
P&T-488 INTERFACE
INSTRUCTION MANUAL

MSOFT Software Package

(805) 685·4641

P. O. BOX 1206

GOLETA, CA 93116

P&T-488

PctT-488 INTERFACE
INSTRUCTION MANUAL

copyri cht (c) 1982 by

Pickles ct Trout
P.O. Box 1206

Goleta, CA 93116
All Rlchts Resened

WARRANTY

This Pickles & Trout product is warranted against defects In materials ~d wotkmal'lshlp for 90
days from the date of shipment. Pickles & Trout will, at Its option, repair or replace
products which prove to be defective within the warranty period provided they are returned to
Pickles & Trout. Repairs necessitated by modification, alteration or misuse of this product
are not covered by this warranty.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
A PAR TIC U LA R PUR PO S E • PIC K L E S ct T R 0 U T J S NOT L I A BL E FOR
CONSEQUENTIAL DAMAGES.

rev 4-15-82 17:43 - I -

P&T-488 Foreword

FOREWORD

This manual contains the information necessary to understand and use the P&T-488
interface as well as provide instruction in the basic concepts of the IEEE-488 bus.

Those who are already familiar with the IEEE-488 bus (also known as the HP-IB, GPIB and
ASCII bus) and the concepts of a Talker, Listener and Controller may skip to page MSOFT-l.
It is recommended that those who are not acquainted with Talkers, Listeners and Controllers
read the chapter liThe IEEE-488 Busn first.

The P&T-488 interface consists of two major components: the P&T-488 interfa·ceboard and
the P &T -488 to Microsoft Basic interface software package. The software package is actually
two programs: MSOFT.COM and MSOFT. REL. MSOFT.COM is an object code program to be
used with interpreter Basic, and MSOFT.REL is a linkable module to be used with compiler
Bas ic. Also included is an object code program (488TST81) which performs a comp.lete functional
test of the P&T-488 interfa.ce board. Additional programs are provided as examples of how one
can use the P&T-488 interface to communicate with 488 devices. Several utility programs have
also been provided. One which is especially useful is called BUSMON. It displays all IEEE-488
bus transactions on the console and can also be used to send data or commands over the bus.
All programs are provided on a single density, non-system diskette recorded in CP /Mt format.

Even though MSOFT is designed to be used with Microsoft Basic, other languages can also
successfully use MSOFT. Included in this manual and on the disk are sample programs written
in assembler, Fortran, Pascal and C.

t CP 1M is a trademark of Digital Research

- ii - rev 4-15-82 17:43

Table of Contents P&T-488

Table of Contents

Page Title Description

1 IEEE~8 Bus
An introduction to the three primary occupants of the IEEE 488 bus: the
Talker, Listener and Controller.

7 Hardware Description
A brief description of the P&T-488 interface board. Instructions are included
for changing the 1/0 port addresses used; The significance of each port is also
explained.

12 Functional Test
Instructions on the use of the Functional test routine (488TST81). This
routine performs a complete check of the operation of the P&T-488 interface
board and Its 488 cable.

P.T~8 to Microsoft Basic Interface Software

MSOFT-1 Introduction
Unpacking, Installation and Testing theP&T-488 card.

MSOFT -2 Procrams
List of programs supplied with the P&T-488.

MSOFT-4 MSOFT - How It Works
Instructions on the use of the P&T-488 to Microsoft Basi.c~intwface software
package (MSOFT).

MSOFT -5 Communication Functions
The thirteen communication functions are described. They are CNTL, CNTLC,
TALK, TALKC, LSTN, LSTNC, SPOLL, PPOLL, OREN, REN, STATUS, IFC
and BRSET.

MSOFT-7 Setup Functions
The four setup functions are described. They are SETUP, 10SET, PROTCL and
ECHO.

MSOFT-8 Conflauration Function
The configuration function 10PORT is described.

MSOFT-9 Communication Variables
The~commun.i.caction variables are described. The· names used in tho'sample
programs for these variables are ERCODE%, TIME%, POLL%, BUS%, EOT%,
EOS%, LENGTH%, ECHOIN% and ECHOOUT%.

MSOFT-12 Quirks, Oddities and Stranae Behavior
A summary of characteristics of MSOFT, Basic and the IEEE-488 bus which may
give rise to unexpected results.

rev 4-1 S-82 17:43 -iii-

P &T -488 Table of Contents

MSOFT -14 Gotc;hyas
A capsule summary of the problems (and their solutions) the user is likely to
encounter while using the P&T-488.

MSOFT-16 How to Use MSOFT with Interpreter Basic;

MSOFT-16 How to use MSOFT with Compilinl Basic;

MSOFT -17 Example of how to Compile an MSOFT Program
A step-by-step dialog showing how to compile and link an MSOFT program.

MSOFT-18 Comments on BISAMPL.BAS and BCSAMPL.BAS
An overview of the purpose and operation of a sample Basic program. The
program allows the operator to exercise most of the functions of MSOFT.

MSOFT-18 HP S9309A Dialol
The dialog needed to reset, set and read a Hewlett-Packard S9309A Digital Clock
while running the program BISAMPL.

MSOFT -22 BISAMPL.BAS Listinl
The source listing of a program written in interpreter Basic which allows the
operator to exercise most of the functions of MSOFT.

MSOFT -27 BCSAMPL.BAS
A summary of the changes needeci to change the interpreter Bas ic program
BISAMPL.BAS into a program which can be used with compiling Basic.

MSOFT-27 BCSAMPL.BAS Listinl
The source listing of a program which performs the same functions· as
BISAMPL.BAS but which is written for compiler Basic.

MSOFT:':;'32 B488INIT .BAS
The source listing of a program fragment that you will find useful to include in
each of your programs for MSOFT. This program fragment is also on the disk.
Its primary utility is that it bypasses errors which may be introduced by
typos, etc.

MSOFT-33 BICLOCK.BAS
The source listing of a program written in interpreter Basic which initializes
the 488 bus and then reads the date and time from an HP 59309A clock.

MSOFT.;..35 Parameter Passinl
An explanaUonof how MSOFT expects parameters to be passed. This
information is useful when MSOFT is to be used with some language other than
Microsoft Basic.

MSOFT:"36 CLOCK.MAC
The source listing of a program wri tten in 8080 assembler which initializes the
488 bus and then reads the date and time from an HP 59309A clock. This
pr.ogram performs the same function as BICLOCK.BAS, but shows how to write
assembler programs that use MSOFT.

MSOFT-41 MTSAMPL.PAS
The source listing of a program written in PascalfMT+ which allows the operator
to exercise most of .. the.function§iLof;MS-OFT. Thls,program··per;forms· the'same
func·tion asBISAMPL •. BAS., but is··.written··inPascal/MT+to>demonstrate.how
MSOFTcan be used with Pascal.

- Iv - rev 4-1 ~2 17:43

Table of Contents P&T-488

MSOFT-SO MT488.MAC
The source listing of an assembler program which performs the parameter passing
conversions necessary to make MSOFT work with Pascal/MT+.

MSOFT-S3 MTCLOCK.PAS
The source listing of a program written in Pascal/MT+ which initializes the 488
bus and then reads the date and time from an HP S9309A clock. This program
performs the same function as B ICLOCK. BAS, but shows how to write
Pascal/MT+ programs that use MSOFT.

MSOFT-S6 FSAMPL.FOR
The source listing of a program written in Microsoft Fortran which allows the
operator to exercise most of the functions of MSOFT.

MSOFT ~3 STRIN.MAC
The source listing of an ~am which collects strings from the
console for FSAMPL.FOR. ~

MSOFT~7 FCLOCK.FOR
The source listing of a program written in Fortran which initializes the 488 bus
and then reads the date and time from an HP S9309A clock. This program
performs the same function as BICLOCK.BAS.

MSOFT-74 QCCLOCK.C
The source listing of a program written inC which Initializes the 488 bus and
then reads the date and time from an HP S9309A clock. This program performs
the same function. as BICLOCK.BAS, but shows how,.to write C programs that
use MSOFT.

rev 4-15-82 17:43 - v -

P&T-488 Table of Contents

Appendices

A1 Unofficial Pbrasebook
A dictionary which expands the IEEE 488 standard mnemonics into English.
There are also some definitions, and many of the mnemonics are cross-referenced
to the page(s) in the IEEE Standard document which define their meaning and
use.

Sl Multiline Interface Messaces (Command Codes)

AUX-1

AUX-l.

AUX-S

AUX-6

AUX·40

A table showing the ASCIJ (or 150-7) character codes which correspond .. to
messagf$sent by' the Co~trotler~ This table includes the allowed Listen and
Talk addresses.

Auxiliary Procrams

BUSMON
Description of the program SUSMON which monitors and reports all transactJons
occurrlnl:~on the:,IEE&488ib(l$~.

488TODSK
Description. of the u.tlUty program. whic.h will re.cord aU IEEE-488' data
transacti. :oinv'aT dJ.s.k fH~~c",.

[$KT0488
Description of the utili~y progl"aITf which sen'ds the contents of a dISk file over"
the"IEEE~:bus as data.

HANDSHAK
Comments about the source code listing of the source and acceptor handshake
subroutines.

HAND S HAK
Source code listing of source and acceptor handshake subroutines.

SAMPLHS
The $Qur.C'e:;,?listi".·~!;otl·a\;$imp"~i",,~iR;;·whJ.¢l::makes<usef.of"the subr.outlMs';;Jn
HANOSHAK to get data from the IEEE-488 bus and display it on the console.

- vi - rev 4-15-82 17:43

P&T -488 The IEEE -488 Bus

- CAST OF CHARACTERS -

The 488 bus is populated by three major types of devices. One is the Controller,
which sends commands over the bus to other devices. Another is the Talker, which sends
data over the bus to one or more devices of the third kind: the Listeners. The Listeners
and Talker communicate with a handshake on each data transfer, and the communication
proceeds at the maximum rate allowed by the Talker and the slowest Listener. This
communication is completely asynchronous and may be interrupted at specific points in the
handshake cycle without causing any loss of data.

It can be useful to liken the bus to a meeting which has a chairman (ContrOller), a
recognized speaker (Talker) and an audience (Listeners). As is true of most meetings,
some of the audience is paying no attention whatever to the proceedings (some of the
devices on the bus may be Idle), while some of those that .are listening want to interrupt
the Talker. Sometimes a member of the audience is audacious enough to indicate that it
should be the chairman. The 488 bus specification allows the Controller to designate
another device as his successor.

It is the Controller1s responsibility to make sure that communication takes place in an
orderly manner: it is he that says who can talk and who should listen at any given time.
It is also the Controller that takes care of such matters as telling everyone to shut up
(Universal Untalk UNT command), everyone to go back to their desks (Interface Clear
IFC), or listen to someone trying to gain the floor (Service Request SRQ). Even though
the Controller has (in theory) complete command over everyone el.se, problems can arise.
One possible problem is that the Controller has made the unwise choice of telling more than
one device that it can be a Talke.r, which results in sheer bedlam. Another way for the
Controller to lose control of the situation is if a Talk Only (ton) device is placed on the
bus. Some Talk Only devices are notoriously deaf and donlt pay any attention to
anybody, even the Controller!

A Talker, on the other hand, leads a simple life. It does not concern itsel f with
disputes over who has the right to be heard, and when. It only puts data on the bus,
waits until the slowest listener indicates it is ready for data, says the data is valid, waits
until the slowest Listener says it has accepted the data, then says that it is removing the
data and follows up on its threat. About the only thing that bothers a Talker is to find
that no one is listening to him. Most get really upset and let the Controller know about
this impolite state of affairs. Talkers that donlt complain have a tendency to sit there
with their mouths open, caught in mid-word. Either way, no communication is taking place
and this is not considered a desirable state of affairs.

Listeners can be a little more complicated. They let the Talker know when they are
ready for another word and when they have received it. Some also let the Controller
know that they want some special attention. The Controller waits until the Talker can be
interrupted so that no Listener' is deprived of the latest bit of wisdom imparted by the
Talker. Then the Controller tries to find out which device wants the attention. Two
ways to do this are Serial Poll, in which each device is allowed to speak (one at a time)
and Parallel Poll, which allows several devices to simultaneously inform the Controller of
their need by a bit pattern each puts onto the eight data lines.

-1-

P&T-488 The IEEE-488 Bus

- HARDWARE OVERVIEW -

The 488 bus is made up of 16 signal lines: eight are used for data, three are
needed for the interlocking handshake used to communicate the data, and the remaining
five are used for bus management. Since there are eight data lines I a full eight bit
byte can be communicated in each handshake cycle. This is what is meant by the
phrase "bit parallel - byte serial" transmission. It is an alternative to the
slower RS 232C standard, in which onl y one data line is used (and which is referred
to as being a "bit serial" interface standard).

DaTa Bus Data Byte Ge neral
(8 Lines) Transfer Interface

Control
~h

<.;.:: I
'-"""

~'-E L
1---:::

:::
+-

vi vI
Device A Device B

Management

~

V
/

LL

\/1
I-""

Device C

vI

010 l. u 8

DAV
NRFD
NDAC

{FC
ATN
SRQ
REN
EOI

Device D Able to Talk, LiSTen Able to Talk and Only Able to Only Able. to Talk LisTen I.lsten and ConTrol (e.g •• (e.g., (e.g., counTer) (e.g .. , P&T-48S) digital mulTimeter) Signal generaTor)

There are three basic concepts which are important to an understanding of how
the hardware of the 488 bus works. The first is that only one of two voltages is
allowed on each line, and the lower allowed voltage is ground. The second is that
the 488 bus uses ne."'the true logic, which means that the lower of the two voltage
levels has the value TRUE, while the higher voltage has the value FALSE.. The third
is that the bus uses open-collector drivers. An open-colfector driver can be thought
of as a switch with one terminal connected to the line and the other to ground. When
the driver is ON, it is as if the switch is closed, and so connects the line to
ground. If the driver is OFF, it is as if the switch is open, so no connection is
made between the line and ground. There is a resistor connecting the line to a
voltage supply. so the voltage on the line rises to the higher of the two allowed
levels if the line is not grounded. Since the 488 uses negative true logic, a. line
is given the value TRUE by turning the open-collector driver ON, or the value
FALSE by turning the driver OFF. The phrases lIactive true" and "passive
false" are used to describe this system; active true because the line must be
actively connected to ground; to impress a value oftrue{ion it, passive.; false oe,cause
no action is needed (no cOflnectFon is'made) tomake;the value of the line· false.

-2-

P&T -488 The IEEE -488 Bus

Each 488 device has one open-collector driver for each 488 line that it uses. More
than one open-collector driver (that is, more than one 488 device) can be connected to
each line. If all drivers are off the voltage on the line will be high, which means it has
the value false. However, if one or more open-collector drivers are on, the line's
voltage will be low, and it will have the value true. This is called a IIwire-or ll system
because the logical value of the line is the logical OR of the logical values impressed on it
by the several open-collector drivers connected to it. Thus each 488 device sends a true
to the line by turning on its driver, or a false by turning the driver off. Note that if
any device asserts a particular line true, that line will have the value true. However, if
a device asserts a false (high) signal, it will be overridden by any device which asserts a
true.

The eight data lines are named 0101 through 0108 (010 stands for Data
Input I Output). The least significant bit appears on 0101, the most significant on 0108.
One point of possible confusion is that the data bits in an S-l~~ system are numbered ~
through 7, while the 488 data lines are numbered 1 through 8. Another is that S -11,J1,J
systems. assume positive true logic (high means TRUE, low means FALSE). Just remember
that S-l~c;I data bit 7 appears on 0108, etc. and a 488 byte is the one's complement of
an S-l~~ byte and everything should be all right.

The proper IEEE title for the three handshake lines is "Data B.yte Transfer Control"
lines. They are individually known as follows:
DAV (Data Valid) - when true the data on the eight data lines is valid.
NRFD (Not Ready For Data) - when true the 488 devices are not ready to accept data.
NDAC (Not Data Accepted) - when true the devices have not yet accepted the data.

The remaining five lines are known as the ,'IIGenerat Interface Manasementll lines.
They are as follows:
IFe (Interface Clear:) place all 488 devices in their default state.
ATN (Attention) - used to distinguish between a Controller and a Talker.
SRQ (Service Request) - indicates that a device needs attention.
REN (Remote Enable) - allows 488 devices to be programmed either by their local

controls (front panel switches, etc.), or by information sent over the 488 bus.
EOI (End or Identify) - indicates the end of a string if A TN is false , otherwise it

indicates a Parallel Poll is in progress.

- BYTE COMMUNICATION -

Byte communication requires that there be a device which is generating the byte to
be communicated (the 'I source") and one or more devices which receive the byte (the
lIacc.eptots ll). The Source arid Acceptors communicate by use of an interlocking handshake
using the three Data Byte Transfer Control lines (DAV, NRFD and NDAC). The byte
itself is sent on the eight data lines (0101 through 0108). The handshake is schematized
in the following flow chart.

-3-

P&T-488

SOURCE
(SH)

DA V h i g h (f a 1 5 e)

Are NRFD and NDAC both
h i g h(f a I 5 e) ?
YS - error: . no Acceptors

on bus
NO - P I ace the' b y t e· on

0101-0108

I 5 NRF 0 f a I 5 e
NO - goto B
YES - continue

Has i t. bee nat Ie a s t 2
microseconds since the
by t e' WI s p I ace d on the
data bus?
NO -, g:o to C----""'-"---"'e
YES - assert DAV true

(d a t a a.va i 1 ab Ie)

Is NOAC false
NO - goto 0
YES - data has been accepted,
so prepare to send next byte.

J,.
IMor~ data to send?
YES -goto A
NO - con tin u e

.J,
Warn that data will change
Ass e rt DAV f a I se (h ig h)

Remov.e data
Ass~rt 0101 through OIOa
false (high)

END

The IEEE:"488 Bus

ACCEPTORS
(AH)

Initial ize handshake
Set NRFD, NDAC

Eich Acceptor passively asserts
NRFD false (high) as it becomes
rea.dy for data. Tile NRF'D line
g 0 e s h i g h (f a I se) when a I I a.re
ready.

Is DAV true
NO - go.to U - -----~.
YES -
as each Acceptor finishes
getting the byte it passively
asserts NDAC fal~e and actively
asserts NRFD true (I.ow). When
al I have accepted the byte, NDAC
finally goes false (high).

I s DA V f a.ls e (hi g h)1
NO. - gQto V _____ ~.
YES - activ~ly assert NOAC true
(low), because the new byte which
has noJ yet be~n sent is not
a1l::cep:te:;d,,, y;e'~,

J,
go toT ___________ --J

-4-

P&T -488 The IEEE -488 Bus

- A More Detailed Look at the 488 Inhabitants -

A TALKER is a device which sends data over the 488 interface to other devices.
There are two major types and various subtypes. One major type is the Talk Only (ton),
which may be used in a 488 system which has no Controller. This device always talks,
and so it must be the only device which can talk. The other major type must be told
when to talk ("addressed to talk"). A Controller is needed because it is the only kind of
488 device that is allowed to address Talkers and Listeners. All Talkers use the Source
Handshake (SH) function to send a message over the 488 bus.

A LISTENER is a device which receives data over the 488 interface. As with the
Talker, there are two major types: Listen Only (Ion) and addressed Listener. A Listen
Only device always listens to the 488 bus, while an addressed Listener listens only when
the Controller tells it to. The listen Only device can operate in a 488 system which does
not have a Controller since it does not need to be told what to do and when to do it. All
Listeners use the Acceptor Handshake (AH) function to receive me ssage s on the 488 bus.

A CONTROLLER is a device which issues commands on the 488 bus. These include
commands which are used to reset all devices on the bus Interface Clear (IFC), indicate
which device is to Talk (when the Controller relinquishes the bus) and which devices are to
Listen (i.e. it sends the Talk and Listen addresses of those devices over the bus),
perform a Poll of 488 devices (Serial Poll and Parallel Poll), and a myriad of other special
functions. The commands fall into two general classifications: Uniline and Multiline.
Each uniline command uses only one line out of the five General Interface Management
lines. Examples of uniline messages are Remote Enable (REN), Inter·face Clear (IFC) and
Parallel Poll. Multiline messages use the eight .data (OJ01-0108} lines to issue the
command. Examples of multiline messages include performing a Serial PoU and commanding
488 devices to Talk or Listen. Multiline messages are sent using the Sour.ce Handshake
(SH) function, just like a Talker. The way that a device determines whether it is hearing
a Talker or the Controller is that the ATN (Attention) line is true.(low) when the
Controller is issuing a message, but false (high) when a Talker is saying 50mething~ The
Controller is the device which controls the ATN line. Whenever ATN is true, all
addressed Talkers shut up so that the Controller can say its piece. However, some Talk
Only devices donlt, and so they garble commands issued by the Controller. Generally
speaking, a ~Talk Only device should be used only in a 488 system which has no Controller.
Whenever the Controller passively asserts ATN false (lets it go high), the Talker (if any)
begins to send its message.

- MULTILINE COMMANDS

Telling a 488 device to Listen is one example of a multiline command. The
Controller places. the Listen address of the selected device on the data lines (0101 through
0108) and then performs the Source Handshake (SH) function. In other words, it IIspeaks"
the address while ATN is true (low). Whenever the Controller is active (that is, whenever
ATN is true), all devices on the 488 bus. interpret whatever is said (via the data lines and
the Source Handshake function) as a command rather than data. ALL devices hear what is
said by the Controller. They ALL execute the Acceptor Handshake function, without
regard to whether they are normally a Talker, Listener or whatever.

-5-

P&T -488 The IEEE.;...488 Bus

Another example of a multiline command is the Serial Poll. The order of events is
that the Controller sends out the Serial Poll Enable (SPE) command, which tells each
device that when it is addressed as a Talker that it is to say either SBN (Status Byte -
service Not requested) or SBA (Status Byte - service request Acknowledged). Those are
the only two messages that are allowed. Then the Controller addresses each device as a
Talker in turn and Listens to the response of each. To conclude a Serial Poll, the
Controller sends the Serial Poll Disable (SPD) command so that any devic.e later addressed
as a Talker can speak data (instead of SBN or SBA). Finally, the Controller performs
whatever. service is needed, whichis\device dependent.

- ,UNILINE ;c.COMMANDS

An example of a uniHne command is Parallel Poll. Parallel Poll is both simpler and
more complicated than Serial Poli. It is simpler because only one command is given
(Identify lOY: the logical AND of ATN and EOI) and all devices respond at once. It is
possibly more complicated in that it may be more difficult to sort out which device wants
service. Whenever a 488 device receives the lOY message, it immediately places its
Parallel Poll Response byte on the eight data lines. For systems of eight devices or less,
it is common for each device to be assigned a unique bit which it asserts true when it
needs service.. For example, one device' would have a Parallel Poll respollse byte in which
bit 1 is true if it needs service, otherwise bit 1 is false, and bits 2 through 8 are always
false. Another device would use bit 2 to indicate its need for service nd aU other bits
would always be false in its response byte. A third device would use bit 3. When a
Parallel pon is performed, the response sensed by th.e Controller will be the logical OR of
all the Parallel PoJi Response bytes (due to the, fact that the 488 bus is a wire..,or
system). If the"response has bfU 1 and 3 true, and all other bits fals~, it means that
the first and third: d.evices need service ; while the second does not.

If the 4.88. system uses more than eight devices., SQme alternate scheme must be used.
One would beL to' have only eight devices respond to a Parallel Poll, and USe Serial,. Poll on
the remaining devices. Another scheme would be to have several devices share the same
Parallel Poll Response byte. If the response to a Parallel Poll shows that at least one of
the devices that shares a common response needs service, a Serial Poll can be used to
find which ones th.ey are.

-6-

P&T -488 Hardware Description

- OVERVIEW -

The P&T -488 has four read/write registers which appear as four input/output (I/O)
ports to the S -1 ~~ host machine. T he ports are addre ssed as four consecutive 1/ a ports
with the first port address an integral multiple of 4 (~, 4, 8, ~C, ••• , N*4, ••• , FC).
For ease of description these registers will be referred to as registers ~ through 3, even
though what is called register ~ may be Port ~, 4, 8, ••• , N*4, ••• , FC.

The addresses used by the P&T -488 are set by means of a DIP switch on the upper
left corner of the interface board. All boards are set at the factory for I/O ports 7C
through 7F Hex, and all software .supplied by Pickles & Trout assumes these addresses.
The address used by both the board and the software can be changed by the user. The
addresses used by the software and the board. must be the same. To change the addresses
assumed by the software, refer to the instructions given with the program.

To change the addresses used by the board, first note that the labels IIA711 through
"A2" appear to the left of the switch. Switches A2 through A7 are set according to the
following table:

Address A7 A6 A5 A4 A3 A2
(Hex)

~~-~3 ON ON ON ON ON ON
~4-~7 ON ON ON ON ON OFF
~8-~8 ON ON ON .. ON OFF ON
IJC-91F ON ON ON ON OFF OFF
1 ~-1 3 ON ON ON OFF ON ON
14-17 ON ON ON OFF ON OFF
18-18 ON ON ON OFF OFF ON
1 C-l F ON ON ON OFF OFF OFF
291-23 ON ON OFF ON ON ON
24-27 ON ON OFF ON ON OFF
28-28 ON ON OFF ON OFF ON
2C-2F ON ON OFF ON OFF OFF
3~-33 ON ON OFF OFF ON ON
34-37 ON ON OFF OFF ON OFF
38-38 ON ON OFF OFF OFF ON
3C-3F ON ON OFF OFF OFF OFF
4~-43 ON OFF ON ON ON ON
44-47 ON OFF ON ON ON OFF
48-48 ON OFF ON ON OFF ON
4C-4F ON OFF ON ON OFF OFF
5~-53 ON OFF ON OFF ON ON
54-5.7 ON OFF ON OFF ON OFF
58-58 ON OFF ON OFF OFF ON
SC-5F ON OFF ON OFF OFF OFF
6~-63 ON OFF OFF ON ON ON
64-67 ON OFF OFF ON ON OFF
68-68 ON OFF OFF ON OFF ON

-7-

P&T-488

Address
(Hex)

6C-6F
7f/J-73
74-77
78-7B
7C-7F
8f/J-83
84-87
88-8B
8C-8F
9f1J-93
94-97
98-9B
9C-9F
Af/J-A3
A4-A7
A8-AB
AC-AF
Bf/J-B3
B4-B7
B8-BB
BC-BF
Cf/J-C3
C4-C7
C8-CB
CC-CF
Df/J-D3
04-07
D8-DB
DC-OF
Ef/J-E3
E4-E7
E8-EB
EC-EF
Ff/J F3
F4-F7
F8-FB
FC-FF

A7

ON
ON
ON
ON
ON

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

A6

OFF
OFF
OFF
OFF
OFF

ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON
ON

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

AS

OFF
OFF
OFF
OFF
OFF

ON
ON
ON
ON
ON'
ON
ON
ON

OFF
OFF
OFF
OFF
OFF
OFF'
OFF
OFF

ON
ON,'
ON
ON
ON
ON
ON
ON

OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

A4

ON
OFF
OFF
OFF
OFF

ON
ON
ON
ON

OFF
OFF
OFF
OFF

ON
ON
ON
ON

OFF
OFF
OFF
OFF

ON
ON
ON
ON

OFF
OFF
OFF
OFF

ON
ON
ON
ON

OFF
OFF
OFF'
OFF

Hardware Descrjpt~on

A3

OFF
ON
ON

OFF
OFF

ON
ON

OFF
OFF

ON
ON

OFF
OFF

ON
ON

OFF
OFF

ON
ON

OFF
OFF

ON
ON

OFF
O.FF

ON
ON

OFF
OFF

ON
ON

OFF
OFF

ON
ON

OFF
OFF

A2

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON'

OFF
ON

OFF
ON

OI7'F
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF
ON

OFF

For example, to address the P&1-488 interface board to use I/O ports 7C through
7F Hex, A 7 must be ON and A2 throughA6 OFF.

Tne.'P&T-488 allows direct access to th.e 8 signal line:s of the IEEE 48&.".1978
(hereafter called 488) data bus (Register 2) and the 8 lines of the 488 Data Byte Transfer
Control Bus and General Interface Management Bus (Register 1). In addition, a register is
provided to aHow a software settable response to a Parallel Poll (Register 3). Finally, a
register is provided which indicates transitions occurring on the various 488 Control Bus
and Management Bus lines (Register f/J). Additional features of the P&T -488 include
software disable of interrupts from the P&T -488 (without having to disable all interrupts
of the S-l(,J(,J system) and immediate response of the interface to Attention (ATN),
Int~rfacAl, Clear;, (W<:L af1~,;;P.ara!le\ Poll;" wjtb.()~!A i{lt~,rN'eattoor'oJ',tl1 .. ·.s~1~5s't!.teml,s CP,u.

-8-

P&T -488 Hardware Description

T he data transfer rate is highly dependent on the software, CPU and system memory
of the S-l~1J system, but with the supplied software, an 81J8~ running at 2.1J MHz and no
memory wait states, the transfer rate is about 3 KBytes/sec. For applications requiring
higher rates, the same S-l~~ system can get data rates of over 9 KBytes/sec in the Talk
Only mode.

REGISTER FUNCTIONS

No. FUNCTION

~ Interrupt Status (read only)
IJ Interrupt Reset (write only)

Command Line Register (read and write)

2 Data Line Register (read and write)

3 Parallel Poll Response (write only)

REGISTER BIT MAP

No. 1/0 D7 D6 D5 D4 D3 D2 Dl

~ IN DAV NRFD NDAC XI Fe XATN SRQ REN
+- + + +-, +

OUT DAV NRFD NDAC XIFC XATN SRQ TALKI
LISTN

1/0 DAV NRFD NDAC IFC ATN SRQ REN

D~

POC

D I I
EI

EOI

2 1/0 DI08 0107 0106 0105 0104 0103 DI02 DIOl

3 OUT 0108 0107 0106 0105 0104 DI03 DI02 01.01

NOTES:
+ means the bit goe 5 low on a LOW to HIGH transition
- means the bit goes low on a HIGH to LOW transition

01 means 488 interface interrupts are disabled
EI means 488 interface interrupts are enabled

The 488 data lines, are numbe'red from 1 to 8, while the
data lines on the S-l~~ system are numbered ~ to 7

X as in XATN, X1FC signifies that some device other than
the P&T -488 has made the level on the line (A TN or IFC)
active true (low).

-9-

P&T -488 Hardware Description

REGISTER 3 -

T his register holds the Parallel Poll Response byte. Whatever has been output to
Register 3 will appear on the 488 data lines in response to a Parallel Poll (ATN and EOI).

- RE{iISTER 2,-

This register is connected to the 488 data lines'through bus transceivers. The state
of the data lines can be sensed by reading Register 2) and the P&T -488 will assert on the
data lines whatever was last written into Register 2. However, if either the XA TN flag
or XIFC flag in Register ~ is set, the ,output buffets to the 488 bus are disabled whl'ch
precludes assertion of what was last written into Register 2. Remember that the 488 bus
uses negative logic so that any bit that is low is asserted (or logically true). Also the 488
bus is a wire-or system, so if any piece of equipment is asserting a particular line true,
that line will be a logical true. But if a device asserts a fal se (high) signal, it is
overridden by any device that asserts a true. Hence the terminology of ac;tive true and
passive false. Thus if the P&T -488 is being used as a Listener all bits of Register 2
should be written high (logic false) so that the data asserted by the Talker can be properly
read.

This r~gi,5tef aUows diieect setting and sensing of the 488. Control: aRd Mil1ag·fi:n~nt,
bu,s··line,Jii. If"th~"X[FC flag is set in Register~, the interfacewiH not assert any of'tne·
liTre'S ,ie'g.ardlels of what was lut written into Register 1. Similarly. if XA TN flag is set
in' Register ~, the' interface will not assert any line except Not Ready For Data (NRFO)
an.d Service Request (SRQ). SRQ will be asse.rted active true (low) only if the SRQ ... bit
(bit D2) of Register 1 was written low. NRFD will always be asserted active true (low).
The reason that NRFD is asserted true is so that the System Controller will not send any
commands until the S-lCJ~ CPU is ready to accept them. Note that XA TN has precedence
over XIFC, so an externally applied IFC followed by an externally applied ATN will cause
NRFD to be active true, SRQ to be true if the SRQ bit in Register 1 was written low,
and all other 488 lines will be passive false.

This isthelnterrup;t;Status/Res.et Register. Since theP&T~488>use·s.only one
interrupt vector, one needs to be able to determine whichcondJetion caus,e.d the.inte.rrupt •.
Eacb· bit of this register is a SSOil iated with. an interrupt;.,.causingc;; condition. Bywritrng"a
low in the corresponding bits, one can individually reset the status bits associated with
Data Valid (DAV), Not Ready For Data (NRFD), Not Data Accepted (NDAC), External
Interface Clear (X I FC) , External Attention (XATN) and Service Request (S RQ). If Bit 1 is
set low status bit 7 will ignore any activity on the DAV I.ine. This is use ful when the
interfac;e is used as a Talker or Controller. If Bit 1 is set high, Bits 5 and 6 will ignore
any activity on the NDAC and NRFD lines, whic;h is useful when the interface is used as a
Listener. If Bit ~ is set low, status Bits ~··(POC/RESET) and 1 (REN) will be cleared and
th'8't'? P&T-43B." wilt" be", p!,.e¥.ente4",frotllk: .in;Mr4;vp"ti"~, th~.~ Sr- 1 ~~:.,; sy.$o,t6~ (bl,lt~; tl\&9 inle J:.up.~
s ta,1U5.:bits: will,. continu.e,:, ttl. r es.pond",.to:A:as~:;:C.o'fltt.o·t:,:.aOlL:~nag~J*lint4:.1 in e z:.nti,y.it:y}*.. I { .t.gtt;~~?k

-10-

P&T-488 Hardware Description

is set high the interface can interrupt the S-l~~ system.

If Bit 4 (IFC) of Register 1 is asserted there is no way of determining if an external
Controller is also asserting IFC, 'so interrupt status bit 4 (XIFC) will ignore any activity
due to an external Controller. A similar argument is true for A TN and XA TN (Bit 3 of
Registers 1 and ~). This is not a problem because the IEEE standard allows only the
System Controller to assert IFC, and only the Controller-in-Charge may assert ATN.
The standard further specifies that there may be no more than one System Controller and
no more than one Controlle r - in-Charge.

-11-

P&T -488 Functional Test

P&T -488 Functional Test

The program 488T ST8l performs seven different kinds of tests on the P&T -488
interface board and its 488 cable. The first group of four are done with no 488 device
or test plug connected to the P&T-488. The last three are made with the special test
plug connected to the P&T -488.

The program starts by printing.a message to the operator to disconnect all 488
devices from the P&T -488. The operator si.gnifies this has been done by pressing\any key
o.n the keyboard. After a key has be.en pressed the program begins its tests.

NOTE:' Any time a Control Cis pressed, the program is aborted and control is returned to
the monitor (operating system).

The first test checks the data register (Register 2) by outputting a byte to the 488
data lines then reading the data lines to see if their state corresponds to the byte output
to them. Each of the 256 possible bytes is tried in turn. If any errors occur, a
message "DATA ERROR - bits in error are ••• " with the bit names is printed. If there
are no errors, no message is printed.

