BASICPAC

Programming Manual

January, 1961

PHILCO CORPORATION
Government and Industrial Group
Computer Division
3900 Welsh Road
Willow Grove, Pa.

BASICPAC PROGRAMMING MANUAL

Effective January 1961

Prepared by Approved by

= - !’.’y ”/,/ - ; .
%c@?/{//%/;{ /Z/ % AW e A
Mary Ellen LangW Harry/K. Mellinger ¢
Section Manager

Hubert# . NySser Samuel M. Berkowitz -
Manager, Military Computer -
Engineering Department

Submitted by Philco Computer Division, Willow Grove, Pa. in partial

fulfillment of Article I, Item 17, of Contract No. DA-36-039-SC-78132.

Preface

This document, BASICPAC PROGRAMMING MANUAL, is
submitted in accordance with and in partial fulfillment of U. S.
Army Signal Corps Contract No. DA-36-039-SC-78132 and
Technical Requirement SCL-1943A, Paragraph 3.10.

The Programming Manual is divided into two Sections.
Section One provides a general introduction to the BASICPAC
system from a programming viewpoint. Section Two provides
more specific information on BASICPAC programming techniques,
features, and requirements. General reference data is presented
in the Appendices.

CONTENTS
SECTION ONE. THE BASICPAC SYSTEM

Page
I. INTRODUCTION 1-1
A. General 1-1
B. System Configurations 1-1
1. Minimum BASICPAC System 1-1
2. BASICPAC S-109 Shelter System 1-2
3. Maximum BASICPAC System 1-2
4. Busses 1-2
II. BASICPAC CENTRAL PROCESSOR 1-7
A. Memory Unit 1-7
1. Memory Address Register (MA) 1-7
2. Memory Data Register (MO) 1-7
3. Parity 1-7
4. Memory Priority System 1-7
B. Program Unit 1-8
1 Instruction Register (IR) 1-8
2. Program Counter Register (PC) 1-8
3. Program Counter Store (PCS) 1-8
4. Index Registers 1-9
5. Program and Index Adders 1-9
6. Timing 1-9
C. Arithmetic Unit 1-9
1. The A Register 1-9

2. The B Register 1-10

3. The Q Register 1-10

4. The Adder-Subtractor Network 1-11

5. The T-Counter 1-11

D. Control Unit 1-11

CONTENTS (Continued)

1II. DATA AND INSTRUCTIONS

A,

B.

Word Format
1. Data Words

a. Numeric Data
b. Alphanumeric Data

2. Instruction Words

a. Computer Instruction Word
b. Input-Output Instruction Word

Order Codes
1. Central Processor Order Codes

Arithmetic Orders
Transfer Orders
Logical Orders
Sense Orders
Overflow
Trapping Mode

Mo oo D

2. Input-Output Orders

a. ICF Behavior
b. Interrupts
c. Usage of Control and Converter

Input-Output Orders Compared

IV. CONTROL SYSTEM

A,

Control Unit

1. Word Selection Register (WSR)
2. Control Character Buffer (CCB)
3. Sense Flipflops

Control Panel

Power Area Display and Controls
Register Area Display and Controls
Operation Area Display and Controls
Error Control and Display

Sense Indicators and Switches

|52 B NI OV SV I

ii

1-17
1-19
1-22
1-26
1-27
1-28

1-29

1-30
1-31
1-32

1-33
1-33
1-34

1-34

1-34
1-36
1-39
1-41
1-42

CONTENTS

C. Paper Tape Set

W~

4,
5.

Orders
Speeds
Typewriter Control

a. Mode Control Keys
b. Other Control Keys

Paper Tape Reader
Paper Tape Punch

V. INPUT-OUTPUT CONVERTER

A. General Description
B. Function

(o230 BV NN UV IR o S]

Instruction Control
Data Control
Error Control

(Continued)

FIELDATA Control Function Processing
Program Interruption by Input-Output Converter
Communication with Central Processor

o 00U

Computer IR to Input-Output Converter CIS
Input-Output Converter CIS to Computer
Addressable Flipflops

Converter Data Register (CDR) to Memory (MO)
Memory (MO) to Converter Data Register (CDR)

C. Addressable Flipflops and Registers
D. Magnetic Tape Transports

VIi. COMMUNICATIONS CONVERTER

A. Input
B. Output

iii

1-49
1-59
1-59
1-60
1-61
1-61

1-61
1-62
1-62
1-63
1-63

VII.

VIII.

IX.

XI.

CONTENTS (Continued)
SECTION TWO. BASICPAC PROGRAMMING

INTRODUCTION

NUMBER SYSTEMS

oawpx

E.
F

Decimal Number System
Octal Number System
Binary Number System
Number System Conversion

Binary to Octal
Octal to Binary
Binary to Decimal
Decimal to Binary

B W N

Binary Arithmetic
Algebraic Arithmetic

PREPARING A PROGRAM FOR BASICPAC

vawey

General

Prohlem Definition
Problem Analysis
Problem Specification

FLOW CHARTING

A. Flow Charting Symbols

B. Examples

CODING

A. Transfer of Information

B. Addition and Subtraction

C. Multiplication and Division

D. Transfer of Control

E. Information Formats

F. Floating Point Arithmetic

G. Scaling and Shifting
Overflow

H. Logical Instructions

I. Sense Instructions

iv

Page

2.-1

[NS AV I AC 2NN o ¥)
1
[oa30E ; BN]

NN NN
]
e JESPRCY, N

2-13
2-14
2-15
2-17

2-23

2-24
2-28
2-32
2-38
2-45
2-46
2-47

X1I.

XIII.

XIV.

XV.

CONTENTS (Continued)

Program Modification and Loops
Index Registers

Subroutines

Interrupt Subroutines

2R

INPUT-OUTPUT PROGRAMMING

A. Control Unit Input- Output Equipment
B. Input-Output Converter

C. Communications Converter
DEBUGGING METHODS

FIELDATA ASSEMBLY LANGUAGE

LIBRARY ROUTINES

APPENDICES

Microflow Charts

Addressable Registers and Flipflops
Address Assignments for Input-Output Devices

Codes

vowy

Page
2-58
2-64
2-68
2-71

2-74
2-74
2-77
2-80

2-84

FIGURES

BASICPAC System Block Diagram
BASICPAC Central Processor Block Diagram

BASICPAC Control Panel

Input-Output Converter Block Diagram
Input-Output Converter Flow Diagram, Phase I
Input-Output Converter Flow Diagram, Phase II
Input-Output Converter Flow Diagram, Phase III
Input-Output Converter Flow Diagram, Phase IV

Communications Converter Input Section Block Diagram
Communications Converter Output Section Block Diagram
Communications Converter Output Flow Chart
Communications Converter Input Flow Chart

vi

Page

1-50
1-51
1-52
1-54
1-58

1-68
1-69
1-70
1-72

IvV-1

VIII-1

TABLES

BASICPAC Systems and Major Components
Summary of BASICPAC Characteristics

Nixie Indicator Interpretations

Some Number Systems

Page

SECTION ONE

THE BASICPAC SYSTEM

SECTION ONE

I. INTRODUCTION

A. GENERAL

The BASICPAC computer is a medium to high speed, general-purpose,
solid-state machine with modular expansibility in both memory and input-
output capacity. The BASICPAC computer consists of the standard central
processor plus additional modular units. (See Figures I-1 and I-2.)

As a member of the FIELDATA family, BASICPAC employs the FIELDATA
common-language code, FIELDATA interconnection standards, and the
FIELDATA word structure and order catalog. The system is provided with a
communications converter for the receipt and transmission of data on a "real-
time" basis. FEach significant register in each functional unit of the BASICPAC
computer is connected to a common major transfer bus which transfers in-
formation between different sections of the computer and facilitates the modular
expansion of both memory and input-output capacity.

B. SYSTEM CONFIGURATIONS

Three BASICPAC system configurations are defined: the minimum
BASICPAC (standard central processor), the BASICPAC S-109 shelter system,
and a BASICPAC system expanded to maximum capacity. Table I-1 lists and
briefly describes the functions of the BASICPAC major components in the three
defined systems.

1. Minimum BASICPAC System

The minimum BASICPAC system is the standard central processor,
which consists of five functional units:

Arithmetic Unit
Program Unit
Control Unit
Memory Unit
Power Supply Unit

A control panel and a paper tape set provide communication between the operator
and the BASICPAC central processor.

Other BASICPAC systems are obtained by adding major BASICPAC
components to the standard central processor as shown in Figure I-1 and Table I-1.

2. BASICPAC S-109 Shelter System

The BASICPAC S-109 shelter system is obtained by adding to the
standard central processor a communications converter, an input-output '
converter, and input-output devices associated with these two converters.
The S-109 system, designed for mounting in a 2-1/2 ton truck, consists
of these units:

Central Processor
Communications Converter
Input-Output Converter (Type A)
Paper Tape Set

The communications converter provides integrated operation of
the central processor with remotely located equipments and other central
processors via real-time digital data transmitting equipment (e. g.,
AN/TYC-1 or Kineplex).

The Type A Input-Output converter connects the central processor
with four FIELDATA magnetic tape units and one paper tape set.

3. Maximum BASICPAC System

For those applications in which increased input-output and/or
memory capacity is required, BASICPAC can be expanded by adding memory
units (in 4096-word modules) and input-output converter units.

A maximum BASICPAC system configuration can have seven times
4096 (a total of 28,672) words of internal memory.

4, Busses

The various major components of the BASICPAC system are inter-
connected by busses, the most important of these being:

(1) The Major Transfer Bus (MTB), which transfers data
between registers in the arithmetic unit, the program
unit, the one or several memory units, the control
unit, the one or several input-output units, and the
communications converter.

(2) The Address Distribution Bus (ADB), which carries the
address of the input-output device or addressable flipflop
selected.

(3) The Memory Selection Bus {MSB), which carries the address
of the memory unit selected.

1-2

l BASICPAC CENTRAL PROCESSOR

POWER SUPPLY CONTROL PANEL
DIGITAL DATA TERMINALS COMMUNICATIONS) ARITHMETIC PROGRAM CONTROL
OR OTHER REAL-TIME 4
N IT |
EQUIPMENT CONVERTER UNIT UN UNIT
1
) Pyt !
SN G ST S—— J -t - e] e mas s n
| J T T S B | [R TS T |
‘e e—— \—pf
TO ADDITIONAL TO ADDITIONAL
— I-0 CONVERTERS MEMORY UNITS |
" NPUT-OUTPUT (UP TO A TOTAL (UP TO A TOTAL M EMORY .
W - OF SEVEN FOR OF SEVEN FOR
CONVERTER THE SYSTEM.) THE SYSTEM.) UNIT No.i
NOTE: DASHED LINES INDICATE | _
MAXIMUM (EXPANDED) SYSTEM.
TAPE TAPE TAPE TAPE TYPE- PAPER PAPER TYPE- PAPER PAPER
UNIT UNIT UNIT UNIT WRITER TAPE TAPE WRITER TAPE TAPE
) 2 3 4 & READER PUNCH & READER PUNCH
CONTROL CONTROL

PAPER TAPE SET

Al

1-0 DEVICES SHOWN ARE FOR TYPE A -0 CONVERTER

Figure I-1 BASICPAC System Elock Diagram

.y

PAPER TAPE SET (MAY BE
USED OFF-LINE, OR WITH

1-0 CONVERTER, AS WELL

AS WITH CONTROL UNIT

AS SHOWN.)

