
THE PIC~ SYSTEM 
'. 

ASSEMBLY REFERENCE MANUALR83 

. ;;, 

'f, 

> ) 

SYSTEMS 

© 1987 PICK SYSTEMS 
\ 
> 



PICK SYSTEMS 

1691 Browning Ave. 

Irvine, California 92714 

CONFIDENTIALITY AND NON-DISCLOSURE AGREEMENT 

I The course of Business dealings between and 

PICK SYSTEMS, it has become necessary for PICK SYSTEMS to provide 

with certain trade secrets, know-how and other 

other proprietary data and material information. 

This may include but is not limited to documentation, engineering 

specifications, test procedures, maintenance documentation, 

schematics, and logic diagrams. PICK SYSTEMS considers all such 

information and materi~l as proprietary to and a trade secret of PICK 

SYSTEMS. 

recognizes and agrees with such classification 

and agrees to treat ALL such information and material received from 

PICK SYSTEMS as proprietary to and trade secrets of PICK SYSTEMS. 

Furthermore agre.s not to disclose, 

divulge, copy or otherwise make available to any third party either 

directly or indirectly any information or material received from PICK 

SYSTEMS without prior written approval. 

DATE 

COMPANY 

TITLE' 

SIGNATURE 





* * * CHANGES TO VIR.OSYM * * * 

There are several changes to the VIR.OSYM file that should be made before using the 
ASSEMBLER account. These changes solve problems with the BRANCH·DECREMENTING class 
of instructions. The complete list of these instructions is: 

BD:DDL 
BD:DNL 
BD:HHL 
BD:HNL 
BD:TNL 
BD:TTL 

All but one change requires adding one line to each item. The exception is the 
case where the name of an opcode is changed. Please make the changes indicated on 
the attached list . after you have load the ASSEMBLER account! 



I· , 

I 
I 
I 
If 
I 

r 
I 

r' i 
II 



I 
I 
I 
I-
I 
D 

" 
n 
n 

n 
n 
n 
n 
n 
n,:,!' Ii 

r 

; ~..: 

GENERAL INSTRUCTIONS 
FOR 

ASSEMBLING PROGRAMS ON THE PC-XT OR PC-AT 

General Information - How to Load It and Use It 

Use EX'i'REME caution in creating and ~oading~~.semblycode!JJlm~!,Q~~rl!~~~.TNri tten 
assembly code can cause severe problems on your system including loss of data, 
group format errors, and system crashes. Pick Systems cancels ALL warranties on 
any computer system that is running user written assembly code. 

LOADING THE ASSEMBLY ACCOUNT 

The assembler floppies 1 and 2 have an account containing all the necessary files 
to'create, assemble and load Pick assembler code for the IBM PC-AT 2.0 and XT 2.0 
releases. Follow these instructions to install and use the assembler account. 

'. -'0' "< 

1. Ensure that you have at least 700 frams of disk space available. 
2. Mount the floppy #1 in the A: diskette drive. 
3. Logto SYSPROG and type 'T-ATT' and ensure that the drive did attach. 
4. Type 'ACCOUNT-RESTORE ASSEMBLER'. Load floppy #2 in drive when requested 

and type 'C'. 
5. Type 'ASSEMBLER' to the 'ACCOUNT NAME ON TAPE' prompt. 
6. Ensure that the account restored properly. 

ASSESMBLING AND LOADING USER SOURCE CODE 

The first step is to LOGTO the ASSEMBLER account. Before attempting to assemble 
source code you must add two items to the ERRHSG file. The form of these items can 
be obtained by typing ADDENDUM 003 at TCL. The Pick assembler for the IBM PC-ArlXT 
uses the same Pick source code as all other Pick Systems. Use the following 
instructions to assemble your code. 

1. Load your source code into the file 'VIR.SM'. 
2. Define the type of assembly (XT or AT) by: 

a. )SET-AT - for AT 
b. )SET-XT - for XT 

3. Use the 'AS' verb to do assemblies. 
a. To assemble one item: )AS itemname 
b. To assemble a lis t )GET -LIST lis tname 

)AS 
; 4. The assembled ccode is stored according to assembly type: 

a. In file NAT.SMS.AT - for AT 
b. In file NAT.SMS.XT - for XT 

5. Check for Translation (1st pass) assembly errors by: 
)LIST VIR.SM item/s 
The 'asm err' column will show errors. 

6. Check for Optimization and Native Assembly errors (2nd pass) by: 
)LIST NAT.SM item/s 
The 'opt err' and 'asm err' columns will show errors. It is also 
important to check the 'obj siz dec' column to insure the final 
assembled object is NOT more than 2048 bytes. 

... J 



~I\ 

I: 

I 
I 
I 
D 

D 
O~ I 

I 

Uj 
~ . 

IL 

n 
n 
n 
n 
n 
U i 

I 

nl 
r~ I 



BD:DDL 
001 P 
002 G,4,4,8,8 A2;3,A3;3,0,48 
003 O@YI 
004 0 HOV @BI(2),CX 
005 0 XCHG CH,CL 
006 0 LDA @B2(2) 
007 0 XCHG AU,AL 
008 0 SUB AX,CX 
009 0 HOV CX,DX,SAVE 
010 0 XCHG CH,CL 
OIl 0 HOV CX,@BI(2) 
012 0 HOV @BI,CX 
013 0 XCHG CH,CL 
014 0 LDA @B2 
015 0 XCHG AU,AL 
016 0 SBB AX,CX 
017 0 SUIS O,CX ADDITIONAL LINE 
018 0 XCHG CH,CL 
019 0 HOV CX,@BI 
020 O@CI 
021 0 OR DX,DX 
022 0@C3 
023 O@LI JUS @03 
024 O@L2 EOU * 

BD:DNL 
001 P 
002 G,4,12,8,8 A2;3,0,44,X'CI' 
003 O@YI 
004 0 HOV @BI(2),CX 
005 0 XCHG CH,CL 
006 0 HVI X'@A(02;CVX;CDL)',AX 
007 0 HVI X'@A(02;CVX;CDH)',DX 
008 0 SUB AX,CX 
009 0 HOV CX,AX SAVE 
010 0 XCHG CH,CL 
OIl 0 MOV CX,@BI(2) 
012 0 MOV @BI,CX 
013 0 XCHG CH,CL 
014 0 SBB DX,CX 
015 0 SUIS O,CX ADDITIONAL LINE 
016 0 XCHG CH,CL 
017 0 MOV CX,@BI 
018 O@CI 
019 0 OR AX,AX 
020 O@C3 
021 O@LI JUS @03 
022 O@L2 EOU * 

BD:HHL 
001 P 
002 G,4,4,8,8 A2;3,A3;3,0,9 
003 O@YI 
004 0 LDAB @B2 
005 0 SUBB AL,@BI 
006 0 SUIB O,@BI ADDITIONAL LINE 
007 0 JCS @CO,@03 

(OVER) 



BD:HNL 
001 P 
002 G,4,4,8,8 A2;3,0,0,7 
003 O@Vl 
004 0 SUIB @02,@Bl NEV OPCODE IS "SUIB", ORIGINAL VAS "SBIB" 
005 0 SUIB O,@Bl ADDITIONAL LINE 
006 0 JCS @CO,@03 

BD:TNL 
001 P 
002-G,4,12,8,8A2;l,G,18,*'C2' 
003 O@Vl 
004 0 MOV @Bl,CX 
005 0 XCHG CH,CL 
006 0 SUI @02,CX 
007 0 SUIS O,CX ADDITIONAL LINE 
008 0 XCHG CH,CL 
009 0 MOV CX,@Bl 
OlO 0 JCS @CO,@03 

BD:TTL 
001 P 
002 G,4,4,8,8 A2;3,A3;3,0,21 
003 O@Vl 
004 0 MOV @Bl,CX 
005 0 XCHG CH,CL 
006 0 LDA @B2 
007 0 XCHG AH,AL 
008 0 SUB AX,CX 
009 0 SUIS O,CX ADDITIONAL LINE 
010 0 XCHG CH,CL 
011 0 MOV CX,@Bl . 
012 0 JCS @CO,@03 

I 
I 
I: 

I 
I 
I 
DI 
Hi 

n 
n 
n 
n 
n 
n 
n 
n 
r 
r 
t~ 



I 
I 

SECTION 

I 1 
1. 1 
1.2 

I~ 1.2.1 
L2.2 
1.2.3 

I 
1. 2.3. 1 
1.2.4 
1.3 
1.4 

U 1.5 
1.6 
1.7 

n 1.9 
1.9. 1 

il 
2 
2.1 
2.2 
2.2.1 

n 2.2.2 
2.2.3 
2.2.4 

n 2.2.5 
2.2.6 
2.2.7 

n 2.2.9 
2.2.9 
2.2.10 
2.2.11 

n 2.2.12 
2.2.13 
2.2.14 

a 2.2.15 
2.2.16 
2.2.17 
2.2.19 n 2.2.19 . 2.3 
2.3.1 

0 2.3.2 
2.3.3 
2.3.4 

n 2.3.5 

2.4 
2. 4. 1 
2.4.2 
2.4.3 
2.4.4 
2. 5 
2.5.1 
2.5.2 
2.5.3 
2.5.4 
2. 5. 5 
2.5.6 

TABLE OF C~4TENTS 

THE ASSEMBLER . 
PICK ASSEMBLE.R 
SOURCE LANGUAGE 
LABEL FIELD. . 
OPERATOR FrELU 
OPERAND FIELD . 
OPERAND FIELD EXPRESSIONS 
COMMENT FIELD . . ., . . 
ASSEMBLING SOURCE CODE : 'AS' VERB 
LISTING ASSEMBLY PROGRAMS: 'MLIST' VERB 
LOADING ASSEMBLED MODES: 'MLOAD' VERB 
VERIFYING A LOADED PROGRAM MODE: 'MVERIFY' VERB 
STRIPPING THE SOURCE CODE: 'STRIP-SOURCE' VERB. 
CROSS REFERENCE CAPABILITIES 'CROSS-INDEX' VERB 
CROSS REFERENCE CAPABILITIES: 'XREF' VERB 

MACHINE INSTRUCTIONS 
PICK ASSEMBLY LANGUAGE 
ARITHMETIC OPERATIONS 
Load (LOAD) . . . . . 
Load Extended (LOADX) 
Store (STORE) . . . . 
Zero (ZERO) . . . . . 
One (ONE) . . . . . . 
Add to Accumulator (ADD) 
Add Extended (ADDX) ... 
Increment Storage by One (INC) 
Add to Storage <INC) . . . . . 
Subtract from Accumulator (SUB) 
Subtract Extended (SUBX) 
Decrement Storage by One (DEC) 
Subtract from Storage (DEC) 
Mul tip ly (MUL) . . . . . 
Multiply Extended (MULX) 
Divide (DIV) .... 
Divide Extended (DIVX) 
Negate (NEG) . . . . . 
Move (MOV) . . . . . . 
CHARACTER INSTRUCTIONS 
Move Character to Character (MCC) . 
Move Character to Incrementing Character (MCI) 
Move Character Incrementing and Count (MCI) .. 
Move Incrementing Char~cter to Character (MIC) 
Move Incrementing Character to Incrementing Character 
(MIl) 
LOGICAL INSTRUCTIONS 
Logical Or (OR) . 
Logical Exclusive Or (XOR) 
Log i cal And (AND) . . . . . 
Shift (SHIFT) ...... . 
BRANCHING INSTRUCTIONS 
Branch Unconditionally (B) 
Enter External Mode (ENT) . 
Subroutine Call (BSL) : .. 
Return from Subroutine (RTN) 
Branch character instructions 
Branch Character E~ual (BCE) 

J' • 

PAGE 

1 
3 
3 
3 
:3 
3 
4 
4 
5 
5 
6 
7 
9 
9 

10 

11 
12 
13 
13 
13 
13 
13 
13 
14 
14 
14 
14 
14 
14 
15 
15 
15 
15 
15 
16 
16 
16 
17 
17 
17 
17 
17 
17 

19 
19 
19 
19 
19 
19 
19 
19 
19 
20 
20 
20 



2.5 .. 7 
2.5.8 
2.5.9 
2. 5. 10 
2.5.11 
2. 5. 12 
2. 5. 13 
2. 5. 14 
2.5. 15 
2. 5. 16 
2; 5;1-'1 
2. 5. 18 
2.5. 19 
2.5.20 
2.5.21 
2.5.22 
2.5.23 
2.5.24 
2.5.25 
2.5.26 
2.5.27 
2.5.28 
2.5.29 
2.5.30 
2.6 
2.6.1 
2.6.2 
2.6.3 
2.6.4 
2.6.5 
2.6.6 
2.6.7 
2 .. 6.8 
2.6.9 
2.6.10 
2.6.11 
2.7 
2. 7. 1 
2.7.2 
2.7.3 
2.7.4 
2.8 
2.8.1 
2.8.2 
2.8.3 
2.8.4 
2.8.5 
2.8.6 
2.8.7 
2.8.8 
2.8.9 
2.9 
2.9.1 
2.9.2 
2.9.3 
2.9.4 
2.9.5 
2. 10 
2. 10. 1 
2.10.2 
2.10.3 

Branch.~h~racte~ Un~~ual (BtU) 
Branch. Ch.r~cte~Low (aCLJ 
Branch Character Less. than or Ect",al (BClE) 
Branc~Characte+ Hi)h (BCH) '. '. 
Branch Character' High or E~liIctl (BCHE) 
Branch Character Numeric (BCN) 
Branch Character Not Numeric (BCNN) 
Branch Character Hexadecimal (BCX) 
Branch Character Not Hexadecimal <BCNX) 
Branch Character Alphabetic (BCA) 
Branch Character Not Alphabetic~~B-CNA>-·· ..••... -.; 
Branch if Zero (BZ) . 
Branch if Not Zero (BNZ) 
Branch if less than Zero (BLZ) 
Branch if less than or E~ual to Zero (BlEZ) 
Branch if E~ual (BE) 
Branch if Une~ual (BU) 
Branch if Less than (Bl) 
Branch if Less than or E~ual (BLE) 
Branch if High (BH) 
Branch if High or E~ual (BHE) . 
Branch Decrementing Not Zero (BDNZ) 
Branch Decrementing less than Zero (BDlZ) 
Branch Decrementing Less than or E~ual to Zero (BDlEZ) 
STRINQ-HANDlINQ INSTRUCTIONS 
Scan to Delimiter (SID and SDD)' 
Scan to Delimiter and Count 
Scan to Count ... 
Scan to count or delimiter 
Move String to Delimiter 
Move string to Delimiter and Count 
Move String to Count . 
Move String to Register . . 
Move String to Count or Delimiter 
Scan, Counting Delimiters (SICD) 
Branch on comparing strings; BSTE and BSTU 
BIT INSTRUCTIONS 
Set Bit (SB) . 
Zero Bit (ZB) . 
Branch Bit Set (BBS) 
Branch Bit Zero (BBZ) 
REQISTER INSTRUCTIONS 
Load Absolute Difference (LAD) 
Increment Address Register (INC) 
Decrement Address Register (DEC) 
Increment Storage Register (INC) 
Decrement Storage Register (DEC) 
Set Register to Address (SRA) 
Move Register to Register (MOV) 
Exchange Register with Register (XRR) 
Setup Register (SETUP) 
CONVERSION INSTRUCTIONS . 
Move Binary to Decimal (MBD) 
Move Binary to Hexadecimal (MBX and MBXN) 
Move Decimal to Binary (MOB) 
Move Hexadecimal to Binary (MXB) . 
Move Floating-Point String to Binary (MSDB and MSXB) 
OTHER INSTRUCTIONS . 
Read Input Gueue (READ) . . . 
Write to Output Gueue (WRITE) 
Release Time Guantum (RGM) 

20 
20 . 
21 
21 
21 
21 
21 
21 
22 
22 

.. ~ 22~ 

22 
22 
22 
22 
23 
23 
23 
23 
24 
24 
24 
24 
24 
25 
26 
26 
26 
26 
27 
27 
27 
27 
28 
29 
31 
32 
32 
32 
32 
32 
33 
33 
33 
33 
34 
34 
34 
34· 
34 
35 
36 
36 
36 
36 
37 
37. 
38 
38 
38 
38 

I 

1 
I· 
I 
o 

n 
n 

n 
n 
n 
n 
n 
n.· I i. , 

.r i 

r 



3.1 
3.1. 1 
3.1.2 
3; 1. 3 
3.1.4 
3.1. 5 
3.1.6 
3. 1. 7 
3.1.8 
3.2 
3.3 
3. 3. 1 
3. 3. 2 
3~3.3 

3.3.4 
3.3.5 
3.3.6 
3.3.7 
3.3.8 
3.3.9 
3. 3. 10 
3.3.11 
3.3.12 
3.3.13 
3.3.14 
3.3.15 
3.3.16 
3.3.17 
3.3.18 
3.3.19 
3.3.20 
3.3.21 
3.3.22 
3.3.23 
3.3.24 
3.3.25 
3.3.26 
3.3.27 
3.3.28 
3.3.29 
3.3.30 
3.3.31 
3.3.32 
3.3.33 
3.3.34 
3.3.35 
3.3.36 
3.3.37 
3.3.38 
3.3.39 
3.3.40 
3.3.41 
3.3.42 
3.3.43 
3.3.44 
3.3.45 
3.3.46 
3.3.47 
3.3.48 
3.3.49 
3.3.50 

4 

SYSTEM SOFTWARE . 
Introduction 
Address Registers 
Re-entrancl:I . . . 
Work-spaces or Buffers 
Defining a Separate Buffer Area 
Usage of XMODE . . . . . 
Initial Conditions ... 
Special PSYM Elements. . 
DOCUMENTATION CONVENTIONS 
System subr~utines 
ATTOVF .... 
BLOCK-SUB. . . 
CONV - CONVEXIT . 
DLINIT . . . . . 
DLINITl . . . . . 
ENGLISH INTERFACE 
GETBUF - G3 .. 
GETIB - GETIBX 
GETITM 
GETOPT 
GETOVF 
GETUPD 
GNSEGI 
GNTBLI 
HGETIB 
HSISVR? 
INITTERM 
IROVF . 

. . . . . . . . . . . . . . . . . . . . . . . 

ISINIT 
LINESUB 
MD415 . 
NEWPAGE 
NEXTIR - NEXTOVF 
OPENPFILE 
PCBFID 
PCRLF ..... . 
PINIT . . . . . . 
PONOFF ..... 
PPUT (l,SPOOLADD)* 

RESETTERM 

PRIVTSTl - PRIVTST2 - PRIVTST3 
PRNTHDR .... 
PROC User Ex its . 
PRTERR ..... 
RELBLK - RELCHN - RELOVF 
RETI RETIX RETIXU 
SETLPTR - SET TERM 
SETUP TERM .... 
SLEEP - SLEEP SUB 
SORT ..... . 
TCL-II MD200 MD201 
TIME - DATE - TIMDATE 
TPREAD TPWRITE 
TSINIT . . . . . 
UPDITM - UPDITMX 
WHOSUB . . . . . 
WRAPUP PROCESSOR 
WRTLIN WRITOB WT2 
WSINIT 
WTBMS. . . . . 
XISOS . . . . . 

SYSTEM DEBUGGER 

40 
40 
40 
41 
41 
43 
44 
45 
46 
47 
48 
48 
48 
51 
54 
55 
56 
62 
63 
64 
66 
67 
68 
68 
69 
70 

71 
72 
72 
74 
74 
75 
75 
76 
77 
78 
78 
78 
79 
79 
80 
81 
82 
83 
86 
86 
88 
89 
89 
90 
91 
95 
96 
97 
98 
99 

100 
104 
106 
107 
108 

109 



4.1 
. 4. 1. 1 
4.1.2 
4.1.3 
4.1.4 
4.1.5 
4.1.6 
4.1.7 
4.1. B 
4.1.9 
iCi.fo· 
4. 1. 11 
4.1.12 
4. 1.13 
4. 1. 14 
4.1.15 . 
4.1.16 . 
4. 1.17 
4. 1. lB 
4. 1. 19 
4.1.20 
4.1.21 
4.1.22 
4. 1. 23 
4.1.24 
4.2 
4.2.1 
4.3 
4.3.1 
4.3.2 
4.'3.2.1 
4.3.2.2 
4.4 
4.5 
4.6 
4.6.1 
4.6.2 

',4.7 
4.B 
4.9 
4.9.1 
4.9.2 

,4.9.3 
4.9.4 
4,9.5 
4.9.6 
4.9.7 
4.9.B 
4.9.9 
4.9.10 
4.9.11 

OPERATION COMMANDS 
, A address of element 

B -- break . . . . . . 
C -- character display. 
D -- display current commands. 
DB -- toggle debug.er availablity. 
'e -- single-step control 
END -- back to TCL. . . 
F frame replacement 
G the go command. 
H toggle echo bit.-. 
I integer d i sp lay. . 
K kill break-points. 
L frame links. . . . 
M modal trace. . . . 
ME -- reassigning PCB. 
N -- numb.r of breaks. 
OFF -- back to logon. 
P toggle LISTFLG 
R register.... 
T Trace...... 
U Untrace.... 
X heXidecimal format. 
Y data breaks. . . . . 
Z data unbreak. ... 

·' 

OPERATION COMMANDS : ARITHMETIC UTILITIES 
ARITHMETIC CALCULATING FEATURES 
DATA SPECIFICATION . . . . . 
Di rec t referenc e. . . . . . . 
Ind i rect reference. . . . . . 
Implicit indirect reference. 
Explicit indirect reference. 
FORMAT SPECIFICATION 
WINDOW SPECIFICATION 
OFFSET SPECIFICATION 
Explicit offsets. 
Implicit offsets. 
DISPLAY MODIFIERS. . 
DISPLAY FORM . . . . 
DISPLAY PROMPTS. . . 

" <CR> -- back to the command processor ...... . 
<LF> -- the next window. . . . . . . . . . . . . . 
<control-N> -- the address and the next window. . . 
<control-P> -- the address and the previous window. 
'(string> -- character data. . . . . . . . . . . . 

INTEGER INSERTION. . . . . . 
HEXIDECIMAL STRING INSERTION .' 
BIT STRING INSERTION 
CLEARING WINDOWS 
ADDRESa DISPLAY. . . 
DISPLAY TYPE, WINDOW, AND OFFSET MODIFICATION 

1.10 I 
110 
110 I 110 
111 
111 

I 111 
111 
111 
111 I 112-······ 

112 
112 I 113 
113 
113 
113 I 113 
114 
114 D 114 
114 
114 n 115 
115 
116 
116 H 117 ~ 
117 
117 
117 n t; 

117 
l1B 
l1B fl l1B 1 
l1B 
119 n 119 
119 
121 n 121 

121 
121 
121 n 121 

121 
122 n 122 
122 
122 n 122 

r 
r 

I r 
t 



CHAPTER 1 

THE ASSEMBLER 

THE PICK SYSTEM 

USER'S ASSEMBLY MANUAL 

PROPRIETARY INFORMATION 

This document contains information which is 
proprietary to and considered a trade secret of 
PICK SYSTEMS It is expressly agreed that it shall 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made availble to any third 
party either directly or indirectly. Reproduction 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICK SYSTEMS. All rights reserved. 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAQE 1 



I 
------'---------:----------------------------- -----------------------------------1',' 
f ., ' 
I , , 

PICK SYSTEMS normally assumes responsibility for assuring the 
compatible co~xistence of the total computer system. This is based on 
extensive planning and ~ualification testing of each component and of 
the integrated system. Because user written assembly code can bypass 
and disrupt normal software integrity controls, PICK SYSTEMS cannot 
ensure system integrity. compatibility, or performance once the user 
adds assembly language, programs to the system as supplied by PICK 
SYSTEMS. 

The PICK Virtual Assembly Language includes a wide range of very 
powerful constructs. It has many instructions designed specifically 
for data base management. There is an extensive software machine 
architecture that relies heavily on masslve software ,conventions. 
because of which the virtual machine implementation is very efficient. 
This interprocessor dependence also creates a fragility in the system 
at the assembler code level. The inadvertant destruction of 
conventional interfaces can cause widespread damage to the int~grity 
of the system software!!! 

THIS MACHINE IS NOT WELL SUITED TO USER WRITTEN ASSEMBLY CODE~ 

10' , , 
I , 

I 

:0' t , 

I ' I 

'D' I ' 

I 
I , 

:0, 
I " 
I 

I 

iU\ 

User written assembly code is NOT SUPPORTED by PICK SYSTEMS. Time 'n 
spent locating user problems that are found to be caused by user I 
assembly code will be billed to the user! : I 

----------------------------------------------------------------------·-------in 

fl' 
n 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAGE 2 



1. 1 PICK ASSEMBLER 

The PICK Virtual Assembler is table-driven. It will translate an 
arbitrary source language into either another source language or into 
obJect code. The source item, or "mode" is an item in any file 
defined on the database. The mode is assembled in place; that is. at 
the conclusion of the assembly process, the item contains both the 
original source statements, as l.IIellasthe geneT'~atedobJect code. The 
same mode can then be used to generate a formatted listing (using the 
MLIST verb) or can be loaded for execution (using the MLOAD verb). 

1.2 SOURCE LANGUAGE 

The source language accepted by the PICK Virtual assembler is a 
se~uence of symbolic statements, one statement per source-item line. 
Each statement consists of a label field, an operation (or op-code) 
field, an operand field, and a comment field. 

1.2.1 LABEL FIELD 

The label field begins in column one of the source statement, and 
is terminated by the first blank or comma; there is no limit on 
its length. If the character "*" appears in the first column, 
the entire statement is treated as a comment, and is ignored by 
the assembler. The reserved characters *+-'= are the only ones 
that may not appear in the label field. An entry in this field 
is optional for all except a few opcodes. A label may not begin 
with a numeric character. 

1.2.2 OPERATOR FIELD 

The operator is the first non-blank field after either the 
initial blank or string of blanks, or after the blank or string 
of blanks after the label field. The operator string is called 
an op-code. Op-codes are. pre-defined in the permanent op-~ode 

symbol file OSYM and consist of one or more alpha characters. 
Op-codes are usually mnemonics for the intended operation, either 
an assembly directive, an operation to be done .by the target 
machine, or a macro which will expand into several primitive 
operators. Additionally, users may define new mnemonics or 
"macros" which expand into several machine instructions. This 
may be done by creating new entries in the OSYM file. 

1.2.3 OPERAND FIELD 

Operand field entries are optional, and vary in number according 
to the needs of the associated op-code. Entries are separated by 
commas and cannot contain embedded blanks (except for character 
string literals enclosed by single ~uotes). The operand field is 
terminated by the ~irst blank encountered. The characters +-'* 
have special meaning in this field. 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAGE 3 



1. 2.3. 1 OPERAND FIELD EXPRESSIONS 

Entries in the operand ··field malJ be a slJmbol, ora constant. 
A slJmbol is a string of characters that is either defined blJ 
a single label~fi.ld entrlJ in the mode, or is an .ntrlJ in 
:t.hepre-define_dpermanliDts-y.mbo..L __ ftl e ( P_SYML . _. A-L-Dnst.ant-
may be one of the following forms: 

* Defines current value of the location counter. 

N (n decimal) - A decimal constant. 

X'h' (h hexadecimal) A hexadecimal constant. 

C'text'- Character strings anlJ characters, including 
blanks and commas, malJ appear as part of 
"text"J a se~uence of two single ~uotes (") 
is used to represent one single ~uote in the 
text. 

Arithmetic operators (+,-) malJ be used to combine two or 
more constants. 

1.2.4 COMMENT FIELD 

AnlJ comm.ntarlJ information pT'eceded by a blank may follow the 
operand field entries. 

---------------------------------------------------------------------~--------
NOTE: 

For the purposes of the remainder of this documentation, the label 
field entry, op-code field entrlJ, and operand field entries will be 
refered to as "argument field" (AF) 0, 1, 2 respectivellJ. 

-----------------------~------------------------------------------------------

CHAPTER 1 ASSEMBLER OVERVIEW COPlJright 1987 PICK SYSTEMS 
PAQE 4 

I 
I 
I 
I 
I 
I 
D 

n~' 
£ 

n 
n 
n.·.· l- ~' 



I 
I 
I 
I 
I 

D 

n 
n 

1.3 ASSEMBLING SOURCE CODE 'AS' VERB 

FORMAT: 

AS 'ilename itemname «options) 

The 'AS' verb will assemble the item in the 'ile speci'ied. 

------------------------------------------------------------------------------
OPTION 

Q 

L 

P 

MEANING 

speci'ies that error lines are not tobe listed 
at the end 0' the assembly. 
generate a listing (equivalent to the MLIST verb) 
during assembly. 
routes listing to line-printer. 

-------------------------------------------~----------------------------------

As th e assemb 1 er proc esses, it wi 11 output an 
ten source statements are assembled. At the end 
is started and an asterisk is printed 'or 
reassemb 1 ed. 

asterisk (*) as every 0' pass-l a new line 
each ten statements 

1.4 LISTING ASSEMBLY PROGRAMS 

il FORMAT: 

'MLIST' VERB 

n 
MLIST 'ilename itemname «options) 

---------------------------------------------------
Options are separated by commas: 

n·' 
. -------------------------------------------~-------------------------_._-------

OPTION MEANING 

n 

n 
n 
n 

,--. 

P 

M 

E 

S 

N-m 

routes output to the line-printer. 

prints macro-expansions of source statements. 

prints error lines only; also suppresses the paginationl 
and enters EDIT at the end of the listing. 

suppress listing 0' the obJect code. 

restricts listing to line numbers n through m inclusivel 
------------------------------------------------------------------------------

The listing is output with a statement number, location counter, 
obJect code and source code, with the label, op-code, operand and 
comment 'ields aligned. A page heading is output at the top 0' each 
new page. 

Errors, i' any, appear in the location counter/obJect code area; 
macro expansions appear as source code with the operation codes 
prefixed by a plus sign (+). 

CHAPTER 1 ASSEMBLER OVERVIEW Copyrigh~ 1987 PICK SYSTEMS 
PAGE 



1. 5 LOADING ASSEMBLED MODES 'MLOAD' VERB 

FORMAT: 

MLOAD f i 1 enamei temname {(options} 

The assembled mode is loaded into the frame specified by the FRAME op
c ode statement. 

-----------------------~------------------------------------------------------
OPTION MEANING 

N returns check-sum data without loading item. 

V verify mismatches and errors only~ 
-------,-------------------------------~---... -------------~--.'-------------------

If the load is successful, the message; 

(216) MODE 'item-id' LOADED; FRAME = nnn SIZE = sss CKSUM = cccc 

is returned, where 

nnn is the 3-digit number of the frame into which the mode 
has been loaded. The number nnn is expressed in decimal. 

sss is the number of bytes of object code loaded into the 
frame, expressed in hexadecimal (base 16) notation. 

cccc is the byte check-sum for the object code in the loaded mode. 

