is a field number. 

Use character c as a separator (tab character). Every appearance of c in a line is signi­
ficant. 

SEE ALSO 

BUGS 

Page 1 

awk(1), comm(1), sort(1). 

With default field separation, the collating sequence is that of sort -b; with -t, the sequence is 
that of a plain sort. 

The conventions of jJin, sort, comm, uniq and awk(1) are wildly incongruous. 

January 20, 1984 



KILL(1 ) KILL(1 ) 

NAME 
kill- terminate a process 

SYNOPSIS 
kill [ -signo ] processid ... 

DESCRIPTION 
Kill sends signal 15 (terminate) to the specified processes. This will normally kill processes that 
do not catch or ignore the signal. The process number of each asynchronous process started 
with & is reported by the Shell (unless more than one process is started in a pipeline, in which 
case the number of the last process in the pipeline is reported). Process numbers can also be 
found by using ps(1). 

The details of the kill are described in kill(2). For example, if process number 0 is specified, all 
processes in the process group are signaled. 

The killed process must belong to the current user unless he is the super-user. 

If a signal number preceded by - is given as first argument, that signal is sent instead of ter­
minate (see signa/(2)). In particular "kill -9 ... " is a sure kill. 

SEE ALSO 
ps(1), sh(1), kill(2), signal(2). 

Page 1 January 20, 1984 



~ ......... . 
~. 

LD(1) LD(1) 

NAME 
Id - link editor 

SYNOPSIS 
Id [ -sulxXrdnim ] [ -0 name] [ -t name] [ -V num ] file ... 

DESCRIPTION 

Page 1 

Ld combines several object programs into one; resolves external references; and searches 
libraries (as created byar(1». In the simplest case several object files are given, and Id com­
bines them, producing an object module which can be either executed or become the input for a 
further Id run. (In the latter case, the -r option must be given to preserve the relocation bits.) 
The output of Id is left on a.out. This file is made executable if no errors occurred during the 
load and the -r flag was not specified. 

The argument routines are concatenated in the order specified. The entry point of the output is 
the beginning of the first routine. 

The loader accepts a-character symbols, and the first character of each symbol is an underbar 
('_'), which cc prefixes at compile time. Therefore, symbol names in program modules that are 
to be linked must be unique within the first seven characters. 

If any argument is a library, it is searched exactly once at the point it is encountered in the argu­
ment list. Only those routines defining an unresolved external reference are loaded. If a routine 
from a library references another routine in the library, the referenced routine must appear after 
the referencing routine in the library. Thus the order of programs within libraries is important. 

The symbols _ etext, _ edata and _end (etext, edata and end in C) are reserved, and if referred 
to, are set to the first location above the program, the first location above initialized data, and 
the first location above all data respectively. It is erroneous to define these symbols. 

Ld understands several flag arguments which are written preceded by a -. Except for -I, they 
should appear before the file names. 

-s "Strip" the output, that is, remove the symbol table and relocation bits to save space 
(but impair the usefulness of the debugger). This information can also be removed by 
strip(1). This option is turned off if there are any undefined symbols. 

-u Take the following argument as a symbol and enter it as undefined in the symbol table. 
This is useful for loading wholly from a library, since initially the symbol table is empty 
and an unresolved reference is needed to force the loading of the first routine. 

-I This option is an abbreviation for a library name. -I alone stands for llibllibc.a, which is 
the standard system library for C and assembly language programs. -Ix stands for 
llib/libx.a, where x isa string. If that does not exist, Id tries lusrllib/libx.a A library is 
searched when its name is encountered, so the placement of a -I is significant. 

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter exter­
nal symbols. This option saves some space in the output file. 

-x Save local symbols except for those whose names begin with L. This option is used by 
cc to discard internally generated labels while retaining symbols local to routines. 

-r Generate relocation bits in the output file so that it can be the subject of another Id run. 

-n 

This flag also prevents final definitions from being given to common symbols, and 
suppresses the "undefined symbol" diagnostiCS. 

Force definition of common storage even if the -r flag is present. 

Arrange that when the output file is executed, the text portion will be read-only and 
shared among all users executing the file. This involves moving the data areas up to 
the first possible 2K-byte (Z8000) or 4K-byte (MC68000) boundary following the end of 

January 20. 1984 



lO(1) 

FilES 

lO(1) . 

the text. On the MC68000, this option is on by default; use -N to turn it off. 

-I When the output file is executed, the program text and data areas will live in separate 
address spaces. The only difference between this option and -n is that here the data 
starts at location O. This option is meaningful only on the Z8000; it does nothing on the 
MC68000. 

-m The names of all files and archive members used to create the output file are written to 
the standard output. (Z8000 only) 

-0 The name argument after -0 is used as the name of the Id output file, instead of a.out. 

-t The name argument is taken to be a symbol name, and any references to or definitions 
of that symbol are listed, along with their types. There can be up to 16 occurrences of 
-tname on the command line. (Z8000 only) 

-v The num argument is taken as a decimal version number identifying the a.out that is 
produced. Num must be in the range 0-32767. The version stamp is stored in the 
a.out header; see a.out(S). (zeooo only) 

Ilib/lib?a 
lusr/lib/lib? .a 
a.out 

libraries 
more libraries 
output file 

SEE ALSO 
ar(1), as(1), cc(1), a.out(S). 

January 20, 1984 Page 2 



LEX(1 ) LEX(1 r 

NAME 
lex - generate programs for simple lexical tasks 

SYNOPSIS 
lex [ -retvn ] [ file] ... 

DESCRIPTION 
Lex generates programs to be used in simple lexical analysis of text. 

The input files (standard input default) contain strings and expressions to be searched for, and 
C text to be executed when strings are found. The EXAMPLE below shows a typical lex program. 

Running lex on files generates the file lex.yy.e, a C program. Compile lex.yy.e with the -II 
option, which loads the lex library, as follows 

cc lex.yy.c -II 

The a.out created by this step, when run with another program as its argument, copies the input 
to the output except when a string specified in the original file is found; then the corresponding 
program text is executed. 

The actual string matched is left in yytext, an external character array. Matching is done in 
order of the strings in the file. The strings may contain square brackets to indicate character 
classes, as in [abx-z) to indicate a, b, x, y, and z; and the operators ., +, and? mean respec­
tively any non-negative number of, any positive number of, and either zero or one occurrences 
of, the previous character or character class. The character. is the class of all ASCII characters 
except new-line. Parentheses for grouping and vertical bar for alternation are also supported. 
The notation r{d,e} in a rule indicates between d and e instances of regular expression r. It 
has higher precedence than I, but lower than ", ?, +, and concatenation. The character II at the 
beginning of an expression permits a successful match only immediately after a new-line, and 
the character $ at the end of an expression requires a trailing new-line. The character I in an 
expression indicates trailing context; only the part of the expression up to the slash is returned 
in yytext, but the remainder of the expression must follow in the input stream. An operator char­
acter may be used as an ordinary symbol if it is within" symbols or preceded by \. Thus 
[a-zA-Z)+ matches a string of letters. 

Three subroutines defined as macros are expected: input() to read a character; unput(c) to 
replace a character read; and output(c) to place an output character. They are defined in terms 
of the standard streams, but you can override them. The program generated is named yylex(), 
and the library contains a main() which calls it. The action REJECT on the right side of the rule 
causes this match to be rejected and the next suitable match executed; the function yymore() 
accumulates additional characters into the same yytext; and the function yyless(p) pushes back 
the portion of the string matched beginning at p, which should be between yytext and 
yytext+yyleng. The macros input and output use files yyin and yyout to read from and write 
to, defaulted to stdin and stdout, respectively. 

Any line beginning with a blank is assumed to contain only C text and is copied; if it precedes 
%% it is copied into the external definition area of the lex.yy.e file. All rules should follow a 
%%, as in YACC. Unes preceding %% which begin with a non-blank character define the string 
on the left to be the remainder of the line; it can be called out later by surrounding it with O. 
Note that curly brackets do not imply parentheses; only string substitution is done. 

EXAMPLE 
o [0-9] 
%% 

if printf("IF statement\n"); 
[a-z]+ printf("tag, value %s\n" ,yytext); 

Page 1 January 20, 1984 



LEX(1 ) 

FILES 

O{D}+ 
{D}+ 
"++" 
"+" 
"1*" 

printf("octal number %s\n" ,yytext); 
printf("decimal number %s\n",yytext); 
printf("unary op\n"); 
printf("binary op\n"); 
{ loop: 

while (inputO != '* '); 
switch (input(» 

} 

{ 
case '/ ': break; 
case "*": unput( "* "); 
default: go to loop; 
} 

The external names generated by lex all begin with the prefix yy or VV. 

LEX(1 ) 

The flags must appear before any files. The flag -r indicates RATFOR actions, -C indicates C 
actions and is the default, -t causes the lex.yy.c program to be written instead to standard out­
put, -¥ provides a one-line summary of statistics of the machine generated, -n will not print out 
the - summary. Multiple files are treated as a single file. If no files are specified, standard input 
is used. 

Certain table sizes for the resulting finite state machine can be set in the definitions section: 

%p n number of positions is n (default 2000) 

%n n number of states is n (500) 

%t n number of parse tree nodes is n (1000) 

0;'08 n number of transitions is n (3000) 

The use of one or more of the above automatically implies the -¥ option, unless the -n option is 
used. 

lusr/lib/libl.a lex library 

SEE ALSO 
yacc(1). 
LEX - Lexical Analyzer Generator by M. E. Lesk and E. Schmidt. 

BUGS 
The., option is not yet f~lIy operational. 

January 20, 1984 Page 2 



lINE(1) 

NAME 
line - read one line 

SYNOPSIS 
line 

DESCRIPTION 

lINE(1 ) 

Une copies one line (up to a new-line) from the standard input and writes it on the standard out­
put. It returns an exit code of 1 on EOF and always prints at least a new-line. It is often used 
within shell files to read from the user's terminal. 

SEE ALSO 
sh(1). read(2). 

Page 1 January 20. 1984 



LlNK(1M) 

NAME 
link, unlink - exercise link and unlink system calls 

SYNOPSIS 
letcllink file1 file2 
letc/unlink file 

DESCRIPTION 

LlNK(1M)" 

Unk and un/ink perform their respective system calls on their arguments, abandoning all error 
checking. These commands may only be executed by the super-user, who (it is hoped) knows 

" what he or she is doing. 

SEE ALSO 
rm(1), link(2), unlink(2). 

Page 1 January 20, 1984 



r 

LlNT(1 ) LlNT(1)" 

NAME 
lint - a C program checker 

SYNOPSIS 
lint [ -abehnpuvx ] file ... 

DESCRIPTION 

Page 1 

Unt attempts to detect features of the C program files which are likely to be bugs, non-portable, 
or wasteful. It also checks type usage more strictly than the compilers. Among the things which 
are currently detected are unreachable statements, loops not entered at the top, automatic vari­
ables declared and not used, and logical expressions whose value is constant. Moreover, the 
usage of functions is checked to find functions which return values in some places and not in 
others, functions called with varying numbers of arguments, and functions whose values are not 
used. 

It is assumed that all the files are to be loaded together; they are checked for mutual compatibil­
ity. By default, lint uses function definitions from the standard lint library llib-Ie.!n; function 
definitions from the portable lint library llib-port.!n are used when lint is invoked with the -p 
option. 

Any number of lint options may be used, in any order. The following options are used to 
suppress certain kinds of complaints: 

-8 

-b 

-c 
-h 

-u 

Suppress complaints about assignments of long values to variables that are not long. 

Suppress complaints about break statements that cannot be reached. (Programs pro­
duced by lex or yacc will often result in a large number of such complaints.) 

Suppress complaints about casts that have questionable portability. 

Do not apply heuristic tests that attempt to intuit bugs, improve style, and reduce waste. 

Suppress complaints about functions and external variables used and not defined, or 
defined and not used. (This option is suitable for running lint on a subset of files of a 
larger program.) 

-v Suppress complaints about unused arguments in functions. 

-x Do not report variables referred to by external declarations but never used. 

The following arguments alter lint's behavior: 

-n Do not check compatibility against either the standard or the portable lint library. 

-p Attempt to check portability to other dialects (IBM and GeOS) of C. 

The -0, -U, and -I options of cc(1) are also recognized as separate arguments. 

Certain conventional comments in the C source will change the behavior of lint: 

I.NOTREACHED.I 
at appropriate points stops comments about unreachable code. 

I.VARARGSn ./ 
suppresses the usual c!1ecking for variable numbers of arguments in the follow­
ing function declaration. The data types of the first n arguments are checked; a 
missing n is taken to be O. 

/.ARGSUSED./ 
turns on the -v option for the next function. 

/ .L1NTLIBRARY./ 
at the beginning of a file shuts off complaints about unused functions in this file. 

January 20, 1984 



LlNT(1 ) 

FILES 

LlNT(1) 

lint produces its first output on a per source file basis. Complaints regarding included files are 
collected and printed after all source files have been processed. Finally, information gathered 
from all input files is collected and checked for consistency. At this point, if it is not clear 
whether a complaint stems from a given source file or from one of its included files, the source 
file name will be printed followed by a question mark. 

lusr/lib/lint[12] 
lusr/lib/llib-Ic.ln 
lusrllib/llib-port.ln 

programs 
declarations for standard functions (binary format; source is in lusr/lib/llib-Ic) 
declarations for portable functions (binary format; source is in lusr/lib/llib­
port) 

lusr/tmpl * Ii nt * 
SEE ALSO 

temporaries 

cc(1). 

BUGS 
Exft(2) and other functions which do not return are not understood; this causes various lies. 

January 20, 1984 Page 2 



LOGIN(1) LOGIN(1) 

NAME 
login - sign on 

DESCRIPTION 

FILES 

The login command is used at the beginning of each terminal session and allows you to identify 
yourself to the system. It can no longer be invoked explicitly. but is invoked by the system when 
a connection is first established. or after the previous user has logged out by sending an "end­
of-file" (control-D) to his or her initial shell. (See How to Get Started at the beginning of this 
volume for instructions on how to dial up initially.) 

Login asks for your user name. and. if appropriate. your password. Echoing is turned off (where 
possible) during the typing of your password. so it will not appear on the written record of the 
session. 

At some installations. an option may be invoked that will require you to enter a second "exter­
nal" password. This will occur only for dial-up connections. and will be prompted by the mes­
sage "External security:". Both passwords are required for a successful login. 

If password aging has been invoked by the super-user on your behalf. your password may have 
expired. In this case. you will be shunted into passwd(1) to change it. after which you may 
attempt to login again. 

If you do not complete the login successfully within a certain period of time (e.g .• one minute). 
you are likely to be silently disconnected. 

After a successful login. accounting files are updated. you will be informed of the existence (if 
any) of mail. and the profiles (Le .• lete/profile and SHOMEI.profile) (if any) are executed (see 
profile (5». Login initializes the user and group IDs and the working directory. then executes a 
command interpreter (usually sh(1» according to specifications found in the lete/passwd file. 
Argument 0 of the command interpreter is • followed by the last component of the interpreter's 
path name. The environment (see environ(7» is initialized to: 

HOME=your -login-directory 
PATH =:/bi n:/usr/bin 
LOGNAME-your-Iogin-name 

lete/utmp 
lusr/adm/wtmp 
lusr/maiVyour -name 
lete/motd 
lete/passwd 
lete/profile 
$HOMEI.profile 

accounting 
accounting 
mailbox for user your-name 
message-of-the-day 
password file 
system profile 
personal profile 

SEE ALSO 
mail(1). newgrp(1). sh(1). passwd(1), su(1). passwd(5). profile(5). environ(7), getty(8). 

DIAGNOSTICS 

Page 1 

Login incorrect 
if the user name or the password is incorrect. 

No shell, cannot open password file. no directory: 
consult a UNIX programming counselor. 

Your password has expired. Choose a new one. 
if password aging is implemented. 

January 20. 1984 



LOGNAME(1) 

NAME 
logname - get login name 

SYNOPSIS 
logname 

DESCRIPTION 

LOGNAME(1) . 

Logname returns the contents of the environment variable $LOGNAME, which is set when a user 
logs into the system. 

FILES 
letclprofile 

SEE ALSO 
env(1), login(1), logname(3X), environ(7). 

Page 1 January 20, 1984 



lORDER(1) lORDER(1) . 

NAME 
lorder - find ordering relation for an object library 

SYNOPSIS 
lorder file ... 

DESCRIPTION 

FilES 

The input is one or more object or library archive files (see ar(1». The standard output is a list 
of pairs of object file names, meaning that the first file of the pair refers to external identifiers 
defined in the second. The output may be processed by tsort(1) to find an ordering of a library 
suitable for one-pass access by Id(1). 

This brash one-liner intends to build a new library from existing .0 files. 

ar cr library , lorder *.0 I tsort' 

*symref, *symdef 

SEE ALSO 

temp files 

BUGS 

Page 1 

ar(1), Id(1), tsort(1). 

Object files whose name do not end with .0, even when contained in library archives, are over­
looked. Their global symbols and references are attributed to some other file. 

January 20, 1984 



lP(1) (MC68000 only) lP(1 } 

NAME 
Ip. cancel - send/cancel requests to an LP line printer 

SYNOPSIS 
Ip [-c) [-eldest] [-m] [-nnumber) [-ooption) [-5] [-ttitle] [-w) files 
cancel [ids] [printers) 

DESCRIPTION 

FilES 

Lp arranges for the named files and associated information (collectively called a request) to be . 
printed by a line printer. If no file names are mentioned, the standard input is assumed. The file 
name - stands for the standard input and may be supplied on the command line in conjunction 
with named files. The order in which files appear is the same order in which they will be printed. 

Lp associates a unique id with each request and prints it on the standard output. This id can be 
used later to cancel (see cancel) or find the status (see Ipstat(1» of the request. 

The following options to Ip may appear in any order and may be intermixed with file names: 

-c 

-eldest 

Make copies of the files to be printed immediately when Ip is invoked. Normally, 
files will not be copied, but will be linked whenever possible. If the -c option is not 
given, then the user should be careful not to remove any of the files before the 
request has been printed in its entirety. It should also be noted that in the absence 
of the -c option, any changes made to the named files after the request is made but 
before it is printed will be reflected in the printed output. 

Choose dest as the printer or class of printers that is to do the printing. If dest is a 
printer, then the request will be printed only on that specific printer. If dest is a class 
of printers, then the request will be printed on the first available printer that is a 
member of the class. Under certain conditions (printer unavailability, file space limi­
tation, etc.), requests for specific destinations may not be accepted (see accept(1M) 
and Ipstat(1». By default, dest is taken from the environment variable lPOEST (if it 
is set). Otherwise, a default destination (if one exists) for the computer system is 
used. Destination names vary between systems (see Ipstat(1». 

-m Send mail (see mail(1 )) after the files have been printed. By default, no mail is sent 
upon normal completion of the print request. 

-nnumber Print number copies (default of 1) of the output. 

-ooption Specify printer-dependent or class-dependent options. Several such options may 
be collected by specifying the -0 key letter more than once. For more information 
about what is valid for options, see Models in Ipadmin (1 M). 

-s Suppress messages from Ip(1) such as "request id is ...... 

-ttitle Print title on the banner page of the output. 

-w Write a message on the user's terminal after the files have been printed. If the user 
is not logged in, then mail will be sent instead. 

Cancel cancels line printer requests that were made by the /p(1) command. The command line 
arguments may be either request ids (as returned by Ip(1» or printer names (for a complete list, 
use Ipstat(1». Specifying a request id cancels the associated request even if it is currently 
printing. Specifying a printer cancels the request which is currently printing on that printer. In 
either case, the cancellation of a request that is currently printing frees the printer to print its 
next available request. 

/usrlspooVlp/* 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM III. 

Page 1 September 20, 1984 



LP(1) (MC68000 only) .LP(1) 

SEE ALSO 
accept(1M), enable(1), Ipadmin(1M), Ipsched(1M), Ipstat(1), mail(1). 

September 20, 1984 Page 2 



lPADMIN( 1 M) (MC68000 only) lPADMIN(1M) . 

NAME 
Ipadmin - configure the LP spooling system 

SYNOPSIS 
lusr/lib/lpadmin -p printer [options] 
/usr/lib/lpadmin -x dest 
lusr/lib/lpadmin -d[dest] 

DESCRIPTION 

Page 1 

Lpadmin configures LP spooling systems to describe printers, classes and devices. It is used to 
add and remove destinations, change membership in classes, change devices for printers, 
change printer interface programs and to change the system default destination. Lpadmin may 
not be used when the LP scheduler, Ipsched(1M), is running, except where noted below. 

Exactly one of the -p, -d or -x options must be present for every legal invocation of Ipadmin. 

-d[dest] makes dest, an existing destination, the new system default destination. If dest is 
not supplied, then there is no system default destination. This option may be used 
when Ipsched(1 M) is running. No other options are allowed with -d. 

-xdest removes destination dest from the LP system. If dest is a printer and is the only 
member of a class, then the class will be deleted, too. No other options are 
allowed with -x. 

-pprinter names a printer to which all of the options below refer. If printer does not exist 
then it will be created. 

The following options are only useful with -p and may appear in any order. For ease of discus­
sion, the printer will be referred to as P below. 

-cclass inserts printer P into the specified class. Class will be created if it does not already 
exist. 

-eprinter copies an existing printer's interface program to be the new interface program for 
P. 

-f indicates that P is set up for printing form feeds on queue empty. 

-h indicates that the device associated with P is hardwired. This option is assumed 
when creating a new printer unless the -I option is supplied. 

-iinterface establishes a new interface program for P. Interface is the path name of the new 
program. 

-I indicates that the device associated with P is a login terminal. The LP scheduler, 
Ipsched(1 M), disables all login terminals automatically each time it is started. 
Before re-enabling P, its current device should be established using Ipadmin. 

-mmode/ selects a model interface program for P. Model is one of the model interface 
names supplied with the LP software (see Models below). 

-n indicates that P is not set up for printing formfeeds on queue empty. This option is 
assumed when creating a new printer unless the "·f" option is supplied. 

-rc/ass removes printer P from the specified class. If P is the last member of the class, 
then the class will be removed. 

-vdevice associates a new device with printer P. Device is the path name of a file that is 
writable by the LP administrator, Ip. Note that there is nothing to stop an adminis­
trator from associating the same device with more than one printer. If only the -p 
and -v options are supplied, then Ipadmin may be used while the scheduler is run-
~. ~ 

September 20, 1984 



lPADMIN( 1 M) (MC68000 only) lPADMIN(1M) . 

Restrictions. 
When creating a new printer, the -v option and one of the -e, -i or -m options must be sup­
plied. Only one of the -e, -i or -m options may be supplied. The -h and -I keyletters are 
mutually exclusive. Printer and class names may be no longer than 14 characters and must 
consist entirely of the characters A·Z, a·z, 0-9 and _ (underscore). 

Models. 
Model printer interface programs are supplied with the lP software. They are shell procedures 
that interface between Ipsched (1M) and devices. All models reside in the directory 
lusrlspooi/lp/model and may be used as is with Ipadmin -m. Models should have 644 permis­
sion if owned by Ip & bin, or 664 permission if owned by bin & bin. Alternatively, lP administra­
tors may modify copies of models and then use Ipadmin -i to associate them with printers. The 
following list describes the models and lists the options which they may be given on the Ip com­
mand line using the -0 keyletter: 

dumb interface for a line printer without special functions and protocol. Form feeds are 
assumed. This is a good model to copy and modify for printers which do not have 
models. 

1640 DIABLO 1640 terminal running at 1200 baud, using XON/XOFF protocol. Options: 

-12 12-pitch (10-pitch is the default) 
-f do not use the 450(1) filter. The output has been pre-processed by either 

450(1) or the nroff (1) 450 driving table. 

interface a generalized interface program written in C which uses the printcap(5) database. It 
provides the ability to print formfeeds on queue empty (using tr in the printcap data­
base for formfeed string), and handle special forms (using sp in printcap for the 
operator's device). See printcap(5) for information on other capabilities. 

S[string) 
use the special form whose name or identification number is string. If this 
option is used, the following interaction with the operator occurs when the 
request is to be printed. The interface program types out 

MOUNT SPECIAL FORMS <string> on printer <printer name> 

The program waits a few seconds. Then it types out 

READY? Type "Ipforms <printer name>" 

When the operator types in "Ipforms <printer name>", the program asks 

Forms ready? or Hold (" Y" or "H") 

If the operator types "Y", the request is printed. If the operator types "H", 
the request is put on hold; i.e., it remains in the print queue, awaiting an 
Iprun(1) command to take it out of the hold state. 

After the file has been printed, a similar interaction takes place to restore the 
standard forms. 

hp Hewlett-Packard 2631A line printer at 2400 baud. Options: 

-c compressed print 
-e expanded print 

prx Printronix P300 or P600 printer using XON/XOFF protocol at 1200 baud. 

September 20, 1984 Page 2 



LPADMIN(1 M) (MC68000 only) LPADMIN(1M) 

EXAMPLES 

FILES 

1. Assuming there is an existing Hewlett-Packard 2631A line printer named hp2, it will use the 
hp model interface after the command: 

lusr/lib/lpadmin -php2 -mhp 

2. To obtain compressed print on hp2, use the command: 

Ip ~hp2 -o-c files 

3. A DIABLO 1640 printer called sft can be added to the LP configuration with the command: 

lusr/lib/lpadmin -pst1 -v/dev/tty20 -m1640 

4. An nroff (t) document may be printed on sft in any of the following ways: 

nroft - T 450 files I Ip ~st1 -of 
nroft - T 450-12 files I Ip ~st1 -of 
nroft - T37 files I col I Ip ~st1 

5. The following command prints the password file on sft in 12-pitch: 

Ip ~st1 -012 letc/passwd 

NOTE: the -12 option to the 1640 model should never be used in conjunction with nroff(1). 

lusrlspooVlpi* 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM III. 

EXIT CODES 
Interface programs may pass the following exit codes to fpsched. 

EXIT CODE 
128 
64 
32 

16 
8 

4 
o 

Meaning to Ipsched 

Must be set in order for 64 and 32 to be interpreted. 
Printer ready for next request. 
Sets current request as "not printing". Leaves it in queue instead of 
removing it. Resets printer. 
Deletes request from queue and resets printer. 
Sets flag that request is on hold -- stays in queue but is not printed. 
Sends message to Ipsched that printer is ready for another request. 
Removes request from queue and disables printer. 
Removes request from the print queue, resets printer, and tells 
fpsched that printer is ready for the next request. 

These requests are used bitwise, so only codes 3, 2, and 1 are left for user interface programs. 

If fpsched receives a code that is not one of the above, the Plexus interface program 
lusrispooi/lp/model/interface does standard error handling. This consists of removing the 
current request from the print queue, resetting the printer, sending a message to the user, and 
telling fpsched that the printer is ready for the next request. 

SEE ALSO 
accept(1 M), enable(1), Ip(1), Ipsched(1 M), Ipstat(1), nroft(1). 

Page 3 September 20, 1984 



"-" 

lPD(lC) lPD(lC) 

NAME 
Ipd - line printer daemon 

SYNOPSIS 
lusr/libllpd 

DESCRIPTION 

FILES 

Lpd is the daemon for the line printer. It uses the directory lusrispool/lpd. The file lock is 
used to prevent two daemons from becoming active. After the program has successfully set the 
lock, it forks and the main path exits, thus spawning the daemon. The directory is scanned for 
files beginning with "df". Each such file is submitted as a job. Each line of a job file must begin 
with a key character to specify what to do with the remainder of the line. 

L specifies that the remainder of the line is to be sent as a literal. 
I is the same as L, but signals the $ IDENT card which is to be mailed back by the mail 

option. 
S specifies that the rest of the line is a file name. That file is to be sent as binary cards. 
F is the same as S except a form-feed is prepended to the file. 
U specifies that the rest of the line is a file name. After the job has been transmitted, the 

file is unlinked. 
M is followed by a user 10; after the job is sent, a message is mailed to the user via the 

mail(1) command to verify the sending of the job. 

Any error encountered will cause the daemon to drop the job, wait up to 10 minutes, and start 
over. This means that an improperly constructed "df" file may cause the same job to be submit­
ted every 10 minutes. Lpd is automatically initiated by the line printer command, /pr. 

To restart Ipd (in the case of hardware or software malfunction), it is necessary to first kill the 
old daemon (if it is still alive), and remove the lock file (if present), before initiating the new dae­
mon. This is done automatically by letc/rc when the system is brought up, in case there were 
any jobs left in the spooling directory when the system last went down. 

The SYSTEM III commands dpd and odpd, with their associated options and files, are not imple­
mented in Plexus Sys3, because they are specific to non-Plexus hardware. 

SEE ALSO 
Ipr(1 ). 

Page 1 January 20, 1984 



LPHOLD(1 ) (MC68000 only) LPHOLD(1)" 

NAME 
Iphold, Iprun - hold up print request, re-enable it 

SYNOPSIS 
Iphold id 
Iprun id 

DESCRIPTION 

FILES 

The Iphold and Iprun commands are for use with the Ip(1) spooler. Lphold postpones the print­
ing of the request whose request id is id until an Iprun(1) command is received for that request. 
Conversely, Iprun enables the printing of the request whose identification number is id, which 
has previously been put on hold by the Iphold command. The request is placed last in the 
queue. 

The request id is returned by the Ip command and consists of a printer name, hyphen, and a 
number; for example, "printer-4S". 

Any user can Iphold or Iprun any other user's request. 

lusrlspool/lp/* 

NOTES 
Lphold and Iprun are Plexus commands. They are not part of standard SYSTEM III. 

SEE ALSO 
Ip(1), Ipsched(1 M). 

Page 1 September 20, 1984 



LPR(1 ) LPR(1 ) 

NAME 
Ipr - line printer spooler 

SYNOPSIS 
Ipr [ option ... ] [ name ... ] 

DESCRIPTION 

FILES 

NOTES 

Lpr causes the named files to be queued for printing on a line printer. If no names appear, the 
standard input is assumed; thus /pr may be used as a filter. 

The following options may be given (each as a separate argument and in any order) before any 
file name arguments: 

-c Makes a copy of the file to be sent before returning to the user. 
-r Removes the file after sending it. 
-m When printing is complete, reports that fact by mail(1). 
-n Does not report the completion of printing by mail(1). This is the default option. 
-b Does not print banner at beginning of output. 

letc/passwd 
lusr/lib/lpd 
lusrispool/lpd/* 

user's identification and accounting data. 
line printer daemon. 
spool area. 

If absolutely necessary, to kill a spool print job, do the following: 

1. Get the process id of /pr using ps(1). 

2. Kill, using kill(1), the Ipr process, using the command kill-9 <process id>. 

3. If the file lusrispool/lpd/ioek exists, remove it using rm(1). 

4. List the directory lusrispool/lpd. Note that it contains files whose names are prefixed with 
the letters 'ct' and 'df (or 'tf'). These files come in pairs, one 'dt' or 'tf' file for every 'ct' file. 
You can tell which are the pairs because their filenames end with the same string of digits. 
Look at the 'ct' files using eat(1). Find the one that corresponds to the job you want to kill 
and remove it. Find the 'df' or 'tt' file with the same last digits, and remove that one too. To 
help you in your search for the right files, the last digits of the relevant file names will be 
identical or very close to the process id of the /pr job. 

5. To get the daemon running again, queue a short print job with a command such as Ipr 
lete/group. 

SEE ALSO 
Ipd(1C). 

BUGS 

Page 1 

Lpr cannot print files larger than 42 full 132-column pages (about 330000 characters). 

Lpr of a directory creates a directory entry in lusrispool/lpd. This directory references' the files 
in the directory specified to be printed. This reference does not increase the link count of these 
files; thus the deletion of the directory in lusrlspool/lpd deletes the files in the original directory. 

September 19, 1984 



LPSCHED(1M) (MC68000 only) LPSCHED(1M) 

NAME 
Ipsched, Ipshut, Ipmove - start/stop the LP request scheduler and move requests 

SYNOPSIS 
lusr/llbllpsched 
lusr/l ib/lpshut 
lusr/lib/lpmove requests dest 
lusrllib/lpmove dest1 dest2 

DESCFNPTION 

FILES 

Lpsched schedules requests tak~n by /p(1) for printing on line printers. 

Lpshut shuts down the line printer scheduler. All printers that are printing at the time /pshut is 
invoked will stop printing. Requests that were printing at the time a printer was shut down will 
be reprinted in their entirety after /psched is started again. All LP commands perform their func­
tions even when /psched is not running. 

Lpmove moves requests that were queued by /p(1) between LP destinations. This command 
may be used only when /psched is not running. 

The first form of the command moves the named requests to the LP destination, dest. 
Requests are request ids as returned by /p(1). The second form moves all requests for destina­
tion dest1 to destination dest2. As a side effect, /p (1) will reject requests for dest1 . 

Note that /pmove never checks the acceptance status (see accept(1 M)) for the new destination 
when moving requests. 

/usr/spoollip/* 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
accept(tM), enable(1), Ip(1), Ipadmin(1 M), Ipstat(1). 

Page 1 September 20, 1984 



LPSTAT(1 ) (MC68000 only) LPSTAT(1 ) 

NAME 
Ipstat - print LP status information 

SYNOPSIS 
Ipstat [options] 

DESCRIPTION 

FILES 

Lpstat prints information about the current status of the LP line printer system. 

If no options are given, then /pstat prints the status of all requests made to /p(1) by the user. 
Any arguments that are not options are assumed to be request ids (as returned by /p). Lpstat 
prints the status of such requests. Options may appear in any order and may be repeated and 
intermixed with other arguments. Some of the key letters below may be followed by an optional 
list that can be in one of two forms: a list of items separated from one another by a comma, or a 
list of items enclosed in double quotes and separated from one another by a comma and/or one 
or more spaces. For example: 

-u"user1, user2, user3" 

The omission of a list following such keyletters causes all information relevant to the keyletter to 
be printed, for example: 

Ipstat -{) 

prints the status of all output requests. 

-a[ list) Print acceptance status (with respect to Ip) of destinations for requests. Ust is a list 
of intermixed printer names and class names. 

-c[list] Print class names and their members. Ust is a list of class names. 

-d Print the system default destination for Ip. 

-o[list] Print the status of output requests. Ust is a list of intermixed printer names, class 
names, and request ids. 

-p[list) Print the status of printers. Ust is a list of printer names. 

-r Print the status of the LP request scheduler 

-s Print a status summary, including the status of the line printer scheduler, the system 
default destination, a list of class names and their members, and a list of printers and 
their associated devices. 

-t Print all status information. 

-u[/ist] Print status of output requests for users. Ust is a list of login names. 

-v[list] Print the names of printers and the pathnames of the devices associated with them. 
Ust is a list of printer names. 

lusrispooi/lp/* 

NOTES 
This is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
enable(1),lp(1). 

Page 1 September 20, 1984 



LS(1 ) LS(1) 

NAME 
Is - list contents of directories 

SYNOPSIS 
Is [ -Iogtasdrucif ] names 

DESCRIPTION 

Page 1 

For each directory named, Is lists the contents of that directory; for each file named, Is repeats 
its name and any other information requested. By default, the output is sorted alphabetically. 
When no argument is given, the current directory is listed. When several arguments are given, 
the arguments are first sorted appropriately, but file arguments are processed before directories 
and their contents. There are several options: 

-I List in long format, giving mode, number of links, owner, group, size in bytes, and time 
of last modification for each file (see below). If the file is a special file, the size field will 
contain the major and minor device numbers, rather than a size. 

-0 The same as -I, except that the group is not printed. 

-g The same as -I, except that the owner is not printed. 

-t Sort by time of last modification (latest first) instead of by name. 

-a Ust all entries; in the absence of this option, entries whose names begin with a period 
(.) are not listed. 

-s Give size in 1024-byte blocks (including indirect blocks) for each entry. 

-d If argument is a directory, list only its name; often used with -I to get the status of a 
directory. 

-r Reverse the order of sort to get reverse alphabetic or oldest first, as appropriate. 

-u Use time of last access instead of last modification for sorting (with the -t option) and/or 
printing (with the -I option). 

-c Use time of last modification of the inode (mode, etc.) instead of last modification of the 
file for sorting (-t) and/or printing (-I). 

-j For each file, print the i-number in the first column of the report. 

-f Force each argument to be interpreted as a directory and list the name found in each 
slot. This option turns off -I, -t, -S, and -r, and turns on -a; the order is the order in 
which entries appear in the directory. 

The mode printed under the -I option consists of 10 characters that are interpreted as follows: 

The first character is: 

d if the entry is a directory; 
b if the entry is a block special file; 
c if the entry is a character special file; 
p if the entry is a fifo (a.k.a. "named pipe") special file; 

if the entry is an ordinary file. 

The next 9 characters are interpreted as three sets of three bits each. The first set 
refers to the owner's permissions; the next to permissions of others in the user-group of 
the file; and the last to all others. Within each set, the three characters indicate permis­
sion to read, to write, and to execute the file as a program, respectively. For a direc­
tory, "execute" permission is interpreted to mean permission to search the directory for 
a specified file. 

The permissions are indicated as follows: 

July 9,1984 



lS(1 ) 

FilES 

NOTES 

lS(1) 

r if the file is readable; 
w if the file is writable; 
x if the file is executable; 

if the indicated permission is not granted. 

The group-execute permission character is given as s if the file has set-group-ID mode; 
likewise, the user-execute permission character is given as s if the file has set-user-ID 
mode. The last character of the mode (normally x or -) is t if the 1000 (octal) bit of the 
mode is on; see chmod(1) for the meaning of this mode. The indications of set-iD and 
1000 bit of the mode are capitalized if the corresponding execute permission is not set. 

When the sizes of the files in a directory are listed, a total count of blocks, including indirect 
blocks, is printed. 

letc/passwd 
letc/group 

to get user IDs for Is -I and Is -0. 

to get group IDs for Is -I and Is -g. 

Plexus provides a standalone version of Is in addition to the one that runs under Sys3. 

SEE ALSO 
chmod(1), find(1). 

BUGS 
The "-g" and "-0" options are incompatible. 

July 9, 1984 Page 2 



M4(1) M4(1) 

NAME 
m4 - macro processor 

SYNOPSIS 
m4 [ options ] [ files ] 

DESCRIPTION 

Page 1 

M4 is a macro processor intended as a front end for Ratfor, C, and other languages. Each of 
the argument files is processed in order; if there are no files, or if a file name is -, the standard 
input is read. The processed text is written on the standard output. 

The options and their effects are as follows: 

-e Operate interactively. Interrupts are ignored and the output is unbuffered. Using this 
mode requires a special state of mind. 

-s Enable line sync output for the C preprocessor (#Iine ... ) 

-Bint Change the size of the push-back and argument collection buffers from the default of 
4,096. 

-Hint Change the size of the symbol table hash array from the default of 199. The size should 
be prime. 

-Sint Change the size of the call stack from the default of 100 slots. Macros take three slots, 
and non-macro arguments take one. 

-Tint Change the size of the token buffer from the default of 512 bytes. 

To be effective, these flags must appear before any file names and before any -0 or -U flags: 

-Oname[ =va/] ~ 
Defines name to valor to null in val's absence. . J 

-Uname 
undefines name. 

