
Manual

PASM

Lifeboat Associates
: ' 1651 Third Avenue
;é New York, NY. 10028
á' Tel: (212) 860-0300

"' "'7 TWX: 710-581-2524 (LBSOFT NYK)

. *
'- Telex: 640693 (LBSOFT NYK)

. N"

PHOENIX SOFTWARE ASSOCIATES LTD.

PASM

User"s Manual

Revision 1.0

February I, 1980

Written by Neil J. Colvin

Copyright 1980 by Phoenix Software Associates Ltd.

Reproduced with Permission arid Distributed by

LIFEBOAT ASSOCIATES

1651 Third Avenue
New York, N. Y. 10028
Tel: (212) 860-0300

TWX: 710-581-2524
Telex: 640693

PASMA PSA Macro Asserabíer

Chapter t: Irítroductioa

Chapter 1

Introduction

PASM is the Pheoníx Software Associates Ltd. symbolic assembly

program for microprocessors which execute the Z80 (a trademark of
Zilog, Inc.) instruction set. It is a two-pass assembler (requiring
the source program to be read twice to complete the assembly process)
designed to run under the Phoenix Software Associates Ltd. PDOS (or
similar) operating system. It is therefore device independent,
allowing complete user flexibility in the selection of standard input
and output device options.

The assembler performs many functions, making machine language

programming easier, faster, and more efficient. Basically, the
assembler processes the Z80 programmer"s source program statements by

translating mnemonic operation codes to the binary codes needed in
machine instructions, relating symbols to numeric values, assigning
relocatable or absolute memory addresses for program instructions and

data, and preparing an output listing of the program which includes
any errors encountered during the assembly.

The PSA Macro Assembler also contains a powerful macro capability
which allows the programmer to create new language elements, thus
expanding and adapting the assembler to perform specialized functions
tor each programming job.

In addition, the PSA Assembler provides the facilities required
to specify program module linkages, allowing the PSA Linkage Editor
(LINK) to link independently assembled program modules together into
a single executable program. This allows for the modular and

systematic development of large prograins, and for easy sharing of
common program modules among different programs.

Statements

Assembler programs are usually prepared on a terminal, with the
aid of a text editing program. A program consists of a sequence of
statements in the assembly language. Each statement is normally
written on one line, and terminated by a carriage return/line feed
sequence. PSA Macro Assembler statements are free-format. This
means that the various statement elements are not placed at a
specific numbered column on the line.

There are four elements in an assembler statement (three of which
are optional), separated from each other by specific characters.
These elements are identified by their order of appearance in the
statement, and by the separating (or delimiting) character which
follows or precedes the elements.

Statements are written in the general form:

label: operator operand,operand ;comment <CR-LF>

The assembler converts statements written in this form into the
binary machine instructions.

PASMA PSA Macro Assembler

Chapter I: Introduction

Instruction Formats

The Z80 uses a variable length instruction format. A given
machine instruction may be one, two, three, or four bytes long
depending on the specific machine code and on the addressing mode

specified. The PSA Assembler automatically produces the correct
number of machine code bytes for the particular operation specified.
Appendix A specifies the various machine code mnemonics accepted by

the assembler and the format of the operands required.

Statement Format

As previously described, assembler statements consist of a
combination of a label, an operator, one or more operands, and a

cownent; the particular combination depends on the statement usage
and operator requirements.

The assembler interprets and processes these statements,
generating one or more binary instructions or data bytes, or
performing sorne assembly control process. A statement must contain
at least one of these elements, and rnay contain all four. Sorne

statements have no operands, while others may have many.

Statement labels, operators, and operands may be represented
numerically or symbolically. The assembler interprets all symbols
and replaces them with a numeric (binary) value.

Symbols

The progranuner uiay create symbols to use as statement labels, as

operators, and as operands. A symbol may consist of any combination
of from one to six characters from the following set:

The 26 letters: A-Z

Ten digits: O-9
Three special characters:

$ (Dollar Sign)
% (Percent)
. (Period)

These characters constitute the Radix-40 character set (so named

because it contains only 40 characters). Any statement character
which is not in the Radix-40 set is treated as a symbol delimiter
when encountered by the assembler.

The first character of a symbol must not be numeric. Symbols may

also not contain embedded spaces. A symbol may contain more than six
characters, but only the first six are used by the assembler.

The PSA Assembler wíll accept programs written using both upper
and lower case letters and symbols. Lower case letters are treated
as upper case in symbols. Additional special characters and lower
case letters elsewhere are taken unchanged.

PASM: PSA Macro Assembler

Chapter l: Introduction

Labels

A label is the symbolic name created by the programmer to
identify a statement. If present, the label is written as the first
i.tem in a statement, and is terminated by a colon (:). A statement
may contain more than one label, in which case all identify the same

statement. Each label must be followed by a colon, however. A

statement may consist of just a label (or labels), in which case the
label(s) identifies the following statement.

When a symbol is used as a label, it specifies a symbolic
address. Such symbols are said to be defined (have a value). A

defined symbol can reference an instruction or data byte at any point
in the program.

A label can be defined with only one value. If an attempt is
made to redefine a label with a different value, the second value is
ignored, and an error is indicated.

The following are legal labels:

$SUM:

ABC:

Bl23:
WHERE%:

The following are illegal:
30QRT: (First character must not be a digit)
AB CD: (Cannot contain embedded space)

If too many characters are used in a label, only the first six
are used. For example the label ZYXWVUTSR: is recognized by the
assembler to be the same as ZYXWVUABC:.
Operators

An operator may be one of the mnemonic machine instruction codes,

a pseudo-operation code which directs the assembly process, or a user
defined code (either pseudo-op or macro). The assembler pseudo-op
codes are described in Chapter 3 and summarized in Appendix B.

The operator element of a statement is terminated by any
character not in the Radix-40 set (usually a space or a tab). If a

statement has no label, the operator must appear first in the
statement.

A symbol used as an operator must be predefined by the assembler
or the programmer before its first appearance as an operator in a

statement.

Operands

Operands are usually the symbolic addresses of the data to be
accessed when an instruction is executed, the names of processor
registers to be used in the operation, or the input data or arguments

to a pseudo-op or macro instruction. In each case, the precise
interpretation of the operand(s) is dependent on the specific
statement operator being processed. Operands are separated by

3

PASPi: PSA Macro Assembler

Chapter I: Introduction

commas, and are terminated by a semicolon (;) or a carriage
returri/line feed.

Symbols used as operands must have a valued predefined by the
assembler or defined by the programmer. These may be symbolic
references to previously defined labels where the arguments used by

this instruction are to be found, or the symbols may represent
constant values or character strings.

Comments

The programmer may add a comment to a statement by preceding itwith a semicolon (;)· Comments are ignored by the assembler but are
useful for documentation and later program debugging. The comment is
terminated by the carriage return/line feed at the end of the
statement. In certain cases (eg. conditional assembly and macro

definitions), the use of the left and right square brackets ((I)
should be avoided in a comment as it could affect the assembly

process.
An assembler statement may consist of just a comment, but each

such statement must begin with a semicolon.

Statement Processing

The assembler maintains several internal symbol tables for
recording the names and values of symbols used during the assembly.
These tables are:

I. Macro Table - This table contains all macros. It is initially
empty, and grows as the programmer defines macros.

2. Op-Code Table - This table contains all of the machine operation
mnemonics (op-codes), the assembler pseudo-operations
(pseudo-ops), and user defined operators (.OPSYNS). It initially
contains the basic op-codes and pseudo-ops, and grows as the
prograwrner provides additional defínítions.

3. Symbol Table - This table contains all programmer-defined symbols

other than those described above. It initially contains the
standard register names, and then grows as new symbols are
defined.

InternaZly, all of these tables occupy the saíne space, so that all of
the available space can be used as required.

Order of Symbol Evaluation

The following table shows the order in which the assembler
searches the tables for a symbol appearing in each of the statement
fields:

Label Field:
L. Symbol followed by a colon. If no colon is found, no label

is present.

PASM: PSA Macro Assembler

Chapter I: Introduction

Operator Field:
l. Macro
2. Machine operator
3. Assembler operator
4. Symbol

Operand Field:
l. Number
2. Macro
3. Symbol
4. Machine operator

Because of the different table searching orders for each field, the
same symbol could be used as a label, an operator, and a macro, with
no ambiguity.

Prograwmer-Defined Symbols

There are two type of programmer-defined symbols: labels and

assignments. As previously described, labels are generated by

entering a symbol followed by a colon (e.g. LABEL:). Symbols used as

labels cannot be redefined with a different value once they have been

defined. The value of a label is the value of the location counter
at the time the label is defined.

Assignments are used to represent, symbolically, numbers, bit
patterns, or character strings. Assignments simplify the program
development task by allowing a single source program modification
(the assignment statement) to change all uses of that number or bit
pattern throughout the program. Symbols given values in an
assignment statement 'ínay have new values assigned in subsequent

statements. The current value of an assigned symbol is the last one
given to it.

A symbol may be entered into the symbol table with its assigned
value by using a direct assignment statement of the form:

symbol = value {; or CR-LF}

where the value may be any valid nuníeric value or expression.
The value assigned to the symbol may subsequently be changed by

another direct asignment statement.
The following are valid assignment statements:

VALUEI = 23
SIZE = 4*36
ZETA = SIZE

If it is desired to fix the value assigned to a symbol so that itcannot subsequently be redefined, the direct fixed assignment
statement should be used. This statement is the same as the direct
assignínent statement except that the symbol is followed by two equal
signs instead of one. For example:

FIXED == 46
NEWVAL == SIZE

5

PASM: PSA Macro Assembler

Chapter I: Introduction

Assembly-Time Assignments

It is often desirable to defer the assignment of a value to a
symbol until the assembly is actually underway (i.e. not specify the
value as part of the source program). This is especially useful in
setting program origin, buffer sizes, and in specifying parameter
values which will be used to control conditional assembly pseudo-ops.

The PSA Assembler provides the ability to specify symbols with
values to be determined at assewbly time, and the mechanism by which
the values may be interactively defined. To specify an assembly-time
assignment, the following format is used:

symbol =\ {svalue}

where the svalue in braces indicates the optional specification of a
message to be output on the console device at assembly time before
requesting the symbo1"s value. Any valid string value may be

specified, including multi-line values.
After the optional message is output on the console, a colon (:)is output to indicate that the assembler is waiting for the desired

value to be entered. The value which is to be assigned to the symbol

is then input on the console device and the assembly continues with
the symbol having the specified value. This interaction only occurs
during the first assembly pass. The symbol"s value remains unchanged

during subsequent passes.
Only numeric values rnay be entered through the console in this

fashion. The nuuiber which is input uiust conform to the same rules as

any other number used in the assembly source program, and may be

followed by an optional radix modifier (see the section on Numbers

below). The number is assumed to be decimal unless followed by a

radix modifier.
The value being input is not processed until a carriage return is

entered. Any mistyped character may be deleted by the use of the
DELETE (or RUBOUT) key (which will echo the deleted character) or the
BACKSPACE (or CTL-H) key which will backspace over the deleted
character, and the entire number may be deleted by entering CTL-U

(simultaneous use of the CTRL and the U key). Any character which is
input but is not valid as part of a number will be echoed as a BELL
and will be ignored.

The following are examples of assembly-time assignment
statements:

BUFSIZ =\ "BUFFER SIZE (50 TO 500 CHARACTERS)"

DISK =\ "VERSION (O-PAPER TAPE I-DISK)"

Assembly-time assignment statements are similar to direct fixed
assignments (==) in not allowing the symbol to be redefined elsewhere
in the program.

Local and Global Symbols

When assembling a large program, it is sometimes difficult to
keep track of the symbols used for local data references and

branching. To facilitate modular programming, the PSA Assembler

6

PASM: PSA Macro Assembler

Chapter I: Introduction

provides for both global and local symbols within a single program.
All symbols which start with two periods are defined as being local,
and all other symbols are global. For example, the following are
valid local symbols:

..ABCD:

..1234:
00 0 *

A particular occurrence of a local symbol is only defined within the
boundaries of its enclosing global symbols. For example, in the
following sequence of label definitions, the symbol ..SYML is only
defined (and can only be referenced) within the program between the
definition of GLOBI and GLOB2:

0 * 9

GLOB!:

9 0 0

..SYMI:
0 0 0

GLOB2:

0 0 0

This localization of symbol definitions allows the same symbol to be

used unambiguously more than once in the program. It also simplifies
program understandability by immediately differentiating between

local and global symbols.
In addition to labels, any other programwer-defined symbol maybe

specified as local (e·g? macros) in the same manner. Because of the
local usage of these symbols, they do not appear in the symbol table
listing or in the symbol table optionally output to the object file.
External, Internal, and Entry Symbols

Programmer-defined symbols may also be used as external,
internal, and entry point symbols in addition to their appearance as
labels or in assignment statements.