In a similar manner, the second test checks the command line register (Register 1).
If there are any errors, the message "COMMAND LINE' ERROR -bitsinerror ar~ ••• " is·,;
printed. Again, if there is no error, no message is printed.

The third test checks the Parallel Poll Response register (Register 3) by firs-t ma~ing
ATN and, EOI true. Thus anything output to the Parallel Poll Response RegiSter sl:tOUld,
appear on the 488 data Iines~ If the Command Line test tailecj. witf1"bit.s (/J. and/,or l"·io
error, the results of this third test are meaningless. As with the first two tests, each.of
the 256· pt>ssible byte values is tried and any errors arereported= this time the error'
message is "PARAllEL POLL ERROR - bits in error are ••• ".

The fourth test checks the Interrupt Service Register (Register (/J). If the second
test failed, this one will probably fail also. Errors are reported with the message
'I(NTERRUPT SERVICE REGISTER ERROR - bits in error are ••• ".

A fter these four tests have be,en made, (they take less than a tenth of a second),
the operator is told to attach the special test plug and then press any key on the keyboard
to continue the tests. The plug connects the eight dala lines to the eight 488 command
lines, so that the 488 cable can be tested for continuity, sho,rtsor incorrect wiring. It
al,$o': allows testing the ,response/;of the P&T -48.8~board to ATN andJFC assertedtr.ue;;·b;¥.",
an external Controller.

r'he fifth test cheeks the 488 cable and repllrts any bits in error. If either the
nut' (data line) or second (command line) tests'· failed,. ttle;, results of' this test will be
meaningless. If the first four tests were passed without error, but this one shows errors,
it means either the cable and/or test plug is open, shorted, miswired or improperly
plugged. If all bits are in error, the 488 cable is either not connected to the P&T -488
interface board or the special test plug is not plugged into the cable.

-12-

P&T -488 Functional Test

The sixth test checks the response of the P&T-488 to an IFC (Interface Clear)
p resented by an external Controller. What is reall y done, 0 f course, is to use the data
port to assert a true on the IFC line through the special shorting plug, but the P&T -488
canlt tell the difference between this and an external Controller making IFC true. The
results are meaningful only if the first five tests passed with no errors.

T he seventh test checks the response of the P&T -488 to an ATN (Attention)
presented by an external Controller. The technique is the same as used in the sixth test.
A gain, the re suits are meaningful onl y if the fir st five te sts were passed without an y
errors.

After the seventh test has been completed, the message NO ERRORS is printed if
all tests were passed without error. T hen the message II P8rT 488 functional test complete"
is printed and the program jumps back to the monitor.

WHAT TO DO IN CASE OF ERROR -

If any of the first four tests fail, check the following:

1. The P&T -488 interface board must be addressed to the same ports that the test
routine tests. The base address (lowest address of the four) used by the P&T -488
must be in location 1~3 Hex for CP/M systems, 3~~3 Hex for North Star. The
program is supplied with the base address set to 7C Hex.

2. All 488 devices must be disconnected from the' P&T -488.

3. Make sure you are using the correct test routine.
ONLY Revision 81A boards (serial number 5~~~ and up).
ONLY boards with serial numbers under 5~~~.

488T ST81 is to be used on
488TEST is to be used on

I f any of the first four tests fail, try disconnecting the 488 cable from the
P&T-488 interface board. If they STILL fail, the P&T-488 is faulty and should be
returned to Pickles & T rout for repair or replacement. Be sure to include a printout of
the test results. If the first four tests are passed without error after the cable has been
disconnected, the cable is defective (a short between lines or a short to ground).

If no error message is printed before the "Attach test plug ••• " message to the
operator, the first four tests were passed without error. If the error message
nEXTERNAL ATN ERROR - bits in error are 2" is displayed, it is likely that you are
using the wrong test routine. 488TEST is to be used on only boards with serial numbers
under 5",; 488T ST81 is to be used only on boards with serial numbers over 4999. USE
THE CORRECT TEST. If the error message "EXTERNAL INTERFACE CLEAR ERROR
- ••• " is printed with no error message preceding it, the P&T -488 is faulty. If the
error message "EXTERNAL ATN ERROR - ••• n is printed, and either there is no other
error message or only the EXTERNAL INTERFACE CLEAR ERROR message, the P&T-488
is faulty and should be returned for repair or replacement.

RETURN POLICY -

The P&T -488 interface board, its 488 connecting cable and the special test plug are
warranted to be free of defects in materials and wor,kmanship for 90 days from, the date
of sale_ If they should be" found faulty within the"warranty period, Pickles &,' T rout will

-13-

P&T-488 Functional Test

(at its option) repair or replace them upon receipt of the defective pieces. Repairs
necessitated by alteration, modification or misuse of these products are not covered by
this warranty. Out of warranty interface boards which have not been modified or
otherwise tampered with will be repaired or replaced for a flat fee. As of January,
1981, the fee is $45.00.

NOTICE - A handling fee of $45.00 will be charged for any board that is returned for
repair becaus.e the wrong test routine was used. THIS INCLUDES BOARDS STILL IN·
WARRANTY.

When returning equipme.nt to Pickles & Trout, be sure to include the following
information:

1 NAME and ADDRE·SS of the owner.

2 NAME and PHONE NUMBER of the person who is using the P&T-488.

3 Description of the failure and how it was found.
RESULTS IS REQUIRED.

PRINTOUT OF THE TEST

4 Description of the S-100 machine and operating system. Include manufacturer and
model name of the CPU board, system clock rate, and the name of the organization
that authored the operating system~ as well as·· any information on systemtc~

modifications made to it.

For example: IMSAI 80S0 with Ithaca Audio Z-80. CPU b.oard with a syst~m clock of4
MHz, North Star single density 5.25" floppy disk dr.iVe an,d .. cooUoHer, DJgJ1.:i1
Researc;h cPt M as mo·dified by Lifeboat Associates for Nor.th Sta.r dl:Sk:;s.

5' If the equipment is still in warranty, enclose a copy of the biJI of sale. O'tller'lliS'e'
encl.i)se a check for the repair and shipping and handJing fee·s. The shipping and
handling fee is $5.00 for addresses within the contiguous US, $7.50 for Alaska and
Hawaii. There is no shipping fee for foreign addresses because the equipment will be
returned freight collect.

The repairs! replacements will be made within five business days and the equipment returned
postage paid to US addresses, freight collect to foreign addreses.

-14-

P&T~88 M50FT User's Manual Introduction

•••• Introduction ••••

The sequence that most people follow is

1. Unpack the P &T ~88
2. Install it in an 5-100 system
3. Test the P&T~88 to make sure it is operating properly
4. Wri te programs

The M50FT portion of the P&T~88 manual will follow this sequence.

•••• Unpacking the P&T-488 ••••

The package contains the following items:

1. P&T~88 interface card S. floppy disk
2. 18 inch cable 6. manual
3. metric mounting hardware 7. registration card
4. P&T~88 test plug

The 18 inch cable is designed to go from the P&T~88 card to the back panel of your 5-100
computer. The 488 receptacle should be mounted with the metric mounting hardware provided:
it is designed to mate with the jackscrews of standard 488 cables.

The floppy disk contains the M50FT driver program. the P&T~88 functional self test program.
some sample programs (so you can see real live examples of programs written for the M50FT
driver) and several utility programs.

The P&T~88 test plug is needed to perform the functional self test.

The registration card is very important! Please fill it out and mail it to us. It is our only
means of getting your name and address so we can tell you of any bug fixes that we have come
up with. inform you of new application programs and other things which will save you time and
effort. Most of our orders come from purchasing departments, and they really are not interested
in being notified about such things.

•••• Installation ••••

The P&T~88 interface card uses four contiguous 1/0 ports and is supplied configured to use
ports 7C through 7F Hex (124 through 127 decimal). Be sure there is no port address conflict
with other 1/0 boards in your 5-100 system before installing the P&T~8. Refer to the
chapter nHardware Descriptionn for instructions if it is necessary to change the 1/0 ports that
the P&T~ uses.

When you are satisfied that there is no I/O port address conflict between the P&T-488
interface and other devices in your 5-100 system, turn off the power to the 5-100 system and
wait at lea$t twenty seconds;(tO' allO'W sufficient time for the 5-100 pO'wer supply to discharge)
before installing the ,P&T~TC~. Attach the cable to' the back panel O'f the 5-100 system
using the metric hardware supplied with the cable (this hardware mates with the standard
locks crews used on 488 cables supplied by Hewlett-Packard. Beldon and others) and plug the
cable onto the top connector of the P&T~88 interface card. Note that the plug and connector
are keyed.

It will be necessary to modify 488T5T81 if the I/O port addresses of the board have been
changed from 7C through 7F Hex. The fourth byte in this program contains the lowest address
of· the:,'foUl''''''that~,isused,"~,th&·'P&T-488'interfaGe card., If, for example, the'carrl,has" been
addressed· ,to", use'pofts,60'l~tbrough63 Hex you COUld. change .. 488T5T81by folhiwi:ngthls
procedure: .

rev 4-14-82 13:49 M50FT-1

Introduction P&T-488 MSOFT User's Manual

1. Load the program using th~ utility routine DDT (key "DDT 488TST81.COM"). Note that
you are supposed to key what is in between the quote marks. but not the quote marks
themselves. The mnemonic <CR> means to press the carriage return key. DO NOT type
the four individual characters <. C. Rand >.

2. Change the byte in location 103 Hex. (Key "S103<CR>". DDT will respond by displaying
"103 7C" which is the address and the contents at that address. Then key the new base
address: in this example it would be "60<CR>". DDT will then display the next memory
location.)

3. Return to CP IM'monitor. (Press and hOld/the Control key then press the letter C. Then
release both keys.)

4. Put the:modifiedfile baCk on disk (key "SAVE 5 488TST60.COM<CR>").
use the file name 488TST81.COM.

Be sure not to
~,,,

As an example. assume that the port addresses used in 488TST81 are to be changed from 7C -
7F Hex to 60 - 63 Hex. Assume further that DDT is on disk drive A and 488TST81 is on
drive B. Finally. assume that the new file is to be stored on drive B and its name is to be
488TST60 (the 60 is a reminder that this program is for the P&T-488 addressed to ports 60 -
63 Hex). The keys typed by the operator are underlined in the following dialog.

A>B:<cR>
B>A:DDT 488TST81.COM<CR>
DDT VERS 1.4
NEXT PC
0600 0100
-S103.<CR>··
0103 7C 6O<CR>.
0104 00 .:If..
B>SAVE 5 488TST60~COM<CR>
B>

Note that the characters <CR> mean that the carriage return key is pressed not that the four
characters <. C. R and > are typed. Also. the two character string tC means that the
operator issued a Control C, not that the two keys t and C were typed.

•••• Test the P&T-488 ••••

Next the P&T-488 should be tested for proper operation. Run the program named 488TST81 and
refer. tOe the chapter, "Functi'onal Test" for instructions. After the test has been completed
with no errors the 488 interf~Ceds ready for use.

MSOFT.REL
MSOFT.COM·

BCSAMPL.BAS
BISAMPL.BAS
B4881 N IT. BAS
BICLOCK.BAS

CLOCK.MAC
MTSAMPL.PAS
MTCLOCK.PAS
F'~AMpf;;;F:eR'"
FctQ~~F6R" .

QCCLOCK.C

.... 'rotrants

P&T~driver for.: compiler'B~sic.
P&T-488 drlverfot interpreter Basic
Compiler Basic program .to exercise MSOFT
Interpreter Basic program to exercise MSOFT

Interpreter Basic program to read an HP 59309 clock
Assembler program to read an HP 59309 clock
Pascal MT+ program to exercise MSOFT
Pucal MT+ program to read an HP 59309 clock
Mi.c:rtf~':Forttani'·progratrf"to'··e_cne"·MSCFT·'"
MiGf4soit~trF"an~'~p~,,~td·re'a:d,i;aQ.,~.HP, ;59309:fCI_'~
C program to read an HP 59309. clock

MSOFT-2 rev 4-14-82 13:49

P &T -488 MSOFT User's Manual

BUSMON.COM
488TODSK.COM
DSKT0488.COM

HANDSHAK.ASM
SAMPLHS.ASM

IEEE-488 interactive bus monitor
Put all 488 bus data into a disk file
Send contents of disk file as 488 data
Sample program for source and acceptor handshake
Sample program showing the use of HANDSHAK

Introduction

Even though MSOFT is designed to work with Microsoft Basic, it can be used with some other
languages as well. Programs wri t ten in assembler, C, Microsoft Fortran and Pascal MT+ are
included to demonstrate how MSOFT can be used with these languages.

•••• IEEE 88 Bus Monitor ••••

A utility program named BUSMON is included on the software disk. This program is especially
useful for experimenting and gaining familiarity with the 488 bus and the devices connec ted to
it. The program is interactive and allows the user to send data as a Talker, commands as a
Controller as well as send the various uniline messages (SRQ, REN, etc). The program is
always a Listener and reports immediately any data, commands or uniline messages which appear
on the 488 bus. BUSMON and the other utility programs are described in detail in the chapter
np&T-488 Auxiliary Programs for CP/Mn. This chapter appears at the end of the manual.

•••• Sample Basic Programs ••••

The Basic programs BISAMPL and BCSAMPL are also useful for dinking around and gaining
familiarity with the 488 bus, the P&T-488 interface and whatever instruments are connected to
the 488 bus. BISAMPL is a version written for the Microsoft Basic interpreter (MBASIe) and
BCSAMPL is the same program written for Microsoft's Basic compiler (BASCOM). BUSMON has
more capability and is more useful for actually debugging 488 bus operation, while BISAMPL and
BCSAMPL are written in Basic and can serve as examples of how to write programs which use
MSOFT.

The general form of the command line to load and run Basic programs which use the P&T-488
and interpreter Basic is the following:

x:MSOFT y:filenaml z:filenam2<CR>
where x is the drive on which the program MSOFT is mounted

y is the drive on which the file filenaml is mounted
z is the drive on which file filenam2 is mounted
filenaml is the name of the Basic interpreter/run time package
filenam2 is the name of the Basic program itself.

For example, if MSOFT is on drive A, MBASIC is on drive C and BISAMPL is on drive B, the
command line would be

A:MSOFT C:MBASIC B:BISAMPL<CR>

As is normal with CP /M, you do not need to specify the drive name if it is the current
default drive.

•••• MSOFT: The P&T 88 Driver Program ••••

There are two versions of MSOFT on your disk: MSOFT.COM and MSOFT.REL. MSOFT.COM
is the version to be used with the interpreter Basic, and MSOFT.REL is to be used with
compiling Basic.

The program MSOFT is an interface between Microsoft Basic Rev 5.00 (and later) and the

rev 4-14-82 13:49 MSOFT-3

Introduction P&T-488 MSOFT User's Manual

IEEE-488 bus. You can use MSOFT to perform the following functions:

488 Bus Control
Talk
Listen

Remote Enable
Local
488 Interface Oear (IFe)

Parallel Poll
Serial Poll

MSOFT is designed to allow you to easily a"ess the IEEE-488 bus from either the compiler or
interpreter version of Microsoft Basic. It uses a calling convention which is easy to understand
and use, and which also provides the 488 functions commonly needed in a laboratory or
automated test facility.

A typical application programi;onsists of two parts: a Basic program and MSOFi (a machine
language program). Thirteen communication functions are available to allow the Basic program
to be a Controller, Talker or Listener on the 488 bus, as well as perform other 488 op.erations.
These functions use eleven variables to control communication bectween the Bas.ic program and
MSOFT. These vari.ables may assume any leg~1 Basic variable name. MSOFT funclions are
executed by using Basic; CALL statements and passing the appropriate parameters.

•••• How It Works ••••

The key to the operation of MSOFT is the CALL statement. CALL statements are of the form

CALL <variable name> (<parameter 1>, <parameter 2>, ••• ,<parameter N>)

where <variable name> is the name of the variable which contains the address of the machine
language routine youw.ant to call, and <parameterl>, <parameter2>, etc;., are the parameters
you want to pass to the subroutine. You may pass any number of parameters, but the
number and type of paral1'leters passed must match the number and type of parameters expe.cted
by the machine language. subroutine. Note that a passed parameter cannot be a constant or a
string literak(e.g. 27.5:0f'0· nhello thereD).

When Basic passes a variable via the CALL. .,slatem.ent it do:esn't aGtually pass thewarfule
itself, but 01Jly a pointer to the variable. If the variable is an integer the pointer points to
the numller itself. Integers , which is the only typeofnumeticvariable that MSOFT uses, are
stored as two byte-two's complement numbers, low order byte first. If the variable is a string
the pointer points to that string's string descriptor. String descriptors consist of two parts:
the string length (one byte), and the address in memory where the string is stored (two bytes,
low order byte first).

When one of the MSOFT setup routines is called Basic passes the appropriate pointers to
MSOFT. MSOFT then transfers these pC)inters to a table so it can remember which variable
names you are using for the variousco.mmunication variables. In this. way MSOFT can
automatically read (or write to) the variables used for Bash:-MSOFT c;ommunication. If you
need to changeJ.somecC)mmunication parameter all you have to do is assign the,pacameter' a
different value and MSOFT will automatically note the change.

Example: Suppose you want .. to turttthe. input ech$·functio:n on and off. If you named' the,
variables' for Jinplltand output echC):-ECHOIN%'and ECHOQUT% respecti'iely, you would'sa,.

100 CALL ECHO(ECHOIN%,ECHOOUT%)

to tell MSOFT the names of the input and output echo variables. Since Basic always
initializes variables to zero, both the input and output echo functions are initially off. When
you want to turn on the input echo you need only make ECHOIN% non-zero, as is shown by
the following program line:

MSOFT-4 rev 4-14-82 13:49

P &T -i88 MSOFT User's Manual Introduction

In this example we have shown the two basic units needed to communicate with MSOFT. One
is the nCommunication Function" (in this case ECHO) and the other is the "Communication
Variable" (ECHOIN% and ECHOOUT%).

•••• Communication Functions ••••

There are thirteen communication functions, four setup functions and one configuration function
available to the user in the MSOFT program. The communication functions - as their name
implies - control data transfer and housekeeping on the 488 bus. The setup functions are
used to inform MSOFT what variables to use to communicate with a Basic program. These
functions are invoked by using a Basic call to the setup function SETUP%. You may use
different names for the communication functions in a program which is to be used with the
interpreter version of Basic, but you !!!!!!!. use the names shown below if you use the compiler
version. The names shown here are the ones used in the sample programs and in the file
INIT.BAS, which has all the code required to set up communication between MSOFT and your
Basic program. The configuration function is used to tell MSOFT what 1/0 ports the P&T-i88
board is using.

The parameters which are used by the communication and setup functions fall into two general
categories: output variables and input variables. Output variables are values you send to
MSOFT. Input variables are values that MSOFT sends to you. Each of these categories is
broken down into two subcategories according to the type of variable used: integers and strings.
The communication functions use only strings while the setup functions use only integers.

The communication functions are:

1. CNTL% (<output string>)
Example: 100 CALL CNTL% (A$)

Become the 488 Controller and send the output string as a command string over the 488
bus. The error code is updated by this function.

2. CNTLC% (<output string>

Works like CNTL%, but the error code is set equal to zero (cleared) before transmitting
the command string.

3. TALK% (<output string>)
Example: 100 CALL TALK% (A$)

Become a Talker and transmit the output string over the 488 bus. All 488 data lines are
left passive FALSE after the last byte has been sent. NOTE: see EOT switch·· and EOS
value. The error code is updated by this function.

4. TALKC% (<output string)o)

Works like TALK%, but the error code is cleared before the output string is transmitted.

5. LSTN% (<input string>)
Example: 100 CALL 'LSTN% (A$)

BeGonu~",·a ··Li.stener· and,,· receive an inpu,t string ,0V8f,,' theA88 bus. The NRFD line is left
true:'afterreceiving,the;,:,last byte. NOTE: see EOT switch and EOSvalue. The error
code is updated by this function.

rev 4-14-82 13:49 MSOFT-5

Communication Functions P&T-488 MSOFT User's Manual

6. LSTNC%. (<input string»

Works like LSTN%, but the error code is cleared before receiving the input string.

7. SPOLL% (<output string>, <input string>)
Example: 100 CALL SPOLL% (A$,B$)

Perform a Serial Poll by sending.the 'Serial Poll Enable (SPE) message as a Controller" then.
sending UNTALI< followed by,the first Talk Addrtlss in the output string. SPOLL%then
gets a single byte from the newly addressed Talker and checks it to see if that Talker is
requesting service. If that Talker was not requesting service, SPOLL% sends UNTALK
followed by thtlnext Talk addrus in the output strin.g and gets that Talker's response
byte. It continues doing so until it either finds a device requesting service, encOUllters
an invalid Talk Addr,ess, has tried all addresses in the output string, or encounters a bus
error. If it finds the device requesting service it puts the poll response byte in POLL%
and the device's Talk Address in the input string, sends UNTALK followed by Serial Poll
Disable (SPD) as a Controller, then returns to Basic. If it encounters an invalid Talk
Address or tries all addresses but does not find the device requesting service, it makes
the input string a null string, sends UNTALK followed by Serial Poll Disable (SPD) as a
Controller, then returns to Basic. If it encounters a bus error (timeout, IFC, etc.), it
puts the error code in the error code byte, makes the input string a null string ·and
returns to Basic. NOTE THAT IT DOES NOT SEND UNTALK OR SERIAL POLL
DISABLE!! It cannot because of the bus error, and the other devices on the bus may
well be left in the Serial Poll mode instead of the Data ,mode of operation. It is up to
your program to take whatever action is appropriate in case ·of error. (One possibility is
to send an IFC, which resets all 488 devices to' their initial 5 ta te. However, in some
cases' thi$may 'not'be appropriate.)

Note that the output string should contain only the"Talk addresses of the! devices to .be·
polled. If the Talk Address of some device wh i ch is not connected to, the bus is in the
output string, SPOLL%wllJaddress it to talk and wait for its response. Nontlis
forthcoming, since the device is not connected! The result will be either a timeout
error, or, if the timeout function has been disabled (by setting the time value to 2SS),
the 488 bus and your 5.;.100 sys tem will lock up. The only recovery to such a lock-up is
for you to reboot your 5-100 system.

Note also that the poll response variable is updated only when the device requesting
service is found. If no such device is found POLL% contains whatever garbage it had
when 5POLL%'wascaileci. You can tell whether the contents of P01:.;1.% are meaningful.
by looking at the inp.ut string: it is 'a null string (has a length of zero) ifth.device
requesting service was .. not found. O.t.herwis.e it is anon-null.·string~lwhtch:istheTalk
Address of the device requesting service.

8. PPOL{. '" Example: . 100 CALL PPOl..L%

Performs a Parallel Poll of the 488 devices (by making the 488 ATN and EOI lines true).
The response is placed in the poll response variable. Note that no arguments are used
with the PPOLL% call. This function does not affect the error code.

9. DREN% Example: 100 CALL DREN%

Make;;;;tthe . REt't" (R~te. Ett'a.Qte);,;: line.' ofrthe!7c,488::::b "S'N' fa1su· wbitch!'"Pt~s;~:'a1~,,;~e"i«es'\'in'"
their LOCAL mode. This function does not affect the. error code.

MSOFT-6 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Communication Functions

10. REN% Example: 100 CALL REN%

Make the REN line of the 488 bus true. Once the REN line goes true any device
addressed as a Listener by tile Controller will enter the remote mode. This function does
not affect the error code.

11. STATUS% Example: 100 CALL STATUS%

Calling this function updates the bus status variable. STATUS% allows the user to
determine the bus status without becoming a Controller, Talker or Listener. It is
primarily used to determine if some special condition is occurring on the 488 bus (another
Controller issuing an IFC, etc). The way it works is that it checks for XATN, XIFC,
POC and SRQ. It then sets the appropriate bits of the error code and then copies the
five most significant bits of the error code into the bus status variable. The three
least significant bits of the bus status variable are set to zero. Notice that since
STATUS% does not reset the error code before checking the 488 bus, the error code and
the bus status variable may show a condition which occurred before STATUS% was called.
The error code is updated by this function.

12. IFC% Example: 100 CALL IFC%

Initialize the bus. This function resets the P&T 488 and then issues an IFC (Interface
Clear), which puts all 488 devices in their default state. It terminates with the NRFD
line true, which prevents any communication from taking place on the 488 bus until the
MSOFT system is ready to participate. This function does not affect the error code.

13. BRSET% Example: 100 CALL BRSET%

Resets the P&T 488. Unlike the IFC% command, it does not send an IFC nor does it
make NRFD true. Thus if it is desired to allow communication to take place on the
488 bus without the participation of the Basic program, one can use the BRSET% call.
This function does not affect the error code.

•••• Setup Functions • •••

Since you are allowed to choose the names you want for the variables used to communicate
with MSOFT, you must tell it the names of the variables. There are four setup functions
that are used for this purpose:

1. SETUP% (<CNTL%>, <CNTLC%>, <TALK%>, <TALKC%>, <LSTN%>, <LSTNC%>,
<SPOLL%>, <PPOLL%>, <DREN%>, <REN%>, <STATUS%>, <IFC%>, <BRSET%>, <IOSET%>,
<PROTCL%>, <ECHO%>, <IOPORT%>)

This function is needed 2.!!!Y. for a program which is to be run wi th the interpreter
version of Basic. You do not need to use this function if the program is to be run
with the compiling version of Basic because the compiler already "knows" the names of
the communication functions. In fact, you cannot use this function since the compiler
allows a maximum of ten parameters to be passed through a CALL.

This function sets up the variable names that MSOFT is to use for all the 488 bus
functions and the following three setup functions. Note that the ~ of SETUP% must
be calc.ulated. The calculation can be performed by the following three lines of code:

rev 4-14-82 13:49 MSOFT-7

Setup Functions P&T-488 MSOFT User's Manual

100 T£MP = 256*PEEK(7)+PEEK{6)+9
11 0 IF TEMP > 32767 THEN TEMP = TEMP-65536!
120 SETUP% = CINT(TEMP)

Line 100 calculates the address of the setup function in MSOFT. Line 110 ensures that
the value of TEMP is in the range of -32768 to 32767 (which is the range of an integer).
Line 120 sets SETUP% to the integer value of TEMP.

NOTE: You!!!.!!..ll call SETUP% BEFORE you make use of any other MSOFT function if
you are using interpreter Basic. SETUP% is the function that establishes all the
RhooksR needed by MSOFT to communicate with your basic program.

2. IOSET% (<error code>, <timeout value>, <poll result>., <bus status>

This fUnction sets up the variable names that MSOFT is to us efor theer;rorcode,
timeout value, poll result, and the bus status. It sets a default timeout value'of2S4'
each time it is called. This function !!l!!ll be
cans.

call ed before us tng any of. the func t ion

Example: 100 CALL IOSET% (ERCODE%, TIME%, POLL%, BUS%)

3. PROTCL% (<EOT switch>, <EOS value>, <string length>)

This function sets up the variables for the data transfer protocol. It sets the default
string length to 254. each tline it is called. This fUl'lCt·jon muH be calleclbeforeusing
any of the function calls.

Example: 100 CALL PROTCL% (EOT%, . EOS%, LENGTH%)

This function sets up the variables for the input' and output echo flags. This function
call is optional. If it's not called before using any of the communication funct ion calfs,
the default value Is no Input or output echo.

Example: 100 CALL ECHO% {ECHOIN%, ECHOOUT%}

**** NOTE ****

Basic does not. have any mechanism to check .that the. correct .number and type of var~~blesare·
passed by a CALL fUnction, so MSOFT cannot determine whether the arguments are valid.
Thus It is extremely important that when you call oneofthe.··MSOFTfunG·tlons·cthat you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
wJth the wrong number of arguments, or wi th arguments of the wrong type. If you do,. your
program willmostllkeJy fail and'giveunpredictable results. The best thing to do is to.be
extra careful WIlen. typlng)n statements Involving, M~OF"'functlon cI.lls.

•••• Configuration Function ••••

The P&T-488 board is shipped from· the factory set up to use S-l00 1/0 ports 7C through 7F
Hex (124 through 127 decimal). If your S-100 system already uses these ports for some other
function, the P&T-488 must be re-addressed to some other set of ports. The section of the
manual titled "Hardware DescriptionR tells you how to change the address of theP&T-488 board.
Y (jU" will also·l have,t·tO teU c~(Wl'" Wbl ~ .. : th., new,·adtJl!iss¥ i.s~' MiaF';' as sUtnet-·that·"'the":;P&:r.::488~
boatd uses addten~s 7C··ttttougb:;.7F':". B.Y'. cdJldg;jiIOPO:ll'1'Y\)'IJ:.;:can}'~t~U.M!QFJ'·th~loW.e.s:t
address used by the P &T 488 board.

MSOFT-8 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual Configuration Function

For example, assume that you change the P&T-488 board so it uses ports 38 through 3B Hex.
The following program line will tell MSOFT this new address:

100 PORT%=56: CALL IOPORT%(PORT%)

PORT% was set to 56 decimal, which is the equivalent of 38 Hex (the lowest address used by
the P &T -488 in this example). Note that PORT% must be set before calling IOPORT!
IOPORT is not like the communication functions (IOSET, PROTCL, etc) because it passes to
MSOFT the .!!.!..!!.!. of the parameter, while the communication functions pass to MSOFT the
.!!!!!!!!. of the parameters. You can change the timeout value at any time without having to
call IOSET again, but you cannot change the port numbers without calling IOPORT again.

This was done on purpose. Your program should call IOPORT no more than once since you will
not be changing the port numbers used by the P&T-488 while the program is running. If
IOPORT told MSOFT the name of the parameter, and you used that parameter again later on in
the program for something else, MSOFT would then try to communicate with the P&T-488 using
incorrect port numbers.

The rules for the use of IOPORT are simple but important. You need to use it only if you
have re-addressed the P&T-488 to some address other than 7C through 7F Hex. If the P&T-488
has been readdressed, you!!!.!!..!! use it after you call SETUP but before you use any
communication function (CNTL, TALK, etc).

•••• Communication Variables ••••

The variables used fall into two categories: output variables and input variables. Output
variables are values you send to MSOFT. Input variables are values that MSOFT sends to you.
The purpose and type of each of these variables is lisied below. In each case a variable name
is also shown. You do not have to use this variable name, but it is the one used in the
sample programs and in the file INIT.BAS, which has all the code required to set up
communication between MSOFT and your Basic program.

1. ERROR CODE ERCODE% (integer, input variable)
This variable indicates what errors (if any) occurred while using the 488 bus functions.
It is sometimes called the RETURN CODE. The variable is a sixteen bit integer, while
the error code is only eight bits. The error code is contained in the lower eight bits of
the error code variable. Each bit is associated with a particular error condition. If the
bit has the value ·1 n the corresponding error has occurred.

0000 0000 Normal return - the function has been successfully completed. (Notice that
no bit is set to "1 n).

1 •••

• 1 ••

•• 1.

••• 1

....

rev 4-14-82

.

. ...

. ...

....

The S-l00 RESET line is/has been true.

The IFC line on the 488 bus has been true • Re-initialize the P&T 488.

The ATN line on the 488 bus is/has been true. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which
have another Controller on the 488 bus.)

Bus timeout error •
time.

No handshake has taken place in the allotted amount of

1... The SRQ line on the 488 bus is true. Some 488 device wants service •
Refer :to':the'~manufacturer's manual to determine what action' is necessary.

13:49 MSOFT-9

Communication Variables P&T-488 MSOFT User's Manual

.... .1.. Serial Poll address error. An invalid Talk address is in the string of devices
to be polled.

•••• ..1. No Acceptors on the 488 bus. If this error occurs while performing a Control
function, It means that there are no 488 devices on the bus which are
capable of being addressed or programmed by the Controller. If this error
occurs during a Talk function, it means that there are no 488 devices on the
bus which are listening •

•••• ••• 1 Either 10SET% or PROTCL% was not called before trying to use one. of the
MSOFT communication funcUons. This error code will not tell you if the
wrong number of arguments was passed to either 10SET%orPROTCL%, it
will only tell you if one of them wasn't calledpr.ior to calling an MSOFT
communication function.

Example: If the value of the error variable is found to be 192 (1100 0000 binary), it
means that BOTH the 488 IFC line AND the S-l00 RESET are or have been
true.

Functions CNTLC%, TALKC% and LSTNC% reset the error code before they begin 488 bus
communication. They then set the appropriate bits (if any) before returning to the Basic
program. Functions CNTL%, TALK%, LSTN%, SPOLL% and STATUS% do not reset the
error code. before they begin 488 bus communication. They do set the appropriate bits (if
any) before returning to Basic. Thus the errOr code may show errors which have occurred
before these functions were called. -
The eight funct."ns CNTL%, CNTLC%, TALK%, TALKC%, LSTN%, LSTNC%, SPO.LL% andJ

STATUS% are the only functions which affect the error code.

2l TlMEOlJT VALUe> TlME% (Integer, output variable)
This variable sets the amount of time within which a 488' handshake cycle must occur or
el$o· a bus timeout error will occur. As with tho error code, MSOFT only uses the lower
eight bits of this variable: the actual value used is the timeout value modulo 256. If
it is set to 255 Decimal, no timeout check is made; that is, even if a handshake cycle
is never completed, a timeout error is not generated. For a value of 0 through 254
Decimal, the value is used to indicate the amount of time that the handshake may take
before a timeout error is generated. The amount of time that the timing loop takes
varies with the processor (8080 or Z-SO) , system clock rate, etc. On an 8080 system
running at 2 MHz a value of 200 corresponds roughly to 5 seconds or a value of 4
corresponds to about 100 milliseconds.

NOTE:; The 'TIMEQUTvatue Is set to 2S4.eachtlme you CALL. 10SET% ..

3. POLL RESPONSE POLL%:, (integ~, input variable)
The lower' eight bits of thepollresponsevarlabte contain the re~pons.e to the most'reeent'
Serial or Parallel Poll.

4 •. BUS STATUS BUS% (Integer, input variable)
The bus status tells the user the current bus state. Note: to save time, the bus
status is not automatically updated as the bus state changes. The bus status function
must be called each time the bus statuS' is desired. The coding used is exactly the
sam.<';a5'i4,"ttJa't!·used;fof,', the.'err_:;~,CQ(I~1"ex';~;ftbat:'. onl¥ ' .. th~tfi,e;,,·mos·1'i~1s igq,ifi'~~;'bits.are··i'
usedi., Th'''ll:tbtet:pte.t:i'·siptfi~~!btti$\:ar~(~,aI.w.a'$':;set· ;tQ1~!n,,,.o;,,··

MSOFT-l0 rev 4-14-82 13:49

P &T -488 MSOFT Userls Manual Communication Variables

0000 0000 Normal return - the function has been successfully completed. (Notice that
no bit is set to "1").

1... The 5-100 RESET line is/has been true •

• 1.. The IFC line on the 488 bus has been true. Re-initialize the P&T 488 •

•• 1. The ATN line on the 488 bus is/has been true. An external 488 Controller is
trying to issue a command. (MSOFT will not work with 488 systems which
have another Controller on the 488 bus.)