I 
I 
I 
I 
I 
D 

'1 u 

fi( 

The mode will not load correctly if, its size exceeds 512 bytes, or if n 
a FRAME statement is not the first statement assembled in the mode. .' 
In either case, a message will be returned indicating the error. 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAQE 6 

n~. 
% 

n 
n 
P···, 

l' 

" 

[ 

r 



I 
I 
I 

o 
o 

1.6 VERIFYING A LOADED PROGRAM MODE 'MVERIFY' VERB 

FORMAT: 

After assembling and loading a program, the verb MVERIFY is used to 
check the assembled program against the loaded program. 

------------------------------------------------------------------------------
OPTION MEANING 

A output columnar listing of all mismatches. 

E output errors only. 

n -------------~-----------~::~:~-~~~~~:-:~-:~~-~::~~~:~-----------------------
n 
il 
n 
n 
n 
n 
n 
n 
n 
n: \ r 

EXAMPLES: 

>MVERIFY SM EXAMPL1 [CR) 

(217) MODE 'EXAMPL1' VERIFIED FRAME = 34 SIZE = 477 

>MVERIFY SM EXAMPL2 [CR) 

014 OC 18 
(218) MODE 'EXAMPL2' HAS 1 BYTES OB~ECT CODE MIS-MATCHES 

The first example verifies, but the second does not. In Example #2, 
the system informs the user that one byte at byte address 14 should 
have a value of OC, not 18. 

An "A" option will cause a columnar listing of all bytes which 
mismatch. Each value in the source file which mismatches will be 
listed, followed by the value in the executable frame. 

EXAMPLE: 

>MVERIFY SM EXAMPL3 (A) [CR) 

LOC XX YY LOC XX YY LOC XX YY LOC XX YY 
014 DC 18 015 13 17 016 DE OD 017 3A 3C 

[218) MODE 'EXAMPL3' HAS 78 BYTES OB~ECT CODE MIS-MATCHES 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAGE 7 



1. 7 STRIPPING THE SOURCE CODE 'STRIP-SOURCE' VERB 

FORMAT: 
---------------------------------------------------

STRIP-SOURCE filename item-list 
---------------------------------------------------

Th e STR IP-SOURCE verb i5 used to remove the so urce cod e f!'~t:)~I11~~~_~E!lI1bJy~ 
Lang uageprograms. This frees arg e amounts-~ofilrs~c space back to the 
available space pool. Modes with source stripped out out can still be 
verified against the ABS. 

After the verb has been invoked, the user i5 prompted with: 

DESTINATION FILE: 

The file-name where the stripped obJect code is to be stored should then 
be entered. 

EXAMPLE: 

>STRIP-SOURCE PROG * CCRl 
DESTINATION FILE-SPROG CCRl 

I 
I 
I 
I. 
I 
D 
D 

H 
Here the file PROG containing source programs is stripped and copied to ~ 
the file SPROG. U 
The first six lines of the source item will be copied without source code 
stripping. Standard Pick Systems convention for source modes has the 
"FRAME" statement in line 1, and other descriptive information in lines. 2 
through 0; this information is maintained through the STRIP-SOURCE 
proc ess. 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAGE 8 

n, ' • I 

U 
n, 
n 
nl 
P· i I 

r 
r 



I 
I 

1.8 

I 
I 
I 
D 
D 
n 
0 
u 
n 
n 
a 
n 
n 
n 
n 
n \1 

I, 

r 

CROSS REFERENCE CAPABILITIES 'CROSS-INDEX' VERB 

FORMAT: 
------~--~------------~---------~-----~---~-----~--

---------------------------------------------------
THE CROSS-INDEX Verb 'irst clears the CSYM 'ile then updates it by 
item ~ith the external re'erences 0' that item. 

EXAMPLE: 

>CROSS-INDEX MODES * [CRJ 

Would cross index all ite~~ 0' the modes 'ile. An e~ample 0' ~hat a 
portio,n 0' the CSYM 'ile might look like a,ter using the CROSS-INDEX 
Verb 'ollo~s. Notice that the item called DLOAD has one external 
re'erence to LISTFLAG, t~o external re'erences to RMBIT, etc. 

DLOAD 
001 LISTLFAG 01 RMBIT 02 
002 CH8 01 
003 NNCF 02 
004 CTR1 02 CTR2 MODULO 07 OBSIZE 01 RSCWA 01 SEPAR 10 TO 01 TR 03 
005 BASE 08 DO 01 OVRFLW 01 R15FID 01 RECORD 05 
006 BMSBEG 01 CSBEG 01 ISBEG 02 OBBEG 01S2 02 
007 CS 06 IS 21 OB 05 R14 03R15 06 TS 01 
008 ABSL 02 CRLFPRINT 01 CVDR15 03 CVTNIS 02 GETBLK 01 LINK 01 MBDNSUB 03 

UPDITM 01 WRTLIN 02 
009 AM 02 
010 

CHAPTER 1 ASSEMBLER OVERVIEW Copyright 1987 PICK SYSTEMS 
PAGE 



1.8.1 CROSS REFERENCE CAPABlLITIES 'XREF' VERJ3 

FORMAT: 
-------------<---------~-----~,-----------------------

-,--------, 
---------------------------------------------------

The TCL-II XREF Verb uses tbe CSYM~ file as updated by t~e Cross-Index 
Verb for input. XREF then updates the XSYM fi Ie in the opposite order 
of the CSYM file. 

EXAMPLES: 

>XREF CSYM * [CRJ 
Would cross reference all 
be use~ after per~orming 
example: 

items of the CSYM file. 
X-REF to produc e a' 

>SORT XSYM REFERENCES NONCOL (P) [CRJ 

The sort verb may 
sorted output. For 

Would produce an alphabetical non-columnar listing on the line 
printer. References and noncol are attribute definitions in the XSYM 
d i c t i onary. 

The following is an exampl. bf a parti.1 listing: 

XSYM : ABIT 
REFERENCES EDIT-I 

XSYM : ABSL 
REFERENCES DLOAD 

XSYM : ACF 
REFERENCES WII 

XSYM : ADD LAB 
REFERENCES ASTAT 

XSYM : AF 
REFERENCES ASTAT WRAP-III EDIT-I 

XSYM : AFBEG 
REFERENCES ASTAT EDIT-I 

CHAPTER 1 ASSEMBLER OVERVIEW 
PAGE 10 

Copyright 1987 PICK SYSTEMS 

I 
I 
I 
I 
I 
I 

n 
n 
n 
n 
r 



I 
I 
I 
I 
I 
o 
D 
n 
n 
fl 
n 
n 
o 
o 
n 
o 
n 

n',1 ., 
I 

CHAPTER 2 

MACHINE INSTRUCTIONS 

THE PICt( SYSTEM 

USER'S ASSEMBLY MANUAL 

PROPRIETARY INFORMATION 

This document contains information Which is 
proprietary to and considered a trade secret of 
PICt( SYSTEMS It is expressly agreed that it shall. 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made availble to any third 
party either directly or indirectly. R.production 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICt( SYSTEMS. All rights reserved. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 11 

Copyright 1987 PICt( SYSTEMS 



2. 1 PICK ASSEMBLY LANGUAGE 

This section lists PICK machine instructions and describes their 
execution. For each assembler mnemonic, a list of the different 
permutations of the instruction is given. 

Some assembly instructions are actually macros which expand to more 
than one opcode, and many of the instructions use elements not 
e~ipn. C:1 tl y de' i ned l~n-thei nstruct i on. Iri~partTclJrar,the ac cumulator ~ 
and R15 are used by many of the macros. 

I 
I 
I 
I 

In defining the op-codes the following set of symbolic operands are II 
used: 

SYMBOL MEANING 

b 

c 

d 

e 

f 

h 

I 

m 

n 

s 

t 

BIT. A bit addressed relativly via a base register and a bit 
d i sp I ac ement. 

CHARACTER. A byte addr~ssed relatively via a base address 
register and displacement. (Also known as a CHR. ) 

DOUBLE-TALLY. A 4~byte field addressed relatively via a base 
register and displacement. 

GUAD-TALLY. A 8-byte field addressed relatively via a base 
register and displacement. (Also known as a DTLY. )~ 

TRIPLE-TALLY. A 6-byte field addressed relatively via a base 
register and displacement. (AlsQ known as a FTLY. ) 

HALF-TALLY. A l-byte field addressed relatively via a base 
register and displacement. (AlsQ known as a HTLY. ) 

LABEL. A label definition local to the current program frame. 

MODE-ID. A 16-bit modal identificaton, comprised of a 4-bit 
entry point and a 12-bit frame number. 

LITERAL. A literal or immediate value. The 
assembled literal or value is dependent on the 
which the Un" is used. 

size of the 
instruction in 

ADDRESS-REGISTER. 
(AIR's >. 

One of the sixteen Reality address registers 

STORAOE REGISTER. A 6-byte field addressed relatively via a base 
register and a 16-bit word displacement. 

TALLY. A 2-byte field relatively addressed via a base register 
and d i sp lac ement. (Also known as a TLY. ) 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 12 

Copyright 1987 PICK SYSTEMS 

o 

'1 I u 

n 

n 
n 
n 



I 
I 
I 

2.2 ARITHMETIC OPERATIONS 

The following 'operations perform arithmetic on binary integers. 
Negative values are represented in two's complement form. One-byte 
and two-byte operands are sign extended to form a double word value 
before the operation is performed. The accumulator is a four-byte 
field (DO) for 1, 2 and 4-byte operands; the accumulator is a six-

I- b \t1;J! fieJdJ~e(»f~r6-by~~"oper@J'1~d!i. StoraULop erand Sm!llll..21 cross~~ 
frame boundaries 

I 2.2.1 

0 
8 

Load (LOAD) 

LOAD d 
LOAD m 

LOAD f 
LOAD n 

LOAD h 
LOAD t 

The contents of the operand are loaded into the accumulator, with the 
high-order bit of the operand propagated left to fill the accumalator 
if necessary. One, two, and four byte operands are loaded into DO; 
6-byte operands are loaded into FPO. 

n 2.2.2 Load Extended (LOADX) 

n 
n 

LOADX d 
LOADX t 

LOADX h LOADX n 

The high-order bit (sign bit) of the operand is propagated left until 
there are 48 bits, which are loaded into the 6-byte accumulator (FPO). 

n 2.2.3 Store (STORE) 

a 
o 
a 
n 

r 

l 

STORE d 
STORE s 

STORE f 
STORE t 

STORE h 

The contents of the accumulator (HO, TO, DO or FPO) 
contents of' the operand. The accumulator is not changed. 

2. 2. 4 Zero (ZERO) 

ZERO c 
ZERO h 

ZERO d 
ZERO t 

The contents of the operand are replaced by zero. 

2.2.5 One (ONE) 

ONE d 
ONE t 

ONE f 

ZERO f 

ONE h 

The contents of the operand are replaced b~ a one. 

replace the 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 

Copyright 1987 PICK SYSTEMS 
13 



2.2.6 Add to Accumulator (ADD) 

ADD d 
ADD n 

ADD f 
ADD t 

ADD h 

The contents of the operand are added to the 4- or 6-bvte acCumulator. 
The result is placed into the accumulator. 

2.2.7 Add Extended (ADDX) 

ADDX d 
ADDX t 

ADDX h ADDX n 

I 
I 
I 
I 
I 

Same as for ADD, except that a 6-byte operand is generated by O· 
extending the sign bit of the original operand, and the result is in . 

2.2.8 

the 6-byte accumulator CFPO). 

Increment Storage by One (INC) 

INC d 
INC t 

INC f INC h 

The contents of the operand are incremented by one. 

2.2.9 Add to Storage (INC) 

INC d,d 
INC f,n 
INC t,n 

INC d,n 
INC h,h 
INC t,t 

INC f,f 
INC h,n 

The contents of the first operand are incremented by the contents of 
the second operand. n 

2.2.10 Subtract from Accumulator (SUB) 

SUB d 
SUB n 

SUB f 
SUB t 

The contents of the operand are subtracted from 
difference is placed into the accumulator. 

2.2.11 Subtract Extended (SUBX) 

SUBX d SUBX h 
SUBX t 

SUB h n 
the accumulator. The 

SUBX n 

Same as for SUB, except that a 6-byte operand is generated by r" I 

extending the sign bit of the original operand, and the result is in 
the 6-byte accumulator (FPO). 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 14 

Copyright 1987 PICK SYSTEMS 

r 
r 



I 
I 2.2.12 Decrement Storage by One (DEC) 

DEC d 
DEC t 

DEC f DEC h 

I The contents of the operand are decremented by one. 

1-2. 2:13~S-1i6'tir. c ·or·fromStcff'~a ge-~·rDEC) 

I 
DEC d,d 
DEC f,n 
DEC tin 

0 The contents of the 
the second operand. 

first 

DEC d,n 
DEC h,h 
DEC t,t 

DEC f,f 
DEC h,n 

operand are decremented by the contents of 

o 2.~ 14 Multiply (MUL) 

o 
n 
n 

MUL d 
MUL n 

MUL f 
MUL t 

MUL h 

The contents of the accumulator are multiplied by the operand. An 
a-byte result is stored in the accumulator and accumulator extension 
(DO and Dl>' The sign of the product is determined by the rules of 
algebra, that is, if the accumulator and the operand had the same sign 
before the operation, the result lIIi11 be positive. Otherlilise, the 
result lIIill be negative. 

n 2.2.15 Multiply Extended (MULX) 

n 
o 
a 
n 
o 
n 
n" " , 

MULX d 
MULX t 

MULX h MULX n 

Same as for MUL, except that a 6-byte operand is 
extending the sign bit of the original operand. 

2.2.16 Divide (DIV) 

DIV d 
DIV t 

DIV h DIV n 

generated by 

The sign bit of the accumulator (DO) is extended into the accumulator 
extension (Dl) to form a 64 bit dividend. The accumulator is then 
divided bV the operand, forming a 32 bit q,uotientand a 32 bit 
remainder. The q,uotient replaces the contents of the accumulator and 
the remainder replaces the contents of the accumulator extension. The 
sign of the q,uotient is determined by the rules of algebra. The sign 
of the remainder is the sign of the divi,dend. The contents of the 
operand are not Changed. 

Note that the DIV instruction lIIith a "f"-tvpe operand is an extended 
divide; see next. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAgE 15 

Copyright 1997 PICK SYSTEMS 



2.2.17 Divide Extended (OIVX) 

DIVX d 
DIVX t 

OIVX f OIVX h 

-I 
I 
I 

:i~~in-j~in!/~~{e O!~~-n :~~e::. t~:a:rl:T~~~~::~iri~a-i~.!'~~h~e ~~e-s~I~eI~~1;.i~t~-- I 
6-byte accumulator (FPO), and the remainder is in FPY. 

2.2.18 Negate (NEG) 

NEG d 
NEG t 

NEG f NEG h 

The sign of the operand is changed <two's complement form. ) 

2.2.19 Move (MOV) 

MOV d,d 
MOV h,h 
MOV n,f 
MOV t,t 

MOVe,e 
MOV m,t 
MOV mh 

MOV f,f 
MOV n,d 
MOV n,t 

These instructions move a 1- 2- 4- or 6-byte number f~om one location 
in storage to another. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 16 

Copyright 1987 PICK SYSTEMS 

I 
o 
o 
n 
H'.· jj 

n 
n 

11 I' I 

r 
r! 

I 
I 
! 



I 
I 2.3 CHARACTER INSTRUCTIONS 

I 
2.3.1 Move Character 

MCC C,C 
MCC n,c 
MCC r,h 

to Character (MCC) 
MCC c,r 
MCC n,l' 
MCC 1'11' 

MCC h,r 
MOV r,c 

I~ T~he byte addressed!.y -th~e first operand:rs moved~to~th~e~~~b~\fte addressed 
by the second operand. 

I 2.3.2 Move Character to Incrementing Character (MCI) 

o 
lJ 

MCI c,r MCI n,r MCI 1',1' 
MCI 5,1' MCIs,s 

The second operand is incremented to point to the next 
storage, and the byte addressed by the first operand is moved 
byte addressed bV the second operand. 

byte 
to 

in 
the 

n 2.3.3 Move Character Incrementing and Count (MCI) 
MCI n,r,d MCI n,r,h MCI n,r,n 

n 
o 

MCI n,r,t 

The second operand is incremented to point to the next byte in 
storage. The byte addressed by the first operand is moved to the byte 
pointer to by the second operand. This process continues until the 
number of bytes specified by the third operand has been moved. At 
least one byte is always used, and if the third operand is initially 
zero, 65,536 bytes will be moved. This instruction uses the 
accumulator. 

n 2.3.4 Move Incrementing Character to Character (MIC) 
MIC r,c MIC r,h MIC 1',1' 

a 
a 
o 
n 
n 
r 
r 

2. 3. 5 

The first operand is incremented to point to the next byte in storage, 
and the byte then pointed to by the first operand is moved to the byte 
addressed by the second operand. 

Move Incrementing Character to Incrementing Character (MIl) 
MIl 1',1' 

Both operands are incremented to point to the next byte in storage, 
then the byte pointed to by the first operand is moved to the byte 
pointed to by the second operand. 

MIIr,r,d MIIr,r,h MIlr,r,n 
MIIr,r,t 

Identical to the operation above, with additional functionality. This 
process continues until the number of bytes specified by the third 
operand has been m~ved. If the third operand is initially zero, no 
data is moved. This instruction uses the accumulator. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAgE 17 

Copyright 1987 PICK SYSTEMS 



2.4 LOQICAL INSTRUCTIONS 

2.4.1 Logical Or (OR) 

OR c,n 
OR r,r 

OR h,n OR r,n 

T he~b yti ins t-or.'fi-'" i:fiifr-enci db ir~tlfj~fl'r s~-6 peran dTs-Tolfi caITyorTecf 
with the mask byte referenced by the second operand. The byte 
referenced by the second operand is unchanged. 

2.4.2 Logical Exclusive Or (XOR) 

XOR c,n XOR r,n XORr,r 

The byte in stora~e referenced by the first operand is logically 
exclusive-or 'ed with the mask byte referenced by the second opeand. 
The byteeferenced by the second operand is unchanged. 

2.4.3 Logical And (AND) 

AND c,n AND n,r 

The byte in storage. referenced by the first operand is 
and 'ed with the mask byte referenced by the second operand. 
referenced by the second operand is unc~anged. 

logically 
The byte 

2.4.4 Shift (SHIFT) 

SHIFT r,r 

The byte pointed to by the first operand is 
zero (0) bit is shifted in on the left. The 

.byte pointed to by the second operand, or 
byte if only one operand is specified. 

shifted right one bit. A 
shifted byte replaces the 
it replaces the original 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 

Copyright 1987 PICK SYSTEMS 
18 

I 
I 
I 
I 
I 
D 

n 
n 
n 
n 
n 



I 
I 2. 5 BRANCHING INSTRUCTIONS 

I 
2.5.1 Branch Unconditionally (B) 

B 1 

I A branch is taken to the label. The label must reside in the same 
programInthe~sameframe~ as th.~brarichln~s~t-ructI~Dn: 

I 2.5.2 Enter External Mode (ENT) 

n 
o 
o 
D 
o 
n 
o 

a 
o 
n 
n 
n 
If 

r 

ENT m 

A branch is taken to the entry point specified by the mode-id. The 
high order 4 bits of the mode-id (m) are the entry point number 
(0-15>' The remaining 12 bits of the mode-id are the FlO of the frame 
to be branched to. 

ENTI ENT* t 

The ENTI* (Enter Indirect) instruction branches to the entry point 
defined by the low order 2 byte of the accumulator (TO). 

ENT* branches to the entry point specified by the operand. The 
operand is loaded into TO, and an ENTI instruction is performed. 

2.5.3 Subroutine Call (BSL) 

BSl 1 BSl m 

The BSl (Branch and Stack location) instruction is used to program 
subroutine calls in assembly language. 

The stack pointer (element RSCWA in the process' PCB) is incremented 
by 4, and the DEBUGGER is entered with a "RTN STK FUll" abort if the 
stack overflows. Otherwise, the address of the instruction following 
the BSl instruction, is moved to the 4-byte field in the process' PCB 
pointed to by the return stack pointer. Next, a branch is taken to 
the entry point (BSl m), or program label (BSl 1). 

BSlI BSl* t 

BSlI executes a branch and stack location which branches to the entry 
point defined by the mode-id in the low order 2 bytes of the 
accumulator (TO). 

BSl* executes a branch to the entry point specified by the operand. 
The operand is loaded into TO, and an BSlI instruction is performed. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 19 

Copyright 1987 PICK SYST~MS 



2.5.4 Return from Subroutine (RTN) 

I 
I 

RTN I 
A branch is made to the address stored in the last entry in the return 

::C!a:~r:::ri:~: :: .. ~~ ·!~d~~~~·~:~~~:e~~i:~~·t~~!s:;~~r P:~~!;~BU~~~~~~!-· I 
entered with a "RTN STK EMPTY" abort. 

2. 5. 5 Branch character instructions o 
All the branch chara~ter instructions perform a LOQIeAL comparison on 0 
the two operands. that is, the bytes are treated as unsigned S-bit 
fields rather than signed two's complement fields. Therefore, the 
lowest character in the range is X'QQ.' and the higJ\est is X'FF' (the DI'. 
segment mark). 

2.5.6 Branch Character Equal (BeE) 

BeE c.c.l 
BeE n,c.l 
BeE r,n.l 

BeE c.n,l 
BeE n,r.l 
BeE r,r.l 

BeE c,r.l 
BeE r,c.l 

D 
n 

The character (byte in storage) addressed by the first operand is n 
compared with the character addressed by the second operand. If the If 
two characters are equal, a branch is taken to the label specified by 
the third operand. The label must be inside the same frame as the BeE 
instruction. fl 

2.5.7 Branch Character Unequal (BeU) 

Beu c,c.l 
BeU r,c.l 

BCU c,r,l 
BeU r, n,.-l 

Beu n,r,l 
BeU r,r.l 

Same as BeE, except that the branch is taken if the two characters are 
unequal. 

2.5.S Branch Character Low (BCL) 

BCl c.c,l 
BeL n,c,l 

Bel c.n.l 
BCL n,r,l 

BCL c,r,l 

The byte in storage referenced by the first operand is compared with 
the byte referenced by the second operand. Both bytes are treated as 
S-bit unsigned numbers. If the byte addressed by the first operand is 
numerically less than the byte addressed by the second operand. a 
branch to the label specified by the thi .. rd operand is taken. The 
label must be inside the same frame as the BeL instruction. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 20 

Copyright 1987 PICK SYSTEMS 

n 
u 
n 
n 
n 

r 
r 



I 
I 
I 
I 

2.5.9 Branch Character less than or E~ual (BClE) 

BClE c,c,l 
BClE n,c,l 
BClE r,n,l 

BClE c, m, 1 
BClE n,r,l 
BClE r,r,l 

BClE c,r,l 
BClE r,c, I 

Same as BCl, except that the branch is taken if the first operand 
n ume-ricall yllnrs~than ~t:n'- elluar~to-t~fnl-~s e-co~nll-opel'.nll: 

is 

II 2.5. 10 Branch Character High (BCH) 

o 
o 
o 
o 
n 
n 
o 
o 
a 
a 
n 
n 
r 
r 

BCH c,c,l 
BCH n,c,l 

BCH c,n,l 
BCH n,r,l 

BCH c,r, I 

Same as BCl, except that the branch is taken if the first operand is 
numerically greater than the second operand. 

2.5.11 Branch Character High or E~ual (BCHE) 

BCHE c,c,l 
BCHE n,c,l 
BCHE r,n,l 

BCHE c,m,l 
BCHE n,r,l 
BCHE r,r,l 

BCHE c,r,l 
BCHE r,c, I 

Same as BCH, except that the branch is taken if the first operand is 
numerically higher than or e~ual to the .econd operand. 

2.5.12 Branch Character Numeric (BCN) 

BCN r, I 

If the character pointed to by the register is numeric (i.e, between 
"0" and "9" inclusive,) then a branch is taken to the label, which 
must lie inside the same frame as the BCN instruction. 

2. 5. 13 Branch Character Not Numeric (BCNN) 

BCNN r, I 

If the character pointed to by the register is not numeric, <i. e, not 
one of the characters 0, 1, 2, 9,) Then a branch is taken to the 
label, which must lie inside the same frame as the BCNN instruction. 

2.5. 14 Branch Character Hexadecimal (BCX) 

BCX r, I 

If the character 
the range 110" -
is taken to the 
instruction. 

pointed to by the register is hexadecimal, (i. e, in 
"911 inclusive or IIA" - "F" inclusive,) then a branch 

label, which must lie inside the same frame as the SCX 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 21 

Copyright 1987 PICK SYSTEMS 



2.5.15 Branch Character Not Hexadecimal (BCNX) 
BCNX 1', I 

If the character pOinted to by the register is not hexadecimal, (i. e, 
outside the range "0" - "9" inclusive or "A" - "F" inclusive,) then a 
branch is taken to the label, which must lie inside the same frame as 
the BCNX instruction. 

2.5.16 Branch Character Alphabetic (BCA) 
BCA 1', I 

If the character pOinted to by 
the range of capital letters "A" 

"z" inclusive,) then a branch 
inside the same frame as the BCA 

the register is alphabetic, (i. e. in 
- "Z" inclusive, Dr small letters "a" 
is taken to the label, which must lie 
instruction. 

2.5. 17 Branch Character Not Alphabetic (BCNA) 
BCNA r. I 

If the character pointed to by the register is not alphabetic" (i. e, 
outside the range "A" - "Z" inclusive Dr "a" - "z" inclusive,) then a 
branch is taken to the label. which must lie inside the same frame as 
the BeNA instruction. 

2.5.18 Branch if Zero (BZ) 

BZ c. I 
BZ h.l 

BZ d. I 
BZ s. I 

BZ f. I 
BZ t. I 

The branch is taken if the operand has a value of zero (0). 

2. ~ 19 Branch if Not Zero (BNZ) 

BNZ c. I 
BNZ h. I 

BNZ d, I 
BNZ s. I 

BNZ f. I 
BNZ t.l 

The branch is taken if the operand has any value other than zero (0). 

2.5.20 Branch if less than Zero (BlZ) 

BlZ c.l 
BlZ h,l 

BlZ d. I 
BLZ t.l 

BlZ f. I 

The branch is taken if the operand has a negative value. 

2.5.21 Branch if less than or E~ual to Zero (BLEZ) 

BlEZ c. I 
BLEZ h. I 

BLEZ d, I 
BlEZ t,l 

BlEZ f, I 

The branch is taken if the operand has a negative or zero (0) value. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 22 

Copyright 1987 PICK SYSTEMS 



I 
I 
I 
I 
I 
U 
a 
n 
H 
o 
n 
n 
0 
n 
o 
o 
n 

2.5.22 Branch if Equal (BE) 

BE d, d, 1 
BE d,t,l 
BE h, d, 1 
BE h, t, 1 
BE n,f,l 
BE t, d, 1 

..... __ ......... BE ·trn·, 1 

BE 
BE 
BE 
BE 
BE 
BE 
BE 

d, h, 1 
f, f, 1 
h, h, 1 
m, t, 1 
n, h, 1 
t, h, I 
t, t, l··~··-

BE d, n, 1 
BE f, n, 1 
BE h, n, 1 
BE n, d, 1 
BE n, t, 1 
BE t, m, 1 

--~~- --~"-'"--~ .. _. 

The branch to the label is taken if the two operands contain the same 
number. The contents of both operands are treated as two's complement 
integers. If the operands are of the same size, and are identical, 
then the branch is taken. Otherwise, the sign bit (highest-order bit) 
of the smaller operand is extended to the left until the operands are 
the same size, and if the two equal size numbers are identical, then 
the branch is taken. 

2.5.23 Branch if Unequal (BU) 

BU d, d, 1 BU d, h, 1 BU d, n, 1 
BU d, t, 1 BU f, f, 1 BU f, n, 1 
BU h, d, 1 BU h, h, 1 BU h, n, 1 
BU h, t, 1 BU m, t, 1 BU n, d, I 
BU n, f, 1 BU n, h, 1 BU n, t, 1 
BU t, d, 1 BU t, h, 1 BU t, m, 1 
BU t, n, 1 BU t, t, 1 

The branch to the label is taken if. the two operands contain different 
numbers. Smaller operands will be sign extended, as in the BE 
instruction. 

2.5.24 Branch if Less 

BL d, d, 1 
BL f, n, 1 
BL n, t, 1 
BL t, t, 1 

than (BL) 

BL 
BL 
BL 

d, n, 1 
h, h, 1 
s, s, 1 

BL f,f,l 
BL n,d, 1 
BL t, n, 1 

The contents of both operands are treated as two's complement 
integers. The branch is taken if th. number contained in the first 
operand is less than the number in th. second operand. 

2.5.25 Branch if Less than or Equal (BLE) 

BLE d, d, 1 BLE d, h, 1 BLE d, m, 1 
BLE d, t, 1 BLE f, f, 1 BLE f, n, 1 
BLE h, d, 1 BLE h, h, I BLE h, n, 1 
BLE h, t, 1 BLE n, d, 1 BLE n, f, 1 
BLE n, h, 1 BLE n, t, 1 BLE t, d, 1 
BLE t, h, 1 BLE t, n, 1 BLE t, t, 1 

The contents of both operands are treated as two;s complement 
integers. Smaller operands will be sign extended to match the size of 
larger operands. If the first number is less than or equal to the 
second number, a branch is taken to the label. 

CHAPTER 2 MACHINE INSTRUCTIONS Copyright 1987 PICK SYSTEMS 
PAQE 23 



2.5.26 Branch if High (BH) 

BH d, d, I . 
BH h, h, I 
BH t, n, I 

BH d,n,l 
BH n,d,l 
BH t,t, 1 

BH f,f,l 
BH n,t, 1 

A branch is taken to the label if the number contained in the first 
operand is higher than the number cOntained in the second operand. 
Th~e contents of botfiope"'anifs~are~~treafted as ~'f",o's--c:olllpJ.ement 

integers. 

2.5.27 Branch if High or Eq,ual (SHE) 

·BHE d,d, I BHE d, h, I 
BHE d, t, i BHE f, f, 1 
BHE h, d, I BHE h, h, 1 
BHE n, d, I BHE n, f, 1 
BHE n, t, I BHE t, d, I 
BHE t, n, 1 BHE t, t, 1 

A branch to the label is taken if the 
higher than or eq,ual to the number 
numbers are treated as two's complement 

2.5.28 Branch Decrementing Not Zero (BDNZ) 

BDNZ d,d, 1 
BDNZ h,h,l 
BDNZ t,t, 1 

BDNZ d,l 
BDNZ t, 1 

BHE d, n, I 
BHE f, n, 1 
BHE h, t, 1 
BHE n, h, 1 
BHE t, h, I 

number in the first operand is 
in the second operand. Both 
integers. 

BDNZ d,n, I 
BDNZ t,n, 1 

The first operand is decremented by one, or by the second operand if 
there are three operands. If the first operand is non-zero, then a 
branch is taken to the label. 