Symbols which fall into one of these three groups are different
from other symbols in the prograrn because they can be referenced by

other, separately assembled, program modules. The manner in which
they are used depends on where they are located: in the program in
which they are defined, or in the program in which they are a
reference to a symbol defined elsewhere.

If the symbol appears in a program in which it is defined, itmust be declared as being available to other programs by the use of
the pseudo-ops .INTERN or .ENTRY, or through the use of the
delimiters """' "="" "=="' or "_\:" in their definition· " » " ? " >

statements. These special delimiters are exactly equivalent to the
sequence:

.INTERN symbol
symbol <de1imiter without colon (:)>

PASM: PSA Macro Assembler

Chapter I: Introduction

In each case, the delimiter is the normal symbol definition operator
(:, =, ==, =\) with an additional colon (:) added to indicate an
internal symbol definition.

If the symbol is located in a program in which it is a reference
to a symbol defined in another program, it must be declared as
external by the use of the .EXTERN pseudo-op, or through the use of
the "//" symbol modifier. This special symbol modifier is appended to
the end of any symbol to declare it external. For example, the
statement:

LXI H,SYMBOL//

is exactly equivalent to:

.EXTERNAL SYMBOL

LXI H,SYMBOL

Numbers

Numbers used in a program are interpreted by the assembler
according to a radix (number base) specified by the programmer, where

the radix way be 2 (binary), 8 (octal), 10 (decimal), or 16

(hexadecimal). The programmer uses the .RADIX pseudo-op to set the
radix for all numbers which follow. If the .RADIX statement is not
used, the assembler assumes a radix of 10 (decimal).

The radix may be changed for a single number by appending a radix
modifier to the end of the number. These modifiers are B for binary,
O or Q for octal, D or . (period) for decimal, and H for hexadecimal.
To specify the hexadecimal digits, the letters A through F are used

for the values 10 through 15 decimal. All numbers, however, inust

begin with a numeral. For exarnple, the following are valid numbers:

10 tO in current radix
10. 10 decimal
IOB !0 binary (2 decimal)
OFFH FF hexadecimal (255 decimal)

The following are invalid numbers:

14B 4 is not a binary digit
FFH the number must start with a numeral

Arithmetic and Logical Operations

Numbers and defined symbols may be combined using arithmetic and

logical operators. The following operators are available:

+ Add (or unary plus)

- Subtract (or unary minus)
* Multiply
/ Integer division (remainder discarded)
@ Integer remainder (quotient discarded)
& Logical AND

! Logical inclusive OR

8

PÁSM: PSA Mácro Assembler

Chapter I: Introduction

^ LogíoaZ exclusive OR (or unary radix change)
// Logical unary NOT

< Left binary shift
> Right binary shift
The assembler cowputes the l6-bit value of a series of numbers and

defined symbols connected by these operators. All results are
truncated to the left, if necessary. Two"s complement arithmetic is
used, with the weaning of the sign bit (the most significant bit)
being left to the programmer. Thís means that a numeric value may be

either between O and 65,535 or between -32,768 and 32,767, depending

on whether it is signed or unsigned.
These combinations of number and defined symbols with arithmetic

and logical operators are called expressions. When evaluating an

expression, the assembler performs the specified operations in a

particular order, as follows:

I. Unary minus or plus (- +)

2. Unary radix change (^B "O "Q ^D ^H)

3. Left and right binary shift (< >)

4. Logical operators (& ! " //)

5. Multiply/Divide (* I)
6. Remainder (@)

7. Add/Subtract (+ -)

"Within each of the above groups, the operations are performed from
left to right. For example, in the expression:

-ALPHA+3*BETA/DELTA&"H55

the unary minus of ALPHA is done first, then DELTA is ANDed with a

hexadecimal 55, then BETA is multiplied by 3, the result of which is
divided by the result of the AND, and finally, that result is added

to the negated ALPHA.

To chaage the order in which the operations are performed,
µarentheses rnay be used to "delimit expressions and to specify the
desired order of computation. Each expression within parentheses is
considered to be a single numeric value, and is completely evaluated
before it is used to compute any further values. For example, in the
expression:

4*(ALPHA+BETA)

the addition of ALPHA to BETA is peformed before the multiplication

Radix Change Operator

The radix change operator is used to temporarily change the radix
in which a following number or expression is to be interpreted. It
is written as an up-arrow (") followed by the radix modifier of the
desired radix. These modifiers are the sarne as those used to specify
the radix of a single number (B-binary, O or Q-octal, D-decimal, and

H-hexadecimal). The radix change only affects the immediately
following number or parenthesized numeric expression. For example,

g

PASM: PSA Macro Assembler

Chapter I: Introduction

all of the following are valid representations of the decimal number
33:

33.
33D
^033

^0(10*3+3)
^D(I0*THREE+THREE)
^DIO*^D3+"D3

but the following is not a representation of decimal 33 if the
prevailing radix is not decimal:

^D3*10+3

because the radix change only affects the value immediately following

it, in this case 3.

Binary Shifting

The binary shift operators (< left, > right) are used to
logically shift a 16-bit value to the left or right. The number of
places to be shifted is specified by the value following the shift
operator. If that value is negative, the direction of the shift is
reversed. For example, all of the following expressions have a value
of 4 decimal:

8>1

1<2
2>-1

One-byte Values

All of the above discussion has been based on the computation of
l6-bit (two byte) numeric values. Many of the Z80 operations require
an B-bit (one byte) value. Since all computations are done as a

l6-bit value, an operation calling for only eight bits will discard
the high order eight bits (the most significant byte) of the value.

If the byte discarded is not either zero or minus one (all one bits),
a warning will be given on the assembly listing.

Character Values

To generate a binary value equivalent to the ASCU representation
of a character string, the single (") or double (") quotation mark is
used. The character string is enclosed in a pair of the quotation
marks. For example, all of the following are valid character values:

"A"
"B"
"AB"

"CD"

10

PASbí: PSA Macro Assembler

Chapter i: Introduction

Note that whichever quotation mark is used to initiate the character
string must be used to terminate it. If the string is longer than
two bytes, it is truncated to the left. Each 7-bit ASCII character
is stored in an B-bit byte, with the high-order bit set to zero.

A character string of this type way be used wherever a numeric
value is allowed.

A single quote may be used inside a string delimited by double
quotes, and vice-versa. If it is necessary to use a single quote

within a string delimited by single quotes, two single quotes must be

used. The same is true for a double quote in a string delimited by

double quotes.

Location Counter Reference

The location counter may be referenced as a numeric 16-bit value
by the use of the symbol . (period). The value represented by . is
always the Location counter value at the start of the current
assembly language stateriient. For example:

JMP .

is an effective error trap, jumping to itself continuously.

Temporary Variables

In addition to named symbols, it is sometimes convenient to be

able to reference assembly time variables by a numeric value or
subscript. The PSA Macro Assembler allows the definition of a single
global assembly time array for this purpose. This array has the
special name "*" and is referenced by "*[subscript]" where subscript
is any valid L6-bit absolute expression with a value between C) and

the number of array elements minus I. This array reference may occur
anywhere a normal symbol or label reference or definition is allowed.
A temporary variable may be assigned any numeric value, either
absolute or relocatable, within the normal l6-bit restríctíon. The

allocation of space for this array is done by the .TEMPS pseudo-op

described later.
For example:

V=5

*[V]=4*V
W=5

MVI A,*[W]+23

String Variables

In addition to being able to assign a numeric value to a symbol,
the PSA Macro Assembler allows a symbol to be assigned a string value
as well. This is done through the .DEFINE pseudo-op in the same
manner in which a macro is defined (see Chapter 4), except that
defined string variables may have no arguments. A string variable
may only be DEFINEd once in a program. String variables may be used
anywhere a string value is called for (eg. the .ASCII pseudo-op).

For example:

11

PASM: PSA Macro Assembler

Chapter l: Introduction

.DEFINE PR0MPT=[>>]

.ASCII "ENTER N1JMBER",PROMPT

Substring Operator

It is sometime desirable to obtain a substring of a given string,
macro argument or string variable. The PSA Macro Assembler provides
that capability through the use of the substring operator "<". The

format for the use of this operator is:

<[s{,L}]dtextd

or

<[s{,l}]svariab1e

where s is a 16-bit expression whose value is the starting character
to be used, and I is an optional L6-bit expression for the length of
the string to use. The first string character is O. If the length
is omitted, the entire rest of the string is used.

The first form uses a delimited string as its string argument.
the d represents a delimiter which may be any character not contained
within the string itself. The string argument starts with the first
character after the delimiter, and terminates with the last character
before the corresponding delimiter. The delimiters are not part of
the string. If the initial delimiter is a left bracket (I), then the
matching delimiter is a right bracket (I). The left and right
brackets are paired, so that intervening pairs of left and right
brackets will not terminate the string.

The second form uses a string variable as its string argument.
For example:

.DEFINE STRNG1=[THIS IS STRING ONE]

.ASCII <[0,I]STRNGL

.ASCII <[5,3j"0l23456789"

The substring operator may also be used in a normal arithmetic
expression in place of a single or double character value. For

example:

MVI A,<[V,lj"0l23456789"

String Length Operator

It is often quite necessary to use the length of a given string
value as a value in an numeric expression. To facilitate this, the
string length operator "@" is provided. It is used by prefixing it
to the front of the string value whose length is desired, and may be
used anywhere an absolute number is allowed. For example:

.DEFINE STRNGI=[THIS IS A STRING]
MESSI: .ASCIZ STRNGL

LXI H,MESSI

MVI B,@STRNGI

12

PASM: PSA Macro Assembler

Chapter I: Introduction

String Values

Many pseudo-ops utilize a generic "string value" argument. A

string value is either a delimited string (see Substring Operator
above), a string variable or a substring operation. For example, all
of the following are valid string values (assuming STRNGL as defined
above):

STRNGL
"THIS IS A STRING"

[THIS IS A [BRACKETED] DELIMITED STRING]

<[0,5]"THIS IS A SUBSTRING"
<[3,2)STRNGI

PAM: PSA Macro Assembler

Chapter 2: Addressing and Relocation

Chapter 2

Addressing and Relocation

Address Assignment

As source statements are processed by the assembler, consecutive
memory addresses are assigned to the instruction and data bytes of
the object program. This is done by incrementing an internal program

counter each time a memory byte is assigned. Some statements may
increment this internal counter by only one, while others could
increase it by a large amount. Certain pseudo-ops and direct
assignment statements have no effect on the counter at all.

In the program listing generated by the assembler, the address
assigned to every statement is shown.

Relocation

The PSA Macro Assembler will create a relocatable object program.
This program may be loaded into any part of memory as a function of
what has been previously loaded. To accomplish this, certain l6-bit
values which represent addresses within the program must have a
relocation constant added to them. This relocation constant, added

when the program is loaded into memory, is the difference between the
memory location an instruction (or piece of data) is actually loaded
into, and the location it was assembled at. If an instruction had

been assembled at location lOó (decimal), and was loaded into
location 1100 (decimal), then the relocation constant would be 1000

(decimal).
Not all L6-bit quantities must be modified by the relocation

constant. For example, the instruction:
LXI H,0OFFH

references a i6-bit quantity (OOFFH) which does not need relocation.
However, the set of instructions:

JZ DONE

0

0

e

DONE:

does reference a l6-bit quantity (the address of DONE) which must be

relocated, since the physical location of DONE changes depending on
where the program is loaded into memory.

To accomplish this relocation, the 16-bit value forming an

address reference is marked by the assembler for later modification
by the loader or linkage editor. Whether a partícular l6-bit value
is so marked depends on the evaluation of the arithmetic expression
from which it is obtained. A constant value (integer) is absolute
(not relocatable), and never modified. Point references (.) are

14

PASM: PSA Macro Assembler

Chapter 2: Addressing and Relocation

relocatable (assuming relocatable code is being generated), and are
always modified by the loader or linkage editor. Symbolic references
way be either absolute or relocatable.

If a symbol is defined by a direct assignment statement, it may

be absolute or relocatable depending on the expression following the
equal sign (=). If the symbol is a label (and relocatable code is
being generated) then it is relocatable.

To evaluate the relocatability of an expression, consider what

happens at load or linkage edit time. A relocation constant, r, must

be added to each relocatable element, and the expression evaluated.
For example, in the expression:

Z = Y+2*X-3*W+V

where V, W, X, and Y are relocatable. Assume that r is the
relocation constant. Adding this constant to each relocatable term,
the expression becowe.s:

Z(r) = (Y+r)+2*(X+r)-3*(W+r)+(V+r)

By rearranging the expression, the following is obtained:

Z(r) = Y+2*X-3*W+V + r

This expression is suitable for relocation because it contains only a

single addition of the relocation constant r. In general, if the
expression can be rearranged to result in the addition of either of
the following, it is legal:

O*r absolute expression
l*r relocatable expression

If the rearrangement results in the following, it is illegal:

n*r where n is not O or I

Also, if the expression involves r to any power other than l, it is
illegal. Thís leads to the following rules:

l. Only two values of relocatability for a complete expression are
allowed (le. n*r where n = O or I).