••• 1 •••• Bus timeout error. No handshake took place in the allotted amount of time
during the previous TALK%, TALKC%, LSTN%, LSTNC%, CNTL%, CNTLC%
or SPOLL% function.

1... The SRQ line on the 488 bus is true. Some 488 device wants service.
Refer to the manufacturerls manual to determine what action is necessary.

S. EOT SWITCH EOT% (integer, output variable)
This variable tells MSOFT how to recognize the end of a data transmission (if itls a
Listener), or what to send at the end of its data transmission (if itls a Talker). There
are three ways to specify the end of a data transmission: 1) The data transmission is
assumed to be finished after a certain number of characters. 2) The data transmission
is assumed to end with an END message. 3) The data transmission is assumed to end
with a special end-of-string (EOS) character. The EOT switch can be greater than zero,
zero, or less than zero.

LISTEN MODE:
EOT > 0 Terminate string collection upon receipt of an EOS character, END or if the

LENGTH is matched.
EOT = 0 Terminate string collection upon receipt of END or if the LENGTH is

matched.
EOT < 0 Terminate string collection upon receipt of END or if the LENGTH is

matched. (Same as EOT = 0.)

TALK MODE:
EOT > 0 Append the EOS character to the end of the string.
EOT = 0 Send string as-is.
EOT < 0 Send the END message with the last byte of the string.

6. EOS VALUE EOS% (integer, output variable)
If the value of the EOT switch is greater than zero MSOFT looks for (or sends) this
value as the end of a data transmission. Since there are only eight bits of data on the
IEEE-488 bus, MSOFT only uses the lower eight bits of the EOS value.

7. STRING LENGTH LENGTH% (integer, output variable)
This is used only in the LISTEN mode (that is, when you CALL LSTN% or CALL
LSTNC%). MSOFT uses this variable to determine the length of incoming messages. For
ins tance, if the string length was set to 2S Decimal, then MSOFT would assume a data
transmission was over after receiving 2S characters.

NOTE: The string length is set to a default value of 2S4 each time you CALL
PROTCL%.

rev 4-14-82 13:49 MSOFT-11

Communication Variables P&T-488 MSOFT User's Manual

8. INPUT ECHO FLAG ECHOIN% (integer, output variable)
If the input echo flag is non-zero, then characters received by MSOFT are echoed to the
console, otherwise they're not. The default value is zero.

9. OUTPUT ECHO FLAG ECHOOUT% (integer, output variable)
If the output echo flag is non-zero, then characters sent by MSOFT are echoed to the
console, otherwise they're not. The default value is zero.

10. OUTPUT STRING (string, output variable)
The output string is the string of characters or commands that you wish to send over
the 488 bus. Remember, you don't need an EOS character in your output string.
MSOFT will automatically generate an EOS character, an END message, or nothing at all,
depending on how the EOT switch is set.

11. INPUT STRING (string, input variable)
The input string is the string most recently received by MSOFT. If the EOT switch is
positive (EOS selected), then MSOFT will automatically remove the EOS character from
the end of the string.

Note: the input string variable and the output string variabl.e may have the same name.

As you may have noticed, the input and output string variables are not passed to MSOFT
through the setup functions. There is a method to the madness, however. While the values
of MSOFT numeric variables might change frequently, it shouldn't be necessary to change the
names of these variables very often, if at all. For instance, if you called the timeout variable
TIME%, you may change its value many times, but there Is little need to change its name to
something else. However, when using the MSOFT string variables, there are many occasions
where it would be nice to change the names of the variables used. You could jus t change the
contents of a string variable (by usi.ng an assignment statement like '100 A$ = B$I), but string
assignments take a comparitively long time, and it's faster just to pass the desired string
variable (B$ in this case).

For example, if you have a standard programming string for each instrument on the bus, it is
simpler to say

100 CALL TALK%(HP3455$)
110 CALL TALK%(HP9876$)

than it is to say

100 A$=HP3455$
110 CALL TALK%(A$)
120 A$=HP9876$
130 CALL TALK%(A$)

•••• Quirks. Oddities and Strange Behavior ••••

The following characteristics of MSOFT may give rise to unexpected results. The user should
be aware of these characteristics so that they may be used to aid, rather than hinder, program
development.

1. The CONTROLLER functions CNTL and CNTLC return to Basic with ATN true. The reason
is that in some cases the' user may wanlto send out several different strings and'not have'
ATNgo false in between them; For instan~e, th~.user can write

MSOFT-12 rev 4-14-82 13:49

P&T-488 MSOFT User's Manual

310 CALL CNTL%(A$)
320 CALL CNTL%(B$)
330 CALL CNTL%(C$)

Quirks

and have all three strings be sent as a Controller without ATN going false in between them. A
case in which this might be desirable is shown in the following program fragment:

310 DVMTLK$="T"
320 LCRTLK$=nw"
330 L9876A$=113 11
340 L2631 $="6n
350 UNT$=CHR$(95)
360 UNL$=CHR$(63)
370 PRINT "CODE INSTRUMENT"
380 PRINT" 1 HP 3455A DVM
390 PRINT" 2 HP 4275 LCR METER
400 INPUT "What instrument do you want to TALK (1 or 2)"jTLKNO%
410 PRINT "CODE INSTRUMENT"
420 PRINT· 1 HP 9876A PRINTER
430 PRINT" 2 HP 2631 PRINTER
440 INPUT ·What Instrument do you want to LISTEN (lor 2)njLSNO%
450 CALL CNTLC%(U NT$)
460 CALL CNTL%(UNL$)
470 IF TLKNO%=1 THEN CALL CNTL%(DVMTLK$) ELSE CALL CNTL%(l.CRTLK$)
480 IF LSNO%=l THEN CALL CNTL%(l.9876A$) ELSE CALL CNTL%(l.2631 $)

If CNTL and CNTLC made ATN false before returning to Basic the selected Talker would try to
send data over the bus as soon as line 470 is executed. Since the. Listener had not been
designated yet the Talker would abort with a nNo Listener· error. ATN will be made false
when LSTN%, LSTNC%, IFC% or BRSET% is called.

2. A related topic involves the PARALLEL POLL function PPOLL. It also leavesATN true
when it returns to Basic. The idea is that after a parallel poll the user usually wants to
become a Controller and issue some commands which are based on the results of the parallel poll.
Thus the way it Is set up now ATN remains true between the time of the parallel poll and the
use of the Controller functions. If ATN were made false by the parallel poll function before it
,returns to the Basic program, there would be a period between the poll and the beginning of
the Controller function during which 488 data communication can proceed.

3. The STATUS function updates the error code and then copies the appropriate bits Into the
bus status variable.

4. The way the error code is presently set. up is that the bus communication functions (TALK,
TALKC, lSTN, lSTNC, CNTl, CNTlC, SPOlL and STATUS) can set error bits, but only
TAlKC, LSTNC, CNTLC, BRSET and the user can clear. error bits. Thereasonlng is that you
may want to do a series of bus functions and checiC"'"fOr error only after they are all done (which
considerably speeds up bus communication). If the error code showed only what (if any) errors
occurred during the most recent bus communication function, you would have to keep and
update your own cumulative error flag, which would complete.ly negate any speed improvement.

5. IOSET always sets a default timeout of 254 and PROTCl always sets a default string length
of 254. They do this so that the system will work even if the user forgets to initialize
TIME% and LENGTH%. (Remember that Basic always Initializes integer variables to 0, so if
IOSET and PROTCL did .!!U.. set default values and the user forgot to set the timeout or string
length he would almost always get timeout errors, and never get a listen string because the
string 1et1J;~It3?indfoated that'zerG"characters are to be'gathered from the'bu5.)

6. One problem that often rears its ugly head has to do with how 488 devices terminate a

rev 4-14-82 13:49 MSOFT-13

Quirks P &T ~88 MSOFT User's Manual

message. Some use the END message (EOI true on the last byte), some use a fixed length
message and some use a single End-Of-String (EOS) character. All of these techniques are
eas ily handled by MSOFT. However, there are some devices which use more than one character
to indicate the end of a message: the usual multiple character end of string message is a
carriage return followed by a line feed. The "correct" way to set up MSOFT in this case is
to tell it to look for an EOS character, and tell it that the EOS character is a line feed.
The problem is that the string you get back from MSOFT contains a carriage return as the last
character. At times this can be a real bother. One way of dealing with the problem is to
copy all but the last character of the string into another string with the statement

100 NEW$=LEFT$(OlD$,lEN(OlD$}-1)

7. MSOFTdoes not automatically start up in the RESET state. You must do a CAll 8RSET
in your application programs before you try to do any other bus function.

8. SPOll will leave the bus in theSerialPoH mode instead of the Data mode if It encounters
a bus error (handshake timeout, IFC, etc.). Thus if SPOll is interrupted by a bus error you
must restore the bus to data mode. This can be done by issuing an Interface Clear (IFC), or
by clearing the bus error then sending out Serial Poll Disable (SPD) as a controller.

••••• Gotchyas •••••

Gotchyas (sometimes called "features" by advertising types) are characteristics of a product
which are almost certain to bite the user in a most tender, if not vital, spot. Gotchyas are
usually the result of either a lack of care in the design of the product, or are due to
limitations over which the manufacturer has no control. MSOFT's known gotchyas fall into the
latter category. We have done what we can to limit their number and effect, but the ones we
know about are ei ther unavoidable, or the result of avoiding them is to create even more· of
them. If you find more gotchyas, please let us know so tha t we can warn others of their
existence and possibly get rid of them.

Gotc:;hya Number 1

Basic does not have any mechanism to check that the correct number and type of variables are
passed by a CAll function, so MSOFT cannot determine whether the arguments are valid.
Thus it is extremely important that when you call one of the MSOFT functions that you use
the right number of arguments, and the right type of arguments. Never, NEVER do a call
with the wrong number of arguments, or with arguments of the wrong type. If you do, your
program will most likely fail and give unpredictable results. The best thing to do is to be
extra careful when typing in statements involving MSOFT function calls.

Gotchya Number 2

MSOFT does not perform an automatic.reset when it starts up. You must do a CAll
B RSET% or -;CAll lFC% before you perform any other 488 bus function which looks at the
error code (TALK, TAlKC, lSTN, lSTNC, CNTl, CNTlC or SPOll). You need to do this
only once (it is a bus initialization step). If you neglect to do a CAll BRSET% or a CAll
IFC% before the first time you call TALK, TAlKC, etc, you will most likely get an S loo
RESET error, as well as several others.

Gotchya Number 3 (Occurs only withlSTN and lSTNC)

The way that MSOFT passes a string back to Basic is by dinking with the string address in
the string descriptor area. MSOFT has its own 256 byte buffer to hold any string heard on the
488 bus, and it changes Basic's descriptor area to point to this buffer. Everything is OK
untUyou go to get the next stringby'lSTWor lSTNC~ Iftl1atstringhas a differ,ent.name,
what you wind up with is two differentstrlngnames both pointing to the: MSOFT string.
buffer, so the contents of both strings will be the same.

MSOFT-14 rev 4-14-82 13:49

P&T-488 MSOFT Userls Manual

For example, if you have a program that looks like this

100 CAll lSTN%(A$)
110 CAll lSTN%(B$)

:1**** THIS CODE Will NOT WORK ****
:1**** THIS CODE Will NOT WORK ****

Gotchyas

both A$ and B$ will point to the MSOFT string buffer and will both contain the string heard
with the second lSTN command. The string heard by the first lSTN command will be lost. If
you want to get two or more strings from the bus as a listener without losing the contents
of the earlier strings, you can write your program like this:

100 CAll lSTN%(DUMMY$)
105 A$=DUMMY$
110 CAll lSTN%(DUMMY$)
115 B$=DUMMY$

:1**** THIS CODE Will WORK ****
:1**** THIS CODE Will WORK ****
:1**** THIS CODE Will WORK ****
:1**** THIS CODE Will WORK ****

Statements 105 and 115 cause Basic to copy the contents of DUMMY$ (which happens to be
the string buffer in MSOFT) into strings A$ and B$, respectively. Since A$ is a ~ of what
was heard on the bus statement 110 will not destroy it.

If you do not need to preserve tHe previous message, and, in fact, use the same string
variable over and over, you do not need to worry about this problem. For instance, if you are
waiting for a 488 device to send the string nQUIT" and you want to ignore all others, the
following program segment will work just fine.

100 CAll lSTN%(A$)
110 IF A$OnQUITn THEN 100

:1**** THIS CODE Will WORK ****
:1**** THIS CODE Will WORK ****

The time you have to really watch for this problem is when you want to remember previous
messages. If you are trying to get a set of readings from an instrument 'and you want to
keep them in an array, the following code will not work.

100 FOR 1%=0 TO 3S
110 CAll lSTN%(A$(I%))
120 NEXT 1%

:1**** THIS CODE Will NOT WORK ****

What will happen is that A$(O), A${l), •••• w ill all point to the buffer in MSOFT, and it will
hold only the last reading. The following code will work.

100 FOR 1%=0 TO 3S
110 CALL lSTN%(DUMMY$)
120 A$(I)=DUMMY$
130 NEXT 1%

Gotchya . Number 4

:1**** THIS CODE Will WORK ****
:1**** THIS CODE Will WORK ****

The Serial Poll function SPOLl can leave the bus in a state where the Talker wiU send only its
serial poll response byte instead of data. This occurs only if a bus error (tlmeout, IFe, etc.)
occurs while it is doing a serial poll. Since it already encountered one bus error it assumes
that it cannot send the Serial Poll Disable (SPD) command. One rather common way of getting
a bus error during a serial poll is to try to poll a device which is not connected to the bus.
SPOll will send out its talk address and wait for the response. None is forthcoming since
the device isnlt even there. Eventually a bus timeout error will occur (if the timeout value
had been set to something other than 255) and SPOll will return to your Basic program. But
note that the devices on the 488 bus still think that a serial poll is in progress, and any
de"ice<·whf.isla~r addI'essw.0 as a Talker will send",·i,tsc<serial poll response byte instead of
data,; YC)u'·H;an. tell if this hu occurred by che •• :n1.1;theerr.or code variable after the: ser;ial
poll. If it shows a bus timeout error occurred the other devices on the bus think a serial poll

rev 4-14-82 13:49 MSOFT-15

Gotchyas P&T-488 MSOFT User's Manual

is still In progress. Your program will have to tell them that I t is not. One way is to
become a Controller and send Untallc (UNT Is SF Hex) followed by Serial Poll Disable (SPO Is 19
Hex). Another way would be to send IFC (by calling function IFC), but this method may not
be appropriate at times, because it resets all devices to their power-on state. You may not
want to reprogram them.

.... How to Use MSOFT with Interpreter Basic ••••

MSOFT. COM is comprl sed of two parts: one of which is temporary and is used for
initiaHzatlon, the, second of which remains resident in your system until you exit from Basic ,.
(via the SYSTEMhcommand). You must use "a command line of the following form in order to
bring in both MSOFT and' Basic:

MSOFT MBASIC [fttename'optlons]

Notice that you may (but do not have to) specify the name of the ·Basic program which you
want to run and you may also specify the normal Basic options, such as memory size, number
of disk file buffers, etc. For example, if you want to run the Basic program BISAMPL.BAS
and you also want to set the memory size option to limit Basic to only the first 32 Kbytes of
memory, the command line would look like this:

MSOFT MBASIC BISAMPL IM:32767

Note that one and only one space must separate each of the commands on the command line •

..... NOTe ••••
If you have renamed your GOpy of MBASIC to some new name, substitute the new name
wherever RMBASlCtJ appears in these command line examples •.

What MS0F1' actuatl1do.s is.' that it first relOGates. the retiiilenlmodule"so that it liu"jlilst\,
below the operating system (BOOS for CP 1M). It then takes the rest of the GOmmand line and
·submits*: it to·,.the operating.~system, JUSl as if it were typed in by the user directly. Thls.~.
is the reason thal you must give the name of your. BasiG interpreter on the command line. If·
you only type MSOFT o;;theGOmmand line MSOFT will reloGate its resfdentmodule to lie just
below the operating system and then return to the operating system. CP 1M will then reload the
CCP (Console Command Processor) to get your next Gommand. However, the CCP also lies just
below the operating system and destroys the resident module of MSOFT.

MSOFT also changes the JMP BOOS in location OOOSH toa JMP to Its own beginning address.
That address contains a JMP BOOS so the BOOS Galls (that is, CALL OOOSH) work normally.
MSOFT does all this to protect itself from the self-sizing feature Of Basic.

•••• How to Use MSOFT with Compiling Bash;

The general scheme of operation is very similar to that used for the Interpreter version of
Basic~, but there are a few differences... First and foremost is that the argument to: a . CALL, in
tlle.tnte.rprete.rmust be· an' integer. or integ.,- variable. This is wIlyeach.name. ended with.a.
percent sign.:. (%).. Tti~compjler does .. ;NOT call an InUler.. Instead. the art",ment to itS.'CAlL
is what Is known as a PUBLIC LABEL. There are only two points tllat you really need to
concern yourself with: (1) the name of each 488 function MUST BE the names shown earlier and
(2) eaGh name does NOT end with a percent sign. This means that while you may Gall the
Serial Poll function any integer name you like in an interpreter program (SPOLL%, SP%, 1%.
etc.), you must Gall it SPOLL in a program to be compiled. -
Since the argument of each CALL is a public label in compiling BaSic, you do not have to tell
MS(}r;.T"whi1'vat.j.abtH'~\ to ""use'" (as. i s;t dOWe""1 rtf M8'~SI'N'tr~BAst'. N~'" do "yott'"ha'¥e';'to~catculatll ,-
SET,·tnifi...1\" It" 'w'ill';'no' ··li'h·· ... ·' -ki .. .w'·u~ .. '.·do·' bdt"'it' iir"'::no*"'nioo~'''''''''''''''''' in';:a 'p-"''"'''''''w'' I<£"",:.:m:·.'fl'" "ur14 •. .':l ",- ',>. ~,~ Uli,',," "''''J.-".t-t~.ffI'',*,ll.:;,:,,",,,:,,v~,*- '.'~7 u. '," "'~." .~.,;;, ,~ .. ,fiii~, !':r;i:~: .'.' ',.,. ,~;,V&If~~l-'f':l' ,IU~I.-"'_'ft'- :., "t'

be compiled. You Gannot do a CAll SETUP (CNTL%, CNTLC% ••••) because the compiler wiU

MSOFT-16 rev 4-14-82 13:49

P &T -488 MSOFT User's Manual MSOFT and Compiling Basic

not allow more than ten parameters to be passed through a CALL. There is no problem,
because SETUP Is not needed for the compiler anyway.

You do have to define all the communication variables (ERCODE%, TIME%, etc.) and CALL the
functions 10SET and PROTCL. As In the interpreter version, you need to CALL ECHO only if
you want to enable the input and/or output echo.

The program BCSAMPL.BAS is exactly the same as BISAMPL.BAS EXCEPT that the modifications
necessary to make It compile have been made. Note that each 488 function name has had the
ending percent sign (%) stripped off of it, since each Is now a public label Instead of an
integer variable. Lines 1160 through 1300 have been removed.

The following dialog shows how the program BCSAMPL.BAS was complied with Microsoft's version
5.30 Basic complier and then linked to the MSOFT. REL file to generate the executable
BCSAMPL.COM file. Note that BCSAMPL.COM stands alone: you need only type

BCSAMPL

to run it. This is in marked contrast to the Interpreter version in which you have to type

MSOFT MBASIC BISAMPL

•••• Example of how to Compile an MSOFT Procram ••••
NOTE: In the following dialog these conventions have been used:

1. Everything typed by the operator is shown underscored.
2. The character sequence <CR> means that the CARRIAGE RETURN key was typed.

(Sometimes this key is labeled RETURN or ENTER.)
3. Version 5.30 of Microsoft's Basic complier was used.
4. The -/0" switch was used so that BCSAMPL.COM will run without the BRUN.COM

runtime package.

rev 4-14-82 13:49

B>BASCOM<CR>
*=BCSAMPL/O<CR>

00000 Fatal Errors
14101 Bytes Free

B>LfK)<CR>

Llnk~ 3.43 14-Apr-81 Copyright (c) 1981 Microsoft

*BCSAMPL/E,BCSAMPL/N,MSOFT<CR>

Data 0103 4639 <17718>

18563 Bytes Free
[0162 4639 701

B>

MSOFT-17

... ISAMPL and BCSAMPL P&T-488 MSOFT User's Manual

»»»»»> NOTE ««««««

The following source-code programs are included for illustrative purposes. Permission is granted
to the reader to reproduce or abstract from these programs. These programs are the ONLY
portion of this manual that may be reproduced without the prior written permission of

Pickles & Trout, P.O. Box 1206, Goleta, CA 93116

Comments on .BISAMPL.,BAS; and BCSAMPL.BAS

These. programs can be used, to experiment with how MSOFT works, as well as exper.iment with.
how any device attached to the 488 bus responds to various commands.. The programs differ.,
only in that BISAMPL is the version that is for the interprete.r-verslon of Basic, while·
BCSAMPL is the version for the Basic compiler. They differ In that the arguments of all the
CALLs in BISAMPL are integers (end with a % sign), while in BCSAMPL they are public labels.
Also, BCSAMPL does not do a CALL SETUP(•••).

These programs request the user to specify what function is to be performed by MSOFT, and
whatever other information is needed in order to perform it. For instance, if the user
indicates that the TALK function is to be used, the programs ask for the string that is to be
sent over the 488 bus by the P&T-488as a talker. After all necessary information has been
entered the programs perform the function and report the value of the error code, what function
was performed and any appropriate error message.

The programs ·hav.e a special string coUection routine (lines 3160 through 34l;O). Ba.slc does.not
normally allow characters such as line feed and carriage return to be included In a string
gathered ,frOm the,~console keyboard. However, it is often necessary to in~lild~· these and other
control characters In strings which are to be s.ent over the 488 bus . while the P&T:488;. is a
talke,'o(·'a>corttCollet'i These control characters can be entered into the tallcand"cQfltroi strings·",
by preceding them with an EscAPE character. For example, to get the string

1234<ESCAPE>$%<RETURN><L1 NE FEED>
you would type

1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FEEO><RETURN>

Notice that each control code «ESCAPE>, <RETURN> and <LINE FEED» is preceded by an
<ESCAPE>. The very last <RETURN> is not preceded by an <ESCAPE> because it is the
delimiter telling Basic that the string is complete. The BACKSPACE key can be used to
correct errors. BACKSPACE .can be put into thestring<.by preceding it (like the other-control
characters) with an <ESCAPE>. The only character that cannot be put into .astring Js Control
C.(ETX) because Basjcrecognizes it as an abort.

As ,an illustration of how' to use these programs, assume you have a Hewlett-Packard S9309A
Digila:! aock~ The programming codes for this clock are the follow!n.g:

R
P
T

Reset the clock to 01:01 :00:00:00
Stop the clock
S tart the clock

S Add one second to the time displayed by the clock
M Add one minute to the time displayed by the clock
H Add one hour
0' Acicl .. omti day"<'

MSOFT-18 rev 4-14-82 12:49

P&T488 MSOFT User's Manual BISAMPL and BCSAMPL

NOTE: When the front panel display is the following:

Month
12

Day
28

Hour
11

Minute
23

Second
14

The output to the 488 bus (when addressed to talk and with colon format) is in the following
format:

(1 or <SP>
Status

<SP»
Space

12
Month

28
Day

11
Hour

23
Minute

14 <CR>
Second

The status character "1" means that there is an error. The status character
<SP> means that there is no error.

<LF>

The following example shows how to reset, set and read the time. It is assumed that the
Talk address of the clock is "E" and the Listen address is "%". Underlined sections in the
example are what the operator typed on the console: the rest is the computer's response. Note
that the mnemonic <CR> means that the Carriage Return key is pressed, NOT that the four
Individual characters <, C, R, and > were pressed. To save paper [MENU] is shown in
place of the menu that will actually appear on your console. The marginal comments indicate
what it was that I was trying to accomplish at each step.

A>MSOFT MBASIC BISAMPL<CR>

P&T 488 - MBaslc Interface Software Revision 0.63
Copyright 1981,82 by Pickles & Trout

BASIC-80 Rev. 5.21
(CP/M Verslonl
Copyright 1977-81 (C) by Microsoft
Created;. 28-J u 1-81
24967 Bytes free

r. CONTROL Become the Controller and output a command
2. TALK Become a Talker and send a string
3. LISTEN Become a Listener and receive a string
4. REMOTE Make the REN (Remote ENable) line true
5. LOCAL Make the REN I I ne fa I se
6. IFC Issue an IFC (InterFace Clear) command
7. RESET Reset the P&T 488 Interface
8. STATUS Display the current 488 bus status
9. SPOLL Perform a Serial Poll of the 488 bus
10. PPOLL Perform a Parallel Poll of the 488 bus

string

11. Change the communication protocol (EOT switch, EOS, and string length)
12. Change Input echo, output echo and timeout values
13. Change S-100 port numbers(olP switch on P&T;"488 card must agree)

Which would you like to do? ~ send Interface Clear to 488 devices
Function = INTERFACE CLEAR Error Code = 0
NORMAL RETURN no errors have occurred

[MENU)

Which would you II.keto dO?4<~> makeREN Ilnetrue'''I:
Function.'" RSMQTt·'ENABLE E~rot"Code.= 0
NORMAL RETURN

rev 4-14-82 12:49 MSOFT-19

BISAMPL and BCSAMPL P&T-488 MSOFT User's Manual

(MENU I

Which would you like to do? ~
Please enter the Control string
STRING:~
Function = CONTROLLER Error Code" 2

address the clock as a Listener

NO LISTENERS - I cannot talk to myself! Oh dear, I forgot to connect the 488 cable

(MENU I

Which would you like to do? 6<CR)' connec.tedAhe cable, let's try again
Function = INTERFACE CLEAR Erro~"Code.= 0
NORMAL RETURN·

[MENU)

Which would you like to do? ~ make REN line true
Function = REMOTE ENABLE Error Code = 0
NORMAL RETURN

[MENU I

Which would you like to do?~ address the clock as a Listener
Please enter the Control string
STR I NG: %<CR> ----Function = CONTROLLER Error Code = 0
NORMAL RETURN andthe"cc lock's Irldlcato""'shows .·thai'" tl s addressed"

(MENU)

Which Wdu·tdyou like .. to do?2.q:R> set the.i.clock to Jan. 5~. 8: 10 AM and 15 seconds~.
Please enter 1'I1e Talk string
STRING: RPDOODHHHHHHHHMMMMMMM~SSSSSSSSSSSSSSS<CR>
Function .. TALKER
NORMAL RETURN

(MENU J

Error Code .. 0
and the clock displays 01:05:08:10:15

Which would you like to do? ~
Please enter the Talk string
STRING: T<CR>

start 1'I1e clock when the time Is 8:10:15

Functlon~LKER
NORMALREfORN

(MENU)

Error Code .. 0
ttleclock ts. now running

WInch would:you like to do? H<CR> make line fee~ the EOS byte
The current communication protocol setup Is:

EOT switch = 0
EOS value .. 0
String length .. 254

MSOFT-20 rev 4-14-82 12;49

P&T-488 MSOFT User's Manual

[MENU)

Which would you like to do? ~
Please enter the Control string
STRING: ?E<CR>
Function = CONTROLLER
NORMAL RETURN

[MENU)

Error Code = 0

Which would you like to do? ~
String heard on the 488 bus Is:

01 :05:06: 16:01
Function = LISTENER
NORMAL RETURN

I MENU)

Error Code = 0

Which would you I Ike to do? tC
Break In 1510
Ok
SYSTEM

B>

rev 4-14-82 12:49

BISAMPL and BCSAMPL

unaddress clock as Listener, address as Talker

listen to the clock

that's the tlmel

press Control C to abort

exit Basic

MSOFT-21

BISAMPL.BAS P&T-488 MSOFT User's Manual

**** BISAMPl.BAS lls~lng ****

10 I

20 f BISAMPL as of 9:54 4-8-82
30 f

40
1000' ===
10to '
1020 I

1030 '
1040 '
1050 '
1060 '
1070 '
1080 '
1090 f

1100 '

Let the operator test each func~lon and observe the
response

Control characters (such as line feed and carriage return) can
be entered Into the TALK and CONTROL strings by preceding the
control character with an ESCAPE. For example, to get the string
1234<ESCAPE>$%<RETURN><LINE FEED> you would type
1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>.

1110 f ==
1120' Initialization Routines
1130 '
1140 I The purpose of these routines Is to Initialize the MSOFT function
1150' addresses and the communication variables.
1160 '
1170 I Calculate the address of the SETUP function
1180 f

1190 TEMP = 256*PEEK(7)+PEEK(6)+9
1200 IF TEMP>32767 THEN TEMP = TEMP-65536!
1210 SETUP% =CINHTEMP) : I convert It to an integer
1220 '
1230 t Set up funcTion call address variables
1240 '
1250CALLSETUP% (CNTL%. CNTLC% ,TALK%. TALKC%, LSTN%, LSTNC%, SPOLL%, P?OLL%,

DREN%, REN%. STATUS%. IFC%. BRSET%, 10SET%. PROTCL%. ECHO%,
10PORT%)

1260 '
1270' Cal I the setup routines to let MSOFT know what variables to use
1280 f

1290 CALL 10SET% (ERCODE%, TIME%, POLL%, BUS%)
1300 CALL PROTCl% (EOT%. EOS%, LENGTH%)
1310 CALL ECHO% (ECHOIN%, ECHOOUT%)
1320 '
1330 ' ===
1340 f Main Menu
1350 f

1360 PRINT: PRINT
1370 PRINT "1. CONTROL
1380 PRJ NT "2. TALK
1390 PRINT "3. liSTEN
1400 PRINT "4. REMOTE
1410 PRINT "5. lOCAL
1420 PRINT "6. IFC
1430 PRINT "7. RESET
1440 PRINT "8. STATUS
1450 PRINT "9. SPOll
1460 PRINT "10. PPOLl

Become the Control lerand output a command string"
Become a Tal ker and send ... a str I ng"
Become a Listener and receive a string"
Make the REN (Remote ENable) line true"
Make the REN I I ne fa I self
Issue an IFC <InterFace Clear) command"
Reset The P&T 488 Interface"
Display the current 488 bus status"
Perform a Serial Poll of the 488 bus"
Perform a Parallel Poll of the 488 bus"

1470 PRINT '''11. Change thecommun I catton proTOcol (EOT.swltch:;EOS, and string I ength) "
1480 PRINT "12. Change inputecho,output"echd.;;)nd tlmequtvalues"
1490 PRINT "13. Change 5-100 port numbers (DIP switch on P&T-488 card must agree)"

MSOFT-22 rev 4-14-82 12:49

· P&T-488 MSOFT User's Manual

1500 PRINT
1510 INPUT "Which would you like to do";F% :' get function code
1520 IF F%<1 OR F%>13 THEN PRINT CHRS(7):GOTO 1360
1530 PRINT
1540 ERCODE%=O :' clear the error code
1550 '
1560 IF F%<>1 THEN 1630
1570 PRINT "Please enter the Control string"
1580 GOSUB 3200 :' get string to send as a controller
1590 FCS="CONTROLLER"
1600 CALL CNTL% (A1S)
1610 GOTO 2730
1620 '
1630 IF F%<>2 THEN 1700

send out the command string

1640 PRINT "Please enter the Talk string"
1650 GOSUB 3200 ' get string to send as a talker
1660 FCS="TALKER"
1670 CALL TALK% (A1S)
1680 GOTO 2730
1690 '
1700 IF F%<>3 THEN 1780
1710 AU=""
1720 FCS="LISTENER"
1730 CALL LSTN%(A1S)

send out a data string

:' get string from the 488
1740 PRINT "String heard on 488 bus Is:"
1750 PRINT AU
1760 GOTO 2730
1770 '
1780 IF F%<>4 THEN 1830
1790 FCS="REMOTE ENABLE"
1800 CALL REN%
1810 GOTO 2730
1820 '
1830 IF F%<>5 THEN 1880
1840 FCS="REMOTE DISABLE"
1850 CALL DREN%
1860 GOTO 2730
1870 '
1880 IF F%<>6 THEN 1930
1890 FCS="INTERFACE CLEAR"

, make REN I I ne true

, make REN line fal se

1900 CALL IFC%
1910 GOTO 2730

:' Issue an IFC command

1920 '
1930 I F F%<> 7 THEN 1980
1940 FCS="RESET P&T 488"
1950 CALL BRSET%
1960 GOTO 2730
1970 '
1980 IF F%<>8 THEN 2040
1990 CALL STATUS%
2000 PRINT "Bus Status is: ";BUS%
2010 FC$="STATUS"
2020 GOTO 2730
2030 ,
2040 IF F%<>9 THEN 2140

, reset the P&T 488

20!?G"PR1NT"Please erl'tep,,·Talk addresses·· to poll"
2060GOSUB.'3200 :' get string oft".,k,addl"esses
2070 PRINT

rev 4-14-82 12:49 MSOFT-23

BISAMPL.BAS

BISAMPL.BAS

2080 FC$="SERIAL POLLII
2090 CALL SPOLL%(Al$,Bl$) :' perform Serial Poll
2100 PRINT "Talk address of responding device Is "iBl$
2110 PRINT "Poll response:::l "iPOLL%
2120 GOTO 2730
2130 I
2140 IF F%<>lO THEN 2200
2150 FCS="PARALLEL POLLII
2160 CALL PPOLL% : I perform parallel poll
2170 PRINT IIpoll response = lIiPOLL%
2180 GOTO 2730
2190 I
2200 IF F%<>11 THEN 2400
2210 PRINT:PRINT
2220 PRINT "The currenT communication protocol setup Is:1I
2230 PRINT
2240 PRINT II
2250 PRINT "
2260 PRINT II
2270 PRINT

EOTswltch
EOS val ue
STring length

'" lIiEOTt
= lIiEOS%
'" "iLENGTH%

2280 INPUT "WhaT Is The new EOT switch value"iEOT%
2290 INPUT "WhaT Is The new EOS value (O •• 255)"iEOS%
2300 IF EOS%>=O AND £05%<=255 THEN 2330 ,
2310 PRINT "The EOS value musT be between"O and 255!"
2320 GOTO 2290
2330 INPUT "What Is The new .STrlng Length (0 •• 255)"iLENG1H%,
2340 IF LENGTH%>=O AND LENGTH%<256 THEN 2370
2350 PRINT liThe LENGTl'lmustbe,·betweewO and 255'.!tI
2360 GOTO 2330
2310 PRinT
2380 GOTO 1360
2390 '
2400 IF F%<>12 THEN 2640
2410 PRfNT':PRI NT

P&T-488 MSOFT User's Manual

2420 PRINT liThe InpUT Echo, OUTpuT Echo, and TimeoUT are currenTly set TO:"
2430 PRINT
2440 P$="N": IF ECHOIN%<>O THEN P$=IIY"
2450 PRINT II
2460 PS='IN":
2470 PRINT "
2480 PRINT "
2490 PRINT

InpUT Echo "iPS
IF ECHOOUT%<>O THEN PS""Y"

