
USE R ' 5 MAN U A L

MEMO:
TO:
FROM:
DATE:

TABS:

BUGS:

NOTE:

Pixar User's Manual
Pixar Customers
Pixar Documentation Group
December 2, 1986

Welcome to the Pixar User's Manual. This book contains haroware"andsoftware
overviews, programming tutorials, reference documents, arid additional material
from the Pixar Tech Memo files. We hope you will find 'this material helpful.
Also note that the Pixar Software Release 1.2 contains, plentyofsoutce, code
which will be very helpful in writing your own software for thePixar Image
Computer.

Please contact us if you have any questions regarding'the material· in this manual.

You will find two kinds of tabs to help divide the traditional UN1'X sec,tions into
subsections. The major tabs have the familiar meaning, "wliiie 'the:' minor tabs
correspond to subsecnons (e.g., specific tutorials).

Mail in the pink comment forms, or use electronic mail to submitori·4i:ne com·
ments and suggestions (e.g., mail pixar!bugs).

Copyright 1986 by Pixar. This document is protected by 'Federal Copyright:-Law,
witJ:1 all rights reserved. N~ part?f this publication may bereproduced~ stored'irt1a
retneval system, or transnutted, m any form or by any means, electronlc,mechan
ical, photocopying, recording, or otherwise, without prior writtenperrirission from
Pixar.

The information in this manual is for informational purposes only' arid: is subject
to change without notice. Use, duplication or disclosure by :the Government is
subject to restrictions as set forth in subdivision (b) (3) (ii) of tbeRigbts in;rreohn
ical Data and Computer Software clause at 252.227-7013.

Pixar Software Overview
November 3, 1986

The Pixar Image Computer™ provides an innovative and powerful architecture for performing
image-computing operations. The software for the Pixar Image Computer provides a collection
of tools that utilize the full capabilities of the hardware to perform a wide range of standard
image-computing operations quickly and efficiently, and powerful development tools that allow
additional software to be easily developed for the system.

The Pixar Image Computer is closely coupled to a host computer that provides those facilities
and functions that do not directly relate to image-computing. The host computer provides net
work access, a program development environment, and general resources required by application
programs (e.g., operating system, file system, mass storage, etc.). The Pixar Image Computer
can be interfaced to a variety of host computers, including Sun, Symbolics, Digital Equipment
Corporation, and Silicon Graphics computer systems.

Pixar offers a Pixar Development System™ that includes a Sun-3™ computer, bitmapped
workstation, 380 MByte disk, with the Sun UNIX TM operating system and Pixar Software
configured for use by software developers and research laboratories. Other configurations and
specialized application programs may be purchased from Pixar OEMs and V ARs who offer the
Pixar Image Computer in conjunction with their products. A development environment that
includes Pixar Image Computers is shown below.

ETHERNETI'M

~

r " color E:::I

monitor PIXAR

"- -- MAGE ..,
COMPUTERl"

r ""'"
c:::::a

0 bit-map

dISPla
y
:[host

" rrm
keyboard \ mouse disk aJ

drive

~

r " color
monitor

r """ bit-map
display

/ ~Ybda);\[

1

c:::I

PIXAA
IMAGE
COMPUTEIP

o
host

rrm
disk CD
drive

I
TO OTHER
NETWORKED
COMPUTERS

All image-computing operations are performed using software and resources of both the host
computer and the Pixar Image Computer. The design of the closely coupled interrace between
the two machines allows application programs to be implemented on the host computer with
concurrent image processing perrormed by the Pixar Image Computer. The host computer pro
gram provides the data for, and controls the overall operation of, the Pixar Image Computer.
Table 1 lists the actions of the· host computer and the corresponding actions of the Pixar Image
Computer for a typical application program:

Table 1.

Application Program Actions

Step Host Computer P~rlmageCompu~r

1. Pixar Device Open Initialization

2. Load Pixar Software none

3. Transfer Data To Pixar Accept Data From Host

4. Invoke Image Computing Operation Perform Image Computations

5. Interact with User Display Image on Video Monitor

6. Retrieve Data From Pixar Transfer Data To Host

7. Pixar Device Close none

The host computerlPixar Image Computer interface simplifies the development of complex
image-computing applications. The host computer interrace provides for high bandwidth data
transfer between the host and Pixar Image Computer, under polled and interrupt control. The
Pixai:' software provides facilities to allocate and deallocate Pixar resources, load Pixar software,
transfer data to and from the Pixar, as well as view images from any portion of the Pixar Image
Memory using the video output capabilities of the Pixar Image Computer. In addition, many of
the most commonly needed image-computing operations have also been provided as utility pro
grams, available for immediate use without any programming required.

The software provided with the Pixar Image Computer may be divided into five classes:

• Utility Programs
• Development Libraries
• Development Tools for Pixar Programming
• System Software
• Contributed Software

2

Utility Programs

Utility programs are provided for the most common image operations performed using the Pixar
Image Computer. These utilities are provided with a wide range of options available, allowing
general user access to many advanced capabilities of the Pixar Image Computer before any
application-specific software is written. Included are:

• Display Utilities:
cbars generates standard color bars in an image memory window.

c1r clears an image memory window to specified value(s).

gamma sets gamma-corrected colormap.

guide displays a field-guide alignment pattern in an image memory window.

loop sequences preloaded animation frames.

ramp displays a ramped pattern horizontally or vertically in an image memory window.

tool allows the image memory contents to be examined interactively.

video modifies the configuration of the video controller.

• Image Input/Output Utilities:
gt gets (loads) an image into the image memory from a picture file on mass storage.

gtinfo displays information describing a picture file.

sv saves all or part of the Image Memory to a picture file on mass storage.

• Image Processing Utilities:
blur

clamp

cony

copy

bg

merge

perm

applies a box filter to an image memory window.

clamps the contents of an image memory window to [0,1].

convolves an image memory window with arbitrary 3x3 filter.

copies an image memory window to another window.

generates a histogram of the pixels in an image memory window.

merges two image memory windows using compositing operators.

permutes image memory rows/columns, allowing clamping, inversion, etc.

resize resizes an image memory window onto a destination window.

rotate rotates and scales an image memory window onto a second window.

scale scales the RGBA intensities of a image memory window.

• Miscellaneous Utilities:
pixinit initializes the Pixar hardware and the software configuration tables.

The utility programs allow a large number of arguments to be specified, and allow functions to
be performed over selected portions of the Image Memory. Both the utility programs and the
Pixar development libraries use logical frame buffers and pixel windows to partition the image
memory.

3

Development Libraries

Development libraries are provided for both the host computer and the Channel Processor(s)
(ChapTM) of the Pixar Image Computer. These development libraries provide high-level and
low-level library functions for diverse uses that include the allocation and management of Pixar
resources (Chaps, Chap program memory, image memory, scatchpad memory), data transfer
operations, pixel operations, image processing functions, etc. The large variety of library func
tions available enables many applications to be written without the need to program the Pixar
Image Computer directly. The libraries provided are:

• Host Libraries:
libchad a library of functions that manage the allocation and deallocation of Pixar resources. Also

included are procedures to initiate execution of Chap procedures and to synchronize host/Chap
program execution.

libpicio a library of functions for encoding, decoding, loading, and unloading image "picturett files.
Image ttpictures" are areas of Image Memory that are stored in digital form on the file system of
the host computer. Most image "pictures" are encoded using published run-length encoding tech
niques to facilitate the interchange of data among Pixar Image Computers and other image
gathering/processing equipment.

libpirl a library of functions for manipulating rectangular pixel windows of the Pixar image memory.
The libpirl functions provide a powerful set of building blocks that perform many of the most
commonly required image processing functions. Included are library functions to perform arith
metic operations, boolean algebra, linear algebra, filtering, clamping, convolution, merging, and
copy operations on Image Memory pixel windows.

Iibpixar a library of functions for accessing the Pixar Image Computer at a low level. Library functions
are provided that allow direct access to all memories, registers, and buses that can be accessed by
the host computer .

• Chap Libraries:
Iibchad

libpicio

libpip

libpm

libpt

a library of Chap functions that service the requests made by the host libchad functions.

a library of Chap functions that service the requests made by the host libpicio functions.

a library of Chap functions that perform common image processing operations using the Chap.
Many of the host libpirl image processing library functions invoke the libpip Chap functions to
actually perform the image processing operation.

a library of Chap functions that perform common arithmetic operations using the Chap. A
variety of arithmetic operations are provided, including addition, subtraction, multiplication, divi
sion, square root, absolute value, 4x4 matrix multiplication, etc.

a library of Chap functions that provide a variety of methods for transfering pixels between the
Pixar Image Memory and a Chap's scratchpad memory.

Iibpx a library of Chap functions that perform geometric transformations on images. Functions are
provided to change the size of an image using linear, quadratic, or cubic intetpolations. Func
tions are also provided that perform image rotations and watping.

The Chap libraries are implemented to utilize the SIMD Chap architecture and, in general,
make effective use of the hardware features of the Pixar Image Computer. Source code is
provided to all Development Libraries to encourage the further development of additional
host and Chap libraries and user applications.

4

Development Tools for Pixar Programming

Development tools are provided to enable custom applications to be developed for the Chap
Processor(s) of the Pixar Image Computer. The tools provided include a Chap assembler,
dynamic loader, debugger, and other miscellaneous tools that aid in program development and
debugging. Additional tools may also be provided by the various host environments. For exam
ple, a LISP compiler for the Chap is available from Symbolics for the Symbolics environment.
The standard tools provided are:

• Programming Tools:.
chas the Chap assembler. Chas takes one or more input files and generates a relocatable object file

suitable for use with the Chap linkage editor, chid, the Chap dynamic loader, chload, or that may
be incorporated into an object-code library using the standard UNIX ar command and the chran
lib tool.

chc the Chap compiler. Chc is analogous to the UNIX cc command. Chc is used to assemble and
link Chas programs. Like cc, chc invokes the C preprocessor. Chc then assembles the code into
relocatable object files and links them with other object files to form executable modules.

chid the linkage editor for the Chap. Chld combines several object programs into one, resolving exter
nal references, and loading object files from libraries if necessary to resolve all external refer
ences.

chload the loader for the Chap. Chload links and relocates one or more relocatable object files created
by chas or chid, downloading the resulting program into the Chap and executing it

chranlib the archive converter for Chap libraries. Chranlib converts archives produced by the standard
UNIX ar utility, to a library form that chload can load efficiently .

• Debugging Aids:
charm allows a user to interactively interrogate the state of a Chap, load and link Chap code, and control

execution of programs running in a Chap. The user interface and facilities of charm are similar
to the UNIX adblfP debugger.

chcrnp compares the contents of a Chap object file against the contents of Chap instruction and
scratchpad memories.

chconfig interacts with the operating system's Pixar hardware configuration tables. The hardware
configuration of each Pixar Image Computer is automatically determined when the operating sys
tem is initially booted, and the tables reflect that configuration unless explicitly modified using
chconfig. Using these tables to determine the existing hardware configuration allows
configuration-independent programs to be written that can take advantage of additional Pixar
resources (e.g., Image Memory, multiple Chaps, etc.) when they are available.

chd disassembles Chap object-code.
chrnap prints the symbol table associated with a Chap. This symbol table, used by chload, reflects the

known contents of the Chap's instruction and scratchpad memories. Chmap may also be used to
initialize a Chap's symbol table.

chnrn outputs the. name list (symbol table) of a Chap object file or object-code library.

chsize outputs the sizes of the various segments of a Chap object file.

5

System Software

System software is provided with each Pixar Image Computer to handle the low-level interfacing
to the host operating system and hardware. This software includes:

• Pixar Software Installation Procedures
• Pixar Device Drivers
• Pixar Diagnostics

The Pixar Device Driver provided for each host provides closely coupled access to the Pixar
Image Computer. The close coupling is provided by means of a memory-mapped hardware inter
face, which is mapped directly into a user's virtual address space by a "device open" call to the
Pixar device driver. This direct mapping allows I/O operations to be initiated by each user pro
cess without the overhead nonnally associated with I/O operations.

The Pixar software utilizes this facility extensively, enabling host computer software to, in
effect, make remote procedure calls to software that resides in the Pixar Image Computer to per
form image-computing operations. Parameters and other data may be passed efficiently and con
veniently directly between the host and the hardware interface. Also, synchronization of the host
and Pixar software can be accomplished by polling, or by means of a host interrupt that can be
generated under program control by the Pixar Image Computer. This allows the host and Pixar
Image Computer to operate concurrently for optimal throughput.

Contributed Software
Software developed by Pixar or by individual users of the Pixar Image Computer can be contri
buted for general distribution by Pixar. Software in this category need not undergo the stringent
product testing and documentation effort normally required for software products. This provides
a means to distribute a variety of demonstrations, prototypes, specialized functions, images, data
sets, etc., that might otherwise be restricted from distribution. Pixar ensures that all source code,
compilation and installation procedures, and a minimal level of documentation is available, but
otherwise assumes no responsibility or liability for the software.

Software in this category that is available to all Pixar customers includes:

• Demonstrations:
ITt is a mouse-driven demonstration of real-time fast Fourier transforms computed and displayed by

the Pixar Image Computer

tree demonstrates the compositing features of the Pixar Image Computer using trees to show the
speed with which complex scenes can be composited. The trees themselves were rendered on a
general-purpose computer using a technique developed at Pixar called "particle systems" .

videotool is a Sunview window-based demonstration that allows interactive selection of image memory and
video features of the Pixar Image Computer.

cubetool is a Sunview window-based demonstration of the use of image memory to store and view the
orthogonal faces of a three-dimensional cube represented by a series of "stacked" images. The
view may be altered by interactively moving a viewing plane through the volume of data. This is
useful for viewing sets of images, such as CT slices, seismic data, etc.

magtool is a Sunview window-based demonstration that allows the interactive examination of a sequence
of images using a "magnifying glass" whose magnifying power and position are under user con
trol.

6

• Development Tools:
libaargs is a library of argument-parsing functions that allows User Utilities with standard and optional

argument lists to be easily implemented (most Pixar User Utilities use this development tool) .

• Images:
1984 the 1984 image of the pool balls that appeared on the cover of the July 1984 issue of Science 84

magazine. This image was rendered on a general-purpose computer using a technique developed
at Pixar called stochastic sampling or distributed ray tracing.

Andre and Wally B.
a series of rendered images from the Andre and Wally B. film initially presented at the 1984 SJG
GRAPH conference. These images may be used in conjunction with the loop Utility Program
and magtool demonstration program to demonstrate frame-sequential animation.

Antenna Volume
a series of images that form a three-dimensional cube of data that may be viewed using the
cubetool demonstration. The antenna volume represents the radiation pattern from a phased
array antenna that was processed to represent a three-dimensional. volume at Pixar.

Additional software that is developed at Pixar will be considered for inclusion in the contributed
software classification. All customers are also encouraged to submit their demonstrations, pro
gramming prototypes, etc. for inclusion and distribution to the benefit of all Pixar users.

Conclusion
The Pixar Image Computer software provides a wide variety of development tools that allow
image-processing and computer-graphics algorithms to be implemented easily and efficiently.
The software allows use of the power of the Channel Processor(s), while retaining high-level
programming constructs and sophisticated development tools. The flexible design of the Pixar
Image Computer and powerful software provides a combination that can help customers dis
cover the new possiblities image-computing brings them.

Pixar, Pixar Image Computer, and Pixar Development System are trademarks of Pixar.
Sun and Sun-3 are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of AT&T.
Chap is a trademark of Pixar.

7

Introduction

Pixar Hardware Overview
November, 1986

The Pixar Image Computer hardware provides an innovative and powerful achitecture for performing
image computing operations. The strength of the product is its integration of fast hardware and
software libraries tailored for image computing. The software for the Pixar Image Computer provides a
collection of tools to utilize the full capabilities of the hardware. These tools enable the user to perform
a wide range of standard image computing operations quickly. They form a powerful development
system that allows additional software to be easily developed.

This overview examines the hardware in a top-down fashion. See the software overview for details of
the software that comes standard with a Pixar Image Computer.

Image computing is the combination of image processing and computer graphics. An image computer
combines the capabilities of image analysis with image synthesis in a single machine.

System

The Pixar Image Computer uses a closely-coupled host computer to provide those functions not
directly related to image computing. The host provides network access, a program development
environment and general resources required by application programs. The Pixar Development System
consists of a Pixar Image Computer, host computer, disk-based file system, an RGB monitor, tape
back-up, modem (for diagnostics), and a rack. The host computer includes provides a bit-mapped
display, keyboard, and mouse. All Pixar Development Systems include training credits for Pixar
programming classes. Additions include extra memory, processor boards, monitors, disks, and tape
drives. A typical system confjguration is shown below.

ETHERNETI'M

I
~ ~ ~ ~ TO OTHER

I' ""
NETWORKE r

""" color 1::1
color E::J COMPUTERS

monitor PIXAR monitor PIXAR

\.. - IMAGE
foo-- MAGE

./ COMPUTER'rt. " ./ ~MPUTE~

o

c:I r '" 0 r
""

c:I

0 bit-map bit-map

display (1r" host
display ({ host

" [[ill " [[ill
/ keyboard \ mouse disk CD / keyboard \ mouse disk CD

drive drive

Fig. 1 Pixar Image Computer and host

The Pixar Image Computer comes with an extensive software package for developing applications.
Pixar software is developed in-house under UNIX 4.2 in both C and assembly language. Pixar
provides a development system and several sets of libraries as described in the Pixar Software
Overview.

Pixar Image Computer Hardware

The Pixar Image Computer consists of a 21 inch-high, rack-mounted box with 12 board slots. The
minimum system contains six boards: one CHAP, one Video, one Memory Controller, and three
8Mbyte memory boards. It is expandable to three CHAP, two Video and six memory boards. The
host can be up to 30 feet from the Pixar Image Computer. The Pixar runs on 200-250 volts AC and
will dissipate, worst case, almost 3KW.

The Pixar Image Computer Development System. consists of the Pixar Image Computer, the SUN
3/180™, tape drive, 380Mbyte disk, a high-resolution RGB monitor, bit-mapped display, SUN
lJNIXTM, PIXAR software, a rack and all the necessary cabling.

The host connection is made through an interface card that plugs into the host's I/O bus. Fig. 2 shows
an example using a SUN 3 host. The interface card connects the host bus, which might be VME,
QBus, or Multibus, to the SYSBUS. The SYSBUS is a 16-bit 2Mbyte/second bandwidth bus over
which instructions and data are sent to the PIXAR.

Yapbus
80MB/sec

Sysbus

Pbus

240MB/sec

S(j~
\N Of' \'" ~{jA be

2MB/sec

~--------~Video
\

Vbus

"~ 480MB/sec

Fig. 2 System block diagram

to
video
monitor

2

As shown in Fig. 2 on the previous page, the Y APBUS offers an extremely high-bandwidth
connection to a wide range of peripherals. This 80Mbytes/second bandwidth bus connects the Pixar
Image Computer to other Pixar Image Computers, fast disks, and other high speed
peripherals/computers.

The Pixar Image Computer primarily consists of a fast processor tightly coupled to a large memory.
As shown in Fig. 2, the CHAP communicates with the memory over the PBUS. This
240Mbytes/second bandwidth bus provides the tight coupling between the memory and the processor.
The CHAP processor receives instructions from the host computer, controls the YAPBUS, and
computes on the data in the image memory.

The video board reads image data out of the memory to refresh the display. Data transfers from the
memory to the Video board over the VBUS, which has a bandwidth of 480Mbytes/second.

The memory boards are 8Mbytes each, using 256K by 1 bit DRAMs. Each board is dual-ported, so
that the Pbus and Vbus can have concurrent access to the 480Mbyte/second bandwidth of the memory
system.

The memory controller receives requests for memory resources from the CHAPs or Video boards. It
then arbitrates and schedules the data transfers when the appropriate resources are available.

The Architecture

Pixar's graphics software experience strongly influenced the design of the CHAP. This experience
dictated several design objectives:

• Hardware support to facilitate programming
• Generality of hardware implementation
• Parallel nature of many image computing operations
• Efficiently manipulate the pixel data type
• Support multiple CHAPs in a system

The following technical description shows how these objectives were accomplished.

The Pixel Data Structure

All the components of a Pixar Image Computer are designed to accommodate the pixel data structure.
Pixels are stored in memory as four 12-bit quantities, one each for the Red, Green, Blue, and Alpha
components, or "channels", of a picture. Together, these four channels define the color (ROB) and
transparency (Alpha) of any particular pixel in memory. Images are stored on the disk this way-as
four separate pictures. This scheme allows the programmer to use the memory in many different ways.
In medical imaging applications, for example, the four channels hold four monochrome pictures rather
than a single furIl-color picture. The Pixar's programmability makes different interpretations of the
pixel data structure possible. The section on the memory will cover uses of the pixel data structure in
more detail.

Chap

The CHAP has one processor for each of the Red, Green, Blue, and Alpha channels. The CHAP is a
SIMD machine-for Single Instruction, Multiple Data. Four processors execute the same instruction
on four values simultaneously. These four values can be the four components of a single pixel
(ROBA), four entries in a table, the same component from four adjacent pixels, etc. Since each
processor runs at 10 MIPS, the total speed is 40 MIPS. Control of the individual processors can be
explicit but is nonnally transparent to the programmer.

3

Many computers use a Von Neumann architecture, in which instructions and data share the same
memory. The CHAP is based on a Harvard architecture, with instruction memory separate from the
scratchpad, or data memory.

The CHAP contains two types of hardware elements: vector and scalar. The vector elements are so
named because there are four of each element: one for the Red, Green, Blue and Alpha channels. There
is only one of each scalar element per CHAP.

Vector elements:
ALU
Multiplier
Pbus buffer
YAPBUS buffer
Scratchpad memory
Write crossbar
Read crossbar

Scalar elements:
Control unit
Address Generator
Program memory

The CHAP moves pixels from register to register via the two vector buses (Abus and Mbus). The
scalar bus (Sbus) can receive a value from one particular vector element (e.g., the Red multiplier) or
send a single value out to all. The processor clock has an 85 nanosecond cycle. All pixels follow the
same path around the CHAP for a given loop in the program, with new pixels entering the path every
couple of clock cycles. This is called pipelining-one of the keys to the CHAP's speed in processing
large amounts of data. Figure 3 shows the main elements of the Chap from the programmer's point of -
view.

SBUS

4
Fig. 3. Simplified Chap Programmer's Model

Vector Elements

ALU. The ALU (Arithimetic Logic Unit) is a 16-bit bipolar AMD 29116A chip, with 32 working
registers, an accumulator, and a status register. A single data path connected to the Abus carries both
incoming operands and outgoing results. Normally, all four ALUs execute the same instruction on the
four components of a single pixel, but the hardware can automatically specify one or more ALU s not
to participate, in which case those pixel components pass through untouched. This is useful, for
instance, in processing the Red, Green, and Blue channels, while holding the Alpha channel
unchanged. Four "Runflags" determine which ALUs will execute the current instruction. The runflags
are simply a set of four bits, set by the evaluation of conditional statements in a program, that signifies
which ALUs are enabled.

Multiplier .. The 16-bit multiplier has a single input line and a single output line. A value from the
Mbus goes to one of two input registers (the multiplicands), called MUL TX and MUL TY. Two ticks
after the values A and B are put into MUL TX and MUL TY from the Mbus, the 32-bit product AB
appears in the two output registers facing the Abus. The MSP register contains the most significant
part of the product, while the LSP contains the least significant part.

Pbus buffer. The Pbus buffer moves pixels in bursts of 16 or 32 pixels between the CHAP and the
picture memory. Four pixels are transferred at a time, using a 10 MHz transfer rate. The buffer has
two sets of registers: one set facing the memory and the other set facing the CHAP. The pixels in the
CHAP half of the buffer at anyone time are said to be CHAPside, while pixels in the Pbus half are
said to be Memoryside. In actuality, the Pbus buffer receives pixels one at a time from the CHAP, four
at a time from the picture memory, but waits until it has either 16 or 32 to send a burst of (four pixel)
Pbus transfers.

The datapaths and components in the CHAP are all 16 bits wide, to accommodate higher precision in
intermediate products. Therefore, when a 12-bit quantity, such as a color component, comes into the
CHAP from the picture memory, the Pbus buffer extends the 12-bit number to a 16-bit number using a
special scheme. The special scheme involves extending the fixed-point representation of an integer
from [0,1) to [-.5,.1.5), providing exact representations of zero and unity.

Yapbus buffer. The Yapbus buffer has an 80Mbytes/second bandwidth. The Yapbus transfers 64-
bit quantities between CHAPs, or between a CHAP and a peripheral device.

Scratch pad. The scratchpad is a high-speed memory that stores groups of pixels during a program's
execution. Though the scratchpad can hold 16K pixels (16 scan lines on a high-resolution monitor), it
typically holds a scan line or two of pixels at a time. There are actually four scratchpad memories in the
CHAP, just as there are four ALU s, making the scratchpad a vector component. Each scratchpad is 16
bits wide by 16K deep. For storing pixel data, scratchpad addresses can be tessellated to satisfy many
different kinds of requests for component information. The crossbars and the address generator handle
the details of tessellation, allowing the programmer to think of the scratchpad as a single, versatile
pixel memory.

Write crossbar. The write crossbar is a destination on the Abus (see fig 3). It is the port through
which data passes on the way to the scratchpad. The purpose of the write crossbar is to handle the
details of tessellating the pixels in scratchpad, thereby providing four possible storage modes:

Pixel

Component

Broadcast

Untessellated

-Write values from the four Abuses (e.g., the four components of a single full-color
pixel-R, G, B, A) separately to four scratchpad locations.

-Write the same component (e.g., Red) of four adjacent pixels in four scratchpad
locations.

-Write one Abus value (e.g., Red) into one scratchpad location.

-Same as Pixel, only without tessellation.

5

Read crossbar. The read crossbar is a source on the Sbus. The read crossbar Ituntessellates It the
pixels coming out of scratchpad, according to four possible access modes:

Pixel

Component

Broadcast

Index

-Read four scratchpad values (e.g., the four components of a single full-color
pixel-R, G, B, A) onto the Mbus.

-Read the same component (e.g., Red) of four adjacent pixels from four scratchpad
locations.

-Read a single scratchpad location to all four Mbuses, thereby sending out four
copies of a single value.

-Read four scratchpad values from four explicit addresses supplied by the
programmer.

Scalar components

The scalar components all reside on the Sbus. There is only one Sbus, or scalar bus, while there are
four each of the Mbus and Abus. Through the Sbus a programmer can access the control unit, the
address generator, the runflags, memory for communication with the host, and various other registers.

Control Unit. The Control Unit handles the details of processor execution and data flow within the
Chap. Specifically, it allows the ALUs to execute based on the state of the mnflags and distributes the
signals to clock data into and out of computing elements, such as the multiplier. The control unit also
contains several registers, such as the program counter, related to execution.

Program memory. The address space for the program memory is 16K words, each of which is 96
bits wide. With the exception of multi-line statements, each line of a Chap program translates into a
single instruction word. The program memory can hold programs over 16,000 lines long. This
memory is completely separate from scratchpad memory and is controlled as a separate resource by the
software in the Pixar software release.

Picture Memory

Also called a frame buffer, the 24-Megabyte picture memory can store a 2048 x 2048 (48-bit pixel)
image, and can be expanded to 48Megabytes. Though the address space is actually linear, the memory
is conceptually divided into tiles, each of which is 32 x 32 pixels. A programmer can configure the
memory to any rectangular shape (measured in tiles) to hold any image, whether in landscape, square,
or portrait format. The picture memory is designed to facilitate the pixel data structure, though it is
quite flexible in handling other data formats as well.

As mentioned above, the pixel data structure contains a fourth component, called the Alpha channel.
The Alpha channel may contain arbitrary data as dictated by the software. One use of the Alpha channel
is to include coverage (i.e., opacity-the opposite of transparency) infonnation at each pixel. In this
scheme, the alpha channel determines the degree to which a pixel obscures an existing pixel when one
picture is laid on top of another. An alpha value of 1.0 corresponds to full coverage, while an alpha of
0.0 means the underlying pixel is to remain unchanged. For many applications, this use of the alpha
channel makes it easy to do anti-aliasing, layering, filtering, touch-up, semi-transparent surfaces, and
composition (matting and merging).

Other uses of the Alpha channel include storing four monochrome images in memory at the same time,
providing Z-axis information (for volume applications), temporary scratch area, object tags, priority
infonnation, etc. The Alpha channel gives the programmer added flexibility in dealing with real-world
complex data sets.

6

The memory is tessellated to give fast access horizontally or vertically. One memory access pulls a
burst of 16 or 32 pixels. Each pixel contains 48 bits of data (12 bits each for the Red, Green, Blue,
and Alpha channels). The access time to memory is three microseconds, but blocks of pixels can be
read at a rate of four six-byte pixels every 100 nanoseconds. This is not the theoretical maximum, but
the actual rate running real code.

Video board

Video features. The video board sends scan lines from the memory to the video monitor. Since the
memory has more pixels than the monitor can display, the video board sends a subrectangle, called a
Pixel Window, of the memory to the monitor. Two video boards may independently display any two
rectangular portions of memory. Genlock circuitry allows video synch to coordinate the monitor's
signal with other devices in the system. The video board has some special features, controlled by
programs running on the host computer:

-Flexible formats (1024 x 768 interlaced, 525-line ROB, NTSC compatible, PAL)
-Hardware cursor, user-designed, 128 x 128 pixels
-Integer zoom
-Roam through the entire picture memory
-Colormap loading
-10 bits per DAC (Digital-to-Analog-Converter)

NTSC and Genlock

The Pixar Image Computer provides broadcast-quality video output for an NTSC encoder. A synch
input locks the output video timing to other video signals. One genlock board is necessary for each
video board in the Pixar Image Computer.

Memory Controller

The memory controller board makes data transfer flexible and convenient for the programmer. It
coordinates data flow between the picture memory and its two customers: the CHAP and video board.
When the CHAP or Video board makes a request for access to the memory, the memory controller
arbitrates the request and allocates memory resources on a "fIrSt-come, fust-served" basis. The
memory controller is normally transparent to the programmer.

I/O for the Pixar Image Computer

Yapbus. A high-speed channel developed by Pixar connects the Pixar Image Computer to various
peripheral devices and other computer systems. The channel, called the Yapbus (for "Yet Another
Pixar BUS"), can transfer 64-bit data words at 10MHz, for a burst transfer rate of 80Mbytes/second.
Control for the Yap bus is completely distributed, with a zero-collision transfer protocol guaranteed by
a distributed arbitration scheme. Up to 16 devices may be connected on a single network.

Third party peripherals

Devices that will plug in to the SUNTM VMETM backplane can be used by the Pixar Image Computer.
These include off-the-shelf frame grabbers, film printers, etc.

7

Conclusion

The Pixar Image Computer is a proven design, manufactured using state-of-the-art technology, that
outperfonns both general and special-purpose machines in image computing applications. Its large
software library and multi-slot design make it flexible and expandable to meet new requirements as
customers discover the new possibilities image computing brings them. The Pixar Image Computer is
a complete system, developed and supported to meet the needs of those who demand the highest
quality digital pictures.

Pixar Image Computer, Pixar, Pixar Deve10pmcmt Systan, OJap, and Yapbus am tradcmatb ofPiur.
Multibus is a tradenw:It oflntcL VME bus is a tradenwk of Motorola. Qbus is a trade:muk of Digital
Equipment Corporation. Sun is a tradcmarlt of Sm Microsystems. Unix is a mgist.emi trademark of AT&T Bell Labs.

8

The Pirl Tutorial:
Image Manipulation on the Pixar Image Computer

PIXAR

ABSTRACT

This document discusses Pirl, a library of subroutines for manipulat
ing images on the Pixar Image Computer. It is a tutorial intended to
enable programmers to invoke and combine basic image operations. We
discuss the motivation for the package and where it fits into the Pixar
software environment, then provide a series of examples showing how
Pirl is used, concluding with pointers to lower-level packages which
enable programmers to extend the Pirl library. In addition, this tutorial
documents a number of graphics data types which are used widely in the
Pixar software release. Accordingly, it is required first reading for new
Pixar programmers.

November 18, 1986

PIXAR November 18, 1986 Introduction

Pirl Tutorial

Table of Contents

1. Introduction.. 1

2. Using Pirl ... 0 0 0 0.................................... 3

3. Getting Started: an Example Program ... 3

4. Compiling and Running Pirl Programs 5

5. A Functional Pirl Program 7

6. Using Different Tile Blocks ... 8

7. Making New Pixel Windows .. 0................................. 9

8. Error Handling ... 10

9. The RGBAPixelType Data Type .. 11

10. Clearing a Pixel Window .. 12

11. Channel Masks 13

12. Displaying Pictures from I?isk ... 14

13. Storing a Picture ... 16

14. Picture Fonnats•...... 18

15. Merging Pictures: Pir1Merge() ... 19

16. Writing into Pixel Windows I: Subrectangle Filling ... 21

17. Writing into Pixel Windows IT: Line Drawing .. 24

18. Where To Go From Here ... 27

PIXAR November 18, 1986 Contents

The Pirl Tutorial:
Image Manipulation on the Pixar Image Computer

PIXAR

1. Introduction

Pixar Software Overview provides an overall view of the Pixar software release: its
structure, conventions and motivations. We begin by reviewing the basic concepts cen
tral to Pirl.

The three most important components of the Pixar Image computer are the image
memory, the video board, and the Chap (Channel Processor). The video board does not
concern us here. The Chap is the workhorse of the Pixar Image Computer; it contains the
four AMD 29116 processors which justify the term image computer, together with
instruction memory for storing programs and scratch pad memory for the use of these
processors. The image memory is where the pictures are stored. The hardware of the
image memory consists of a large number of tiles, each 32 pixels square. The tiles of the
image memory are organized by the software into rectilinear regions known as tile blocks
and pixel windows, with which Pirl is primarily concerned.

Most frame buffers have a 2-dimensional addressing scheme, with a fixed width and
height in pixels. In contrast, the image memory of the Pixar Image Computer
(hereinafter, the PIC) can be dynamically reconfigured to a nearly~arbitrary variety of
aspect ratios. The basic unit of this organization is the tile. The basic PIC contains 4
million pixels, or 4 thousand tiles.

A tile block is a software entity organizing tiles into a two-dimensional structure for
display. It consists of a contiguous series of tiles divided into a number of rows. The first
tiles in a tile block (the first row) may contain, for example, the first 32 lines of an image,
the second row the second 32 lines, and so on. Thus, on the standard PIC display moni
tor, a single tile block of 24 rows and 32 columns of tiles can be used for the 768-line,
1024-pixels-per-line display.

Once a tile block is defined, by allocating (nrows times ncolumns) contiguous tiles,
a rectangular region of pixels (not necessarily a multiple of 32 in either dimension) can
be allocated from the tile block anywhere within it. For a tile block which coincides with
the display screen (as above), a number of pixel windows may be defined for smaller
subregions of the display, forming in effect a number of various-sized "viewports" for
accessing the display.

As another example, a tile block could be defined with 32 columns (the display
width), and enough rows to fIll the entire frame buffer (128 in a four-million-pixel PIC),
with non-overlapping pixel windows, the size of the display, "stacked" vertically in the
tile block, so that they could be successively put on display without moving pixels
around.

PIXAR November 18, 1986 Introduction

Pirl Tutorial -2-

The pixel window concept is the foundation of Pirl. A pixel window is a display
able, rectangular set of pixels in a tile block. If the pixels in a pixel window are con
sidered as an image, then Pirl is an image-manipulation package; all functional Pirl rou
tines operate on images. The basic idea is to provide a set of useful, simple operations on
images so that they can be composed into more complex operations.

PIXAR November 18, 1986 Introduction

Pirl Tutorial - 3 -

2. Using Pirl

Since Pirl is a collection of functions assembled into a library, the standard UNIXt
documentation style is used. All routines discussed here are summarized more tersely in
Section 3H of the Pixar Programmer's Manual.

The source of the tutorial examples discussed below are in the directory
/usr/pixar/doc/tutorial/pirl. To run them, you should create a directory of your own
(referred to hereinafter as your working directory), then copy the files as they are dis
cussed.

3. Getting Started: an Example Program

Figure 3-1 shows the complete source of an example program using Pirl, as con
tained in the flie lazybum.c. It does nothing, but it does it right: it is the minimal correct
Pirl program. Understanding it and getting it to run is your frrst exercise.

#inc~ude <pir~.h>

/* ~azybum: a Pir~ program which does nothing */
main ()
{

Pir~Begin (CHAPO, STD_TB);
Pir~End();

Figure 3-1: lazybum Program Listing (lazybum.c)

All program files using Pirl pixel windows and defined constants must include the
header file <pirl.h> in /usr/pixar/include.

Since Pirl maintains a (simple) runtime environment, a program must initialize, and
later deallocate, this environment. The former task is accomplished by the call to Pirl
BeginO, explained by the following digression:

In the Pixar software environment, tile blocks and pixel windows are fully dynamic
objects, and a program can define several tile blocks, several pixel windows per tile
block, and so on. Additionally, a given system can have several PICs attached to it, each
PIC can include up to 3 Chaps, and tile blocks and pixel windows can be distributed at
will among these (well, almost at will). However, managing all these structures is a sig
nificant burden on the programmer (and understanding it is a significant burden on the
new Pixar programmer), and the flexibility is rarely useful. Pirl eases this burden con
siderably by imposing the following simplifying constraint: one PIC, one tile block. Both
are maintained almost invisibly in the Pirl environment. In PirlBeginO, you say which
Chap is to be used (CHAPO above), and you describe the tile block to be used.
Thereafter, all operations use them automatically.

In the above call to PirlBeginO, CHAPO tells Pirl to use the first Chap of those
attached to the first PIC running on the host. It is a token which allows other Chaps and

t UNIX is a Trademark of Bell Laboratories.

PIXAR November 18, 1986 Getting Started

Pirl Tutorial -4-

other PICs to be used, but no harm will come of always using CHAPO in the absence of
good reasons to do otherwise. STD _ TB simply specifies that Pirl' s tile block should be
the one discussed above: 32 tiles wide, 24 high beginning at the first tile in image
memory. Other possible values for this argument are BIG_TB and HUGE_TB, which
are also 32 tiles wide but are 128 and 256 tiles high, respectively. The former is the larg
est tile block available on a standard PIC with 4 million pixels, while the latter will just
fit on the largest available PIC (8 million pixels).

PirlBeginO also performs the auxiliary service of putting its standard tile block up
on the display. The upper left pixel of the tile block is displayed at the upper left comer
of the display.

The complementary call to PirlBeginO is PirlEndO. In general, each will be called
once during a program: PirlBegin at the beginning and PirlEnd at the end. Calling Pir
IEndO at the end of a program is a matter of good citizenship, since it clears up some
dynamic resources on the Chap which would otherwise persist and eventually require the
Chap to be cleared with the not-so-friendly shell command 'chmap -i'. You don't need
to understand that sentence. Just make a habit of making PirlEndO the last line in your
program.

PIXAR November 18, 1986 Getting Started

Pirl Tutorial -5-

4. Compiling and Running Pirl Programs

Figure 4-1 shows part of a makefile (if this term is unfamiliar, go back to the UNIX
Programmer's Manual) to compile lazybum. It illustrates common requirements for Pirl
programs specifically, and Pixar programs in general.

CFLAGS = -g -I. -I/usr/pixar/include
LIBDIR = /usr/pixar/host/lib
LIBS = $(LIBDIR)/libpirl.a $(LIBDIR)/libpicio.a $(LIBDIR)/libpirl.a \

$(LIBDIR)/libchad.a $(LIBDIR)/libpixar.a -1m -lg

all : lines fill getpic lazybum merge plaster savepic \
skinny skinny2 testpat testpat2 wrong

lines : lines.o
cc -0 lines lines.o $(LIBS)

fill : fill.o
cc -0 fill fill.o $(LIBS)

getpic : getpic.o
cc -0 getpic getpic.o $(LIBS)

lazybum : lazybum.o
cc -0 lazybum lazybum.o $(LIBS)

merge : merge.o
cc -0 merge merge.o $(LIBS)

plaster : plaster.o
cc -0 plaster plaster.o $(LIBS)

savepic : savepic.o
cc -0 savepic savepic.o $(LIBS)

skinny : skinny.o
cc -0 skinny skinny.o $(LIBS)

skinny2 : skinny2.0
cc -0 skinny2 skinny2.0 $(LIBS)

testpat : testpat.o
cc -0 testpat testpat.o $(LIBS)

testpat2 : testpat2.0
cc -0 testpat2 testpat2.0 $(LIBS)

wrong : wrong.o
cc -0 wrong wrong.o $(LIBS)

Figure 4-1: makefile for tutorial

The overall directory structure of the Pixar software release is discussed in Pixar
Software Overview. This makefile uses two of its principal directories:
lusrlpixarlinclude, as invoked by the CFLAGS macro, is the master directory for header
fues, used by practically all Pixar programs. In the case of lazybum, the compiler must
look there to find pirl.h. lusr/pixar/hostllib (see LmDIR above) contains all host pro
gram archives. Any program using Pirl be linked using three of these archives: libpirl.a

PIXAR November 18, 1986 Compiling

Pirl Tutorial -6-

is obvious. All Pirl programs use Chad code, contained in libchad.a, and Chad, in tum,
uses Iibpixar .a.

If lazybum.c and makejile, both from lusrlpixarldocltutoriallpirl, are now in your
private directory, then make lazybum by telling the shell to 'make lazy bum' . If all goes
well, then you can run it with 'lazybum'. Run lazybum, but fIrst do 'chmap -i' to re
initialize the Chap. This is the "hard reset" command to clear out all programs and data
on the Chap, and perform other initialization. chmap, or any other Pirl program, may tell
you that it can't open the device, that /dev/chapO is busy. This indicates that another user
has the Chap open. In such cases, all you can do is track this person down and ask them
when they'll be finshed. Sometimes you will even have Chap processes in background
which have the Chap open, in which case you'll have to ask yourself when you'll be fin
ished.

When you start lazybum, you may see a series of messages telling you that certain
modules of native Chap code are being loaded from various libraries. This is the Pixar
runtime environment. Under various other shell programs, you will see other modules
being loaded.

Run lazybum again, this time without doing 'chmap -i' first The module-loading
messages do not appear this time. This is Pixar's dynamic loader in action, or rather
inaction: all the code of the runtime environment was loaded the first time through.
Since the dynamic loader maintains a system-wide symbol table, it knows what modules
are loaded, and where, so that any given module need only be loaded once, no matter
how many times it is used.

When you run lazybum, you will notice that, although it may be doing nothing, it is
doing it very slowly; it will probably take several seconds for it to return, even on an
unloaded system, even the second time through with no modules being loaded. This
overhead, which you will notice in any program using Pirl or Chad, is a constant which
should become insignificant in long-running programs.

One final thing to notice about lazybum: its size. Do 'Is -llazybum', and you will
see an enormous (>400K) executable file. This should give you an idea how much
software supports Pirl. This 400K, too, is pretty much a fixed cost of using Chad. Pirl
is a relatively thin layer on top of this.

Depending on the setting of the environment variable CHAPDEBUG. If CHAPDEBUG=6, the
functions names will be echoed on stde". If CHAPDEBUG != 6, or does not exist, these mes
sages will not appear.

PIXAR November 18, 1986 Compiling

Pirl Tutorial - 7-

s. A Functional Pirl Program

Now that you've made a Pirl program work, you can make one that does some
thing. Figure 5-1 shows the source of testpat.c, which you should now copy from the
tutorial directory lusrlpixarldocltutoriallpirl. Obviously, the only difference between
this program and lazybum is the line calling PirlCbars O. When you compile this pro
gram by saying 'make testpat' (which you should now do), then run it, you will see a
broadcast color pattern on the display.

#include <pirl.h>

/*.testpat: Use Pirl to put a~~,st pattern up on the .monitor */
mal.n () \)J"""~ ~,v ST"p~\\3-=- \';n'-\J<7.6/s

C YI~e 'Pvc-"-
{ / .v>"? ~ __ .. ··----·TB_'P.E.5Ce-~?"(\ .. v .. \ ~'2.:).lI-\)

PirlBeqin (CHAP 0 , STD_TS).; (.", 1,.'d."'-i;:';"'le; ["",.r '(ie>(:,

PirlDisplay (ThePirlPW, 0, 0); '... ..
PirlCbars (ThePirlP~) WORfJ\,~'l,,) , 'i)< ~, I'<!-d'

PirlEnd 0; ~ W\A\c-\)

} ?1~:~~

Figure 5-1: testpat Program Listing (testpat.c)

PirlDisplayO causes the pixel window given by its ftrst argument to be displayed
on the monitor with its upper left pixel at the top left of the display. The last two argu
ments, if non-zero, give an offset from this positioning: positive arguments move the
display origin right and down in the pixel window.

