Plexus Sys3 UNIX Programmer’s Manual -- vol 2A

98-05036.5 Rev A September 24, 1984

IPLEXIUS

N

PLIEXIUS pgammers Manua

Plexus Sys3 UNIX Programmer’s Manual -- vol 2A

98-05036.5 Rev A September 24, 1984

PLEXUS COMPUTERS, INC.

3833 North First St.
San Jose, CA 95134

408/943-9433

Copyright 1984
Plexus Computers, Inc., San Jose, CA

All rights reserved.

No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval
system, or translated into any language, in any
form or by any means, without the prior written
consent of Plexus Computers, Inc.

The information contained herein is subject to
change without notice. Therefore, Plexus
Computers, Inc. assumes no responsibility for the
accuracy of the information presented in this
document beyond its current release date.

Printed in the United States of America

Programmer’s Manual for UNIX* System il
Volume 2 - Supplementary Documents

January 1983

This volume contains documents that supplement the information contained in the Plexus Sys3
UNIX Programmer’'s Manual - vol 1. The documents are grouped roughly into the areas of
General Works, Basics, Document Preparation Tools, Programming and Language Tools, and
System Administration and Maintenance Tools. Further general information may be found in the
July - August 1978 special issue of "The Bell System Technical Journal® on the UNIX Time
Sharing System.

These documents contain occasional localisms, typically references to other operating systems
like GCOS and IBM. In all cases, such references may be safely ignored by users of UNIX
systems.

" UNIX is a trademark of AT&T Bell Laboratories.

Plexus Sys3 UNIX Programmer’'s Manual -- vol 2A

PREFACE

This manual contains a collection of documents that describe specific aspects of the UNIX*
operating system. These include basic descriptions of the operating system, document
preparation tools and programming and language tools.

Additional documents describing programming, language, administrative and maintenance tools
are collected in the Plexus Sys3 UNIX Programmer’'s Manual -- vol 2B (Plexus publication
number 98-05037).

Both these volumes (2A and 2B) should be used as supplementary documents for the Plexus
Sys3 UNIX Programmer’s Manual -- vol 1A (Plexus publication number 98-05045) and Plexus
Sys3 UNIX Programmer’s Manual -- vol 1B (Plexus publication number 98-05046). the basic
reference manual for the operating system.

Comments
Please address all comments concerning this manual to:

Plexus Computers, Inc.
Technical Publications Dept.
2230 Martin Ave.

Santa Clara, CA 95050
408/988-1755

Revision History
The second edition (#98-05036.2) contained a new Annotated Table of Contents.

The third edition (#98-05036.3) contained a new document, the A68 Assembler Reference
Manual.

For this edition (#98-05036.4), several documents have been re-typeset.

“ UNIX is a trademark of AT&T Bell Laboratories. Plexus Computers, Inc. is licensed to distribute UNIX under the
authority of AT&T.

(J

ANNOTATED TABLE OF CONTENTS

General Works.

1.

Overview

o Summary of UNIX System .

2. UNIX Time-Sharing System

o The UNIX Time-Sharing System.
D. M. Ritchie and K. Thompson.
An overview discussing the nature and implementation of the
file system and of the user command interface.

Getting Started.

3.

Roadmap

o UNIX/TS Documentation Road Map.
G. A. Snyder and J. R. Mashey.
An outline of important documents and information sources for
new users.

UNIX for Beginners

o UNIX for Beginners - Second Edition.
B. W. Kernighan.
An introduction for the most basic use of the system.

Editor

o A Tutorial Introduction to the UNIX Text Editor.
B. W. Kernighan.
An easy way to get started with the text editor.

« Advanced Editing on UNIX.
B. W. Kernighan.
How secretaries, typists and programmers can make effective
use of the UNIX facilities for preparing and editing text.

Shell

o An Introduction to the UNIX Shell.
S. R. Bourne.
An introduction to the use and capabilities of the command
interpreter and programming language, the shell.

Document Preparation.
7. NROFF TROFF

o NROFF/TROFF User's Manual.
J. F. Ossanna.
A compact reference guide to the basic text formatting
programs.

o A TROFF Tutorial.
B. W. Kernighan.
A beginner's guide to the use of TROFF for phototypsetting
(and, by implication, NROFF).

8. Text Macro Packages

o PWB'MM - Programmer’'s Workbench Memorandum Macros.
D. W. Smith and J. R. Mashey.
User's guide and reference manual for PWB. MM, a general
purpose package of text formatting macros for use with
NROFF and TROFF.

9. TBL

e Tbl - A Program to Format Tables.
Preprocessor for TROFF or NROFF that makes even very
complex tables easy to specify.

10. EQN

o Typesetting Mathematics - User's Guide (Second Edition).
B. W. Kernighan and L. L. Cherry.
Describes the EQN and NEQN preprocessors for TROFF and
NROFF, respectively. They allow inline typesetting complex
formulae, equations, arrays, etc., displayed in a relatively
simple command language.

o A System for Typesetting Mathematics.
B. W. Kernighan and L. L. Cherry.
Describes EQN, an easy-to-learn language for doing high-
quality mathematical typesetting.

Programming.
11. UNIX Programming

o UNIX Programming - Second Edition.
B. W. Kernighan and D. M. Ritchie.
Describes how to write programs that interface to the
operating system, either directly or through the standard I/O
library.

12. C Language

o The C Environment of UNIX TS.
A. R. Koenig.
Describes the differences users may encounter when changing
to UNIX TS from the various so-called "UNIX Sixth Edition" C
compilers.

13.

14.

15.

« The C Programming Language - Reference Manual.

D. M. Ritchie.
Official statement of the syntax and semantics of C. Should
be supplemented by "The C Programming Language", which
contains a tutorial introduction and many examples. See
Reference [1] below.
Lint
« Lint, a C Program Checker.
S. C. Johnson.
Checks C programs for syntax errors, type violations,
portability problems, and a variety of probable errors.
Make
o Make - A Program for Maintaining Computer Programs.
S. I. Feldman.
Indispensable tool for making sure that alrge programs are
properly compiled with minimum effort.
« An Augmented Version of Make.
E. G. Bradford.
Describes an augmented version of the make command.
Debuggers

o A Tutorial Introduction to ADB.
J. F. Maranzano and S. R. Bourne.
How to use ADB for debugging crashed systems and/or
programs. Explains the various formatting options, techniques
for debugging.

Supporting Tools and Languages.

16.

17.

18.

Assembler
o UNIX Z8B000 Assembler Manual.
Craig C. Forney.
Describes the usage and input syntax of the UNIX Z8000
assembler (as).
AWK
« Awk - A Pattern Scanning and Processing Language (Second Edition).
A. V. Aho, B. W. Kernighan, and P. J. Weinberger.
Makes it easy to specify many data transformation and
selection operations.
Calculators

o BC - An Arbitrary Precision Desk-Calculator Language.
L. L. Cherry and R. Morris.
A front end for DC (below) that provides infix notation, control
flow, and built-in functions.

o DC - An Interactive Desk Calculator.
L. L. Cherry and R. Morris.
Interactive desk calculator program that does arbitrary-
precision integer arithmetic.

19. Fortran

« A Portable Fortran 77 Compiler.
S. I. Feldman and P. J. Weinberger.
Describes language compiled, interfaces between procedures,
and file formats assumed by the I/O system. An appendix
describes the Fortran 77 language.

o RATFOR - A Preprocessor for a Rational Fortran.

B. W. Kernighan. .
Converts a Fortran with C-like control structures and
cosmetics into real, ugly Fortran.

20. Graphics

o PWB/Graphics Overview.
A. R. Feuer.
Tells how to use a collection of numerical and graphical
commands available to construct and edit numerical data plots
and hierarchy charts. Best when with a Tektronix 4041
terminal.

« Administrative Information for PWB/Graphics.
R. L. Chen and D. E. Pinkston. :
A reference guide for system administrators who are using or
establishing a PWB/Graphics facility. It contains information
about directory structure, installation, hardware requirements,
etc., for PWB/Graphics.

o A Tutorial Introduction to the Graphical Editor.
A. R. Feuer.
How to make neat pictures and drawings with PWB.Graphics
and a Tektronix 4041 terminal.

21. LEX

o Lex - A Lexical Analyzer Generator.
M. E. Lesk and E. Schmidt.
Creates a recognizer for a set of regular expressions; each
regular expression can be followed by arbitrary C code which
is executed when the regular expression is found.

22. M4

o The M4 Macro Processor.
B. W. Kernighan and D. M. Ritchie.
A macro processor useful as a front end for C, Ratfor, Cobol,
etc.

23. RJE

o UNIX Remote Job Entry User’s Guide.
A. L. Sabsevitz and K. A. Kelleman.
The beginner's "how to" guide for sending a job to iBM or
UNIVAC from UNIX via the Remote Job Entry facility.

« UNIX Remote Job Entry Administrator's Guide.
M. J. Fitton.
A system administrator's guide for setting up and managing a
Remote Job Entry facility.