P-1

N\
TO CONTROL SECTION,

{ PROGRAM UNIT)
; i MSB “® MENORY UNITIS) !
: PCS :
: (PROGRAM CONTROL PC 1
. ADDRESS) (PROGRAM COUNTER) T (INDEX REG4) | CONTROL SYSTEM
: T T T Y K
; s 76 i |s 312 . 16 1 — ! Tvee-| | wAPER | [raren
' 1
; T ! WRITER| | .punch | |READER
t 1 -
: § T2UNDEX REG 2) ' 1
; 3 BUS, |MAJOR TRANSFER 3 |=| [z 76 1 :
: Bl—F T—| h
: 1 UNSTRUCTION REGISTER) " o| TRUupex REG3) ! :
: l : CONTROL
; (opsgmon 7 ufoa M:JOR v} é' ‘ ; TaNE }
: ICopE] ISELECT ADDRESS ADDRESS Z| 14UNDEX REG 4} H RO DR i P
, Bs 3| [3028] fzv 2221] [1= 1z 7T € 1 H v 1 CONTROL N
| g | i Wt
; ADDER | - [WSR l |
| INDEX E 1 ' ;
! —o| ADDER | {] :
S N S s v Leo W . y
{ ADB ADB 2
MAJOR TRANSFER BUS ?
] L S5 & NN DU -t S A
i 8-REGISTER
¥ v

! 37 Bs 3030 2524 w8 iz 76) 1 g [26 3u30 2s2a 19l iz e]
: ! : X * 7w sromaseaurren ¢ T
! ce] i .
i [ess oscle—o o
\ ! ,umbmm‘..‘-—__ﬁ‘ ; '
! ' : — | | o
: = : it 0 DATA
, —'_ K] A-REGISTEF B8 : ; CORE
: g T — 10 ! : ™ array
D e— L c ADDRESS 7
S — ¥
' r ¢ O-REGISTE® 1 '
i il Y T ' T T ﬁ,ﬂ ARITHMETIC ! ! MEMORY UNIT

j Snit By SR | A i i A UNIT . :

Figure I-2 Block Diagram of BASICPAC Central Processor

TABLE I-1

BASICPAC SYSTEMS AND MAJOR COMPONENTS

BASICPAC BASICPAC BASICPAC

Major Central $-109 Shelter Maximum
Components Function Processor* System* System*
ARITHMETIC Performs arithmetic operations

UNIT on binary numbers in a serial-
parallel mode, and generates
basic timing signals. 1 1 1
PROGRAM Provides facilities necessary for
UNIT storing instructions and for
storing and modifying addresses, 1 1 1
MEMORY Provides coincident-current mag-
(STORAGE) netic core storage facility for
UNIT 4096 38-bit words. Total cycle
time, 12 microseconds. 1 1 7
CONTROL Provides liaison between BASIC-
UNIT PAC and control panel and paper
tape set. 1 1 1
POWER Furnishes DC power for other
SUPPLY major components., 1 1 3
UNIT
CONTROL Provides displays and controls
PANEL for computer operator. 1 1 1
PAPER TAPE Augments facilities of Control
SET Panel 1 1 1 or more
INPUT- Provides buffer-synchronization
OUTPUT for a selected set of input-output
CONVERTER devices 1 7
COMMUNI- Provides for digital transmission
CATIONS between BASICPAC and up to seven
CONVERTER two-way real-time communications
channels. - 1** 1
PACKAGE Provides facility for static-testing
TESTER of logic circuits on individual
chassis cards. L HHR PRk Sl
* indicates number of major components required
ok one limited interrupt input channel, one output channel.

#%% not a functional part of a system, but required for maintenance.

1-5

TABLE I-2. SUMMARY OF BASICPAC CHARACTERISTICS

OPERATION TIME (including memory access)

(a)
(b)
(c)
(d)
(e)
(£)
(g)
(h)

Clock Frequency
Addition
Multiplication
Transfer of Control
Memory Cycle
Reader

Punch

Typewriter

INTERNAL CHARACTERISTICS

(a)

Word Length

Arithmetic

Instruction Code

Index Registers

Memory Capacity

INPUT-OUTPUT CAPABILITY

(a)

(b)

Via Console Unit

Via Input-Output Converter

1-6

1 psec

22 to 26 psec

242 psec

16 usec

12 psec

30 or 300 char/sec
30 char/sec

10 char/sec

38 binary digits,
including sign and parity

Signed magnitude, fixed point

40 orders (expansible to 64 by
subroutines)

4 (expansible to 7)

4096 -word memory units;
expansible to 7 units (28,672 words)

Keyboard and paper tape reader
and punch.

Magnetic tape, paper tape, keyboard,
etc., (several devices per converter);
expansible to seven input-output con-
verters operating simultaneously, with
one device at a time operating through
any one input-output converter.

TABLE I-2 (Continued)

(c) Via Communications Converter Up to six two-way digital com-
munications channels working
in real time and one limited
interrupt one-way channel.

Total traffic rate is dependent upon programming considerations
and upon capacity of input-output devices.

II. BASICPAC CENTRAL PROCESSOR

A. MEMORY UNIT

The BASICPAC Memory Unit provides storage for the program and for
data. Each memory unit has a capacity of 4,096 38-bit words (36 data bits,
1 sign bit, 1 parity bit).

1. Memory Address Register (MA) (Not Addressable)

The Memory Address Register (MA) is a 12-bit register which
contains the address of the word being accessed.

2. Memory Data Register (MO) (Not Addressable)

The Memory Data Register (MO) is a 38-bit register which serves
as a buffer between the computer and the memory cores.

All data is transferred to and from the memory through the data
register (MO).

3. Parity
When a word is written into memory a parity bit is generated.
When the word is read out of memory the parity bit is checked. Should a
parity error occur, a light on the control panel indicates the memory unit

in which the error occurred.

4. Memory Priority System

The central computer, the I/O Converters, and the Communications
Converter share the memory according to the following priority sequence:

a. Communications Converter Input

b. I/O Converters (Numbers 1 through 7 in sequence;
if in the system)

¢, Communications Converter Output
d. Central Computer

In a system with fewer than the maximum number of converters the
absent converters are automatically skipped over. Under maximum traffic
conditions, input and output alternate so that no channel is completely neglected.

B. PROGRAM UNIT

The program unit obtains and decodes each instruction, providing modi-
ficiation where necessary and checking for parity error, overflow, and
illegitimate addresses or instructions. It contains the following registers
and networks:

1. Instruction Register (IR) (Not Addressable)

The 36-bit Instruction Register (IR) receives from memory and
temporarily stores each instruction for decoding and execution.

2. Program Counter Register (PC) (Addressable)

The Program Counter is a 15-bit register which contains the address
of the next instruction to be executed. Bits 1-12 designate the location of the
instruction in a memory unit. Bits 13 to 15 specify one of the seven (0-6)
possible memory units. When Bits 1-15 reach the largest memory location.
value the PC starts over at zero. Instructions occur in a sequential manner
(the program counter is automatically advanced by one) except in the case
of the seven Transfer and three Sense instructions. For these ten instruc-
tions, the program counter may or may not be advanced by one depending
on the instruction and the conditions encountered.

3. Program Counter Store (PC3)(Addressable)

The program counter store (PCS) is a 15-bit register used to store
the contents of the PC, which contains the address to which the program must
return following a subroutine (a discussion of subroutines is given in SectionXI).
The first instruction (Transfer and Load PCS) transfers control to a subroutine.
The last instruction of a subroutine is a "Transfer to PCS" (TRS) which returns

1-8

control to the location in the main program whose address is stored in
PCS. This permits the programmer to place parts of a program (in
subroutine form) outside of the main flow of the program, and to use
these subroutines repeatedly.

4. Index Registers (I’ ') (Addressable)

The BASICPAC System contains four index registers, with pro-
visions for adding three more for a total of seven. The index registers
are numbered from one to four, and are designated as Il, IZ, 13, and 14,
Each index register is a 12-bit register used primarily for address modi-
fication, counting, and looping.

5. - Program and Index Adders (Not Addressable)

The Program Adder Network is used to modify the major address
of an instruction. The Index Adder Network is used to modify the contents
of an Index Register during the execution of an instruction.

6. Timing

The timing signals which control BASICPAC operations are derived
from an electronic clock in the arithmetic unit. These timing signals are
one microsecond apart, and are called "basic timing units". Each basic
computer cycle is divided into an instruction access phase of 12 basic timing
units and a variable operand access phase which is an integral number of
basic timing units.

C. ARITHMETIC UNIT

The Arithmetic Unit performs arithmetic and logic operations on 36
binary data bits and one algebraic sign bit. This unit includes the A register
(Accumulator), the B register, the Q register, the adder-subtractor net-
work (ASU), and the T-counter.

1. The A Register (Addressable)

The A Register (Accumulator) contains 36 data bits and a sign bit
(A37). During arithmetic operations the A register contains the following data:

Addition: Augend (Program Placed), then sum.

Subtraction: Minuend (Program Placed), then difference.

1-9

Multiplication: Multiplicand (Program Placed), then
major product

Division: Divident (Program Placed), then remainder

The A Register is functionally connected with the Q Register during
multiplication, division, shifting long and cycling.

2. The B Register (Addressable™)

The B Register is a register which contains 36 data bits and a
sign bit (B37). During arithmetic operations the B Register temporarily
stores the following data:

Addition: Not used
Subtraction: | Not used
Multiplication: Multiplier
Division: Divisor

The B Register also temporarily stores the address of the instruction
which was not performed because of a trapping action or an interrupt from the
Communications Converter or Input/Output Converter.

3. The Q Register (Addressable)

The Q Register is a register which contains 36 data bits and a sign
bit (Q37)° During arithmetic operations the Q register contains the following
data:

Addition: (not used)
Subtraction: (not used)
Multiplication: minor product
Division: Quotient

% The B register is addressable only by the a portion of the LOD instruction.

1-10

4. The Adder-Subtractor Network (ASU)

The Adder-Subtractor Network performs binary addition and/or
subtraction.

5. The T-Counter

The T-Counter is a 7-bit subtracting counter used to count the
number of steps in arithmetic or shift instructions. It is automatically
preset to the required number of steps and decremented by 1 as each
step is performed. When the T-counter reaches 0 the operation stops
and a new instruction can begin.

D. CONTROL UNIT

The Control Unit contains the buffer facilities and general control
logic for the paper tape set and the operator control panel.

The operator control panel provides manual facilities for entering data
and instructions and for starting, stopping, or presetting operational con-
ditions. This panel also contains controls, switches and lights used in
maintenance, computer operations, and register display.