2.5.29 Branch Decrementing Less than Zero (BDLZ) 

BDLZ d,d, 1 
BDLZ h,h, 1 
BDLZ t,t, 1 

BDLZ d,l 
BDLZ t, 1 

BDLZ d,n, 1 
BDLZ t,n, 1 

The first operand i$ decremented by one, or by the second operand if 
there are three operands. If the first operand is decremented below 
zero (0), then a branch is taken to the label. 

2.5.30 Branch Decrementing Less than or Eq,ua1 to Zero (BDLEZ) 

BDLEZ d,d,l 
BDLEZ h,h,l 
BDLEZ t,t,l 

BDLEZ d,l 
BDLEZ t,l 

BDLEZ d,n; 1 
BDLEZ t,n, 1 

The first operand is decremented by one, or by the second operand if 
there are three operands. If the first operand is decremented to or 
below zero (0), then a branch is taken to the label. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 24 

Copyright 1987 PICK SYSTEMS 

I 
I 
I 
I 
I 
o 
o 
o 

n 
n 
n 
n 
n 
fl ... ~ 
[! 

r 



I 
I 
I 
I 
I 
o 
o 
o 
n 
n 
n 
o 
a 
a 
a 
n 
n 
n 

2.6 STRING-HANDLING INSTRUCTIONS 

A string is a series of logically continuous characters in storage, 
which may extend over linked frame boundaries. String instructions 
can scan or move strings of variable length. Crossing of frame 
boundaries and attaching and detaching of registers used in string 
instructions is handled automatically and is transparent to the user. 

··1'Icfte··~that~in~~tbe~event-~~ttrat anljoftfiese inat~.,.uc~tion5~~r.a~C:h.s an end 
of linked frame condition, there is a special tally called XMODE that 
may be used to intercept this exception condition and perform special 
processing. Usage of XMODE is discussed in the section SYSTEM 
SOFTWARE. I~ XMODE is zero when an end or beginning of linked frame 
set is reached, a trap to the DEBUGGER is executed resulting in a 
FORWARD LINK ZERO abort message. 

Some of the string instructions contain an extra 
a "variant." The variant byte controls the 
against preset delimiters. The format of the 
instructions except SICD) is as follows: 

literal byte known as 
byte-by-byte matching 
variant byte (for all 

o 

1 
2 
3 
4 
5 
6 
7 

(Most significant) 

(Least significant) 

MEANING 

1 = Stop on Match 
o = Stop on Mismat~h 
Compare with X'FF' {SM) 
Compare with X'FE' (AM) 
Compare wi thX'FD' "(VM)_~~~~~ _"~ 

··C·ompare--u,ft h""X' FC'-(S\lM)-
Compare with character in SCO >~ (Y'FO? 
Compare with character in SCl hl",~k 
Compare with character in SC2 hit<4\<. 

The most significant bit determines whether the instruction stops on a 
"match" condition (bit is set to "1"), or on a "mismatch" condition 
(bit is "Ott). Only those characters whose corresponding bits (see 
table above) are set are checked to determine a match or mismatch. 
The first four characters are the system delimiters; the last three 
characters are variable and reside in the user's PCB. 

Below are examples of 
conditions: 

VARIANT 

X'AO' 
X'FO' 
X'Ol' 

X'A4' 

x: Ie 4' 

Y I I:> 4' 

variant bytes and their respective match 

CONDITION 

Stop on attribute mark (X'FE') 
Stop on SM, AM or VM 
Stop on non-blank 
(If there is a blank in SC2) 
Stop on AM or contents of SCO 

S 1-# f t' 1'1 S fY( () r S ( 1/ 
Sf, J~ ()11 t-II'( M ... flIt v'"-/'h S' cl 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 

Copyright 1987 PICK SYSTEMS 



2.6.1 Scan to Delimiter (SID and SDD) 

I 
I SID r,n 

This instruction is used to find the end of a string, or to scan a I 
string to find the first or last occurrenc. of a character in the 
string. The register (r) is incremented to point to the next 

~~;~:~::I n~b~~:) V!~·i:~~~:::~(~;~ t~;e~·~;:n~·~ !·~::~u::!~t ~.~ e~k::t~~~o;~· I 
mi smatch c ond i ti on, as defined by the variant, is reached. Note that 
the this instruction will alter the position of the register by at D 
least one location. 

2.6.2 Scan to Delimiter and Count u 
SIDC r,n 

This instruction scans a string from a register to a delimiter, and 
keep a count of the number of bytes scanned. The register is 
incremented to point to the next byte in storage, the lower-order 2 
bytes of the accumulator (TO) are decremented one, and the byte 
addressed by the register is checked for a match or mismatch condition 
as defined by the literal variant byte. The process continues until a 
match condition is met, at which time the number of bytes scanned is 
the difference between the value of TO before and after the 
instruction. Note that this instruction will alter the position of 
the register by at least one location. 

2.6.3 Scan to Count 

2.6.4 

SIT r 

This instruction scans the register forward 
specified by the contents of TO. The re.gister 
is decremented until TO Teaches O. 

the number of bytes 
is incremented and TO 

This instruction is logically equivalent to the instruction "INC r,TO" 
however, the SIT instruction can be used to force usage of 

exception mode processing via XMODE (see SYSTEM SOFTWARE for XMODE 
usage) if it reaches the end of a linked ~ram, set. If TO is zero at 
the start of the instruction, it becomes a NO-QP and the register is 
not al teredo 

Scan to count or delimiter 

SITD T',n 

This instruction combines the functions of the SIT and SID, in that 
the string is scanned until EITHER a match condition, as determined by 
the variant byte, is reached, OR the count in TO reaches zero. If the 
instruction terminates due to the match condtion being met, the 
difference in the ending and original values of TO gives the number of 
bytes scanned. If TO is zero at the start of the instruction, it 
becomes a NO-OP and the register is not altered. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 26 

Copyright 19~7 PICK SYSTEMS 

D 
n 
n 

n 
o 
n, • 

n 
u 
n 
r 
r 



I 
I 2.6.5 Move String to Delimiter 

MIlD r,r,n 

I 
I 
I 
I 

o 
n 
n 

2.6.6 

This instruction is generally used to move a string ,ointed to by a 
register up to and including the delimiter marking the other end 0' 
the string. Both registers are incremented by. one, and the byte 
pointed to by the 'irst register is moved to the location addressed by 
tnes.ccfnif~reglster~T1t e -~ Ifijt .--maveif 1.---thEH' c·h e~ c·ii-cJ",or~ ··a~-~ma~tc~Ji~-~~ 
using the variant byte. Th~ process 0' incrementing, movin~ and 
checking continues until a match condition occurs. Note that this 
instruction will alter the position 0' the registers by at least one 
location. 

Move string to Delimiter and Count 

MIIDC r,r,n 

This instruction moves a string 'rom one register to the other up to a 
delimiter, and keeps a count 0' the number 0' bytes scanned. Both 
registers are incremented by one, and the byte addressed by the 'irst 
is moved to the location pointed to bV the secondJ TO is decremented 
by one. The byte moved is the checked 'or a match, using the variant 
byte. This process is repeated until a match occurs. The number 0' 
bytes moved is the di"erence between the original value 0' TO and its 
value at the termination 0' the instruction. Note that this 
instruction will alter the position of the registers by at least one 
location. 

n 2.6.7 Move String to Count 

o 
n 
a 

MIlT r,r 

This instruction is used to move a string 0' 'ixed length. TO 
contains a byte count (up to 65,535) defining the number of bytes to 
be moved. If TO is zero when the instruction is executed, no 
operation is performed. Otherwise, the registers are incremented by 
one, the byte addressed by the first register is moved to the byte 
addressed by the second register, and TO is decremented by one. This 
process is repeated until TO reaches zero. 

o 2.6.8 Move String to Register 

n 
n 
r 
r 

MIIR: r,r 

This instruction is used to move a string between the fi~st register 
and R15 to the location addressed by by the second register. The 
'irst register is checked against R15, and if they are e~ual, the 
instruction ends. Otherwise, the registers are both incremented to 
pOint to the next byte in storage, and the byte pointed to by the 
'irst register is moved to the bute pointed to by the second register. 
The first register is then checked against R15, and the cycle 0' 
compare, increment, and move is repeated until the first register and 
R15 are e~ual. Note that if R15 is not ~orward 0' and in the same 
string as the first register, this instruction will not terminate. 

CHAPTER :2 MACHINE INSTRUCTIONS 
PAQE 

Copyright 1987 PICK SYSTEMS 



2.6.9 Move String to Count or Delimiter 

I 
I 

MI rrD T~ T~n I 
This instru.ction combines the functions of the. MIlD and M.IIT 

.. ~ ~:~~.~~;.!~~_s~o.~:: T ::!~:T'~~:;:lj!.:;~_elR:;.::.~_ ;:!.;--~~ t~b~:lt·=,~~·:: .!;~: I 
accumulator -(TO) are decl'emented .,by, one. If EITHER. the byte moved 
matches a del imiter~ as defined by the var.iantbyte~ OR if TO is 
decremented to O~ the instruction terminates. If TO is zero at the D 
start of the instruction, it becomes a NO-OP and the register is not 
altered. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 2B 

Copyright 1987 PICK SYSTEMS 

o 
D 
D 

n 

u 
n 
n 
n 
u 

r 
I r 
I 



I 
I 2.6.10 Scan, Counting Delimiters (SICD) 

SICD r,n 

I 
I 
I 
o 
o 
o 
n 
o 
n 
o 
o 
o 
n 
n 
n,,: l,l: 

n,. 1 ~' 

n,' t ~, 

This instruction can scan a variable number of delimiters. 

The function of the instruction is to position the register at a 
specified point within a data structure containing several levels of 
c:terrm i~eT'sifrminl miarnunrbeT'Ori n5~u~tio-ns~: "'~-To~acc·ompl:rstr-thl 5, 
the r,gister pointing to the scanned position is adJusted dependent 
upon the termination mode of the instruction,i. e. The register is 
decremented if the instruction terminates in the abnormal mode. 

The low order 16 bits of the accumulator (TO) contain the delimiter 
count. The referenced register points to the byte preceeding where 
the scan is to be started. The variant byte specifies the scan mode 
and the termination criteria. The scan will unconditionally stop on a 
X 'FF' character. 

Variant byte functions: 

ill 

° 

1 

2 

3 

5 

6 

7 

MEANING 

Bit set if count is to be decremented before 
instruction is started. This form is for ordinal 
positioning. I. e. in BASIC the first attribute within 
a dynamic array (e.g. EXTRACT(ITEM, 1,0,0) is logically 
the beginning of the string. 

Bit is zero if scan is to be terminated when a 
character is found which is greater than the delimiter. 
This format is u5ed when scanning for system level 
del imi ters. Log ical character compares are used, i. e. 
X'FE' is :> X'20'. If bit is set, scan to be terminated 
only when a character is found which is greater than 
the character contained in SC2. Note: if the 
delimiter character is alsa SC2 the state of this bit 
is not significant. 

Scan delimiter is X'FE' ,1 rl 

Scan delimiter is X 'FD'. V 1'1 

Scan delimiter is X 'FC'. 

Scan delimiter is contained in SCO. 

Scan del imi ter is contained in SC1. 

Scan delimiter is contained in SC2. See bit 1 above. 

NOTE: If more than one scan delimiter is specified, the ~elimiter 
associated with the highest numbered ~ will be used. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 

Copyright 1987 PICK SYSTEMS 



Upon termination of the instruction: 

Normal: the count in TO will be zero designating that the specified 
number of delimiters have been counted. The register is positioned on 
the delimiter. If the initial count is ~ero (or one with bit 0 set) 
the instruction will return immediately. 

Abnormal: the count in . TO is decremented 'or eacfidelimiter :Pouncl. 
The count remaining in TO will be the number of delimiters which must 
be inserted to create the logical data position. The register 
pointing at the data position is decremented by 1 byte, thus preparing 
for any subs~uent string positioning commands. It should be noted 
that this convention allows multiple positioning commands to be 
executed without testing to determine if a data element is null, that 
is assuming that the element delimiters have a monotonic relationship. 

Examples: 

The following structure is used for discussion ... 

EOAE11 JE12A E2A E31 JE321\E322JE4_ 
A."'"- .'..." A 

IRal 
IRb 

Case 1 

LOAD 
SICD 

Ire 
Ird 

IRc 

Scan to attribute 3 - ENGLISH interface 
R15 is positioned at Ra 

3 
R15,X'20' 

AMC COUNT 
SCAN TO AM DELIMITER 

At completion R15 will be positioned to Rd, and TO = 0 

CASE 2 

LOAD 
SICD 

Scan to attribute 6 BASIC interface 
R15 is positioned at Rb 

6 
R15,X'AO' 

AMC COUNT 
SCAN TO AM DELIMITER 

At completion R15 will be positioned to Re, and TO = 2 

CASE 3 - Scan to attribute 3 / value 2 / subvalue 1 
ENGLISH interface 

LOAD 
SICD 
LOAD 
SICD 
LOAD 
SICD 

3 
R15,X'20' 
2 
R15,X'90' 
1 
R15,X'88' 

AMC COUNT 
SCAN TO AM DELIMITER 
VALUE POSITION 
SCAN TO VM DELIMITER 
SUBVALUE POSITION 
SCAN TO SVM DELIMITER 

At completion R15 will be positioned to Rd, and TO = 0 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 30 

Copyright 1987 PICK SYSTEMS 



I 
I 
I 
I 

CASE 4 Scan to 10'th occurance of ch .. racter in SCl; 
stop on any character ~hich is 
greater than the character in SC2. 
(No data sho~n for this example. ) 

LOAD 10 
SICD R15,X'42' 

I 2.6.11 Branch on comparing strings; BSTE and BSTU 

BSTU r,r,n,l 

II 

o 
o 
o 

o 

n 
a 
u 
n 

! 

Pi., 
r 

r 

n, .• l <1 

This instruction compares t~o strings up to a delimiter, and execute 
the branch if the strings are e~ual. The function of the variant byte 
is to specify a lo~er boundary for the delimiter that is considered to 
terminate the strings, that is, any character that is found to be 
logitally greater than or e~ual to the variant byte is considered to 
terminate the string. Note that the strings do NOT have to be 
terminated by the same delimiter! 

Both registers are incremented by one, and the bytes addressed by them 
are compared logically. If the bytes are e~ual, AND if the bytes are 
logically lo~er than the variant byte specified in the instruction, 
the increment and comparison is repeated. If the bytes are une~ual, 
AND both bytes are greater than or e~ual to the variant byte, the 
strings are considered e~ual, and the instruction terminates by taking 
the branch. 

In other cases, the 
instruction terminates 
i nstruc t ion. 

strings are considered une~ual, and the 
by falling through to the next se~uential 

Note that a three-~ay branch (e~ual, low, high) condition on comparing 
t~o strings can be coded by follo~ing, for example, the BSTE 
instruction by a suitable BCL instruction such as: 

HIgH 

BSTE 
BCL 
EGU 

R4,R5,X'FC',EGUAL 
R5,R4,LOW 

* 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAgE 31 

NOTE INVERSION OF REgISTERS!! 
(STRINg 1) > (STRINg 2) 

Copyright 1987 PICK SYSTEMS 



2.7 BIT INSTRUCTIONS 

2.7. 1 Set Bit (SB) 

SB b 

2.7.2 Zero Bit (ZB) 

ZB b 

The r.'erenced bit is set to an "0"" (0 or 'a1se> condition. 

2.7.3 Branch Bit Set (BBS) 

BBS b, 1 

If the referenced bit is "on" (1), then a branc~ is taken to the 
label. 

2.7.4 Branch Bit Zero (BBZ) 

BBZ b, 1 

If the referenced bit is "off" (0), then a branch is taken to the 
label. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 32 

Copyright 1987 PICK SYSTEMS 

I 
I 
I 
Ii 
o 
o 
o 
D; 

n 
n 
nt,' 

~' 
J. 

u 
u 
n 
n 
n 
r 
r 
r 



2. 8 REGISTER INSTRUCTIONS 

2.8.1 Load Absolute Difference (LAD) 

LAD r,r 
LAD s,s 

LAD r,s LAD s,r 

This instruction computes the number of bytes between the byte in 
stbrage pointed t~ by the ~irst operarid ari4 the byte pointed to by the 
second operand. The result is a non-negative integer in the low order 
2 bytes of the accumulator (TO). 

NOTE: This instruction is valid for unlinked frames only if the 
frames referenced by the two arguments are the same. The instruction 
is valid for unequal frame numbers only if both frames are in the same 
group of contiguously linked frames, and the difference between the 
frame numbers is less than 32. 

2.8.2 Increment Address Register (INC) 

INC r 
The address register is incremented by one causing it to point to the 
next sequential byte. If the resulting address is not in the same 
buffer, then either: 

A crossing frame limits error occurs if the register is in unlinked 
format, or 

An attempt is made to attach 
the frame pointed to by the 
this case, forward link zero 
be detected if they occur. 

the register to the first data byte of 
forward link of the current frame. In 

and illegal frame id are errors which can 

INC r,n INC r,t 
The address register is incremented by n or the number in the tally. 
If the increment causes the register to cross a frame boundary, then 
crossing frame limit, forward link zero or illegal frame id will be 
reported as appropriate. 

2.8.3 Decrement Address Register (DEC) 

DEC r 
The address of the registe~ is decremented by one. 

If the register is in linked format and originally pointed to the 
first data byte of the frame and the backward link of the current 
frame is zero, the register attaches to data byte zero of the current 
frame. Otherwise, an attempt is made to attach the register to the 
last data byte of the frame pointed to by the backward link of the 
current frame. Illegal frame id is an error which can be detected in 
th i s case. 

DEC r,n DEC r,t 
Same as the INC instruction, except that the second operand is 
subtracted from the register address. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAGE 33 

Copyright 1987 PICK SYSTEMS 



2.8.4 Increment Storage Register (INC) 

INC 5 INC s,n INC s,t 
The displacement portion of the storage register is incremented by 
one, or by the t~o's complement integer contained in th~ second 
operand. Note that no address errors are detectable. 

DEC 5 DEC s,n DEC SIt 
The displacement portion of the storage register is decremented by 
one, or by the t~o's complement integer contained in the second 
operand. 

2.8.6 Set Register to Address (SRA) 

SRA r,c 
SRA r,h 
SRA r,t 

SRA r,d 
SRA 1', 1 

SRA r,f 
SRA 1',5 

The register is set pointing to the first byte of the second operand. 

2. 8. 7 Move Register to Register (MOV) 

MOV 1',1' 
The first operand replaces the second operand. All eight (~~ bytes of 
the register are copied. 

MOV 1',5 
The effec~ive register of the AIR replaces the contents of the SIR. 
The AIR is not affect~d. 

MOV 5, l' 

The contents of. ~he SIR replace the AIR. If the SIR is not legal, 
address errors ma~ be dtected at this time. 

MOV 5,5 
The contents of the first SIR replace the contents of the second SIR. 
No address errrors are detectable. 

2.8.8 Exchange Register ~ith Register (XRR) 

XRR 1',1' 
The contents of the t~o registers are interchanged. All eight (8) 
bytes from etilch operand a1'e copied to the other operand. 

XRRr,s 
These instructions 
instructions. 

XRR 5,1' 
expand into macros 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 34 

XRR 5,5 
~hich use R15 and MOV 

COP'dright 1987 PICK SYSTEMS 

I 
I 
I 
I 
I 
o 
D 
D 

n 
fl·'·: • & 

n 
n 
n 
n 
n 

r 
r l 



I 
I 2.8.9 Setup Register (SETUP) 

SETUP r, t, d SETUPO r, d. SETUP 1 r, d 

I 
The setup instruction is similar to the move storage register 
address register instruction. The operand one address register 
'setup' to tha implied storage register ~ith the second operand 
displacement and the third operand as a frame-id (FID>' 

to 
is 

as a 

I l' t1r .. ~SETUPO~·crrSETtlPt ~~orm i.~tI.eth ttteS/RdhrplcrcflJenti5·~sett1:J~ 
zero or one. 

I 
o 
n 
o 
n 
n 
n 
o 

o 
o 
u 
n 
n 
r CHAPTER 2 MACHINE INSTRUCTIONS 

PAQE 35 
Copyright 1987 PICK SYSTEMS 



2.9 CONVERSION INSTRUCTIONS 

Conversion operations are provided to convert decimal integers 
representedblj ASCII characters into binarlj values, and to convert 
hexadecimal integers into binarlj values~ and binary values to 
hexadecimal. All conversions involve a register. string pOinter. 
Simi lar to oth er stri'ng func ti ons, thi s reg i ster pOints one b Ij te 
before the string. 

2.9.1 Move Binarlj to Decimal (MBD) 

2.9.2 

MBD d,r MBD f,r MBD h,r 
MBD t,r MBD n,d,~ MBD n,f,r 
MBD n,h,r MBD n,t,r 

The binary integer in the first operand is converted to an ASCII 
string and stored starting one byte past the byte pointed to by the 
register. If only two operands are present, MBD creates a variable 
length string, storing only the significant digits. If the third 
operand (n) is specified, it contains- the number of characters to be 
put in the string. The number will be padded on the left with blanks 
if necessary, and will make the string longer than n characters if 
necessary. 

Move Binary to Hexadecimal (MBX and MBXN) 

MBX c,r MBX d,r MBX f,r 
MBX h,r MBX s,r MBX t, l' 
MBX n, d, l' MBX n,f,r MBX n,h,r 
MBX n,s.r MBX n,t,r 

MBXN n,d.r MBXN n.f.r MBXN n.h.r 
MBXN n.s,r MBXN n.t,r 

MBX is used to output an ASCII string representing a hexadecimal 
number. The MBX instruction assumes that the low order byte of the 
accumulator (HO) contains the count of the number of characters to be 
output. Bit B7 (high order bit of HO) is set if the string is to be 
padded with leading zeroes. If the third parameter (n) is present, 
the instruction expands into a macro. The macro first loads the 
number n into HO, and sets B7 if the opcodes was MBXN. 

2. ~3 Move Decimal to Binary (MDB) 

MDB r.d MDB r.f MDB r.h 
MDBr.t 

The ASCII decimal string pOinted to by the register is converted to a 
binary number and stored into the second operand. The register is 
incremented to point to the next byte in storage. The byte is 
examined. and if it is not numeric (in the range "0" - "9" inclusive,) 
th e instruct i on terminates. Otherwi se, th e sec ond operand is 
multiplied by ten (10) and the binary e~uivalent of the number pointed 
to by the register is added to the s-econd operand. The process of 
increment. check, multiply and add is repeated until the register 
points to a non-numeric character. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 36 

Copyright 1987 PICK SYSTEMS 

I 
I 
I 
I 
I 
o 
o 
D 
n 

n 
n 
n 
n 
n 
11." [i 

r) 

r 
I 



I 
I 
I 
I
I 
o 
I 

o 
o 
n 
n 

n 

2.9.4 Move Hexadecimal to Binary (MXB) 

MXB r,c 
MXB r,h 

MXB r,d 
MXB r,s 

MXB r,f 
MXB r,t 

The ASCII hexadecimal string pointed to by the register is converted 
to a binary number and stored into the second operand. The register 
is incremented to point to the next byte in storage. The byte is 
ex aminedian difiti s no th e nrd-ecima l( i-nth-.ransre''-O··.....· .. •• or ItAn -

"F" inclusive,) the instruction terminates. Otherwise, the second 
operand is multiplied by sixteen (16) and the binary e~uivalent of the 
numberointed to by the register is added to the second operand. The 
process of increment, check, multiply and add is r~peated until the 
register points to a non-hex character. 

2.9.5 Move Floating-Point String to Binary (MSDB and MSXB) 

MSDB r MSXB r 

MSDB converts the signed floating point decimal string pointed to by 
the register to a 6-byte binary integer, scales the number up by SCALE 
(in the user's PCB,) and stores the signed integer result in the 
6-byte accumulator (FPO). MSXB is identical to MSDB, except that it 
converts hexadecimal numbers. 

Both these instructions are macros which first zero DO and D1, then 
execute a MFD: (MSDB) or MFX: fMSXB) instruction. These 
instructions (MFD: and MFX:) re~uire that: H7 contains the 
fractional digit count (0-15) in its low order 4 bits, the high order 
4 bits of H7 are as follows: 0) unused 1) numeric found 2) you passed 
a decimal point 3) sign bit. H6 contains the integer digit count. 
And that the register points one byte before the string to be 
converted. FPO is normally zeroed before using these instructions, 
since any value in FPO will be multiplied by 10 (MSDB) or 16 (MSXB) 
each time a character is converted. 

The string must be at least one digit long, and must be terminated by 
a system delimiter (X'FA' -- X'FF'). It may not contain more than one 
decimal point, more fractional digits than are specified in H6, or any 
non-numeric (MSDB) or non-hex (MSXB) char.~ters. A leading plus sign 
(+) or minus sign (-) is legal, and the result in FPO will be negative 
if the string started with a minus sign. If the re~uired number of 
fractional digits are not present, FPO will be scaled upward as 
necessary 

After conversion, the register points to the system delimiter at the 
end of the string, and NUMBIT is set to one (1), unless any of the 
above conditions are violated, in whicb case the register points to 
the last character converted, and NUMBIT is zero (0). 

During execution of the instruction, H6 is decremented by one for each 
digit found; if H6 goes to zero, the instruction is terminated, with 
the register pointing to the last character converted, and NUMBIT set 
to zero (0), In this case, the fractional digit count is ignored. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE 37 

Copyright 1987 PICK SYSTEMS 



2. 10 OTHER INSTRUCTIONS 

The following operations are used totommunicate with the MONITOR. 

2. 10. 1 Read Input Oueue (READ) 

READ r 

The next character from the termina.l input q,ueue replaces the byte 
addressed by the register. If the input queue i~ emptv the process is 
suspended until a character i~ received from the terMinal. Characters 
transmitted by the terminal are automatically q,ueued in the PIB for 
the terminal. 

2.10.2 Write to Output Oueue (WRITE) 

WRITE r 

The bvte addressed by t'he re.gister is placed into the terminal output 
q,ueue. If the queue is full, the process " is suspended until there is 
room in the q,ueue. 

2.10.3 Release Time Ouantum (ROM) 
ROM 

Upon e x.ec ution of th i s instruc t i,on, the proc ess gets de-ae ti vated and 
the next process is selected. This process will be reactivated after 
a small delay. The instruction is useful when you need to wait a 
short period for some external activitV. 

CHAPTER 2 MACHINE INSTRUCTIONS 
PAQE as 

Copyright 1987 PICK SYSTEMS 

I 
I 
I 
I 
I 
D 
n 
D 

n 

~ li 

n 
n 
n 

r 



I 
I 
I 

I 
o 
n 
B 
n 
a 
n 

n 
n 
u 
n 
n 
I f 

r 

CHAPTER 3 

SUPPORT SOFTWARE 

THE PICK SYSTEM 

USER'S ASSEMBLY MANUAL 

PROPRIETARY INFORMATION 

This document contains information which is 
proprietary to and considered a trade secret of 
PICK SYSTEMS It is expressly agreed that it shall 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made availble to any third 
party either directly or indirectly. Reproduction 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICK SYSTEMS. All rights reserved. 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 39 



3. 1 SYSTEM SOFTWARE 

3. 1. 1 Introduction 

Assembly level programming in the REALITY system is facilitated by a set 
of system subroutines that allow easy interaction with the disc file 
strU'ctuT'".' t.T'"mina 1 'i 10, and- oth.T'" .vbT'"out-in.s~; Th.s.sulrrl)~ut·inff·s war1r· 
with a standard set of addressing registers, storage registers, tallies, 
character registers, bits, and buffer pointers, collectivel." called 
"functional elements." In order to use any of these routines, therefore, 
it is essential that the calling routine set up the appropriate functional 
elements as required b." the called routine's input interface. 

The standard set of functional elements is pre-defined in the permanent 
symbol file (PSYM), and is therefore alwa."s available to the programmer. 
Included in the PSYM are most of the mode-id's (program entr." pOints) for 
the standard s."stem subroutines. There is no reason that a symbol 
internal to an assembl." program cannot have the same name as a PSYM-file 
symbol, if the PSYM-file symbol is not also referenced in that program~ 
such symbolic usage cannot be a "forward" reference in the assembly 
program. To avoid confusion» however~ it is best to treat the entire set 
of PSYM symbols as reserved symbols. 

3. 1.2 Address Reg i sters 

All data re.ferenced in t:he system is made indirectly through one of the 
sixteen address registers (AIR's>' Registers zero and one have 
specifically defined meanings; the other fourteen may be considered 
general-perpose registers, with the limitation that system software 
conventions determine the usage of most AIR's. Registers zero and one 
should never be changed in any way by assembly programs. R.gister two 
always points to the SCB at logon time and after the debugger or the 
WRAPUP processor has been entered. 

Register zero always addresses byte zero of the process's PCB; register 
one always addresses b."te zero of the ~rame in which the process is 
currently executing. Thus all elements in the PCB may be relatively 
addressed using register zero as a base register. The more conventional 
way of setting up an AIR is to move a SIR into it. For example, the 
sequences below are functionallV identical: 

and 

FRM100 ADDR O,X'100' 

MOV FRM100,R15 

DEFINE A LITERAL SIR 
REFERENCINg FRAME X'100' 

SETUPO R15,X'80000100' 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 40 

I 
I 
I 
I 
I 
o 
D: 

·n 
n 

n 
n 
n 
r 
r l 



I 
I 
I 

n 
D 
n 

n 
n 
n 
n 

3.1.3 Re-entrancy 

In prac tiac 11 y all cases,th e systemsoftlllare is re-entrant; that is, the 
same copy of the obJect code may be used simultaneously by more than one 
proc ess. For th is reason, no storage internal to the program is uti I i zed; 
instead the storage space directly associated lIIith a process is used; 
this is part of the process's Primary, Secondary, Tertiary (Debug), and 
GiJaar~eniry~CcfjftroT BID cks-: The ···PrI mari-Corf~.,..or-Block-1PCB)i~5 ·-acfar.jj-.fJ 
via address register zero, the SCB via address register tlllO. The Debug 
Control Block is used solely by the Debug processor, and should not be 
used by any other programs. The Ouadrenary Control Block has no register 
addressing it; it is used by some system softlllare (magnetic tape 
routines, for example) IIIhich temporarily set up a register pointing to it; 
its use is reserved for future softlllare extensions. 

A user program may utilize storage internal to the program if it is to be 
used in a non-re-entrant fashion; hOlllever, in most cases it lIIill be found 
that the functional elements defined in the PSYMlllill be sufficient. 