24. SED
o SED - A Non-interactive Text Editor.
L. E. McMahon.
A variant of the text editor for processing large inputs and
stream editing.
25. SCCS

o Source Code Control System User's Guide.
L. E. Bonnani and C. A. Salemi.
Describes a collection of commands that controls retrieval of
particular versions of files, administers changes to them,
controls updating privileges to them, and records historical
data about the changes.

o Function and Use of an SCCS Interface Program.

L. E. Bonnani.
Describes the use of a Source Code Control System Interface
Program to allow more than one user to use SCCS commands
upon the same set of files.
26. UUCP

o A Dial-Up Network of UNIX Systems.
D. A. Nowitz and M. E. Lesk.
Describes a design for implementing a dial-up network of
systems for software transmission and distribution.

o UUCP Implementation Description.

D. A. Nowitz.
Gives a detailed implementation description of UUCP for use
by an administrator/installer of a UNIX system.
27. YACC
o YACC: Yet Another Compiler-Compiler.
S. C. Johnson.
Converts a BNF specification of a language and semantic
actions written in C into a compiler for the language.
28. VPM

« Release 1.0 of the UNIX Virtual Protocol Machine.
P. F. Long and C. Mee, lIl.
Describes the initial release of the Virtual Protocol Machine, a
new UNIX synchronous communication subsystem.

o Release 2.0 of the UNIX Virtual Protocol Machine.
P. F. Long and C. Mee, lIi.

Describes the second release of the UNIX Virtual Protocol
Machine.

Administration, Maintenance, and Implementation

29.

30.

31.

32.

33.

34.

35.

36.

Setting Up

« Setting Up UNIX.
R. C. Haight, T. J. Kowalski, M. J. Petrella, and L. A. Wehr.
Procedures used to install UNIX System |ll and the steps
necessary to regenerate the software.

Administrative Advice
« Administrative Advice for UNIX/TS.

R. C. Haight.
Hints for getting UNIX up, getting it going, and keeping it
going, plus some good stuff about hardware.
Accounting
« The PWBJ/UNIX Accounting System.
H. S. McCreary.
Describes the structure, implementation, and management of
the UNIX Accounting System.
FSCK
o FSCK - The UNIXITS File System Check Program.
T. J. Kowalski.
How to check and fix the file systems.
UNIX 1/0
o The UNIX I/O System.
D. M. Ritchie.

Provides guidance to writers of device driver routines, and is
oriented more toward describing the environment and nature
of device drivers.

UNIX Implementation
« UNIX Implementation.

D. M. Ritchie.
How the system actually works inside.
C Compiler
« A Tour through the Portable C Compiler.
S. C. Johnson.
How the portable C compiler works inside.
Security

o Password Security: A Case History.
R. Morris and K. Thompson.
How the bad guys used to be able to break the password
algorithm, and why they can't now, at least not so easily.

« On the Security of UNIX.
D. M. Ritchie.
Hints on how to break UNIX, and how to avoid doing so.

References.

1. The C Programming Language, B. W. Kernighan and D. M. Ritchie, (Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978).

SUMMARY
OF
UNIX™ System III

WESTERN ELECTRIC COMPANY, INCORPORATED
GREENSBORO, NORTH CAROLINA

Copyright © 1981 Western Electric Company, 1n¢0rporated

N
vL%
'

CONTENTS

. INTRODUCTION

1.1 New Features and Enhancements

. PRODUCT OVERVIEW OF UNIX SYSTEM III

2.1 The File System .

2.2 The Command Language .
2.3 Document Preparation and Text Processmg .
2.4 Remote Job Entry . .

2.5 Source Code Control System .

2.6 The Virtual Protocol Machine

2.7 File transfer between CPU’s under UNIX System III (UUCP)

2.8 Resource Accounting in UNIX System III
2.9 The System Activity Package .
2.10 Graphics Facilities

3. COMPUTER CONFIGURATIONS FOR UNIX SYSTEM III .
. SOFTWARE

4.1 Basic Software

4.2 Languages .

4.3 Text Processing

4.4 Information Handling

4.5 Other Utility Programs .

4.6 Graphics . .

4.7 Source Code Control System (SCCS)
4.8 Remote Job Entry (RJE) . .

4.9 Virtual Protocol Machine (VPM)

4.10 Noveltnes Games, and Things That Didn’ t Flt Anywhere Else

Bsooeo A LNV UNWNEEAPEEUWWW N -

NN
A

NN
00 92

NN
[- -2~ -]

)

1. INTRODUCTION

UNIX* is a trademark for a family of computer time-sharing operating systems developed at
Bell Laboratories and licensed by Western Electric. The first such operating system was
conceived in 1969 when Bell Laboratories scientists set about to create a computing
environment which was both comfortable to use and effective in their work. The result is an
operating system of unusual simplicity, generality, and, above all intelligibility. The numerous
software tools and utilities in UNIX Systems coupled with a simple user interface have
propelled these systems to the forefront of popular operating systems in use both inside and
outside the Bell System. Today, within the Bell System, UNIX Systems are used in applications
involving office automation, electronic mail, document preparation, data access, data collection,

. networking, word processing and software development.

UNIX Systems are general-purpose, multi-user, interactive operating systems designed
specifically to make the designer’s, programmer’s and documenter’s computing environment
simple, efficient, flexible and productive. Features of UNIX Systems include:

o Hierarchical, tree-structured file system

o Flexible, easy-to-use command language that can be tailored to meet specific user needs
e Ability to execute sequential, ‘asynéhronous, and background processes

o Powerful Text Editors

e High degree of portability

e Flexible, robust document preparation and text processing systems

e Access to the facilities of other ("host" or "target”) computer systems, such as IBM MVS
° Sﬁpport of numerous programming languages, including: '

— C - a high-level programming language conducive 1o structured programming
— Fortran 77

— SNOBOL
— BS - An extension of Basic
— Assembler ,
e Symbolic debugging systems
e Various system programming tools (e.g., compiler-compilers)
o Sophisticated "desk calculator" packages
e Graphics facilities
o Source Code Control System
o Network communications facilities between CPU’s running under UNIX System II1
e Synchronous Communications subsystem
e Resource Accounting for UNIX System III

o System Activity Package for monitoring CPU and disk/tape utilization, etc.

* UNIX is a trademark of Bell Laboratories

e Virtual Protocol Machine

UNIX System III, implemented throughout the Bell System in 1980, combines the features of
UNIX Time-Sharing System, Seventh Edition and the PWB/UNIX system (Programmers
Workbench) and incorporates numerous enhancements and new capabilities. The rapid
growth in popularity of UNIX Systems in the office environment and the many new features
provided by UNIX System III have prompted Western Electric to license this new release.

1.1 New Features and Enhancements
Major new features and enhancements provided by UNIX System III are:

e Software Support for the DEC** KMC11 Communications Microprocessor, permitting the
downloading of many 1/0 functions from the main CPU:

— KMCI11/DZ11 Asynchronous Line Support, providing lower-overhead DMA processing
for the DEC DZ11 asynchronous multiplexor.

— A new multi-leaving IBM Remote Job Entry system with expanded utilities.

— The Virtual Protocol Machine (VPM), providing a new synchronous communications
interface for the implementation of link level protocols in a high level language.

@ Numerous New Terminal Control Options
e Synchronous Terminal Interface for Teletype Model 40/4 Synchronous Terminals

e A new special file type called a FIFO (First-In/First-Out). FIFOs behave like pipes in UNIX
Systems but have names and can be used to pass data between multiple, non-related
processes, implement semaphores, etc.

e Parallel Communications Link driver, providing high performance local networking of up to
16 CPU’s running under. UNIX System III through the DEC PCL11-B.

e A New Systems Activity Package repbrts‘ system statistics including CPU utilization, disk
and tape 1/0 activities, terminal device activity, buffer usage, system calls, etc.

e Enhanced C Compiler, Text Processing software, Source Code Control System and Graphics
capabilities.

Additionally, numerous enhancements to existing software tools, new tools, games, etc. are

included. '

** DEC is a trademark of Digital Equipment Corporation

2. PRODUCT OVERVIEW OF UNIX SYSTEM III
A synopsis of the major features of UNIX System III follows.
2.1 The File System

The file system of UNIX System III consists of a highly uniform set of directories and files
arranged in a tree-like hierarchical structure. Some of its features are:

e File systems are addressable to one billion bytes

e Simple and consistent naming conventions; name can be absolute, or relative to any
directory in the file system hierarchy.

e Mountable and de-mountable file systems and volumes
o File linking across directories
e Automatic file space allocation and de-allocation that is invisible to users

e Flexible directory and file protection modes; allows all combinations of "read", "write" and
"execute" access, independently for the owner of each file or directory, for a group of users,
and for all other users; protection modes can be set dynamically.

o Facilities for creating, accessing, moving and processing files, directories or sets of these in a
simple, uniform and natural way.

e Provides device-independence since each physical I/0 device, from interactive terminals to
main memory, is treated like a file, allowing uniform file and device 1/0.

2.2 The Command Language

- Communication with a CPU running under UNIX System III is normally carried out with the

aid of a program called "shell". The shell is both a command language interpreter and a
programming language that provides an interface to the operating system. As a command
language interpreter it reads lines typed by the user and interprets them as requests to execute
other programs. .