OutpuT Echo "iPS
TimeouT Value ";TIME%

2500 PRInT "Echo Input <Y/IIl)";
2510 INPUT Al$: AlS=LEP1$(Al$, 1)

2520 IFA1So"Y" AND A1SOIlN" AND Al$<>"Y" ANO Al$<>"n" THEN 2500
2530 ECHOIN%'-Q: IF A l$="Y " OR A1S"'y" THENECHOIN%=l
2540 PRINT tlEcho Output (YIN)";
25'0 tNPUTA1S : A1S=t:EFT$(A1S,1)
2560 IF A1S0"Y" AND A1S0"N" AND A1S<>"yli AND Al$<>Iln" THEN 2540
2570 ECHOOUT%=O: IF Al$=II'(" OR Al$=lIy" THEN ECHOOUT%=1
2580 INPUT "What Is the new TIMEOUT v.alue (0 •• 25'}"iTIME%
2590 IF TIME%>=O AND TIME%<=255 THEN 2620
2600 PRINT "The TIMEOUT value must be beTween 0 and 2551"
2610' GOTO 2580
2620 PRINT
26~~'/13&O~'"

2~:; IF F%<:>!,13':'tHEnmO<
2650 INPUT "What Is the new S-I00 port number (0 •• 255}";PORT%

MSOFT-24 rev4-14-82 12:49

P&T-488 MSOFT User's Manual

2660 PRINT
2670 CALL I OPORT%(PORT%)
2680 GOTO 1360
2690 '
2700 ' ==
2710' Display function and error code, then return to main menu
2720 '
2730 PRINT
2740 GOSUB 2770
2750 GOTO 1360
2760 '

print function and error message
, go back to main menu

2770 ' ====~======.=======.===================================
2780 '
2790 '

Report 488 Function Errors

2800 PRINT "Function = "iFC$iTAB(40)i"Error Code = "iERCODE%
2810 '
2820 I Interpret Error codes and print error messages
2830 I

2840 IF ERCODE%<O THEN 3140
2850 IF ERCODE%=O THEN PRINT "NORMAL RETURN" RETURN
2860 IF ERCODE%>255 THEN 3140
2870 FOR 1=7 TO 0 STEP -1
2880 10=2e l
2890 R9=ERCODE%-10 : IF R9 < 0 THEN 3120
2900 ERCODE%=R9
2910 ON 1+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100
2920 '
2930 PRINT "SETUP ERROR - either 10SET% or PROTCL% wasn't called before"
2940 PRINT" using one of the MSOFT communication functions"
2950 GOTO 3120
2960 PRINT "NO LISTENERS - I cannot talk to myselfl"
2970 GOTO 3120
2980 PRINT "SERIAL POLL ADDRESS ERROR - no more than one secondary address"
2990 PRINT" may follow a primary address"
3000 GOTO 3120
3010 PRINT "SERVICE REQUEST - a 488 device Is requesting service"
3020 GOTO 3120
3030 PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
3040 PRINT" completing a 488 handshake cycle"
3050 GOTO 3120
3060 PRINT "ATN TRUE - an external controller Is trying 1"0 Issue a command"
3070 GOTO 3120
3080 PRINT "IFC TRUE - reset 488 Interface"
3090 GOTO 3120
3100 PRINT "S-100 RESET - reset Interface (use function 6 or 7)"
3110 GOTO 3120
3120 NEXT I
3130 RETURN
3140 PRINT "SYSTEM ERROR - an II legal error code has been encoutered"
3150 RETURN
3160 I

3170' =========================a=========================z========
3180 ' String Input Routine
3190 I

3200' Get the string. Gather control codes If preceded by <ESCAPE>.
3210 '
3220.Al$=""
3230 PRINT "STRING: "i

rev 4-14-82 12:49 MSOFT-25

BISAMPL.BAS

BISAMPL.BAS P&T-488 MSOFT User's Manual

3240 A8$=INPUT$(1)
3250 IF ASCCAS$)<>13 THEN 3280
3260 PRINT
3270 RETURN

<RETURN> terminates Input

32S0' Use backspace key for character at a time deletion
3290 IF ASCCA8$}=8 THEN IF LEN(Al$»O THEN 3310 ELSE 3240
3300 GOTO 3370
3310 A9$=RIGHT$(A1$,1) keep deleted char
3320 Al$=LEFT$(A1S,LEN(A1$)-1) remove deleted char from string
3330 PRINT CHR$(s);n U;CHR$(8); , delete char from CRT
3340 I If deleted char Is a control char must also delete leading caret
3350 IF ASC(A9$)<32 THEN PRINT CHR$(8);" n;CHR$(8);
3360 GOTO 3240
3370 IF ASC(A8$)=27 THEN A8$=INPUT$(1) :' <ESCAPE> means get next char
3380' Show the control character. If nota .space preceed character with
3390' a caret. Change the control character Into a printing character.
3400 IF A8$>=n " THEN PRINT AS$; ELSE PRINT ncn+CHR$(64+ASC(A8$»;
3410 A1$=A1$+A8$: I Append the character to the string
3420 GOTO 3240

MSOFT-26 rev 4-14-82 12:49

P&T-488 MSOFT User's Manual BCSAMPL.BAS

* •• * BCSAMPL.BAS ••••

BCSAMPL performs the same function as BISAMPL, but Is written for the Basic compiler. The
differences between the two programs Is a consequence of the difference between the Interpreter
and compiler versions of Microsoft Basic. You will notice that al I arguments of CALLs In BCSAMPL
are public labels, while In BISAMPL they are Integers (end with a % sign). Also, lines 1170
through 1260 of BISAMPL are superfluous when the complier Is used, so they do not appear In
BCSAMPL.

•••• BCSAMPL.BAS Listing • •••
10 '
20 ' BCSAMPL as of 10:32 4-8-82
30 '
40 '
1000' ama====.======~ •• ~-=--===== •• =.-======.=.=-•• ====.===
1010 '
1020' Let the operator test each function and observe the
1030' response
1040 '
1050 '
1060 '
1070 '
1080 '
1090 '
1100 '

Control characters (such as line feed and carriage return) can
be entered Into the TALK and CONTROL strings by preceding the
control character with an ESCAPE. For example, to get the string
1234<ESCAPE>S%<RETURN><LINE FEED> you would type
1234<ESCAPE><ESCAPE>S%<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>.

1120' Initialization RouTines
1130 '
1140' The purpose of these, routines Is to Initialize the MSOFT function
1150' addresses and the communication variables.
1160 '
1270' Call the setup routines to let MSOFT know what variables to use
1280 '
1290 CALL 10SET (ERCODE%, TIME%, POLL%, BUS%)
1300 CALL PROTCL (EOT%, EOS%, LENGTH%)
1310 CALL ECHO (ECHOIN%, ECHOOUT%)
1320 '
1330 ' ======================~===========-==================
1340' Main Menu
1350 '
1360 PRINT : PRINT
1370 PRINT "1. CONTROL
1380 PRINT "2. TALK
1390 PRINT "3. LISTEN
1400 PRINT "4. REMOTE
1410 PRINT "5. LOCAL
1420 PRINT "6. IFC
1430 PRINT "7. RESET
1440 PRINT "8. STATUS
1450 PRINT "9. SPOLL

Become the Controller and output a command string"
Become a Talker and send a .strI ngll
Become a Listener and receive a strlngll
Make the REN (Remote ENable) line true"
Make the REN line false"
Issue an IFC (InterFace Clear) command"
Reset the P&T 488 I ntedace"
Display the current 488 bus status"
Perform a Serial Poll of the 488 bus"

1460 PRINT "10. PPOLL Perform a Parallel Poll of the 488 bus"
1470 PRINT "11. Change the communication protocol (EOT switch, EOS, and string length)"
1480PRTNT''ff12. Change Input 'echo, output echo and tImeout valuesll
1490 PRfNT"t3~ ChangeS""100.port number's (DIP switch on P&T-488 card must agree)"
1500 PRINT

rev 4-14-82 12:49 MSOFT-27

BCSAMPL.BAS P&T-488 MSOFT User's Manual

1510 INPUT "Which would you like to do";F% :' get function code
1520 IF F%<1 OR F%>13 THEN PRINT CHR$(7):GOTO 1360
1530 PRINT
1540 ERCODE%=O :' clear the error code
1550 '
1560 IF F%<>1 THEN 1630
1570 PRINT "Please enter the Control string"
1580 GOSUB 3200 : ' get string to send as a controller
1590 FC$="CONTROLLER"
1600 CALL CNTL (Al$)
1610 GOTO 2730
1620 I

1630 IF F%<>2 THEN 1700

send out the command string

1640 PRINT "Please enter the Talk string"
1650 GOSUB 3200 ' get strl ng to send as a ta I ker
1660 FC$="TALKER"
1670 CALL TALK (Al$)
1680GOTO 2730
1690 I

1700 IF F%<>3 THEN 1780
1710 AU=""
1720 FC$="LISTENER"
1730 CALL LSTN(Al$)

:' send out a data strIng

:' get string from the 488
1740 PRINT "String heard on 488 bus Is:"
1750 PRINT A1$
1760 GOTO 2730
1770 '
1780 IF F%~4THEN1830
1790 FC$=tlREMOTE ENABLE"
1800 CALL .. REl'f
1810 GOT02130
1820 '
1830 IF F%<>5 TH.EN 1880
1840 FC$="REMOTE D I SABLE"
1850 CALL DREN
1860 GOTO 2730
1870 I

1880 IF F%<>6 THEN 1930
1890 FC$""INTERFACE CLEAR"

, rnakeREN '1lne tr-ue:.

1 make REN line fal se

1900 CALL IFC
1910 GOTO 2730

: 1 Issue an IFC command

1920 '
1930 IF F%<>7 nlEN 1980
1940 FC$."R6seT~P&T· 488"
1950 CALL BRSET
1960GOTO 2730
1970 t

1980 IF F%<>8 THEN 2040
1990 CALL STATUS
2000 PR I NT "Bus Status Is: "; BUS%
2010 FC$="STATUS"
2020 GOTO 2730
2030 '
2040 IF F%<>9 THEN 2140

, reset the P&T 488

2050 PR I NT tip I ease enter Ta I k addresses to pol I"
2060'OOS(JB 3200~ :' ge1: s*4I'1g:~ofrtal·k addJ!e~ •.. '
2070 PRtNT
2080 FC$="SERIAL POLL"

MSOf:T-28 rev 4-14-82 12:49

P&T-488 MsOFT User's Manual

2090 CALL sPOLL(A1S.B1S) :' perform Serial Poll
2100 PRINT "Talk address of responding device Is ";Bl$
2110 PRINT "Poll response = ";POLL%
2120 GOTO 2730
2130 '
2140 IF F%<>10 THEN 2200
2150 FCS=''PARALLEL POLL"
2160 CALL PPOLL :' perform parallel poll
2170 PRINT "Poll response = ";POLL%
2180 GOTO 2730
2190 '
2200 IF F%<>11 THEN 2400
2210 PRINT:PRINT
2220 PRINT "The current communication protocol setup Is:"
2230 PRINT
2240 PRINT"
2250 PRINT"
2260 PRINT "
2270 PRINT

EOT switch
EOs value
String length

= ";EOT%
= ";EOs%
= ";LENGTH%

2280 INPUT "What Is the new EOT switch value";EOT%
2290 INPUT "What Is the new EOs value (0 •• 255)";E05%
2300 IF EOs%>=O AND EOs%<=255 THEN 2330
2310 PRINT "The E05 value must be between 0 and 2551"
2320 GOTO 2290
2330 INPUT "What Is the new String Length (0 •• 255)";LENGTH%
2340 I FlENGTH%>=O AND LENGTH%<256 THEN 2370
2350 PR I NT "The LENGTH must be between 0 and 255!"
2360 GOTO 2330:
2370 PRINT
2380 GOTO 1360
2390 '
2400 IF F%<>12 THEN 2640
2410 PRINT:PRINT
2420 PRINT "The Input Echo, Output Echo, and Timeout are currently set to:"
2430 PRINT
2440 PS="N": IF ECHOIN%<>O THEN PS="Y"
2450 PRINT" Input Echo ";PS
2460 PS="N": IF ECHOOUT%<>O THEN PSa"Y"
2470 PRINT" Output Echo "iPS
2480 PRINT" Timeout Val ue "iTlME%
2490 PRINT
2500 PRINT "Echo Input (Y/N)"i
2510 INPUT AIS : A1S=LEFTS(A1S,I)
2520 IFA1S<>"Y" AND A1S<>"N" AND A1S<>"y" AND Al$<>"n" THEN 2500
2530 ECHOIN%=O: IF A1S=''Y'' OR AU-"y" THEN ECHOIN%-1
2540 PRINT "Echo Output (YIN)"i
2550 INPUT AIS : A1S-LEFTS(A1S,I)
2560 IF A1S<>1'Y" AND A 1$<> lIN" ANDA1S<>"y" AND A1S<>"n" THEN 2540
2570 ECHOOUT%=O: IF Al$="Y" OR A1S="y'l THEN ECHOOUT%-1
2580 INPUT "What Is the new TIMEOUT val ue (0 •• 255)"iTIME%
2590 IF TIME%>=O AND TIME%<=255 THEN 2620
2600 PRINT "The TIMEOUT value must be between 0 and 2551"
2610 GOTO 2580
2620 PRINT
2630 GOTO 1360
2640 IF F%bUTHEN 273()·
2650 INPUTi"Wl'iat Is thenew:S-l00 port number (O .. 255~"';P:()RT%
2660 PRINT

rev 4-14-82 12:49 MSOFT-29

BCsAMPL.BA5

BCSAMPL.BAS P&T-488 MSOFT User's Manual

2670 CALL 10PORT(PORT%)
2680 GOTO 1360

2690 '
2700 1 ==========-===a:2_============a=-==============-=-====
2710' Display function and error code, then return to main menu

2720 '
2730 PRINT
2740 GOSUB 2770
2750 GOTO 1360
2760· ,

2780 '
2790 f

:' print function and error message
, go back to main menu

Report 488· Functfon Errors'

2800 PRINT "Function .. "; FCS;TAB(40); "Error Code"" ";ERCODE%

2810 '
2820 ' I nterpret Error codes, and , pr Int error messages

2830'
2840 IF ERCODE%<O THEN 3140
2850 IF ERCODE%==O THEN PR I NT "NORMAL RETURN" RETURN
2860 IF ERCODE%>255 THEN 3140
2870 FOR 1-7 TO 0 STEP -1
2880 10=2'>1

2890 R9=ERCODE%-10 : IF R9 < 0 THEN 3120
2900 ERCODE%=R9
2910 ON 1+1 GOTO 2930,2960,2980,3010,3030,3060,3080,3100

2920 '
2930 PRINT "SETUP ERROR - either 10SET% or PROTCL% wasn't called before"
2940 PR tNT" usl ng.,one of the. MSOFT"cornmun I cation funct~ons!.':·
2950 GOT03120
2960 PRINT UNO LISTENI;RS'''' I cannot talk to myse'UI"
2970 GOTO.312O

2980 PRINT' "SER IALPOLL· ADDRESS . ERROR '.- no. more than . one"seeondary addl1-9ss!'
2990 PRINT" may follow a primary address"
3000 GOTO 3120
3010 PRINT "SERVICE REQUEST - a 488 device Is requesting service"
3020 GOTO 3120
3030 PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
3040 PRINT" completing a 488 handshake cycle"
3050 GOTO 3120
3060 PRINT "ATN TRUE - an external controller Is trying to Issue a command"
3070 GOTO 3120
3080 PRI NT "I FC TRUE - reset 488 I nterface1l

3090 GOTO 3120
3100 PRINt 1IS"·100 RESEr'- reset, Interface (use function 6 or'7)11
3110 GOTO 3120
3120 NEXT I
3130 RETURN
3140 PRfNT'''SYSTEM 'EAAOR - an Illegal error,code has'beenencouteredtl '

3150 RETURN

3160 '
3170' ... -=-----............-==== ••• -
3180 ' String Input Routine

3190 '
3200' Get the str I ng. Gather contro I codes I f preceded by <ESCAPE>.
3210 '
32m Al$"ltII

3230 PRINT uSTRINGt;~'";
3240 A8S=INPUT$(I)

MSOFT-30 rev 4-14-82 12:49

P&T-4SS MSOFT User's Manual

3250 IF ASC(ASS)<>13 THEN 3280
3260 PRINT
3270 RETURN

• <RETURN> terminates Input

3280' Use backspace key for character at a time deletion
3290 IF ASC(AS$)=S THEN IF LEN(A1S»0 THEN 3310 ELSE 3240
3300 GOTO 3370
3310 A9$=RIGHT$(Al$,I) keep deleted char
3320 A1S=LEFTS(A1S,LEN(Al$)-I) :' remove deleted char from string
3330 PRINT CHRS(S);" ";CHRS(S); • delete char from CRT
3340' If deleted char Is a control char must also delete leading caret
3350 IF ASC(A9$)<32 THEN PRINT CHRS(S);" ";CHR$(S);
3360 GOTO 3240
3370 IF ASC(ASS)=27 THEN ASS-INPUTS(I) :' <ESCAPE> means get next char
3380' Show the control character. If not a space preceed character with
3390' a caret. Change the control character Into a printing character.
3400 IF AS$>=" " THEN PRINT ASS; ELSE PRINT 'to"+CHRS(64+ASC(AS$»;
3410 A1S=A1S+ASS :' Append the character to the string
3420 GOTO 3240

rev 4-14-S2 12:49 MSOFT-31

BCSAMPL.BAS

,
B488INIT.BAS P&T-488 MSOFT User's Manual

H** M88INIT.BAS ****

\
ThIs program fragment Is Included on your disk as an aid In writing programs for MSOFT. AI I of
the setup calls are Included. Its primary utility Is that all the varIables are called In the
correct order In the setup routines. Remember that Bas I c does not check to make sure that the
right number of parameters are passed, nor does It check to make sure they are of the correct
type. SInce B488INIT.BAS has all of the setup calls in It, if you copy lit to your program you
are sure that the right number and type of parameters are used. Also, you are spared the
frustration of spendIng hours trying to get a program to work only to find out that you have
mt'spelled:a function' name, or: have accldentl ychanged the order of the parameters.

**** 8488INIT.BAS'Lls1:lng ****

110' Initialization Routines

120 '
130' The purpose of these routines Is to Initialize the MBAS488 function
140' addresses and the communication variables.

150 '
160' Calculate the address of the SETUP function

170 '
180 TEMP .. 256*PEEK(7.)+PEEK·(6)+9
190 IF TEMP>32767 THEN TEMP .. TEMP-655361
200 SETUP% =CINTCTEMP) :' convert It to an Integer

210 '
220' SeTup,func1:t6ncall address variables

230 '
240 CALL SE'ttIP%"(CN'FL'. CNTLC$.• TALK%. TALKC%, LSTNl,LSTNC%. SPOLL.%. PPOL.L%,

OREN%. REN%. STATUS%. IFCl, BASET%, IOSET%. PROTCU, ECHOl,
IOPORT%)

250 '
260' Call the setup routines to let MBAS488 know what variables to use

270 '
280 CALL IOSET% (ERCODE%, TIME%, POLL%, BUS%)
290 CALL PROTeL% (EOT%, EOS%, LENGTH%)
300 CALL ECHO% (ECHO I N%, ECHOOUT%)

310 '

MSOFT-32 rev 4-14.",,82 12:49

P&T-488 MSOFT User's Manual BICLOCK.BAS

•••• BICLOCK.BAS ••••

This program demonstrates how simple an interpreter Basic program can be. The first part is a
copy of B488INIT, and the error-reportlng subroutine was lifted from BISAMPL. Thus only lines
1340 through 1650 are unique to this program. This program initializes the 488 bus (by sending
an Interface Clear), puts an HP S9309 clock into the Remote mode (by making the REN line
true and then sending the clock's Listen Address). It then addresses the clock as a Talker and
listens to the data (status, date and time) that the clock sends over the bus. It displays the
date and time each time the minutes change. It also displays the data each time the status
character indicates a clock error.

10 '
20 ' BICLOCK as of 14:30 4-09-82
30 '
40 '

1010 '
1020' This Is an Interpreter Basic program which addresses an
1030' HP 59309A clock as a talker and then reads the time and
1040' date. It continually rereads the time and displays the
1050' time and date on the console each minute.
1060 '
1070' The program assumes that the bus output format of the
1080' 59309A Is set to SPACE, CAL and COLON. It also assumes
1090' that the TALK address of the clock Is "En and the
1100' LISTEN address of the clock Is n%".
1110 '
1120 ' =-............ =====.=-= •• =============.==== •• ====
1130' Initialization Routines
1140 '
1150' The purpose of these routines Is to Initialize the MSOFT function
1160' addresses and the communication variables.
1170 '
1180' Calculate the address of the SETUP function
1190 '
1200 TEMP • 256*PEEK(7)+PEEK(6)+9
1210 IF TEMP>32767 THEN TEMP = TEMP-655361
1220 SETUP% • CINTCTEMP) :' convert It to an Integer
1230 '
1240' Set up functIon call address variables
1250 '
1260 CALL SETUP% (CNTL%, CNTLC% • TALK%. TALKC%. LSTN%. LSTNC%. SPOLL%. PPOLL%.

DREN%. REN%. STATUS%. IFC%. BRSET%. 10SET%. PROTCL%. ECHO%.
IOPORT%>

1270 '
1280' Call the setup routInes to let MSOFT know what variables to use
1290 '
1300 CALL 10SET% (ERCODE%.TIME%. POLL%. BUS%)
1310 CALL PROTCL% (EOT%. EOS%. LENGTH%)
1320 CALL ECHO% (ECHO I N%. ECHOOUT%)
1330 '
1340 CALL IFC% :' Do an Interface Clear (IFC)
1350 CALL REN% : ' Make the REN I I na true
1360 A1S="1"+CHRS(95)+"%"
1370 CALL CNTLC%(A1S)
1380 '
139OIFERCODEJ<>0 THEN 1640
1400 '

rev 4-14-82 12:54

:' Un II stan. Unta I k. LI sten Address 11%"
:' Become the Controller and output AIS

(This .putstheclock Into the REMOTE model.
: ' ReporT any errors

MSOFT-33

B I CLOCK. BAS P&T-488 MSOFT User's Manual

1410 TIME%"255
1420 EOT%".l
1430 EOS%=10
1440 OLOMIN%-1

1450 '
1460 '

:' 00 not time handshake
:1 Stop on End-Of-Strlng (EOS) byte
: 1 Make I I ne feed the EOS byte
: 1 Make OLOM I N some va I ue wh I ch cannot

match a clock reading

1470 AI$="?"+CHR$(95)+"E" :' Unllsten, Untal k, Tal k Address "E"
1480 CALL CNTLC% (A 1 S) :. ' Become the Contro I I er and output A 1$
1490 IF ERCOOE%<>O THEN 1640 :' Report any errors
1500 CALL LSTNC%(A2S) :' Read the clock
1510 IF ERCOOE%<>O THEN 1640 :' Report any errors
1520 1 If the first character Is"a "?" then'the'clock Is In error'
1530 IF MIOS(A2S,I,I)·" "THEN 1580
1540 PRINT "CLOCK ERROR, ";A2$
1550 PRINT "Reset clock" : 1 Tell operator,.c:lockneeds,rese,ttlng
1560 END : 1 ThEm exi t program
1570 1 Make MIN% the value of the unit minutes character
1580 MIN%=ASC(MIOS(A2$,13,1»

, 1590 1 Show the time If the minutes have changed
1600 IF MIN%<>OLOMIN% THEN PRINT A2S
16100LOMIN%=MIN% :1 Update OLOMIN%
1620 GOTO 1460 : 1 Read the clock again
1630 1
1640 GOsua 1670 : 1 Report the error
1650 GOTO 1340 : ' go back to I FC, REN,
1660 1

eTC

1670 1 _~=~= =====-.. __ = ____ ======_=_====

1680 1 Repor1" 488 Function Errors
1690 I

1700·,1 Int.,..pret«E ror COQ~S .and print error messages
17tO 1

1720 IF;EI&OOE%<OTHEN 2020
1730 IF ERCOOE%=O THEN RETURN
1740 IF £RCOOE%>255 THEN 2020
1750 FOR 1=7 TO 0 STEP -1
1760 100tei

1770 R9=ERCOOE%-10 : IF R9 < 0 THEN 2000
1780 ERCOOE%=R9
1790 ON 1+1 GOTO 1810,1840,1860,1890,1910,1940,1960,1980
1800 1

1810 PRINT "SETUP ERROR - eiTher 10SET% or PROTCL% wasn't called before"
1820 PRINT'" us1ngone of the MSOFT communIcation functions"
1830 GOTO 2000
1840 PRINT "NO, liSTEHERS-lcannoT,tal k 1'o'1IIyself!"
1850 GOT02000
1860 PRINT "SERIAL POLL ;ADDR£$S ERROR -nomorethan one seco.ndary'address"
1870 PRINT.;ll mayfoHow aprimary'address",
1880 GOTO '2000 .
1890 PRINT "SERVICE REQUEST - a 488 device Is requesTing service'.
1900 GOTO 2000
1910 PRINT "TIMEOUT ERROR - the specified amount of time has elapsed without"
1920 PRINT" completing a 488 handshake cycle"
1930 GOTO 2000
1940 PRINT "ATN TRUE - an external controller Is trying to Issue a command"
1950 GOrO 2000
1960 PRINJ:"IFtr:TRUe;.-·"reset. 488~iii nter,tacelliJ

1970 GO'I'O·20Q6··
1980 PRINT "5-100 RES~'

MSOFT-34 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

1990 GOTO 2000
2000 NEXT I
2010 RETURN
2020 PRINT "SYSTEM ERROR - an Illegal error code has been encountered"
2030 RETURN

**** Para.e~er Passing ****

BICLOCK.BAS

Even though MSOFT Is designed to work with MIcrosoft Basic, It can be used with scmeother
languages as well. Programs written In assembler, C, Microsoft Fortran and Pascal MT+ are shown
In the fol lowing pages to demonstrate how MSOFT can be used with these languages.

Most languages require some assembler code In order to convert The Mlcrosott Basic parameter
passing convention Into whaTever the language requires. For Instance, C passes parameters on the
sTack buT The called routine mUST not remove them from The stack. Pascal MT+ passes parameters
on The STack and requ I res thaT the ca II ed rouT I ne remove them trom The STack. I n genera I, each
language Is slighTly dltferent and wll I require different parameTer-passing conversion programs.

MSOFT Is designed to Intertace with MIcrosoft Basic, so It uses exactl y the same method of
passing parameters as MicrosofT Basic. The InSTruction

CALL PGMCpara.l. paraml. para.3. param4)
passes the four parameTers paraml, param2, param3 and param4 to PGM. Unl Ike mOST modern
I anguages, Basic passes parameters by reference Instead of by val ue. What this means Is that
Basic passes the address ot the parameter TO the cal led program.

MSOFT uses only Two kinds of parameTers: Integers and STrings. BasJcstores InTegers as 16 biT
(two byte) quanTITies, with the low order bYTe stored at the address, and The high order bYTe at
locaTion address+l. Basic stores STrings in Two parTS: one is the STrIng Itself, and The other
part is the string descripTor (someTimes called a dope vector). The string Itself Is stored in
contiguous memory locations, with the leftmost character stored In the lowest address. The
STrIng descriptor Is a Three-byte block. The first byte contains the number ot charcacters In the
STring (0 •• 255), and the remaining two bytes contain the address of the first char-acter of the
STring. As usual, Basic STores the address lowor-der byte fir-ST.

When Basic passes an InTeger parameTer, IT aCTually passes the 16 biT address where that Integer
Is STored. And when Basic passes a string, IT actually passes the address of the descr-lpTor
block of ThaT string. The called program has TO look In thaT descriptor block to fInd The actual
address of the str-Ing.

Basic does nOT IndicaTe In any manner whaTsoever the number or- type of arguments passed. This Is
why IT Is so ImportanT ThaT you make sure thaT the number and Type are correct when you write a
program. There is no way tor-. the called pr-ograms to check tor- correcTness of number and Type.

Basic passes the parameters In The 16 bIT regiSTers of the 8080!Z-80, and, if there are more than
three par-ameTer-s. In a parameTer table. The address of The fIrst parameTer- Is passed In regiSTer
pair HL. The address ot The.second parameter- (If any) Is passed In regIster pair DE. If there
are three parameTers. the address ot the third par-ameter Is passed In regIster pair BC. If there
are mer-e than Three parameters. the third thr-ough last parameters are put InTO a table and
register pair BC contains the beginnIng addr-ess of that table. The table Is organized as low
byte of parameTer 3. high byte of parameter 3. low byte of parameter- 4. etc.

Let us look at a few examples.

CALL ECHO(ECHOIN%. ECHOUT$>
Ht:.lIO ad<iressof ECHOltI%
DE·;;. ,address' of·ECHOUT%

rev 4-14-82 12:54 MSOFT-35

Parameter Passing P&T-488 MSOFT User's Manual

CALL TALK (A$)
HL = .address.of descriptor block for A$

A$ descriptor block:
Byte 0 = str ing length
Byte 1 = low byte of string address
Byte 2 = high byte of string address

CALL IOSET (ERCODE%. TIME%, POLL%, BUS%)
HL • address of ERCODE%
DE ·.address of TI ME%
BC'='address of parameter table

parameterttab Ie:
Byte 0 • low byte of addres.s of POLL%
Byte 1 =hfgl:!byte of . address of POLL%
BYTe 2 = low byte ofaddress.·;of BUS%
Byte 3 = high byte of address of BUS%

•• ** CLOCK.MAC ••••

This program performs the same function as the Basic program BICLOCK. but this one Is written In
8080 assembler. Notice how the addresses of the parameters are placed In the registers before
the MSOFT functions are called.

The following dialog shows how to assemble .. and link this program with MSOFT.REL. The result Is
an executable file named CLOCK.COM.

. ,

B>MSO =CLOCK<CR>

N •. F~TaI error(s)

8>UJO··CLOOIVE.CI.()CK/~.MSOn:<CR>

Link 80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft

Oata 0103 OB2B < 2600>

38769 Bytes Free
[0000 OB2B 111

B>

CLOCK.MAC·· 4-12-82· 15:32

This assembly program. is designed to be used with theMSOFT interface
software· for· theP&T-488. The primary purPQseof this program Is to
Illustrate how one can use MSOFT from an assembly program.

This program first Initializes the 488 bus by sending an Interface Clear.
It then puts an HP 59309A clock Into the remote mode by making The REN
line true and then addreSSing the clock as a LISTener. This program
then addrE!sses the clock as a Talker and listens to the data (status.
date and time) that the clock sends over the bus. It displays the date
and time each time the mlnuteschang~. It also displays the data. each
tlme.the.~at~,;.l:har,act.r..; I ndJca;t;as.\,a,~l~·;;~J·Pr;. •..

The program assumes that the bus output format of the 59309A Is set

MSOFT-36 rev 4-14-82 12;54

P&T-488 MSOFT User's Manual

to SPACE, CAL and COLON. IT also assumes ThaT The TALK address of The
clock Is "E" and The LISTEN address Is "%".

Declare MSOFT rouTines as EXTernal references

EXT CNTL, CNTLC, TALK, TALKC, LSTN, LSTNC
EXT SPOLL, PPOLL, OREN, REN, STATUS, IFC
EXT BRSET, I OSET, PROTCL, ECHO, 10PORT

CR
LF
ES
BOOT
BOOS

EQU
EQU
EQU
EQU
EQU

JMP

ERCODE: OW
TIME: OW
EOT: OW
EOS: OW
LENGTH: OW
POLL: OW
ECHOIN: OW
ECHOUT: OW
BUS: OW

13
10
'S'
o
5

;ASCII carriage return
;ASCII line feed
;CP/M end of string character
;CP/M rebooT entry
;sTandard CP/M enTry

CLOCK ;Jump TO beginning of The program

o ;sTorage area for 488 error code
o ;storage area for 488 timeout
o ;storage area for 488 EOT switch
o ;storage area for 488 EOS byte
o ;sTorage area for 488 listen string length
o ;sTorage area for 488 poll response
o ;storage area for 488 Input echo switch
o ;storage area for 488 ouTput echo SWiTCh
o ;storage area for 488 bus status variable

Breglster buffer
BBFR1: OW 0
BBFR2: OW 0

OLDMIN: DB
STRVCR: OS
STRBFR: OS

OS
STAK:

CLKMSG: DB
RSTMSG: DB
ERMSG1: DB

DB
DB

ERMSG2; DB
ERMSG3; DB

DB
ERMSG4: DB

DB
ERMSG5: DB

DB
ERMSG6: DB

DB
ERMSG7: DB
ERMSG8: DB

CLOCK: LXI
SHLD.

o
3
64

32

;prevlous minuTes reading
;strlng vector (count followed by address)
;a string buffer

;stack area

CR,LF, 'CLOCK ERROR ' ,ES
'Reset clock',CR,LF,ES
CR,LF,'SETUP ERROR - either IOSET or PROTCL was not'
'cal led before using'
CR,LF,'one of the MSOFT communication functlons',CR,LF,ES
CR,LF,'NO LISTEN~S - I cannot talk to myselfl',CR~LF,ES
CR.LF,' SERIAL POLL ADDRESS ERROR - no more Than one secondary'
cR,LF,'address may follow a primary address' ,CR,LF,ES
CR,LF,'SERVICE REQUEST - a 488 device Is requesting service'
CR,LF.ES.
CR,LF,'T1MEOUT ERROR - the specified amount of time has elapsed'
CR,LF,'wlthout completing a 488 handshake cycle',CR,LF,ES
CR,LF,'ATN TRUE - an external conTroller Is trying to Issue'
, a command',CR,LF,ES
CR,LF,'IFC TRUE - reset 488 Interface',CR,LF,ES
CR,LF,'S-I()Q RESET',CR,LF,ES

H,BUS
BSFR2 ; save address I n second entry of B reg buffer

LXI H,POLL
SHLD BBFRI

"

rev 4-14-82 12:54 MSOFT-37

CLOCK. MAC

CLOCK. MAC P&T-488 MSOFT User's Manual

LXI
LXI
LXI
CALL

B,BBFRI .polnt Be to B register buffer
O,TIME ;polnt DE to address of word holdIng TIME
H,ERCOOE
IOSET

LXI B,LENGTH
LXI O,EOS
LXI H,EOT
CALL PROTCL

LX I O,ECHOUT
LXI H,ECHOIN
CALL ECHO

Issue,an IFC'command
CALL. IFC

Make REN I I ne true
CALL REN

TIME contains the amount of tIme to allow for handshake.
If TIME=255, then the handshake Is not Itmed.

LXI H,255
SHLD TIME'

Turn o.ff Input and output 'echo
lXI H,O
SHLO ECHOIN
SHLO· y ECHOUT

• Set up MSOfT so thaT It wI II stop on EOS (End-Of-Strlng) byte,
;. Sel'TIte EOS . byte to bea line feed.