In some cases it may 
only one process at a 
is using it, and any 
waits for the first 
typical; 

be re~uired to let up a program to be executable by 
time; that is, the- code is "locked" IIIbile a process 
other process attempting to execute the same code 
process to "unlock" it. The follllling seQ.uence is 

LOCK 

ORG 0 
TEXT X'Ol' 
CMNT * 
CMNT * 
MCC X'00',R2 
XCC R2,Rl 

INITIAL CONDITION FOR LOCK BYTE 
(NOTE USAGE OF STORAGE INTERNAL 
TO PROGRAM) 

SET "LOCKED" CODE AT R2 
EXCHANGE BYTES AT R2 AND R1 

BCE R2,X'01',CONTINUE 
CMNT * OK TO CONTINUE; PROGRAM IS NOW LOCKED 
ROM * WAIT (RELEASE OUANTUM) 
B LOCK TRY AGAIN 

UNLOCK MCC X'Ol',Rl UNLOCK PROGRAM 

3. 1. 4 Work-spaces or Buffers 

There is a set of 1II0rk-spaces, or buffer areas, that is pre-defined and 
available to each process. If the system conventions with regard to these 
buffers are maintained, they should prove ade~uate for the maJority of 
assembly programming. There are three "linked" buffers, or 1II0rk-spaces, 
of e~ual size, symbolically called the IS, the OS, and the HS. These are 
at least 3000 bytes in length each; more space for each area can be 
aSSigned to a process at LOGON time. There are five other 1II0rk-spaces, 
known as the BMS, CS, AF, IB, and the OB, IIIhich may vary betllleen 50 and 
140 bytes in length, and are all in one frame. There is the TS, a one
frame unlinked work-space of 512 bytes, and the PROC work-space, 2000 
bytes in length which is normally used by the PROC processor alone. 
Finally there are four additional frames (PCB+28 through PCB+31) that are 
unused by the system, and are freely available. PCB+28 is used internally 
by the RPG processor, though. 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 41 



I 
Each wo~k-space is defined b~ a beginning pointe~ and an ending pointerl I 
both of which a~e sto~age ~egiste~s (SIR's>' When the process is at the' 
TCl level, all these pointers have been set to an initial condition. At 
other levels of p~ocessing, the beginning pointers should no~mall~ be 
maintained; the ending poin.ters ma~ be moved by system or user ~outines. I 
The add~ess registe~s (AIR's) that a~e named after these work-spaces <IS, 
OS, AF, etc.) need. not necessarily be maintained within their associ,ated 

:~~:-;::;~-:s~cn.-~::;-;~-;;--~~~_~~-i'~lra:-~ s t-~:n~:~:!-:~-:l;:~ r: s e:ur::;"- ~~:g : ~n!~;-- I 
pointer addresses one byte ~efo~e the actual location whe~e the data 
starts. This is because data is usually moved into a buffe~ using one of 
the "mov.e inc~ementingtt type of instructionsl which increment the AIR I· 
before the data movement. 

Work
space 

BMS 

AF 

CS 

IB 

DB 

TS 

location 
(offset 
from PCB) Size linked? Remarks 

450 No No~mally c.ontains an item-id when 
(disp.=O) communic&ting with the disc file ilO 

~outines; typ i cally, the i tem-id i.s 
copied to the BMS a~ea, sta~ting at 
BMSBEQ+1; BMSBEQ may be moved to point 
wi th in an~ sc~atc h a~ea. BMSEND 
normally points to the last byte of the 
item-id; BMS (AIR) is f~eely usable 
except when explicitly o~ implicitly 
calling a disc file ilo routine 

4 50 No This wo~k-space is used ,by any system 
(disp.=50) sub~outine, though the AF AIR is used 

as a sc~atch ~egister 

4 100 No 
(disp. =tOO) 

4 0-140 No 
(disp.=200) 

4 0-140 No 
(disp.=201 
+IBSIZE) 

5 511 No 

As above 

Used ~y te~minal input routines to ~ead 
data; IBBEQ may be moved to point 

within an~ scratch a~ea befo~e use; 
IBEND conventionally points to the 
logical end of data; IB AIR is freel~ 
usable .xcept when explicitly o~ 
implicitly calling a te~minal input 
routine 

Used by terminal output routines to 
w~ite data. OBBEQ and OBEND shou.1d not 
be alte~ed; they always point to the 
beginning and end of the OB a~ea; OB 
(AIR) conventionally pOints one before 
the next available location in the OB 
buffe~ 

This wo~k-space i~ not used by the system 
sub~outines, othe~ than those 
associatad with the Conversion 
p~ocesso~1 though the TS AIR is used as 
a scratch ~egiste~ 

CHAPTER 3 SUPPORT SOFTWARE Cop~right 1987 PICK SYSTEMS 
PAGE 42 

I 
D 

D 

n 
n 
n 

" 

n 
n 
r 
r 



I 
I 
I 
I
t) 

o 
a 
n 
D 
n 

~ 

n 
n 
n 
n 
n.,.· .. · I i: 

PROC 

HS 

IS 
OS 

6-9 

10-15 

16-21 
22-27 

2000 Yes 

3000+ Yes 

3000+ Yes 
3000+ Yes 

Used exclusively by the PROC processor 
for work ing storage; user-ex i ts fT~om 
PROC's may change pointers in this area 

Used as a means of passing messages to 
the WRAPUP processo.r at the conc lusion 
of a TCL statement; may be used as a 
s-c ra ~ch ·I",ea--i~r~her e ··is-tfo--c-onfTicl; 
with the WRAPUP history-string formats; 
HSBEG should npt be altered; HSEND 
conventionally points one byte before 
the next available location in th. 
buffer (initial condition is 
HSBEG=HSEND) 

These work-spaces are used interchangeably 
by some system routines since they are 
of the same size (and are e~ual in size 
to the HS); specific usage is noted 
under the various system routines 

ISBEG and OSBEG should not be altered, 
but may be intercanged if neceary; 
initially; ISEND and OS END point 3000 
bytes past ISBEG and OSBEG respectively 
(not at the true ional 
work-space is aSSigned at LOGON time); 
IS and OS AIR's are freely usable 
except when calling systesubroutines 
that use them 

3. 1. 5 Defining a Separate Buffer Area 

If it is re~uired to define a buffer area that is uni~ue to a process, the 
unused frames PCB+29 through PCB+31 may be used. (Note that PCB+28 is 
used by the RPG processor.) The following se~uence of instructions is one 
way of setting up an AIR to a scratch buffer: 

MOV RO,R3 
SETUPO R3,ROFID,29 DETATCHES & SETS R3 TO BYTE 0 OF PCB+29 

Register three can now be used to reference buffer areas, Dr functional 
elements that are addressed relative to R3. None of the system 
subroutines use R3, so that a program has to set up R3 only once in the 
above manner. However, exit to TCL via WRAPUP WILL RESET R3 TO PCB+l0. 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1997 PICK SYSTEMS 
PAGE 43 



3.1.6 Usage 0' XMODE 

In several cases, the multiple-byte move instructions can be used (say, 
When building a table) e~.n when it is not known whether there is enough 
room in the current linked set to hold the data. Normally, i' the end 0' 
a linlc:ed'rame set is reac:hed, DEBUG is entered with a "'orward link zero" 
abort condition. However, the tally XMODE may be set up to contain the 
mode-id o' a user-written subroutine that will gain control under such a 
cond-:-ltIDn~-~-T h i5~s~ubrou-t rn-e can ~ the n pr 0 c £IS 5- the end:':oj:':fr-ame c ondTt i on~~- ~~ 

apd. by executing a RTN instruction, continue normal proceSSing. 
fnstructions that can be handled by this scheme are: INC register. MCI, 
MIC, MIl, MIlD, MIIR. and SCD. Care should be taken in the case 0' MIIR 
to save register R15 in the subroutine. MIlT can be handled since the 
accumilator is saved in D1 by the debugger be'ore it is used in 
trans'ering control via XMODE; there'ore, DO should be restored 'rom D1 
be'ore returning 'rom the XMODE trap. 

For example: 

!XXX 

* 
O~ 

* 

MOV 
CMNT 
MIl 
CMNT 
ZERO 

XXX,XMODE SET UP XMODE FOR NEXT 
* INSTRUCTION 
R12, R13, SR4 COPY FROM R12 TO R13, 
* TILL R12-SR4 
X MODE 

EOU * ENTRY POINT FOR SUBROUTINE 
MOV R15,SR1 SAVE R15 
SRA R15,ACF SET TO SAVE REGISTER NUMBER 
BCE X'OD',R15,O~ ENSURE TRAP WAS DUE TO R13 
MOV 0, XMODE PREVENT DEBUG RE-ENTRY;; 
CMNT * USE IIMOVII TO PRESERVE ACF 
ENT 5,DB1 NO! RE-ENTER DEBUG TO PRINT 
CMNT * "FORW LN~ ZERO" MESSAGE 

MOV 500,R13DSP RESET DISPLACEMENT FIELD OF 
CMNT * R13, SINCE FIRMWARE HAS LEFT 
CMNT * IT IN A STRANGE STATE 

* HANDLE END-OF-FRAME CONDITION HERE 

* MOV R13FID, RECORD SET UP INTERFACE 
BSL GETSPC GET ANOTHER OVERFLOW FRAME 
MOV SR1,R15 RESTORE R15 
RTN * RETURN TO CONTINUE EXECUTION 
CMNT * OF MIl INSTRUCTION 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PIC~ SYSTEMS 
PAGE 44 

I 
I 
I 
I 
I' 
I 
D 
o 

n 
n· il 

n 
n 
r 
f! 

r' 



I 
! I 3.1.7 Initial Conditions 

I 

D 
a 
o 
n 
n 

a 
n 
n 
n 
n 
n 
fl I '~' 

r 

At anll level in the system, the folloliling elements are assumed to be set 
UPi they should not be altered by any programs: 

MBASE 
MMOD 

~~M9EP-

USER 

D + Contain the base-FID, modulo. and 
T + separation of the MIDICT associated lIIith 

~th.~~~p~r~D-Ees 5 .. 

T Used to indicate the status of the 
process, as follollls: 

-1 
o 
1 

.... &2 

:3 

5 

Indicates the _pooler process 
Indicate~ process not lOgged on 
lndicat.s the file-restore process 
Indicates a process IIIhich has been 
logged off,. and must release 
liIo~k-sp~~e and go to MDO 
Indicates a process IIIhich must go 
to LOGOFF after WRAPUP. processing 
Indicates normal logged-on process. 

CHAPTER:3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 45 



3.1.8 Special PSYM Elements 

Certain elements have a "global" significance to the s~stemJ 
to those described abovel they include the following: 

Element 

HO 

Description 

H + 
+ Ove~lay the accumulator and exten~ion' 
+ H7 is the high-order b~te of D1J HO is 
+ The low-order byte of DO 

H7 H + 

in addition 

INHIBITH H If non zero, the "BREAK" ke~ on the terminal 
is inh i b i tedJ used by proc esses that 
should not be interrupte-d. Conventionall~, any 
process can increment INHIBITH to prevent 
BREAK KEY interuption. The subrouine DECINHIB 
should be used to decrement the inhibit half tally. 

OVRFLCTR D Used by WRAPUP 

RSCWA T Return-stack current word addressJ 
contains the address one byte past the 
current entry in the stackJ the stack is 
null if RSCWA=X'184' 

SYSPRIVl B Indicates system privileges, level one, 
if set 

SYSPRIV2 B Indicates system privileges, 
if set along with SYSPRIVl 

level two, 

TO 

T3 

XMODE 

T + 
+ 
+ Overlay the accumulator and extension 
+ 

T + 

T May be set to the mode-id of a 
subroutine that is to gain control when 
a "forward link zero" condition occurs 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 46 



I 
I 
I 

I 
I 

D 
n 
n 
o 
n 
n 
o 
n 

r 
n 

3.2 DOCUMENTATION CONVENTIONS 

In the system software 60cumentation, each routine is listed along with 
its entry point (as would be used in a DEFM statement); if the entry 
point is included in the standard PSYM file, it is followed by an asterisk 
(*). Unless ot_erwise specified, routines are meant to be called as 
s.ubroutines, using a BSL instruction, and they return to the calling 
program via a RTN instruction.' Be awar. that there is no particular 
rea-son---tci--be-ITevetha t--th-i . ri ferenc-ed- r ou ~fni- currerf~nr-nai-tfii- s pe-cTfi ecJ~ 
interfac e, name or I ocati on, or that it ex i sts. 

The Functional Description section for each routine briefly describes the 
action taken. The Input Interface, Output Interface, and Element Usage 
sections describe the functional elements used by the routine. The single 
letter following an element name describes its type: B=bit, C=character, 
H=half tally, T=tally .(word), D=double tally, F=triple tally, R=address 
register, S=storage register. Even if not specified, the following 
elements may be destroyed by any routine. 

Tallies 

Double Tallies 

Registers 

Storage Registers 

T4, T5 

Accumulator and extension (DO, 
D1), D2 

R14, R15 

SYSRO, SYSR1, SYSR2 

If no description follows an element name, it indicates that the element 
is used as a scratch element. 

The system delimiters are symolically ref.rred to as follows: 

Hex. Value Name and Description 

FF SM Segment Mark 
FE AM Attribute Mark 
FD VM Value Mark 
FC SVM Secondary Val.ue Mark 
FB SB Start Buffer 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 47 



3.3 System subroutines 

3.3.1 ATTOVF 

ATTOVF is used to obtain a frame from the overflow space pool and to link 
it to the frame specified in double tally RECORD. The forward link field 
of the frame specified in RECORD is set to point to the overflow frame 
o Dt-airfe If, ·~n~e ..... ·b-acktIJar If· rl-rrk~ 1!renrof-· thi .-...... over'" lo~tIi-"rameTsse t··· to--t·he-·· 
value of RECORD, and the other link fields of this overflow frame are 
zeroed. 

Input Interface 

RECORD D 

Output Interface 

OVRFLW D 

Element Usage 

R15 R 

INHIBITH B + 

Contains the FID of the frame to which 
an overflow frame is to be linked 

Contains the FID of the overflow frame 
if obtained~ or zero if no more frames 
are available 

Utility 

DO D + Used by QETOVF 
R14 R + 

Subroutine Usage 

QETOVF 

Two additional levels of subroutine linkage re~uired 

3.3.2 BLOCK-SUB 

I 
I 
I 
I 
I 
I 
D 

D 

n 
n 

This routine prints block letters on the terminal or line printer. It is 
used, for i nstanc e, by the TCL verb s "BLOCK-TERM" and "BLOCK-PRINT"; for n 
more information, see the discussion of these verbs in the SYSTEM COMMANDS I 
doc umentat ion. 

Input Interface n 
IS 

ZBIT 

CHAPTER 3 

R Points one before the first character to 
be output; the end of data is marked by 
the character pair SM Z (no space after 
the SM) i if any element in· the data 
string contains a 8M, it must be 
terminated bV a SB (see MD1B 
documentation, "Editing Features") 

B I f set, output iii directed to the 
terminal, otherwise output is passed to 
the spooler for line printer listing or 
other use 

SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 4S 



OBSIZE T 

OB R 

SBO B 

AFBEG S 
BMSBEG S 
HSEND S 

LISTFLAG B 
SMCONV B 
NOBLNK B 
LFDLY T 
PAGSIZE T 
PAGSKIP T 
PAGFRMT B 

Output Interface 

OB R 

PAGINATE B 

PAGHEAD S 

Element Usage 

BITS C 
SCO C 
SCl C 
SC2 C 
RE~CTR T 
Cl T 
CTR16 T 
CTR17 T 
CTR18 T 
CTR19 T 
DO D 
D1 D 
BASE D 
MODULO T 
SEPAR T 
IR R 
UPD R 
BMS R 
AF R 
OB R 
CS R 
TS R 
R15 R 
SR4 S 

+ 

Contains the maximum number of 
characters on each output line 

=OBBEG 

If set, no test for terminal or printer 
output is made, terminal or printer 
characteristics are not initialized, the 
output device is not advanced to 
top-of-form, and the heading is not set 
null; all these actions take place if 
SBO is reset 

+ Point to scratch areas 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

As required by WRTLIN 

=OBBEG 

=1 

Points to a null page heading (SM) at 
HSEND if SBO=O 

+ Utility 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 49 

---~--~-- ~ ---~,--- -'-



SR22 S + 

CTR1 T Used bV CVTNIR 

R14 R Used bV RETIX 

T7 T + Used bV WRTLIN 
SYSR1 S + 

Subroutine Usage 

RETIXi GBMS if the sustem file "BLOCK-CONVERT" is found; CVTNIRi 
WRTLIN; NEWPAQE if req,uired; PRNTHDR if SBO-O; PCLOSEALL and 
SETLPTR if SBO-O and ZBIT-O; SETTER" if SBO=l 01' ZBIT=l 

Six additional levels of subroutine linkage req,uired if "BLOCK
CONVERT" is a "O"-code item in the master dictionarYI otherwise five 
levels req,uired 

Error Conditions 

I 
I 
I 
I 
I 

BLOCK-SUB exits to WRAPUP (MD995 01' MD99) under the following Hi 
conditions: 

Error Number 

520 

521 

522 

523 

524 

525 

Error tupe 

Null input data 

Too manu characters (more than nine) in 
• word to block 

BLOCK-CONVERT file missing 01' illlproperlu 
defined in the master dictionaru 

Block output would exceed page width 

An input ch.racter 
BLOCK-CONVERT file 

is not in the 

An input character is improperly 
formatted in the BLOCK-CONVERT file 

CHAPTER 3 SUPPORT SOFTWARE CoPUright 1987 PICK SYSTEMS 
PAGE 50 

n 
n 
n 
n 
n 
r 
r' 
rl 



I 
I 
I 
I 
I 
D 

a 
o 
D 
n 

n 
n 
n 
n 
n 
n.:.i. I ;, 

n 

3.3.3 CONV - CONVEXIT 

These entr~ points are used to call the entire conversion processor 
as a subroutine, which will perform an~ and all valid conversions 
specified in the conversion string. Other entr~ points may be used to 
perform c erta in sp ec i fi c c onvers ions. Mul til P Ie c onvers i on c odes are 
separated b~ VM's in the conversion string. Conversion is called b~ 
the ENGLISH pre-processor to perform conversions on "input" data 
-(:In serect~l on c-rlt.-ria-) , and b~tlleL rST1S:rORT proi:essor-t-o~-p-.~rflorm-

"output" conversion. 

CONV is the usual mode-id used to invoke conversion processing. 
CONVEXIT is the entr~ point to which an~ part of the conversion 
processor returns in order to check if more conversion is re~uired 
(further VM's and conversion codes in the conversion string>. 

Input Interface 

TSBEG S 

IS R 

MBIT B 

OBIT B 
DAF1 B 

XBIT B 

Points one before the value to be 
converted; the value is converted "in 
place", and the buffer is used for 
scratch space; therefore it must be 
large enough to contain the converted 
value; the value to be converted is 
terminated b~ an~ of the stan,dard s~stem 
delimiters (SM, AM, VM, or SVM> 

Points to the first character of the 
conversion code specification string for 
CONVi for CONVEXIT, points at least one 
before the next conversion code (after a 
VM) or AM at the end of the string, or 
to the AM; the code string must end with 
an AM; initial semicolons (;) are 
ignored 

Set if "input" conversion is to b. 
performed; reset for "output" conversion 

+ As re~uired by TRANSLATE (see TRANSLATE 
+ documentation> 

As re~uired b~ CFUNC (see CFUNC 
documentation> 

Output Interface 

TSBEG 

TS 
TSEND 

IS 

Element Usage 
CHAPTER 3 

S Points one before the converted value 

R + Point to the last character of the 
S + converted value; a 8M is also placed one 

past this location; TS=TSEND=TSBEG if e 
null value is returned 

R Points t~ the 
conversion cod.Cs) 

SUPPORT SOFTWARE 
PAGE 51 

terminating the 

Cop~right 1987 PICK SYSTEMS 



Element 

DBIT 
XBIT 
GMBIT 
WMBIT 
SBIO 
SB12 
DAFl 
DAF9 
SC2 
T3 
T4 
T5 
T6 
T7 
CTRl 
CTR12 
CTR13 
CTR20 
CTR21 
CTR22 
CTR23 
CTR28 
Dl 
D2 
D3 
D7 
D8 
D9 
FPO 
FPl 
FP2 
FP3 
FP4 
FP5 
FPX 
(SYSRO) 
FPY 
BASE 
MODULO 
SEPAR 
RECORD 
SIZE 
NNCF 
FRMN 
FRMP 
NPCF 
XMODE 
IR 
BMS 
R14 
R15 
SYSRl 
SYSR2 
S4 
S5 
S6 
S7 
SRO 

CHAPTER 3 

Conversi;on's Wner. 'UsI8d 

B F.T 
B F 
B F 
B F 
B All 
B All 
B T 
B T 
C C.D.F.T 
T F.MD 
T D.F.MD.MT 
T D.F. MD. MT 
T D.F.M 
T F.MD 
T C.F.G.T 
T F 
T F 
T All 
T D.MD.T 
T D 
T D.MD 
T T 
D C.F.MT.T 
D D.F.KD.MT 
D MT 
D F 
D F 
D F 
F F.MD 
F F.MD 
F F.MD 
F F 
F F 
F F 
F F.MD.T 

F F.MD 
D T 
T T 
T T 
D T 
T T 
H T 
D T 
D T 
H T 
T C.F.MT.T 
R T 
R T 
R D.MD. MT. MX.T 
RAIl 
S T 
S T 
S T 
S F 
S e.T 
S All 
S e.F 

SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 52 



I 
I 
I 

I 
I 
n 
n 
IT 

n 
n 
n 
n 
n 
n 

SR1 
SR4 

S 
S 

Subroutine Usage 

CVTHIS for "u" conversions; QCORR for "g" conversions; TRANSLATE 
for "T" conversions; CONCATENATE for "c" conversions; additional 
subroutines as used bV routines listed under "Exits" below, and bV 
user-written routines 

-T he---riumDer-ofiaHI ffItonci r~Tjve-15 of 5u!fr-autine Tlffk-ag It -_. rii[ulreiJ deperids 
on the conversions performed - see the documentation for the various 
conversion routines for mOre specific information; note tbat for "F" 
conversions, CFUNC may call CONV recursively 

User Conversion Processing 

The conversion processor ~ill pass control to a user-written routine 
if a "Uxxxx" code is found in the conversion string, where "x~xx" is 
the hexadecimal mode-id pf the user routine. This routine can then 
perform special conversion befqre returning. Th~ input interface for 
the user routine will be identical to that described in the preceding 
section; after per~or.ing tP~ conversion the user routine should set 
up the output interface elements to be compatible with CONVEXIT, and 
then exit via an external branch to that point to continue the 
conversion process if multiple conversions are specified. 
Alternatelv, a RTN may be executed if this is not needed, or to 
prevent further conversions from being performed. Elements used bV 
the regular conversion routines may safely be used bV user routines; 
however, i.f additio~al elements .re needed, a complete knowledge of 
the processor that called CONV (LIST, SELECTION, ,etc.) wi 11 be 
necessary. 

Exits 

To IDATE for "D" conversions on input (MBIT=l); to ODATE for liD" 
conversions on output; to ICONVMD or OCONVMD for "MD" conversion on 
input or output; to CFUNC for "F" conve-rsionsi to TIMECONV for "MT" 
conversions; to HEXCONV for "MX" conversionsi all these routines, 
however, return to CONVEXIT 

For output conversion, a null value returned causes an immediate end 
of conversion processing. 

Error Conditions 

CONV exits to WRAPUP after setting RMODE to zero under the following 
c ond i ti ons: 

705 

706 

707 

Illegal conversion code 

Illegal 
inc orrec t, 
etc. 

"Til conversion: 
filename cannot be 

DL/ID cannot be found 
conversion file 

for 

format 
found, 

WRAPUP is also entered without setting RMODE to zero under 
following error conditions: 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 53 

the 



708 

339 

3.3.4 DLINIT 

Value cannot be conve~ted by a "T" 
conve~sion 

Invalid fo~mat fo~ input data conve~sion 

I 
I 
I 

~t~;r-c~!_~~:~:·:~eo~~::~:a~!!~~e~~!~~1;~:~:·i~i~;~~~!~~e~::~:~:o~U!b-!;Je. I 
of frames, if available,it ente~s OLINITI to initialize the f~ames 
(see OLINITI documentation>. If not enough space is available for the I 
file, DLINIT calls NOSPACE to find out if proc-essing should be 
aborted (see NOSPACE documentation). 

Input Interface 

MOOULO T 
SEPAR T 

+ Contain the modulo and se,aration 
+ pa~amete~s for the file; if MOOULOis 

initially less than or ~qual to zero~ it 
is set to eleven; if SEPAR is initially 
less than or equal to ze1"o, it is set to 
one, and if initially g~eater than 127 
it is set to 127 

Output Intlit~face 

BASE o 

OVRFLW o 

RMBIT B 

C~ntains the beginning FlO of a 
contiguous block of Size MOOULO*SEPAR if 
thlit space is available, otherwislit 
unchanged 

=BASE if the requested 
available, othe~wise =0 

Set if the requestedspa~e is 
otherwise unchanged 

space is 

obtained, 

Element Usage 

R14 R + 
R15 R + Used by QETBLK 
INHIBITSV2 B + 
00 0 + 

Subroutine Usage 

Exits 

QETBLK; NOSPACE if the requested space is unavailable 

Three additional levels of sub~outine linkage required 

To OLINITI if the requested space is obtained; to NSPCa (WRAPUP) 
from NOSPACE if the space is unavailable and processing is aborted by 
the use~ 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 54 

I 
D 

D 
fl .• Lt' 

n 
n 
r 
r 
r 



I 
I 
I 
I-
I 
o 
D 
o 
n 
n 

o 
o 
n 
n 
n 
n 

3.3.5 

DLINIT1 initializes the link fields of a file as spe,cified ~,y its base, 
modulo, and separation parameters, and sets each group empty by adding an 
AM at the beginning (in the first data byte). 

Input Interface 

BASE 
MODULO 
SEPAR--

D + Contain the base, modulo, and separatio 
T + of thefilei note - one frame is linked 
T--~+-eyen-ir -MODUtO -i-s ---t-es-s--thanol'e--qu-al--to----

zero 

Output Interface 

R14 R 

R15 R 

RECORD D 

NNCF H 

Points to the first data byte in the 
first frame of the last group in the 
file (set by LINK) 

Points to the last byte of the last 
frame of the last group in the file (set 
by LINK) 

=one greater than the FID of the last 
frame of the last group in the file 

=SEPAR-1 

Frames are initialized as described above 

Element Usage 

CTR1 

FRMN 
FRMP 
NPCF 

T Utity 

D + 
D + Used by LINK 
H + 

Subroutin. im 5 LINK 

One additional level of subroutine linkage req,uired 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 55 



I 
3. 3.'6 <EN<iJt::.ISA INTERFACE 

I Summary 

It is possible to interface with the. ENGLISH processor at several levels. A I 
typical LIST or SORT statement passes through the Preprocessor and Selection . 
processor before ente1'ing the: LIST processo1'. All statements must pass through 
;~:mfi~:i::~ri:t:~~:~a.~~.!:'t control can be transferred to user-wri!~~!.~~J~rog.,.ams I 
General Conventions 

D The ENGLISH processors use a compiled string that is stored in the IS work 
spa~e. St~ring elements are separated by SM's. The1'e is one file-defining 
element in each string, one element for eath attribute specified in the Oi 
original statement, and special elements pertaining to selection criteria, . 
sort-keys, etc. The formats of various string elements are as follows: 

File Defining Element, at ISBEG+1: 

SM D file-name AM base VM modulo VM sepal' AM conv AM 
correl AM type AM Just AM SM 

Attribute Defining Element: 

SM c attribute-name AM amc AM conv AM correl AM 
type AM Just AM SM 

c = A - regular or D2 attribute 
o - D1 attribute 
Bx- SORT-BY, SORT-BY-DSND, etc.; "x" is from 

attribute one of the connective 

Explicit Item-id's: 

SM I item-id SM 

End-of-string ELEMENT: 

SM Z 

The Selection Processor 

n 
n 

r 
fl' } 

1 

fi'.·. ! 

This performs the actual retrieval of items which pass the selection criteria, 
if specified. Every time an item is retrieved, the processor at the next level n.' 
is entered with bit RMBIT set; a final entry with RMBIT zero is also made t 
after all items have been retrieved. If til sorted retrieval is re~uired, the 
Selection processor passes items to the GOSORT'mode, which builds up the sort- n. keys preparatory to sorting them. After sorting, GOSORT then retrieves the ~ 
items again, in the re~uested sorted se~uence. ! 

A user program may get control directly from the Selection processor (or GOSORT r. 
if a sorted retrieval is re~uired); the formats of the verbs are: 

Line number 

1 
2 
3 

CHAPTER 3 

Non-sorted Sorted 

PA PA 
35 35 
xxxx 76 

SUPPORT SOFTWARE 
PAGE 56 

r 
Copyright 1987 PICK SYSTEMS r 



4 xxxx 

where "xxxx" represents the mode-id of the user pTogram. Note that in this 
meth od of i nteTfac el onl y item retr i eval has tak en p lac e; none of the 
conversion and correlative processing has been done. For functional element 
interfacel the column headed "Selection Processor" in the table shown la~er 
must be used. 

Exit Con v e n t ion: On a 11 but the I as ten try I the use r r 0 uti n e s h 0 u Ide x i t 
indirectly via RMODE (using an ENT* RMODE instruction); on the last entrYI the 
routine should exit to one of the WRAPUP entry points. Processing may be 
aborted at any time by setting RMODE to zero and entering WRAPUP. Bit SBO must 
also be set on the first entry. 

Special Exit From The LIST Processor 

A user program may also gain control in place of the normal LIST 
perform special formatting. The advantage here is that all 
correlativesl etc. Have been processedl ana the resultant output 
stored in th e history string (HS area>. Th e -format s of the verb 5 

Line number Non-sorted Sorted 

1 PA PA 
2 35 35 
3 4D 4E 
4 xxx x xxxx 

where "xxxx" is the mode-id of the user program. 

formatterl to 
c onvers i onsl 

data has been 
then are: 

Output data is stored in the HS area; data from each attribute is stored in 
the string, delimited by AM's; multiple values and sub-multiple-values are 
delimited within an element by VM's and SVM's, respectively. Since the HS may 
contain data other than the retrieved item, the user program should scan from 
HSBEG, looking for a segment preceded by an "X"; all segments except the first 
are preceded by a SM. The format is: 

X item-id AM value one AM ... AM value n AM SM Z 

The program must reset the history string pointer HSEND as items are taken out 
of the string. In special cases, data may not be used until, say, four items 
are retrieved, in which case HSEND is reset on every fourth entry only. HSEND 
must be reset to point one byte before the next available spot in the HS work 
space, normally one before the first "X" code found. 

The exit convention for the LIST processor is the same as for the Selection 
processor (see above). 

Example: The following program is an exam~le of one which prints item-id's 
(only) four at a time across the page. 