The paper tape set augments the functions of the operator control panel.

The control unit, control panel, and paper tape set are further dis-
cussed in Section IV,

III. DATA AND INSTRUCTIONS
A. WORD FORMAT

The BASICPAC word consists of 36 bits plus a sign bit and a parity
bit. A word can represent a BASICPAC instruction or data. The pro-
grammer can use instructions as data, but in general, data cannot be used
as instructions.

1. Data Words

Data is represented by BASICPAC words in two basic forms:
1) a signed numeric quantity, 2) an alphanumeric quantity. Data can also
be represented in any other coded form devised by a programmer for use
in a particular problem.

a. Numeric Data

Numeric data is most frequently represented by a word
consisting of 36 magnitude bits. Bit 36 is the most significant bit, and
bit 1 is the least significant bit.

Bit 37 is the sign bit. A binary zero in this position indicates

a positive number; a binary one indicates a negative number. Bit 38 is
used for parity checking and is not used by or available to the programmer.

Magnitude Bits

S
38 37| 36 i

NUMERIC WORD

The position of the binary point (equivalent to the decimal
point in a decimal number) is understood to lie between bit 36 and the sign
bit, hence all numbers can be considered as fractions greater than minus
one but less than plus one. However, the programmer is not restricted to
this range since, by the process of scaling (described in Section XI G),
he may assume the binary point to lie anywhere within or outside of a word.

b. Alphanumeric Data

For alphanumeric data, the BASICPAC word consists of six
characters, each represented by six bits. The use of the sign bit depends
on the particular problem.

P S 6th ch. 5th ch. 4thch. 3rdch. 2adch. lstch.
38 37 36 31|30 _25(24 19|18 __13/12 _ 7|6 __1

ALPHANUMERIC WORD

Each character can represent a character of the FIELDATA alphabet.
The bit configuration for each character of the standard FIELDATA
alphabet and paper tape code are shown in Appendix D.

2. Instruction Words

There are forty BASICPAC instructions, including both computer
instructions and input-output instructions. One word format is used for the
31 computer instructions and a different word format for the 9 input-output
instructions.

a. Computer Instruction Word

The computer instruction word consists of the format and
content as shown below.

P S OPCode vy B o
38 37 [36— 31]30-227 — 16]15 1 |

COMPUTER INSTRUCTION WORD

The Computer Instruction Word is composed of five sections: alpha (a),
beta (B), gamma (v), operation, and sign.

@ (Major Address): Bits 1-15. These bits can designate

1) the address of an operand,

2) the location of the next instruction in a transfer
of control operation.

Bits 1 to 12 can specify a memory (core storage) address, while bits

13 to 15 designate which of the seven possible memory units is to be used.
If Bits 13 to 15 read binary 111 then the addressable registers are involved.
In this case bits 1 to 6 specify the particular register.

The a portion can also contain data to be transferred to an index
register or the magnitude of a shift.

g (Minor Address: Bits 16-27. These bits can designate
1) data to be transferred to an index register,
2) a second address,
3) an addressable register or an addressable flipflop.
4) Bits 16 and 17 control trapping procedure.
5) Bits 16-18 control the treatment of overflow.
vy (Index Register Address): Bits 28-30. These bits specify whether
an index register is involved and, if so, which one of four is to be used.
The legitimate addresses are octal 1,2, 3,4. If the index register speci-

fied by y is number 4, then Y+l is interpreted as index register 1.

Order Code: Bits 31-36. These bits indicate the order to be performed;
e.g., 128, add; 20g, multiply.

b. Input-Output Instruction Word

Nine of the forty BASICPAC instructions deal with input-output
operations and are specified by a word structured as follows:

P S OP Code. k j o

38| 37| 3631|130 — 22|21 16|15

I/O INSTRUCTION WORD

Bits 1-15 (@) contain the address of the first memory location into or out
~of which information is to be transferred. Bits 16-21 contain the address
of the I/O device to be used (e.g., paper tape reader, etc.). Bits 22-30
contain the number of words or blocks to be transferred. If bit 30 is set

to one on an instruction involving magnetic tape, bits 22-29 represent the
number of blocks. If bit 30 is set to zero, bits 22-29 represent the number
of words. In I/O operations involving paper tape, bits 22-30 always
represent the number of words.

B. ORDER CODES

The BASICPAC order codes are divided into two groups: The central
processor order codes which are discussed in Section B-1; and the input-
output order codes which are discussed in Section B-2.

The following notation is used throughout this discussion:

() means "The contents of":
(A), "the contents of the
A register.

—_— means "replaces" or "enters':
(A) — Q, "the contents of A
enter Q" or "The contents of A
replace the contents of Q".

() refers to bit(s) i of the specified
register or memory location:
(A)37 refers to bit 37 of A, (IR)1_15
refers to bits 1-15 inclusive of the
Instruction Register.

A— A indicates a shift of the contents of the
R specified register in the direction
A-—?-)—-» A indicated.

Subscripts beneath the arrow indicate
the number of positions the data is to
be shifted.

indicates logical multiplication (see
below). A - Q, "A and Q" is the bit
by bit logical product of the contents
of the A and Q registers.

v indicates logical addition (see below).
A v Q, "A or Q", the bit by bit logical
sum of the contents of the A and Q
registers.

0]1]0]0 00 1

1 0|1 1 1 1
Rules for Logical Rules for Logical

Multiplication Addition

The following information is provided in the description of each

instruction:

1. - Mnemonic code: The standard abbreviation for the instruction.

2. Number code: The machine code number, expressed in the
octal system.

3. Name: The name of the instruction.

4, Time: The number of microseconds (usec) required for the
completion of the order.

5. Word Sections: Those sections of the instruction word, if any,
which are required for the order.

6. Remarks: An explanation of the operation, with examples in
some cases.

7. Legitimate Addresses: Numbers in parenthesis note the references

below, which list legitimate addresses for the instruction. When
an illegal address is specified in an instruction, the computer
proceeds as though a legitimate register whose state or contents
were zero had been specified.

REFERENCES

(1) Core Storage Locations
(2) A,Q,1',PC,PCS, WSR, CIS', KIW
(3) A,Q,PCS, WSR

(4) B

(5) 17, KIW, KOB

(6) 1V

1. Central Processor Order Codes

The central processor order codes have been divided functionally
into arithmetic, transfer, logical and sense orders. The arithmetic orders
deal with addition, subtraction, multiplication and division. The transfer
orders vary the normal process of performing sequentially addressed in-
structions by transferring control to a different portion of memory. The
logical orders deal with the shifting and altering of data in memory and other
"bookkeeping" functions. The sense orders deal with the setting and inter-
rogation of flipflops to control the flow of the program.

All orders except those with a ¥ in the Word Sections column can be
index modified. When an instruction is index modified, the effective major
address is o + (Iy). The exceptions mentioned above are index register
instructions which require the specification of an index register.

During the execution of arithmetic or shift instructions, a result
may be obtained whose length exceeds the 36-bit capacity of the registers.
In this case, only the 36 low-order bits are retained in the register. If
any of the excess bits are ones, overflow occurs. The g portion of in-
structions which may cause overflow; e.g., ADD, ADM, SUB, DVD, SHL
and SLL is used to specify computer action in case of overflow. For details,
see the descriptions of the individual instructions and section B.1.d.

All unrequired or unused portions of instruction words are customarily
filled with zeros.

a. Arithmetic Orders

Mnemanic Code Name Time Word
Code No. Sections
CLA 10 Clear and Add 26 us o

Remarks: 0+ (a) — A

) Replace the contents of the A register with the contents
ofa . (1,2)"

3
See page 16 for explanation of these references.

Mnemonic Code Name Time Word
Code No. Sections

ADD 12 ADD 2ous B, «a
Remarks: (A)+ (a)— A
Replace the contents of the A register with the algebraic sum of the

contents of the A register and the contents of @ . 3 specifies overflow
procedure. (l,2)

ADM 13 Add Magnitude 26ps B8, «
Remarks: (A) + | (o) , — A
Replace the contents of the A register with the algebraic sum of the

contents of the A register and the absolute value of the contents of . §
specifies overflow procedure. (1,2)

CLS 14 Clear and Subtract 26 ps @
Remarks: 0 - (o) — A

Replace the contents of the A register with the negative of the contents
ofa . (1,2)

SUB 16 Subtract 2bps B, @
Remarks: (A) - (o) — A
Replace the contents of the A register with the algebraic difference

of the contents of the A register and the contents of .a. f specifies
overflow procedure. (1,2)

MLY 20 Multiply 242 us p
Remarks: (A) x (a)— A,Q

Compute the product of the contents of the A register and the contents
of @ . Place the 36 high-order bits of the product in the A register, and
place the 36 low-order bits of the product in Q. Both registers have the

Mnemonic Code Name Time Word
Code No. Sections

DVD 22 Divide 242 us B, a
Remarks: (A)/ (a)— Q
The quotient of the contents of the A register divided by the contents

of ais placed in the Q register. The remainder is placed in the A register.

B specifies overflow procedure. (1,2)

Note: If (A)= (&), no computation will occur.

DVL 23 Divide Long 242 us B, a
-36
Remarks: (A)+ (Q) x 2 3 /(a)— Q

The contents of the A register and the Q register are treated as "a
72-bit" register and are divided by the contents of @ . The quotient is placed
in the Q register. The remainder is placed in the A register. B specifies
overflow procedure. (1, 2)

b. Transfer Orders

TRU 40 Transfer Unconditional B, @
16 pus
Remarks: o —— PC

The next instruction performed is taken from memory location o . 8
specifies trapping procedure. (1).

TRL 41 Transfer and Load Y, B, @

Program Counter

Remarks: (PC)+ 1 — PCS 26 us
B — Iy
a —— PC

The address of the instruction following the TRL instruction is placed
in the Program Counter Store Register. The B portion of the instruction
word is placed in the index register specified by the ¥ portion of the
instruction. The a portion of the instruction is placed in the Program Counter
Register. The next instruction performed is taken from memory location ¢.
This instruction is frequently used in entering closed subroutines. (1)

1-19

Mnemonic Code Name Time Word
Code No. Sections

TRS 42 Transfer to Program
Counter Store 16 .s
Remarks: (PCS)— PC

The contents of the Program Counter Store register are placed in
the Program Counter Register. The next instruction performed is taken
from the memory location specified by the contents of the Program Counter
Store register. This instruction is frequently used to exit from closed
subroutines. They , B and @ portions may be used to store constants.

TRX 43 Transfer on 26 ps vy, B, «

Index Register

Y +1

Remarks: If1 =0, (PC)+1— PC
Y+
w1 o, 17 1 — 7]
Then if I 7! =0, (PC) + 1 — PC

if1¥*1 £o0,1Y + g — 1 and @« — PC

This instruction is frequently used for n iterations of a series of
instructions, any or all of which may be index-modified. The contents of
the index register specified by theY portion of the instruction is examined.
If the contents are zero, the next instruction in sequence is performed. If
the contents are not zero, they are decreased by one and again examined.
If they now equal zero, the next instruction in sequence is performed. If
they are still unequal to zero, the contents of the index register specified
by the ¥ portion of the instruction word are increased by the B8 portion of
the instruction word and control is transferred to the instruction in the
memory location specified by the o portion of the instruction word.