2. Division by a relocatable value is illegal.
3. Two relocatable values may not be multiplied together.
4. Relocatable values may not be combined by logical operators.
5. A relocatable value may not be logically shifted.

If any of these rules is broken, the expression is illegal and an

error message is given.
If X, Y, and Z are relocatable symbols, then:

X+Y-Z is relocatable
X—Z is absolute
X+7 is relocatable
3*X-Y-Z is relocatable

15

PASM: PSA Macro Assembler

Chapter 2: Addressing and Relocation

4&X-Z is illegal
Only l6-bit quantities may be relocated. All B-bit values inust be

absolute or an error will be given.

Relocation Bases

One of the unique capabilities of the PSA Macro Assembler is its
ability to handle symbolic references to separately located areas of
memory, where the mapping of symbols to physical addresses occurs at
linkage edit time. The symbolic names for independently located
memory areas are called "relocation bases". These relocation bases

inay represent ROM vs. RAM, shared COMMON areas, special memory areas
such as video refresh, memory mapped I/O, etc. Within each

subprogram, each of these mewory areas is referenced by a unique
name, with the actual allocation deferred to the link edit and' load
process. All memory references within the assembled program are
relative to one of these relocation bases.

As each relocation base is assigned a name in the program
(through the use of the .EXTERN pseudo-op), it is implicitely
assigned a sequential identifying number. This number appears in the
listing as part of any address relative to that base.

Four of these relocation bases (0-3) have predefined names and

meanings, and are treated differently at linkage edit time than the
remainder of the bases. Base D represents absolute memory locations
(le. it always has the value of O). Base L has the name .PROG. and

represents the program area (maybe PROM or ROM). Most program code
(and data in non-romned programs) is generated relative to this
relocation base. Base 2 has the name .DATA. and represents the local
data area for each uíodute. Most local data is defined relative to
this base. Base 3 has the name .BLNK. and represents the global
"blank common". This relocation base is always assigned the value of
the first free byte in memory after the local data storage (.DATA.)
and other data relocation segments by the Linkage editor. Because itis always the last allocated, modules referencing this area can be

included in any order, regardless of the amount of the area they use.
Relocation segments relative to bases I and 2 (.PROG. and .DATA.)

are always allocated additively (íe. after each module is allocated,
the value of the relocation base is increased by the size of the
segment). All other relocation bases are normally assumed to have

constant values during the allocation process (usually assigned by

the linkage editor).
Each symbol defined during the assembly has a relocation base

associated with it. There are no limitations on inter-base
references (le. code relative to .PROG. can freely reference data
relative to .DATA.). Expressions containing symbols must evaluate to
a value relative to a single relocation base, but may contain
references to multiple relocation bases. All relocation base

references except for the final result must be part of
sub-expressions which evaluate to absolute values. For example, if T

and U are symbols relative to base I, V and W relative to base 2, and

X and Y relative to base 3, then the following are valid expressions:

16

PASM: PSA Macro Assembler

Chapter 2: Addressing and Relocation

T+(V-W) (note the parentheses to make V-W

a subexpression)
X+3

T-(V-W)*U+(X-Y)

and the following are invalid:

T+U (within a relocatiori base, the
normal relocation rules apply)

T-l-V-W (T-l-V is the first subexpression,
and it is mixed relocation bases)

It should be noted that conceptually, normal external symbols are
simply relocation bases with a size of zero (O), and the assembler
treats them that way. An assignment of the form:

N==P+5

where P is an external symbol, makes N a symbol whose address is
relative to P, even though P has no size. Hence, expressions of the
form:

5*(P-N)

where P and N have the same relocation base, are in fact valid.

17

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

Chapter 3

Pseudo-Operations

Pseudo-operations (pseudo-ops) are directions to the assembler to
perform certain operations for the programmer, as opposed to machine

operations which are instructions to the computer. Pseudo-ops

perform such functions as listing control, data conversion, or
storage allocation.
Address MOde and Origin

The PSA Macro Assembler normally assembles programs in
relocatable mode, so that the resultant program can be loaded
anywhere in memory for execution. Therefore, all programs are
assembled assuming their first byte is at address zero (O), because

they can be relocated anywhere. When desired, however, the assembler
will generate absolute object code, either for the entire program, or
just selected portions. The assembler will also locate the assembled
code at any address desired. The two pseudo-ops which control
address mode, relocation base and address origin are .LDC and .RELOC.

.LOC n

This statement sets the location counter to the value n, which
may be any valid expression. If n is an absolute value, then the
assembler will assign absolute addresses to all of the instructions
and data which follow. If n is relocatable, then relocatable
addresses will be assigned, relative to the relocation base of the
expression.

The program is assumed to to start with an implicit .LOC to
relocatable address zero (O) of the relocation base named .FROG.

(the default relocation base for normal programs). Él program can

contain wore than one .LDC, each controls the assignment of addresses
to the statewents following it.

To reset the program counter to its value prior to the last .LDC,

the statement:

.RELOC

is used. This statement restores both the value, the relocation base

and the addressing mode which were in effect before the immediately
preceding .LDC. If no .LDC has been done, then a .RELOC is
equivalent to a:

.LDC O

When in relocatable addressing mode, the assembler will determine
whether each I6-bit value is absolute or relocatable as described in
Chapter 2.

18

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

Data Definition
The PSA Macro Assembler provides a number of different pseudo-ops

for describing and entering data to be used by the program.

.RADIX
When the assembler encounters a number in a statement, it

converts it to a l6-bit binary value according to the radix
indicated by the programmer. The statement:

.RADIX n

where n is 2, 8, ID, or 16, sets the radix to n for all numbers

which follow, unless another .RADIX statement is encountered, or
the radix is modified by the "r operator or a suffix radix
modifier.

The statement:

.RADIX 10

implicitly begins each assembly program, setting the intial radix
to decimal.

.BYTE
To enter one (or more) B—bit (one byte) data values into the

program, the statement:

.BYTE {[r]}n {, {[r]}n ·..}
where r is an optional repeat count which can be any 16-bit value
(including O) and n is any expression with a valid B-bit value,
is used. More than one byte can be defined at a time by

separating it from the preceding value with a comma. All of the
bytes defined in a single .BYTE statement are assigned
consecutive memory locations. For example:

.BYTE 23,4*^HOFF,BETA-ALPHA,[5]0

defines three sequential bytes of data.

.WORD

To enter a l6-bit (two byte) value into the progratn, the
statement:

.WORD nn {, nn ...}
where nn is any expression with a valid l6-bit value, is used.
Multiple l6-bit values may be defined with one .WORD statement by

separating each from the preceding one with a comma.
All í6-bit values defined by the .WORD pseudo-op are stored

in standard Z80 word format, least significant byte first.
For example, the following statement:

19

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

.WORD ALPHA,234'U3ETAJHOEEFF

defines three sequential l6-bit values, or a total of six 'bytes
of data.

.ASCII, .ASCIZ, and .ASCIS

To enter strings of text characters into the program, one of
the stateuients:

.ASCII s
l [n]

.ASCIZ s
l [n]

.ASCIS s
I [II]

is used. The s represents any valid string value. Each

character in the text is converted to its 7-bit ASCII

representation (with the eighth bit zero), and stored in
sequential memory locations. The string value may be followed by

another string value (seperated by an optional comma), and this
may be repeated as desired.

If it is necessary to include values in the text string for
which no character exists, then the second option shown above may
be used. If in place of a string value, the assembler finds a

left square bracket (I), then the numeric expression enclosed
within it and a matching right square bracket (I) is evaluated as
an B-bit value and stored as the next byte of the string. These

B-bit values may be intermixed with stríng values as required
(optionally seperated by commas). Note that this precludes the
use of bracketed delimited strings as string values in these
statements.

It is important to note that tab, carriage return, and line
feed are all valid characters within a string value. It is
therefore possible that a .ASCIX statement will encompass more
than one line in the source program.

The difference between the three pseudo-ops described above

is in their treatment of the last byte generated by the
statement. The .ASCII statement just stores the byte. The
.ASCIZ statement stores one additional byte after the last one, a

null (zero) byte to mark the end of the string in memory. The

.ASCIS pseudo-op sets the high-order (eighth) bit of the last
byte to one to flag the last byte.

The following are all valid .ASCIx statements:

.ASCII /This is a string/

.ASCIZ /This is two/ " strings in one place"

.ASCIS [^H0D] [^H0A] "Message on new line"

.ASCII \
Message on new line\
.ASCII PNAME .string variable plus string.
.ASCIZ <[2,B]"substring expression"

.RAD40
The Radix-40 character set for symbols was chosen because it

allows a six character symbol to be stored in only four bytes of
memory. To allow the program to define data bytes in this

20

PASN: PSA Macro Assembler

Chapter 3: Pseudo-Operations

character set, the statement:
.

.RAD40 symboll {, symbo12 ...}
is used. The symbol must conform to all the rules specified for
assembler symbols, and is converted into the Radix-40 notation
and stored in four sequential bytes of memory. If multiple
symbols are to be converted and stored, each must be separated
from the preceding one by a comía.

Storage Allocation

The PSA Macro Assembler allows the programmer to reserve single
locations, or blocks of many locations, for use during the execution
of the program. The two pseudo-ops used for this purpose are .BLKB

and .BLKW. The format of the statement using these pseudo-ops is:

.BLKx n

where n is the number of storage locations to be reserved.
For the .BLKB pseudo-op, each storage location consists of one

byte, so the above statement will reserve n contiguous bytes of
memory, starting at the current location counter. The .BLKW

pseudo-op uses a word (two bytes) as its storage unit, so the above

statement would reserve n words, or two times n bytes of contiguous
memory.

For exampLe, each of the following statements reserves 24

(decimal) bytes of storage:

.BLKB 24.

.BLKW ^Dl2

.BLKB 2*12.

Temporary Variables

The PSA Mácro Assembler allows the allocation of temporary
variable arrays for use during the assembly process. These arrays
may be used. both on a global basis, and within macro expansions. The

use of these arrays in each of these contexts is described elsewhere
iri this manual. The actual allocation of space for these arrays is
done usírig the .TEMPS pseudo-op. The format of this statement is:
.TEMPS n

where n is a i6-bit value specifying the number of array elements to
allocate.

This statement may appear anywhere in the program, and may be
used more than once. In either context (global or macro), the
reappearance of the statement results in the reallocation of the
array space. A value of zero results in the freeing of all allocated
space. This space allocation is dynamic, and the freed space may be
used by other parts of the assembly process.

21

PASM: PSA Mácro Assembler

Chapter 3: Pseudo-Operations

Program Termination

Every program must be terminated by a .END pseudo-op. The format
of this statement is:
.END start
where start is optional an starting address for the program. The

starting address is normally only necessary for the main program.
Subprograms, which are called frotn the wain program, need no starting
address.

When the assembler encounters the .END pseudo-op during pass ! of
the assembly, it initiates pass 2 of the assembly. On a listing
pass, the .END pseudo-op initiates the printing of the symbol table
(if not suppressed by a prior .XSYM pseudo-op). On a object
producing pass, the .END pseudo-op output the EOF record to the
object file.
Subprogram Linkage

Programs usually consist of a wain program and numerous
subroutines which communicate with each other through parameter
linkages and through reference to symbols defined elsewhere in the
program. Since the PSA Macro Assembler provides the means for the
various program components to be assembled separately from each

other, the linkage editor (which finally puts the pieces together)
must be able to identify those symbols which are references (or
referenced) external .to the current program For a given subprogram,

these "linkage" symbols are either symbols defined internally which
must be available to other programs to reference, or symbols used

internally but defined externally to the program. Symbols de'fined
within the program but available to other subprograms are called
"internal" symbols. Symbols used internally but defined elsewhere
are called "external" symbols.

To set up these linkages between subprograms, four pseudo-ops are
provided: .IDENT, .EXTERN, .INTERN, and .ENTRY.

The .IDENT statement has the format:

.IDENT symbol

where symbol is the relocatable module name. This name is used by

the linkage editor to identify the module on memory allocation maps,
and to allow the selective loading of the module if it is part of a
subprogram library. If the .IDENT statement does not appear in a

program, the nane ".MAIN." is asstuned. The .IDENT name appears at
the top of every listing page, and is displayed on the console at the
start of the second assembly pass of that module.