Macro calls have the form: 

name(arg1,arg2, ... , argn) 

The ( must immediately follow the name of the macro. If a defined macro name is not followed 
by a (, it is deemed to have no arguments. Leading unquoted blanks, tabs, and new-lines are 
ignored while collecting arguments. Potential macro names consist of alphabetic letters, digits, 
and underscore _, where the first character is not a digit. 

Left and right single quotes are used to quote strings. The value of a quoted string is the string 
stripped of the quotes. 

When a macro name is recognized, its arguments are collected by searching for a matching 
right parenthesis. Macro evaluation proceeds normally during the collection of the arguments, 
and any commas or right parentheses which happen to turn up within the value of a nested call 
are as effective as those in the Original input text. After argument collection, the value of the 
macro is pushed back onto the input stream and rescanned. 

M4 makes available the following built-in macros. They may be redefined, but once this is done 
the original meaning is lost. Their values are null unless otherwise stated. 

define the second argument is installed as the value of the macro whose name is the first 
argument. Each occurrence of $n in the replacement text, where n is a digit, is 
replaced by the n-th argument. Argument ° is the name of the macro; missing 
arguments are replaced by the null string; $# is replaced by the number of argu­
ments; $. is replaced by a list of all the arguments separated by commas; $a is 

January 20, 1984 



M4(1) 

undefine 

defn 

pushdef 

popdef 

ifdef 

shift 

changequote 

like $*, but each argument is quoted (with the current quotes). 

removes the definition of the macro named in its argument. 

M4(1) 

returns the quoted definition of its argument(s). It is useful for renaming macros, 
especially built-ins. 

like define, but saves any previous definition. 

removes current definition of its argument(s), exposing the previous one if any. 

if the first argument is defined, the value is the second argument, otherwise the 
third. If there is no third argument, the value is null. The word unix is predefined 
on UNIX versions of m4. 

returns all but its first argument. The other arguments are quoted and pushed 
back with commas in between. The quoting nullifies the effect of the extra scan 
that will subsequently be performed. 

change quote symbols to the first and second arguments. The symbols may be up 
to five characters long. Changequote without arguments restores the original 
values (Le., \ '). 

changecom change left and right comment markers from the default #- and new-line. With no 
arguments, the comment mechanism is effectively disabled. With one argument, 
the left marker becomes the argument and the right marker becomes neW-line. 
With two arguments, both markers are affected. Comment markers may be up to 
five characters long. 

divert m4 maintains 10 output streams, numbered 0-9. The final output is the concate­
nation of the streams in numerical order; initially stream 0 is the current stream. 
The divert macro changes the current output stream to its (digit-string) argument. 
Output diverted to a stream other than 0 through 9 is discarded. 

undivert 

divnum 

dnl 

ifelse 

incr 

deer 

eval 

len 

index 

causes immediate output of text from diversions named as arguments, or all diver­
sions if no argument. Text may be undiverted into another diversion. Undiverting 
discards the diverted text. 

returns the value of the current output stream. 

reads and discards characters up to and including the next new-line. 

has three or more arguments. If the first argument is the same string as the 
second, then the value is the third argument. If not, and if there are more than 
four arguments, the process is repeated with arguments 4,5,6 and 7. Otherwise, 
the value is either the fourth string, or, if it is not present, null. 

returns the value of its argument incremented by 1. The value of the argument is 
calculated by interpreting an initial digit-string as a decimal number. 

returns the value of its argument decremented by 1. 

evaluates its argument as an arithmetic expression, using 32-bit arithmetic. 
Operators include +, ., *, I, %, " (exponentiation), bitwise &, I, ", and N; relation­
als; parentheses. Octal and hex numbers may be specified as in C. The second 
argument specifies the radix for the result; the default is 10. The third argument 
may be used to specify the minimum number of digits in the result. 

returns the number of characters in its argument. 

returns the position in its first argument where the second argument begins (zero 
origin), or -1 if the second argument does not occur. 

January 20, 1984 Page 2 



M4(1) 

substr 

M4(1)" 

returns a substring of its first argument. The second argument is a zero origin 
number selecting the first character; the third argument indicates the length of the 
substring. A missing third argument is taken to be large enough to extend to the 
end of the first string. 

trans lit transliterates the characters in its first argument from the set given by the second 
argument to the set given by the third. No abbreviations are permitted. 

include returns the contents of the file named in the argument. 

sinclude is identical to include, except that it says nothing if the file is inaccessible. 

syscmd executes the UNIX command given in the first argument. No value is returned. 

sysval is the return code from the last call to syscmd. 

maketemp fills in a string of XXXXX in its argument with the current process 10. 

m4exit causes immediate exit from m4. Argument 1, if given, is the exit code; the default 
is O. 

m4wrap argument 1 will be pushed back at final EOF; example: m4wrap(' cleanup() ') 

errprint 

dumpdef 

traceon 

traceoff 

prints its argument on the diagnostic output file. 

prints current names and definitions, for the named items, or for all if no arguments 
are given. 

with no arguments, turns on tracing for all macros (including built-ins). Otherwise, 
turns on tracing for named macros. 

turns off trace globally and for any macros specified. Macros specifically traced by 
traceon can be untraced only by specific calls to traceoff. 

SEE ALSO 
The M4 Macro Processor by B. W. Kernighan and O. M. Ritchie. 

Page 3 January 20, 1984 

~. 

~--



r 
MAIL(1) MAIL(1) . 

NAME 
mail, rmail - send mail to users or read mail 

SYNOPSIS 
mail [ -rpq ] [ -f file ] 

mail persons 

rmail persons 

DESCRIPTION 

Page 1 

Mail without arguments prints a user's mail, message-by-message, in last-in, first-out order. 
For each message, the user is prompted with a ?, and a line is read from the standard input to 
determine the disposition of the message: 

<new-line> Go on to next message. 
+ Same as <new-line>. 
d Delete message and go on to next message. 
p Print message again. 

Go back to previous message. 
s [ files] Save message in the named files (mbox is default). 
w [files] Save message, without its header, in the named files (mbox is default). 
m [persons] Mail the message to the named persons (yourself is default). 
q Put undeleted mail back in the mailfile and stop. 
EOT (control-d) Same as q. 
x Put all mail back in the mailfile unchanged and stop. 
!command Escape to the shell to do command. 
• Print a command summary. 

The optional arguments alter the printing of the mail: 

-r causes messages to be printed in first-in, first-out order. 
-p causes all mail to be printed without prompting for disposition. 
-q causes mail to terminate after interrupts. Normally an interrupt only causes the termina-

tion of the message being printed. 
-ffile causes mail to use file (e.g., mbox) instead of the default mai/file. 

When persons are named, mail takes the standard input up to an end-of-file (or up to a line 
consisting of just a .) and adds it to each person's mailfile. The message is preceded by the 
sender's name and a postmark. Lines that look like postmarks in the message, (Le., "From ... ") 
are preceded with a >. A person is usually a user name recognized by login(1). If a person 
being sent mail is not recognized, or if mail is interrupted during input, the dead.letter will be 
saved to allow editing and resending. 

To denote a reCipient on a remote system, prefix person by the system name and exclamation 
mark (see uucp(1C». Everything after the first exclamation mark in persons is interpreted by 
the remote system. In particular, if persons contains additional exclamation markl?, it can 
denote a sequence of machines through which the message is to be sent on the way to its ulti­
mate destination. For example, specifying a!b!cde as a recipient's name causes the message 
to be sent to user b!cde on system a .. System a will interpret that destination as a request to 
send the message to user cde on system b. This might be useful, for instance, if the sending 
system can access system a but not system b, and system a has access to system b. 

The mailfile may be manipulated in two ways to alter the function of mail. The other permis­
sions of the file may be read-write, read-only, or neither read nor write to allow different levels 
of privacy. If changed to other than the default, the file will be preserved even when empty to 
perpetuate the desired permissions. The file may also contain the first line: 

January 20, 1984 



MAll(1) MAll(1 ) 

FILES 

Forward to person 

which will cause all mail sent to the owner of themailfiletobeforwardedtoperson.This is 
especially useful to forward all of a person's mail to one machine in a multiple machine environ­
ment. 

Rmail only permits the sending of mail; uucp(1 C) uses rmail as a security precaution. 

When a user logs in he is informed of the presence of mail. if any. 

/etc/passwd 
/usr/mail/ • 
$HOMEImbox 
$MAIL 
Itmp/ma. 
lusr/maiV • .lock 
dead. letter 

to identify sender and locate persons 
incoming mail for user .; mai/file 
saved mail 
mailfile 
temporary file 
lock for mai I di rectory 
unmailable text 

SEE ALSO 
login(1). uucp(1 C). write(1). 

BUGS 
Race conditions sometimes result in a failure to remove a lock file. 
After an interrupt, the next message may not be printed; printing may be forced by typing a p. 

January 20, 1984 Page 2 



MAKE(1) MAKE(1 ) 

NAME 
make - maintain, update, and regenerate groups of programs 

SYNOPSIS 

make [-f makefile] [-p] [-i) [-k] [-5] far] [an] [-b) [-e) [am] [at] [-q] [-d) [names] 

DESCRIPTION 

Page 1 

The following is a brief description of all options and some special names: 

-f makefile Description file name. Makefile is assumed to be the name of a description file. A 
file name of - denotes the standard input. The contents of makefile override the 
built-in rules if they are present. 

-p Print out the complete set of macro definitions and target descriptions. 

-i Ignore error codes returned by invoked commands. This mode is entered if the fake 
target name .IGNORE appears in the description file. 

-k Abandon work on the current entry, but continue on other branches that do not 
depend on that entry. 

-5 Silent mode. Do not print command lines before executing. This mode is also 
entered if the fake target name .SILENT appears in the description file. 

-r Do not use the built-in rules. 

-n No execute mode. Print commands, but do not execute them. Even lines beginning 
with an @ are printed. 

-b Compatibility mode for old makefiles. 

-e Environment variables override assignments within makefiles. 

-m Print a memory map showing text, data, and stack. This option is a no-operation on 
systems without the getu system call. 

-t Touch the target files (causing them to be up-to-date) rather than issue the usual 
commands. 

-d Debug mode. Print out detailed information on files and times examined. 

-q Question. The make command returns a zero or non-zero status code depending 
on whether the target file is or is not up-tO-date . 

• DEFAUL T If a file must be made but there are no explicit commands or relevant built-in rules, 
the commands associated with the name .DEFAULT are used if it exists . 

• PRECIOUS Dependents of this target will not be removed when quit or interrupt are hit. 

.SILENT Same effect as the -5 option . 

• IGNORE Same effect as the -j option. 

Make executes commands in makefile to update one or more target names. Name is typically 
a program. If no -f option is present, makefile, MakefUe, s.makefile, and s.Makefile are tried 
in order. If makefile is -, the standard input is taken. More than one -f makefile argument pair 
may appear. 

Make updates a target only if it depends on files that are newer than the target. All prerequisite 
files of a target are added recursively to the list of targets. Missing files are deemed to be out of 
date. 

Makefile contains a sequence of entries that specify dependenCies. The first line of an entry is 
. a blank-separated, non-null list of targets, then a :, then a (possibly nUll) list of prerequisite files 
or dependencies. Text following a ; and all following lines that begin with a tab are shell 

January 20, 1984 



MAKE(1) MAKE(1 )" 

commands to be executed to update the target. The first line that does not begin with a tab or , 
fI: begins a new dependency or macro definition. Shell commands may be continued across 
lines with the < backs lash > <new-line> sequence. Sharp (fI:) and new-line surround com-
ments. 

The following make file says that pgm depends on two files a.o and b.o, and that they in turn 
depend on their corresponding source files (a.c and b.c) and a common file incl.h: 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o: incl.h a.c 
cc -c a.c 

b.o: incl.h b.c 
cc -c b.c 

Command lines are executed one at a time, each by its own shell. A line is printed when it is 
executed unless the -s option is present, or the entry .SILENT: is in makefile, or unless the first 
character of the command is O. The -n option specifies printing without execution; however, if 
the command line has the string $(MAKE) in it, the line is always executed (see discussion of 
the MAKEFLAGS macro under Environment). The -t (touch) option updates the modified date of 
a file without executing any commands. 

Commands returning non-zero status normally terminate make. If the -i option is present, or 
the entry .IGNORE: appears in makefiJe, or if the line specifying the command begins with 
<tab> <hyphen>, the error is ignored. If the -k option is present, work is abandoned on the 
current entry, but continues on other branches that do not depend on that entry. 

The -b option allows old makefiles (those written for the old version of make) to run without 
errors. The difference between the old version of make and this version is that this version ~ 
requires all dependency lines to have a (possibly nUll) command associated with them. The pre-" 
vious version of make assumed if no command was specified explicitly that the command was 
null. 

Interrupt and quit cause the target to be deleted unless the target depends on the special name 
.PRECIOUS. 

Environment 
The environment is read by make. All variables are assumed to be macro definitions and pro­
cessed as such. The environment variables are processed before any makefile and after the 
internal rules; thus, macro assignments in a makefile override environment variables. The-e 
option causes the environment to override the macro assignments in a makefile. 

The MAKEFLAGS environment variable is processed by make as containing any legal input 
option (except -f, -p, and -d) defined for the command line. Further, upon invocation, make 
"invents" the variable if it is not in the environment, puts the current options into it, and passes it 
on to invocations of commands. Thus, MAKEFLAGS always contains the current input options. 
This proves very useful for "super-makes". In fact, as noted above, when the -n option' is used, 
the command $(MAKE) is executed anyway; hence, one can perform a make -n recursively on a 
whole software system to see what would have been executed. This is because the -n is put in 
MAKEFLAGS and passed to further invocations of $(MAKE). This is one way of debugging all of 
the makefiles for a software project without actually doing anything. 

Macros 
Entries of the form string1 = string2 are macro definitions. Subsequent appearances of 
$(string1 [:subst1 =[subst2]]) are replaced by string2. The parentheses are optional if a single 
character macro name is' used and there is no substitute sequence. The optional 
:subst1 =subst2 is a substitute sequence. If it is specified, all non-overlapping occurrences of ~ 
subst1 in the named macro are replaced by subst2. Strings (for the purposes of this type of 

January 20, 1984 Page 2 



MAKE(1) MAKE(1) . 

substitution) are delimited by blanks, tabs, new-line characters, and beginnings of lines. An 
example of the use of the substitute sequence is shown under Ubraries. 

Internal Macros 
There are five internally maintained macros which are useful for writing rules for building targets. 

$. The macro $. stands for the file name part of the current dependent with the suffix 
deleted. It is evaluated only for inference rules. 

$@ The $@ macro stands for the full target name of the current target. It is evaluated only for 
explicitly named dependencies. 

$< The $< macro is only evaluated for inference rules or the .DEFAULT rule. It is the module 
which is out of date with respect to the target (i.e., the "manufactured" dependent file 
name). Thus, in the .c.o rule, the $< macro would evaluate to the .c file. An example for 
making optimized .0 files from .e files is: 

.c.o: 

or: 

.c.o: 
cc -s -0 $< 

$? The $? macro is evaluated when explicit rules from the makefile are evaluated. It is the 
list of prerequisites that are out of date with respect to the target; essentially, those 
modules which must be rebuilt. 

$% The $% macro is only evaluated when the target is an archive library member of the form 
lib(file.o). In this case, $@ evaluates to lib and $% evaluates to the library member, 
file.o. 

Four of the five macros can have alternative forms. When an upper case 0 or F is appended to 
any of the four macros the meaning is changed to "directory part" for 0 and "file part" for F. 
Thus, $(00) refers to the directory part of the string $@. If there is no directory part, The only 
macro excluded from this alternative form is $? The reasons for this are debatable. 

Suffixes 

Page 3 

Certain names (for instance, those ending with .0) have inferable prerequisites such as .c, .5, 
etc. If no update commands for such a file appear in makefile, and if an inferable prerequisite 
exists, that prerequisite is compiled to make the target. In this case, make has inference rules 
which allow building files from other files by examining the suffixes and determining an appropri­
ate inference rule to use. The current default inference rules are: 

.c .cN .sh .shN .C.o .cN.o .cN.c .S.o .SN.O .y.o .yN.O .1.0 r.o 

.y.c .yN.C .I.c .c.a .cN.a .SN.a .hN.h 

The internal rules for make are contained in the source file rules.c for the make program. 
These rules can be locally modified. To print out the rules compiled into the make' on any 
machine in a form suitable for recompilation, the following command is used: 

make -fp - 2>/dev/null </dev/null 

The only peculiarity in this output is the (null) string which printf(3S) prints when handed a null 
string. 

A tilde in the above rules refers to an sees file (see sccsfile(5)). Thus, the rule .c-.o would 
transform an sees C source file into an object file (.0). Because the s. of the sees files is a 
prefix it is incompatible with make's suffix point-of-view. Hence, the tilde is a way of changing 
any file reference into an sees file reference. 

January 20, 1984 



MAKE(1) MAKE(1 ) 

A rule with only one suffix (i.e .• c:) is the definition of how to build x from x.c. In effect, the ~ 
other suffix is null. This is useful for building targets from only one source file (e.g., shell pro-
cedures, simple C programs). 

Additional suffixes are given as the dependency list for .SUFFIXES. Order is significant; the first 
possible name for which both a file and a rule exist is inferred as a prerequisite. 

The default list is: 

.SUFFIXES: .0 .c .y .1 .s 

Here again, the above command for printing the internal rules will display the list of suffixes 
implemented on the current machine. Multiple suffix lists accumulate; .SUFFIXES: with no 
dependencies clears the list of suffixes. 

Inference Rules 
The first example can be done more briefly: 

pgm: a.o b.o 
cc a.o b.o -0 pgm 

a.o b.o: incl.h 

This is because make has a set of internal rules for building files. The user may add rules to 
this list by simply putting them in the makefile. 

Certain macros are used by the default inference rules to permit the inclusion of optional matter 
in any resulting commands. For example, CFLAGS, LFLAGS, and YFLAGS are used for compiler 
options to cc(1), lex(1), and yacc(1) respectively. Again, the previous method for examining 
the current rules is recommended. 

The inference of prerequisites can be controlled. The rule to create a file with suffix .0 from a ~ 
file with suffix .c is specified as an entry with .c.o: as the target and no dependents. Shell com- .....• 
mands associated with the target define the rule for making a .0 file from a .c file. Any target 
that has no slashes in it and starts with a dot is identified as a rule and not a true target. 

Libraries 
If a target or dependency name contains parenthesis, it is assumed to be an archive library, the 
string within parenthesis referring to a member within the library. Thus lib(file.o) and 
$(LlB)(file.o) both refer to an archive library which contains file.o. (This assumes the LIB macro 
has been previously defined.) The expression $(LlB)(file1.o file2.o) is not legal. Rules pertain­
ing to archive libraries have the form .XX.B where the xx is the suffix from which the archive 
member is to be made. An unfortunate byproduct of the current implementation requires the xx 
to be different from the suffix of the archive member. Thus, one cannot have lib(file.o) depend 
upon file.o explicitly. The most common use of the archive interface follows. Here, we assume 
the source files are all C type source: 

lib: lib(file1.0) Iib(file2.o) Iib(file3.0) 
@echo lib is now up to date 

.c.a: 
$(CC) -c $(CFlAGS) $< 
ar rv $@ $*.0 
rm -f $*.0 

In fact, the .C.B rule listed above is built into make and is unnecessary in this example. A more 
interesting, but more limited example of an archive library maintenance construction follows: 

lib: lib(file1.0) Iib(file2.0) Iib(file3.0) 
$(CC) -c $(CFlAGS) $(1:.0=.c) 
ar rv lib $1 ~ 
rm $1 @echo lib is now up to date : 

January 20, 1984 Page 4 



MAKE(1) MAKE(1 ) 

FilES 

.c.a:; 

Here the substitution mode of the macro expansions is used. The $? list is defined to be the 
set of object file names (inside Jib) whose C source files are out of date. The substitution mode 
translates the .0 to .c. (Unfortunately, one cannot as yet transform to .c-; however, this may 
become possible in the future.) Note also, the disabling of the .c.a: rule, which would have 
created each object file, one by one. This particular construct speeds up archive library mainte­
nance considerably. This type of construct becomes very cumbersome if the archive library 
contains a mix of assembly programs and C programs. 

[Mm]akefiIe 
s.[Mm]akefile 

SEE ALSO 
sh(1), mk(8). 
Make-A Program for Maintaining Computer Programs by S. I. Feldman. 
An Augmented Version of Make by E. G. Bradford. 

DIAGNOSTICS 

BUGS 

PageS 

The message "$! nulled, predecessor circle" means the makefile has a circular dependency 
chain. 

Some commands return non-zero status inappropriately; use -i to overcome the difficulty. Com­
mands that are directly executed by the shell, notably cd(1), are ineffectual across new-lines in 
make. The syntax (lib(file1.0 file2.0 file3.0) is illegal. You cannot build lib(file.o) from file.o. 
The macro $(a:.o=.c-) doesn't work. 

January 20. 1984 



MAN(1) MAN(1 ) 

NAME 
man - print entries in this manual 

SYNOPSIS 
man [ options ] [ section ] titles 

DESCRIPTION 

Page 1 

Man locates and prints the entry of this manual named title in the specified section. (For histor­
ical reasons, the word "page" is often used as a synonym for "entry" in this context.) The title 
is entered in lower case. The section number may not have a letter suffix. If no section is 
specified, the whole manual is searched for title and all occurrences of it are printed. Options 
and their meanings are: 

-t Typeset the entry in the default format (8.5' . X 11 ' '). 
-5 Typeset the entry in the small format (6' 'x9' '). 
-T4014 Display the typeset output on a Tektronix 4014 terminal using tc(1). 
-Ttek Same as -T4014. 
-Tst Print the typeset output on the MHCC STARE facility (see gcat(1C)). 
-Tvp Print the typeset output on a Versatec printer using vpr(1); this option is not avail-

able at all UNIX sites. 
-Tterm Format the entry using nroff(1) and print it on the standard output (usually, the ter­

minal); term is the terminal type (see term(?) and the explanation below); for a list 
of recognized values of term, type help term2. The default value of term is 450. 

-w Print on the standard output only the path names of the entries, relative to 
/usr/man, or to the current directory for -d option. 

-d Search the current directory rather than /usr/man; requires the full file name (e.g., 
cu.1 c, rather than just cu). 

-12 Indicates that the manual entry is to be produced in 12-pitch. May be used when .~ 
STERM (see below) is set to one of 300, 3005, 450, and 1620. (The pitch switch on 
the DASI 300 and 300s terminals must be manually set to 12 if this option is used.) 

-c Causes man to invoke co/(1); note that col(1) is invoked automatically by man 
unless term is one of 300,3005,450,37, 4000A, 382, 4014, tek, 1620, and X. 

-y Causes man to use the non-compacted version of the macros. 

The above options are mutually exclusive, except that the -5 option may be used in conjunction 
with the first four -T options above. Any other options are passed to troff(1), nroff(1), or the 
mane?) macro package. 

When using nroff(1), man examines the environment variable STERM (see environ(?» and 
attempts to select options to nroff(1), as well as filters, that adapt the output to the terminal 
being used. The -Tterm option overrides the value of STERM; in particular, one should use -Tip 
when sending the output of man to a line printer. 

Section may be changed before each title. 

As an example: 

man man 

would reproduce on the terminal this e.ntry, as well as any other entries named man that may 
exist in other sections of the manual, e.g., mane?). 

If the first line of the input for an entry consists solely of the string: 

'\ a X 

where x is any combination of the three characters c, e, and t, and where there is exactly one 
blank between the double quote (") and x, then man will preprocess its input through the 
appropriate combinatipn of cw(1), eqn(1) or neqn(1), and tbl(1), respectively. 

January 20,1984 



MAN(1) 

FILES 
lusr/manlman[1-8]1 * 
lusr/manilocaVman[1-8]1 * 

SEE ALSO 
cw(1), eqn(1), gcat(1C), tbl(1), tc(1), troff(1), environ(7), man(7), term(7). 

BUGS 

MAN(1 ) 

All entries are supposed to be reproducible either on a typesetter or on a terminal. However, on 
a terminal some information is necessarily lost. 

January 20, 1984 Page 2 



MESG(1 ) 

NAME 
mesg • permit or deny messages 

SYNOPSIS 
mesg[n][y] 

DESCRIPTION 

MESG(1) 

Mesg with argument n forbids messages via write(1) by revoking non-user write permission on 
the user's terminal. Mesg with argument y reinstates permission. All by itself, mesg reports' 
the current state without changing it. 

FilES 
Idev/tty. 

SEE ALSO 
write(1). 

DIAGNOSTICS 
Exit status is a if messages are receivable, 1 if not, 2 on error. 

Page 1 . January 20,1984 



MKDIR(1) 

NAME 
mkdir - make a directory 

SYNOPSIS 
mkdir dirname ... 

DESCRIPTION 

MKDIR(1) 

Mkdir creates specified directories in mode 777. Standard entries, ., for the directory itself, and 
•• , for its parent, are made automatically. 

Mkdir requires write permission in the parent directory. 

SEE ALSO 
rm(1). 

DIAGNOSTICS 
Mkdir returns exit code 0 if all directories were successfully made; otherwise, it prints a diagnos­
tic and returns non-zero. 

Page 1 January 20, 1984 



MKFS(1M) MKFS(1M)" 

NAME 
mkfs - construct a file system 

SYNOPSIS 
latc/mlds special blocks[:inodes] [gap blocks] 
latc/mlds special proto [gap blocks] 

DESCRIPTION 

NOTES 

Page 1 

Mkfs constructs a file system by writing on the special file according to the directions found in 
the remainder of the command line. If the second argument is given as a string of digits, mkfs 
builds a file system with a single empty directory on it. The size of the file system is the value of 
blocks interpreted as a decimal number. The boot program is left uninitialized. If the optional 
number of inodes is not given, the default is the number of blocks divided by 4. 

If the second argument is a file name that can be opened, mkfs assumes it to be a prototype file 
proto, and will take its directions from that file. The prototype file contains tokens separated by 
spaces or neW-lines. The first token is the name of a file to be Copied onto block zero as the 
bootstrap program. The second token is a number specifying the size of the created file sys­
tem. Typically it will be the number of blocks on the device, perhaps diminished by space for 
swapping. The next token is the number of i-nodes in the created file system. The next set of 
tokens comprise the specification for the root file. File specifications consist of tokens giving the 
mode, the user 10, the group 10, and the initial contents of the file. The syntax of the contents 
field depends on the mode. 

The mode token for a file is a 6 character string. The first character specifies the type of the 
file. (The characters -bed specify regular, block special, character special and directory files 
respectiv~ly.) The second character of the type is either u or - to specify set-user-id mode or 
not. The third is 9 or - for the set-group-id mode. The rest of the mode is a three digit octal 
number giving the owner, group, and other read, write, execute permissions (see chmod(1». ~ 
Two decimal number tokens come after the mode; they specify the user and group 10's of the 
owner of the file. 

If the file is a regular file, the next token is a path name whence the contents and size are 
copied. If the file is a block or character special file, two decimal number tokens follow which 
give the major and minor device numbers. If the file is a directory, mkfs makes the entries 0 

and 00 and then reads a list of names and (recursively) file specifications for the entries in the 
directory. The scan is terminated with the token $. 

A sample prototype specification follows: 

Istandldiskboot 
4872110 
d--77731 
usr d--777 3 1 

sh ---7553 1 lbinlsh 
ken d--7556 1 

$ 
bO b--644 3 1 0 0 
cO c--644 3 1 0 0 
$ 

$ 

In both command syntaxes, the rotational gap and the number of blocks can be specified. 

Plexus provides a standalone version of mkfs in addition to the one that runs under Sys3. 

Be sure you have done a mknod(1) for the special device before you run mkfs. 

~une 21, 1984 



MKFS(1M) MKFS(1M) 

Because fsck(1 M) cannot check very large file systems, it is recommended that file system 
sizes on Z8000 systems not exceed 68K blocks. On MC68000 systems, they should not exceed 
140K blocks. 

SEE ALSO 

BUGS 

fsck(1 M), dir(5), fs(5). 

If a prototype is used, it is not possible to initialize a file larger than 64K bytes, nor is there a 
way to specify links. 

Since lines beginning with a colon (:) are treated as comments, there is no way to specify a file 
name whose first character is a colon. 

June 21, 1984 Page 2 



MKNOD(1M) MKNOD(1M) 

NAME 
mknod - build special file 

SYNOPSIS 
letc/mknod name [ c ] [ b ] major minor 
letc/mknod name p 

DESCRIPTION 
Mknod makes a directory entry and corresponding i-node for a special file. The first argument 
is the name of the entry. In the first case, the second is b if the special file is block-type (disks, 
tape) or c if it is character-type (other devices). The last two arguments are numbers specifying 
the mapr device type and the minor device (e.g. unit, drive, or line number), which may be 
either decimal or octal. 

The assignment of major device numbers is specific to each system. They have to be dug out 
of the system source file conf.c. 

Mknod can also be used to create fifo's (a.k.a named pipes) (second case in SYNOPSIS above). 

SEE ALSO 
mknod(2). 

Page 1 January 20, 1984 



MKSTR(1) (Plexus) MKSTR(1) 

NAME 
mkstr· create an error message file by massaging C source 

SYNOPSIS 
lusr/plxlmkstr [ • ] messagefile prefix file ... 

DESCRIPTION 

NOTES 

Mkstr is used to create files of error messages. Its use can reduce the size of programs with 
large numbers of error diagnostics. It can also reduce system overhead in running the program, 
since the error messages do not have to be constantly swapped in and out. 

Mkstr will process each of the specified files, placing a massaged version of the input file in a 
file whose name consists of the specified prefix and the original name. A typical usage of mkstr 
would be 

mkstr pistrings xx *.c 

This command would cause all the error messages from the C source files in the current direc­
tory to be placed in the file pistrings and processed copies of the source for these files to be 
placed in files whose names are prefixed with xx. 

To process the error messages in the source to the message file mkstr keys on the string 
'error(", in the input stream. Each time it occurs, the C string starting at the ;,,' is placed in the 
message file followed by a null character and a new-line character; the null character terminates 
the message so it can be easily used when retrieved, and the new-line character makes it pos­
sible to sensibly oat the error message file to see its contents. The massaged copy of the input 
file then contains a Iseek pointer into the file. The painter can then be used to retrieve the mes­
sage, i.e.: 

char efilname[] = "iusrllib/pi_strings"; 
int efil = -1; 

error(a1, a2, a3, a4) 
{ 

oops: 

} 

char buf[256]; 

if (efil < 0) { 
efil = open(efilname, 0); 
if (efil < 0) { 

} 
} 

perror(etilname); 
exit(1); 

if (lseek(efil, (long) a1, 0) II read(efil, but, 256) < = 0) 
goto oops; 

printf(buf, a2, a3, a4); 

The optional· causes the error messages to be placed at the end of the specified message file 
for recompiling part of a large mkstr ed program. 

This program is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
Iseek(2), xstr(1) 

Page 1 January 20, 1984 



MKSTR(1 ) (Plexus) MKSTR(1) . 

BUGS 
All the arguments except the name of the file to be pl'~essed are unnecessary. 

January 20, 1984 Page 2 



MM(l) MM(1 ) 

NAME 
mm - print out documents formatted with the MM macros 

SYNOPSIS 
mm [ options] [ files] 

DESCRIPTION 

HINTS 

Page 1 

Mm can be used to type out documents using nroff(l) and the MM text-formatting macro pack­
age. It has options to specify preprocessing by tbl(1) and/or neqn(1) and postprocessing by 
various terminal-oriented output filters. The proper pipelines and the required arguments and 
flags for nroff(1) and MM are generated, depending on the options selected. 

Options for mm are given below. Any other arguments or flags (e.g., -rC3) are passed to 
nroff(1) or to MM, as appropriate. Such options can occur in any order, but they must appear 
before the files arguments. If no arguments are given, mm prints a list of its options. 

-Tterm Specifies the type of output terminal; for a list of recognized values for term, type help 
term2. If this option is not used, mm will use the value of the shell variable STERM 
from the environment (see profile(5) and environ(7» as the value of term, if STERM is 
set; otherwise, mm will use 450 as the value of term. If several terminal types are 
specified, the last one takes precedence. 

-12 Indicates that the document is to be produced in 12-pitch. May be used when STERM 
is set to one of 300, 300s, 450, and 1620. (The pitch switch on the DASI 300 and 
300s terminals must be manually set to 12 if this option is used.) 

-c Causes mm to invoke col(1); note that col(1) is invoked automatically by mm unless 
term is one of 300, 300s, 450, 37, 4000A, 382, 4014, tek, 1620, and X. 

-e Causes mm to invoke neqn(1). 
-t Causes mm to invoke tbl(1). 
-E Invokes the -e option of nroff(1). 
-y Causes mm to use the non-compacted version of the macros (see mm(7». 

As an example (assuming that the shell variable STERM is set in the environment to 450), the 
two command lines below are equivalent: 

mm -t -rC3 -12 ghh* 
tbl ghh* I nrott -cm -T4S0-12 -h -rC3 

Mm reads the standard input when - is specified instead of any file names. (Mentioning other 
files together with - leads to disaster.) This option allows mm to be used as a filter, e.g.: 

1. 

2. 

3. 

4. 

cat dws I mm -

Mm invokes nroff(1) with the -h flag. With this flag, nroff(1) assumes that the terminal 
has tabs set every 8 character positions. 
Use the -olist option of nroff(1) to specify ranges of pages to be output. Note, however, 
that mm, if invoked with one or more of the -e, -t, and - options, together with the -olist 
option of nroff(1) may cause a harmless "broken pipe" diagnostic if the last page of the 
document is not specified in list. 
If you use the -s option of nrQff(1) (to stop between pages of output), use line-feed 
(rather than return or new-line) to restart the output. The -s option of nroff(1) does not 
work with the -c option of mm, or if mm automatically invokes co/(1) (see -c option 
above). 
If you lie to mm about the kind of terminal its output will be printed on, you'll get (often 
subtle) garbage; however, if you are redirecting output into a file, use the -T37 option, 
and then use the appropriate terminal filter when you actually print that file. 

January 20, 1984 



MM(1) 

SEE ALSO 
col(1). env(1). eqn(1). greek(1). mmt(1), nroff(1). tbl(1), profile(5). mm(7). term(7). 
MM-Memorandum Macros by O. W. Smith and J. R. Mashey. 
Typing Documents with MM by O. W. Smith and E. M. Piskorik. 

DIAGNOSTICS 

MM(1) 

"mm: no input file" if none of the arguments is a readable file and mm is not used as a filter. 

January 20. 1984 Page 2 



MMCHEK(1) MMCHEK(1 ) 

NAME 
mmchek - check usage of mm macros and eqn delimiters 

SYNOPSIS 
mmchek [files] 

DESCRIPTION 
Mmchek is a program for checking the contents of the named files for errors in the use of 
Memorandum Macros (see mm(1)) and some eqn(1) constructions. Appropriate messages are 
produced. The program skips all directories, and if no file name is given, standard input is read. 

SEE ALSO 
eqn(1), mm(1), mmt(1). 
MM-Memorandum Macros by D. W. Smith and J. R. Mashey. 

DIAGNOSTICS 

BUGS 

Page 1 

Unreadable files cause the message "Cannot open file-name". The remaining output of the pro­
gram is diagnostic of the source file. 

This is an experimental version of mmchek. Mmchek may be fully supported in the future. 

January 20, 1984 



MMT(1) MMT(1) . 

NAME 
mmt, mvt - typeset documents, view graphs, and slides 

SYNOPSIS 
mmt [ options ] [ files ] 

mvt [ options ] [ files ] 

DESCRIPTION 

HINT 

These two commands are very similar to mm(1), except that they both typeset their input via 
troff(1), as opposed to formatting it via nroff(1); mmt uses the MM macro package, while mvt 
uses the Macro Package for View Graphs and Slides. These two commands have options to 
specify preprocessing by tb/(1) and/or eqn(1). The proper pipelines and the required arguments 
and flags for troff(1) and for the macro packages are generated, depending on the options 
selected. 

Options are given below. Any other arguments or flags (e.g., -rC3) are passed to troff(1) or to 
the macro package, as appropriate. Such options can occur in any order, but they must appear 
before the files arguments. If no arguments are given, these commands print a list of their 
options. 

-e 
-t 
-Tst 
-Tvp 

-T4014 
-Ttek 
-a 
-y 

Causes these commands to invoke eqn(1). 
Causes these commands to invoke tb/(1). 
Directs the output to the MH STARE facility. 
Directs the output to a Versatec printer via the vpr(1) spooler; this option is not avail­
able at all UNIX sites. 
Directs the output to a Tektronix 4014 terminal via the tc(1) filter. 
Same as -T4014. 
Invokes the -a option of troff(1). 
Causes mmt to use the non-compacted version of the macros (see mm(7)). No 
effect for mvt. 

These commands read the standard input when - is specified instead of any file names. 

Mvt is just a link to mmt. 

Use the -olist option of troff(1) to specify ranges of pages to be output. Note, however, that 
these commands, if invoked with one or more of the -e, -t, and - options, together with the -a/ist 
option of troff(1) may cause a harmless "broken pipe" diagnostic if the last page of the docu­
ment is not specified in list. 

SEE ALSO 
env(1), eqn(1), mm(1), tbl(1), tc(1), troff(1), profile(5), environ(7), mm(7), mv(7). 
MM-Memorandum Macros by D. W. Smith and J. R. Mashey. 
Typing Documents with MM by D. W. Smith and E. M. Piskorik. 
A Macro Package for View Graphs and Slides by T. A. Dolotta and D. W. Smith (in prepara­
tion). 

DIAGNOSTICS 

Page 1 

"m[mv]t: no input file" if none of the arguments is a readable file and the command is not used 
as a filter. 

January 20, 1984 



MORE(1) (Plexus) MORE(1 )" 

NAME 
more, page - file perusal filter for crt viewing 

SYNOPSIS 
lusr/plxlmore [ -d ] [ ·f ] [ ·1 ] [ ·n ] [ +linenumber ] [ +1 pattern ] [ name ... 

page [ -d ] [ ·f ] [ ·1 ] [ ·n ] [ +linenumber ] [ +Ipattern ] [ name ... ] 

DESCRIPTION 
More is a filter that allows examination of a continuous text one screenful at a time on a soft­
copy terminal. It normally pauses after each screenful, printing --More-- at the bottom of the 
screen. If the user then types a carriage return, one more line is displayed. If the user hits a 
space, another screenful is displayed. Other possibilites are enumerated later. 

The command line options are: 

-n An integer that is the size (in lines) of the window that more will use instead of the 
default. 

-d More will prompt the user with the message "Hit space to continue, Rubout to abort" at 
the end of each screenful. This is useful if more is being used as a filter in some set­
ting, such as a class, where many users may be unsophisticated. 

-f 

·1 

This causes more to count logical, rather than screen lines. That is, long lines are not 
folded. This option is recommended if nroff output is being piped through ul, since the 
latter may generate escape sequences. These escape sequences contain characters 
which would ordinarily occupy screen postions, but which do not print when they are 
sent to the terminal as part of an escape sequence. Thus more may think that lines are 
longer than they actually are, and fold lines erroneously. 

Do not treat AL (form feed) specially. If this option is not given, more will pause after 
any line that contains a AL, as if the end of a screenful had been reached. Also, if a file 
begins with a form feed, the screen will be cleared before the file is printed. 