LXI H,1
SHLO EOT
LXI H,10
SHLO EOS

Set up a strIng for the Control function. We will make the sTrIng
three bytes long: UNLISTEN, UNTALK and LAD (LIsten Address of the clock)

LXI H,STRVCR ;polnt HL to the strIng descrIptor vector
LXI O,STRBFR ;polnt DE to the string buffer
MY1 M,3 ;put The count In the firsT byte. of the vector
INX H

MOV
INX
MOY

M,E'
H
M,O

.put The address of the strIng In the next word
of the vector

Now pUT the characters I rito the str I ng
MYI A, '1' iUNLISTEN
STAX 0
lNX 0
MVI A,'_' iUNTALK
STAX 0
INX 0
MYI A,'%' iLAO (Listen Address of the clock)
STAX' 0

Now send thest":f'ngovep:,~th&}488lbUS''<iIsY"i!a' 'ccmtl"'Ot> • .".,.,
LXI H,STRVCR

MSOFT-38 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

CALL CNTLC

Check error code and report any errors
CALL ERRCHK

If there Is a bus error start the program again
LOA ERCODE
ORA A
JNZ CLOCK

Set up a string for the Control function. We wll I make the string
three bytes long: UNLISTEN, UNTALK and TAD (Talk Address of the clock)

REOTIM: LXI H,STRVCR ;polnt HL to the string descriptor vector
LXI O,STRBFR ;polnt DE to the string buffer
MVI M,3 ;put the count In the first byte of the vector
INX H

MOV
INX

M,E
H

MOV M,O

;put the address of the string in the next word
of the vector

Now put the characters Into the string
MVI A,'?' iUNLISTEN
STAX 0
INX 0

MVI A, '_' iUNTALK
STAX 0
INX 0
MVI A,'E' iTAO (Talk Address of the clock)
STAX 0

Now send the string over the 488 bus as a controller
LXI H,STRVCR
CALL CNTLC

Check error code and report any errors
CALL ERRCHK

If there Is a bus error start the program again
LOA ERCODE
ORA A
JNZ CLOCK

Now become a listener and read the time from the clock
'LXI H,STRVCR itell LSTNC where the string vector Is kept
CALL LSTNC i I I sten to the clock

Check error code and report any errors
CALL ERRCHK

I f there I s a bus error start the program aga I n
LOA ERCODE
ORA A
JNZ CLOCK _

No 488 bus error, so look at the string we got from the clock
LXI H,STRVCR ipolnt HL to the string vector again
MOV e,M ic=count (length of string}
INX H ipolnt to the address of thestl"lng
MaV E,M

rev 4-14-82 12:54 MSOFT-39

CLOCK. MAC

CLOCK.MAC P&T-488 MSOFT User's Manual

INX
MOV

H
O,M ;OE=address ot,strlng heard on the 488 bus

Look at clock status byte to see If there Is a problem

See

LOAX 0

CPI '?'
JZ CLKERR : •• clock error, so report It

If the minutes
LXI H,12

DAD 0
LOA OLOMIN

CMP M
MaV A,M
STA OLOMIN
CNZ SHOT 1M
JMP REOTIM

have changed since the last time the clock was read
;unlts digit of mlnutes'ols the 13th byte of
; the string
; Hl now polents to the un Its dig ltof th&'tII1 n utes
;get old value of units digit of minutes
; compare ,It to the new value
iupdaTe the old value for the next ,time

; •• dlsplay the time It units digiT has changed
;read the time again

This subroutine reports any MSOFT errors on the console
ERRCHK: LOA ERCODE; get the error code

RAR ;rotate right
LXI O,ERMSGI :OE points to appropriate error message
CC SHOERR ;If carry set, display the error message
RAR ; rotate I" I ght
LXI O,ERMSG2 ;OE points to appropriate errot: message
CC SHOERR; .I f carry set, d fsp I ay the. error message
RAR ;rotate'f"lght
LXI. O,ERMSG3 :DEpolnts to appropriate error message
CC SHOERR<; If carry set, d I sp I ay, the error message
RAR ; rotate right
LXI 0 ,~SG4 iDE pol n'fs .. to appropr f ateerror'"message
CC SHOERR ;If carry set, display the error message
RAR ' :rotate right
LXI O,ERMSG5 ;OE pOints to appropriate error message
CC SHOERR ;It carry set, display the error message
RAR :rotate right
LXI O,ERMSG6 ;OE points to appropriate error message
CC SHOERR :If carry set, display the error message
RAR ; rotate I" I ght
LXI O.ERMSG7 iDE points. to appropriate error message
CC SHOEAA; If carry set, d Isp lay the error message
RAR ; rotate right
LXI O~ERMSG8 ;OEpolnts to appropriate error message
CC SHOERR; I t carry set, d I sp I ay . the. error message
RET

; This subroutine dlsplays1'he clock error message and the time
read from the clock on tha console. It then Jumps back to the

• read time routine.
CLKERR: PUSH B ;save string length counter

PUSH 0 .save pointer to listen string
LXI O,CLKMSG .polnt to clock error message
CALL SHOERR; d Isp I ay I t on the consol e
POP 0 ;OEpolnts.1"o beg,l,nnlng "of listen strlngagaJn
POP B ;C conta I nSi';the ,;i5tJ":t.lig;,l ength
CALL SHOTIM ;dlsplay thesTr'tl1g;,W8'9c>'t"frblll,the clock?;
LXI O.RSTMSG ;polnt to reset message

MSOFT-40 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

CALL
JtIf'

SHOERR
BOOT

;and display It on the console
;and go to operating system

This subroutine displays the message pointed to by DE on the console
SHOERR: PUSH PSW ;preseve flags and reg A

MYI C,9 ;select print string function
CALL BOOS
POP
RET

PSW ;restore flags and reg A

This subroutine displays the time on the system console. It uses the
unbuffered CP/M console output function.

SHOTIM: SUB A ;clear reg A
ORA C ; see If count I s zero
RZ ; •• count Is zero, so do not print anything

SHOTl : LOAX 0 ;get the character
INX 0 ;polnt to next
PUSH 0 ;preserve pointer from damage by CP/M
PUSH B ;preserve counter from damage by CP/M
MOY E,A ;put the character In reg E as needed by CP/M
MYI C,2 ;select console output function
CALL BOOS
POP B ;get character counter again
POP 0 ;get character pointer again
OCR C ;decrement the count
JNZ SHOTl ; •• Ioop until all characters printed
MYI E,LF ;flnlsh with a line feed
MYI C,2
CALL BOOS
RET

END

•••• MTSAMPL.PAS ••••

CLOCK. MAC

This program performs the same functions as BISAMPL.BAS and BCSAMPL.BAS. It Is written In Pascal
MT+ (a product of NT Mlcrosystems, Inc.). It requires the program MT488.MAC, which Is an
assembler program which performs the necessary parameter passing conversions. The listing of
MT488.MAC follows MTSAtIf'L.PAS.

The major difference between NTSAMPL and BISAMPL Is that MTSAMPL has a 14th menu Item, namely,
the option of returning to the operating system. This option was not needed in BISAMPL or
BCSAMPL since Microsoft Basic will abort a program when It detects"a Control C typed on the
console.

One point thai' you should notice Is that all of the formal parameters .,of the MSOFT fUnctions
(external procedures pent I through ploprt) are var I ab I e parameters (denoted by.:!!!:.). Pasca I
passes variable parameters by reference Instead of by value. This means that Pascal will pass to
NT488 (and thence to MSOFT) the addresses of the parameters instead of the values. MSOFT
requires the addresses, so remember that you ~ declare the parameters of the MSOFT functions
to be variable parameters.

The fol lowing dialog shows how to compile the program MTSAtIf'L.PAS, assemble MT488.MAC, and link
these programs with MSOFT.REL., The result Is an executable file named MTSAMPL.COM. Since
Pascal/MT+,·uses .. theextension·.ERt to denoterelocatable .(linkable) f II es, we rename MT488.REL
and MSOFT~R€ti to MT488.ERL and MSOFr~ERL, respecTively.

rev 4-14-82 12:54 MSOFT-41

MTSAMPL.PAS

B>MTPLUS MTSAMPL<CR>
Pascal/MT+ Release 5.2
(c) 1980 MT MlcroSYSTEMS

80SO/ZSO Target CPU
+++++++++++++++++ I I ••••• -
Source lines: 396
Available Memory: 12743
User Table Space: 8747
V5.2 Phase 1

""""11" Rema I n I ng Memory: 6942
V5.2·Phase2
8080
INITVAR
ERRREPOR
GETCMD
GETKEY
PUTCHR
APND
CHARDEL
GETSTR
RESULTS
GETPROTO
PRNYN
GETECHO
SAMPI.£"
Linea:
Error·s: '.
Code :
Data :

39
99

1145
2317
2362
2392
2446
2474
2790
293:7
3653
3722

396
o

5564
472

Compilation Complete

B>MSO =MT488<CR>

No Fatal error(s)

B>REN MT488.ERL=MT488.REL<CR>
B>REN MSOFT.ERL=MSOFT.REL<CR>
B>L I NKMT MTSAMPL=MTSAMPL tMT488 • MSOFT ,PASL I BlS<CR>
Llnk/MT+ 5.2b"

Processing file- MTSAMPL .ERL
Processing file- MT488 • an;
Proc.ssing; f It e- MSOFT • ERL .
Process Ingf II e- PASLI B .ERL

UndefIned Symbols:

No Undef I ned Symbol s

0115 (decimal) records written to .COM fife

Total,. Data:: .. 06F5H'b'(te~ .. :
Total Code:;3216Hbyte$""
Remaining :. 7165H bytes

MSOFT-t2

P&T-488 MSOFT User's Manual

rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

Llnk/MT+ processing completed

B>

._.- MTSAMPL.PAS Lls~lng .. _.
program sample;

const
SEQNUM .. 0019;
TITLE '" 0;
maxstr .. 71;

(*edltlng sequence number*)
(*Iast edited (4/09/82-12:50)*)
(*maxlmum length of Input strlng*)

(* Let the operator test each function and observe the response

*)

Control characters (such as line feed and carriage return) can
be entered Into the TALK and CONTROL strings by preceding the
control character with an ESCAPE. For example, to get the string
1234<ESCAPE>$%<RETURN><LINE FEED> you would type
1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FEED><RETURN>

var er __ code, time, poll, bus: Integer;
eot, 80S, len : Integer;
echo __ ln, eCho __ out : Integer;

stop __ f lag : boo I ean ;

cmd : Integer;

bell : char;
bs : char;

str : strlngl2551;
funct strlngl201;
presp : string;

port : Integer;

(*determlnes If the'user wants to abort*)

(*holds number of command to execute·)

(*holds ASCII BEL code*)
(*holds ASCII back space code*)

(*strlng for general usage*)
(*holds type of function for result report*)
(*used for serial poll to return address of*)
(* the device responding to the pol 1*)

(*used when setting the P&T-488 port number*)

(* The following are the declarations for the external procedures that
are used to communicate to the 488 bus. Note that not al I of them
are used by this program. *)

external procedure pent I (var s:strlng);
external procedure pentlc(var s:strlng);
external procedure ptalk (var s:strlng);
external procedure ptalkc (var s:strlng);
external procedure plstn (var s:strlng);
external procedure plstnc (var s:strlng);
external procedure pspoll (var 05,15 : string);
erlerna I proced ure pppo I I ;
external procedure pdren;
external procedure pren;
external, proc.edure pstat.;
external; 'pr'ocedure pi fCls

external procedure pbrset;

rev 4-14-82 12:54 MSOFT-43

MTSAMPL.PAS

MTSAMPL.PAS P&T-488 MSOFT User's Manual

ex'ternalprocedure plose't (varec,'tv,pr,bs : In'teger);
ex'ternal procedure pprot (var eo't,eos.sl : Integer);
ex'ternal procedure pecho (var el,eo : In'teger);
ex'ternal procedure plopr't (var por't:ln'teger);

(* The following ex'ternal function allows direct access to BOOS functlons*)
ex'ternal func'tlon 8BDOS (f:lnteger ; p:word) : Integer;

(*-•• --INITVAR~----*)
procedure In/tvar;
(* Procedure 'to call 'the setup rou'tlnes 'to tel 1 MSOFT'where the con trot

variables are. *)
begin

pioset (er _code, time, poll, bus);
pprot (eo't, eos, len);
pecho (echo_In, echo_out);
bell :achr(7);
bs:=chr(8);

end;

(*---ERR REPORT--*)
procedure err repor't;
(* Procedure 'to report the: meaning .,of the:error code. *)
begin

/f er code<>O 'then

end;

I f (er code<O) or' (er code>255) then
wr I t;fn('SYSTEM ERROR - an III ega I error code has been encountered')

else begin
If ts'tbl't(er __ code,7) 'then

wrlteln('S-IOO RESET-rese'tln'terface (Use Funet I ori 6 or 7)');
If tstbl't(er _code,6) 'then

wrl'teln('IFC TRUE - rese't 488 Interface');
If ts'tbI't(er_code,5) 'then

wrlteln('ATN TRUE - an ex'ternal controller Is trying to Issue a command');
If tstblt(er __ code,4) then begin

wrl'teln('TIMEOUT ERROR - 'the specified amount of time has elapsed without');
wrlteln('
end;

If tstblt(er code,3) then

comple'tlng a 488 handshake cycle');

wrlteln(' SERVICEREQlJEST -a488 device I 5 requesting service!);
If ts'tbI't(er __ code,2) 'then begIn

wrl'teln(lSERtAL POLL ADDRESS ERROR- no more than on6secondary address";
wrl'teln(' may follow a primary address');
end;

If ts'tblt(er~code,l) 'then
wrl'teln(fNO LISTENERS - I canno'tTaI~to mysel fl);

If 'ts'tbltCer __ code,O) then begin
wrlt"eln('SETUP ERROR - either IOSET orPROTCL wasn"'t called before');
wrl'teln(' using one of 'the MSOFT communication functions');
end;

end;

func'tlon ge't __ cmd : In'teger;

MSOFT-44 rev 4-14-82, 12:54

P&T-488 MSOFT User's Manual

(* Function to present menu and Input the code for the bus function
to perform. *,

val" I: Integer; (*varlable for entry of function code*'
begin

repeat
wrlteln; wrlteln;
wrlteln('I. CONTROL Become the Control leI" and output a command string";
wrlteln('2. TALK
wrlteln('3. liSTEN
wrlteln('4. REMOTE
wrlteln('5. lOCAL
wrlteln('6. IFC
wrlteln('7. RESET
wrlteln('8. STATUS
wrlteln('9. SPOll
wrlteln('10. PPOll

Become a Talker and send a string";
Become a listener and receive a string');
Make the REN (Remote ENable) II~ true');
Make the REN line false";
Issue an IFC (InterFace Clear) command');
Reset the P&T 488 Interface');
Display the current 488 bus status');
Perform a Serial Poll of the 488 bus');
Perform a Parallel Poll of the 488 bus');

MTSAMPl.PAS

wrlteln('1'. Change the communication protocol (EOT switch, EOS, and string length)');
wrlteln('12. Change Input echo, output echo, and timeout values');
wrlteln('13. Change S-IOO port numbers (DIP switch on P&T-488 card must agree)');
wrlteln('14. Exit to operating system');
wrlteln;
wrlte('Whlch would you I Ike to do? I);

read I n(I);

If (1<1) or (1)14) then wrlte(bel I);
until (1)0) and (1<15);
get_cmd:=I;

end;

(*--------------• .,.---------..... -----------------... ----.. ------GET KEY-...--.-.*)
function get_key : char;
(* This function returns the next character from the console Input.*>
val" ch : Integer;
begin

repeat
ch:=8bdos(6,wrd(255»;

until ch<>O;
get_key:=chr(ch);

end;

(*---PUT CHR-----*)
procedure put_chI" (ch:.char);
(* Th·'s procedure puts a character out to the console using direct

console I/O. *)
val" dumy : Integer;
beg.!n

dumy:-8bdos(6,wrd(ch»;
end;

(*---.• -------- --- -. ---------- -------------------GET STR-----*'
procedure get_str (val" st : string);
(* This procedure collects a string from the console with Simple back

be entered by preceding them by space editing. Control codes may
ane~pe. *)

val" st ... ten,: Integel"t
ch : char;

rev 4-14-82 12:54

(*variable to"iTacK string length*>
(*varlable for Input character*)

MSOFT-45

MTSAMPL.PAS P&T-488 MSOFT User's Manual

(* ••••••••••• e .••• ~. ~ ••••••••••••• (GET:.-.S~)· ••••••••••••••••••••••• APND •••••••• *,)

procedure apnd;
(* ThIs procedure Is called to append a character onto the end of the

strIng beIng collected. It adjusts the strIng length and rIngs the
bell If the string Is already at Its maxImum length. *)

begIn
If strlen<maxstr then begIn

strlen:=succ(strlen);
stlstrlenl:=ch;
end

else
put_Chr(beU);

end;

(* ." •• • _ • 'e' •••••••• (GET_STR) ••••••••••••••••••••••• CHAROEl *.,
procedure chardel;
(* This procedure Is called to delete a character. It outputs <space>

<back space><space>. *)
begIn

put_chr(bs); put __ chr(1 I); put __ chr(bs);
end;

begIn (*GET STR*l
strI en:=O;
ch:=' ,;
wrlte('STRING: I);

whlle; .. ord(cb)<>13 do bElgJn
Ch::~t':':k~y;
If (Ch>=' I) and (Ch<='·')

api'!d';
put_chr(ch) ;
end

(*set le~!h to.O*)
(*Inlt ch to ,a non-carrIage return*)

(*collect untIl a carriage, return*)
(*get acharactar frOl\!,;the<consol.e*)

then begin
(*append;, cha'''acter~Ottt()'st''lng*)
(*al so echo It to the screen*)

else (*perform varIous control character fcns*)
case ord(ch) of

8: If strlen>O then begIn (*back space => delete char*)
If stlstrlenl<' I then chardel; (*need to delete 2 If ctl chr*)
char-del;
strlen:"pred(strlen);
end;

(*adJust string length*)

27:, begin

13:

else
end;

end;

ch:=get'"'key;
apnd;

(*getccharacteratter"ESC to*)
(* put Into sfrlng*)

(*echo as printIng charpreceeded by 0*)

P\.lt..:.:,~r(101) ;Pllt c!1r(chr(Qrq(chH64J.);
CM_I.I; -- (*mak$sure ch Is nota.carrlage ret*)

end;

put...;.,Chr(bell) ; (*rln9 bell for InvalId chars*)

51'(01 :=ctfc(str' en) l
end;

{*set .. 1 eng;tli' . byte .. 0t,j"l\e,;,retllrr'ied,str"*f

MSOFT-46 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

(*---RESULTS-----*)
procedure results;
(* This procedure reports the results of a function. *)
begin

wrlteln;
wrlteln('Functlon = ',funct,' Error Code = ',er __ code);
If er code=O then wrlteln('NORMAL RETURN')

else err-Ieport;
end;

(*---GETPROTo----*)
procedure getproto;
(* This procedure allows the user to set the EOT switch, EOS value,

and the string length. *)
begin

wrlteln;wrlteln;
wrlteln('The current communication protocol setup Is:');
wrlteln;
wrltel n('
wrlteln('
wrlteln('
wrlteln;

EOT switch
EOS value
String length

= ',eot);
= ',eos);
= ',len);

wrlte('What Is the new EOT switch value1 '); readln(eot);

repeat
wrlte('What Is the new EOS value (0 •• 255)1 '); ,readln(eos);
If (eos<O) or (eos>255) then

wrlteln('TheEOS value must be between 0 and 2551');
until (eos>-o) and (eos<=255);

repeat
wrlte('What Is the new String Length (0 •• 255)1 '); readln(len);
If (len<O) or (180)255) then wrlteln('LENGTH must be between 0 and 2551');

until (len>=O) and (len<=255);

wrlteln;
end;

(*---~-----------GETECHO-----*)
procedure getecho;
(* Th I s proced ure a I lows the user to respec I fy the I n put and output

echo switches and the timeout. *)
var temp: strlngll0);

(* ••••••••••••••••••••••••••••••• (GETECHQ) ••••••••••••••••••••••• PRNYN ••••••• *)

procedure prnyn (v:lnteger);
(* This procedure prints 'N' If the passed parameter Is 0 and 'Y'

otherwlse*)
begin

If v-O then wrlteln('N') else wrlteln('Y');
end;

begin (*GETECHO*)
wrltetnjwrlteln;
wrlteln(tThe Input Echo, OUtput Echo, and Timeout are currently set to:');

rev 4-14-82 12:54 MSOFT-47

MTSAMPL.PAS

MTSAMPL.PAS P&T-488 MSOFT User's Manual

wrlteln;
write ('
write (I
wrlteln('
wrlteln;

repeat
temp:=' ';

Input Echo
Output Echo
Timeout Value

'>; prnyn(echo_ln);
I); prnyn(echo_out);
',time);

wrlte('Echo Input (YIN) : I); readln(temp);
until temp!U In (lY','y','N','n');
If temp!l) In !'Y','y') then echo In:=1 else echo __ ln:=O;

repeat
temp:=' ';
write('Echo Output (YIN) : I>; read{temp);

until temp!l) In (lY','y','N','n');
If templ!) In !'Y','y' J then echo out:=! else echo __ out:=O;

repeat
wrlte('What Is the new TIMEOUT value (0 •• 255)1 I); readln(tlme);
If (tlme<O) or (tlme>255) then

wrlteln('The TIMEOUT value must be between 0 and 255!');
until (tlme>=O) and (tlme<=255);
wrlteln;

end;

begin (*maln program*)
Inltvar; (*Inltlallze variables for control of MSOFT*)
repeat

cmd: =get_cmd;
er_code:=O;
case cmd of

(*get the function to perform*>
(*clear error code*)

I: begin
wrlteln('Please enter the Control string'):
get_str(str);
funct:='CONTROLLER';
pcntl (str);

end;

2: begin
wrlteln('Please enter the Talk string');
get_str(str) ;
funct:='TALKER' ;
ptalkCstr);

end;

3: beg In
funct:='LISTENER';
pi stn(str);
wrlteln('Strlng heard on 488 bus is:I);
wrlteln(str);
eild;

4: begin
f unct: =' REMOTE ENABLE I;
pren;

end;

MSOFT-48 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

5: begin
funct:='REMOTE DISABLE';
pdren;

end;

6: begin
funct:='INTERFACE CLEAR';
plfc;

end;

7: begin
funct:='RESET P&T 488';
pbrset;

end;

8: begin
funct:='STATUS';
pstat;
wrlteln('Bus Status Is: ',bus);

end;

9: begin
funct:='Serlal Poll';
wrltel n('Please enter Tal k addresses to poll');
get_str(str) ;
wrlteln;
pspoll(str,presp);
wrlteln('Talk address of responding device Is ',presp);
wrlteln('Poll response = ',poID;

end;

10: begin
funct:""'Parallel Poll';
pppoll;
wrlteln('Pol I response "" ',poll);

end.

11: getproto.
12: getecho.
13: begin

wrlte('What Is the new S-100 port' number (0-255)1 ').
read I n(port);
pi oprt(port) ;

end.

14: stopflag:=tru8;
end;

If cmd<11 then results.

until stopflag.

end.

rev 4-14-82 12:54 MSOFT-49

MTSAMPL.PAS

MT488.MAC P&T-488 MSOFT User's Manual

**** MT488.MAC ****

The program MT488.MAC performs all the parameter passing conversions necessary for a program
written In Pascal MT+ to work with MSOFT.REL. Pascal MT+ passes parameters on the stack and
expects the called routine to remove them from the stack before returning. MT488.MAC takes the
parameters from the stack and puts.them into the appropriate registers and tables for MSOFT.

title 'Interface routines from Pascal/MT+ to MSOFT'

SEQNUM EQU 0009

The tol lowing are the entry points Into MSOFT
extrn cntl,cntlc,talk,talkc,lstn
extrn Istnc,spoll,ppoll,dren,ren
extrn status, I fc, brset , I oset, protc I
extrn echo,loport

the fol lowing are the names used by MT+ programs to cal I the
I MSOFT rout I nes
entry pcntl, pcntlc, ptalk, ptalkc, plstn
entry plstnc, pspol I, pppol I, pdren, pren
entry pstat, plfc, pbrset, ploset, pprot
entry pecho, ploprt

;--
General routine to call an MSOFT routine that has 1 string passed
to It
on entry: DE.=> address of MSOFT routine to call

; _____ ________ .. _____________________________________ """ _________ ._. _____ <fIIl

strl : pop b ;get return address
pop h ;get address of string
mov a,m ;get length of string
sta dumyl
Inx h ;save address of string
shld dumyla
Ixl h,dumyl ;get address of string pointer block
push b ;put return address back on stack
push d ;jump to target routine
ret

pcntl: Ixl d,cntl ;get address of MSOFT routine
jmp strl

pcntlc: Ixl d,cntlc
jmp strl

ptal k: Ixl d,talk
jmp strl

pta I kc: Ixl d,talkc
jmp strl

ptstn: pop h ; get . return address'·
xthl ;swap It with address of MT+ string on stack

MSOFT-50 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

shld

Ixl
push
call

Iscornn: pop
Idax
I hid
mov
ora
rz
mov
Inx
Idax
mov
Inx
Idax

mtstr

h,dumyl
h
Istn

d

d

mtstr
m,a
a

b,a
d
d
c,a
d
d

mov d,a
mov
Inx

I sl up: Idax

e,c
h

d
mov m,a
Inx h
Inx d
dcr
Jnz
ret

plstnc: pop
xthl

shld

Ixl
push
cal I
jmp

pspoll: pop
pop
shld

pop
mov
sta
lnx
shld
push
Ixl
Ixl
pushc
caU
Jmp

rev 4-14-82 12:54

b

Islup

h

mtstr

h,dumyl
h

Istnc
Iscornn

b

h
mtstr

h
a,m
dumyl
h
dumyla
b
h,dumyl
d,dumy2
d
spoil
Iscornn

;save address where It won't be harmed

;polnt to place for dope vector
;save address on stack
;call listen routine

;get dope vector address Into DE
;get length of returned string
;get address of MT+ string
;set length of returned string
;just return on 0 length

;save length In b
;polnt to addr field of dope vector
;get low byte of address
;save It
;hlgh byte of addr field
;get It

;DE holds address of MSOFT string
;sklp over count field of MT+ string

;transfer a character

;Increment pointers

;decrement count
; loop tl I I done

;get return address
;swap It with address of MT+ string on stack

;save address where It won't be harmed

;polnt to place for dope vector
;save address on stack
;call listen routine

;save return address
;get address of string 2
;save It In a safe place

;get address of string 1
;set up dummy dope vector

;restore return address

; put address of dummydope.,Nector on stack
;call serial pol I routine>
;jump to routine to pass string back to MT+

MSOFT-51

MT488.MAC

MT488.MAC

pppoll: jmp
pdren: jmp
pren: jmp
PST8T: Jmp
plfc: jmp
pbrset: Jmp

plosat: pop
pop
shld
pop
shld
pop
pop
push
Ixl
jmp

pprot: pop
pop
pop
xthl

jmp

pecha: pop
pop
pope
push
Jmp

ploprt: pop
pop
push
Jmp

ppoll
dren
ren
status
Ifc
brset

b
h
dumy4
h

dl.llly3
d
h

b
b,dumy3
loset

h
b

d

protei

b

d
h
b

echo

b

h
b
loport

dumy1: db 0
dumy1a: dw 0

dumy2: db 0
dumy2a: dw 0

dumy3: dw 0
dumy4: dw 0

mtsTr: dw 0

end

P&T-488 MSOFT User's Manual

;save return address,
; get address of bus status var I ab Ie,

;get address of poll result var.lable

;get address)oftlmeout'val.uevarlable
;get address 'of error code 'variable
;restore return address
;polnt to additional parameters
; J ump to MSOFT rout I ne

I
;save return address
;get address of string length variable
;get address of EOS variable
jhl = address of EOT'swltch'vartable
;tos -return . address
; jump to MSOFT rout I ne

;save return address
;get address of echoout variable
;get address of echo In variable
;restore return address
;jump to MSOFTroutlne

;save return address
;get address of .port variable
;restore return address

MSOFT-52 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual MTCLOCK.PAS

•••• MTCLOCK.PAS ••••

This program performs the same function as the Basic program BICLOCK, but· this one Is written In
Pascal MT+. Like BICLOCK, MTCLOCK Initializes the 488 bus with an Interface Clear, puts the
HP59309 clock Into the Remote state by making the REN line true and sending the clock's listen
address. It then addresses the clock as a Talker and listens to the data (status, date and time)
that the clock sends over the bus. MTCLOCK displays the date and time on the console each time
the minutes change. It also displays the data each time the status character Indicates a clock
error.

program mtclock;

const
SEQNUM = 0012; (*edltlng sequence number*)

(* This Is a Pascal/MT+ program which addresses an HP 59309A clock
as a talker and then reads the time and date. It continually
rereads the time and displays the time and date on the console
each minute.

The program assumes that the bus output format of the 59309A Is
set to SPACE, CAL and COLON. It also assumes that the talk address
of the clock Is "E" and the listen address Is "%". .)

var er __ code, time, poll, bus: Integer;
eot, 80S, len : Integer;
echo __ ln, echo out Integer;

oldmln : char; (*holds the previous value of mlnutes*)

(* The following are the declarations for the external procedures thaT.
are used to commun I cate to the 468 bus. Note that not a I I of them
are used by th I s program. *)

external procedure pcntl (var s:strlng);
external procedure pcntlc (var s:strlng);
external procedure ptalk (var s:strlng);
external procedure ptalkc (var s:strlng);
external procedure plstn (var s:strlng);
external procedure plstnc (var s:strlng);
external procedure pspoll (var os,ls : string);
external procedure pppoll;
external procedure pdren;
external procedure pren;
external procedure pstat;
external procedure plfc;
external procedure pbrseT;
externaJ procedure ploset (var ec,tv,pr,bs : Integer);
external procedure pprot (var eot,eos,sl : Integer);
external procedure pecho (var et ,eo : Integer);

(* The following external function allows direct access to BOOS functlons*)
external function 8BOOS (f:lnteger ; p:word) : Integer;

procedure Inftvar;

rev 4-14-82 12:54 MSOFT-53

MTCLOCK.PAS P&T-488 MSOFT User's Manual

(* Procedure to call the setup routines to tell MSOFT where the control
variables are. *)

begin
ploset (er __ code, time, pol I, bus);
pprot (8Ot, eos, len);
pecho (echo __ ln, echo __ out);

end;

(*---ERR REPORT-*)
procedure err report;
(* Procedure to report the meaning of the error code. *)
begin

If er code<>O then
If Cer code<O) or Cer code>255) then

wr Itel n(l SYSTEM ERROR - an III egal error code has been encountered')
else begin

If tstblt(er __ code,7) then
wrlteln('S-I00 RESET .. reset Interface (use function IFC or BRSET)');

If tstblt(er __ code,6) then
wrlteln('IFC TRUE - reset 488 Interface');

If tstblt(er __ code,5) then
wrlteln('ATN TRUE - an external control fer is trying to Issue a command');

If tstblt(ar __ code,4) then begin
wrltelnC'TlMEOUT ERROR - the specified amount of time has elapsed without'>;
wrlteln(' completing a 488 handshake cycle');
end;

If tstblt(er __ code,3) then
wrlteln('SERVICE REQUEST - a 488 device Is requesting servlce ');

If tstblt(er code,2) then begin
wrlteln{ISERIAL POLL ADDRESS ERROR - no more than one secondary address l);

wrltelnP may follow·a primary address ');
end;

If tstblt(er __ code,l) then
wrlteln('NO LISTENERS" I cannot.talk to myselfl);

If tstblt(er __ code,O) then begin
wrlteln('SETUP ERROR - either IOSET or PROTCL wasn"T called before');
wrITeln(' using one of The MSOFT communication functions');
end;

end;
end;

(*-----...... ------------------. --------.. -----------------. -------1 N I TBOS.;.----*)
proced ure I nl tbus;
(* Procedure to Initialize the bus and seT various conTrol variables. *)
var ctlstr: strlngll01;
begin

pi fe;
pren;
cT1 sTr:='1...} I;
pcntlc(ctlsTr);

If er code<>O Then
tlme:=255;
eot:=l;
eos:=10;
oldmln:='x' ;

(*do an Interface clear*)
(*make the REN line true*)
(*Unllsten. Untalk. listen address %*)
(*become the control lar and outPUT CTLSTR*)
(* This puts the clock Into the REMOTE mode*)

err reporT; (*reporT any bus errors*)
"(*do nOT time handshake*)
(*stopon ... End~Of-strlng. byteit>
(*msKe I I nefeedTheEOSbyte*>
(*set oldmln to some value which cannot match a clock*)

MSOFT-54 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

(* readlng*)
end;

(*---READ TIME---*)
function read time: boolean;
(* Func~lon to read the clock and display results on the console.

Does not return until either the user aborts operation or a bus error
occurs. Returns true If the user aborts or a clock error occurs.
Returns false If a bus error occurred. *)

var reading: strlng(128); (*strlng to read clock Into*)
check: Integer; (*used for abort checklng*)
ctlstr : strlng(10); (*used to send control strlng*)

begin
repeat

ctlstr:='? __ E'; (*set control string for Unl Isten, Untalk, Talk addr E*)
pcntl c(ctl str); (*send control str I ng*)
If er code<>O then err-feport (*report any errors*)
else begin

plstnc(readlng);
If er code<>O then err-feport
else begin

(*read the clock*)
(*report any errors*)

(*If the first character Is a ? then the clock Is In error*)
If readlng!l)='?' then begin

wrlteln('Clock error ',reading);
wrlteln('Reset clock');
end

else (*show the time If the minutes have changed*)
If reading! 13)<>0Idmin then wrlteln(readlng);

0Idmln:=readlng(13);
end;

check:=@bdos(6,wrd(255»; (*check for character at keyboard*)
end;

until (er __ code<>O) or (readlng!l)='?'> or (check=3);
read tlme:=(check=3) or (readlng!l)='?'); (*set returned value*)

end;

begin (*maln program*)
Inltvar; (*Inltlallze variables for control of MSOFT*)
repeat

Inltbus; (*Inltlallze bUs*)
until read time or (@bdos(6,wrd(255»=3);

end.

rev 4-14-82 12:54 MSOFT-55

MTCLOCK.PAS

FSAMPL.FOR P&T-488 MSOFT User's Manual

**** FSAMPL.FOR ****

This program performs the same function as the Basic program BISAMPL, but this one Is written In
Microsoft Fortran.

The following dialog shows how to compile the Fortran program FSAMPL.FOR, assemble the assembler
program STRIN.MAC, and then link these two programs with MSOFT.REL. The result Is an executable
file named CLOCK.COM.