PirlCbarsO fills a pixel window with a broadcast test pattern.

This program may be boring, but it is informative. First, it illustrates the general
form of a Pirl call: an operation aimed directly at a pixel window of image memory.
Other operations may use more than one operand pixel window, and they frequently have
arguments which are not pixel windows, but they always have at least one pixel window
whose pixels will be modified.

The second interesting thing is that PirlCbars 0 and PirlDisplayO use ThePiriPW.
This object, defined in pirl.h as type PirIPW, is Pirl's default pixel window. It was
created by PirlBegin () as a service to users who need only the simplest access to the
pixels of the display. It will always coincide with the tile block specified by the second
argument of PirlBegin 0, which in this case is the entire display.

PIXAR November 18, 1986 First Program

Pirl Tutorial - 8-

6. Using Different Tile Blocks
You might find that none of the three standard tile blocks given above suits your

needs. Maybe an image in a file is exceptionally wide; maybe you want to assemble an
animation of small images; maybe you would rather avoid overwriting a tile block which
starts with the first tile by allocating one from further down the frame buffer; maybe you
are simply of independent mind. For whatever reason, you can get Pirl to use a different
tile block.

There are two ways to do this. You can use the TB _ DESCRIP macro, as defined in
pirl.h. Suppose you want a tile block 16 tiles wide and 24 tiles wide, beginning with tile
number 1024. Then the program skinny, shown in Figure 6-1, will draw the previous
broadcast color bars in that tile block.

#include <pirl.h>
#include <cbars.h>

/* skinny: Use Pirl to display a narrow test pattern */
main ()
{

}

PirlBegin (CHAPO, TB_DESCRIP(1024, 16, 24»;
Pir~isplay (ThePirlPW, 0, 0);
PirlCbars (ThePirlPW, NORMAL); /* Nor.mal color bars */
PirlEnd ();

Figure 6-1: skinny Program Listing (skinny.c)

Compile ('make skinny') and run the program. As promised, ThePirlPW fills the
tile block, which is now half the width of the display, but just as tall. Note the strange
ness of the display. If you block out the right half of the display, the bars should look
'right' (Le., skinny).

Exercise: Modify skinny.c to use a tile block, beginning with tile #0, which is 48
tiles wide and 24 high, then compile it and run it. These three instances of color bars
and the way they are displayed should give you important clues to how the video
scan out of the frame buffer actually works. Can you tell why the 'skinny' color bars
look the way they do? Hint: consider that tiles in memory really are strung together
in sequential addressing, and that, for the case of unmodified 'skinny', the first tile in
the second row is number 1040 in the frame buffer.

PIXAR November 18, 1986 Other Tile Blocks

Pirl Tutorial - 9-

7. Making New Pixel Windows

It is all very well and good to define novel tile blocks, but pixel windows are much
more useful. Not only is it necessary to define more than one pixel window to use Pirl
routines which have several operands, but pixel windows are convenient, in that they
impose independent coordinate systems on the pixels of a tile block.

'skinny2.c' is a program that has ideas of what a pixel window should be, indepen
dent of ThePiriPW. It is shown in Figure 7-1. Note ftrst that we are back to the original
tile block STD _ TB. What is really new here is the PirlPW OurPW. It is declared in the
fIrst line of main 0 and allocated immediately after the program enters the Pirl environ
ment, by PirlNewPW O. This function takes five arguments: a pointer to the PirIPW,
followed by the minimum and maximum coordinates in·x and y of the pixel window, in
the coordinate system of the tile block. As for all Pixar software, this coordinate space
has its origin at the upper left comer, with positive values moving right and down. This
pixel window, then has its upper left comer at the upper left comer of the tile block (0,
0), and is 512 pixels wide and 768 high. Note carefully the distinction between (for
example) xmax and xsize: xmax = xmin + xsize - 1. Forgetting this relation can cause the
most vexatious off-by-one errors.

#inc~ude <pir~.h>
#inc~ude <cbars.h>

/* skinny2: Use Pir~ to display another skinny test pattern */
main ()
{

}

Pir~PW OurPW;

Pir~Begin (CRAPO, STD TB);
PirlDisplay (ThePir~PW, 0, 0);
Pir1NewPW(&OurPW, 0, 511, 0, 767);
Pir~Cbars (OurPW, NORMAL); /* Nor.ma~ color bars */
Pir~End ();

Figure 7-1: skinny2.c Program Listing

Now copy and compile 'skinny2.c'. Before you run it, though, run the program
lusrlpixarlhostlbinlclr (if you haven't already done so, it will make your life much easier
if you add 'usr/pixar/hostJbin' to your Shell's search path) to clear the display. When
you run 'skinny2', the left half of the display will have the same skinny color bars as in
'skinny'. But the right half of the display will remain dark. This is directly related to the
fact the tile block is now the size of the display. Do you understand the video now?

Exercise: Now that you know how to declare one pixel window, modify parts of the
tile block, then put color bars into them with PirlCbars O. DIRE WARNING: be
absolutely certain that none of the pixel window coordinates lie outside the range
[0,1023] for x-coordinates and [0,767] in y, for these are the boundaries ofSTD_TB.
You don't know how to handle error conditions yet, so ignoring this stricture will
surely cause your program to bomb. If you feel like it, though, you can do a null
check on the value ofOurPW.

PIXAR November 18, 1986 New Pixel Windows

Pirl Tutorial - 10-

8. Error Handling
All Pirl routines obey a simple convention: a return value of zero is normal; all

other values are error codes. A diagnostic message for the nature of the error can be
printed by calling PirlErrReportO with a file pointer to either stderr or stdout (or a
pointer to any other file that's open for output).

PirlErrReportO tells you the source file in which the error occurred and the line
number within that file. It also describes the nature of the error. Typically, a Pirl error
condition occurs as a result of a Chad error (Chad, recall, is the lower-level package
which PirI uses). In these cases, you will see two error reports: first, the Chad error that
caused the PirI error, then the Pirl error itself. Frequently, there is no difference between
the two errors. The location of the Chad is usually of academic interest only; you really
want to know where the trouble lies in your source file(s).

The obvious method of using PirIErrReport 0 would be to include a call to it
inside a conditional on the return value. However, this is not only tedious to type but tir
ing to read, and so pirl.h includes a macro, CHECKO which sets a global variable, PirI
LastErr (also defined in pirl.h), and jumps to the label error, which can contain arbitrary
error-handling code. The program wrong.c (see Figure 8-1) illustrates this. Note the exit
o call which now appears; you don't want execution to fall through to the error-handling
block after normal execution.

#include <pirl.h>
#include <cbars.h>

/* wrong: Try unsuccessfully to show a test pattern on the 'monitor */
main ()
{

error:

}

PirlPW OurPW;

CHECK (Pir1Begin (CHAPO, STD TB»;
CHECK (PirlDisplay (ThePirlPW, 0, 0»;
CHECK (Pir1NewPW (&OurPW, 0, 1024, 0, 768»;
CHECK (PirlCbars (OurPW, NORMAL»;
CHECK (PirlEnd (»;
exit (1);

P irlErrReport (stderr);
PirlEnd ();

Figure 8-1: wrong.c Program Listing

Run this program in your directory. The error here is the previously-noted off-by
one error in the declaration of the pixel window: we are asking for a pixel window 1025
pixels wide and 769 lines high from a tile block which is only 1024x767. Note that the
error message tells on what line of the source file the error occurred.

Exercise: introduce error-handling code, as above, into the version of 'skinny2'
which took multiple pixel windows. Modify it further to enter a loop, reading pixel
window coordinates from standard input, declaring a pixel window and putting color
bars into it. What happens when you open the 33rd pixel window?

PIXAR November 18, 1986 Error Handling

Pirl Tutorial - 11 -

9. The RGBAPixelType Data Type
The pixel window is not the only data type that Pirl routines take. In addition to the

usual scalar, vector and matrix ints,f/oats and doubles, there is a special type, declared in
lusrlpixarlincludelpixeldeJ.h as follows:

typedef short int PixelDataType;

typedef struct {
PixelDataType Red;
PixelDataType Green;
PixelDataType Blue;
PixelDataType Alpha;

} RGBAPixeIType;

There is nothing mysterious about this structure, but it is pervasive, used throughout
Pixar software to move pixel values around on the host and to the Chap.

Actually, there is one thing mysterious about RGBADataTypes. They are not actu
ally integers to the Chap. Pixel values on the Chap run from -.5 to 1.5, so that 1 bit (of
the 12 used for each channel of a pixel) is sacrificed to overflow prevention. The net
result is that a 12-bit pixel contains 10 bits of fraction. Since it is probably not economi
cal to modify the host to compute using this representation as a hardware data type, short
integers are used, with conversion macros supplied between floating-point and pixel
types.

Further information on Chap number representation, if needed, can be found in the
Chap Programming Tutorial. From the viewpoint of host programming, though, it is
sufficient to know about the existence of the macros DBL2PXL 0 and PXL2DBL O.
The former takes a floating-point value (either float or double), converting it to PixelDa
taType (strictly speaking, it works for ints, too, but you have no business using integers in
this context). The latter makes the opposite conversion.

PIXAR November 18, 1986 RGBAPixeLType

Pirl Tutorial - 12-

10. Clearing a Pixel Window

Now that you are sick of color bars, we can use anRGBAPixelType for a new opera
tion: filling a pixel window with a color. See Figure 10-1. This program should be obvi
ous. One point, though: the RGAPixelType structure 'ThePirlPW' is passed by address,
rather than value. This is universally true of Pixar software: no structures are ever passed
directly. Rather, pointers to an instance of the structure are passed. Of course, this
reveals that PirlPWs are actually pointers to structures.

#inc1ude <pir1.h>
#inc1ude <pize1def.h>

/* fi11: fi11 a pixe1 window with a co1or */
main ()
{

error:

}

f10at red = .7, green = .3, b1ue = .5;
RGBAPixe1Type co1or;

CHECK (Pir1Begin (CHAPO, STD TB»;
CHECK (Pir1Disp1ay(ThePir1PW; 0, 0»;

co1or . Red = DBL2PXL (red);
co1or.Green = DBL2PXL (qreen);
co1or.B1ue = DBL2PXL (b1ue);
co1or.A1pha = DBL2PXL (1.0);

CHECK (Pir1C1ear (ThePir1PW, &co1or));
CHECK (P ir1End ());
exit (1);

Pir1ErrReport (stderr);
Pir1End ();

Figure 10-1:fill.c Program Listing

An important digression: in the Pixar Programmer's Manual documentation for
Pirl routines, pixel windows are declared as ChadPW pointers. The PirlPW data type is
typedefed to a ChadPW. The only distinction is that the former are allocated through
Pirl, and as a result PirlEndO can release all pixel windows.

Exercise: Modify fill.c to use a color that is passed to it, either on the command line
or through standard input. The values given to DBL2PXL 0 should not be outside
the range -.5 up to but not including +1.5. What happens when you give values out
side the range 0 to 1.0?

Exercise: PirlSweepX 0 takes a pixel window and an array of RGBAPixelTypes,
using the array as a scan line and sweeping it vertically in the pixel window. Modify
fill.c again to fill such an array with some color pattern (note that the array must
have as many elements as the pixel window has pixels in a scan line) and call
PirlSweepX 0 or PirlSweep Y O. Are you impressed with the speed of the PIC yet?

PIXAR November 18, 1986 PWClearO

Pirl Tutorial - 13-

11. Channel Masks

There are situations in which you would want to write some subset of the channels.
Three monochromatic pictures, for example, can be "stacked" in the red, green and blue
planes of a single pixel window. The PIC allows the channels of a pixel window to be
written independently by using a channel mask, a bit mask which restricts the subset of
channels available for modification. The program in Figure 11-1 illustrates.

#inc~ude <pirl.h>
#include <pixe~defoh>
#include <cbars.h>

/* testpat2: show test pattern on monitor using channel mask. */
main ()
{

error:

float red = .7, green = .3, blue = .5;
RGBAPixelType color;
int mask;

CHECK (PirlBegin (CHAP 0 , STD_TB»;

color.Red = DBL2PXL(0.0);
color.Green = DBL2PXL(0.0);
color.Blue = DBL2PXL(0.0);
color.~pha = DBL2PXL(0.0);

/* CHECK(PirlClear (ThePirlPW, &color»; */

printf ("color? ");
switch(getchar(» {
case'r':
case'R':

mask = REDMASK;
break;

case 'g':
case 'G':

mask = GREENMASK;
break;

case 'b':
case 'B':

mask = BLUEMASK;
break;

default:

}

fprintf(stderr, "I don't know that color.\n");
PirlEnd 0;
exit(-l);

CHECK(PirlSetChannelMask (ThePirlPW, mask»;
CHECK(PirlCbars (ThePirlPW, NORMAL»;
CHECK (P irlEnd (»; .
exit (1);

PirlErrReport(stderr);
PirlEnd 0;

Figure 11-1: testpat2.c Program Listing

Clear the display using 'clr', then run 'testpat2' with the different channel masks.
Note that channels other than the one in the mask are unaffected by the new color bars.

PIXAR November 18, 1986 Channel Masks

Pirl Tutorial - 14-

12. Displaying Pictures from Disk
You are probably interested in communicating pictures between image memory and

files on external media, primarily disk files. This and the next two sections discuss using
Pirl with the Pixar picio package for image storage and retrieval.

Figure 12-1 shows a program to read a picture from a file into a pixel window. The
first new thing about this program is the header file picio.h, which defines the structure
type PFILE. In the Pixar image fue format, a picture file begins with a header block giv
ing descriptive information about the file, which is copied into the PFILE structure when
the picture is opened by PicOpenO, along with a regular UNIX-style file pointer. The
program uses this information in the call to PirlNewPW () to open a pixel window the
same size as the image on disk. After opening the pixel window, the program calls Pirl
GetPic () to read the image from the disk.

#inc1ude <pir1.h>
#inc1ude <picio.h>

#define PICFlLE "andre.pic"

/* getpic: Read a picture from a fi1e into a pixe1 window */
main ()
{

PFILE *pic;
Pir1PW OurPW;

pic = PicOpen (PICFILE, "r");
if (!pic) {

fprintf (stderr,"Can't get picture file %s\n", PICFILE);
exit (-1);

CHECK(Pir1Begin (CHAPO, STD_TB));
CHECK(PirlDisp1ay(ThePirlPW, 0, 0»;

CHECK(Pir~ewPW(&OurPW, 0, pic->Pwidth-1, 0, pic->Pheight-1));
CHECK(Pir1GetPic (pic, OurPW, 0, 0));

CHECK(PirlEnd ());
PicC10se (pic);
exit (1);

error:

}

Pir1ErrReport (stderr);
Pir1End ();
if (pic)

PicC10se pic);

Figure 12-1: getpic.c Program Listing

To run this program, you must (besides copying the source and make'ing it) copy
the picture fue andre.pic from lusrlpixarldocltutoriallpirl.

PirlGetPic 0 takes four arguments: the PFILE picture-file pointer, the PirlPW
which is the destination of the picture, and x and y offsets. This latter pair, here (0,0), is
most useful when the size of the pixel window differs from the size. of the picture. The
offset gives the number of pixels by which the picture is moved vertically and

PIXAR November 18, 1986 Displaying Picture Files

Pirl Tutorial - 15-

horizontally before writing the data into the pixel window. Thus, if the offset had been
(-10, -10), the origin of the picture would be at (-10, -10) in the coordinate system of the
pixel window, and so the fIrst 10 rows and 10 columns of the picture would have been
invisible.

Exercise: Modify getpic.c to take six arguments from the command line: a rectangle
defIning the pixel window, and an offset for the picture. Experiment with various
window sizes and picture offsets to get a feel for what they do.

Exercise: Change the program further to call PicFind 0 instead of PicOpen O. The
latter uses the Shell environment variable PIXP ATH as a series of directories to
search for the given fIle. Make your PIXPATH include /usr/pixar/doc/tutorial/pirl,
then delete andre.pic from your working ciiIectory and recompile and run getpic to
get the picture again. PIXPATH enables your installation to keep good pictures
accessible, while economizing disk space, by maintaining them in a set of standard
places.

Exercise: The program gtinfo, included in the Pixar Software Release, is a Shell pro
gram which summarizes the header on a picture fue. Check out a few of the picture
fIles in /usr/pixar/doc/tutorial/pirl and use your modified getpic to look at them
onscreen. Try tiling them on the display so you can see several at once.

PIXAR November 18, 1986 Displaying Picture Files

Pirl Tutorial - 16-

13. Storing a Picture
Once you have an interesting display, you can try saving a picture. The program in

Figure 13-1 does that:

#inc~ude <pir~.h>
#inc~ude <picio.h>

#define PICFILE "our.pic"
#define ALLREAD 664 /* mode for pic fi~e */

/* savepic: Save a picture to a fi~e on disk */
main ()
{

PFILE *pic;

PicSetPsize (1024, 768);
pic = PicCreat(PICFILE, ALLREAD);
if (!pic) {

fprintf(stderr,"Can't create picture fi~e %s\n", PICFILE);
exit(-l);

error:

}

}

CHECK(Pir~Begin (CHAPO, STD TB»;
CHECK(Pir~isp~ay (ThePir~PW, 0, 0»;

CHECK(Pir~SavePic pic, ThePir~PW, 0, 0»;

CHECK(Pir~End (»;
PicCl.ose(pic);
exit (1);

Pir~ErrReport(stderr);
Pir~End 0;
if (pic)

PicC~ose(pic);

Figure 13-1: savepic.c Program Listing

There are three significant differences between this program and getpic. First; the
program declares the size of the picture to be output with PicSetPsize O. Then, the pic
ture file our.pic is created with PicCreat O. Finally, the picture is saved with Pirl
SavePic O.

The semantics of PirlSavePic 0 are as follows: the origin of the specified picture
(the upper left pixel saved) comes from the pixel in the PW specified in the last two argu
ments. The rectilinear region of pixels which are actually saved is the smaller of 1) the
area of the PW to the right and below the given pixel; and 2) the size of the image, as
specified by PicSetPsize O. If this seems confusing, just accept that this arrangement
does what you want: if you declare an image size that matches the PW size and give an
offset of (0,0) to PirlSavePic 0, then the whole PW is saved. If you want to save a por
tion of a PW, then you can cre~te a picture fue of the appropriate size using PicCreat 0,
and pass the offset to the desired region to PirlSavePic O.

You should make and run savepic, but only if you have lots of disk space on your
file system. If you find that there is not enough space to store the whole display, you can

PIXAR November 18, 1986 Storing Picture Files

Pirl Tutorial - 17-

reduce the size of the image in PicSetPsize () anellor open up a smaller pixel window.

Exercise: Modify this program to write a smaller part of the display rather than the
entirety of it as represented by ThePirlPW. Then use your modified version of get
pic to place it in different locations on the display.

PIXAR November 18, 1986 Storing Picture Files

Pirl Tutorial - 18-

14. Picture Formats

savepic illustrates the protocol of picture creation: the parameters of the image are
declared, then the picture is created. Since there are many options for picture storage,
this mechanism is used to avoid having a long list of parameters to PicCreatO which
rarely differ from the default. The following lists the characteristics associated with each
image, the routines used to set them, and their standard values. Again, all of these rou
tines must be called before PicCreat O.

• image size: The number of pixels of width and height of the image is set, as above,
by PicSetPSize O. These are arbitrary positive integers, where 512 by 488 is
assumed.

• tile size: Pictures can be stored as one monolithic block of pixels, or subdivided into
tiles. PicSetTsize 0 specifies the size in x and y of the tiles used. It needn't divide
the picture size evenly. 512 by 488 is the assumed tile size.

• offset: By default, the upper left pixel of an image has coordinate (0,0). The func
tion PicSetOffset 0 resets this origin, effectively offsetting the pixels of the image
for all subsequent retrievals. This can be used to break a huge picture into a number
of picture flIes.

• format: Several subsets of the red, green, blue and alpha channels of an image may
be stored. This is most useful for 1) not wasting the space required to store the alpha
information of pictures that don't use it, and 2) storing monochrome pictures. The
format is set by passing PicSetFormat 0 one of PF _RGBA, PF _RGB, PF _R,
PF _ G, PF _B and PF _A, as defined in picio.h. By default, all four channels of an
image are saved.

• label: Each file can have an ASCII string associated with it. This can be whatever
information the creator of the file deems useful, up to 255 characters. Set by PicSet
LabelO.

• pixel format: The pixel channel values of an image may be stored as either 8- or
12-bit quantities. Additionally, the image may be either dumped (each pixel is writ
ten individually) or run-length-encoded (horizontal series of identical pixels are
written as a single pixel plus a replication factor. Dump mode is preferred for com
plex pictures with very little replication, since it saves the replication byte. The pos
sibilities (again defined in picio.h) are PS_SBIT (8-bit runlength-encoded),
PS_12BIT (12-bit ditto), PS_SDUMP (8-bit dumped) and PS_12DUMP. The
default pixel format is PS _ SBIT.

• matting indicator: The semantics of the alpha channel are recorded in the image
using its matting indicator, which is set with PicSetPMatting O. The two possible
values are PM_MTB ("matted to black") and PM_NONE. The former indicates
that the red, green and blue values in the picture have been premultiplied by alpha to
facilitate merging. The latter indicates that the color channels are uncorrelated with
respect to alpha, and so the image is unsuitable for merging.

PIXAR November 18, 1986 Picture Formats

Pirl Tutorial - 19-

15. Merging Pictures: PirlMerge()

The Pirl functionality discussed up to now applied to the "visible" red, green and
blue channels in the frame buffer. We now turn to the uses of the alpha channel for com
positing images together. The program in Figure 15-1, merge.c, takes two images and
uses their alpha, or coverage, information to merge them intelligently.

Note the new header file, merge.h, included after pirl.h. It is basically used to
define MergeOpOver, the token which tells the operation PirlMerge 0 is to perform.
merge.c also defines the RGBAPixelType variable 'RGBAOne'. Note that it is initialized
using DBL2COFO, where before we used DBL2PXLO. The coefficient data in the
Chap is similar to a pixel: it is also a fixed-point quantity, but with two more bits in the
fraction. Coefficients are frequently used to represent scaling factors. 'RGBAOne' is
initialized to the Pixar coefficient representation of 1.0 in all four channels, and its
address is passed as the last two arguments to PirlMerge O. It is used by the function as
factors for weighting the two input images PW 1 and PW2; the four channel values of
each pixel in PWl are multiplied by the four channels of the RGBAPixefFype pointed to
by the futh argument, and likewise for PW2. We use 'RGBAOne' here to indicate that
both PW s are used with their full weight, but it should be obvious how to make, for
example, a "ghost image" of either of the two inputs.

Note the check that the two input images are identical in size. This is a requirement
for PirlMerge 0, and it is an error for them to differ.

When you run 'merge', note the difference in time between reading the two images
from disk, versus the speed at which merging occurs. This is a fair benchmark of the
Chap's speed compared to image input; merging is a fairly compute-intensive operation,
yet it happens much faster than I/O.

There are 14 merge operations used to combine two images into a third. There are
three sources of explanation about these operations: The manual page for PirlMerge 0 in
Section 3H of the Pixar Programmer's Manual gives a terse explanation which will
enable you to experiment with the various options. There is a more generous explanation
in Compositing Digital Images, found under Advanced Topics in the first volume of
the Pixar Programmer's Manual. The definitive reference, though, is the paper Com
positing Digital Images, by Tom Porter and Tom Duff, in SIGGRAPH '84, from which
the former is derived. The SIGGRAPH paper includes color illustrations.

Exercise: copy merge into your working directory, then make and run it (remember
to copy genesis.pic as well). Once it works to your satisfaction, modify merge.c as
follows: declare a local RGBAPixelType variable, say 'RGBAFrac', then enclose the
call to PirlMerge 0 in a for loop from 0 to 10, which sets the four channels of
'RGBAFrac' to (DBL2PXL(il10.0» before calling PirlMerge 0 with the address of
'RGBAFrac' as the fourth argument. The net effect should be to fade the foreground
in over the background. If you feel like it, you can go on to more elaborate stunts
like fading the channels in independently.

Exercise: modify merge.c to take a command-line argument for a merge operator,
and experiment with the various operations, so that you can get a feeling for what
they do.

PIXAR November 18, 1986 PirlMergeO

Pirl Tutorial - 20-

#inc1ude <pir1.h>
#inc1ude <picio.h>
#inc1ude <merge.h>
#inc1ude <pixe1def.h>

#define PIC1 "andre.pic"
#define PIC2 "genesis.pic"

RGBAPixe1~ype RGBAOne =
{ DBL2COF(1.0), DBL2COF(1.0), DBL2COF(1.0), DBL2COF(1.0) };

/* merge: Merge two pixe1 windows into a third. */
main ()
{

PFILE *pic1, *pic2;
Pir1PW PW1, PW2;
int pwidth, pheight;

pic1 = PicOpen (PIC1, "l:''');
if (!pic1) {

}

fpl:'intf (stdel:'l:',"Can't get pictul:'e fi1e %s\n", PIC1);
exit (-1);

pwidth = pic1->Pwidth;
pheight = pic1->Pheight;

pic2 = PicOpen (PIC2, "l:''');
if (!pic2) {

}

fpl:'intf (stdel:'l:',"Can't get pictul:'e fi1e %s\n", PIC2);
exit (-1);

if ((pic2->Pwidth != pwidth) I I (pic2->Pheight != pheight)) {
fpl:'intf (stdel:'l:',

"mel:'ge size mismatch: %s is %d by %d, but %s is %d by %d\n",
PIC1, pwidth, pheight,

error:

PIXAR

}

PIC2, pic2->Pwidth, pic2->Pheight);
exit (-1);

CHECK Pil:'1Begin (CHAP 0 , BIG ~B));
CHECK Pil:'1Disp1ay (~hePil:'1pW, 0, 0»;

CHECK (Pil:'1NewPW (&PW1, 0, pwidth-1, 0, pheight-1));
CHECK (Pil:'1GetPic (pic1, PW1, 0, 0));

CHECK Pil:'1NewPW (&PW2, pwidth, pwidth*2-1, 0, pheight-1));
CHECK Pil:'1GetPic (pic2, PW2, 0, 0));

CHECK P il:'1Mel:'ge (PW1, PW2, PW2,
Mel:'geOpOVER, &RGBAOne, &RGBAOne));

CHECK (Pil:'1End ());
exit (1);

Pir1ErrReport
Pir1End ();

stderr);

Figure 15-1: merge.c Program Listing

November 18, 1986 PirlMergeO

Pirl Tutorial - 21 -

16. Writing into Pixel Windows I: Subrectangle Filling

You now know how to create pixel windows, modify them whole, and move them
to and from disk files, but we have not provided a capability for finer control, namely
how to read and write a subset of the pixels in a pixel window from the host computer.
The capabilities of Pirl for doing this are limited to 1) ftIling a rectangle in a PW with
the contents of two-dimensional buffer (described in this section) and 2) line drawing.
The principal reason for this limitation is that the communication channel (the Sysbus)
between the host and the PIC is relatively slow (approx. 2 Mbytes/second), especially
when compared with the speed of the Chap. Consequently, if you use the host to gen
erate pixels and simply use the PIC as a display device, then it is not being used up to its
capabilities. If the host is really being used to generate pictures, it is a generally more
efficient use of the PIC to generate the images into a disk file, and use (say) PirlGetPicO
to display them.

(Actually, a little reflection will demonstrate that these restrictions aren't so bad,
after all. Single-pixel reads and writes can be accomplished, if need be, by using a
degenerate rectangle 1 pixel on aside.)

Figure 16-1 shows a program, plaster.c, for writing a series of random rectangles
into a pixel window.

plaster generates randomly-colored, random-sized rectangles and places them at
random locations in the display, continuing until Return is typed at the keyboard (if you
redirect standard input, it only generates one rectangle). It looks for input, without wait
ing for it to occur a la getchar 0, by using the ioctl 0 function to determine the number
of characters waiting on input, quitting when this number is non-zero.

PirlPutRectO takes as arguments a pixel window, a buffer filled with pixel values,
and minimum/maximum value pairs for x and y. These last represent the rectangle to be
written from the rectangle buffer.

Note that we could have filled the buffer by using the code fragment
for(x = 0; x < xsize; x++)

for(y = 0; y < ysize; y++)
Px1Buf[y][x] = color;

We could have, but it would have been wrong unless xsize was equal to MAXWID
(defined at the beginning of plaster.c. The reason is that PirlPutRectO expects a two
dimensional buffer of x- and y-dimensions equal to the rectangle specified in its argu
ments. Since we can't redeclare the PxlBuf buffer to the appropriate dimensions each
time the rectangle is re-randomized, we use C's loose typing rules to fake a two
dimensional buffer with a I-dimensional one. Any C reference book should contain
enough information to enable you to do this.

When you run plaster, you'll observe that the speed is indifferent. This is because it
is loading a full buffer of pixels (rather than passing a single pixel and telling the Chap to
fill a rectangle with it). This gives you an idea of the rate of data-loading into the Chap,
since the code to do this buffer loading is fairly optimal.

Note the #Undef statement on line 3 of lines.c. This is an (admittedly ugly) patch to
a problem with Chad, hence with Pirl: a conflict with the definition of BO in the
system's ioctl.h header file. In this case, as in most cases, the conflict is resolved by
undefining it before including the latter header file. Of course, if BO is actually used in

PIXAR November 18, 1986 Filling Rectangles

Pirl Tutorial

#include <pirl.h>
#include <math.h>
#undef BO
#include <sys/ioctl.h>
#include <pixeldef.h>

double drand();

#define MAXWID 100

- 22-

#define min (a, b) « (a) < (b))? (a) : (b))

RGBAPixelType PxlBuf [MAXWID] [MAXWID];

/* plaster: write random rectangles to a pixel window */
main ()
{

RGBAPixelType color;
register RGBAPixelType *pxlptr;
int xloc, yloc, xsize, ysize, awaiting, npxls,

pwminx, pwmaxx, pwminy, pwmaxy;

CHECK (PirlBegin (CHAPO, 8TD TB));
CHECK (PirlDisplay (ThePirlPW, 0, 0»;
pwminx = ThePirlPW->xmin;
pwmaxx = ThePirlPW->xmax;
pwminy = ThePirlPW->y.min;
pwmaxy = ThePirlPW->y.max;

srand (1);
color.Alpha = DBL2PXL (1.0);
do {

xloc = pwminx + rand () % (pwmaxx-pwminx+l);
yloc = pwminy + rand() % (pwmaxy-pwminy+l);
xsize = rand() % MAXWID;
xsize = min(xsize, (pwmaxx-xloc»; /* clip to ThePirlPW */
ysize = rand() % MAXWID;
ysize = min(ysize, (pwmaxy-yloc»; /* clip to ThePirlPW */

color.Red = rand() % 2048; /* 2048 is the max pixel value *1
color.Green = rand() % 2048;
color.Blue = rand() % 2048;

pxlptr = PxlBuf;
npxls = xsize * ysize;
while (npxls--)

* (pxlptr++) = color;

CHECK (PirlPutBuf (ThePirlPW, PxlBuf,
xloc, xloc+xsize-l, yloc, yloc+ysize-l »i

/* Get the number of characters waiting at input */
ioctl (fileno(stdin), FIONREAD, &awaiting);

} while (!awaiting); /* Continue until anything is typed */

CHECK (PirlEnd ());
exit (1);

error:

PIXAR

PirlErrReport (stderr);
PirlEnd ();

Figure 16-1: plaster.c Program Listing

November 18, 1986 Filling Rectangles

Pirl Tutorial - 23-

the Chad sense in the source fIle, this fix breaks down (and rather badly, at that). How
ever, you will virtually never use it in the course of using Pirl exclusive of Chad.

Exercise: Since the dimensions of the rectangles passed to PirlPutRectO can't in
general be predicted at compile-time, you should satisfy yourself that you can mani
pulate a one-dimensional array as if it were 2-d. When you have done this, modify
plaster.c to draw a diagonal line between opposite comers of the pixel buffer before
passing it down to the Chap.

Exercise: PirlGetRectO is the symmetric opposite of PirlPutRectO. Modify the
original plaster.c so that, instead of filling the rectangle buffer with a single color, it
pulls the buffer out of the frame buffer using PirlGetRectO, and writes it into a
second random location. Note that, for writing, the size should not be reset (so that
the same rectangle is written as was read), and don't forget to make sure that the out
put rectangle fIts into ThePirlPW (that is, make sure that (xloc+xsize < TBX) and
(yloc+ysize < TBY».

PIXAR November 18, 1986 Filling Rectangles

Pirl Tutorial - 24-

17. Writing into Pixel Windows II: Line Drawing

The Pirllibrary contains a very general package for drawing lines into .frame-buffer
memory on a PIC, with complete anti-aliasing. A simple program to do so is seen in Fig
ure 17-1.

#inc~ude <pir~.h>

#define MAXNPTS 50
int LineNum = 0, LinesOpen = 0;
typedef struct { f~oat x, y; } F~oatPt;

/* ~ines: Read a script to draw lines into the disp~ay */
main ()
{

Pir~PW OurPW;
char cmd[80];
F~oatPt points[MAXNPTS], po~ygon[MAXNPTS], offset;
int npts = 0;

CHECK (Pir~Begin (CHAP 0 , STD TB»;
CHECK (PirlDisplay(ThePirlPW; 0, 0»;
CHECK (Pir~BeginLines ());
LinesOpen = 1;
whi~e (scanf("%80s", cmd) = 1) {

switch (cmd[O]) {

}

case 'm': /* %f %f: Re-initia~ize sequence at point */
npts = 0;

case '~': /* %f %f: Add point to sequence */
if (npts < MAXNPTS)

getpt(&(points[npts++]»;
else

fprintf(stderr,"WARNING: too many points in po~ygon\n"
break;

case'd': /* %f %f: Draw with offset */
getpt(&offset);
offsetpo~y(points, &offset, po~ygon, npts);
Pir~PolyLine(ThePirlPW, npts, po~ygon);
break;

}
LineNum++;

CHECK (PirlEndLines ());
CHECK (Pir~End (»;
exit (1);

error:
PirlErrReport (PirlLastErr);
barf ();

Figure 17-1a: lines.c Program Listing (part 1)

Like Pirl itself, the line-drawing package maintains an environment, entered with
PirlBeginLinesO and exited with PirlEndLinesO. The lines are drawn by the function
PirlPoly LineO, which takes as arguments a pixel window, a count, and an array of
'count' x/y pairs. It draws ('count'-I) connected line segments, beginning at the first
point and ending at the last.

lines reads standard input, expecting any of three commands: the point to the series;

PIXAR November 18, 1986 Line Drawing

Pirl Tutorial - 25-

offsetpo~y(points, offset, po~ygon, n)
F~oatPt, *points, *offset, *po~ygon;
int n;
{

}

whi~e (n--) {
po~ygon->x = points->x + offset->x;
po~ygon->y = points->y + offset->y;
po~ygon++; points++;

getpt(pt)
F~oatPt *pt;
{

if(scanf("%f %f", &(pt->x), &(pt->y» != 2) {
fprintf(stderr,"Bad input for:mat on ~ine %d\n", LineNum);
barf ();

}
}

barf
{

if (LinesOpen)
Pir1EndLines ();

Pir~End ();

Figure 17-1b: lines.c Program Listing (part 2)

and the 'draw' command causes the current series to be drawn into the pixel window.

Exercise: make 'lines' and run it using the script file octagons.l. Make a script file
of your own to do some line drawing.

Exercise: There is no checking done to make sure points fit inside the pixel window.
Add a routine, called after offsetpoly 0, to clip the points to the pixel window boun
dary.

The line-drawing environment referred to above includes four attributes of lines,
which are initialized by PirlBeginLines ° and can be reset while the environment is
open, to wit:

• color: The color of the lines, initially white, is set with PirlSetLineColorO, by pass
ing it a pointer to an RGBAPixelType .

• mode: The mode in which lines are overwritten into the pixels of the frame buffer is
controlled by calls to PirlSetLineModeO, which is passed a PirlPlaceMode value
from <.pirl.h>, one of:

PM_MERGE: merge the pixels of the lines over the values already in each pixel,
according to the coverage of the line in the pixel.
PM_REPLACE: replace pixels with the matted-to-black values of the line,
regardless of the coverage the line has over each pixel.
PM _MAX: use the maximum of the line value and the existing pixel value.

PIXAR November 18, 1986 Line Drawing

Pirl Tutorial - 26-

The drawing mode is PM_REPLACE by default.
• width: The width of the lines, initially 1.0 pixels and limited to positive values less

than 2S6, is set by passing PirlSetLineWidthO a floating-point value .
• edge: The "profile" of the lines drawn by PirlPolyLine () controlled by PirlSet·

LineAttributes (). This function has many arguments, but the edge description
basically has two characteristics: the function describing the "profile function", the
falloff of the line's intensity from its center (termed the edge characteristic), and the
function used for anti-aliasing the line during rasterization (the filter characteristic).
Each of these two is specified by a token, the width of the line, and a function
pointer. The edge token is one of

PE GIVEN
PE HARD (default)
PE RANDOM
PE FELTTIP

The filter token is one of:
PF _ GIVEN: the filter is specified by a table, specified by the filterwidth and fil
terfunctionptr parameters. The former gives the number of entries in the table
(the half-width of the filter, since it is assumed symmetric), and the latter a falloff
function: each member of the array denoted by filterfunctionptr is an attenuation
factor between 0 and 1.
PF _SINe: the filter is a sinc (sine(x)/x)
PF NONE: no filter is used
PF BOX: a box filter (1 inside its width, 0 elsewhere) (default)

Note that PirlSetLineAttributes need only be called if any other than the default edge
descriptor (PE_HARD, PF_BOX) is desired.

Exercise: Modify lines.c to accept commands which control the four line charac
teristics, then experiment. Try drawing different-colored lines of different widths.
Try redrawing lines over themselves with different modes. See what the different
edge descriptors do.

PIXAR November 18, 1986 Line Drawing

Pirl Tutorial - 27-

18. Where To Go From Here
By now, you should be fairly fluent in using Pirt. More important, you should have

a good understanding of its capabilities and limitations. The Appendix lists the set of
functions in the current Pirl library; it is the first place to look before you try to go
beyond what has been covered here.

Defining the operations in Pirl is an ongoing process. In addition to future Pixar
software releases, which will attempt to provide generally-useful functionality, the Pixar
software development environment encourages programmers to add new functions to
Pirl by providing access to the tools with which Pirl is built. Among these, the logical
one to explore after Pirl is Chad.

Chad is designed to support the process of developing and running programs pro
grams for the PIC by managing the its Chap processor, allocating and maintaining
resources, setting registers and loading and running programs with one easy-to-use proto
col. Pirl is essentially a special-purpose front end to Chad, and so Chad is the answer to
the limitations of Pirl as discussed in this tutorial: learn and use it when you need more
than one tile block, use more than one Chap, or read and write the PIC's image memory
directly. Chad is introduced in Programming with Chad.

Chad gives the programmer full access to all existing libraries of Chap programs
and routines. The current Pixar development environment includes the assembler, chas;
a dynamic loader that loads Chap functions as programs require them, an interactive
debugger, charm; and an archive maintainer, chranIib, in the spirit of the UNIX pro
gram ranlib.

PIXAR November 18, 1986 Contents

Programming the Pixar Image Computer With Chad:
A Tutorial Introduction

PIXAR

ABSTRACT

The essential introduction to general purpose programming on the
Pixar Image Computer. Cbad provides a simple environment for writing
host programs which run programs on the Channel Processor, providing
more general access to the programming power of the Chap, and making it
feasible to develop programs on the host and move them to the Chap with
a minimum of pain and aggravation.

November 18, 1986

PIXAR November 18, 1986 Introduction

Chad Tutorial

Table of Contents

1. Introduction 1

2. Essential Hardware .. 3

3. Basics of Chad ... 3

4. Nuts and Bolts 5

5. The Chad Environment .. 6

6. Error Handling 7

7. Resource Allocation: ChadAlloc() 8

An Example: PirIBegin() 10

8. Freeing Resources: ChadFree() ... 11

9. Leaving Chad ... 12

10. Writing to Resources: ChadWriteO ... 13

11. Executing Chap Programs: ChadGoO, etc. .. 15

PiriC lear() 16

12. Detennining a Resource's Chap: ChadOwnerO .. 18

13. Repeated Execution of Piri Routines .. 19

14. Resource Reallocation: ChadCheckO .. 20

15. Reading from Resources: ChadReadO .. 21

The Reliability of C hadReadO Values 22

16. More Resource Deallocation: C hadResetO and C hadBackupO 24

17. Do-it-yourself Synchronization: ChadCPUBusyO and ChadWaitCPUO 26

18. Chad Internals for the Curious ... 27

19. Further Explorations 28

20. Appendix: Summaries of Routines 29

ChadBegin() 29

ChaciEnd() ... 29

ChadAlloc() 30

ChadCheck() 30

ChadFree() ... 30

ChadReset() ... 30

ChadBackup() 31

ChadLibs() 31

ChadWrite() 32

PIXAR November 18, 1986 Contents

Chad Tutorial

ChadRead() 32

ChadGo() ... 33
ChadCPUBusy(), ChadCPUWait() ... 33
ChadOwner() ... 34
ChadErrReport() 34

PIXAR November 18, 1986 Contents

Programming the Pixar Image Computer With Chad:
A Tutorial Introduction

PIXAR

1. Introduction
Like a high-powered sports car, the principal design goal of the Pixar Image Com

puter (henceforth PIC) is speed. Occasionally, you may miss the cigarette lighter or
AM-FM tape deck found in the family sedan, but for getting from ° to 60 as fast as possi
ble, it has no equal.

Writing programs to run on the PIC which get the most from its pipelined, parallel
architecture is a different experience compared to programming in conventional
languages. The design decisions going into the Chap have opted for speed and flexibility
at a cost in programmer responsibility. The programming environment called Chad is
designed to aid a number of strategies for making programming the Pixar more pleasant
and productive in the context of a host software environment.

One way of introducing the power of the PIC into conventional programming
environments has been presented in The Pirl Tutorial. Pirl is a system for manipulating
rectilinear regions of frame buffer memory from the host without ever considenng the
PIC except to apportion frame buffer memory. However, Pirl is not designed to be a
universal solution, and so some system must provide closer control over the PIC.

A second strategy for using the Chap is to use the substantial body of software
already written for it. This strategy requires only a smooth means for host programs to
control Chap programs.

A third strategy for smoother Chap programming applies equally well to other
special-purpose hardware: use it the way it's intended, primarily for those repetitive,
computation-intensive tasks which wreak havoc on most general purpose computing
engines. In other words, use it for inner loops. Many such are already written and avail
able (the Pixar Software Release contains more than 60,000 lines of Chap code).

Finally, there is the migration strategy: debug algorithms by host programming,
then migrate code to the Chap as the inner loops make themselves known. The motiva
tions and benefits for this strategy (and its cost) are similar to machine-language pro
gramming on a host. The time spent by the CPU is wildly disproportionate to the total
amount of code involved in a comparison with the program as a whole.

This document is a tutorial on the Pixar host-interface environment Chad, which is
a tool for implementing all these strategies. The prerequisite for making sense of this
tutorial are familiarity with the UNIXt operating system and the C programming
language. You should also have read at least a large portion of The Pirl Tutorial to

t UNIX is a Trademark of Bell Laboratories.

PIXAR November 18, 1986 Introduction

Chad Tutorial -2-

familiarize yourself with the Pixar software environment, at least to the extent of under
standing backreferences to it. A reading of Pixar Software Overview would also be help
ful, although the following section explains the essential aspects of the PIC.

Every work of literature requires a theme, and this manual is no exception. The
theme here is Pirl. Pirl is built using Chad, and an explication of the former's internals
is an excellent way to get to know the latter. Consequently, most of the code examples
are from working Pirl routines, and there are frequent digressions comparing the Pirl
universe to that of Chad. At the end, you should have a nearly complete understanding
of how Pirl operates, plus the ability to extend it by using Chad. Finally, you will have a
toolkit which enables you to go on and develop full-blown Chap programs by using The
Chap Programming Tutorial. We finish with an Appendix which condenses the infor
mation presented into a quick-reference format.