+Iinenumber 
Start up at linenumber. 

+Ipattern 
Start up two lines before the line containing the regular expression pattern. 

If the program is invoked as page, then the screen is cleared before each screenful is printed 
(but only if a full screenful is being printed), and k - 1 rather than k - 2 lines are printed in each 
screenful, Where k is the number of lines the terminal can display. 

More looks in the file letcltermcap to determine terminal characteristics, and to determine the 
default window size. On a terminal capable of displaying 24 lines, the default window size is 22 
lines. 

If more is reading from a file, rather than a pipe, then a percentage is displayed along with the 
--More-- prompt. This gives the fraction of the file (in characters, not lines) that has been read 
so far. 

Other sequences which may be typed when more pauses, and their effects, are as follows (i is 
an optional integer argument, defaulting to 1) : 

i <space> 
display i more lines, (or another screenful if no argument is given) 

AD display 11 more lines (a "scroll"). If i is given, then the scroll size is set to i. r d same as AD (control-D) 

Page 1 January 20, 1984 



MORE(1) (Plexus) MORE(1 ) 

iz same as typing a space except that i, if present, becomes the new window size. 

is skip i lines and print a screenful of lines 

if skip i screenfuls and print a screenful of lines 

q or a Exit from more. 

v 

h 

i/expr 

in 

Display the current line number. 

Start up the editor vi at the current line. 

Help command; give a description of all the more commands. 

search for the i -th occurrence of the regular expression expr. If there are less than i 
occurrences of expr, and the input is a file (rather than a pipe), then the position in the 
file remains unchanged. Otherwise, a screenfulis displayed, starting two lines before 
the place where the expression was found. The user's erase and kill characters may be 
used to edit the regular expression. Erasing back past the first column cancels the 
search command. 

search for the i -th occurrence of the last regular expression entered. 

(single quote) Go to the point from which the last search started. If no search has been 
performed in the current file, this command goes back to the beginning of the file. 

!command 

i:n 

invoke a shell with command. The characters '%' and '!' in "command" are replaced 
with the current file name and the previous shell command respectively. If there is no 
current file name, '%' is not expanded. The sequences "\%" and "\!" are replaced by 
"%" and "!" respectively. 

skip to the i -th next file given in the command line (skips to last file if n doesn't make 
sense) 

i:p skip to the i -th previous file given in the command line. If this command is given in the 
middle of printing out a file, then more goes back to the beginning of the file. If i doesn't 
make sense, more skips back to the first file. If more is not reading from a file, the bell 
is rung and nothing else happens. 

:f display the current file name and line number. 

:qor :0 
exit from more (same as q or a). 
(dot) repeat the previous command. 

The commands take effect immediately, i.e., it is not necessary to type a carriage return. Up to 
the time when the command character itself is given, the user may hit the line kill character to 
cancel the numerical argument being formed. In addition, the user may hit the erase character 
to redisplay the --More--(xx%) message. . 

At any time when output is being sent to the terminal, the use-r can hit the quit key (normally 
control-\). More will stop sending output, and will display the usual --More-- prompt. The user 
may then enter one of the above commands in the normal manner. Unfortunately, some output 
is lost when this is done, due to the fact that any characters waiting in the terminal's output 
queue are flushed when the quit signal occurs. 

The terminal is set to noecho mode by this program so that the output can be continuous. What 
you type will thus not show on your terminal, except for the / and! commands. 

If the standard output is not a teletype, then more acts just like cat, except that a header is ~ 
printed before each file (if there is more than one). 

January 20, 1984 Page 2 



MORE(1) (Plexus) 

FILES 

NOTES 

A sample usage of more in previewing nroff output would be 

nroff -ms +2 doc. n I more 

letc/termcap 
lusr/lib/more.help 

Terminal data base 
Help file 

MORE(1) 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
script(1 ) 

Page 3 January 20. 1984 



MOUNT(1M) MOUNT(1M) . 

NAME 
mount, umount - mount and dismount file system 

SYNOPSIS 
letc/mount [ special directory [ -, ] ] 

letc/umount special 

DESCRIPTION 

FilES 

Mount announces to the system that a removable file system is present on the device special. 
The directory must exist already; it becomes the name of the root of the newly mounted filesys­
tem. 

These commands maintain a table of mounted devices. If invoked with no arguments, mount 
prints the table. 

The optional last argument indicates that the file is to be mounted read-only. Physically write­
protected and magnetic tape file systems must be mounted in this way or errors will occur when 
access times are updated, whether or not any explicit write is attempted. . 

Umount announces to the system that the removable file system previously mounted on device 
special is to be removed. 

letc/mnttab mount table 

SEE ALSO 
mount(2), mnttab(5). 

DIAGNOSTICS 

BUGS 

Page 1 

Mount issues a warning if the file system to be mounted is currently mounted under another 
name, or if the file system is mounted by another name than its default name assigned via the 
I&tc/labelit command. 

Umount complains if the special file is not mounted or if it is busy. The file system is busy if it 
contains an open file or some user's working directory. 

Some degree of validation is done on the file system, however it is generally unwise to mount 
garbage file systems. 

January 20, 1984 



MVDlR(1M) 

NAME 
mvdir - move a directory 

SYNOPSIS 
letc/mvdir dirname name 

DESCRIPTION 

MVDlR(1M)' 

Mvdir renames directories within a file system. Dirname must be a directory; name must not 
exist. Neither name may be a sub-set of the other (/x/y cannot be moved to Ix/y/z, nor vice 
versa). 

Only super-user can use mvdir. 

SEE ALSO 
mkdir(1). 

Page 1 January 20, 1984 



NCHECK(1M) NCHECK(1M) 

NAME 
ncheck - generate names from i-numbers 

SYNOPSIS 
ncheck [ -j numbers] [-a] [ -8] [file-system] 

DESCRIPTION 
Ncheck with no argument generates a path name vs. i-number list of all files on a set of default 
file systems. Names of directory files are followed by I .. The -j option reduces the report to only 
those files whose i-numbers follow. The -a option allows printing of the names. and •• , which 
are ordinarily suppressed. The -8 option reduces the report to special files and files with set­
user-ID mode; it is intended to discover concealed violations of security policy. 

A file system may be specified. 

The report is in no useful order, and probably should be sorted. 

SEE ALSO 
fsck(1 M), sort(1). 

DIAGNOSTICS 

Page 1 

When the file system structure is improper, ?? denotes the "parent" of a parentless file and a 
path name beginning with ... denotes a loop. 

January 20, 1984 



NEWGRP(1) NEWGRP(1) 

r'" NAME 
newgrp - log in to a new group 

SYNOPSIS 
newgrp [ group ] 

DESCRIPTION 

FilES 

Newgrp changes the group identification of its caller, analogously to login (1). The same person 
remains logged in, and the current directory is unchanged. but calculations of access permis­
sions to files are performed with respect to the new group 10. 

Newgrp without an argument changes the group identification to the group in the password file; 
in effect it changes the group identification back to the caller's original group. 

A password is demanded if the group has a password and the user himself does not, or if the 
group has a password and the user is not listed in letclgroup as being a member of that group. 

When most users log in. they are members of the group named other. 

letclgroup 
letclpasswd 

SEE AlSO 

BUGS 

Page 1 

login(1). group(5). 

There is no convenient way to enter a password into letc/group. 
Use of group passwords IS not encouraged. because. by their very nature. they encourage poor 
security practices. Group passwords may disappear in the future. 

January 20. 1984 



NEWS(1) NEWS(1)' 

NAME 
news - print news items 

SYNOPSIS 
news [ -8 ] [ -n ] [ -8 ] [ items ] 

DESCRIPTION 

FILES 

News is used to keep the user informed of current events. By convention. these events are 
described by files in the directory lusr/neW8. 

When invoked without arguments. news prints the contents of all current files in IU8r/news. 
most recent first. with each preceded by an appropriate header. News stores the "currency" 
time as the modification date of a file named .news_time in the user's home directory (the iden­
tity of this directory is determined by the environment variable SHOME); only files more recent 
than this currency time are considered "current." 

The -8 option causes news to print all items. regardless of currency. In this case. the stored 
time is not changed. 

The -n option causes news to report the names of the current items without printing their con­
tents. and without changing the stored time. 

The -5 option causes news to report how many current items exist. without printing their names 
or contents. and without changing the stored time. It is useful to include such an invocation of 
news in one's .profile file. or in the system's letc/profile. 

All other arguments are assumed to be specific news items that are to be printed. 

If a delete is typed during the printing of a news item, printing stops and the next item is started. 
Another delete within one second of the first causes the program to terminate. 

letc/profile 
lusr/newsl * 
SHOME/.news_time 

SEE ALSO 
profile(5), environ(7). 

Page 1 January 20, 1984 



NICE(1 ) 

,...' NAME 
nice - run a command at low priority 

SYNOPSIS 
nice [ -increment] command [ arguments] 

DESCRIPTION 

NICE(1) . 

Nice executes command with a lower CPU scheduling priority. If the increment argument (in 
the range 1-19) is given, it is used; if not, an increment of 10 is assumed. 

The super-user may run commands with priority higher than normal by using a negative incre­
ment, e.g., -10. 

SEE ALSO 
nohup(1), nice(2). 

DIAGNOSTICS 
Nice returns the exit status of the subject command. 

BUGS 
An increment larger than 19 is equivalent to 19. 

Page 1 January 20, 1984 



Nl(1) Nl(1) 

NAME 
nl - line numbering filter 

SYNOPSIS 
nl [-htype] [-btype] [-ftype] [-vstart#] [-iincr] [-pI [-Inum] [-ssep] [-wwidth] [-nformat] file 

DESCRIPTION 
NI reads lines from the named file or the standard input if no file is named and reproduces the 
lines on the standard output. Unes are numbered on the left in accordance with the command 
options in effect. 

NI views the text it reads in terms of logical pages. Une numbering is reset at the start of each 
logical page. A logical page consists of a header, a body, and a footer section. Empty sections 
are valid. Different line numbering options are independently available for header, body, and 
footer (e.g. no numbering of header and footer lines while numbering blank lines only in the 
body). 

The start of logical page sections are signaled by input lines containing nothing but the following 
character(s): 

Une contents Start of 

\:\:\: header 

\:\: body 

\: footer 

Unless signaled otherwise, nl assumes the text being read is in a single logical page body. 

Command options may appear in any order and may be intermingled with an optional file name. 
Only one file may be named. The options are: 

-btype Specifies which logical page body lines are to be numbered. Recognized types and 
their meaning are: a, number all lines; t, number lines with printable text only; n, no 
line numbering;pstrlng, number only lines that contain the regular expression speci­
fied in string. Default type for logical page body is t (text lines numbered). 

-htype Same as -btype except for header. Default type for logical page header is n (no 
lines numbered). 

-ftype Same as -btype except for footer. Default for logical page footer is n (no lines num-
bered). 

-p Do not restart numbering at logical page delimiters. 

-Ystart# Start# is the initial value used to number logical page lines. Default is 1. 

-iincr Incr is the increment value used to number logical page lines. Default is 1. 

-ssep Sep is the character(s) used in separating the line number and the corresponding 
text line. Default sep is a tab. 

-wwidth Width is the number of characters to be used for the line number. Default width is 6. 
Width can't be greater than 99. 

-nformat Format is the line numbering format. Recognized values are: I, left justified, leading 
zeroes supressed; rn, right justified,leading zeroes supressed; rz, right justified, 
leading zeroes kept. Default format is m (right justified). 

-Inum Num is the number of blank lines to be considered as one. For example, -12 results 
in only the second adjacent blank being numbered (if the appropriate -ha, -ba, and/or 
-fa option is set). Default is 1. 

Page 1 January 20, 1984 



~.'.'." ~ ,. 

Nl(1) 

seE ALSO 
pr(1). 

January 20, 1984 

NL(1) 

P~ge2 



NM(1) NM(1) . 

NAME 
nm - print name list 

SYNOPSIS 
nm [ -gnoprsu ] [ file ... ] 

DESCRIPTION 
Nm prints the name list (symbol table) of each object file in the argument list. If an argument is 
an archive. a listing for each object file in the archive will be produced. If no file is given. the 
symbols in a.out are listed. 

Each symbol name is preceded by its value (blanks if undefined) and one of the letters U (unde­
fined). A (absolute). T (text segment symbol), D (data segment symbol). B (bss segment sym­
bol). R (register symbol). F (file symbol). or C (common symbol). If the symbol is local (non­
external) the type letter is in lower case. The output is sorted alphabetica"y. 

Options are: 

-g Print only global (external) symbols. 

-n Sort numerically rather than alphabetica"y. 

-0 Prepend file or archive element name to each output line rather than only once. This 
option can be used to make piping to grep(1) more meaningful. 

-p Don't sort; print in symbol-table order. 

-r 

-s 

Sort in reverse order. 

Sort according to the size of the external symbol (computed from the difference between 
the value of the'symbol and the value of the symbol with the next highest value). This 
difference is the value printed. This flag turns on -g and -n and turns off -u and -p. 

, ,..u Print only undefined symbols. 

see ALSO 
ar(1). a.out(S). areS). 

Page 1 January 20. 1984 



NODE(1M) (NOS only) NODE(1M) 

NAME 
node - enable or disable foreign hosts 

SYNOPSIS 
node [ -eI] [ nodename ... ) [ -n namelist) 

node [ -&) [ nodename ... ) [ -n namelist) 

DESCRIPTION 

FilES 

This command allows a node to enable or disable rmounts to or from other nodes. If another 
node is enabled, rmounts are permitted to and from that node; if another node is disabled, any 
current connections are terminated gracefully and further rmounts are not permitted. 

The node -d command should be used when rumount is not possible, e.g., when node1 is 
rmounted on node2 and needs to disconnect, but there is no one at node2 to perform the 
rumount. It also prevents multiple rumounts. 

If rmounts are usually desired, node -e commands should be placed in lete/re. 

When node is invoked without an argument, it lists the nodenames in the configuration file 
(/usr/lib/nos/O-hosts) and indicates if the node is enabled or disabled. 

The following options are permitted: 

-d With nodename(s), disable the specified node(s). No new connections to these 
nodes are permitted; all existing connections are broken. With no argument, disable 
all nodes. 

-e With nodename(s), enable specified node(s), and allow new connections to the 
designated node(s). With no arguments, enables al1 nodes. 

-n 

/sys3 
Idev/kmem 

Analogous to the "-n" option of ps, this allows querying a:kernel (named by name/­
ist) whose name is different from the default (/sys3). 

SEE ALSO 
rmount(1 M), D-hosts(5). 

NOTES 
This command is available on the Plexus Network Operating System (NOS) only. 

Page 1 March 23, 1984 



NOHUP(1) NOHUP(1) 

NAME 
nohup - run a command immune to hangups and quits 

SYNOPSIS 
nohup command [ arguments ] 

DESCRIPTION 

NOTES 

Nohup executes command with hangups and quits ignored. If output is not re-directed by the 
user. it will be sent to nohup.out. If nohup.out is not writable in the current directory. output is 
redirected to SHOMEInohup.out. 

Csh has a 'nohup command that is incompatible with this one. Csh users must specify the 
whole path name of this nohup command (/usr/bin/nohup) in order to access it. 

SeE ALSO 
nice(1). signal(2). 

Page 1 January 20. 1984 



00(1) 00(1) 

NAME 
ad - octal dump 

SYNOPSIS 
od [ -bcdox ] [ file ] [ [ + ]offset[ • ][ b ] ] 

DESCRIPTION 

NOTES 

Od dumps file in one or more formats as selected by the first argument. If the first argument is 
missing, -0 is default. The meanings of the format options are: 

-b Interpret bytes in octal. 

-c Interpret bytes in ASCII. Certain non-graphic characters appear as C escapes: nUII=\O, 
backspace=\b, form-feed=\', new-line=\n, return=\r, tab=\t; others appear as 3-
digit octal numbers. 

-d Interpret words in decimal. 

-0 Interpret words in octal. 

-x Interpret words in hex. 

The file argument specifies which file is to be dumped. If no file argument is specified, the stan­
dard input is used. 

The offset argument specifies the offset in the file where dumping is to commence. This argu­
ment is normally interpreted as octal bytes. If. is appended, the offset is interpreted in decimal. 
If b is appended, the offset is interpreted in blocks of 512 bytes. If the file argument is omitted, 
the offset argument must be preceded by +. 
Dumping continues until end-of-file. 

Plexus provides a standalone version of ad in addition to the one that runs under Sys3. 

SEE ALSO 
adb(l). 

Page 1 January 20, 1984 



OPENUP(1) (Plexus) OPENUP(1) . 

NAME 
openup - keep open key directories and files 

SYNOPSIS 
letc/openup files [-r files) [-w files) [-rw files] 

DESCRIPTION 

NOTES 

Page 1 

Openup is a daemon that opens and keeps open key directories and files. It is normally 
invoked by letc/rc. Key directories and files should be kept open because (1) inodes are 
thereby kept in memory, resulting in more efficient access; and (2) the stty modes of serial port 
lines can be set and maintained across several opens. 

Openup options include: 

-r Subsequent files are opened read-only. 

-w Subsequent files are opened write-only. 

-rw Subsequent files are opened readiwrite. 

The default mode is to open a file read-only. 

Some of the directories and files you may want to openup are: 

I 
Ibin 
/lib 
letc 
Itmp 
lusr/bin 
lusr/Ub 
lusr/tmp 
Idev/lp· 

This is a Plexus command. It is not part of standard SYSTEM III. 

January 20, 1984 



r 

PACK(1) PACK(1)-

NAME 
pack, peat, unpack - compress and expand files 

SYNOPSIS 
pack [ - ] name ... 

pcat name ... 

unpack name ... 

DESCRIPTION 

Page 1 

Pack attempts to store the specified files in a compressed form. Wherever possible (and use­
ful), each input file name is replaced by a packed file name.z with the same access modes, 
access and modified dates, and owner as those of name. If pack is successful, name will be 
removed. Packed files can be restored to their original form using unpack or peat. 

Pack uses Huffman (minimum redundancy) codes on a byte-by-byte basis. If the· argument is 
used, an internal flag is set that causes the number of times each byte is used, its relative fre­
quency, and the code for the byte to be printed on the standard output. Additional occurrences 
of· in place of name will cause the internal flag to be set and reset. 

The amount of compression obtained depends on the size of the input file and the character fre­
quency distribution. Because a decoding tree forms the first part of each .z file, it is usually not 
worthwhile to pack files smaller than three blocks, unless the character frequency distribution is 
very skewed, which may occur with printer plots or pictures. 

Typically, text files are reduced to 60-75% of their original size. Load modules, which use a 
larger character set and have a more uniform distribution of characters, show little compression, 
the packed versions being about 90% of the original size. 

Pack returns a value that is the number of files that it failed to compress. 

No packing will occur if: 

the file appears to be already packed; 
the file name has more than 12 characters; 
the file has links; 
the file is a directory; 
the file cannot be opened; 
no disk storage blocks will be saved by packing; 
a file called name.z already exists; 
the .z file cannot be created; 
an I/O error occurred during processing. 

The last segment of the file name must contain no more than 12 characters to allow space for 
the appended .z extension. Directories cannot be compressed. 

Pcat does for packed files what cat(l) does for ordinary files. The specified files are unpacked 
and written to the standard output. Thus to view a packed file named name.z use: 

peat name.z 
or just: 

peat name 

To make an unpacked copy, say nnn, of a packed file named name.z (without destroying 
name.z) use the command: 

peat name > nnn 

Pcat returns the number of files it was unable to unpack. Failure may occur if: 

January 20, 1984 

--



PACK(1 ) 

the file name (exclusive of the .z) has more than 12 characters; 
the file cannot be opened; 
the file does not appear to be the output of pack. 

PACK(1) 

Unpack expands files created by pack. For each file name specified in the command, a search 
is made for a file called name.z (or just name, if name ends in .z). If this file appears to be a 
packed file, it is replaced by its expanded version. The new file has the .z suffix stripped from 
its name, and has the same access modes, access and modification dates, and owner as those 
of the packed file. 

Unpack returns a value that is the number of files it was unable to unpack. Failure may occur 
for the same reasons that it may in peat, as well as for the following: 

a file with the "unpacked" name already exists; 
if the unpacked file cannot be created. 

January 20, 1984 .Page 2 



PASSWD(1) PASSWD(1) 

NAME 
passwd - change login password 

SYNOPSIS 
passwd name 

DESCRIPTION 

FilES 

This command changes (or installs) a password associated with the login name. 

The program prompts for the old password (if any) and then for the new one (twice). The caller 
must supply these. New passwords should be at least four characters long if they use a suffi­
ciently rich alphabet and at least six characters long if monocase. Only the first eight characters 
of the password are significant. 

Only the owner of the name or the super-user may change a password; the owner must prove 
he knows the old password. Only the super-user can create a null password. 

The password file is not changed if the new password is the same as the old password. or if the 
password has not "aged" sufficiently; see passwd(5». 

letcipasswd 

SEE ALSO 
login(1). crypt(3C). passwd(5). 

Page 1 January 20. 1984 



PASTE(1) PASTE(1) . 

NAME 
paste - merge same lines of several files or subsequent lines of one file 

SYNOPSIS 
paste file1 file2 ... 
paste -d list file1 file2 ... 
paste -5 [-ellist] file1 file2 ... 

DESCRIPTION , 
In the first two forms, paste concatenates corresponding lines of the given input fil~s file 1 , file2, 
etc. It treats each file as a column or columns of a table and pastes them together horizontally 
(parallel merging). If you will, it is the counterpart of cat(1) which concatenates vertically, i.e., 
one file after the other. In the last form above, paste subsumes the function of an older com­
mand with the same name by combining subsequent lines of the input file (serial merging). In. 
all cases, lines are glued together with the tab character, or with characters from an optionally 
specified list. Output is to the standard output, so it can be used as the start of a pipe, or as a 
filter, if - is used in place of a file name. 

The meanings of the options are: 

-d Without this option, the new-line characters of each but the last file (or last line in case 
of the -5 option) are replaced by a tab character. This option allows replacing the tab 
character by one or more alternate characters (see below). 

list One or more characters immediately following -eI replace the default tab as the line con­
catenation character. The list is used circularly, i. e. when exhausted, it is reused. In 
parallel merging (i. e. no -8 option), the lines from the last file are always terminated 
with a new-line character, not from the list. The list may contain the special escape 
sequences: \n (new-line), \t (tab), \ \ (backslash), and \0 (empty string, not a null char­
acter). Quoting may be necessary, if characters have special meaning to the shell (e.g. 
to get one backslash, use -d"\ \ \ \" ). 

"5 Merge subsequent lines rather than one from each input file. Use tab for concatenation, 
unless a list is specified with -eI option. Regardless of the list, the very last character of 
the file is forced to be a new-line. 

"May be used in place of any file name, to read a line from the standard input. (There is 
no prompting). 

EXAMPLES 
Is I paste -d" " -

Islpaste----

list directory in one column 

list directory in four columns 

paste -s -d"\ t\ n" file combine pairs of lines into lines 

SEE ALSO 
grep(1), cut(1), 
pr(1): pr -t -m ... works similarly, but creates extra blanks, tabs and new-lines for a nfce page 
layout. 

DIAGNOSTICS 
line too long Output lines are restricted to 511 characters. 

too many files Except for -8 option, no more than 12 input files may be specified. 

Page 1 January 20, 1984 



r 

PR(1) PR(1) . 

NAME 
pr - print files 

SYNOPSIS 
pr [ options ] [ files ] 

DESCRIPTION 

Page 1 

Pr prints the named files on the standard output. If file is -, or if no files are specified, the stan­
dard input is assumed. By default, the listing is separated into pages, each headed by the page 
number, a date and time, and the name of the file. 

By default, columns are of equal width, separated by at least one space; lines which do not fit 
are truncated. If the -s option is used, lines are not truncated and columns are separated by the 
separation character. 

If the standard output is associated with a terminal, error messages are withheld until pr has 
completed printing. In addition, messages to the terminal, e.g., from write or wall, are disabled 
while printing to the terminal is in progress. 

Options may appear singly or be combined in any order. Their meanings are: 

+k Begin printing with page k (default is 1). 

-k Produce k-column output (default is 1). The options -e and -j are assumed for multi­
column output. 

-a Print multi-column output across the page. 

-m Merge and print all files simultaneously, one per column (overrides the -k, and -a 
options). 

-d Double-space the output. 

-eck Expand input tabs to character positions k + 1, 2.k + 1, 3.k + 1, etc. If k is 0 or is omit­
ted. default tab settings at every eighth position are assumed. Tab characters in the 
input are expanded into the appropriate number of spaces. If c (any non-digit charac­
ter) is given, it is treated as the input tab character (default for c is the tab character). 

-jck In output, replace white space wherever possible by inserting tabs to character positions 
k + 1, 2.k + 1, 3.k + 1, etc. If k is 0 or is omitted, default tab settings at every eighth 
position are assumed. If c (any non-digit character) is given, it is treated as the output 
tab character (default for c is the tab character). 

-nck Provide k -digit line numbering (default for k is 5). The number occupies the first k + 1 
character positions of each column of normal output or each line of -m output. If c (any 
non-digit character) is given, it is appended to the line number to separate it from what­
ever follows (default for c is a tab). 

-wk 

-ok 

-Ik 

-h 

-p 

-f 

Set the width of a line to k character positions (default is 72 for equal-width multi­
column output, no limit otherwise). 

Offset each line by k character positions (default is 0). The number of character posi­
tions per line is the sum of the width and offset. 

Set the length of a page to k lines (default is 66). 

Use the next argument as the header to be printed instead of the file name. 

Pause before beginning each page if the output is directed to a terminal (pr will ring the 
bell at the terminal and wait for a carriage return). 

Use form-feed character for new pages (default is to use a sequence of line-feeds). 
Pause before beginning the first page if the standard output is associated with a 

January 20, 1984 



PR(1) PR(1) 

terminal. 

-r Print no diagnostic reports on failure to open files . 

. -t Print neither the five-line identifying header nor the five-line trailer normally supplied for 
each page. Quit printing after the last line of each file without spacing to the end of the 
page. 

-sc Separate columns by the single character c instead of by the appropriate number of 
spaces (default for c is a tab). 

EXAMPLES 
Print file1 and file2 as a double-spaced, three-column listing headed by ''file list": 

pr -3dh "file list" file1 file2 

Write file1 on file2, expanding tabs to columns 10, 19,28,37, .•. : 

pr -e9 -t <file1 >file2 

FILES 
Idev/tty* 

SEE ALSO 
cat(1 ). 

January 20, 1984 

used to suspend messages while printing is in progress 

Page 2 



PRINTENV (1 ) 

~. NAME 
printenv - print out the environment 

SYNOPSIS 
lusr/plxlprintenv [ name ] 

DESCRIPTION 

(Plexus) PRINTENV ( 1 ) 

Printenv prints out the values of the variables in the environment. If a name is specified, only its 
value is printed. 

NOTES 

H a name is specified and it is not defined in the environment, printenv returns exit status 1, else 
it returns status O. 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
sh(1), environ(5), csh(1). 

Page 1 September 24, 1984 



PROF(1) PROF(1)-

NAME 
prof - display profile data 

SYNOPSIS 
prof [ -v ] [ -a ] [ -I ] [ -low [ -high ] ] [ file ] 

DESCRIPTION 

FILES 

Prof interprets the file mon.out produced by the monitor(3C) subroutine. Under default modes, 
the symbol table in the named object file (a.out default) is read and correlated with the mon.out 
profile file. For each external symbol, the percentage of time spent executing between that sym­
bol and the next is printed (in decreasing order), together with the number of times that routine 
was called and the number of milliseconds per call. 

If the -a option is used, all symbols are reported rather than just external symbols. If the -I 
option is used, the output is listed by symbol value rather than decreasing percentage. 

If the -y option is used, all printing is suppressed and a graphic version of the profile is produced 
on the standard output for display by the tplot(1G) filters. The optional arguments low and high, 
by default 0 and 100, cause a selected percentage of the profile to be plotted with accordingly 
higher resolution. 

In order for the number of calls to a routine to be tallied, the -p option of cc must have been 
given when the file containing the routine was compiled. This option also arranges for the 
mon.out file to be produced automatically. 

mon.out for profile 
a.out for namelist 

SEE ALSO 
cc(1), tplot(1 G), profil(2), monitor(3C). 

BUGS 
Beware of quantization errors. 

Page 1 January 20, 1984 



PROFILER(1M) PROFILER(1M)· 

NAME 
prfld, prfstat, prfdc, prfsnap, prfpr - operating system profiler 

SYNOPSIS 
lete/prfld [ namelist ] 
lete/prfstat [ on I off ] 
lete/prfde file [ period [ off_hour ] ] 
lete/prfsnap file 
lete/prfpr file [ cutoff [ namelist ] ] 

DESCRIPTION 

FILES 

Prfld, prfstat, prfdc, prfsnap, and prfpr form a system of programs to facilitate an activity study 
of the UNIX operating. ~stem .. 

Prfld is used to initialize the recording mechanism in the system. It generates a table contain­
ing the starting address of each system subroutine as extracted from namelist. 

Prfstat is used to enable or disable the sampling mechanism. Profiler overhead is less than 1 % 
as calculated for 500 text addresses. Prfstat will also reveal the number of text addresses being 
measured. 

Prfde and prfsnap perform the data collection function of the profiler by copying the current 
value of all the text address counters to a file where the data can be analyzed. Prfde will store 
the counters into file every period minutes and will turn off at off_hour. Prfsnap collects data at 
the time of invocation only, appending the counter values to file. 

Prfpr formats the data collected by prfde or prfsnap. Each text address is converted to the 
nearest text symbol (as found in name/ist) and is printed if the percent activity for that range is 
greater than cutoff. 

Idev/prf interface to profile data and text addresses 
Isys3 default for namelist file 

SEE ALSO 
prf(4). 

Page 1 January 20, 1984 



PRS(1) PRS(1 ) 

NAME 
prs - pri nt an sees file 

SYNOPSIS 
prs [-d[dataspec]] [-r[SID]] [-e] [-I] [-a] files 

DESCRIPTION 
Prs prints, on the standard output, parts or all of an sees file (see sccsfi/e(5» in a user supplied 
format. If a directory is named, prs behaves as though each file in the directory were specified 
as a named file, except that non-SeeS files (last component of the path name does not begin 
with 5.), and unreadable files are silently ignored. If a name of - is given, the standard input is 
read; each line of the standard input is taken to be the name of an sees file or directory to be 
processed; non-sees files and unreadable files are silently ignored. 

Arguments to prs, which may appear in any order, consist of keyletter arguments, and file 
names. 

All the described key/etter arguments apply independently to each named file: 

-d[dataspec] Used to specify the output data specification. The dataspec is a string 
consisting of sees file data keywords (see DATA KEYWORDS) inter­
spersed with optional user supplied text. 

-r[SID] Used to specify the sees IDentification (SID) string of a delta for which 
information is desired. If no SID is specified, the SID of the most recently 
created delta is assumed. 

-e 

-I 

-a 

Requests information for all deltas created earlier than and including the 
delta designated via the -r keyletter. 

Requests information for all deltas created later than and including the 
delta designated via the -r keyletter. 

Requests printing of information for both removed, i.e., delta type = R, 
(see rmde/(1» and existing, i.e., delta type = D, deltas. If the -a 
keyletter is not specified, information for existing deltas only is provided. 

DATA KEYWORDS 

Page 1 

Data keywords specify which parts of an sees file are to be retrieved and output. All parts of 
an sees file (see sccsfile(5» have an associated data keyword. There is no limit on the 
number of times a data keyword may appear in a dataspec. 

The information printed by prs consists of: (1) the user supplied text; and (2) appropriate values 
(extracted from the sees file) substituted for the recognized data keywords in the order of 
appearance in the dataspec. The format of a data keyword value is either Simple (S), in which 
keyword substitution is direct, or Multi-line (M), in which keyword substitution is followed by a 
carriage return. 

User supplied text is any text other than recognized data keywords. A tab is specified by \t and 
carriage return/new-line is specified by \n. 

. January 19, 1984 



PRS(1) PRS(1 ) 

r-' TABLE 1. sees Files Data Keywords 
Keyword Data Item File Section Value Format 

:Dt: Delta information Delta Table 5ee below. 5 
:DL: Delta line statistics • :Li:/:Ld:/:Lu: 5 
:Li: Lines inserted by Delta • nnnnn 5 
:Ld: Lines deleted by Delta • nnnnn 5 
:Lu: Lines unchanged by Delta • nnnnn 5 
:DT: Delta type • D orR 5 

:1: SCC5 10 string (510) • :R:.:L:.:B:.:5: 5 
:R: Release number • nnnn 5 
:L: Level number • nnnn 5 
:B: Branch number • nnnn 5 
:5: 5equence number • nnnn 5 
:0: Date Delta created • :Dy:/:Dm:i:Dd: 5 
:Dy: Year Delta created • nn 5 
:Dm: Month Delta created • nn 5 
:Od: Day Delta created • nn 5 
:T: Time Delta created • :Th:::Tm:::Ts: 5 

:Th: Hour Delta created • nn 5 
:Tm: Minutes Delta created • nn 5 
:Ts: "Seconds Delta created • nn 5 
:P: Programmer who created Delta • logname 5 

:05: Delta sequence number • nnnn 5 
:DP: Predecessor Delta seq-no. • nnnn 5 
:01: 5eq-no. of deltas incl., excl., ignored • :Dn:I:Dx:I:Dg: 5 
:Dn: Deltas included (seq #) :05: :05: ... 5 ,., :Dx: Deltas excluded (seq #) • :05: :05: ... 5 
:Dg: Deltas ignored (seq #) • :05: :05: ... 5 
:MR: MR numbers for delta text M 
:C: Comments for delta • text M 

:UN: User names User Names text M 
:FL: Flag list Flags text M 
:Y: Module type flag text 5 

:MF: MR validation flag • yes or no 5 
:MP: MR validation pgm name • text 5 
:KF: Keyword error/waming flag • yes or no 5 
:BF: Branch flag • yes or no 5 
:J: Joint edit flag • yes or no 5 

:LK: Locked releases • :R: ••• 5 
:0: User defined keyword • text 5 
:M: Module name • text 5 
:FB: Floor boundary • :R: 5 
:CB: Ceiling boundary • :R: 5 
:Ds: Default 510 • :1: 5 
:ND: Null delta flag • yes or no 5 
:FD: File descriptive text Comments text M 
:BD: Body Body text M 
:GB: Gotten body • text M 
:W: A form of what(1) string N/A :Z::M:\t:l: 5 
:A: A form of what(1) string N/A :Z::Y: :M: :I::Z: 5 
:Z: what(1) string delimiter NlA @(#) 5 
:F: 5CC5 file narne N/A text 5 

:PN: 5CC5 file path name N/A text 5 
",. • :Dt: = :DT: :1: :0: :T: :P: :05: :DP: 

January 19, 1984 Page 2 



PRS(1 ) 

EXAMPLES 
prs -d"Users and/or user IDs for :F: are:\n:UN:" s.file 

may produce on the standcud output: 

Users and/or user IDs for s.file are: 
xyz 
131 
abc 

prs -d"Newest delta for pgm :M:: :1: Created :0: By :P:" -r s.file 

may produce on the standard output: 

N~west delta for pgm main.c: 3.7 Created 77/12/1 By cas 

As a special case: 

prs s.file 

may produce on the standard output: 

o 1.1 77/12/1 00:00:00 cas 1 000000/00000/00000 
MRs: 
b178-12345 
bI79-54321 
COMMENTS: 
this is the comment line for s.file initial delta 

PRS(1)" 

for each delta table entry of the "0" type. The only key letter argument allowed to be used with 
the special case is the -8 key letter. 

FILES 
/tmp/pr????? 

SEE ALSO 
admin(1). delta(1). get(1). help(1), sccsfile(5). 
Source Code Control System User's Guide by L. E. Bonanni and C. A. Salemi. 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 3 January 19. 1984 



PS(1) PS(1) 

NAME 
ps - report process status 

SYNOPSIS 
ps [ options ] 

DESCRIPTION 

Page 1 

Ps prints certain information about active processes. Without options, information is printed 
about processes associated with the current terminal. Otherwise, the information that is 
displayed is controlled by the following options: 

-e Print information about all processes. 
-c:I Print information about all processes, except process group leaders. 
-a Print information about all processes, except process group leaders and processes 

not associated with a terminal. 
-f Generate a full listing. (Normally, a short listing containing only process 10, termi­

nal (''tty'') identifier, cumulative execution time, and the command name is 
printed.) See below for meaning of columns in a full listing. 

-I Generate a long listing. See below. 
-c corefile Use the file corefile in place of /dey/kmem. 
-s swapdev Use the file swapdev in place of /dey/swap. This is useful when examining a 

corefile; a swapdev of /dey/null will cause the user block to be zeroed out. 
-n namelist The name of the operating system being executed. (/sys3 is the default). 
-t tlist Restrict listing to data about the processes associated with the terminals given in 

tlist, where tlist can be in one of two forms: a list of terminal identifiers separated 
from one another by a comma, or a list of terminal identifiers enclosed in double 
quotes and separated from one another by a comma and/or one or more spaces. 

-p p/ist Restrict listing to data about processes whose process 10 numbers are given in 
p/ist, where p/ist is in the same format as tlist. 

-u ulist Restrict listing to data about processes whose user 10 numbers or login names are 
given in ulist, where ulist is in the same format as tlist. In the listing, the numerical 
user 10 will be printed unless the -f option is used, in which case the login name 
will be printed. 

11 glist Restrict listing to data about processes whose process groups are given in glist, 
where glist is a list of process group leaders and is in the same format as tlist. 

The column headings and the meaning of the columns in a ps listing are given below; the letters 
f and 1 indicate the option (full or long) that causes the corresponding heading to appear; all 
means that the heading always appears. Note that these two options only determine what infor­
mation is provided for a process; they do not determine which processes will be listed. 

F (I) Flags (octal and additive) associated with the process: 
01 in core; 
02 system process; 
04 locked in core (e.g., for physical 110); 
10 being swapped; 
20 being traced by another process. 

S (I) The state of the proc~ss: 
o non-existent; 
S sleeping; 
W waiting; 
R running; 
I intermediate; 
Z terminated; 
T stopped. 

May 8,1984 



PS(1) 

FILES 

NOTES 

UIO 

PlO 

PPIO 
C 
STIME 
PRI 
NI 
AOOR 
SZ 

WCHAN 

TTY 
TIME 
COMO 

(f,l) 

(all) 

(f,l) 
(f,l) 
(f) 
(I) 
(I) 
(I) 
(I) 

(I) 

(all) 
(all) 
(I) 

PS(1) 

The user 10 number of the process owner; the login name is printed under the ~ 
-f option. 
The process 10 of the process; it is possible to kill a process if you know this 
datum. 
The process 10 of the parent process. 
Processor utilization for scheduling. 
Starting time of the process. 
The priority of the process; higher numbers mean lower priority. 
Nice value; used in priority computation. 
The memory address of the process, if resident;. otherwise, the disk address. 
The size in S12-byte increments of the unshared portion of the core image of 
the process. Due to memory management hardware, this is' always a multiple 
of 4 on the Z8000 and 8 on the MC68000. 
The event for which the process is waiting or sleeping; if blank, the process is 
running. 
The controlling terminal for the process. 
The cumulative execution time for the process. 
The command name; the full command name and its arguments are printed 
under the -f option. This heading is 'COMMAND' in non-long listings. 