As a programming language the shell includes such features as:
¢ Control-flow primitives

o Parameter Passing

Variables and string substitution

Constructs such as "while", "if then else", "case” and "for"
e Two-way communication between shell commands

The shell can modify the environment in which commands run. Input and output can be
redirected to files and processes that communicate through "pipes” and semaphores can be
invoked. Commands are found by searching directories in the file system in a sequence that can
be defined by the user. Command lines can be read either from the terminal or from a file, thus
allowing command procedures to be stored for later use.

By utilizing the shell as a programming language, users of UNIX System IIl can eliminate a
great deal of the programming drudgery that often accompanies a project. Many manual
procedures can be quickly, inexpensively and conveniently automated. Because it is so easy to
create and use shell procedures, projects using UNIX System III can customize the general
environment into one tailored to its own requirements, organizational structure and
terminslogy.

2.3 Document Preparation and Text Processing

UNIX systems are renowned for their text processing and document preparation facilities.
Included are a powerful text editor, programmable text formatters that are robust and yet easy
to use, text processing macro packages which simplify the creation of letters, reports,
memoranda, books, etc., special processors for mathematical expressions and tabular material,
and numerous supporting utilities such as spelling and typographical error detectors. A variety
of output devices are supported, including phototypesetters, typewriter-like terminals, line
printers and dot-matrix printer-plotters. UNIX System III contains more than one hundred
enhancements to these facilities, improving their efficiency, flexibility and robustness.

2.4 Remote Job Entry

The Remote Job Entry (RJE) facility in UNIX System III provides for the submission and
retrieval of jobs by a remote computer running under UNIX System III from an IBM host
system. To the host system, such a remote system appears as an IBM System/360 remote
multi-leaving work station. At the request of a user of the remote system, RJE gathers the
jobstream to be sent to the host system and subsequently retrieves from the host the resulting
output, notifies the user of the output’s arrival and places it in a convenient file on the remote
system for perusal or optionally passes it as input to a program in UNIX System III to be
automatically executed. Additionally, an interface utility is provided to execute JES or HASP
commands on the host computer from the remote system.

This release contains a new, more efficient KMC-based, multi-leaving RJE system and also
provides a DQS-base RJE for upward compatibility.

2.5 Source Code Control System

The Source Code Control System (SCCS) in UNIX System III is an integrated set of commands
designed to aid software development projects or document preparation groups control changes
to source code or files of text (e.g. manuals). SCCS provides facilities for storing, updating, and
retrieving, by version number or date, all versions of source code modules or of a document,
and for recording who made the change, when it was made and why. SCCS is designed to solve
most of the source code and documentation control problems that projects encounter when
customer support, system testing and development are all proceeding simultaneously.

Some of the main characteristics of SCCS are:

e The exact source code or text, as it existed at any point of development or maintenance, can
be recreated at any later time. ‘

e All versions of a source module or document are stored together, so that common code or
text is stored only once.

e Versions of a source module or document can be protected from unauthorized changes.

- o Sufficient identifying information (module name, date, time, etc.) can be automatically
inserted into the source module or document, énabling one to identify the exact version of a
module given only the corresponding load module, memory dump or text.

UNIX System III includes several enhancements and new features for SCCS.
2.6 The Virtual Protocol Machine

The Virtual Protocol Machine (VPM) in UNIX System III is a general-purpose synchronous
communications interface that allows link-level protocols to be implemented in a high-level
language. The VPM software consists of a protocol compiler, a driver, an interpreter that
executes in the KMC11-B microprocessor, and several utility programs. Byte-oriented, half-
duplex synchronous (BISYNC) and bit-oriented, full-duplex protocols (e.g. HDLC, X.25) can
be implemented.

2.7 File transfer between CPU’s under UNIX System III (UUCP)

UUCP consists of a series of programs designed to permit communications between CPU’s
running under UNIX System III using either dial-up or hard-wired communication lines.
UUCP’s simple user interface provides for file transfers and remote command execution.
UUCP operates in batch mode; files are created in a spool directory for subsequent processing
by a UUCP daemon program, thus eliminating the need for tying up a user port while the
actual file transfer takes place.

2.8 Resource Accounting in UNIX System III

The Resource Accounting System in UNIX System III collects per-process resource utilization
data, records user connect time, monitors disk utilization and charges fees to individual users.
Report generators are provided for data reduction of the accounting data and generation of
summary files and reports.

2.9 The System Activity Package

A number of counters have been incorporated into UNIX System III that record various system
activities, including CPU utilization, disk and tape 1/0, buffer cache hit ratios, etc. Report
software depict this data in tabular and graphic formats. The System Activity Package is
particularly useful for system administrators to monitor performance of a CPU running under
UNIX System III, thus enabling them to configure their system for optimum throughput.

2.10 Graphics Facilities

UNIX System III includes non-interactive graphics facilities consisting of commands that
construct data plots, pie charts, bar charts, histograms, etc. An interactive graphical editor is
provided to construct, edit and display graphic images.

3. COMPUTER CONFIGURATIONS FOR UNIX SYSTEM III
UNIX System III is available for the following DEC processors:

PDP 11/23
"PDP 11/34
PDP 11/44
PDP 11/45
PDP 11/70
VAX 11/780

This wide range of processing price/performance coupled with the ease of porting software
developed on one computer to other computers with UNIX System III provides enormous
flexibility in planning a computing environment. UNIX System III can be tailored to meet the
needs of user communities ranging in size from one user up to 48 simultaneous users on a
single system. The cost per user hour of UNIX System III is significantly lower than that of
most other interactive computer systems. The processors and peripherals supported by UNIX
System III are depicted in Table 1. Each hardware configuration must include at least the
following:

e A processor with memory management
e Memory as specified in Table 1

A system disk
A magnetic tape drive (Except for the PDP 11/23)
e System clock

e System console

The following equipment is strongly recommended:

Floating-point hardware

Communications controller
Full-duplex 96 character ASCII terminals

Extra disk drive for system backup
e Synchronous communication interface for RJE

TABLE 1

Processors and Peripherals Supported by UNIX System 111

Processor PDP-11/23 | PDP-11/34 | PDP-11/45 | PDP-11/44 | PDP-11/70 | VAX-1 1/78(L|
Memory 256KB 256KB - 256KB .05-1MB 0.5-1MB 1-2MB
Floating Point: - FP11-A FP11-B - FP11-C FP780
Console Terminal:
LA36 S S S S S S
LA120 F F F F F F
Disk drives:
RLO1/2 (2 required) F F S S N -
RKOS5 (2 required) - o) 0 (0] - -
RPO3 - - 0 0 - -
RP04,05 - (0] (0) - o -
(UNIBUS) | (UNIBUS) | (UNIBUS) | (MASSBUS)
RP0O6 - S F - F F
(UNIBUS) | (UNIBUS) | (UNIBUS) (MASSBUS)
Fixed-head disks:
RF11 - - (0] - - -
RS03,4 - - N N N -
(UNIBUS) | (UNIBUS) | (MASSBUS)
Tape drives:
TUl0 - (0] (0] (0] - -
TUl6 - (0] (o] (0] (o] -
TE16 - F F F F F
TUd45 - - - - S S
Line printer:
LP11 (or equiv.)t - S S S S S
Asynch. interfaces: :
DLV1] S - - - -
DL11-E - S S S S -
Dzl11 - S S S S S
KMC11B/Dz11¢ - F F F F F
DH11 - (0] (o) (0] (0] -
Synch. interfaces:
KMC11B/DMC - F F F F F
DMCI11 - S S S S S
DU11 - (0] (0] (0] (0] -
DQs1IB - - (0] (o] (0] -
Auto Call Unit:
DN11AA/DA - S S S S S
Parallel interface:
DRVI1 S - - - -
DR11C - S S S S -
DRI11B - S S S S -
DA11B (use DMCs) - N N N N -
PCL11B - N N N N -
Max. Users 4 8 16-24 20-30 32-40 48+
Key: F — First choice.

S — Supported.

O — Driver provided, but device is obsolete.
N — Driver provided, but device is not recommended.

— — No driver - not supported.
+ Use a printer on an RS232 interface.
$ 4 DZ11s (32 lines) per KMC.

October 1981

4. SOFTWARE

Most of the programs available as commands in UNIX Systems are listed. Source code and
printed manuals are distributed for all of the listed software except games. Almost all of the
code is written in C. Commands are self-contained and do not require extra setup information,
unless specifically noted as "interactive." Interactive programs can be made to run from a
prepared script simply by redirecting input. Most programs intended for interactive use (e.g.,
the editor) allow for an escape to command level (the Shell). Most file processing commands
can also go from standard input to standard output ("filters”). The piping facility of the Shell
may be used to connect such filters directly to the input or output of other programs.

4.1 Basic Software

This includes the time-sharing operating system with utilities, a machine language assembler
and a compiler for the programming language C - enough software to write and run new
applications and to maintain or modify UNIX System III itself.