PIXAR November 18, 1986 Introduction

Chad Tutorial - 3 -

2. Essential Hardware

We are concerned here primarily with the Chap (Channel Processor), the portion of
a Pixar with which the host deals in moving image data to and from image memory, and
which operates on that data using four 10 MIPS processors, a 16K array of instruction
memory (referred to herein as RAM) for controlling them, and 64K 16-bit words of auxil
liary, or Scratch pad, memory, plus such supporting devices as an elaborate bus structure
and four 16-bit multipliers. Each processor, or ALU for short, includes a bank of 32 ALU
registers. The scratchpad memory contains 16 base registers and 16·index registers, the
distinction between which may remain obscure for the time being. Note that the ALU
registers are quadruple, since there are four processors per Chap, but the base and index
registers are scalar, since values are fetched from the scratchpad (generally) using a sin
gle address.

The Chap is a SIMn (single-instruction, multiple-data) processor: all four ALU's
on a Chap execute the same instruction, but the data on which they operate is different;
all four processors may read simultaneously from four different locations in scratchpad,
which is organized such that, when a bank of locations contains successive sets of four
values each (for the Red, Green, Blue and Alpha values of a pixel), the four processors
may read:

-- each from the same location (broadcast mode)
-- from the Red, Green, Blue and Alpha channels of a pixel (pixel mode)
-- from Red (or Green, etc.) in four successive pixels (component mode)
-- from a table indexed independently by the individual channel values of a

pixel (index mode)

The interface between the host and a Chap consists, for our purposes, of 16 Regis
ters which are mapped into the memory of the host: the sysbus registers, whose name
refers to the Chap's system bus. There is also the notion of the Virtual Data Registers, or
VDRs. On the host side, these appear as an array of 256 memory locations. The imple
mentation is in fact quite different, but the distinction is irrelevant and confusing for now.

3. Basics of Chad

Once an image is available on the PIC (that is, a pixel window a la Pirl has been
allocated and·filled with the appropriate pixel values), dozens of routines can be called
for altering that image, and they all use the same paradigm. Namely, for each scan line
in the image:

1: repeatedly read the scan line from the image into scratchpad memory.
2: perform necessary processing on the pixels of the scan line in parallel.
3: write the scan line out to image memory.

Of course, exceptions abound to this generalization, but it is generally much more
efficient to block-load pixels into scratchpad, operate on them there, then block-write
them back into image memory. This tells us what information is required for a Chap pro
gram to do its job:

• the code for the program itself must be loaded into RAM.
• the operating buffer in scratchpad must be set aside, and the Chap program told

where it can be found.
• other parameters, such as the location and size of the image, must be passed to the

PIXAR November 18, 1986 Basics

Chad Tutorial -4-

program.

The process involved in those three steps is, in a nutshell, what Chad is designed to
support. The Pixar Software Release includes a set of libraries of Chap code. Routines
and programs in this library can be retrieved by name and, given that name, Chad
invokes a dynamic loader"to load the code during execution of the host program. Simi
larly, Chad handles requests to allocate blocks of scratchpad memory for buffers or
tables, and will load them with host-generated data if necessary. Since Chap routines
usually take their parameters in the base, index, ALU and sysbus registers, Chad pro
vides translucent access to these registers for reading and writing.

Executing a Chap program thus reduces to five basic tasks, each performed by a sin
gle routine:

1) Allocate and load program RAM and scratchpad buffer space (performed with
ChadAllocO).

2) Write any tables in scratchpad and registers required by the routine
(ChadWriteO).

3) Run the routine and wait for it to return (ChadGoO).
4) Read any output tables or return registers (ChadReadO).
5) Free scratchpad buffers, and maybe instruction RAM too (ChadFreeO).

The is the basic functionality around which the rest of Chad revolves. Most of the
rest of it is motivated by a consideration we have not yet mentioned. The 64K of
scratchpad memory is a common bottleneck: when it runs out, Chad fails and programs
don't run. This is not just a problem within a single process. The dynamic loader which
loads Chap code and parcels out scratchpad memory is a global, systemwide mechanism.
This means that when one process uses up the scratchpad, nobody can get to it. The
same problem can theoretically occur with instruction memory, but in practice it virtually
never does.

The usual way of dealing without-of-memory problems is to reset the Chap, clear
ing both its instruction and scratchpad memotjes. While less than elegant, this method is
effective. However, it implies that some way must be devised of "revoking" the
resources Chad had allocated, so that a running program can efficiently verify the con
tinued survival of its resources. This implies some sort of scheme involving shared
memory between the program and Chad. In fact, this is the solution: allocation requests
cause Chad to provide a pointer to a data structure, held by Chad but accessible by the
program, part of which gives an address, referring either to a scratchpad or RAM loca
tion, as appropriate, which is given an illegal value when the corresponding resource is
destroyed. Several routines support the maintenance of these structures. They will be
discussed below.

One final note before plunging into specifics: Since a single PIC can support
several Chaps, a set of resources must be maintained for each Chap, and Chad must be
told which Chap is being addressed by routines. As 3: result, most Chad reoutines
include as argument a predefined token, typed Chap/D, which indicates which Chap is
meant.

PIXAR November 18, 1986 Basics

Chad Tutorial -5-

4. Nuts and Bolts
In the following sections, routines comprising Chad are presented and explained at

length, interspersed with example Pirl routines using the Chad routines under discus
sion. In the course of the discussion we will be exploring the internals of Pirl, since that
is more or less the canonical use of Chad. The Appendix will repeat the routine declara
tions, with a more terse explanation. That section is intended as a reference to be used
while actually programming with Chad.

PIXAR November 18, 1986 Nuts and Bolts

Chad Tutorial -6-

5. The Chad Environment

Unlike Piri, which is limited to one Chap per program, Chad will maintain an
independent environment for any subset of the Chaps attached to its system. This
environment is entered by calling ChadBeginO and exited with ChadEndO. The former
is declared thus:

ChadError ChadBegin (chapid, exclusive)
ChapID chapid;
int exclusive;

The Chaps attached to the system are referred to by a token of type ChapID:
CHAPO, CHAPl, etc. Every system with a PIC has a CHAPO, and it is the one 99% of
all Chad programs will use. The exclusive flag indicates, if non-zero, that the Chap is not
to be open by any other process as long as this one has it open. Even under non-exclusive
access, shared access is limited to processes owned by the same user. In almost all cases,
exclusive should be 0, at least for debugging, since charm, the Chap debugger, gets
excluded too.

PIXAR November 18, 1986 Chad Environment

Chad Tutorial -7-

6. Error Handling
Chad has an error-reporting convention identical to Pirl's. When they encounter an

error, all Chad routines set ChadLastErr to an error code (always negative) and return
that value, which provides an efficient check on success of completion. Once detected,
an error condition can be explained by calling ChadErrReport 0 with the file pointer
which will receive the error description (stdout or stderr recommended for interactive
applications).

Chad Error ChadErrReport (fp)
-- describe the Chad error whose code is in ChadLastErr to the file fp
FILE *fp;

You can call ChadErrReport 0 without any further ado after a routine fails. In
fact, a macro, ASSERTO, is provided for use in Chad. When called with a Chad rou
tine as its argument, and that routine returns an error value, then ASSERTO calls
ChadErrReportO and returns from the current procedure.

It is frequently necessary to do more error handling than a simple report-and-retum.
The CHECK 0 macro is provided for these cases. Like ASSERT 0, it takes a single
argument, an error code as presumably returned by a Chad function. It does not, how
ever, do an error report, nor does it return from the current function. Instead, when its
argument is negative, CHECKO sets the global variable PirlLastErr to the error code,
and branches to the label 'error'. This allows you to place, presumably at the end of your
routine, code to perform any cleanup tasks before your error return.

Once PirlLastErr is set (by CHECKO or however), PirlErrReportO will describe
the error it indicates. It is perfectly feasible to assign a Chad error code to PirlLastErr.
Chad's and Pirl's error codes are distinct from one another, and PirlErrReportO calls
ChadErrReport 0 if PirlLastErr is a Chad error.

PIXAR November 18, 1986 Error Handling

Chad Tutorial - 8-

7. Resource Allocation: ChadAliocO

Chad maintains control over resources of several different types on its Chaps:
dynamic scratchpad space, executable instruction memory, frame buffer tile blocks and
pixel windows are all managed through Chad. The application program gets a pointer to
a host structure denoting these resources when they are allocated, and uses this pointer in
subsequent transactions with Chad.

A single routine handles all allocation of Chad resources: ChadAlIocO. It takes a
variable number of arguments. The frrst is a Chap/D. The last is the predefined token
NIX. The remaining arguments come in groups, each group signifying allocation of one
resource. An argument group begins with a token specifying the requested resource, fol
lowed by a handle (a pointer to a pointer) which will receive a pointer to the resource,
followed by a type-dependent, but fixed, set of arguments parametrizing the resource:

C hadError ChadAlloc (chapid,
[TB, tbpp, frrsttile, tileswide, tiles high,]
[PW, pwpp, tbpp, xmin, xmax, ymin, ymax,]
[SPAD, blockpp, nwords,]
[RAM, pcpp, sym,]
[PIXELS, blockpp, npixels,]
NIX)

ChadSpad *(*blockpp);
ChadPC *(*pcpp);
ChaaI'B *(*tbpp);
ChadPW *(*pwpp);
int nwords, npixels, firsttile, tiles wide, tileshigh;
char *sym;

The frrst group (denoted with the TB token) allocates a tile block, giving the first
tile, the number of tiles in a row, and the number of rows. The request here allocates and
organizes (tileswide times tileshigh) tiles, beginning with number firsttile, such that the
block has (32 times tileswide) pixels on each of (32 times tileshigh) scan lines.

The second group (PW) allocates a subset of these pixels (a pixel window) with
dimensions xmin, xmax, ymin and ymax. The tbpp parameter to this group is a tile block
handle, so that the tile block can be allocated and used in the same call to ChadAlIoc().

The third group (SP AD) allocates nwords of Scratchpad memory, and sets the
pointer whose address is blockpp to point to a Chad scratchpad block descriptor.

The fourth argument group (RAM) above loads a routine into instruction RAM.
The ChadPC pointer whose address is passed is made to point to a descriptor giving an
address in instruction memory of the named routine. The use of ChadPCs is explained in
Section 11.

The fifth argument group (PIXELS) also allocates space in the Chap's scratchpad
memory, but in groups of four words, aka pixels. Furthermore, the allocated space obeys
the alignment requirements for access to the data as pixels.

The argument groups to ChadAlloc() may appear in any order, any may be omitted

PIXAR November 18, 1986 ChadAlloc()

Chad Tutorial -9-

and all may be repeated at will, so that one call can be made to provide an arbitrary
number of resources. The only hard requirement is that the last argument be NIX.

PIXAR November 18, 1986 ChadAliocO

Chad Tutorial - 10-

An Example: PirlBeginO

Look at Figure 7-1 for an example showing the above routines. This is a subset of
the actual definition of PirlBeginO. It uses the header file /usr/pixarlinclude/pirl.h.
Most programs which use CHECKO or generate Pirl error codes will do likewise. The
appropriate header definitions are in /usr/pixarlinclude/chad.h, which is included impli
citly by pirl.h.

#include <pirl.h>

/*
* PirlBegin(): open the Pirl environment on the given chap
*/

ChadTB ThePirlTB; /* global, default tile block */
ChadPW ThePirlPW; /*" " pixel window * /

PirlError PirlBegin(chap, tileO, nxtiles, nytiles)
ChapID chap;
int tileO, nxtiles, nytiles;
{

int pwxlimit = (nxtiles*32)-1,
pwylimit = (nytiles*32)-1;

CHECK(ChadBegin(chap, °));
CHECK(ChadAlloc(chap,

TB, &ThePirlTB, tileO, nxtiles, nytiles,
PW, &ThePirlPW, &ThePirlTB, 0, pwxlimit, 0, pwylimit,
NIX));

return (PIRL_ NO_ERROR);
error:

return(PirlLastErr);

Figure 7-1: PirlBegin Program Listing

PirlBeginO opens the Chad environment, as outlined above, by calling ChadBe
ginO for a designated Chap, without excluding other programs from using the Chap.

The two Chad routines called by PirlBeginO are both enclosed in the CHECKO
macro, and the last statement, reachable only by branching to error, returns PirlLastErr.
Thus, any program which calls PirlBeginO can simply check that its return value is non
negative, calling PirlErrReportO if so.

At the beginning of the routine, pwxlimit and pwylimit are computed and set to be
the maximum x and y coordinates for a pixel window in the given tile block. ChadAI
locO uses the given tile block parameters to allocate a tile block, ThePirLTB, which is
global to Pirl and is available to all programs using it. Ditto ThePirlPW, which is a pixel
window encompassing all pixels within ThePiriTB.

PIXAR November 18, 1986 ChadAlloc0

Chad Tutorial - 11 -

8. Freeing Resources: C had Free 0
Once a program is finished with its Chap resources, it is responsibile for deallocat

ing them so that other routines (and, more important, other programs) can use them.
Chad resources are deallocated with ChadFreeO. ChadFr~eO is another routine which
takes an arbitrary number of arguments, each of them either a resource pointer as allo
cated by ChadAlIocO, or a terminating NIX.

ChadError ChadFree ([blockp,] [pcp,] [tbp,] [pwp,] NIX)
-- free the given resources AND their associated host structures
ChadSpad *blockp;
ChadPC *pcp;
ChaaJ'B *tbp;
ChadPW *pwp;

Naturally, the resource pointers given by ChadAllocO and freed by ChadFreeO
point to some structure on the host computer. The question then arises: does ChadFreeO
deallocate only the Chap resource, leaving the host structure valid so that the addr field
can be tested, or does it also deallocate the host structure, thereby possibly creating a
dangling pointer?

The answer is the former. The host pointer points to the ozone after ChadFreeO.
Thus, Chad uses the alloc model in assuming that if you explicitly deallocate something,
you don't expect to be using it again.

PIXAR November 18, 1986 Chad Free 0

Chad Tutorial - 12-

9. Leaving Chad

The symmetric opposite of ChadBeginO is ChadEndO:

C hadError ChadEnd (chapid)
-- close out the Chad environment
ChapID chapid;

ChadEndO does not deallocate any resources. This must be done explicitly by the
host program.

A good example ·of the use of ChadFreeO and ChadEndO is PirlEndO, the routine
which cleans up the Pirl environment when a program is through with it (shown in Fig
ure 9-1). Since PirlNewPW 0 allocates pixel windows for Pirl users, Pirl acts as a good
citizen and deallocates all such pixel windows (recorded in the static array pws and
counted by the static int npws), in addition to ThePirlTB and ThePirlPW. PirlEndO then
calls ChadEndO.

/* * PirlEnd(): exit Pirl, closing all open pixel windows
*/

PirlEndO
{

CHECK(ChadFree (ThePirlPW, ThePirlTB, NIX »;
while (npws)

CHECK(ChadFree (pws[--npws], NIX »;
CHECK (ChadEnd ()) ;
return (PIRL _NO_ERROR);

error:
return (PirlLastErr);

Figure 9-1: PirlEnd Program Listing

PIXAR November 18, 1986 Leaving Chad

Chad Tutorial - 13-

10. Writing to Resources: ChadWriteO

Thus far, we have covered allocating and deallocating resources, but no mention has
been made of how to move information between the host and the Chap. As for
allocationldeallocation, one routine is used for all writing from the host to the Chap:
ChadWriteO. Again we see the use of multiple argument groups in the argument list,
terminated by NIX:

ChadError ChadWrite (chapid,
-- write to a Chad resource
[SPAD, blockp, val, offset,]
[SP ADARRA Y, blockp, vals, nwords, offset,]
[PIXELS, blockp, pxvals, npixels, offset,]
[SYSBUS<0 •• 15>, val,]
[R<0 .. 31>, proc, val,]
[B<0 .. 15>, val,]
[1<0 .. 15>, val,]
NIX)

ChapID chapid;
ChadSpad *blockp;
int proc, nwords, npixels, offset;
CHAPVAL val, valsf j,.
RGBAPixelType p:xvalsf j;

Notice that ChadWriteO uses several more resource types than ChadAlloc() (you
may have been wondering what happened to the variety of types discussed at the begin
ning). The various register types of the Chap are not allocated or protected in any way,
and can be set by any program or routine with the will to do so. Hence the tokens
SYSBUSO, ... , SYSBUS15 (for writing one of the 16 sysbus registers), RO, ... , R31 (the
32 registers of the Chap's AMD 29116 ALU), BO, ... , BIS, and 10, ... , 115 (the base and
index registers -- 16 apiece -- of the Chap's scratchpad memory). There is no access to
the ALU s' accumulators.

The sysbus, base and index register writes all have the same format: the appropriate
token, followed by the value to be written. Since there are four ALUs on a Chap, the
ALU register writes must also include proc, which is a bitmask specifying which register
of four specified by the token will be written. Chad defines four bit constants with the
obvious meanings: CHAD_PROCR, CHAD_PROCG, CHAD_PROCB and
CHAD _PRO CA. These may be bitwise-or'ed to write to any subset of the registers;
CHAD _ ALLPROCS is the union of them all

The registers are typically used to pass parameters to routines in instruction RAM.
This action (writing to Chap registers) is a key element in the ability Chad gives to run
any program on the Chap from the host: most Chap routines take their parameters in
registers, so programs consisting of calls to Chap routines can easily be written for the
host. This gives you the ability to easily prototype programs using UNIX programming
tools, and gradually migrate programs down to the Chap as the need appears.

You can most easily determine the actual parameters expected by a particular

PIXAR November 18, 1986 ChadWriteO

Chad Tutorial - 14-

routine from the source file itself. Each routine is described on a manual page in Section
3C of the Pixar Programmer's Manual, but the specification of which parameter goes
into what register is given by a comment in the source file. These exist in the subdirec
tories of lusrlpixarlchaplsrclUb for the various libraries.

The other operands of ChadWriteO write to scratchpad resources under various
formats (these, of course, must have been previously allocated with ChadAllocO). The
first argument is always blockp, of type ChadSpad, and each Spad write also requires an
offset from the base of the scratchpad block at which the write originates. A write to
SPAD requires only one further argument, the value to be written. Writes to SPADT AB
and SPADARRAY both take an array of values, a count of the number of values to
write, as well as the offset into the scratchpad block. The difference between them is that
the former performs an untessellated write, suitable for use as a table, and the latter write
is tessellated. Finally, a set of pixel values may be written by including a PIXELS
specification to ChadWriteO. In this case, pxvals is an array of RGBAPixelType ele
ments, and npixels gives a number of pixels to write, as opposed to a number of words (a
pixel is four words).

A word about the data written by ChadWriteO: since scratchpad words are 16 bits
wide, only the first 16 bits of the values written are significant. However, all integers are
32 bits wide under UNIX running on Vax or Sun systems. This becomes significant on
systems which support smaller word sizes either for passing as parameters (for the scalar
writes) or for packing in arrays (for the vector writes SPADTAB, SPADARRAY and
PIXELS).

PIXAR November 18, 1986 ChadWriteO

Chad Tutorial - 15-

11. Executing Chap Programs: ChadGoO, etc.
To do real work on the Chap, we need only one more routine. ChadGoO is the sole

routine which executes Chap programs. It takes a single argument, a C hadPC pointer
giving the address of the routine in scratchpad:

Chad Error ChadGo (pcp)
-- run a routine on the ChadPCs Chap, returning if the ChadPC
specified by pcp has become invalid.
ChadPC *pcp;

PIXAR November 18, 1986 ChadGoO, etc.

Chad Tutorial - 16-

PirlClearO

We can now give an example of a Pirl routine which actually does something use-
ful:

#include <pixeldef.h>
#include <pirl.h>

PirlError PirlClear(pw, color)
ChadPW *pw;
RGBAPixelType *color;
{

ChadPC *PWClear;
ChadSpad *pxl;

CHECK (ChadAlloc (CHAP ° ,
RAM, &PWClear, "PWClear" ,
PIXELS, &pxl, 1,
NIX»;

CHECK (ChadWrite (ChadOwner (pw),
BO, pw->addr,
B1, pxl->acidr,
PIXELS, pxl, color, 1, 0,
NIX));

CHECK(ChadGo (PWClear));
CHECK(ChadFree (pxl, PWClear, NIX));
return (PIRL_NO_ERROR);

error:
return PirlLastErr);

Figure 11-3: PirlClear Program Listing

PirlClearO sets every pixel in a given pixel window to a particular color. This pro
gram includes the header file pixeldef.h to use the pixel descriptor RGBAPixeIType, and
pirl.h for the various predefined constants, especially error codes, used by Pirl. pirl.h
also implicitly includes chad.h, which would otherwise have to be included explicitly.

PirlClearO allocates two resources for its use, then frees them before returning.
PWClear is a RAM resource: a program on the Chap which is included in one of the
standard archives in which Chad expects to find code. It is allocated by giving a
ChadPC handle, and the name of the routine, "PWClear". Chad looks through its
archives for a routine with that label, loads the routine into the instruction memory of the
Chap, and resolves all unresolved references in the routine. Thus the ChadPC pointer
comes back ready to run. The dynamic loader used by Chad is also efficient, maintain
ing a system-wide symbol table so that resident routines are used to resolve references in
new code, ensuring that no routine is loaded twice.

The other resource allocated by PWClear is space for a single pixel in scratchpad,
whose address is given by pxl. This pixel is used as a parameter to the routine PWClear,
telling it the color with which to fill the window.

After allocating its resources, PirlClear() uses ChadWriteO to set up the parame
ters of PWClear. The Chap routines in the Pixar Software Release are overwhelmingly

PIXAR November 18, 1986 ChadGoO, etc.

Chad Tutorial - 17-

register-based, which is the main reason Chad provides access to them. PWClear takes
three parameters; when it is called, the base registersBO and Bl should be set to the
address in scratchpad of a pixel window and a pixel, respectively. Note the use of the
addr field of the ChadPWand ChadSpad structures to give the actual locations to which
these structures refer. The PIXELS part of the ChadWriteO call moves a pixel value
down to the scratchpad. The 1 and 0 here refer to the number of pixels to be written, and
the offset from the address given by spad at which they will be written. We are only
transferring one pixel here, but obviously any number can actually be moved.

Chad leaves a certain amount of responsibility to the programmer. Here, that
responsibility is exemplified by the fact that no checking is performed to ensure that the
pixels written actually fit into the space previously allocated in scratch pad.

The PWClear Chap routine is actually invoked by the ChadGoO host routine.
ChadGoO waits for any previously-running routine to complete before starting
PWClear, and returns immediately after invoking it. In this way, Chad allows fully
parallel operation between the Chap and the host. The host can go on to do whatever
preparation it needs for invoking the next routine, up to the point of other Chad interac
tions, and advanced programmers can even create host programs that converse with Chap
routines.

Before returning, PirlClearO frees its pixel and RAM resources. As usual, any
error condition in the Chad routines causes a branch to the error label at the end of the
routine, which returns PirlLastError, the error code set by the CHECKO macro.

The version of PirlClearO in libpirl actually differs from the code shown here. The
latter could stand some improvements, which form the subject of the next four sections.

PIXAR November 18, 1986 ChadGoO, etc.

Chad Tutorial - 18 -

12. Determining a Resource's Chap: ChadOwnerO

extern ChapID ChadOwnerO;

The fIrst problem with our PirlClearO is its use of CHAPO in ChadAllocO. Since
many Chaps can be attached to a host, it is inappropriate for a general library routine to
assume that it will run on CHAPO.

Fortunately, Chad remembers on what Chap a given resource was defined, and will
tell you if you use the macro ChadOwnerO. Thus, we could replace the line

CHECK(ChadAlloc (CHAPO,

with

CHECK (ChadAlloc (ChadOwner (pw),

defined. ChadOwnerO replaces a pointer to a Chad structure with the ChapID on which
the resource was allocated. It works for any resource pointer obtained via ChadAlIoc().
Although it is a macro, ChadOwnerO is equivalent to the declaration below:

extern ChapID ChadOwnerO;

PIXAR November 18, 1986 ChadOwnerO

Chad Tutorial - 19-

13. Repeated Execution of Pirl Routines
A second weakness of PirlClearO as defined here comes up when the function is

used repeatedly (say in the 'plaster' demo program in The Pirl Tutorial). It seems
wasteful to reallocate and re-free all its resources every time it is called, when every time
it uses the same routine, PWClear, and just a single pixel. This is a tradeoff between the
cost of repetitive allocation and the size of resources which are left allocated between
invocations of a routine.' There is no good universal policy, so Chad leaves it up to the
application. Pirl, unfortunately, cannot be so lax.

A reasonable alternative, avoiding reallocation, is shown in Figure 13-1.

#include <pixeldef.h>
#include <pirl.h>

PirlError PirlClear(pw, color)
ChadPW *pw;
RGBAPixelType *color;
{

static ChadPC *PWClear = (ChadPC *) 0;
static ChadSpad *spad;
ChapID chapid = ChadOwner (pw);

if (!PWClear) /* The first time through */
CHECK (ChadAlloc (chapid,

RAM, &PWClear, "PWClear",
PIXELS, &spad, 1,

NIX));

CHECK(ChadWrite(chapid,
BO, pw->addr,
Bl, spad->addr,
PIXELS, spad, color, 1, 0,
NIX));

CHECK(ChadGo (PWClear));
return (PIRL_NO_ERROR);

error:
return PirlLastErr);

}

Figure 13-1: a second PirlC lear Program Listing

The essential elements here are:
.PWClear and spad are now static variables, so that they are preserved from one call

to another .
• PWClear is (unnecessarily, actually) initialized to 0, providing a check on the prior

existence of the resource so that it can be allocated the frrst time the routine is called .
• ChadFreeO has now disappeared. Since deallocating resources often causes the

host to wait until any Chap routines return, this version of PirlClearO has the advan
tage that it returns before PWClear finishes running on the Chap.

PIXAR November 18, 1986 Pirl re-entry

Chad Tutorial - 20-

14. Resource Reallocation: ChadCheckO

PirlClearO now has a significant new bug: what if spad or PWClear have been
deallocated between one invocation and the next? Their pointers will still be valid, but
the corresponding resources will have gone away. For reasons of efficiency and con
sistency, neither ChadWriteO nor ChadGoO makes an effort to check or reallocate the
resources passed to them. PirlClearO is on its own.

The answer is ChadCheck():

Chad Error ChadCheck (chapid, [blockp,] [pcp,] [tbp,] [pwp,] NIX)
ChapID chapid;
ChadSpad *blockp;
Chad PC *pcp;
ChadTB *tbp;
ChadPW *pwp;

ChadCheckO takes a variable-sized argument list, beginning with a ChapID and
ending with NIX, with other arguments being pointers to Chad structures. The routine
assures the continued survival of the associated resource, reallocating it as needed.

You don't need ChadCheckO to check a resource's validity. Theaddr field of any
Chad structure is always set to -1 when the resource is deallocated. This addr field
check is predeclared as the macro CHAD_RSRCOKO which takes as argument a Chad
structure pointer and checks that the pointer is non-zero and that it references a valid (i.e.
non-deallocated) resource, giving a nonzero value only when both conditions are true.

with

So now we can replace

if (!PWC~ear) /* The first t~ through */
CHECK (ChadAl.~oc (chapid,

RAM, &PWC~ear, "PWC~ear",
PIXELS, &spad, 1,
NIX»;

if (!PWC~ear) /* The first time through */
CHECK(ChadA~~oc (chapid,

RAM, &PWC~ear, "PWC~ear",
PIXELS, &spad, 1,
NIX»;

e~se {
if (! CHAD RSRCOK (PWC~ear));

CHECK (ChadCheck (chapid, PWC~ear, NIX»;
if (! CHAD _ RSRCOK (spad));

CHECK(ChadCheck (chapid, spad, NIX));

Notice how little information ChadCheckO requires compared to ChadAIIocO.
This is because Chad also stores the parameters of a resource as passed to the latter in
the structure itself, so the application program need not remember them. However, you
should be aware that ChadCheckO has no idea what data was in any scratch pad loca
tion that was deallocated. You must be prepared to reload any such data yourself.

This concludes our discussion of PirlClearO. We now return you to our presenta
tion of higher-level Chad functions.

PIXAR November 18, 1986 ChadCheckO

Chad Tutorial - 21 -

15. Reading from Resources: ChadReadO

The routine symmetric to ChadWrite 0 is ChadRead():

ChadError ChadRead(chapid,
-- read from a Chad resource
[SP AD, blockp, valp, offset,]
[SPADARRA Y, blockp, vals, nwords, offset,]
[SPADTAB, blockp, vals, nwords, offset,]
[PIXELS, blockp, pxvals, npixels, offset,]
[SYSBUS<0 •• 13>, valp,]
[R<0 •. 31>, proc, valp,]
[B<O •• IS>, valp,]
[1<0 •. 15>, valp,]

NIX)

ChapID chapid;
ChadSpad *blockp;
int offset, nwords, npixels, proc;
RGBAPixelType pxvals[];
unsigned short int *valp, vals[];

You can expect to call ChadWrite 0 much more often than ChadRead 0, since
data usually flows from the host to the Chap. The major exception is reading error codes
resulting from the execution of Chap routines. Another exception is the Chap routine
which compiles a histogram of the pixel values in an image, PirlHistogramO (Figure
15-1).

PirlHistogramO uses a compromise allocation plan. Since the scratchpad table
used to compile the histogram is rather large (and the routine is rather less likely to be
called frequently than PirIClearO), the scratchpad buffer is allocated and deallocated at
every call, but the RAM resource (the PwHistogram routine) remains in the instruction
memory between calls. Most Pirl routines use this plan, and in fact it is a good one: one
should hesitate to repeatedly load and unload programs from the Chap, since there is
plenty of instruction RAM for any existing purpose and, by comparison, allocation of
scratchpad is quick. Scratchpad is also the scarcest resource on the PIC.

After all resources are allocated, things proceed in the obvious way, until the call to
ChadReadO. Here, size 32-bit words, or (size*2) 16-bit Chap words, are read by asking
ChadReadO to read (size/2) PIXELS. This works because each pixel contains four
words, for Red, Green, Blue and Alpha. PirlHistogramO uses PIXELS instead of
scratchpad words to explicitly force the scratchpad table to be aligned on a four-word
boundary. The reasons for this are best left until you have perused the Chap Program
ming Tutorial.

The loop following the ChadReadO call swaps 16-bit words of the 32-bit output
table. The reason is the difference between the 32-bit integer representation used on the
host and the double-precision representation of the Chap software.

PIXAR November 18, 1986 ChadReadO

Chad Tutorial - 22-

include <pixeldef.h>
include <pirl.h>

PirlError PirlHistogr~(pw, histogr~, size, component)
ChadPW *pw;
int histogram[], size, component;
{

static ChadPC
ChadSpad
int i, n;

*PwHistogram = 0;
*spadhistogram, *spad;

n = pw->xmax - pw->xmin + 1;

CHECK (ChadAl.loc (ChadOwner (pw) ,
PIXELS, &spad, n,
PIXELS, &spadhistogram, size/2,
NIX»;

if (! PwHistogram)
CHECK(ChadAl.1oc (ChadOwner(pw),

RAM, &PwHistogram, "PWHistogram",
NIX));

else if (PwHistogram->addr < 0)
CHECK (ChadCheck (ChadOwner (pw), PwHistogram, NIX));

CHECK (ChadWrite (ChadOwner (pw) ,
BO, pw->addr,
B1, spadhistogram->addr,
B2, spad->addr,
RO, CHAD ALLPROCS, size,
R1, CHAD-ALLPROCS, component,
NIX»; -

CHECK (ChadGo (PwHistogram));

CHECK (ChadRead (ChadOwner (pw) ,
PIXELS, spadhistogram, histogram, size/2, 0,
NIX»;

/* words need to be swapped */
for(i=O; i<size; i++) {

n = histogram[i];
histogram[i] = (Oxffff & (n »16» I «n & Oxffff) « 16);

}

CHECK(ChadFree (spad, spadhistogram, NIX));
return(PIRL_NO_ERROR);

error:
return (Pir1LastErr);

Figure 15-1: PirlHistogram Program Listing

The Reliability of C hadReadO Values

Chad seeks not to interfere with the state of the Chap, which means changing no
registers and writing only its ,own private scratchpad locations. However, Chad has to
use some register to do its work. It uses the ALUs' accumulators, and so these are not
available from the host. For compatibility with previously-existing Chap routines which

PIXAR November 18, 1986 ChadRead()

Chad Tutorial - 23-

use the accumulator to return an error code, though, Chad's last act before returning to
its busy-wait state is to set Sysbus12 to the value of acc[O]. To check for error returns,
then you can simply use ChadReadO to read SYSBUS12. However, you should beware
that Chad also uses Sysbus12 for other purposes, so its value is useful only when
accessed immediately after the return of the routine generating the error code. Thus, it
is not necessary to call another SYSBUS12-setting routine for it to go away. It is not
even necessary to call a Chap routine; Chad itself may trash this value if it is not fetched
immediately.

With this caveat, though, you should be able to reliably read any Chap resource to
which Chad gives you access.

PIXAR November 18, 1986 ChadReadO

Chad Tutorial - 24-

16. More Resource Deallocation: ChadReset() and ChadBackup()

ChadFreeO de allocates Chad resources on an individual basis. It is sometimes
necessary, usually in the context of error recovery, to perform more broad deallocation.
This is why frequent checks for the continued viability of resources is good programming
practice.

There are three more general methods of freeing Chad resources. Two use Cha
dResetO and the third, ChadBackupO:

Chad Error CbadReset (chapid, [RAM,] [SPAD,] [TB,] [PW,] NIX)
ChapID chapid;

CbadResetO takes a set of resource tokens as previously used in CbadWriteO and
ChadReadO. It deallocates every instance of those resources. That is,

ChadReset (chapid, PW, NIX);

deallocates every pixel window declared on the specified Chap by the process in which
the call is made. No other pixel windows are affected, even those allocated by processes
now dead. You can see how important it is for programs to free their resources; there is
no other way for Cbad to know when a resource is no longer needed.

The other, more drastic, form of ChadResetO is to call it with no tokens at all, Le.

ChadReset (chapid, NIX);

This form completely clears all instruction memory and scratch pad, including all
pixel windows and tile blocks. The difference between this and

ChadReset (chapid, RAM, SPAD, PW, TB, NIX);

is that this latter form yanks all resources out from under any other processes which
might be sharing the Chap. Of course, it also frees up the resources remaining from prior
processes, which is the real reason to call it. When you have exclusive use of a Chap,
this form of CbadResetO is safe (albeit inconvenient when you have to wait for your
Chap programs to reload). When the process calling it is cooperating with another pro
cess using the same Chap (whether using Cbad or not), this action requires the utmost
care and cooperation between the programs so that they both know their resources have
disappeared.

The third broad deallocation action uses CbadBackupO:

ChadError ChadBackup (structp)
union {
ChadSpad spad;
ChadPCpc;
ChaaI'B tb;
ChadPWpw;

} *structp;

CbadBackupO is commonly used in the context of error recovery. It frees the
given resource, plus every resource that was allocated since it was allocated. Thus a

PIXAR November 18, 1986 ChadResetO

Chad Tutorial - 25-

routine would place a call to ChadBackupO immediately after the error label, giving the
fIrst structure it allocated. This is a convenience, since not every structure allocated by
the routine need be named. More important, however, this strategy provides a sneaky
way for a high-level routine, or program, to deallocate all the static resources allocated
by any routines "inner" to it.

A word about Chad's general deallocation policy: resources may be deallocated
implicitly, but never the corresponding host structure. In other words, Chad never
creates dangling pointers on the host without the knowledge of the application program.
Since only ChadFreeO restricts its actions to resources explicitly named by the calling
routine, it alone removes the Chad structure associated with the resource. Since Cha
dResetO and ChadBackupO can free resources not appearing in their argument lists,
they do no deallocation of the corresponding host structure. They only affect the Chap.

PIXAR November 18, 1986 C hadResetO

Chad Tutorial - 26-

17. Do-it-yourself Synchronization: ChadCPUBusyO and ChadWaitCPUO

As mentioned above, Chad never tries to do two things at once, waiting until there
is no program executing on the Chap before setting another program running or writing
to any register or scratchpad location. The mechanics of this may remain magical, but
there are times when you may want to check yourself whether a routine has completed
rather than enter some Chad routine which hangs awaiting completion. The following
two macros are for this purpose:

ChadCPUBusy (chapid)
-- is the given Chap currently executing?
ChapID chapid;

ChadWaitCPU (chapid)
-- busy-wait until !ChadCPUBusy (chapid)
ChapID chapid;

The former is a simple conditional which is nonzero if the Chap is currently busy
(i.e., if ChadGoO or ChadWriteO would hang). The latter is a busy-wait on ChadCPU
BusyO. It is unfortunate, but true, that the interrupt-generating capability of the Chap is
reserved for other purposes (like your own programs), making this busy-wait necessary.

PIXAR November 18, 1986 ChadCPUBusyO

Chad Tutorial - 27-

18. Chad Internals for the Curious
This section is included to give those who care to know a glimpse into the way

Chad conducts its business.

Chad is built upon libpixar, a library of low-level routines which use the Chap's
diagnostic registers to control the state of the Chap.

The host-side component of Chad is primarily a storage manager which allocates
and keeps track of the host-side structures corresponding to the Chap resources managed
by the dynamic loader: ChadPCs, ChadPWs, etc. These structures record the parameters
used to create the resources so that they can be conveniently recreated. The structures
also include a header, invisible to the application, giving the Chap on which the resource
exists, list pointers, and the time stamp used by ChadBackupO.

The Chap side of Chad consists of a primarily of a simple monitor which busy
waits for accesses of the Virtual Data Registers. The low bit of Sysbus 13 is 0 during this
busy-wait state and is 1 at all other times. The busy conditional ChadCPUBusyO is
nothing but a check of this bit

The various classes of Chad resource are mapped into the high-numbered VDRs,
such that when a VDR is accessed, the Chad monitor branches to the appropriate han
dling routine. For scalar data (scalar scratchpad locations and registers), this consists of a
simple data transfer between the appropriate entity and Sysbusl5. Multiple data words
are transferred either through single instances of scalar transfers (returning to the monitor
meantime) or via simple cooperative routines, depending on the protocol established
between the internals of the host side and the Chap side. For programs, this is a branch to
the routine itself; all parameters are assumed to have been previously loaded.

PIXAR November 18, 1986 Chad Internals

Chad Tutorial - 28-

19. Further Explorations

The foregoing discussion should enable you to understand the source in the existing
Pirllibrary. This is a good source of code to modify in order to create new routines. The
source to all Pirl routines is in the directory lusrlpixarlhostlsrcllibllibpirl, and you are
encouraged to examine, modify and put it to new uses.

Of particular use is the library of source code for the Chap contained in the sub
directories of lusrlpixarlchaplsrcllib. These directories provide parameter descriptions
for the multitude of Chap routines, thus giving you a source of routines for the Chap to
be invoked by your host programs.

To get the most out of these routines, ho~ever, and to write your own, you will
want to become familiar with programming the Chap directly. The Pixar Software
Release contains a complete set of tools for doing this, including an assembler, an
interactive debugger, an archiver and, of course, the dynamic loader used by Chad. The
Chap Programming Tutorial will return you to hands-on programming and get you into
the internals of thePixar Image Computer. If the prospect of "assembly-level program
ming" is daunting to you, we encourage you to withhold judgement until completing that
tutorial.

PIXAR November 18, 1986 Moving On

Chad Tutorial - 29-

20. Appendix: Summaries of Routines
This appendix is a terse summary of the previous material. It is provided for use as a

quick reference while writing programs using Chad.

ChadBegin()
ChadError ChadBegin (chapid, exclusive)
ChapID chapid;
int exclusive;

ChadBeginO must be called once for each Chap a program expects to use under
Chad. It restarts the Cbad monitor, which means that if any processes are sharing a
Chap under Cbad, they must all be in the Chad environment before any of them begins
executing Chap programs.

CbadEndO
ChadError CbadEnd (chapid)
-- close out the Cbad environment
ChapID chapid;

PIXAR November 18, 1986 Appendix

Chad Tutorial - 30- Resource Allocation

ChadAllocO
C hadError ChadAlloc (chapid,
[TB, tbpp, frrsttile, tileswide, tileshigh,]
[PW, pwpp, tbpp, xmin, xmax, ymin, ymax,]
[SPAD, blockpp, nwords,]
[RAM, pcpp, sym,]
[PIXELS, blockpp, npixels,]
NIX)

ChadSpad * (*blockpp);
Chad PC *(*pcpp);
ChaaI'B *(*tbpp);
ChadPW * (*pwpp);
int nwords, npixels, firsttile, tiles wide, tileshigh;
char *sym;

ChadCheckO
ChadError ChadCheck (chapid, [blockp,] [pcp,] [tbp,] [pwp,] NIX)
ChapID chapid;
ChadSpad *blockp;
Chad PC *pcp;
ChaaI'B *tbp;
ChadPW *pwp;

ChadFreeO
Chad Error ChadFree ([blockp,] [pcp,] [tbp,] [pwp,] NIX)
-- free the given resources AND their associated host structures
ChadSpad *blockp;
Chad PC *pcp;
ChaaI'B *tbp;
ChadPW *pwp;

ChadFreeO is the only deallocation routine which frees up the host structure as
well as the Chap resource, making all pointers passed to it dangle.

ChadResetO
ChadError ChadReset (chapid, [RAM,] [SPAD,] [TB,] [PW,] NIX)
ChapID chapid;

With any token arguments, ChadResetO frees up the Chap resources associated
with all the associated resource classes for a singe process. With only NIX as an argu
ment, ChadResetO performs a hard reset of the Chap, removing all resources on the
Chap of all types for all processes. This form is to be used only with great caution.

PIXAR November 18, 1986 Appendix

Chad Tutorial

ChadBackupO
ChadError ChadBackup (structp)
union {

ChadSpad spad;
ChadPCpc;
ChadI'B tb;
ChadPWpw;

} *structp;

ChadLibsO

- 31 -

ChadError ChadLibs (libl, ... , !ibN, NIX)
-- include the given Chap-code archives in Chad's search path
char *lib 1, ... , libN;

Resource Allocation

ChadLibsO adds its arguments to the front of the search path in argument order.
Therefore the last named archive will be searched frrst.

PIXAR November 18, 1986 Appendix

Chad Tutorial

ChadWriteO
ChadError ChadWrite (chapid,
-- write to a Chad resource
[SP AD, blockp, val, offset,]

- 32-

[SP ADARRA Y, blockp, vals, nwords, offset,]
[PIXELS, blockp, pxvals, npixels, offset,]
[SYSBUS<0 •• 15>, val,]
[R<0 •• 31>, proc, val,]
[B<0 •• 15>, val,]
[1<0 •• 15>, val,]
NIX)

C hapID chapid;
ChadSpad *blockp;
int proc, nwords, npixels, offset;
CHAPV AL val, valsf];
RGBAPixelType pxvalsf];

Reading and Writing

ChadWriteO waits for the completion of any running Chap program before per
forming its reads.

SPAD and SPADARRAY writes are tesselated. SPADTAB writes are not, and are
therefore suitable for index-mode lookup tables. If this makes no sense to you, then you
shouldn't be using SPADT AB writes.

ChadReadO
C hadError ChadRead(chapid,
-- read from a Chad resource
[SPAD, blockp, valp, offset,]
[SP ADARRA Y, blockp, vals, nwords, offset,]
[SP ADT AB, blockp, vals, nwords, offset,]
[PIXELS, blockp, pxvals, npixels, offset,]
[SYSBUS<0 •. 13>, valp,]
[R<0 •• 31>, proc, valp,]
[B<0 •• 15>, valp,]
[1<0 •• 15>, valp,]

NIX)

ChapID chapid;
ChadSpad *blockp;
int offset, nwords, npixels, proc;
RGBAPixelType pxvals[];
unsigned short int *valp, vals[];

SPAD and SPADARRAY writes are tesselated. SPADTAB writes are not, and are
therefore suitable for index-mode lookup tables. If this makes no sense to you, then you
shouldn't be using SPADTAB writes.

PIXAR November 18, 1986 Appendix

Chad Tutorial - 33-

ChadGoO
ChadError ChadGo (pcp)
-- run a routine on the ChadPCs Chap, returning if the ChadPC
specified by pcp has become invalid.
Chad PC *pcp;

ChadGoO

ChadGoO always waits for the previously-executing Chap program to complete
before starting another.