A process that has exited and has a parent, but has not yet been waited for by the parent, is 
marked <defu~t>. 

Under the -f option, ps tries to determine the command name and arguments given when the 
process was created by examining memory or the swap area. Failing this, the command name, 
as it would appear without the -f option, is printed in square brackets. 

Isys3 system namelist 
Idev/kmem kernel memory 
Idev searched to find swap device and terminal ("tty") names. 

Ps reports PtD 0 as COMD or COMMAND 'swapper'. This is the system scheduler and idle loop. 
When the system has no work to do, TIME is charged to this PID. 

SEE ALSO 

BUGS 

kill(1), nice(1). 

Things can change while ps is running; the picture it gives is only a close approximation to real­
ity. Some data printed for defunct prOcesses are irrelevant. 

May 8,1984 Page 2 



PTX(1) PTX(1 ) 

,. NAME 

ptx - permuted index 

SYNOPSIS 
ptx [ options] [ input [ output] I 

DESCRIPTION 

FilES 

BUGS, 

Page 1 

Ptx generates a permuted index to file input on file output (standard input and output default). 
It has three phases: the first does the permutation, generating one line for each keyword in an 
input line. The keyword is rotated to the front. The permuted file is then sorted. Finally, the 
sorted lines are rotated so the keyword comes at the middle of each line. Ptx produces output 
in the form: 

.xx "tail" "before keyword" "keyword and after" "head" 

where .xx is assumed to be an nroff or troff(1} macro provided by the user. The before key­
word and keyword and after fields incorporate as much of the line as will fit around the keyword 
when it is printed. Tail and head, at least one of which is always the empty string, are 
wrapped-around pieces small enough to fit in the unused space at the opposite end of the line. 

The following options can be applied: 

-f Fold upper and lower case letters for sorting. 

-t Prepare the output for the phototypesetter. 

-w n Use the next argument, n, as the length of the output line. The default line length is 

-gn 

72 characters for nroff and 100 for troff. 

Use the next argument, n, as the number of characters that ptx will reserve in its 
calculations for each gap among the four parts of the line as finally printed. The 
default gap is 3 characters. 

-0 only Use as keywords only the words given in the only file. 

-i ignore Do not use as keywords any words given in the ignore file. ,If the -i and -0 options 
are missing, use lusr/lib/eign as the ignore file. 

-b break Use the characters in the break file to separate words. Tab, neW-line, and space 
characters are always used as break characters. 

-r Take any leading non-blank characters of each input line to be a reference identifier 
(as to a page or chapter), separate from the text of the line. Attach that identifier as 
a 5th field on each output line. 

The index for this manual was generated using ptx. 

/bin/sort 
/usr/lib/eign 

Line length counts do not account for overstriking or proportional spacing. 
Lines that contain tildes C} are botched, because ptx uses that character internally. 

January 20, 1984 



PWCK(1M) PWCK(1M)' 

NAME 
pwck, grpck • password/group file checkers 

SYNOPSIS 
pwck [file] 
grpck [file] 

DESCRIPTION 

FilES 

Pwck scans the password file and notes any inconsistencies. The checks include validation of 
the number of fields, login name, user 10, group 10, and whether the login directory and optional 
program name exist. The criteria for determining a valid login name are taken from Setting Up 
UNIX. The default password file is letc/passwd. 

Grpck verifies all entries in the group file. This verification includes a check of the number of 
fields, group name, group 10, and whether all login names appear in the password file. The 
default group file is letc/group. 

letc/group 
/etclpasswd 

SEE ALSO 
group(5), passwd(5). 
Setting Up UNIX. 

DIAGNOSTICS 
Group entries in letc/group with no login names are flagged. 

Page 1 January 20, 1984 



PWD(1 ) 

NAME 
pwd - working directory name 

SYNOPSIS 
pwd 

DESCRIPTION 
Pwd prints the path name of the working (current) directory. 

SEE ALSO 
cd(1). 

DIAGNOSTICS 

PWD(1) 

"Cannot open .... and "Read error in .. " indicate possible file system trouble and should be 
referred to a UNIX programming counselor. 

Page 1 January 20. 1984 



RATFOR(1) RATFOR(1) 

NAME 
rattor - rational Fortran dialect 

SYNOPSIS 
ratfor [ options] [ files] 

DESCRIPTION 
Rattor converts a rational dialect of Fortran into ordinary irrational Fortran. Ratfor provides con­
trol flow constructs essentially identical to those in C: 

statement grouping: 
{ statement; statement; statement } 

decision-maki ng: 

loops: 

if (condition) statement [ else statement] 
switch (integer value) { 

case integer: statement 

[default: ] statement 
} 

while (condition) statement 
for (expression; condition; expression) statement 
do limits statement 
repeat statement [ until (condition) ] 
break 
next 

and some syntactic sugar to make programs easier to read and write: 

free form input: 
multiple statements/line; automatic continuation 

comments: 
# this is a comment. 

translation of relationals: 
>, >=, etc., become .GT., .GE., etc. 

return expression to caller from function: 
return (expression) 

define: 
define name replacement 

include: 
include file 

The option -h causes quoted strings to be turned into 27H constructs. The -C option copies 
comments to the output and attempts to format it neatly. Normally, continuation lines are 
marked with a & in column 1; the option -6x makes the continuation character x and places it in 
column 6. 

Rattor is best used with f77(1), Plexus product number 4214A (for P/3S and P/60) and 4108A 
(for P/2S and P/40). 

SEE ALSO 
efl(1 ). 
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976. ,~ 

, 

/, 
Page 1 Jaifuary 20, 1984 

I 
\ 



REFORM(1) ( Obsolescent) REFORM(1) 

NAME 
reform - reformat text file 

SYNOPSIS 
reform [tabspec1 [tabspec2]] [+bn] [+en] [+f] [+in] [+mn] [+pn] [+8] [+tn] 

DESCRIPTION 

Page 1 

Reform reads each line of the standard input file, reformats it, and then writes it to the standard 
output. Various combinations of reformatting operations can be selected, of which the most 
common involve rearrangement of tab characters. It is often used to trim trailing blanks, trun­
cate lines to a specified length, or prepend blanks to lines. 

Reform first scans its arguments, which may be given in any order. It then processes its input 
file, performing the following actions upon each line, in the order given: 

A line is read from the standard input. 

If +8 is given, all characters up to the first tab are stripped off and saved for later addition to 
the end of the line. Presumably, these characters comprise an "sees SID" produced by 
get(1 ). 

The line is expanded into a tab less form, by replacing tabs with blanks according to the input 
tab specification tabs pec 1. 

If +pn is given, n blanks are prepended to the line. 

If +tn is given, the line is truncated to a length of n characters. 

All trailing blanks are now removed. 

If +en is included, the line is extended out with blanks to the length of n characters.· 

If +s is given, the previously-saved "sees SID·· is added to the end of the line. 

If +bn is given, the n characters at the beginning of the line are converted to blanks, if and 
only if all of them are either digits or blanks. 

If +mn is included, the line is moved left, i.e., n characters are removed from the beginning 
of the line. 

The line is now contracted by replacing some blanks with tab characters according to the list 
of tabs indicated by the output tab specification tabspec2, and is written to the standard out­
put file. Option +i controls the method of contraction (see below). 

The various arguments accepted by reform are as follows: 

tabspec1 
describes the tab stops assumed for the input file. This tab specification may take 
on any of the forms described in tabs(1). In addition, the operand - indicates that 
the tab specification is to be found in the first line read from the standard input. If no 
legal tab specification is found there, -8 is assumed. If tabspec1 is omitted entirely, 
- is assumed. 

tabspec2 
describes the tabs assumed for the output file. It is interpreted in the same way as 
tabspec1, except that omission of tabspec2 causes the value of tabspec1 to be 
used for tabspec2. 

The remaining arguments are all optional and may be used in any combination, although only a 
few combinations make much sense. Specifying an argument causes an action to be per­
formed, as opposed to the usual default of not performing the action. Some options include 
numeric values, which also have default values. Option actions are applied to each line in the 
order described above. Any line length mentioned applies to the length of a line just before the 

January 20, 1984 



REFORM(1) ( Obsolescent) REFORM(1)" 

execution of the option described, and the terminating new-line is never counted in the line ~ 
length. 

+bn causes the first n characters of a line to be converted to blanks, if and only if those 
characters include only blanks and digits. If n is omitted, the default value is 6, 
which is useful in deleting sequence numbers from COBOL programs. 

+en causes each line shorter than n characters to be extended out with blanks to that 
length. Omitting n implies a default value of 72. This option is useful for those rare 
cases in which sequence numbers need to be added to an existing unnumbered 
file. The use of $ in editor regular expressions is more convenient if all lines have 
equal length, so that the user can issue editor commands such as: 
si$O0001000/ 

+, causes a format line to be written to the standard output, preceding any other lines 
written. See fspec(S) for details regarding format specifications. The format line is 
taken from tabspec2, Le., the line normally appears as follows: 
< :t-tabspec2 d: > 

If tabspec2 is of the form --file-name (Le., an indirect reference to a tab specification in the 
first line of the named file), then that tab specification line is written to the standard output. 

+in controls the technique used to compress interior blanks into tabs. Unless this 
option is specified, any sequence of 1 or more blanks may be converted to a single 
tab character if that sequence occurs just before a tab stop. This causes no prob­
lems for blanks that occur before the first nonblank character in a line, and it is 
always possible to convert the result back to an equivalent tabless form. However, 
occaSionally an interior blank (one occurring after the first non blank) is converted· to 
a tab when this is not intended. For instance, this might occur in any program writ­
ten in a language utilizing blanks as delimiters. Any single blank might be con­
verted to a tab if it occurred just before a tab stop. Insertion or deletion of charac­
ters preceding such a tab may cause it to be interpreted in an unexpected way at a 
later time. If the +i option is used, no string of blanks may be converted to a tab 
unless there are n or more contiguous blanks. The default value is 2. Note that 
leading blanks are always converted to tabs when possible. It is recommended that 
conversion of programs from non -UNIX to UNIX systems use this option. 

+mn causes each line to be moved lift n characters, with a default value of 6. This can 
be useful for crunching COBOL programs. 

+pn causes n blanks to be prepended (default of 6 if n is omitted). This option is effec­
tively the inverse of +mn, and is often useful for adjusting the position of nroff(1) 
output for terminals lacking both forms tractor positioning and a settable left margin. 

+8 is used with the -m option of get(1). The -m option causes get to prepend to each 
generated line the appropriate sees SID, followed by a tab. The +8 option causes 
reform to remove the SID from the front of the line, save it, then add it later to the 
end of the line. Because +e72 is implied by this option, the effect is to produce 
80-character card images with sees SID in columns 73-80. Up to 8 characters of 
the SID are shown; if it is longer, the eighth character is replaced by * and any char­
acters to the right of it are discarded. 

+tn causes any line longer than n characters to be truncated to that length. If n is omit­
ted, the length defaults to 72. Sequence numbers can thus be removed and any 
blanks immediately preceding them deleted. 

The following illustrate typical uses of reform. The terms PWB and OBJECT below refer to UNIX 
and non- UNIX computer systems, respectively. Each arrow indicates the direction of 

January 20. 1984 Page 2 



REFORM(1) ( Obsolescent) REFORM(1) . 

conversion. The character? indicates an arbitrary tab specification; see tabs(l) for descrip­
tions of legal specifications. 

OBJECT ---> PWB (i.e., manipulation of RJE output): 

Note that files transferred by RJE from OBJECT to PWB materialize with format-8. 

reform -8 -c +t +b +i <oldfile >newfile (into COBOL) 
reform -8 -c3 +t +m +i <oldfile >newfile (into COBOL, crunched) 

NOTE: -c3 is the preferred format COBOL; it uses the least disk space of the COBOL formats. 

PWB ---> OBJECT (Le., preparation of files for RJE submission): 

reform? -8 <oldfile >newfile (from arbitrary format into -8) 
get -p -m sccsfile I reform +s i send ... 

PWB ONLY (i.e., no involvement with other systems): 

pr file I reform? -0 <oldfile (print on terminal without hardware tabs) 
reform? -0 <oldfile > newfile (convert file to tabless format) 

DIAGNOSTICS 
All diagnostics are fatal, and the offending line is displayed following the message. 
"line too long" a line exceeds 512 characters (in tabless form). 
"not SCCS -m" a line does not have at least one tab when +8 flag is used. 
Any of the diagnostics of tabs(l) can also appear. 

EXIT CODES 
0- normal 
1 - any error 

SEE ALSO 

BUGS 

Page 3 

get(l), nroff(l), send(1 C), tabs(1), fspec(5). 

Reform is aware of the meanings of backspaces and escape sequences, so that it can be used 
as a postprocessor for nroff. However, be warned that the +e, +m, and +t options only count 
characters, not positions. Anyone using these options on output containing backspaces or half­
line motions will probably obtain unexpected results. 

January 20, 1984 



REGCMP(1) REGCMP(1) 

NAME 
regcmp - regular expression compile 

SYNOPSIS 
regcmp [ - ] files 

DESCRIPTION 
Regcmp, in most cases, precludes the need for calling regcmp (see regex(3X» from C pro­
grams. This saves on both execution time and program size. The command regcmp compiles 
the regular expressions in file and places the output in file.i. If the - option is used, the output 
will be placed in file.c. The format of entries in file is a name (C variable) followed by one or 
more blanks followed by a regular expression enclosed in double quotes. The output of regcmp 
is C source code. Compiled regular expressions are represented as extern char vectors. File.i 
files may thus be included into C programs, or file.c files may be compiled and later loaded. In 
the C program which uses the regcmp output, regex(abc ,line) will apply the regular expression 
named abc to line. Diagnostics are self-explanatory. 

EXAMPLES 
name " ([A-Za-z][A-Za-zO-9J*)$0 II 

telno "\({0,1 }([2-9][01 ][1-9])$0\){0, 1} *" 
"([2-9][O-9]{2})$1[ -]{0,1}" 
n ([0-9] {4 })$2" 

In the C program that uses the regcmp output, 

regex(telno, line, area, exch, rest) 

will apply the regular expression named telno to line. 

SEE ALSO 
regex(3X). 

Page 1 January 20, 1984 



RESTOR(1M) ( Obsolescent) RESTOR(1M) 

NAME 
restor - incremental fi Ie system restore 

SYNOPSIS 
restor key [ arguments ] 

DESCRIPTION 

FILES 

Page 1 

Restor is used to read magnetic tapes dumped with the dump command. The key specifies 
what is to be done. Key is one of the characters rRxt, optionally combined with f. 

f Use the first argument as the name of the tape instead of the default. 

r or R The tape is read and loaded into the file system specified in argument. This should not 
be done lightly (see below). If the key is R, restor asks which tape of a multi-volume 
set to start on. This allows restor to be interrupted and then restarted (an fsck must be 
done before the restart). 

x Each file on the tape named by an argument is extracted. The file name has all 
"mount" prefixes removed; for example, if /usr is a mounted file system, lusr/bin/lpr is 
named Ibin/lpr on the tape. The extracted file is placed in a file with a numeric name 
supplied by restor (actually the inode number). In order to keep the amount of tape 
read to a minimum, the following procedure is recommended: 

1. Mount volume 1 of the set of dump tapes. 

2. Type the restor command. 

3. Restor will announce whether or not it found the files, give the numeric name 
that it will assign to the file, and rewind the tape. 

4. It then asks you to "mount the desired tape volume". Type the number of the 
volume you choose. On a multi-volume dump the recommended procedure is 
to mount the last through the first volumes, in that order. Restor checks to see 
if any of the requested files are on the mounted tape (or a later tape-thus the 
reverse order) and doesn't read through the tape if no files are. If you are work­
ing with a single-volume dump or if the number of files being restored is large, 
respond to the query with 1 and restor will read the tapes in sequential order. 

t Print the date the tape was written and the date the file system was dumped from. 

The r option should only be used to restore a complete dump tape onto a clear file system, or to 
restore an incremental dump tape onto a file system so created. Thus: 

/etc/mkfs Idev/dk1 18000 
restor r Idev/dk1 

is a typical sequence to restore a complete dump. Another restor can be done to get an incre­
mental dump in on top of this. 

A dump followed by a mkfs and a restor is used to change the size of a file system. 

In the standalone version of this program, a final +n argument advances the tape n files before 
executing the restor. To space forward n files in the online version type 

lusr/plxltape srcheof n 

before typing the restor command. 

Idev/rmtO 
rse 

January 20, 1984 



RESTOR(1M) ( Obsolescent) RESTOR(1M) . 

NOTES 
This command has a standalone version. The x option of the standalone version does not work. 

SEE ALSO 
dump(1 M). dumpdir(1 M). fsck(1 M). mkfs(1 M). 

DIAGNOSTICS 

BUGS 

There are various diagnostics involved with reading the tape and writing the disk. There are 
also diagnostics if the i-list or the free list of the file system is not large enough to hold the 
dump. 

If the dump extends over more than one tape. it may ask you to change tapes. Reply with a 
new-line when the next tape has been mounted. 

There is redundant information on the tape that could be used in case of tape reading problems. 
Unfortunately. restor doesn't use it. 

January 20, 1984 Page 2 



RJESTAT(1C) RJESTAT( 1C)' 

NAME 
rjestat - RJE status report and interactive status console 

SYNOPSIS 
rjestat [host J... [-shost ] [-chost cmd J ... 

DESCRIPTION 
Rjestat provides a method of determining the status of an RJE link and of simulating an IBM 
remote console (with UNIX features added). When invoked with no arguments, rjestat reports 
the current status of all the RJE links connected to to the UNIX system. The options are: 

host 

-shost 

Print the status of the line to host. Host is the pseudonym for a particular IBM sys­
tem. It can be any name that corresponds to one in the first column of the RJE 
configuration file. 

After all the arguments have been processed, start an interactive status console to 
host. 

-chost cmd Interpret cmd as if it were entered in status console mode to host. See below for 
the proper format of cmd. 

In status console mode, rjestat prompts with the host pseudonym followed by : whenever it is 
ready to accept a command. Commands are terminated with a new-line. A line that begins 
with! is sent to the UNIX shell for execution. A line that begins with the letter q terminates rjes­
tat. All other input lines are assumed to have the form: 

ibmcmd [ redirect I 
Ibmcmd is any IBM JES or HASP command. Only the super-user or rje login can send com­
mands other than display or inquiry commands. Redirect is a pipeline or a redirection to a file 
(e.g., "> file" or " I grep ,,,"), The IBM response is written to the pipeline or file. If redirect is 
not present, the response is written to the standard output of rjestat. 

An interrupt signal (DEL or BREAK) will cancel the command in progress and cause rjestat to 
return to the command input mode. 

EXAMPLE 
The following command reports the status of all the card readers attached to host A, remote 5. 
JES2 is assumed. 

rjestat -cA '$du,rmt5 I grep RD' 

DIAGNOSTICS 

FILES 

The message "RJE error: ... " indicates that rjestat found an inconsistency in the RJE system. 
This may be transient but should be reported to the site administrator. 

lusr/rje/lines RJE configuration file 

resp host response file that exists in the RJE subsystem directory (e.g., lusr/rje1). 

SEE ALSO 

Page 1 

send(1C), rje(8). 
OSIVS2 HASP 1/ Version 4 Operator's Guide, IBM SRL #GC27-6993. 
Operator's Ubrary: OS/vS2 Reference (JES2), IBM SRL #GC38-0210. 

January 20, 1984 



RM(1) RM(1) 

NAME 
rm, rmdir - remove files or directories 

SYNOPSIS 
nn [ -fri ] file ... 

nndir dir ... 

DESCRIPTION 
Rm removes the entries for one or more files from a directory. If an entry was the last link to 
the file, the file is destroyed. Removal of a file requires write permission in its directory, but nei­
ther read nor write permission on the file itself. 

If a file has no write permission and the standard input is a terminal, its permissions are printed 
and a line is read from the standard input. If that line begins with y the file is deleted, otherwise 
the file remains. No questions are asked when the -f option is given or if the standard input is 
not a terminal. 

If a designated file is a directory, an error comment is printed unless the optional argument -r 
has been used. In that case, rm recursively deletes the entire contents of the specified direc­
tory, and the directory itself. 

If the -i (interactive) option is in effect, rm asks whether to delete each file, and, under -r, 
whether to examine each directory. 

Rmdir removes entries for the named directories, which must be empty. 

SEE ALSO 
unlink(2). 

DIAGNOSTICS 

Page 1 

Generally self-explanatory. It is forbidden to remove the file •• merely to avoid the antisocial 
consequences of inadvertently doing something like: 

rm -r.* 

It is forbidden to remove a file which is being executed, e.g., 

Ibin/rm Ibin/rm 

The error message given in this case is 

Ibin/rm: nnn mode 

where nnn is the file access mode of the file. 

March 23, 1984 



RMDEl(1) RMDEl(1 ) 

NAME 
rmdel- remove a delta from an sees file 

SYNOPSIS 
nndel -rSID files 

DESCRIPTION 

FilES 

Rmdel removes the delta specified by the SID from each named sees file. The delta to be 
removed must be the newest (most recent) delta in its branch in the delta chain of each named 
sees file. In addition, the SID specified must not be that of a version being edited for the pur­
pose of making a delta (i. e., if a p-file (see get(1)) exists for the named sees file, the SID 
specified must not appear in the p-file). 

If a directory is named, rmdel behaves as though each file in the directory were specified as a 
named file, except that non-sees files (last component of the path name does not begin with s.) 
and unreadable files are silently ignored. If a name of - is given, the standard input is read; 
each line of the standard input is taken to be the name of an sees file to be processed; non­
sees files and unreadable files are silently ignored. 

The exact permissions necessary to remove a delta are documented in the Source Code Con­
trol System User's Guide. Si mply stated, they are either (1) if you make a delta you can 
remove it; or (2) if you own the file and directory you can remove a delta. 

x-file (seedelta(1» 
z-file (see delta(1» 

SEE ALSO 
delta(1), get(1), help(1), prs(1), sccsfile(5). 
Source Code Control System User's Guide by l. E. Bonanni and C. A. Salemi. 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 1 January 20. 1984 



RMOUNT(1M) (NOS only) . RMOUNT(1M) . 

NAME 
rmount. rumount· mount and dismount remote file system 

SYNOPSIS 
letc/rmount [ rdirectory nodename directory [ -r ] ] 

letc/rumount rdirectory nodename 

DESCRIPTION 

FILES 

Rmount announces to the system that a remote removable file system directory (rdirectory) is 
present on the system nodename. Rdirectory and directory must exist already; directory 
becomes the initial path name of the remote directory. 

These commands, along with mount(1 M) and umount(1 M). maintain a table of remote and 
locally mounted devices. If invoked with no arguments. rmount prints the table. This table has 
two parts: the first part lists all locally mounted file systems plus remote directories mounted on 
local directories; the second lists all remote directories on which local directories are mounted. 

The optional last argument ("-r") indicates that the file is to be mounted read-only. 

Rumount announces to the system that the removable file system directory previously mounted 
at rdirectory on nodename is to be removed. 

letc/mnttab rmount table 

SEE ALSO 
mount(1 M). node(1 M). mount(2). rmount(2). mnttab(5). 

DIAGNOSTICS 

NOTES 

Page 1 

Rumount complains if the remote file system directory is not mounted or if it is busy. The 
remote file system directory is busy if it contains a locally opened file or is some local user's 
working directory. 

This command is available on the Plexus Network Operating System (NOS) only. 

January 20, 1984 



RSH(1) RSH(1)· 

,.. NAME 

rsh - restricted shell (command interpreter) 

SYNOPSIS 
rsh [ flags ] [ name [ arg1 ... ] ] 

DESCRIPTION . 
Rsh is a restricted version of the standard command interpreter sh(1). It is used to set up login 
names and execution environments whose capabilities are more controlled than those of the 
standard shell. The actions of rsh are identical to those of sh, except that the following are 
disallowed: 

cd 
setting the value of SPATH 
command names containing / 
> and » 

When invoked with the name -rsh, rsh reads the user's .profile (from SHOMEi.profile). It acts 
as the standard sh while doing this, except that an interrupt causes an immediate exit, instead 
of causing a return to command level. The restrictions above are enforced after .profile is inter­
preted. 

When a command to be executed is found to be a shell procedure, rsh invokes sh to execute it. 
Thus, it is possible to provide to the end user shell procedures that have access to the full 
power of the standard shell, while restricting him to a limited menu of commands; this scheme 
assumes that the end user does not have write and execute permissions in the same directory. 

The net effect of these rules is that the writer of the .profile has complete control over user 
actions, by performing guaranteed setup actions, then leaving the user in an appropriate direc­
tory (probably not the login directory). 

Rsh is actually just a link to sh and any flags arguments are the same as for sh(1). 

The system administrator often sets up a directory of commands that can be safely invoked by 
rsh. Some systems also provide a restricted editor red. 

SEE ALSO 
sh(1), profile(5). 

Page 1 January 20, 1984 



RUNACCT(1M) RUNACCT(1M) 

NAME 
runacct - run daily accounting 

SYNOPSIS 
lusr/lib/acct/runacct [mmdd [state]] 

DESCRIPTION 
Runaect is the main daily accounting shell procedure. It is normally initiated via eron(1 M). 
Runaeet processes connect, fee, disk, and process accounting files. It also prepares summary 
files for prdaily or billing purposes. 

Runaeet takes care not to damage active accounting files or summary files in the event of 
errors. It records its progress by writing descriptive diagnostic messages into active. When an 
error is detected, a message is written to Idev/console, mail (see mail(1)) is sent to 
root and adm, and runaeet terminates. Runaeet uses a series of lock files to protect against 
re-invocation. The files lock and lock1 are used to prevent simultaneous invoc~tion. and last­
date is used to prevent more than one invocation per day. 

Runaeet breaks its processing into separate. restartable states using statefile to remember the 
last state completed. It accomplishes this by writing the state name into statefile. Runaeet 
then looks in statefile to see what it has done and to determine what to process next. States 
are executed in the following order: 

SETUP Move active accounting files into working files. 

WTMPFIX Verify integrity of wtmp file, correcting date changes if necessary. 

CONNECT1 

CONNECT2 

PROCESS 

MERGE 

Produce connect session records in ctmp.h format. 

Convert ctmp.h records into tacct.h format. 

Convert process accounting records into tacct.h format. 

Merge the connect and process accounting records. 

FEES Convert output of ehargefee into tacct.h format and merge with connect 
and process accounting records. 

DISK Merge disk accounting records with connect, process, and fee account­
ing records. 

MERGETACCT Merge the daily total accounting records in daytacct with the summary 
total accounting records in /usr/adm/acct/sum/tacct. 

CMS 

USER EXIT 

CLEANUP 

Produce command summaries. 

Any installation-dependent accounting programs can be included here. 

Cleanup temporary files and exit. 

To restart runaeet after a failure, first check the active file for diagnostics, then fix up any cor­
rupted data files such as pacet or wtmp. The lock files and lastdate file must be removed 
before runaeet can be restarted. The argument mmdd is necessary if runaeet is being res­
tarted, and specifies the month and day for which runaeet will rerun the accounting. Entry point 
for processing is based on the contents of statefile; to override this, include the desired state 
on the command line to designate where processing should begin. 

EXAMPLES 
To start runaeet. 

nohup runacct 2> lusr/adm/acctlnite/fd210g & 

To restart runaeet. 
nohup runacct 0601 2> > lusr/adm/acctlniteifd210g & 

Page 1 January 20, 1984 



RUNACCT(1M) RUNACCT(1M) 

FILES 

To restart runaeet at a specific state. 
nohup runacct 0601 MERGE 2> > lusriadm/acctlnite/fd210g & 

lusr/lib/acctlrunacct 
lusr/adm/wtmp 
lusr/adm/pacct[1-9] 
lusrlsrc/cmdi acctltacct. h 
lusrlsrc/cmdlacctlctmp.h 
lusr/adm/acctlnite/active 
lusr/admiacctlnite/daytacct 
lusr/adm/acctlniteilock 
lusrl adm/ acctl nite/lock 1 
lusr/adm/acctlnitellastdate 
lusr/admiacctlniteistatefile 
lusr/adm/acctlnite/ptacct[1-9].mmdd 

SEE ALSO 
acct(1 M). acctcms(1 M). acctcom(1). acctcon(1 M). acctmerg(1 M). acctprc(1 M). acctsh(1 M). 
cron(1 M). fwtmp(1 M). acct(2). acct(5). utmp(5). 
The UNIX Accounting System by H. S. McCreary. 

DIAGNOSTICS 

BUGS 

Self explanatory. 

Normally it is not a good idea to restart runaeet in the SETUP state. Run SETUP manually and 
restart via: 

runacct mmdd WTMPFIX 

If runaeet failed in the PROCESS state, remove the last ptacct file because it will not be com­
plete. 

January 20. 1984 Page 2 



SACT(1) SACT(1)" 

NAME 
sact - print current sces file editing activity 

SYNOPSIS 
sact files 

DESCRIPTION 
Sact informs the user of any impending deltas to a named sees file. This situation occurs 
when get(1) with the -e option has been previously executed without a subsequent execution of 
delta(1). If a directory is named on the command line, sact behaves as though each file in the 
directory were specified as a named file, except that non-sees files and unreadable files are 
silently ignored. If a name of - is given, the standard input is read with each line being taken as 
the name of an sees file to be processed. 

The output for each named file consists of five fields separated by spaces. 

Field 1 specifies the SID of a delta that currently exists in the sees file to which 
changes will be made to make the new delta. 

Field 2 

Field 3 

Field 4 

Field 5 

specifies the SID for the new delta to be created. 

contains the logname of the user who will make the delta (Le. executed a get 
for editing). 

contains the date that get -e was executed. 

contains the time that get -e was executed. 

SEE ALSO 
delta(1), get(1), unget(1). 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 1 January 20, 1984 



SAG(1M) SAG(1M) 

NAME 
sag - system activity graph 

SYNOPSIS 
sag [ -s time] [ -e time] [ -T term] [ -uirwcohdpaf ] [ file] 

DESCRIPTION 

FILES 

Sag displays, in a graphical form, the system activity of the UNIX operating system during a 
specified time interval. File is the file that contains the daily system activity information, default 
is /usr/adm/sa/sadd, where dd is today's day of the month. Sag has the following options: 

-s time 
-e time 
-T term 

-u 

-i 

-r 
-w 
-c 
-0 

-h 

-d 
-p 

-a 
-f 

Begin graph at time specified as hh:mm. Default is 08:00. 
End graph at time specified as hh:mm. Default is 18:00. 
Translate output to a form suitable for terminal term. If this option is not used, the 
environment variable $TERM (see environ(7» is used. Refer to tplot(1G) for avail­
able types of terminals. 
Plot CPU utilization, showing proportion of user, system and idle time (default 
option). 
Plot percent of time the CPU was idle and waiting on block 1/0, waiting on swap in 
or swap out, or waiting on physical 110. 
Plot logical reads/minute and block reads/minute. 
Plot logical writes/minute and block writes/minute. 
Plot buffer cache hit ratios for reads and for writes. 
Plot block transfer rate between system buffers and devices, showing 
reads/minute, writes/minute, and the sum of reads and writes/minute. 
Plot bytes read/second by system call read(2) and bytes written/second by system 
call write(2). 
Plot the sum of reads and writes/minute for each of the first three disk drives. 
Plot process switches/second, process preemptions/second and system 
calls/second. 
Plot process swapins/minute and process swapouts/minute. 
Plot file access activities: igetlsecond, namei/second, and directory blocks 
read/second. 

/usr/adm/salsadd daily data file, where dd are digits representing the day of the month. 

SEE ALSO 

NOTES 

graph(1 G), tplot(1 G), sar(8). 

Plotted data points are extracted from the system activity file, /usr/adm/sa/sadd, which is writ­
ten under the control of cron(1M), normally every 20 minutes between 8:00 and 18:00 on week­
days, and hourly at other times. 
In the event of a system outage, the system activity counters are reset to zero when the system 
is rebooted. This discontinuity is shown by a gap in the plotted data. 

DIAGNOSTICS 
"terminal type not known" if $TERM is not set and the -T option is not specified. 

Page 1 March 22, 1984 



SCC(1) SCC(1 ) 

NAME 
sec - C compiler for stand-alone programs 

SYNOPSIS 
sec [ +[ lib ] ] [ option ] ... [ file ] ... 

DESCRIPTION 

FilES 

Sec prepares the named files for stand-alone execution. The option and file arguments may be 
anything that can legally be used with the ee command; it should be noted, though, that the -p 
(profiling) option, as well as any object module that contains system calls, will cause the execut­
able not to run. 

Sec defines the compiler constant, STANDALONE, so that sections of C programs may be com­
piled conditionally for when the executable will be run stand-alone. 

The first argument specifies an auxiliary library that defines the device configuration of the com­
puter for which the stand-alone executable is being prepared. If no +Iib argument is specified, 
+A is assumed. If the + argument is specified alone, no configuration library is loaded unless 
the user supplies his own. 

Sec gets startup code from /lib/crt2.0. 

/libicrt2.0 execution start-off 
/usrilibilib2A.a stand-alone library 

SEE ALSO 
cc(1), Id(1), a.out(5). 
A Stand-alone Input/Output Ubrary, by S. R. Eisen. 

Page 1 January 20, 1984 



SCCSDlFF(1 ) 

NAME 
sccsdiff - compare two versions of an S<;;eSfile 

SYNOPSIS 
sccsdiff -rSID1 -rSID2 [-p] [-sn] files 

DESCRIPTION 

SCCSDIFF( 1) 

Sccsdiff compares two versions of an sees file and generates the differences between the two 
versions. Any number of sees files may be specified, but arguments apply to all files. 

-rSID? 

-p 

-sn 

FILES 

SID1 and S/02 specify the deltas of an sees file that are to be compared. 
Versions are passed to bdiff(1) in the order given. 

pipe output for each file through pr(1). 

n is the file segment size that bdiff will pass to diff(1). This is useful when 
diff fails due to a high system load. 

Itmp/get????? Temporary files 

SEE ALSO 
bdiff(1), get(1), help(1), pr(1). 
Source Code Control System User's Guideby L. E. Bonanni and C. A. Salemi. 

DIAGNOSTICS 
"file: No differences" If the two versions are the same. 
Use help(1) for explanations. 

Page 1 January 20, 1984 



SCRIPT(1) (Plexus) SCRIPT(1) . 

NAME 
script - make typescript of terminal session 

SYNOPSIS 
lusr/plxlscript [ -n ] [ -s ] [ -8 ] [ -q ] [ -S shell ] [ file ] 

DESCRIPTION 

NOTES 

BUGS 

Page 1 

Script makes a typescript of everything printed on your terminal. The typescript is saved in a 
file, and can be sent to the line printer later with /pr. If a file name is given, the typescript is 
saved there. If not, the typescript is saved in the file typescript. 

To exit script, type control O. This sends an end of file to all processes you have started up, 
and causes script to exit. For this reason, control 0 behaves as though you had typed an infin­
ite number of control D's. 

This program is useful when using a CRT and a hard-copy record of the dialog is desired, as for 
a student handing in a program that was developed on a CRT when hard-copy terminals are in 
short supply. 

The options control what shell is used. -n asks for the new shell, -s asks for the standard shell. 
-S lets you specify any shell you want. The default depends on the system: Ibin/csh is used 
where possible, otherwise /bin/sh. If the requested shell is not available, script uses any shell it 
can find. 

The -q flag asks for "quiet mode", where the "script started" and "script done" messages are 
turned off. The -8 flag causes script to append to the typescript file instead of creating a new 
file. 

This command is based on a similar one from the University of California at Berkeley. 

Since UNIX has no way to write an end-of-file down a pipe without closing the pipe, there is no 
way to simulate a single control 0 without ending script. 

The new shell has its standard input coming from a pipe rather than a tty, so stty will not work, 
and neither will ttyname. 

When the user interrupts a printing process, script attempts to flush the output backed up in the 
pipe for better response. Usually the next prompt also gets flushed. 

January 20, 1984 



SDIFF(1) SDlFF(1) . 

NAME 
sdiff - side-by-side difference program 

SYNOPSIS 
sdiff [ options ... ] file1 file2 

DESCRIPTION 
Sdiff uses the output of diff(1) to produce a side-by-side listing of two files indicating those lines 
that are different. Each line of the two files is printed with a blank gutter between them if the 
lines are identical, a < in the gutter if the line only exists in file 1 , a > in the gutter if the line 
only exists in file2, and a I for lines that are different. 

For example: 

x 
a 
b 
c 
d 

< 
< 

y 
a 

d 
> c 

The following options exist: 

-w n Use the next argument, n, as the width of the output line. The default line length is 
130 characters. 

-I Only print the left side of any lines that are identical. 

-s Do not print identical lines. 

-0 output Use the next argument, output, as the name of a third file that is created as a user 
controlled mergi ng of file 1 and file2. Identical Ii nes of file 1 and file2 are copied to 
output. Sets of differences, as produced by diff(1), are printed; where a set of 
differences share a common gutter character. After printing each set of differences, 
sdiff prompts the user with a % and waits for one of the following user-typed com­
mands: 

append the left column to the output file 

r append the right column to the output file 

s turn on silent mode; do not print identical lines 

v turn off silent mode 

e I call the editor with the left column 

e r call the editor with the right column 

e b call the editor with the concatenation of left and right 

e call the editor with a zero length fi Ie 

q exit from the program 

On exit from the editor, the resulting file is concatenated on the end of the output 
file. 

SEE ALSO 
diff(1), ed(1). 

Page 1 January 20, 1984 



SED(1 ) SED(1 ) 

NAME 
sed - stream editor 

SYNOPSIS 
sed [ -n ] [ -e script ] [ -f sfile ] [ files ] 

DESCRIPTION 

Page 1 

Sed copies the named tiles (standard input default) to the standard output, edited according to a 
script of commands. The -f option causes the script to be taken from file stile; these options 
accumulate. If there is just one -e option and no -f options, the flag -e may be omitted. The-n 
option suppresses the default output. A script consists of editing commands, one per line, of 
the followi ng form: 

[ address [ , address ] ] function [ arguments ] 

In normal operation, sed cyclically copies a line of input into a pattern space (unless there is 
something left after a 0 command), applies in sequence all commands whose addresses select 
that pattern space, and at the end of the script copies' the pattern space to the standard output 
(except under -n) and deletes the pattern space. 

Some of the commands use a hold space to save all or part of the pattern space for subse­
quent retrieval. 

An address is either a decimal number that counts input lines cumulatively across files, a $ that 
addresses the last line of input, or a context address, i.e., a Iregular expressionl in the style of 
ed(1) modified thus: 

In a context address, the construction \ ?regular expression?, where? is any character, 
is identical to Iregular expression I. Note that in the context· address 
\xabc\xdefx, the second x stands for itself, so that the regular expression is 
abcxdef. 

The escape sequence \n matches a new-line embedded in the pattern space. 
A period. matches any character except the terminal new-line of the pattern space. 
A command line with no addresses selects every pattern space. 
A command line with one address selects each pattern space that matches the address. 
A command line with two addresses selects the inclusive range from the first pattern 

space that matches the first address through the next pattern space that 
matches the second. (If the second address is a number less than or equal to 
the line number first selected, only one line is selected.) Thereafter the process 
is repeated, looking again for the first address. 