Note: If there are only four index registers, and if v = 4, v+1=1. 1y

1-20

Mnemonic Code Name Time Word
Code No. Sections

TRP 44 Transfer on 16 ps o
Positive Accumulator

Remarks: If (A)37 =0, a— PC

If (A)37 =1, (PC)+1— PC

If the sign bit of the A register is 0 (meaning positive), the
next instruction performed is taken from the memory location specified by
the o portion of the instruction word. If the sign bit of the A register is 1
(meaning negative), the next instruction in sequence is performed. (1).

TRZ 45 Transfer on 16 ps o
Zero Accumulator

Remarks: If (A)=0, o — PC
If (A) £ 0, (PC)+ 1 — PC

If the contents of the A register are equal to plus or minus
zero, the next instruction performed is taken from the memory location
specified by the o portion of the instruction word. If the contents of the A
register are unequal to plus or minus zero, the next instruction in sequence
is performed. The sign bit of the A register does not affect this instruction.

(1).

TRN 46 Transfer on 16 ps o
Negative Accumulator

l, a— PC

Remarks: If (A}37

0, (PC)+ 1 — PC

If <(A)37

If the sign bit of the A register is 1 (meaning negative), .
the next instruction performed is taken from the memory location specified
by the a portion of the instruction word. If the sign bit of the A register is
0 (meaning positive), the next instruction in sequence is performed. (1_),

c. Logical Orders

Mnemonic Code Name Time Word
Code B No. Sections

SHL 30 Shift Left 8, a

Remarks: A —L—>A
@17

Bits 1-7 of the @ portion of the instruction specify the number of times
the ¢ontents of the A register are to be shifted to the left. Bits shifted out
of bit 36 of the A register are lost. Zeros replace the vacated low order
bits. The sign is not affected. pspecifies overflow procedure.

Out 4\ Zero
37 |36 |35 |34 |33]32]0 4[5 [4 |3 |2 |

A register

Each arrow indicates the movement of one bit during an SHL instruction.

Mnemonic Code Name Time Word
Code No. » Sections
SLL 31 Shift Left Long & B, a
. L
Remarks: A, Q — A, Q
®y.7

The A and Q registers are treated as a single 72 bit register. DBits 1-7
of the @ portion of the instruction specify the number of times the contents
of the A and Q registers are to be shifted to the left. Bits shifted out of bit
36 of the A register are lost. Bit 36 of the Q register enters bit 1 of the A
register. Zeros replace the vacated low order bits of the Q register. The
sign bits are not affected. B specifies overflow procedure.

Out\ Zero
L N XN N A ¥ \f\f\m/\{\r '\,\r\/
37 |36 |35 [34 |33 ﬂ321 37363534“321
"‘}'ﬁ e

" A'register Q register

Each arrow indicates the movement of one bit during an SLL instruction.

Wk 16 ps + @ bus, @ even; 16 ne + (@ +1) 6 us, «a odd.

1-22

Mnemonic Code Name Time Word

Code No. Sections
SHR 32 Shift Right et o
Remarks: A R, A

1-7

Bits 1-7 of the @ portion of the instruction word specify the number of
times the contents of the A register are to be shifted to the right. Bits
shifted out of bit 1 of the A register are lost. Zeros replace the vacated
high order bits. The sign is not affected.

Zero Out
' AN Y e WA Ve Wa WA
|37 [36 [35 [34 [33]) 44 [3]2]1

A register

Each arrow indicates the movement of one bit during an SHR instruction.

SRL 33 Shift Right Long #*% «

R
Remarks: A, Q—— A,Q

The A and Q registers are treated as a single 72-bit register. Bits 1-7
of the @ portion of the instruction word specify the number of times the
contents of the A and Q registers are to be shifted to the right. Bits shifted
out of bit 1 of the Q register are lost. Bit 1 of the A register enters bit 36

of the Q register. Zeros replace the vacated high order bits of the A register.
The sign bits are not affected.

Zero Out
TN NS N~ NN S~y
37]36] 35] 34[33) J[3]2[1][37]36]35]|34]y {{¢[3]2]1

A register Q register

Each arrow indicates the movement of one bit during an SRL instruction.

CYL 35 Cycle Long S o
L
Remarks: A, Q 1——%—* A, Q
Az T 9

The A and Q registers are treated as a single 72-bit circularly connected
register. The sign bits are also shifted. Bit 37 of the Q register enters bit
1 of the A register. Bit 37 of the A register enters bit 1 of the Q register.
*%16pns + @b us, aeven; 16 us + (a+1) 6 us, @ odd.

1-23

—

.

; S Pl SRR Al AN 2N oLl Y aY'e N N\ e
137136 35|34)[4]3]2] 37(36|35}34})3|z|1|>

~—

A register Q register

Each arrow indicates the movement of one bit during a CYL instruction.

Mnemonic Code Name Time Word
Code No. Sections
LOD 51 Load 25 us B, «

Remarks: (a)— g

The contents of the register specified by B are replaced with the contents
of the register or memory location specified by @ . The high order three bits
of the register address in 8 are understood. (2, 53), (1,2,44)

STR 50 Store 26 ps a

Remarks: (A) — «

The contents of the register or memory location specified by « are re-
placed by the contents of the A register. The contents of the A register are
not affected. (1, 3,6)

LDX 53 Load Index 20 us v, B8,
Register

Remarks: B — 17

The contents of the index register specified by the Y portion of the in-
struction are replaced by the § portion of the instruction word. The con-
tents of the index register whose address is one greater than the index
register specified by the Yy portion of the instruction word are replaced by
the @ portion of the instruction word. If there are only 4 index registers,
and Y=4, y+1 = 1. (anythingg) (anything o)

LGA 03 Logical Add 26upus «
Remarks: (a) v (A)— A

The bit by bit logical sum of the contents of the A register and the con-
tents of the register or memory location specified by o is placed in the A

register. The sign bits are also logically added. (1,2)

Mnemonic Code Name Time Word
Code No. Sections

LGM 02 Logical Multiply 26us g
Remarks: (a) - (A)— A

The bit by bit logical product of the contents of the A register and the
contents of the register or memory location specified by «@is placed in the
A register. The sign bits are also logically multiplied (1, 2)

RPA 54 Replace Address 38us «

ks: (A
Remarks: ()1—_—15—> a1_15
The configuration of bits 1-15 of the A register replace the configuration
of bits 1-15 of the register or memory location specified by @ . The con-
tents of the A register are not affected. (1, 3, 6)

MSK 55 Replace Through 38pus «

Mask

Remarks: (A) - (Q) v(a) - (Q) »a

This instruction is used when it is desired to replace certain bits of the
register or memory location specified by @ with corresponding bits of the A
register. A mask with ones in the bit positions to be changed and with zeros
elsewhere must be placed in the Q register before execution of the MSK
instruction. The sign of « is affected. The contents of the A and Q registers
are not affected. (1, 3, 6)

Ex. To replace the g portion of memory location 3416 with the number
1467,:
8

SN OP v B o
before:Q | + 00 T 01 7777 | 00000
A | - 12 ' 0, 1467 | 32156
loc. 3416 | + 32 1 71 4453 ' 01276
after:Q + 00 ' 01 7777 , 00000
A - 12 , 0' 1467 ' 32156
loc.3416 | + 32 1 7. 1467 . 01276

Mnemonic Code Name T ime Word
Code No. Sections

HLT 00 Halt 14 ps -

Remarks: The central computer operations stop. Any input-output
order which is being performed will be completed, but no new orders
will be accepted. The ¥,8 and « portions may be used to store constants.

d. Sense Orders
Mnemonic Code Name Time Word
Code No. Sections
SEN 05 Sense 16 s B, a
Remarks: IfFFB = 1, ¢ — PC
If FFB = 0, (PC)+ 1— PC

If the flipflop specified by Bis in the "1" or "set" state, the next in-
struction performed is taken from the memory location specified by « .
If the flipflop is in the "0" or "reset" state, the next instruction in sequence
is performed. (Any addressable flipflop g) (1l «)

SNS 06 Sense and Set 16 us B, a

Remarks: If FFg =0, 1 — FFB and a - PC
If FFp 1, (PC)+1— PC

I

If the flipflop specified by B is in the "0" or "reset" state, it will be
set to 1 and the next instruction performed will be taken from the memory
location specified by @ . If the flipflop is in the "1" or "set" state, it is
not altered and the next instruction in sequence will be performed. (Any
addressable flipflop B) (la)

SNR 07 Sense and Reset 16 us B, «a

Remarks: If FFp =1, 0— FFB and o — PC
I{ FFp =0, (PC)+1— PC

If the flipflop specified by B is in the "1" or "set" state, it will be re-
set to 0 and the next instruction performed will be taken from the memory
location specified by @ . If the flipflop is in the "0" or "reset" state it is
not altered and the next instruction in sequence will be performed. (Any
addressable flipflop 8) (1,)

1-26

<

1,

e. Overflow

Five arithmetic and two logical instructions can cause overflow to
occur in the Accumulator. Overflow occurs when the ADD, ADM, SUB,
DVD, DVL SHL or SLL instructions produce a number in the Accumulator
too large to be accommodated. The result would be a carry into the adjacent
bit position, which in this case represents an error. When this indicator con-
tains a 1, overflow has occurred. Overflow can be used by the programmer
to indicate an error condition such as improper scaling, or can be used as a
programming feature such as to indicate whether certain bits are ones or
zeros. No one automatic procedure is ideal for all possible cases, and the
BASICPAC programmer has been given complete control of overflow pro-
cedures. Note that overflow does not affect the sign bit.

An addressable Overflow alarm flipflop (OA) is used to indicate to the
program that overflow has occurred under the conditions set by the program.
This flipflop can also halt the computer upon the detection of overflow if so
indicated by the program.

Bits 16 - 18 of the B portion of the instructions which may cause
overflow determine the procedure to be followed.

Bls 17 B1e Action Bnefore If Instruction
Instruction Causes Overflow

000 Clear OA Set OA and halt

001 Clear OA Set OA

010 Clear OA Set OA and halt

011 Clear OA No Action

100 Halt if OA =1 Set OA and halt

101 No action Set OA

110 Halt if OA=1 Set OA and halt

111 No action No action

1-27

f. Trapping Mode

During certain operations, especially program debugging, it is very

important to be able to trace the flow of control.

The trapping mode is a

method of computer operation which permits the programmer to examine in

detail the flow of control of a program while it is running.

The computer operates in the trapping mode only when the Trapping
flipflip (TRA) is set to one and the trapping switch on the control panel is in
the "ON" position. The switch on the control panel permits a manual over-
ride of the normal trapping action regardless of the state of the TRA flipflop.