4.1.1 Operating System

UNIX The basic resident code on which everything else depends. Supports the
: system calls, and maintains the file system. A general description of the
design philosophy and system facilities in UNIX Systems appeared in the
Communications of the ACM, July, 1974. A more extensive survey is in
the Bell System Technical Journal for July-August 1978. Capabilities

include:

e Reentrant code for user processes.
e Separate instruction and data spaces.

e "Group" access permissions for cooperative projects, with overlapping
memberships.

e Alarm-clock timeouts.

e Timer-interrupt sampling and interprocess monitoring for debugging
and measurement.

e Multiplexed I/0 for machine-to-machine communication.

DEVICES ‘ All 1/0 is logically synchronous. I/0O devices are simply files in the file
: system. Normally, invisible buffering makes all physical record structure
and device characteristics transparent and exploits the hardware’s ability
to do overlapped 1/0. Unbuffered physical record 1/0 is available for
unusual applications. Drivers for these devices are available; others can
be easily written:

Asynchronous interfaces: DZ11, KMC11B/DZ11, DH11, DL11.
Support for most common ASCII terminais.

Synchronous interface: KMC11B/DMCI11, DMC11, DQS11, DU11.
Automatic calling unit interface: DN11.

Parallel interface: DR11C/B, PCL11B.

Line printer: L?ll, or equivalent.

Magnetic tape: TU10, TU16, TU45, TU77, or equivalent.

DECtape: TCl11.

BOOT
CONFIG

o Fixed head disk: RS11, RS03 and RS04, or equivalent.

e Pack type disk: RP03, RP04, RP0S, RP06, or equivalent; minimum-
latency seek scheduling.

e Cartridge-type disk: RLO1, RKOS5, one or more physical devices per
logical device.

o Null device.

o Physical memory of PDP-11, or mapped memory in resident system.

e Phototypesetter: Graphic Systems System/1 through DR11C.
Procedures to get UNIX System III started.

Tailor device-dependent system code to hardware configuration. As
distributed, UNIX System III can be brought up directly on any
acceptable CPU with any acceptable disk, any sufficient amount of core,
and either clock. Other changes, such as optimal assignment of
directories to devices, inclusion of floating point simulator, or installation
of device names in file system, can then be made at leisure.

4.1.2 User Access Control

LOGIN

PASSWD

NEWGRP

Sign on as a new user.

e Verify password and establish user’s individual and group (project)
identity.

Adapt to characteristics of terminal.

Establish working directory.

Announce presence of mail (from MAIL).

Publish message of the day.

Execute user-specified profile.

Start command interpreter or other initial program.
Change a password. '

e User can change his own password.

o Passwords are kept encrypted for security.

Change working group (project). Protects against unauthorized changes
to projects.

4.1.3 Terminal Handling

TAB
STTY

Set tab stops appropriately for specified terminal type.

Set up options for optimal control of a terminal. In so far as they are
deducible from the input, these options are set automatically by LOGIN.

e Half vs. full duplex.

o Carriage return + line feed vs. newline.
e Interpretation of tabs.

o Parity.

e Mapping of upper case to lower.

-10 -

e Raw vs. edited input.
e Delays for tabs, newlines and carriage returns. '

4.1.4 File Manipulation

CAT

Cp

PR

LPR
CMP
TAIL

CSPLIT
SPLIT

DD

SUM
PACK
UNPACK
PCAT
CPIO
PASTE

CUT
REFORM

TOUCH

Concatenate one or more files onto standard output. Particularly used for
unadorned printing, for inserting data into a pipeline, and for buffering
output that comes in dribs and drabs. Works on any file regardless of
contents.

Copy one file to another, or a set of files to a directory. Works on any
file regardless of contents.

Print files with title, date, and page number on every page.
e Multicolumn output.

- o Parallel column merge of several files.

Off-line print. Spools 'arbitrary files to the line printer.
Compare two files and report if different.
Print last n lines of input.
e May print last n characters, or from n lines or characters to end.

Split a large file into more manageable pieces. Occasionally necessary for
editing (ED).

Physical file format translator, for exchanging data with foreign systems,
especially IBM 370’s.

Sum the words of a file.

Store files in a compressed form.

Restore compressed files to original form.

Does for packed files what CAT does for ordinary ﬁlgs.
Copy file archives in and out.

Merge corresponding lines of several files or subsequent lines of a single
file.

Cut out selected fields of each line of a file.
Reformat text files.

e Rearrangment of tab characters.

e Trim trailing blanks.

e Truncate lines.

e Prepend blank lines.

Update access and modification times of a file.

4.1.5 Manipulation of Directories and File Names

RM

Remove a file. Only the name goes away if any other names are linked
to the file.

LN
LINK
UNLINK
CHMOD
CHOWN
CHGRP
CHROOT
MKDIR
RMDIR
MVDIR
CD
UMASK
FIND

-11-

e Step through a diréctory deleting files interactively.
» Delete entire directory hierarchies.

"Link" another name (alias) to an existing file.

Exercise link and unlink system calls.

Move a file or files. Used for renaming files.
Change permissions on one or more files. Executable by files’ owner.
Change owner of one or more files.

Change group (project) to which a file belongs.
Change root directory for a command.

Make a new directory.

Remove a directory.

Move a directory.

Change working directoi'y.

Set file-creation mode mask.

Prowl the directory hierarchy finding every file that meets specified
criteria.

e Criteria include:

name matches a given pattern,

creation date in given range,

date of last use in given range,

given permissions,

given owner,

given special file characteristics,

boolean combinations of above.
e Any directory may be considered to be the root.
o Perform specified command on each file found.

4.1.6 Running of Programs

SH

The Shell, or command language interpreter.
e Supply arguments to and run any executable program.
e Redirect standard input, standard output, and standard error files.

e Pipes: simultaneous execution with output of one process connected
to the input of another.

e Compose compound commands using:
if .. .then . .. else,

case switches,

RSH
ENV
TEST

EXPR

WAIT
LINE
ECHO

SLEEP
NOHUP
NICE
KILL
CRON

TEE

-12-

- while loops,
for loops over lists,
break, continue and exit,
parentheses for grouping.
¢ Initiate backgound processes.

o Perform Shell programs, i.e., command scripis ‘with substitutable
arguments.

e Construct argument lists from all file names satisfying specified
patterns.

e Take special action on traps and intefrupts.

e User-settable search path for ﬁnding commands.

e Executes user-settable profile upon login.

° Optionaliy announces presence of mail as it arrives.

e Provides variables and parameters with default setting.
Restricted version of the shell. Allows limited command execution.
Set an environment for command execution.

Tests for use in Shell conditionals.

e String comparison.

e File nature and accessibility.

e Boolean combinations of the above.

String computations for calculating command arguments.
¢ Integer arithmetic.

e Pattern matching. .
Wait for termination of asynchronously running processes.
Read a line from termina_l, for interactive Shell procedure.

Print remainder of command line. Useful for diagnostics or prompts in
Shell programs, or for inserting data into a pipeline.

Suspend execution for a specified time.
Run a command immune to hanging up the terminal.
Run a command in low (or high) priority.
Terminate named processes.
Schedule i'egular actions at specified times.

e Actions are arbitrary programs.

e Times are conjunctions of month, day of month, day of week, hour
and minute. Ranges are specifiable for each.

Pass data between processes and divert a copy into one or more files.

- 4.1.7 Status Inquiries
LS

FILE

DATE

DF
DU
PS

WHO

WHODO

ID

IOSTAT
TTY

PWD
LOGNAME
UNAME
SYSDEF
DEVNAM

-13-

List the names of one, several, or all files in one or more directories.
o Alphabetic or temporal sorting, up or down.

e Optional information: size, owner, group, date last modified, date last
accessed, permissions, i-node number.

Try to determine what kind of information is in a file by consulting the
file system index and by reading the file itself.

Print today’s date and time. Has considerable knowledge of calendric and
horological peculiarities.

e May set date and time.
Report amount of free space on file system devices.
Print a summary of total space occupied by all files in a hierarchy.
Report on active processes.

e List your own or everybody’s processes.

e Tell what commands are being executed.

o Optional status information: state and scheduling info, priority,
attached terminal, what it’s waiting for, size.

Tell who's on the system.
e List of presently logged users, ports and times on.
e Optional history of all logins and logouts.

Tell who’s doing what on the system. Prints merged, reformatted, and
dated output from the WHO and PS commands.

Print user and group IDs and names.

Print statistics about system I/O activity.

Print name of your terminal.

Print name of your working directory.

Print login name.

Print the current system name of UNIX System III.

Extract configuration information from the operating system file.

Identify the special file associated with a mounted file system.

4.1.8 Backup and Maintenance

MOUNT

UMOUNT

SETMNT

MKFS

Attach a device containing a file system to the tree of directories.
Protects against nonsense arrangements.

Remove the file system contained on a device from the tree of
directories. Protects against removing a busy device.

‘Create the "mnttab” table used by the MOUNT and UNMOUNT

commands.

Make a new file system on a device.