Editing commands can be applied only to non-seleeQed pattern spaces by use of the negation 
function! (below). 

In the following list of functions the maximum number of permissible addresses for each function 
is indicated in parentheses. 

The text argument consists of one or more lines, all but the last of which end with \ to hide the 
new-line. Backslashes in text are treated like backslashes in the replacement string of an s 
command, and may be used to protect initial blanks and tabs against the stripping that is done 
on every script line. The rfile or wfile argument must terminate the command line and must be 
preceded by exactly one blank. Each wfile is created before processing begins. There can be 
at most 10 distinct wfile arguments. 

(1)a\ 
text Append. Place text on the output before reading the next input line. 
(2)b label Branch to the: command bearing the label. If label is empty, branch to the end of ~ 

the script., 

January 20, 1984 



SEO(1) 

(2)c\ 
text 

(2)d 
(2) 0 

(2)g 
(2)G 
(2)h 
(2) H 
(1) i\ 
text 
(2) I 

(2) n 

(2) N 

(2) P 
(2) P 

SED(1) 

Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-address 
range, place fe xt on the output. Start the next cycle. 
Delete the pattern space. Start the next cycle. 
Delete the initial segment of the pattern space through the firs~ npIN-line. Start the 
next cycle. 
Replace the contents of the pattern space by the contents of the hold space. 
Append the contents of the hold space to the pattern space. 
Replace the contents of the hold space by the contents of the pattern space. 
Append the contents of the pattern space to the hold space. 

Insert. Place text on the standard output. 
List the pattern space on the standard output in an unambiguous form. Non-printing 
characters are spelled in two-digit ASCII and long lines are folded. 
Copy the pattern space to the standard output. Replace the pattern space with the 
next line of input. 
Append the next line of input to the pattern space with an embedded new-line. (The 
current line number changes.) 
Print. Copy the pattern space to the standard output. 
Copy the initial segment of the pattern space through the first new-line to the stan­
dard output. 

(1) q Quit. Branch to the end of the script. Do not start a new cycle. 
(2) r rfite Read the contents of rfile. Place them on the output before reading the next input 

line. 
(2) s/regular expression,'rep/acementlflags 

Substitute the replacement string for instances of the regular expression in the pat­
tern space. Any character may be used instead of I. For a fuller description see 
ed(1). Flags is zero or more of: 

9 Global. Substitute for all nonoverlapping instances of the regular 
expression rather than just the first one. 

p Print the pattern space if a replacement was made. 
w wfite Write. Append the pattern space to wfite if a replacement was 

made. 
(2) t label Test. Branch to the : command bearing the label if any substitutions have been 

made since the most recent reading of an input line or execution of a t. If label is 
empty, branch to the end of the script. 

(2) w wfile Write. Append the pattern space to wfile. 
(2) x Exchange the contents of the pattern and hold spaces. 
(2) y/string1 Istring2/ 

Transform. Replace all occurrences of characters in string1 with the corresponding 
character in string2. The lengths of string1 and string2 must be equal. 

(2)! function 

(0): label 
(1) = 
(2) { 

(0) 

Don't. Apply the function (or group, if function is () only to lines not selected by the 
address(es). 
This command does nothing; it bears a labelfor b and t commands to branch to. 
Place the current line number on the standard output as a line. 
Execute the following commands through a matching } only when the pattern space 
is selected. 
An empty command is ignored. 

SEE ALSO 
awk(1), ed(1), grep(1). 
SED-A Non-interactive Text Editor by L. E. McMahon. 

January 20, 1984 Page 2 



SEND(1C) SEND(1C) . 

NAME 
send, gath - gather files and/or submit RJE jobs 

SYNOPSIS 
gath [-ih] file ••• 

send argument ••• 

DESCRIPTION 
Gath 

Gath concatenates the named files and writes them to the standard output. Tabs are expanded 
into spaces according to the format specification for each file (see fspec(5». The size limit and 
margin parameters of a format specification are also respected. Non-graphic characters other 
than tabs are identified by a diagnostic message and excised. The output of gath contains no 
tabs unless the -h flag is set, in which case the output is written with standard tabs (every eighth 
column). 

Any line of any of the files which begins with N is interpreted by gath as a control line. A line 
beginning ,,- "(tilde,space) specifies a sequence of files to be included at that point. A line 
beginning -! specifies a UNIX command; that command is executed, and its output replaces the 
-! line in the gath output. 

Setting the -j flag prevents control lines from being interpreted and causes them to be output 
literally. 

A file name of - at any point refers to standard input, and a control line consisting of -. is a logi­
cal EOF. Keywords may be defined by specifying a replacement string which is to be substi­
tuted for each occurrence of the keyword. Input may be collected directly from the terminal, with 
several alternatives for prompting. In fact, all of the special arguments and flags recognized by 
the send command are also recognized and treated identically by gath. Several of them only 
make sense in the context of submitting an RJE job. 

Send 

Page 1 

Send is a command-level interface to the RJE subsystems. It allows the user to collect input 
from various sources in order to create a run stream consisting of card images, and submit this 
run stream for transmission to a host computer. 

Possible sources of input to send are: ordinary files, standard input, the terminal, and the output 
of a command or shell file. Each source of input is treated as a virtual file, and no distinction is 
made based upon its origin. Typical input is an ASCII text file of the sort that is created by the 
editor ed(1). An optional format specification appearing in the first line of a file (see fspec(5» 
determines the settings according to which tabs are expanded into spaces. In addition, lines 
that begin with - are normally interpreted as commands controlling the execution of send. They 
may be used to set or reset flags, to define keyword substitutions, and to open new sources of 
input in the midst of the current source. Other text lines are translated one-for-one into card 
images of the run stream. 

The run stream that results from this collection is treated as one job by the RJE subsystems. 
Send prints the card count of the run stream, and the queuer that is invoked prints the name of 
the temporary file that holds the job wl:lile it is awaiting transmission. The initial card of a job 
submitted to an IBM host must have a II in the first column. The initial card of a job submitted to 
a UNIVAC host must begin with a "@RUN" or " \ run", etc. Any cards preceding these will be 
excised. If a host computer is not specified before the first card of the runstream is ready to be 
sent, send will select a reasonable default. In the case of an IBM job, all cards beginning with 
1*$ will be excised from the runstream, because they are HASP command cards. 

The arguments that send accepts are described below. An argument is interpreted according to ~ 
the first pattern that it matches. Preceding a character with \ causes it to loose any special 

January 20, 1984 



SENO(1C) SENO(1C) . 

meaning it might otherwise have when matching against an argument pattern. 

+ 
:spec: 

:message 

-:prompt 

+:prompt 

-flags 

+flags 

=flags 

Icommand 

$I;ne 

ad;rectory 

"comment 

?:keyword 

?keyword=xx 

?keyword=str;ng 

=:keyword 

keyword=xx 

keyword=str;ng 

host 

file-name 

Close the current source. 

Open standard input as a new source. 

Open the terminal as a new source. 

Establish a default format specification for included sources, 
e.g., :m6t·12: 

Print message on the terminal. 

Open standard input and, if it is a terminal, print prompt. 

Open the terminal and print prompt. 

Set the specified flags, which are described below. 

Reset the specified flags. 

Restore the specified flags to their state at the previous level. 

Execute the specified UNIX command via the one-line shell, with input 
redirected to /dev/null as a default. Open the standard output of the 
command as a new source. 

Collect contiguous arguments of this form and write them as consecu­
tive lines to a temporary file; then have the file executed by the shell. 
Open the standard output of the shell as a new source. 

The current directory for the send process is changed to directory. 
The original directory will be restored at the end of the current source. 

Ignore this argument. 

Prompt for a definition of keyword from the terminal unless keyword 
has an existing definition. 

Define the keyword as a two digit hexadecimal character code unless 
it already has a non null replacement. 

Define the keyword in terms of a replacement string unless it already 
has a non null replacement. 

Prompt for a definition of keyword from the terminal. . 

Define keyword as a two-digit hexadecimal character code. 

Define keyword in terms of a replacement string. 

The host machine that the job should be submitted to. It can be any 
name that corresponds to one in the first column of the RJE configura­
tion file (/usr/rje/lines). 

Open the specified file as a new source of input. 

When commands are executed via $ or ! the shell environment (see env;ron(7» will contain 
the values of all send keywords that begin with $ and have the syntax of a shell variable. 

The flags recognized by send are described in terms of the special processing that occurs 
when they are set: 

-I Ust card images on standard output. EBCDIC characters are translated back to ASCII. 

-q Do not output card images. 

January 20, 1984 Page 2 



SEND(1C) 

Page 3 

SEND(1C) 

-, Do not fold lower case to upper. 

-t Trace progress on diagnostic output, by announcing the opening of input sources. 

-k Ignore the keywords that are active at the previous level and erase any keyword defin-
itions that have been made at the current level. 

-r Process included sources in raw mode; pack arbitrary 8-bit bytes one per column (80 
columns per card) until an EOF. 

-i Do not interpret control lines in included sources; treat them as text. 

-s Make keyword substitutions before detecting and interpreting control lines. 

-y Suppress error diagnostics and submit job anyway. 

11 Gather mode, qualifying -I flag; list text lines before converting them to card images. 

-h Write listing with standard tabs. 

-p Prompt with. when taking input from the terminal. 

-m When input returns to the terminal from a lower level, repeat the prompt, if any. 

-a Make -k flag propagate to included sources, thereby protecting them from keyword 
substitutions. 

-c Ust control lines on diagnostic output. 

-d Extend the current set of keyword definitions by adding those active at the end of 
included sources. 

-x This flag guarantees that the job wi" be transmitted in the order of submission (rela-
tive to other jobs sent with this flag). 

Control lines are input lines that begin with N. In the default mode +ir, they are interpreted 
as commands to send. Norma"y they are detected immediately and read litera"y. The-s 
flag forces keyword substitutions to be made before control lines are intercepted and inter­
preted. This can lead to unexpected results if a control line uses a keyword which is 
defined within an immediately preceding N$ sequence. Arguments appearing in control 
lines are handled exactly like the command arguments to send, except that they are pro­
cessed at a nested level of input. 

The two possible formats for a control line are: "Nargument" and "N argument ••• ". In the 
first case, where the N is not followed by a space, the remainder of the line is taken as a 
single argument to send. In the second case, the line is parsed to obtain a sequence of 
arguments delimited by spaces. In this case the quotes' and • may be employed to pass 
embedded spaces. 

The interpretation of the argument • is chosen so that an input line consisting of N. is 
treated as a logical EOF. The following example illustrates some of the above conventions: 

send -
N argument .•. 
N 

This sequence of three lines is equivalent to the command synopsis at the beginning of this 
description. In fact, the - is not even required. By convention, the send command reads 
standard input if no other input source is specified. Send may therefore be employed as a 
filter with side-effects. 

The execution of the send command is controlled at each instant by a current environment, 
which includes the format specification for the input source, a default format specification 
for included sources, the settings of the mode flags, and the active set of keyword 

January 20, 1984 



SEND(1C) SEND(1C) 

definitions. This environment can be altered dynamically. When a control line opens a new 
source of input, the current environment is pushed onto a stack, to be restored when input 
resumes from the old source. The initial format specification for the new source is taken 
from the first line of the file. If none is provided, the established default is used or, in its 
absence, standard tabs. The initial mode settings and active keywords are copied from the 
old environment. Changes made while processing the new source will not affect the 
environment of the old source, with one exception: if -d mode is set in the old environment, 
the old keyword context will be augmented by those definitions that are active at the end of 
the new source. 

When send first begins execution, all mode flags are reset, and the values of the shell 
environment variables become the initial values for keywords of the same name with a $ 
prefixed. 

The initial reset state for all mode flags is the + state. In general, special processing asso­
ciated with a mode N is invoked by flag -N and is revoked by flag +N. Most mode settings 
have an immediate effect on the processing of the current source. Exceptions to this are 
the -r and -i flags, which apply only to included source, causing it to be processed in an 
uninterpreted manner. 

A keyword is an arbitrary 8-bit ASCII string for which a replacement has been defined. The 
replacement may be another string, or (for IBM RJE only) the hexadecimal code for a single 
8-bit byte. At any instant, a given set of keyword definitions is active. Input text lines are 
scanned, in one pass from left to right, and longest matches are attempted between sub­
strings of the line and the active set of keywords. Characters that do not match are output, 
subject to folding and the standard translation. Keywords are replaced by the specified 
hexadecimal code or replacement string, which is then output character by character. The 
expansion of tabs and length checking, according to the format specification of an input 
source, are delayed until substitutions have been made in a line. 

All of the keywords definitions made in the current source may be deleted by setting the -k 
flag. It then becomes possible to reuse them. Setting the -k flag also causes keyword 
definitions active at the previous source level to be ignored. Setting the +k flag causes 
keywords at the previous level to be ignored but does not delete the definitions made at the 
current level. The =k argument reactivates the definitions of the previous level. 

When keywords are redefined, the previous definition at the same level of source input is 
lost, however the definition at the previous level is only hidden, to be reactivated upon 
return to that level unless a -d flag causes the current definition to be retained. 

Conditional prompts for keywords, ?:A,/p which have already been defined at some higher 
level to be null or have a replacement will simply cause the definitions to be copied down to 
the current level; new definitions will not be solicited. 

Keyword substitution is an elementary macro facility that is easily explained and that 
appears useful enough to warrant its inclusion in the send command. More complex 
replacements are the function of a general macro processor (m4(1), perhaps). To reduce 
the overhead of string comparison, it is recommended that keywords be chosen so that 
their initial characters are unusual. For example, let them all be upper case. 

Send performs two types of error checking on input text lines. Firstly, only ASCII graphics 
and tabs are permitted in input text. Secondly, the length of a text line, after substitutions 
have been made, may not exceed 80 bytes for IBM, or 132 bytes for UNIVAC. The length of 
each line may be additionally constrained by a size parameter in the format specification for 
an input source. Diagnostic output provides the location of each erroneous line, by line 
number and input source, a description of the error, and the card image that results. Other 
routine errors that are announced are the inability to open or write files, and abnormal exits 

January 20,1984 Page 4 



SEND(1C) SEND(1C) . 

from the shell. Normally, the occurrence of any error causes send, before invoking the 
queuer, to prompt for positive affirmation that the suspect run stream should be submitted. 

For IBM hosts, send is required to translate 8-bit ASCII characters into their EBCDIC 
equivalents. The conversion for 8-bit ASCII characters in the octal range 040-176 is based 
on the character set described in "Appendix H" of IBM Systeml370 Principles of Operation 
(IBM SRL GA22-7000). Each 8-bit ASCII character in the range 040-377 possesses an 
EBCDIC equivalent into which it is mapped, with five exceptions: - into .." 0345 into -, 
0325 into t, 0313 into I, 0177 (DEL) is illegal. In listings requested from send and in 
printed output returned by the subsystem, the reverse translation is made with the qualifica­
tion that EBCDIC characters that do not have valid 8-bit ASCII equivalents are translated into 
A. UNIVAC hosts, on the other hand, operate in ASCII code, and any translations between 
ASCII and field-data are made, in accordance with the UNIVAC standard, by the host com­
puter. 

Additional control over the translation process is afforded by the ·f flag and hexadecimal 
character codes. As a default, send folds lower-case letters into upper case. For UNIVAC 
RJE it does more: the entire ASCII range 0140-0176 is folded into 0100-0136, so that' • for 
example, becomes O. In either case, setting the ·f flag inhibits any folding. Non-standard 
character codes are obtained as a special case of keyword substitution. 

SEE ALSO 

BUGS 

Page 5 

m4(1). orjestat(1C), rjestat(1C), sh(1), fspec(5), ascii(7), hasp(8), rje(8), uvac(8). 
Guide to IBM Remote Job Entry for PWB/UNIX Users by A. l. Sabsevitz and E. J. Finger. 
UNIX Remote Job Entry User's Guide by K. A. Kelleman. 

Standard input is read in blocks, and unused bytes are returned via Iseek(2). If standard input ~ .. 
is a pipe, multiple arguments of the form - and -:prompt should not be used, nor should the logi-
cal EOF C.). . 

January 20, 1984 



SETMNT(1M) SETMNT(1M) 

NAME 
setmnt - establish mnttab table 

SYNOPSIS 
/etc/setmnt 

DESCRIPTION 

FILES 

Setmnt creates the /etc/mnttab table (see mnttab(5», which is needed for the mount(1M), 
rmount(1 M), umount(1 M), and rumount(1 M) commands. Setmnt reads standard input and 
creates a mnttab entry for each line. Input lines have the format: 

filesys node [dir] 

where filesys is the name of the file system's special file (e.g., "dk1") or the remote directory 
and node is the root name of that file system or the remote node. The third parameter, dir, is 
only used to generate rmount entries. It is the local directory name. Thus filesys and node 
become the first two strings in the mnttab(5) entry. 

/etcimnttab 

SEE ALSO 
mnttab(5). 

BUGS 
Evil things will happen if filesys or node are longer than 50 characters. 
Setmnt silently enforces an upper limit on the maximum number of mnttab entries. 

Page 1 January 20, 1984 



SH(1) SH(1) 

NAME 
sh - shell, the standard command programming language 

SYNOPSIS 
sh [ -ceiknrstuvx ] [ args ] 

DESCRIPTION , 
Sh is a command programming language that executes commands read from a terminal or a 
file. See Invocation below for the meaning of arguments to the shell. 

Commands. 

Page 1 

A simple-command is a sequence of non-blank words separated by blanks (a blank is a tab or 
a space). The first word specifies the name of the command to be executed. Except as speci­
fied below, the remaining words are passed as arguments to the invoked command. The com­
mand name is passed as argument 0 (see exec(2». The value of a simple-command is its exit 
status if it terminates normally, or (octal) 200+status if it terminates abnormally (see signa/(2) 
for a list of status values). 

A pipeline is a sequence of one or more commands separated by I. The standard output of 
each command but the last is connected by a pipe(2) to the standard input of the next com­
mand. Each command is run as a separate process; the shell waits for the last command to ter­
minate. 

A list is a sequence of one or more pipelines separated by;, &, &&, or II, and optionally ter­
minated by i or &. Of these four symbols, ; and & have equal precedence, which is lower than 
that of && and II. The symbols && and II also have equal precedence. A semicolon (i) 
causes sequential execution of the preceding pipeline; an ampersand (&) causes asynchronous 
execution of the preceding pipeline (i.e., the shell does not wait for that pipeline to finish). The 
symbol && ( II) causes the list following it to be executed only if the preceding pipeline returns 
a zero (non-zero) exit status. An arbitrary number of new-lines may appear in a list, instead of 
semicolons, to delimit commands. 

A command is either a simple-command Or one of the following. Unless otherwise stated, the 
value returned by a command is that of the last simple-command executed in the command. 

for name [ in word ... ] do list done 
.Each time a for command is executed, name is set to the next word taken from the in 
word list. If in word ..• is omitted, then the for command executes the do list once for 
each positional parameter that is set (see Parameter Substitution below). Execution 
ends when there are no more words in the list. 

case word in [ pattern [ I pattern ] ..• ) list i; ] ... esae 
A case command executes the /1st associated with the first pattern that matches word. 
The form of the patterns is the same as that used for file-name generation (see File 
Name Generation below). 

if list then list [ elif list then list ] . .. [ else /1st ] fi 
The list following if is executed and, if it returns a zero exit status, the list following the 
first then is executed. Otherwise, the list following elif is executed and, if its value is 
zero, the list following the next then is executed. Failing that, the else list is executed. 
If no else list or then list is executed, then the if command returns a zero exit status. 

while list do list done 

(list) 

{list;} 

A while command repeatedly executes the while list and, if the exit status of the last 
command in the list is zero, executes the do list; otherwise the loop terminates. If no 
commands in the do list are executed, then the while command returns a zero exit 
status; until may be used in place of while to negate the loop termination test. 

Execute list in a sub-shell. 

list is simply executed. 

January 23, 1984 



SH(1) SH(1) 

The following words are only recognized as the first word of a command and when not quoted: 

if then else elif fi case esae for while until do done { } 

Comments. 
A word beginning with /I causes that word and all the following characters up to a new-line to 
be ignored. 

Command Substitution. 
The standard output from a command enclosed in a pair of grave accents (\ \ ) may be used 
as part or all of a word; trailing new-lines are removed. 

Parameter Substitution. 
The character $ is used to introduce substitutable parameters. Positional parameters may be 
assigned values by set. Variables may be set by writing: 

name =value [ name =value I ... 
Pattern-matching is not performed on value. 

${parameter} 
A parameter is a sequence of letters, digits, or underscores (a name), a digit. or any of 
the characters •• a, /I. ?, •• $, and!, The value. if any. of the parameter is substituted. 
The braces are required only when parameter is followed by a letter. digit. or under­
score that is not to be interpreted as part of its name. A name must begin with a letter 
or underscore. If parameter is a digit then it is a positional parameter. If parameter is 
• or a, then all the positional parameters, starting with $1. are substituted (separated by 
spaces). Parameter $0 is set from argument zero when the shell is invoked. 

$ {parameter :-word} 
If parameter is set and is non-null then substitute its value; otherwise substitute word. 

${parameter :=word} 
If parameter is not set or is null then set it to word; the value of the parameter is then 
substituted. Positional parameters may not be assigned to in this way. 

${parameter :?word} 
If parameter is set and is non-null then substitute its value; otherwise. print word and 
exit from the shell. If word is omitted, then the message "parameter null or not set" is 
printed. 

${parameter:+word} 
If parameter is set and is non-null then substitute word; otherwise substitute nothing. 

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in 
the following example, pwd is executed only if d is not set or is null: 

echo ${ d:- \ pwd \ } 

If the colon (:) is omitted from the above expressions, then the shell only checks whether 
parameter is set or not. 

The following parameters are automatically set by the shell: 
/I The number of positional parameters in decimal. 

Flags supplied to the shell on invocation or by the set command. 
? The decimal value returned by the last synchronously executed command. 
$ The process number of this shell. 

The process number of the last background command invoked. 

The following parameters are used by the shell: 
HOME The default argument (home directory) for the cd command. 
PATH The search path for commands (see Execution below). 
MAIL If this variable is set to the name of a mail file, then the shell informs the user of 

the arrival of mail in the specified file. 

January 23, 1984 Page 2 



SH(1) 

PS1 
PS2 
IFS 

Primary prompt string, by default "S ". 
Secondary prompt string, by default "> " 
Internal field separators, normally space, tab, and new-line. 

SH(1) . 

The shell gives default values to PATH, PS1, PS2, and IFS, while HOME and MAIL are not set at 
all by the shell (although HOME is set by login(1». 

Blank Interpretation. 
After parameter and command substitution, the results of substitution are scanned for internal 
field separator characters (those found in IFS) and split into distinct arguments where such char­
acters are found. Explicit null arguments ("" or ' ') are retained. ImpliCit null arguments 
(those resulting from parameters that have no values) are removed. 

File Name Generation. 
FolloWing substitution, each command word is scanned for the characters ., ?, and [. If one of 
these characters appears then the word is regarded as a pattern. The word is replaced with 
alphabetically sorted file names that match the pattern. If no file name is found that matches 
the pattern, then the word is left unchanged. The character. at the start of a file name or 
immediately following a /, as well as the character / itself, must be matched explicitly. 

• Matches any string, including the null string. 
? Matches any single character. 
[ ... ] Matches anyone of the enclosed characters. A pair of characters separated by 

- matches any character lexically between the pair, inclusive. 

Quoting. 
The following characters have a special meaning to the shell and cause termination of a word 
unless quoted: 

; & ( ) I < > new-line space tab ~ 
A character may be quoted (Le., made to stand for itself) by preceding it with a \. The pair 
\new-Iine is ignored. All characters enclosed between a pair of single quote marks ( , '), 
except a single quote, are quoted. Inside double quote marks (" "), parameter and command 
substitution occurs and \ quotes the characters \' '\, ", and S. "S." is equivalent to "S1 S2 
... ", whereas "SO" is equivalent to "S1" "S2 11 •••• 

Prompting. 
When used interactively, the shell prompts with the value of PS1 before reading a command. If 
at any time a new-line is typed and further input is needed to complete a command, then the 
secondary prompt (i.e., the value of PS2) is issued. 

Input/Output. 

Page 3 

Before a command is executed, its input and output may be redirected using a special notation 
interpreted by the shell. The following may appear anywhere in a simple-command or may pre­
cede or follow a command and are not passed on to the invoked command; substitution occurs 
before word or digit is used: 

<word Use file word as standard input (file deSCriptor 0). 
> word Use file word as standard output (file descriptor 1). If the file does not exist then 

it is created; otherwise, i~ is truncated to zero length. 
»word Use file word as standard output. If the file exists then output is appended to it 

(by first seeking to the end-of-file); otherwise, the file is created. 
«[ - ]word The shell input is read up to a line that is the same as word, or to an end-of-file. 

The resulting document becomes the standard input. If any character of word is 
quoted, then no interpretation is placed upon the characters of the document; 
otherwise, parameter and command substitution occurs, (unescaped) \new-Iine 
is ignored, and \ must be used to quote the characters \' S, '\, and the first 
character of word. If - is appended to «, then all leading tabs are stripped 

January 23, 1984 



SH(1) SH(1) . 

~ from word and from the document. 
<&digit The standard input is duplicated from file descriptor digit (see dup(2». Similarly 

for the standard output usi ng >. 
<&- The standard input is closed. Similarly for the standard output using >. 
If one of the above is preceded by a digit, then the file descriptor created is that specified by the 
digit (instead of the default 0 or 1). For example: 

... 2>&1 

creates file descriptor 2 that is a duplicate of file descriptor 1. 

If a command is followed by & then the default standard input for the command is the empty file 
/dev/null. Otherwise, the environment for the execution of a command contains the file descrip­
tors of the invoking shell as modified by inpuUoutput specifications. 

Environment. 
The environment (see environ(7» is a list of name-value pairs that is passed to an executed 
program in the same way as a normal argument list. The shell interacts with the environment in 
several ways. On invocation, the shell scans the environment and creates a parameter for each 
name found, giving it the corresponding value. Executed commands inherit the same environ­
ment. If the user modifies the values of these parameters or creates new ones, none of these 
affects the environment unless the export command is used to bind the shell's parameter to the 
environment. The environment seen by any executed command is thus composed of any unmo­
dified name-value pairs Originally inherited by the shell, plus any modifications or additions, all 
of which must be noted in export commands. 

The environment for any simple-command may be augmented by prefixing it with one or more 
assignments to parameters. Thus: 

TERM=450 cmd args 
and 
(export TERM; TERM=450; cmd args) 

are equivalent (as far as the above execution of cmd is concerned). 

If the -k flag is set, all keyword arguments are placed in the environment, even if they occur 
after the command name. The following first prints a=b c and then c: 

Signals. 

echo a=b c 
set -k 
echo a=b c 

The INTERRUPT and aUIT signals for an invoked command are ignored if the command is fol­
lowed by &; otherwise signals have the values inherited by the shell from its parent, with the 
exception of signal 11 (but see also the trap command below). 

When the shell associated with a terminal terminates, processes spun off with & are sent the 
SIGHUP signal. See exit(2). . 

Execution. 
Each time a command is executed, the above substitutions are carried out. Except for the Spe­
cial Commands listed below, a new process is created and an attempt is made to execute the 
command via exec (2). 

The shell parameter PATH defines the search path for the directory containing the command. 
Alternative directory names are separated by a colon (:). The default path is :/bin:/usr/bin 
(specifying the current directory, /bin, and /usr/bin, in that order). Note that the current direc­
tory is specified by a null path name, which can appear immediately after the equal sign or 
between the colon delimiters anywhere else in the path list. If the command name contains a I 
then the search path is not used. Otherwise, each directory in the path is searched for an 

January 23, 1984 Page 4 



SH(1) SH(1) 

executable file. If the file has execute permission but is not an a.out file, it is assumed to be a 
file containing shell commands. A sub-shell (Le., a separate process) is spawned to read it. A 
parenthesized command is also executed in a sub-shell. 

Special Commands. 

PageS 

The following commands are executed in the shell process and, except as specified, no 
input/output redirection is permitted for such commands: 

No effect; the command does nothing. A zero exit code is returned . 
• file Read and execute commands from file and return. The search path specified by PATH 

is used to find the directory containing file. 
break [ n ] 

Exit from the enclosing for or while loop, if any. If n is specified then break n levels. 
continue [ n ] 

Resume the next iteration of the enclosing for or while loop. If n is specified then 
resume at the n-th enclosing loop. 

ed [ arg ] 
Change the current directory to arg. The shell parameter HOME is the default arg. 

eval [ arg ... ] 
The arguments are read as input to the shell and the resulting command(s) executed. 

exec [ arg ... ] 
The command specified by the arguments is executed in place of this shell without 
creating a new process. Input/output arguments may appear and, if no other arguments 
are given, cause the shell inputioutput to be modified. 

exit [ n ] 
Causes a shell to exit with the exit status specified by n. If n is omitted then the exit 
status is that of the last command executed (an end-of-file will also cause the shell to 
exit.) 

export [ name '" I 
The given names are marked for automatic export to the environment of subsequently­
executed commands. If no arguments are given, then a list of all names that are 
exported in this shell is printed. 

newgrp [ arg . " ] 
Equivalent to exec newgrp arg .... 

read [ name ... ] 
One line is read from the standard input and the first word is assigned to the first name, 
the second word to the second name, etc., with leftover words aSSigned to the last 
name. The return code is 0 unless an end-of-file is encountered. 

readonly [ name ... ] 
The given names are marked readonly and the values of the these names may not be 
changed by subsequent assignment. If no arguments are given, then a list of all 
readonly names is printed. 

set [ -ekntuvx [ arg ... ] ] 
-e If the shell is non-interactive then exit immediately if a command exits with a 

non-zero exit status. 
-k All keyword arguments are placed in the environment for a command, not just 

those that precede the command name. 
-n Read commands but do not execute them. 
-t Exit after reading and executing one command. 
-u Treat unset variables as an error when substituting. 
-y Print shell input lines as they are read. 
-x Print commands and their arguments as they are executed. 

Do not change any of the flags; useful in setting $1 to -. 
Using + rather than - causes these flags to be turned off. These flags can also be 
used upon invocation of the shell. The current set of flags may be found in $-. The 

January 23, 1984 



SH(l) 

shift 

test 

times 

SH(l) 

remaining arguments are positional parameters and are assigned, in order, to $1, $2, 
. . .. If no arguments are given then the values of all names are printed. 

The positional parameters from $2 . .. are renamed $1 .... 

Evaluate conditional expressions. See test(1) for usage and description. 

Print the accumulated user and system times for processes run from the shell. 
trap[arg I[n I ... 

arg is a command to be read and executed when the shell receives signal(s) n. (Note 
that arg is scanned once when the trap is set and once when the trap is taken.) Trap 
commands are executed in order of signal number. Any attempt to set a trap on a sig­
nal that was ignored on entry to the current shell is ineffective. An attempt to trap on 
signal 11 (memory fault) produces an error. If arg is absent then all trap(s) n are reset 
to their original values. If arg is the null string then this signal is ignored by the shell 
and by the commands it invokes. If n is 0 then the command arg is executed on exit 
from the shell. The trap command with no arguments prints a list of commands associ­
ated with each signal number. 

umask [ nnn I 
The user file-creation mask is set to nnn (see umask(2)). If nnn is omitted, the current 
value of the mask is printed. 

wait Wait for all child processes to terminate report the termination status. If n is not given 
then all currently active child processes are waited for. The return code from this com­
mand is always zero. 

Invocation_ 
If the shell is invoked through exec(2) and the first character of argument zero is -, commands 
are initially read from letc/profile and then from $HOMEi.profile, if such files exist. Thereafter, 
commands are read as described below, which is also the case when the shell is invoked as 
Ibin/sh. The flags below are interpreted by the shell on invocation only; Note that unless the -c 
or -s flag is specified, the first argument is assumed to be the name of a file containing com­
mands, and the remaining arguments are passed as positional parameters to that command file: 

-c string If the -c flag is present then commands are read from string. 
-5 If the -s flag is present or if no arguments remain then commands are read from the 

standard input. Any remaining arguments specify the positional parameters. Shell 
output is written to file descriptor 2. 

-i If the -i flag is present or if the shell input and output are attached to a terminal, then 
this shell is interactive. In this case TERMINATE is ignored (so that kill 0 does not kill 
an interactive shell) and INTERRUPT is caught and ignored (so that wait is interrupti­
ble). In all cases, QUIT is ignored by the shell. 

-r If the -r flag is present the shell is a restricted shell (see rsh(1)). 

The remaining flags and arguments are described under the set command above. 

EXIT STATUS 

FILES 

Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero exit 
status. If the shell is being used non-interactively then execution of the shell file is abandoned. 
Otherwise, the shell returns the exit status of the last command executed (see also the exit 
command above). 

letc/profile 
SHOMEI.profile 
/tmp/sh* 
/dev/null 

January 23, 1984 Page 6 



SH(1) SH(1) . 

~~ ~ 

BUGS 

Page 7 

00(1), env(1), login(1), newgrp(1), rsh(1), test(1), umask(1), dup(2), exec(2), fork(2), pipe(2), sig-
nal(2), umask(2), wait(2), a.out(5), profile(5), environ(7). 

The command readonly (without arguments) produces the same output as the command 
export. 
If « is used to provide standard input to an asynchronous process invoked by &, the shell 
gets mixed up about naming the input document; a garbage file Itmp/sh. is created and the 
shell complains about not being able to find that file by another name. 

January 23, 1984 



SIZE(1) 

NAME 
size· size of an object file 

SYNOPSIS 
size [ object ... ] 

DESCRIPTION 

SIZE(1) . 

Size prints the (decimal) number of bytes required by the text, data, and bss portions, and their 
sum in octal and decimal, of each object-file argument. If no file is specified, a.out is used. 

SEE ALSO 
a.out(5). 

Page 1 January 20, 1984 



SLEEP(1) 

NAME 
sleep - suspend execution for an interval 

SYNOPSIS 
sleep time 

DESCRIPTION 

SLEEP(1) 

Sleep suspends execution for time seconds. It is used to execute a command after a certain 
amount of time as in: 

(sleep 105; command)& 

or to execute a command every so often, as in: 

while true 
do 

done 

command 
sleep 37 

SEE ALSO 
alarm(2), sleep(3C). 

BUGS 
Time must be less than 65536 seconds. 

Page 1 March 22, 1984 



SNO(1 ) SNO(1 ) 

NAME 
sno - SNOBOL interpreter 

SYNOPSIS 
sno [ files] 

DESCRIPTION 
Sno is a SNOBOL compiler and interpreter (with slight differences). Sno obtains input from the 
concatenation of the named files and the standard input. All input through a statement contain­
ing the label end is considered program and is compiled. The rest is available to syspit. 

Sno differs from SNOBOL in the following ways: 

There are no unanchored searches. To get the same effect: 

a tt b unanchored search for b. 
a tXt b = X c unanchored assignment 

There is no back referencing. 

X = "abc" 
is an unanchored search for abc. 

Function declaration is done at compile time by the use of the (non-unique) label 
define. Execution of a function call begins at the statement following the define. Func­
tions cannot be defined at run time, and the use of the name define is preempted. 
There is no provision for automatic variables other than parameters. Examples: 

define f( ) 
define f(a, b, c) 

All labels except define (even end) must have a non-empty statement. 

Labels, functions and variables must all have distinct names. In particular, the non­
empty statement on end cannot merely name a label. 

If start is a label in the program, program execution will start there. If not, execution 
begins with the first executable statement; define is not an executable statement. 

There are no builtin functions. 

Parentheses for arithmetic are not needed. Normal precedence applies. Because of 
this, the arithmetic operators / and * must be set off by spaces. 

The right side of assignments must be non-empty. 

Either • or • may be used for literal quotes. 

The pseudo-variable sysppt is not available. 

SEE ALSO 
awk(1). 

Page 1 

"SNOBOL, a String Manipulation Language," by D. J. Farber, R. E. Griswold, and I. P. Polonsky, 
JACM 11 (1964), pp. 21-30. 

January 20, 1984 



SORT(1) SORT(1) . 

NAME 
sort - sort and/or merge files 

SYNOPSIS 
sort [ -cmubdfinrtx ] [ +pos1 [ -pos2 ] ] ... [ -0 output] [names] 

DESCRIPTION 
Sort sorts lines of all the named files together and writes the result on the standard output. The 
name - means the standard input. If no input files are named, the standard input is sorted. 

The default sort key is an entire line. Default ordering is lexicographic by bytes in machine col­
lating sequence. The ordering is affected globally by the following options, one or more of which 
may appear. 

b Ignore leading blanks (spaces and tabs) in field comparisons. 

d "Dictionary" order: only letters, digits and blanks are significant in comparisons. 

f Fold upper case letters onto lower case. 

Ignore characters outside the ASCII range 040-0176 in non-numeric comparisons. 

n An initial numeric string, consisting of optional blanks, optional minus sign, and zero or 
more digits with optional decimal point, is sorted by arithmetic value. Option n implies 
option b. 

r Reverse the sense of comparisons. 

Ix "Tab character" separating fields is x. 

The notation +pos1 -pos2 restricts a sort key to a field beginning at pos1 and ending just 
before pos2. Pos 1 and pos2 each have the form m.n, optionally followed by one or more of the 
flags bdfinr, where m tells a number of fields to skip from the beginning of the line and n tells a 
number of characters to skip further. If any flags are present they override all the global order­
ing options for this key. If the b option is in effect n is counted from the first non-blank in the 
field; b is attached independently to pos2. A missing .n means .0; a missing -pos2 means the 
end of the line. Under the -tx option, fields are strings separated by x; otherwise fields are 
non-empty non-blank strings separated by blanks. 

When there are multiple sort keys, later keys are compared only after all earlier keys compare 
equal. Unes that otherwise compare equal are ordered with all bytes significant. 

These option arguments are also understood: 

c Check that the input file is sorted according to the ordering rules; give no output unless the 
file is out of sort. 

m Merge only, the input files are already sorted. 

u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys do 
not ·participate in this comparison. 

o The next argument is the name of an output file to use instead of the standard' output. 
This file may be the same as one of the inputs. 

EXAMPLES 

Page 1 

Print in alphabetical order all the unique spellings in a list of words (capitalized words differ from 
uncapitalized): 

sort -u +Of +0 list 

Print the password file (passwd(5)) sorted by user 10 (the third colon-separated field): 

sort -t: +2n letc/passwd 

Print the first instance of each month in an already sorted file of (month-day) entries (the 
options -um with just one input file make the choice of a unique representative from a set of 

January 20, 1984 



SORT(1 ) SORT(1) 

equal lines predictable): 

sort -um +0 -1 dates 

FILES 
lusr/tmp/stm??? 

SEE ALSO 
comm(1), join(1), uniq(1). 

DIAGNOSTICS 

BUGS 

Comments and exits with non-zero status for various trouble conditions and for disorder 
discovered under option -c. 

If you try to sort lines longer than 2048 characters, the lines may be truncated. If lines are trun­
cated, a warning message appears on standard error. 