001 
002 
003 

FRAME 504 
ZB SB30 
BBS SBO,NOTF 

004 * FIRST 
005 

TIME SETUP 

006 
007 * 
008 NOTF 
009 
010 

CHAPTER 3 

MOV 4,CTR32 
SB SBO 

BBZ RMBIT,PRINTIT 
BDNZ CTR32,RETURN 
MOV 4,CTR32 

SUPPORT SOFTWARE 

INTERNAL FLAG 
NOT FIRST TIME 

LAST ENTRY 
NOT YET 4 ITEMS OBTAINED 
RESET 

Copyright 1997 PICK SYSTEMS 
PAGE 57 



011 PRINTIT 
012 LOOP 
013 
014 
015 SC ANSI'1 
016 
017 STOREIT 
018 
019 
020 
021 COPVIT 
022 
023 
024 
025 ENDHS 
026 
027 
028 
029 
030 RETURN\ 
031 
032 GUIT 
033 

MOV 
INC, 
BCE 
BCE 
SCD 
B 
BBS 
SB 
MOV 
CMNT 

·····~MIID 

MCt 
INC 
B 
BSL 
MOV 
CMNT 
DEC 
BBZ 
ENT* 
CMNT 
ENT 
END 

Element Usage 

HSBEQ,Rl4 
Rl4 
C'X',Rl4,STOREIT FOUND AN ITEM 
C'Z',R14,ENDHS END OF HS STRING 
Rl4, X 'CO' SCAN rONEXT SM 
LOOP 
SB30,COPYIT 
SB30 
Rl4,SR28 

* -Rl-41--oB, X'AO-" 
C' ',DB 
OB,5 
SCANSM 
WRTLIN 
SR28,HSEND 

* HSEND 
RMBIT,GUIT 
RMODE 

* MD999 

NO FIRST ID FOUND 
FLAQ FIRST ID FOUND 
SAVE LOCATION OF FIRST 
"X" 

. ··~OPY···ITEM-roTO OS 
OVERWRITE AM 
INDEX 

PRINT A LINE 
RESTORE HS TO FIRST 
"X" CODE 
BACK UP ONE BY.TE 

RETURN TO SELECTION 
PROCESSOR 
TERMINATE PROCESSING 

I 
I 
I 
I 
I 
D 

D 
D 

The folloliling table summaT'izes the functional element usage by the selectionn 
and LIST processoT's. Only the most important usage is described; elements Ai 

that have vari ous usages aT'e label ed .. scratch. II a It" (b lank) ind i cates that 
the processor does not use the element. Since the LIST processor is called by n 
the Selectin processoT', any element used for "memory" pUT'po.es (not to be us.d ~ 
bV others) in the fOT'meT' is indicated by a blank usage in the latteT' column. t 

In general, useT' T'outines may freely use the fo110llling elements: 

Bits 
Tallies 
Double tallies: 
SIR '5 

SB20 uplilaT'ds 
CTR30 uplilaT'ds 
D3-D8 
SR20 uplilaT'ds 

fl.·.· I 
I 
.& 

SBO and SBl have a special connotation: they are zeT'oed by the selectionU 
processor IIIhen it is first entered~ and not a1teT'ed thereafter. They are I 

conventionally used as fiT'st-time slilitches for the next two levels of 
processing. SBO is set by the LIST processoT' when it is fiT'st entered, and n. 
user programs that gain control directly fT'om Selection should do the same. I 
SBO may be used as a first-entry slilitch by useT' programs that gain control from 
the LIST processoT'. . n 
An ENQLISH verb is considered an "update" type of verb if the SCP chaT'acter -
(from line one of the veT'b definition) is B, C, 0, E, Q, H, I, OT'~. SCP 
characters of B, C, D, and I aT'e T'eserved for future ENGLISH update verbs. Pi 
Bits Selection Processor LIST PT'ocessor 

ABIT sCT'atch non-columnar list flag r 
BBIT fiT'st entT'Y flag 
CDIT sCT'atch sCT'atch r OBIT SCT't1Itch dummy control-break 
EBIT T'eseT'ved control-bT'eak flag 
FBIT T'eseT'ved sCT'atch 
GBIT T'eseT'ved scratch r CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAQE ~ 



I 
I 
I 
I 
I 
D 

o 
o 
n 
n 
n 
n 
o 
n 

n 
n 
0,',' (' 

r 

HBIT 
IBIT 

'-'BIT 

KBIT 
LBIT 
MBIT 

NBIT 
OBIT-

PBIT 
GBIT 
RBIT 

SBIT 

TBIT 
UBIT 
VBIT 
WBIT 
XBIT 
YBIT 

ZBIT 

SBO 

SBl 

SB2 
SB4 
through 
SB17 
VOBIT 

COLHORSUPP 
OBLSPC 
HORSUPP 
IOSUPP 
OETSUPP 
LPBIT 
TPBIT 
CBBIT 
PAQFRMT 
RMBIT 

WMBIT 
QMBIT 
BKBIT 
OAFl 

OAFS 

Tallies 

reserved 
explicit item-id's 
specified 
reserved 

by-exp flag 
scratch 
CONV interface; 
zero 
scratch 
selec::tionte~ton 

item-id 
scratch 
scratch 
full-file-retrieval 
flag 
selection on values 
<WITH) 
scratch 
scratch 
reserved 
scratch 
scratch 
left-Justified 
value being tested 
left-Justified 
item-id 
unavailable 

unavailable 

reserved; zero 

scratc.h 

D2 attribute in 
process 
by-exp flag 
left-Justified field 
zero 

scratch 

scratch 
scratch 

print limiter flag 
reserved 
scratch 
reserved 
reserved 
left-Justi~ied print 
limiter test 

first entry flag, 
level one 
first entry flag, 
level two 

scratch or reserved scratch or reseved 

set for WRAPUP 
interface 
set if the corre
sponding connective 
",as found in the 
input statement 

set on exit if an 
item ",as retrieved; 
zero on final exit 
FUNC interface 
FUNC intrface 
scratch 
set if SCP-B, C, 0, 
E, g, H, I, or ~ 
set if accessing a 
dictionary 

FUNC interface 
FUNC interface 

scratch 

Selection processor LIST processor 

C1;C3-C7 scratch scratch 
C2 contents of MODEID2 

.. 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAgE 59 



CTR1-CTR4 
CTR5 

CTR6 
CTR7 

CTR8 
CTR9 
CTR10 
CTR11 
CTR12·~·· 

CTR13 
CTR14 
CTR15 
CTR16 
CTR17 
CTR18 
CTR19 
CTR20-CTR23 
CTR24 
CTR25 
CTR26 
CTR27 
CTR28 

Other storage 

D9 

D7 
FP1-FP5 
RMODE 

SIZE 
SBASE 
SMOD 
SSEP 
DBASE 
DMOD 
DSEP 

SIR's 

Sl 

S2-S9 
SRO 

SR1 

SR2 
SR3 
SR4 

SR5 

SR6 

SR7 
SR8-SR12 

CHAPTER 3 

scratch 
scratch 

reserved 
reserved 

reserved 
reserved 
reserved 
reserved 
FUNCinterTace 

FUNC interface 
reserved 
reserved 
reserved 
reserved 
reserved 
reserved 
CONV interface 
reserved 
reserved 
reserved 
reserved 
reserved· 

scratch 
AMC of the current 
element in tbe IS 
scratch 
AMC corresponding 
to IR 
scratch 
scratch 
scratch 
scratch 
cu,.,.en1:~~s ut);;;'VaTue~~ccfun~er ...-~~-

count 
current value count 
scratch 
item size 
scratch 
reserved 
scratch 
sequence no for by-exp 
CONV interface 
scratch 
scratc.h 
scratch 
current max-length 
scratch 

Selection processor LIST processor 

count of retrieved 
items 
FUNC interface 
FUNC interface 
return mode-id 
(MD3) 
item-size 
file base, modulo, 
and separation 

dictionary base, 
modulo, and 
separation 

FUNC interface 
FUNC interfa·ce 

scratch 

Selection processor LIST Processor 

points to the next 
explicit item-id 
scratch scratch 
points one before 
the item count field 
points to the current correlative 
correlative field 
scratch scratch 
reserved scratch 
points to the last 
AM of the item 
reserved 

points to the 
conversion field 
reserved 
reserved 

SUPPORT SOFTWARE 

points to the next 
segment in the IS 
current conversion 
field 
scratch 
reserved 

Copyright 1987 PICK SYSTEMS 
PAQE 60 

I 
I 
I 
I 
D 
o 
D 

n 
f] 

[I 
r 
n 
nIl 

$ 
f 

11. II 

n 
n! 

! 
J 

r 
r 
r 



I 
I 
I 
I 
I 
D 

I 
n 
n 
n 
n 
n 
o 
o 
a 
n 
n 
u.:·: , !i 

r 

SR13 

SR14-SR19 
PAGHEAD 

AIR's 

AF 
IJMS 

CS 
IB 
OB 
IS 
as 
TS 
UPD 
IR 

GOSORT only: next 
sort-key 
reserved 
heading in the HS 
if HEADING was 
specified 

reserved 

reserved 
generated heading in 
the HS 

Selection Processor LIST Processor 

scratch 
wi tlt-irithe BMS
area 

scratch 
scratch 

scratch 
scratch 
output data line 

compiled string compiled string 
scratch 

within the TS area within the TS area 
within the HS area 

within the item within t~e item 

Work Space 
Usage Selection Processor LIST processor 

AF 
BMS 
CS 
IB 
IS 
as 
HS 

TS 

scratch 
contains the item-id 
control break value string 
output line 
compiled string 
scratch 
heading data 

scratch 

heading data; 
attribute data for 
special exits 
current value in 
process 

Additional Notes 

1. 

2. 

3. 

4. 

If a full-file-retrieval is specified, the 
additional internal elements as used by GETITM 
will be used. If explicit item-id's are 
specified, RETIXis used for retrieval of each 
item. 

Most elements used by the' CONV and FUNC processors 
have been sho",n in the table; both may be called 
either by the Selection processor or the LIST 
processor. 

Since the ISTAT and SUM/STAT processes are 
independently driven by tte Selection processor, 
the element usage of these processors is not 
shown. 

The section of the IS and OS used by the Selection 
and LIST processors is delimited by ISEND and 
OSEND respectively. The buffer space beyond these 
pointers is available for use by other programs. 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 61 



3.3.7 GETBUF - G3 

These routines accept input data from the terminal and perform 
some editing on the characters obtained. GETBUF also prints 
an initial prompt character at the terminal before reading input. 
Control is returned when a non-editing control character is input, 
or when the number of characters specified in TO or T1 are input. 

Editing Features 

Control-H 

Control-X 

Control-R 

Rubout 

Control-shift-K 
Control-shift-L 
Control-shift-M 
Control-shift-N 
Control-shift-O 

Logically backspaces the buffer 
pointer; echoes characte.r in BSPCH 

Logically deletes the entire input 
buffer; echoes a CR/LF, and prints 
the prompt character 

Retypes the input line 

Ignored; the character is echoed, 
but is not stored in the buffer 

These characters are converted to 
the internal delimiters SB, SVM, 
VM, AM, and SM, respectively; they 
echo as the characters [, I, ), A, 

and 

Note: the high order bit of all characters input is zeroed. 

Input Interface 

BSPCH C 

PRMPC C 

TO T 

T1 T 

R14 R 

R15 R 

Output Interface 

R15 R 

Element Usage 

DO 

contains the character to be echoed to 
the terminal when the back space key is 
pressed; re~uired by G3 

Character output as a "prompt" when 
input is first re~uested by GETBUF, and 
after certain editing operations by both 
GETBUF and G3 

Contains the maximum number of 
Characters accepted (for GETBUFonly) 

Contains the max imum number of 
characters to be accepted (for G3 only) 

Points one byte before the beginning of 
the input buffer area (for GETBUF only) 

Points one byte before the beginning of 
the input buffer area (for G3 only> 

Points to the control character .causing 
return to the calling routine 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 62 



3.3.8 GETIB - GETIBX 

GETIB and GETIBX are the standard termianal input routines. 
Register IBBEG points to a buffer area where the routine will input the 
data. Input continues to this area until either a carriage return 
or line feed is encountered, or until a number of characters equal 
to the count stored in IBSIZE have been input. The carriage return or 
line feed terminating the input line is overwritten with a segment 
mark <SM), and register IBEND points to this character on return. 
If the input is terminated because the maximum number of characters 
has been input, a SM will be added at the end of the line. 

This routine calls GETBUF to read input data from the terminal, and 
then determines if the last character was a carriage return or line 
feed, and echoes a CR/LF to the terminal. If the last character 
was a control character (see GETBUF documentation), GETIB/GETIBX 
either accepts or deletes the character, depending on the value 
of bit CCDEL, and calls GETBUF again. 

The entry GETIB also provides the facility for taking input from 
a stack instead of directly from the terminal (see below>. This 
feature is used, for example, by the PROC processor to store 
input lines which are returned to requesting processors as if 
they originated at the terminal. If the last character in a 
stacked line is a II ", it is replaced with a SM. Terminal input 
resumes when the stacked input is exhausted. GETIBX does not 
test for stacked input. 

Input Interface 

CCDEL B 

IBBEG S 

IBSIZE T 

LFDLY T 

PRMPC C 

BSPCH C 

STKFLG B 

If set, control characters are deleted 
from terminal input 

Points one byte before the buffer area 
where input is to be stored; the buffer 
must be two bytes greater than IBSIZE 

contains 
characters 

contains 
number of 
be issued 
terminal; 

the max imum 
accepted for 

number 
input 

of 

(in the low-order byte) the 
"fill" characters (nulls) to 
after a CR/LF echo to the 

required by PCRLF 

Terminal prompt character; required by 
GETBUF 

Contains the character to be echoed to 
the terminal when the back space key is 
pressed; required by G3 

If set, GETIB tests for "s"t-acked" input; 
terminal input will not be requested 
until stacked input is exhausted 

STKINP S Points to the next "stacked" input line; 
lines are deliminated by AM's, with a SM 
indicating the end of the stack 

CHAPTER 3 SUPPORT SOFTWARE COPlJright 1987 PICK SYSTEMS 
PAGE 63 



Output Inter'ace 
IB R 

IBEND 

STKFLQ 

STKINP 

Element Usage 

R~14 

R15 

Subroutine Usage 

S 

B 

S 

R 

R 

=IBBEQ 

Points to a SM one byte past the end 0' input data (over"I'rites theCR or LF) 

Zeroed if the end of stacked input tlJas 
reached; not changed if initially zero 

Points to the next line .0" stacked in,put 
(.or entlolstack) ifstacJced input ,1.
being ,proces.sed 

If no stacked input: QETBUF, G3, PCRLF (if CCDEL=1> 

One additional level of subroutine linkage required 

Error Conditions 

if a stacked input line exceeds IBSIZE, the line is truncated at IBSIZE; 
the remainder of the line is lost. 

3.3.9 QETITM 

I 
I 
I 
I 
I 
I 
D 
o 

" .. U' 

This routine sequentially retrieves all items in a file. It is called n 
repetitively to obtain items one at a time until all items have been retrieved. 11 
The order in tlJhich the items are returne~ is the same as the storage sequence. 

If the items retrieved are to be updated by the calling routine (using routine n 
UPDITM), this should be flagged to GETITM by setting bit DAF1. For updating, 
GETITM performs a ttIJo-stage retrieval process by first storing all item-ids 
(per group) in a table, and then using this table' to actually retrieve the n 
items on each call. This is necessary because, if the calling routine updates 
an item, the data tlJithin this group shifts around; GETITM cannot simply 
maintain a pointer to the next item in the group, as it does if the "update" n:., 
option is not flagged. . 

to GETITM by zeroing bit DAF7 n 
and maintains certain pointers ." 
until all the ite~s in the file 

An initial entry condition must also be flagged 
beror·e the first call. GETITM then sets up 
which should not be altered by calling routines 
have been retrieved (or DAF7 is zeroed ag.in). 

Note the functional equivalence of the output interface elements tlJith those of U 
RETIX. 

Input Interface 

DAF7 B 

DAFt B 

CHAPTER 3 

Initial entry flag; must be zeroed on 
the first call to GETITM 

If set, the "update" option is in effect 

SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
.PAGE 64 

r 
r 
r 



I 
I 
I 
I 
I 
I 
I 
n 
n 
n 
o 
o 
o 
o 
a 
n 
n 
D: i 

1 

n 

DBASE 
DMOD 
DSEP 

BMSBEG 

OVRFLCTR 

D + Contain the base, modulo, and separation 
T + of the file 
T + 

R Points one prior to an area where the 
item-id of the item retrieved on each 
call may be copied 

D Meaningful only if DAFt is set; if 
non-Ze1'O, theVirlue IS uSed as ·the 
starting FID of the overflow space table 
where the list olrbem-ids is stored; if 
~ero, GETSPC is called t6 obtain space 
for the table 

Output Interface 

RMBIT B 
SIZE T 

+ 
+ 

R14 R 
IR R 

+ (See RETIX documentation) 
+ 

SR4 S + 
XMODE T + 

SRO S =R14 if DAF1 is set, otherwise as set by 
GNSEOI 

BMS R As set by RETIX if DAF1 is set, 
otherwise as set by GNSEOI 

BMSEND S =BMS if DAF1 is set, otherwise unchanged 

DAF9 B =0 

Element Usage 

BASE 
MODULO 
SEPAR 
RECORD 
NNCF 
FRMN 
FRMP 
NPCF 

OVRFLW 

D + 
T + 
T + 
D + Used by GETITM and other subroutines for 
H + accessing file data 
D + 
D + 
H + 

D Used by GETSPC if DAF1 is set and 
OVRFLCTR is initially zero 

The following elements should not be altered by any other routine 
GETITM is used: 

DAF1 
DAF7 

DBASE 

B + (See Input Interface) 
B + 

D Contains the beginning FID of 
current group being processed 

the 

DMOD T Contains the number of groups left to be 
processed 

while 

CHAPTER:3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 65 



DSEP 

SBASE 
SMOD 
SSEP 

NXTITM 

OVRFLCTR 

T (Unchanged) 

D + Contain the saved values of DBASE, DMOD, 
T + and DSEP when the routine was first 
T + called 

S 

D 

Points one before the next item-id 
the pre-stored table if DAF1 is 
otherwise point~ to the last AM of 
item previously returned 

Contains the starting FID of 
overflow space table if DAF1 is 
otherwise unchanged 

in 
set, 
the 

the 
set, 

Subroutine Usage 

RCREC, GNSEGli GNTBLI (local), RETIX, and GETSPC (if OVRFLCTR =0) if DAF1 
is set 

BMSOVF used with XMODE 

Four additional levels of subroutine linkage re~uired 

Error Conditions 

See RETIX documentation ("Exits"); GETITM. however, continues retrieving 
items until no more are present even after the occurance of errors 

3.3.10 GETOPT 

This routine processes an option st.ring consisting of single alphabetic 
characters and/or a numeric option, separated by commas. A numeric option 
consists of a numeric character or a pair of numeric characters separated by a 
hyphen. If the option string contains more than one numeric option, the last 
one will be used. Alphabetic options set the corresponding bits ("A" sets 
ABIT, etc.), but these bits are not zeroed upon entry. The option string 
begins one past the address pointed to by register IS, and must end with a 
right parenthesis (")"). 

Input Interface 

IS R Points one before the option string 

Output Interface 

ABIT 

ZBIT 

NOBIT 

RMBIT 

D4 
CHAPTER 3 

B + 
+ 
+ Set as described above 
+ 

B + 

B 

B 

Set if a numeric option 
otherwise zeroed 

is found, 

Set if no errors are found in the option 
format, otherwise unchanged 

D =value of the first number in a numeric 
SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 66 



I 
I 
I 
I 
I 
I 
I 
I 
n 
n 
o 
n 
n 
o 
a 
n 
n 
n 
r 

option, if found, otherwise unchanged 

D5 D =value of the second number in a numeric 
. option, .if found; =D4 if a numeric 
option consists of a single number; 
otherwise unchanged 

IS R Points to the last character processed 
(=U)U if no format errors are found) 

RI'10DE T =0 if a format error is found 

Element Usage 

DO and D1 

Subroutine Usage 

CVTNIS if a numeric option is found 

Two additional levels of subroutine linkage required 

Exits 

To I'1D995 with error 209 if a format error is found 

3.3.11 GETOVF 
GETBLK 
GETSPC 

These routines obtain overflow frames from the overflow space pool maintained 
by the system. GETOVF and GETSPC are used to obtain a single frame; GETBLK is 
used to obtain a block of contiguous space (used mainly by the CREATE-FILE 
processor). Note that the link fields of the frame(s) obtained by a call to 
GETBLK are not reset or initialized in any way this is a function of the 
calling routine. GETOVF and GETSPC zero all the link fields of the frame they 
return. 

These routines cannot be interrupted until processing is complete. 

Input I.nterfac e 

DO D 

Output Interface 

OVRFLW D 

Element Usage 

INHIBITSV2 B + 

Contains the number of frames needed 
(block size), for GETBLK only 

If the needed space is obtained, this 
element contains the FID of the frame 
returned (for GETOVF and GETSPC)or the 
FID of the first frame in the block 
returned (for QETBLK); if the space is 
unavailable, OVRFLW=O 

DO D + Utility 
R14 R + 
R15 R + 
CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 67 



Subroutine Usage 

SYSQET (but not used by 
frame block in the system 
QETOVF called by QETSPCs 
available 

QETOVF if a frame is obtained from a multiple
overflow table); three internal subroutines; 

NOSPACE called by GETSPC if no frames are 

One additional level of subroutine linkage required by GETOVF and GETBLK; 
three levels required by QETSPC 

Exits 

For QETSPC: to NSPCO if no more frames are available and processing is 
aborted by the user; this is a function OT NOSPACE 

3.3.12 QETUPD 

QETUPD initializes the UPD register triad to point to the UPDworkspace (frame 
PCB+28). 

Input Interface 

None 

Output Interface 

UPD 
UPDBEQ 

R + Point to the first data byte of the 
S + frame 28 frames after the process's PCB 

UPDEND 

3.3.13 QNSEOI 

S POints to the last byte of the above 
frame 

This routine gets the next sequential item from a file. If its pointer 
into the file (register NXTITM) is at the end of a group, it returns 
with bit RMBIT zerOJ otherwise it copies the item-id into the area 
specified by register BMS, updates NXTITM, sets RMBIT, 
sets registers pointing to the beginning and end of the item, and returns 
the item size in tally SIZE. If a non-hexadecimal digit is found 
in the item count field, or the computed item size is neiative or 
zero, QNSEOI immediately returns'to the routine which called it. 

Input Interface 

NXTITM S 

BMS R 

Output Interface 

RMBIT B 

Points one before the beginning of the 
next item to be retrieved (or th~AM at 
the end of the group) 

Points one before the area to which the 
item-id is to be copied 

Set if an item was successfully 
retrieved, otherwise zeroed 

NXTITM S Points one before the following item or 
CHAPTER 3 SUPPORT SoFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 6S 

I 
I 
I 
I 
I 
I 
D 
D 
IJ 

n 
n 
r 
r 
r 



BMS R 

SRO S 

SR4 S 

IR R 

SIZE T 

X MODE D 

3. 3. 14 GNTBLI 

end-of-group AM if 
o~herwi$e unchanged 

RMBIT i $ $et, 

Point$ to an AM after the copied item-id 
if the item wa$ retr i eved, otherwi $e 
unchanged 

=the initial value 
the end of the 
unchanged 

=NXTITM if RMBIT 
unchanged 

of NXTITM if not at 
group, otherwi$e 

i$ $et, otherwi$e 

Point$ to the AM after the item-id if 
RMBIT i$ $eti point$ to the AM before 
the item-id if SIZE i$ zero onegative; 
point$ to the AM indicating end of group 
data if there were no more items in the 
group when the routine was called; 
points to the character in error if a 
non-hexadecimal character is found in 
the item count field 

contains the value of the item count 
field if RMBIT is set 

=0 

This routine retrieves the next entry from a table consisting of 
strings (typically item-ids) separated by AMs, and terminated by 
a SM. On each call. the routine checks if its pointer (register 
NXTITM) is at the end of the table. If it is, the routine exits 
with bit RMBIT zerOi otherwise the next table element is copied 
into the buffer specified by register BMS, NXTITM is set 
poin~ing to the following element, and RMBIT is set. 

Input Interface 

NXTITM S 

BMS R 

Output Interface 

NXTITM S 

IR R 

Points one before the next table entry 
(or SM) 

Points one before the area to which the 
table entry is to be copied 

Points to the AM following the entry 
which was copied, if one was copied, 
otherwise one before the SM at the end 
of the table 

=NXTITM if an element was 
otherwise NXTITM+1 

copied, 

BMS R Points to an attribute mark one past the 
end of th e entry cop y I if present, 
otherwise unchanged 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 69 



RMBIT 

3.3.15 HGETIB 

B Zeroed if NXTITM points to the end of the 
table when the routine is called, 
otherwise set 

This routine accepts a line of input from the terminal, like GETIB, 
and also hflndles tabs if bit STKFLG is zero. A table of preset tab 
positions, in increasing order of column numbers, is assumed to be 
set up in tallies CTR8-CTR15. Up to 16 tab positions may be stored, 
two per tally, with unused positions set to zero. When a horizontal 
tab character (control-I, X'09') is encountered in the input 
string, the cursor is positioned according to the tab table, and the 
input line is filled with the appropriate number of blan~s. 

Input Interface 

STKFLG 

IBBEG 

IBSIZE 

LFDLY 

PRMPC 

BSPCH 

CCDEL 

STKINP 

CTR8 

B 

S 

T 

T 

C 

C 

B 

enters 
tab 
for 
not 

~f set, the ~outine immediately 
GETIB, without processing 
characters. if set, GETIB tests 
"stacked" input. terminal inpu. will 
be re~uested until stacked input 
exhausted (see GETIB documentation) 

is 

Points one byte before the buffer area 
where input is to be stored; the buffer 
must be two bytes greater than IBSIZE 

Contains the max imum number of 
characters accepted for input 

Contains (in the low-order byte) the 
number of Ilfill" characters (nulls) to 
be issued after a CR/LF echo to the 
terminals required by TCRLF <and PCRLF) 

Contains the terminal prompt characte~1 
re~uired by GETBUF 

Contains the character to be echoed to 
the terminal when the back space key is 
pressed; required by G3 

If set, control cbaracters are deleted 
from terminal input 

S Points to the next "stacked" input line; 
lines ar. deliminated by AM's, with a SM 
indicating the end of the stack; 
meaningful only if STKFLG is set 

T + 
+ 
+ Contain tab positions as described above 
+ 

CTR15 T + 

Output Interface 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 70 

I 
I 
I 

I 
D 
o 
n 

n 
n 

n 
n 

r 
r 



I 
I 
I 
I 
I 
I 
I 
a 

IB R 

I BEND S 

STIof.FLQ B 

STIof.INP S 

Element Usage 

DO D 
D1 D 
R14 R 
R15 R 
IB R 
CTR7 T 
CTR16 T 

Subroutine Usage 

GETBUFs TCRLFs 

+ 
+ 
+ 

=IBBEQ 

Points to a SM one byte past the end 
of input data (overwrites the CR or LF) 

Zeroed if the end of stacked input was 
reacheds not changed if initially zero 

Points to the next line of stacked input 
(or end of stack) ifstacked input is 
being processed 

+ Uti Ii ty 
+ 
+ 
+ 

Q3 

II Two additional levels of subroutine linkage re~uired 

n 3.3.16 HSISVR? 

o 
o 
n 
o 
a 
o 
n 
n 
r 

This routine sets up the register triads for the HS. IS. and OS work spaces as 
described below. It does not link frames in the work spaces. 

Input Interface 

None 

Output Interface 

R2 

HS 
HSBEG 
HSEND 

IS 
ISBEG 

I SEND 

as 
OSBEG 

OSEND 

R 

R 
S 
S 

R 
S 

S 

R 
S 

S 

Points to the Secondary 
(PCB+1) 

+ Point to the beginning 
+ space (PCB+10) 
+ 

+ Point to the beginning 
+ space (PCB+16) 

Control Block 

of the HS work 

of the IS work 

Points to the last data byte in the 
primary OS work space (3000 bytes past 
ISBEG) 

+ Point to the beginning of the as work 
+ space (PCB+22) 

Points to the last data byte in the 
primary as work space (3000 bytes past 
OSBEQ) 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICIof. SYSTEMS 
PAGE 71 



The first byte in each work space is set to X'OO'. 

Element Usage 

DO 

3.3.17 INITTERM RESETTERM 

These routines are used to initialize terminal and __ line p'rinter 
characteristics. RESETTERM is called from WRAPUP before reentering 
TCL; INITTERM is called from LOGON. 

Input Interface 

OSSIZE T 

OBBEG S 

Output Interface 

TOBSIZE T 
TPAGSIZE T 
POBSIZE T 
PPAGSIZE T 
PAGSKIP T 
LFDLY T 
BSPCH C 

CCDEL B 
SMCONV B 
STKFLG B 
PAGINATE B 
NOBLNK B 
LPBIT B 
TPAGNUM T 
TLINCTR T 
PPAGNUM T 
PLINCTR T 
PAGNUM T 
LINCTR T 

PAGHEAD S 

OB R 

OBSIZE T 

R14 R 
OBEND S 

+ 
+ 

contains the value of the output (OB) 
buffer (RESETTERM only) 

Points to the start of the OB buffer 

+ Initialized to default val ue s, as by 
+ SETUP TERM (INITTERM only> 
+ 
+ 
+ 

+ 
+ 
+ 
+ 
+ 
+ =0 
+ 
+ 
+ 
+ 
+ 
+ 

Contains z'ero in 'the fr·ame field 

=OBBEG 

=TOBSIZE 

+ =OBBEG+OBSIZE 
+ 

The area from the address pointed to by OBBEG to that pointed to by OBEND 
is filled with blanks 

3. 3. 18 IROVF 

These routines can be used to handle end-of-linked-fram.s conditions 
when using register IR with MCI, MIl, or MIlD instructions. By 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 72 

I 
I 
I 
I 

D 
D 
Oi 

f 

'1 Ii 

n 

n 

r 
r 



I 
I 

I 
I 
I 
I 
o 
o 

n 
a 
o 
o 
a 
n 
n 
r 
r 

setting tally XMODE to the mode-id of one of these routines before 
executing the instruction, the routine wi1l be entered automatically 
i' an end-of-linked-frames (forward link zero) condition occurs. 
A warning message will be printed and control will pass to the instruction 
'ollowing the MCI, MIl, or MIlD instruction. Additionally, bit 
DAF9 may be set to truncate group data so that the condition does 
not arise again. The only difference between the two IROVF entry 
points is that the one in SYSTEM-SUBS-II initializes register R14 
to be compatible with routines such as GNSEOI, and then branches to 
the code inWSPACES-I I. 