B>F80 =FSAMPL<CR>
$MAIN
ERRMSG
STRXFR
IUNSGN

B>M80 =STRIN<CR>

No Fatal error{s)

B>L80 FSAMPL/E.FSAMPL/N,MSOFT,STRIN<CR>

Link 80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft

Data 0103 3DAD <15530>

23862 Bytes Free
[09BF 3DAD 611

B>

C FORTRAN driver for MSOFT
C FSAMPL.FOR revised 4/8/82 by J. Tinsman
C
C NOTE: The name that MBASIC uses for the echo out variable
C Is ECHOOUT, but the longest variable name FORTRAN will
C accept Is ECHOUT (6 characters). This program uses the
C substitute name ECHOUT.
C

C Let the operator test each function and observe the response
C
C Control characters (such as line feed and carriage return) can
C be entered Into the TALK and CONTROL strings by preceedlngthe
C control character with an ESCAPE. For example, to get the string
C 1234<ESCAPE>$%<RETURN><LINE FEED> you would type
C 1234<ESCAPE><ESCAPE>$%<ESCAPE><RETURN><ESCAPE><LINE FI:ED><RETURN>.
C

C
C

C

C

INTEGER ERCODE,TIME,EOT,EOS,LENGTH,POLL,ECHOIN.ECHOUT,BUS
INTEGER I,J,P,F,BELL,BUFLEN
BYTE BUFFER(255),TKADDR{5)
DOUBLE PRECISION FCL,FCH,FCNS(2,12)

DATA FCNS /'CONTROLL','ER','TALKER',' ','LISTENER',' ','REMOTE EI.
_' NABLE', 'REMOtED',' I SABLE' .' I NTERFAC',' ECLEAR','RI:S:ETP&.!,'T',
_'STATUS'.' '.'SERIAL P','OLL'.'PARALLEL',' POLL',' '.' ',' I,' 1/

MSOFT-56 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

C

C

DATA ERCOOE,TIME,EOT,EOS,LENGTH,POLL,ECHOIN,ECHOUT,BUS /9*0/

BELL=7
BUFLEN=255

C Pass variable names that FSAMPL wll I be using to MSOFT
C

CALL 10SET (ERCODE,TIME,POLL,BUS)
CALL PROTCL (EOT,EOS,LENGTH)
CALL ECHO (ECHOIN,ECHOUT)

C

C
C === = ••••••• a. •••••• =====
C Main Menu
C

530 WRITE (1,531)
531 FORMAT (10')

WRITE (1,541>
541 FORMAT(' 1. CONTROL Become the Controller and output a command

sTring')
WRITE (1,551>

551 FORMAT (' 2. TAU< Become a Tal ker and send a string')
WRITE (1,561>

561 FORMAT (' 3. LISTEN Become a LISTener and receive a string')
WRITE (1,571>

571 FORMAT (I 4. REMOTE
WRITE (1,581>

581 FORMAT (I 5. LOCAL
WRITE (1,591>

591 FORMAT (' 6. IFC
WRITE (1,601>

601 FORMAT (' 7. RESET
WRITE (1,611)

611 FORMAT (' 8. STATUS
WRITE (1,621)

621 FORMAT (' 9. SPOLL
WRITE (1,631>

Make The REN (RemoTe ENable) line true')

Make The REN line false')

Issue an IFC (InTerFace Clear) command')

ReseT the P&T 488 InTerface')

Display the current 488 bus STaTUS')

Perform a Serial Poll of The 488 bus')

631 FORMAT (' 10. PPOLL Perform a Parallel Poll of The 488 bus')
WRITE (1,641>

641 FORMAT (' 11. Change the communication protocol (EOT SWiTCh, EOS,
and string lengTh)')

- WRITE (1,651)
651 FORMAT (I 12. Change InpUT echo, OUtpUT echo and timeoUT vaLue.s')

WRITE (1,671)
671 FORMAT ('0' ,'Which would you like to do? ')

READ (3,673) F
673 FORMAT (15)
680 IF (F.GT.O.AND.F.LT.13) GOTO 690

WRITE (1,681) BELL
681 FORMAT (' ',Al)

GOTO 530
690 WRITE (1,691)
691 FORMAT (' ')

C

C

ERCOOE=O
F~SH,F)
FCl=FeNS(2,F)

rev 4-14-82 12:54 MSOFT-57

FSAMPL.FOR

FSAMPL.FOR P&T-488 MSOFT User's Manual

C
720 IF (F.NE.l) GOT0790

WRITE (1,731)
731 FORMAT (' Please enter the Control string')

C Get string to send as a controller
CALL STRIN (BUFFER,BUFLEN)

C Send out the command string

C
C

CALL CNTL (BUFFER)
GOTO 1790

790 IF (F.NE.2) GOTO 860
WRITE (1,801)

801 FORMAT (' PI ease enter the Tal kstri ngl,,,
C Get"strlngto send asa talker

CALL STRIN (BUFFER,BUFLEN)
C Send out the ta I k str I ng

C
C

CALL TALK (BUFFER)
GOTO 1790

860 IF (F.NE.3) GOTO 940
C
C' Read string off bus IntoP&T 488 buffer and make string descriptor
C In the first three elemenTs.of array BUFFER

CALL LSTN (BUFFER)
C Transfer contents of P&T 488 buffer Into array BUFFER

CALL STRXFR· (BUFFER,BUf'lEN)
WRITE (1,901>

901 FORMAT (' Sfrl ng heard on 488 bus. Is: ')
J-1UNSGN(BUFFER(t»+3
WRITE (1,91H (BUFF!RlH,I=4,J)

911 FORMAT (' ',255Al)
GOTO 1790

C
C

940 IF (F.NE.4) GOTO 990

C
C Make REN I I ne true

C
C

CALL REN
GOTO 1790

990 IF (F.NE.5)'GOT01040
C
C Make REH II ne.·fal se

C
C

C

CALI,.,DREN
GOTO 1790

1040 IF (F.NE.6) GOTO 1090

C I ssue an I FC command

C
C

CALL IFC
GOTO 1790

1090 IF (F.NE.7) GOTO 1140

MSOFT-58 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

C
C Reset the P&T 488

CALL BRSET
GOTO 1790

C
C

1140 IF (F.NE.8) GOTO 1200
CALL STATUS
WRITE (1,1161) BUS

1161 FORMAT (' Bus status
GOTO 1790

C
C

1200 IF (F.NE.9) GOTO 1300
WRITE (1,1211>

Is: ',13)

1211 FORMAT (' Please enter Talk address to poll')
C

C Get talk address string
CALL STRIN (BUFFER,BUFLEN)
WRITE (1,1231>

1231 FORMAT (' ')
C
C Send out Talk string and put response In P&T 488 string buffer.
C Then put string descriptor for response In the first three
C el ements of TKAooR.

CALL SPOlL (BUFFER, TKADDR(1 »
IF (TKADOR(3).NE.0) GOTO 1260
1=' ,
TKAOOR(4)""I
TKAOOR(5)=1

C Transfer response from P&T 488 buff~ to array TKADDR
1260 CALL STRXFR (TKADDR,5)

C
C

WRITE (l,1261)'TKADDR(4),TKADDR(5)
1261 FORMAT (' Talk address of device responding Is ',2Al)

WRITE (1,1271) POLL
1271 FORMAT (' Poll reaponse" ',13)

GOTO 1790

13()Q IF (F.NE.l0) GOTO 1360
C
C Perform parallel poll

CALL PPOLL

C
C

WRITE (1,1331) POLL
1331 FORMAT (' Poll response = ',13)

GOTO 1790

1360 IF (F.NE.l1) GOTO 1560
WRITE (1,1371>

1371 FORMAT (' ')
WRITE <1,1381>

1381 FORMAT ('0', 'The current convnunlcatlon protocol setup Is:')
WRITE (1,1371)
WRITE (1,1401) E01

1401 FORM~r (' " lOX, ',EOr swl,tch = ',13)
WRtTE{(l,1411) EOSe

1411 FORMAT (' ',10X,'EOS switch = ',13)

rev 4-14-82 12:54 MSOFT-59

FSAMPL.FOR

FSAMPL.FOR P&T-488 MSOFT User's Manual

C
C

WRITE (1,1421) LENGTH
1421 FORMAT (' ',10X,'STrlng lengTh

WRITE (1,1441)
=,' , 13)

1441 FORMAT ('0', 'What Is the new EOT switch value: ')
READ (3,1445) EOT

1445 FORMAT (14)
1450 WRITE (1,1451)
1451 FORMAT (' What Is the new EOS value: ')

READ (3,1445) EOS
IF (EOS.GE.0.AND.EOS.LT.256) GaTO 1490
WRITE <1,1471)

1471 FORMAT (' The EOSvalue JIIust be between 0 and 255111')
GaTO 1450

1490 WRITE,(1,1490
1491 FORMAT (' What Is the "new 'string length:,')

READ (3,1445) LENGTH
IF (LENGTH.GE.O.AND.LENGTH.LT.256) GOTO 1530
WRITE (1,1511>

1511 FORMAT (' The LENGTH must be between 0 and 255111')
GaTO 1490

1530 WRITE (1,1531)
1531 FORMAT (' ')

GaTO 530

1560 IF (F;NE.12) GaTO 1790
WRITE (1,1571)

1571 FORMAT ('0')
1581 FORMAT (' Thelriput Echo, Output Echo, and Timeout val ues are cu

rrenTI y set tor f)
-p.'Nf

IF (ECHaIN.NE.O) P='Y'
WRITE (1,1611) P

1611 FORMAT (' ',10X,'lnput Echo
P='N'
IF (ECHOUT.NE.O) P='Y'
WRITE (1,1621) P

, ,A 1)

1621 FORMAT (' ',10X,'Output Echo ',AI)
WRITE (1,1641) TIME

1641 FORMAT (' ',10X,iTlmeout Value ',13)
1660 WRITE, (1,1661)
1661 FORMAT ('O','Echo Input (Y/N) : ')

READC3,1671) P
1671 FORMAT (At)

IF (P.NE~fYt.AND.P.NE.'N'.AND.P.NE.8313.AND.P.NE.8302) GaTO 1660
ECHOIN=O
IF (P.EQ.'Y'.OR.P.EQ.8313) ECHOIN .. 1

17tO WRITE (1,1711)
1711 FORMAT ('O','Echo OUTPUt (Y/N) : ')

READ (3,1721) P
1721' FORMAT (AI)

IF (P.NE.'Y'.AND.P.NE.'N'.AND.P.NE.8313.AND.P.NE.8302) GaTO 1710
ECHOUT=O
IF (P.EQ.'Y'.OR.P.EQ.8313) ECHOUT=1

1750 WRITE (1,176»
1761 FoRMA"F,"(' Wt:la1:;, I s,the~new",;rIMEQI:It::va,"~" l) ,

REAJ}'(3~17'1N .T IME','
1771 FORMAT (14)

MSOFT-60 rev 4-14~2 12:54

P&T-488 MSOFT User's Manual

C
C

C
C

C

C

C
C

IF (TIME.GE.0.AND.TIME.LT.256) GOTO 530
WRITE (1,1781)

1781 FORMAT (' The TIMEOUT value must be between 0 and 255111')
GOTO 1750

1790 WRITE (1,1791)
1791 FORMAT (' ')

CALL ERRMSG(ERCODE,FCH,FCL)
GOTO 530
END

SUBROUTINE ERRMSG (ERCODE,FCH,FCL)

INTEGER ERCODE,I,J,K,IO,R9
DOUBLE PRECISION FCH,FCL

Report 488 Function Errors

WRITE (1,9031) FCH,FCL,ERCODE
9031 FORMAT (' FunctIon s ',A8,A8,14X,'Error Code = ',13)

C

C Interpret Error codes and prInt error messages
C

IF (ERCODE.LT.O) GOTO 9370
IF (ERCODE.NE.O) GOTO 9090

WRITE (1,9085)
9085 FORMAT (' NORMAL RETURN')

RETURN
9090 IF (ERCODE.GT.255) GOTO 9370

DO 9350 KsO, 7
1=7-1<
10=2**1
RgsERCODE-IO
IF (R9.LT.0) GOTO 9350
ERCODE=R9
JOII+l
GOTO (9160,919O,9210,9240,9260,929O,9310,9330),J

C
9160 WRITE (1,9161)
9161 FORMAT (' SETUP ERROR- eIther IOSET or PROTCL was not call ad be

fore')
C

C

C

9170 WRITE (1,9171)
9171 FORMAT ('

ctlons')
GOTO 9350

9190 WRITE (1,9191)

usIng one of the MSOFT communIcatIon fun

9191 F<>RMAT (' NO LISTENERS - I cannot talk to myself!')
GOTO 9350

9210 WRITE (1,9211>
9211 F<>AMAI.l' SERIAL. POlL ADDRESS ERROR - nomore .. than\one secondary

ad<!reS$\t)
9220 WRITE (1,9221)

rev 4-14-82 12:54 MSOFT-61

FSAMPL.FOR

FSAMPL.FOR P&T-488 MSOFT User's Manual

9221 FORMAT ('
ss')

may fol Iowa primary addre

C

C

C

C

GOTO 9350

9240 WRITE (1.9241)
9241 FORMAT (' SERVICE REQUEST - a 488 device is requesting service')

GOTO 9350

9260 WRITE (1.9261)
9261 FORMAT (' TIMEOUT ERROR - the specified amount of time haselaps

ad without')
9270 WRITE (1.9271)
9271 FORMAT ('

GOTO 9350

9290 WRITE (1,9291)

completing a 488 handshake cycle')

9291 FORMAT (I ATN TRUE - an external controller Is trying to issue a
command')

GOTO 9350

9310 WRITE (1.9311)
9311 FORMAT (' IFC TRUE - reset 488 'nterface')

GOTO 9350
C

9330 WR I TE (1.933.1)
9331 FORMAT (' S-100 RESET - reset Interface (use function I or R)')

GOTO 9350
C

9350 CONTI NUE
936() RETURN

C
9370 WRITE (1,9371>
9371 FORMAT (' SYSTEM ERROR - an II legal error code has been encounte

red')
9380 RETURN

C

C

END

C STRING TRANSFER ROUTINE
C

C

C

C

SUBROUTINE STRXFR (ARRAY,SIZE)

INTEGER I,J.SIZE,STRLEN,ADDR
BYTE ARRAY
DIMENSION ARRAY(SIZE)

STRLEN=IUNSGN(ARRAY(I»
ADDR=256*1 UNSGN(ARRAY(3))+IUNSGN(ARRAY(2»

J=STRLEN+3
IF (SIZE.GE.J) GOTO 9600
WRITE (1,9505)

9505 FORMAT (' THE STRING RECEIVED IS BIGGER THAN THE ARRAY GIVEN!!')
WRITE (1,9506) SIZE

9506 FORMAT (' On I y the first ',13,' characters were transferred.')
C

DO<95201=4,SIZE
ARRAY(I)=PEEK(ADDR)

MSOFT-62 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual

ADDR=ADOR+l

9520 CONTINUE
RETURN

C
C

C

9600 DO 9610 1=4,J
ARRAY(I)=PEEK(ADDR)

ADDR=AOOR+l
9610 CONTINUE

J=J+l
DO 9620 I=J,SIZE

ARRAY(I)=0

9620 CONTINUE
RETURN

END

C
C
C FUNCT I ON I UNSGN

C !
INTEGER FUNCTION IUNSGN(M)

C

C

BYTE M

INTEGER IUNSGN

IUNSGN-M

IF (I UNSGN.LT .0) I UNSGN=IUNSGN+256
RETURN

END

**** STRIN.MAC ****

FSAMPL.FOR

This assembly program Is used by FSAMPL.FOR to collect strings from the keyboard. It Is the

routine responsible for the capability of entering a control character (such as line feed or

carriage return) In the string by precedIng the control character with an ESCAPE. It Is al so
responsible for displaying the string on the console, and al lowing the operator to delete

characters by pressing backspace.

This routine was written In assembly language Instead of Fortran because Fortran does not have

string manipulation capability. This program could be written In Fortran but the code would be
even more diffIcult to understand.

STRIN (bufname,buflen) 4/8/82

STRING INPUT ROUTINE FOR USE WITH MICROSOFT FORTRAN
THIS ROUTINE EXPECTS TWO PARAMETERS TO BE PASSED TO IT:

THE NAME OF THE BUFFER THE STR I NG I S TO BE PUT IN
AND THE LENGTH OF THE BUFFER (uP TO 255)

THE BUFFER ARRAY VARIABLE MUST BE OF BYTE TYPE. THE BUFFER LENGTH
VARIABLE MUST BE OF INTEGER TYPE. THIS ROUTINE ONLY LOOKS AT THE

LOW ORDER BYTE OF THE INTEGER VARIABLE.

NOTETHATTHE,'ACTUAlUSABliErBUFFER SIZE IS THELENGlH'PASSED-3. nns IS
BECAUSE THE FIRST THREE BYTES OF THE BUFFER ARE USED TO CREATE THE STRING

rev 4-14-82 12:54 MSOFT-63

STRI N.MAC P&T-488 MSOFT User's Manual

; DESCRIPTOR THAT MSOFT NEEDS TO SEND OUT STRINGS. lliE FIRST BYTE OF lliE
; DESCRIPTOR GIVES lliESTR I NG LENGTH; THE SECOND .. AND lli I RD .BYTES G I VElliE
; STRING'S STARTING ADDRESS.

PUBLIC STRIN

BOOS EQU 0005 ;BOOS JUMP VECTOR
DRCTIO EQU 06H ;BOOS FUNCTION FOR UNBUFFERED I/O
VERNUM EQU OCH ; BOOS FUNCT I ON' FOR CP 1M VERS ION NUMBER
STROUT EQU 09H ;BOOS FUNCTION eFORSTRING OUTPUT

BELL EQU 07H ;8ELL
BS EQU 08H ; BACKSPACE
CR EQU DOH ; CARR I AGE'} RETURN .•..
CARET' EQU 05EH ; CARET
ESC EQU 01BH ; ESCAPE
LF EQU OAH ;LINE FEED
SPACE EQU 020H ; SPACE

STRIN: MVI M,OO ;INIT STRING LENGTH TO ZERO AND SAVE IN BUFFER
SHLD LENPT ;SAVE POINTER TO LENGTH COUNT IN LENPT
INX H ;POINT HL TO WHERE STRING START ADDRESS WILL GO

MOV B,H ;COPY Ht:. INTO' BC
MOV C,L
INX 8 ; INCREMENT I T TWO TIMES TO GET
INX B ; ACTUAL STRING STARTING ADDRESS
MOV M,C ;SAVE STR.ING STARTING ADDRESS
INX H ; INTO STR I NG DESCR I PTOR PART OF BUFFER
MOV M,B ;
INX H ;POINT HL TO START OF STRING IN BUFFER
SHLD: BUFPT ; SAVE' STR I NG PO'INTER
XCHG
MOV A,M ;GET MAX BUFFER LENGTH FROM LOW ORDER BYTE
STA BUFMAX ;OF BUFLEN VARIABLE AND SAVE IT

MVI C,VERNUM ;CHECK FOR CP/M VERS ION NUMBER
CALL BOOS
MOV A,H ;RESULT IS RETURNED IN H,L
ORA L ; IF EITHER H OR L <>0, lliEN THE
JNZ STRIN1 ;CP/M IS VERSION 2.0 OR LATER
MVI C,STROUT ; IF BOTH AR!'ZERO, PRINT ERROR MESSAGE
LXI D,VERERR
J~ BOOS,

STRIN1 : MVI C,STROUT ;PRINT PROMPT
LXI D,PRor.vr
CALL BOOS
SUB A
STA BUFCT ;INIT BUFFER COUNT

STRIN2: CALL GETCHR ;GET A CHARACTER FROM CONSOLE
CPI OR i CHECK FOR CARRIAGE RETURN
J,NZ STRIN3
LOA BUFCT ;GET STRING LENGTH
LHtD .. LE~: iGElPOl.N1:ER:'ro :L6.$1H;,OESr. I N·· •• BQfJ:E9::.
MOV" M,A ; SAve ',s-mOO"1.ENGTA ' ,I N'''8UFFER''
LOA OR iSEND OUT CARRIAGE RETURN

MSOFT-64 rev 4-14-82 12:54

P&T-488 MSOFT User's Manual STRIN.MAC

JMP CHROUT

STRIN3: CPI BS ;CHECK FOR BACKSPACE
JZ BAKSPC
CPI ESC ;CHECK FOR ESCAPE KEY
JNZ STRIN4 ;IF NOT, THEN SKIP OVER ESCAPE HANDLER
CALL GETCHR ;GET KEY FOLLOWING ESC
JMP STRIN5 ;SKIP CONTROL CHARACTER CHECK

STRIN4: CPI SPACE ;CHECK FOR CONTROL CHARACTER
JC STRIN2 ;IF SO, IGNORE

STRIN5: STA KEYBUF ;SAVE KEY
LOA BUFMAX ;GET MAX BUFFER SIZE
SUI 03 ,SUBTRACT THREE TO GET TRUE BUFFER USAGE
MOV B,A
LOA BUFCT ,GET CURRENT BUFFER USAGE
CMP B ; I F 'TWO ARE THE SAME, THEN BUFFER IS FULL
JZ BUFFUL ,JUMP TO BUFFER ERROR HANDLER
INR A ,INCREMENT COUNT
STA BUFCT ,SAVE IT
LHLD BUFPT ,GET BUFFER POINTER
LDA KEYBUF ,GET KEY BACK
MOV M,A ;SAVE CHARACTER IN BUFFER
INX H ,INCREMENT BUFFER POINTER
SHLO BUFPT ,SAVE IT
CALL PUTCHR ,ECHO CHARACTER TO CONSOLE
JMP STRIN2 ,LOOP BACK

BUFFUL: MVI A, BELL ,SET UP TO RING BELL
CALL CHROUT ; SEND IT
JMP STRIN2 ,LOOP BACK (I GNOR I NG LAST CHARACTER TYPED)

GETCHR: MVI C,DRCTIO ,SET UP FOR KEY FETCH
MVI E,OFFH
CALL BOOS ,GET KEY
ANI 07FH ,STRIP OFF PARITY
JZ GETCHR ,IF RESULT ZERO, NO KEY WAS PRESSED
RET

PUTCHR: STA PUTBUF ,SAVE CHARACTER TO BE PR I NTED
CPI SPACE ;COMPARE TO SPACE
JNC CHROUT , I F NO CARRY, PR I NT CHARACTER
MVI A, CARET ,OTHERWISE, IT'S A CONTROL CHARACTER
CALL CHROUT ,SO PRINT CARET FIRST
LOA PUTBUF ,GET SAVED CHARACTER
ADI 040H ,ADD 64 TO CONVERT TO PR I NT I NG CHARCTER

CHROUT: MYI C,ORCTIO ;SET UP FOR SINGLE CHARACTER PRINT
MOV E,A ;MOVE CHARACTER TO BE SENT INTO E
JMP BOOS ;SEND CHARACTER

BAKSPC: LOA BUFCT ;GET STR I NG LENGTH
CPt 00
JZ STRtN2 ; IF LENGTH IS ZERO, THEN NO BACKSPACE
OCR A ,DECREMENT LENGTH
STA BUFCT ,SAVE IT
CALL BACKUP iDEL,ETECHARACTER FROM CONSOL.E
LHLO BUFPT·· iGln' BUFFER PO I NTER
DCX H ;DECREMENT IT

rev 4-14-82 12:54 MSOFT-65

STRI N.MAC

SHLO
MOV
CPI
CC
JMP

BACKUP: MVI
CAll
MVI
CAll
MVI
JMP'

BUFC'T: ° OS
BUFP'T: OS
BUFMAX: OS
KEYBUF: OS
lENPT: OS
PUTBUF: OS
PROMPT: DB
VERERR: DB

DB

END

P&T-488 MSOFT User's Manual

BUFPT
A,M
SPACE
BACKUP
STRIN2

A,BS
CHROUT
A, SPACE
CHROuro
A,BS
CHROUT

1

2

2

iSAVE IT
;GET LAST CHARACTER
iCHECK FOR CONTROL CHARACTER
; IF SO, ERASE PRECEDING CARET FROM CONSOLE
;lOOP BACK

;SENO OUT BACKSPACE , SPACE, BACKSPACE

i CURRENT STR fNG"lENGTH .
;POINTERTO NEXT·AVA I lABlf BUFFER ° lOCATION
i BUFFER LENGT.H
i ONE CHARACTER KEY BUFFER
;POINTER TO LENGTH LOCATION IN BUFFER

CR.lF.'STRING:$'
CR.'STRING INPUT ROUTINE REQUIRES CP/M VERSION 2.0 '
'OR LATER1'.CR.'$'

MSOFT-66 rev 4-14-82 12:54

P&T~88 MSOFT User's Manual FCLOCK.FOR

•••• FCLOCK.FOR ••••

Like all the other clock programs, this one performs the same function but is written in
Microsoft Fortran. It initializes the 488 bus by sending an Interface Clear (IFe), puts the
clock into the remote mode by making the REN line true and then address ing the clock as a
listener. It then addresses the clock as a talker and listens to the data (status, date and
time) that the clock sends over the bus. It displays the date and time each time the minutes
change. It also displays the data each time the status character indicates a clock error.

A few differences will be seen when FCLOCK is compared to BICLOCK. Fortran does not have
much ability to manipulate strings, so a special array is created to hold the data string read
from the clock. This array is called BUFFER. The first three bytes of the array are used to
emulate Basic's string descriptor block. Remember that the first byte of the string descriptor
block holds the length of the string, and the remaining two bytes hold the address of the
string. Similar arrays are set up for the two strings TAD and LAD.

A routine that you will find useful if you write Fortran programs for MSOFT is STRXFR. It
transfers (copies) strings from MSOFT's input string buffer into the specified array. Another
useful routine is STRSET, which generates a string descriptor block in the first three bytes of
an array.

FCLOCK.FOR is compiled and linked in just the same way that FSAMPL.FOR is. If you
follow the dialog shown for FSAMPL, subsituting FCLOCK each place FSAMPL appears, and
IVARPT each place STRIN appears, you will get an execuatble file named FCLOCK.COM.

C ==
C

C FCLOCK. FOR
C

C Revised for MSOFT.REL by John Tinsman 4-15-82
C
C This is a Microsoft FORTRAN program which addresses an
C an HP 59309A clock as a talker and then reads the time and
C date. It continually rereads the time and displays the
C time and date on the console each minute.
C

C The program assumes that the bus output format of the 59309A
C is set to SPACE, CAL, and COLON. It also assumes that the
C TALK address of the clock is "E" and the I isten address is "%".
C

C ==
C

C

INTEGER ERCODE, TIME, EOT, EOS, LENGTH, POLL, ECHOIN, ECHOUT, BUS
INTEGER STATUS, MIN, OLDMIN
BYTE BUFFER(23),TAD(6),LAD(6)

C The byte array TAD conta i ns an Un listen and an Unta I k command
C fol lowed by the clock's talk address In the last three bytes. The
C first three bytes are used to store the string descriptor for the
C last three bytes. The byte array LAD is almost the same, but the
C last byte of the string is -- instead of being the clock's talk
C address -- the clock's I isten address. In both cases, the first 3
C bytes (which form the string descriptor) are initially set to 0,
C and then later set to the proper val ues by using the. subroutine
C STRSET to do the str ing descr I ptor set ups.
C

DATA TAD 10,0,0,'1' ,'_' ,'E'I

rev 4-15-82 16:13 MSOFT-67

FCLOCK.FOR P&T-488 MSOFT User's Manual

DATA LAD /0,0,0,'1' ,'_I ,'%'/
C

C Pass variable names that FCLOCK will be using to MSOFT
C

C

CALL 10SET (ERCODE,TIME,POLL,BUS)
CALL PROTCL (EOT,EOS,LENGTH)
CALL ECHO (ECHOIN,ECHOUT)

C Intial Ize OLDMIN to some value which cannot match the first reading
C from the clock. This wll I insure that the time and date wil I be
C displayed the first time through.
C

OLDM IN = -1
C
C I sstie an I Fe command
C

30 CALL IFC
C
C Make REN I I ne true
C

CALL REN
C
C TIME contains the amount of time to al low for handshake
C If TIME=255, then the handshake Is not timed
C

TIME = 255
C

C Turn off input and output echo
C

C

ECHOIN =0
ECHOUT = 0

C Set up the Listen string. It contains the string descriptor (3 bytes),
C the UNLISTEN byte, the UNTALK byte and the Listen Address of the clock.
C

CALL STRSET(LAD,6,3)
C

C Become the 488 controller and Issue UNLISTEN, UNTALK and then
C address the clock as a listener.
C This puts the clock in the REMOTE mode.
C

C

C

CALL CNTLC(LAD)
IF (ERCODE.NE.O) GOTO 200

C Se.t up MSOFT so. it wi I I stop on EOS (End-of-Str I n9) byte, set theEOS
C to be a line feed.
C

C

EOT = 1

EOS = 10

C Set up the Talk string. It contains the string descriptor (3 bytes),
C the UNLISTEN byte, the UNTALK byte and the Talk Address of the clock.
C

CALL STRSET<TAD,6,3)
C
C Become the 488 control I er and IsSue UNU STEN, UNTALKa ndthen
C address the clock as a ta I ker.

MSOFT-68 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual

C
40 CALL CNTLC (TAD)

C
C Report any 488 errors that may have occurred
C

IF (ERCODE.NE.O) GOTO 200
C

C Become a listener and read the time from the clock
C

50 CALL LSTNC(BUFFER)
C
C Report any 488 errors that may have occurred
C

IF (ERCOOE.NE.O) GOTO 200
C

C Transfer clock response from 488 buffer Into array BUFFER
C

CALL STRXFR(BUFFER,23)
C
C The clock's response Is now storeq In elements 4-23 of the byte array
C BUFFER In the following form:
C

C 17 or <sp>l<sp>t<:>IMtMt<:>1010t<:>tH'HI<:>IM'Mt<:>tStSt<cr>'<If>t
C
C Put BUFFER(4) Into STATUS, and put the string length + 3 into J
C

STATUS = BUFFER(4)
J = IUNSGN(BUFFER(1»+3

C
C Put the least significant digit of the minutes into MIN
C

MIN = BUFFER(16)
C
C Check the clock status. If it's not OK then print message and halt
C

IF (STATUS.EQ.32) GOTO 100
WRITE (1,55) (BUFFER(I),1=4,J)
WRITE (1,60)

55 FORMAT (' ',20AI)
60 FORMAT (' Reset clock')

WRITE (1,55)
STOP

C

C Show the time If the minutes have changed
C

100. IF (MI N.NE.OLOMIN) WRITE (1,110) (BUFFER(I), 1=4, J)
110 FMMAT (' ',20Al>

C

C Update OLDMIN and read clock again
C

C

OLOMIN = MIN
GOTO 40

C Error hand II ng rout I ne .
C If an error, occurs j p",i'nterror message and go bae:kTO
C IFC, REN, etc.
C

rev 4-15-82 16:13 MSOFT-69

FCLOCK.FOR

FCLOCK.FOR P&T-488 MSOFT User's Manual

C

200 CALL ERRMSG(ERCODE)
GOTO 30

END

C --- ERRMSG --------
C 488 interface error reporting routine
C

SUBROUTINE ERRMSG (ERCODE)
C

INTEGER ERCODE,I,J,K,10,R9
C

WRITE (1,9031) ERCODE
9031 FORMAT (' Error Code = ',13)

C
C Interpret Error codes and print error messages
C

IF (ERCODE.LT.O) GOTO 9370
IF (ERCODE.NE.O) GOTO 9090

RETURN
9090 IF (ERCODE.GT.255) GOTO 9370

DO 9350 K=O,7

C

1=7-K
10=2**1
R9=ERCODE-10
IF (R9.LT.0) GOTO 9350
ERCODE=R9
J=I+l
GOTO (9160,9190,9210,9240,9260,9290,9310,9330),J

9160 WRITE (1,9161)
9161 FORMAT (' SETUP ERROR - either 10SET orPROTCL was not called be

fore')
C

C

9170 WRITE (1,9171)
9171 FORMAT ('

ctlons')
GOTO 9350

9190 WRITE (1,9191)

using one of the MSOFT communication fun

9191 FORMAT (' NO LISTENERS - I cannot talk to myself!')
GOTO 9350

C

C

9210 WRITE <1 ,9211>
9211 FORMAT (' SERIAL POLL ADDRESS ERROR - no more than one secondary

address')
9220 WRITE (1,9221)
9221 FORMAT (' may follow a primary addre

ss')
GOTO 9350

9240 WRITE (1,9241)
9241 FORMAT (' SERVICE REQUEST - a 488 device Is requesting service')

GOTO 9350
C

9260 WRITE (1,9261>
9261 . FORMAT (I TIMEOUT ERROR - the,specJfLed, amount of time, has elaps

edwithout')
9270 WRITE (1,9271)

MSOFT-70 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual

9271 FORMAT ('
GOTO 9350

completing a 488 handshake cycle')

C
9290 WRITE (1,9291)
9291 FORMAT (' ATN TRUE - an external controller is trying to issue a

command')
GOTO 9350

C
9310 WRITE (1,9311)
9311 FORMAT (' IFC TRUE - reset 488 interface')

GOTO 9350
C
9330 WRITE (1,9331)
9331 FORMAT (' S-100 RESET')

GOTO 9350
C

C

9350 CONTINUE
9360 RETURN

9370 WRITE (1,9371)
9371 FORMAT (' SYSTEM ERROR - an il legal error code has been encounte

red')
9380 RETURN

END
C

C --- STRXFR ---~----
C String Transfer Routine
C

C

C

C

SUBROUTINE STRXFR (ARRAY,SIZE)

INTEGER I,J,SIZE,STRLEN,ADDR
BYTE ARRAY
DIMENSION ARRAY(SIZE)

STRLEN=IUNSGN(ARRAY(I»
ADDR=256*IUNSGN(ARRAY(3»+IUNSGN(ARRAY(2»

J=STRLEN+3
IF (SIZE.GE.J) GOTO 9600
WRITE (1,9505)

9505 FORMAT (' THE STRING RECEIVED IS BIGGER THAN THE ARRAY GIVEN!!')
WRITE (1,9506) SIZE

9506 FORMAT (' Only the first ',13,' characters were transferred.')
C

C
C

C

DO 9520 1=4,SIZE
ARRAY(I)=PEEKCADDR)
ADDR=AODR+l

9520 CONTINUE
RETURN

9600 DO 9610 1=4, J
ARRAY(I)=PEEK(AODR)
AODR=ADDR+l

9610 CONTINUE

J=J+l
DO 9620 I=J,SIZE

rev 4-15-82 16:13 MSOFT-71

FCLOCK.FOR

FCLOCK.FOR

C

ARRAY(1)=0
9620 CONT I NUE

RETURN
END

C --- IUNSGN --------
C Signed Byte to Unsigned Integer Converter
C

C

C

C

INTEGER FUNCTION IUNSGN(M)

BYTE M
INTEGER IUNSGN

IUNSGN=M
I F(I UNSGN. LT. 0) I UNSGN=I UNSGN+256

RETURN
END

C --- STRSET --------
C String Descriptor Setup Routine
C

C

C

SUBROUTINE STRSET(ARRAY,SIZE,STRLEN)

INTEGER i,J,SIZE,STRLEN
BYTE ARRAY
DIMENSION ARRAY(SIZE)

C Set up str i ng descr i ptor: i ength, address low, high
C in the first three bytes of the array
C

ARRAY(I)=STRLEN
C
C Get the .array address and add an offset to point around
C the string descriptor
C

C
1=IVARPT(ARRAY)+3

J=I/256
ARRAY(2)=1-256*J
ARRAY(3)=J
RETURN
END

P&T-488 MSOFT User's Manual

The fol lowing assembler program is used by FCLOCK.FOR to get the address of a variable.
Microsoft Fortran. is similar to Basic in that it passes the addressesof.parameters, and like
Basic, it passes the address of the first parameter in register pair HL. Values returned by
functions are put Into register pair HL before the function returns to thecal ling program.
Since the address of the parameter of IVARPT is placed in HL by the caliing program, and IVARPT
immediately returns to the calling program, the value that is returned is the address of the
parameter of IVARPT.