When the computer encounters a transfer or sense instruction in the

trapping mode, the instruction is not performed.

Instead, the address of the

instruction being trapped is placed in the @ portion of the B register, the
Trapping flipflop is reset to zero and control is transferred to memory loca-
tion 00000. This location must contain an unconditional transfer to a routine
which simulates or otherwise processes the trapped instruction and returns

control to the main program.

The trapping mode is controlled by bits 16 and 17 of the unconditional
transfer instruction and by the previous state of the Trapping flipflop as follows:

TRA before B17 Blé6
TRU of TRU
0 00
0] 01
0 10
0 11
1 00
1 01
1 10
1 11

Trapping Effect
Action? on PC
no No action
no No action
no No action
no No action
ves PC-1 —B,
0 — PC
no No action
yes PC-1 — B,
0— PC
no No action

Remarks

No action
1 — TRA
No action
0 — TRA

Trap TRU order

1 — TRA

Trap TRU order

0 — TRA

2. Input-Output Orders

The input-output instructions automatically select the designated
input-output device, perform the specified operation, disconnect the device,
and return the input-output unit to its initial state. Special consideration
is given in this discussion to the sign bit of the data handled by the input-
output unit, because certain operations involve the sign bit and others do not.
For each of the input-output instructions listed below, the j portion of the
instruction specifies the device to be used; the k' portion specifies the amount
of information to be processed; and the «a portion specifies the first memory
location to be used in processing the order.

RAN READ ALPHANUMERIC

This instruction assembles a computer word from six 6-bit char-
acters. In interpret sign mode, an additional character (the first
in the sequence) is interpreted as the sign. Otherwise the sign
bit is automatically set to zero.

RRV READ REVERSE

Similar to Read Alphanumeric, except that Read Reverse applies
only to magnetic tape moving in the reverse direction. *

ROK READ OCTAL

Thirteen paper tape characters are assembled to form a signed
(plus or minus) computer data word. The low order bit of the
first character is placed in the sign position. Only the low order
3 bits of each of the remaining twelve characters are used. * %

WAN WRITE ALPHANUMERIC

This instruction performs the operation as described under Read
Alphanumeric except that the flow of information is in the reverse
direction. *

WWA REWRITE ALPHANUMERIC

This instruction is applicable only to magnetic tape. With the tape
moving in the forward direction, a specified number of words are
recorded immediately after two consecutive start of block (SOB)
control characters are sensed on the tape. *

*# Time: 22 ps + 22 ws/char + tape time

1-29

WOK WRITE OCTAL

A computer word is assembled as thirteen FIELDATA characters
and punched on paper tape. The sign bit is used in forming the
first character. Each set of three data bits is prefixed with the
bit pattern 1110 and a parity bit to form one of the remaining
twelve characters. =

RWD REWIND

1.

Performs a high-speed rewind of the designated magnetic tape. %
SKP SKIP

The selected magnetic tape is advanced a specified number of blocks, **
BSP BACKSPACE

The same as Skip, except the magnetic tape is moved in the reverse

direction.
a. ICF Behavior

BASICPAC input-output equipment automatically transmits
eight bits for each character: six bits of information, one parity bit and one
control bit. This control bit and the state of the addressable Interpret Control
Function flipflop (ICF) control the performance of input-output orders. When
ICF=0, all input output orders are performed exactly as described above.
When ICF=1 and analphanumeric write order is issued, the instruction is
performed as described above with the exception that all control bits are
transmitted as zero (to indicate "control characters") rather than one (to
indicate "data character"). When ICF=1 and an alphanumeric read order is
issued, the transmission procedure depends upon the control bit of the first
character transmitted. If the control bit is a one (data character), the order
is performed as described above. However, if the control bit is a zero,
only the first character is read into memory. This character is placed in
the low order character position of the memory location specified by the «
portion of the read instruction and the equipment proceeds as though the
order has been completed. In the case of a magnetic tape order, the tape
is moved to the beginning of the next block.

If both ISN and ICF are set to one, ISN will take pre-
cedence. When an input-output order involving some unit cther than the
Communrnications Converter is completed, the ICF and ISN flipflops are reset
automatically.

% 22 ws + 22 ws/char + tape time

ol ate

#E 22 ps 4+ tape time

=
b. Interrupts

When an input-output order is issued either to the Input-
Output Converter or to the Communications Converter, both the equipment
and the order are examined for errors. If the order is accepted, processing
begins and the Central Processor continues its operation. If there is an
error or if the input-output order is complete, a deviation from the normal
Central Processor operation occurs; a program interrupt is requested. "The
acceptance or rejection of the interrupt depends upon the state of the address-
able Disable Program Interrupt flipflop (DPI). An interrupt request can be
accepted only if the Central Processor has completed the current instruction
and if DPI=0.

When an interrupt is accepted, the computer automatically sets
DPI to one, stores the contents of the Program Counter register (PC) in the «
portion of the B register and transfers control to memory location 00001 (F'1)
or 00002 (F2), depending upon the cause of the interrupt. These locations
should contain unconditional transfer instructions to subroutines which will
store the current state of the registers in use, determine the cause of inter-
rupt, process any input information and return control to the main program.
DPI must be reset by the program to permit new interrupts.

The following conditions will cause an F1l interrupt (interrupt
jump to F1):

1. Addressing a non-existent converter
2. Addressing a busy converter

3. Issuing an improper order

4. Initial device malfunction

The following conditions will cause an F2 interrupt (interrupt
"jump to F2):

1. Completion of transmission (normal interrupt)
2. Device malfunction after the order has been accepted
3. Receipt of a control character when ICF=1

4., Communication Converter malfunction

1-31

c. Usage of Control and Converter Input-Output
Orders Compared

The paper tape set, consisting of a paper tape reader, a paper
tape punch,and a FIELDATA typewriter, can be connected to either the
Input-Output Converter or the Control Unit. Connections are made in both
cases with standard FIELDATA cable connectors. The same set of input-
output orders is used regardless of the connection and functionally the
results are identical. Differences arise in the addresses of the devices
and in the method of operation.

The paper tape reader, paper tape punch and FIELDATA type-
writer have the octal addresses 01, 02, and 03 respectively when connected
to the Control Unit; 20, 22, and 26 when connected to the Input-Output Con-
verter.

When a Control Unit device accepts an input-output order, all
Central Processor operations are halted until the order has been completed.
Processing then continues. When an Input-Output Converter device accepts
an order, both input-output and Central Processor operations proceed con-
currently until the converter requests an interrupt.

In general, when a Control Unit device detects an error, a
flipflop is set and the computer halts; when a converter device detects an
error, a flipflop is set and an interrupt is requested.

If a Control Unit device is processing an order, no other opera-
tions may proceed concurrently. However, converter devices can be multi-
plexed with Central Processor operations; if there are n converters present,
n devices (one per converter) can operate concurrently with Central Proc-
essor.

IV. CONTROL SYSTEM

The BASICPAC control system provides facilities for operator-computer
communication. It is composed of the control unit, control panel, and may
include paper tape equipment, '

The paper tape equipment, which can be connected through either the
control unit or input-output converter, includes a paper tape reader, a paper
tape punch and a FIELDATA typewriter. It enables the operator to enter
and obtain relatively large quantities of information. The paper tape equip-
ment can be controlled either by the program or by the operator through
the control panel.

1-32

The control panel enables the operator to enter and obtain small
quantities of information, to start and stop the computer, to exercise
control over program flow, and to issue instructions to the paper tape
equipment. This manual discusses only the general purpose control
panel. There are, however, special purpose control panels which are
designed to be operated by personnel with little or no knowledge of the
computer. A special purpose control panel can easily be replaced by a
general purpose control panel for maintenance or program debugging.

The control unit contains the electronic equipment used in per-
forming the above functions. It is physically located in the computer
cabinetry.

A. CONTROL UNIT
The control unit contains the following registers and flipflops:
1. Word Selection Register (WSR):

WSR is an addressable register used as a buffer for operator-
computer communication. WSR receives and transmits information
transferred between the central processor and the control unit paper
tape equipment. The contents of WSR are always displayed on the control
panel. Hence any information transferred to WSR from core storage,
registers, or paper tape equipment is automatically displayed. WSR has
a 37-bit capacity: 36 data bits and one sign bit,

2. Control Character Buffer (CCB):

CCB is an eight-bit non-addressable buffer register between WSR
and the paper tape equipment. The eight bits include six data bits, one
parity bit and one control bit; i.e., one FIELDATA character.

When a read order is issued to the paper tape reader, one charac-
ter at a time is transferred from the reader to the CCB. The CCB trans-
fers the data bits (six alphanumeric or three octal) to the low order bit
positions of WSR, which has been shifted to the left to receive them. When
enough characters have been transmitted to WSR to complete a word, the
contents of WSR are sent to the appropriate memory location, and the
process is repeated until the order has been completed.

Write orders are handled in a similar manner. The low order
data bits of WSR are transmitted to the CCB and from there to the punch
or typewriter, where a FIELDATA character is assembled and typed or
punched out to the operator.

1-33

3. Sense Flipflops (SFFI_S):

SFF,_g are one-bit addressable registers which store information
for the program. They may be set by the program or by the operator.

B. CONTROL PANEL

The BASICPAC control panel is effectively a plug-in assembly which
can be interchanged with or replaced by another control panel by changing
cable connections,

The general-purpose control panel is placed on a desk or console
structure, and is connected by cables to the control unit in the computer
cabinetry,

The illiminated displays of the control panel have the following color
assignments:

1. Neon light: Computer conditions to be monitored.

2. Red-covered incandescent lights: conditions requiring operator
attention.

3. Amber-covered incandescent lights: conditions of which the
operator should be aware.

4, Green-covered incandescent lights: Normal conditions not re-
quiring operator attention.

- The two-section front surface is divided into five functional areas:
Power, Register, Operation, Error and Sense Flipflops (Figure IV-1).

1. Power Area Display and Controls

The power area switches and indicators concern the BASICPAC
computer power supply unit and the neon indicators on the control panel.
Only the S-109 type of package tester is included under this power control.

The NEON TEST switch is a spring-loaded pushbutton which
operates all the neon lights except the nixie indicators on the control panel.

The POWER ON-OFF control is a guarded three-position switch
which establishes or cuts off the computer power supply after momentary
displacement from the center position, The green READY indicator is
lighted to indicate that the power supply has been turned on.