All three remaining statements have the same format:

.EXTERN symboll {, symbol2 ...}

.INTERN symboll {, symbol2 ...}

.ENTRY symboll {, syrnbo12 ...}

22

PASbí: PSA Éíácro Assembler

Chapter 3: P"eudo-Operations

where syriiboll is the symbol being declared as external, internal, or
as an entry point. Multiple symbols may be declared in the same

statement by separating each from the preceding one with a comma.
The .EXTERN statement identifies symbols which are defined

elsewhere. External symbols must not be defined within the current
subprogram. External symbols ínay be used in the same manner as any

other relocatable symbol, with the following restrictions:

l. The use of more than one external symbol in a single expression
is illegal. Thus V+W where V and W are both external is illegal.

2. Externals way only be additive. Therefore the following
expressions are illegal (where V is an external symbol):

-V
2*V

SQR-V
2*V-V

3. The final evaluation of the expression containing the external
reference must result in external symbol + (or —) constant value.
Furthermore, if this expression is used as an B-bit (byte) value,
the constant must be between -128 and +255 or an error will
result.
SywboLs deciared as external by the .EXTERN pseudo-op may also be

used as relocation bases. This is done by using an external symbol

as the argument to a .LOC pseudo-op. All memory allocated by the
assembler after the .LDC will be addressed relative to the specified
relocation base. The most common use of this capability is the
declaration of COMMON blocks for the sharing of data between

assembler arid FORTRAN subprograms. All named COMMON blocks are in
fact just different relocation bases. Symbols used as relocation
bases have unique values during the assembly of the program module.
At any point in time, the current value of the relocation base symbol

is the number of bytes which have been allocated to that base so far.
This means that subsequent .LDC pseudo-ops referencing the same
external syiíbol will start the memory allocation at the next
available byte in that relocation base, not at relative location zero
(O).

There are three predefined relocation base symbols: .PROG.,
.DATA. and .BLNK.. These relocation bases are used for the program
code, seperately located data (in a ROM/RAM environment), and blank
(unnamed) common respectively.

The .INTERN pseudo-op identifies those symbols within the current
subprogram which are to be made accessible to other programs as
external symbols. This statewent has no effect on the assembly

process for the current program, but merely records the name and

value of the identified symbols on the object tape for later use by
the linkage editor. An internal symbol must be defined within the
current program as a label, or in a direct assignment statement.

The .ENTRY pseudo-op functions identically to the .INTERN
pseudo-op, with one addition. It is sometimes desirable to put many
subroutines with common usage into one "library", and to allow the
linkage editor to select only those programs from the library which

23

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

are called by the program being linkage edited.
The .ENTRY statement, in addition to functioníng as a .INTERN

statement, also flags the specified symbols as prograw entry points.
If the subprogram is later put into a library, this will specify to
the linkage editor that this program is to be included only if one of
its entry points is referenced as an external symbol by an already
included program.

Since these entry points are external to the program referencing
them, they must be listed in a .EXTERN statement in the calling
program.

Program Identification

To facilitate the identification of various program modules

manipulated by the programmer, the PSA Macro AsseInbler provides a
unique program identification capability. The format of the
pseudo-op controlling this feature is:
.PROGID id,ver,rev
where id is any valid assmbler symbol uniquely identifying the
program module, ver is an B-bit value specifying the program version,
and rev is an B-bit value specifying the program revision. This
information is ouput to the object file in a special identification
record which has no effect on the linkage edit process (as opposed to
the .IDENT pseudo-op). The information provided by this pseudo-op is
listed on the map listing presented by the linkage editor so as to
identify which particular module was actually used in the linkage
process.

Listing Control

Program listings are printed on the list device during the second
asembly pass if enabled. The listing is printed as the source
program statements are processed during the pass. The standard
listing contains (from left to right):

l. Error flags (if present).
2. Location counter for the first byte generated by this statement.
3. Instruction or data in hexadecimal (maximum of six bytes per line

printed).
4. Exact linage of the input statement.

The standard listing displays all 16-bit quantities in 16-bit (two

byte), most significant byte first, format. These quantities are
properly reversed in the object code as required by the Z80. A

l6-bit relocatable address relative to the .PROG. relocation base is
flagged with an apostrophe ("), one relative to the .DATA. relocation
base is flagged with an asterisk (*), and all others are followed by

the assigned number of their relocation base.
All B-bit (byte) quantities are displayed as B-bit (byte) values

except when relative to an external symbol (or relocation base), in
which case they are followed by the assigned number of the external
or relocation base.

24

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

Within a macro expansion, only the macro call and those
statements which generate actual object code are normally listed.

If a single statement generates more than the maximum of five
bytes that can be listed on a single line, the remaining bytes are
properly generated, but not normally listed.

A listing always begins at the top line of the page, and 60 lines
are printed per page, with a two line margin at the top, and a two

line margin at the bottom. Each page is numbered, and can have an
optional title and sub-title.

The standard listing options can be changed and expanded by the
use of the following pseudo-operations:

.PAGE w {, L} This statement controls the page width and length
used for the assetnbly Listing. The width is ut, any
B-bit value, and the optional length is I, also an
B-bit value. This change takes effect immediately.

.PAGE This statement causes the assembler to skip to the top
of the next page (by counting lines). A form feed
character in the input text will have the same effect.

.XLIST This statement causes the assembler to stop listing the
assembled program at this point.

.LIST This statement is normally used following a .XLIST to
resume program listing.

.TALL This statement causes the assembler to list everything
which is processed. This includes all text, macro
expansions, and all other statements normally
suppressed in the standard listing.

.XALL This statement is normally used following a .LALL to
resume the norrnal listing.

.SALL This statement causes the suppression of aLL macro
expansions and their text. It can be reset by a
subsequent .LALL or .XALL.

.XSYM This statement suppresses the symbol table listing
normally performed upon encountering the .END

statement.

.LSYM Normally not used, this statement enables the listing
of the symbol table previousty suppressed by the .XSYM
pseudo—op.

.LADDR This statement causes the assembler to list all l6-bit
quantities in the same order it generates them in the
object code (least significant byte first).

.XADDR Normally used following a .LADDR statement, this
staternent resumes the normal listing of !6-bit
quantities in non-swapped format.

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

.LIMAGE This statement causes the assembler to list every byte
generated, even if more than one line (at six bytes per
line) is required. In this mode, the assembler will
attempt to split the input source statement to indicate
which part of the statement is generating which bytes.

.XIMAGE Normally used following a .LIMAGE statement, this
statement resumes the normal listing of only six bytes
of generated data per statement.

.LCTL This statement causes all subsequent listing control
statements (eg. .XIÁST) to be Listed themselves.
Normally, no listing control statement is itself
listed. The .XCTL pseudo-op is used to reset this
option.

.XCTL ' Normally used following a .LCTL statement, this
statement resmes the default suppression of the
listing of listing control statements.

.SLIST This statement causes the current listing control flags
to be saved on a four element push-down stack. The

current flags settings remain unchanged. These setting
may later be restored with the .RLIST pseudo-op. This
pseudo-op may be followed on the same line with another
listing control pseudo-op, which will take effect prior
to the listing of the .SLIST statement.

.RLIST This statement restores the listing control flags from
the top element of the .SLIST push-down stack. These

new flags take effect with the statement following the
.RLIST.

.TITLE svalue This statement defines the string value to be the

title to be printed at the top of every page of the
listing. The actual text of the title must be no
longer than 72 characters. If the .TITLE pseudo op is
the first statement on a page, then the new title will
be printed at the top of that page.

.SBTTL svalue This statement defines the string value to be the
sub-title to be printed at the top of every page of the
listing. It follows the sanie rules as the .TITLE

pseudo-op.

.REMARK svalue This statement inserts a remark into the listing.
The string value can be any number of lines long.

.PRNTX svalue This statement, when encountered, causes the
string value to be typed on the console. This
statement is frequently used to print out conditional
information, and to report the progress through pass I
on very long assemblies.

26

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

object Control

The PSA Macro Assembler normally produces an object file in the
TDL Standard Relocatable Format (see Appendix D). However, the
assembler can produce an object file compatible with the INTEL

Standard Absolute Hex Format. To control which format is being
produced, the two pseudo-ops .PREL and .PABS are used. The .PABS

pseudo-op causes the assembler to produce an INTEL compatible file
for all following generated code. The .PREL causes the assembler to
return to producing a TOL Format file.

Every program starts with an implicit .PREL pseudo-op.
In addition, the assembler can output the object file in both

binary and ASCII. To control which type of output is being produced,
the two pseudo-ops .PBIN and .PHEX are used. The .PBIN pseudo-op

causes the assembler to produce a binary output in the current
format. The .PHEX pseudo-op causes the output of an ASCII file.
Every program starts with an implicit .PHEX pseudo-op.

To control the generation of linkable object modules, two
pseudo-ops are provided. The .LINK pseudo-op indicates that Linkage
information is to be included in the object file produced. The
.XLINK pseudo-op inhibits this information from being output. Every

program starts with an implicit .XLINK pseudo-op.
The PSA Macro Assembler provides one additional facility to

assist the PSA Z80 Debugging System (BUG). At the programmers
option, the assembler will output all of the global (non-local)
symbols in the program module into the end of the object file. For
each symbol, the assembler also punches its relocation base and its
value relative to that base. Two pseudo-ops are provided to control
this symbol table output. The .PSYM pseudo-op enables the output,
and the .XPSYM pseudo-op disables it. The default is to not output
the symbol table (.XPSYM).

Conditional Assembly

Parts of a program inay be assembled on a conditonal basis
depending on the results of certain tests specified to the assembler
through the use of the .TFX pseudo-op.

The general form of the pseudo-op is:

.IFx arg,[true text] ··· {[false text]}
where the text within the first square brackets is assembled only ifthe specified test on the argument is TRUE, and the optional text
within the second set of brackets is assembled if the condition is
false. Any number of spaces or blank lines (or linés with only
comments) may seperate the true and false texts.

The square brackets around the true text may be omitted if there
is no false text, and the entire true text is contained on the same
line as the .IFx pseudo-op.

The first set of conditions which can be tested are the numeric
value of the argument. These pseudo-ops are listed below:

.IFE n,{...] TRUE if n=O or n=blank

.IFN n,[...] TRUE if n<O or n>O

27

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

.IFG n,[...] TRUE if n>O

.IFGE n,[...] TRUE if ri>O or n=O

.IFL n,[...] TRUE if n<O

.IFI.E n,[...] TRUE if n<O or n=O

The following .IF pseudo-ops test for whether the assembler is
processing pass.l or not:

.IFI ,[...] TRUE if it is pass l

.IF2 ,[...] TRUE if it is not pass 1

The next set of conditionals tests for whether a symbol has been

defined yet or not:

.IFDEF symbol,[...] TRUE if the symbol is defined

.IFNDEF symbol,[...] TRUE if the symbol is undefined

The next set of .IF pseudo-ops tests to see whether its string
value argument is blank or not. The format is as follows:

.IFB s,[...] TRUE if s is blank

.IFNB s,[...] TRUE if s is not blank

The string value is blank if it is empty, or consists only of spaces
and tabs.

The last pair of conditionals operate on string values. They

take two string value arguments and make a character by character
comparison of the two strings to determine if the condition is met.
The format of these conditionals is as follows:

.IFIDN SI S2,[...] TRUE if sI identical to s2

.IFDIF sI s2,[...] TRUE if.sl different from s2

The maximum length of the strings to be compared is 255 characters.
In making the comparison, all trailing blanks and tabs are ignored in
the two arguments.

Synonyms

It sometimes becomes useful, for documentation or ease of
programming, to define new names for already existing symbols. The

PSA Macro Assembler has four pseudo-ops which allow the definition of
synonyms for already defined symbols. The format of these pseudo-ops

is:
.xxSYN symbol1,symbol2

The four pseudo-ops are .SYN, .OPSYN, .SYSYN, and .MASYN. The only
difference between the four is that the latter three limit the type
of symbol for which the synonym is being defined.

The statement above defines the second operand as being
synonymous with the first operand. In the case of the .SYN

pseudo-op, the symbol tables are searched for the first operand in

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

the order: programmer defined symbol, macro, operatíon. The .OPSYN

pseudo-op limits the search to operations, the .SYSYN to programmer

defined symbols, and the .MASYN to macros. The second operand is
defined to be identical to the first operand at the time the synonym

is defined. Later changes to the first operand will not affect the
second.

The following are valid synonym definitions:

.OPSYN .BYTE,DB

.SYN .WORD,DW

.SYSYN ALPHA,BETA

.SYN A,RI

object Machine Validation

Although the PSA Macro Assembler will run only on a Z80

compatible processor, it can obviously be used to generate object
code for any of the 8080 compatible micro-processors. T(j facilitate
the use of the assembler for this purpose, two additional pseudo-ops

are available: .18080 and .Z80.
The .18080 pseudo-op causes all subsequent uses of machine

operations which are unique to the Z80 (and hence unavailable on the
8080) to be flagged with a Z warning message. Such uses will be

properly assembled however.
The .Z80 pseudo-op (which is the default) disables the feature so

that no further Z warnings will be given.