January 20, 1984 Page 2 



SPEll(1) SPEll(1 ) 

NAME 
spell, spellin, spellout - find spelling errors 

SYNOPSIS 
spell [ options ] [ files ] 

lusr/lib/speil/spellin [ list ] 

lusr/lib/speil/spellout [ -d ] list 

DESCRIPTION 

FilES 

Spell collects words from the named files and looks them up in a spelling list. Words that nei­
ther occur among nor are derivable (by applying certain inflections, prefixes, and/or suffixes) 
from words in the spelling list are printed on the standard output. If no files are named, words 
are collected from the standard input. 

Spell ignores most troff(1), tbl(1), and eqn (1) constructions. 

Under the -y option, all words not literally in the spelling list are printed, and plausible deriva­
tions from the words in the spelling list are indicated. 

Under the -b option, British spelling is checked. Besides preferring centre, colour, speciality, 
travelled, etc., this option insists upon -ise in words like standardise, Fowler and the OED to the 
contrary notwithstanding. 

Under the -x option, every plausible stem is printed with = for each word. 

The spelling list is based on many sources, and while more haphazard than an ordinary diction­
ary, is also more effective with respect to proper names and popular technical words. Coverage 
of the specialized vocabularies of biology, medicine, and chemistry is light. 

Pertinent auxiliary files may be specified by name arguments, indicated below with their default 
settings. Copies of all output are accumulated in the history file. The stop list filters out 
misspellings (e.g., thier=thy-y+ier) that would otherwise pass. 

Two routines help maintain the hash lists used by spell (both expect a list of words, one per line, 
from the standard input): spellin adds the words on the standard input to the preexisting list and 
places a new list on the standard output. If no list is specified, the new list is created from 
scratch. Spellout looks up each word read from the standard input, and prints on the standard 
output those that are missing from (or, with the -d option, present in) the hash list. 

0_ SPEll=/usr/libispell/hlist[ ab] 
S_ SPELL -/usr/lib/spelVhstop 
H_SPELL=/usr/lib/spell/spellhist 
Itmp/spell.$$ 
lusr/lib/spell/spellprog 

hashed spelling lists, American & British 
hashed stop list 
history fi Ie 
temporary 
program 

SEE ALSO 

BUGS 

Page 1 

deroff(1), eqn(1), sed(1), sort(1), tbl(1), tee(1), troff(1), typo(1). 

The spelling list's coverage is uneven; new installations will probably wish to monitor the output 
for several months to gather local additions; typically, these are kept in a separate local diction­
ary that is added to the hashed list via spellin. 
British spelling was done by an American. 

January 20, 1984 



SPlINE(1G) SPlINE(1G) 

NAME 
spline - interpolate smooth curve 

SYNOPSIS 
spline [ options ] 

DESCRIPTION 
Spline takes pairs "of numbers from the standard input as abscissas and ordinates of a function. 
It produces a similar set, which is approximately equally spaced and includes the input set, on 
the standard output. The cubic spline output (R. W. Hamming, Numerical Methods for Scien­
tists and Engineers, 2nd ed., pp. 349ff) has two continuous derivatives, and sufficiently many 
points to look smooth when plotted, for example by graph (1 G). 

The following options are recognized, each as a separate argument: 

-8 Supply abscissas automatically (they are missing from the input); spacing is given 
by the next argument, or is assumed to be 1 if next argument is not a number. 

-k The constant k used in the boundary value computation: 
y~' = ky;', y~' = kY~~1 

is set by the next argument (default k = 0). 

-n n Space output pOints so that approximately n intervals occur between the lower and 
upper x limits (default n = 100). 

-p Make output periodic, i.e., match derivatives at ends. First and last input values 
should normally agree. 

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally, these limits are 
calculated from the data. Automatic abscissas start at lower limit (default 0). 

SEE ALSO 
graph(1G). 

DIAGNOSTICS 

BUGS 

Page 1 

When data is not strictly monotone in x, spline reproduces the input without interpolating extra 
points. 

A limit of 1,000 input points is enforced silently. 

January 19, 1984 



SPlIT(1 ) 

NAME 
split - split a file into pieces 

SYNOPSIS 
split [ -n ] [ file [ name ] ] 

DESCRIPTION 

SPLIT(1) . 

Split reads file and writes it in n-line pieces (default 1000), as many as necessary, onto a set of 
output files. The name of the first output file is name with 88 appended, and so on lexicographi­
cally. If no output name is given, x is default. 

If no input file is given, or if· is given in its stead, then the standard input file is used. 

If n is less than 1, split sets n to 1000. 

SEE ALSO 
bfs(1), csplit(1). 

Page 1 January 20, 1984 



ST(1M) ST(1M) . 

NAME 
st - synchronous terminal control 

SYNOPSIS 
letc/stload 
letc/stcntrl [ on I off ] 

DESCRIPTION 

FILES 

The stload command file is used to load the synchronous terminal prototype script, letc/proto, 
into the designated KMC11-B microprocessor, and start execution of the script. As supplied, 
stload uses /dev/kmcO; it may need local modification if another KMC11.,B is being used. 

The stentrl command is used to activate and deactivate the synchronous terminal driver. 

The letc/rc file should contain the following multi-user entries: 

/etc/stload 
letc/stcntrl on 

while /etc/shutdown should have: 

letcistcntrl off 

letc/stproto 
/dev/kmc? 
Idev/vpm? 
/dev/stO 
Idev/st? 

synchronous terminal prototype script 
KMC11-B microprocessor 
virtual protocol machine 
synchronous terminal control channel 
synchronous terminal user channels 

SEE ALSO 

BUGS 

Page 1 

kmc(4). st(4), trace(4), vpm(4). 

The stcntrl.c file assumes that Idev/vpmO is the vpm device being used for the first (and usu­
ally only) synchronous terminal controller. If some other vpm device is being used, the stcntrl.c 
file must be modified and rebuilt. 

January 20, 1984 



STRINGS(1) (Plexus) STRINGS(1 ) 

NAME 
strings - find the printable strings in a object. or other binary. file 

SYNOPSIS 
lusr/plxlstrings [ - ] [ -0 ] [ -number ] file ... 

DESCRIPTION 

NOTES 

Strings looks for ASCII strings in a binary file. A string is any sequence of 4 or more printing 
characters ending with a newline or a null. Unless the - flag is given. strings only looks in the 
initialized data space of object files. If the -0 flag is given. then each string is preceded by its 
offset in the file (in octal). If the -number flag is given then number is used as the minimum 
string length rather than 4. 

Strings is useful for identifying random object files and many other things. 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
00(1) 

BUGS 
The algorithm for identifying strings is extremely primitive. 

Page 1 January 20. 1984 



STRIP(1 ) 

NAME 
strip - remove symbols and relocation bits 

SYNOPSIS 
strip name ... 

DESCRIPTION 

STRIP(1) 

Strip removes the symbol table and relocation bits ordinarily attached to the output of the 
assembler and link editor. This is useful to save space after a program has been debugged. 

FilES 

The effect of strip is the same as use of the -s option of Id. 

If name is an archive file, strip will remove the local symbols from any a.out format files it finds 
in the archive. Certain libraries, such as those residing in tlib, have no need for local symbols. 
By deleting them, the size of the archive is decreased and link editing performance is increased. 

ttmp/stm* 

SEE ALSO 

temporary file 

Id(1 ). 

Page 1 January 20, 1984 



STTY(1) STTY(1) . 

NAME 
stty - set the options for a terminal 

SYNOPSIS 
Stty [ -a ] [ -g ] [ options ] 

DESCRIPTION 
Stty sets certain terminal I/O options for the device that is the current standard input; without 
arguments, it reports the settings of certain options; with the -a option, it reports all of the option 
settings; with the -g option, it reports current settings in a form that can be used as an argument 
to another stty command. Detailed information about the modes' listed in the first five groups 
below may be found in tty(4). Options in the last group are implemented using options in the 
previous groups. Note that many combinations of options make no sense, but no sanity check­
ing is performed. The options are selected from the following: 

Control Modes 
parenb (-parenb) enable (disable) parity generation and detection. 
parodd (-parodd) select odd (even) parity. 
esS cs6 es7 es8 select character size (see tty(4». 
o hang up phone line immediately. 
50 75 110 134 150 200 300 600 1200 1800 2400 4800 9600 exta extb 

hupel (-hupel) 
hup (-hup) 
estopb (-estopb) 
eread (-eread) 
elocal (-elocal) 

Set terminal baud rate to the number given, if possible. 
hang up (do not hang up) DATA-PHONE'!!> connection on last close. 
same as hupel (-hupel). 
use two (one) stop bits per character. 
enable (disable) the receiver. 
assume a line without (with) modem control. 

Input Modes 
ignbrk (-ignbrk) 
brkint (-brkint) 
ignpar (-ignpar) 
parmrk (-parmrk) 
inpck (-inpek) 
istrip (-istrip) 
inler (-inler) 
Igner (-Igner) 
icml (-Ieml) 
lucie (-lucie) 
ixon (-ixon) 

ixany (-ixany) 
ixoff (-Ixoff) 

Output Modes 
opost (-opost) 

Page 1 

olcue (-oleue) 
onler (-onler) 
oeml (-oeml) 
onocr (-onocr) 
onlret (-onlret) 
olill (-of ill) 
oldel (-of del) 

ignore (do not ignore) break on input. 
signal (do not signal) INTR on break. 
ignore (do not ignore) parity errors. 
mark (do not mark) parity errors (see tty(4». 
enable (disable) input parity checking. 
strip (do not strip) input characters to seven bits. 
map (do not map) NL to CR on input. 
ignore (do not ignore) CR on input. 
map (do not map) CR to NL on input. 
map (do not map) upper-case alphabetics to lower case on input. 
enable (disable) START/STOP output control. Output is stopped by send­
ing an ASCII DC3 and started by sending an ASCII DC1. 
allow any character (only DC1) to restart output. 
request that the system send (not send) START/STOP characters when the 
input queue is nearly empty/full. 

post-process output (do not post-process output; ignore all other output 
modes). 
map (do not map) lower-case alphabetics to upper case on output. 
map (do not map) NL toCR-NL on output. 
map (do not map) CR to NL on output. 
do not (do) output CRs at column zero. 
on the terminal NL performs (does not perform) the CR function. 
use fill characters (use timing) for delays. 
fill characters are DELs (NULS). 

January 20, 1984 



STlY(1) 

crO cr1 cr2 cr3 
nlOnl1 
tabO tab1 tab2 tab3 
bsO bs1 
ffO ff1 
vtO vt1 

Local Modes 
isig (-isig) 

icanon (-icanon) 
xcase (-xcase) 
echo (-echo) 
echoe (-echoe) 

echok (-echok) 
Ilkc (-Ilkc) 
echonl (-echonl) 
nollsh (-nollsh) 

Control Assignments 
control-character c 

line i 
Combination Modes 

select style of delay for carriage returns (see tty(4». 
select style of delay for line-feeds (see tty(4». 
select style of delay for horizontal tabs (see tty(4». 
select style of delay for backspaces (see tty(4». 
select style of delay for form-feeds (see tty(4». 
select style of delay for vertical tabs (see tty(4». 

STIY(1) . 

enable (disable) the checking of characters against the special control 
characters INTR and QUIT. 
enable (disable) canonical input (ERASE and KILL processing). 
canonical (unprocessed) upper/lower-case presentation. 
echo back (do not echo back) every character typed. 
echo (do not echo) ERASE character as a backspace-space-backspace 
string. Note: this mode will erase the ERASEed character on many CRT 
terminals; however, it does not keep track of column position and, as a 
result, may be confusing on escaped characters, tabs, and backspaces. 
echo (do not echo) NL after KILL character. 
the same as echok (-echok); obsolete. 
echo (do not echo) NL. 
disable (enable) flush after INTR or QUIT. 

set control-character to c, where control-character is erase, kill, intr, 
quit, eof, eol, min, or time (min and time are used with -icanon; see 
tty(4». If c is preceded by an (escaped from the shell) caret n, then the 
value used is the corresponding CTRL character (e.g., .,Ad" is a CTRL-d); 
"A?" is interpreted as DEL and "A -" is interpreted as undefined. 
set line discipline to i (0 < i < 127 ). 

evenp or parity enable parenb and cs7. 

NOTES 

oddp enable parenb, cs7, and parodd. 
-parity, -evenp, or -oddp 

raw (-raw or cooked) 

nl (-nl) 

Icase (-Icase) 
LCASE (-LCASE) 
tabs (-tabs or tab3) 
ek 
sane 
term 

disable parenb, and set csS. 

enable (disable) raw input and output (no ERASE, KILL, INTR, QUIT, EOT, 
or output post processing). 
unset (set) icrnl, onlcr. In addition -nl unsets inler, igncr, oeml, and 
onlret. 
set (unset) xcase, iuclc, and olcuc. 
same as Icase (-Icase). 
preserve (expand to spaces) tabs when printing. 
reset ERASE and KILL characters back to normal # and Q. 

resets all modes to some reasonable values. 
set all modes suitable for the terminal type term, where term is one of 
tty33, tty37, vt05, tn300, ti700, or tek. 

Plexus supports the following additional switches when the ICP is configured to accept the CTS 
signal: 

iets enable clear_to_send (CTS). Note that when iets is enabled, XON/XOFF 
is still enabled. 

January 20, 1984 Page 2 



STTY(1) 

ictslo 
flushi 
flusho 
flush 
xon 
xoff 
break 

SEE ALSO 
tabs(1). ioctl(2). tty(4). 

Page 3 

inverts the polarity of the iets. 
flushes the input queue only. 
flushes the output queue only. 
flushes both input and output queues. 
restarts suspended output. 
suspends output. 
sends a break (zero bits for 0.25 second) 

STTY(1) 

January 20. 1984 



STYlE(1) (Plexus) STYlE(1) 

NAME 
style - analyze surface characteristics of a document 

SYNOPSIS 
/usr/plx/style [ -ml ] [ -mm ] [ -a ] [ -e 1 [ -I num ] [ -r num 1 [ -p ] [ -P ] file ... 

DESCRIPTION 
Style analyzes the surface characteristics of the writing style of a document. It reports on rea­
dability, sentence length and structure, word length and usage, verb type, and sentence 
openers. Because style runs deroff before looking at the text, formatting header files should be 
included as part of the input. The default macro package-ms may be overridden with the flag 
-mm. The flag -ml, which causes deroff to skip lists, should be used if the document contains 
many lists of non-sentences. The other options are used to locate sentences with certain 
characteristics. 

-a print all sentences with their length and readability index. 

-e print all sentences that begin with an expletive. 

-p print all sentences that contain a passive verb. 

-Inum print all sentences longer than num. 

-rnum print all sentences whose readability index is greater than num. 

-P print parts of speech of the words in the document. 

SEE ALSO 
deroff(1), diction(1) 

BUGS 
Use of non-standard formatting macros may cause incorrect sentence breaks. 

Page 1 January 20, 1984 



SU(1) SU(1) . 

NAME 
su - become super-user or another user 

SYNOPSIS 
su [ - J [ name [ arg ... ] ] 

DESCRIPTION 

FILES 

Su allows one to become another user without logging off. The default user name is root (Le .• 
super-user). 

To use SU, the appropriate password must be supplied (unless one is already super-user). If 
the password is correct. su will execute a new shell with the user 10 set to that of the specified 
user. To restore normal user 10 privileges, type an EOF to the new shell. 

Any additional arguments are passed to the shell. permitting the super-user to run shell pro­
cedures with restricted privileges (an arg of the form -c string executes string via the shell). 
When additional arguments are passed, Ibin/sh is always used. When no additional arguments 
are passed, su uses the shell specified in the password file. 

An initial - flag causes the environment to be changed to the one that would be expected if the 
user actually logged in again. This is done by invoking the shell with an argO of -su causing the 
.profile in the home directory of the new user 10 to be executed. Otherwise, the environment 
(up to 30 environment variables) is passed along with the possible exception of SPATH, which is 
set to Ibin:/etc:/usr/bin for root. Note that the .profile can check argO for -sh or -su to deter­
mine how it was invoked. 

letc/passwd 
$HOMEi.profile 

system's password file 
user's profile 

SEE ALSO 
env(1). Iogin(1). sh(1), environ(7). 

Page 1 March 2. 1984 



SUM(1) 

NAME 
sum - sum and count blocks in a file 

SYNOPSIS 
sum [ -r ] file 

DESCRIPTION 

SUM(1) . 

Sum calculates and prints a 16-bit checksum for the named file, and also prints the number of 
blocks in the file. It is typically used to look for bad spots, or to validate a file communicated 
over some transmission line. The option -r causes an alternate algorithm to be used in comput­
ing the checksum. The alternate algorithm is compatible with the Version 7 sum. 

SEE ALSO 
wc(1 ). 

DIAGNOSTICS 
"Read error" is indistinguishable from end of file on most devices; check the block count. 

Page 1 January 20, 1984 



SYNC(1M) 

NAME 
sync - update the super block 

SYNOPSIS 
sync 

DESCRIPTION 

SYNC(1M) 

Sync executes the sync system primitive. If the system is to be stopped, sync must be called 
to insure file system integrity. See sync(2) for details. 

SEE ALSO 
update(1), sync(2). 

Page 1 January 20, 1984 



TABS(1) TABS(1) 

NAME 
tabs - set tabs on a terminal 

SYNOPSIS 
tabs [ tabspec ] [ +mn ] [ -Ttype ] 

DESCRIPTION 

Page 1 

Tabs sets the tab stops on the user's terminal according to the tab specification tabspec, after 
clearing. any previous settings. The user must of course be logged in on a terminal with 
remotely-settable hardware tabs. 

Users of GE TermiNet terminals should be aware that they behave in a different way than most 
other terminals for some tab settings: the first number in a list of tab settings becomes the left 
margin on a TermiNet terminal. Thus, any list of tab numbers whose first element is other than 
1 causes a margin to be left on a TermiNet, but not on other terminals. A tab list beginning with 
1 causes the same effect regardless of terminal type. It is possible to set a left margin on some 
other terminals, although in a different way (see below). 

Four types of tab specification are accepted for tabspec: "canned," repetitive, arbitrary, and file. 
If no tabspec is given, the default value is -8, i.e., UNIX "standard" tabs. The lowest column 
number is 1. Note that for tabs, column 1 always refers to the leftmost column on a terminal, 
even one whose column markers begin at 0, e.g., the OASI 300, OASI 300s, and OASI 450. 

-code Gives the name of one of a set of "canned" tabs. The legal codes and their meanings 
are as follows: 

-a 1,10,16,36,72 
Assembler, IBM S/370, first format 

-a2 1,10,16,40,72 
Assembler, IBM S/370, second format 

-c 1,8,12,16,20,55 
COBOL, normal format 

-c2 1,6,10,14,49 
COBOL compact format (columns 1-6 omitted). Using this code, the first typed charac­
ter corresponds to card column 7, one space gets you to column 8, and a tab reaches 
column 12. Files using this tab setup should include a format specification as follows: 

< :t-c2 m6 566 d: > 
-c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67 

COBOL compact format (columns 1-6 omitted), with more tabs than -c2. This is the 
recommended format for COBOL. The appropriate format specification is: 

< :t-c3 m6 566 d: > 
-f 1,7,11,15,19,23 

FORTRAN 
-p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61 

PUI 
-5 1,10,55 

SNOBOL 
-u 1 ,12,20,44 

UNIVAC 1100 Assembler 

In addition to these "canned" formats, three other types exist: 

-n A repetitive specification requests tabs at columns 1 +n, 1 +2*n, etc. Note that such a 
setting leaves a left margin of n columns on TermiNet terminals only. Of particular 
importance is the value -8: this represents the UNIX "standard" tab setting, and is the 
most likely tab setting to be found at a terminal. It is required for use with the nroff(1) 
-h option for high-speed output. Another special case is the value -0, implying no tabs 

January 20, 1984 



TABS(1) TABS(1) . 

n1,n2, ... 
at all. 

The arbitrary format permits the user to type any chosen set of numbers, separated by 
commas, in ascending order. Up to 40 numbers are allowed. If any number (except 
the first one) is preceded by a plus sign, it is taken as an increment to be added to the 
previous value. Thus, the tab lists 1,10,20,30 and 1,10,+10,+10 are considered 
identical. 

-file If the name of a file is given, tabs reads the first line of the file, searching for a format 
specification. If it finds one there, it sets the tab stops according to it, otherwise it sets 
them as -S. This type of specification may be used to make sure that a tabbed file is 
printed with correct tab settings, and would be used with the pr(1) command: 

tabs -- file; pr file 

Any of the following may be used also; if a given flag occurs more than once, the last value 
given takes effect: 

-Ttype Tabs usually needs to know the type of terminal in order to set tabs and always needs 
to know the type to set margins. Type is a name listed in term(7). If no -T flag is sup­
plied, tabs searches for the STERM value in the environment (see environ (7». If no 
type can be found, tabs tries a sequence that will work for many terminals. 

+mn The margin argument may be used for some terminals. It causes all tabs to be moved 
over n columns by making column n+ 1 the left margin. If +m is given without a value 
of n, the value assumed is 10. For a TermiNet, the first value in the tab list should be 
1, or the margin will move even further to the right. The normal (leftmost) margin on 
most terminals is obtained by +mO. The margin for most terminals is reset only when 
the +m flag is given explicitly. 

Tab and margin setting is performed via the standard output. ~ 
DIAGNOSTICS 

illegal tabs when arbitrary tabs are ordered incorrectly. 
illegal increment when a zero or missing increment is found in an arbitrary specification. 
unknown tab code when a "canned" code cannot be found. 
can't open if -file option used, and file can't be opened. 
file indirection if --file option used and the specification in that file pOints to yet another 

file. Indirection of this form is not permitted. 

SEE ALSO 

BUGS 

nroff(1), environ(7), term(7). 

There is no consistency among different terminals regarding ways of clearing tabs and setting 
the left margin. 
It is generally impossible to usefully change the left margin without also setting tabs. 
Tabs clears only 20 tabs (on terminals requiring a long sequence), but is willing to set 40. 

January 20, 1984 Page 2 



TAIL(1 ) TAIl(1) . 

NAME 
tail - deliver the last part of a file 

SYNOPSIS 
tail [ ±[number][lbc] [ ·f ] ] [ file ] 

DESCRIPTION 
Tail copies the named file to the standard output beginning at a designated place. If no file is 
named, the standard input is used. 

Copying begins at distance +number from the beginning, or ·number from the end of the input 
(if number is null, the value 10 is assumed). Number is counted in units of lines, blocks, or 
characters, according to the appended option I, b, or c. When no units are specified, counting 
is by lines. 

With the ·f ("follow") option, if the input file is not a pipe, the program will not terminate after the 
line of the input file has been copied, but will enter an endless loop, wherein it sleeps for a 
second and then attempts to read and copy further records from the input file. Thus it may be 
used to monitor the growth of a file that is being written by some other process. For example, 
the command: 

tail -f fred 

will print the last ten lines of the file fred, followed by any lines that are appended to fred 
between the time tail is initiated and killed. 

SEE ALSO 
dd(1). 

BUGS 

Page 1 

Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length. 
Various kinds of anomalous behavior may happen with character special files. 

January 20, 1984 



TAPE(1) (Plexus) TAPE(1) 

NAME 
tape - tape manipulation. 

SYNOPSIS 
tape [-getf [filename] J [command [options]] 

DESCRIPTION 

Page 1 

Tape executes special commands on 9-track and cartridge tapes. 

Tape accesses the filename given via the -f switch. If none is given, the program opens the 
tape filename, Idev/nrrmhO. If that fails, it opens Idev/nrmtO. The tape file it eventually 
accesses must be a character special file. 

Tape figures out the type of tape (9-track or cartridge) unless the 'c' or '9' switches are given. 

The available switches are: 

e 

9 

t 

f filename 

The tape file is on a cartridge tape. Tape does not try figure out the type of tape if 
this is given. 

The tape file is on a 9-track tape. Tape does not try figure out the type of tape if 
this is given. 

Print the type of tape. 

Do the special command on the tape file filename. Filename must be a character 
special file. 

Tape accepts a command after the switches. If none is given, it assumes the command status 
for the 9-track and srcheof 0 for the cartridge. 

These are the acceptable commands and their options for a 9-track tape: 

erase n 

eraseall 

status 

rforeign 

unload 

spaeen 

spaceeof n 

sreheof n 

rew 

Erases a fixed length (approximately 3.5 inches) for each value of n from the 
current position. 

Erase tape from current position to beyond the end of tape. 

Report the status returned by tape controller. 

Reports the status and block size in bytes of file on tape. Leaves the tape in the 
middle of the file. 

Unloads the tape. 

Space forward n data blocks. 

Space forward n data blocks. Terminates early if it encounters an end-of-file on 
tape. 

Position tape to the n-th end-of-file mark from the current position. If n is omitted, 
1 is assumed. n should be a positive integer. If filename is given with the f switch 
you should specify a tape filename with no rewind, e.g., /dev/nrmtO. 

Rewinds the tape to the load point. 

weo. Write an end-of-file on tape at current position. 

These are the acceptable commands and their options for a cartridge tape: 

rew 

weo. 

Rewinds the cartridge to the load point. 

Write an end-of-file on cartridge at current position. This is dangerous because it 
could overwrite data anywhere on the cartridge. Don't use it if you want the data 
on the cartridge. 

January 20, 1984 



TAPE(1) 

srcheof n 

eraseall 

retension 

(Plexus) TAPE(1 ) 

Position to the n-th file on the cartridge. Positioning is always done from the 
beginning of the cartridge. If n is omitted, 1 is assumed. n should be a positive 
integer. If filename is given with the f switch you should specify a tape filename 
with no rewind, e.g., Idev/nrmtO. 

Erase cartridge. The abbreviation 'erase' works also. 

Retension the cartridge. This should be done with new cartridges, cartridges that 
have been unused for some time, or cartridges that produce a hard error when 
accessing. The abbreviation 'ret' works also. See the Plexus Cartridge Tape 
Drive Manual (Plexus Publication Number 5016) for more information. 

The filename Idev/nrrmhO is a special device for a 9-track tape. It allows tape to do certain 
commands in streaming mode, e.g., srcheof. See rm(4). 

FILES 
Idev/nrmtO 
Idev/nrrmhO 

SEE ALSO 
pt(4) , rm(4). 

January 20, 1984 Page 2 



TAR(1) TAR(1) . 

NAME 
tar - tape file archiver 

SYNOPSIS 
tar [ key ] [ files ] 

DESCRIPTION 

FILES 

Tar saves and restores files on magnetic tape. Its actions are controlled by the key argument. 
The key is a string of characters containing at most one function letter and possibly one or more 
function modifiers. Other arguments to the command are files (or directory names) specifying 
which files are to be dumped or restored. In all cases, appearance of a directory name refers to 
the files and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the following letters: 

r The named files are written on the end of the tape. The c function implies this function. 
x The named files are extracted from the tape. If a named file matches a directory 

whose contents had been written onto the tape, this directory is (recursively) extracted. 
The owner, modification time, and mode are restored (if possible). If no files argument 
is given, the entire content of the tape is extracted. Note that if several files with the 
same name are on the tape, the last one overwrites all earlier ones. 

t The names of the specified files are listed each time that they occur on the tape. If no 
files argument is given, all the names on the tape are listed. 

u The named files are added to the tape if they are not already there, or have been modi· 
fied since last written on that tape. .. 

c Create a new tape; writing begins at the beginning of the tape, instead of after the last 
file. This command implies the r function. 

The following characters may be used in addition to the letter that selects the desired function: ~ 

0, ... ,7 
v 

w 

f 

b 

m 

This modifier selects the drive on which the tape is mounted. The default is O. 
Normally, tar does its work silently. The v (verbose) option causes it to type the name 
of each file it treats, preceded by the function letter. With the t function, v gives more 
information about the tape entries than just the name. 
causes tar to print the action to be taken, followed by the name of the file, and then 
wait for the user's confirmation. If a word beginning with y is given, the action is per­
formed. Any other input means "no". 
causes tar to use the next argument as the name of the archive instead of /dev/rmtO. 
If the name of the file is -, tar writes to the standard output or reads from the standard 
input, whichever is appropriate. Thus, tar can be used as the head or tail of a pipeline. 
Tar can also be used to move hierarchies with the command: 

cd fromdir; tar cf -. I (cd todir; tar xf -) 

causes tar to use the next argument as the blocking factor for tape records. The 
default is 1, the maximum is 20. The block size is determined automatically when read­
ing tapes (key letters x and t). Specifying the wrong block size with the b option can 
lead to unpredictable results. 
tells tar.to complain if it cannot resolve all of the links to the files being dumped. If I is 
not specified, no error messages are printed. 
tells tar to not restore the modification times. The modification time of the file will be 
the time of extraction. 

/dev/rmtO 
/tmp/tar* 

DIAGNOSTICS 
Complaints about bad key characters and tape read/write errors. 

Page 1 July 26, 1984 



TAR(1 ) 

BUGS 

Complaints if enough memory is not available to hold the link tables. 

There is no way to ask for the n-th occurrence of a file. 
Tape errors are handled ungracefully. 
The u option can be slow. 

TAR(1) . 

The b option should not be used with archives that are going to be updated. The current mag­
netic ·tape driver cannot backspace raw magnetic tape. If the archive is on a disk file, the b 
option should not be used at all, because updating an archive stored on disk can destroy it. 
The current limit on file-name length is 100 characters. 
The rand u options do not work. 
Tar does not preserve the access modes and ownership of directories. If you need them 
preserved, use cpio(l) instead. See also find(l). 

July 26, 1984 Page 2 



TBL(1 ) TBL(1 ) 

NAME 
tbl - format tables for nroft or troft 

SYNOPSIS 
tbl [ ·TX ] [ files] 

DESCRIPTION 

Page 1 

Tbl is a preprocessor that formats tables for nroff(1) or troff(1). The input files are copied to the 
standard output, except for lines between .TS and .TE command lines, which are assumed to 
describe tables and are re-formatted by tbl. (The .TS and .TE command lines are not altered by 
tb/) . 

• TS is followed by global options. The available global options are: 

center center the table (default is left-adjust); 
expand make the table as wide as the current line length; 
box enclose the table in a box; 
doublebox 

enclose the table in a double box; 
allbox enclose each item of the table in a box; 
tab (x) use the character x instead of a tab to separate items in a line of input data. 

The global options, if any, are terminated with a semi-colon (;). 

Next come lines describing the format of each line of the table. Each such format line describes 
one line of the actual table, except that the last format line (which must end with a period) 
describes all remaining lines of the table. Each column of each line of the table is described by 
a single key-letter, optionally followed by specifiers that determine the font and point size of the 
corresponding item, that indicate where vertical bars are to appear between columns, that deter- ~" 
mine column width, inter-column spacing, etc. The available key-letters are: ' 

c 
r 
I 
n 

s 
a 

" 

center item within the column; 
right-adjust item within the column; 
left-adjust item within the column; 
numerically adjust item in the column: units positions of numbers are aligned 
vertically; 
span previous item on the left into this column; 
center longest line in this column and then left-adjust all other lines in this 
column with respect to that centered line; 
span down previous entry in this column; 
replace this entry with a horizontal line; 
replace this entry with a double horizontal line. 

The characters B and I stand for the bold and italic fonts, respectively; the character I indicates 
a vertical line between columns. 

The format lines are followed by lines containing the actual data for the table, followed finally by 
.TE. Within such data lines, data items are normally separated by tab characters. 

If a data line consists of only _ or =, a single or double line, respectively, is drawn across the 
table at that point; if a single item in a data line consists of only _ or =, then that item is 
replaced by a single or double line. 

Full details of all these and other features of tbl are given in the reference manual cited below. 

The -TX option forces tbl to use only full vertical line motions, making the output more suitable 
for devices that cannot generate partial vertical line motions (e.g., line printers). 

If no file names are given as arguments, tbl reads the standard input, so it may be used as a ~ 
filter. When it is used with eqn(1) or neqn{1), tbl should come first to minimize the volume of 

January 19, 1984 



TBL(1 ) 

data passed through pipes. 

EXAMPLE 
If we let - represent a tab (which should be typed as a genuine tab), then the input: 

yields: 

.TS 
center box j 

cB s s 
cl I cl s 
" Icc 
II n n. . 
Household Population 

-
Town-Households 
-Number -Size 

Bedmi nster ...... 789-+3.26 
Bernards Twp.-+3087 ...... 3.74 
Bernardsville-20 18-3.30 
Bound Brook-3425-3.04 
Bridgewater -+ 7897 ...... 3.81 
Far Hills-240-3.19 
.TE 

Household Population 

Town 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook 
Bridgewater 
Far Hills 

SEE ALSO 
TBL-A Program to Format Tables by M. E. Lesk 
eqn(1), mm(1), mmt(1), troff(1), mm(7), mv(7). 

BUGS 
See BUGS under troff(1). 

January 19, 1984 

Households 
Number Size 

789 3.26 
3087 3.74 
2018 3.30 
3425 3.04 
7897 3.81 
240 3.19 

TBl(1 ) 

Page 2 



TC(1) TC(1) . 

NAME 
tc - phototypesetter simulator 

SYNOPSIS 
te [ -t ] [ -sn ] [ -pi ] [ file ] 

DESCRIPTION 
Tc interprets its input (standard input default) as device codes for a Wang Laboratories. Inc. 
G/AfT phototypesetter. The standard output of tc is intended for a Tektronix 4014 terminal with 
ASCII and APL character sets. The sixteen typesetter sizes are mapped into the 4014's four 
sizes; the entire TROFF character set is drawn using the 4014's character generator. with over­
struck combinations where necessary. Typical usage is: 

troff -t files I tc 

At the end of each page, tc waits for a new-line (empty line) from the keyboard before continu­
ing on to the next page. In this wait state, the command e will suppress the screen erase 
before the next page; sn will cause the next n pages to be skipped; and Icmd will send cmd to 
the shell. 

The command line options are: 

-t Don't wait between pages (for directing output into a file). 

-sn Skip the first n pages. 

-pi Set page length to /; I may include the scale factors p (points). i (inches). e (centimeters). 
and P (picas); default is picas. 

SEE ALSO 
4014(1). sh(1), tplot(1 G). troff(1). 

EUGS 
Font distinctions are lost. 

Page 1 January 20. 1984 



TEE(1) TEE(1) . 

NAME 
tee - pipe fitting 

SYNOPSIS 
tee [ -j ] [ -a ] [ file ] ... 

DESCRIPTION 

Page 1 

Tee transcribes the standard input to the standard output and makes copies in the files. The-j 
option ignores interrupts; the -a option causes the output to be appended to the files rather than 
overwriting them. 

January 20, 1984 



TEST(1) TEST(1) 

NAME 
test - condition evaluation command 

SYNOPSIS 
test expr 
[ expr] 

DESCRIPTION 

NOTES 

Test evaluates the expression expr and, if its value is true, returns a zero (true) exit status; oth­
erwise, a non-zero (false) exit status is returned; test also returns a non-zero exit status if there 
are no arguments. The following primitives are used to construct expr: 

-r file true if file exists and is readable. 

-w file true if file exists and is writable. 

-x file true if file exists and is executable. 

-f file true if file exists and is a regular file. 

-d file true if file exists and is a directory. 

-c file true if file exists and is a character special file. 

-b file true if file exists and is a block special file. 

-u file true if file exists and its set-user-ID bit is set. 

-g file true if file exists and its set-group-ID bit is set. 

-k file true if file exists and its sticky bit is set. 

-8 file 

-t [fildes ] 

-z s1 

-n s1 

s1 =s2 

s11= s2 

s1 

n1 -eq n2 

true if file exists and has a size greater than zero. 

true if the open file whose file descriptor number is flldes (1 by default) is associ­
ated with a terminal device. 

true if the length of string s1 is zero. 

true if the length of the string s1 is non-zero. 

true if strings s1 and s2 are identical. 

true if strings s1 and s2 are not identical. 

true if s1 is not the null string. 

true if the integers n1 and n2 are algebraically equal. Any of the comparisons -ne, 
"91, -ge, -It, and -Ie may be used in place of -sq. 

These primaries may be combined with the following operators: 

! unary negation operator. 

-a binary and operator. 

-0 binary or operator (-a has high~r precedence than -0). 

( expr ) parentheses for grouping. 

Notice that all the operators and flags are separate arguments to test. Notice also that 
parentheses are meaningful to the shell and, therefore, must be escaped. 

The test facility is embedded into sh. Thus it is not available to csh or to any other program. 

SEE ALSO 
find(1), sh(1). 

Page 1 January 20, 1984 



TEST(1) TEST(1) 

WARNING 
In the second form of the command (i.e., the one that uses [], rather than the word test), the 
square brackets must be delimited by blanks. 

January 20, 1984 Page 2 



TIME(1 ) 

NAME 
time - time a command 

SYNOPSIS 
time command 

DESCRIPTION 

TIME(1) . 

The given command is executed; after it is complete, time prints the elapsed time during the 
command, the time spent in the system, and the time spent in execution of the command. 
Times are reported in seconds. 

The execution time can depend on what kind of memory the program happens to land in; the 
user time in MOS is often half what it is in core. 

The times are printed on standard error. 

SEE ALSO 
timex(1), times(2). 

Page 1 January 20. 1984 



r 

TIMEX(1) TIMEX(1) . 

NAME 
timex - time a command and generate a system activity report 

SYNOPSIS 
timex command 

DESCRIPTION 
The given command is executed; after its execution, timex prints the elapsed time, the time 
spent executing command, and the time spent in the system, as time(1) does. It also reports 
system activity that occurred during command execution, including CPU utilization, 110 activity, 
system switching and swapping, and file system access. All system activity is reported, not just 
that due to command. 

The output of timex is written on standard error. 

SEE ALSO 
time(1), sar(8). 

Page 1 January 20, 1984 



TOPQ(1M) (MC68000 only) 

NAME 
topq - put a print request at the head of the queue 

SYNOPSIS 
topq id 

DESCRIPTION 

TOPQ(1M) 

The topq command is for use with the Ip(1) spooler. It places the request whose identification 
number is id at the top of the print queue, whether or not /psched(1 M) is running. 

Only super-user can topq a request. 

FILES 
lusrispoolilp/* 

NOTES 
Topq is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
Ip(1), Iphold(1), Iprun(1), Ipsched(1 M). 

Page 1 September 20, 1984 



TOUCH(1 ) TOUCH(1 ) 

NAME 
touch - update access and modification times of a file 

SYNOPSIS 
touch [ -amc ] [ mmddhhmm[yy] ] files 

DESCRIPTION 
Touch causes the access and modification times of each argument to be updated. If no time is 
specified (see date(1» the current time is used. The -a and -m options cause touch to update 
only the access or modification times respectively (default is -am). The -c option silently 
prevents touch from creating the file if it did not previously exist. 

The return code from touch is the number of files for which the times could not be successfully 
modified (including files that did not exist and were not created). 

SEE ALSO 
date(1). utime(2). 

Page 1 January 20. 1984 



TP(1) ( Obsolescent) TP(1) . 

NAME 
tp - manipulate tape archive 

SYNOPSIS 
tp [ key ] [ name ... ] 

DESCRIPTION 

Page 1 

Tp saves and restores files on DECtape or other magnetic tape. Its actions are controlled by the 
key argument. The key is a string of characters containing at most one function letter and pos­
sibly one or more function modifiers. Other arguments to the command are file or directory 
names specifying which files are to be dumped, restored, or listed. In all cases, appearance of 
a directory name refers to the files and (recursively) subdirectories of that directory. 