-14 -

MKNOD Make an i-node (file system entry) for a special file. Special files are -
' physical devices, virtual devices, physical memory, etc.
TP _
TAR Manage file archives on magnetic tape of DECtape. TAR is newer.
e Collect files into an archive.
e Update DECtape archive by date.
e Replace or delete DECtape files.
e Print table of contents.
e Retrieve from archive.
DUMP Dump the file system stored on a specified device, selectively by date, or
indiscriminately.
RESTOR Restore a dumped file system, or selectively retrieve parts thereof.
SU Temporarily become the super user with all the rights and privileges
thereof. Requires a password.
FSCK Audit and interactively repair inconsistent conditions for file systems.
e For consistent file systenis, print gross statistics; number of files,
number of blocks used, number of blocks free.
e For inconsistent file systems, the operator is prompted for ‘
concurrence before corrections are attempted. . , %
NCHECK Generate file names from i-numbers.
CLRI Peremptorily expunge a file and its space from a file system. Used to
repair damaged file systems. '
SYNC Force all outstanding I/0O on the system to completion. Used to shut
down gracefully.
FSDB File system debugger. Used to patch up a damaged file system after a
crash. : '
VOLCOPY Copy a file system with label checking.
LABELIT Create initial labels for disk or tape file systems.
INSTALL Install commands.
SHUTDOWN Terminate all processing.

Broadcast log off message.

Unmount file systems.

Run file-save procedure.

U‘pdate super blocks.

Stop processing.
4.1.9 Accounting and System Activity Reporting

The accounting software is structured as a set of tools (consisting of both C programs and shell 'ﬂ
procedures) that can be used to build accounting systems. N

ACCTON
ACCTDISK

ACCTDUSG
ACCTWTMP
ACCTCMS
ACCTCON

ACCTMERG
ACCTPRC
ACCTSH
RUNACCT

FWTMP
WTMPFIX
PROFILER
SAG

TIMEX

-15-

Turn process accounting on (or off).

Build accounting records containing user ID, login name, and number of
disk blocks.

Compute disk resource consumption by login.
Write an accounting record.
Print command summary from per-process accounting records.

Connect-time accounting. Create accounting records for login/logoff
activity.

Merge or add total accounting records.
Process accounting. Creates accounting records for executed processes.
A collection of shell procedures to manage accounting activities.

Run daily accounting. The main daily accounting shell procedure.
Normally initiated via CRON,

Commands for manipulating accounting file records.

- A system of commands to facilitate an activity study of UNIX System III

Display, in graphical form, system activity of UNIX System III for a
specified time interval.

Time a command and generate a system activity report.

4.1.10 Communication

MAIL

" NEWS

CALENDAR
WRITE
WALL
MESG

CuU

UuUCP

Mail a message to one or more users. Also used to read and dispose of
incoming mail. The presence of mail is announced by LOGIN and
optionally by SH.

o Each message can be disposed of individually.
e Messages can be saved in files or forwarded.

Print news items. Used by system administrator 1o keep users informed
of current events.

Automatic reminder service for events of today and tomorrow.
Establish direct terminal communication with another user.
Write to all users.
Inhibit receipt of messages from WRITE and WALL.
Call up another time-sharing system.
o Transparent interafce to remote machine.
o File transmission.
e Take remote input from local file or put remote output into local file.
e Remote system need not be UNIX System III.
File transfer between CPU’s.

e Automatic queuing until line becomes available and remote machine
is up.

-16 -

e Copy between two remote machines.
¢ Differences, mail, etc., between two machines.

UUCLEAN Clean up UUCP spool directory.

UULOG Maintain a summary log of UUCP and UUX transactions.

UUNAME List the UUCP names of known systems.

UUSTAT UUCP status inquiry and job control. Display status of, or cancel,

previously specified UUCP commands, or provide general status on
UUCP connections to other systems.

UUSUB Define and monitor a UUCP subnetwork.
UUTO _ ‘
UUPICK Public CPU-t0-CPU command execution. Gather files from various

CPUs, execute a command on a specified CPU, and then send standard
output to a file on a specified CPU.

CT Dial the phone number of a modem attached to a terminal, and spawn a
login process to that terminal.

4.1.11 Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages described in
Section 2.

AR Maintain archives and libraries. Combines several files into one for
housekeeping efficiency.

o Create new archive.

e Update archive by date.
. Replace or delete files.

e Print table of contents.

o Retrieve from archive.
AS.PDP

AS.VAX Assembler.
e Creates object program consisting of
code, possibly read-only,
initialized data or read-write code,

uninitialized data.

Relocatable object code is directly executable without further
transformation.

Object code normally includes a symbol table.

Multiple source files.
Local labels.

Conditional assembly.

¢ "Conditional jump" instructions become branches or branches plus
jumps depending on distance.

-17 -

LIBRARY The basic run-time library. These routines are used freely by all
software.

e Buffered character-by-character 1/0.

e Formatted input and output conversion (SCANF and PRINTF) for
standard input and output, files, in-memory conversion.

e Storage allocator.

e Time conversions.

e Number conversions.

o Password encryption.

e Quicksort.

¢ Random number generator.

e Mathematical function library, including trigonometric functions and
inverses, exponential, logarithm, square root, Bessel functions.

ADB Interactive debugger.
e Postmortem dumping.
e Examination of arbitrary files, with no limit on size.

e Interactive breakpoint debugging with the debugger as a separate
process.

w e Symbolic reference to local and global variables.

e Stack trace for C programs.

e Output formats:
1-, 2-, or 4-byte integers in octal, decimal, or hex
single and double floating point
character and string
disassembled machine instructions

e Patching.

o Searching for integer, character, or floating patterns.

e Handles separated instruction and data space.

SDB Symbolic debugger (VAX-11/780 only).

e Dynamic access to program variables and stacks.

Interactive breakpoint debugging.

Selective execution of program pieces.

Symbolic reference to local and global variables.
o Stack tracing.
e Output format control.

f@h e Variable names written in C or F77 format.

oD » Dump any file. Output options include any combination of octal or
decimal by words, octal by bytes, ASCII, opcodes, hexadecimal.

LD

LORDER

NM

SIZE
STRIP

TIME
PROF

MAKE

CRASH

XREF

-18 -

o Range of dumping is controllable.

Link edit. Combine relocatable object files. Insert required routines
from specified libraries.

e Resulting code may be sharable.
o Resulting code may have separate instruction and data spaces.

Places object file names in proper order for loading, so that files
depending on others come after them.

Print the namelist (symbol table) of an object program. Provides control
over the style and order of names that are printed.

Report the core requirements. of one or more object files.

Remove the relocation and symbol table information from an object file
to save space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics gathered by
time-sampling the execution of a program. Uses floating point.

e Subroutine call frequency and average times. for C programs.

Controls creation of large programs. Uses a control file specifying source
file dependencies to make new version; uses time last changed to deduce
minimum amount of work necessary.

e Knows about CC, YACC, LEX, etc.
Examine system imagés.

o Print location of a process. ‘

e Print the user structure of a process.

o Generate a kernel stack trace of a process.

Print entries from system tables and buffers.

Print crash dump data and statistics.

Print a cross reference for C programs.

4.1.12 Programmer’s Manual for UNIX System III

MANUAL

MAN

Machine-readable version of the Programmer’s .Manual ‘for UNIX System
III. .

e System overview.
e All commands.

e All system calls.

All subroutines in C and assembler libraries.

All devices and other special files.

Formats of file system and kinds of files known to system software.

Boot and maintenance procedures.

Print specified manual section on your terminal.

-19-

4.1.13 Error Logging

ERRDEMON Error-logging daemon. Collects error records from the operating system
v and places them in a log file.

ERRPT Process a repori of logged errors.

ERRbeAD Examine a system dump and extract error records.

ERRSTOP Terminate the error-logging deamon.

4.1.14 Special Device Handler Programs

300 Handle special functions of DASI 300 and 300s terminals.

4014 ' Paginator for the Textronix 4014 terminal.

450 Handle special functions of the DASI 450 terminal.

HP Handle special functions of HP 2460 and 2621 - series terminals.

ST Synchronous terminal control.

VLX VAX-11/780 LSI console floppy interface.

VPR Versatec printer spooler.

4.2 Languages
4.2.1 The C Language

CC Compile and/or link edit programs in the C language. The operating
system in UNIX System III, most of the subsystems, and C itself are
written in C. For a full description of C, read The C Programming
Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice-Hall,
1978.

e General purpose language designed for structured programming.

e Data types include character, integer, float, double, pointers to all
types, functions returning above types, arrays of all types, structures
and unions of all types.

e Operations intended to give machine-independent control of full
machine facility, including to-memory operations and pointer
arithmetic.

e Macro preprocessor for parameterized code and inclusion of standard
files.

e All procedures recursive, with parameters by value.

e Machine-independent pointer manipulation.

e Object code uses full addressing capability of the PDP-11.
¢ Runtime library gives access to all system facilities.

e Definable data types.

e Block structure.

LINT Verifier for C programs. Reports questionable or non- portable usage
such as:

Mismatched data declarations and procedure interfaces.

220 -

Unused variables, unreachable code, no-effect operations.
Mistyped pointers.
Obsolete syntax.

o Full crossmodule checking of separately compiled programs.

CB A beautifier for C programs. Does proper indentation and placement of
braces. '

SCC C compiler for stand-alone programs. Prepares files for stand-alone
execution.