Library File Generation

It is often desirable to maintain a related set of independent
object modules as a single source and object file for later use with
the library search facility of the PSA Linkage Editor (LINK). To

facilitate this the .PRGEND pseudo-op can be used. The format is:
.PRGEND

This pseudo-op functions identically to the .END pseudo-op, except
that, after completing the assembly of the current module, the
assembler continues with another module following. Multíple modules
assembled in this manner from a single source file produce a single
object file which can be linked in library search mode, and a single
listing. Each module assembly is completely independent however.
The last module in the source file must be terminated by a .END

pseudo-op, not a .PRGEND.

Library Source File Usage

It is often convienent to be able to utilize the same section of
assembler source code in a number of different assemblies. The
.INSERT pseudo-op allows this to be done easily. The format is:
.INSERT {d: }file{.ext}

29

PASM: PSA Macro Assembler

Chapter 3: Pseudo-Operations

where d is the optional PIJOS disk specifier (defaulting to the source
file disk), file is the desired file name, and ext is the optiorial
file extension (defaulting to ASM).

This pseudo-op causes the specified file to be copied into the
assembly in its entirety, and to be treated exactly as if it were

part of the original source file. All inserted source is flagged
with an "@" on the listing. Only one level of .INSERT is allowed,
they cannot be nested.

This pseudo-op will generate an "F" error if the file is not
found, incorrectly specified, or if an .INSERT is already in
progress.

Date and Time Reference

It is often desirable to include the date and time of assembly in
the text of various messages within a program. The PSA Macro
Assembler allows this through the addition of two new pseudcj-ops.
These are: .DATE and .TIME. These pseudo-ops take no arguments.
They simply cause the generation of the specified ASCII string at
that location in the program. For date, it is MM/DD/YY, and for
time, it is HH: MM:SS. Each pseudo-op generates 8 bytes of
information. If these pseudo-ops are used on a PODS compatible
operating system which does not support time and/or date, then 8

bytes of spaces will be generated by the pseudo-op.

30

PASM: PSA Macro Assembler

Chapter 4: Yacros

Chapter 4

Macros

A common characteristic of assembly language programs is that
many coding sequences are repeated over and over with only a change

in one or two of the operands. It is convenient, therefore, to
provide a mechanism by which the repeated sequences can be generated
by a single statement. The PSA Macro Assernbler provides the
capability to do so by allowing the repeated sequences to be written,
with dummy values for the changed operands, as a macro. A single
statement, referring to the macro by name and providing values for
the dummy operands, can then generate the repeated sequence.

Macro Definition

A macro is defined by use of the .DEFINE pseudo-op. This is
followed by the symbolic name of the macro. The macro name must

follow the rules for the construction of symbols. The name may be

followed by a list of dummy arguments enclosed in square brackets.
The dummy arguments are separated by commas, and may be any symbol

which is convenient. Following the macro name and optional dummy

arguments must be an equal sign (=). The fio1lowíng are exaznples of
the heading part of a macro definition:
.DEFINE MACRO =
.DEFINE MOVE[A,B] =
.DEFINE BIGMAC[ARGI,ARG2,ARG3,%ARG5] =

Following the macro definition header comes the body of the
macro. It need not start on the same line as the definition header.
The body of the macro is delimited by a matched pair of left and

right square brackets (II). For example:

.DEFINE MOVE[A,B]=
[LDA A
STA B}

Macro Calls

A macro may be called by any statement. A macro call consists of
the macro name followed (optionally) by a list of arguments. The

arguments are separated by commas, and may optionally be enclosed in
left and right square brackets (II). If the brackets are used (the
first non-blank/non-tab character after the macro name is a left
square bracket), then the arguments are terminated by a right square
bracket. If there are n dummy arguments in the macro definition,
then all arguments after the first n are ignored (although they do

take space and time to process). If the brackets are omitted, the
arguwent string ends when a carriage return or semicolon is
encountered.

The arguwents must be written in the order in which they are to

31

PASM: PSA Macro Assembler

Chapter 4: Macros

be substituted for the dummy arguments. The first argument is
substituted for each appearance of the first dummy argument, the
second for the second, etc. The actual arguments are substituted as
character strings for the dummy arguments, no evaluation of the
arguments takes place until the macro is processed.

Referring to the definition of MOVE above, the occurrence of the
statement:

MOVE ALPHA,BETA

wiLl cause the substitution of ALPHA for A and BETA for B in the
macro.

Statewents which contain macro calls may be labelled and have

comments like any other statement.
Macro argurnents are terminated only by comma, carriage return,

semicolon, or right square bracket (when started by left square
bracket). These characters may not be used in the arguments unless
the argument is enclosed in parentheses. Each time an argument is
passed to a macro, one set of matched parentheses is removed, but all
of the characters within the parentheses are substituted for the
dummy argument in the macro. Trailing spaces and tabs at the end of
a macro argument (not enclosed in parentheses) are ignored.

A substring expression may be used as an argument to a macro, and

if not enclosed in paretheses, will be evaluated before the macro is
called.

Macros do not .need to have arguments. The macro name (and

arguments if any) 'may appear anywhere in a statement where a symbol

would normally appear, and the text of the macro exactly replaces the
macro name and its arguments in that statement.

Comments

Comments may be included within a macro definition. Storing the
comments with the macro (so that they will appear when the macro is
expanded) takes space however. If the comment within the macro

definition is preceded by two semicolons (instead of the normal one),
the comment will be ignored during the definition of the macro, and

will not be stored as part of the definition. This will eliminate
the appearance of the comment every time the macro expansion is
listed, however.

Created Symbols

When a macro is called, it is often useful to generate symbols

without explicitly stating them in the call. A good example of this
is labels within the macro body. It is usually not necessary to
refer to these label externally to the macro expansion, therefore
there is no reason why the programmer should be concerned as to what

those labels are. The same with temporary data areas. To avoid
conflicts, however, it is necessary that a different symbol be used

each time the macro is called (even with local symbols, the macro

could be called more than once between two global symbols). Created
symbols are used for this purpose.

Each time a macro that requires a created symbol is called, a

32

PASM: PSA Macro Assembler

Chapter 4: Mácros

symbol is generated and inserted into the macro. These symbols are
of the form ..nnnn (two periods followed by four digits). It should
be noted that this makes these symbols local symbols (start with two

periods). The programmer is advised not to use symbols of this form.
The four digits start at 0000 and are incremented by one each time a
symbol is created.

A created symbol is specified in the macro definition by

preceding a dummy argument by a percent sign (%). When the macro is
called, all dummy arguments of the form %symbol are replaced by

created symbols (each with a different one). IE, however, the
position of the dummy argument in the argument list corresponds to an

actual argument provided in the call, then the actual argument is
used in place of the created one.

An actual argument can in fact be empty (signified by two

consecutive commas in the argument list). An argument of this kind
(a "null" argument) is considered to be "defined as having a value of
the empty string (no characters), and will prevent the generation of
a created symbol for its corresponding dummy argument.

For example:

.DEFINE PRINT{A,%B}=
[CALL LINPRT

JMP %B

.ASCIS \A\
%8:]
This macro prints a message on the printer. The first argument to
the macro is the text string to be printed. LINPRT is a line printer
routine. Labelling the location following the text is necessary
because of the indeterminate length of the message. The use of a
created symbol here is useful since there would normally be no reason
to reference the label. Calling the macro by:

PRINT This is the message

would result in printing "This is the message" when the assembled

macro was executed. If it had been called:

PRINT This is the message,MAIN

the message would have been printed, but control would be transfered
to the label MAIN, which substituted for %B instead of a created
symbol.

Concatenation

The apostrophe or single quote (") is defined within a macro
definition as the concatenation operator. This allows a macro
argument to be only part of a symbol or expression, with the
character string which is substituted for the dummy argument being
joined with other character strings that are part of the macro
definition to form a complete symbol or expression. This joini.ng is
called concatenation. Concatenation is performed by the assembler
when an apostrophe is used between the strings to be joined (one or

33

PASM: PSA Macro Assembler

Chapter 4: Macros

both of which must be a dummy macro argument). For example:

.DEFINE BR[A,B]=
[JR"A B]

defines a conditional branch statement. When called, the argument A

is appended to the JR to form a single symbol. If the call were:
BR Z,LOOP

then the generated code would be:

JRZ LOOP

Default Arguments

Normally, missing arguments in a macro are replaced by nulls.
For example, in the macro:

.DEFINE BYTES[AI,A2,A3,A4,A5,A6]=
[.BYTE A1,A2,A3,A4,A5,A6]

a call of BYTES[I,2] would generate an error because of the missing
arguments to the pseudo-op .BYTE.

To remedy this, the assembler provides the programmer with the
means to supply default arguments to be used when no argwnent is
provided in the macro call. Default argument are defined as part of
the macro definition by enclosing them in parentheses and inserting
them immediately after the dummy argument to which they refer. To

solve the above problem, the definition would be written as:

.DEFINE BYTES[AI(O),A2(0),A3(0),A4(0),A5(0),A6(0)]=
[.BYTE AI,A2,A3,A4,A5,A5]

which would always generate six bytes of data, regardless of how many
arguments were provided in the call.
ASCII Interpretation of Numeric Arguments

If the reverse slash (\) preceeds the first character of an
argument in a macro call, the value of the expression following the
reverse slash is converted to an ASCII string. This string is then
used as the argiment to the call. The value is considered to be a

!6-bit positive value, and the conversion is done in the current
radix. Leading zeros are suppressed unless the value is zero.

For example:

V = 5

W = 6

MACRO \V+W, \V*W

is the same as:

34

PASM: PSA Macro Assembler

Chapter 4: Macros

!4ACRO li, 30

if the current radix is LO.

Mácro Expansion Termination

Under normal conditions, a macro expansion terminates at the end

of the macro definition. It is sometimes desirable to terminate the
macro expansion prior to the end of the definition. This is usually
done as part of some conditional assembly within the macro. A

special pseudo-op is provided for this purpose:

.EXIT

When processed by the assembler, the .EXIT pseudo-op immediately
terminates the rrtacro expansion, just as if the end of the macro had

been encountered. Only the current expansion is terminated if
multiple macro expansions are being nested.

User Defined Macro Errors

It is sometimes desirable to have a macro cause an assembly

error. This might be done when invalid parameters are passed to the
macro, or if parameters are missing. A special pseudo-op is provided
to allow this:
.ERROR string value

This pseudo-op will cause an asterisk (*) to be listed as the error
code, the error count to be incremented by one, and the line to be

listed as an error. The string value is treated exactly as in a
.REMARK pseudo-op, and can be used to provide information about the
nature of the error.

Nesting

Macros may be nested. This means that macros may be both called
and defined within other macros. A macro that is defined within
another macro may not be called until the defining macro has been

called. At that time, the new macro is available to be called by any

statement.
The only limit to how many levels deep macro calls and

definitions may be nested ís the amount of memory available.

Macro Labels and Branching

It is quite often desirable to process different parts of the
macro definition depending on certain conditions, or to repeatitively
process one part over again. To provide for both abilities, macro
labels and branches are provided.

A macro label is specified in the same manner as a normal label,
except that it is followed by a right angle bracket (>) instead of a
colon (:). There may be multiple macro labels per line, and a macro
label may exist on a line by itself. Macro labels have no effect on

PASM: PSA Macro Assembler

Chapter 4: Macros

the assembly of the macro unless explicitely referenced by a macro
branch pseudo-op.

A rnacro branch pseudo-op is specified as follows

.GOTO m1abe1

where mlabel is a macro label defined within the current macro

definition. When encountered during the assembly process, the
specified macro label is searched for, and if found, the assembly

process continues from that point in the macro text. The search
begins at the start of the macro text, so both forward and backward

branches are allowed. If the macro label is not found, an error is
given, and the macro expansion is terminated. To specifiy
conditional branching, the macro branch pseudo-op is used within a

single-line conditional statement.
For example:

1=0
MLABEL>

.WORD ARGI

.BYTE ARG2

1=I+l
.IFL I-ARG3,.GOTO MLABEL

would assemble the specified sequence ARG3 times.

Local Temporary Variables

It is often desirable to have available local symbols to store
numeric values during the expansion of a macro. The PSA Macro
Assembler provides local temporary variables for this purpose. Local
temporary variables function similarly to the global variable array
described earlier. The nimber of local array elements is specified
through the .TEMPS pseudo-op. These local elements are specific to
the current macro expansion only. If the macro is expanded

recursively, new locations will be used, and all old values will be

preserved. As long as a given expansion is active, its locals are
preserved. Once an expansion is terminated, all space utilized by

its local variables is available to other macros. References to
local variables are wade using the format "![sub]". The rules
governing these Locals are the same as for the globals. They may be

used as symbols and as labels. It is important to note, however,
that all local variables are initialized to a value of absolute zero,
and the use of a local as a label is only valid if the reference to
the label occurs after the definition.