1-34

ge-1

SENSE FLIP FLOPS

molelelololola I

+|{2i3‘5|:467023|

T T —_]
sofgsl'»smssms%%:a"ncwn (:) @ @ @ @ @ @ @ Lopgration-! L —woros/BLocks— L—oevice—! S5 COUNTI

™
-
L

NEON INDICATOR (8}

|~ INDICATING TUBE (13) NIXIE

~~PUSHBUTTON SWITCH
INTERLOCK-7 POSITION-DPDT

YO CENTER SPDT L seT— v __qeser—
l_—PUSHBUTTON SWITCH
PROG | INSTR P/‘ INTERLOCK 8 POSITION-DPDT
NEON INDICATORS (221————~__] cTR | Res
(———————— PARITY ERROR ————————. | - ———-—~= ——-— - A
1
s 1O OO @O O® D@ QO
uEwoRY T comw 7
FLIP TYPE GUARDS ————l ERROR ALARMS OCTAL
OVER RIDE —

@@@@@@@OO

~~PUSHBUTTON SWITCH
INTERLOCK-2 POSITION-DPOT

|——PUSHBUTTON SWITCH (3)
MOMENTARY-SPDT

|——INDICATING LIGHT (2}

[N_TOGGLE SWITCH 3 POSITION
MOMENTARY - DPDT

TOGGLE SWITCH 2 POSITION—_| WPTTOuTRUT 1 coMM eTRL
DPOT _
ENTER CLEAR DisPLAY
cLEAR O O O O
ERROR NONEX NONEX OVER CTRL
PUSHBUTTON SWITCH ADDR INSTR FLOW \uP NEON
MOMENTARY-SPDT 1 ORDER vest|
NEON INDICATOR (3)
INDICATING LIGHT (5)‘—'—‘——0 ® ® D O O : 7 8 9
PROG NON STOP 1AC OAC ms - O @u\
T P -
HAL RUN CLEAR 4 5 6 war .
coup
+ CHECK
PUSHBUTTON SWITCH
3 POSITION INTERLOCK [aun vore| stoe et e HiGH
DPDT : 2
3 o
W)
-
PUSHBUTTON SWITCH
MOMENTARY - SPDT | AaovaNcE 0 Low
OPERATION REGISTER POWER
/ ' L
PUSHBUTTON SWITCH —————— TOGGLE SWITCH Zvossu: SWITCH Lusnwrrou SWITCH _PUSHBUTTON SWITCH TOGGLE SWITCH
MOMENTARY-2 POSITION SPDT 2 POSITION - SPDT 2 POSITION-DPDT MOMENTARY-SPDT MOMENTARY - SPDT 3 POSITION DPDT
SPRING RETURN 0-9 INTERLOCK~SPDT

INDICATING LIGNT

Figure IV-1 BASICPAC Control Panel

The MARGINAL CHECK control is a guarded 3-position switch
which controls the marginal check voltage (MCV) in the computer. With
the switch in the center position, this MCV is set at its normal (+4 volts)
level. With the switch in the high (MCV=+46 volts) or low (MCV=42 volts)
position, the amber MAR CHECK light, located above the MAR CHECK
switch on the control panel, is lighted.

2. Register Area Display and Controls

The register area of the control panel permits data entry and
display while the computer is in the non-run mode. When the computer
is not in the non-run mode the controls in this area are ineffective.

The contents of WSR are displayed by a set of neon tubes located
in the top section of the control panel.

Information in the WSR may be displayed octally or decimally, as
determined by depressing one of the two switches on the control panel
OCTAL and DEC. The information then passes through an octal or
decimal decoder network. During an octal display, each nixie tube
indicates the contents of 3 bits of the WSR. There are eight possible
binary combinations in three bits:

Binary Octal

000
001 =
010 =
011 =
100 =
101 =
110
111 =

h

N oMU WV~ O

The octal number displayed in each nixie tube of the control display
range from 0 to 7. The sign bit is displayed as plus or minus.

WSR

0011010 011a001uoo]110]111looo 010 011|101 001!
\—-V\JW\—«/'\/\)

=S HOO e 006 66 0

1-36

OCTAL NIXIE WSR DISPLAY

If the 37 bits of the WSR are to be displayed decimally, the
register is divided into 6 groups of 6 bits each. The contents of 4
of the 6 bits in each group are displayed by 6 nixie tubes (every other
one), which indicate the contents in FIELDATA 0 to 9:

Binary Displayed Decimal
110 000 0
110 001 1
110 010 2
110 011 3
110 100 4
110 101 5
110 110 6
110 111 7
111 000 8
111 001 9

The nixie tube in the most signficiant position represents the sign
bit of the WSR.

The word displayed may be any of the types shown in Table IV-1.
The markings above and below the nixie tubes indicate the two most
frequently used types: central processor instruction word and input-
output instruction word.

The set of twelve pushbuttons (+, -, 0, 1, 2, ..., 9) located at
the bottom of the register area of the control panel permit the operator
to alter the contents of WSR. The sign is altered directly by pressing
either the + or - button. The data portion of WSR is altered by pressing
the desired keys. Each key transfers its binary equivalent into the low
order bit positions of WSR while the previous contents of WSR are shifted
to the left. When the DEC button is pressed, buttons 0-9 enter their 6-bit
FIELDATA code equivalents (60g to 71g) into the low order six bits of
WSR. - When the OCTAL button is pressed, buttons 0-7 enter their 3-bit
octal equivalents (0002 to 1112) into the low order three bits of WSR.
(8 and 9 are ineffective in octal mode.)

Two rows of interlocked switches and a third row of three separate
switches control the disposition of the information in WSR. The eight
register selection buttons (A,B,Q,...) select the computer register into
which or from which the contents of WSR are to be transferred. Each of
the center two switches in this array (INDEX REG and CONV INSTR REG)
concerns a set of registers rather than a single register. The row of

1-37

Indicator Operatved1 WSR Instruction Word Data Word

Decimal2 Octal - Bit Computer 1/0 Alphanumeric . Binary
1 : 1 37 - - Sign (optional) Sign
36 ! I T 27 1pit
2 { 35 © 2-2
------- 34 (oper. Oper- first 2-3
—————— 33 code) ation character 2-4
3 3 { 32 2-5
IR U 3 | J, , l 2-6
----- 30 y i T 2-7
. -8
4 { 29 (index reg. i 2
-----28 selection) second 2-9
-----27 Words/ character 2-10
5 \ 5 { 26 l 2-11
______________ 25 Blocks 2-12
______ 24 ﬁ T 2"13
6 { 23 (minor i 2-14
22 address) third 2-15
----21 T character 2-16
7 7 { 20 2-17
S G —) Device l 2-18
c--—--18 T 2-19
8 { 17 2-20
——--16 . fourth 2-21
----15 " character 2-22
9 9 { 14 2-23
o ____l____13 l 2-24
----12 i 2-25
10 { 11 o Address fifth 2-26
----—10 (major Counter character 2-27
————— 9 address) 2-28
11 11 { 8 l 2-29
A Y 2-30
_____ 6 T 2-31
12 { 5 2-32
----- 4 sixth 2-33
---- 3 character 2-34
13 13 { 2 -35
————————————— 1 v l 2"36

Indicators numbered from left (signs indicator is no. 1)
Decimal indication for only 10 of the combinations possible.for six bits.

Table IV-i Nixie Indication Interpretations.

7 20

seven buttons (1-7) immediately below the eight switch row are used to
select a specific index register or Input-Output Converter Instruction
Register when necessary. Four index registers are used in the standard
system, but there are logical provisions for seven.

The row of three switches located in the center of the register area
determines whether information is to be transferred to the selected
register from WSR (ENTER) or to WSR from the selected register (DISPLAY).
The CLEAR button sets WSR to + zero.

3. Operation Area Display and Controls

The computer can be in one of four phases which are indicated on
the control panel by the IAC and OAC lights as follows:

IAC OAC PHASE

0 0 0 HALT

1 0 1 INSTRUCTION ACCESS
0 1 2 OPERAND ACCESS

1 1 3 EXTENDED ACCESS

(used in the Shift,
Multiply and Divide
Instructions)

These indicators can provide several types of information to the
operator. For example, if a parity error is indicated, the IAC and OAC
lights indicate the phase in which the parity error occurred.

The two interlocked pushbutton switches labeled INSTR ACC
(Instruction Access) and OPER ACC (Operand Access) are depressed to
set the initial phase of the computer. The operand access phase is used
to perform an instruction already present in the instruction register.

The Mode operating controls consist of three interlocked push-
button switches labeled RUN (Run Mode), INSTR CYCLE (Instruction Cycle
Mode) and STOP (Stop Mode).

Run Mode, the normal console operation, is entered by depressing
the RUN switch. It can be terminated by pressing either the STOP button
or the INSTR CYCLE button; however, the current I/O orders and instruc-
tion will be completed before the computer enters the Non-Run Mode.

The Instruction Cycle Mode is effectively a Non-Run Mode
except that one instruction is performed whenever the ADVANCE button
is pressed. This is also known as "step" mode.

When the STOP button is depressed, the Run Mode is released
and the ADVANCE bar is disabled, allowing the computer to complete
the instruction and any I/O instruction in CIS. The computer then enters
into the Non-Run Mode.

The ADVANCE bar is a momentary pushbutton switch used to start
the machine after the program has been prepared. If the ADVANCE bar is
pressed while the computer is in the Instruction Cycle Mode, only one
instruction is completed. The ADVANCE bar is disabled by the following
conditions:

1) Run Mode and Computer Error
2) Instruction Cycle Mode and Error
3) Stop Mode
4) Programmed halt on overflow and overflow present
The conditions under which the Non-Run Mode exists are: 1) the
INSTR CYCLE button is depressed and the H (halt) flipflop is "one"; or 2)
the STOP button is depressed the H flipflop is "one", and the I/O converters
are neither busy nor requesting interrupt. When this mode occurs, the
NON-RUN indicator lights.
The STOP indicator displays the condition of the non-addressable
Halt (H) flipflop located in the computer. This light is set by any of the
following conditions:
1) Error halt when the computer is in the Run Mode.

2) Error halt when the computer is in the Instruction Cycle Mode.

3) The STOP buiton is depressed and the computer is not
running or is at the end of an instruction.

4) The INSTR CYCLE button is depressed and the computer
is not running or is at the end of an instruction.

5) The machine is in its initial state.

The Program Halt (PROG HALT) light indicates that the computer
is in phase 0 and a halt instruction is present in the instruction register.
When the Halt phase is indicated, the ADVANCE bar must be depressed
to continue.

The Disable Program Interrupt (DIS PROG INT) light indicates
that the program will not permit any interrupts (DPI=1).

The TRAP MODE switch is a two-position toggle switch. When
this switch is manually set to "OFF ", all transfers to the trapping mode are
inhibited. When the TRAP MODE switch is set to "ON" the computer will
enter into a subroutine at a point determined by the program. This mode
is used when there is a need to debug a program in the Run Mode rather
than step-by-step.

The Clear Computer (CLEAR COMP) switch is a two-position
toggle switch used to preset the computer to the initial state. It operates
only if the computer is in the Non-Run Mode. It can be used to interrupt
a partially completed I/O order.

4. Error Control and Display

The error control and display section of the control panel consists
of indicators to display the location of errors, and controls for clearing
error flipflops or continuing despite error. It is used extensively during
running operation, program debugging, and system checking.