4.2.2 Fortran

F17 A full compiler for ANSI Standard Fortran 77.
e Compatible with C and supporting tools at object level.
| e Optional source compatibility with Fortran 66.
o Free format source.
e Optional subscript-range checking, detection of uninitialized variables.

o All widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte real; 8-
and 16-byte complex.

RATFOR Ratfor adds rational control structure a la C to Fortran.
e Compound statements.
o If-else, do, for, while, repeat-until, break, next statements.
e Symbolic constants.
o File insertion.
e Free format source.
e Translation of relationals like >, >=.
e Produces genuine Fortran to carry away.
e May be used with F77.

EFL Extended Fortran language. Compiles a program written in EFL
language into clean Fortran.

o C-like control structures.

o C-like data structures.

Generic functions.

Assignment operators (+ =, &=, etc.).
Logical 6perators.

Translation of relationals.

Free-form imput.

Defines and includes.

4.2.3 SNOBOL

-~ SNO A SNOBOL compiler and interpreter. Very similar to SNOBOL 3; its
limitations are:

-21-

e Function definitions are static.
¢ Pattern matches are always anchored.
e No built-in functions.

4.2.4 Other A Igorithmic Languages

‘BS A compiler/interpreter for modest-sized programs. A descendant of
Basic and SNOBOL 4 with a little C language thrown in.

e Statements from console execute immediately.

e Statements from a file compile for later execution (by default).
e Line-at-a-time debugging.

e Many builtin functioné.

DC Interactive programmable desk calculator. Has named storage locations
as well as conventional stack for holding integers or programs.

e Unlimited precision decimal arithmetic.
e Appropriate treatment of decimal fractions.

e Arbitrary input and output radices, in particular binary, otcal, decimal
and hexadecimal.

e Reverse Polish operators:
+ -*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.
BC A C-like interactive interface to the desk calculator DC.

All the capabilities of DC with a high-level syntax.

Arrays and recursive functions.

Immediate evaluation of expressions and evaluation of functions upon
call.

Arbitrary precision elementary functions: exp, sin, cos, atan.

Go-to-less programming.

4.2.5 Macroprocessing

M4 A general purpose macroprocessor.
e Stream-oriented, recognizes macros anywhere in text.
e Syntax fits with functional syntax of most higher-level languages.
e Can evaluate integer arithmetic expressions.

4.2.6 Compiler-compilers

YACC An LR(1)-based compiler writing system. During execution of resulting
parsers, arbitrary C functions may be called to do code generation or
semantic actions.

-22-

o BNF syntax specifications.
e Precedence relations.

e Accepts formally ambiguous grammars with non-BNF resolution
rules.

LEX Generator of lexical analyzers. Arbitrary C functions may be called upon
isolation of each lexical token.

o Full regular expression, plus left and right context dependence.

o Resulting lexical analysers interface cleanly with YACC parsers.
4.3 Text Processing .

4.3.1 Document Preparation
ED Interactive context editor. Random access to all lines of a file.

o Find lines by number or pattern. Patterns may include: specified
characters, don’t care characters, choices among characters, repetitions
of these constructs, beginning of line, end of line.

e Add, delete, change, copy, move, or join lines.

e Permute or split contents of a line.

e Replace one or all instances of a pattern within a line.
e Combine or split files. |

e Escape to Shell (command language) during editing.

e Do any of above operations on every pattern-selected line in a given
range. :

. Opiional encryption for extra security.

PTX Make a permuted (key word in context) index.
SPELL Look for spelling errors by comparing each word in a document against a
word list.

e 25,000-word list includes proper names.
e Handles common prefixes and suffixes.

e Collects words to help tailor local spelling lists.

TYPO Look for spelling errors by a statistical technique; not limited to English.
CRYPT Encrypt and decrypt files for security.

HYPHEN Find hyphenated words.

4.3.2 Document Formatting

TROFF

NROFF Advanced typesetting. TROFF drives a Graphic Systems phototypesetter,

NROFF drives ASCII terminals of all types. TROFF and NROFF accept
the same input language.

e Completely definable page format keyed to dynamically planted
"interrupts” at specified lines.

MM

-23-

e Maintains several separately definable typesetting environments (e.g.,
one for body text, one for footnotes, and one for unusually elaborate
headings) .

e Arbitrary number of output pools can be combined at will.

e Macros with substitutable arguments, and macros invocable in mid-
line.

e Computation and printing of numerical quantities.
e Conditional execution of macros.
e Tabular layout facility.

e Positions expressible in inches, centimeters, ems, points, machine
units or arithmetic combinations thereof.

e Access to character-width computation for unusually difficult layout
problems.

o Overstrikes, built-up brackets, horizontal and vertical line drawing.

¢ Dynamic relative or absolute positioning and size selection, globally or
at the character level.

e Can exploit the characteristics of the terminal being used, for

approximating special characters, reverse motions, proportional
spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character
fonts (4 simultaneously) in 15 sizes. TROFF provides terminal output
for rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse
line feed, or through the postprocessor COL.

High programming skill is required to exploit the formattting capabilities
of TROFF and NROFF, although unskilled personnel can easily be
trained to enter documents according to canned formats such as those
provided by MM, below. TROFF and EQN are essentially identical to
NROFF and NEQN so it is usually possible to define interchangeable
formats to produce approximate TROFF copy on terminals before actual
typesetting. The preprocessor TBL is fully compatible with TROFF and
NROFF.

Format documents using the Memorandum Macro (MM) package.
Designed for use with NROFF and TROFF. Features include:

o Pagination control.

e Automatically numbered paragraph headings.

Footnotes.

List generation.

Paragraphing, display and indenting.

Page headers and footers.

Table of contents.

o Static and Floating displays.

MMT
MVT

EQN

NEQN

TBL

TC

GREEK

COL
DEROFF
CHECKEQ

-2%-

e Two-column output.

e Special formatting macros for preparing memoranda and released
papers.

Typeset documents, view graphs, and slides. Similar to MM, except
typesetting is via TROFF.

A mathematical typesetting preprocessor for TROFF. Translates easily
readable formulas, either in-line or displayed, into detailed typesetting
instructions. '

‘o Automatic calculation of size changes for subscripts, sub-subscripts,
etc.

Full vocabulary of Greek letters and special symbols, such as
’gamma’, '"GAMMA’, ’integral’.

Automatic calculation of large bracket sizes.

Vertical "piling" of formulae for matrices, conditional alternatives, etc.

Integrals, sums, etc., with arbitrarily complex limits.
Diacriticals: dots, double dots, hats, bars, etc.

Easily learned by nonprogrammers and mathematical typists.

A version of EQN for NROFF; accepts the same input language. Prepares
formulas for display on any terminal that NROFF knows about, for
example, those based on Diablo printing mechanism.

o Same facilities as EQN within graphical capability of terminal.

A preprocessor for NROFF/TROFF that translates simple descriptions of
table layouts and contents into detailed typesetting instructions.

e Computes column widths.

e Handles left- and right-justified columns, centered columns and
decimal-point alignment.

o Places column titles.
e Table entries can be text, which is adjusted to fit.
e Can box all or parts of table.

Simulate Graphic Systems typesetter on Tektronix 4014 scope. Useful
for checking TROFF page layout before typesetting.

Fancy printing on Diablo-mechanism terminals like DASI-300 and
DASI-450, and on Tektronix 4014.

e Gives half-line forward and reverse motions.

o Approximates Greek letters and other special characters by
overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

-25.

[Prepare TROFF input files for typesetting in the constant-width font.
CHECKCW Check for possible errors in CW usage.
MMCHEK Check for possible errors in usage of MM macros and EQN delimiters.

4.4 Information Handling]
SORT Sort or merge ASCII files lihe-by-line. No limit on input size.
e Sort up or down.
e Sort lexicogaphically or on numeric key.
e Multiple keys located by delimiters or by character position.
e May sort upper case together with lower into dictionary order.
e Optionally suppress duplicate data.
TSORT Topological sort - converts a partial order into a total order.
UNIQ Collapse successive duplicate lines in a file into one line.
e Publish lines that were originally unique, duplicated, or both.
e May give redundancy count for each line.
TR Do one-to-one character translation according to an arbitrary code.
e May coalesce selected repeated characters.
o May delete selected characters.

DIFF Report line chahges, additions and deletions necessary to bring two files
into agreement.

e May produce an editor script to convert one file into another.

e A variant compares two new versions against one old one.

BDIFF Big difference program. Process files too big for DIFF.

DIFF3 3-way differential file comparison. Compares three versions of a file and
publishes disagreeing ranges of text.

SDIFF Side-by-side difference program. Produces a side-by-side listing of two
files indicating those lines that are different.

DIFFMK Compare two versions of a file and create a third file containing "change
mark" commands for NROFF or TROFF.

COMM Identify common lines in two sorted files. Output in up to 3 columns

shows lines present in first file only, present in both, and/or present in
second only.

JOIN Combine two files by joining records that have identical keys.
GREP Print all lines in a file that satisfy a pattern as used in the editor ED.
e May print all lines that fail to match.
e May print count of hits.
e May print first hit in each file.