For example:

.TEMPS 2

![0]=0
MLABEL>

!{1]:
SUI ARGI
JRNC ![1]
ADI ARGI

36

PASM: PSA Macro Assembler

Chapter 4: Macros

![0]=![0]+1
JIFL !{O]-ARG2,.GOTO MLABEL

Special Variables

To ease the processing of macros with variable numbers of
arguments, a special symbol & (ampersand) has been defined. This
symbol may be used in any arithmetic expression where a normal symbol

is allowed, and always has the value of the number of arguments

passed to the current macro invocation.

Subscripted Argument Reference

It is not always possible to predetermine the number of arguments

that will be passed to a macro prior to its invocation. It is
cumbersome to have to reference each passed argument by name,

requiring a seperate section of the macro definition to handle each

one. For this reason, macro arguments may alternately referenced
positionallly by use of a subscripted argument reference. The format
of this reference is "_marg[sub]". The underscore (_) flags the
subscript reference, and ínarg is the name of a macro argument to be
used as the "base" for the subscripting. This allows a macro to have

a number of fixed argtments, and then a following nuwber of variable
ones. The subscript (sub) is a B—bit value which indicates that the
sub"th argument after marg is being referenced. Note that a zero
subscript refers to the named argument. This reference is only
triggered by the appearance of an underscore followed by a macro

argument, so underscores may appear anywhere in a macro expansion
normally. If the subscript references an argument which was not
given in the call, a null value is returned. It is not necessary to
explicitely name any argument which is going to be referenced by

subscript. Only the base argument must be named.

For example:

.DEFINE SYMBOL[ARG]=[
.TEMPS l

!{0]=0
MLABEL>

.ASCIZ " ARG[!í0]]"
.WORD $" ARG{!f0]]

![O]=![Oj+l
.IFL ![0]-&,.GOTO MLABEL
]

generates a symbol table consisting of ASCII strings and branch
addresses. The macro might be called:

SYMBOL HELP,TEST,EXIT,DISPLAY

and would generate:

.ASCIZ "HELP"

.WORD $HELP

.ASCIZ "TEST"

37

PASM: PSA Macro Assembler

Chapter 4: Macros

.WORD $TEST

.ASCIZ "EXIT"
.WORD $EXIT

.ASCIZ "DISPLAY"

.WORD $DISPLAY

38

PAS¥: PSA Macro Assembler '""

Appendix A: Summary of Machine Operation Mnemonics

Appendix A

Summary of Machine Operation Mnemonics

The following section presents a summary of the Z80 inachine

operations and their assembler mnemonics. The appendix is arranged
by type of instruction for ease of reference. For further
information on the machine operations, refer to the Technical Mánual

for the Z80 compatible microprocessor which is being used.

To make the information presented more readily usable, a

shorthand notation is used for describing the assembler format of the
instruction and its actual operation. All capital letters and

special charcters in the mnemonic description are required. The

lower case letters indicate a class of values which can be inserted
in the instruction at that point. A single lower case letter
indicates an B-bit quanity or register, while a double lower case

letter indicates a l6-bit quantity or register. A symbol enclosed in
parentheses in the machine operation section indicates that the value
whose address is specified is used. The following is a summary of
the notation used; exceptions will be noted where appropriate in the
following sections.

r one of the B-bit registers A, B, C, D, E, H, L

n any B-bit value

ii an index register reference, either X or Y

d an B-bit index displacement where -128 < d < 127

zz B for the BC register pair, D for the DE pair
nn any 16-bit value, absolute or relocatable
rr B for the BC register pair, D for the DE pair, H for the HL pair,

SP for the stack pointer
qq B for the BC register pair, D for the DE pair, H for the HL pair,

PSW for the A/Flag pair
s any of r (defined above), M, or d(íi)
IFF interupt flip-flop
CY carry flip-flop
ZF zero flag

'

tt B for the BC register pair, D for the DE pair, SP for the stack
pointer, X for index register IX

uu B for the BC register pair, D for the DE pair, SP for the stack
pointer, Y for index register IY

b a bit position in an B-bit byte, where the bits are numbered frorn

right to left O to 7

PC program counter
v{n] bit n of the B-bit value or register v
v[n-mj bits n through Ill of the B-bit value or register v
vV\Pi the wost significant byte of the !6-bit value or register vvWÁL the Least significant byte of the l6-bít value or register vv
Iv an input operation on port "v

Dv an output operation on port v
w<-v the value of w is replaced by the value of v
w<->v the value of w is exchanged with the value of v

39

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

8-Bit Load Group

Mnemonic Operation // of Bytes

MOV r,r" r <- r" l
MOV r,M r <- (FIL) I
MOV r,d(ii) r <- (ii-l-d) 3

MOV M,r (HL) <- r l
MOV d(íí),r (ii+d) <- r 3

MVI r,n r <- n 2

MVI M,n (HL) <- n 2

RIVI d(ii),n (ii+d) <- n 4

LDA nn A <- (nn) 3

STA nn (nn) <- A 3

LDAX ZZ A <- (ZZ) l
STAX ZZ (ZZ) <- A 1

LDAI A <- I 2

LDAR A <- R 2

STAI I <- A 2

STAR R <- A 2

40

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

16-Bit Load Group

Mnemonic Operation // of Bytes

LXI rr,rin rr <- nn 3

LXI ii,nn ii <- nn 4

LBCD nn B <- (nn-f-l) 4

C <— (nn)

LDED nn D <- (nn-fl) 4

E <— (nn)
LHLD nn H <- (nn-l-l) 3

L <— (nn)
LIXD nn IX'\H <- (nn-fl) 4

IXÚ <- (nn)
LIYD nn IYÜI <- (nn-Fl) 4

IYÜJ <- (nn)
LSPD nn SPYí <- (nn-l-l) 4

SP\ij <- (nn)
SBCD nn (nn+l) <- B 4

(nn) <- C

SDED nn (nn-Fl) <- D 4

(nn) <- E

SHLD nn (nn-FÍ) <- H 3

(nn) <- L
SIXD nn (nn-fl) <- IX\H 4

(nn) <- IXYJ

SIYD nn (nn-t-l) <- IY\H 4

(nn) <- IJV\L
SSPD nn (nn-A) <- SP\H 4

(nn) <- SPYJ
SPIIL SP <- HL I
SPIX SP <- IX 2

SPIY SP <- IY 2

PUSH qq (SP-l) <- qq'\H l
(SP-2) <- «H

SP <- SP

-
2

PUSH ii (Sp-l) <- ii\H 2

(SP-2) <- ii\L
SP <- SP

-
2

POP qq «W <- (SPA) l
qq\L <- (SP)
SP <- SP + 2

POP ii ii\H <- (SP+l) 2

iiH <- (SP)
SP <- SP + 2

41

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Exchange and BLocK Transfer and Search Group

Mnemonic Operation // of bytes

XCHG HL <-> DE I
EXAF PSW <-> PSW" I
EXX BCDEHL <-> BCDEHL" !
XTHL h <-> (SP-i-l) I

L <-> (SP)

XTIX IX\H <-> (SP+I) 2

IX\L <-> (SP)

XTIY IY\H <-> (SP+l) 2

IY\L <-> (SP)

LDI (DE) <- (FIL) 2

DE <- DE + I
HL <- FIL + 1

BC <- BC

- I
LDIR repeat LDI until BC=O 2

LDD (DE) <- (HL) 2

DE <- DE

- I
HL <- HL - l
BC <- BC

- l
LDDR repeat LDD until BC=O 2

CCI A - (HL) 2

HL <- HL + I
BC <- BC

- l
CCIR repeat CCI until A=(HL) 2

or BC=O

CCD A - (FIL) 2

HL <- HL - l
BC <- BC

- l
CCDR repeat CCD until A=(HL) 2

or BC=O

42

PASM: PSA Mácro Assembler

Appendix A: Summary of Machine Operation Mhernonics

8-Bit Arithmetic and Logical Group

Mhemonic Operation // of Bytes

ADD r A <- A + r I
ADD M A <- A + (HL) I
ADD d(ii) A <- A + (ii-t-d) 3
ADI II A <- A + n 2

ADC S A <- A + S + CY

ACI TI

SUB S A <- A - S

SUI n
SBB S A <- A - S -

CY

SBI n
ANA S A <- A & S

ANI n
ORA S A <- A ! S

ORÍ n
XRA S A <- A " S

XRI n
CMP S A - S

CPI n
INR S S <— S + I
OCR S S <— S - I

43

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

General Purpose Arithmetic and Control Group

Mnemonic Operation // of Bytes

DAA convert A to packed BCD I
after an add or
subtract of packed BCD

operands
CMA A <- //A I
NEG A <- -A 2

CMC CY <- //CY l
STC CY <- I l
NOP no operation 1

HLT halt l
DI IFF <- O I
EI IFF <- I l
IMO interrupt mode O 2

IMI interrupt mode I 2

IM2 interrupt mode 2 2

44

PASM: PSA Macro Assembler .

Appendix A: Summary of Machine Operation Mnemonics

16-Bit Arithmetic Group

Mnemonic Operation // of Bytes

DAD rr HL <- HL + rr I
DADC rr HL <- HL + rr + CY 2

DSBC rr HL <- HL - rr -
CY 2

DADX tt IX <- IX + tt 2

DADY uu IV <- IY + uu 2

INX rr rr <- rr + 1 l
INX ii ii <- ii + I 2

DCX rr rr <— rr - I 1

DCX ii ii <- ii - I 2

45

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Rotate and Shift Group

Mnemonic Operation // of Bytes

RLC A[n+l] <- Afn] I
A[O] <- A[7]
CY <- A[7]

RAL A[n-Fl] <- A[n] I
A[O] <- CY

CV <- A[7]
RRC A[n] <- A[n4-l) I

A[7] <- A[O]
CY <- A[O]

RAR A[n] <- Mn+i] I
A[7] <- CY

CY <- A[lj]
RLCR s s[n"fl] <- s[n] 2 (or 4)

sID) <_ s[7]
CY <- s[7]

RALR s s[n+l] <— s[n]
s[O] <- CY

CV <- s[7]
RRCR s s[n] <- s[n-Fl]

S[7) <- sID)
CV <- s[O]

RARR s s[n] <- s[n-l-l]
s[7] <- CY

CY <- s[O]

SLAR S s[n-FÍ] <- s[n]
S[O] <- O

CY <_ s[7]
SRAR s s[n] <- s[n+l]

s[7} <" s[7]
CY <- sfO]

SRLR s sInl <- s[n+Z]
s[7] <- O

CV <- s[O)
RIJO A[0-3] <- (HL)[4-7] 2

(HL)[4-7] <- (HL)[0-3]
(HL)[0-3] <- A[0-3]

RRD (HL)[0-3] <- (HL)[4-7] 2

(HL){4-7] <- A[0-3]
A[0-3] <- (HL)[0-3]

46

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Bit Set, Reset, and Test Group

Mnemonic Operation // of Bytes

BIT b ,r ZF <- //r[b] 2

BIT b,M ZF <- //(HL) [b] 2

BIT b,d(ii) ZF <- //(ií+d) [b] 4

SET b ,S s[b] <- l
RES b ,S S [b] <- O

PASM: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Jump Group

Mnemonic Operation // of Bytes

JMP nn PC <- nn 3

JZ nn if zero, then JMP 3

else continue
JNZ nn if not zero 3

JC nn if carry 3
JNC nn if not carry 3

JPO nn if parity odd 3

JPE nn if parity even 3
JP nn if sign positive 3

JM nn if sign negative -
3

JO nn if overflow 3

JNO nn if not overflow 3

JMPR nn PC <- nn 2

where -126 < nn-PC < 129

JRZ nn if zero, then JMPR 2

else continue
JRNZ nn if not zero 2

JRC nn if carry 2

JRNC nn if not carry 2

DJNZ nn B <- B

- l 2

if 8=0 then continue
else JMPR

PCHL PC <- HL l
PCIX PC <- IX 2

PCIY FC <- IY 2

48

PASMA PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Call and Return Group

Mnemonic Operation // of Bytes

CALL nn (SP-l) <- PC\H 3

(SP-2) <- PC\L
SP <- SP

-
2

PC <— nn
CZ nn if zero, then CALL 3

else continue
CNZ nn if not zero 3

CC nn if carry 3

CNC nn if not carry 3

CPO nn if parity odd 3

CPE nn if parity even 3

CP nn if sign positive 3

CM nn if sign negative 3

CO nn if overflow 3

CNO nn if not overflow 3

ret pc\h <- (sp-f-j) i
PC\L <- (SP)
SP <- SP + 2

RZ if zero, then RET 1

else continue
RNZ if not zero 1

RC if carry I
RNC if not carry I
RPO if parity odd 1

RPE if parity even I
RP if sign positive I
RM if sign negative 1

RO if overflow I
RNO if no overflow 1

RETI return from interrupt 2

RETN return from non—maskable 2

interrupt
RST n (SP-I) <- pc\pi 1

(SP-2) <- PC'\L
PC <- 8 * n

where O <= n < 8

49

PASFÍ: PSA Macro Assembler

Appendix A: Summary of Machine Operation Mnemonics

Input and Output Group

Mnemonic Operation // of Bytes

IN n A <- In 2

INP r r <- I(C) 2

INI (HL) <- I(C) 2

B <- B

- I
HL <- HL + I

INIR repeat INI until 8=0 2

IND (HL) <- I(C) 2

B <- B

- I
FIL <- HL - I

INDR repeat IND until 8=0 2

OUT n On <- A 2

OUTP r O(C) <- r 2

OUTI O(C) <- (HL) 2

B <- B

-
1

HL <- HL + 1

OUTIR repeat OUTI until 8=0 2

OUTD O(C) <- (HL) 2

B <- B

-
L

HL <- HI, - I
OUTDR repeat OUTD until 8=0 2

50

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

Appendix B

Summary of Pseudo-Operation Mnemonics

.ASCII svalue I [n]
·..