Input Interface 

IR R 

DAF9 B 

R14 R 

OBBEG S 

NXTITM S 

Output Interface 

IR R 

Points into the frame whose forward link 
is zero 

If set, group data is terminated at the 
address specified by R14 (UPDITM, for 
instance, uses this feature); otherwise 
the warning message is printed but the 
data is unchanged 

Points to the address at which -group 
data is to be truncated if DAF9 is set, 
typically the end of the last good item 
in the group; an AM is stored in the 
byte addressed by R14, marking the end 
of an item, and another AM is stored in 
the following byte, marking the end of a 
group 

Points one prior to an output buffer for 
printing an error message (required by 
WRTLIN) 

Contains the value to be used in R14 for 
group data truncation (SYSTEM-SUBS-I 
entry only) 

Points to the last byte of the frame 

R14 R 
SR4 S 

+ =IR-1 
+ 

RMBIT B + 
LISTFLAG B + =0 
SIZE T + 
X MODE T + 

The message "*GROUP FORMAT ERROR xxxx" is 
number of the frame pointed to by IR 

Element Usage 

R15 

T4 
T5 

R 

T + 
T + Used by MBDSUB 
D + 

printed, where "XXXx" is 

01 
CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 73 

the 



D2 D + 

Subroutine Usage 

MBDSUB, WRTLIN 

BMSOVF used with XMODEif DAF9=1 

Five additional levels of subroutine linkage re~uired if LPBIT is set (for 
WRTLIN), Four levels re~uired if DAF9 is set and BMSOVF is entered to 
obtain another overflow frame (using ATTOVF) - this would occur if! R14 
were also pointing at the end of a ,set of linked frames when IR{)VF was, 
entered, one level always re~uired for MBDSUB 

3.3.19 ISINIT 

I: 
I 
I 
I 
I 

ISINIT simpl" invokes WSINIT and HSISOS to initialize all the 
spac e pointers. 

process work 0 
Input and Output Interfaces 

See WSINIT and HSXSOS documentation. 

Element Usage 

DO 

Subroutine Usage 

WSINIT, HSISOS 

Three additional levels of subroutine linkage re~uired 

3.3.20 LINESUB 

This routine returns the line number of the calling process in the 
accumulator 

Input Interface 

None 

Output Interfac~ 

DO D 

Element Usage 

D1 D 

Subroutine Usage 

QPCBO 

contains the line numb.r associated with 
the process 

One additional level of subroutine linkage re~uired 

CHAPTER 3 SUPPORT SOFTWARE Cop"right 1987 PICK SYSTEMS 
PAQE 74 

I 

D 
D 

n 

n 
n 
p 

r 
r 



I 
I 
I 
I 
I 
D 
I 
o 
o 

n 
o 
o 
a 
a 
o 
n 
nl 

• > 

n 

3.3.21 MD415 

This routine is used to pick up numeric parameters 'rom a string 
addressed by register lB. Parameters may be either a single string 0' numeric cha""tBcters, or two such strings separated by a hyphen. 

Input Inter'ace 

IB R 

C 

Output Inter'ace 

C3 T 

C4 T 

IB R 

3.3.22 NEWPAGE 

Points at least one be'ore the 'irst 
non-blank character of the parameter 
string, or to a 8M indicating no 
parameters 

Contains a blank 

Contains the value 0' the 'irst numeric 
parameter i' one is converted, otherwi~e 
set to zero 

Contains the val.ue 0' the second numeric 
parameter except under the 'ollowing 
conditions: i' zero or one parameters 
are present, C4 is set to X 17FFF I; i' 
the second parameter is less than the 
first, C4 is set e~ual to C3 

Points to the 'irst non-blank character 
after the converted parameter string, 
but unchanged if originally pointing to 
a SM 

This routine is used to skip to a new page on the terminal or line printer 
and print a heading. No action is performed, however, i, bit PAGINATE 
or tally PAgSIZE is zero. 

Input Inter'ace 

As '01' WRTLIN, except OB is first set e~ual to OBBEG by this routine 

Output Inter'ace 

Same as '01' WRTLIN 

Element Usage 

Same as for WRTLIN 

Subroutine Usage 

WRTLIN and routines called by it, if PAgINATE is set and PAGSIZE is 
greater than zero 

Additional subroutine linkage 
WRTLIN documentation for the 
re~uired, and add 1 

CHAPTER 3 SUPPORT SOFTWARE 

re~uired only if WRTLIN is called. see 
number ~ additiOhal levels of linkage 

Copyright 1987 PICK SYSTEMS 
PAgE 75 



3.3.23 NEXTIR - NEXTOVF 

NEXTIR obtains the forward linked frame of the frame to which register IR (R6) 
currently points; if the forward link is zero. the routine attempts to obtain 
an available frame from the system overflow space pool and link it up 
appropriately (see ATTOVF documentation>. In addition. if a frame is obtained. 
the IR register triad is set up before return. using routine RDREC. 

NEXTOVF may be used in a special way to handle end-of-linked-frame conditions 
automatically when using register IR with single- or multiple-byte move or scan 
instructions (MIlD. MIl. or MtI). Tally XMODE should be set to the mode-id of 
NEXTOVF before the instruction is executed; if the instruction causes IR to 
reach an end-of-linked-frame condition (forward link zero). the system will 
generate a subroutine call to NEXTOVF. which will attempt to obtain and link up 
an available frame. and then resume execution of the interrupted instruction 
(assuming a frame was gotten>. If there are no more frames in the overflow 
space pool. NOSPACE is called. Note that the "increment register by tally" 
instruction cannot be handled in this manner. 

NEXTOVF is also used by UPDITMwith register TS (R13>' If 
with TS at an end-of-linked-frames condition. a branch is 
inside UPDITM. Under any other condition (other than IR or 
frame), NEXTOVF immediately enters the DEBUGGER. 

Input Interface 

IR R 

ACF H 

Output Interface 

IR R + 
IRBEG S + 

IREND S 

RECORD D 

R15 R + 
NNCF H + 
FRMN D + 
FRMP D + 
NPCF H + 

OVRFLW D 

Element Usage 

R14 R 

Points into the frame whose 
forward-linked frame i.s to be obtained 
(displacement unimportant) 

For NEXTOVF only. must contain X'06' for 
IR end-of-linked-frame handling (set 
automatically by MIlD. MIL and MCI 
instructions) 

Point to the first data byte of the 
forward linked frame 

Points to the last byte of the forward 
linked frame 

Contains the FID of the frame to which 
IR points 

As set by RDLINK for the FID in RECORD 

=RECORD if ATTOVF ca 11 ed. otherwise 
unchanged 

Used by RDLINK 

NEXTOVF is entered 
taken to a point 
TS end-of-linked-

Elements used by ATTOVF if a frame is obtained from the overflow space 
pool 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PIck SYSTEMS 
PAGE 76 



I 
I 
I 
I 
I 

Subroutine Usage 

RDLINK; ATTOVF if a fr~me must be obtained from the overflow space POOli 
NOSPACE if ATTOVF cannot find any more ~ram.s 

Three additional levels of subroutine linkage re~uired 

Ex its 

Normally returns via RDREC; possibly to NSPCO if NOSPACE used (see 
NOSPACE documentation); to 5,DB1 if ACF not X'06' or X'OD' (NEXTOVF only) 

3.3.24 OPENPFILE 

I This routine retrieves the . base, modulo, and separation parameters of the 
system file POINTER-FILE, and bypasses the normal lock-code tests in doing so. 

I 
o 
o 

Input Interface 

BMSBEG S Points to an area where the POINTER-FILE 
file-name may be copied, for RETIX 

Output Interface 

BASE 
MODULO 
SEPAR 

D + Contain the POINTER-FILE base, modulo, 
T + and separation 
T + n Element Usage 

n 
n 
n 

o 
n 

R15 
BMS 

CTR1 

RECORD 
SIZE 
NNCF 
FRMN 
FRMP 
NPCF 
IR 
R14 
BMSEND 
SR4 
XMODE 
DAF9 

R 
R 

T 

D 
T 
H 
D 
D 
H 
R 
R 
S 
S 
T 
B 

SYSRO S 
SYSR1 S 

+ Utility 
+ 

Used to save the value of tally USER 

+ 
+ 
+ 
+ 
+ 
+ Used by RETIX 
+ 
+ 
+ 
+ 
+ 
+ 

+ Used by GBMS if the POINTER-FILE item in 
+ the SYSTEM dictionary is a "0" code item 
+ SYSR2 S n Subroutine Usage 

r 
r 

GMMBMS; RETIXi GBMe unless the POINTER-FILE entry in the SYSTEM 
dictionarY is missing 

Six additional levels of subroutine linkage re~uired if the - POINTER-FILE 
entry in the SYSTEM dictionary is a "0" code item, otherwi~e four levels 

CHAPTER 3 SUPPORT SOFTWARE Copvright 1987 PICK SYSTEMS 
PAGE 77 



Exits 

To MD994 with message 201 (value in C1) if the POINTER-FILE e~tr\l in the 
SYSTEM dictionary is missing 01' in improper format 

3.3.25 PCBFID 

This routine returns the FID of the PCB for the process as a string 
hexadecimal digits in the TS work space. 

Input Interface 

TSBEG S Points one before the area where the 
returned value is to be stored 

Output Interface 

TS 
TSEND 

R15 

Element Usage 

DO 

3.3.26 PCRLF 

R + Point- to the last character of the 
S + returned value, at TSBEG+1 

R Points to a SM placed at TS+1 

FFDLY 

PCRLF prints a carriage return and line feed on the terminal and 
enters FFDLY, which prints a specified number of delay characters 
(X '00' ). 

Input Interface 

LFDLY H 

TO T 

None 

Element Usage 

R14 R 

3.3.27 PINIT 

Contains the delay count (for PCRLF 
only) 

Contains the delay count (for FFDLY 
only) 

PINIT is used for process initiali~atioR. - Pointers are set up to 
all work spacesl links are set up in frames of linked work spaces 
(HS, IS, OS, and PROC). All elements in the primary, secondary, 
and tertiary (DEBUG) control blocks are zeroed, except as noted 
below. 

CHAPTER 3 SUPPORT SOFTWARE Cop\lright 1987 PICK SYSTEMS 
PAGE 7S 

I 
I 
I 

I 
D 
D 

n 
n 
n· 

r 
r 



I. 
I 
I 
I 
I 
I 
I 
o 
l] 

o 
n 
o 
n 
o 
n 
n 

Input Interface 

RO R Points to the PCB of the process to be 
initiaized 

Outt Interface 

R2 R Points to the process's SCB (PCB+l) 

HS R + he beginning of the HS work 
HSBEQ S + space (PCB+l0) 
HSEND S + 

IS R + POINT TO THE BEQINNINQ OF THE IS work 
ISBEQ S + space (PCB+16) 
I SEND S + 

OS R + Point to the beginning ofth. OS work 
OSBEQ S + space (PCB+22) 
OSEND S + 

IBSIZE T =140 

OBSIZE T =100 

TTLY T =0 (For DEBUQ use) 

INHIBIT B =1 

other elements as initialized 

Address registers, and the PCB 
charac ters) are not zeroed. In 
initialized for the debugger by 
1, and setting the corresponding 
debugger code. 

Element Usage 

by wsinit. 

elements PRMPC, SCO, SC1, and SC2 (all 
addition, the tertiary control block is 
setting the corresponding INDEBUQ bit to 

Rl and return stack elements to execute 

(Functional elements initialized as described) 

Subroutine Usage 

WSINIT (local), LINK 

Three additional levels of subroutine linkage re~uired 

3.3.28 PONOFF 

PONOFF is used to reverse the setting of bit LISTFLAQ before entering the 
WRAPUP processor. When LISTFLAQ is set, all output to the terminal is 

n. ~!! suppres .. ed b'J the standard output routines (see WRTLIN documentation>. After I 

l! reversing this bit, PONOFF exits to MD99. 

r 3.3.29 PPUT (l,SPOOLADD)* 

PPUT is used to output a line of data to the spooler process, which will then r print it on the line printer or take other action depending on the process's 
CHAPTER 3 SUPPORT SOFTWARE COP'Jright 1987 PICK SYSTEMS 

PAGE 79 



entry in the spool assignment table (see spooler documentation). 

Input Interface 

OBBEG S 

OB R 

NOBLNK B 

Output Interface 

OB R 

RMOOE T 

Points one before the first character of 
the output data 

Points to the last character of the 
output data 

if set, the output b ufff!'r is not filled 
with blanks after the data is output 

=OBBEG 

=0 if processing is aborted due to no 
more overflow space available 

The output buffer is filled with blanks (through the address originally 
pointed to by OB) unless NOBLNK is set 

Element Usage 

R8 R + 
R14 R + 
R15 R + 
INHIBITSVI B + UtilitlJ 
CHO C + 
01 0 + 
RECORD D + 

OVRFLW D Used if ATTOVF is called 

Subroutine Usage 

ASG. TBLi two local subroutines; ATTOVF if more overflow space is needed 
to store data; 2,SPOOLINIT and CHANCE2 if ATTOVF cannot find any more 
space 

Three additional levels of subroutine linkage re~uired 

Exits 

To LINE if line-at-a-time spooler output is specified in the assignment 
table entry; to M0999 if processing aborted due to no more overflow space 
available 

3.3.30 PRIVTSTI - PRIVTST2 - PRIVTST3 

These routines check to 
privilege levels. If not, 
zerol the historlJ string is 
(an error message number), 
routines return normalllJ. 

see if 
bits 
set 
and 

the calling process has appropriate system 
PGFLG and LISTFLAG and tally RMODE are set to 

null (HSEND=HSBEG), talllJ REJCTR is set to 82 
an exit is taken to MD99. Otherwise the 

Entry Bit tested (error if not set) 

PRIVTSTI 
CHAPTER 3 

SYSPRIV1 
SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 80 



I 
I 

PRIVTST2 

PRIVTST3 

SYSPRIV2 

RO;S245 

I 3. 3. 31 PRNTHDR 
NPAQE 

I These are entry points into the system routine for pagination and heading 
control of output (also used by WRTLIN, WT2, and WRITOS when pagination is 
specified). PRNTHDR is used to initialize bit PAQINATE to 1, and tallies 

I LINCTR and PAQNUM to zero and one, respectively. PRNTHDR then fallS 
immediately into NPAQE, which outputs a header message. 

A page heading, if present, must be stored in a buffer defined by register D PAGHEAD. The header message ~s a string of data terminated by a SM; system 
delimiters in the message invoke special processing as follows: 

I 
o 
o 
n 
n 
o 
o 
n 
n 
o 

SM (X 'FF') 

AM (X 'FE') 

VM (X 'FD') 

SVM (X'FC') 

SB (X 'FB') 

Terminates the header line with a CR/LF 

Inserts the current page number into the 
heading 

Prints one line of the heading and 
starts a new line 

Singly, inserts the current time and 
date into the heading, but two SVM's in 
succession insert the date only 

Inserts data from one of various buffers 
into the heading; if the character 
following the SB is 'I', data is copied 
from the area beginning one byte past 
the address specified by register 
BMSBEQ; if the character is 'A', 
register AFBEQ is used; for any other 
character, data is copied from the area 
beginning three bytes past the address 
specified by register ISBEQ; data to be 
copied can be terminated by any system 
delimiter 

Carriage returns, line feeds, and form feeds should not be included in 
header messages, or the automatic pagination will not work properly. 

Input Interface 

PAGINATE B 

LINCTR T 

PAGNUM T 

CHAPTER 3 

=1 (NPAQE only; set automatically by 
PRNTHDR) 

contains the number of the line to be 
printed on the current page (NPAQE only; 
set to zero automatically by PRNTHDR) 

Contains the current 
only; set to one 
PRNTHDR) 

SUPPORT SOFTWARE 

page number (NPAGE 
automatically by 

Copyright 1987 PICK SYSTEMS 
PAQE 81 



Other parameters as for WT2 (see WRTLIN dcumentation),xcept for 
PAGINATE and PAGNUM (see above) and OB (initialized to OBBEG by NPAGE)s 
note that the buffer where the translated heading message is built 
(specified by register OBBEG) must be at least two bytes greater ,than the 
longest line output in the translated heading (not necessarily the total 
heading size, if the original heading string contains any VMs), in order 
to accomodate a trailing crlf. 

Output Interface 

Same a,s for WT2 

Element Usage 

Same as for WT2 

Subroutine U~age 

Same as for WT2 

Exits 

To WT2 

3.3.32 PROC User Exits 

Summary 

I 
I 
I 
I 
I 

D 
D 
n 

A user-written program can gain control during execution of a PROC by using then 
Uxxxx or Pxxxx command in ~he PROC, where "xx~x" is th~ hexadecimal mode-id ofU 
the user routine. The routlne can perfor speclal procslng, and then return 
control to the PROC processor. Necessarily, certai,n elements used by tht;' PROC 
processor are maintained by the user program; these elements are marked withU~ 
an asterisk in the table below. ~ 

Input Interfe 

*BASE D + 
*MODULO T + 
*SEPAR T + 

*PGBEG S 

*PGEND S 

PGCUR S + 
IR R + 

*PBUFBEG S 

*ISBEG S 

Contain the base, modulo, and separation 
of the master dictionary 

Points one prior to the first PROC 
statement 

Points to the terminal AM of the PROC 

Point to the AM following the Uxxxx or 
PIXIX statement 

Points to the buffer containing the 
primary and secondary (if any) input 
buffers; buffer format is SB 
Primary input ... SM SB Secondary 
input ... 8M 

Points to the buffer containing the 
primary output line 

n 
n 

n 
o 

II 
*STKBEG S Points to the buffer containing "stacked 

input.. (sec ondary output) ri 
CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 82 



I 
I,. 
I 
I 
I 
I 
I 

n 
n 
n 
n 
o 
n 
n 
f 
r I 

IB R 

*SR35 S 

*SBIT B 

*ZBIT B 

*SC2 C 

IS R 

UPD R 

Output Interface 

IR R 

. Is the current input buffer pointer (may 
point within either the primary ,or 
secondary input buffers) 

Points to the beginning of the current 
input buffer 

Set if a ST ON command is in effect 

Reset to identify the PROC processor in 
certain system subrOutines 

Contains a blank 

SBIT on 

Points to the last 
byte moved. into 
the secondary 
output buffer 

Points to the last 
byte moved. into 
the primary output 
bu·ffer 

SBIT off 

Points to the last 
byte moved into 
the primary output 
buffer 

Points to the last 
byte moved into 
the secondary 
output buffer 

Points to the AM preceding the next PROC 
statement to be executedi may be altered 
to change PROC execution 

IS R + May be altered a. needed to alter'data 
UPD R + within the input and output buffers, but 
IB R + the formats described above must be 

maintained 

Exit Convention 

The normal method of returning control to the PROC processor is to execute an 
external branch instruction (ENT) to 2, PROC-I. To return control and also 
reset the buffers to an empty condition, entry 1,PROC~I may be used. If it is 
necessary to abort PROC control and exit to ·WRAPUP, bit POFLQ should be reset 
before branching to any of the WRAPUP entry points (see WRAPUP documentation). 

Note that when a PROC eventually transfer. control to TCL (via the lip" 
operator), certain elements are expected to be in an initial condition. 
Therefore, if a user routine uses the.e elements, they should be reset before 
returning to the PROC, unless the elements are del iberately set ,up as a means 
of pa.sing p.rameters to other processors. Specifically, the bits ABIT through 
ZBIT are expected to be zero be the TCL-II and ENGLISH processors. It is best 
to avoid u.age of the.e bit. in PROC user exits. Also, the scan character 
register. SCO, SCl, and SC2 must contain a SB, a blank, and a blank, 
respectivel". 

3.3.33 PRTERR 

PRTERR is us.d to retrieve and print. message from the system file ERRMSQ. A 
par.meter string ma, be pessed to the routine, in which case the par.meters are 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAOE 83 



~ormatted and inse'."ted according to the codes in the message item. 

Items in the ERRMSG file consist of an arbitrary number of lines (where a line 
is delimited bV an AM), with each line cohtaining a code letter in column one, 
possiblV followed bV a string or numeric parameter (numeric parameters enclosed 
in parentheses). The possible codes and their meanings are listed below. 
<Brackets indicate optional parameters. ) 

A [(dec .• )] Parameter insertion code; the next 
parameter ~rom the parameter string, if 
anv, is placed intoth. ouput bu~ferl if 
"dec. ." Is specifie~ the paramet.r is 
left-Justi~ied in a blank ~ield of that 
length 

R [(dec .• )] Like A, onl" the parameter is 
right-Justi~ied, in a field of "dec. • .. 
Blanks if "dec. ." Is specified 

H string The character string is pl~ced in the 
output~uffer (no blank is necessar" 
between the code letter and the 
beginning of the string) 

E [string] The message item-id, surro.nded bId 
brackets, is placed into theoutpur-t 

L [(dec .• )] The output bu~fer is printed, and the 
specified number of line feeds is output 

'(one if "dec. #" Is not specified) 

S [(dec .• )] The pointer to the cu,...rentp'osition in 
the output buf~er is repositioned to the 
• pecified column (column one if 
"dec .• " Is not present> 

X (dec .• > 

T 

D 

Input Interface 

TS 

EBASE 
EMOD 
ESEP 

CHAPTER 3 

The pointer to the current position in 
the output buffer is incremented bV the 
specified number o~ spaces; if the end 
o~ a line is reached (see below), the 
buffer is printed and a new line is 
started 

The svstem time in HH:MM:SS is added to 
the output buf~er 

The svstem date in DD MMM VVVV ~ormat is' 
added to the output bu~fer 

R Points one prior to the message item-id, 
which must be terminated' b" an AM; 
parameters optionall" follow, being 
delimited bV AM's; the parameter string 
must end with a SM 

D + Used as the base, modulo, and separation 
T + for the message file if EBASE is 
T + non-zerOi if EBASE is zero, PRTERR 

attempts to set EBASE, EMDD, and ESEP to 
SUPPORT SOFTWARE Copvright 1987 PIck SYSTEMS 

PAGE B4 

I 

I 
I 
It 
I 
D 
buf 

(] 

H; , ; , 

",', . U. 

n 
n 
n 
n 
u 
n 
II 

rj 
r 



I 

I 
I 
I 

MBASE 
MMOD 
MSEP 

OBSIZE 

OBBEG 
OBEND 

the parameters for the system file 
ERRMSG, and eXitsabnor,'1'LY if unable 
to do so . ~". 

D + Used as the parameters for the master 
T + dictionary if necessary to set up EBASE, 
T + EMOD, and ESEP, but PRTERR exits 

S 
S 

abnormally if MBASE is zero 

ontains . the maximum number of 
characters to be output n a line 
(normally set at logon tim 

+ Point to the beginning and end 
+ output buffer (normally set at 

time) 

of th-. 
logon 

Other elements as req,uired by WRTL.IN (see WRTL.IN documentation) 

I Output Interface 

o 

n 
n 
o 
n 
n 
n 

r 

TS 

EBASE 
EMOD 
ESEP 

L.INCTR 
PAGNUM 

Element Usage 

SB60 
SB61 
CTRO 
T6 
BASE 
MODUL.O 
SEPAR 
AF 
IR 
BMS 
BMSBEG 
OB 
R14 
SR4 

CTRl 

SVSR1 

INHIBIT 

R Points to the AM after 
item-id if no parameters 
other~ise to the AM or SM 
parameter processed 

the message 
are processed, 
after the last 

D + Contain the base, modulo, and separation 
T + parameters for the system file ERRMSQ if 

+ EBASE ~as originally zero (and the file 
~as successfully retrieved) 

+ Updated if bit PAGINATE is set 
T + 

B + 
B + 
T + 
T + 
D + 
T + 
T + Utility 
R + 
R + 
R + 
S + 
R + 
R + 
S + 

T Used ~ith "R" code messages 

S Used ~ith "S" code messages 

B Set during retrieval of file ERRMSQ, if 
EBASE is originally zero, and reset 
afterwords to the value on entry 

f: 
'u 

All elements used by WRTLIN (unless PRTERR ttxits abnornJ.ll y), and elements 
used by GBMS if PRTERR attempts retrieval of the system file ERRMSQ 

CHAPTER 3 SUF!PORT SOFTWARE Copyright 1987 PICK SVSTEMS 
PAGE 85 



RETIX, WRTLIN, TILD, DATE (for "D" code messages), TIME 
messages), GBMS (for retrieving ERRMSG) 

Exits 

additional levels of subroutine lintage required if 
1 of an ERRMSQ fil.. which is .a "G" code item, 

required 

To 2,ABSL if EBASE and MBASE are both zero 

3.3.34 

(for "Til code 

GBMS attempts 
otherwise four 

I 
I 
I 
I 
I 

RELBLK - RELCHN - RELOVF 

These routines ar.e used to release frames to the overflow· space pool. RELOVF D 
is used to release a single frame, RELBLK is used to release a block of 
contiguous frames, and RELCHN is used to release a chain of . linked frames a." 
(which mayor may not be contiguous). A call to RELCHN specifies the first FID 
of a linked set of ~ramesl the routine will r_lease all .frames in the chain 
until a zero forward link is encountered. 

OVRFLW 

DO 

None 

OVRFLW 
R14 
R15 

DO 
D1 
D2 

D 

D 

D + 

contains the FID of the frame to be 
re.leased (for RELOVF), or the first FID 
o~ the block or chain to be released 
(for RELBLK and RELCHN, respectively) 

contains the 'number of frames (block 
size) to be released, for RELBLK only 

R + Utility 
R + 

D + 
D + Used by SYSREL 
D + 

SYSREL;·two internal subroutines 

Two additional levels of subroutine linkage required 

3.3.35 RETI RETIX RETIXU 

o 
n 
o 

n 
n 
n: 11 ; 

n.' .. , ~, 
These are the entry points to the standard system ro.utine for retrieving an r 
item 'rom a file. The item-id is explicitly specified to the routine, as are 
the file parameters b~se,. modulo, and separation. Additiona11y, the number of . 
the first 'rame in the group in which the item may be stored must be SPeCified r -\ 

CHAPTER 3 SUPPORT BIlFTWARE PAGE B6 Copgright 1987 PICK SYSTEMS "'I 



I 
I 
II 

I 
I 
D 
I 

n 
D 
n 
n 

n 
f] 

nl.· 'I 

if the entry RETIXX is used. The other entries perform a "hashing" algorithm 
to determine the group (see HASH documentation). The group is secar·ehed 
seq,uentially for a matching item-id. If the routine finds a match, it returnS 
pointers to the beginning and end of the item, and the ftem size (from the item 
count field), If entry RETIXU is used, the group is locked during processing, 
preventing other programs from accessing (and possibly changingtt~e d~ta. 

The item-id is .pecified in a buffer defined by register BMSBEGt if entry RETI 
is used, register BMS must point to the last byte. of the it·em-id, and' an AM 
lIIi 11 be append ed to it by the routine. For all oth er entry points, th e i tem-i d 
must already be terminated by an AM. 

Input Interface 

BMSBEG S 

BMS R 

BASE D 
MODULO T 
SEPAR T 

RECORD D 

Points one byte before the item-id 

Points 
item-id, 
only 

to the last character 
for RETI, RETIXX, and 

of the 
UPRETIX 

+ Contain the base, modulo, and separation 
+ of the file to be searched 
+ 

Contains the beginning FID of the group 
to be searched, for RETIXX only 

Output Interface 

SMS 
BMSEND 

RECORD 

NNCF 
FRMN 
FRMP 
NPCF 

X MODE 

RMSIT 

SIZE 

R14 

IR 

B 

T 

R 

R 

R + POint to the last character of the 
S + item-id 

D Contains the beginning FID of the group 
to IIIhich the item-id hashes (set if HASH 
is called) 

H + 
D + Contain the link fields of the frame 
D + specified in RECORDi set by RDREC 
H + 

T =0 

Item Found: 

=1 

=value of item 
count field 

Points one prior 
to the item count 
field 

Points to the 
first AM of the 
item 

Item Not Found: 

=0 

=0 

POlnts to the last 
AM of the last item 
in the group 

Points to the AM 
indicating end of 
group data (=R14+1) 

SR4 S Points to the 
last AM of the 
item 

-R14 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 87 



Element Usage 

None (.xcept DO. Dl. and R15) 

Subroutine Usage 

RDREC (local) •. ".HASH (except for >RETIXXilocal), GLOqK(RETIXU on Iy), 
IROVF (for IR overflow space handling and error con.ditions). 

Three additional levels of subroutine linkage req,uired (fof' lROVF and 
GLOCK; RDREC and HASH req,uire one level) 

Exits 

I 
I 
I 
I 
I 

If the data in the group is bad - premature end of linked frames, or non-
hexadecimal character encountered in the count field - the message 0 

GROUP FORMAT ERROR xxxxxx 

is returned (where xxxxxx is the FID indicatin9 where the error was 
found), and the routine returns "with an "item not found" condition. Data 
is not destroyed. and the group format error will remain. 

3.3.36 SETLPTR - SETTERM 

D 
o 

These routines are used to set output characteristics such as line width, page fl\ 
depth, etc., to the previously-specified values for either the terminal or the 
line printer. In addition, the current line number and page number are saved n 
so that when switching from terminal to line printer output, say, and then d 
switching back, pagination will continue automatically from the previouS 
va lues. 

Input Interface 

LPSIT S 

LINCTR T 

PAGNUM T 

OSSIZE T 

TPAGSIZE T 
or \ 
PPAGSIZE T 

TOSSlZE T 
or 
POSSIZE T 

TLlNCTR T 
or 
PLINCTR T 

TPAGNUM T 
or 
PPAGNUM T 

Reset by SETTERMi set by SETLPTR 

Contains the current line number 

Contains the current page number 

Contains the size of the OS buffer 

Contains the number 
per page for the 
printer 

of printable lines 
terminal or line 

Contains the size of th. output (aS) 
buffer for the terminal or line printer 

Contains the current line number for the 
terminal or lineprinter 

Contains the current page number for the 
terminal or line printer 

Note: TPAGSIZE, TOBSlZE. TLlNCTR, 
CHAPTER 3 SUPPORT SOFTWARE 

and TPAGNUM are req,uired only by 
Copyright 1987 PICK SYSTEMS 

PAGE 88 

n 
Or 

~, I 

n 
n 
n 
r 
r 
r 



I 
I 
I 
I 
II 

I 
o 
n 

SETTERMi PPAQSIZE, POBSIZE, PLINCTR, and PPAQNUM are re'1.uired onlV bV 
SETLPTR 

Output Inter'ace 

PAQSIZE T + 
OBSIZE T + set to the appropriate characteristics 
LINCTR T + 'or terminal or line printer output 
PAQNUM T + 

TLINCTR T =LINCTRi TLINCTR set bV SETLPTR, PLINCTR 
or set bV SETTERM 
PLINCTR T 

OBSIZE T =79 i' originallv zero 

R14 R + =OBBEQ+OBSIZE 
OBEND S + 

The area 'rom the address pointed to bV OBBEQ to that pOinted to bV Obend 
is filled with blanks 

3.3.37 SETUP TERM 

This routine sets the de'ault values 
characteristics (as used bV INITTERM). 