There are nine parity error neon indicators. Seven of these identify
which of the seven memory units has noted a parity error, one indicator is
associated with the communications converter and one is associated with
the control unit input-output system (CTRL). The parity error flipflops can
be cleared only by activating the CLEAR ERROR switch,

Input-Output errors are those errors which occur during the
execution of an I/O order if the instruction addresses a converter. The
1I/O errors are identified by unit (1 to 7). Further indications of the type
of converter error (e.g., improper order or device malfunction) are dis-
played on the individual unit. The I/O alarm flipflops can be reset or
cleared either by the issuance of a new I/O order to the same converter
or by program control. Similar indicators display an error in the com-
munications converter and in the control unit input-output system.

The Nonexistent Address (NONEX ADDR) indicator shows that a
nonexistent address is about to be transferred to the program counter by
either a transfer of control or sense instruction. The computer will stop

without performing the instruction unless the error override is set.

In this case, the instruction will be performed. However, since any
illegal address is treated as though it contained all zeros, IR will then
equal zero and the computer will halt. This indicator is reset by the
CLEAR ERROR switch.

The Nonexistent Instruction (NONEX INSTR) indicator shows
that an order code not implemented in the machine is in the instruction
register, in which case the instruction remains in the instruction register
and the computer stops, regardless of the position of the Error Override
switch. The flipflop is reset by the CLEAR ERROR switch.

The OVERFLOW neon indicates that there has been a carry into
a nonexistent position of the accumulator. This state may or may not be
intentional, and the program determines whether or not the computer will
stop. The instructions in which overflow is possible are ADD, ADM, SUB,
DVD, DVL, SHL and SLL.

The Control Unit Improper Order (CTRL IMP ORDER) indicator
lights when there is an instruction fault caused by addressing a nonexistent
device or issuing an inconsistent order.

The ERROR OVERRIDE switch is a two-position toggle switch
which signals the computer to continue despite errors. A light indicates
whether or not the ERROR OVERRIDE Switch is on.

The CLEAR ERROR switch is a momentary pushbutton switch
which clears error indications for memory parity, control parity, control
device alarm, control improper order, non-existent address, and non-
existent instruction. It can operate only in the Non-Run Mode.

5. Sense Indicators and Switches

The general sense flipflops (SFF| _g) each hold one bit of information
for the computer program. These flipflops can be controlled either by the
program or by the operator through the control panel. The state of each
sense flipflop is indicated by a correspondingly numbered neon light: if
the flipflop is in the "one" state, the indicator light is on; if the flipflop
is in the "zero" state, the indicator light is off.

The operator can manually set or reset the sense flipflops by
pressing the corresponding three-position toggle switches up or down,
respectively. The toggle switches have a spring return to the center
position where the flipflops are under the control of the program.

1-42

C. PAPER TAPE SET

The paper tape set consists of a paper tape reader, a paper tape
punch, and a FIELDATA typewriter. It can be connected either to the
control unit or to the input-output converter. The paper tape reader
will accept only "read" orders; the paper tape punch and the FIELDATA
typewriter will accept only "write" orders.

1. Orders

Orders issued to the control unit paper tape equipment may be
considered as a class of computer instructions which differ from other
computer instructions only in the length of time required for execution.

When an order is placed in the instruction register (IR) it is ex-
amined for errors such as non-existent command, improper address, etc.,
just as any other instruction is examined. If an error is detected, the
control error indicator on the control panel is turned on and the computer
halts. If no errors are detected in the instruction, the device addressed
is examined for errors (not present, etc.). : If a malfunction
exists, the device alarm flipflop (DVA) is set to one, the control error
indicator in the control panel is lighted, and the computer halts. If the
device is ready, processing begins.

The K portion of the instruction word specifies the number of
words to be processed and the & portion specifies the corresponding
memory locations. As each word is processed, the ¢ portion of IR is
incremented by one and the K portion is decremented by one. When K
equals zero (or when other conditions are satisfied) the order is assumed
to be completed and processing ceases. At this point the altered instruc-
tion word can be displayed from IR. « specifies the address of the word
which would have been processed next, and K specifies the original number
of words to be processed, decremented by the number of words which
actually were processed.

Control unit input-output orders can be manually issued through
the control panel in Non-Run mode by the same procedure used in issuing
other computer instructions. The instruction to be performed is keyed into
WSR and entered into IR. Operand Access mode is selected and the Advance
bar is pressed. The equipment re-enters Non-Run mode when the order has
been completed; another order can then be issued.

Two addressable flipflops supply information to the program concerning
the completion of control paper tape orders.

1-43

The Control Unit Stop flipflop (0360) indicates whether or not
a stop character (57g) has been received.

The Control Unit Control Indicator (0361) flipflop indicates
whether or not a control character has been received. Acceptance of a
new order automatically resets these flipflops to zero.

2. Speeds

The typewriter operates at a maximum steady output speed of ten
characters per second. Except for short bursts, a faster operating speed
may jam the type bars together.

On-line, the paper tape reader operates at either the normal
speed of 30 characters per second or at high speed of 300 characters per

second. Off-line, speeds are either 10 or 30 characters per second, de-
pending upon the mode of operation.

The paper tape punch operates at either 10 or 30 characters per
second, depending upon the mode of operation.

3. Typewriter Control
The typewriter control unit contains two sets of flipflop registers
(keyboard and main), five mode flipflops which store the designation of the
mode to be used, and associated logic.

- Pressing a pushbutton control key on the typewriter clears all the
mode flipflops, then sets the appropriate mode flipflop and resets the key-
board register.

a. Mode Control
The five modes used in the operation of the paper tape set are:
Keyboard to Punch,
Reader to Printer,
Reader to Punch,
Print and Punch, and
On- Line.

Each mode is selected by depressing the associated control key.
The Print and Punch mode can be used only On-Line or with a reader mode.

1-44

b. .Other Control Keys

In addition to the five mode control keys, four other control
keys are used on the typewriter. These are:

1) Step Reader
This key causes the reader to read a single character.
2) Reader Start, Stop

This key starts or stops the reader only when the reader
is connected to the punch or typewriter.

3) Tape Feed

This key permits the generation of leader tape when the
typewriter is connected off-line to the punch,

4) Back Tape

This control key is active only when the punch and type-
writer are connected off-line. It causes the tape in the punch to space
back one character.

Alarm

An alarm (similar in appearance to a control key) is active in any of
the four off-line modes, and when lit indicates one of the following conditions:

1) No tape in reader.
2) Reader plastic tape guide not properly positioned.

3} Power off at reader and punch, when power on at
typewriter,

4) Data cables not connected.

Mode Descriptions

On-Line

Control is transferred from typewriter control box to the computer.
Data lines are connected directly to the computer. The typewriter
keyboard is locked.

1-45

Reader to Typewriter

The reader is connected to the typewriter so that the tape is printed
as it is read. The punch and typewriter keyboard are disabled.

Reader to Punch

The reader can be connected to the punch either directly or through
the control box logic. Tape fed into the reader is reproduced by the
punch. The typewriter is disabled.

Keyboard to Punch

The typewriter is connected to the punch. The reader is disabled.
Characters struck on the typewriter are punched on tape in FIELDATA
paper tape code.

Print and Punch

Data is transmitted to both the typewriter and punch.

Typewriter to Punch

Information cannot be entered directly into the computer via the keyboard.
Characters struck on the keyboard are punched in FIELDATA code in
paper tape, which is then read into the computer. FIELDATA codes are
given in Tables III-1 and III-2.

Tab and Carriage Return are manually set prior to the typing operation.
Character keys are provided for carriage return, space, tab, shift,
and backspace. The Master Space key causes the special character x
to be printed. The Special key causes a rectangle to be printed.

The Delete key causes a delete character to be punched on tape.

Typewriter from Reader or Computer

Receipt of an upper case control character causes the typewriter to
print all subsequent letters in upper case except for symbols which
require lower case (e.g., numerals), each of which automatically
causes the typewriter to shift to lower case, then return to upper case.
The lower-case control character causes a comparable operation. If
an upper-case control character is received when the typewriter is

already in upper -case (or a lower-case character in lower case), the
typewriter pauses for approximately one-half second, then continues.
Careless use of these control characters can therefore slow the
operation of the typewriter.

4. Paper Tape Reader

The reader can be connected off-line to the punch and/or typewriter
or on-line tc the computer. A delete character or a blank (a character having
only sprocket holes) is ignored by the reader.

The reader operates at two speeds; normal (30 characters per sec-
ond) and high {300 characters per second). ! : :

Pressing the Normal Speed button when the reader is operating
at high speed returns the reader ta normal speed.

Pressing the High Speed button when the reader is operating at
normal speed steps the reader to high speed. Any malfunction occurring
at high speed causes the reader to revert to normal speed.

5. Paper Tape Punch
The punch can be used either to prepare program tapes (off-line)
or to punch information from the computer onto tape. The punch rate is

30 characters per second.

Operation of the punch and typewriter together results in a speed
of 10 characters per second.

PAPER TAPE SET OPERATING SPEEDS

UNIT SPEED(S)
Reader 30 CHAR/SEC, HIGH SPEED = 300 CHAR/SEC
Punch 30 CHAR/SEC, PRINT WHEEL = 15 CHAR/SEC

Typewriter 10 CHAR/SEC
Paper Tape Format

Information is physically positioned on the paper tape as follows:

1-47

P C I, I, Dy D, D, D,
O OO O O x o O O
—
x L1
SPROCKET x DIRECTION OF
HOLES x : TAPE MOTION
x
Y

kGUIDING EDGE

/\/W

Tape Characteristics

TAPE WIDTH 8 CHANNEL TAPE 1"
7 CHANNEL TAPE 7/8"

5 CHANNEL TAPE 11/16" or 7/8"

SPACE BETWEEN HOLES 1"
DIAMETER DATA HOLES 072"
DIAMETER SPROCKET HOLES . 046"

1-48

V. INPUT-OUTPUT CONVERTER
A. GENERAL DESCRIPTION

An Input-Output Converter provides communication between the core
memory and one or more input-output devices. Only one of the devices
attached to an Input-Output Converter can be in communication with the
cbmputer core memory at any given time. Magnetic tape units and paper
tape equipment are currently available for use with the Input-Output Con-
verters.

B. FUNCTIQN

The Input-Output Converter performs the following functions:
(1) Instruction control
(2) Data control
(3) Error control
(4) FIELDATA control function processing
(5) Program interruption
(6) Communication with the central processor

1. Instruction Control

An 1/0 instruction addressed to an Input-Output converter is trans-
ferred from the computer instruction register to the instruction register of
the appropriate Input-Output Converter.

The converter also receives the contents of the Interpret Sign (ISN)
and Interpret Control Function (ICF) flipflops, which were set by instructions
given prior to the input-output instruction. These flipflops are automatically
reset after their contents have been transferred to the converter.

When the converter unit receives an input-output order in its instruc-
tion register it enters the BUSY state, indicated by a "one" in its Converter
Busy (CVB) flipflop. No other instruction can be entered into this converter
unit until the processing of the current instruction has been completed. How-
ever, the computer can sense the contents of the Converter Instruction Register
at any time. The CIS and other logical elements of the Input-Output converter
are shown in Figure V-1.