The .ASCII pseudo-op enters 7-bit ASCII characters into the
program. The text is either entered as a stríng value, or as a

numeric value enclosed in square brackets (I)), and the two

forms may be intermixed and repeated as desired (with optional
seperating commas).

.ASCIS svalue l [ii] ·.·
The .ASCIS pseudo-op enters 7-bit ASCII characters into the
program, and flags the last character by setting its high-order
bit on. The format of the svalue is the same as for the .ASCII
pseudo—op.

.ASCIZ svalue I [ii] ...
The .ASCIZ pseudo-op enters 7-bit ASCII characters into the
program, and flags the end of the characters by inserting an
additional null byte. The format of the svalue is the same as

for the .ASCII pseudo-op.

.BLKB nn

The .BLKB pseudo-op reserves a block of contiguous storage nn
bytes long.

.BLKW nn

The .BLKW pseudo-op reserves a block of contiguous storage rin
words long (nn x 2 bytes).

.BYTE {[r]}n {, {[r]}n ···}
The .BYTE pseudo-op enters single byte values into the program.
Multiple values may be entered by separating them with a comma,
and a single value may be preceeded by an optional repeat count.

.DATE

The .DATE pseudo-op generates an eight byte constant containing
the current date in the format: mm/dd/yy.

.DEFINE syrnbol[argl,arg2,...]=[text]
The .DEFINE pseudo-op defines a macro with the name symbol.
argl through argn are optional dummy arguments. The body of the
macro is represented by text.

51

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.DEFINE synbol=[text]

The .DEFINE pseudo-op may also be used to define string
variables with values equal to the specified text.

.END nn

The .END pseudo-op signals the end of the assembly. When

encountered during pass I, it initiates pass 2. During a

listing pass, it initiates the listing of the symbol table (if
not previously suppressed by the .XSYM pseudo-op). During an
object pass, it generates an EOF record in the object file
containing the value nn as the starting address of the object
program.

.ENTRY symboll {, syinbo12 ...}
The .ENTRY pseudo-op identifies the internally defined symbols

which are subroutine library entry points to this program
Multiple symbols may be identified by separating them with
commas.

.ERROR svalue

The .ERROR pseudo-op causes an "*" error to occur, forcing the
listing of the current line, and an error notification. The

svalue is treated as a .REMRK.

.EXIT

The .EXIT pseudo-op causes an immediate exit from the current
macro expansion to occur.

.EXTERN symboll {, symbol2 ...}
The .EXTERN pseudo-op defines those symbols which are referenced
in this program but are defined in another, separately
assembled, program. Multiple symbols can be defined by

separating them with ccmmas.

.GOTO mlabel

The .GOTO pseudo-op is used within a macro to branch to the
specified macro label.

.18080

The .18080 pseudo-op enables the Z warning message. This
warning will be given whenever a machine operation unique to the
Z80 is encountered.

52

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.IDENT symbol

The .IDENT pseudo-op gives the module a name for later use by

the linkage editor.
.INSERT {d:} file {.ext}

The .INSERT pseudo-op causes the specified PODS file to be

copied into the assembly in place of the .INSERT.

.INTERN symboll {, symbol2 ...}
The .INTERN pseudo-op identifies those symbols which are defined
in this program and which will be referenced as external symbols

by some separately assembled program. Multiple symbols may be

identified by separating them with cornmas.

.LADDR

The .LADDR pseudo-op change the listing mode from displaying
16-bit quantities to displaying the Z80 image with the least
significant byte first.

.LALL

The .LALL pseudo-op causes the assembler to list every text
character processed, including those suppressed in the normal
listing.

.LCTL

The .LCTL pseudo-op causes the assembler to list all listing
control statements.

.LINK

The .LINK pseudo-op causes the assembler to output linkage
information to the object file.

.LIST

The .LIST pseudo-op resumes a listing which has been stopped by
the .XLIST pseudo-op.

.LIMAGE

The .LIMAGE pseudo-op changes the listing mode to display every
'byte of object code generated rather than the normal mode of a
maximum of six bytes per statement.

53

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.LDC nn

The .LDC pseudo-op changes the value of the assembler"s program

counter to nn. If nn is relocatable, then all labels will be

assigned relocatable values. If it is absolute, then absolute
values will be assigned.

.LSYM

The .LSYM pseudo-op reenables the listing of the symbol table
during the .END pseudo-op processing after it has been disabled
by the .XSYM pseudo-op. The .LSYM pseudo-op must occur prior to
the .END pseudo-op to be effective.

.MASYN symboll,symbo12

The .MASYN pseudo-op allows the definition of a new inacro to be

the same as a previously defined one. Symbol2 is defined to be

a macro identical to the one defined as symboll.

.OPSYN symboll,symbo12

The .OPSYN pseudo-op allows the definition of a new op code
mnemonic as a synonym of an already existing one. The symboll
must be a defined machine or pseudo op code (or one previously
defined using .OPSYN), symbo12 will be defined to be the same

operation.

.PABS

The .PABS pseudo-op signals that the object file produced from
this point in the assembly on is to be in absolute (INTEL

compatable) format.

.PAGE

The .PAGE pseudo-op causes a skip to the top of the next page

during a listing pass.

.PAGE w {, I}
The .PAGE pseudo-op is used in this manner to specify the page

size for the assembly listing. The width, and optionally the
length, may be given.

.PBIN

The .PBIN pseudo-op specifies that the object file is to be
produced in binary.

54

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.PHEX

The .PHEX pseudo-op specifíes that the object file is to be

produced in ASCII.

.PREL

The .PREL pseudo-op signals that the object file produced from
this point in the assembly on is to be in relocatable (TDL

relocatable) format.

.PRGEND

.
The .PRGEND pseudo-op is used in place of the .END pseudo-op to
terminate each module in a library file assembly. After pass 2

through the module terminated by .PRGEND, the next module

following the .PRGEND will be assembled.

.PRNTX svalue

The .PRNTX pseudo-op will cause its string value to be printed
on the console whenever it is encountered in the assembly

process.

.PROGID id,ver,rev
The .PROGID pseudo-op provides program id, version and revision
for output in the object file, and for use by the linkage editor
in identifying the program.

.PSYM

The .PSIM pseudo-op signals that the entire symbol table from
the assembly is to be output at the end of the object file. The
.PSJM pseudo-op must appear prior to the .END pseudo-op to be

effective.
.RADIX n

The .RADIX pseudo-op changes the default base in which a numeric
constant is interpreted during the assembly to n. The valid
values for n are 2, 8, 10, or 16. The value is always
interpreted as a decimal number.

.RAD40 symbol

The .RAD40 pseudo-op generates a unique 4 byte value in radix-40
notation for the symbol given. The symbol must conform to the
rules for any symbol in the assembly. This pseudo-op is used
mostly for developing system software utilizing symbol tables.

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.RELOC

The .RELOC pseudo-op restores the value of the assernb1er"s

program counter to whatever it was before the immediately
preceding .LDC pseudo-op.

.REMARK svalue

The .REMARK pseudo-op allow the entry of multiple line comments
into the source program.

.RLIST

The .RLIST pseudo-op restores the listing control flags from the
top element of the .SLIST push-down stack.

.SALL

The .SALL pseudo-op suppresses all macro expansions on the
assembly listing (normally all lines generating code are
listed).

.SBTTL svalue

The .SBTTL pseudo-op sets the sub-title for the assembly listing
to the specified string value (which must be less than 72

characters in length). If the .SBTTL pseudo-op is the first
operation after a .PAGE, the sub-title will appear on the new
page.

.SLIST

The .SLIST pseudo-op saves the current listing control flags on
the top of a four element push-down stack.

.SYN syrnboll,symbo12

The .SYN pseudo-op makes any two symbols synonymous. The symbol

tables are searched for symboll in the normal operand field
order (label/symbol, macro, opcode), and symbol2 is defined to
have the same value as symboll.

.SYSYN syutboll,symbo12

The .SYSYN pseudo-op makes one symbol the synonym of an already
defined symbol/label. The value of a symbol/label symboll is
obtained, and symboí2 is defined to be the same type and value.

.TEMPS nn

The .TEMPS pseudo-op allocates temporary array space for global
and local variables.

56

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.TIME

The .TIME pseudo-op generates an eight byte constant containing
the current time in the format hh:mm:ss.

.TITLE svalue

The .TITLE pseudo-op sets the title for the assembly listing to
the specified string value (which must be less than 72

characters in length). The title is put at the top of every
page during a listing. If the .TITLE pseudo-op is the first
operation after a .PAGE pseudo-op, the title will be listed on

the new page.

.WORD nn {, nn ...}
The .WORD pseudo-op enters 2-byte values into the program in
proper Z80 format (least significant byte first). Multiple
values may by ente'red by separating them with a comma.

.XADDR

The .XADDR pseudo-op is used after a .LADDR pseudo-op to return
to the standard format of listing l6-bít values.

.XALL

The .XALL pseudo-op is used after a .LALL or .SALL pseudo-op to
return to the standard listing mode.

.XCTL

The .XCTL pseuod-op is used after a .LCTL pseudo-op to return
the the standard mode of suppressing the listing of listing
control statements.

.XIMAGE

The .XIMAGE pseudo-op is used after a .LIMAGE pseudo-op to
return to the standard listing mode of only six object bytes per
statement.

.XLINK

The .XLINK pseudo-op is used after a .LINK pseudo-op to suppress
the inclusion of linkage information in the object file.

.XLIST

The .XLIST pseudo-op suppresses the listing of all following
statements (until a .LIST pseudo-op is encountered).

,

PASM: PSA Macro Assembler

Appendix B: Summary of Pseudo-Operation Mnemonics

.XPSYM

The .XPSYM pseudo-op disables the output of the symbol table at
the end of the object file after it has been enabled by the
.PSYM pseudo-op. The .XPSJM pseudo-op must occur prior to the
.END pseudo-op to be effective.

.XSYM

The .XSYM pseudo-op disables the listing of the symbol table by

the .END pseudo-op (unless reenabled by the .LSJLM pseudo-op).
The .XSYM pseudo-op inust appear before the .END pseudo-op to be

effective.
.Z80

The .Z80 pseudo-op is used to disable the effect of a previous
.18080 pseudo-op. This inhibits the Z warning message on
machine operations unique to the Z80.

.IFX arg,[true text] ..· {[false text]}

The .IFX pseudo-op will assemble the true text specified only ifthe particular condition being tested for is true, The optional
false text is assembled if the condition is false. The .IFX
pseudo-ops and their conditions are as follows:

.IFI: assembling pass I

.IF2: not assembling pass I

.IFB: blank

.IFDEF: defined

.IFDIF: different

.IFE: zero or blank

.IFG: positive

.IFGE: zero or positive
.

.IFIDN: identical

.IFL: negative

.IFLE: zero or negative

.IFN: not zero

.IFNB: not blank

.IFNDEF: not defined

58

PASM: PSA Macro Assembler

Appendix C: Error Codes

Appendix C

Error Codes

Errors in the source program encountered during the assembly

process are indicated on the listing by a single letter code at
the left of the statement in error. Although the assembler may
detect more than two errors per statement, only the first two
codes are given. As an added aid to locating the error in the
statement, a question mark is printed to the right of the
character which triggered the error. All errors generate a

question mark, even if they are not one of the first two per
statement.

The following is a list of the error codes and their
meanings:

A Argument error. This is a broad class of errors which may
be caused by many different things.

B Bad macro error. Either an error in a macro definition or a

call on a bad macro.