PROGRAM I VARPT

THIS PROGRAM IS DESIGNED TOBEUSED,AS A
FORTRAN·FUNCTIONCALL SIMILAR·TO.MICROSOFT
VARPTRFUNCTION IN THEIR BASIC.

MSOFT-72 rev 4 -1 5-82 16: 13

P&T-488 MSOFT User's Manual

WHEN THE ROUTINE IS CALLED, FORTRAN WILL
PASS THE POINTER TO THE ARGUMENT VARIABLE
IN THE HL REGISTER PAIR. SINCE FORTRAN
EXPECTS INTEGER FUNCTIONS TO PLACE THE
RETURN ARGUMENTS IN THE HL PAIR, ALL THAT
NEED BE DONE IS A RET.

PUBLIC IVARPT

I VARPT: RET

END

rev 4-15-82 16:13 MSOFT-73

FCLOCK.FOR

QCCLOCK.C P&T-488 MSOFT User's Manual

if* QCCLOCK.C **

This program III ustrates how MSOFT can be used with a program written In C. The particular

complier used In this example Is Q/C written by Quality Computer Systems. It has the advantage
of being Inexpensive (under $100), readily available, and It can be used with a linker (such as
Microsoft's L80).

Like 211 I the other clock programs, this one performs the same function but Is written in a

different language. It Initializes the 488 bus by sending an Interface Clear (lFC), puts the
clock Into the remote mode .• by makl ng the REN I ine true and then address i ng the clock as a .
listener. It then addresses the clock as a·.talker and listens.tothe data: (status, date and.

time)· that the clock sends over the.bus. It displays the'date and time eacntllnetheillinutes

change. It also displays the data each time .the·.status character Indicates a clock error.

There are a few pOints you should kee.p In mind. If you useth'ls prog'ram:asa guIde for wrrtlng.::a

program for some other C compileI"'. One is that even though aU pass the parameter·son the .stack,

some reverse the order. Q/C places the leftmost parameter on the stack first and the rightmost
last, so that the first parameter popped off of the stack Is the rightmost one. Some other

compi lers put the rightmost parameter on the stack first, so that the first parameter popped off

of the stack is the leftmost one.

Another potential source of difficulty is that Q/C passes an argument back to the calling
procedure in register pall" HL. I have no Idea of whether other compilers do also. I made use of

Q/C'sconventlon In the procedure scntlc.

The following dialog shows how to compi Ie this program and I Ink It with MSOFT.REL. The result is
an. e~able file namedQCCLOCK.COM.

B>CC QC:CLOGi~ C;-:M<CR> .
QC Comptler'Vl.01 .Copyrtght·(c) 19&1 Quality comPUTer Systems
O.error(s) found

B>M~ =QCCLOCK<CR>

No Fatal error(s)

B>L80 QCCLOCK,CRUNLIB,MSOFT,QCCLOCK/N/E<CR>

Llnk-80 3.42 19-Feb-81 Copyright (c) 1981 Microsoft

Data 0103 2A08 <10501>

29959 Bytes.Free.

[0103 2A08 421

B>

MSOFT-74 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

1*·*··*··******·************···*·********·***····**·**··**··*····1
1* *1
1* QCCLOCK. C 4-14-82 * I
1* for Q/C Compiler Version 1.01 *1
1* *1
1* This is a C program which addresses an HP 59309A clock as *1
1* a talker and then reads the time and date. It continually *1
1* rereads the time and displays the time and date on the *1
1* console each minute. *1
1* *1
1* The program assumes that the bus output format of the 59309A *1
1* is set to SPACE, CAL, and COLON. It also assumes that the *1
1* TALK address of the clock is "E". *1
1* *1
1* The Q/C Compiler is distributed by *1
I. The Code Works * I
1* Box 550 *1
1* Goleta, CA 93116 *1
1* (805) 683-1585 *1
1****·***1

extern CNTL, CNTLC, TALK, TALKC, LSTN, LSTNC, SPOLL;
extern PPOLL, DREN, REN, STATUS, IFC, BRSET;
extern IOSET, PROTCL, ECHO, IOPORT;

fanclude "qstdio .h"
'define LINLEN 132
'define LF 10

1* maximum input line size *1
1* ASCII code for line feed * I

1* ------------------------------------- MAIN ------------------*1
maine)

{
1* Make all the communication variables static because Q/C

accesses static variables more rapidly and with less object
code than it accesses automatic variables

static ercode, 1* error code *1
time, 1* timeout *1
eot, 1* EOT switch *1
eos, 1* EOS byte *1
length, I" listen string length *1
poll, 1* poll response *1
echoin, 1* input echo switch *1
echout, 1* output echo switch *1
bus; 1* 488 status *1

int status; 1* HP clock status *1
int umin; 1* units digit of minutes *1
int oldmin; 1* previous units digit of minutes *1

char line[LINLEN]; 1* listen input line *1

*1

1* Pass variable names that CCLOCK will be using to MSOFT *1
sioset(&ercode, &time, &poll, &bus);
sp1"'otel(&eot, &e08,. &length);
secho{&echoin, &echout);

rev 4-15-82 16:13 MSOFT-75

QCCLOCK.C P&T-488 MSOFT User's Manual

I'll TIME contains the amount of time to allow for handshake *1
I'll If TIME=255, then the handshake is not timed * I

time=255;
echoin=Oj I'll turn off input echo *1
echout=Oj 1* turn off output echo *1

1* Set up MSOFT so it will stop on EOS (End-of-String) byte, *1
I'll set the EOS byte to be a line feed. *1

eot=1 ;
eos=LFj

fo·r (;;) {
ifc() ;
renO;

1* initialize the ,488 bus *1
1* make~REN tt'ue *1

*1

*'1

*1

*1

'II

1* Become the 488 controller and issue.UNLISTEN, UNTALK and *1
1* then address the clock as a listener * I

scntlc("?J");

I'll Report any 488 errors that may have occurred *1
errmsg(ercode);

1* Intialize OLDMIN to some value which cannot match the *1
I'll first reading from the clock. This will insure that the * I
I'll time and date. will be displayed the first time. through. * I

oldmin = -1;

for (;;) {
I'll Become the 488 controller' and . iS$e UNLISTEN., UNTALK and.

I'll then addr.ess the clock as a talker

scntlc("?J");

I'll Report any 488 errors that may have occurred *1
errmsg(ercode) ;
if (ercode != 0) break; I'll break out of loop if bus error

I'll Become a listener and read the clock's status and time

sl.stnc(line);

I'll Report any 488 errors that may have occurred *1
errmsg(ercode) j
if. (ercode 1= 0) break; I'll break. out of loop if.· bus error

I'll Check for clock error and report any other errors *1
I'll (Remember that the first character of the line is *1
I'll a "?11 if the clock is in error.) * I

if (line(O] == '7') {clkerr(); puts(l1ne); break;}

I'll Show the time if the minutes have changed *1
it' (line{J 21 ! = ~oldminl pJ,lts(linel.;
oldmin,;:lineG,,12]; I*·:,u~te."ol.dm~c,>*l

}
I'll Check for clock error. Exit to operating system *1

MSOFT-76 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

1* on a clock error because the clock must be reset. 'II
if (line[O] == '?') (puts("Reset clock"); break;}
}

1* end main *1 }

1* -------------------------------------1* Clock error report routine
clkerrO

(
fputs("CLOCK ERROR ",stdout);
}

CLKERR ----------------*1
'II

1* ------------------------------------- ERRMSG ----------------*1 1* 488 interface error reporting routine *1
errmsg(code)
int code;
{
if (code != 0) printf("Error Code = %d\n",code,2);

1* Interpret Error codes and print error messages 'II

if (code & 1) (
puts("SETUP ERROR - either IOSET or PROTCL was not called before");
puts(" using one of the MSOFT communication functions");

}
if (code & 2)

puts("NO LISTENERS - I cannot talk to myself!");

if (code & 4) (
puts("SERIAL POLL ADDRESS ERROR - no more than one secondary address");
puts(" may follow a primary address");

}
if (code & 8)

puts("SERVICE REQUEST - a 488 device is requesting service");

if (code & 16) (
puts("TIMEOUT ERROR - the specified amount of time has elapsed

without");
puts(II completing a 488 handshake cycle");

}
if (code & 32)

puts("ATN TRUE an external controller is trying to issue a command");

if (code & 64)
puts("IFC TRUE - reset 488 interface");

if (code & 128)
puts(IIS-100 RESET");

1* end errmsg 'II }

1* -------------------------------------
1* Send a string as a controller
scntlc(string)
char .. string£]j

SCNTLC ----------------*1
'II

(
makedope(string) ;
cntlc();

1* HL = dope vector address 'II
1* clear the error code and send the string *1

rev 4-15-82 16:13 MSOFT-77

QCCLOCK.C P&T-488 MSOFT User's Manual

}

1* ------------------------------------- SLSTNC ----------------*1
1 1 Get a string as a listener

slstnc(string)
char string[] j
{
4,asm

POP
POP
PUSH
PUSH
PUSH
LXI
CALL

B jremove return address
H jget addr of beginning of string area
H
B
H jaddr of beginning of string area
H,DOPVTR ;HL points to the dope vector for MSOFT
LSTNC jclear the error code and get the string

Copy MSOFT string into the C string. Remove all carriage returns.

LXI
POP
MOV
INX
MOV
INX
MOV
MOV

CPYSTR: DCR
JM
MOV
INX
CPI
JZ
STAX
INX
JMP

ENDSTR: SUB
STAX
RET

4,endasm

H,DOPVTR jHL points to the dope vector
D JDE points to C string area
C,M ;C = MSOFT string length
H
A,M
H
H,M
L,A jHL = MSOFT string address
C
ENDSTR ; •• no more characters to copy
A,M
H
13
CPYSTR
D
D
CPYSTR

A
D

jcarriage return?
; •• yes, so do not copy into C string
; .• no, so copy into C string

jterminate C string with a null

1* end slstnc */}

1* --------... ---------------------------- MAKEDOPE --------------,*1
1* Make a Microsoft type of string dope vector *1
makedope(string)
char string;
{
4iasm

C stores a string as a sequence of characters terminated by a NULL.
We have to generate a string in the form that MSOFT expects. This
involves two steps. The first is to generate a "dope vector" which
consists of three bytes. The first is the length of the string, and
the second and third are a word which contains the address of the
string itself. Since C passed the address of the string to this
routine, all that we really need ,to do is generate a dope veptor,.

POP
POP

B
H

;get return address out of the way
jget the address of the string

MSOFT-78 rev 4-15-82 16:13

P&T-488 MSOFT User's Manual QCCLOCK.C

PUSH H
PUSH B ;put return address on stack
SHLD DOPVTR+1 ;put string address in the dope vector
MVI C,-1 ;preset the string length counter

SLEN: INR C
SUB A ;zero reg A
ORA M ;see if the byte is NULL (zero)
INX H ;point to the next byte
JNZ SLEN ; •• try next byte
MOV A,C ;get the string length
STA DOPVTR ;put it in the dope vector
LXI H,DOPVTR ;HL = dope vector
RET ;return dope vector address

DOPVTR: DB 0 ;count byte
DW 0 ;address of string

Ilendasm
1* end makedope *1 }

1* ------------------------------------- SIOSET ----------------*1
1 1 Set up communication variables

sioset(ercode,time,poll,bus)
int *ercode, *time, *poll, .bus;
{
lasm

Call

The
1.
2.
Set

IOSET with
HL = address of ercode
DE = address of time
BC = address of a table (B reg buffer)

table must contain the following entries!
*poll
*bus

DE to
LXI
DAD
MOV
INX
MOV
INX
XCHG
SHLD
XCHG
MOV
INX
MOV
INX
XCHG
SHLD
XCHG
MOV
INX
MOV
INX
MOV
INX
MaV
MOV
LXI

point to last parameter passed
H,2 ;skip over the return address
SP ;HL = stack pointer upon entry
E,M
H
D,M
H

BBFR2

E,M
H
D,M
H

BBFR1

E,M
H
D,M
H
A,M
H
H,M

;HL = address of bus variable
;save it in second entry of B reg buffer

;HL = address of poll variable
;save it in first entry of B reg buffer

;DE = address of time

L,A ;HL = address of ercode
B,BBFR1 ;point BC to B register buffer

rev 4-15-82 16:13 MSOFT-79

QCCLOCK.C P&T-488 MSOFT User's Manual

JMP IOSET

BBFR1: DW
BBFR2: DW

o
o

jB register buffer

flendasm
1* end sioset *1 }

1* -------------------------------------
1* Set up more communication variables
sprotcl(length,eos,eot)
int *length, *eos, *eotj
{
flasm

Call PROTCL with
HL : address of length
DE : address of eos
BC : address of eot

SPROTCL ---------------*1
*1

Set HL to point to last parameter passed
LXI H,2 jskip over the return address
DAD SP jHL : stack pointer upon entry
MOV C,M jget address of eot switch
INX H
MOV B,M JBC : address of eot switch
INX H
MOV E,M
INX H
MOV D,M JDE : address of eos byte
INX H
MOV A,M
INX H
MOV H,M
MOV L,A jHL : address of listen string length
JMP PROTCL

I;endasm
1* end sprotcl *1 }

1* ------------------------------------- SECHO -----------------*1
1* Set up echo switches
secho(echoin,echout)
int *echoin, *echoutj
{
f;asm

Call

liendasm

ECHO
HL :
DE :
POP
POP
POP
PUSH
PUSH
PUSH
JMP

with
address of echo in
address of echout

B jhang on to return address
D JDE: address of echout switch
H jHL : address of echin switch
H jrestore stack
D
B
ECHO

1* end secho *1 }

MSOFT-80

*1

rev 4-15-82 16:13

P&T -488

UNOFFICIAL PHRASE BOOK
IEEE 488 to ENGLISH

488 PHRASEBOOK

IE E E used the following conventions when they assigned the names used in
the standard:

Lower Case names are associated with local messages (messages between a
device and its interface; they MIGHT NOT appear on the 488 bus).

Upper Case names are divided into three groups:

One or two letters name interface functions,

Three letter mnemonics are remote messages (communications over the
488 bus from one interface to another) and

Four letter names "ending in "S" identify the state of an interface
function.

The numbers following an entry are the pages of the IEEE Standard (Apr 4, 1975)
which give further information.

ACDS ACcept Data State
21,22

ACG Addressed Command G,.oup - multiline messages (~~-~F Hex) which affect
only addressed devices. The messages GTL (Go To Local); SOC. (Selective
Device Clear), PPC (Parallel Poll Configure) and GET (Group Execute
Trigger) operate only on devices in the LADS (Listener Addressed) state.
TCT (Take Control) operates on the device in the TAOS (Talk Addressed)
state.
48,77

ACRS ACceptor Ready 'State
21,22

Addressed Commands - Commands belonging to the Addressed Command Group (See
ACG)
43

AH Acceptor Handshake - the device function which allows proper reception of
data and commands appearing on the eight data lines of the 488 bus (i.e.,
mUltiline messagels). The DAV (Data Available) line is sensed to determine
when the multiline message is valid, and the AH function indicates its
readiness for data by asserting a passive false on the NRFD (Not Ready For
Data) line, and that it has received the message by asserting a passive
false on the NDAC (Not Data Accepted) line. Note that it is illegal for the
AH to assert both NDAC and NRFD passive false simultaneously.
20

A-l

p&r:...488 488 PHRAS eao.o K

Active False - an active false message asserted on the 488 bus is one in which it
is guaranteed that a false value is received. It overrides a passive true.
The standard is constructed so that it is not possible for an active true and
an active false message to be asserted on the bus at the same time.
16

Active True - a message which when asserted on the 488. bus is guaranteed to be
received as true. It overrides a passive false. Tne" standard is
constructed so that it is notpossibte for an. active true and' an active false
message to be asse.rted on the bus at the same time.
16

AIDS ACceptor Idle State,
20, 21

ANRS Acceptor Not Ready State
20,21

APRS Affirmative Poll Response State
32

ATN ATtentioN a uniline remote message indicating that a Controller is sending
commands (as contrasted to a Talker sending data) over the eight dau,,(DIO)
lines.
19,21,24,29.3S~41,48,7S-76

AWNS Acce-PlOT W-ait for New cyc1e State
2l.~2;

. C Controller· interface function - the inter.tacefuncti.on which allowsa.\\devic'e
to send device addresses, universal commands and addressed commands over
the 4 8 8 bus. I t a Iso a II 0 w s the d ev ice to con d u c taP a r a II e I Poll t 0

determine which device needs service.
41

CACS Controller ACtive State
41,42

CADS Controller ADdressed State
41,42

CAWS' Controller Active Wai.t State.
41,43

CIDS Controller IDle State
41

CPPS Controller Parallel Poll State
41,43

CPWS Controller Parallel poll Wait State
41,43

A-2

P&T-488 488 PHRASEBOOK

C SBS Controller StandBy State
41,43

CSNS Controller Service Not requested State
41,44

CSRS Controller Service Reque sted State
41,44

CSWS Controller Synchronous Wait State
41,43

CTRS Controller TRansfer State
41,44

DAB DAta Byte - a multiline sent by the Source Handshake (SH) over the eight
data (DIO) lines

DAC

25,48,75-76

Data ACcepted - the complement appears on the NDAC line.
for further information.
19,22,48,75-76

See AH, SH

Data Byte Transfer Control lines - the three lines (DAV, NRFD and NDAC) that
are used by the Source and Acceptor functions to perform the handshake
cycle.
12,18-22,67

DAV DAta Valid - a uniline message sent by the Source Handshake (SH) function
over the DAV line. See SHe
48,75-76

DC Device Clear interface function the interface function which allows a
dev ice to be cleared (initialized) either individually or as part of a group.
The group may be either part or all of the addressed devices in one
sy stem.
37 -38

DCAS Device Clear Active State
38

DC IS Device Clear Idle State
37,38

DC L Device CLear - a multiline message (14 Hex) sent by the Controller over the
eight data lines indicating that all devices are to go into the Clear state.
The details are device dependent, but usually the device is .left in the same
state as when its power is first turned on.
38,43,48,75-77

Dense Subset - A subset of the Primary Command Group, consisting of only the
Listen Address Group (LAG) and Talk Address Group (TAG). ISO codes
Space through Underline, inclusive. (Values 20 Hex through 5F Hex).
77

A-3

P&T -488 488 PHRASEBOOK'

DIOn Data Input/Output line n (n goes from 1 through 8)
54

DT Device Trigger interface function - the interface function which allows a
device to start its basic operation started either individually or as part of a
group. This function may be used to start several devices simultaneously.
38-39

DTAS Device Trigger Active·State
39

OTIS Device Trigger Idle State
39

END END - a uniline message sent by a Talker (EOI line active true) at the
same time a data byte is sent on the data (010) lines. The message
indicates that this is the last data byte to be sent. (See EOS for an
alternate way of terminating a string sent by a Talker).
23,48,75-76

EOI End Or Identify - a uniline message which serves two purposes: if asserted
true by a Talker it indicates that the last byte of a string is being sent.
If asserted true by a Controller it initiates a Parallel Poll.

EOS End Of String - a multiline message
last byte oJ a string has been sent.
w.hat the Listener(s) recognize.
48

sent by a Talker to indicate tbat the
.Its value (ISO code) is determined by

General Interface Management lines - the. fhe lines used to perform system
operations, such as Parallel Poll, Int.erface Clear, etc. Several of the
lines are also used in data transactions! an example is EOI, which may be
used to signal the end of a multibyte transaction. The five lines are ATN,
EOI, IFC, REN and SRQ.
12

GET Group Execute Trigger a multiline message (~8 Hex) sent by the
Controller indicating that all devices addressed as Listeners are to start
performing their respective functions. This command is often u.sed to start
several piec~sof equipment in synchronism.
39,43,48,75-77

GTL Go To Local a multiline message (~1 Hex) sent by the Controller
indicating that all devices addreued as Li.steners are to go to the Local
state: i.e., local controls on the front or back panel (instead of d~vice

dependent messages on the 488 bus) control devi.ce. operation. (See Local
Control)
33,43,48,75-77

gts go to standby - a local message sent by a device to its Controller interface
function telling it that it is finished sending commands. The response is
that the Controller function releases the bus so that other operations (e.g.,
a: Talker sending data to Listeners) may proceed.
41,75:

A-4

P&T-488 488 PHRASEBOOK

lOY IDentifY - a uniline message sent by the Controller during a Parallel Poll
telling the other devices to assert their Parallel Poll responses on the data
bus.
35,48,75-76

IFC InterFace Clear - a uniline message sent by the System Controller telling
all other devices on the bus to go to the Idle state. This message is used
to place all devices in a known state. It should be used sparingly because
any bus transaction is terminated by this function.
24,29,41-42,48,75-76

ISO Code a seven bit code equivalent to the American National Code for
Information Interchange, ANSI X3.4-1968 (often called ASCII).
46,50,77

isr individual service request - a local message sent by a device to its Parallel
Poll interface function. If the individual status (see lIist ll) message is equal
to the 5 (Sense) bit received as part of the most recently received PPE
(Parallel Poll Enable) command, the PPR (Parallel Poll Response) byte
specified by the three bits P1-P3 of the most recent PPE command must be
sent true upon receipt of an lOY (IdentifY) command from the Controller.
Alternately, if subset PP2 (Parallel Poll function cannot be configured by
the Controller) is used, local messages are substituted for S, Pl-P3.
35-37,75

ist individual status a local message used by the Parallel Poll function to
determine the proper response to a'n lOY (IdentifY) command from the
Controller. See lIisr".
35-36

L Listen interface function - the function which allows a device to receive
data from the 488 bus.
28

lACS Listener ACtive State
29-30

(LAD) the listen address of a specific device (received as MLA). See IIMLAII.
43

LADS Listener ADdressed State
28-29

LAG Listen Address Group - a subset of the ISO-7 codes, being characters
SPACE through? (2~ Hex through 3F Hex).

LE

LIDS

48, 77

Listen Extended interface function - similar to the Listen function except
that a Secondary Address must be used as well as the Primary Address used
for the Li sten function.
30 I

Listener IDle State
28-29

A-5

P&I;"488 4&& PHRASEBOOK

LLO Local LockOut - a multiline command (11 Hex) sent by the Controller which
tells all devices with the RL (Remote Local) interface function to obey
device dependent messages sent over the 488 bus instead of their local
controls (e.g., front panel).
33,43,48, 75-77

L.OC S LOCal State
33

local control - the device is programmed by it sc 0 n tr 0 I s instead of by the 488
interface. An example is a digital multimeter; the range, function, sample
rate, etc. are set by front panel control s if it is under local control.
33

local message - a message sent between a device function and an interface
function. It may cause a remote message to be sent from the interface
function over the 488 bus.
15

Ion listen only - a local message which causes the Listen function of the device
to act as if it had been addressed by the Controller.
29,75

LPAS Listener Primary Addressed State
29,30

Ipe locaL poll enable - a local message which causes the Parallel Poll function
of thedtivice to act as if it has receJved a P PE. (ParaUel Poll Enable) trom
the Controller • When I p e is f a I s e , the device is to act as i f it has
recei.ved a PPD (Parallel Poll Disable) while in the PACS (Parallel Poll
Addressed to Configure state) or a P PU (P arallel Poll Unconfigure) command
from the Controller. .
35,75

LPIS Listener Primary Idle State
29-30

Itn listen - a local message which when true and the Controller is in the active
state causes the L (Listen) or LE (Listen Extended) function to go from the
Idle (LIDS) to the Addressed (LADS) state.
29,75

lun local unlisten - a local message which when true and the Controller is in
the act i v est a te (C A CS) c a use s the L (Li s ten) 0 r L E (L i s ten Ext en d e d)
function to go from the Addressed (LADS) to the Idle (LIDS) state.
29,75

L W LS Local With Lockout State
33-34

A-6

P&T-488 488 PHRASEBOOK

MLA My Listen Address - the address which the L (Listen) or LE (Listen
Extended) function will respond to. Note that the standard does not allow a
488 bus system to have both an L and an LE interface function which
respond to the same primary address. MLA must belong to the LAG (Listen
Address Group).
48,75-76

MSA My Secondary Address the secondary address which the TE (Talk
Extended) or LE (Listen Extended) functions will respond to if they are in
the Primary Addressed state (TPAS or LPAS, respectively). MSA must
belong to the SC G (Secondary Command Group).
24,48,75-76

MTA My Talk Address - the primary address which the T (Talk) or TE (Talk
Extended) function will respond to. Note that the standard does not allow a
488 bus system to have both a T and TE interface function simultaneaously
with the same primary address. MTA must belong to the TAG (Talk Address
Group).
24,29,48, 75 -76

multiline message - a message that is sent over two or more lines of the 488 bus.
An example is Device Clear (DCL) (14 Hex sent out on the data (0101-0108)
lines by the Controller).
45

nba new byte available - a local message sent by a device to its Source
Handshake (SH) fu·nction to inform it that another byte is available for it to
place on the bus data (0101-0108) lines.
19,75

NOAC Not Data ACcepted - one line of the 488 bus which carries the complement
of the Data ACcepted (OAC) message. It is one of the three Data Byte
Transfer Control lines. (See OAC).

NPRS Negative Poll Response State
32

NRFO Not Ready For Data - one line of the 488 bus. It carries the complement
of the Ready For Data (RFO) message, and is one of the three Data Byte
Transfer Control lines. (See RFD).

NUL null .byte: all eight bits are false.
23,42,48

OSA Other Secondary Address - a secondary address which is not the same as
the secondary address of the TE (Talk Extended) function while it is in the
TPAS (Talk Primary Addressed state), or of the LE (Listen Extended)
function while it is in the LPAS (Listen Primary Addressed state). OSA
must belong to the SCG (Secondary Command Group).
48,75-76

A-7

P8cT -488 488PHRAS E800 K

OTA Other Talk Address - an address other than a device's own talk address.
Some devices which are capable of talking unaddress themselves if they
sense that the Controller is addressing another Talker. This feature can be
convenient because an UNTalk (UNT) command is not needed. OT A must
belong to the TAG (Talk Address Group).
24,48,75-76

PACS Parallel poll Addressed to Configure State
35-36

Passive False - a mes.sage which when asser.ted on the '·488 bus is NOT gua.ranteed
to be received as false. It is overridden by an active true message.
16

Passive True - a message which when asserted on the 488 bus is NOT guaranteed
to be received as true. It is overridden by an active false message.
16

PCG Primary Command Group - a subset of the ISO-7 code. It consists of all
characters NUL through UNDERLINE (11'11' Hex through 5F Hex). It includes
all of the ACG (Addressed Command Group), UCG (Universal Command
G ~ 0 up) , LAG (L is ten Ad d res s G r 0 up) and TAG (T a I k Add res s G r 0 up) •
35,49,75-77

pon power on - a local message sent by the device to. its own interfa·c·e.M to
inform it that power has just been ap.plied. The interface should reset all
functions (e.g., Listen, AH, Talk, etc.) to their Idle states.
75

P P phallel Poll interface function _. the functi.on wh.ich allows a dindc:e' to
respond to a Parallel Poll from the Controller.
35

PPAS Parallel Poll Active State
35-36

PPC Parallel Poll Configure - a multiline message (11'5 Hex) sent by the
Controller which causes the device presently addressed as a Listener (e.g.,
i n the LA D Sst ate) to go into the PAC S (P a r all e I Poll Ad d res sed to
Configure) state. While.in the PACS, the PP (Parallel Poll) function is to
obey the PPE (Parallel Poll Enable) and PPD. (Parallel Poll Disable) messages
sent by the Controller.
35,43,75-77

PPD Parallel Poll Disable - a multiline" message (711' Hex) sent by the Controller
w hi c h will p I a c: e all de vice sin the PAC S (Par aile I Poll Ad d r e sse d to
Configure) state into the P PIS (P arallel Poll Idle) state.
35,43,49,75-76

PPE Parallel Poll Enable a multiline message (6\&-6F Hex) sent by the
Controller which will change all devices in the PPIS (Parallel Poll Idle) state
to the PPSS (Parallel Poll Standby) state. It also specifies the PPRn
(Parallel Poll Response byte) to be used and the S (Sense) of the PPR.
Tfle~form of the messag~··'iS (ftom'mos,tsl'gnifi'C'"ant'Mt to" least'T

A-8

P&T -488 488 PHRASEBOOK

x ~ S P3 P2 P1
where X means don1t care (may be either high or low), and the binary value
formed by P3-P1 indicates which PPRn is to be used. Note that n of PPRn
indicates which data line is to be made active true (i.e., 0103 will be made
active true when PPR3 is placed on the bus).
35,43,49,75-76

PPIS Parallel Poll Idle State
35-36

PPRn Parallel Poll Response n (See PPE)
35,49,75-76

PPSS Parallel Poll Standby State
35-36

PPU Parallel Poll Unconfigure - a multiline message (15 Hex) sent by the
Controller which takes all devices in the PPSS (Parallel Poll Standby) state
and puts them into the PPIS (Parallel Poll Idle) state.
35,43,49,75-77

PUCS Parallel poll Unaddressed to Configure State
35-36

rdy ready for next message - a local message sent by a device to its AH
(Acceptor Handshake) interface function to indicate it is ready for another
message byte from the 488 bus (i.e,' another multiline remote message).
21,75

remote control - a device is programmed by its 488 in.te.rface instead of by local
controls. An example is a DMM whose function, range selection, etc a.re
selected by messages sent to it over the 488 bus. See local control for
contrast.
33

REMS REMote State
33-34

REN Remote ENable - one of the five General Interface Management lines.
Also, a uniline message sent by the Controller to put devices addressed as
Listeners into the REMS (Remote) state. When the Controller makes the
REN message false, all devices are to go to the LOCS (Local) state.
33,42,49,75-76

RFD Ready For Data - the complement appears on the NRFD line. This uni/ine
message is used by the AH (Acceptor Handshake) function to indicate that it
is ready to accept the next byte (multiline message). See AH for further
information.
19,22,49,75-76

RL Remote Local interface function - if present it allows a device to be
switched from local to remote control and vice versa.
33

A-9

P&T-488 488 PHRASJ;:BOO K

rpp request parallel poll - a local message sent to the Controller interface
function when the device wants a Parallel Poll performed.
41,75

RQS ReQuest Service - the byte sent by the current Talker in response to a
Serial Poll. Data bit T (0107) is true.
23,49,75-76

rsc request system control - a local message sent to the Controller interface
function by the device when it wants to go to the SACS (System Control
Active) state.
41,75

rsv request service - a local message sent by a device to its Service Request
interface function to cause it to go to the SRQS (Service Request) state.
As a consequence, the uniline message SRQ is sent active true until either
rsv is sent false, or the Controller performs a Serial Poll of this device.
32,75

rtl return to local - a local message sent by a device to its Remote/Local
interface function. The LOCS (Local) state is entered if neither LLO
(Local Lockout) nor ACDS (Accept Data State) are true.
33,75

R W LS Remote With Lockout State
33,34

SAC S Syuem Control Active State
41,44

(SAD) Secondary ADdress - the seconday address of a specific device, and is
received as either My Seconday Address (MSA) or Other Secondary Address
(OSA). Its value must lie in the range 6\1-7E Hex. (See SCG).
43

(SBA) Status Byte, service request Acknowledged. A message sent over the 488
bus by the current Talker in response to a Serial Poll. This message
indicates that this device was requesting service. Data bit 7 (0107) is
true. (See R QS)
62

(SaN) StatUs Byte, service N<>t requested. Same as SBA but indicates that this
device does not need service. Data bit 7 (0107) is false.
62

SCG. Secondary Command Group. A sub'set of the I S.O;'" 7' code consiHing of
characters ACCENT GRAVE through TILDE (6\1 Hex through 7E Hex).
Secondary Talk and Listen addresses must be selected from this group.
(Note that DE L is not allowed as a secondary address).
49, 77

A-10

P&T-488 488 PHRASEBOOK

SDC Selected Device Clear - a multiline message (c,J4 Hex) sent by the Controller
indicating that all devices addressed as Listeners are to go into the DCAS
(Device Clear Active) state. The details are device dependent, but usually
the device is left in the same state as when its power is first turned on.
38,43,49,75-77

SDYS Source DelaY State
18-19

S econdar y Command s - the command s P PE, P PD and (SAD).
43

SGNS Source GeNerate State
18-19

SH Source Handshake interface function. The function used by a Talker or
Controller to insure proper communication of multiline messages. The NRFD
and NDAC lines are sensed to determine whether the AH (Acceptor
Handshake) function of some -device is active (if both NRFD and NDAC are
false simultaneously, there is no AH function on the bus, which is an
error). The multiline message is placed on the eight data lines (DI01-DI08)
and a 2 microsecond timeout is started. When NRFD is sensed false and
the timeout has been completed (to insure the data lines have settled) DAV
is asserted true (to show that the data is available and settled). Upon
sensing NDAC false the SH asserts DAV false (to indicate that the data
may n 0 Ion g e r b e v a Ii d) the n rem 0 v. est h e data. The who I e c y c lei s
repeated for subsequent bytes of data~ (See AH for the other half of the
handshake cycle).
18

SIAS System control Interface clear Active State
41,44

sic send interface clear - a local message which causes the devices' Controller
interface function to enter the SIAS (System Control Interface Clear Active)
state if it is the System Controller (i.e., it is in the SACS (System Control
Active) state). As a consequence, the IFC (Inteface Clear) signal is sent
active true. (IFC is a uniline message sent on the IFC line).
41,75

SIDS Source IDle State
18 -19

SIIS System control Interface clear Idle State
41,44

SINS System control Interface clear Not active State
41,44

SIWS Source Idle Wait State
19-20

SNAS System control Not Active State
41 ;44

A-11

P&T -488

SPAS Serial Poll Active State
24,26

488 PHRASESOOK

SPD Serial Poll Disable - a multiline message (19 Hex) sent by the Controller.
It informs all devices capable of being Talkers that they are to speak data
when they are addressed to talk. (See SPE for contrast).
43,49,75-77

SPE Serial Poll Enable -.a mulitline.messag.e (18 Hex) sent .by the CohtroH.er .• It
informs all devices capable of being Talkers that they are to speak their
Serial Poll Status Byte (instead. of data) when. they are addressed to talk.
See SBA, SBN, STB for further informati.on about the stat.us byte.
43,49,75-77

S PIS Serial Poll Idle State
24,26

S PMS Serial Poll Mode State
24,26

SR Service Request interface function. This function allows a device to
asynchronously request service from the Controller-In-Charge.
31

SRAS System con.trol Remote enable Active State
41,45

sre send remote·· enable - a local message s.ent by a device to its Control
interface function. It causes the function to enter the SRAS (System
Control Remote EnabJe Active) state onl y if it was already in the SAC S
(System Control Active) state. The uniline message REN is sent active true
as long as the Controller remains in the SRAS state.
41,75

SRIS System control Remote enable Idle State
41,44

SRNS System control Remote enable Not active State
41,45

SRQ Service ReQuest - a uni.line message sent on the SRQ line by the SR
(Service Request) interface· function. It is the duty of the Controller to
provide the service needed.
49,75-76

SR QS Service ReQuest State
32

STS STatus Byte. Data bits 1 through 6 and bit 8 (DI01-DI06, 0108) sent in
response to a Serial Poll. STS is combined with RQS to form the complete
byte. (See SBA, SBN).
25,49,75-76

A-12

P&T-488

STRS Source TRansfer State
18-19

S W NS Source Wait for New cycle State
18 -19

488 PHRASEBOO K

T Talk interface function. This function allows a device to send information
to other devices on the 488 bus. Only one byte (selected from the Talker
Address Group) need be sent to address the Talker.
23

TACS Talker ACtive State
24,26

(T AD) the Talk ADdress of a specific device. It is received as either My Talk
Address (MT A) or Other Talk Address (OTA). It must be a member of the
TAG (T al k Addre ss Group).
43

T ADS Talker ADdressed State
23-24

TAG Talker Address Group~ A subset of the "ISO-7 code consisting of all
characters from @ through UNDERLINE (4~ Hex through 5F Hex). The
address of ·a Talker (or the primary address of an Extended Talker) must be
selected from this group. Note that UNDERLINE cannot be used as an
address, for it is reserved as the Universal Untalk command.
49, 77

tca take control asynchronously - a local message sent by .. a device to its
Controller interface function. It causes the function to go from the CSBS
(Controller Standby) state to the CSW S (Controller Synchronous Wait) state,
where it waits for at least 500 nsec (to allow the other devices on the 488
bus to respond to the active true assertion of the uniline message ATN),
then proceed to the CAWS (Controller Active Wait) state. ATN is active
true in both CSWS and CAWS.
41,75

tcs take control synchronously - a local message sent by a device to its
Controller interface function. It operates the same as tca EXCEPT that
the function goes from CSBS to CSWS only when the AH (Acceptor
Handshake) function is in theANRS (Acceptor Not Ready) state. The
effect is to insure that a message sent by a Talker is not garbled or
misinterpreted as a message sent by the Controller; ATN will not become
active true until the Source Handshake is complete (i.e., DA Vis fal se,
showing that the message is no longer valid).
21,41,75

TCT Take ConTrol - a multiline message (1J9 Hex) sent by the Controller to
inform the device currently addressed as a Talker that it is to become the
Controll er - in -Charg e.
41,43,49,75-77

A-13

P&T -488

TE T a Ike rEx ten d e din t e r fa c e f un c t ion. S i mil a r
except that this one is addressed by two bytes.
from the Talker Address Group (TAG) and the
Command Group (SCG).
23

TID S Talker IDle State
23;...24

488 PHRASEBOOK

to the Talker (T) function
The first must be selected

second from the Secondary

ton" talk only - a local message sent by a device to its Talk interface function.
If IFC (Interface Clear) is false, the Talker function enters the TAOS
(Talker Addressed) state. Remember that only one Talker may be addressed
at a time, so as long ·as ton is true no other devicema y have ·~ton true 0 r
be addreHedas a Talker by tbe.Controller.
24,75

T PAS Talker Primary Addressed State
24,26

T PIS Talker Primary Idle State
24,26

UCG Universal Command Group - A subset of the ISO.-7 code consi.sting of all
characters from OLE through US (1f1 Hex through lF Hex). These commands
operate upon all devices which are capable of responding to a Controller;
the devices ar'e not individually addressed. For contrast see Add.ressed
Command Group (AC G).
43,49 t 77

uniHne') meHage - a message that uses only one line of the 488 bus. An exa.mple· is
Service ReQuest (SRQ).