WwC Count the lines, "words" (blank-separated strings) and characters in a file.

SED

AWK

" DIRCMP

BFS

PWCK
GRPCK
CREF

- 26 -

Stream-oriented version of ED. Can perform a sequence of editing
operations on each line of an input stream of unbounded lenght.

e Lines may be selected by address or range of addresses.
e Control flow and conditional testing. |

e Multiple output streams.

e Multi-line capability.

Pattern scanning and processing language. Searches input for patterns,
and performs actions on each line of input that satisfies the pattern.

e Patterns include regular expressions, arithmetic and lexicographic
conditions, boolean combinations and ranges of these.

o Data treated as string or numeric as appropriate.

e Can break input into fields; fields are variables.

e Variables and arrays (with non-numeric subscripts).
e Full set of arithmetic operators and control flow.

. Mulfiple output streams to files and pipes.

e QOutput can be formatted as desired.

o Multi-line capabilities.

Examine two directories and generate tabulated information about their
contents. :

Big file scanner. Similar to ED, except it is read-only and processes

- larger files. Useful for identifying sections of a large file where CSPLIT

can be used to divide it.

e Maximum file size is 1024-K bytes.

e Scans actualvﬁle, not a copy.

o All ED address expressions are supported.

e Regular expression' processing.

o Most ED commands operate.

e Many additional commands.
Scan the password file and note inconsistencies.
Verify entries in the group file.

Make a cross-reference listing of an assembler or C program.

4.5 Other Utility Programs

- ARCV
BCOPY
FSCV
HELP

NL

Convert archive files from PDP-11 to VAX-11/780 format.
Interactively copy files starting at arbitrary block boundaries.
Convert file systems between PDP-11 and VAX-11/780 formats.

Print information to explain a message from a command or explain the
use of a command.

Line numbering filter. Read lines from a file and prepend line numbers.

-~

-27-

REGCMP Compile regular expressions. Output is C source code.
vC Version control. Copies lines based on tests of keyword values.
XARGS Construct an argument list and execute a specified command.

4.6 Graphics

The programs in this section are predominantly intended for use with Tektronix 4014 storage
scopes.

GRAPHICS Establish access to the graphical and numerical commands.
GRAPH Prepares a graph of a set of input numbers.
o Input scaled to fit standard plotting area.
e Abscissae may be supplied automatically.
e Graph may be labeled.
e Control over grid style, line style, graph orientation, etc.
SPLINE Provides a smooth curve through a set of points intended for GRAPH.

TPLOT A set of filters for printing graphs produced by GRAPH and other
programs on various terminals, Filters provided for Textronix 4014,
DASI termainals, Versatec printer/plotter.

GDEV A set of graphical device routines and filters for the Textronix 4010
series terminals and the Hewlett-Packard 7221 A Graphics Plotter.

GED An interactive graphical editor. Used to display, construct, and edit
graphical data files on Textronix 4010 series display terminals.

GUTIL A set of device independent graphical utility commands.

STAT A set of command level functions (nodes) that can be interconnected to

form a stastical network. Data is passed through the network as
sequences of numbers (vectors). There are four classes of nodes:

e Transformers map input vector elements into output vector elements.
e Summarizers calculate statistics of a vector. ‘
e Translators convert among formats.
o Generators are sources of definable vectors.
TOC A set of routines to generate graphical table of contents.
4.7 Source Code Control System (SCCS)

SCCS is a collection of commands for controlling changes to files of text (typically, the source
code of programs or text of documents).

ADMIN Create new SCCS files and change parameters of existing ones.
CDC Change the delta commentary of an SCCS delta.

COMB Combine SCCS deltas.

DELTA Make a delta (change) to an SCCS file.

GET Create an ASCII text file from a specified SCCS file.

PRS Print an SCCS file.

-28-

RMDEL Remove a delta from an SCCS file.

SACT Inform the user of any impending deltas to a named SCCS file.

SCCSDIFF Compare two versions of an SCCS file and generate a list of differences.

UNGET Undo a previous GET of an SCCS file.

VAL Determine if a specified file is an SCCS file meeting characteristics
- specified by the argument list.

WHAT ~ Identify SCCS files.

4.8 Remote Job Entry (RJE)

RJE provides for submission and retrieval of jobs from a host system (e.g. an IBM System/360
or System/370). To the host RJE appears to be an IBM 360 remote multileaving work station.

SEND The command-level interface to the RJE system. It allows the user to
collect input from various sources in order to create a run stream
consisting of card images, and submit this run stream for transmission to
a host computer.

GATH Concatenate files and write them to the standard output.

RJESTAT Reports interactively on the status of any job(s) on the RJE host
systems, as well as on the status of the RJE links themselves.

4.9 Virtual Protocol Machine (VPM)

VPM is a synchronous communications subsystem built around the KMC11 microcomputer.

KAS An assembler/debugger/loader for the KMC11 microprocessor.

KUN An un-assembler for the KMC11/DMCI11 microprocessor. It produces
an output listing, acceptable to the assembler KAS, from object code.

VPMC A compiler for the protocol descriptioh language.
o Generates a load module for the virtual protocol machine.
e Language is essentially a subset of C. '
o Uses the RATFOR preprocessor.
e Two versions: BISYNC version, HDLC version.

VPMSTART " Writes load module to the KMC11 and starts the VPM interpreter.
VPMSNAP Opens the trace drive and reads and prints time-stamped event records.
VPMTRACE Opens the trace driver and reads and prints event records.

4.10 Novelties, Games, and Things That Didn’t Fit Anywhere Else
BACKGAMMON A player of modest accomplishment.

CHESS Plays good class D chess.

BJ A blackjack dealer.

CUBIC An accomplished player of 4x4x4 tic-tac-toe.
MAZE " Constructs random mazes for you to solve.

MOO A fascinating number-guessing game.

CAL
BANNER
UNITS

TIT

ARITHMETIC
FACTOR
QuIZ

WUMP
REVERSI
HANGMAN
TRUE

FALSE

-29.-

~ Print a calendar of specified month and year.

Print output in huge letters.

Convert amounts between different scales of measurement. Knows
hundreds of units. For example, how many km/sec is a
parsec/megayear?

A tic-tac-toe program that learns. It never makes the same mistake
twice.

Speed and accuracy test for number facts.

Factor large integers.

Test your knowledge of Shakespeare, Presidents, capitals, etc.
Hunt the wumpus, thrilling search in a dangerous cave.

A two person board game, isomorphic to Othello.
Word-guessing game. Uses the dictionary supplied with SPELL.

Provide truth values.

D

B,

The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating system for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process 1/0,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

\% Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current system that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-11 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our own installation is used mainly for research in
operating systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstrate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as $40,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., reprinted by permission. This is a revised ver-
sion of an article that appeared in Communications of the AcM, /7, No. 7 (July 1974), pp. 365-375. That arti-
cle was a revised version of a paper presented at the Fourth AcM Symposium on Operating Systems Princi-
ples, 1BM Thomas J. Watson Research Center, Yorktown Heights, New York, October 15-17, 1973.

tUNIX is a Trademark of Bell Laboratories.

.2

characteristics of the system are its simplicity, elegance, and ease of use.
"Besides the operating system proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs?:3

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6,
TMG, Pascal

There is a host of maintenance, utility, recreation and novelty programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. It is worth noting that the system is totally self-supporting. All UNIX
software is maintained on the system; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70 on which the Research UNIX system is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory; the system kernel occupies 90K bytes about
equally divided between code and data tables. This system, however, includes a very large
number of device drivers and enjoys a generous allotment of space for I/0 buffers and system
tables; a minimal system capable of running the software mentioned above can require as little
as 96K bytes of core altogether. There are even larger installations; see the description of the
PWB/UNIX systems,* 5 for example. There are also much smaller, though somewhat restricted,
versions of the system.®

Our own PDP-11 has two 200-Mb moving-head disks for file system storage and swapping.
There are 20 variable-speed communications interfaces attached to 300- and 1200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-baud terminals and satellite
computers. There are also several 2400- and 4800-baud synchronous communication interfaces
used for machine-to-machine file transfer. Finally, there is a variety of miscellaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi-
tal switching network, and a chess machine.

The preponderance of UNIX software is written in the abovementioned C language.’ Early
versions of the operating system were written in assembly language, but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier to understand and to modify
but also included many functional improvements, including multiprogramming and the ability
to share reentrant code among several user programs, we consider this increase in size quite
acceptable.

I11. THE FILE SYSTEM

The most important role of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file contains whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a string of characters, with lines demarcated by the newline character. Binary
programs are sequences of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more structure; for example, the assem-
bler generates, and the loader expects, an object file in a particular format. However, the struc-
ture of files is controlled by the programs that use them, not by the system.

3.2 Directories

" Directories provide the mapping between the names of files and the files themselves, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files; he may also create subdirectories to contain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs, so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches is often the root. Other system
directories contain all the programs provided for general use; that is, all the commands. As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it to be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of a path name, which is a sequence of directory
names separated by slashes, ‘/’’, and ending in a file name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
tem to search the root for directory alpha, then to search alpha for beta, finally to find gamma
in beta. gamma may be an ordinary file, a directory, or a special file. As a limiting case, the
name ‘‘/”’ refers to the root itself.