ChadCPUBusyO, ChadCPUWaitO
ChadCPUBusy (chapid)
-- is the given Chap currently executing?
ChapID chapid;

ChadWaitCPU (chapid)
-- busy-wait until !ChadCPUBusy (chapid)
ChapID chapid;

PIXAR November 18, 1986 Appendix

Chad Tutorial - 34- Misc. Routines

ChadOwnerO
extern ChapID ChadOwnerO;
ChadOwnerO is a macro which gives the ChapID of the Chap on which a Chad

resource is defined.

ChadErrReportO
ChadError ChadErrReport (fp)
-- describe the Chad error whose code is in ChadlAstErr to the file fp
FILE *fp;

ChadErrReportO prints a message summarizing the last Chad error to the file
given in its argument.

PIXAR November 18, 1986 Contents

Chap Programming Tutorial

PIXAR

ABSTRACT

A companion to The PirZ Tutorial and Programming with Chad, this
document introduces Chap programming at the lowest level, acquainting
the reader with the programming environment of the Pixar Image Com
puter for writing native Chap programs. Mter completing this tutorial, the
reader should be able to write and run programs on the Chap with impun
ity. We assume at least a cursory understanding of the Pixar software
environment and its concepts as presented in Pixar Software Overview,
and familiarity with Chad, as presented in Programming with Chad ..
UNIXt literacy is also assumed.

November 18, 1986

t UNIX is a Trademark of Bell Laboratories.

PIXAR November 18, 1986 Introduction

Chap Programming Tutorial

Table of Contents

1. Introd.uction... 1

2. Review of Chap Architecture 2

3. Sample!: Fundamentals 00 00.. 3

l'reprocessor defmitions 4

Assembler directives 4

Data Representation .. 4

Scratchpad access: Broadcast Mode 5

Scratchpad Access: Pixel Mod.e .. 6

Introd.ucing the Sequencer 7

Note on Instruction Packing 8

End of Program 8

3.1. Assembling sample 1 8

References 8

4. The Debugger 9

4.1. Note on Radix ... 9

4.2. wad the Program .. 9

4.3. Display the Segment (load) Map 9

4.4. Display the Symbol Table ... 10

4.5. Displaying Scratchpad Memory 10

4.6. Number Representation .. 11

4.7. Accessing Program Memory 12

4.8. Runtime Control 13

4.9. Breakpoints 14

4.10. Examining registers 14

4.11. Changing the Radix ... 15

4.12. Getting out of Charm 15

Addendum for the Curious 16

References 16

5. Sample2: Paint a Colored Rectangle ... 17

5.1. Condition Cod.es and Program Flow ... 18

5.1.1. Syntax of "if ... else ... filt ..•...•.................................... 18

5.1.2. How Conditionals Work on the Chap .. 18

PIXAR November 18, 1986 Contents

Chap Programming Tutorial

5.1.3. "All or nothing" control ... 18

5.1.4. Low uvel Sequencer Control ... 19

5.2. Subroutines 19

5.2.1. Library Subroutines: Sharing Registers ... 19

5.2.2. Library Subroutines: Calling Conventions 19

ini tializ e 20

AllocTB .. 20

OpenPW .. 21

SFxCopy 21

5.3. Assembling sample2 22

5.4. Running sample2 .. 23

6. Sample3: In Which the Host Plays a Role ... 24

6.1. Sample3: Chap side 24

Outer loop .. 24

Synchronization ... 25

Synchronization loop 25

6.2. The host program 25

General remarks 26

Signaling: Chap to host 27

6.3. Running Sample3 27

References 28

7. Sample4: Transparent Colored Rectangles ~..................... 29

More storage 29

The alpha channel ... 29

Selecting the alpha channel ... 29

Setting the runflag 29

Filling new_row ... ~. 31

Merge the Rectangle ... 31

Using the multiplier 32

8. Further Topics .. 34

Component addressing 34

9. Programming Pitfalls 36

4-Way Registers, Scalar Registers, and Runflags 36

"Runflaq =" vs. force .. 36

Library calls and runflags 36

10. Sample5: The host part completed .. 37

10.1. Relocation ... 37

10.2. Link editing ... 37

PIXAR November 18, 1986 Contents

Chap Programming Tutorial

10.3. The Dynamic Loader .. 38

10.3.1. The Dynamic Loader's Symbol Table ... 38

10.3.2. Creating Relocatable Object Modules 38

10.3.3. Dynamic Loading From ChanD. ... 38

10.3.4. Searching Libraries 40

10.3.5. Miscellaneous Commands ... 40

10.3.6. Dynamic Loading From The Host ... 41

ChapLoadGo u •••••••••••••••••••••••••• oo •• 00.... 41

Running samp/e5s .. : 42

11. Chap Routines 43

General Remarks 43

11.1. Advanced Chas Programming 44

11.1.1. Virtual Data Registers 44

Suggestions for VDR Usage .. 46

11.2. The Dynamic Loader .. 47

Chap~n 47

ChapBeginLoad and ChapEndLoad .. 47

ChapSymLookup .. 48

ChapSetArchi ves ... 48

Cha pLoad .. 48

ChapRunAs ync 49

11.3. Memory Management ... 50

ChapGetConfig .. 50

Allocating and Freeing Chap Resources 51

Resetting .. 51

11.4. Hardware Interrupts .. 52

12. Using Chad .. 53

12.1. General Remarks ... 53

12.2. The Cost of Using Chad ... 53

12.3. Data Transfer to Running Chap Programs .. 53

12.4. Chad and tlle Chap Libraries .. 55

12.5. Discussion: the Chad Development Process. .. 56

13. Video Routines .. 58

General Remarks ... 58

13.1. Display Parameters ... 58

VideoSetDisplay ...•................. 58

Channel Crossbar .. 59

Commentary on Figure 13-1 60

PIXAR November 18, 1986 Contents

Chap Programming Tutorial

Video Zoom ... 60

13.2. Colormap Demo .. 60

Computing the Colormap 61

Sample Program contour•.... 62

13.3. Hardware Cursor ... 63

Manipulating the Active Cursor 63

Conclusion 65

14. Miscellaneous Routines 0.. 66

14.1. The memory controller routines ... 66

14.2. Disk buffer routines 67

Setting Up the Durni 67

Opening the Disk Buffer ... 68

Cleaning Up 69

15. Conclusions .. 70

PIXAR November 18, 1986 Contents

1. Introduction

Chap Programming Tutorial

PIXAR

Marin County. CA

The Chap (Channel Processor) is the processing unit of the Pixar Image Computer,
its "CPU". This tutorial will prepare you to write and debug programs for the Chap, on
the Chap, as well as programs running in cooperation between the host and the Chap.

The tutorial consists of a sequence of sample programs. Each program illustrates
one or more features of the Pixar Image Computer and its programming environment
The programs incrementally develop the simple task of drawing colored rectangles into
the framebuffer memory. The programs are written in Chas, the Chap assembly
language. You are shown how to assemble the programs using Chas and load them using
Chad, the Pixar host library for managing the Chap introduced in Programming with
Chad. You will also be introduced to Charm, the debugger for the Chap. The frrst few
samples are entirely devoted to writing and running programs independent of Chad. A
later section will teach you how to incorporate what you have learned with this system
for automatically running Chap programs from within host C programs, and another sec
tion describes the services provided by Chad to complete the process of writing applica
tions involving cooperation between Chap and host programs.

There are optional exercises to test your understanding, and references to more
complete sources of documentation. The source code for all sample programs is distri
buted with the system software in the directory lusrlpixarldocltutoriallchap. You are
encouraged to copy these programs and tinker with them as you read the tutorial.

The frrst part of this tutorial takes you through five examples. These deal with using
Chas and Charm to make rectangles appear on the screen. The second part discusses
advanced topics for the Chap, and programming the video and Dumi boards. We suggest
you work through the tutorial from start to fmish; the few days you spend here will pro
vide a solid background for writing your own programs for the Pixar Image Computer.
You may find it helpful to refer to the Chas Assembler Reference Manual, especially its
appendix discussing the sequencer.

PIXAR November 18, 1986 Introduction

Chap Programming Tutorial -2-

2. Review of Chap Architecture
Recall that the Chap is a single-instruction, multiple-data-stream machine consisting

of four identical processors. Each processor contains an Arithmetic Logic Unit, or ALU
for short. Each has 32 general-purpose registers, known to the assembler as rO through
r31. These and other registers associated with each processor are sometimes referred to
as 4-way registers, since there are 4 of each in each Chap. There is a 64K-by-16-bit
scratchpad memory shared by all processors. Access is controlled by an array of 16 base
and 16 index' registers named bO through b15 and iO through i15, respectively.
There are four modes for accessing the scratchpad memory. There is a large framebuffer
memory connected to the Chap through a high-speed bus. Scratchpad and framebuffer
are organized so that four consecutive 16-bit words of the former map to the red, green,
blue, and alpha channels of a single pixel. The alpha channel is a fourth channel that
may contain arbitrary data. The examples contained in this tutorial use it to store tran
sparency information. A single sequencer controls the execution states of all four proces
sors.

PIXAR November 18, 1986 Chap Architecture

Chap Programming Tutorial -3-

3. Sample1: Fundamentals
The ftrst sample program, sample1, begins the task of drawing a rectangle on the

screen and the second, sample2, completes it. We learn:
• the syntax of a simple program
• how to use broadcast and pixel modes of accessing scratchpad
• how to write a simple program. loop.

sample1 is shown in Figure 3-1. The line numbers are not part of the source file,
but are included here for reference. A discussion of the program follows.

1 1*
2 * Prepare to draw a rectangle:
3 * Create one horizontal span for a rectangle.
4 */
5 #define rxO r8
6 #define ryO r9
7 #define rxsize rl0
8 #define rysize rll
9 #define rcolor r12

/* .data section: fill scratchpad */

. data 10
11
12
13
14

color:
.pizel .35E, .22E, .8E, 0

rect:
.pizel 100, 250, 100, 250

/* .bss section: allocate scratchpad space for one scan line. */

lS .bss
16 one_row:
17 .space 1024*4

/* .tezt section: assemble text into Chas instructions. */

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
3S
36
37

PIXAR

.tezt
samplel:

bO = rect
iO = 1
rzO = @bO; bO = bO + iO
acc = @bO; bO = bO + iO
rxsize = acc - rxO
rxsize = rxsize + 1;
ryO = @bO; bO = bO + iO
acc = @bO; bO = bO + iO
rysize = acc - ryO
rysize = rysize + 1;
bO = color
rcolor = (bO)
bO = one row
iO = 4 -

/* read xO */
/* read xl */
/* compute x dimension */
/* include end pt */
/* read yO */
/* read yl */
/* compute y dimension */
/* include end line' */
/* read color */

loop rxsize do /* build one row */
(bO) = rcolor; bO = bO + iO

done
bpt /* end of program */

Figure 3-1: Samplel Program Listing

November 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial -4-

Preprocessor definitions [lines 1 to 9]

Notice that comments and macro definitions are the same as in the C programming
language. This is not surprising since the same preprocessor is applied before assem
bling the source fues.

We use the 'define facility to make the program more readable by substituting
mnemonic names for the register names.

Assembler directives [lines 10 to 19]

Assembler directives are keywords identified by a leading dot (.). The directives
• data, • bss, and • text mark the three main divisions of the program. These tell
the assembler where to assemble the data or instructions that follow. The divisions are:

• data initialized memory locations in scratchpad
· bs s reserved data locations (initialized to zero) in scratchpad
· text instructions loaded into the instruction memory

Labels may be placed at the beginning of any line in any of these segments. A label
is a name followed by a colon. Names are strings composed of alphanumeric and/or
underbar ('_') characters (the fust character cannot be a digit).

The • pixel directive tells the assembler to assemble the following four values
into scratchpad memory using tessellated storage. This means that when you retrieve
these data using pixel-mode accesses, processor 0 will get the first value, processor 1 will
get the second, etc.

The .bss directive allocates space to be initialized to zero at load time. Since
each pixel consists of four words, the example above makes room for a row of 1024 pix
els by allocating 1024*4 words. Notice that the assembler can deal with constant expres
sions such as '1024*4.'

Data Representation [lines 12 to 14]

To paint a colored rectangle, we need to have some data: a color and a rectangle.

Note that the components of color are specified by a decimal fraction followed
by E or e. The range of component values that correspond to visible colors is [0.OE,1.0E]
where 1.0E is full on and O.OE is full off. This numbering scheme will be described in
more detail later. The fust value is the red component of the color, the second is the
green, the third the blue. The fourth value is not used in samplel, but later, in sample4,
we will use it for transparency information.

rect through rect+3 contain the four coordinates of the rectangle: lower and
upper x-values, and lower and upper y-values. These four values will be referred to as
xO, xl, yO, and yl, respectively, in the following discussion. This order (xO, xl, yO, yl)
is important, for this is the order in which we will want to access the numbers later.

The default radix for specifying integers is decimal, but the assembler also accepts
octal and hexadecimal format. This example also shows that the values of a • pixel
directive need not be actual RGBA color components of a pixel.

Figure 3-2 shows a logical map of memory after data is loaded.

PIXAR ~ovember 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial -5-

R G B A

color: .35 .22 .8 0

rect: 100 250 100 250

. . . .

Figure 3-2: Scratchpad Memory Contents

Figure 3-3 shows the relation of the rectangle to the registers used in the computa
tion.

(xO, yO)
register contents

rxO (r8) xO
ryO (r9) yO

rxsize (rIO) xl-xO
rysize (rll) yl-yO

(xl, yl)

Figure 3-3: Rectangle Coordinates

Scratcbpad access: Broadcast Mode [lines 20 to 27]

The frrst task of our program is to calculate the dimensions of the rectangle. To do
this we must retrieve the corner points stored in recto We want each of the four proces
sors to receive the complete rectangle description, so we use broadcast mode to access it.
Broadcast-mode read distributes the same l6-bit word from scratchpad to each of the
four processors. Figure 3-4 illustrates this mode. Broadcast mode is represented by an
'@' preceding a base register. In this case we set bO to the address of the rectangle, and
iO to 1. This choice of the index register lets us distribute consecutive words of
scratchpad to all four processors.

The sequence of events in this part of the program [lines 20 to 29] is:
• Load rxO with coordinate xO from rect and increment bO to rect+ 1.
• Load acc(the accumulator-a special ALU register) with xl from rect+ 1 and

increment bO again .
• Set rxsize to xl-xO.

PIXAR November 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial -6-

rxO (r8) processor

@bO
[0]

(bO = rect) [1]

[2]

rect: [3]

scratchpad

Figure 3-4: Broadcast Mode Read: "rxO = @bO"

• Add 1 to rxsize; this is the X dimension of the rectangle, which contains both
beginning and end points .

• The Y dimension is calculated and handled in an analogous way.

Notice that we use ace because the ALU is a single operand ALU. Two general
purpose registers cannot be named on the right hand side of an assignment statement.
Hence, acc=rl - r2 becomes the following two statements executed in sequence:

acc=rl
acc=acc - r2

Scratch pad Access: Pixel Mode [lines 30 to 36]

The next section of the program uses pixel mode to access the scratchpad. The
statement

rco~or = (bO)

is a pixel-mode read, the effect of which is illustrated in Figure 3-5. Each processor is
loaded with one of the four components of the pixel accessed. Processor 0 gets the red
component, processor 1 gets the green, processor 2 gets the blue, and processor 3 gets the
alpha component.

Inside the loop [line 35] is a pixel-mode write into the scratchpad space reserved for
the horizontal line, one_row. Notice that the index register iO is now set to 4; this is
the usual setting when pixel-mode access is used, since four words are transferred in each
access. Figure 3-6 illustrates a pixel-mode write.

PIXAR November 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial -7-

(b0)

bO = color

color:

R G B A

Figure 3-5: Pixel Mode Read: "reolor

row one:

bO = color
(bO)

R G B A

rcolor (rI2) processor

[0]

[1]

[2]

[3]

= (bO) "

rcolor (rI2) processor

[0]

[1]

[2]

[3]

Figure 3-6: Pixel Mode Write: " (bO) = reo lor' ,

Introducing the Sequencer [lines 34 to 36]

The Chap has a single sequencer to control the execution of all four processors. The
sequencer uses a single loop counter, which is shared by the processors. The construct

100p rxsize do

done

executes the statements inside the loop rxsize times*.

* There is a subtlety involved here: rxsize is a 4-way register, while there is only one loop

PIXAR November 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial - 8:-

Note on Instruction Packing

In general, all the statements on one line are assembled into one microcode instruc
tion. Multiple statements are separated by semicolons. You may also specify that multi
pIe lines are to be assembled into one instruction by enclosing them in curly brack
ets ({}). There is a limit to what can be specified in one instruction. This will be
covered in Chas. For now, it is sufficient to know that the assembler will complain if
you ask for too much.

End of Program [line 37]

This program ends· with the breakpoint statement
bpt

This is a convenient way to end a program fragment so you can test it with the debugger.
When this instruction is executed, control will return to the debugger.

3.1. Assembling samplel

At this point, UNIX users should confirm that their PATH environment variable
includes the directory lusrlpixarlhostlbin. This will give you access to all the programs
discussed subsequently, including the Chas assembler chc, the loader chload, the
debugger charm and others.

The sample program shown above is contained in the file "sample 1.s' '. Assemble
the program with the command

% che sample1.s -0 sample1.out

The command shown runs the macro preprocessor, assembles the source file sample1.s,
and produces the executable object file samplel.out.

The chc command is the Chap analog of the UNIXt cc command. Chc is used to
compile and link Chas programs. Like cc, chc invokes the C-preprocessor. Chc then
assembles the Chas programs into relocatable object files and links them with other
object files to form executable modules.

References

The standard reference on Chas is The Chas Reference Manual. Its appendix on
sequencer instructions gives a detailed description of the Chap instruction set. The
manual pages of the Pixar User's Manual describe chc more fully.

counter. This means that only one of the four values of rzsize is used as the loop count. By
default the register associated with processor 0 is used. But, in general, any of the processors' re
gisters may be used. Processor 1 can be chosen by specifying:

loop rxsize[l] do

done

t UNIX is a Trademark of Bell Laboratories.

PIXAR November 18, 1986 Sample 1 : Fundamentals

Chap Programming Tutorial -9-

4. The Debugger
We use the debugger Charm to run and test our sample program. Before running

the debugger, give the Unix command
% chmap -i

This will initialize the Chap symbol table. Later, we will see how the dynamic loader
allows several users to have programs loaded in the Chap at once, but for our present pur
poses we want to have the machine to ourselves.

To begin a debugger session use the command 'charm'. Charm identifies itself,
then prompts for input:

Chap Runtime Monitor, version 3.1 of Tue Aug 19 21:11:26 PST 1986
>

A debugger session for the ftrst sample program is shown below. Users of the stan
dard UNIX debugger adb will notice a strong resemblance in Charm's command syntax.
The approach below is to show sample commands rather than a systematic exposition.
See the Charm manual for details.

4.1. Note on Radix
The default radix used by Charm in most cases is hexadecimal. Exceptions will be

noted in the tutorial. Input values whose hexadecimal form begin with an alphabetic
digit must be preceded by a '0' to be properly interpreted as numbers and not strings.
The default radix may be changed if desired (see "Changing the Radix," below).

4.2. Load the Program
The :1 command loads an object module into the Chap.

>:1 sample1.out
loading samplel.out •••
stopped at 198: push sample1;

The second message following the command tells us the processor had previously
stopped at instruction 198 - a fact that is of no interest to us.

4.3. Display the Segment (load) Map
You can display a listing of the current memory allocations with the $m command.

>$m
tile name text data
sample1.out 0-14 0-100f
Free: 16363 instructions 15356 pixels

The text column shows where the file's instructions are loaded in instruction RAM. The
data column shows where the file' s (combined) .bss and .data segments are loaded in
scratchpad. These numbers are in hexadecimal format, while the Free statistics are in
decimal.

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 10-

4.4. Display the Symbol Table
The $1 command causes the debugger to display a table of the value, type, and name

of each locally defined symbol. Type this command using "I" for "list", not the digit
"1":

>$1
samplel.out: 21 instructions at 0 data [0 •• 1010]

o t samplel.o 0 d color 4 d rect
10 b one row 0 t sample 1

The first line repeats the statistics given by the $m command. The local symbols,
their value and type are then listed. The meaning of each type is shown in Table 4-1.

Type Segment
t, T text
b,B bss
d,D data
a,A absolute

Table 4-1: Symbol Types

Symbols in upper-case are externally visible. That is, a symbol may be referenced out
side the file in which it is defined. As an exercise, in sample program 2 we create sym
bols of this type. External symbols may be displayed with the $e command.

4.5. Displaying Scratchpad Memory
The general form of the command to read scratchpad is

address,count!format

address specifies the address of the first word to be displayed, count the number of times
the following format is employed. If the address is omitted, the default value is o. If the
count is omitted, its default value is 1. format is a string of characters that specifies how
to display the data. Some common format characters and their meanings are shown in
Table 4-2. Lower-case characters refer to tessellated data; upper-case, to untessellated
data.

Character Meaning
x,X Print a value in hex
d,D Print a value in decimal
0,0 Print a value in octal
f,F Print a value as coefficient type
e,E Print a value as pixel type
a Print the current address in symbolic format

Table 4-2: Format Characters

An optional integer n can precede any format character. This is equivalent to
repeating that character n times.

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 11 -

We examine the loaded data:

>color,4/x
0:
color: 2cc lc2 666 0
>color/4d
0:
color: 716 450 1638 0
>
rect:
rect: 100 250 100 250
> one row/2Od
one row:
one row: 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

There are a couple of things to notice here. First, observe that omitting the count and
preceding the format string by '4' achieves the same effect as specifying a count of 4.
Also, observe that a carriage return in response to the prompt causes the previous com
mand to be repeated beginning at the current address. (rect follows color in memory).
However, when the command is repeated, the count is set to 1. Thus, it is preferable to
incorporate the count into the format part (as noted above) when you are examining large
arrays of memory. That way, you can just hit carriage returns to see each row.

4.6. Number Representation
The assembler recognizes three fixed-point formats: integer, coefficient, and pixel.

Integers have no fractional bits. Coefficient values contain 14 bits of fraction and have
an implicit binary point between bits 13 and 14. Pixel values contain 11 bits of fraction
with an implicit binary point between bits 10 and 11. Figure 4-1 compares the three
types.

Pixel values are designed to be compatible with the 12-bit frame buffer (12 bits in
each channel). The high-order four bits are discarded when a value is moved to the
framebuffer, and the resulting 12 bits are interpreted as a value in the range [-.5, 1.5)*.

Coefficient values have a range of [-2, 2). They are useful for scaling constants,
matrix elements, etc. A coefficient is represented in Chas programs as a decimal value
containing a fraction followed by an 'F' or 'f' (for Fourteen bits). A pixel value is
represented by a decimal value with fraction followed by an 'E' or 'e' (for Eleven bits).
The values of color in samplel are specified in the 'E' notation (see Figure 4-1).
These values are converted by Chas to the 16-bit fixed-point word of the Chap. The hex
adecimal (decimal) values for color are:

* The notation for intervals used here uses square brackets to denote closed intervals (which con
tain the endpoint) and parentheses to denote open intervals (which don't). Thus, [.5, 1.5) is the set
of x such that x is greater than or equal to .5 and less than 1.5.

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 12-

color: 2cc (716) lc2 (450) 666 (1638) 0 (0)

Consider the value 716. The binary representation is

0000 0010 1100 1100

Inserting the binary point, the number becomes

0000 0.010 1100 1100 (binary) = 0.35 (decimal)

115114113112111110 19 18 17 1615 14 13 1211 I 0 ~

115114113112111 go 19 18 17 16 15 14 13 12 11 1 0 I

Coefficient: 115 114g3 1121u110 191817161514131211 10 I

Integer:

Pixel:

~: binary point

Figure 4-1: Chap Number Types

4.7. Accessing Program Memory

The general form of the command to read instruction memory is:

address,count?format

This command works the same as that for reading scratchpad locations.

An additional format character, i, is useful in that it interprets the accessed word as
an instruction. Samplel is short enough to print it out completely:

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 13-

> samplel,13?ia
0: bO = rect;
1: iO = color+ 1;
2: bO++; r8 = @bO;4 ticks;
3: bO++; acc = @bO; 4 ticks;
4: !sce; special; r8 = acc- r8;
5: riO = acc - riO;
6: riO = color+l + rIO; 2 ticks;
7: bO++; r9 = @bO;4 ticks;
8: bO++; acc = @bO; 4 ticks;
9: !sce; special; r9 = acc- r9;
Oa: rll = acc - rll;
Ob: rll = color+l + rl1; 2 ticks;
Oc: bO = 0;
Od: r12 = (bO); 4 ticks;
Oe: bO = one_row;
Of: iO = rect;
10: push rl0[0]; 2 ticks;
11: whiled04 not Iczero otherwise 14; 2 ticks;
12: (bO) = r12; bO++; 2 ticks;
13: !mce; continue;2 ticks;
14: bpt;

The disassembler produces code similar, but not identical to, the original source program.
This a format causes the assembled program starting at samplel (its entry point) to be
"disassembled." The shorthand "bO++" stands for "bO = bO + iO." On line 2, "4
ticks" is the amount of time the assembler has allocated to execute this instruction. Note
that the constant 1 appears as color+l [line 1]. This is because the value of symbol
color is O. Chann assumes all constants are addresses, and tries to interpret them as
offsets from known addresses. Finally, notice that the loop-done construct has been
translated into its lower-level equivalent [10-13]. One can learn quite a bit about the
assembler by comparing its preas sembled code to its disassembled counterpart, or by
reading the Chas document.

4.8. Runtime Control
The :r command starts program execution at the address specified.

>samplel:r
/dev/chapO: running
stopped at 14: bpt;

Chann returns automatically when it encounters a breakpoint. This breakpoint is
the one we inserted at the end of our sample program.

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 14-

We may examine the results by listing the contents of one_row:

> one row/20d
one row:
one row: 716

716
716
716
716

450
450
450
450
450

1638
1638
1638
1638
1638

o
o
o
o
o

The listing above shows the expected result: one row has been ftIled with the
contents of color. This list is rxsize lines long.

4.9. Breakpoints
Breakpoints may be inserted with the :b command and deleted with the :d com

mand .. We'll insert a breakpoint at the beginning of the loop at location 11 (hexade
cimal):

> II:b

then, restart the processor:

>samplel:r
/dev/chapO: running
breakpoint 11: bpt; whiledo* not Ic zero otherwise 14; 2 ticks;

The processor stops at the new breakpoint. We can single step one instruction using the
:s command:

> :s
stopped at 10: (bO) = r12; bO++; 2 ticks;

or continue execution with the :c command:

>:c
/dev/chapO: running
breakpoint 11: bpt; whiledo* not Ic zero otherwise 14; 2 ticks;

The program returns to the breakpoint after executing one iteration of the loop. Finally,
we can delete the breakpoint:

> 11:d

then restart, executing the entire program and arriving at the end:

>samplel:r
/dev/chapO: running
stopped at 14: bpt;

4.10. Examining registers
ALU registers can be examined with the $r command. To look only at those regis

ters used by sample 1:

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 15-

> 8,5$r
r8[0] 64 r8[1] 64 r8[2] 64 r8[3] 64
r9[O] 64 r9[1] 64 r9[2] 64 r9[3] 64
rIO[O] 96 rIO [I] 96 rIO[2] 96 rIO[3] 96
rll[O] 96 rll[l] 96 rll[2] 96 rll[3] 96
rI2[O] 2ee rI2[1] 1c2 rI2[2] 666 rI2[3] 0
aee[O] Ora ace[l] Ora ace[2] Ora acc[3] Ora
sp 0
Ie Ora
rf Of
12: bpt;

The other registers displayed are the four accumulators (ace), the stack pointer (sp), the
loop counter (Ie), and the runflag (ri). Finally, the instruction currently pointed to by the
program counter is displayed.

In a similar manner, the $a command may be used to display the base and index
registers. Try it

4.11. Changing the Radix

The $d command changes the default radix.

>Oa$d
radix=10 base ten

changes the default radix of the debugger to decimal. Note that the new radix must be
specified in terms of the old one. Now input will be interpreted in base 10 and output
displayed in base 10. Try the $r and $a commands to examine the registers. Notice that
the register values are now displayed in decimal.

Exercise: You've seen how the color (.35E, .22E, .8E, OE) gets loaded into
scratchpad. You can also change these values from within Charm. The command
for writing a single word of scratchpad memory at address foo with the value val
is:

>foo/w val

Your assignment is to overwrite color, color+1, and color+2 with new red,
green, and blue values. Then rerun the program and verify that your new color has
been used to fill one row.

4.12. Getting out or Charm

To end the debugger session, enter the quit command:

>$q

or type AD (Control-D).

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 16-

Addendum for the Curious
Perhaps now you are wondering what the syntax of Charm commands is. Charm

commands generally follow this format:

[address][,count]verb modifier

where bracketed arguments are (usually) optional. In this context, the format part of the
memory access command is a modifier of the verbs 'I' and '?'. Table 4-3 shows the most
common verbs and their interpretations.

References

Verb Interpretation
/ display scratchpad memory
? display instruction memory
= display the value of address
$ miscellaneous printing commands

runtime control

Table 4-3: Command verbs

The standard reference on Charm is the Chap Runtime Monitor Reference
Manual in the Pixar User's Manual.

PIXAR November 18, 1986 The Debugger

Chap Programming Tutorial - 17-

5. Sample2: Paint a Colored Rectangle
We fInish the work we began in samplel and paint a colored rectangle into the

framebuffer memory. In the process, we learn about the following topics:
• condition codes and runflags
• subroutines
• calling and linking library subroutines

The listing of sample2 is shown in Figure 5-1. Sections of code unchanged from
samplel have been omitted. Once again, references to the listing are in square brackets.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

PIXAR

/* * Draw rectangle of fixed size , color into frame buffer
*/

#define rtb
#define rpw

r13
r14

/* new regs for library calls */

/* same as sample1 until ... */
ace = @bO; bO = bO + iO /* read xl */
if negative (ace = ace - rxO) then

ace = -1; bpt
else

rzsize = ace /* compute x dimension */
fi
ryO = @bO; bO = bO + iO /* read yO */
ace = @bO; bO++ /* read y1 */
if negative (ace = ace - ryO) then

ace = -2; bpt
el.seo

rysize = ace + 1
fi

jar initialize
loop rysize do

bO = rpw
b1 = one row
rO = rxs'Ize
r1 = rzO

done
bpt

r2 = ryO
jar Sli'xCopy
ryO = ryO ~ 1

initialize:
jsr initstack
rO = 0
r1 = 32
r2 = 32
jsr Al.locTB
rtb = bO
rO = 0
r1 = 1023
r2 = 0
r3 = 767
jsr OpanPW
rpw = bO
return

/* compute y dimension */

/* build one row */
/* subroutine jump */
/* copy one_row to framebuffer */

/* l.ibrary routine */
/* go to next line of rect */

/* subroutine definition */

Figure 5-1: Sample2 Program Listing

November 18, 1986 Sample2

Chap Programming Tutorial - 18-

5.1. Condition Codes and Program Flow

Chas includes high-level conditional constructs such as if-then-else-fi. In
this sample program, a test is added to detect a negative value for the length of the rec
tangle [lines 9-13]. If this value is negative, then -1 is loaded into the accumulator, and
the program halts using the bpt statement.

5.1.1. Syntax of "if •.• else ••• tiff

Note that the condition code is not in parentheses, while the value to be tested is.
The fi and else statements must be on lines by themselves. The else clause is
optional, but the fi is not. zero, positive, overflow, and carry are other
valid condition codes. (~~. \~ o~ C \oI.()..!> Irt:! ~. M"'-(\.v~ \ ')

5.1.2. How Conditionals Work on the Chap.
Conditional statements allow the programmer flexible control over which proces

sors execute given blocks of code. The key to this control is the runflag. This is a 4-bit
value that determines which of the processors executes the current instruction. The run
flag is one of the three values which is maintained by the sequencer on the system stack,
along with the loop counter and the program counter. Recall from the Charm session that
the runflag (known as rt) is printed, along with the loop counter and the program counter,
by the $r command.

In normal operation, the runflag is 1111 (binary) indicating all four processors are to
run. The low order bit corresponds to processor 0 (the "red" processor), the next bit to
processor 1, etc. Thus, a runflag value of 1000 indicates that only processor 3 is running.

Conditional statements generate a runflag to identify those processors that satisfy
the condition. In the usual mode, this runflag is then ANDed with the runflag on the top
of the stack, and pushed onto the top of stack. This is the effective runflag until the con
ditional block is tenninated or another sequencer instruction pushes new values on the
stack.

5.1.3. "Allor nothing" control

In the way described above, processors may be selectively turned on and off
depending on the data they contain. Using the key words any or all it is possible to exer
cise other types of control. For example,

if any !zero then

fi

will force all or none of the processors to execute the block. If any of the processors
satisfies the condition code, then the runflag of 1111 is generated, forcing all processors
to be active; else 0000 is generated. For example, suppose we want to process all pixels
which are not zero in all 4 channels. Then we would use a construct as shown above.
The all modifier works in a similar way. Any condition code may be preceded by a ' ! '
or 'not' to negate it.

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 19-

5.1.4. Low Level Sequencer Control
The if ... else ... fi statement is a high-level construct. Serious assem

bler programmers will want access to the low ... level constructs. See the appendix at the
end of the Chas Reference Manual for a table of these.

5.2. Subroutines
The program sample2 calls a subroutine with the statement [line 22]:
jar initial.ize

The initialize subroutine appears following the main program in the listing.
initialize is an example of a user-defmed subroutine. It calls three library subrou
tines [lines 34,38,44] to set up access to the framebuffer. Before going any further, it is
important to understand the conventions associated with subroutines.

5.2.1. Library Subroutines: Sharing Registers
Library subroutines must follow certain rules with respect to the use of Chap regis

ters. All the library routines supplied with the Pixar Image Computer follow these rules,
and you are encouraged to do likewise in any library routines you write. Registers in the
Chap are divided into three classes:

• Volatile registers are always available; a subroutine can use a volatile register
without saving and restoring its contents.

• Sacred registers must be preserved; a subroutine must save the contents of these
registers before using them and must restore their contents before returning.

• Off-limits registers are reserved for system use and may never be changed by user
routines.

Table 5-4 shows the registers in each class.

class
volatile
sacred
off-limits

ALU
acc, rO-r7
r8-r29
r30, r31

base
bO-b3
b4-b13
b14, b15

Table 5-4: Register Volatility

index
iO-i3
i4-i13
i14, i15

This convention explains why we began allocating registers with r8, instead of
rO in example 1. The sacred registers are guaranteed to be preserved across library sub
routine calls, such as SFxCopy.

5.2.2. Library Subroutines: Calling Conventions
Subroutines pass parameters using ALU, base and index registers. Library subrou

tines, by convention, use registers in numerical order within each type. That is, rO is used
before any other ALU register, etc.

Each library routine is described in a Unix manual page provided with the Pixar
Image Computer. These descriptions follow a format which respects this convention.
Particular examples are given below.

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 20-

initialize [lines 33.46]

The frrst line [line 34] calls the library subroutine initstack to set up the stacks
that push and pop groups of registers. Any program using library routines needs to
include this call to initstack. This initializes the system stack, which is used to
push and pop registers. Whenever a library routine uses sacred registers, it pushes the
values of these registers upon entry and pops them upon exit User routines may use
these stack routines for the same purpose. For future reference, here are the stacking sub
routines:

Registers
sacred base
sacred index
sacred alu
volatile

Save with
pushb
pushi
pushr
pushv

Restore with
popb
popi
popr
popv

Table 5-5: Register Stacking Subroutines

Any Chap program that transfers data to or from the framebuffer (via the Pbus) will
probably use the library subroutines providedfor this purpose, such as SFxCopy. To
use these subroutines, the user must call initialization routines to allocate a piece of the
framebuffer and define a window within that piece. This is the reason for the calls [lines
38,44].

AllocTB [lines 35.38]

The framebuffer memory is organized as a linear array of tiles, each of which is a
square with 32 pixels on a side. In this "raw" state, it is not possible to create two
dimensional pictures since the tiles do not have well-defined vertical (up and down)
neighbors. A call to AllocTB gives a rectangular form. to this one-dimensional list
forming a "tile block" and returning a pointer to the tile block. * This is done by provid
ing a starting tile number, and a width and height (in tiles) of the desired rectangle.
Given this information, it is possible to compute which tiles are vertically adjacent. The
parameters used [lines 35-37] create an area 1024 (32 times 32) pixels on a side, and are
sufficient for most ordinary applications.

If you examine the Pixar manual page for TB (3C) you will find the following:

int* AIIocTB(frrsttile, tilewidth, tileheight)
register frrsttile, tilewidth, tileheight;

The actual calling sequence in a program doesn't look like this, since the assembler
doesn't support argument passing to subroutines. In a real program, the desired values
must be explicitly placed in the proper registers before jumping to the library routine.
What the first line means is that AllocTB returns its result in bOo The second line says
that AllocTB expects its three parani.eters in rO, rl, r2. We know the actual regis
ters used from the convention that parameters are passed in the lowest-numbered

* In addition to calling Al.locTB you may also need to set the video board of the Pixar Image
Computer to agree with this call. In our case, the standard setting of the video board (an image 32
tiles or 1024 pixels wide) agrees with the call to AllocTB made here so nothing needs to be
done.

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 21 -

registers first. The correspondence between parameters and registers is:

parameter
frrsttile
tilewidth
tileheight

register
rO
rl
r2

contents
upper-left tile
tiles across the block
tiles down the block

AllocTB returns a pointer to the tile-block data structure in bOo The sample2 program
saves this value in register rtb [line 39].

OpenPW [lines 40-44]

A pixel window is a rectangular window within a tile block. One of the parameters
to every framebuffer library subroutine is a pixel-window identifier. All accesses are
then clipped to this window. You may have more than one pixel window open within a
tile block. OpenPW creates a pixel window within a specified tile block. The manual
page for OpenPW (PW(3C» reads:

base OpenPW(tb, minx, man, miny, maxy)
base tb;
register minx, rnaxx, miny, maxy;

Remember, this is a symbolic representation of the calling sequence and does not show
how a call appears in a real program. The correspondence between parameters and regis
ters is:

parameter register contents
tb bO pointer to tile block
minx rO minimum X value of window
maxx rl maximum X value of window
miny r2 minimum Y value of window
maxy r3 maximum Y value of window

Note that the X and Y values are in pixels, not tiles. The parameters used in sample2,
[lines 40-43], create the window shown in Figure 5-2. This window happens to coincide
with the standard video display of the Pixar Image Computer, but could be smaller or
larger. The pointer to the pixel window is returned in bOo The sample2 program saves
this value in register rpw [line 45] so that it may pass it to SFxCopy (3C) later.

After saving the pixel-window pointer, initialize executes a return state
ment [line 46] and execution resumes at [line 23] where a loop begins. The main feature
of this loop [lines 23-31] is a call to a library subroutine, SFxCopy.

SFxCopy [line 29]

Library subroutines drive the Pbus, which is between the Chap and the framebuffer.
SFxCopy is one of several subroutines available for transferring data from scratchpad to
framebuffer. 'SFx' indicates that this is a scratchpad to framebuffer copy, in the x, or
horizontal, direction. There is an analogous subroutine, SFyCopy, which copies into
the framebuffer in a vertical direction. The manual pages have the following entry for
SFxCopy:

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 22-

r tile ° (0,0)
, I I

:~

32 tiles -

Pixel Window

Tile Block

Figure 5-2: Tile Block and Pixel Window

SFxCopy(pw, source, n, x, y [, z])
int *pw;
pixel *source;
register n, x, y [, z]

The correspondence between parameters and registers is:

parameter register contents
pw bO Pixel window
source bl Address of scanline
n rO The number of pixels to be copied
x rl X of starting point in pixel window
y r2 Y of starting point in pixel window
z r3 Volume slice (optional)

(1023, 767)

. Instructions [lines 24-28] set up the parameter values for the call to SFxCopy. The hor
izontal span we put into one_row is being repeatedly copied into the framebuffer.
Each iteration includes incrementing the Y address of the target. The result is that a rec
tangle is painted into the frame buffer one line at a time.

5.3. Assembling sample2
To create an executable version, issue the command:

% chc sample2.s --0 sample2.out /usr/pixar/chap/lib/libpx.a \
/usr/pixar/chap/lib/libpt.a /usr/pixar/chap/lib/libpG.a \
/usr/pixar/chap/lib/libpm.a

This assembles the program and links the library subroutines into a single loadable
module named "sample2.out." Notice the libraries to be searched to locate references to
the library subroutines. The libraries included here contain almost all of the available

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 23-

Chap library subroutines.

You can simplify the process of assembling the sample programs by using the make
command. The file 'makefile' in the tutorial directory contains the commands that
assemble the sample programs. For example, to assemble sample2.out, use the command

% make sample2.out

This has the same effect as the explicit command above.

5.4. Running sample2
As an alternative to using Charm to load and run the program, we can also use the

host program chload. The commands

%chmap-i
% chload sample2.out

will load sample2.out into the Chap and set the processor running at instruction O. Do
you see a light-violet rectangle in the upper-left comer of your display?

Now run Charm. Change the values of color and rect, then restart the program
from the beginning and observe the results. Charm knows about the symbols in your pro
gram, even though you didn't use Charm to load the program. The symbol table is main
tained independently. See the discussion of the dynamic loader below for details.

Exercise: Using the . globl directive. It is pOssible to isolate subroutines in
separate files. In order to make the subroutine 100 visible to programs in other files,
it is necessary to include the statement

.globl foo

Try applying this to sample2, by making a separate file for the ini tialize sub
routine.

Exercise: Using SFyCopy. There is no reason to prefer the 'x' to the 'y' direction.
Rewrite sample2 so that SFyCopy is used to access the framebuffer.

Exercise: A Random Rectangle Generator. Modify sample2 to display rectangles
an endless sequence of random size, location, and color. Use the random-number
generator library function rrand, which produces four random 16-bit integers in
acc. Compare your solution to sample2a.s in the tutorial directory.

[Hints: generate xO, yO, xsize, and ysize directly, by masking the result of
rrand to appropriate ranges. For example, xO and yO can have 10 bits of signifi
cance (0-1023), while the x and y dimensions could restricted to 8 bits (0-255). As in
the language C, the masking operator is '&'. Refer to the next sample program to
see how to generate a sequence of rectangles under user control.]

PIXAR November 18, 1986 Sample2

Chap Programming Tutorial - 24-

6. Sample3: In Which the Host Plays a Role
Our goal now is a program on the host machine that will accept rectangle descrip

tions from the user sending them to a Chap program for painting them.

The program sample3 builds on sample2. The new features are:
e synchronization of host and Chap programs
e data transfer between host and Chap
elow-Ievel sequencing constructs in Chas

We discuss the Chap program fust, then the host program that calls it.

6.1. Sample3: Chap side

Figure 6-1 shows the incremental changes made in sample2 to produce sample3.

1
2
3
4
S
6
7
8
9

10
11
12
13
14
lS
16
17
18
19
20
21
22
23
24
2S

. text
sample3:

/* program loop */
jsr initialize
while true do

sysbus<13> = 0
push /* wait for signal */

ace = sysbus<13>

done
bpt

dowhile zero

bO = rect
iO = 1
abO = sysbus<O>; bO = bO + iO
abO = sysbus<l>; bO = bO + iO
abO = sysbus<2>; bO = bO + iO
abO = sysbus<3>; bO = bO + iO
bO = color
iO = 1
abO = sysbus<4>; bO = bO + iO
abO = sysbus<S>; bO = bO + iO
abO = sysbus<6>; bO = bO + iO

interrupt = 1
/* program loop end */

Figure 6-1: Sample3 Chap Program Listing

Outer loop [lines 5-24]

In order to make the Chap program continually draw rectangles, we bracket the pro
gram within an endless loop:

while true do
/* main program * /

done

true is another condition code, used here to ensure that the program loops indefInitely.
Like the if statement in sample2, the while statement affects the runflag, so that
only the processors satisfying the condition code execute the statements within. The call
to initialize [Line 4] lies outside the loop, since it should be performed only once.