Universal Command Group - See UCG

UNL UNListen - a multiline message (3F Hex or the character "?") sent by the
Controller which forces the Listen function of aU devices into the LIDS
(Listen Idle) state.
29,43,49,75-77

UN! UNTalk - a multiline message (SF Hex or the character "_") sent by the
Controller which forces the Talk function of all devices into the TlDS (Talk
Idle) state .•.
49,77

A-14

0 CD 0
b6 0 MSG 0

0 1

Code Assignments for "Command Mode" of Operation.

(SENT AND RECEIVED WITH ATN TRUE)

0 0 1
MSG 1 MSG 1 MSG 0 MSG

0 1 0

1 1 1 I
0 MSG 1 MSG 1 MSG

1 0 1 ~ Bit. bs

(!) . S b4 bt bl b, COLUMN ~
0 1 2 3 4 5 6 1 ~ ROW·~

0 0

0 0

0 0
0 0

0 1

0 1

0 1

0 1

1 0

I 0

I 0

1 0

1 1

1 1

1 1

1 1

NOTES: CD

~

0 0 0

0 1 1

1 0 2

t 1 3
0 0 4

0 1 5

1 0 6

1 1 1

0 0 8
0 1 9

1 0 10

1 1 11

0 0 12

0 1 13

1 0 14

1 1 15

NUL OLE

SOH GTL DCI LLO

STX DC2

ETX DC3

EOT SOC DC4 DCL

ENQ PPC(, NAK PPU

ACK SYN

BEL ETB

as GET CAN SPE

HT TCT EM SPD

LF SUB

VT ESC

FF FS

CR GS

SO RS

SI US

~L...-..y---J
ADDRESSED
COMMAND

GROUP
(ACGI

UNIVERSAL
COMMAND

GROUP
(UCGl

SP

I ..

$

" lie

(

I .
+ .
-

I

I Q)

. ~ 0
I

2
w 3
U
:; 4
W
0 5

.~ 6

C 1
w
z 8
C)

iii 9

~ :

:5 .
:t <

o;

> , 1

V
LISTEN

ADDRESS
GROUP
(LAG)

• I
w
u
:;
w
C

C
l-
C
w
Z
C)

iii
II)
c(

:5
:t
I
r • UNL

(il

A

a
C

0

E

F

G

H

I

J

K

L

M

N

0

1\
.

• P

Q

R
w S U
:; T
w
C U
0 V I-
C W
w z X
C)

iii Y

~ Z
c([
I-
:t \

)
,..

, --
V

TALK
ADDRESS

GROUP
(TAG)

• I
w
U
:;
w
C

0
l-
C
w
Z
C)

iii
~
c(

!i
I
I

• UNT

... I) • a I q w
b w r

0-
0 8-8 c s

C)-
d C) t U

U !L_

• !L U >-
>- ID-

f v ID 0-
II C w w

w z-
h ~ x iL
i IL w-

w Y 0
C -

j z C)
C)

{ ~-k Z Z
Z c(-

I
,

c(., w
w } :t-

m

i n - .~
00 • DEL

j

\ 1\ /
~ V

MSG = INTERFACE MESSAGE

b, = DIOl ... b, = D.07

REQUIRES SECONDARY COMMAND

PRIMARY (;OMM.4t",O GROUP (PeG)

DENSE SUBSE;T (COLUMN 2 THROUGH 5). ALL CHARACTERS USE.D IN BOTH COMMAND & DATA MODES.
of·

SECONDARY
COMMAND

GROUP
(SCG)

Courtesy of Hewlett-Packard Co.

P&T -488 Auxilliary Programs for CP /M t

The program BU SMON monitors and reports all transactions on the IE E E -488 bus.
488TODSK records data sent over the 488 bus into a disk file. DSKT0488 sends the
contents of a disk file over the bus as data. HANDSHAK.ASM contains the source code
for routines which perform the Source and Acceptor Handshake functions. An example
of how to use HANDSHAK.ASM is given in the program SAMPLHS.ASM.

BUSMON

The program BUSMON monitors and reports all transacthms which occur on the
IEEE-488 bus. The operator can choose two different formsi ' for» the report. The
normal form displays the transactions without any special handling. The other form is
expanded, which means that non-printing characters are replaced with>strings of printable
characters. This form is especially useful for those cases where one is trying to
distinguish between tabs and spaces, or determine whether line feed precedes carriage
return, etc. The form of the report can be selected by typing a character on the
console ke yboard while the program is running. Once the form has been selected, its
action may be repeated by typing any key on the keyboard.

The operator can set BUSMON to stop on one of three different conditions: on
each carriage return, line feed, or each character. The condition is selected by using
one of the four stop .. ode keys. The stop code can be changed at any time by typing
the appropriate stop code key. The stop code keys and the corresponding stop conditions
are shown in the following. table.. Note that typing .. a' stop code. key win. NOT cause. a
repeat of the previous stop condition, but will invoke a new stop c.ondftlon~ The program
starts in the Carriage Return mode.

Expand/Normal Option
N or n Show characters normally
X or x Expand the non-printing characterh Space (20 Hex), Horizontal Tab (9) and .:

Line Feed (OA Hex) are replaced by the strings <SPACE>, <HT> and <LF>
respectively. The non-printing character Carriage Return (OD Hex) causes the
inessage <CR> to be printed followed by a carriage return and a line feed. All
other non- printing characters are replaced with the two character string of an
up arrow followed by a capital letter. Thus the non-printing character 01 Hex
is replaced by the string tA, while the character 1A Hex. is printed as fZ.

Stop Codes
Carriage Return Display all transactions up to and including the next carriage return.

Line Feed Display all transactions up to and including the next line feed.

Space Display the next transaction (allows stepping one byte at a time).

G or g Go. Displa y all transactions continuously without stopping on Line
Feed, Carriage Return or next byte.

t CP/M is a trademark of Digital Research

CP/M AUX-1

P&T -488 CP 1M Auxilliary Software

Abort
Control C Abort. Go back to the CP I M command mode.

Console/Printer Switch
o Direct all output to the console.
1-9 Direct all output to the system printer.

NOTE,~ to direct output to both the console and printer, select the. console and then
press Control P.

IE£E;;_,~Functions
or. i Assert JFC,(perform an Interf;u;·e. Clear~ .•

R or r Make REN true (assert Remote Enable).
L or I Make REN false (all instruments will go to Local mode).

Q or q Make 5RQ true (request service).
W or w Make 5RQ false (cease requesting se rv ice).

P or p Perform a Parallel Poll and report the results.

Sor"s Show the state·of the IEEE,..,.488 lines.

T or t Talk - conect a string of characters from the operator then send it over the
bus as a Tilker.

C~.orc COfttrot, -. coll.ecta string. an.d send .. it over the bU<5 as a Controller.

NOTE:

Control X

RETURN

ESCAPE

While collecting a string for Talk or Control the followingke yshave special
meaning:

Delete the string and restart collection. This allows errors to be corrected.

Terminate the collection of the string. The carriage return is .!!2!. included
in the string.

Put the next character into the string. This allows ESCAPE, RETURN and
Control X to be put into the string. For instance, to get the string
?A<E SCAPE>12<RETURN><LINE'"FEED;>, you would type
?A<ESCAPE><E$CAP.EtlUESCAP.E><RE:rURN?<UJ;:.IE FEED?<RETURN>. In
this example, the string <E'SCAPE> means that the . ESCAPE key is pressed,
not that the 8 keys <, E, 5, C, A, P, E and> are pressed. Similarly,
<RETURN> and <LINE FEED> mean that the RETURN and LINE' FEED .. keys
are used.

Each time the Controller becomes active (asserts ATN active true), a carriage
return-line feed is sent to the console, followed by the string COMMAND:, followed by
another carriage return-line feed pair. Similarl y, each time the Controller becomes
inactive (ATN is false), a carriage return, line feed, thEi string DATA:, carriage return
and a line feed is sent to the console. Thus all characters printed. after COMMAND;
an4, betor.e, DATA: are .. instructiOns.,. sent"by" .. tn~ •. Cot1Jr:,9.11et:., (fo'" examp(~,*, "1" ~i!!t,$..

CP/M AUX-2

P&T -488 CP 1M Auxilliary Software

UNLISTEN). All characters printed after DATA: and before COMMAND: are data
(otherwise known as device-dependant messages). Examples are readings from a DVM
which has been commanded to be a Talker, etc.

Me ssages are al so
Clear), indicate a change
(Service Request) line.
whenever the Power On

printed on the console to indicate occurances of IFC (Interface
of the state of the REN (Remote Enable) line, and of the SRQ

The me s sag e »> S -1 00 poe IRE SET T RUE «< is p r i n ted
Clear or the RESET line of the S-100 system becomes true.

Whenever the Controller is active, a descriptive string. is substituted for special
non-printing messages. For example, » GO TO LOCAL « is printed when ~1 Hex is
received and ATN is true. The list of messages and the corresponding non- printing
characters is as follows:

Character Message
Hex
01 » GO TO LOCAL «
C)4 » SELECTIVE DE VICE CLEAR «
~5 » PARALLEL POLL CONFIGURE «
~8 » GROUP EXECUTE TRIGGER «
09 » TAKE CONT ROL «
11 » LOCAL LOCKOUT «
14 » UNIVERSAL DEVICE CLEAR «
15 » PARALLEL POLL UNCONFIGURE «
18 » S ERIAL POLL ENABLE «
19 » SERIAL POLL DISABLE «

The results of this program can be misleading for the following reasons:

1. This program functions as a Listener on the 488 bus. If there were no Listeners
on the bus before this routine was run, any Talker would have been unable to say
a thing. However, when this routine is run, the Talker has someone to talk to.
Thus the operation of the 488 system may be changed by the fact that the Bus
Monitor routine is run.

2. This routine is slow compared to the speed that communication on the 488 bus is
capable of attaining. Thus 488 throughput may be drastically slowed by using the
bus monitor.

3. This routine is incapable of sensing a Parallel Poll issued by another controller, or
the response to that Parallel Poll. If it happens that this routine tests the EOI
line at the time of a Parallel Poll, it will show the message <END>, even though
ATN is true.

488TODSK

The program 488TODSK is used to record all data transactions directly into a
C P I M disk file. To use the program type

488TODSK filename.ext x<CR>
where filena ... ext is the file name and extension of the file into which the data is to
be recorded, and x is the option code. Note that there must be one and onl y one space

CP 1M AUX-3

P&T -488 CP/M Auxilliary Software

between 488TODSK and the file name, and also one and only one space between the file
name and the option code. The characters <CR> mean that the Carriage Return key is
pressed, not that the four keys <, C, Rand> are pressed.

Three different options are available: none, Z and E. The option E means that
the file will be closed and control passed back to the console upon receipt of the 488
END message. The option Z means that the file will be closed and control passed back
to the console upon receipt of a Control Z in the data stream (the Control Z is also
placed in the file). This. option can be useful because CP/M text files are terminated by
a Control Z. If no option is selected (that is, a Carriage Return follows the file name),
the file can be closed only by pressing Control C on th.e console. Note that Control C
can be used at anytime to ahort the program: all data received up to the time the
Control C was pressed is saved in the file. Some garbage will also appear at the end of
the file because the whole buffer is sav.ed in the disk file, and the buffer probably was
not filled at the time Control Cis pressed.

Error messages are printed on the console if the disk directory is full, the data
area is full, or any other disk write error occurs. In each case the function is aborted.
If the name of the file is the same as one which is already on the disk, the operator is
asked if it is OK to replace the old file. If the operator responds by typing any
character other than nyn or "y", the function is aborted and the old file is left
untouched. If the operator responds with either "Y" or ny", the old file is erased and
the new one take s its place.

DSKT0488

The program DSKT0488 sends the contents of a CP 1M disk file over the 488 bus.
The program is called by the string

DSKT0488 filename.ext x
where filename.ext is the name of the file that is to be sent and x is the option code.
Only two options are available: none and Z. The Z option causes the Control Z to be
sent with the 488 END message when a Control Z is found in the file, then the program
returns control to the console. This can be useful for text files that are terminated by
a Control Z. If no option code is selected, the entire file is sent followed by a null
with the 488 END message, then control is returned to the console. The program may
be aborted at any time by typing Control C on the console.

Error messages are' printed on the console if there is no Listener on the bus, if
the file is not on the disk, or if an invalid option code is selected. In each case the
program is aborted and control is returned to. the console.

If you have two systems and want to send a file from one to the other via the
488 bus, you would type

488TODSK filename.ext· E<CR>
on the system which is to receive the file, and

DSKT0488 filename.ext<CR>
on the one which is sending the file. (It is not necessary to use the same file name or
extension.) Note that the system receiving the file must be started first, otherwise the
first byte of the file will be lost or the sending system will complain that there,. are no
listene rs.

CP/M AUX-4

P&T -488 CP /M Auxilliary Software

HANDSHAK

The source file HANDSHAK.ASM is actually two subroutines: a routine for Source
handshake and a routine for Acceptor handshake. These routines can be useful in special
applications where it is desired to use the S-lQ0 system as a Talk Only or Listen Only
dev ic e, or whe re inc rea sed data rate on the 488 bus is needed. Th ese routine s are
capable of running much faster than the larger Custom System, CPM488 or 488BAS
routines because the larger routines check for the existance of another Controller on the
bus, check for excessive time in the handshake cycle, and many other things.

Refer to the chapter titled Hardware Description in the P&T -488 manual for
information about the bit mapping of the ports and the 488 bus lines.

SAMPLHS

This file contains the source code for a routine which uses the Source, Acceptor
and Initialization subroutines in HANDSHAK to take data from the IEEE-488 bus and
display it on the console.

CP/M AUX-5

P &T-488· CP/M Au~il I iary Softwa~.e

.** ,

· , Source and Acceptor Handshake listings
· ,
.** ,

ISRp:r
CMDP.'l',
DA'FPT
PPORT

EQU
g'QU
EQU
EQU

MON!TR' SET
CPMIO SET.

CR
LF
ES

BUFPRN
· ,
· ,
TLKT:

· ,

SET
SET
SET

SET

TAtK

LoA

ORI
STA

7CH"
I$Rl?ia'+l
ISgta"i:·2
ISRPT+3

0DH
0AH
'$,

9

GIMTC

8
GIMtC

: CP/M, warmstart' e.nt);',y
:CP/M I/O entry point

;ASCII carriage return
;ASCII line feed
;CP/M buffered print string terminator

;CP/M fcn. number for buffered print

;get the image of'the byte last sent
; to the command linepo:+t
;make sure that ATN is:false (high)
; when do source handshake

· * * * * * *'* * * * ** * * * * * * ** ** ,

· ,
SOURCE HANDSHAKE

; This routine takes the byte in memory location CHAR and says
it on the 488 bus as a Talker. If either the S-100 RESET

; or Power On Clear line is or has been true, or if the
; 488 ATN or IFC lines are or have been true, then an error

message is printed and the routine jumps to the system
; monitor.
· ,
: **** * .• * * * ** * * * * ***** ** *** ** * ** * * * * * * * * *.* *** * * * * * * * * ** *.*.** ** * ** · ,
SReas: LOA

ORI
CALL

S,;aCl.:, CALL
JNZ
IN
CMA
ANI
JZ
ANI
JNZ
LOA
CMA

GIMTC
613H
COMND
INTRPT
BYE
CMDPT

60H
NOLSN
408
SRCl
CHAR

;get488 command line imag'e
:set NRPD, NDAC high (falsej

;check for POC, ATN or U'(J
: •• abort if POC, ATN or IrC true
;see if there are any listeners

;check only NRFD, NDAC
; •• no listeners error
;wait until NRFD is high (false)

;g,t the data byt~
;<48:$:u~~,$';;:. n~g.~ti.v~:·19.9:,~(;'

CP/M AUX-6

P&T-488 CP/M Auxilliary Software

OUT DATPT
LDA GIMTC
ANI 7FH ~make DAV true (low)
CALL COMND

SRC2: CALL INTRPT ~check for POC, ATN or IFC
JNZ BYE ~ •• abort if POC, ATN or IFC true
IN CMDPT
ANI 2f3H ~look at NDAC line
JZ SRC2 ~ ... da ta not accepted ye\t
LDA GIMTC
ORI 8lH ~make DAV & EOI false (high)
CALL COMND
MVI A,f3FFH
OUT DATPT ~make all data lines passive false
RET . ,

.** ,

~ ACCEPTOR HANDSHAKE

This routine gets one byte from the 488 bus and returns with
it in register A. If either theS-lf3f(} RESET or Power On

j Clear line is or has been true, or if the 488 ATN or IFC
lines are or have been true, then an error message is printed

~ and the routine jumps to the system monitor.
j .

• ************************~************************************* , . ,
ACEPTR: LDA

ORI
ANI
CALL
LDA
ORI
CALL

ACEPTl: CALL
JNZ
IN
ANI
JNZ
IN
CMA
MOV
LDA
ORI
ANI
CALL

ACEPT2: CALL
JNZ
IN
ANI
JZ
LDA
AN'I

GIMTC
8
9FH
COMND
GIMTC
4f3H
COMND
INTRPT
BYE
CMDPT
8f3H
ACEPTI
DATPT

D,A
GIMTC
2f3H
f3BFH
COMND
INTRPT
BYE
CMDPT
8f3H
ACEPT2
GIMTC
9FH

~make ATN false
and NRFD true, NDAC true

~now make NRFD false

~see if received POC, ATN or IFC
~ •• abort
jlook at DAV

j •• DAV still false
jget the data
~488 uses negative. logic
jkeep the data in register D

jNDAC false
~NRFD true

~ •• abort
~wait for DAV false

j ••• DAV still true

jNRFD true, NDAC true

CP/M AUX-7

P&T-488

· ,

CALL
MOV
RET

COMNO
A,D

CP/M Auxilliary Software

;put the data back in register A

; Initialize 488 board

This routine should be called after every S-100 RESET or
Power; On C1 ear

;
INIT:

;

MVI
OUT
OUT::
CALL,;,
SUB·'
OUT
STA
STA
RET

A,0FFH.
PPORT ..
DAIl'P'I'
COMNO
A
ISRPT
RETCOO
CHAR

ic1ear para11el_P911~response port
ana4,g 8.data;. pp rt

; and 4.88 controL lines and image. byte.

;clear Interrupt Service Register
clear return code
and CHAR

; COMND keeps track of the last byte that was output to the
; command port. It is necessary to keep track of what the
; P&T-488 interface board is' asserting on the bus because
; the 488 bus is an open-collector wire . .,..or system, so it is

not possible to determine what the P&T-488 is asserting
on the. 488 bu.s by met,ely sensing the 488 1 ines.

· ,
COMND: STA

· ,
OUT
RET

GIMTC ;update the 488 command line image
CMI)PT:: ;put it, on the. command lines

; Check for interrupt due to ATN, IFC or POC
;
; NOTE: This function does not reset the interrupts in the
; Interrupt Service Register (ISR)
· ,
INTRPT: IN

RAR
CNC

· ,
IPOC:

IeaM:

RAR
RAR
RAR
CNC
RAR
CNC
LOA
ANI
RET

PUSH
LOA
ORI
STA
POP;;

ISRPT

IPOC

IATN

IIFC
RETCOD
0F0H

A
RETCOD
80H
RETCOD

;look at the interrupt service register
;put POC bit in carry
i •• set POC bit in return code byte if
i no carry
iREN > CARRY
iSRQ > CARRY
;ATN > CARRY
; •• set the XATN bit
;IFC > CARRY
; •• settheXIFC bit

;look at only POC, IFC and ATN

A· ; restQte~:. reS' A a~la:"' carrY'

CP/M AUX-8

P&T-488 CP/M Auxilliary Software

RET

IATN: PUSH A
LDA RETCOD
ORI 20H
JMP ICOM

lIFC: PUSH A
LDA RETCOD
ORI 40H
JMP ICOM

Print the reason for aborting then jump~to the monitor

BYE:

· ,

PUSH
LXI
ANI
CNZ
POP
PUSH
LXI
ANI
CNZ
POP
LXI
ANI
CNZ
JMP

PSW
D,MS2
80H
PRINT
PSW
PSW
D,MS3
40H
PRINT
PSW
D,MS4
20H
PRINT
MONITR

;save the error code
;power on clear

;get the error code again

;XIFC

;XATN

; No listeners present - print error message then
; jump to the monitor
· ,
NOLSN: LXI
· ,

D,MSI ;print no listener msg

; Print error message and return to monitor
· ,
ERROR: CALL

JMP
;

PRINT
MONITR

; print the line pointed to by DE

PRINT: MVI
CALL
RET

· , · ,
GIMTC: DB
CHAR: DB
RETCOD: DB

MS1: DB
MS2: DB
MS3: DB
MS4: DB

C,BUFPRN
CPMIO

o ;image of last byte sent to CMDPT
o
o ;a byte containing the error code

'No listeners on the bus',CR,LF,ES
'S-100 POWER ON CLEAR or RESET',CR,LF,ES
'Another 488 Controller is asserting IFC true' ,CR,LF,ES
'Another 488 Controller is assertingATN true',CR,LF,ES

CP/M AUX-9

P&T-488 CP!MAllxilliary Software·'.··

.** ,

SAMPLHS.ASM

· ,
This program uses the Acceptor handsahke routine to get a
data byte from the IEEE-488 bus and display it on the
system console.

· ,
.** ,

ORG

MONITR SET
CPMIO SET

GETCHR SET
PUTCHR SET
CONSTAT SET

LXI
CALL

LOOP: CALL
MOV
MVI
CALL
MVI
CALL
ANI
JZ
MVI
CALL
CPI
JNZ

JMP

o ; CP/M' warl11s.taJ;t entry point
5 ;CP1M 170routine entry point

1 ;CP/M function code for console input
2 ;CP/M function code for console output
11 ;CP/M function code for console status

SP,2000H
INIT
ACEPTR
E,A
C,PUTCHR
CPMIO
C,CONSTAT
CPMIO
1
LOOP
C,GETCHR
CPMIO
3
LOOP

MONITR

;initialize stack pointer
;initialize the P&T-488 card
;get a byte from the 488 bus
;put it in register E for CP/M.
;function to print on console
;CP/M I/O routine entry point
; loo.k ttl see if a key is pressed'

; •• no key pressed
;get the key

;CONTROL C?
; •• no, so continue getting data
; from the bus
; •• yes, so do a warmstart

.** ,

Inse.rt the Handshake routines here
· ,
.** , .

END

CP/M AUX-10

2 3 4

M > 34461 > 374 B M

L > 3446 1 > 374 B L

K > 3446 1 > 374 B K

J > 3446 1 B 8 J

H G B 8 H

G G B B G

F G G EJ a F

E 0 G EJ EJ E

0 8 EJ EJ a 0

c 8 G G EJ c

B 111111111 B

c:::s c:::s c:::s

~
c:::s c:::s c:::s

2 4

paT 488 REV. 81A

o

c

B

A

8 7 6

488 DATA

+ 5 H4

I "

H4
14 13

15

5 + 3 2

BVOC UNREG ~ I 12,:...-____ ~._-------.......;--.... -- + 5V
Ll.,... .~ C2 VRI.. T C4 18 CAPACITORS T C21 :no 10UF ~ ~O.I.F O.I.F EACH • ~T·o"jlr 1 ... GNJ M4-1,15 ,.~~ __________

I /"L4-15 rh
i 488 BUS

" 9 3 L2 2 L2 I 14 " 13 ~. 017

007~ 10. 49 8 ~~~~;:================j5~LR2~=======;~~6=+:~:~2~1j~~~~"HI~'t=t=~==1=I:i=;:============~~3~:~~0~16 ~ 10 H4 9 7 6 II L2 10::"', 2 iI 4 ~ 5 015
006 e :H4:..~3 ____ -4H-+_":i'3 12 ..J::j'-CI4
005 39 4 ~ ~ 4 PARALLEL 5 .a L2 14 ::::::L215 2 !oK 3 1i!!;'6 013
004 ~>-..!!2~G4o;...:....¥.... ~---""'+-+-1--:13 2 3 M2 2 ';:M2 I 10 ~4 9 ..JTo"'o", _

003 ~ 6 H4 7 14 POLL 155 M2 6 ~M2 7 6. M4 7 ~ ~2 01 I
002 ~ 6 G4 7 17 M3 16 II M2 10 J-,M2 9 14 I\I~ 13 ~ "010

000~ "';1':""/7 CL DE ~=:,':~~ - r--- +, 5 " " +5
+}5 001 ~ 4 G4 5 18 19 13 M2 14 :::M2 IS 12 [i!4 II INTERRUPT STATUS READ '" '" '" '" '" '" =--

• " JII '?L-'----1H---1H-t_t-t-t-.~ih;c:...--'r.C2l1 ».! II r--- . J4-1!, ~ " -, -, ., " " jL!-J
'--- .--I---lHH-+H-+-+---.. _ ___ , ~ •. ~9 6 4 K4-1 N ... '" ... '" g '" g ;:i:

POBIN ILV----o o--4....----::-5 r:--.... 6 I ~ ~ ~ i+5 4 6 ~ E3 ~3'-»-----....., t. ~
r.;::.... r---: EI J>"---q 7..J 7 L- 12,18THRU 24 I 2 3 4 13 14 15 16 ---'-- 2 -1L'L, .. I 02 II 0

'
" z 10 ~

5 IN P ~----------' 3 3 6..J ~ ----'-'3 12' ~ISTE~~ 13 > ' eli ... 0 z II: 70 ---=- J3 r ~ --.r-- 01 02D3D4D5D607 DB ~2 5 ~ ~I i x ~ ~::! g ~
2 ,!.- j +-++-+---"13 DATA 1-'2:-___ ---' <> 0 '" '" = !!! = !:!l '" J4-15 +5 +5 L2~5 12

>=--- ..J ++-+--:-14 488 1-:5:--__ -' rn 488 BUS r--- I 6 r----,. =0= .. 2

"---- c 14 IS 9 "'~ ~ ~.. ~ ~z ::'z ~a ..,. :!i ::!i ~ ~ ~ ~ ~ ,-~: :115 ~ C3 Q E3 r 0 5 Q 6
FI 2 15 ~ 9 ~ 17 L3 16 - V' ~ r' 15 RI4 ~ 13 12 3 J 13

PWR 77'>-----"'" ~2--_+l~,3IEI ,\):>1=.2-+-+"'1 1>:':--1-1-- 18 19 ..-..9 5 1710 II 9 ~ 716 "'". N N ... !!:! ". Q 6 7 ::II CLK
R

Q ~
5 OUT 45 ~ to- 13 J3 pl,;.;.~_+-t4",88"'lMrI\=fl·.-t-+++-+--r-t-4 CL OE F ~/H:::2::-~[10-l--++-+-t-H-l-+--++-rf-9I-9-=t=. H3 II F4

+S JII I 8 I 9 +-+-+-+-HH-+--_t-t--t-~;; ~ TYPICAL 7 ~ 14 12 L-+-f-HH---1HH--..... ~:!------- r---" 12~ +:{ ~l 2 "274lS74 15
'----""ii: 6 K2 7 0 ~II '3 E4 6 14

> > -~ ~ <II ~ 69 ~~ 13~ :~/ 1~15 4 RI: ~_"T~_'3",-00_44,/Jl'--'---"'1r-=-tyr-------------< • < >. <' ~ > P'r 9 " I 7

~~<:~;><' ~> z ~ ~ ~ ~r--'j3 12 NDAC 3'--1 2 2 ~ I H3

-<' ;>_. ~ <II.. -+-+-4"'1 488 2...!E,C ,~~ II 2 10 J2 9 +5 ~2 10,
....... en 9 -'!l! ... 2 .. .- .- 04 ~ J2 2 J2 I :1 ~
'" '" '" II: '" II: It ~ 2 2 "'r-+-++-+-43 COMMAH0tLATN 2 3 <> ,,8::"----1r-:1.:;' E4 1,8~ ___________ ___'

6 • ..--~ - a: 8 8 .""+--+-+-+-1-...:'14:1 ~li5~I-'S~R!504------_I+_+_....!1~3'-tJE21-t-\-4~---~14;_t~2~15;_t--I_, 10 RI6
9

~ 10 04 r ..
5J) 01 ~ :;: ffi i ! 17 K3 16 REN 5 6 :- J2 7 _ '-yi3'
12 • "," ~ II 10 ::K2 9 3 ~ . 13JJOI.J>U II: 18 19 EOI H ~ 4 6
6'-.. ~ CL OE K2-"!; +5 2 4 5 04

5JJCI~ ~ JII J J2-4. ~2 12 i XlFC 3;: 4 3 C4 ~ t. n ~ m d~
12 ,-~ '" 15 14 C3 II 14 13 -=:JI 13JICI~::! 0 G2 R FI H3

2 3 I COCO, ~ 12 13 0 5

~JICI ~ 13 112:'1 2 I 12 J ,J r;] 03 J
81">-'9:+10:+'1I+':-=2+:1-;'31--:-'4~""'::LJ-\r.JD::I""y-~3 L...-:======t==~~===4~====t==:"'''''='13 GI 2 ~I:tl(~3 6 -yl

A 'J 'J~\ J~' 51 ~ rjo G2 R 6 FI H3 9- .L.~~2110t!94 __ --ir-. r;2
3 F3 I hi :t' ~ ~c 00 0, ~ 10 1>'-',-1 ------ C3 n I

6 5 4 2 I rf7 5 4 3 r-----4---4-+++++++t---1r--t--")(:.::A:.!.T:.:.N---<I ... I"1'~IOWJl 03 L8 1L-__ -t ____ -l ___ -t __ S~3 GI ~6~_____ ~ r-----

2

9 F3
B 10

....,..

L-----+------+----4----'4 7i>-------------------~--~=2~~171----~

1)2 ~"4ib--------_,~r~~ 1~3
+5 ~
9! ~I 9~')3.=--+Wl"'1' C C44 J!: l8~_I_I_------_t-----'

12 R:~l "'----!.vB y
007 ...,. 4~ . _ rf,

RESET :::.l'!:~=========~==j5.J~~'C~2'-)i'6'---l
POC b-

006
005
004

I, H3
15

REN

VJI)

VII

VIi
Vi3
VJ4

VB
Vii
V17

NMi
PINT

tiiuI3"--...... ++6"'1if H2 [5
'--

003
002

POCt RESET

1!IE2 r
-=:Ji3

'" ..J ~ ~~~ I ~6
({>-o 488 COMMANll. READ , " L--- +5 I .+.. -vr

~ PATCH INT. LATCHES RESET STROBE • 10 9 10
'7'----- INtERRUPT INTERRUPT STATUS READ L----------I--I------t--' 61~

III ..
Z

'" '" ~
OC>-o ~A~R~E~A~------------~----------~::::::::::::::::::::::::========================1E::==========i==='=NT=E=R=R=UP=T==::::::::::::::::::::::::::====~~~::::::::========::::t-~~==:::j--------~~011"'rB~ __ 8~J~02~~[9~ __ ~
~- I
~ RESET+-,,-OC

• DENOTES OPEN COLLECTOR

I!> DENOTES 5-100 BUS CONNECTOR
PICKLES & TROUT

.1978,82 PICKLES & TROUT P. o. BOX 1206, GOLETA. CA 93116, (805) 685-4641

8 7 6 5 + 4 3. 2

o

c

B

A