'or terminal and line printer 

D Input Inter'ace 

n 
n 
'0 
n 
n 

BSPCH C 

LFDLY T 

TOBSIZE T 

TPAQSIZE T 

POBSIZE T 

PPAQSIZE T 

PAQSKIP T 

Output Interface 

contains the character to be echoed 'or 
a backspace 

contains the number of "fill" characters 
to be output after a CR/LF in the lower 
bvtei if the upper bvte is greater than 
one, a 'orm 'eed is output be'ore each 
page 0' paginated output, and that 
number of "'ill" characters is output 

Countains the terminal line width 

Contains the terminal page depth 

Contains the printer line width 

Contains the printer page depth 

Contains the number of lines to be 
skipped at the bottom 0' .. ach page 

Default values initialized as described 

3.3.38 SLEEP - SLEEP SUB 

These routines cause the calling process to go into an inactive state for • 
specified amount 0' time. If SLEEP SUB is used, either the amount 0' time to 

CHAPTER 3 SUPPORT SOFTWARE Copvright 1987 PICK SYSTEMS 
PAQE 89 



sleep or the time at which to wake up may be specified. 

Input Interface 

-DO D 

RMBIT B 

Output Interface 

None 

Element Usage 

Contains the number of seconds to sleep, 
up to 86400 (one day), or, for SLEEPSUB, 
the time to wake up (number of seconds 
past midnight) if RMBIT is reset 

For SLEEP SUB only, set if 00 contains 
the numb.r of seconds to sleep, and 
reset if it contains the time to wake up 

T2 T + Used by SLEEPSUB only, on a monitor call 
D2 0 + to get system time 

Subroutine Usage 

SLEEP used by SLEEPSUB 

One additional level of subroutine linkage req,uired b\l SLEEP SUB , none by 
SLEEP 

3.3.39 SORT 

I 
I 
I 
I 
I 
D 
D 

n 
This routine sorts an arbitrarily long string of keys in ascending seq,uenc e fl 
onlYi the calling program must complement the keys" if a descending sort is 
req,uired. The keys are separated by SM's when presented to SORTi they are 
returned separated by SB's. Any charac tel', inc Iud ing system del imi ters other '1 
than the SM and SB may be present within the keys. U 

An n-way polyphase sort-merge sorting algorithm is used. The original unsorted 
key string may "grow" by a factor of lOX, and a separate buffer is requir.d for 
the sorted key string, which is about the same length as the un,'Or~ed key 
string. The "growth" space is contiguous to the end of the oritin.l key n 
string; the second buffer may be specified anywhere. SORT automatically j 
obtains and links overflow space whenever needed. Oue to this, one can follow 
standard system convention and build the entire unsorted string in an overflow 
table with OVRFLCTR containing the beginning FlO; the setup is then: n 

01 

start of 
unsorted kevs 
<----------/-

end of 
unsorted keys 

"growth" 
space 

start of 
second buffer 

-/----------><-------------><----------/-
The second buffer pointer then is merely set at the end of the "growth" space, 
and SORT is allowed to obtain additional space as req,uired. !! 
Alternately, the entire set of buffers may be in the IS or OS workspace if they 
are large enough. 

Input Interface 

SRl 
CHAPTER 3 

S Point~ to the SM preceding the first kev 
SUPPORT SOFTWARE Copvright 1987 PICK SYSTEMS 

PAQE 90 

r: 



SR2 

I SR3 

S 

S 

Points to the SM terminating the last 
key 

Points to the beginning of the second 
.buffer 

I Output Interfacse 

SRl Points before the SB preceding the fIrst 
sorted key (the exact offset varies from 
case to case); the end of the sorted 
keys (separated by SB's) is marked by a 
SM 

I 
~. Element Usage 

I 
D 
o 
o 
n 
n 
n 
n 
o 
[] 

r 
r 

HBIT B + 
LBIT B + 
SBl B + 
SC2 C + 
XMODE T + 
DO D + 
IS R + 
OS R + 
BMS R + 
TS R + Utility 
CS R + 
R14 R + 
R15 R + 
Sl S + 
S2 S + 
S3 S + 
S5 S + 
S7 S + 
S8 S + 
S9 S + 

Subroutine Usage 

COMP 

GWS used with XMODE 

Four additional levels of subroutine linkage re~uired 

3.3.40 TCL-II MD200 MD201 

These are the entry points (not subroutines) into the TCL-II processor, used 
whenever a verb re~uires access to a file, Dr to all Dr explicitly specified 
items within a file. MD200 is entered from the TCL-I processor after decoding 
the verb (primary mode-id = 2). MD201 is used by TCL-II itself to regain 
control from WRAPUP under certain conditions (see below>. TCL-II exits to the 
processor whose mode-id is specified in MODEID21 typically processors such as 
the- EDITOR, ASSEMBLER, LOADER, etc. Use TCL-II to feed them the set of items 
wich was specified in the input data. 

On entry, TCL-II checks the verb difinition for a set of option characters in 
attribute 5; verb options are single characters in any se~uence and 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 91 



combination, and are listed below (all other characters are ignored). 

Option 

C 

E 

F 

N 

P 

U 

z 

Meanin.g 

Copy - items retrieved are copied to the 
IS workspace 

Expand - items retrieved are expanded 
and copied to the IS work space (see 
EXPAND documentation); ignored if the 
"C" option is not present 

File access 
set up but 
TCL-I Ii if 
others are 

only file parameters are 
any item-list is ignored by 

this option is present, ~ny 
ignored 

New npm acceptable if the item 
specified is not on gi1e, the secondary 
processor still gets control (the 
EDITOR, for example, can process a new 
item) 

Print on a full file retrieval (all 
items), the item-id of each item is 
printed as it is retrieved 

Updating sequence flagged - if items are 
to updated as retrieved, this option is' 
mandatory 

I 
I 
I 
I 
I 
I 
I 
o 
D 

Final entry required the secondary 
processor will be entered once more 
after all items have been retrieved (the 
COpy processor, for instance, uses this 
option to print a message) 

The input data string to TCL-II consists of the file-name (optionally preceded n 
by the modifier "DICT", which specifies access to the dictionary of the file), 
followed y a list of items, or an asterisk ("*") specifying retrieval of all n 
items in the file. The item-list may be followed by an option list (options U 
for the secondary processor), which must be enclosed in parentheses; see'· 
GETOPT documentation for further information about options. 

Input Interface 

IR 

SR4 

MODEID2 

BMSBEG 

CHAPTER 3 

R Points to the AM before attribute 5 of 
the verb 

S Points to the AM at the end of the verb 

T Contains the mode-id o~ the processor to 
which TCL-II transfers control (assuming 
no error conditions are encountered) 

S Points one prior to an area where the 
file name is to be copied, if the "F" 
option is present, otherwise one ,prior 
to an area where item-ids are to be 
cop ied 

SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 92 



I 
I 
I 
I 
I 
I 
I 
o 

n 
,0 

n 
u 
n 
n 
n;' 

I 

r 

ISBEG S Points one p1'ior to an area where items 
are to be copied, if the "c" option is 
present 

Elements as required by GETFILE 

Output Interface 

DAF1 B set if the IIU" option is specified 

DAF2 B Set if the "C" option is specified 

DAF3 B set if the liP" option is specified 

DAF4 B set if the II Nil option is specified 

DAF5 B set if the IIZII option is specified 

DAF6 B set if the IIF" option is spec i fied, or 
if a full file retrieval is specified 
(no "Fit option) 

DAF10 

DAF11 

B set if more than-one item is specified 
./ 

in the input d~a, but not a full file 
retrieval ("*II~ 

set if the IIEII ~tion is specified B 

Note: the above bits are not initialized to zero 

DAF8 

LBlf 
DAF9 

IS 

ISBEG 
BMSBEG 

RMBIT 

SBASE 
SMOD 
SSEP 

BASE 
MODULO 
SEPAR 

DBASE 
DMOD 
DSEP 

CHAPTER 3 

B 

6 
B 

R 

Set if a file dictionary is being 
accessed, otherwise reset (from GETFILE) 
Se-f if , Ie v--. '5 II! J )J'"8C f C/,j f) +0 rVl«-+ • 

=0 

Points one past the 
in the input string 
present; points to 
copied item if 
present, otherwise 
input string 

end of the file name 
if the "FII option is 
the last AM in the 

the ItC" option is 
to the end of the 

S + Unchanged 
S + 

B Set if the file is successfully 
retrieved if the IIFII option is present 

D 
T 
T 

D 
T 
T 

D 
T 
T 

+ Contain the base, modulo, and separation 
+ of the file being accessed 
+ 

+ =SBASE, SMOD, SSEP on the first exit 
+ only (from MD200) 
+ 

+ Contain the base, modulo, and separation 
+ of the dictionary of the file being 
+ accessed if the ItF" option is present 

SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 93 



SCO C Conta7ins a SD if th It last. i tltm-i d in thlt 
input st~ing is Itnclosltd in quotlt ma~ks, 
othlt~wislt contains a blank 

Thlt following spltcifications a~1t mltaningful only whltn thlt "F" option is 
not p~ltsltnt: 

SRO S 

SIZE T 

SR4 S 

I SEND S 

IR R 

RMODE T 

XMODE T 

Points onlt prior to thlt count filtld of 
thlt ~ltt~iltved item 

Contain~ thlt valult of thltcount fi&ld of 
thlt ~ltt~iltved itltm 

Points to thlt last AM of thlt ~lttriltved 

itltm 

-IS if thlt "C" option is presltnt 

Points to thlt last AM of thlt retrievltd 
item to be copiltd,if the "C"option is 
p~esent, othlt~wise points to thlt AM 
following thlt itltm-id 

-MD201 if 
p~ocessltd, 

=0 

items a~e 
othlt~wislt-O 

left to bit 

Elemltnts as Sltt up by QETOPT if the input data contains an option sing 

Elltmltnt Usaglt 

C1 T Used fo~ er~o~ mltssages 

Elltments used by the va~ious sub~outinlts bltlow 

Sub~outine Usaglt 

QETFILE; if no "F" option: QETOPT if the input data contains an option 
st~ing, QETITM fo1' full file ~et~ieval, RETIX and one. intlt~nal subroutine 
if not full fillt rltt~ieval, QETSPC if mo~e than onlt item (but not "*") 
spec ified, EXPAND if the "E" option is prltsent, WRTLIN if the "P" option 
is p~ltsent 

MD201 only: WSINIT; QNTDLI if morlt thtln one itltm (but not "*") spltcifiltd 

MD995 and DMSOVF u.sltd wi th XMODE 

Sltvltn tldditional levltls of subroutinlt linktlge requi~ed by MD200; five 
additional lltvltls ~equi~ltd by MD201 for full file ~et~ieval, othltrwise 
th~ee lltvels ~equirltd 

Error Conditions 

Thlt following conditions causlt an exit to thlt WRAPUP p~ocltssor with the 
1t~~0~ numbltr indicated: 

E~~or 
/D 
13 

CHAPTER 3 

Condition 
I=","'e httNte Mt".>5i n"l 
DL/ID item not found, or in bad fo~mat 

SUPPORT SOFTWARE Copyright 1997 PICK SYSTEMS 
PAQE 94 

I 
I 
I 
I 
I 
I 
I 
o 
D 

IJ 
n 

n 



I 
I 
I. 
I 
I 
I 
I 
D 
o 
n 

199 

201 

202 

203 

209 

IS work space not big enough when the 
"C" option is specified 

No file name specified 
" I' 'J 7 II tit Vl<'lv"Ie: 

File name illegal or incorrectly defined 
in the M/DICT i "H'r ~ pa;i\~u t:'k 

Item not on file; all messages of 
type are stored until all items 
been processed; items which are on 
are still processed 

No item list specified 

The format of the option list is bad 

this 
have 
file 

3.3.41 TIME - DATE - TIMDATE 

These routines return the system time andlor the sy stem date, . and store 
it in the bu~fer area specified by register Rl5. The time is returned 
as on a 24-hour clock. 

Entry 

TIME 

DATE 

TIMDATE 

Buffer size 
req,uired (bytes) 

9 

12 

22 

Format 

HH:MM:SS 

DD tiMM YYYY 

HH:MM:SS DD MMM YYVY 

D Input Interface 

n 
n 

n 
n 

r 

R15 R 

Output Interface 

R15 R 

R14FID D 

Element Usage 

D + 

Points one prior to the buffer area 

Points to the last byte of the data 
stored; the byte immediatelu following 
contains a blank 

=0 (DATE .nd TIMDATE onlu) 

DO 
D1 
D2 
D3 

D + Used bU TIME and TIMDATE onlu 
D + 
D + 

Subroutine Usage 

MBDSUB used by TIME 

Two additional levels of subroutine linkage req,uired bU TIMDATE, one level 
req,uired by TIME, none by DATE 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PIC~ SYSTEMS 
PAGE 95 



3.3.42 TPREAD TPWRITE 

TPREAD reads a specified number of bytes from the tape into a buffer pointed 
by R15 at entry to the routine. 

TPWRITE writes a specified number of bytes from the buffer pointed to by R15 
the tape. 

Both TPREAD and TPWRITE are using a virtual tapedrive with common routines. 
The initial execution of either entry point causes initialization of twol 
buffers of a size sufficient to contain TPRECL, which is aSSigned during 
execution of the T-ATT verb, or is obtained by execution of the RDLBL verb from 
the tape record size included i the standard R77 tape label. These buffers I 
are released during WRAP-UP processing aft'er RMODE and WMODE processing are 
completed. The process then returns to TCL or the CHAIN or PROC analogs to 
TCL. 

At all times after initialization R7 points into the current ad or write I 
location in the tape buffers and must be saved and restored if R7 is to be used 
for other purposes between reads or writes. In both cases the contents of thel 
accumulator, DO, is the number of characters to transfert.oor from the tape 
buffer. The alignment ofR7 in the bU.ffer and the relat,ive siz-e .of TPRECLand 
DO do not need to be considered. . D 
If DO is zero on a read, then TPREAD will return to the callinr routine with R7 . 
pointing one before the next string to be read, XMODEwill be set to the tape 
handler routine, and the old X MODE, if any, will be in YMODE. This allowsn 
transparant tape reading using MIlD or MIlT R7,XX. A forward link zero faultU 
on R7 will cause the next tape record to be reed into the last buffer, R7 to be 
reset to the beginning of the current buffer; and execution then continues inn .. 
the MIl instruction. The user is responsible for handling an end-of-file~ 
condition when reading the tap •. When this occurs, the EOFBIT will be set. . 

If DO is zero on a write, then TPWRITE will fill the rest of the tapebufferfi 
with the character pointed to by R15, which will cause the buffer to be written L 

to tape. This is recommended in order to send the last partial tape record to 
the tape, after which WEOF should be executed. n 
Input Interface 

ATTACH 
TPRECL 
R15 

R7 

DO 

B 
T 
R 

R 

D 

Output Interface. 

R15 R 

DO D 
EOFBIT B 
EOTBIT B 

Must be set. 
As above. 

Use T-ATT verb. 

Points to one byte before the source or 
destination buffer start location. 
Must be the same at the beginning of the 
next tape operation as it was at the end of 
the last tape operation. Initialized by TPREAD 
TPWRITE on first-time call. 
Co ns the numbe~ of bytes to be transferred 
to or from the tape buffers. 

Points at the end of the source or destination 
buffer if DO was non-zero; unchanged if DO was zero. 
I s zero. 
Indicates end-of-file on 
Indicates end-of-tape if 
tape handler will rewind 

read if set. 
setJ the 
the tape and 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 96 

n 
n 
n 
n 
r 
r 

, r I 



I 
I 
I 
I 
I 
I 
I 
I 
n 
n 
D 

n 
n 
n 

n, ! 

Element Usage. 

tell the operator to mount the next tape, 
hOlllever. This may be executed in the 
middle ~f an MIl instruction, as above, 
IIIhich lIIill then continue to execute IIIhen the 
nelll reel in mounted and thw label handled. 

The tape handler lIIill stack and restore most 
The follollling elements are modified, hOlllever. 

of the elements IIIhich it uses. 

T5 T 
T6 T 
T7 T, 
YMODE T 
D2 D 
R2iHO H 
R4 R 

R7 R 
R14 R 
R15 R 

Subroutine usage; 

It 

It 

It 

For any current XMODE 
Temporary strage 
For a flag 
Is used as a pointer to the text block 
in the IIIrite-label routine. 
As the tape buffer pointer 
Globally 
As note-d ab ove. 

TPREAD and TPWRITE use an extensive 
that element usage is transparant 
seven levels of subroutine usage 
handling a label on the second and 

set of internal subroutines in such a way 
outside of the above set. Both may go to 
if either encounters a parity error IIIhile 
follollling reels in a set of tapes. 

Error conditions are sent to the terminal by the tape handler by 
PRINT, CRLFPRINT and PCRLF routines for attention by the operator 
transparant to the calling routine. They include no IIIrite ring, 
after ten retries, tape not ready, and block transfer incomplete 
recovery alternatives. 

3.3.43 TSINIT 

means of the· 
in a manner 

parity error 
messages and 

This routine initializes the register triad associated lIIith theTS 1II0rk space. 

Input Interface 

None 

Output Interface 

TS R + Point to the beginning of the TS 1II0rk 
TSBEG S + space (PCB+5) 
(R14 R) + 

TSEND S + Point to the last byte of the TS 1II0rk 
(R15 R) + space (511 bytes past TSBEG); note this 

is an unlinked 1II0rk space 

the first byte of the 1II0rk space is set to x'OO'. 

r Element Usage 

DO r CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 97 



Subroutine Usage 

One internal subroutine 

One additional level of subroutine linkage re~uired 

3.3.44 UPDITM - UPDITMX 

I 
I 
I 

UPDITM and UPDITMX perform updates to a disc file defined by its base FID, I 
modulo, and separation. If the item is to be deleted, the routines compress 
the remainder of the data in the group in which the item resides; if the item 
is to be added, it is added at the end of the current data in the group; if I 
the item is to be replaced, it is replaced in place, sliding the remaining . 
items in the group to the left or right as necessary.n 

If the update causes the data in the group to reach the end of the linked I 
frames, NEXTOVF is entered to obtain another frame from the overflow space pool 
and link it to the previous linked set; as many frames as re~uired are added. 
If the deletion or replacement of an item causes an empty frame at the e~d of I 
the linked frame set, and that frame is not in the ~primary" area of the group, 
it is released to the overflow space pool. 

Entry UPDITM uses PRETIXU to retrieve the item to be updatedlocking the group. 

Once item is retrieved, processing cannot be interrupted until completed. 

Input Interface 

BMSBEQ S 

TS R 

CH8 C 

Points one prior to 
item to be updated; 
terminated by an AM 

the item-id of the 
the item-id must be 

Points one prior to the item body to be 
added or replaced (no item-id or count 
field); not needed for deletions; the 
item body must be terminated by a SM 

contains the 
deletion; 'u' 
replacement 

character 'D' for item 
for item addition or 

BASE 
MODULO 
SEPAR 

D + Contain the base, modulo, and separation 
T + of the file being updated 
T + 

The following specifications are meaningful only for UPDITMX: 

RMBIT B 

R14 R 

RECORD D 

Output Interface 

Set if the item to be updated exists in 
the file, otherwise reset 

Points one prior to the item count field 
if the item exists, otherwise pOints to 
the last AM of the last item in the 
group 

Contains the beginning FID of the group 
containing the item 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 98 

D 
D 
11 u 

fl; I 
}} 

n. I ~ 

n 



I Remainder of the last frame in the group filled with blanks 

I Element Usage 

I 
I 
I 
I 
I 

D:3 D + 
D4 D + 
NNCF H + Utilit" 
FRMN D + 
FRMP D + 
NPCF H + 

Elements used b" the various subroutines belo~ 

Subroutine Usage 

RDREC; HASH, GLOCK, and RETIXU RELCHN if overflow frames returned; 
WTLINK if data ends in the last frame of "prime" space, or in overflow 
space; COPYALL if the item is on file; BKUPD~ GUNLOCK 

NEXTOVF, BMSOVF, and IROVF used with XMODE 

Four additional levels of subroutine linkage re~uired by UPDITM, three b" o UPDITMX 

Error Conditions 

,0. 
, , 

n 
n 
n 
n 
U 
n 

r 

1. If the group data is bad (premature end of linked 
frames, or non-hexadecimal character found in an item 
count field), IROVF is entered to print a warning 
message, and the group data is terminated at the end of 
the last good item before processing ~ontinues 

3.3.45 WHOSUB 

This routine returns the line number and curr.nt account name associated 
with the process as a string in the TS work space. 

Input Interface 

TSBEG S 

BMSBEG S 

Output Interface 

TSBEG S 

Points one before the area where the 
returned string is to be stored 

Points one before an area which RETIX 
can use in retrieving an item from the 
system file ACC 

Points one before the returned string, 
which consists of the line number (in 
decimal digits), a space, and the 
account name as found in the s"stem file 
ACC for the associated PCB; if the ACC 
entr" is not found, "UNKNOWN" is 
returned 

TS R Points to the last character in the 
returned string 

CHAPTER:3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 99 



TSEND 

D3 

BMSBEG 

BMS 

RMBIT 

Element Usage 

S 

D 

S 

R 

B 

Points to a SM placed at TS+l 

contains the line number associated with 
the process 

Points one before the item-id 
ace e 50 50 i n g the AC C f i 1 e,i f the 
presenti the item-id consists 
characters representing the 
hexadecimal digits 

used in 
file is 
of four 

PCB in 

Points to the last character of the 
above item-id if the ACC file is 
presenti set by RETI 

set if the ACC file is present and the 
appropriate item is found, otherwise 
reset 

R15 R + Utility 
S4 S + 

T4 T + 
T5 T + 
DO D + Used by MBDSUB. 
Dl D + 
D2 D + 
R14 R + 

BASE D + 
MODULO T + 
SEPAR T + Used by GETACBMS 
T6 T + 
BMS R + 
SRl S + 

RECORD D + 
NNCF H + 
FRMN D + 
FRMP D + 
NPCF H + Used by RETI (and GETACBMS if the ACC 
XMODE T + file is a "0" item) 
DAF9 B + 
SIZE T + 
IR R + 
SR4 S + 

Subroutine Usage 

LINESUBi MBDSUBi GETACBMS; GPCBO if the ACC file is found; RETI if the 
ACC entry for the process is found 

Five aditional levels of subroutine linkage re~uired 

3.3.46 WRAPUP PROCESSOR 

MD99 MD993 MD994 MD995 MD999 

CHAPTER 3 SUPPORT SOFTWARE Copyright 19B7PICK SYSTEMS 
PAGE 100 

I 
I 
I 
I 
I 
I 
I 

n 
n 
n 
n 
nl 
n 



These are the entry points into the system routine which "wraps up" the 
processing initiated by a TCL statement, performs disk updates and prints 
messages as required, and reinitializes functional elements for processing 
another TCL statement. WRAPUP may also be treated as a subroutine (except when 
entered at TCLXIT or NSPCG) by setting tally RMODE to the mode-id of the 
routine to which WRAPUP should return control after it is done. Note, however, 
that WRAPUP always set the return stack to a null or empty condition before 
exiting. 

The various entry points are provided to simplify the interface requirements 
when WRAPUP is used to store or print messages from the ERRMSQ file; the 
features of each can be seen in the following table: 

MD993 

MD994 

MD995 

MD99 

MD999 

TCLXIT 

NSPCG 

Input Interface 

Cl contains a message number; C2 
contains a numeric parameter; the value 
in C1, converted to an ASCII string, is 
used as the item-id of an item to be 
retrieved from the message file 
(normally ERRMSQ)i the message is set up 
in the history string (see below), and 
control passes to MD99 

C1 contains a message number; IS points 
one before the beginning of a string 
parameter, which is terminated by an AM 
or SM; the message is set up in the 
history string and control passes to 
MD99 

Like MD994 , except the 
is stored at BMSBEQ+1 
SM 

string parameter 
through an AM or 

Message numbers (without any parameters) 
may be stored in RE~CTR, RE~O, and RE~l 
(no action is taken if zero); if RMODE 
is zero, messages are printed regardless 
of the value of VOBIT (see below); the 
messages are set up in the history 
string and control passes to MD999 

The history string is 
process work spaces are 
control passes to TCL if 
otherwise to the routine 
RMODE 

processed, and 
reinitialized; 

RMODE is zero, 
specified by 

The history string is set null, PROC 
control is unconditionally reset, and 
control passes to TCL (this entry point 
is used by the DEBUG "END" ca'mmand) 

In addition to the functions performed 
at TCLXIT, all disk group locks 
associated with the process are 
unlocked, and the overflow management 
routine in mode OF1 is unlocked if 
currently locked by the process 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 101 



H8BEQ 
H8END 

8 
8 

+ Point one before t~e 
+ the end, respectivel~, 

string; if HSBEQ=H8END, 
null 

beginning and to 
of the history 
the string is 

Three types of history string elements are recognized by WRAPUPia!l 
others are ignored. The type of processing dofte for each element depends 
on the second, and possibly third character of the element string. (The 
quote marks in the following examples are not part of the strings. ) 

1. Output message 

2. 

8M "0" AM message-id AM (parameter AM ... ) SM 

where "message-id" is the item-id (normally a decimal numeric) of an 
item in the message file 

The parameter string is passed to PRTERR for message formatting (see 
PRTERR documentation) 

Disk Update/Delete 

SM "DU" AM base VM modulo VM separation AM item-id 
AM item-body AM 8M 

SM "DD" AM base VM modulo VM separation AM item-id 
AM SM 

where "DU" causes the item in the file specified by "base", "modulo", 
and "separation" to be replace, and "DD" deletes it 

3. (End of history string) 

SM "Z" 

I 
I 
I 
I 
I 
I 
I 

Conventionally, a process wishing to add data to the history string begins 
at HSEND+1; after the additional elements have been added, the string is n 
terminated (once again) by a SM and liZ", and HSEND is set pointing to tttis 1 
SM. 

WMODE 

RMODE 

VOBIT 

RE~CTR 
RE~O 
RE~l 

CHAPTER 3 

T 

T 

B 

If non-zero, the value is used as the 
mode-id for an indirect subroutine call 
(BSLI *) executed immediately after the 
history string has been processed, and 
before work space and printer 
characteristics are resetr this allows 
special processing to be done on any 
entry into WRAPUP 

If non-zero, WRAPUP exits to the 
specified mode-id instead of to TCL 

If set, and RMODE is non-zero, messages 
are stored in the history string, for 
output on a later entry. into WRAPUP with 
RMODE zero 

T + May contain message numbers which do not 
T + require parameters; RE~CTR is always 
T + tested first, then RE~O, and then RE~l; 

no action is taken on a zero value; a 
SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 

PAGE 102 

n 
n 

r 
r 
r 



I 
I 
I 
I 
I 
I 
I 

value of 9999 is used internall~ b~ 
WRAPUP to identif~ which messages have 
been processed, and should not normally 
be used as an input value for RE~O or 
RE~l 

Cl 
C2 

T + (See MD993, MD994, and MD995 above) 
T + 

LPBIT B 

OVRFLCTR D 

USER T 

If set, all open spool files are closed 

If non-zero, used as the starting FID of 
a linked set of overflow frames which is 
released to the s~stem overflow space 
pOOli used b~ SORT, for instance, to 
store the beginning FID of a sorted 
table, in which case the overflow space 
used b~ SORT is alwa~s released, even if 
processing is aborted by an "END" 
command from DEBUG 

D Output Interface 

Used t~ control th. final exit from 
WRAPUP when RMODE=Oi see "exits" 

n 

" n 
n 
n 
n 
n 

HSEND S 

VOBIT B 
LPBIT B 
WMODE T 
RE~CTR T 
REJO T 
RE~l T 

Return stack 

RMODE T 

INHIBIT B 

=HSBEG except when messages are stored 
instead of printed 

+ 
+ 
+ =0 
+ 
+ 
+ 

Null: RSEND=X'OlBO', RSCWA=X'0184', and 
the rest of the return stack is filled 
with X'FF' 

Set to zero b~ TCLXIT and NSPCa 

r Set to zero bij NSPCa 

Elements as initialized b~ WSINIT (and ISINIT if RMODE=O) 

The following elements are set up onlij if RMODE=O: 

X MODE T + =0 
OVRFLCl'R T + 

IBSIZE T =140 

n Element Usage 

p 

r 

UPD R 

BASE 
MODULO 
SEPAR 
CHB 
CHAPTER 3 

D + 
T + Used in disk updates 
T + 
C + 

SUPPORT SOFTWARE 
PAGE 103 

Cop~right 1987 PICK SYSTEMS 



Rl5 R Used by NSPCa 

Elements used by the subroutines below 

Subroutine Usage 

WSINITi MBDSUB for message numbersi PRTERR to print messages; CVTNIS 
arid UPDITM to do disk updates; CRLFPRINT if a format error is found in a 
"DD" or IIDU" history string element; PCLOSEALL if LPBIT=I; if RMODE=O: 
ISINIT, RESETTERM. RELSP <if USER=2), RELCHN (if OVRFLCTR is non-zero); 
UNLOCK. GLOCK, GUNLOCK. LINE, and TILD by NSPCa 

Max imum 
RELCHN 
PRTERRi 
ISINITi 

Exits 

of seven additional levels of subroutine linkage 
must print an error message. maximum of six levels 

four levels required for UPDITM; three levels 
two levels always needed for WSINIT 

required 
required 
required 

if 
for 
for 

To the entry point specified in RMODE if non-zerOi to LOGOFF if USER=3 
(set, for instance, by the DEBUG II OFF " command)i to MDO if USER=2 (set by 
the LOGOFF processor); otherwise to MDI 

Error Conditions 

If a format error is found in a "DD" or IIDU" history string element, the 
message 

DISK-UPD STRING ERR 

is displayed, and processing continues with the next element 

3.3.47 WRTLIN WRITOB WT2 

I 
I 
I 
I 
I 
I 
I 
I 
D 

These are the star~2d rou~ines for outputting data to the terminal or line n. 
printer. Entry WRTLIN dele~es trailing blanks from the data and then enters 
WT2. WT2 adds a trailing carriage return and line feed, increments LINCTR, and 
enters WRITOB, which outputs the data. n 
The data to be output is pointed to by OBBEG, and continues through the address 
pointed to by OB. Output is routed to the terminal i~ bit LPBIT is off. 
otherwise it is stored in the printer spooling area. Pagination and page- n 
heading routines are invoked automatically if bit PAGINATE is set. I~ i~ is 
set, then when the number of lines output in the current page (in LINCTR) 
exceeds the page size <in PAGSIZE.), the following actions ~ake. place: 1) The n 
number of lines specified in PAGSKIP are skipped, 2) The page number in PAGNUM . 
is incremented, and 3) A new heading is printed (see PRNTHDR documen~ation>' A 
value of zero in PAGSIZE suppresses pagination, however, regardless of the 
seting of PAGINATE. n 
Input Interface 

OBBEG S Points one byte prior to the output data 
buffer 

OB R Points to the Itit'St character in the 
bufferi the buffer must extend at least 
one character beyond this location 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 104 

P·.· r 



I 
I 
I 
I 
I 
I 
I 

D 
o 
n 
n 
n 
n 
n 
n 

. P' .. ···· 
r 

LPBIT B 

LISTFLAO B 

NOBLNK B 

LFDLY T 

PAO I NATE B 

PFILE T 

If set, output is T'outed to the spooleT' 
(Note: T'outine SETLPTR should be used to 
set this bit so pT'inteT' chaT'acteT'istits 
aT'e $et up cOT'T'ectly) 

I f set, all out,put to the teT'minal is 
suppT'essed 

I f set, blanking of the output buffeT' is 
suppT'essed 

LoweT' byte contains the numbeT' of "fill" 
chaT'acteT's to be output afteT' a CR/LF 

I f set, pagination and page-headings aT'e 
invoked 

Contains the pT'int file numbeT' foT' PPUTJ 
meaningful only if LPBIT is set 

The following specifications aT'e meaningful only if PAOINATE is set: 

~ PAOHEAD S 

PAOHEAD S 

PAOSIZE T 

PAOSKIP T 

PAONUM T 

PAOFRMT B 

LFDLY T 

Output InteT'face 

OB R 

Points one byte befoT'e the 
the page-heading messageJ 
field of this T'egisteT' 
heading is pT'inted 

beginning of 
if the fT'ame 

is %eT'O, no 

Points to the location of the 
page-heading message 

Contains the numbeT' of pT'intab1e lines 
peT' page 

Contains th. numbeT' of lines to be 
skipped at the bottom of each page 

Contains the cUT'T'ent page numbeT' 

If set, the pT'ocess pauses at the end of 
each page of output until some teT'minal 
input (even Just a caT'T'iage,T'etuT'n) is 
enteT'ed 

If the uppeT' byte is gT'eateT' than one, 
and output is to the teT'minal, a 
fOT'm-feed (X'OC') is output at the top 
each page, and the numheT' in the uppeT' 
byte is used as the numbeT' of Ifi1l" 
chaT'acteT's output afteT' the fOT'm-feed 

-OBBEO 

The following specifications aT'e meaningful only if PAOINATE is set: 

LINCTR T + Reset appT'opT'iately 
PAONUM T + 

T7 T Contains the oT'iginal value of PAONUM 
CHAPTER 3 SUPPORTSOFTWARE CopYT'ight 1987 PICK SYSTEMS 

PAOE 105 



Element Usage 

R14 R + 
R15 R + Scratch 
SYSRl S + 

R8 R + 
RECORD T + Used by PPUT (when LPBIT is set) 
OVRFLW T + 

SYSR2 S Used if PAGINATE is set and the header 
message contains a VM 

T4 T + 
T5 T + Used if PAGINATE is set and the header 
D2 D + message contains a SVM 
D3 D + 

All elements used by ATTOVF (called by PPUT if more disk space needed) 

SUBROUTINE USAGE 

FFDLY, PPUT (if LPBIT set), WT2 (if PAGINATE set and the header message 
contains a VM), TIMDATE (if PAGINATE set and the header message contains a 
SVM), DATE (if PAGINATE set and the header message contains two SVMs in 
succession) 

Four additional levels of subroutine linkage re~uired if LPBIT is setJ 
three levels re~uired for TIMDATEJ one level always re~uired for LFDLY 

3.3.48 WSINIT 

This routine initializes the following process work space pointer triads: BMS, 
BMSBEG, BMSEND; CS, CSBEG, CSEND; AF, AFBEG, AFENDi TS, TSBEG, TSENDi IB, 
IBBEG, IBEND; OB, OBBEG, OBENDi also PBUFBEG and PBUFEND. In each case, the 
"beginning" storage register (and associated address register, if present) is 
set pointing to the first byte of the work space, and the "ending" storage 
register is set pointing to the last data byte. All work spaces except the 
last (PROC) are contained in one frame; PBUFBEG and PBUFEND define a 4-frame 
linked work space. 