D Duplicate symbol reference error. The symbol flagged is
multiply-defined. The first value given to the symbol is
used in the assembly.

E External symbol error. An external symbol is improperly
used in the statement.

I Internal symbol error. An internal symbol is improperly
used in the statement.

L Label error. An invalid character has been found ín the
label field of the statement.

M Multiply-defined symbol error. A symbol is defined more
than once. This error is given mostly during Pass l.
During the other passes, it usually will appear as a phase

error (P).

O Operation error. The symbol in the operation field is not a
valid machine operation code, macro name, or symbol.

P Phase error. A label is assigned a value during Pass 2 (or
3 or 4) which is different than that assigned during Pass l.

Q Questionable error. This is a broad class of warnings which
the assembler gives when it finds ambiguous statements. Q

errors may or way not generate correct code. The assembler
will attempt to do what the programmer intended.

59

PASM: PSA Macro Assembler

Appendix C: Error Codes

R Relocation error. A relocatable symbol or expression is
incorrectly used (eg. in a .BLKB pseudo-op).

S Subscript error. A subscript has exceeded the current
temporary array space allocation.

T Table overflow. One of the Assemb1er"s internal tables has

overflowed. The Assembler will attempt to continue, but no
new labels or macros will be defined.

U Undefined label/symbol error. A symbolic reference which
was never defined is used in the statement.

X Index error. Another character appears in a statement at a

point where only an index register reference is allowed (X

or Y).

Z Z80 error. A Z80 machine operation has been encountered
while in 8080 mode (.18080). This is only a warning and the
opcode will be properly assembled.

* User defined macro error. A .ERROR pseudo-op was

encountered.

60

PASM: PSA Macro Assembler

Appendix D: object File Formats

Appendix D

object File Formats

The PSA Assembler produces two different object file formats
depending on the use of the .PABS and the .PREL pseudo-ops. It
also outputs the two formats two different ways, binary (.PBIN)
and ASCII (.PHEX). Each of the two formats will be described
seperately, and where differences between binary and ASCII

exist, they will be noted. In addition, the .XLINK option
allows the suppression of some of the information in the
relocatable format to allow the direct production of a

relocatable core image module instead of a relocatable object
module.

tdl object MOdule Format Definition

The use of the .PREL pseudo-op (which is default if neither is
specified) causes the generation of the TDL object Module Format

(Copyright 1976 by Technical Design Labs, Inc.). This format
allows for simple relocation of complete programs by the PSA
Debugging System (BUG), arid for complex relocation and linking
of modules by the PSA Linkage Editor (LINK).

The tdl Object Module Format consists of a sequential file of
ASCII characters representing the binary data, symbol, and

control information required to construct a final program from
the module. All binary bytes within this structure are
represented as two ASCII characters corresponding to the
hexídecimal value of the byte (eg. l100l00l -> C9). All ASCII

values are represented by the corresponding ASCII character (eg.
A -> A). In the binary output mode, the format is basically the
same, but all binary bytes are represented by themselves, not as
two ASCII characters.

Each of the different records within the module is indicated by

the use of a prompt character as the first character of the
record. The valid prompt characters are:

! -> module identification record
+ -> program identification record
@ —> entry point record
// -> internal symbol record
\ -> external symbol/relocation base record
& -> symbol table record
; -> data/program/end-of-file record

(Note that only the records prompted by a ; are output if the
.XLINK mode is in effect.)

PASM: PSA Macro Assembler

Appendix D: object File Formats

Every record in the module is terminated by a one byte binary
checksum of all of the preceeding bytes in the record except for
the prompt character. The checksum is the two"s complement of
the sum of the precee.ding bytes. Any output format (two
character binary, one character ASCII or one byte binary) still
counts as only one byte in the checksum (le. before conversion
for output).

In addition, each record in the ASCII output mode is preceded by

a carriage return/iine feed sequence to facilitate listing the
module on an external device. It is not present in the binary
output mode.

The following descriptions are specified assuming ASCII output
mode. With the above noted exception of the carriage
return/line feed preceding each record, the binary format is
identical, with each binary byte being left unexpanded. ASCII

characters are left as they are in either mode.

Module Identification Record (I)

Byte l-2 CR/LF
3 Exclamation point (I) prompt.
4-9 ASCII module name.

lO-ll Checksum.

Program Identification Record (+)

Byte l-2 CR/LF
3 Plus (+) prowpt.
4-9 ASCII program identification.
lO-ll Version mmber (in hex).
12-13 Revision ntmber (in hex).
14-19 Date of assembly (ASCII MMDDYY) if available.
20-25 Time of assembly (ASCII HHMMSS) if available.
26-27 Checksum.

Entry Point Record ({i)

Byte l-2 CR/LF
3 At-sign (@) prompt.
4-5 Number of entry points in this record.
6-?? ASCII names of entry points, 6 bytes per name. The names

are left justified and blank filled.
?? Checksum

62

PASM: PSI!, Macro Assembler

Appendix D: object File Formats

Internal Symbol Record (II)

Byte l-2 CR/LF
3 Pound sign (II) prompt.
4-5 Number of internal symbols in this record.
6-ll ASCII name of internal symbol, left justified and blank

filled.
12-13 Relocation base for symbol. The value of this symbol is

relative to the relocation base specified.
14-!7 Symbol value (16 bit).
....

The above three fields are repeated for each internal
symbol in the record.

?? Checksum.

External Symbol/Relocation Base Record (\)

Byte l-2 CR/LF
3 Back-slash (\) prompt.
4-5 Number of external/relocation symbols in this record.
6-ll ASCII name of the symbol, left justified and blank

filled.
L2-13 Relocation number assigned to this symbol in this module.

This number is unique for each symbol. It starts with
one and increases sequentially for each subsequent
external/reíocation base symbol.

14-17 Relocation segment size/external reference flag. If this
value is zero, it represents a reference to a symbol

defined externally to this module (usually a subroutine
or global data item). If it is non-zero, then the value
is the size of the relocation segment as defined in this
object module. This segtnerrt can contain either code or
data, and may be located anywhere in memory by the

" linkage editor, independent of any other segment.

....
The above three fields are repeated for each symbol

contained in this record.
?? Checksum.

Symbol Table Record (&)

Byte L-2 CR/LF
3 Ampersand (&) prompt.
4-?? The remainder of this record is identical to the internal

symbol record. All symbols defined in this module are
contained in these records.

Data/Program Record (;)

63

PASM: PSA Macro Assembler

Appendix D: object File Formats

Byte l-2 CR/LF
3 Semicolon (;) prompt
4-5 Number of binary data bytes in this record. The maximum

is 32 binary bytes (64 bytes of ASCII representation).
If this value is zero, this record is a end-of-file
record, described below.

6-9 Load address of the data relative to the specified
' relocation base.

lO-ll Relocation base for all relocation in this record. All
relocatable values in this record are added to the
current value of the specified relocation base before
being put into memory. (If .XLINK is in effect, the only
allowable relocation bases are O and L.)

12-13 Relocation control byte. This byte controls the
relocation of the next eight bytes in the record (if that
many remain according to the count field). The bits are
used from left to right. The bits have the following
meanings:

O: a single absolute byte -> load unmodified.
10: a two byte relocatable value, least significant

byte first -> add the 16 bit value to the
current relocation base, and load the result
least significant byte first. (If .XLINK is in
effect, and the current relocation base is O,

then the 16 bit value is added to relocation
base I.)

líO: a three byte reference to a different
relocation base. The first byte is the
relocation base number, and the two after that
are the 16 bit value, least significant byte
first -> add the specified relocation base to
the 16 bit value, and load the result least
significant byte first. (In .XLINK mode, this
control pattern is not generated.)

Ill: a two byte reference to a different relocation
¥

base. The first byte is the relocation base
number, and the following byte is the 8 bit
value -> add the specified relocation base to
the 8 bit value, and load the byte. If the
result is not between -128 and +255, give an

error.
Note that a two or three byte combination is never broken
across a record boundary.

14-29 Data bytes controlled as above.

30-?? The above control/data byte combinations are repeated as
specified by the count.

?? Checksum.

End-of-File Record (;)

Byte l-2 CR/LF
3 Semicolon (;) prompt.

64

PASMA PSÉt Macro Assembler

Appendix D: object File Formats

4-5 Zero to indicate end-of-file record.
6-9 Starting address for module relative to the specified

relocation base. This address is optionally generated by

the language processor, and may be zero.
lO-ll Relocation base for starting address. (In .XLINK mode

may be only O or l.)
12-13 Checksum.

intel object Format

The use of the .PABS pseudo-op causes an INTEL "hex" object module to
be produced. This object format can also be loaded by the PSA
Debugging System, but provides no relocatability.

All of the above comments concerning byte formats and checksums apply
to this format as well.

Byte l-2 CR/LF
3 Colon (:) prompt.
4-5 Number of binary data bytes in this record. The maximum

number is 32 binary bytes (64 bytes of ASCII

representation). If this value is zero, this record is
an end-of-file record, and the load address is the
program starting address.

6-9 Load address of the data in this record.
lO-ll Unused.
12-?? Data bytes.
?? Checksum.
« *

PASM: PSA Macro Assembler

Appendix E: Assembler Operation under PDOS

Appendix E

Assembler Operation under PODS

The PSA Macro Assembler is initiated by the PDOS command:

PASM {sd: }fi1e{.ext}{[user]} {dd: }{switches}

where

sd is the optional PIJOS disk specification for the source file
(defaults to the logged in disk)

. file is the source file name

ext is the optional source file extension (defaults to ASM)

user is the optional source file user number (defaults to
logged-in user)

dd is the optional PIJOS disk specification for the output files
(defaults to the same as the source file)

switches are the optional assembly control switches, each of
which is a single letter and which may appear in any order
(with no intervening spaces)

The object file created by the assembly will have the same name as
the source file, with an extension of .HEX if the .PABS option was
used, and .REL if the .PREL option was used (the default).

Switches

A .LALL
B listing to both disk and list device
C .LCTL
D listing to disk (file name same as source with extension of PRN)
H .PHEX (default is .PBIN)

I .LIMAGE
K .XLINK (default is .LINK)
L listing only - no object file generated
o object only - no listing generated
P .PSYM
S .SALL

X .XLIST
Y .XSYM

Note that all switches with pseudo-op equivalents will be overidden
by contrary pseudo-ops within the source program.

Assembly Time Control

While an assembly is taking place, a number of console control
options are available. A control-C will abort the assembly back to
the operating system with a return code of 255. A control-S will
temporarily halt the assembly, after which a control-C will abort it,
or a control-Q will resume it. A control-T will temporarily halt the

66

PASM: PSA Macro Assembler

Appendix E: Assembler Operation under PODS

assembly at the top of the next output page of the listing. When

control-T is entered on the console, nothing will happen until the
next top-of-page is reached, at which time the assembler will act as

if a control-S had been entered (see above).
The assembler assumes that the paper is positioned at its top

print line prior to the start of the listing. The asseinbler will
then count output lines and put a page number.and heading at the top
of every page. The page is assumed to be 79 columns wide and 66

lines long unless changed by the .PAGE pseudo-op. A two line margin
is always .left at the top and bottom of the page.

LLFEBOAT ASSOCIATES SOFTWARE PROBLEM REPORT

Please use this form to report errors or problems in software supplied by

Lifeboat Associates. This form is designed to act as a transmittal sheet.

Software Product Name: Media Format:

Version No.: Serial No.: Invoice No.:

Purchased From:

Date of Purchase: Return Authorization //:
Has the software registration card been returned?

Computer Used: CPU (8080/8085/Z-80):

Disk Capacity: Number of Drives: Memory Size:

Operating System/Version (If not listed above): /

Software used with the above product, (e.g. list the BASIC used if you are
reporting a problem with a Payroll program that uses it).

Name of Software Version

Does the software come with sample or test programs?
If so, have you been able to use them successfully?

Please describe the problem you have encountered. Include references to the
manual if appropriate. Try to reduce the problem to a simple test case.
Enclose any appropriate programs (preferably on disk). If you feel that the
problem may be caused by the disk being defective, you may prefer to return the
original disk with this report to achieve the fastest resolution of the
problem. (If so, call for a Return Authorization No. A handling charge may be

incurred. No handling charge will be made if a product or portion thereof is
returned DUE TO DISKETTE MEDIA DEFECTS within 30 days from the date of sale).

Information on product changes, bugs, fixes and current version numbers are
published in Lífelines, our software newsletter.
PROBLEM DESCRIPTION: (Continue on additional pages if necessary)

Area Phone Nuiii. Ext.

Name: () " ()

Address: () _ ()

City: State: Zip Code:

Return to: Lifeboat Associates Technical assistance is availableP] l k 7 Q'TL m — -j A_- _ _ -- — GB 1 m · 1 r ¶ ¶ ^ ^