PIXAR November 18, 1986 Sample3

Chap Programming Tutorial - 25-

Synchronization

Two programs running on separate machines require some synchronization protocol
if they are to work together. One popular scheme is to use a shared memory location.
With this approach, one party signals the other by writing a preset value to a common
memory location. In the case of the Chap and its associated host, a set of 16 Sysbus
registers can be read or written by either machine. These registers are known to the
assembler as sysbus<value>, where value is in the range 0 to 15. Sample3 uses
sysbus<13> to receive a signal from the host. Each time the Chap arrives at the top of
the main loop, it sets this register to zero and waits until the value changes.

Synchronization loop [lines 7-9]

The following code detects when sysbus<13> changes to a non-zero value.
push

aee = sysbus<13>
dowhil.e zero

This is an example of a "low-level" sequencing structure, so-called because, unlike the
constructs we have encountered so far, it makes explicit reference to the sequencer. (The
"high-level" constructs are built up from low-level constructs by the assembler.) The
stack has three fields that are always pushed and popped in unison: the loop counter, the
runflag, and the program counter.

The push statement stacks the values of the loop counter, the runflag, and the
address of the next instruction. The dowhile statement evaluates a condition code, in
this case generated by the previous ALU operation [line 8]:

aee = sysbus<13>

If the condition is true, that is sysbus<13> is still zero, the address of the next instruc
tion to be executed is obtained from the top of the stack. If not, the stack is popped and
execution proceeds to the next instruction following the dowhile. Even though the
loop counter and the runfiag had no bearing on the execution, they are pushed and
popped also.

Once execution has passed beyond the dowhile delay, the program obtains the
rectangle description from seven Sysbus registers, where the host program has written
them, and stores the values in the rect and color data structures [lines 11-21]. The
code inherited from sample2 to paint the rectangle is then executed. This done, execu
tion goes back·to the top of the loop after executing the statement:

interrupt = 1

Let's turn our attention to the host side before we explain the purpose of this statement.

6.2. The host program

The host program is written in C. Figure 6-2 shows a listing.

PIXAR November 18, 1986 Sample3

Chap Programming Tutorial - 26-

1 #include <pixar/pixar.h>
2 'include <stdio.h>
3
4 main()
5 {
6 int xO, yO, xl, yl;
7 double R, G, B;
8 CHAP *chap;
9

10 chap = ChapOpen("/dev/chapO",l);
11 ChapMMan(chap,O);
12 for (;;) {
13 printf("enter xO, xl, yO, yl, R, G, BO);
14 if (scanf("%d%d%d%d%lf%lf%lf",
15 &xO, &xl, &yO, &yl, &R, &G, &B) < 7)
16 break;
17 ChapSetSDR(chap, 0, xO);
18 ChapSetSDR(chap, 1, xl);
19 ChapSetSDR(chap, 2, yO);
20 ChapSetSDR(chap, 3, yl);
21 ChapSetSDR(chap, 4, (short) «1 « 11) * R»;
22 ChapSetSDR(chap, 5, (short) «1« 11) * G»;
23 ChapSetSDR(chap, 6, (short) «1« 11) * B»;
24 ChapSetSDR(chap, 13, 1);
25 ChapWaitForInter:r:upt(chap);
26 }
27 ChapClose(chap);
28 }

Figure 6-2: Sample3 Host Program Listing

General remarks

This host program uses libpixar, the lowest-level library in the Pixar Software
Release for host control over the Chap (higher-level packages are Chad and Pirl; the
former is built largely of routines from libpixar). libpixar includes routines for accessing
the Chap's registers, loading instruction and scratchpad memory, controlling the PIC's
video board, and managing the global symbol table. The routines in libpixar are dis
tinguished by names beginning with 'Chap'. Section 11 of this document is devoted to
discussing libpixar.

Notice the statement
#include <pixar/pixar.h>

This header file defines a number of structures and constants used by programs calling
routines in libpixar. For many simple Chap interface programs, this will be the only file
included.

Every host program that interfaces to the Chap must open the Chap before it does
anything and close it when it is finished [line 10]. The call to ChapOpen returns a
pointer to a (data) structure. This pointer is used whenever we access the chap.

The call to ChapMMan [line 11] ensures that interrupts from the Chap will be
passed directly to the host program and not intercepted by the operating system. See the
manual pages for further documentation on this procedure.

In this sample program, the exchange of data between host and Chap takes place

PIXAR November 18, 1986 Sample3

Chap Programming Tutorial - 27-

using the sysbus registers, a bank of 16 16-bit registers that can be directly read or writ
ten by either machine. The host can set the sysbus register n to the value v with the state
ment

ChapSetSDR(chap, n, v);

and can read the value of that register by the statement

v = ChapGetSDR(chap, n)

Observe how the host program mirrors the structure of the Chap program. There is
a main loop during which one rectangle is processed. In the host, this involves prompt
ing for and receiving a set of numbers describing the location and color of the rectangle
[lines 13-14], and then sending the rectangle to the sysbus registers in the Chap. Each
rectangle is passed to the Chap using the first 4 of these registers [lines 17-20]. Notice
how the floating-point color values are converted to fixed-point pixel type before transfer
[lines 21-23].* After each rectangle has been sent, the host program sets sysbus<13>
to a nonzero value. This signals the Chap, as we have already described. Next we will
see how the Chap signals the host.

Signaling: Chap to host
When synchronizing the host and Chap, it is a good idea not to force the waiting

host into a "tight loop", where it polls a memory location over and over. Instead, the
Chap signals with a hardware interrupt. Until it receives an interrupt, the host program
pauses at the statement

ChapWaitForlnterrupt(chap);

The Chas statement

interrupt = 1

raises a hardware interrupt that is sent to the host program. When the host program
receives this interrupt, it is released from its wait state and proceeds to the top of the
loop.

Notice that the synchronization presented here is asymmetric. The Chap signals the
host by raising interrupts; the host signals the Chap by writing a memory location. Con
sequently, the host does not have to poll - the Chap does. This is appropriate since the
host typically is supporting several users and thus has less time to waste than the Chap.

6.3. Running Sample3

Assemble both programs shown above using the make commands 'make
sample3.out' and 'make sample3s'.

Using Charm, load sample3.out and start it running. Type "C (Control-C). This
interrupts the processor. The program should be in the dowhile loop, waiting for the
host to signal. Restart the program and leave charm by entering "z (Control-Z).

Run sample3s on the host. Answer the prompts with values for the rectangle coor
dinates and the color values. Observe the display . You should be able to place rectangles

* This is equivalent to using the Chad macro DBL2PXL.

PIXAR November 18, 1986 Sample3

Chap Programming Tutorial - 28-

arbitrarily around the screen. Type AD (Control-D) to exit.

Exercise: Graceful Exit. Replace the true condition code in the while ...
do construction [lines 5-24] so that the Chap program drops out of its main loop
when the user signals termination. (Hint: use a special non-zero value in
sysbus<13> to indicate completion).

Exercise: Error conditions. As written, the sample Chap program terminates if it is
passed an invalid rectangle description. Devise a way to make it recover from this
error, either by correcting the rectangle description or (more difficult) by signaling
the specific error to the host.

References
The Chas Reference Manual contains a handy table of the low-level sequencer

instructions. The manual pages for libpixar (3H) are useful for an overview of the avail
able low-level host interface routines.

PIXAR November 18, 1986 Sample3

) -

Chap Programming Tutorial - 29-

7. Sample4: Transparent Colored Rectangles
This fmal sample Chap program shows how to use the fourth (alpha) channel to

implement transparency. We extend sample3 to let the user merge rectangles of variable
transparency into framebuffer memory. We introduce the following new topics:

• use of the multiplier, and
• use of the alpha channel to achieve transparency.

Figure 7-1 shows the incremental changes in the Chap program. The host program
remains the same as in sample3, except that now it also prompts for an alpha value.

More storage [lines 2·6]
Notice that we have allocated space for two rows of pixel data. old_row is

needed to hold the existing framebuffer image, while new row is needed to hold the
new rectangle data to merge over the old data.

The alpha channel
We interpret the alpha channel (eolor[3]) as an II-bit fraction measuring the opa

city of the rectangle. A value of 1 (that is 1.0E or Ox800) means full opacity and a value
of 0 means full transparency. The library subroutines follow this convention when they
merge two arrays of pixel data. They also expect the red, green, and blue components to
be pre-scaled by the alpha channel. For example, if the alpha channel is 0, the other
channels must also be set to 0 for the library subroutines to work properly.

The program segment to pre-scale the color data is [lines 13-17]:

bO = rcolor[3]
multz = (alpha)bO
multy = (comp)rcolor
nop
rcolor = map; runflag = 7

Selecting the alpha channel [lines 13·14]

When assigning from a 4-way register to a scalar device, such as a base register, any
of the four processors may be chosen by appending to the register name the processor's
number enclosed in square brackets. reo lor [3] accesses the alpha channel of the
color. We have to put the alpha value into a scalar register such as bO before loading it
into the multiplier input. This is because there is no direct data path between the regis
ters of different processors (i.e., between rO [0] and rO [1]). The data must first be
sent to a commonly accessible register, such as bO.

Setting the runflag [line 17]
Recall that the runflag is a 4-bit value where a '1' bit allows the associated proces

sor to execute instructions. It is possible to set the runflag for a single instruction with the
run flag assignment statement. Since it is not meaningful to scale the alpha value by
itself, we want the alpha processor disabled when we get the scaled values from the mul
tiplier. A runflag of 7 (0111 binary) does this.

Note well that the runflag = construct does not set the runflag directly: it
obtains the new value of the runflag by performing a bitwise AND of the old value and

PIXAR November 18, 1986 Sample4

Chap Programming Tutorial - 30-

1
2 .bss
3 old_row:
4 .spaee 1024*4
5 new_row:
6 .spaee 1024*4
7 • text
8 sample4: .globl sample4
9

10 abO = sysbus<7>i bO = bO + iO
11
12 reolor = (bO)

/* preseale rgb by alpha */

bO = reolor[3] /* load the alpha
multz = (alpha)bO
multy = (eomp)reolor /* load the rgb
1 ticks /* wait for result
reolor = mapi runflag = 7
bO = new row
iO = 4 -
loop rzsize do /* build one row

(bO) = reolor; bO = bO + iO
done

*/

*/
*/

*/

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

loop rysize do
bO = xpw /* get the old row */

done

bpt

b1 = old row
rO = rzs!'ze
r1 = rzO
r2 = ryO
jsr li'xSCopy
bO = new row
b1 = old-row
b2 = old-row
rO = rxsI"ze
r1 = 1.01'
r2 = 1.0li'
jsr SSMergeOver
bO = xpw
b1 = old row
rO = rzsI"ze
r1 = rzO
r2 = ryO
jsr Sli'xCopy
ryO = ryO + 1

/* merge new over old */

/* write out the merged row */

Figure 7-1: Sample4 Program Listing

the given constant. This reduces to an assignment only when the runflag was 1111
(binary) before.

PIXAR November 18, 1986 Sample4

Chap Programming Tutorial - 31 -

Filling new_row [lines 18-22]

With the newly computed value of reolor, we build up new row just as we
once built one row.

Merge the Rectangle [lin~ 23-44]

To perform. a merge, we call SFxCopy's partner, FxSCopy, to copy the existing
framebuffer data into the scratchpad at old_row [lines 24-29]. Next we merge
old_row with new_row [lines 30-36].

Chap library subroutines provide a variety of ways to combine two pixel values.
These subroutines have names beginning with SSMerqe (the 'SS' indicates scratchpad
to scratchpad merging). For this example, we use the subroutine SSMergeOver to
combine the new values with the existing values.

SSMergeOver merges a specified number of pixels from one scratchpad location
(the foreground) over the same number of pixels in another location (the background),
writing the result into a third scratchpad location (the target). The calling sequence is:

SSMergeOver(frgd, bkgd, target, n, Lf, Lb)
pixel * frgd, bkgd, target;
register n, Lf ,Lb;

The correspondence between parameters and registers is:

parameter
frgd
bkgd
target
n
Lf
Lb

register
bO
bl
b2
rO
rl
r2

contents
foreground pixels
background pixels
target
number of pixels
foreground weighting coefficient
background weighting coefficient

The results are computed according to the equation

R = Lf * F + (1 - Fa) * Lb * B

where

F = value of foreground pixel
B = value of background pixel
Fa = alpha value of foreground pixel
Lf = weighting factor of foreground
Lb = weighting factor of background

Lf and Lb are coefficients, provided to give an overall relative weighting to the
foreground and background pixels in the output.

After merging the two lines, we copy the result to the framebuffer as before using
SFxCopy [lines 37-42] and go on to the next line [line 43], until the full rectangle is
composed.

PIXAR November 18, 1986 Sample4

Chap Programming Tutorial - 32-

Using the multiplier

Each processor includes a multiplier. The multiplier has two inputs from the Mbus:
multx and mUlty. The output is a 32-bit value, with the high-order 16 bits (most sig
nificant part) contained in msp and the low-order 16 bits (least significant part) in
lsp, which feed the Abus. The output of the multiplier is available one instruction cycle
after loading the second input. The nop (signifying no operation) statement Dine 16] is
used to wait for the product to be ready.

It is possible and usually necessary to shift the inputs to the multiplier so that the
product will be in one of the standard fIXed-point formats. Let us assume we want to
multiply an alpha value (11 bits of fraction) by a color value (11 bits of fraction) and pro
duce a product that also contains 11 bits of fraction. If we were to multiply the alpha and
color values without shifting, the 32-bit result would have 11 + 11 = 22 bits of fraction.
The msp (the high-order 16 bits of the product) would contain only 6 bits of fraction,
which is not a standard fixed-point format. However, if before multiplying the values we
were to shift the alpha value two bits left giving us a value with 13 bits of fraction and
shift the color value three bits left giving us a value with 14 bits of fraction, the product
would contain 13 + 14 = 27 bits of fraction. Now the msp contains 11 bits of fraction
and is in the standard pixel-component format. Warning: these left shifts can cause
high-order bits of the multiplicands to be lost. You must always consider the range of
the data involved before blithely asserting these shifts. In some cases it is necessary to
(painfully) reconstruct a 16-bit result from the two 16-bit outputs of the multipliers. This
loss is not a problem here since the numbers shifted are pixel components, so that their
significance is contained in their low-order 12 bits.

The number of bits to shift is specified by prefacing the value when it's loaded into
either multx or multy with one of the following modifiers enclosed in parentheses:

modifier
coeff
comp
alpha

left shift
o
2
3

type of input
for coefficients with 14 bits of fraction (default)
color pixel values
alpha pixel values

The shift modifier can be preceded by either unsigned or signed to control
whether the multiplicand is interpreted as an unsigned magnitude or as a signed number.
The default modifier is (unsigned coeff).

PIXAR November 18, 1986 Sample4

Chap Programming Tutorial - 33-

Exercise: Run sample4 (following the procedure for sample3). Remember that an
alpha value of 1.0 gives an opaque rectangle, and 0, a fully transparent one. Specify
overlapping rectangles to verify that the transparency works.

Exercise: In SSMergeOver, notice the parameters Lf and Lb. We have set these
parameters to 1.0 for all our merges. Experiment with different values to get a feel
for their semantics.

Exercise: Read the manual pages for SSMerge. Experiment with other merge
subroutines instead of SSMergeOver.

Exercise: Random Rectangles Revisited. In sample2, one of the exercises
presented an alternative program in sample2a.s for generating an endless stream of
random rectangles. sample4a.s updates that program to include random tran
sparency. Make sample4a.out and run it stand-alone. Do you notice anything
funny? Your assignment is to figure out what the bug is and explain it. For the
answer, see * below.

* Answer: The alpha channel of mask2 should be Ox7ff, not Ox7fff.

PIXAR November 18, 1986 Exercises

Chap Programming Tutorial - 34-

8. Further Topics

Component addressing

This tutorial has covered two addressins modes available in the Chap: broadcast
and pixel. There is a third popular mode, component, which accesses a single color chan
nel in four successive pixels. The default channel is red. For example

rO = <b0>

reads the red channel while

rO = <b0,1>

reads the green channel of the four pixels starting at the address given by bOo Figure 8-
1 illustrates component mode read. Component mode write results if the arrows in the
figure are reversed.

processor rO

[0] I 100 1
r

I 200 I
I [1]

I 300 I
I [2]

I 400 I
r [3]

R

100

200

300

400

Scratchpad
o B

40 ...

30 ...

20 ...

10 ...

Figure 8-1: Component Mode Read: "rO = <bO>"

A

Exercise: 00 back to the sample programs and invent a variation that uses com
ponent addressing somewhere. For example, instead of using pixel mode writes to
fill one_row, use separate component mode writes for each channel.

The following code shows how to fill the red component of one row with the red
component of color.

PIXAR

b1 = eo~or
i1 = 1
bO = one row
iO = 16 -
reolor = @b1;
ace = rzsize
push

b1 = b1 + i1

<b0> = reolor; bO = bO + 10
ace = aee - 4

dowhile !negative

November 18, 1986 Further Topics

Chap Programming Tutorial - 35-

Here we introduce a new looping construct: push ... dowhile. Look it up in
the table on sequencer instructions in the Chas Reference Manual to see how it works.
The "loop counter" in this case is the ace register. It begins with the value rxsize,
the width of the rectangle. Each iteration within this loop writes the red channel of four
pixels; hence the loop counter is decremented by four on each iteration.

Notice that the number of pixels written by the above code segment is always a
multiple of 4. This is generally true of component mode access. For this reason, when
ever you use component reads or writes, it is a good practice to allocate scanline storage
in scratchpad to be aligned on 16-word (4-pixel) boundaries, by using the • align
directive (see the Chas Reference Manual). Otherwise, the programmer has to to treat the
end conditions of his loops with extra care to avoid clobbering contiguous storage.

There is a small but tenacious quirk associated with component accesses: the index
register specified by the instruction must contain the value 16 for the access (read or
write) to succeed. Notice that the above code segment satisfies that condition, since iO
is set to 16 before entering the loop, so bO will advance four pixels following each
write. Generally, it is a good idea to use i 0 for this purpose, since it is the default index
register specified by the assembler. In this way, if you make a component access but do
not increment the base register, the index register specified on the instruction will be
i o. You will have made sure that it contains the value 16, and all will be well.

PIXAR November 18, 1986 Further Topics

Chap Programming Tutorial - 36-

9. Programming Pitfalls
If you have worked through this tutorial this far, you have learned to appreciate the

unique 4-way architecture of the Chap. The same features that give new elegance and
speed to your programs, however, can sometimes cause new problems. This brief discus
sion will attempt to bring to your attention some of the less obvious features of the Chap.

4-Way Registers, Scalar Registers, and Runflags
Some registers, such as the general purpose ALU ones, are present in each of the

four processors; others, such as the base and index ones, exist only on the Sbus. This
division underlies the powerful addressing options available to the user. However, this
can also create subtle bugs in your programs. Mainly, you need to be careful when
assigning to a scalar register from a 4-way register. Two things may go wrong: ftrst,
you may neglect to specify the intended processor to use as source. Here, use the syntax
already introduced. For example, say

bO = rO[2]

to use processor 2 as the source. Second, even if the intended processor is specified
correctly, the runflag may not allow that processor to be active; hence the assignment
will not occur. To overcome the second possibility, the force statement (see the table
of sequencer instructions in the appendix to ,the Chas Reference Manual) is available.
This will force the runflag to take a specified 4-bit value. Use this inside a 4-way condi
tional clause to turn on a given processor when you cannot be sure that it will be active.

"Runflaq =" vs. force
Note that the runflaq statement already introduced differs from the force

statement: the former ands a runflag with the current runflag for only the current instruc
tion, while the latter actually pushes a new runflag on the stack. Question: why is it
impossible to solve the problem raised in this discussion using only the runflaq state
ment? For the answer, see * below.

Library calls and runtlags
A related point concerns the use of library routines inside of conditional clauses. In

general, library routines expect the runflag to be fully on, th.at is, to have the binary
value 1111, or the hexadecimal value Oxf. Thus, the force command should be used
before calling a library routine if some processor may be inactive. This command must
be paired with a pop command following return from the library call.

* Answer: The runflag statement will not turn on processors; it can only turn them off.

PIXAR November 18, 1986 Pitfalls

Chap Programming Tutorial - 37-

10. SampleS: The host part completed
This fmal example completes the host side of the program by having it automati

cally load the Chap code, as needed, each time the program is run. We introduce the fol
lowing new topics:

• the dynamic loader
• the dynamic loader's symbol table

To explain the actions of the host program, we must introduce two important con
cepts: relocation and link-editing.

10.1. Relocation
The Chap assembler generates files containing relocatable object code. That is,

files generated by chas contain sufficient information to allow the instructions contained
in· the fue to be loaded into instruction memory at any location. On the other hand, the
output of the Chap link editor, chid, is usually a non-relocatable object file; all instruc
tions are generated with the assumption they will be loaded starting at location 0*.

10.2. Link editing
When a program is constructed from multiple fues, it is common to find code in one

flie referencing symbols in other files. For example, a common data structure might be
defined in one file as,

.globl DataStructure
DataStructure: .space 44

while in another fue it is referenced with,

bO = DataStructure;

Similarly, the practice of placing subroutines in individual files and then organizing them
into libraries involves the use and definition of externally visible symbols.

The process of resolving references to external symbols is termed link-editing. At
its simplest, the link-editing process entails filling in references to the undefined symbols
with the symbols' values. The Chap link-editor normally performs this process when
invoked from chc. As we will see, however, there are several advantages to delaying this
work until code needs to be loaded into a Chap.

* ChId does support options to fix the base of the code and/or data segments at locations other
than zero. To generate a relocatable output rtIe, see chId (1).

PIXAR November 18, 1986 Sample5

Chap Programming Tutorial - 38-

10.3. The Dynamic Loader
The dynamic loader allows you to link-edit and relocate object fIles at program exe

cution time. In all our previous work, we have performed these operations prior to load
ing our code into the Chap. As a result, we have always loaded a non-relocatable, com
pletely linked object module into the Chap. By delaying these two steps until we actu
ally load the code, we gain several advantages:

• code may be loaded at any available location
• references to external symbols may be resolved by linking to symbols already loaded

in the Chap
• files never contain out-of-date library routines

The fIrst two points are key. Programs using more code than can fit in the Chap's
instruction and/or scratchpad memories must resort to some 'paging' scheme; the
dynamic loader provides a signiftcant part of the mechanism needed to implement such a
scheme. Further, by allowing symbol references to be bound at runtime, based on the
existing contents of the Chap's instruction and scratchpad memories, multiple unrelated
modules may coexist in a Chap; this speeds the operation of programs calling commonly
used library routines, since they need not reload code into the Chap.

10.3.1. The Dynamic Loader's Symbol Table

Key to the operation of the dynamic loader is a host-resident symbol table file main
tained for each Chap. This file contains information describing the current contents of
the Chap's instruction and scratchpad memories. In normal operation, a symbol table fIle
is updated only when code is loaded into or unloaded from a Chap. However, sophisti
cated systems that allocate resources at runtime, such as scratchpad memory, must keep
up-to-date records in the symbol table.

10.3.2. Creating Relocatable Object Modules

To insure that your code is relocatable you should either supply the -c flag to chc,

% chc -c module 1.s module2.s ...

or the -r flag to chc (for chId),

% chc -r module 1.s module2.s ...

The first scheme is preferred as monolithic object modules usually contain copies of
library routines that may already be present in the Chap. As there is no way to "break
apart" a monolithic module at load time, attempting to load such a module, when copies
of its routines are already resident, will lead to errors and nothing being loaded.

10.3.3. Dynamic Loading From Charm

The :1 command in charm invokes the dynamic loader. The $m, $1, and $e com
mands display information derived from the contents of the Chap's symbol table. To
load and link-edit multiple flIes from within Charm, use multiple :1 commands. In a pre
vious Exercise, you were asked to separate the initialization code into a separate file.
Suppose you have placed this code in a file init.s. Then, to load the completed program,
you could either link edit the two files with:

PIXAR November 18, 1986 Sample5

Chap Programming Tutorial - 39-

% chc -r -0 sample2.out init.s sample2.s /usr/pixar/chap/lib/libpG.a \
/usr/pixar/chap/lib/libpt.a /usr/pixar/chap/lib/libpx.a /usr/pixar/chap/lib/libpm.a

and load it as before, or assemble the two files into two relocatable object modules

% chc -c init.s sample2.s

and then load the two individually:

% setenv CHAPDEBUG 6 t
% charm
Chap Runtime Monitor, version 3.1 of Tue Aug 19 21:11:26 PST 1986
>:1 init.o
loading init.o .••
loading stack.o from lusr/pixar/chap/Iib/libpG.a .••
loading pw.o from lusr/pixar/chap/lib/libpt.a •.•
loading reciprocal.o from lusr/pixar/chap/lib/libpG.a ..•
loading reclS _ 2S6.0 from lusr/pixar/chap/lib/libpG.a ...
stopped at reciprocaI32+0a8: bpt;
> :1 sample2.o
loading sample2.0 •••
loading sfxc.o from lusr/pixar/chap/liblIibpt.a •.•
stopped at sample2+2d: bpt;

Note that, as each file was loaded, the dynamic loader automatically added various
files from the libraries. Each file referenced symbols defined in files contained in these
libraries. Had we loaded our files in the opposite order, the following would have
occurred:

% charm
Chap Runtime Monitor, version 3.1 of Tue Aug 19 21:11:26 PST 1986
> :1 sample2.0
loading sample2.0 .••
Undefined:
initialize
loading sfxc.o from lusr/pixar/chap/liblIibpt.a •••
loading pw.o from lusr/pixar/chap/lib/libpt.a •.•
loading reciprocal.o from lusr/pixar/chap/lib/libpG.a ...
loading reclS _ 2S6.0 from lusr/pixar/chap/lib/libpG.a •.•
stopped at InqTB+4: iO = acc[O]; 2 ticks;
>:1 init.o
loading init.o •••
loading stack.o from lusr/pixar/chap/Iib/libpG.a •••
stopped at InqTB+4: iO = acc[O]; 2 ticks;

After the load of sample2.o, the loader notified us that some file contained a refer
ence to a symbol, initialize, it could not resolve from any of the libraries. This undefined

t This enables the loading debug messages, which are usually suppressed. See ChapLoad(3H).

PIXAR November 18, 1986 Sample5

Chap Programming Tutorial - 40-

reference was resolved after loading the second file.

10.3.4. Searching Libraries
In the above examples, we saw the dynamic loader automatically "pull in" library

routines as they were needed. How did it know where to look for these routines? For the
moment, we'll consider this problem under charm. The answer is slightly different when
loading code from a program, as we will soon find out.

Charm sets up a default list of libraries for use by the loader. To see this list, type
the :a command:

>:a
/usr/pixar/chap/lib/libpip.a:/usr/pixar/chap/lib/libpx.a:
usr/pixar/chap/lib/libpt.a:/usr/pixar/chap/lib/libpG.a:
/usr/pixar/chap/lib/libpm.a:usr/pixar/chap/lib/libcolor.a:
/usr/pixar/chap/lib/libchad.a

The list of libraries includes all the standard libraries, as well as an extra library,
libcolor.a, which contains routines for performing color correction.

To alter this list, you can use either the :a or :A commands. The former replaces
the current list of libraries with a new one, while the latter adds a list of libraries to the
existing list (for either command, duplicate library names are ignored). Thus, if we were
to place our initialization code in a private archive, say "libinit.a", we could automate
our loading of sample2 as follows.

% ar cr libinit.a init.o
% chranlib libinit.a
% charm
Chap Runtime Monitor, version 3.1 of Tue Aug 19 21:11:26 PST 1986
>:A libinit.a
/usr/student/libinit.a:/usr/pixar/chap/lib/libpip.a:
/usr/pixar/chap/lib/libpx.a:usr/pixar/chaplIib/libpt.a:
/usr/pixar/chap/lib/libpG.a:/usr/pixar/chap/lib/libpm.a:
/usr/pixar/chap/lib/libcolor.a:/usr/pixar/chap/lib/libchad.a
>:1 sample2.0
loading sample2.0 •.•
loading init.o from /usr/student/libinit.a ..•
loading sfxc.o from /usr/pixar/chap/lib/Iibpt.a ...
loading stack.o from /usr/pixar/chap/lib/libpG.a ..•
loading pw.o from /usr/pixar/chap/lib/libpt.a ...
loading reciprocal.o from /usr/pixar/chap/lib/libpG.a ..•
loading reelS _ 256.0 from /usr/pixar/chap/lib/libpG .a ...
stopped at AllocTB+Ob: @b1 + iO = rl; bl = color+2; 2 ticks;

10.3.5. Miscellaneous Commands

There are several other charm commands related to. the dynamic loader and the
symbol table. Two of particular interest are the :u command, which unloads the speci
fied file (Le., removes it from the symbol table and frees up any associated resources),

PIXAR November 18, 1986 SampleS

Chap Programming Tutorial - 41-

and the $u command which displays any undefined symbols in code currently loaded in
the Chap. While the dynamic loader notifies you of undefined symbols, their existence
does not preclude your executing the code loaded into the Chap. This fact can be partic
ularly useful in prototyping a large program, as you can construct your program one
piece at a time and load files into the Chap as they are ready to be tested. The dynamic
loader places a breakpoint at any instruction referencing an undefined symbol, so if your
program should execute an instruction attempting to utilize an undefined symbol, it will
stop before perfonning a potentially incorrect operation.

10.3.6. Dynamic Loading From The Host

We can achieve the same results from within the host program. Figure 10-1 shows
a listing of the incremental changes in the host program beyond sample4. The Chap
microcode remains the same.

1 #inc1ude <pixar/pixar.h>
2 #inc1ude <stdio.h>
3
4 main 0
5 {
6 int xO, xl, yO, y1, t;
7 doub1e R, G, B, A;
8 CHAP *chap;
9

10 chap = ChapOpen("/dev/chapO",l);
11 ChapMMan(chap, 0);
12 if (ChapLoadGo(chap, "sample4.on, nsamp~e4n) < 0)
13 printf(nUnab1e to load file.\nn);
14 exit(l);}
15 for (;;) {
16
17 }
18 ChapC1ose(chap);
19 }

Figure 10-1: SampleS s Program Listing

There is a single host procedure that allows us to achieve the same effect as the
series of charm commands described in the previous section.

ChapLoadGo [line 12]

The calling convention for this routine is:

ChapLoadGo(chap, file, entry)
CHAP *chap;
char *file, *entry;

where the C typedef CHAP is defined in the standard include file [line 1]. Thefile speci
fied must be a relocatable object file created by chas(l) or chld(I). ChapLoadGo checks
to see if the symbol entry is present in the Chap; if not, file is loaded and ChapLoadGo
attempts to resolve any undefined references by searching a standard set of libraries, the
same libraries that charm searches when loading files. Upon successfully completing

PIXAR November 18, 1986 Sample5

Chap Programming Tutorial - 42-

this task, the Chap is set running at the instruction labeled by the entry symbol.

We check for a negative return code from ChapLoadGo, which indicates an error
during loading. For further details, refer to the manual entry ChapLoadGo(3H).

Running sample5s

The rest of the program sample5s is the same as the previous host sample programs.
As before, use the make utility to create an executable version. Run it and draw some
rectangles to convince yourself that ChapLoadGo loads the code and sets it running.

PIXAR November 18, 1986 Sample5

Chap Programming Tutorial - 43-

11. Chap Routines

In Section 6, in the discussion and sample program involving chap-host coopera
tion, we introduced libpixar. In this section we fill in more details, to provide the pro
grammer a fmner ability to write programs using it. There are four main sections in this
more detailed discussion:

• Advanced Chas Programming
• Dynamic Loading
• Memory Management
• Interrupts

This section goes into more detail than most of this document. Much of this detail
is unnecessary in the context of Chad, as discussed in the next section. That discussion
is kept separate so that readers using those environments which do not support Chad can
ignore it.

All the routines discussed below have descriptions in section 3H of the Pixar
manual pages. The only routines in that section absent from this discussion are those
used for diagnostic purposes.

General Remarks

Any host program that accesses a Chap must make a call to ChapOpen. The cal
ling convention for this is:

CHAP* ChapOpen(chapname, shared)
char *chapname; .
int shared;

Typically, the name of the chap is "/dev/chapn," where n is the number of the Chap. If
shared is non-zero, the Chap is opened in shared access; this means that other processes
owned by the same user may open the same Chap. Otherwise, no other processes may
use this Chap until the current process has terminated or has made a call to Chap
Close. A zero return value means that the atte~pt to open the Chap has been unsuccess
ful.

Otherwise, ChapOpen returns a pointer to a CHAP data structure. This structure
is defined in the include fue <pixarlchapdiag.h>. However, the ordinary user will have
no need to consult this fue.

With this introduction concluded, we can go on to discuss a new way of transferring
data from the host to the Chap.

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 44-

11.1. Advanced Chas Programming
The sample programs beginning with sample3s used the 16 Sysbus registers to

transfer the rectangle descriptions to the Chap. Recall that the host used sysbus<13>
to signal the Chap that a rectangle had been passed. These 16 registers are physically
resident, shared-access registers on the Pixar Image Computer. Another technique, for
transferring data directly from a disk flie into the Chap, is discussed in a subsequent sec
tion, under "Disk Buffer Routines."

11.1.1. Virtual Data Registers
There is an alternative, hardware-assisted technique for effecting larger and faster

data tranfers through the use of virtual data registers. Figures 11-1 and 11-2 contain
listings of simple host and Chap programs that use the virtual data registers to transfer an
array of 256 entries from host to Chap. The Chap program then computes the squares of
these numbers and returns them to the host. As before, bracketed numbers refer to the
numbered lines in these listings.

1 #inc1uda <pixar/pizar.h>
2
3 main 0 {
4 CHAP *chap;
5 register int i;
6 unsigned short *Cvdr, array[256];
7
8 chap = ChapOpen (" /dev/chapO" , 1);
9 Cvdr = (unsigned short *) ChapVdregBase (chap);

10 ChapLoadGo(chap, "chvdr.o", "vdr demo");
11 for (i=O; i<256; ++i) -
12 Cvdr[i] = i;
13 for (i=O; i<256; ++i)
14 array[i] = *Cvdr;
15 for (i=O; i<256; ++i)
16 printf("%d\n",array[i]);
17
18 ChapC1ose(chap);
19 }

Figure 11-1: Virtual Data Register Demo: Host Program Listing (vdr.c)

First, look at the host program. The macro ChapVdregBas e () returns the
address of the virtual data register array [line 9]. We use ChapLoadGo, introduced in
Section 10.6, to load the Chap program and start it running [line 10]. Then we execute a
loop 256 times, writing the loop counter i into the ith entry of the virtual data register
array.

Now look at the corresponding Chap code in Figure 11-2. Note that the Chap pro
gram is somewhat more complicated than the host one. To understand why, we need to
explain what happens when the host attempts to write to a virtual data register. The host
waits until a special status bit in the Chap, the sysrel bit, is turned on, meaning that the
sysbus is released. Then it pokes the specified index, or address (in this case i), into
sysbus<14>, and the specified value (in this case also i) into sysbus<lS>. To the
host program, however, it appears as an ordinary array assignment statement. The size of

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 45-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

#define WAIT NOT BUSY
push; - -

dowhile !sysbus busy; 1 ticks;
1 ticks

#define WAIT BUSY
push;

dowhile sysbus busy;' 1 ticks;
1 ticks

.bss
array: .space 256

. text
vdr demo:

- bO = array
loop 256 do

WAIT NOT BUSY
ace == sysbus<14>
iO = ace , Oxff
@bO+iO = sysbus<15>
sysrel = 1

done

bO = array
i1 = 4
loop 64 do

done

ace = (bO)
multz = ace
multy = ace
1 ticks
(bO) = lsp;

bO = array
iO = 1
loop 256 do

WAIT NOT BUSY

bO = bO + i1

ace; abO; bO = bO + iO
sysbus<15> = ace
sysrel = 1

done
bpt

WAIT_BUSY

$\
$\
$\

$\
$\
$\

Figure 11-2: Virtual Data Register Demo: Chap Program Listing (chvdr.s)

the virtual data register array is 256. This fact explains why exactly 256 elements are
transferred to the Chap in the sample program.

On its side, the Chap code waits until it detects that the host has accessed the
Sysbus, via the macro WAIT_NOT_BUSY[lines 1-5]. Notice the '$\' used as at the end
of each line. This construct is necessary when defining macros in order to satisfy both
the C preprocessor, used by chc, and the assembler itself, since newlines are significant
to the latter.

The dowhile construct used for this wait is similar to the looping mechanisms
introduced earlier, and is described in the ehas Reference Manual on sequencer instruc
tions. The sysbus condition code evaluates true when the host reads or writes from
the Sysbus. When this condition code indicates that an access has occurred, the Chap

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 46-

escapes from this loop, and reads the address/value pair out of sysbus<14> and
sysbus<lS>, and makes the appropriate store. The statement sysrel = 1 [line 21]
releases the Sysbus. The host can not write a new value until the Sysbus has been
released by the Chap.

Two subtleties of VDR usage not otherwise apparent here are worth emphasizing.
First: the Chap program must waste no time after it obtains its data before asserting
sysrel = 1. Otherwise, the bus between the Chap and the host may time out, causing
a bus error in the host program. A few minutes with a debugger is usually sufficient to
diagnose the problem, but it is still to avoid it in the beginning. The sneakiest aspect of
this problem is that it is host-dependent, since the timeout interval varies from host to
host.

The second hidden virtue of this code is seen on line 19: only the lower eight bits of
the VDR address are used in assigning to iO from acc. Since there are only 256
VDRs, this merely seems redundant, but you should be careful to do this in your pro
grams, since the upper 24 bits of sysbus<14> may contain arcane and irrelevant
information.

The program above shows the advantage of using the virtual data registers as
opposed to the ordinary Sysbus register access of previous sections: the synchronization
of the two processes proceeds automatically via the sysreI bit. The host is synchronized
by the hardware sysreI bit to wait until the transfer has been completed on the Chap
before sending more data. The loop [lines 16-22] in Figure 11-2 corresponds to the loop
[lines 11-12] in Figure 11-1.

Once the host-to-Chap transfer is complete, the Chap program computes the squares
of the array elements [lines 24-32]. At that point, the data is transferred back from the
Chap to the host via the virtual data registers ([lines 13-14] in the host and [lines 34-42]
in the Chap). Notice that in this direction, the address field is not used by the host. This
reflects the fact that when reading the virtual data registers, the host does not have access
to the contents of sysbus<14>. Once again, the host reads are automatically syn
chronized with the Chap writes, since a host read cannot take place until the Sysbus has
been explicitly released by the Chap program.

Suggestions for VDR Usage

In many cases where a linear array is being copied from host to Chap, the address
field can be ignored, thus reducing the time spent by the Chap. For example, this is the
case in the loop [lines 16-22], which could be rewritten by auto-incrementing the base
register:

bO = array
iO = 1
100p 256 do

done

WAl:~ NO~ BOSY
@bO = sysbus<lS>i bO = bO + iO
sysre1 = 1

This strategy allows the programmer to transfer arbitrarily long arrays, since now the 8-
bit limitation on the address passed in sysbus<14> no longer matters.

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 47-

11.2. The Dynamic Loader
Figure 11-3 shows a listing of a sample program closely related to sample5s, in

which we introduced the use of the dynamic loader from a host program. sample5s used
the library routine ChapLoadGo to dynamically load the Chap code into the Chap and
start it running. The program sample6s listed here achieves the same result using a series
of more general purpose library routines.

1 #include <pixar/pixar.h>
2 #include <stdiooh>
3
4 #define DEFARCHS "lusr/pixar/host/lib/libpt.a: \
5 /usr/pixar/host/lib/libpx.a:/usr/pixar/host/lib/libpG.a"
6 #define UCODE "sample4.0"
7
8 main 0
9 {

10 int xO, xl, yO, yl;
11 double R, G, B, A;
12 CHAP *chap;
13 LoadSym **sp;
14 u_short 'pc;
15
16 chap = ChapOpen (" /dev/chapO", 1) ;
17 ChapMMan(chap,O);
18 ChapBeginLoad(chap);
19 sp = ChapSymLookup(chap, UCODE);
20 if (*sp == 0) {
21 ChapLoadLocs locs;
22
23 ChapSetArchives(DEFARCHS);
24 bzero('locs, sizeof (locs»;
25 if (ChapLoad(chap, UCODE, 'locs) != 0)
26 exit(-l);
27 pc = locs.cl entry;
28 } else -
29 pc = (*sp)->ls tbase;
30 ChapEndLoad (chap) ; -
31 ChapRunAsync (chap, pc);
32 for (;;) {
33
34 }
35 ChapClose(chap);
36 }

Figure 11-3: Sample6s Program Listing (sample6s.c)

ChapMMan [line 17]

The function of this call is explained below, in Section 11.4, "Hardware Inter
rupts."

ChapBeqinLoad and ChapEndLoad [lines 18, 30]
Any calls to the dynamic loading routines should be bracketed by these calls. They

speed up the process by avoiding redundant file accesses and locks.

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 48-

ChapSymLookup [line 19]

Before attempting to load code we ftrst check the symbol table to see if the file has
already been loaded. The dynamic loader automatically records the name of each flie
loaded into the Chap. Be aware, however, that in doing so it strips off any leading path
name. Thus, a file "/usr/pixar/lib/chad.ucode" would appear in the symbol table as
, 'chad. ucode. ' ,

ChapSymLookup, the symbol table lookup routine, has the following calling con
vention:

ChapLoadSym **ChapSymLookup(chap,' symname)
CHAP *chap;
char *symname;

The C typedefs ChapLoadSym and CHAP are defined in the standard include
flie, [line 1]. Note that a pointer to a pointer is returned; on [line 20] we check to see if
the symbol is present by testing "*sp."

ChapSetArehi ves [line 23]

Next we notify the dynamic loader that a set of libraries should be searched when
ever we request code to be loaded. This set of archives is given as string of colon (:)
separated pathnames. Our call to ChapSetArehi ves is equivalent to our use of the
:a command in Charm. The companion routine ChapAppendArehives is equivalent
to the Charm :A command.

ChapLoad [lines 25-26]

Finally, once we know the ftle is not presently loaded in the Chap and the libraries
have been set up, we request that the dynamic loader load our file. ChapLoad's calling
convention is

int ChapLoad(chap, fue, plocs)
CHAP *chap;
char *flie;
ChapLoadLocs *plocs;

where, as before, the C typedefs are deftned in [line 1].

The only parameter that deserves some attention is the "& loes" supplied for
ploes[line 25]. Normally, the dynamic loader allocates space in the Chap for the code
(. text) and data (.data and .bss) segments in the files it has to load. To have this
information returned to you, a pointer to a ChapLoadLoes structure must be supplied.
It is also possible to provide the loader with pre-allocated resources and/or specify that a
file should be loaded at a specific location in the Chap. This information is passed to the
loader by specifying non-zero values in the ChapLoadLoes parameter; in this case,
the parameter becomes a value-result parameter.

ChapLoad returns either a -1 in the case of an error, or a non-zero positive value,
which is the number of undeftned symbols encountered during the load. Specific errors

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial - 49-

may be deciphered from the global value ChapErrno; consult the manual pages for
more information.

With the file loaded we can figure out the appropriate program counter we need by
looking at the cl_entry entry in the locs structure [line 27]. This is the value of
the entry point for our code after the dynamic loader has performed relocation. In the
case where the ftIe was already loaded, we can simply take the program counter from the
base of the loaded • text segment [line 29].

ChapRunAsync [line 31]

With our code loaded into the Chap, the only thing left to do is start the processor
executing our code at the proper instruction. To do this we use .ChapRunAsync [line
31]. This routine resets the state of the Chap to a default state (stack pointer set to zero
and runflags set to Ox!), forces the program counter to the specified value, and starts the
machine running, returning immediately to its caller. The routine ChapRun does the
same things but does not return until the Chap program has hit a breakpoint or the user
types an interrupt on the keyboard. Related routines ChapCont and ChapStep are
also available (see Chaprun(3H) in the manual pages).

The dynamic loader invokes a set of routines to perform memory management for
it. These same routines are available to the host programmer who has the need to allo
cate resources independently of the dynamic loader. These routines are the subject of the
next section.

PIXAR November 18, 1986 Chap Routines

Chap Programming Tutorial -50-

11.3. Memory Management
Figure 11-4 is a diagram of the several modules involved in the allocation of Chap

resources. It shows that there are resource allocation tables independent of the device
driver and the Chap symbol table. These tables are managed by Unix utilities described
in ioctl(2). The interested reader is referred to the Unix manual and mman(3C) for
details of the implementation. For our purposes here, it is enough to describe the rou
tines available for directly allocating Chap resources.