The function portion of the key is specified by one of the following letters: 

r The named files are written on the tape. If files with the same names already exist, 
they are replaced. "Same" is determined by string comparison, so .Iabc can never be 
the same as /usrlsboiabc even if /usrlsbo is the current directory. If no file argument 
is given, . is the default. 

u Updates the tape. u is like r, but a file is replaced only if its modification date is later 
than the date stored on the tape; that is to say, if it has changed since it was dumped. 
u is the default command if none is given. 

d Deletes the named files from the tape. At least one name argument must be given. 
This function is not permitted on magnetic tapes. 

x Extracts the named files from the tape to the file system. The owner and mode are 
restored. If no file argument is given, the entire contents of the tape are extracted. 

t Lists the names of the specified files. If no file argument is given, the entire contents 
of the tape is listed. 

The following characters may be used in addition to the letter which selects the function desired. 

m Specifies magnetic tape as opposed to DECtape. 

0, ••. ,7 This modifier selects the drive on which the tape is mounted. For DECtape, x is 
default; for magnetic tape 0 is the default. 

v Normally tp does its work silently. The v (verbose) option causes it to type the name 
of each file it treats preceded by the function letter. With the t function, v gives more 
information about the tape entries than just the name. 

c Means a fresh dump is being created; the tape directory is cleared before beginning. 

f 

w 

Usable only with rand u. This option is assumed with magnetic tape since it is 
impossible to selectively overwrite magnetic tape. 

Errors reading and writing the tape are noted, but no action is taken. Normally, 
errors cause a return to the command level. 

Use the first named file, rather than a tape, as the archive. This option is known to 
work only with x. 

Causes tp to pause before treating each file, type the indicative letter and the file 
name (as with v) and await the user's response. Response y means "yes", so the 
file is treated. Null response means "no", and the file does not take part in Whatever 
is being done. Response x means "exit"; the tp command terminates immediately. 
In the x function, files previously asked about have been extracted already. With r, 
U, and d no change has been made to the tape. 

January 20, 1984 



TP(1) 

FILES 
/dev/tap? 
/dev/mt? 

( Obsolescent) TP(1) . 

SEE ALSO 
ar(1), cpio(1), tar(1). 

DIAGNOSTICS 

BUGS 

Several; the non-obvious one is "Phase error", which means the file changed after it was 
selected for dumping but before it was dumped. 

A single file with several links to it is treated like several files. 

Binary-coded control information makes magnetic tapes written by tp difficult to carry to other 
machines; tar(1) avoids the problem. 

Tp does not copy zero-length files to tape. 

January 20, 1984 Page 2 



TPLOT(1G) TPLOT(1G) 

NAME 
tplot • graphics filters 

SYNOPSIS 
tplot [ • Tterminal [ -e raster ] ] 

DESCRIPTION 

FILES 

These commands read plotting instructions (see plot(5)) from the standard input and in general 
produce, on the standard output, plotting instructions suitable for a particular terminal. If no ter­
minal is specified, the environment parameter $TERM (see environ(7)) is used. Known 
terminals are: 

300 DASI 300. 
300S DASI 300s. 
450 DASI 450. 
4014 Tektronix 4014. 
ver Versatec D1200A. This version of plot places a scan-converted image in 

lusr/tmp/raster$$ and sends the result directly to the plotter device, rather than to the 
standard output. The -e option causes a previously scan-converted file raster to be sent 
to the plotter. 

lusr/libit300 
lusrilibit300s 
lusrilibit450 
lusr/lib/t4014 
lusr/lib/vplot 
lusr/tmpiraster$$ 

SEE ALSO 
plot(3X), plot(5), term(7). 

Page 1 January 20, 1984 



TR(1) TR(1) 

NAME 
tr • translate characters 

SYNOPSIS 
tr [ -cds ] [ string1 [ string2 ] ] 

DESCRIPTION 
Tr copies the standard input to the standard output with substitution or deletion of selected char­
acters. Input characters found in string1 are mapped into the corresponding characters of 
string2. Any combination of the options -cds may be used: 

-c Complements the set of characters in string1 with respect to the universe of characters 
whose ASCII codes are 001 through 377 octal. 

-d Deletes all input characters in string1. 

-s Squeezes all strings of repeated output characters that are in string2 to single charac-
ters. 

The following abbreviation conventions may be used to introduce ranges of characters or 
repeated characters into the strings: 

[a-z] Stands for the string of characters whose ASCII codes run from character a to character 
Z, inclusive. 

[a.n) Stands for n repetitions of a. If the first digit of n is 0, n is considered octal; otherwise, 
n is taken to be decimal. A zero or missing n is taken to be huge; this facility is useful 
for paddi ng string2. 

The escape character \ may be used as in the shell to remove special meaning from any char­
acter in a string. In addition, \ followed by 1, 2, or 3 octal digits stands for the character whose 
ASCII code is given by those digits. 

The following example creates a list of all the words in file1 one per line in file2, where a word is 
taken to be a maximal string of alphabetics. The strings are quoted to protect the special char­
acters from interpretation by the shell; 012 is the ASCII code for newline. 

tr -cs "[A-Z][a-z]" "[\012.]" <file1 >file2 

SEE ALSO 
ed(1), sh(1), ascii(7). 

BUGS 
Won't handle ASCII NUL in string1 or string2; always deletes NUL from input. 

Page 1 January 20, 1984 



TRMTAB(1) (Plexus) 

NAME 
trmtab - make a new nroff/troff terminal/printer driver table 

SYNOPSIS 
lusrlsrc/cmd/termltrmtab tabname 

DESCRIPTION 

TRMTAB(1) . 

Trmtab makes a new nroffltroff driver table and installs it in lusrllib/term. It uses two files, tab.c 
and code. new, that must be modified to represent the new terminal/printer. 

FilES 

NOTES 

Tabname is the name of the output file that is installed in /usr/lib/term. Tabname must begin 
with "tab". 

To use the new driver table, use the" -T" option of nroff/troff. 

/usr/srclcmd/term/code. new 
/usr/srclcmd/term/tab.c 

Trmtab is a Plexus command. It is not part of standard SYSTEM III. 

SEE ALSO 
troff(1) 

Page 1 February 17, 1984 

, 
i 



TROFF(1) TROFF(1) . 

NAME 
troft, nroft - typeset or format text 

SYNOPSIS 
nroff [ options) [ files) 

troff [ options) [ files) 

DESCRIPTION 
Nroff formats text contained in files (standard input by default) for printing on typewriter-like 
devices and line printers; similarly, troff formats text for a Wang Laboratories, Inc., C/AIT photo­
typesetter. Their capabilities are described in the NROFFITROFF User's Manual cited below. 

An argument consisting of a minus (-) is taken to be a file name corresponding to the standard 
input. The options, which may appear in any order, but must appear before the files, are: 

-olist Print only pages whose page numbers appear in the list of numbers and ranges, 
separated by commas. A range N-M means pages N through M; an initial -N means 
from the beginning to page N; and a final N- means from N to the end. (See BUGS 

below.) 
-nN Number first generated page N. 
-sN Stop every N pages. Nroff will halt after every N pages (default N=1) to allow paper 

loading or changing, and will resume upon receipt of a line-feed or new-line (new­
lines do not work in pipelines, e.g., with mm(1». This option does not work if the out­
put of nroff is piped through co/(1). Troff will stop the phototypesetter every N pages, 
produce a trailer to allow changing cassettes, and resume when the typesetter's start 
button is pressed. When nroff (troff) halts between pages, an ASCII BEL (in troff, the 
message page stop) is sent to the terminal. 

-raN Set register a (which must have a one-character name) to N. 
-i Read standard input after files are exhausted. 
-q Invoke the simultaneous input-output mode of the .rd request. 
-z Print only messages generated by .tm (terminal message) requests. 
-mname Prepend to the input files the non-compacted (ASCII text) macro file 

lusr/lib/tmac/tmac.name. 
-cname Prepend to the input files the compacted macro files 

lusr!lib/macros/cmp.[nt).[dt).name and /usr/lib/macros/ucmp.[nt].name. 
-kname Compact the macros used in this invocation of nroffltroff, placing the output in files 

[dt).name in the current directory (see the May 1979 Addendum to the NROFFITROFF 
User's Manual for details of compacting macro files). 

Nroff only: 
-Tname Prepare output for specified terminal. Known names are 37 for the (default) TELE­

TYPE'@) Model 37 terminal, tn300 for the GE TermiNet 300 (or any terminal without 
half-line capability), 300s for the DASI 300s, 300 for the DASI 300, 450 for the DASI 
450, Ip for a (generic) ASCII line printer, 382 for the DTC-382, 4000A for the Trendata 
4000A, 832 for the Anderson Jacobson 832, X for a (generic) EBCDIC printer, and 
2631 for the Hewlett Packard 2631 line printer. 

-e Produce equally-spaced words in adjusted lines, using the full resolution of the partic­
ular terminal. 

-h Use output tabs during horizontal spacing to speed output and reduce output character 
count. Tab settings are assumed to be every 8 nominal character widths. 

-Wl Set the emboldening factor (number of character overstrikes) for the third font position 
(bold) to n, or to zero if n is missing. 

Troff only: 

Page 1 January 20, 1984 



TROFF(1) TROFF(1 ) 

FILES 

-t Direct output to the standard output instead of the phototypesetter. 
-f Refrain from feeding out paper and stopping phototypesetter at the end of the run. 
-w Wait until phototypesetter is available, if it is currently busy. 
-b Report whether the phototypesetter is busy or available. No text processing is done. 
-a Send a printable ASCII approximation of the results to the standard output. 
-pN Print all characters in point size N while retaining all prescribed spacings and motions, 

to reduce phototypesetter elapsed time. 
-g Prepare output for the Murray Hill Computation Center phototypesetter and direct it to 

the standard output (see gcat(1 C)). This option is not compatible with the -s option; 
furthermore, when this option is invoked, all .fp (font position) requests (if any) in the 
troff input must come before the first break, and no .tl requests may come before the 
first break. 

-Tname Use font-width tables for device name (the font tables are found· in 
lusr/lib/fontlname/.). Currently, no names are supported. 

lusr/lib/suftab 
Itmpita$# 
lusrilibitmac/tmac. * 
/usr/lib/ macrosi * 
lusr/lib/terml * 
lusr/lib/fontl * 

suffix hyphenation tables 
temporary file 
standard macro files and pointers 
standard macro files 
terminal driving tables for nroff 
font width tables for troff 

SEE ALSO 

BUGS 

NROFFITROFF User's Manual by J. F. Ossanna. 
A TROFF Tutorial by B. W. Kernighan. 
eqn(1), tbl(1), mm(7). 
col(1), greek(1), mm(1) (nroff only). 
gcat(1 C), mmt(1), tc(1), mv(7) (troff only). 

Nroffltroff believes in Eastern Standard Time; as a result, depending on the time of the year and 
on your local time zone, the date that nroffltroff generates may be off by one day from your idea 
of what the date is. 
When nroffltroff is used with the -olist option inside a pipeline (e.g., with one or more of cw(1), 
eqn(1), and tbl(1», it may cause a harmless "broken pipe" diagnostic if the last page of the 
document is not specified in list. 

January 20, 1984 Page 2 



TRUE(1) 

NAME 
true, false - provide truth values 

SYNOPSIS 
true 

false 

DESCRIPTION 

TRUE(1) 

True does nothing, successfully. Fa/se does nothing, unsuccessfully. They are typically used in 
input to sh(1) such as: 

SEE ALSO 
sh(1 ). 

DIAGNOSTICS 

while true do 
command 

done 

True has exit status zero, false nonzero. 

Page 1 January 20, 1984 



TSET(1) (Plexus) TSET(1) . 

NAME 
tset - set terminal modes 

SYNOPSIS 
lusr/plxltset [ - ] [ -hrslQS ] [ -e[c] ] [ -E[c] ] 
[ -k[c] ] [ -m [ident][test baudrate]:type ] [ type ] 

DESCRIPTION 

Page 1 

Tset causes terminal dependent processing such as setting erase and kill characters, setting or 
resetting delays, and the like. It is driven by the letc/ttytype and letcltermcap files. 

The type argument specifies the type of terminal. The type may be any type given in 
letc/termcap. If type is not specified, the terminal type is read from the environment TERM, 
unless the -h flag is set or any -m argument was given. In this case the type is read from 
letc/ttytype (the data base that links port names to terminal types). The port name is deter­
mined by a ttyname(3) call on the diagnostic output. If the port is not found in letc/ttytype, the 
terminal type is set to unknown. 

Ports for which the terminal type is indeterminate are identified in letc/ttytype as dialup, plug­
board, etc. You can specify how these identifiers should map to an actual terminal type. The 
mapping flag, -m, is followed by the appropriate identifier (a 4 character or longer substring is 
adequate), an optional test for baud rate, and the terminal type to be used if the mapping condi­
tions are satisfied. If more than one mapping is specified, the first correct mapping prevails. A 
missing identifier matches all identifiers. Baud rates are specified as with stty(1), and are com­
pared with the speed of the diagnostic output. The test may be any combination of: >, =, <, 
0, and I. (Note: 0 is a synonym for = and 1 inverts the sense of the test. Remember to escape 
characters meaningful to the shell.) 

If the type as determined above begins with a question mark, tset asks if you really want that 
type. A null response means to use that type; otherwise, another type can be entered, which is 
then used instead. (The question mark must be escaped to prevent filename expansion by the 
shell.) 

On terminals that can backspace but not overstrike (such as a CRT), and when the erase charac­
ter is the default erase character ('#' on standard systems), the erase character is changed to a 
Control-H (backspace). The -e flag sets the erase character to be the named character c on all 
terminals, so to override this option you can say -e#. The default for c is the backspace char­
acter on the terminal, usually Control-H. The -E flag is identical to -e except that it only 
operates on terminals that can backspace; it might be used with an ASR33. The -k option 
works similarly, with c defaulting to Control-X. No kill processing is done if -k is not specified. 
In all of these flags, ""X", where X is any character, is equivalent to control-X. 

The - option prints the terminal type on the standard output; this can be used to get the terminal 
type by saying: 

set termtype = . tset - • 

If no other options are given, tset operates in ''fast mode" and only outputs the terminal type, 
bypassing all other processing. 

The -s outputs export and assignment commands (if your default shell is the Bourne Shell). 
Use: 

tset -s ... > Itmp/tset$$ 
Itmp/tset$$ 
rm Itmp/tset$$ 

For the same effect, if you are using csh, use: 

March 2, 1984 



. ~ 

TSET(1) (Plexus) TSET(1) . 

set noglob 
set term=('tset -8 ... .') 
setenv TERM $term[1] 
setenv TERMCAP "$term[2]" 
unset term 
unset noglob 

The -S option only outputs the strings to be placed in the environment variables. 

The -r option prints the terminal type on the diagnostic output. 

The -Q option supresses printing the "Erase set to" and "Kill set to" messages. 

The -I option supresses outputing the terminal initialization strings. 

Tset is most useful when included in the .login (for csh(1» or .profile (for sh(1» file executed 
automatically at login, with -m mapping used to specify the terminal type you most frequently 
dial in on. 

EXAMPLES 

FILES 

NOTES 

tset gt42 
tset -mdialup\>300:adm3a -mdialup:dw2 -Or -e# 
tset -m dial:ti733 -m plug:\ ?hp2621 -m unknown:\? -e -k"U 

/etc/ttytype 
/etc/termcap 

Port name to terminal type map database 
Terminal capability database 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 

NOTES 

setenv(1), termcap(S), ttytype(S), stty(1). 

For compatibility with earlier versions of tset, the following flags are accepted and mapped inter­
nally as shown: 

-d type - > -m dialup:type 
-p type -> -m plugboard:type 
-a type - > -m arpanettype 

These flags will disappear eventually . 

March 2, 1984 Page 2 



TSORT(1) 

NAME 
tsort - topological sort 

SYNOPSIS 
tsort [ file ] 

DESCRIPTION 

TSORT(1) 

Tsort produces on the standard output a totally ordered list of items consistent with a partial ord­
ering of items mentioned in the input file. If no file is specified, the standard input is under­
stood. 

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs of different 
items indicate ordering. Pairs of identical items indicate presence, but not ordering. 

SEE ALSO 
lorder(1). 

DIAGNOSTICS 
Odd data: there is an odd number of fields in the input file. 

BUGS 
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library archive file . 

Page 1 . January 20, 1984 



TTY(1) 

NAME 
tty - get the terminal's name 

SYNOPSIS 
tty[-S] 

DESCRIPTION 

TTY(l) 

Tty prints the path name of the user's terminal. The -s option inhibits printing, allowing one to 
test just the exit code. 

EXIT CODES 
o if standard input is a terminal, 
1 otherwise. 

DIAGNOSTICS 
"not a tty" if the standard input is not a terminal and -s is not specified. 

Page 1 January 20, 1984 



lYPO(1) ( Obsolescent) lYPO(1) . 

NAME 
typo - find possible typographical errors 

SYNOPSIS 
typo [ -n 1 [ files 1 

DESCRIPTION 

FilES 

Typo hunts through a document for unusual words, typographic errors, and hapax legomena 
and prints them on the standard output. 

The words used in the document are printed out in decreasing order of peculiarity along with an 
index of peculiarity. An index of 10 or more is considered peculiar. Printing of certain very 
common English words is suppressed. 

The statistics for judging words are taken from the document itself, with some help from known 
statistics of English. The -n option suppresses the help from English and should be used if the 
document is written in, for example, Urdu. 

Troff(1) control lines are ignored. Quote marks, vertical bars, hyphens, and ampersands within 
words are equivalent to spaces. Words hyphenated across lines are put back together. 

Itmp/ttmp?? 
lusr/lib/salt 
lusr/lib/w2006 
lusr/lib/typoprog 
lusr/lib/sq2006 

SEE ALSO 
spell(1). 

Page 1 January 20, 1984 



UMASK(1 ) UMASK(1) . 

NAME 
umask - set file-creation mode mask 

SYNOPSIS 
umask [ 000 ] 

DESCRIPTION 
The user file-creation mode mask is set to 000. The octal three digits refer to 
read/write/execute permissions for owner, group, and others, respectively (see chmod(2) and 
umask(2». The value of each specified digit is subtracted from the corresponding "digit" speci­
fied by the system for the creation of a file (see creat(2». For example, umask 022 removes 
group and others write permission (files normally created with mode 777 become mode 755; 
files created created with mode 666 become mode 644). 

If 000 is omitted, the current value of the mask is printed. 

Umask is recognized and executed by the shell. 

SEE ALSO 
chmod(1), sh(1), chmod(2), creat(2), umask(2). 

Page 1 January 20, 1984 



UNAME(1) 

NAME 
uname - print name of current UNIX 

SYNOPSIS 
uname [ -snrva ] 

DESCRIPTION 

UNAME(1 ) 

Uname prints the current system name of UNIX on the standard output file. It is mainly useful to 
determine what system one is using. The options cause selected information returned by 
uname(2) to be printed: 

-s print the system name (default) . 

. -n print the nodename (the nodename may be a name that the system is known by to a 
communications network). 

-, print the operating system release. 

-y print the operating system version. 

-a print all the above information. 

SEE ALSO 
uname(2}. 

Page 1 . January 20, 1984 



UNGET(1) UNGET(1 ) 

NAME 
unget - undo a previous get of an sees file 

SYNOPSIS 
unget [-rSID] [-5] [on] files 

DESCRIPTION 
Unget undoes the effect of a get ·e done prior to creating the intended new delta. If a directory 
is named,unget behaves as though each file in the directory were specified as a named file, 
except that non-SeeS files and unreadable files are silently ignored. If a name of - is given, the 
standard input is read with each line being taken as the name of an sees file to be processed. 

Keyletter arguments apply independently to each named file. 

-rSID Uniquely identifies which delta is no longer intended. (This would have been 
specified by get as the "new delta"). The use of this keyletter is necessary 
only if two or more outstanding gets for editing on the same sees file were 
done by the same person (login name). A diagnostic results if the specified 
SID is ambiguous, or if it is necessary and omitted on the command line. 

-s Suppresses the printout, on the standard output, of the intended delta's SID. 

-n Causes the retention of the gotten file which would normally be removed from 
the current directory. 

SEE ALSO 
delta(1), get(1), sact(1). 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 1 January 20, 1984 



UNIQ(1) UNIQ(1) . 

NAME 
uniq - report repeated lines in a file 

SYNOPSIS 
uniq [ -udc [ +n ] [ -n ] ] [ input [ output ] ] 

DESCRIPTION 
Uniq reads the input file comparing adjacent lines. In the normal case, the second and 
succeeding copies of repeated lines are removed; the remainder is written on the output file. 
Input and output should always be different. Note that repeated lines must be adjacent in order 
to be found; see sorl(1). If the -u flag is used, just the lines that are not repeated in the original 
file are output. The -d option specifies that one copy of just the repeated lines is to be written. 
The normal mode output is the union of the -u and -d mode outputs. 

The -c option supersedes -u and -d and generates an output report in default style but with each 
line preceded by a count of the number of times it occurred. 

The n arguments specify skipping an initial portion of each line in the comparison: 

-n The first n fields together with any blanks before each are ignored. A field is defined as 
a string of non-space, non-tab characters separated by tabs and spaces from its neigh­
bors. 

+n The first n characters are ignored. Fields are skipped before characters. 

SEE ALSO 
comm(1), sort(1). 

Page 1 January 20, 1984 



UNITS(1 ) UNITS(1) . 

NAME 
units - conversion program 

SYNOPSIS 
units 

DESCRIPTION 

FILES 

Page 1 

Units converts quantities expressed in various standard scales to their equivalents in other 
scales. It works interactively in this fashion: 

You have: inch 
You want: cm 

* 2.540000e+00 
/ 3.937008e-01 

A quantity is specified as a multiplicative combination of units optionally preceded by a numeric 
multiplier. Powers are indicated by suffixed positive integers, division by the usual sign: 

You have: 15 Ibs force/in2 
You want: atm 

* 1.02068ge+00 
/ 9. 79729ge-0 1 

Units only does multiplicative scale changes; thus it can convert Kelvin to Rankine, but not Cen­
tigrade to Fahrenheit. Most familiar units, abbreviations, and metric prefixes are recognized, 
together with a generous leavening of exotica and a few constants of nature including: 

pi ratio of circumference to diameter, 
c speed of light, 
e charge on an electron, 
9 acceleration of gravity, 
force same as g, 
mole Avogadro's number, 
water pressure head per unit height of water, 
au astronomical unit. 

Pound is not recognized as a unit of mass; Ib is. Compound names are run together, (e.g. 
light year). British units that differ from their U.S. counterparts are prefixed thus: brgallon. For 
a complete list of units, type: 

cat lusr/lib/unittab 

/usr/lib/unittab 

January 20, 1984 



UPDATE(1M) (Plexus) 

NAME 
update - periodically update the super block 

SYNOPSIS 
letc/update 

DESCRIPTION 

UPDATE(1M) 

Update is a daemon that periodically (every 30 seconds) does a sync system call. It is exe­
cuted by letc/re. 

SEE ALSO 
sync(2), rc(8). 

Page 1 January 20, 1984 



UUClEAN(1M) UUClEAN(1M) 

NAME 
uuclean - uucp spool directory clean-up 

SYNOPSIS 
lusr/lib/uucp/uuclean [ options ] ... 

DESCRIPTION 

FilES 

Uuclean will scan the spool directory for files with the specified prefix and delete all those which 
are older than the specified number of hours. 

The following options are available. 

~directory 

Clean directory instead of the spool directory. 

-ppre Scan for files with pre as the file prefix. Up to 10 -p arguments may be specified. A 
-p without any pre following will cause all files older than the specified time to be 
deleted. 

-ntime Files whose age is more than time hours will be deleted if the prefix test is satisfied. 
(default time is 72 hours) 

-m Send mail to the owner of the file when it is deleted. 

This program will typically be started by cron(1 M). 

lusr/lib/uucp directory with commands used by uuclean internally 
lusrlspooVuucp spool directory 

SEE ALSO 
uucp(1 C). uux(1 C). 

Page 1 September 24. 1984 



UUCP(1C) UUCP(1C) . 

NAME 
uucp, uulog, uuname - unix to unix copy 

SYNOPSIS 
uucp [ option ] source-file ... destination-file 

uulog [. option ] 

uuname 

DESCRIPTION 

Page 1 

Uucp copies files named by the source-file arguments to the destination-file argument. A file 
name may be a path name on your machine, or may have the form: 

system-name!path-name 

where system-name is taken from a list of system names which uucp knows about. Shell 
metacharacters ?n appearing in path-name will be expanded on the appropriate system. 

Path names may be one of: 

(1) a full path name; 

(2) a path name preceded by -user where user is a login name on the specified system 
and is replaced by that user's login directory; 

(3) a path name preceded by -Iuser where user is a login name on the specified system 
and is replaced by that user's directory under PUBDIR; 

(4) anything else is prefixed by the current directory. 

If the result is an erroneous path name for the remote system the copy will fail. If the 
destination-file is a directory, the last part of the source-file name is used. /~ 
Uucp preserves execute permissions across the transmission and gives 0666 read and write 
permissions (see chmod(2)). 

The following options are interpreted by uucp: 

-d Make all necessary directories for the file copy (default). 

-f Do not make intermediate directories for the file copy. 

-c Use the source file when copying out rather than copying the file to the spool directory 
(default). 

-C Copy the source file to the spool directory. 

-m Send mail to the requester when the copy is complete. 

-nuser Notify user on the remote system that a file was sent. 

-esys Send the uucp command to system sys to be executed there. (Note - this will only be 
successful if the remote machine allows the uucp command to be executed by 
lusr/lib/uucp/uuxqt. ) 

Uulog maintains a summary log of uucp and uux(1C) transactions in the file 
lusrlspool/uucp/LOGFILE by gathering information from partial log files named 
/usrlspool/uucp/LOG .•. ? (These files will only be created if the LOGFILE is being used by 
another process.) It removes the partial log files. 

The options cause uulog to print logging information: 

-ssys Print information about work involving system sys. 

-uuser Print information about work done for the specified user. 

January 20, 1984 



UUCP(1C) UUCP(1C) . 

FILES 

Uuname lists the uucp names of known systems. The -I option returns the local system name. 

lusrlspool/uucp 
lusrlspool/uucppublic 
lusr/lib/uucpl * 

spool di rectory 
public directory for receiving and sending (PUBDIR) 
other data and program files 

SEE ALSO 
mail(1), uux(1 C). 
Uucp Implementation Description by D. A. Nowitz. 

WARNING 

BUGS 

The domain of remotely accessible files can (and for obvious security reasons, usually should) 
be severely restricted. You will very likely not be able to. fetch files by path name; ask a respon­
sible person on the remote system to send them to you. For the same reasons you will probably 
not be able to send files to arbitrary path names. As distributed, the remotely accessible files 
are those whose names begin lusrlspoolluucppublic (equivalent to "'nuucp or just "'). 

All files received by uucp will be owned by uucp. 
The -m option will only work sending files or receiving a single file. (Receiving multiple files 
specified by special shell characters 1.0 will not activate the -m option.) 

January 20, 1984 Page 2 



UUSTAT(1C) UUSTAT(1C) 

NAME 
uustat - uucp status i nqui ry and job control 

SYNOPSIS 
uustat [ option ] '" 

DESCRIPTION 

Page 1 

Uustat will display the status of, or cancel, previously specified uucp commands, or provide 
general status on uucp connections to other systems. The following options are recognized: 

-mmch Report the status of accessibility of machine mch. If mch is specified as all, then 
the status of all machines known to the local uucp are provided. 

-kpbn 

-chour 

Kill the uucp request whose job number is pbn. The killed uucp request must 
belong to the person issuing the uustat command unless he is the super-user. 
Remove the status entries which are older than hour hours. This administrative 
option can only be initiated by the user uucp or the super-user. 

-uuser Report the status of all uucp requests issued by user. 
-ssys 
-chour 

Report the status of all uucp requests which communicate with remote system sys. 
Report the status of all uucp requests which are older than hour hours. 

-yhour Report the status of all uucp requests which are younger than hour hours. 
-jail Report the status of all the uucp requests. 
-y Report the uucp status verbosely. If this option is not specified, a status code is 

printed with each uucp request. 
When no options are given, uustat outputs the status of all uucp requests issued by the current 
user. Note that only one of the options -j, -m, -k, -c, or the rest of other options may be speci­
fied. 

For example, the command 

uustat -uhdc -smhtsa -y72 -v 

will print the verbose status of all uucp requests that were issued by user hdc to communicate 
with system mhtsa within the last 72 hours. The meanings of the job request status are: 

job-number user remote-system command-time status-time status 

where the status may be either an octal number or a verbose description. The octal code 
corresponds to the following description: 

OCTAL STATUS 
00001 the copy failed, but the reason cannot be determined 
00002 permission to access local file is denied 
00004 permission to access remote file is denied 
00010 bad uucp command is generated 
00020 remote system cannot create temporary file 
00040 cannot copy to remote directory 
00100 cannot copy to local directory 
00200 local system cannot create temporary file 
00400 cannot execute uucp 
01000 copy succeeded 
02000 copy finished, job deleted 
04000 job is queued 

The meanings of the machine accessibility status are: 

system-name time status 

January 20, 1984 



UUSTAT(1C) UUSTAT(1C) 

where time is the latest status time and status is a self-explanatory description of the machine 
status. 

FilES 
lusrlspoolJuucp 
lusr/lib/uucp/L_stat 
lusr/lib/uucp/R_stat 

SEE ALSO 
uucp(1C). 

spool directory 
system status file 
request status file 

Uustat - A UUCP Status Inquiry Program, by H. Che. 

January 20, 1984 Page 2 



UUSU8{1M) UUSU8(1M) . 

NAME 
uusub - monitor uucp network 

SYNOPSIS 
lusrllib/uucp/uusub [ options ] 

DESCRIPTION 

FILES 

Uusub defines a uucp subnetwork and monitors the conneCtion· and traffic among the members 
of the subnetwork. The. following options are available: 

-asys Add sys to the subnetwork. 
-dsys Delete sys from the subnetwork: 
-I Report the statistics on connections. 
-r Report the statistics on traffic amount. 
-I Flush the connection statistics. 
-uhr Gather the traffic statistics over the past hr hours. 
-csys Exercise the connection to the system sys. If sys is specified as all, then exercise the 

connection to all the systems in the subnetwork. 

The meanings of the connections report are: 

sys #call #ok time #dev #Iogin #nack #other 

where sys is the remote system name, #call is the number of times the local system tries to 
call sys since the last flush was done, #ok is the number of successful connections, time is the 
the latest successful connect time, #dev is the number of unsuccessful connections because of 
no available device (e.g. ACU), #Iogin is the number of unsuccessful connections because of 
login failure, #nack is the number of unsuccessful connections because of no response (e.g. 
line busy, system down), and #other is the number of unsuccessful connections because of 
other reasons. 

The meanings of the traffic statistics are: 

sfile sbyte rfile rbyte 

where stile is the number of files sent and sbyte is the number of bytes sent over the period of 
time indicated in the latest uusub command with the -uhr option. Similarly, rfile and rbyte are 
the numbers of files and bytes received. 

The command: 

uusub -c all -u 24 

is typically started by cron(1 M) once a day. 

lusrlspoolluuCp/SYSLOG 
lusrllib/uucp/L_Sub 
/usrllib/uuCp/R_sub 

system log file 
connection statistics 
traffic statistiCS 

SEE ALSO 
uucp(1 C), uustat(1 C). 

Page 1 January 20, 1984 



UUTO(1C) UUTO(1C) . 

NAME 
uuto, uupick - public UNIX-to-UNIX file copy 

SYNOPSIS 
uuto [ options 1 source-files destination 
uupick [ -s system ] 

DESCRIPTION 

FilES 

Uuto sends source-files to destination. Uuto uses the uucp(1C) facility to send files, while it 
allows the local system to control the file access. A source-file name is a path name on your 
machine. Destination has the form: 

system !user 

where system is taken from a list of system names that uucp knows about (see uuname(1 C). 
Logname is the login name of someone on the specified system. 

Two options are available: 

-p Copy the source file into the spool directory before transmission. 
-m Send mail to the sender when the copy is complete. 

The files (or sub-trees if directories are specified) are sent to PUBDIR on system, where PUBDIR 
is a public directory defined in the uucp source. Specifically the files are sent to 

PUBDIR/receiveluserlmysystemlfiles. 

The destined recipient is notified by mail(1) of the arrival of files. 

Uupick accepts or rejects the files transmitted to the user. Specifically, uupick searches PUB­
DIR for files destined for the user. For each entry (file or directory) found, the following message 
is printed on the standard output: 

from system: [file file-name] [dir dirname] ? 

Uupick then reads a line from the standard input to determine the disposition of the file: 

<new-line> Go on to next entry. 

d Delete the entry. 

m [dir] Move the entry to named directory dir (current directory is default). 

a [ dir ] Same as m except moving all the files sent from system. 

p Print the content of the file. 

q Stop. 

EOT (control-d) Same as q. 

Icommand Escape to the shell to do command. 

* Print a command summary. 

Uupick invoked with the -ssystem option will only search the PUBDIR for files sent from system. 

PUBDIR, the public directory, is lusrlspool/uucppublic. 

SEE ALSO 
mail(1), uuclean(1M), uucp(1C), uulog(1C), uuname(1C), uustat(1C), uux(1C). 

Page 1 January 20, 1984 



UUX(1C) UUX(1C) 

NAME 
uux - unix to unix command execution 

SYNOPSIS 
uux [ - ] command-string 

DESCRIPTION 

FILES 

Uux will gather zero or more files from various systems, execute a command on a specified sys­
tem and then send standard output to a file on a specified system. Note that, for security rea­
sons, many installations will limit the list of commands executable on behalf of an incoming 
request from uux. Many sites will permit little more than the receipt of mail (see mail(1» via 
uux. 

The command-string is made up of one or more arguments that look like a Shell command line, 
except that the command and file names may be prefixed by system-name!. A null system­
name is interpreted as the local system. 

File names may be one of 

(1) a full path name; 

(2) a path name preceded by -xxx where xxx is a login name on the specified system 
and is replaced by that user's login directory; 

(3) anything else is prefixed by the current directory. 

The - option will cause the standard input to the uux command to be the standard input to the 
command-string. For example, the command 

uux "!diff usg!/usr/dan/f1 pwba!/a4/dan/f1 > !f1.diff II 

will get the f1 files from the "usg" and "pwba" machines, execute a diff command and put the 
results in f1.diff in the local directory, 

Any special shell characters such as "< >;1 should be quoted either by quoting the entire 
command-string, or quoting the special characters as individual arguments. 

Uux will attempt to get all files to the execution system. For files which are output files, the file 
name must be escaped using parentheses. For example, the command 

uux a!uucp b!/usr/file \(c!/usr/file\) 

will send a uucp command to system "a" to get lusrlfile from system lib" and send it to system 
"c". 

Uux will notify you if the requested command on the remote system was disallowed. The 
response comes by remote mail from the remote machine, 

lusr/lib/uuCp/spool 
lusr/lib/uucp/. 

spool directory 
other data and programs 

SEE ALSO 

BUGS 

Page 1 

uuclean(1 M), uucp(1 C). 
Uucp Implementation Description by D. A. Nowitz 

Only the first command of a shell pipeline may have a system-name!. All other commands are 
executed on the system of the first command. 
The use of the shell metacharacter • will probably not do what you want it to do. The shell 
tokens < < and > > are not implemented. 

" January 20, 1984 



VAL(1 ) VAL(1) 

NAME 
val - validate sees file 

SYNOPSIS 
val -
val [-5] [-rSID] [-mname] [-ytype] files 

DESCRIPTION 
Val determines if the specified file is an sees file meeting the characteristics specified by the 
optional argument list. Arguments to val may appear in any order. The arguments consist of 
key letter arguments, which begin with a -, and named files. . 

Val has a special argument, -, which causes reading of the standard input until an end-of-file 
condition is detected. Each line read is independently processed as if it were a command line 
argument list. 

Val generates diagnostic messages on the standard output for each command line and file pro­
cessed and also returns a single 8-bit code upon exit as described below. 

The keyletter arguments are defined as follows. The effects of any key letter argument apply 
independently to each named file on the command line. 

-s 

-rSID 

-mname 

The presence of this argument silences the diagnostic message normally 
generated on the standard output for any error that is detected while pro­
cessing each named file on a given command line. 

The argument value SID (SeeS IDentification String) is an sees delta 
number. A check is made to determine if the SID is ambiguous (e. g., r1 
is ambiguous because it physically does not exist but implies 1.1, 1.2, etc. 
which may exist) or invalid (e. g., r1.0 or r1.1.0 are invalid because nei­
ther case can exist as a valid delta number). If the SID is valid and not 
ambiguous, a check is made to determine if it actually exists. 

The argument value name is compared with the sees val.1 keyword in 
file. 

-ytype The argument value type is compared with the sees keyword in file. 

The 8-bit code returned by val is a disjunction of the possible errors, i. e., can be interpreted as 
a bit string where (moving from left to right) set bits are interpreted as follows: 

bit 0 = missing file argument; 
bit 1 = unknown or duplicate keyletter argument; 
bit 2 = corrupted sces file; 
bit 3 = can't open file or file not sees; 
bit 4 = SID is invalid or ambiguous; 
bit 5 = SID does not exist; 
bit 6 = , 'Oy mismatch; 
bit 7 = val.1, -m mismatch; 

Note that val can process two or more files on a given command line and in turn can process 
multiple command lines (when reading the standard input). In these cases an aggregate code is 
returned - a logical OR of the codes generated for each command line and file processed. 

SEE ALSO 
admin(1), delta(1), get(1), prs(1). 

DIAGNOSTICS 
Use help(1) for explanations. 

Page 1 . January 20. 1984 



VAL(1 ) 

BUGS 

VAL(1) . 

Val can process up to 50 files on a single command line. Any number above 50 will produce a 
core dump. 

January 20. 1984 Page 2 

. ~ 



VC(1 ) ( Obsolescent) VC(1) . 

NAME 
vc - version control 

SYNOPSIS 
vc [-a] [-t] [;:char] [-5] [keyword=value ... keyword=value] 

DESCRIPTION 

Page 1 

The vc command copies lines from the standard input to the standard output under control of its 
arguments and control statements encountered in the standard input. In the process of per­
forming the copy operation, user declared keywords may be replaced by their string value when 
they appear in plain text and/or control statements. 

The copying of lines from the standard input to the standard output is conditional, based on tests 
(in control statements) of keyWord values specified in control statements or as vc command 
arguments. 

A control statement is a single line beginning with a control character, except as modified by the 
-t keyletter (see below). The default control character is colon (:), except as modified by the ;: 
key letter (see below). Input lines beginning with a backs lash (\) followed by a control character 
are not control lines and are copied to the standard output with the backs lash removed. Lines 
beginning with a backslash followed by a non-control character are copied in their entirety. 

A keyword is composed of 9 or less alphanumerics; the first must be alphabetic. A value is any 
ASCII string that can be created with ed(1); a numeric value is an unsigned string of digits. Key­
word values may not contain blanks or tabs. 

Replacement of keywords by values is done whenever a keyword surrounded by control charac­
ters is encountered on a version control statement. The -a keyletter (see below) forces replace­
ment of keywords in all lines of text. An uninterpreted control character may be included in a 
value by preceding it with \. If a literal \ is desired, then it too must be preceded by \. 