A path name not starting with ‘/’” causes the system to begin the search in the user’s
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for example, alpha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link. The
UNIX system differs from other systems in which linking is permitted in that all links to a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it.

DO R

Each directory always has at ieast two entries. The name ‘‘."" in each directory refers to
the directory itself. Thus a program may read the current directory under the name ‘.’
without knowing its complete path name. The name ‘‘.."" by convention refers to the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted tree. Except for the
special entries *“ .”’ and ‘‘..”", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detect when the last connection from the root to a directory was severed.

3.3 Special files

Special files constitute the most unusual feature of the UNIX file system. Each supported
I/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated device.
An entry for each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

-4.

There is a threefold advantage in treating I/O devices this way: file and device I/O are as
similar as possible; file and device names have the same syntax and meaning, so that a program
expecting a file name as a parameter can be passed a device name; finally, special files are sub-
ject to the same protection mechanism as regular files.

3.4 Removable file systems

Although the root of the file system is always stored on the same device, it is not neces-
sary that the entire file system hierarchy reside on this device. There is a mount system
request with two arguments: the name of an existing ordinary file, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of meunt is to cause refer-
ences to the heretofore ordinary file to refer instead to the root directory of the file system on
the removable volume. In effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount,
there is virtually no distinction between files on the removable volume and those in the per-
manent file system. In our installation, for example, the root directory resides on a small parti-
tion of one of our disk drives, while the other drive, which contains the user’s files, is mounted
by the system initialization sequence. A mountable file system is generated by writing on its
corresponding special file. A utility program is available to create an empty file system, or one
may simply copy an existing file system.

There is only one exception to the rule of identical treatment of files on different devices:
no link may exist between one file system hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required to assure removal of
the links whenever the removable volume is dismounted.

3.5 Protection

Although the access control scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user ID of its owner. Also given for new files is a set of ten protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
file, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user ID) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it. The set-user-1D feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting file that should neither be read
nor changed except by the program itself. If the set-user-ID bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program'’s user. Since the actual user ID of the invoker of any program is always available, set-
user-ID programs may take any measures desired to satisfy themselves as to their invoker’s
credentials. This mechanism is used to allow users to execute the carefully written commands
that call privileged system entries. For example, there is a system entry invokable only by the
“super-user’’ (below) that creates an empty directory. As indicated above, directories are
expected to have entries for **.”* and **..”". The command which creates a directory is owned
by the super-user and has the set-user-1D bit set. After it checks its invoker’s authorization to
create the specified directory, it creates it and makes the entries for *“.*" and *.."".

Because anyone may set the set-user-ID bit on one of his own files, this mechanism is
generally available without administrative intervention. For example, this protection scheme
easily solves the MOO accounting problem posed by “Aleph-null.”8

The system recognizes one particular user ID (that of the ‘‘super-user’”) as exempt from
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference from the protection system.

J

3.6 1/0 calls

The system calls to do [/O are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between “random’’ and ‘‘sequential’’ 1/0,
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it; no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 170, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call to the system may potentially result in an error return, which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is to be read, written, or “‘updated,’’ that is, read and writ-
ten simultaneously.

The returned value filep is called a file descriptor. It is a small integer used to identify the
file in subsequent calls to read, write, or otherwise manipulate the file.

To create a new file or completely rewrite an old one, there is a create system call that
creates the given file if it does not exist, or truncates it to zero length if it does exist; create
also opens the new file for writing and, like open, returns a file descriptor.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file to become scrambled when two users write on it simultaneously, in prac-
tice difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example. both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file.
creating files in the same directory, or deleting each other’s open files.

Except as indicated below, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next I/0 call implicitly refers to the
immediately following byte. For each open file there is a pointer, maintained inside the system,
that indicates the next byte to be read or written. If » bytes are read or written, the pointer
advances by n bytes.

Once a file is open, the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by filep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as 1/0 errors or end of physi-
cal medium on special files; in a read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end, only sufficient bytes are transmitted to reach the end of the file; also.
typewriter-like terminals never return more than one line of input. When a read call returns
with n equal to zero, the end of the file has been reached. For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible 1o generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used.

-6 -

Bytes written affect only those parts of a file implied by the position of the write pointer
and the count; no other part of the file is changed. If the last byte lies beyond the end of the
file, the file is made to grow as needed.

To do random (direct-access) 1/0 it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = Iseek (filep, offset, base)

The pointer associated with filep is moved to a position offset bytes from the beginning of the
file, from the current position of the pointer, or from the end of the file, depending on base.
offset may be negative. For some devices (e.g., paper tape and terminals) seek calls are
ignored. The actual offset from the beginning of the file to which the pointer was moved is
returned in location.

There are several additional system entries having to do with I/0 and with the file system
that will not be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, delete a file.

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section 3.2 above, a directory entry contains only a name for the associ-
ated file and a pointer to the file itself. This pointer is an integer called the i-number (for index
number) of the file. When the file is accessed, its i-number is used as an index into a system
table (the i-/ist) stored in a known part of the device on which the directory resides. The entry
found thereby (the file's i-node) contains the description of the file:

i the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size '

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of an open or create system call is to turn the path name given by the user into an
i-number by searching the explicitly or implicitly named directories. Once a file is open, its
device, i-number, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create. Thus, during a subsequent call to read or write the
file, the descriptor may be easily related to the information necessary to access the file.

When a new file is created, an i-node is allocated for it and a directory entry is made that
contains the name of the file and the i-node number. Making a link to an existing file involves
creating a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link:count field of the i-node. Removing (deleting) a file is done by
decrementing the link-count of the i-node specified by its directory entry and erasing the direc-
tory entry. If the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated.

The space on all disks that contain a file system is divided into a number of 512-byte
blocks logically addressed from 0 up to a limit that depends on the device. There is space in
the i-node of each file for 13 device addresses. For nonspecial files, the first 10 device
addresses point at the first 10 blocks of the file. If the file is larger than 10 blocks, the 11 dev-
ice address points to an indirect block containing up to 128 addresses of additional blocks in the
file. Still larger files use the twelfth device address of the i-node to point to a double-indirect
block naming 128 indirect blocks. each pointing to 128 blocks of the file. If required, the thir-
teenth device address is a triple-indirect block. Thus files may conceptually grow to
[(10+128+1282+128%)-512] bytes. Once opened, bytes numbered below 5120 can be read
with a single disk access; bytes in the range 5120 to 70,656 require two accesses; bytes in the

™

-7

range 70,656 to 8,459,264 require three accesses; bytes from there to the latgest file
(1,082,201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made to a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing, respectively, a device type and subdevice number. The device type indicates which system
routine will deal with I/O on that device; the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a system table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This table is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or create; if a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table value.

To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return from a read call the data are available; conversely, after a
write the user’s workspace may be reused. In fact, the system maintains a rather complicated
buffering mechanism that reduces greatly the number of 1/0 operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currently resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual I/0 may not be completed until a later time. Conversely, if a single
byte is read, the system determines whether the secondary storage block in which the byte is
located is already in one of the system’s buffers; if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out.

The system recognizes when a program has made accesses to sequential blocks of a file,
and asynchronously pre-reads the next block. This significantly reduces the running time of
most programs while adding little to system overhead.

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of 1/0,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz-
ing the file system has proved quite reliable and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to access the file. It also permits a
quite simple and rapid algorithm for checking the consistency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same time the notion of the i-list induces certain peculiarities not found in other file system
organizations. For example, there is the question of who is to be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it, and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be to spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a computer execution environment. It includes a memory image, general
register values, status of open files, current directory and the like. An image is the current
state of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behaif of a
process, the image must reside in main memory; during the execution of other processes it
remains in main memory unless the appearance of an active, higher-priority process forces it to
be swapped out to the disk.

The user-memory part of an image is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write-protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary above the program text segment in the
virtual address space begins a non-shared, writable data segment, the size of which may be
extended by a system call. Starting at the highest address in the virtual address space is a stack
segment, which automatically grows downward as the stack pointer fluctuates.

5.1 Processes

Except while the system is bootstrapping itself into operation, a new process can come
into existence only by use of the fork system call:

processid = fork ()

When fork is executed, the process splits into two independently executing processe$. The two
processes have independent copies of the original memory image, and share all open files. The
new processes differ only in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and is never 0, while in the child, the
returned value is always 0.

Because the values returned by fork in the parent and child process are distinguishable,
each process may determine whether it is the parent or child.

5.2 Pipes

Processes may communicate with related processes using the same system read and write
calls that are used for file-system 1/0. The call:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channel called a pipe. This channel,
like other open files, is passed from parent to child process in the image by the fork call. A
read using a pipe file descriptor waits until. another process writes using the file descriptor for
the same pipe. At this point, data are passed between the images of the two processes. Neither
process need know that a pipe, rather than an ordinary file, is involved.

Although inter-process communication via pipes is a quite valuable tool (see Section 6.2),
it is not a completely general mechanism, because the pipe must be set up by a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>