SYMBOL TABLE HOST CODE

,~

RESOURCE
ALLOCATION DEVICE DRIVER

MAP

4~

~~~~-~~~--~~---------~---~--------- --------

CHAP CODE 

Figure 11-4: Memory Management Diagram 

There are three types of Chap resources to be separately managed: instruction 
RAM, scratchpad memory, and frame-buffer memory. The units of allocation are 
instructions (96 bits), pixels (64 bits), and tile blocks (32 by 32 pixels), respectively. 

ChapGetConfiq 

The amount of hardware area for each of these resources may be gotten from the 
shell level command chconfig(8). From inside a host program the same information may 
be gotten by a call to ChapGetConfig (). The calling convention is: 

ChapGetContig(chap, conf) 
CHAP *chap; 
struct config *conf; 

The definition of the data structure involved may be found in the standard include file 
<pixardevlchapioctl.h>. This call would be useful in writing portable code that adjusted 

PIXAR November 18, 1986 Chap Routines 



Chap Programming Tutorial - 51 -

automatically to the resources available on a given Pixar Image Computer. 

Allocating and Freeing Chap Resources 
The resource allocation routines themselves are straightforward. For example, the 

code 

u short addr; 
addr = Chap~1ocSpad(chap, 100); 

ChapFreeSpad(chap, addr, 100); 

allocates a block of scratchpad memory of 100 pixels, then frees that block. Alterna
tively, the code 

u short addr; 
addr = ChapGetSpad(chap, 1000, 100); 

ChapFreeSpad(chap, addr, 100); 

allocates a block of the same size, but forces the allocation to take place at pixel location 
1000. Unsuccessful completion is signaled by a return value of -1. 

The analogous routines for the framebuffer are ChapAllocFB, ChapGetFB, 
and ChapFreeFB. Those for instruction RAM are ChapAllocRam, ChapGetRam, 
and ChapFreeRam. Consult manual pages for chapmman(3H) for details. 

Resetting 

In the event of irreversible corruption to the symbol table or resource allocation 
maps, these may be flushed and reset by a call to ChapReset. Use ChapReset with 
care, as it destroys all information concerning the contents of the Chap instruction and 
scratchpad memory. The routine ChapResetMap described in chapmman(3H) is less 
appropriate, since it may leave the resource allocation tables inconsistent with the symbol 
table. 

PIXAR November 18, 1986 Chap Routines 



Chap Programming Tutorial - 52-

11.4. Hardware Interrupts 
Recall from Section 6.1 that there are hardware interrupt facilities on the Chap to 

signal the host We used the routine ChapWai tForlnterrupt to implement a 
host-to-Chap signalling process. We can now explain why we had to include the call 

ChapMMan(chap, 0) 

for the interrupts to work. 

There is a set of allocation routines available for Chap programs similar to those for 
host programs described in the previous section. See the manual page mman(3C) for 
their description~ These Chap routines use hardware interrupts to communicate their 
requests to the central allocation tables on the host If the second argument to ChapM
Man is non-zero, interrupts are intercepted "by the device driver and interpreted as 
memory management requests. Hence, by setting this argument to zero, we ensure that 
the interrupts sent by the Chap program will be passed along to the host process without 
interference from the memory manager. 

PIXAR November 18, 1986 Chap Routines 



Chap Programming Tutorial - 53-

12. Using Chad 

This section gives you the information you need to smoothly integrate your Chas 
programs into host programs that use Chad. Of course, we assume the familiarity with 
Chad provided by Programming with Chad. 

12.1. General Remarks 

Once ChadBeginO has been called, there is no need to use ChapOpenO to open the 
Chap devices that will be used, since the Chad environment includes a CHAP * for 
each Chap. You can obtain this pointer via the macro ChadChapO, defined in 
lusrlpixarlincludelchad.h, giving it a ChapID: 

CHAP *ChadChap( chapid ) 
ChapID chapid; 

The monitor that Chad runs on the Chap immediately does jsr initstack, so 
that all of the library routines which use pushr, popr, pushb, popb, pushi 
and popi will work properly. You needn't include this jsr initstack statement 
in any Chap program you write, although doing so will cause no harm, since Chad's 
monitor itself does not use the register stacks. 

12.2. The Cost of Using Chad 

The following registers are used for special purposes by Chad, and therefore cannot 
be used in host programs operating at the Chad level: 

sysbus<12> 
sysbus<13> 
sysbus<14> 
sysbus<15> 
ace 
Virtua1 Data Registers 170 through 255 

sysbus<14> and sysbus<lS> are used for the virtual data registers and are 
therefore offlimits anyway. sysbus<12> and sysbus<13> are special to Chad; 
the former is used for addressing and the latter for the host-Chap synchronization flag. 
ace is Chad's operating register. It is in constant use by the monitor, and therefore can
not be set usefully or read reliably. Finally, the VDRs are mapped to various destinations 
in the Chap for I/O operations. 

These restrictions do not, however, restrict host programs which send data directly 
to Chap programs while they are running (Le., without returning to the monitor level). 
These transactions are wholly independent of Chad, and therefore unrestricted. This is 
the subject of the next section. 

12.3. Data Transfer to Running Chap Programs 

Chad is heavily dependent on the routines in libpixar. In fact, it is fair to say that 
the former is a simplification of the latter's functionality. In one way, however, they 
differ radically: where libpixar uses the Chap's diagnostic registers to transfer data 
between host and Chap, Chad uses its monitor running on the Chap to move data, in 
cooperation with its hostside subroutines, via the sysbus registers and VDRs. The 

PIXAR November 18, 1986 Using Chad 



Chap Programming Tutorial - 54-

reason for this difference is speed. Whatever the justification, however, it is important to 
realize that the Chad monitor must be the program currently running in the Chap in 
order to use Chad to move data onto the Chap. 

Under normal circumstances, in which execution of a Chap program is a matter of 
loading a set of parameters into registers or scratchpad locations and branching to the 
appropriate routine, this difference means nothing; the monitor is used to do the transfer, 
and it is executing whenever other routines are not (before they are called and after they 
return). However, if the routine itself needs to have data passed to it while it is running, 
then Chad cannot be used: its monitor is not running. If ChadWriteO was used to pass 
data, it would wind up waiting for the Chap to return to the monitor -- for the executing 
Chap routine to complete, in other words. If the routine is just idling, awaiting data, 
deadlock ensues. 

Therefore, whenever routines running in cooperation between the host and the Chap 
must pass data back and forth, it is up to the programmer to establish a protocol for 1) 
which registers are used for what data, and 2) how the data movement is to be synchron
ized. 

It is beyond the scope of this document to discuss software synchronization, except 
to remind the reader of the sample programs we have already seen. However, a few 
observations are in order and will make life easier. 

Almost all the Chap routines in the Pixar Software Release get along by passing 
parameters, either in registers or in scratchpad buffers. Before writing data-passing code, 
you should convince yourself that it really can't be done using repeated subroutine calls. 

If your program absolutely must have intermittent injections of data; it is usually 
possible to write your code so that it returns to the Chad monitor (where it receives the 
data it needs), then picks up where it left off upon the next invocation. In this case you 
must be careful to save the state of the routine (register values, that is; scratchpad loca
tions are generally private) and restore it upon return, unless you are sure that no other 
routines will be called by the monitor before returning to your routine. Since Chad 
promises not to affect any registers but the last four sysbus registers and acc, Chad 
is no threat, but multiprocess control over the Chap can send execution off to routines 
which are dedicated to trashing your registers. 

While it is possible to use the routines in libpixar to access any of the registers or 
scratchpad locations in the Chap, doing so is not recommended for one reason: speed. It 
is much faster to move data using the sysbus registers and VDRs. The earlier exam
ple programs illustrate this process. 

As in Sample 6, you have the option of using the Chap's hardware interrupt as a 
synchronization mechanism. Chad does not interfere with this mechanism, or use it in 
any way. 

Be aware of the value of the sysre~ bit as a synchronization mechanism: After 
VDR access, the host stops automatically, waiting for sysrel to be asserted. Thus the 
host is prevented from proceeding until the Chap program deems it appropriate. Of 
course, the danger here is a bus timeout if the Chap takes too long doing so. Conse
quently, the Chap program has a responsibility not to tarry too long. 

PIXAR November 18, 1986 Using Chad 



Chap Programming Tutorial - 55-

12.4. Chad and the Chap Libraries 
The tutorial sample programs appearing in earlier sections required their Chap pro

grams to be loaded explicitly by the user. One of the most important services of Chad is 
to simplify this process and to automate it in host programs. 

Recall from Programming with Chad that Chad wi11load any Chap routine under 
host control with a call to ChadAilocO, giving a character string identifying the routine. 
There are three prerequisites for this: 

• The routine (the location of the code) must have been declared with the Chas 
. globl directive, making it known outside the flie in which it is defined. 

• After compilation, the routine must be included in a library. 
• The library must be among the set of libraries Chad searches to fmd routines. 

You should already be prepared for the fIrSt step by the example programs. Chap 
code can be included in an archive flie by the following steps: 

• Compile the '.s' module using chc with the '-c' flag. Thus, to compile the module 
/oo.s, type 

chc -c foo.s 

to the UNIX Shell. Of course, you are responsible for using the '-I' option to use the 
appropriate header directories. 

• Use the standard Unix command 'ar' to create/modify the library flie. 
• Use the Pixar program chranlib to prepare the archive for use. This is analogous to 

the Unix shell command ranIib. 

~igure 12-1 is a makeftle for creating an archive file/oo.a from a Chap program ftle 
/oo.s. This is a useful general template for compiling Chap microcode libraries, which 
you are encouraged to modify and use for your own programs. 

# 
# Makefi1e template i11ustratinq Pixar Chapcode archives 
# 
PIXAR= /usr/pizar 
CHC= $ {PIXAR}/host/bin/chc 
CHRANLIB=${PIXAR}/host/bin/chran1ib 
INCLUDE=${PIXAR}/include 
IPATH= -I. -I${INCLUDE} -I${PIXAR}/include/pixar 
CHCFLAGS=${IPATH} 

SReS= foo.s 
OBJS= foo.o 

LIB= foo.a 

. s. 0: 
$ {CHC} $ {CHCFLAGS } -c $*.s 

al1: ${LIB} 

$ (LIB) : $ {OBJS} 

PIXAR 

ar uc $(LIB) $ {OBJS} 
${CHRANLIB} ${LIB} 

Figure 12-1: Making an Archive File (joo.make) 

November 18, 1986 Using Chad 



Chap Programming Tutorial -56-

Once the library fue exists, Chad must be told to look in it when asked for routines. 
This is done using ChadLibsO, which is documented in Programming with Chad. 

Figure 12-2 illustrates these steps. The program is equivalent to sample6, but uses 
Chad instead of the libpixar routines to load the Chapside routine and set it running. It is 
instructive to compare this program with sample6s.c for simplicity and intuitiveness. 

1 #inc1ude <pixar/pixar.h> 
2 #inc1ude <chad.h> 
3 #inc1ude <stdio.h> 
4 
5 #define UCODE "foo.a" 
6 #define ROUTINE "samp1e4" 
7 main 0 
8 { 
9 

10 ChadPC *routine; 
11 
12 ASSERT ( ChadBeqin ( CHAP 0 , 0 »; 
13 chap = Chaps[CHAPO]; 
14 ChadLibs( UCODE, NIX ); 
15 ASSERT ( ChadA110c ( CHAP 0, 
16 RAM, &routine, ROUTINE, 
17 NIX»; 
18 ASSERT ( ChadGo ( routine ) ); 
19 for (;;) { 
20 
21 } 
22 ChadEnd( CHAPO ); 
23 } 

Figure 12-2: Replacing sample6 with Chad (sample7s.c) 

Exercise: Modify foo.make from Figure 12-1 (don't forget to rename it Makefile or 
makefile) to create an archive from the sample programs in earlier sections of this 
tutorial. Modify the sample programs themselves, so that rather than allocating their 
own pixel windows, a pixel window is passed as a parameter in a scratchpad base 
register. Then write a Chad program (use sample7s.c as a departure point) to allo
cate a pixel window with ChadAllocO, put its address (pw->addr) in the appropri
ate base register with ChadWriteO, and then call the Chap routine to draw the rec
tangles. You will find the source files in the Pixar Software Release 
(Iusrlpixarlhostlsrcllibllib* for host routines, lusrlpixarlchaplsrcllibllib* and 
lusrlpixarlchaplsrclbin for Chap code) helpful if you get stuck. 

12.5. Discussion: the Chad Development Process. 
The Pixar Image Computer in general and the Chap in particular, like many other 

fast parallel-processing devices, is best at inner loops: those repetitive tasks, like the 
pixel-level operations that are performed on every pixel in an image, which account for 
the preponderance of the work done by a computer. The outer loops, which do the semi
intelligent work of setting up the environment and detennining what the inner loops will 
do, are usually best left to a host. They account for most of the development time of a 

PIXAR November 18, 1986 Using Chad 



Chap Programming Tutorial - 57-

major application, so this development cycle is best performed on a host computer with a 
good environment. The line between outer and inner loops is indistinct; determining the 
appropriate level for the host-Chap interface for a given application is the process Chad 
is designed to support. 

Chad gives you easy, reasonably efficient access to the important parts of the Chap, 
making it possible for host programs to It emulate" Chap programs which consist mostly 
of setting up parameters and calling other Chap programs. This means two things. First, 
it gives you immediate access to the tiniest (globally defined) Chap routines in the Pixar 
Software Release -- and there are a lot of those. More important, it allows you to 
develop programs and debug algorithms on the host, introducing speed improvements by 
moving work down to the Chap in tiny pieces, beginning with the innermost loops 
(which hopefully already exist). As performance warrants, you can move more and more 
of your program incrementally from the inner loops outward, until the speed of the appli
cation is satisfactory. This layered approach also tends to produce routines which are 
useful in other contexts, and can profitably be added to a site's libraries. 

Chad, then, attempts to provide both an interface and a convention encouraging the 
development of re-usable code. This code will be the source of Pixar Contributed 
Software. We look forward to hearing of your. efforts. 

PIXAR November 18, 1986 Using Chad 



Chap Programming Tutorial - 58-

13. Video Routines 

In addition to a Chap, each Pixar Image Computer has a programmable video board 
to control the display of the framebuffer memory. The reader who would like to become 
familiar with this board is encouraged to experiment with the shell-level command, 
tool( 1), an interactive program that exercises most of its features (see manual entry or 
type the shell command tool -). This discussion focuses on the set of routines avail
able to the user who wants to control the video board from a host program. We attempt 
to illustrate as many as possible through short example programs. There are three main 
topics: 

• Display parameters 
.Colormap 
• Hardware cursor 

The discussion is simplified in comparison to that for the Chap routines since there 
are no companion programs running on the video board requiring synchronization. In 
fact, Chap programs cannot directly access the video board. 

General Remarks 

As with the Chap, any user program must first open the video board for use via a 
call to VideoOpen. The calling convention is: 

VIDEO * 
VideoOpen (videoname, width, height, shared) 
char *videoname; 
int width, height, shared; 

video name is typically "/dev/videon" where n is the number of the video board, usually 
o if it is the only one. width and height are dimensions in pixels of the window into the 
framebuffer. If you do not use the hardware cursor (see below), then these parameters 
are not used. As before, if shared is non-zero, then the device is open with shared access. 

13.1. Display Parameters 

Figure 13-1 shows the listing of a sample program that opens the video board and 
manipulates the display parameters before closing the video board and exiting. The only 
flie that needs to be included, <pixar/pixar .h>, is the same as for the Chap rou
tines. 

VideoSetDisplay 

After opening the video board, we make a series of calls to VideoSetDisplay. 
This routine controls the location and size of the displayed data. Its calling convention is . 

VideoSetDisplay(video, base, width, height, x, y, mode) 
VIDEO *video; 
int base, width, height, x, y, mode; 

base, width, and height are in tile blocks, and determine the format and size of the 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 59-

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31. 
32 
33 
34 

#include <pixar/pixar.h> 

main() { 

} 

int i, j; 
VIDEO *v; 

v = VideoOpen(n/dev/videoO", 1024, 768, 1); 
if (v == (VIDEO *) 0) { 

printf(nvideo: can't access video controller. \nn); 
exit(-2); 
} 

VideoSetDisplay(v, 0, 32, 24, 0, 0, VMODE_RED); 
sleep(l); 
VideoSetDisplay(v, 0, 32, 24, 0, 0, VMODE_GREEN); 
sleep(l); 
VideoSetDisplay(v, 0, 32, 24, 0, 0, VMODE_BLUE); 
sleep(l); 
VideoSetDisplay(v, 0, 32, 24, 0, 0, VMODE_RGB); 
sleep(l); 

for (i=0;i<16; ++i) { 
VideoSetDisplay(v, 0, 32, 24, 64*i, 48*i, VMODE_RGE); 
sleep(l); 
} 

VideoSetDisplay(v, 0, 32, 24, 0, 0, VMODE RGB); 
for (i=ZOOM MIN ; i<= ZOOM MAX ++i) { 

VideoZoom(v, i); -
sleep(l); 
} 

VideoZoom(v, 1); 
VideoClose(v); 

Figure 13-1: Video Display Parameters Demo (videmo.c) 

framebuffer memory. Recall that the framebuffer memory is essentially a linear array of 
tile blocks and must be organized into a two dimensional rectangle by the user. base sets 
the beginning tile block, width determines how many tile blocks span one row of the rec
tangular area, and height gives an upper bound on how many such rows are to be 
displayed. 

The next two parameters, x and y, are in pixels, and specify an offset into the rec
tangular array of tile blocks defined above. This is the point where the video controller 
begins to scan out the framebuffer memory; it will be at the upper left comer of the visi
ble display. In the coordinate system of the display, y increases in downward direction. 
Due to hardware limitations, x and y are truncated to be multiples of 4. 

Channel Crossbar 

Finally, mode determines how the four channels of data in the framebuffer are to be 
interpreted in the display. A channel crossbar switch routes the data from the frame
buffer into the colormaps. In the usual, or "full-color" mode, the red, green, and blue 
channels are routed through the red, green, and blue colormaps, respectively. Each chan
nel can be used as the source for pseudo-color, too. For example, in red pseudo-color, 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 60-

the data in the red channel of the pixel is fed separately to all three colormaps, putting a 
"black and white" image on the screen. The green, blue, and alpha channels are 
ignored. There are also pseudo-color modes using the green, blue and alpha channels. 
To use this mode, the user usually will want to load a customized colormap (see the next 
sample program). 

The sample program illustrating these features is shown in Figure 13-1. As with 
other sample programs, you can use the UNIX utility make to create an executable ver
sion of this program. Simply type the· shell command make vi demo. For best results, 
there should be a full-color image in the display. Make sure the video board is set to its 
defaults by the command 'video - ini t'. Then run the program with the command 
videmo. Notice the changes to the display fIrst. 

Commentary on Figure 13·1 
The calls to VideoSetDisplay [lines 13,15,17,19] illustrate the various set

tings of the channel crossbar discussed above. As these calls are executed, the monitor 
should display a grey scale image of the red, green, and blue channels, in order, before 
returning to full color mode. 

The loop [lines 22-25] moves the upper left comer of the display, controlled by 
parameters x and y in the calling description above. Then the comer is set back to the 
default (0,0). 

VideoZoom 

The next loop [lines 27-30] plays with the hardware zoom factor. It increases this 
from its minimum (1) to its maximum (16). These values are included as macros, 
ZOOM_MIN and ZOOM_MAX, in the include flie. The hardware zoom is implemented by 
pixel replication on the video scan-out. For example, a zoom factor of four causes each 
pixel of framebuffer memory to cover a block of four by four pixels on the display. 
Hence, 1116 as many pixels are displayed. If the upper left comer of the display is black, 
then at some point as the zoom increases, the display will go black. 

Finally, the zoom is set back to its default state [line 31], and the video is closed 
with a call to VideoClose [line 32]. 

13.2. Colormap Demo 
All the data coming out of the video output port goes through the colormap. There 

are three colormaps: one for each of the output channels. The channel crossbar, 
described above, determines the input channels. Figure 13-2 presents a simple demons
tration of the colormap routines available to the programmer. The program, called con
tour, accepts a single command line integer argument, n. It then creates n linear ramps 
within the colormap array and sends this colormap to the video board. The program gets 
its name from the fact that at the boundary of the individual ramps the displayed color 
changes from black to white; hence, sharp contour lines appear. Use the command 
make contour to create an executable version. 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 61 -

Computing the Coiormap [lines 21·36] 

Recall from Chapter 4 that the framebuffer stores pixel values in the range 
[-.5, 1.5), by interpreting the top two bits of the intensity value according to Table 13-1. 

Upper 2 Bits 
00 
01 
10 
11 

Range 
[ 0, .5) 
[ .5, 1.0) 
[1.0, 1.5) 
[-.5, 0) 

Table 13-1: Pixel Value Conversion 

Each value coming from the framebuffer is adjusted (by hardware) to be in the 10-bit 
"address space" of the colormap. Thus, values from a 12-bit frame buffer are automati
cally shifted right by two bits; values from an eight-bit frame buffer are shifted left by 
two bits. This value is used as an index into the colormap. For example, in a 12-bit 
frame buffer, the pixel values 16, 17, 18, and 19 all map to colormap entry 4. The values 
in the colormap are scaled integers with 12 bits of fraction. There are no integer bits. In 
this system, then, maximum intensity corresponds to the value 4095. 

The conversion of Table 13-1 is implemented in hardware in the Chap when 
transfers take place between scratchpad and framebuffer. This does not happen in the 
video board. Instead, the colormaps determine this conversion. To emulate Table 13-1 
in a linear ramp, use the colormap described in Table 13-2. 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 62-

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

#inc1ude <pixar/pixar.h> 
#define ONE Oxfff 

main (argc, argv) char **argv; { 

} 

VIDEO *v; 
int num = 8; 
short cm[3] [1024]; 

if (argc > 2) { 
printf ("Osage: contour number_of_ra:mps. \n") ; 
exit(-2); 

} 
if (argc == 2) num = atoi(*++argv); /* defau1t: 8 */ 

v = VideoOpen("/dev/videoO", 1024, 768, 1); 
if (v == (VIDEO *) 0) { 

printf("video: can't access video contro11er. \nn); 
exit(-2); 

} 
{ register int i, j, k, m, number; 
doub1e de, c; 
number = 512.0/num; 

de = num/512.0; 
for (i=O,k=O;k<num;++k) 

for (c = 0, ~O; ~number; c += dc, ++m, ++i) 
if (i > 511) break; 
for (j=0;j<3; ++j) 

cm[j] [i] = c * ONE; 
} 

for (; i<768;++i) 
for (j=O; j< 3; ++j) cm[j] [i] = ONE; 

for (;i<1024;++i) 
for (j=O; j< 3; ++j) cm[j] [i] = 0; 

} 

VideoSetCo1or.map(v, cm[O], cm[l] , cm[2]); 

VideoC1ose(v); 

Figure 13-2: Colormap Sample Program (contour. c) 

Top two bits Colormap indices Values Interpretation 

11 
Ox 
10 

768-1023 
0-511 

512-767 

o 
0-4095 
4095 

(Clamp to 0) 
(Linear ramp) 
(Clamp to 1.0) 

Table 13-2: Simple Linear Colormap 

Sample Program contour (Figure 13-2) 

{ 

The colormaps contructed in the sample program [lines 21-36] respect this conven
tion. The sequence of ramps is placed into the bottom half of the array, while the top half 
is used for clamping, as in Table 13-2. The ramps are calculated in [lines 25-31]; the 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 63-

clamp areas are filled in [lines 32-35]. Once the array has been computed, it is sent to the 
Pixar Image Computer via a call to VideoSetColormap [line 38]. Its calling con
vention is: 

VideoSetColormap (v, red, green, blue) 
VIDEO *v; 
short red[1024], green[1024], blue[1024]; 

The current colormap may be retrieved via a call to VideoGetColormap, which has 
the identical calling convention. 

One common use of colormaps is to implement gamma correction for the aberra
tions in the response of the display elements. This is available with the shell level utility, 
video(1); consult the manual page, or type 'video -' 

13.3. Hardware Cursor 

One final focus of this discussion is the hardware cursor. This is a programmable 
bit array of 128 by 128 pixels, overlaid on the video signal without affecting the contents 
of the framebuffer. Bits not on are not affected; bits turned on in the cursor array appear 
as "superwhite," so they are distinguishable from any framebuffer color. A cursor 
which was all 0' s would be totally transparent and hence invisible. Up to four cursors 
may be loaded at anyone time, so that the user may switch from one to another. 

Figure 13-3 contains a listing of a sample program that demonstrates the use of the 
hardware cursor. Execute the command make cursor to create an executable ver
sion. Run this program before and after reading over the program listing to acquaint 
yourself with the working of the hardware cursor. 

The main data structure required is CURSOR. There is a set of externally defined 
cursors for use by programs. We have included the crosshair and clef cursors in this 
demo [line 4]. See the Pixar manual pages (videocursor(3H) for other available cursors. 
For the curious reader, the CURSOR data structure is defined in the file <pixarlvideo.h>. 

Once a cursor data structure has been defined, as in the case of xhair _cursor, the 
next step is to load the cursor: 

VideoLoadCursor(v, n, c) 
VIDEO *v; 
CURSOR *c; 

The parameter n is an integer from 0 to 3 and identifies in which of four possible slots to 
load the cursor. We load the two externally defined cursors into the first two slots [lines 
20-21]. 

Manipulating the Active Cursor 

The loop [lines 23-31] illustrates two more routines. First, we can move the cursor 
to an arbitrary screen location with VideoSetCursor. 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 64-

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

#include <pixar/pizar.h> 

main() 

} 

VIDEO *v; 
extern CURSOR xhair cursor, clef_cursor; 
static int 10c[10] [2] = 

{100, 100, 100, 300, 100, 500, 100, 700, 
300, 700, 500, 700, 700, 700, 500, 500, 
3QO, 300, 100, 100 }; 

{ 

int i; 

v = VideoOpen("/dev/videoO", 1024, 768, 1); 
if (v == (VIDEO *) 0) { 

printf("video: can't access video controller.\nn); 
ezit(-2); 
} 

VideoLoadCursor(v, 0, &xhair cursor); 
VideoLoadCursor(v, 1, &clef_cursor); 

for (i=O; i< 10; ++i) { 
VideoSetCursor(v, loc[i] [0], loc[i] [1]); 

VideoCursorOn(v, 0); 
sleep(l); 

VideoCurs 0 rOn (v, 1); 
sleep(l); 
} 

VideoCursorOff(v); 

VideoClose (v) ; 

Figure 13-3: Hardware Cursor Sample Program (cursor. c) 

VideoSetCursor(v, x, y) 
VIDEO *v; 
int x, y; 

This will position the cursor at the pixel location (x,y) within the display window, as 
described in the first sample program. 

Only one cursor can be active - that is, displayed - at a time. To change the 
active cursor, use a call to VideoCursorOn: 

VideoCursorOn(v, n) 
VIDEO *v; 
intn; 

This will make cursor n the active cursor, and will display it according to the most recent 
call to VideoSetCursor. Warning: Calling VideoSetCursor before 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 65-

VideoLoadCursor will not achieve the desired result. At least one cursor must be 
loaded in to set the position of the cursor. 

The loop moves the cursor through a predefined sequence of locations on the 
screen, alternating between the two loaded cursors. After this journey, the demo is com
pleted and we terminate with a call to VideoClose. 

Conclusion 

This concludes our discussion of video routines available to the host programmer. 
Further details are available in the Pixar manual pages videodisplay, videocmap, video
cursor, and video pen in section 3R. The. reader is also referred to the section 1 entries for 
tool, loop, and video for shell-level commands that utilize the video board. 

PIXAR November 18, 1986 Video Routines 



Chap Programming Tutorial - 66-

14. Miscellaneous Routines 

Most host routines for the Pixar Image Computer have been covered in the previous 
two sections. However, there are a few miscellaneous ones that concern neither the Chap 
nor the video board. For most applications, these routines are not called explicitly. 
These routines fall into three categories: 

• Dumi routines 
• Memory controller routines 
• Disk buffer routines 

Dumi is an acronym for' 'Dumb Interfaceo" It is the interface card between the host 
and the Pixar Image Computer. All communication of the host and either the Chap or the 
video board goes through this card. Each Dumi can control up to eight Chaps, four video 
boards, a memory controller (see below), and a disk buffer (see below). For a more com
plete description of the hardware configuration, consult the manual entry Dumi (4). 
There are two routines available, for opening and closing the Dumi: 

DUMI *DumiOpen(device) 
char *device; 

DumiClose( dumi) 
DUMI*dumi; 

Under normal circumstances, the user does not need to know that the Dumi exists; how
ever, in certain circumstances he or she may want to examine the diagnostic registers 
contained there. For an example, consult the shell-level command dumi, documented in 
Section 1 of the Pixar manual pages, with source in lusrlpixarlhostlsrclbinldumi.c. 

14.1. The memory controller routines 

Each Dumi has an associated minor device, known as a memory controller. As with 
the Dumi itself, under normal circumstances, the user does not need to directly access 
this device. However, for the user who wishes to examine the device's diagnostic regis-
ters, there are routines: . 

MCTRL *MctrIOpen(device) 
char *device; 

MctrIClose(Mctrl) 
MCTRL *Mctrl; 

Interested users are referred to the maintenance command mctrl (see section 8 of the 
Pixar manual pages), and the associated source code in lusrlpixarlhostlsrclbinlmctrl.c. 

PIXAR November 18, 1986 Miscellaneous Routines 



Chap Programming Tutorial - 67-

14.2. Disk butTer routines 

The remaining routines support access to a Dumi's disk buffer, which is a special 
hardware device for speeding up disk transfers to and from the Dumi. It can be thought 
of as a more powerful version of the virtual data registers (see Section 12.1.1 above). We 
have included a sample program illustrating its use. Figures 14-1 and 14-2 show the 
source listings of a sample host and Chap program pair that use this feature to transfer the 
contents of a disk fue on the host into the scratchpad memory of the Chap. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

#inc~ude <pizar/pixar.h> 
#inc~ude <stdio.h> 
#inc~ude <sys/fi~e.h> 
#define DWSIZE 32*1024 

maine) 

} 

DUMI *dp; 
DB *db; 
CHAP *chap; 
int fd; 

( 

chap = ChapOpen("/dev/chapO", 1); 
ChapLoadGo (chap, "chdbdemo . 0", "dbdemo"); 

if «dp = DumiOpen (" /dev/dumiO"» == NOLL) { 
printf ("Unable to open dumi. \n") ; 
exit(-2); 
} 

if «db = DbOpen (" /dev/diskwO", DWSIZE» == NULL) f 
printf ("Unable to open diskwindow. \n") ; 
exit(-2); 
} 

if « fd = open ("primes", 0 RDONLY) < 0) ( 
printf("Unable to open data fi~e\n"); 
exit(-2); 
} 

dp->dumi->dr addr1 = 1; /* set dumi register */ 
read (fd, db->db bp, 128 * sizeof(short»; 

DumiC~ose (dp) ; 
DbClose (db) ; 
ChapClose(chap); 

Figure 14-1: Disk Buffer Usage, Host Side (dbdemo.c) 

Notice that, as in previous sample programs, we open the Chap and use Cha
pLoadGo to load and run the companion Chap program (shown in Figure 14-2). 

Setting Up the Dumi [lines 16.19] 

To use the disk buffer, the host program must fIrst open the Dumi. This is so it can 
later set one of the diagnostic registers with a "magic" value ([line 31]) which is 
required in order that the disk buffer function correctly. 

PIXAR November 18, 1986 Miscellaneous Routines 



Chap Programming Tutorial - 68-

1 #define WAIT NOT BUSY $\ 
2 push; - - $\ 
3 dowhi1e !sysbus busy; 1 ticks; $\ 
4 1 ticks 
5 
6 .bss 
7 primes: . space 128 
8 . text 
9 dbdemo: .g1ob1 dbdemo 

10 
11 bO = primes 
12 iO = 1 
13 100p 128 do 
14 WAIT NOT BUSY 
15 @bO ; syibus<15>; bO = bO + iO 
16 sysre1 = 1; 
17 done 
18 bpt 

Figure 14-2: Disk Buffer Usage, Chap Side (chdbdemo.s) 

Opening the Disk Buffer [lines 21-24] 

The host then opens the disk buffer with a call to DbOpen. Its calling convention 
is similar to previous open routines: 

DB *DbOpen(dbname, size) 
char *dbname; 
int size; 

The generic name for a disk buffer device is "/dev/diskwn," where n is a number identi
fying the disk buffer. size is an upper limit on the number of bytes to be transferred at 
one time. The value in this sample program, 32 kilobytes, is the maximum allowed. The 
buffer area is memory mapped. The starting address of the area is stored as a char * 
in the field db _ bp of the DB structure. It is this address which we use in the read 
statement [line 32]. 

The sample program reads a small disk file named primes [lines 26-29]. primes 
contains the first 128 primes in packed binary format, with two bytes per prime. To 
examine this flie, use the UNIX utility od to get an octal dump of the contents of the file. 

NOTE: If this file is not present, use the shell command make mkprimes, 
then execute it by typing mkprimes. This will create a new copy of the file primes. 

After setting the magic Dumi register [line 31], the sample program reads the con
tents of primes into the disk buffer [line 32]. This is all that the host program has to do 
to transfer the data. 

Now look at the Chap program in Figure 14-2. The code resembles that of vdr.c 
(Figure 11-1). This is because both the virtual data registers and the disk buffer use the 
same mechanism to transfer single words of iilformation: the value to transfer is poked 
into sysbus<lS>, the Chap detects the poke via the sysbus condition code, the 
Chap stores away the value contained in sysbus<lS>, and finally releases the Sysbus 
for another transfer. The main difference is that in the case of the disk buffer, the host 

PIXAR November 18, 1986 Miscellaneous Routines 



Chap Programming Tutorial - 69-

program does not need to make individual transfers. 

) Each two consecutive bytes of the disk file is transferred as one 16-bit Chap word. 
If the amount of data to be transferred is larger than 32 kilobytes, ~en the host program 
will have to make multiple reads to the disk buffer, each time reading at most that much 
information. 

Cleaning Up 
After the transfer is completed, the various devices that have been opened have to 

be closed by calls to the appropriate routines [lines 34-36]. 

To verify that this mechanism works, create an executable version of the sample 
program by the command make dbdemo. After running this sample program, use 
Charm to examine the Chap scratchpad to verify that the prime numbers contained in the 
fIle primes have been transferred there. 

PIXAR November 18, 1986 Miscellaneous Routines 



Chap Programming Tutorial -70 -

15. Conclusions 
This concludes the discussion of host routines for interactive programming of the 

Pixar Image Computer. The discussion has been intended as a companion document to 
the Pixar manual pages for these routines, contained in the 3H section. This discussion 
has been successful if it provides a foundation for creating customized programs to fit 
your needs. It has been designed so that users whose requirements go beyond the infor
mation provided here will now be able to fmd the information in the manual pages, by 
following up the references to more sophisticated source files, or by consulting the 
include files which defme the data structures such as CHAP and VIDEO. The interested 
user can fmd the source files for the routines under discussion in subdirectories of 
lusrlpixarlhostlsrcllib, principally libpixar and libchad. Most of the include files are 
contained in lusrlpixarlinclude, or its subdirectory pixar. 

PIXAR November 18, 1986 Contents 



1e Introduction 

Chap Assembler Reference Manual 
CHAS 

Copyright 1986, Pixar 

This document describes the usage and syntax of the Pixar Channel Processor Assembler chas. Readers of 
this document should be familiar with the Chap architecture, no description is presented here. 

2. Usage 

Chas is invoked as follows 

chas [ -wsS] [ -0 output] [filehfile2, ... , filen ] 

The -w flag suppresses the generation of warning messages. 

The -s flag causes messages to be printed regarding multiple instructions assemblies which result from the 
"special bit" (see §8.10 and §9). 

The -S flag causes chas to print the contents of the symbol table on the standard output after all input fIles 
have been assembled. 

The -0 flag causes the output to be placed in the fIle output. By default, the output of the assembler is 
placed in the rile a.out in the current directory. 

The input to the assembler is taken sequentially from filet, file2, ... , filen • Files are not assembled 
separately, all input riles are concatenated. If no riles are supplied as arguments on the command line, chas 
reads from the standard input. 

3. Lexical Conventions 

3.1. Scalar Constants 

All scalar (integer) constants are treated as 32 bit quantities. Constants are specified as in C. 

The set of digits consists of "0123456789abcdefABCDEF" with the obvious values. An octal constant 
consists of a sequence of digits with a leading zero. A decimal constant consists of a sequence of digits 
without a leading zero. A hexadecimal constant consists of the characters "Ox" (or "OX") followed by a 
sequence of digits. 

3.2. Fixed Point Constants 

Fixed point constants consist of an integer part, a decimal point, a fractional part, and an optional one char
acter "fractional precision specification": e or E for eleven bit alpha and component values, for F for 
fourteen bit coeffIcient values. The integer and fraction parts both consist of a sequence of digits. Either 
the integer part or the fractional part (not both) may be missing. By default fIxed point constants are con
sidered to have eleven bits of fraction (i.e. they are treated as alpha/component values). 

3.3. Operators 

There are several single and multi-character operators; see §6.1. 

Version 2.0 Pixar 



Chap Assembler -2- Lexical conventions 

3.4. Blanks 

Blank and tab characters may be interspersed freely between tokens, but may not be used within tokens. A 
blank or tab is required to separate adjacent identifiers or constants not otherwise separated. 

3.5. Comments 

"C style" comments, introduced with a "1*" prologue and ended with a "*1" epilogue, are supported. 

4. Segments and Location Counters 

Assembled code is placed in the text segment, assembled data is placed in either the data segment or the 
bss segment. The bss segment contains uninitialized memory locations (zero ftIled by the run-time loader 
when the module is loaded); the data segment contains initialized memory locations * . Only instructions 
may be assembled into the text segment; the assembler makes no assumptions about data placed in the data 
and bss segments. Associated with each segment is a location counter which begins at zero. For each 16-
bit word assembled into the data or bss segments, the data or bss location counter is incremented by one. 
For each 96-bit instruction assembled into the text segment the text location counter is incremented by one. 
There is no way to reference a specific location counter. The current segment's location counter may be 
referenced by the special symbol ".". The text segment of a program is mapped to the Chap instruction 
RAM; the data and bss segments of a program are mapped to the Chap scratchpad RAM. 

The Chap link editor, chid, and the Chap dynamic loader, chload, align each input files' data segment on a 
16 word boundary and each bss segment on a 4 word boundary. The data segment alignment allows chas 
to tessellate initialized data. 

s. Statements 

A source program is composed. of a sequence of statements. Statements are separated by semicolons. 
There are two kinds of statements: null statements and keyword statements. Either kind of statement may 
be preceded by one or more labels. All statements on a single line assemble into one Chap microinstruc
tion. To force statements on multiple lines to be assembled into a single microinstruction, the statements 
must be surrounded by braces, "{}". When multiple statements are grouped with braces, the compound 
statement need not be followed by a semicolon. 

5.1. Named Global Labels 

A global label consists of a name followed by a colon. The effect of a name label is to assign the current 
value and type of the location counter to the name. An error is indicated in pass 1 of the assembler if the 
name is already defined. 

A global label is referenced by its name. 

5.2. Numeric Local Labels 

A numeric label consists of a digit 0 to 9 followed by a colon. Such a label serves to defme temporary 
symbols of the form "nb" and "nf', where n is the digit of the label. As in the case of name labels, a 
numeric label assigns the current value and type of the location counter to the temporary symbol. How
ever, several numeric labels with the same digit may be used within the same assembly. References to 
symbols of the form "nb" refer to the fIrst numeric label "n:" backwards from the reference; "n:" sym
bols refer to the fIrSt numeric label "n:" forwards from the reference. 

5.3. Null Statements 

A null statement is an empty statement and is ignored by the assembler. A null statement may, however, 
be labeled. 

* bss stands for "block starting with symbol". By using bss one may minimize the size of load modules and optimize the 
speed at which modules are loaded into Chap scratch pad. 

Version 2.0 Pixar 



Chap Assembler - 3 - Segments and location counters 

5.4. Keyword Statements 

A keyword statement begins with one of the many predefmed keywords known to chas; the syntax of the 
remainder of the statement depends on the keyword. The remaining keywords are assembler pseudo
operations, also called directives. The pseudo-operations are listed in §7 together with the syntax they 
require. 

6. Expressions 

An expression is a sequence of symbols representing a value. Its constituents are identifiers, constants, 
operators, and backs lash-parentheses, ("\(" and "\)"). Each expression has a type. 

All operators in expressions are fundamentally binary in nature. Arithmetic is two's complement and has 
32 bits of precision. Chas supports only limited arithmetic with fixed point numbers. There are four levels 
of precedence, listed here from highest precedence level to lowest 

precedence operators 
unary -, 
binary *, I, % 
binary +,-
binary «, » 
binary I ,&, A, nand, nor, xnor 

All operators of the same precedence are evaluated strictly left to right, except where the evaluation order 
is enforced by parenthesis. 

6.1. Expression Operators 

The operators are: 

operator 

+ 

* 
I 
% 

& 
I 

» 
« 

nand 
nor 
xnor 

meaning 
addition 
(binary) subtraction 
multiplication 
division 
modulo 
(unary) 2's complement 
bitwise and 
bitwise or 
bitwise exclusive or 
bitwise l' s complement 
logical right shift 
logical left shift 
bitwise not and 
bitwise not or 
bitwise not exclusive or 

Expressions may be grouped by use of backslash-parentheses, "\(" and "\)". Only the - (unary and 
binary), +, *, and I operators may be used with fixed point numbers. 

6.2. Data Types 

The assembler manipulates several different types of expressions. The types which may be met are: 

undefmed 
Upon fIrst encounter, each symbol is undefined. It will remain undefmed if it is assigned an unde
fmed expression. It is an error to attempt to assemble an undefmed expression in pass 2; in pass 1 it 
is not (except that certain keywords require operands which are not undefined). 

Version 2.0 Pixar 



Chap Assembler -4 - Expressions 

undefmed external 
A symbol which is declared .globl but not defined in the current assembly is an undefmed external. 
If such a symbol is declared, the runtime monitor/loader must be used to combine the assembler's 
output with another routine that defmes the undefined reference. 

absolute integer 
An absolute integer symbol is defined ultimately from a constant which has no fractional portion. Its 
value is unaffected by any possible future applications of the link-editor to the output fue. 

absolute fixed point 

text 

An absolute fixed point symbol is defmed ultimately from a constant which has a fractional portion. 
Its value is unaffected by any possible future applications of the link-editor to the output fIle. 

The value of a text symbol is measured with respect to the beginning of the text segment of the pro
gram. If the assembler output is link-edited, its text symbols may change in value since the program 
need not be the fIrst in the link editor's output Most text symbols are defIned by appearing as labels. 
At the start of an assembly, the value of"." is "text". 

data, bss 
The value of a data (bss) symbol is measured with respect to the origin of the data (bss) segment of a 
program. Like text symbols, the value of a data (bss) symbol may change during a subsequent link
editor run since previously loaded programs may have data (bss) segments. After the fIrst .data 
(.bss) statement, the value of "." is "data" ("bss"). 

external absolute, text, data, or bss 
Symbols declared .globl but defIned within an assembly as absolute, text or data symbols may be 
used exactly as if they were not declared .globl; however, their value and type are available to the 
link editor so that the program may be loaded with others that reference these symbols. 

6.3. Type Propagation in Expressions 

When operands are combined by expression operators, the result has a type which depends on the types of 
the operands and on the operator. For purposes of expression evaluation the important types are 

undefmed 
undefined external 
absolute (either integer or fIxed point) 
text 
data 
bss 
external absolute, text, data, or bss 

The combination rules are: 

1) If one of the operands is undefined, the result is undefined. 

2) If both operands are absolute, the result is absolute. 

3) If an absolute is combined with one of the external types, the result has the type of the external. If an 
external type is combined with a type other than external, the external is treated as an absolute. 

Further rules applying to particular operators are: 

+ If one operand is text- data-, or bss- segment relocatable, or is an undefined external, the 
result has the postulated type and the other operand must be absolute. 

Version 2.0 

If the fIrSt operand is a relocatable text-, data-, or bss- segment symbol, the second operand 
may be absolute (in which case the result has the type of the first operand); or the second 
operand may have the same type as the fIrst (in which case the result is absolute). If the 