Keyletter arguments 

-a 

-t 

;:char 

-8 

Forces replacement of keywords surrounded by control characters with 
their assigned value in all text lines and not just in vc statements. 

All characters from the beginning of a line up to and including the first tab 
character are ignored for the purpose of detecting a control statement. If 
one is found, all characters up to and including the tab are discarded. 

Specifies a control character to be used in place of :. 

Silences warning messages (not error) that are normally printed on the 
diagnostic output. 

Version Control Statements 

:dcl keyword[, """' keyword] 
Used to declare keywords. All keywords must be declared. 

:asg keyword = value 
Used to assign values to keywords. An asg statement overrides the assignment for the 
corresponding keyword on the vc command line and all previous asg's for that keyword. 
Keywords declared, but not assigned values have null values. 

:if condition 

:end 
Used to skip lines of the standard input. If the condition is true all lines between the if 
statement and the matching end statement are copied to the standard output. If the condi­
tion is false, all intervening lines are discarded, including control statements. Note that 
intervening if statements and matching end statements are recognized solely for the 

September 24, 1984 



VC(1) 

::text 

:on 

:off 

( Obsolescent) 

purpose of maintaining the proper if-end matching. 
The syntax of a condition is: 

<cond> 
<or> 
<and> 
<exp> 
<op> 
<value> 

::= [ "not"] <or> 
::= <and> I <and> "'" <or> 
::= <exp> I <exp> "&" <and> 
::= "(" <or> ")" , <value> <op> <value> 
::= "=" I U!=1f I u<1t I ">" 
::= <arbitrary ASCII string> , <numeric string> 

The available operators and their meanings are: 

!= 
& 

> 
< 
() 
not 

equal 
not equal 
and 
or 
greater than 
less than 
used for logical groupings 
may only occur immediately after the if, and 
when present, inverts the value of the 
entire condition 

VC(1) 

The> and < operate only on unsigned integer values (e. g.: 012 > 12 is false). All other 
operators take strings as arguments (e. g.: 012 != 12 is true). The precedence of the 
operators (from highest to lowest) is: 

= ! = > < all of equal precedence 
& 
, 

Parentheses may be used to alter the order of precedence. 
Values must be separated from operators or parentheses by at least one blank or tab. 

Used for keyword replacement on lines that are copied to the standard output. The two 
leading control characters are removed, and keywords surrounded by control characters in 
text are replaced by their value before the line is copied to the output file. This action is 
independent of the -a keyletter. 

Turn on or off keyword replacement on all lines. 

:ctl char 
Change the control character to char. 

:msg message 
Prints the given message on the diagnostic output. 

:err message 
Prints the given message followed by: 

ERROR: err statement on line .•• (915) 
on the diagnostiC output. Vc halts execution, and returns an exit code of 1. 

DIAGNOSTICS 
Use he/p(1) for explanations. 

September 24. 1984 Page 2 



VC(1) ( Obsolescent) VC(1) 

EXIT CODES 
o -normal 
1 - any error 

P.age 3 September 24, 1984 



VI(1) . (Plexus) VI(1) . 

NAME 
vi - screen oriented (visual) display editor based on ex 

SYNOPSIS 
lusr/plx/vi [ -t tag ] [ -r ] [ +'ineno ] name ... 

DESCRIPTION 

FILES 

NOTES 

VI (visual) is a display oriented text editor based on eX(1). Ex and vi run the same code; it is 
possible to get to the command mode of ex from within vi and vice-versa. 

The Vi Quick Reference card and the Introduction to Display Editing with Vi provide full details 
on using vi. 

See eX(1). 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 

BUGS 

Page 1 

ex (1). vi (1). "Vi Quick Reference" card, "An Introduction to Display Editing with Vi". 

Software tabs using AT work only immediately after the autoindent. 

Left and right shifts on intelligent terminals don't make use of insert and delete character opera­
tions in the terminal. 

The wrapmargin option can be fooled since it looks at output columns when blanks are typed. If 
a long word passes through the margin and onto the next line without a break. then the line 
won't be broken. 

Insert/delete within a line can be slow if tabs are present on intelligent terminals, since the termi­
nals need help in dOing this correctly. 

Occasionally inverse video scrolls up into the file from a diagnostic on the last line. 

Saving text on deletes in the named buffers is somewhat inefficient. 

The source command does not work when executed as :source; there is no way to use the 
:append. :change, and :insert commands. since it is not possible to give more than one line of 
input to a : escape. To use these on a :global you must Q to ex command mode, execute 
them. and then reenter the screen editor with vi or open. 

January 20, 1984 



VOLCOPY(1M) VOLCOPY(1M) . 

r NAME 
volcopy, labelit - copy file systems with label checking 

SYNOPSIS 
letc/volcopy [-bpibits-per-inch ] [-feetsize ] fsname special1 volname1 special2 volname2 

letc/labelit special [ fsname volume [ -n ] ] 

DESCRIPTION 

FILES 

Volcopy makes a literal copy of the file system using a blocksize matched to the device (10 
1024-byte blocks for 800/1600 bpi tape; 88 blocks for everything else). Using volcopy, a 2400 
foot'1600 bpi 9-track tape will hold a 30000 (1024-byte) block file system, while a cartridge tape 
will hold a 10000 (1024-byte) block file system. The optional flag arguments are used only with 
tapes (-bpi -- bits-per-inch; -feet -- size of reel in feet). The program requests the information 
if it is not given on the command line. If the file system is too large to fit on one reel, volcopy 
will prompt for additional reels. Labels of all reels are checked. Tapes may be mounted alter­
nately on two drives. 

The fsname argument represents the mounted name (e.g.: root, u1, etc.) of the filsystem being 
copied. 

The special should be the physical disk section or tape (e.g.: Idev/rdk1, Idev/rmtO, etc.). 

The volname is the physical volume name (e.g.: pk3, t0122, etc.) and should match the external 
label sticker. Such label names are limited to five or fewer characters. 

Special1 and volname1 are the device and volume from which the copy of the file system is 
being extracted. Special2 and volname2 are the target device and volume. 

Fsname and volname are recorded in the last 12 characters of the superblock (char fsname[6], 
volname[6);). 

Labelit can be used to provide initial labels for unmounted disk or tape file systems. With the 
optional arguments omitted, labelit prints current label values. The -n option provides for initial 
labeling of new tapes only (this destroys previous contents). 

letcilogifilesave a record of file systemsivolumes copied 

SEE ALSO 

BUGS 

Page 1 

fs(5). 

Only device names beginning Idev/rmt are treated as tapes. 

Volcopy is extremely slow on the P/25. 

January 20, 1984 



VPMC(1C) VPMC(1C) 

NAME 
vpmc - compiler for the virtual protocol machine 

SYNOPSIS 
vpmc [-m] [-r] [-C] [-x] [-s sfile] [-I Ifile] [-i ifile] [-0 ofile] file 

DESCRIPTION 
Vpmc is the compiler for a language that is used to describe communications link protocols. 
The output of vpmc is a load module for the virtual protocol machine (VPM), which is a software 
construct for implementing communications link protocols (e.g., BISYNC) on the Intelligent Com­
munications Processor (ICP). VPM is implemented by an interpreter in the ICP that cooperates 
with a driver in the UNIX host computer to transfer data over a communications link in accor­
dance with a specified link protocol. UNIX user processes transfer data to or from a remote ter­
minal or computer system through VPM using normal UNIX open, read, write, and close opera­
tions. The VPM program in the ICP provides error control and flow control using the conventions 
specified in the protocol. 

The language accepted by vpmc is essentially a subset of C; the implementation of vpmc uses 
the RATFOR preprocessor (ratfor(1» as a front end; this leads to a few minor differences, mostly 
syntactic. 

Two versions of the interpreter will be available. The appropriate version for a particular applica­
tion is selected by means of the -i option. The BISYNC version (-i bisync) supports half-duplex, 
character-oriented protocols such as the various forms of BISYNC. The HOLC version (-i hdlc), 
which is currently (Sys3 Release 1.1) not supported, supports full-duplex, bit-oriented protocols 
such as HOLC. The communications primitives used with the BISYNC version are character­
oriented and blocking; the primitives used with the HOLC version are frame-oriented and non­
blocking. 

Options 
The meanings of the command-line options are: 

-m Use m4(1) instead of cpp as the macro preprocessor. 
-r Produce RATFOR output on the standard output and suppress the remaining compiler 

-C 
-x 
-s stile 
-I/file 
-i ifile 
-ootile 

phases. 
Compile only (suppress the assembly and linking phases). 
Retain the intermediate files used for communication between passes. 
Save the generated VPM assembly language on file stile. 
Produce a VPM assembly-language listing on file /file. 
Use the interpreter version specified by itile (default bisync). 
Write the executable object file on file otile (default a.out). 

These options may be given in any order. 

Programs 
Input to vpmc consists of a (possibly nUll) sequence of array declarations, followed by one or 
more function definitions. The first defined function is invoked (on command from the UNIX VPM 
driver) to begin program execution. 

Functions 
A function definition has the following form: 

function name() 
statementjist 
end 

Function arguments (formal parameters) are not allowed. The effect of a function call with argu-
ments can be obtained by invoking the function via a macro that first assigns the value of each ~ 
argument to a global variable reserved for that purpose. See EXAMPLES below. , 

Page 1 January 19, 1984 



VPMC(1C) VPMC(1C) 

A statemenUist is a (possibly nUll) sequence of labeled statements. A labeled_statement is a 
statement preceded by a (possibly nUll) sequence of labels. A label is either a name followed 
by a colon (:) or a decimal integer optionally followed by a colon. 

The statements that make up a statement list must be separated by semicolons (;). (A semi­
colon at the end of a line can usually be omitted; refer to the description of RATFOR for details.) 
Null statements are allowed. 

Statement Syntax 
The following types of statements are allowed: 

expression 
Ivalue =expression 
Ivalue +=expression 
Ivalue -=expression 
Ivalue I=expression 
Ivalue & =e xpression 
Ivalue A=expression 
Ivalue« =expression 
Ivalue »=expression 
if( expression )statement 
if(expression)statement else statement 
whi lee expression )statement 
for(statement; expression; statement)statement 
repeat statement 
repeat statement until expression 
break 
next 
switch( expression) { case _list} 
return(expression) 
return 
goto name 
goto decimal_constant 
{statement_list} 

repeat is equivalent to the do keyword in C; next is equivalent to continue. 

A case-,ist is a sequence of statement lists, each of which is preceded by a label of the form: 

case constant: 

The label for the last statemenUist in a case-,ist may be of the form: 

default: 

Unlike C, RATFOR supplies an automatic break preceding each new case label. 

Expression Syntax 
A primary _expression (abbreviated primary) is an Ivalue or a constant. An Ivalue is one of the 
following: 

name 
name [constant] 

A unary_expression (abbreviated unary) is one of the following: 

primary 
name() 
system_call 
++Ivalue 
--Ivalue 

January 19, 1984 Page 2 



VPMC(1C) 

(expression) 
lunary 
_unary 

The following types of expressions are allowed: 

unary 
unary +primary 
unary-primary 
unary Iprimary 
unary &primary 
unary&~primary 

unary-primary 
unary «primary 
unary» primary 
unary = =primary 
unary!=primary 
unary> primary 
unary < primary 
unary> =primary 
unary < =primary 

VPMC(1C) . 

Note that the right operand of a binary operator can only be a constant, a name, or a name with 
a constant subscript. 

System Calls 
A VPM program in the ICP (a compiled protocol script) interacts with a communications device 

~ 

and a driver in the host computer by means of system calls (primitives). These system calls are '"' 
part of the ICP operating system library. ) 

Page 3 

The following primitives are available only in the BISYNC version of the interpreter: 

crc16(primary) 
The value of the primary expression is combined with the cyclic redundancy check-sum 
at the location passed by a previous crcloc system call. The CRC-16 polynomial 

(x 16 +x 15 +x2 + 1) 

is used for the check-sum calculation. 

crcloc(name) 
The two-byte array starting at the location specified by name is cleared. The address of 
the array is recorded as the location to be updated by subsequent crc16 system calls. 

get(/value) 
Get a byte from the current transmit buffer. The next available byte, if any, is copied 
into the location specified by Ivalue. The returned value is zero if a byte was obtained, 
otherwise it is non-zero. 

getrbuf(name) 
Get (open) a receive buffer. The returned value is zero if a buffer is available, other­
wise it is non-zero. If a buffer is obtained, the buffer parameters are copied into the 
array specified by name. The array should be large enough to hold at least three bytes. 
The meaning of the buffer parameters is driver-dependent. If a receive buffer has previ­
ously been opened via a getrbuf call but has not yet been closed via a call to rtnrbuf, 
that buffer is reinitialized and remains the current buffer. 

getxbuf(name) 
Get (open) a transmit buffer. The returned value is zero if a buffer is available, 

January 19, 1984 

" 



VPMC(1C) VPMC(1C) . 

otherwise it is non-zero. If a buffer is obtained, the buffer parameters are copied into 
the array specified by name. The array should be large enough to hold at least three 
bytes. The meaning of the buffer parameters is driver-dependent. If a transmit buffer 
has previously been opened via a getxbuf call but has not yet been closed via a call to 
rtnxbuf, that buffer is reinitialized and remains the current buffer. 

put(primary) 
Put a byte into the current receive buffer. The value of the primary expression is 
inserted into the next available position, if any, in the current receive buffer. The 
returned value is zero if a byte was transferred, otherwise it is non-zero. 

rcv(/value) 
Receive a character. The process delays until a character is available in the input silo. 
The character is then moved to the location specified by Ivalue and the process is reac­
tivated. 

rsom(constant) 
Skip to the beginning of a new receive frame. The receiver hardware is cleared and the 
value of constant is stored as the receive sync character. This call is used to synchron­
ize the local receiver and remote transmitter when the process is ready to accept a new 
receive frame. 

rtnrbuf(name) 
Return a receive buffer. The original values of the buffer parameters for the current 
receive buffer are replaced with values from the array specified by name. The current 
receive buffer is then released to the driver. 

rtnxbuf(name) 
Return a transmit buffer. The original values of the buffer parameters tor the current 
transmit buffer are replaced with values from the array specitied by name. The current 
transmit buffer is then released to the driver. 

xeom(constant) 
Transmit end-ot-message. The value of the constant is transmitted, then the transmitter 
is shut down. 

xmt(primary) 
Transmit a character. The value ot the primary expression is transmitted over the com­
munications line. It the output silo is tull, the process waits until there is room in the 
silo. 

xsom(constant) 
Transmit start-ot-message. The transmitter is cleared, then the value of constant is 
transmitted six times. This call is used to synchronize the local transmitter and the 
remote receiver at the beginning of a frame. 

The following primitives are available with all versions ot the interpreter: 

dsrwait() 
Wait tor modem-ready and then set modem-ready mode. The process delays until the 
modem-ready signal from the modem interface is asserted. It the modem-ready signal 
subsequently drops, the process is terminated. It dsrwait is never invoked, the 
modem-ready signal is ignored. 

exit(primary) 
Terminate execution. The process is halted and the value of the primary expression·is 
passed to the driver. 

getcmd(name) 
Get a command from the driver. If a command has been received from the driver since 
the last call to getcmd. four bytes of command information are copied into the array 

January 19, 1984 Page 4 



VPMC(1C) VPMC(1C) 

specified by name and a value of true (non-zero) is returned. If no command is avail­
able, the returned value is false (zero). 

pause() 
Return control to the dispatcher. This primitive informs the dispatcher that the virtual 
process may be suspended until the next occurrence of an event that might affect the 
state of the protocol for this line. Examples of such events are: (1) completion of an 
output transfer, (2) completion of an input transfer, (3) timer expiration, and (4) a 
buffer-in command from the driver. In a multi-line implementation, the pause primitive 
allows the process for a given line to give up control to allow the processor to service 
another line. 

rtnrpt(name) 
Return a report to the driver. Four bytes from the array specified by name are 
transferred to the driver. The process delays until the transfer is complete. 

testop(primary) 
Test for odd parity. The returned value is true (non-zero) if the value of the primary 
expression has odd parity, otherwise the returned value is false (zero). 

timeout(primary) 
Schedule or cancel a timer interrupt. If the value of the primary expression is non-zero, 
the current values of the program counter and stack pOinter are saved and a timer is 
loaded with the value of primary. The system call then returns immediately with a value 
of false (zero) as the returned value. The timer is decremented each tenth of a second 
thereafter. If the timer is decremented to zero, the saved values of the program counter 
and stack pointer are restored and the system call returns with a value of true (non­
zero). The effect of the timer interrupt is to return control to the code immediately fol­
lowing the timeout system call, at which pOint a non-zero return value indicates that the 
timer has expired. The timeout system call with a non-zero argument is normally writ­
ten as the condition part of an if statement. A timeout system call with a zero argu­
ment value cancels all previous timeout requests, as does a return from the function in 
which the timeout system call was made. A timeout system call with a non-zero argu­
ment value overrides all previous timeout requests. The maximum permissible value 
for the argument is 255, which gives a ti meout period of 25.5 seconds. 

timer(primary) 
Start a timer or test for timer expiration. If the value of the primary is non-zero, a 
software timer is loaded with the value of the primary and a value of true (non-zero) is 
returned. The timer is decremented each tenth of a second thereafter until it reaches 
zero. If the value of the primary is zero, the returned value is the current value of the 
timer; this will be true (non-zero) if the value of the timer is currently non-zero, other­
wise false (zero). The timer used by this primitive is different from the timer used by 
the timeout primitive. 

trace(primary[,primary]) 
The values of the two primary expressions and the current value of the script location 
counter are passed to the driver. If the second primary is omitted, a zero is used 
instead. The process delays until the values have been accepted by the host computer. 

Constants 

PageS 

A constant is a decimal, octal, or hexadecimal integer, or a single character enclosed in single 
quotes. A token consisting of a string of digits is taken to be an octal integer if the first digit is a 
zero, otherwise the string is interpreted as a decimal integer. If a token begins with Ox or OX, 
the remainder of the token is interpreted as a hexadecimal integer. The hexadecimal digits 
include a through f or, equivalently, A through F. 

January 19, 1984 



VPMC(1C) VPMC(1C) 

Variables 
Variable names may be used without having been previously declared. All names are global. 
All values are treated as 8-bit unsigned integers. 

Arrays of contiguous storage may be allocated using the array declaration: 

array name[constant] 

where constant is a decimal integer. Elements of arrays can be referenced using constant sub­
scripts: 

name [constant] 

Indexing of arrays assumes that the first element has an index of zero. 

Names 
A name is a sequence of letters and digits; the first character must be a letter. Upper- and 
lower-case letters are considered to be distinct. Names longer than 31 characters are truncated 
to 31 characters. The underscore L) may be used within a name to improve readability, but is 
discarded by RATFOR. 

Preprocessor Commands 
If the -m option is omitted, comments, macro definitions, and file inclusion statements are writ­
ten as in C. Otherwise, the following rules apply: 

1. If the character #- appears in an input line, the remainder of the line is treated as a com­
ment. 

2. A statement of the form: 

define(name ,text) 

causes every subsequent appearance of name to be replaced by text. The defining text 
includes everything after the comma up to the balancing right parenthesis; multi-line defini­
tions are allowed. Macros may have arguments. Any occurrence of $n within the replace­
ment text for a macro will be replaced by the nth actual argument when the macro is 
invoked. 

3. A statement of the form: 

i nclude( file) 

inserts the contents of file in place of the include command. The contents of the included 
file is often a set of definitions. 

EXAMPLES 
These examples requi re the use of the ·m option. 

# The function defined below transmits a frame in transparent BISYNC. 
# A transmit buffer must be obtained with getxbuf before the function 
# is invoked. 
# 
# Define symbolic constants: 

# 
define(DLE,Ox10) 
define(ETB,Ox26) 
define(PAD,Oxff) 
define(STX,Ox02) 
define(SYNC,Ox32) 

# 
# Define a macro with an argument: 

# 
define(xmtcrc,{crc16($1); xmt($1 );}) 

January 19, 1984 Page 6 



VPMC(1C) 

FILES 

Page 7 

# 
# Declare an array: 

# 
array crc[2]; 

# 
# Define the function: 

# 
function xmtblk() 

crcloc(crc); 
xsom(SYNC); 
xmt(DLE); 
xmt(STX); 
while(get(byte)==O) { 

if(byte == OLE) 
xmt(DLE); 

xmtcrc(byte) ; 

end 

# 

} 
xmt(OLE); 
xmtcrc(ETB); 
xmt( crc[O)); 
xmt(crc[1)); 
xeom(PAO); 

# The following example illustrates the use of macros to simulate a 
# function call with arguments. 

# 
# The macro definition: 

# 
define(xmtctl, {c=$1 ;d=$2;xmtctI1 ( )}) 

# 
# The function definition: 

# 
function xmtctl1 ( ) 

end 

# 

xsom(SYNC); 
xmt(c); 
if(d!=Q) 

xmt(d); 
xeom(PAD); 

# Sample invocation: 

# 
function test() 

xmtctl(DLE,Ox70); 
end 

sas_temp* 
Itmp/sas_ta?? 
Itmp/sas_tb?? 
lusrlliblvpm/pass* 
lusr/lib/vpm/pl 

temporaries 
temporary 
temporary 
compiler phases 
compiler phase 

VPMC(1C) . 

January 19, 1984 



~ ~\~< .. 

" 

VPMC(1C) 

lusr/lib/vpm/vratfor 
Ilib/cpp 
lusr/bin/m4 

SEE ALSO 

compiler phase 
preprocessor 
preprocessor 

m4(1). ratfor(1). vpmstart(1C). vpm(4). 
C Reference Manual by D. M. Ritchie. 
RATFOR-A Preprocessor for a Rational Fortran by B. W. Kernighan. 
The M4 Macro Processor by B. W. Kernighan and D. M. Ritchie. 
Software Tools by B. W. Kernighan and P. J. Plauger (pp. 28-30). 

January 19. 1984 

VPMC(1C) . 

Page 8 



VPMSTART(1C) VPMSTART(1C) 

NAME 
vpmstart, vpmsnap, vpmtrace - load the ICP print VPM traces 

SYNOPSIS 
vpmstart device n [ filen ] 

vpmsnap 

vpmtrace 

DESCRIPTION 
Vpmstart writes filen (a.out by default) to the Intelligent Communications Processor (ICP) speci­
fied by device. 

The argument n isa magic number that the ICP driver saves to identify the running program. 
This number is checked when the VPM driver is opened to provide some assurance that the pro­
gram running in the ICP is the one expected. The magic number for VPM interpreters is 6. 
When filen has been written to the ICP its execution is begun. Filen may be any file executable 
by the ICP. 

If tilen is made using vpmc(1C), the VPM interpreter will be started by vpmstart. The VPM inter­
preter waits for a RUN command from the VPM driver before beginning execution of the protocol 
script. The RUN command is sent by the VPM driver when the corresponding VPM device file is 
opened. 

Vpmsnap opens the trace driver (minor device number 1) and reads and prints time-stamped 
event records until killed. 

Vpmtrace opens the trace driver (minor device number 0) and reads and prints event records 
until killed. 

SEE ALSO 
vpmc(1C), trace(4}, vpm(4). 

Page 1 . January 20, 1984 



VTIY(1) (NOS Only) VTTY(1) 

NAME 
vtty - connect to a remote host via NOS 

SYNOPSIS 
vtty host 

DESCRIPTION 

FILES 

Vtty establishes a cu(1) link between one UNIX system and another. Both systems must be run­
ning the Plexus Network Operating System (NOS). 

Vtty scans the file lusr/lib/noS/vtconf for the host name specified. and remembers the minor 
device number(s} associated with that host. It then searches the directory Idey for special files 
that have that minor device number. If it finds entries in Idey with the appropriate minor device 
number. it checks lusrlspool/uucp for lock files associated with these devices. and initiates a 
cu process with the first available device. 

All normal setup for cu and the virtual terminal facility of NOS must be done in order for this 
command to work. In particular, the file lusr/lib/uucp/L-deyices must be set up properly, and 
virtual terminal ports must be established in Idey and configured in lusr/lib/nos/vtconf. 

lusr/lib/noslvtconf 
lusrispool/uucp 
Idevr 

virtual terminal configuration file 
cu lock fi les here 
virtual terminal ports located here 

EXAMPLE 
Assuming the system pix is running NOS. and one or more virtual terminal ports have been 
established for pix in Idey, and lusr/lib/nos/vtconf knows about pix, you can connect to pix by 
typing 

$ vtty pix 

If successful. the message 

Connected 

appears. followed by the normal login prompt. 

DIAGNOSTICS 
Cannotopenldev 

BUGS 

Page 1 

The directory dey cannot be accessed. 

Cannot open lusrlliblnoslvtconf 
The file lusr/lib/nos/vtconf cannot be opened or does not exist. 

< name> not found in vtconf 
The host name name is not a configured host. 

No vt device available. Try again. 
All ports are in use. Try again later. 

There is no semaphore to prevent collisions between vtty requests. Hence the error message 
indicating lack of devices may be erroneous. 

June 18. 1984 



WAIT(1) 

NAME 
wait - await completion of process 

SYNOPSIS 
wait 

DESCRIPTION 

WAIT(1) . 

Wait until all processes started with & have completed, and report on abnormal terminations. 

Because the wait(2) system call must be executed in the parent process, the shell itself exe­
cutes wait, without creating a new process. 

SEE ALSO 
sh(1 ). 

BUGS 

Page 1 

Not all the processes of a 3- or more-stage pipeline are children of the shell, and thus can't be 
waited for. 

January 20, 1984 



WALL(1M) 

NAME 
wall - write to all users 

SYNOPSIS 
letclwall 

DESCRIPTION 

WALL(1M) 

Wall reads its standard input until an end-of-file. It then sends this message to all currently 
logged in users preceded by "Broadcast Message from ... ". It is used to warn all users. typically 
prior to shutting down the system. 

The sender should be super-user to override any protections the users may have invoked. 

ALES 
Idev/tty* 

SEE ALSO 
mesg(1). write(1). 

DIAGNOSTICS 
"Cannot send to ... " when the open on a user's tty file fails. 

Page 1 January 20. 1984 



WC(1) WC(1) 

NAME 
wc - word count 

SYNOPSIS 
we [ -Iwe ] [ names ] 

DESCRIPTION 

Page 1 

We counts lines, words and characters in the named files, or in the standard input if no names 
appear. It also keeps a total count for all named files. A word is a maximal string of characters 
delimited by spaces, tabs, or new-lines. 

The options I, w, and e may be used in any combination to specify that a subset of lines, words, 
and characters are to be reported. The default is -Iwe. 

When names are specified on the command line. they will be printed along with the counts. 

January 20. 1984 



WHAT(1) WHAT(1) 

NAME 
what - identify sees fi les 

SYNOPSIS 
what files 

DESCRIPTION 
What searches the given files for all occurrences of the pattern that get(1) substitutes for @(#) 
(this is 0(#) at this printing) and prints out what follows until the first ., >, new-line, \' or null 
character. For example, if the C program in file f.c contains 

char ident[] = "@(#)identification information"; 

and f.c is compiled to yield f.o and a.out. then the command 

what f.c f.o a.out 

will print 

f.c: 
identification information 

f.o: 
identification information 

a.out: 
identification information 

What is intended to be used in conjunction with the sees command get(1), which automatically 
inserts identifying information. but it can also be used where the information is inserted manu­
ally. 

SEE ALSO 
get(1), help(1). 

DIAGNOSTICS 

BUGS 

Page 1 

Use he/p(1) for explanations. 

It's possible that an unintended occurrence of the pattern G(:f/:) could be found just by chance. 
but this causes no harm in nearly all cases. 

January 20, 1984 



WHO(1) WHO(1) . 

NAME 
who - who is on the system 

SYNOPSIS 
who [ who-file ] [ am I ] 

DESCRIPTION 

FILES 

Who, without an argument, lists the login name, terminal name, and login time for each current 
UNIX user. 

Without an argument, who examines the letc/utmp file to obtain its information. If a file is 
given, that file is examined. Typically the given file will be lusr/adm/wtmp, which contains a 
record of all the logins since it was created. Then who lists logins, logouts, and crashes since 
the creation of the wtmp file. Each login is listed with user name, terminal name (with Idevl 
suppressed), and date and time. When an argument is given, logouts produce a similar line 
without a user name. Reboots produce a line with x in the place of the device name, and a fos­
sil time indicative of when the system went down. 

With two arguments, as in who am I (and also who are you), who tells who you are logged in 
as. 

letc/utmp 

SEE ALSO 
getuid(2), utmp(5). 

Page 1 January 20, 1984 



WHODO(1M) 

NAME 
whodo - who is doing what 

SYNOPSIS 
/etc/whodo 

DESCRIPTION 

WHODO(1M) . 

Whodo produces merged, reformatted, and dated output from the who(1) and ps(1) commands. 

SEE ALSO 
ps(1), who(1). 

Page 1 January 20, 1984 



WRITE(1) WRITE(1 ) 

NAME 
write - write to another user 

SYNOPSIS . 
write user [ tty ] 

DESCRIPTION 

FILES 

Write copies lines from your terminal to that of another user. When first called, it sends the 
message: 

Message from your -Iogname your-tty ... 

The recipient of the message should write back at this point. Communication continues until an 
end of file is read from the terminal or an interrupt is sent. At that point, write writes EOF on the 
other terminal and exits. 

If you want to write to a user who is logged in more than once, the tty argument may be used to 
indicate the appropriate terminal. 

Permission to write may be denied or granted by use of the mesg(1) command. At the outset, 
writing is allowed. Certain commands, in particular nroff(1) and pr(1), disallow messages in 
order to prevent messy output. 

If the character I is found at the beginning of a line, write calls the shell to execute the rest of 
the line as a command. 

The followi ng protocol is suggested for usi ng write: when you fi rst write to another user, wait for 
him or her to write back before starting to send. Each party should end each message with a 
distinctive signal «0) for "over" is conventional), indicating that the other may reply; (00) for 
"over and out" is suggested when conversation is to be terminated. 

letc/utmp 
Ibin/sh 

to find user 
to execute! 

SEE ALSO 
mail(1), mesg(1), who(1). 

Page 1 January 20, 1984 



XARGS(1 ) XARGS(1 ) 

r NAME 
xargs - construct argument list(s) and execute command 

SYNOPSIS 
xargs [flags] [ command [initial-arguments] 1 

DESCRIPTION 

Page 1 

Xargs combines the fixed initial-arguments with arguments read from standard input to execute 
the specified command one or more times. The number of arguments read for each command 
invocation and the manner in which they are combined are determined by the flags specified. 

Command, which may be a shell file, is searched for, using one's SPATH. If command is omit­
ted, /bin/echo is used. 

Arguments read in from standard input are defined to be contiguous strings of characters delim­
ited by one or more blanks, tabs, or new-lines; empty lines are always discarded. Blanks and 
tabs may be embedded as part of an argument if escaped or quoted: Characters enclosed in 
quotes (single or double) are taken literally, and the delimiting quotes are removed. Outside of 
quoted strings a backs lash (\) will escape the next character. 

Each argument list is constructed starting with the initial-arguments, followed by some number 
of arguments read from standard input (Exception: see -i flag). Flags -i, -I, and -n determine 
how arguments are selected for each command invocation. When none of these flags are 
coded, the initial-arguments are followed by arguments read continuously from standard input 
until an internal buffer is full, and then command is executed with the accumulated args. This 
process is repeated until there are no more args. When there are flag conflicts (e.g., -I vs. -n), 
the last flag has precedence. Flag values are: 

-Inumber 

-ireplstr 

-nnumber 

-t 

-p 

Command is executed for each non-empty number lines of arguments 
from standard input. The last invocation of command will be with fewer 
lines of arguments if fewer than number remain. A line is considered to 
end with the first new-line unless the last character of the line is a blank 
or a tab; a trailing blank/tab signals continuation through the next non­
empty line. If number is omitted 1 is assumed. Option -x is forced. 

Insert mode: command is executed for each line from standard input, tak­
ing the entire line as a single arg, inserting it in initial-arguments for each 
occurrence of replstr. A maximum of 5 arguments in initial-arguments 
may each contain one or more instances of replstr. Blanks and tabs at 
the beginning of each line are thrown away. Constructed arguments may 
not grow larger than 255 characters, and option -x is also forced. {} is 
assumed for replstr if not specified. 

Execute command using as many standard input arguments as possible, 
up to number arguments maximum. Fewer arguments will be used if 
their total size is greater than size characters, and for the last invocation 
if there are fewer than number arguments remaining. If option -x is also 
coded, each number arguments must fit in the size limitation, else xargs 
terminates execution. 

Trace mode: The command and each constructed argument list are 
echoed to file descriptor 2 just prior to their execution. 

Prompt mode: The user is asked whether to execute command each 
invocation. Trace mode (-t) is turned on to print the command instance to 
be executed, followed by a ? .. prompt. A reply of y (optionally followed 
by anything) will execute the command; anything else, including just a 
carriage return, skips that particular invocation of command~ 

January 20, 1984 



XARGS(1) 

-x 

-ssize 

-eeotstr 

XARGS(1) . 

Causes xargs to terminate if any argument list would be greater than size 
characters; -x is forced by the options -i and -I. When neither of the 
options -i, -I, or -n are coded, the total length of all arguments must be 
within the size limit. 

The maximum total size of each argument list is set to size characters; 
size must be a positive integer less than or equal to 470. If -s is not 
coded, 470 is taken as the default. Note that the character count for size 
includes one extra character for each argument and the count of charac- . 
ters in the command name. 

Eotstr is taken as the logical end-of-file string. Underbar (_) is assumed 
for the logical EOF string if -e is not coded. -e with no eotstr coded turns 
off the logical EOF string capability (underbar is taken literally). Xargs 
reads standard input until either end-of-file or the logical EOF string is 
encountered. 

Xargs will terminate if either it receives a return code of -1 from, or if it cannot execute, com­
mand. When command is a shell program, it should explicitly exit (see sh(1)) with an appropri­
ate value to avoid accidentally returning with -1. 

EXAMPLES 
The following will move all files from directory $1 to directory $2, and echo each move command 
just before doing it: 

Is $1 I xargs -i -t mv $1i{} $2i{} 

The following will combine the output of the parenthesized commands onto one line, which is 
then echoed to the end of fi Ie log: 

(Iogname; date; echo $0 $*) I xargs > >Iog 

The user is asked which files in the current directory are to be archived and archives them into 
arch (1.) one at a time, or (2.) many at a time. 

1. Is I xargs -p -I ar r arch 
2. Is I xargs -p -I I xargs ar r arch 

The following will execute diff(1) with successive pairs of arguments originally typed as shell 
arguments: 

echo $* I xargs -n2 diff 

DIAGNOSTICS 
Self explanatory. 

January 20, 1984 Page 2 

~ 
I 



XREF{1 ) 

NAME 
xref - cross reference for C programs 

SYNOPSIS 
xref [ file ... ] 

DESCRIPTION 

XREF(1 ) 

Xref reads the named files or the standard input if no file is specified and prints a cross refer­
ence consisting of lines of the form 

identifier file-name line-numbers ... 

Function definition is indicated by a plus sign (+) preceding the line number. 

SEE ALSO 
cref(1 ). 

Page 1 January 20, 1984 



XSTR(1) (Plexus) XSTR(1) 

NAME 
xstr - extract strings from C programs to implement shared strings 

SYNOPSIS 
lusr/plxlxstr [ -c ] [ - ] [ fi Ie ] 

DESCRIPTION 

FilES 

NOTES 

Xstr maintains a file strings into which strings in component parts of a large program are 
hashed. These strings are replaced with references to this common area. This serves to imple­
ment shared constant strings, most useful if they are also read-only. 

The command 

xstr -c name 

will extract the strings from the C source in name, replacing string references by expressions of 
the form (&xstr[number)) for some number. An approporiate declaration of xstr is prepended to 
the file. The resulting C text is placed in the file x.c, to then be compiled. The strings from this 
file are placed in the strings data base if they are not there already. Repeated strings and 
strings which are suffices of existing strings do not cause changes to the data base. 

After all components of a large program have been compiled a file xs.c declaring the common 
xstr space can be created by a command of the form 

xstr 

This xs.c file should then be compiled and loaded with the rest of the program. If possible, the 
array can be made read-only (shared) saving space and swap overhead. 

Xstr can also be used on a single file. A command 

xstr name 

creates files x.c and xs.c as before, without using or affecting any strings file in the same direc­
tory. 

It may be useful to run xstr after the C preprocessor if any macro definitions yield strings or if 
there is conditional code which contains strings which may not, in fact, be needed. Xstr reads 
from its standard input when the argument '-' is given. An appropriate command sequence for 
running xstr after the C preprocessor is: 

cc -E name.c I xstr -c -
cc -c x.c 
mv x.o name.o 

Xstr does not touch the file strings unless new items are added, thus make can avoid remaking 
xs.o unless truly necessary. 

strings 
x.c 
xs.c 
/tmp/xs* 

Data base of stri ngs 
Massaged C source 
C source for definition of array 'xstr' 
Temp file when 'xstr name' doesn't touch strings 

This command is based on a similar one from the University of California at Berkeley. 

SEE ALSO 
mkstr(1) 

BUGS 

Page 1 

If a string is a suffix of another string in the data base, but the shorter string is seen first by xstr 
both strings will be placed in the data base, when just placing the longer one there will do. 

January 20, 1984 

-~ 



YACC(1 ) YACC(1) . 

NAME 
yacc - yet another compiler-compiler 

SYNOPSIS 
yacc [ -vd ] grammar 

DESCRIPTION 

FILES 

Yacc converts a context-free grammar into a set of tables for a simple automaton which exe­
cutes an LR(1) parsing algorithm. The grammar may be ambiguous; specified precedence rules 
are used to break ambiguities. 

The output file, y.tab.c, must be compiled by the C compiler to produce a program yyparse. 
This program must be loaded with the lexical analyzer program, yylex, as well as main and yyer­
ror, an error handling routine. These routines must be supplied by the user; lex(1) is useful for 
creating lexical analyzers usable by yacc. A typical load line is the following 

cc y.tab.c -Iy 

If the -v flag is given, the file y.output is prepared, which contains a description of the parsing 
tables and a report on conflicts generated by ambiguities in the grammar. 

If the -d flag is used, the file y.tab.h is generated with the /ldefine statements that associate 
the yacc-assigned "token codes" with the user-declared "token names". This allows source 
files other than y.tab.c to access the token codes. 

y.output 
y.tab.c 
y.tab.h defines for token names 
yacc.tmp, yacc.acts temporary files 
/usrilibiyaccpar parser prototype for C programs 
/usr/lib/liby.a yacc library 

SEE ALSO 
lex(1 ). 
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974. 
YACC - Yet Another Compiler Compiler by S. C. Johnson. 

DIAGNOSTICS 

BUGS 

Page 1 

The number of reduce-reduce and shift-reduce conflicts is reported on the standard output; a 
more detailed report is found in the y.output file. Similarly, if some rules are not reachable from 
the start symbol, this is also reported. 

Because file names are fixed. at most one yacc process can be active in a given directory at a 
time. 

January 20. 1984 



"t.. 


	Introduction
	Contents
	Permuted Index
	(1) Commands