WORK SPACE SIZE (BYTES) 

BMSBEG-BMSEND 50 

AFBEG-AFEND 50 

CSBEG-CSEND 100 

IBBEG-IBEND Contents of IBSIZE; max. 140 

OBBEG-OBEND Contents of OBSIZE; max. 140 

TSBEG-TSEND 511 

PBUFBEG-PBUFEND 20000 (4 linked frames) 

Input Interface 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAGE 106 

I 



I 
I 
I 
I 
I 
I 
I 

IBSIZE T Size of IB buffer 

OBSIZE T Size bf OB buffer 

Output Interface 

Registers are set up as described above. The first byte of each work 
space, except the OB, is set to x'OO'. The OB work space is filled with 
blanks (x'20'). IBSIZE and OBSIZE are set to 140 if initially greater. 

Element Usage 

R14 R 

R15 R 

Subroutine Usage 

TSININIT (local), and one internal subroutine 

Two additional levels of subroutine linkage required 

D 3. 3. 49 WTBMS 

D 

n 
D 
D 
n 
n 
n 
n 
n 
n 
r 

This routine converts base, modulo, and separation file parameters to 
an ASCII string. 

Input Interface 

BASE 
MODULO 
SEPAR 

TS 

D + 
T + Contain values to be converted 
T + 

R Points one before the output area 

Output Interface 

TS 
R15 

Element Usage 

DO 
D1 
D2 
T4 
T5 
R14 
R15 

R + Point to an AM at the end of the output 
R + stringi the form of the string is BASE 

VM MODULO VM SEPAR AM (no spaces around 
delimiters) 

D + 
D + 
D + 
T + Used by MBDSUB 
T + 
R + 
R + 

Subroutine Usage 

MBDSUBi one internal subroutine 

Two additional levels of subroutine linkage required 

CHAPTER 3 SUPPORT SOFTWARE Copyright 1987 PICK SYSTEMS 
PAQE 107 



3. 3. 50 XISOS I 
XISOS simpl~ exchanges the contents of the IS/ISBEQ/ISEND and OS/OSBEG/OSEND 1 register triads. 

I 
I 
I 
I 
I 
o 

n 
n 
n 
n 
n 
n 
r 
r 



I 
I 
I 
I 
I 
I 
I 
I 
o 
o 
n 
n 
n 
n 
n 
n 
n 
r 
r 

CHAPTER 4 

SYSTEM DEBUGGER 

THE PICK SYSTEM 

USER'S ASSEMBLY MANUAL 

PROPRIETARY INFORMATION 

This document c~ntains information which is 
proprietary t~ and considered a trade secret of 
PICK SYSTEMS It is expressly agreed that it shall 
not be reproduced in whole or part, disclosed, 
divulged, or otherwise made availble to any third 
party either directly or indirectly. Reproduction 
of this document for any purpose is prohibited 
without the prior express written authorization of 
PICK SYSTEMS. All rights reserved. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAGE 109 



4. 1 OPERATION COMMANDS 

The form <data specification> is used to indicate a pattern discussed 
in the section on data specification. 

4. 1. 1 A -- address of element 

FORMAT: 
A 

will display the current instruction location of the virtual code in 
the form 

Iff. dd 

where ff is the frame number in decimal and dd is the displacement in 
hex. 

A<data specification> 

will display the address of the data specified in the for~ 

f. dd 

immediately following the command. The leading format specification 
part of the data specification is meaningless and will generate the 
response 

ILLQL SYM 

immed iatel y after the command. 

4.1.2 I -- break 

FORMAT: 
Iff. dd 

wi 11 cause a break-point to be set at ff. dd. The command 

Iff or Iff.O 

will cause every instruction in the frame ff to be a break-point. 

The command line for I may contain one or two numeric fields only. 
TheV may be in hex or decimal. A + will be emitted on successful 
completion of the instnuction, or the messaie 

TIL FULL 

will be emitted. 

4.1.3 C -- character display. 

FORMAT: 
C<data specification> 

will cause the display to be in 
CHAPTER 4 SYSTEM DEBUGGER 

character. Any window is allowable. 
Copyright 1987 PICK SYSTEMS 

PAGE 110 

I 
I 
I 
I 
I 
I 
I 
D 
D~l 

"' 

D 

n 
n 
n 
n 
n 
n 
r 
r 



The command is invalid with the A and L commands. 
of the data specification section. 

4.1.4 D -- displa ... current commands. 

FORMAT: 
D 

The command is part 

will cause the break-points, traces, data break-points, and frame 
replacement specifications currently in effect to be displayed. 

4.1.5 DB -- toggle debugger availablit .... 

FORMAT: 
DB 

will toggle the debugger availablit... flag. 
SYSPROG. 

4.1.6 E -- single-step control 

FORMAT: En 

It must be executed from 

where n e[1,250], will cause a break and entry to the debug command 
processor on ever ... nth instruction in the virtual code. 

FORMAT: 
E 

will turn off the single-step function. 

4. 1.7 END -- back to TCL. 

FORMAT: 
END or end 

will cause the process to cleanup and return to TCL. 

4.1.8 F -- frame replacement 

FORMAT: 
Fff.gg 

will cause all entries to frame ff to be .ntries to frame gg, where ff 
and gg are either hex or decimal numbers. No variations in the syntax 
are allowed. 

4.1.9 G -- the go command. 

FORMAT: 

will cause the process to continue execution at its current address, 
if that is allowable. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAQE 111 



FORMAT: 
Qff.dd 

will cause the process to commence execution at address dd in frame 
ff, where dd and ff are in either hex or~decimal. No other variations 
in the syntax are allowed. If the debugger considers the address 
specified invalid, either because a G h~s been issued after atterror 
occured, or because of an error in the syntax of the statement, the 
message, 

ADOR 

will occur. 

4. 1. 10 H -- tog g 1 e e c hob it. 

FORMAT: 
H 

will toggle the echo bit of the virtual process. 

4. 1. 11 I -- integer display. 

FORMAT: 
I<data ~pecification> 

will cause the format of the display to be in integer. This form will 
be generated by any reference to a symbol of types H, T, D, or F. Ahy 
window specification greater than 6 bytes will default to 1 byte. The 
command is invalid with the A and L commands. This command is part of 
the data specification section. 

FORMAT: 
I 

will cause further output to be in integer form. 

4. 1. 12 K -- kill break~points. 

FORMAT: 
K 

will cause all break-points set by a B command to be terminated. It 
will emit a -

FORMAT: 
Kff. dd 

will kill the break-point ff. dd and emit a hyphen, if it is in the 
table; or it will emit the message 

NOT IN TBL 

if the break-point is not in the table. 

FORMAT: 
Bff or Bff.O 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAGE 112 

I 
I 
I 
I 
I 
I 
I 
D 
HI 
n 
n 
n 

n 
n 
n 
r 
rl 
r 



I 
I 

is used in the case that a break ~as set for all inst~uctions in frame 
ff. 

No other variations on the syntax are allo~ed. 

I 4. 1. 13 L -- frame 1 inks. 

I 
I 
I 
I 
D 

FORMAT: 
L<data specification> 

~ill emit the link fields of the frame implied by the data 
specification. Format specifications C, I, or X in the data 
specification are meaningless and ~ill cause an error message. 

There is no device for modification of the link fields other than the 
traditional display-and-modifiy. 

4.1.14 M -- modal trace. 

FORMAT: 
M 

~ill toggle the modal trace condition. 

n 4. 1. 15 ME -- reassigning PCB. 

n 
n 
n 
D 
n 
n 
n 
n 
nl. i 

r 

FORMAT: 
ME n 

~ill cause all PCB and symbDlically-refe~enced data specifitations 
use the PCB of line n. 

to 

FORMAT: 

ME 

~ill reset the pointer to your PCB. 

4. 1. 16 N -- number of breaks. 

FORMAT: 
Nn 

~here n is a tally, ~ill cause the debugger to print the instuction 
address and other characteristics of n breaks of any kind before it 
enters the debug command state. If a real error is encountered, the 
debug comman.d state ~il1. be entered immediately. 

FORMAT: 
N 

cancels this such that all breaks ~ill enter the debug command state. 

4. 1. 17 OFF -- bac k to logon. 

FORMAT: 
CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 

PAGE 113 



OFF 

will clean up and log the process off. 

4. 1. 18 P -- toggle LISTFLQ 

FORMAT: 
P 

will toggle the bit that controls whether output is output or whether 
it is t~ssed into the bit bu~ket. 

4. 1. 19 R -- register. 

FORMAT: 
Rn 

where n e[O, 15), if it is encounterd in the 
indirect addressing off Rn. It is part of 
section. 

4.1.20 T -- Trace. 

FORMAT: 
T<data specification> 

primary parse, specifies 
the data specification 

caused the data element specified to be emitted, along with its 
address on each break, whether the command state is entered or not. T 
must be the first character in the command string. A + wi 11 be 
emitted if the comman~ is successful, or the message 

TBL FULL 

will be emitted. 

4.1.21 U -- Untrace 

FORMAT: 
U 

will cause all traces set by a T command to be canceled. 
a hyphen. 

FORMAT: 
U<da~a specification> 

It will emit 

will cause the trace of the specified element to be canceled if it is 
in the table, and a hyphen will be emitted. If it is not in the 
table, then the message 

NOT IN TIL 

will be emitted. 

4.1.22 X -- heXidecimal format. 

CHAPTER 4 SYSTEM DEBUggER Copyright 1987 PICK SYSTEMS 
PAgE 114 

I 
I 
I 
I 
I 
D 

n 
D 

n·· w.· 
.:&! 

n 
n 
n 
n 
u 
n 
r 
r 



I 
I 
I 
I 
I 
I 
I 
I 

o 

o 
n 

n 

0'.: I. 

n .... <." I ;i 

FORMAT: 
X<data specification> 

will cause the data to be displayed in hex. Anv window is aflowable. 
The command is invalid with the A and L commands. 

4.1.23 Y -- data breaks. 

FORMAT: 
Y<data specification> 

will cause the process to break each time the data specified changes. 
Y must be the first letter in the command. This makes things run very 
slowly. Note that the current value of the data is kept with the 
address data, so that the table element size will change with varying 
sizes of data. Note that the current data is stored in aligned words. 
Successful completion will terminate with a +s or the message 

TBL FULL 

will be emitted. 

4.1.24 Z -- data unbreak. 

FORMAT: 
Z 

will cancel all data-data break commands. A hyphen will be emitted. 

FORMAT: 
Z<data specification> 

will ~ancel the data break sp~cified. 
message 

NOT IN TBL. 

CHAPTER 4 SYSTEM DEBUGGER 
PAGE 115 

It will emit a hyphen or the 

Copyright 1987 PICK SYSTEMS 



4. 2 OPERATION COMMANDS : ARITHMETIC UTILITIES 

4.2.1 ARITHMETIC CALCULATING FEATURES 

FORMATS: 

ADDD n n 

SUBD n n 

MOLD n n 

DIVD n n 

ADDX n n 

SUBX n n 

MULX n n 

DIVX n n 

XTD n 

XTD n n 

DTX n 

DTX n n 

do the same things as the related verbs, where XTD <a> RTD and DTX <a> 
DTR. T~. nu~erit arguments, n, a~e s~rinis without punc'uati~n. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 19B7PICk SYSTEMS 

I 
I 
I 
I 
I 
I', 
I 
I 
n'l 
n 
n 
n 
n 
n 

n 
r' 
rj 

_______________________________ P_A_G_E ___ l_l_6 ________________________________ ~~) 



I 
I 
I 

4.3 DATA SPECIFICATION 

Data may be referenced directly or indirectly. It may be referenced 
numerically or symbolically. Window or offset may be specified. 
Displav type, C, I, X, or B may be specified. 

Direct reference. I 4. 3. 1 

FORMAT: 

I 
I 
I 
I 
0 
0 
H 

n 
o 

o 
n 
n 
n 
r 

4.3.2 

ff. dd 

will reference the data field at dd in frame ff. 

FORMAT: 
dd 

will reference the data field at dd in the PCB, or in the ME-PCB. In 
both cases the frame will be taken to be unlinked. 

FORMAT: 
Iff.dd 

will take ff to be a linked frame. 

Indirect reference. 

Indirect reference includes all cases wherein 
specified, including all symbolic references. or 
specified. 

a live register is 
where an *SR form is 

4. 3. 2. 1 Implicit indirect reference. 

4.3.2.2 

FORMAT: 
Rn 

where n eCO,15J will referen~e the data to which Rn pOints. 

FORMAT: 
Isymbol-name 

where symbol-name is in the PSYM 
are "set", will generate the 
format type and window of the 
through the implicitly-specified 

Explicit indirect reference. 

FORMAT: 
*symbol-name 

or TSYM, and the PSYM and TSYM 
reg5iter number. displacement, 
symbol. It wi 11 be referenc ed 

register and displacement. 

will reference the data which the register Rn, if the symbol name 
is Rn, or the storage register at symbol-name, points. 

FORMAT: 
Rn. dd 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAGE 117 



will apply the displac.m.nt, dd, to the location point.d ta by Rn 
in ord.r to obtain a storage r.gist.r, with which to add,..ss the 
d.sir.d data. 

FORMAT: 
or 

will take the location sp.cifi.d to b. a storage r.gist.r, and 
b.hav. as abov.. Th. displac.m.nt, dd, will 'b.appli.d ta the 
frame addr.ss in ord.r to find the addr.ss of the storage 
r.g i st.r. 

FORMAT: 
**symbol .... nam. or **ff. dd 0,. 

will do the sam. in the s.cond ord.r. Th.y r.f.r.nc. the starag. 
at which the storage r.gist.r at which the ,..f.,..nc.d starage 
r.gist.r points, with the on. condition: That if the first byte 
of the m.dial st~~ag. r.gist.r is X'82', th.n the .l.ment is 
tak.n to b. a BASIC indi,..ct string .l.m.nt and the storage 
r.gist.r is tak.n from two byt.s b.vond this location. If any of 
the data fi.lds ar. invalid as storage r.gist.rs. th.n the 
m.ssag. 

ERR! 

lIIill b •• mitt.d. 

4.4 FORMAT SPECIFLCATION 

If any af the above forms ar. pr.c •• ~.d by the charact.r C, I, or X, 
th.n that will control the format of the display. C m.ans Charact.r, 
I m.ans Int.g.r, and X m.ans h.Xid.cimal. 

4. 5 WINDOW SPECIFICATION 

If the above location'specifications are succ.ded by a semi-colon, 
then a window is to he set by the farm 

in 

where n is a tally fa,. display or a half-tally for the Trace and Y
trace. 

4.6 OFFSET SPECIFICATION 

The offset specification occurs in conJunction with the window. 
has an explicit form and an data-'ieldfor~ 

It 

4.~ 1 Explicit offsets. 

FORMAT: 

where a is a positive or negative 
as above, then a will be an offs.t 

CHAPTER 4 SYSTEM DEBUGGER 
PAGE 

tally, and w is a positive number, 
from the location specified in the 

Copyright 1987 PICK SYSTEMS 
118 

I 
I 
I 
I 
I 
I 
I 
D 
o 
n 
fil 
nl 

n 
n 
n 
n 
n 
r' 
r 

I 



I 
I 

data reference section of data speci~ication. W will be the window 
used. This for~~orks for trace~~ except in the case that the 
location is an indirect reference from a stDrageregister whose 
location is specified by the form ff.dd. 

I 4.6.2 Implicit offsets. 

I 
I 
I 
I 
U 
n 
0 
u 
n 
0 
n 4.7 

0 
U 

4.8 

n 
n 
r ( 

FORMAT: 
; CD Dr ; CD, w 

where 0 and ware as above, and C erB,H,C,T~D,F,S,RJ, will cause the 
offset to be taken as the number of fields. ~he field width is 1 bit 
in the case of B, 1 byte in the case of Hand C, 2 in the case of T, 4 
in the case of D, 6 in the case of F and S, and 8 in the case of R. 0 
may be positive Dr negative. If the window is not inluded, then the 
implicit window deriving from the field type is used, el~e the 
specified window is used. 

There are further side-effects to this form. The case of 

; C 

where C is as above, will take an offset of zero, the implied window 
and the display type. Note that symbolic reference to data fields has 
the same effec t. 

The display-type may be superceeded bV a leading format specification 
of the set C, I, or X. 

In the specific case of bits, the form 

; Bo, w 

will cause the display to be in bits, starting at bit 0, the offset 
from the addressing base, for a width of w bits. Bits and bit fields 
may be traced with either trace; There is a further asymmetry here. 
The displacement specified for a symbollically-addressed bit is in 
bits. Therefore, the form ff. dd will treat dd as a bit-count in the 
direct-reference form. 

DISPLAY MODIFIERS 

In general, the display 
exibit some excentric 
functional colisions. 

modifiers which follow the semi-colon may 
behavior because of various logical and 

DISPLAY FORM 
The character @ is used to indicate nUll. The general forms work for 
the display form, and, mostly, with the trace forms. 

T U Y Z e Trace commands 

x C I @ Format specifiers 

/ * ** symbolic, indirect references 

dd .dd PCB direct reference I E, N, ME commands 
CHAPTER 4 SYSTEM DEBUQQER Copyright 1987 PICK SYSTEMS 

PAQE 119 



".dd 
. ". dd 

ff, dd 
.ff, dd . 

ff . ff 
symbol-nam .. 

in i. n 
i 0, n ; O. n 
i • 0, n i. o. n 
i -0, n i -0. n 
iB 
iBo 
iBo,n 
i B, n 
i C 
iH 
i Co, n 
iT 
iTo. 
iTo, n 
iT, n 
i 0 
i Do 
i Do, n 
is 
iF 
; So 
i R 
iRo 

dir .. ct r .. f .. r .. nc .. 
(fram .. in h .. x) 

D command only 

D, .Q,L, A 
commands 

with / or * or ** L, A commands 
window, offs .. t and typ .. sp .. cifi .. rs. 
window must b .. positiv .. , of's .. t may b .. n"9ativ ... 
th .. format sp .. cifi .. r at th .. b"ginning of th .. 
string will sup .. rc .... d th .. typ ... p .. cifi .. r. 

window sp .. cification: n bytes 
offs .. t, .0 byt .. s, .window, n bytes, d .. cimal or h .. x 

bit display, of'set 0, window 1 bit 
ibid, offs .. t 0 
off ... t 0, window n, in bits 
offs .. t 0, window n, in bits 
character type, window 1, of~s .. t 0 
integ .. r typ .. , window 1, offset 0 
window n, offs .. t 0 bVt .. s, .. t c .. t .. ra. 
int .. g .. r typ", window 2, offs .. t 0 
window 2, o"set 0 tall~s = 2*0 bytes. 
window n, offs .. t·o tallys. 
window n, offset 0 
int .. g .. r, window 4 
window 4, offset 0 dtlys = 4*0 byt .. s 
window 4, offs .. t 0 dtlvs = 4*0 byt .. s 
type X, length 6 
int .. g .. r tvP", l .. ngth 6 
window 6, offs .. t 0 ftlvs = 6*0 byt .. s 
h .. x typ", length B 
window 8, offs .. t 0 = 8*0 byt .. s 

FORMAT: of th.. suffi xis th.. sam .. in all cas .. s. 
p .. rmutations ar .. left out du .. to r .. dundancv. 

A numb .. r of 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAGE 120 

I 
I' 
I 
I 
I 
D 
D 
o 
n 
n 

n 
n 
Pi 
n.! I 

I':~, 

I r
i 

[1 



I 
I 4. 9 DISPLAY PROMPTS 

The value of data fields are changed after they have been displayed 

I 
using the devices in the previous section. This section considers the 
actions avaliable at the '=' prompt given by the display prosessor. 

(CR> -- back to the command processor I 4.9.1 

FORMAT: 

I 
(CR> 

carriage-return will return to the command processor. 

I 4.9.2 (LF> -- the next window 

I FORMAT: 
(LF> 

line-feed, will display the next window of data, on the same line. n 
D 

4.~3 (control-N> -- the address and the next window. 

o 
FORMAT: 

(control-N> 

will display the address of the next window and the next window on the 
next line. 

o 4.9.4 (control-P> -- the address and the previous window. 

o 
n 
U 4.9.5 

n 
U 
0' -.2,' 

FORMAT: 
(control-P> 

will display the address of the previous window and the previous 
window on the next line. 

'(string> -- character data 

FORMAT: 
'(string> 

will cause the characters in the (string> to be placed in the data 
area starting at the beginning of the displayed window for the length 
of (string>, which will not exceed 40 bytes. The string must 
terminate with CR, LF, control-N, or control-Po The string 
terminators noted hereinafter have the same effect as the same 
character used as the only response to the display prompt. 

INTEQER INSERTION n 4.9.6 

FORMAT: 

r. Ii': CHAPTER 4 

(decimal number> 

SYSTEM DEBUQQER Copyright 1987 Ptc~ SYSTEMS 
PAQE 121 



will cause the value of <decimal number> to be placed in the window 
displayed, filling from the right, if the window is 1, 2, 4. or 6 
bytes in length, and does not cross a frame boundary, else an error 
message will occur. The string must terminate with CR, LF, control-N, 
or control-Po 

4.9.7 HEXIDECIMAL STRING INSERTION 

FORMAT: 
. <hex string> 

will cause the value of the data area beginning at the left of the 
window displayed to be replaced by the hex string. The string must 
contain an even number of characters, and must contian only hex 
characters. The string will not have more than 38 hex characters in 
it. The string must terminate with CR, LF, control-N or control-Po 

4.9.8 BIT STRING INSERTION 

If the display type is bit, 

FORMAT: 
<binary string> 

where <binary string> is a se~uence of l's and 0' less than 40 
characters long, will cause the bits starting from the first bit in 
the displayed window to be replaced by the bits in the string. The 
string must terminate with CR, LF, control-N or control-Po 

4.9.9 CLEARING WINDOWS 

FORMAT: 
o 

will have the effect of clearing the window to null, if the type is 
not bit. It must be followed by CR, LF, control-N or control-Po 

4.9.10 ADDRESS DISPLAY 

FORMAT: 
A 

will display the address of the last window, 
window. 

and redisplay the last 

4.9.11 DISPLAY TYPE, WINDOW, AND OFFSET MODIFICATION 

FORMAT: 
C or Cn or Co,n 

will change the display type~ window and offset, if specified, and 
,redisplay either the original field with the new type or window 
specification, or the resultant field if the offset is modified. The 
string must be followed by a CR or LF, both of which leave one in the 
display mode, and on the next line. 

CHAPTER 4 SYSTEM DEBUGGER Copyright 1987 PICK SYSTEMS 
PAGE 122 



I 
I 
I 
I 
I 
o 
I 
o 
10 

n 
n 
n 

n 
r 
r 

The legal display types are C, character, I, integer, X, hexidecimal, 
and 8, bit. Transfers to and from bit have the effect of byte
alignment in either direction, anCl retaining the numerical size of the 
window, which is then inter,reted eith.r in bits or bytes. 

The window specification sets the window at the new size. 

The offset specification is in bytes or bits, depending on the type 
specif~ed, may be positive or negative, in hex or decimal, and simply 
redi~ects the data specification pointer to a new location. 

The intent of this is to mainpulate type and window in display mode 
~uickJy and simply. 

INDEX 



ADD 14 HGETIB 70 
ADDX 14 HSISOS 71 
AND 18 INC 14,33,34 
ATTOVF 48 INITTERM 72 
B 19 IROVF 72 
BBS 32 ISINIT 74 
BBZ 32 LAD 33 
BCA 22 LINESUB 74 
BCE 20 LOAD 13 
BCH 21 LOADX 13 
BCHE 21 MBD 36 
BCL 20 MBX 36 
BCLE 21 MBXN 36 
BCN 21 MCC 17 
BCNA 22 MCI 17 
BCNN 21 MD200 91 
BCNX 22 MD201 91 
BCU 20 MD415 75 
BCX 21 MD99 100 
BDLEZ 24 MD993 100 
BDLZ 24 MD994 100 
BDNZ 24 MD995 100 
BE 23 MD999 100 
BH 24 MDB 36 
BHE 24 MFD: 37 
BL 23 MFX: 37 
BLE 23 MIC 17 
BLEZ 22 MIl 17 
BLOCK-SUB 48 MIlD 27 
BLZ 22 MIIDC 27 
BNZ 22 MIIR: 27 
BSL 19 MIlT 27 
BSL* 19 MOV 16 
BSLI 19 MSDB 37 
BSTE 31 MSXB 37 
BSTU 31 MUL 15 
BU 23 MULX 15 
BZ 22 MXB 37 
CONV 51 NEG 16 
CONVEX IT 51 NEWPAGE 75 
DATE 95 NEXTIR 76 
DEC 15,33,34 NEXTOVF 76 
DIV 15 NPAGE 81 
DIVX 16 NSPCG 100 
DLINIT1 55 ONE 13 
ENGLISH 56 OPENPFILE 77 
ENT 19 OR 18 
ENT* 19 PCBFID 78 
ENTI 19 PCRLF 78 
FFDLY 78 PINIT 78 
G3 62 PONOFF 79 
GETBLK 67 PPUT 79 
GETBUF 62 PRIVTST1 80 
GETIB 63 PRIVTST2 80 
GETIBX 63 PRIVTST3 80 
GETITM 64 PRNTHDR 81 
GETOPT 66 PROC 82 
GETOVF 67 PRTERR 83 
GETSPC 67 READ 38 
GETUPD 68 RELBLK 86 
GNSEGI 68 RELCHN 86 
GNTBLI 69 RELOVF 86 

INDEX 



I RESETTERM 72 TCL-I 91 
RETI 86 TCL-Il 91 

I RETIX 86 TCLXIT 100 
RETIXU 86 TIMDATE 95 
ROM 38 TIME 95 

I 
RTN 20 TPREAD 96 
sa 32 TPWRITE 96 
SDD 26 TSINIT 97 
SETLPTR 88 UPDITM 98 

I SETTERM 88 UPDITMX 98 
-SE-TUP » --WHOSUB 99 

SETUP TERM 89 WRAPUP 100 

I 
SHIFT 18 WRITE 38 
SID 26 WRITOB 104 
SIT 26 WRTLIN 104 
SITD 26 WSINIT 106 

0 SLEEP 89 WT2 104 
SLEEP SUB 89 WTBMS 107 
SORT 90 XISOS 108 

0 SRA 34 XOR 18 
STORE 13 XRR 34 
SUB 14 ZB 32 

D 
SUBX 14 ZERO 13 
TCL 91 

n 
n 
0 
n 
n 
n 
n 
u 
n 
n 
r 1 

INDEX 



I 
I 
I 

- I 
I 
o 
D ! 
D 

D 
U 
n 
n 
n 
n

i 

n
l 

n! 
! 

n 
n;· , 

, i 


	0096_001
	0095_001
	0095_014
	0095_027
	0095_039
	0095_051
	0095_063
	0095_074
	0095_085
	0095_096
	0095_107
	0095_118
	0095_131