fIrst operand is external undefined, the second must be absolute. All other combinations 
are illegal. 

Pixar 



Chap Assembler -5- Expressions 

others It is illegal to apply these operators to any but absolute symbols. 

The following rules apply to fixed point arithmetic with two absolute expressions: 

+, - It is illegal to combine an II-bit fIXed point value with a I4-bit fixed point value. The type 
, of the resultant expression is either an II-bit or 14-bit fixed point value depending on the 

type of the operands. 

*,/ One of the operands must be a I4-bit fixed point value. If one of the operands is an integer 
. constant, the resultant type is integer. If one of the operands is an II-bit fIXed point con
stant, the resultant type is an II-bit fIXed point constant. 

7. Pseudo-operations 

The keywords listed below introduce directives or instructions, and influence the later behavior of the 
assembler. The metanotation "[ stuff]" means that 0 or more instances of the given "stuff" may appear. 
Boldface tokens must appear literally; words in italics are substitutable. The pseudo-operations listed 
below are grouped into functional categories. 

7.1. Interface to Previous Pass 

# number [file-name ] 

This directive (normally produced by the C preprocessor) causes the assembler to believe it is on line 
number. The second argument, if included, causes the assembler to believe it is in fue file-name, 
otherwise the current file name does not change. The" #" must be in the fIrst column. 

7 .2. Segment Control 

.data [ expr ] 

.bss [expr] 

.text [ expr ] 

These three pseudo-operations cause the assembler to begin assembling into the text, data, or bss 
segment. If specified, the expression indicates a new value for the text or data location counter. Any 
memory locations skipped as a result of moving the location counter are zero filled. The expression 
must be defined and absolute; an omitted expression implies use of the current location counter 
value. The locations in the data and bss segments are mapped into the Chap scratchpad RAM; loca
tions in the text segment are mapped into the Chap instruction RAM. 

Each instruction in the text segment increments the text segment location counter by one. Each word 
of data allocated in the data (bss) segment increments the data (bss) segment location counter by one . 

• comm symbol, expr 

Define a common block with size expr words. The .comm directive implicitly declares symbol as an 
external identifer. The symbol may not previously have been defined as other than a common block. 

chas does not allocate storage for common symbols; this task is left to the link editor, chid. The link 
editor computes the maximum declared size of each common symbol (which may appear in several 
fues), allocates storage for it in the fmal bss section, and resolves linkages . 

• space expr 

Add expr to the current location counter and zero ful the resultant space. The value of expr must be 
defined and absolute . 

• align expr 

Round the current location counter to the next multiple of expr. If the location counter is incre
mented, the resultant space is zero fuled. The value of expr must be defined and absolute. 

Version 2.0 Pixar 



Chap Assembler -6- Pseudo-operations 

7.3. Initialized Data 

Scratchpad memory locations may be initialized at assembly time with two directives. Initialized memory 
locations must be specified as tessellated or untessellated. Data and bss segments generated by chid are 
guaranteed to start on a 16 word boundary in scratchpad memory. When tessellated and untessellated ini
tialized memory locations are mixed in a single segment, chas automatically zero pads to a 4 word boun
dary between each region. 

7.3.1. Un tessellated Data 

.word expr [ , expr ] 

The expressions in the comma-separated list are truncated to 16-bit values and assembled in succes
sive locations without tessellation. Expressions supplied in a .word may be integer or fIXed point. 

If the previous initialization contained tessellated data, the location counter is aligned to a four word 
boundary prior to processing the untessellated data. 

7.3.2. Tessellated Data 

.pixel expr [ , expr ] 

The expressions in the comma-separated list are truncated to 16-bit values and assembled in a tessel
lated manner in successive logical scatchpad memory locations. Expressions may be integer or fIXed 
point. Fixed point constants are stored in the appropriate fractional format (see §3.2). 

If the previous initialization contained untessellated data, the location counter is aligned to a four 
word boundary prior to processing the tessellated data. 

7.4. Symbol Dermitions 

7.4.1. External Symbols 

.globl name 

This statement makes the name external. If it is otherwise defmed by appearance as a label, it acts 
within the assembly exactly as if the .globl statement were not given; however, the link editor may 
be used to combine this object module with other modules referring to this symbol. 

Conversely, if the given symbol is not defmed within the current assembly, the link editor can com
bine the output of this assembly with that of others which defme the symbol. The assembler makes 
all otherwise undefmed symbols external. 

7.4.2. Absolute Symbols 

.set name value 

This statement defines an absolute symbol name with value value. The symbol may not previously 
have been defined with type other than absolute. 

7.5. Default Instruction Duration 

.clock n 

This statement causes the instruction duration assigned each Chap microinstruction to be n clock 
cycles (unless specified explicitly in the instruction, see §8.10). By default the instruction duration is 
calculated according to a set of rules which are intended to provide a minimal value. If n is 0, chas 
resumes automatic calculation of the instruction duration. 

7.6. Multiplier Shift Control 

.shift qualifier n 

This statement defmes a multiplier input shift qualifier named qualifier. When used in qualifying a 
multiplier input the quantity is shifted"n places. Three qualifiers are predefmed as shown below. 

\~. t-t: 

Version 2.0 Pixar 



Chap Assembler 

Qualifier 
comp 
alpha 
coeff 

Shift 
2 
3 
o 

Value Type 
component 
alpha channel 
coefficient 

-7-

Shift qualifiers share scope with "absolute" symbols. 

s. Chap Directives 

Directives for controlling the channel processor fall roughly into six categories: 

• controlling the 29116 ALU, 

• controlling the 29517 multiplier, 

• scratchpad memory address calculation, 

• managing movement of data through the datapaths, 

• sequencing, and 
• controlling the runner. 

Pseudo-operations 

In addition to the above, ehas directives exist for directly derming many of the microinstruction fields. 

Where data movement is involved, the assembler eliminates the need to give explicit directions regarding 
control signals. Instead, the architecture is presented at a register transfer level with the assembler translat
ing register transfer requests into assertion of the appropriate control signals. The assembler, however, will 
not translate data transfer requests which would result in multiple Chap microinstructions; these are flagged 
as errors and reported to the user. 

S.l. ALU Control 

Most ALU operations are represented by assignment statements of the form 

data-location = expression; 

The possible ALU data locations are shown in Table 1. 

Assembler Interpretation 
rO, r1, ••• , r31 internal RAM location 
acc accumulator 
latch latched ALU data input 
ybus ALU data output 
link ALU status word link bit 
flag1 ALU status word flag 1 bit 
flag2 ALU status word flag2 bit 
flag3 ALU status word flag3 bit 
overflow ALU status word overflow bit 
negative ALU status word negative bit 
carry ALU status word carry bit 
zero ALU status word zero bit 

Table 1. ALU Data Locations. 

Expressions on the right hand side of an ALU assignment statement translate into 29116 operations. Thus, 
the expressions may be simple values (resulting, for example, in a "move" operation), or more complex 
values which utilize the 29116's arithmetic capability. Table 2 shows the correspondence between assem
bler expressions and 29116 operations; op means an operand (either an ALU location or an expression), loe 
means an ALU location, and expr means an absolute constant expression. 

Commutative operators may have their op and loc parameters swapped. For example, op + loe is accepted 

Version 2.0 Pixar 



Chap Assembler - 8 - Chap directives 

+ 
+ 
+ 
-f 
t, 

+ 
t-

-+-

Expression Instruction Type Opcode 

op single operand MOVE, COMP, INC, NEG 
loe - op [with earry] double operand SUBx [SUB xC] 
loe + op [with earry] double operand ADD [ADDC] 
loc & op double operand AND 
loc nand op double operand NAND 
loe A op double operand EXOR 
loc nor op double operand NOR 
loe I op double operand OR 
locxnorop double operand EXNOR 
loe« expr [nil with expr] single bit shift SHUPx 
loe» expr [rdl with expr] single bit shift SHDNxx 
r] pow2( expr) bit oriented LD2Nx [LDC2N] 
loe + pow2(expr) bit oriented A2Nx 
loe - pow2( expr) bit oriented S2Nx 
loe rotate expr rotate by n bits ROTRx 
loe rotmerge expr, mask rotate and merge ROTM 
prior(loe [, mask]) prioritize PRTx 
[reverse] ere crc CRCx 

Table 2. ALU Expression to Opcode Mapping. 
by the assembler. A few ALU operations are not expressible as "standard" assignments. Table 3 shows 
how these operations are represented to the assembler. Bit operations involving the status word use expres
sions of the sort "overflow" or "zero". Bit operations on a single bit use an expression "bit(n)", to 
effect the nth bit in the word or byte. To request the overflow, carry, negative, and zero bits as an operand 
use "overflow, carry, negative, zero". 

Operation Assembler syntax 

bit set loe 1= bit(expr); 
bit set status loe 1= expr; 
bit clear loe &= bit( expr); 
bit clear status loe &= expr; 
bit test loe == bit(expr); 
bit test status loe == expr; 
rotate and compare loe == op rotmerge expr , mask; 
no-operation (an empty statement) 

Table 3. Miscellaneous ALU Operations. 

Finally, the ALU status flags may be disabled by compounding an ALU operation with "not see", i.e. 

{ALU-operation; not see; } 

(see stands for "status control enable", as defmed in the Chap instruction description). 

If an ALU operation is not specified, a no-operation is supplied by the assembler. 

8.2. Multiplier Control 

The 29517 multiplier inputs and outputs are referenced in much the same way as the 29116 ALU. 

Version 2.0 Pixar 



Chap Assembler -9- Chap directives 

8.2.1. Input Control 

To supply an input to the multiplier a statement of the following form is used. 

multiplier-input = input-specification; 

The "multiplier-input" is either multx or multy. The "input-specification" identifies a source in the 
Chap from which the input value is to be obtained, as well as optional qualifiers to control and modify the 
data value. Input data is normally treated as a ~ quantity; this may be overridden on a per instruction 
basis with an explicit specification, ( .~ 

, ,,,,eu\ 
(signed) input-source t'II.":;l '5 
(unsigned) input-source 

In addition, the multiplier input data may be shifted one to three places before presentation to the 29517. 
Coefficient quantities are normally not shifted, while component values are shifted two places and alpha 
values are shifted three places. Shifting must be explicitly specified with an additional input qualification, 

(signed qualifier) input-source 
(unsigned qualifier) input-source 

Three qualifiers, coeff, comp, and alpha, are predefined by chas, others may be added with the .shift direc
tive (see §7.6). 

8.2.2. Output Control 

Products generated by the 29517 can be accessed only 16-bits at a time. The least significant and most sig
nificant portion of the product are referenced with 

Isp 
msp 

and may appear only on the right hand side of an assignment statement. 

The multiplier output is, by default, adjusted for 32-bit precision and not rounded. To affect either or both 
of these, the following statements must be specified at the time the last operand is supplied to the multi
plier. 

round; 
adjust; 

(round product) 
(produce 31-bit product for multi-precision arithmetic) 

Finally, updating of the multiplier output register may be disabled by specifying 

notmee; 

(mee stands for "multipler clock enable"). 

The default values for round, adjust, and mee may be explicitly specified: 

not round; 
not adjust; 
mee; 

8.3. Datapath Control 

Datapath control signals are implicitly specified through· higher level assembler constructs which provide 
the programmer with a register transfer-like interface to the Chap. All data transfers in the machine are 
represented as assignment statements of the form 

data-destination = data-source; 

where data destinations and sources are either Chap "registers" (crossbar, scalar devices, runflag, etc.), 
multiplier inputs and outputs, or scratchpad memory locations. Chas translates statements of this type into 
assertions of the signals necessary to generate the data transfer. If multiple destinations are to be enabled 
on a data transfer, multiple assignment statements may be grouped into a single compound statement (using 

Version 2.0 Pixar 



Chap Assembler - 10- Chap directives 

braces), or multiple assignment statements may be cascaded. For example, to transfer data from a single 
source to multiple destinations, a statement of the form 

data-destination 1 = data-destination 2 = data-source; 

might be used. Chas will not translate an expression which would result in multiple Chap instructions; 
these are flagged as errors. 

8.4. Processor Register Mnemonics 

Table 4 lists the non-memory locations in the Chap where data can reside; memory references are dis
cussed in the next section. 

Mnemonic Chap Location 
alu ALU input data latch/output Y -bus 
bO, ••• , b1S base registers 
iO, ••• , i1S index registers 
Isp least significant part of multiplier output 
msp most significant part of multiplier output 
pbus Pbus data register 
pbus aO Pbus address register 0 
pbus a1 Pbus address register 1 
pbuscsr Pbus control status register 
sp stack pointer register 
spad scratchpad address register 
status Chap status register (read-only) 
sysbus<n> Sysbus registers 
tos(pc) top of program counter return stack 
tos(lc) top of loopcounter stack 
tos(runflag) top of runflag stack 
wrxbar write crossbar 
rdxbar read crossbar 
yapbus Yapbus data buffer 
yapbus csr Yapbus control status register 

Table 4. Chap Non-memory Data Locations. 

Certain locations refer to different Chap registers depending on whether they appear on the left or right 
hand side of an assignment statement. For example, the alu keyword refers to the output Ybus register 
when used on the right hand side of an assignment, and the input data latch register when it appears on the 
left hand side. 

The Sysbus interface is presented as an array of 16 registers. To reference Sysbus register n, an expression 
of the form 

sysbus<n> 

is used. 

8.5. Scratchpad Memory 

References to scratchpad memory may be used as source or destination operands in an assignment state
ment. There are four modes in which scratchpad memory may be accessed: component, pixel, broadcast, 
and indexed. Each access mode is represented to the assembler with a different syntax. 

Version 2.0 Pixar 



Chap Assembler - 11 - Chap directives 

8.5.1. Scratchpad Access Modes 

Pixel access is indicated by a parenthesized expression, 

(expr) 

Using pixel access each processor reads and writes one component of a four component pixel value in the 
tesselated scratchpad memory. 

Component access is indicated by an expression of the form, 

<expr> 

Using component access all processors read and write the same component of four adjacent pixels. 

Broadcast access is indicated by an expression of the form, 

@expr 

Using broadcast access, all processors read from one location, while one processor writes to one memory 
location. 

Indexed accesses are represented by expressions of the form, 

[expr] 

In indexed mode each processor offers an index address to read four values; for writing, the processors 
write to four components of a scratchpad pixel pointed to with the base and index register mechanism 
described below. Index mode accesses to scratchpad memory are untessellated. 

8.5.2. Scratchpad Address Calculation 

The "expression" supplied in a scratchpad memory reference is composed of a scratchpad address and, 
optionally, a component override directive. Scratchpad addresses may be setup ahead of time in the 
scratchpad address register spad (to take advantage of pipeline overlaps), or calculated "on the fly" in 3 or 
4 clock tick instructions. 

Addresses for component, . pixel and broadcast mode accesses are calculated from a base register and an 
index register. Either the value of the base register or the sum of base and index registers may be used. In 
addition, in the same instruction, the resultant address calculation may be stored back into the base register; 
this allows for pre- and post- auto-increment and auto-decrement access modes. 

An address is specified as the contents of a base register, or the sum of a base and index register, 

base-reg 
base-reg + index-reg 

Base registers are denoted by bO, bl, ... , b15 while index registers are denoted by iO, iI, ... , i15. 

To force an address to be stored into the base register involved in the calculation, an assignment statement 
should be specified in the same instruction indicating the value to be stored. The following examples illus
trate the four possibilities. 

acc = (bO); 
acc = (bO+iJ); 
{ acc = (bO); bO = bO + i3; } 
{ acc = (bO + iJ); bO = bO + i3; } 

As a convenient shorthand, the following are treated identically 

bn = bn + in; <=> bn++; 

Note that if an index register is loaded with a (2's complement) negative value, the base register will be 
decremented. 

Addresses for index mode accesses must come from the Abus. This means the address may still be stored 

Version 2.0 Pixar 



Chap Assembler - 12- Chap directives 

in a base register, but it can not be computed from the sum of a base and index register, unless carried out 
ahead of time in an alu. To use an Abus value, or other register, for an index mode address, one simply 
references it For example, 

mula = [rO + ace]; 

computes the index mode address in each alu. 

8.5.3. Scratchpad Address Component Selection 

The base and index mechanism for scratchpad memory access provides a pointer to a four component 
scratchpad location. To complete the scratchpad memory reference, a "component select" field must be 
specified. In pixel access this field specifies whether the processors receive RGBA, GBAR, BARG, or 
ARGB. In component access this field specifies whether the processors receive red, green, blue, or alpha. 
In broadcast mode, this field is used only when writing and indicates the processor from which the value is 
to be taken. In indexed mode this field is unused. 

In pixel access, the default component select is RGBA. To override this value an expression of the form 

(expr, gbar) 

may be supplied (where the symbol gbar is defined to be 1, barg is 2, and argb is 3). 

In component access the default component select is red. To override the default value an expression of 
the form 

<expr, green> 

may be used (where the symbol green is defined to be 1, blue is 2, and alpha is 3). 

In a broadcast mode write, the default component select is for processor 0 to perform the write. To over
ride the default value an expression of the form 

@expr,3 

may be used. 

In indexed mode any component select is ignored (the assembler always sets the field to 0). 

8.6. Sequencing 

8.6.1. Low-level Sequencing 

Flow control in the Chap is expressed with a set of commands to the sequencer and runner. Each command 
has its own syntax: 

jsr destination 
jsr [cc-spec ] to destination 
push [loopcounter] 
pop [pop-count] 
ifdo [cc-spec] otherwise destination 
ifelse [cc-spec] otherwise destination 
continue [cc-spec ] 
elsedo [n] otherwise destination 
force processors 
dowhile [cc-spec] 
while do [cc-spec] otherwise destination 
break [n] [cc-spec] [to destination] 
return [n] [cc-spec] 
goto destination 

The commands are as described in the "Chap Instruction Description". A condition code specification, 
cc-spec, is of the form 

Version 2.0 Pixar 



Chap Assembler - 13- Chap directives 

[ any I all] [! I not] cc 

where the '! or 'not' inverts the local condition code polarity (taking the "not" of the logical test to be 
true) and the any and all qualifiers are used to check a condition over any or all processors. The return, 
break, and else do commands take an optional pop count expression, n, which defaults to one. The push 
command takes an optional loopcounter argument which defaults to zero. If no sequencing request is 
specified for an instruction, chas supplies a command which sequences to the next instruction. The desti
nation, loopcounter, and processors arguments may be any expression which is accessible on the scalar 
bus. 

A condition code, cc, is one of the followingt 

true 
false 
stackover 
videosync 
Ic zero 
yapbus busy 
pbus busy 
sysbus busy 
sysbus read 
sysbus write 
negative 
positive 
zero 
overflow 
carry 

(stack overflow) (sect\Je.. .. c..~1"" ~~"-) . 

(video sync active) (ftJjl),. Jefe.",J\""j .,"" ~\\,(..k.. ""io.\~ ~ 'v-..\.\t'("'~'-e. ." J ~~'fl"0eaJ 
(loopcounter zero) (s.r .... 'o...te r-e5 .. ,~4E!r e~\\e<1 l~ofcv~""-\:; ~1a> c\l.ec.\L.ec.l~ 

(ALU status N set) 
(not ALU status N or Z set) 
(ALU status Z set) 
(ALU status N A OVR set) 
(ALU status C set) 

Conditions codes related to the ALU may also insert 'alu' before the condition code specification; e.g. 'alu 
carry'. 

The full condition code specification may limit the list of source processors by appending an expression of 
the form 

[processor-list] 

where a "processor list" specifies a set of processors by number or channel assignment For example, to 
check the carry flag in the ALU of processors 0 and 3 only, the following expression could be used, 

carry [0, 3] 

For sequencer commands which have two corresponding sequencer instructions, the instruction chosen is 
dependent on the condition code specification. If the condition code selected is independent on the state of 
the runflags (true through sysbus write), then the runflag-independent sequencer instruction will be used. 
Otherwise, the use of any or all in the condition code specification forces a runflag-independent instruction 
to be used. For example, consider the following sequencer commands: 

ifdo Ic zero otherwise .+1 
ifdo alu zero otherwise .+1 
ifdo any alu zero otherwise .+ 1 

In the flfst command chas would use "ifd04" because the condition code was independent of the runflags. 
In the second and third commands the condition code is runflag-dependent, and so "ifdo" is used for the 
second command, while "ifd04" used in the third (since any is specified). 

t For compatibility with previous versions of chas. the following condition codes are also accepted: Ie <=, <, and <=. 

Version 2.0 Pixar 



Chap Assembler - 14- Chap directives 

8.6.2. High-level sequencing 

Several high~level control constructs are available for program flow control. These constructs expand into 
multiple Chap instructions which use the low-level sequencing instructions previously described. In the 
following table cc-spec refers to a condition code specification (as above) and block refers to a set of one 
or more statements. The cc-check is an optional coos statement which [is expected to] generate the condi
tion code status for the sequencer instruction. 

if cc-spec [(cc-check)] then block Ii 
if cc-spec [(cc-check)] then block else block Ii 
do block while cc-spec [(cc-check)] done 
while cc-spec [(cc-check)] do block done 
loop expr do block done 

The "if", "do", and "while" constructs have obvious meaning. The "loop" construct is used to perform 
the block of code expr times, using the loopcounter. 

The "do" and "while" constructs expand to include a 'push 0' instruction at the top of the loop. Thus 
they are unusable with an 'Ic zero' condition code; instead the "loop" construct should be used. 

8.7. Yapbus-Pbus Auto-increment 

To request the Yapbus or Pbus pointer auto-increment facility either, or both, of the following may be 
specified: 

yapbus++; 
pbus++; 

8.8. Runner Control 

To restrict the default actions of the runner for a single instruction, an immediate runflag may be specified 
with statements of the form, i 1. 1. i 

3 3. \ 0 
runflag = expr; ~ b .5 r 

expr is 4-bit number specifying a runflag value. Biti corresponds to processor i, (i=0,1,2,3). A 1 indicates 
that the processor is active; a zero, that it is inactive. The runflag is the logical and of this value and the 
default runflag. 

8.9. Breakpoint Control 

To request the Chap to breakpoint on an instruction (saving state and stopping the clock), a statement of the 
form 

bpt; 

may be specified. 

8.10. Special Bit 

Coos attempts to recognize situations where the "special bit" is required and generate the flag automati
cally. To guarantee the value of the special bit, it may be explicitly specified. 

special; 
not special; 

8.11. Instruction Duration 

Chas attempts to automatically generate the minimum instruction duration for each instruction assembled. 
In case this value must be explicitly set, the .clock directive described in section §7.5 may be used. Alter
natively, to override the default calculation on a per instruction basis, the duration may be specified expli
citly, 

Version 2.0 Pixar 



Chap Assembler - 15- Chap directives 

n ticks; 
n tick; 

where n is between 1 and 4. 

8.12. Abus Component Selection 

When moving data from the Abus to a scalar device on the Sbus it is necessary to specify one of the four 
possible Abus arithmetic units as the actual source of data. By default, chas selects arithmetic unit 0, but 
this may be changed by appending an explicit specification of the form 

[processor] 

where processor is a number, 0, 1, 2, or 3. * Thus, for example, to assign the lower 16 bits of the multiplier 
output from processor 3 to base address register 5, the following expressions would be used: 

bS = Isp[3]; 

* The processor number used is actually the modulus of the indicated value. Thus, processor 4 translates to processor O. 
processor 5 to processor 1. etc. 

Version 2.0 Pixar 



Chap Assembler - 16- Caveats and Notes 

9. Caveats and Notes 

• The algorithm used in calculating instruction durations is the following. For each chas assignment 
statement the minimal instruction duration is calculated as described in Appendix 1 of "The Chap 
Instruction Description". If multiple assignment statements are grouped in a single Chap instruction 
with "{}", the duration of the overall instruction is the minimum of the durations for each expres
sion. This implies that a construct such as 

{ multx = rdxbar; rdxbar = (bO+iO); } 

will be assigned an instruction duration of two clock ticks and result in the x input to the multiplier 
receiving whatever value is currently being fetched from scratchpad memory. Contrast this with the 
same instruction, but with a 3 clock tick duration: 

{ multx = rdxbar; rdxbar = (bO+iO); 3 ticks} 

This construct is equivalent to 

multx = (bO+iO); 

In general, whenever pipeline overlaps are being utilized in programs, the statements which assume 
the pipeline overlaps should provide explicit instruction durations. 

• While coos will not assemble complex expressions which would require multiple Chap instructions, 
it may be forced to generate multiple instructions when presented with a data transfer which requires 
the "special bit" (described in the Chap Instruction Description). To force coos to print warnings 
about automatic generation of the special bit, the -s flag should be specified on the command line. 

• The runtime monitor, charm, and the dynamic loader, chload, which load assembled modules into a 
Chap, merge .global bss and data segments (when possible) to allow data structures to be shared 
between modules. 

Version 2.0 Pixar 



Chap Assembler - 17 - Caveats and Notes 

Appendix: Sequencer Instructions 

This appendix describes the low-level control commands mentioned in 8.6.1. 

The chap instruction word contains many fields of information; the sequencer instruction occupies a small 
subset of these fields. Each sequencer instruction is executed in parallel with any other bus, ALU, or mu1-
tiplication operations specified in the instruction word. 

The sequencer's job is to oversee chap instruction execution. Toward this end the sequencer maintains the 
the program counter (PC), and the runflag (RF), that specifies which of the four processors may potentially 
execute the next instruction. Just as the computed PC is the PC for use in the next instruction, the RF is the 
RF for use in the next instruction. LP A loop counter (LC) is also provided as part of the sequencer's con
trol facility, relieving the ALU of some decrement and test duties, but more importantly, allowing nested 
loops. For nested control structures, the sequencer maintains a stack to save the state of PC, RF, and LC. 

The following is a description of each sequencer instruction and how it is used. Boldface indicates an 
assembler reserved word. Italics indicates a user-specified expression or condition code. Items in brackets 
are optional. cc-spec defaults to true. 

jsr destination --- jump to subroutine 

jsr [cc-spec] to destination 

The fust form of jsr pushes PC+ 1 and sets PC to destination, thus performing a standard subroutine call. 
The second form specifies an optional condition code. If cc-spec is true for any processor, a normal jsr is 
performed as just described. If cc-spec is false for all processors, no special sequencer action is taken and 
PC is simply incremented. Note that since cc-spec defaults to true, jsr to destination means the same as 
jsr destination. 

push [loopcounter] --- define the top of a dowhile loop 

The push instruction stores PC+l, the optionalloopcounter, and RF on the stack and then increments the 
stack pointer. Push is normally used to defme the top of a loop for dowhile. Loopcounter is optional, 
often used to specify the number of iterations for dowhile not Ic zero. Loopcounter may be an ALU 
expression. 

ifdo [cc-spec] otherwise destination --- simple conditional 

If cc-spec is true for any processor, PC+ 1 and a new value of RF are pushed and execution continues at 
PC+ 1. Each processor for whom cc-spec was false has its RF bit turned off. If cc-spec is false for all pro
cessors, execution continues at destination. Normally, the statement label destination is preceded by a pop. 
Be sure that the stack is popped exactly once for each executed ifdo. 

ifelse [cc-spec] otherwise destination --- two part conditional 

When used in conjunction with eIsedo, IfeIse allows the programmer to specify that each currently running 
processor will execute either of two blocks of code. If cc-spec is true for any processor a new RF is pushed 
and execution continues at PC+ 1. Each processor for whom cc-spec was false has its bit turned off in the 
new RF. If cc-spec is false for all processors, the current RF is pushed and execution continues at destina
tion. The frrst block of code is normally followed by an elsedo preceding the statement at destination. The 
second block of code must be followed by a pop or other instruction that pops the stack. 

ifd04 and ifelse4 

Version 2.0 Pixar 



Chap Assembler - 18- Caveats and Notes 

These instructions are never used explicitly, but are generated by chas( 1) when the condition code specifi
cation "any" or "all" is used, and when the condition code is not processor dependent. Ifd04 and ifelse4 
are identical to ifdoand if else, respectively, except that they do not alter RF. This means that all currently 
running processors will execute or not execute a given block of code. 

continue [cc-spec] --- goto top of loop 

If cc-spec is true for any processor, continue loads PC from the top of the stack. continue most often 
appears at the bottom of a whiledo loop. Continue is also commonly used from within a dowhile or 
while do loop to skip the remaining instructions in a loop. 

force processors --- set runflag 

force sets RF to the designated value and pushes the stack. Be sure to pop the stack before leaving the 
affected block of code. 

dowhile [cc-spec] --- loop until 

If cc-spec is true for any processor, dowhile loads PC form the top of the stack and decrements LC. Each 
processor for whom cc-spec is false has its RF bit turned off. If cc-spec is false for all processors, the stack 
is popped and control passes to PC+1. Normally, a Push instruction precedes the top of a dowhile loop. 

whiledo [cc-spec] otherwise destination --- loop while 

If cc-spec is true for any processor, LC is decremented and control passes to PC+ 1. Each processor for 
whom cc-spec was false has its RF bit turned off. If cc-spec is false for all processors, control passes to 
destination. Normally, whiledo is preceded by a push. The bottom of a whiledo loop is normally a con
tinue. 

dowhile4 and whiled04 

These instructions are never used explicitly, but are generated by chas(l) when the condition code specifi
cation "any" or "all" is used, and when the condition code is not processor dependent dowhile4 and 
whiled04 are identical to dowhile and while do, respectively, except that they do not alter RF. This means 
that all currently running processors will execute or not execute a given block of code. 

elsedo [n] true otherwise destination --- else portion ofifelse 

Eisedo is normally used following an ifelse. The current RF is complimented and AND'ed with the RF 
stored on the stack, turning on each processor whose cc-spec was false when the ifelse was executed. The 
new RF is then tested and if it is nonzero, execution continues at PC+l. If the new RF is zero, the stack is 
popped and execution continues at destination. A pop should precede the statement at destination. N is the 
number of pops to perform and may equal 1, 2 or 3; the default is one pop. This cleans up the stack when 
transferring control, for example, from within a loop. 

return [n] [cc-spec]--- returnfrom subroutine 

If cc-spec is true, PC, RF, and LC are loaded from the stack and the stack is popped. N is the number of 
pops to perform and may equal 1, 2 or 3; the default is one pop. This cleans up the stack when returning, 
for example, from within a loop. No-op if cc-spec is false. 

break [n] [cc-spec] [to destination] --- exit a loop or conditional 

If cc-spec is true for any processor, control passes to destination and the stack is popped. N is the number 

Version 2.0 Pixar 



Chap Assembler - 19- Caveats and Notes 

of pops to perform and may equal 1, 2 or 3; the default is one pop. This cleans up the stack, for example, 
when breaking out of a nested loop. If cc-spec is false, control passes to PC+1. Normally, break to is 
used to "break out of' an ifdo, if else, dowbiIe,or wbiledo. break with no destination causes the chap to 
halt and interrupt the host. Break is the same sequencer instruction as return, but with tos(pc) set to desti
nation. 

endfBpop [nj--- pop the stack 

Chas(l) generates a dowbile (false) from either of these two instructions. Push is usually used to define 
the top of a wbiledo or dowhile loop and to end an ifdo or ifeIse. N is the number of pops to perform and 
may equal 1, 2 or 3; the default is one pop. 

goto destination 

goto passes control to destination. Chas(l) generates an ifdo (false) for this instruction. 

Version 2.0 Pixar 



Chap Assembler - 20- Caveats and Notes 

Appendix: Sequencer Instruction Table 

The following table gives a quick summary of each sequencer instruction. PC, LC, and RF have the same 
meaning as in the previous appendix. Runner condition (RC) is used in this table to calculate the next 
value of RF - it has a bit set for each processor for whom cc-spec is true. 

In general, "Sbus" means the immediate field of the instruction. However, for many instructions, including 
push, chas(l) will generate the appropriate multi-word instruction to load "Sbus" from any source, includ
ing theALU. 

Sequencer Condition TRUE Sequencer Condition FALSE 
n name PC LC RF stack PC LC RF stack 

0 jsr Sbus n/c n/c push PC+l n/c n/c n/c 
1 push PC+l Sbus n/c push PC+l Sbus n/c push 
2 ifdo PC+l n/c RF&RC push Sbus n/c n/c n/c 
3 ifelse PC+l n/c RF&RC push Sbus n/c RF&!RC push 
4 ifd04 PC+l n/c n/c push Sbus n/c n/c n/c 
5 ifelse4 PC+l n/c n/c push Sbus n/c n/c push 
6 
7 force PC+l n/c Sbus push PC+l n/c Sbus push 

8 dowhile stack LC-l RF&RC n/c PC+l stack stack pop 
9 whiledo PC+l LC-l RF&RC n/c Sbus stack stack pop 

10 
11 continue stack n/c n/c n/c PC+l n/c n/c n/c 
12 dowhile4 stack LC-l n/c n/c PC+l stack stack pop 
13 whiled04 PC+l LC-l n/c n/c Sbus stack stack pop 
14 elsedo PC+l n/c !RF&stack n/c Sbus stack stack pop 
15 return/break stack stack stack pop PC+l n/c n/c n/c 

Moving to the next instruction is accomplished by continue(FALSE) or jsr(FALSE). An else4 command is 
missing because it is equivalent to whiledo4(FALSE) . 

.. bvloM(f.,.-\..\(/'\"'\l,:::) ~~v\~rC)o..~ec.l b.,j ..Ic-lAc:. 4.. .. $s-\\.\.b\-e..r- ',~ \~I/\.~'t ~(" "C .... l\'1 c.o",,-J;t'lO\l....-
'\ lJc...b~ \ c.rs. ~""e \,)~ ec,t "l-\" MUj 's>CI- 'f"C.f\","ee~ 'o.j ". II b.!:) -t..\o....e. J\~c:o..~~e'M \0 \-ev- • 

Version 2.0 Pixar 



Chap Runtime Monitor Reference Manual 
-CHARM-

Copyright 1986, Pixar 

This document describes the usage and syntax of the Pixar Channel Processor Runtime Monitor charm. 
Readers of this document should be familiar with the Chap architecture; no description is presented 
here. 

The runtime monitor serves two functions. It primarily acts as an interactive debugger, similar to adb, 
for programs executing in a Chap. Second, it may be used to dynamically link-edit and relocate object 
modules produced by the Chap Assembler, chas. Charm executes on a host machine, communicating 
with a Chap through a memory",mapped bank of diagnostic registers on the Pixar-Host Interface Board 
(PHIB). Certain asynchronous events in the Chap are communicated to charm through UNlXt signals. 

1. Usage 

Charm is invoked as follows 

charm [-x] [-Idir] [ chap-device] 

The -x flag instructs charm to open. the specified Chap device with exclusive access; this overrides the 
normal shared access mode. 

If a specific Chap is to be used, its associated file may be specified on the command line; charm uses 
"/dev/chapO" by default. 

The -I flag may be used to specify directories containing command scripts. Normally, charm searches 
only in the directory "/ul/gfx/pixar/chap/lib/charm". Multiple directories may be specified using -I 
several times. 

2. Charm Facilities 

2.1. Linking and Loading 

Charm allows the user to load individual files containing relocatable object modules. If a file contains 
references to symbols defined in code already resident in the Chap, these references are patched to 
reflect the resident code. Similarly if a file defines new symbols, unresolved in code already resident, 
charm will patch the references in the resident code. Charm will permit modules to be loaded with 
undefined references, but will not load a module if it redefines symbols already resident in the Chap. 

Loading programs into the Chap requires several tasks other than resolving undefined references: 

1. Load instruction and scratchpad RAM. 

2. Bind relocatable references based on locations assigned to load modules. 

3. Record the load module and global symbol locations in the symbol table maintained on the host. 

Charm performs the first two tasks during the linking-loading phase. The symbol table is updated upon 
exiting charm. 

t UNIX is a trademark of Bell Laboratories. 



- 2- Charm Facilities 

2.2. Segment Mapping 
In accordance with the Harvard architecture of the chap, Cho.rm maps the text segment of relocatable 
object modules into the Chap instruction RAM and the data segment into the scratchpad RAM. Space is 
allocated to segments using tables maintained by the operating system. In addition to the kernel-based 
allocation tables, a symbol table is maintained for each Chap connected to a host. Symbol table 
maintenance is 'by convention'-no operating system support (other than synchronizing access to the 
symbol table file) is utilized. 

2.3. User Control 

With charm, a user may: 

• examine or modify the contents of scratchpad, instruction RAM, or processor registers 

• set breakpoints 

• single step a Chap program 

• trace the contents of scratchpad and processor registers 

• load and bind programs 

Charm uses the diagnostic interface to the Chap to· provide all of these facilities. 

3. Command Language Interface 

Charm's user interface is very similar to that of the UNIX debugger adb (1)*. Charm uses a symbol 
called ".", or "dot" to refer to the current address (i.e., the address of the last item printed). 

When cho.rm is ready to accept commands from the keyboard, it prompts with "> " and waits for 
input. In general, requests to cho.rm are of the form 

[address] [, count] [command] [;] 

If address is present, dot is set to address. Initially dot is set to O. For most commands count specifies 
how many times the command should be executed. The default count is 1. Address and count may be 
expressions. 

3.1. Expressions 

Charm processes two types of expressions: those involving scalar quantities, and those involving vectors 
(of length 4). Where two scalar expressions are combined, the obvious arithmetic is performed. Com
bining two vector expressions results in a component by component application of the appropriate 
operator. When a vector and a scalar are combi~ed, the scalar is combined with each element of the 
vector to generate a vector result Constants are considered scalars. 4-way registers (e.g. the ALU 
accumulator) are treated as vector expressions. 

The value of dot. 

+ The value of dot incremented by the current increment. 

The value of dot decremented by the current increment. 

The last address typed. 

integer A number. The prefixes "Ox" and "OX" force interpretation in hexadecimal radix; the prefix 
"0" forces interpretation in octal radix; "Ot" and "OT" force interpretation in decimal radix. 
If no prefix appears, the default radix is used; see the $d command. The default radix is ini
tially decimal. The hexadecimal digits are 0123456789abcdefABCDEF, with the obvious 
values. 

integer fraction 
A 16-bit Pixar fixed-point number. If the fraction is followed by an e or E, the number is 

* Adb is one of the debuggers associated with Unix. A possible source of answers to questions about Chann is "A Tu
torial introduction to ADD", in the "Supplementary Documents" part of the Unix programmer's manuals. 

M!lU 10 10~h 



- 3 - Command Language Interface 

treated as a component value (eleven bits of fraction). By default, fixed-point numbers are 
treated as component values. The integer portion of a fixed-point number must be specified in 
base ten, either explicitly with a "Ot" prefix, or implicitly by setting the input radix to 10; see 
the $d command. If the fraction is followed by an f or F, the number is treated as a 
coefficient value (fourteen bits of fraction). 

<.name The value of name, which is either a variable name or a register name. Charm maintains 36 
variables: a-z and 0-9. The register names are the same as those used by the Chap assembler; 
§ 3.4 provides a complete list. 

symbol A symbol is a sequence of upper or lower case letters, underscores, or digits, not starting with 
a digit. The backslash character \ may be used to escape other characters. The value of the 
symbol is found by first checking the list of known registers, then, failing there, looking in the 
symbol table. 

(exp) The value of the expression expo 

Monadic Operators 

*exp The contents of the tessellated scratchpad location addressed by exp. 

@exp The contents of the untessellated scratchpad location addressed by expo 

-exp Integer negation. 

exp Bitwise complement. 

!exp Logical negation. 

Dyadic operators 

Dyadic operators are left-associative and less binding than monadic operators. 

el +e2 Integer addition. 

el-e2 Integer subtraction. 

el * e2 Integer multiplication. 

el%e2 

el&e2 

elle2 

el#e2 

Integer division. 

Bitwise conjunction. 

Bitwise disjunction. 

Round el up to the next multiple of e2. 

3.2. Commands 

Most commands consist of a verb followed by a modifier or list of modifiers. The following verbs are 
available. 

?/ Locations starting at address in instruction RAM are printed according to the format f. Dot is 
incremented by the sum of the increments for each format letter. 

If Locations starting at address inscratchpad RAM are printed according to the format / and dot is 
incremented as for "?". 

=/ The value of address itself is printed in the styles indicated by the format f. (This may not be 
used with the i format.). 

A format, f, consists of one or more characters that specify a style of printing. Each format may be 
preceded by a decimal integer that is a repeat count for the format letter. While stepping through a for
mat, dot is incremented by the amount given for each format letter. If no format is given, the last for
mat is used. 

Lower-case letter formats used with the I operator force charm to interpret the address as a tessellated 
address; upper-case letters cause the address to be interpreted as un-tessellated. 



; 
\ 

- 4 - Command Language Interface 

The format letters available are as follows: 

0 I Print the value in octal (0 for untessellated). 
d I Print the value in decimal (D for untessellated). 
x I Print the value in hexadecimal (X for untessellated). 
u I Print the value as an unsigned decimal number (U for untessellated). 
e I Print the value as an II-bit fixed point number (E for untessellated). 
f I Print the value as a I4-bit fixed point number (F for untessellated). 

I Print the value as a machine instruction. 
a 0 Print the value of dot in symbolic form. Symbols are checked to ensure that 

they have an appropriate type as indicated below: 
I local or global ,data symbol 
? local or global text symbol 
= local or global absolute symbol 

(A for untessellated). 
p I Print the addressed value in symbolic form using the same rules for symbol 

lookup as a (P for untessellated). 
b 0 Print the value of dot in, the .form pixel.component, where the specified com-

ponent is one of "RGBA" (B for untessellated). 
z I Print the addressed value in the form pixel. component, as for the b format (Z 

for untessellated). 
t 0 When preceded by an integer, tabs to the next appropriate tab stop. For 

example, 8t moves to the next 8-space tab stop. 
r 0 Print a space. 
D 0 Print a newline. 
" " 0 Print the enclosed string. 

Dot is decremented by the current increment; nothing is printed. 
+ Dot is incremented by I; nothing is printed. 

Dot is decremented by I; nothing is printed. 
c 1 Print the value as an ASCn character. Control characters are printed as AX 

and the delete character is printed as "? 
s n Print a string of characters (terminated by a null byte). 

newline 
Repeat the previous command with a count of 1. 

[?I]w value ... 
Write a 1-word value into the addressed locations. If the command is W, the address is treated 
as untessellated. If the address expression is 4-way, the value is written to each of the four com
ponents. Multiple values are written into consecutive locations. If a count is specified, the write 
command is repeated count times with dot incremented each time (useful for clearing a block of 
scratchpad). 

>name 
Dot is assigned to the variable or register named. If a 4-way register is specified and dot is a 
scalar expression, its value is assigned to each component of the register. Assigning a vector 
expression to a variable causes it to be treated later as a vector expression. 

$modifier 
Miscellaneous printing commands. The available modifiers are: 

</ Read commands from the file f. If this command is executed in a file, further commands in 
the file are not seen. If f is omitted, the current input stream is terminated. If a count is 
given, and is zero, the command will be ignored. The value of count will be placed in 
variable 9 before the first command in f is executed. 

<</ Similar to < except it can be used in a file of commands without causing the file to be 
closed. Variable 9 is saved during the execution of this command and restored when it 

Mav 19. 19R1l 



- 5 - Command Language Interface 

completes. There is a (small) finite limit to the number of « files that can be open at once. 

>/ Append output to the file f, which is created if it does not exist If / is omitted, output is 
returned to the terminal. 

a Print the scratchpad address registers. If count is specified, only the first count registers are 
displayed. 

b Print all breakpoints and their associated counts and commands. 

c Print a stack backtrace. The backtrace shows the value of the pc, Ic, and runftag at each 
level in the stack. If count is given, only the first count frames are printed. If address is 
specified, the backtrace commences at that stack level. 

d Set the default radix to address and report the new value. Note that address is interpreted 
in the (old) current radix. If no radix is specified, charm reports the current radix. 

e Print the names and values of external symbols. If an address is specified, it is interpreted 
as a symbol table type; the possible values are: 2 (absolute symbols), 4 (text symbols), 6 
(data symbols), and 8 (bss symbols). 

I Print the names and values of local symbols. Any address specified is interpreted as for e. 

m Print the segment (load) map. 

p Print the contents of the Pbus registers and the Pbus data buffer. If count is given, only the 
first count entries in the Pbus data buffer are displayed. 

q Exit from charm (SQ and AD work as well). 

r Print the registers of each ALU, the loop counter, the stack pointer, and the instruction 
addressed by the pc. Dot is set to pc. If address is specified, it is interpreted as a. bitmask 
of processors for which ALU registers should be displayed. If count is given, only the first 
count ALU registers are displayed. 

u Print the name of each unresolved symbol and the modules in which the symbols are refer-
enced. 

v Print all non-zero variables in hexadecimal. 

x Print the contents of the crossbar. 

y Print the contents of the Yapbus registers. 

S Set the limit for symbol matches to address (default 255). 

W Set the page width for output to address (default 80). 

: modifier 
Manage the execution of the Chap. The available modifiers are: 

be Set a breakpoint at address. The breakpoint is executed count-l times before causing a 
stop. Each time the breakpoint is encountered, the command c is executed. If this com
mand is omitted or sets dot to zero, the breakpoint causes a stop. 

d Delete the breakpoint at address. 

c The Chap is continued. If address is given, then the processor is continued at this address. 
Breakpoint skipping is the same as for r. 

fe Specify a set of commands c to be executed each time the Chap is stopped by a : com
mand. More explicitly, the "format" commands are executed after each single-step, next, 
run, continue, or halt command. If a command string is not specified, the current one is 
displayed. 

h Halt the Chap. 

If Load and bind a chas output file f. Charm will try to resolve any undefined external refer
ences in / from code currently resident in the Chap. Failure to resolve references is 
reported on the standard output. The file is searched for in the list of directories shown 



-1 
\, 

-6- Command Language Interface 

with the :p command. If a file is not specified, the last file specified in a :u or :1 command 
is used. If no "last file" is available, charm tries to load the file "chap.out", or, failing, 
"chas.out" . 

n As for :s except that if the current instruction contains a jump to subroutine sequencer 
instruction, the subroutine is run at full speed with the Chap halted at the instruction 
immediately following the return. If the Chap had not previously been started with an r 
command, the n command will do this. 

pp Set the "load searchpath" to p. The path is a list of directories to search for loadable files. 
Searchpaths must be separated by colons. If no path is specified, the current load path is 
displayed. The default load path is ".:/ul/gfx/lib:/ul/gfx/pixar/chap/lib". 

r Begin execution of the Chap. If address is given explicitly, then the program is entered at 
this point; otherwise the program is entered at its standard entry point Count specifies how 
many breakpoints are to be ignored before stopping. 

s As for :e except that the Chap is single stepped count instructions. If the Chap had not 
been previously started with an r command, the s command will do this. 

uf Unload the file f. That is, reclaim the instruction and scratchpad memory associated with 
file and remove the related allocation information from the symbol table. When no file is 
specified, charm searches for a file as described under the :1 command. 

3.3. Variables 

Charm provides a number of variables. Certain named variables are set initially by charm and used in 
the print commands (see below). Numbered variables are used to communicate various dynamically
changing values. 

0 
1 
2 
9 

The last value printed. 
The last immediate field of an instruction. 
The previous value of variable 1. 
The count on the last $< or $« command. 

a 
f 
p 
r 

Number of registers to print with the $a command. 
"Runfiag" to use in limiting printing with the $r command. 
Number of data buffer entries to print with the $p command. 
Number of registers to print with the $r command. 

s Number of registers to print with the $s command. 

3.4. Registers 

Charm allows Chap data registers to be referenced symbolically. Register names are identical to those 
used by the Chap assembler chas wherever possible. A component of a vector register may be 
specified with [exp], where exp is an expression as described in §3.1. A sysbus register is specified, as 
in CMs, ssysbus<exp> where, once again, exp is an expression. The following list shows the names of 
registers as understood by charm. 

aO, al 
ace 
admux 
bO, ••• , blS 
iO, ••• , i1S 
Ie 
Isp 
msp 
multx 
multy 

Pbus address registers 
~tJ accumulator 
address portion of the crossbar 
Scratchpad base address registers 
Scratchpad index registers 
Loop counter 
Least signifcant part of multiplier output 
Most significant part of multiplier output 
Multiplier X-input 
Multiplier Y -input 

M~" 10 102~ 

4-way 
4-way 

4-way 
4-way 
4-way 
4-way 



pc 
pcsr 
rO, ••• , r31 
rdmux 
rf 
sp 
sysbus 
status 
wrmux 
ycsr 

- 7 -

Program counter 
Pbus control status register 
ALU internal registers 
read portion of the crossbar 
Runfiag 
Stack pointer 
Sysbus shared data register 
Chap status register 
write portion of the crossbar 
Yapbus control status register 

4-way 
4-way 

4-way 

Command Language Interface 





The Format of Stored Pictures 

ABSTRACT 

This memo presents the Pixar picture storage standard. Pictures can be of arbitrary 
resolution, with either dumping or run length encoding of any subset of RGBA chan
nels. Pictures are tiled, allowing for efficient recall of subwindows. 8 and 12 bits per 
channel are handled. 

1. The Picture File 

Note: This paper describes the file format for storing pictures used by routines in Pixar Software 
Release 1.0. Routines like gt, sv, and gtinfo use this format, biding the storage details from the user. 
This material is recommended only for those who wish to write their own storage and retrieval routines 
or device drivers. - Pixar Documentation 

The standard for picture storage at Pixar is intended to accommodate several different picture formats: 
multiple channels; different numbers of bits per channel; encoded and dumped format; arbitrary picture 
size. Large pictures can be handled by breaking the picture into smaller uniform rectangular pieces 
called tiles. Thus, a 1024 x 512 picture could be broken up into eight 256 x 256 tiles. All pictures are 
stored with a 512 byte picture header describing the picture format, followed by pointers to the start of 
each encoded tile, followed by the pixel data of each tile. 

We normally save encoded, one-tile, 1024 x 768 pictures, stored in 8K (8192) byte blocks. The pixel 
aspect ratio 1:1. 

1.1. Picture Headers 

byte number # bytes name description 

000 4 magic number OxOOOOE880 
004 2 version number 0 
006 246 label Ascii description 
252 4 labelptr ptr to label continuation 
416 2 picture height pixel height of full picture 
418 2 picture width pixel width of full picture 
420 2 tile height pixel height of each tile 
422 2 tile width pixel width of each tile 
424 2 picture format four bits designating RGBA 
426 2 picture storage encoding and number of bits 
428 2 blocking factor 
430 2 alpha mode matted-to-black:O ; unassociated: 1 
432 2 x offset horizontal offset for picture 
434 2 yoffset vertical offset for picture 
448 4 unused 
452 28 unused 
512 8*n tile pointer table 4-byte pointer, 4-byte length 

Numbers preceded by Ox ... are hexadecimal; all other numbers are decimal. Multiple-byte data are 
stored with the least significant 8 bits in the first byte. The first 4 bytes of each picture are (Ox80, 
OxE8, OxOO,OxOO). 



- 2-

1.2. Label 

The picture label is read as. an ASCII description by various picture handling programs. There are no 
rules about what can be stored in the picture label, except that null and control characters may interfere 
with the printing of the label. The first 246 characters are stored in the picture header, but labels can 
be arbitrarily long. A label pointer stored in the header points to any continuation. Further label infor
mation may be allocated in chunks the size of the blocking factor, with the last four bytes of that chunk: 
reserved for a link: to further blocks. 

Picture height and picture width must be positive numbers. Tile height and tile width must be positive 
numbers not greater than picture height and width, respectively. Normally, a picture has one tile, so 
that the picture and tile dimensions are the same. It is often useful to choose tile dimensions that are 
evenly divisible into picture dimensions. It becomes much easier, for example, to retrieve a 512x512 
window from a 4096x4096 encoded picture. 

Tile dimensions do not have to evenly divide picture dimensions. Tile ° is always understood to be in 
the upper left comer of the picture; pixel [0,0] of tile 0 is pixel [0,0] of the picture. Tiles can extend 
down or to the right beyond the boundaries of the picture. Pixels beyond the picture boundaries yet 
inside border tiles must be properly encoded in the tiles, yet are undefined with regard to the picture. 

1.3. Picture Format 

Pictures can include any subset of ROBA channels. Full ROBA pictures are the most common; ROB 
backgrounds are also popular. Single channel R pictures are currently recovered as black-and-white 
(single channel ROB) pictures. ROBA channels correspond to bits 3210, so that an ROB picture has a 
format of 111 ° binary. 

1.4. Picture Storage 

Four picture storage modes are supported: 8 bit encoded (0); 12 bit encoded (1); 8 bit dumped (2); 12 
bit dumped (3). 12 bit data is simply stored in two bytes. 11 bit data is understood to cover the inter
val (-.5, 1.5), where 3072 is -0.5, ° is 0.0, 2048 is 1.0, and 3071 is almost 1.5. 

1.4.1. Encoded Tiles 

If the tiles are to be encoded (see byte 426 of the header), the pixel information is broken into packets, 
each headed by a flag and count. No packet may span multiple scan lines. However, each scan line 
of an encoded picture may consist of any combination of the four types of packets listed in the 
table below. The flags are listed with corresponding data for four, three, and one channel files: 

flag count ROBA ROB R comment 

° end of disk block 
1 c ROBAROBA ... ROB ROB ... RR ... full channel dump 
2 c AROBA AROBA ... AROB AROB ... ARAR ... full channel run 
3 c A ROB ROB ... n/a n/a partial channel dump 
4 c A AROBAROB ... n/a n/a partial channel run 

The flag and count are packed into 16 bits as follows: 

first byte count <.0:7> 
second byte flag <0:4> I count <8: 11> 

allowing 4 bits for flag and 12 bits for count. This seems to have been an unfortunate choice. An 8-bit 
count would have been perfectly sufficient and more efficient. 

When flag equals 1 or 3, the 12-bit count c is one less than the number of dumped pixels in the data. 
A count c of ° indicates 1 instance and no repetition. This allows dumps of length 4096 pixels. 

When flag equals 2 or 4, the 12-bit count c is one less than the number of run lengths. Each run length 
is started with an· 8-bit A, which indicates the number of repeated pixels. Once again, a length A, of ° 
indicates 1 instance and no repetition. 



- 3 -

Blocking the data speeds disk access. No data packet spans multiple disk blocks, and zeroes should fill 
out the block. The number of bytes per block is set in byte 428 of the picture header. Furthermore, no 
packet spans multiple scanlines. 

1.4.2. Dumped Tiles 

If byte 426 of the picture header lists this as a dumped picture, no excess bytes are used for encoding 
the data. The tile data is listed as RGBRGBRGB... for RGB pictures and RRRRR ... for single channel 
pictures. 

1.5. Blocking Factor 

The blocking factor indicates the optimum disk transfer chunk. The only side effect of the blocking 
factor is that encoded packets do not span adjacent disk blocks. 

1.6. Picture Offsets 

Pictures are understood to have an xy translation, so that a saved frame buffer window can be restored 
to the same spot. 

1.7. Tile Pointer Table 

Each tile has a 4-byte pointer and 4-byte length. Tiles are numbered across from 0 to 
(numberxtiles*numberytiles-l), where numberxtiles is (1 + (picturewidth-l)/tilewidth), and num
berytiles is similar. A pointer of 0 indicates a null tile; a positive pointer and a count of -1 indicates 
an incomplete tile; otherwise the tile is complete. Using the tile pointers, it is possible to overwrite 
individual tiles by appending tile pixels to the file and changing the tile pointer information, leaving the 
old tile data as garbage in the file. 

2. Recommendations for simple use 

Set up the picture header with the tile size equal to the picture size. This eliminates one level of com
plexity. Set up the tile pointer table with one 4-byte pointer (at byte 512) to file location 8192. The 
4-byte length is not crucial. Use dumped format for the pixel data for further simplification. Set up the 
header as indicated in the table above, and start dumping the RGBA pixel data at location 8192. 

The simple recommended picture header is listed below. 

byte number # bytes name description 

000 4 magic number OxOOOOE880 
004 2 version number 0 
006 246 label 0 
252 4 labelptr 0 
416 2 picture height 768 
418 2 picture width 1024 
420 2 tile height 768 
422 2 tile width 1024 
424 2 picture format 15 
426 2 picture storage 2 
428 2 blocking factor 8192 
430 2 alpha mode 0 
432 2 x offset 0 
434 2 yoffset 0 
448 4 colonnap pointer unused 
452 28 colonnap filename unused 
512 8*n tile pointer table 8192,0 

8192 ? dumped pixel information 





Chap Pbus Programming 

1~ Introduction 

The Pbus is the Pixar bus between a Chap and 
picture memory. The library routines 

FxSCopy(pw,scan1ineptr,count,z,y) 
FySCopy(pw,scan1ineptr,count,z,y) 

are provided for reading from picture memory to 
a scratchpad scanline buffer; the routines 

SFxCopy(pw,scan1ineptr,count,z,y) 
SFyCopy(pw,scan1ineptr,count,z,y) 

are provided for writing from a scratchpad scan
line buffer to picture memory. The above rou
tines are optimized for scanline access to the 
memory. This memo explains how to access the 
Pbus directly. 

NOTE: The numbers published here are based 
on an 85 ns clock cycle. Use these numbers for 
comparison only. as the clock cycle time on your 
Pixar may be different. 

The picture memory is a linear array of 32x32 
pixel tiles •. The standard Pixar has 4096 tiles, suf
ficient for storing 4 million pixels. By software 
convention a tile block is a contiguous. linear 
array of tiles understood to be arranged in a rec
tangle (see TB (3C)t). Again by software con
vention, a pixel window is a subrectangle of the 
tile block, understood to be the clipping window 
through which all picture memory accesses must 
go (see PW(3C». The library routines for Pbus 
access all utilize this notion of pixel windows in 
referring to picture memory. 

2. Pbus Accesses 

Pbus accesses may not straddle tiles, but five dif
ferent access methods may be used inside a tile 
(see Figme 1). 

t References of the form X(Y) mean the manual page 
named X in the sec:tion Y of the Pixar Programmer's 
Manual pages. 

Transfer Read {J.1.s) Write (J.1.s) 

32inx 2.7 to 4.6 2.1 to 3.9 
32iny 2.7 to 4.6 2.1 to 3.9 
16inx 2.3 to 4.2 1.7 to 3.5 
16iny 2.3 to 4.2 1.7 to 3.5 
16 square 2.3104.2 1.7 to 3.5 

Figure 1. Picture Memory Access Times. 

Naturally, a 32-pixel access spans the tile from 
pixel 0 through 31. The linear 16-pixel accesses 
can be made either to pixels 0 through 15 or 16 
through 31 of a horizontal or vertical span. The 
16-pixel square access can be made only to 64 
distinct 4x4 squares of the tile: the x and y tile 
coordinates of the upper left comer must be on a 
4-pixel boundary. 

The range in the times of Figme 1 reflect conten
tion with the video for the picture memory. For 
example~ a 32-pixel Pbus read takes as little as 
2.7J.1.S wi~ the video off (e.g. during vertical 
retrace) and as much as 4.6J.1.S with the video on. 
In geneml, reads take 600ns longer than writes, 
and 32-pixel accesses take 400ns longer than 16-
pixel accesses. 

The timing of the library routines for moving 
entire scanlines from picture memory to Chap 
scratchpad is as follows: Reads (FxSCopy, 
FySCopy) take approximately 20J.l.S plus 4.5J.1.S 
per tile access. Writes (SFxCopy, SFyCOP?) 
take approximately 20J.l.S plus 4.2J.1.S per ule 
access. Each tile access moves 32 pixels, so the 
library routines read at a rate of 7.1 million pixels 
per second and write at a rate of 7.6 million pixels 
per second. 

3. Pbus ButTers 

The Pbus interface is double-buffered, allowing 
for Chap access to one set of 32 pixels, the Chap
side, while another set of 32 pixels, the Memory
side, is read from (written to) memory. 

The Chapside buffer is accessible through a 



single register, pbus, on the Chap Mhus. The 
bottom 5 bits of pbus csr (the 
PBUSCSR ADDR field below) indicate which 
pixel in the Chapside buffer may be accessed 
through the pbus register. One bit of the Chap 
instruction word is dedicated to indicate possible 
incrementing of the 5-bit pointer. 32-pixel 
transfers access Pbus buffers in the natural order; 
16-pixel transfers access the first 16 pixels of the 
Pbus buffer; 16-pixel square transfers fill the first 
16 pixels of the buffer by rows. 

The pixels in the Chapside buffer are written only 
by an explicit write into the pbus register; the 
pixels in the Memoryside buffer are written only 
by an explicit memory read initiated by setting 
pbus csr appropriately; otherwise, the data in 
the buffer is stable. 

4. Pbus Registers 

The pbus csr, pbus aO, and pbus a1 
registers are all accessible on the Chap scalar bus. 
As described in the Chap Instruction Description, 
the pbus csr contains the fields shown in Fig
ure2. 

Bits Name Meaning 
0-4 PBUSCSR_ADDR Buffer address 
5 PBUSCSR_PP Ping/Pong 
8 PBUSCSR_RED Red enable 
9 PBUSCSR_GREEN Green enable 
10 PBUSCSR_BLUE Blue enable 
11 PBUSCSR_ALPHA Alpha enable 
14 PBUSCSR_RW Write/Read 
15 PBUSCSR GO Go/Done 

Figure 2. Pbus Control Status Register. 

(Bits 6-7 and 12-13 are reserved.) All bits are 
high-true. The Go/Done bit is set to 1 to initiate 
an operation (Go) and cleared by the hardware 
when the operation completes (Done). The 
WritelRead bit must be set to 1 for a write opera
tion and ° for a read operation (beware of this, it 
is backwards to the Read/Write bit in the pbus 
aO register). the field names listed above are 
defined in <pixar/pbusreg.h>. 

The pbus csr register is accessible at any 
time; pbus aO and pbus a1 should only be 
accessed when a transfer is not taking place. 
Transfers are not taking place when the 
PBUSCSR_GO bit is off. The pbus busy 
sequencer condition may be used to check for a 
transfer in progress. 

The pbus aO register contains the fields shown 

-2-

in Figure 3. 

Bits Name Meaning 
0-4 PBUSAO_XADDR X address 
5-9 PBUSAO_YADDR Yaddress 
10 PBUSAO_XACC Access in X 
11 PBUSAO_YACC Access in Y 
12 PBUSAO_RW Read/Write 
14 PBUSA01632 Access 16/32 

Figure 3. Pbus Address Register 0. 

(Bits 13 and 15 are reserved.) All bits are high
true. The Read/Write bit must be set to 1 for a 
read access and ° for a write. * The field names 
listed above are defined in <pixar/pbusreg.h>. 

The pbus a1 register holds the 16-bit tile 
number of the tile in picture memory to be 
accessed.' Notice that the. 16-bit width of the 
register limits the system to 64K tiles, or 64M 
(8K x 8K) pixels. 

4.1. Waiting for Completion of Pbus Transfer 

The program must wait for the completion of one 
transfer before initiating another. The following 
code (referred to below as PBUS _ WAI'l) handles 
the problem: 

push; 
dowhi1e pbus busy; 

4.2. Toggling the Pbus Buffers 

Reading from memory leaves the pixels in the 
Memoryside buffer. The program must toggle the 
buffers before the Chap can access the pixels. 
Similarly, writing to memory takes pixels from 
the Memoryside buffer, so the program must have 
toggled the buffers to move the pixels there. The 
following simple code, PBUS _TOGGLE, handles 
the toggling: 

ace = pbus csr; 
pbus csr = ace A PBUSCSR_PP; 

Note that you should never toggle the buffers 
while a Pbus transfer is in progress. 

• Note that pbua car has a Write/Read bit and pbua 
aO has a Read/Wri.te biL 'These must be in agreement: 
both must indicate read or both must indicate write. 



4.3. Initiating a Single Read From Memory 

The following steps are necessary: 

1) PBOS _WAIT. 

2) Set pbus al to the proper tile. 

3) Set pbus aO to address the upper left 
corner of the desired pixels within the tile. 
Also set pbus aO to indicate a 16 or 32 
pixel access, read or write, and X, Y or 
square access. The latter is indicated by setm 

ting both the PBOSAO _ XACC and 
PBOSAO YACC bits. For example, to read 
the first 16 pixels of horizontal scanline 7 of 
a tile, 

-3-

pbus aO = PBUSAO_1632IPBOSAO_RWI 
PBOSAO_XACCI7«5; 

4) Set pbus csr according to 

acc = pbus csr; 
acc = acc , "PBUSCSlLRW; 
pbus csr = acc I PBOSCSR_GO; 

in order to tum off the Write bit and tum on 
the Go bit. This code sequence is referred to 
below as PBOS _READ. 

5) PBOS _WAIT. 

6) PBOS _TOGGLE. 

7) The pixels are now available in the Chapside 
Pbus buffer. The pbus csr can be used to 
set the Pbus buffer pointer to something 
other than the fIrst pixel. 

4.4. Initiating a Single Write To Memory 

Assume that the pixels to be written are now set
tled into the Chapside Pbus bUffer. 

1) PBOS_WAIT. 

2) PBOS _TOGGLE. 

3) Set pbus al to the proper tile. 

4) Set pbus aO to address the upper left 
comer of the desired pixels within the tile. 
Also set pbus aO to 16 or 32 pixel access, 
read or write, and X, Y or square access. 
For example, to write the lower right 16 
pixel square, 

pbus aO = PBOSAO_1632 I PBOSAO_XACC I 
PBOSAO_YACC I 28«5 128; 

5) Set pbus csr according to 

in order to tum on the Write bit and the Go 
bit. This code sequence is referred to below 
as PBOS _WRITE. 

6) PBOS _WAIT. (This extra step is not needed, 
but the transfer is not officially complete 
until the PBOSCSR_GO bit is turned off.) 

4.5. Handling Overlapping Reads From 
Memory 

1) PBOS_WAIT. Make sure that the Pbus is 
available. 

2) Set up pbus aO and pbus al for the 
fIrst read. 

3) PBUS_READ. Initiate the flISt read from 
memory. 

4) PBOS _WAIT. Wait for the fJl'St read to fin-
ish. 

5) Update pbus aO and pbus al for a 
second read. 

6) PBOS _TOGGLE. Bring the fIrst buffer of 
pixels onto the Chapside. 

7) PBOS _READ. Initiate the second read from 
memory. 

8) While the second access takes place, the 
Chap can process the fJl'St buffer of pixels 
sitting in the Chapside Pbus buffer. 

9) PBOS_WAIT. Wait for the second read to 
finish. 

10) Update pbus aO and pbus al for a 
third read. 

11) PBOS _TOGGLE. Bring the second buffer of 
pixels onto the Chapside. 

12) PBOS _READ. Initiate a third read from 
memory. 

This process may continue forever. Note that it 
takes approximately as long to move pixels from 
Chapside Pbus buffer to scratchpad (32 ticks = 32 
x 85ns = 2. 72JlS) as it does to move pixels from 
Picture Memory to Memoryside Pbus buffer (2.7 
to4.6JlS). 

For optimum speed, the toggle and read may be 
done in the same instruction by xor-ing 
PBUSCSR _GO and PBOSCSR _ PP in one opera
tion. 

4.6. Handling Overlapping Writes To Memory 

1) The Chap can load the fIrst buffer of pixels 
acc = pbus csr; into the Chapside Pbus buffer. 
pbus csr = PBOSCSR _ RW I PBUSCSR,;... GO I aC!j PBOS WAIT. Make sure that the Pbus is 

available. 



3) Set up pbus aO and pbus a1 for the 
fust write. 

4) PBUS TOGGLE. Move the fU'St buffer of 
pixels over to the Memoryside. 

5) PBUS _ WR.:r:TE. Initiate the fU'St write to 
memory. 

6) The Chap can load the second buffer of pix
els into the Chapside Pbus buffer. 

7) PBUS_WA:r:T. Wait for that fust transfer to 
complete. 

8) Update pbus aO and pbus a1 for the 
second write. 

9) PBUS _TOGGLE. Move the second buffer of 
pixels over to the Memoryside. 

10) PBUS_WR.:r:TE. Initiate the second write to 
memory. 

This process may continue forever. Note that it 
takes approximately as long to move pixels from 
scmtchpad to Chapside Pbus buffer (32 ticks = 32 
x 85ns = 2.72J.1S) as it does to move pixels from 
Memoryside Pbus buffer to Picture Memory (2.3 
to 4.2 J.1S). 

For optimum speed, the toggle and write may be 
done in the same instruction by xor-ing 
PBUSCSR _GO and PBUSCSR_PP in one opem
tion. 

5. Concluding Comments 

The macros PBUS WAIT, PBUS TOGGLE, 
PBUS _READ, and PBUS _ WR.:r:TE are defined in 
the <pixar/pbus.h> which automatically includes 
the file <pixar/pbusreg.h>. 

-4-



ABSTRACT 

Compositing Digital Images 

PlXAR 

Most computer graphics pictures have been computed all at once, so that the render
ing program takes care of all computations relating to the overlap of objects. There 
are several applications, however, in which elements must be rendered separately, 
relying on compositing techniques for the anti-aliased accumulation of the full image. 
This paper presents the case for four-channel pictures, demonstrating that a matte 
component can be computed along with the color channels. The paper discusses 
guidelines for the generation of elements and the arithmetic for arbitrary composition. 

1. Introduction 
Increasingly, we find that a complex three dimensional scene cannot. be fully rendered 
by a single program. The wealth of literature on rendering polygons and curved sur
faces, handling the special cases of fractals, spheres, quadrics and triangles, implement
ing refinements for texture mapping and bump mapping, noting speed-ups on the basis 
of coherence or depth complexity in the scene, suggests that multiple programs will 
become more and more common. 

In fact, reliance on a single program for rendering an entire scene is a poor strategy 
for minimizing the cost of small modeling errors. Experience has taught us to break: 
down large bodies of source code into separate modules in order to save compilation 
time. An error in one routine forces only the recompilation of its module and the rela
tively quick reloading of the entire program. Similarly, small errors in coloration or 
design in one object should not force the "recompilation" of an entire image. 

Separating the image into elements that can be independently rendered saves enormous 
time. Each element has an associated matte, providing coverage information for each 
pixel. The compositing of those elements makes use of the mattes to accumulate the 
final image. 

The compositing methodology must not induce aliasing; soft edges of the elements 
must be honored in computing the final image. Features should be provided to exploit 
the full associativity of the compositing process; this affords flexibility, for example, 
for the accumulation of several foreground elements into an aggregate foreground 
which can be examined over different backgrounds. The compositor should provide 
facilities for arbitrary dissolves and fades of elements during an animated sequence. 

Several highly successful rendering algorithms have worked by reducing their environ
ments to pieces that can be combined in a 2 112 dimensional manner, and then over
laying them either front-to-back or back-to-front [3]. Whitted and Weimar's graphics 
test-bed [6] and Crow's image generation environment [2] are both designed to deal 
with heterogenously rendered elements. Whitted and Weimar's system reduces all 
objects to horizontal spans which are composited using a -Warnock-like algorithm. In 
Crow's system a supervisory process decides the order in which to combine images 
created by independent special-purpose rendering processes. The imaging system of 

May 19. 1986 



- 2-

Warnock and Wyatt [5] incorporates I-bit mattes. The Hanna-Barbera cartoon anima
tion system [4] incorporates soft-edge mattes, representing the opacity information in a 
less convenient manner than that proposed here. The present paper presents guidelines 
for rendering elements and introduces the algebra for compositing. 

2. The Alpha Channel 
A separate component is needed to retain the matte information, the extent of coverage 
of an element at a pixel. In a full color rendering of an element, the ROB components 
retain only the color. To place the element over an arbitrary background, a mixing 
factor is required at every pixel to control the linear interpolation of foreground and 
background colors. In general, there is no way to encode this component as part of 
the color information. For anti-aliasing purposes, this mixing factor needs to be of 
comparable resolution to the color channels. Let us call this an alpha channel, and let 
us treat an alpha of ° to indicate no coverage, 1 to mean full coverage, with fractions 
corresponding to partial coverage. 

In an environment where the compositing of elements is required, we see the need for 
an alpha channel as an integral part of all pictures. Because mattes are naturally com
puted along with the picture, a separate alpha component in the frame buffer is 
appropriate. Off-line storage of alpha information along with color works conveniently 
into run-length encoding schemes because the alpha information tends to abide by the 
same runs. 

What is the meaning of the quadruple (r,g,b,a) at a pixel? How do we express that a 
pixel is half covered by a full red object? One obvious suggestion is to assign 
(1,0,0,.5) to that pixel: the .5 indicates the coverage and the (1,0,0) is the color. There 
are a few reasons to dismiss this proposal, the most severe being that all compositing 
operations will involve multiplying the 1 in the red channel by the .5 in the alpha 
channel to compute the red contribution of this object at this pixel. The desire to 
avoid this multiplication points up a better solution, storing the pre-multiplied value in 
the color component, so that (.5,0,0,.5) will indicate a full red object half covering a 
pixel. 

The quadruple (r,g,b,a) indicates that the pixel is a covered by the color (ria, g/a, 
b/a). A quadruple where the alpha component is less than a color component indicates 
a color outside the [0,1] interval, which is somewhat unusual. We will see later that 
luminescent objects can be usefully represented in this way. For the representation of 
normal objects, an alpha of 0 at a pixel generally forces the color components to be 0. 
Thus the ROB channels record the true colors where alpha is 1, linearly darkened 
colors for fractional alphas along edges, and black where alpha is O. Silhouette edges 
of ROBA elements thus exhibit their anti-aliased nature when viewed on an ROB 
monitor. 

It is important to distinguish between two key pixel representations: 
black = (0,0,0,1); 
clear = (0,0,0,0). 

The former pixel is an opaque black; the latter pixel is transparent. 

May 19, 1986 



- 3 -

3. RGBA Pictures 
If we survey the variety of elements which contribute to a complex animation, we find 
many complete background images with an alpha of 1 everywhere. Among foreground 
elements, we find that the color components roll off in step with the alpha channel, 
leaving large areas of transparency. Mattes, colorless stencils used for controlling the 
compositing of other elements, have 0 in their RGB components. Off-line storage of 
RGBA pictures should therefore provide the natural data compression for handling the 
RGB pixels of backgrounds, RGBA pixels of foregrounds, and A pixels of mattes. 

There are some objections to computing with these RGBA pictures. Storage of the 
color components pre-multiplied by the alpha would seem to unduly quantize the color 
resolution, especially as alpha approaches O. However, because any compositing of 
the picture will require that multiplication anyway, storage of the product forces only a 
very minor loss of precision in this regard. Color extraction, to compute in a different 
color space for example, becomes more difficult. We must recover (ria, gla, b/a), and 
once again, as alpha approaches 0, the precision falls off sharply. For our applications, 
this has yet to af{ect us. 

4. The Algebra of Compositing 

Given this standard of RGBA pictures, let us examine how compositing works. We 
shall do this by enumerating the complete set of binary compositing operations. For 
each of these, we shall present a formula for computing the contribution of each of 
two input pictures to the output composite at each pixel. We shall pay particular 
attention to the output pixels, to see that they remain pre-multiplied by their alphas. 

4.1. Assumptions 

When blending pictures together, we do not have information about overlap of cover
age information within a pixel; all we have is an alpha value. When we consider the 
mixing of two pictures at a pixel, we must make son.te assumption about the interplay 
of the two alpha values. In order to examine that interplay, let us first consider the 
overlap of two semi-transparent elements like haze, then consider the overlap of two 
opaque, hard-edged elements. 

If aA and aB represent the opaqueness of semi-transparent objects which fully cover 
the pixel, the computation is well known. Each object lets (I-a) of the background 
through, so that the background shows through only (l-aA )(I-aB) of the pixel. 
aA (l-<XB) of the background is blocked by object A and passed by object B; 
(I-aA )<XB of the background is passed by A and blocked by B. This leaves aA aB of 
the pixel, which we can consider to be blocked by both. 

If <XA and aB represent subpixel areas covered by opaque geometric objects, the over
lap of objects within the pixel is quite arbitrary. We know that object A divides the 
pixel into two subpixel areas of ratio <XA: l-aA. We know that object B divides the 
pixel into two subpixel areas of ratio aB: l-aB' Lacking further information, we make 
the following assumption: there is nothing special about the shape of the pixel; we 
expect that object B will divide each of the sub pixel areas inside and outside of object 
A into the same ratio <XB: l-aB. The result of the assumption is the same arithmetic 

May 19. 1986 



- 4 -

as with semi-transparent objects and is summarized in the following table: 

description area 
A-(lB (I-aA )(I-aB) 
A(lB <XA(I-aB) 
A(lB (l-<XA)<XB 
A(lB <XA<XB 

The assumption is quite good for most mattes, though it can be improved if we know 
that the coverage seldom overlaps (adjacent segments of a continuous line) or always 
overlaps (repeated application of a picture). For ease in presentation throughout this 
paper, let us make this assumption and consider the alpha values as representing sub
pixel coverage of opaque objects. 

4.2. Compositing Operators 
Consider two pictures A and B. They divide each pixel into the 4 subpixel areas 

B A name description choices 
0 0 ° A(lB 0 
0 1 A A(lB 0, A 
1 ° B A(lB O,B 
1 1 AB A(lB 0, A, B 

listed in this table along with the choices in each area for contributing to the compo
site. In the last area, for example, because both input pictures exist there, either could 
survive to the composite. Alternatively, the composite could be clear in that area. 

A particular binary compositing operation can be identified as a quadruple indicating 
the input picture that contributes to the composite in each of the four subpixel areas 0, 
A, B, AB of the table above. With three choices where the pictures intersect, two 
where only one picture exists and one outside the two pictures, there are 3x2x2xl=12 
distinct compositing operations listed in the table below. Note that pictures A and B 
are diagrammed as covering the pixel with triangular wedges whose overlap conforms 
to the assumption above. Useful operators include A over B, A in B, and A held out 
by B. A over B is the placement of foreground A in front of background B. A in B 
refers only to that part of A inside picture B. A held out by B , normally shortened to 
A out B, refers only to that part of A outside picture B. For completeness, we 
include the less useful operators A atop B and A xor B . A atop B is the union of 
A in B and B out A. Thus, paper atop table includes paper where it is on top of 
table, and table otherwise; area beyond the edge of the table is out of the picture. 
A xor B is the union of A out B andB out A . 

May 19, 1986 



- 5 -

operation quadruple diagram 

clear (0,0,0,0) ° ° 
A (O,A,O,A) 

1 ° 
B (O,O,B,B) . ° 1 

A over B (O,A,B,A) 

B over A (O,A,B ,B) 

A in B (O,O,O,A) 

B in A (O,O,O,B) 

A out B (O,A,O,O) 

B out A (O,O,B,O) 

A atop B (O,O,B,A) 

B atop A (O,A,O,B) 

A xor B (O,A,B,O) 

4.3~ Compositing Arithmetic 
For each of the compositing operations, we would like to compute the contribution of 
each input picture at each pixel. This is quite easily solved by recognizing that each 
input picture survives in the composite pixel only within its own matte. For each 
input picture, we are looking for that fraction of its own matte that prevai~s in the 

Mav 19, 1986 



- 6 -

output. By definition then, the alpha value of the composite, the total area of the pixel 
covered, can be computed by adding aA times its fraction FA to aB times its fraction 

FB • 

The color of the composite can be computed on a component basis by adding the color 
of the picture A times its fraction to the color of picture B times its fraction. To see 
this, let C A' cB' and Co be some color component of pictures A, B and the composite, 
and let C A, C B, and Co be the true color component before pre-multiplication by 
alpha. Then we have 

Co = aoCo 

Now Co can be computed by averaging contributions made by C A and C B, so 

(XAFACA+(XBFBCB Co = ao-------
(XAFA+aBFB 

but the denominator is just ao, so 

Co = aAFACA+CJ.BFBCB 

CA cB 
=aAFA-+aBFB-

aA (XB 

(1) 

Because each of the input colors is pre-multiplied by its alpha, and we are adding con
tributions from non-overlapping areas, the sum will be effectively pre-multiplied by the 
alpha value of the composite just computed. The pleasant result that the color chan
nels are handled with the same computation as alpha can be traced back to our deci
sion to store pre-.multiplied RGBA quadruples. Thus the problem is reduced to finding 
a table of fractions F A and F B indicating the extent of contribution of A and B, plug
ging these values into equation 1 for both the color and the alpha components. 

By our assumptions above, the fractions are quickly determined by examining the pixel 
diagram included in the table of operations. Those fractions are listed in the FA and 
F B columns of the table. For example, in the A over B case, picture A survives 
everywhere while picture B survives only outside picture A, so the corresponding frac
tions are 1 and (l--aA). Substituting into equation 1, we find 

Co = cAxl+cBx(l-aA)' 

This is almost the well used linear interpolation of foreground F with background B 

B' = Fxa+B x(I--a), 

except that our foreground is pre-multiplied by alpha. 

4.4. Unary operators 
To assist us in dissolving and· in balancing color brightness of elements contributing to 
a composite, it is useful to introduce a darken factor, <p, and a dissolve factor, S: 

darken(A ,<p )=( <pr A ,<j>gA ,<pb A ,aA ) 

May 19, 1986 



- 7 -

dissolve(A ,O)=(Or A ,OgA ,ob A ,OaA) . 

Normally, 0~,o~1, although none of the theory requires it. 

As <I> varies from 1 to 0, the element will change from nonnal to complete blackness. 
If <1»1, the element will be brightened. As ° goes from 1 to 0, the element will gradu
ally fade from view. 

Luminescent objects, which add color information without obscuring the background, 
can be handled with the introduction of an opaqueness factor 0), 0~0)~1: 

opaque(A ,0) )=(r A ,gA ,b A ,0000A) . 

As 0) varies from 1 to 0, the element will change from normal coverage over the back
ground to no obscuration. This scaling of the alpha channel alone will cause pixel 
quadruples where a is less than a color component, indicating a representation of a 
color outside of the normal range. This possibility forces us to clip the output compo
site to the [0,1] range. 

An 0) of ° will produce quadruples (r,g,b ,0) which do have meaning. The color 
channels, pre-multiplied by the original alpha, can be plugged into equation 1 as 
always. The alpha channel of ° indicates that this pixel will obscure nothing. In 
terms of our methodology for examining subpixel areas, we should understand that 
using the opaque operator corresponds to shrinking the matte coverage with regard to 
the color coverage. 

4.56 The PLUS operator 

We find it useful to include one further binary compositing operator, plus. The 
expression A plus B holds no notion of precedence in any area covered by both pic
tures; the components are simply added. This allows us to dissolve from one picture 
to another by specifying 

dissolve(A ,a) plus dissolve(B ,1--a). 

In terms of the binary operators above, plus allows both pictures to survive in the 
subpixel area AB. The operator table above should be appended: 

operation quadruple 

A plus B (O,A,B,AB) 1 1 

50 Examples 

The operations on one and two pictures are presented as a basis for handling composit
ing expressions involving several pictures. A normal case involving three pictures is 
the compositing of a foreground picture A over a background picture B, with regard to 
an independent matte C. The expression for this compositing operation is 

(A in C) over B. 

Using equation 1 twice, we find that the composite in this case is computed at each 

May 19, 1986 



- 8 -

pixel by 

Co = CA (XC+CB (1-(XA (XC), 

As an example of a complex compositing expression, let us consider a. subwindow of 
Rob Cook's picture Road to Point Reyes [1]. This still frame was assembled from 
many elements according to the following rules: 

Foreground = FrgdGrass over Rock over Fence 
over Shadow over BkgdGrass ; 

GlossyRoad = Puddle over (Post Reflection atop 
(Plant Reflection atop Road»; 

Hillside = Plant over GlossyRoad over Hill; 

Background = Rainbow plus Darkbow over 
Mountains over Sky; 

PtReyes = Foreground over Hillside over Background. 

Figure 1 shows three intermediate composites and the final picture. 

A further example demonstrates the problem of correlated mattes. In Figure 2, we 
have a star field background, a planet element, fiery particles behind the planet, and 
fiery particles in front of the planet. We wish to add the luminous fires, obscure the 
planet, darkened for proper balance, with the aggregate fire matte, and place that over 
the star field. An expression for this compositing is 

(FFire plus (BFire out Planet» 
over darken(Planet ,.8) over Stars. 

We must remember that our basic assumption about the division of subpixel areas by 
geometric objects breaks down in the face of input pictures with correlated mattes. 
When one picture appears twice in a compositing expression, we must take care with 
our computations of FA and F B. Those listed in the table are correct only for uncorre
lated pictures. 

To solve the problem of correlated mattes, we must extend our methodology to handle 
n pictures: we must examine all 2n subareas of the pixel, deciding which of the pic
tures survives in each area, and adding up all contributions. Multiple instances of a 
single picture or pictures with correlated mattes are resolved by aligning their pixel 
coverage. Example 2 can be computed by building a table of survivors (shown below) 
to accumulate the extent to which each input picture survives in the composite. 

6. Conclusion 
We have pointed out the need for matte channels in synthetic pictures, suggesting that 
frame buffer hardware should offer this facility. We have seen the convenience of the 
RGBA scheme for integrating the matte channel. A language of operators has been 
presented for conveying a full range of compositing expressions. We have discussed a 
methodology . for deciding compositing questions at the subpixel level, deriving a 

May 19, 1986 



- 9 -

FFire BFire Planet Stars Survivor 

• Stars 

• Planet 
• • Planet 

• BFire 

• • BFire 

• • Planet 
• • • Planet 

• FFire 
• • FFire 
• • FFire 

• • • FFire 

• • FFire,BFire 

• • • FFire,BFire 

• • • FFire 
• • • • FFire 

simple equation for handling all composites of two pictures. The methodology is 
extended to multiple pictures, and the language is embellished to handle darkening, 
attenuation, and opaqueness. 

There are several problems to be resolved in related areas, which are open for future 
research. Weare interested in methods for breaking arbitrary three dimensional scenes 
into elements separated in depth. Such elements are equivalent to clusters, which have 
been a subject of discussion since the earliest attempts at hidden surface elimination. 
We are interested in applying the compositing notions to Z-buffer algorithms, where 
depth information is retained at each pixel. 

7. References 
1. Cook, R. Road to Point Reyes. Computer Graphics Vol 17, No.3 (1983), Title 

Page Picture. 

2. Crow, F. C. A More Flexible Image Generation Environment. Computer Graph
ics Vol. 16, No.3 (1982), pp. 9-18. 

3. Newell, M. G., Newell, R. G., and Sancha, T. L.. A Solution to the Hidden Sur
face Problem, pp. 443-448. Proceedings of the 1972 ACM National Conference. 

4. Wallace, Bruce. Merging and Transformation of Raster Images for Cartoon Ani
mation. Computer Graphics Vol. 15, No.3 (1981), pp. 253-262. 

5. Warnock, John, and Wyatt, Douglas. A Device Independent Graphics Imaging 
Model for Use with Raster Devices. Computer Graphics Vol. 16, No.3 (1982), 
pp. 313-319. 

6. Whitted, Turner, and Weimer, David. A Software Test-Bed for the Development 
of 3-D Raster Graphics Systems. Computer Graphics Vol. 15, No.3 (1981), pp. 
271-277. 

Mav 19. 1986 



- 10 -

8. Acknowledgments 
The use of mattes to control the compositing of pictures is not new. The graphics 
group at the New York Institute of Technology has been using this for years. NYIT 
color maps were designed to encode both color and matte information; that idea was 
extended in the Ampex A VA system for storing mattes with pictures. Credit should 
be given to Ed Catmull, AIvy Ray Smith, and lkonas Graphics Systems for the 
existence of an alpha channel as an integral part of a frame buffer, which has paved 
the way for the developments presented in this paper. 

The graphics group at Pixar should be credited with providing a fine test bed for work
ing out these ideas. Furthennore, certain ideas incorporated as part of this work have 
their origins as idle comments within this group. Thanks are also given to Rodney 
Stock for comments on an early draft which forced the authors to clarify the major 
assumptions. 

Mav 19. 1986 



P I X A R 
CUSTOMER 
FEEDBACK 
FORM 

For Pixar use only: 

Action ____ _ 

Date 

Pixar serial number -----------

Comment on: 

Hardware ----
Company ___________ _ 

Address 
Software --------------------------
Documentation --

Person to contact ---------
Phone number -----------

Please describe problem: Date _____ _ 

Use this form to report bugs, documentation errors or suggestions. Mail to: 
PIXAR 

Box 13719 
San Rafael 
CA94913 