06T

BUS ‘)
I [L ITIT111d
_ (6) (6) (6) -
[ic]fove [1s] oe'| 0| o8| 08| o8 | ct [EoF{tna
T3 l
INSTR] wBC | DAR | ADC | cIs K] COR [ova] [imo] [1arE] [cmee] [oDA]
L) s|]e|5}a|3]|2]1
o '3 3
; i
R ;
2|z a 2 |1
<.
v (6)
SEQUENCING AND CONTROL
3)
cce
@ A
mig o .
== § z § 2 (8)
x
HEFRE S
*-t—1—o
R
/
12) u2)
out| IN
Figure V-1 Input -Output Converter Type A,Block Diagram

te-1

NEW INSTRUCTION
TRANSFERRED
FROM CORE

MEMORY TO IR

DECODE

R3i-36

INSTRUCTION

no | compuTER

INSTRUCTION

IR-=408
16=21

ALL
CONVERTERS
DECODE
ADB

ADB
REFERS 70

ONLY (1) CONVERTER

IN THE SYSTEM
CONVERTER X

CONVERTER X
SELECTED

MPE No
?
YES
MPE SET
KEWN_ NO
OFF
?
YES
ERROR
HALT
CONDITION

NO

IR, —=>MT8
773 MTB—=CIS . o MTB—CIS,, oo
' ;
t-=Cv8
CONVERTER X Wt —
SENDS CRY (Ro.1 /0Pt oF MBS CISoo12 IRgza MT8 IRji3E MTe
TO COMPUTER 1eNW, | SFC
COMPUTER
INS-eIS
SENDS CSI TO 1R=s®MTB ICF-e1C MTB8 —’Clsls.z‘ MTB-’CISS'_BG
ALL CONVERTERS
DECODE
CONVERTER X MTB — CIS IR > MTB IR MT8 CIS,, .. AND
SETS CSFF -6 13-18 25-30 0153;3:
16-21

NO CRY
SENT

Figure V-2

COMPUTER AND

CONVERTER
CONTINUE

PROGRAM
JUMPS TO
F1

Input-Output Converter, Flow Diagram Phase 1

26 =1

i.

WRITE — MAG TAPE o

"WRITE RESET"—- (44 W SEC) DELAY

TO MAG TAPE »1 22w sec =

"FORWARD" 8 "WRITE"

TO MAG TAPE

REQUEST CORE QUTPUT CYCLE "
—LOAD FIRST OUTGOING WORD |rmmempped 28733 M SEC

FROM CORE MEMORY TO CDR DELAY

Figure V-3

[SEND "STROBE" & "START OF BLOCK" 5 M SEC
CONTROL CHARACTER TO MAG TAPE [¥ DELAY
> 60 TO
PHASE IZ
WwC =i
— WC

Input-Output Converter, Flow Diagram, Phase II (Sheet 1 of 2)

REQUEST CORE OUTPUT CYCLE {”—Q CORE CYCLE
2. WRITE - PAPER TAPE »| LOAD FIRST OUTGOING WORD > COMPLETE
FROM CORE MEMORY TO CDR
YES
we-1 60 TO
—WwC |PHASE T
I no
SEND"FORWARD" | ¢y | START-OF-BLOCK |ves WRITE RESET
RE~ ——————— 2
3.RE—~WRITE "l 10 macTare . RECOGNIZED? {4 4WSEC) TO MAG TAPE
REQUEST CORE CYCLE
-LOAD CDR FROM CORE
4
we-i 60 TO 0273 MSEC SEND WRITE 22 W SEC
—WC PHASE IO | ‘DELAY SIGNALTO MAG TAPE DELAY
. SEND“FORWARD" o] END-OF-BLOCK |YES_ -
4. scip | 7o maG TaPE $3"] sIGNAL RECOGNIZED 7 We—iwwe
' [no
NO 4
60 TO
wWC=0?
END : YES o
| no
SEND “*REVERSE" v START-OF-BLOCK |YES
————— ; > -
5. BACK SPACE TO MAG TAPE ™| SIGNAL RECOGNIZED? we—1->wc
60 TO O
END [YES we=0?

Figure V°! Input-Output Converter, Flow Diagram, Phase II (Sheet 2 of 2)

-1

V'a

FROM PHASE T
———pd

FLOW CHART FOR WOK

orR T4

Dy

T T2
0—>CCB g, 2acoT
| —»cCB, °§" S plcas e coBafa ceT — 1w ceT
? 110 CCB4 s
YES
GoTOT
0-+DE 2 NO
capg: 1\ YES CODE FOR
o minus —>CCB
Nw=t NO |—»DE)
?
NO [cone FOR_ ccq
O —»NW
EVEN
No OF NTESE \ Lccs, (PARITY)
T I 'S IN
))
SEND STROBE
Ps.;' YESY stP —sccB

TO T,

COR—»CAB

|

|-> BB
WC-1-eWC
ADC +1—»ADC

Y

DEVICE
READY
?

YES TO Ty

NO

TO PHASE IX

To T,

Figure V-4 Input-Output Converter Flow Diagram, Phase III (Sheet 1 of 4)

FROM PHASE X1

OR T4

Ut
§Ji

T

0~+CCBigp
4=—0CCBy

CHECK PARITY

CCB|—+CABg

Figure V-4

Input- Output Converter Flow Diagram, Phase III (Sheet 2 of 4)

FLOW CHART FOR ROK

T

t=>IRE

O—&CRF

L
YO TS
B
CONVERTOR
susy —eR0R
CAB~&CDR Y0 T4
WC— | —sWC
ADC+|~>ADC
CAR—»CDR
T0
L
l CAB~—=oCAB ’L

¥ROM PHASE
o Ok T4

O—CCE g g
1—> CCB?

DEVICE — CCB

@.gs
b

To T3
[
YES
we
t=+ DE
CONVERTEF .y gox
BUSY S1GNAL
3 NC
A ad -
7 cAB =+ COR To1
we—t- W
ADCe 1=»8DC
Yee
mv:s :,_”"(——3 ¢— cRf Lo W W
3
ERRG r — L RC cap—e COR
i :
wo i
/\ Tyee
. vEE A
e x ! r—ce !
\/ YES wO
To
(T PHASE X

:

J
H
]
1

T

CCE,—CiBy

Figure V-4

+

-p 00100010
=9 001000C!

Input-Output Converter Flow Diagram, Phase III (Sheet 3 of

4)

LS-1

FROM PHASE I
OR T4

J0_ Ty

FLOW CHART FOR

T

€—+»CCT

O—+CCBqs
1~ CCBTY

G0 _TO T,

WAN

T0 Ta

NO CODE FOR

PLUS

—>CcCcB

(PARITY)

YES,
Ts |'°
DEVICE YES
SEND STROBE W

e
te—————— 2zusec oeiav ﬂ o—son |

TO PHASE IV

| cor—ecan |

lﬁa-}ous]

|~ MR YES
WC — |- WwC
ADC + 1~ ADC

10 T,

Figure V-4 Input-Output Converter, Flow Diagram, Phase III (Sheet 4 of 4)

89

NO

END - OF - BLOCK
. READ MAG. TAPE MARKS RECOGNIZED ?

YES , §0.467m SEC.
DELAY

NO

REMOVE "FORWARD"
SIGNAL

Y a START - OF - BLOCK

2. READ REVERSE MARKS RECOGNIZED ?

YES 4.6 m SEC
P DELAY |

REMOVE REVERSE
SIGNAL

WRITE "END - OF ~
3. WRITE — MAG. TAPE —el> BLOCK" MARKS

0.467m SEC. |
DELAY

"WRITE RESET"
TO MAG TAPE

REMOVE 3 m SEC J REMOVE
FORWARD SIGNAL DELAY WRITE SIGNAL

4 3 m SEC

4. REWRITE SAME AS ABOVE

DELAY

Figure V-5. Input-Output Converter, Flow Diagram, Phase IV

2. Data Control
(1) Read

Eight-bit characters are received from the input device,
checked for parity, and placed in the Converter Assembly Buffer (CAB).
When CAB has received a complete word, its contents are transferred to
the Converter Data Register (CDR) to await assignment to core memory.
Meanwhile CAB is being loaded with the next incoming word.

(2) Write

CAB is initially loaded from core memory. When the
selected device is ready it receives from CAB one eight bit character at a
time. (One of the 8 bits is the parity bit). At the same time CDR seeks
its next assignment from core memory. After CAB sends out its full word,
the contents of CDR are transferred to CAB, and processing continues as
CDR seeks its next assignment from core memory.

3. Error Control

The following flipflops in each converter unit can be sensed by the
program:

(1) Device Malfunction Alarm (DVA) which indicates:

Power off

Tape broken (or absent)

Device in local mode

Device disconnected

Write order with write inhibit
Vacuum failure

Forward order when at end of tape

Reverse order when at beginning of tape

1-59

(2) Improper Order Alarm (IMO) which indicates:

Nonexistent command
Nonexistent device address

Inconsistent command (e.g., READ when the punch is
addressed, OCTAL with magnetic tape, etc.)

(3) IO Parity Error Alarm (IOPE) which indicates that a
parity error was noted during transmission between the
converter and the IO device.

(4) Converter Memory Parity Error Alarm (CMPE) which
indicates that a parity error was noted during transmission
between the converter and the core memory.

(5) Data Drop Alarm (DDA) which indicates a loss of data
due to excessive multiplexing or, in the case of magnetic
tape, detection of two block marks while in control mode.

4. FIELDATA Control Function Processing

If the central processor is to transmit or receive control information
through an input-output device, the central processor Interpret Control Func-
tion flipflop (ICF) must be set to "ONE" with an SNS instruction. When an
input-output instruction is sent to an Input-Output Converter for execution,
the contents of ICF are transferred to a corresponding flipflop (IC) in the
selected Input-~Output Converter.

(1) Write Instruction

All characters processed under a single write instruction
{one block) appear on the output medium either as control characters or as
data characters, depending upon the initial state of the IC flipflop in the
Input-Output Converter.

If an Input-Output Converter receives a write alphanumeric
instruction (WAN) when its IC flipflop is in the "ONE" state, outgoing words
appearing in CDR are interpreted as control words. Each character of a
control word is sent to the output device as a control character--that is the
ic" (seventh) bit of each character is a zero.

If the IC flipflop is in the "ZERO" state, outgoing words
appearing in CDR are interpreted as data words.

1-60

(2) Read Instruction

If an Input-Output Converter receives an instruction
when its IC flipflop is in the ZERO state, ignore control is indicated and
incoming characters are interpreted as data, regardless of their "c¢"
bit configuration.

If the IC flipflop is in the "ONE" state, transmission
procedure depends upon the "c" bit configuration of the first character in
the block. If the "c" bit is one, all information is processed as data. If
the "c" bit is zero, the character is recognized as a control character.
This character is placed in the low order character position of CDR. The
remaining bits of CDR are set to zero and the word is stored in memory.
The remainder of the message is not transmitted and a program interrupt
is requested. If the "c" bit of the first character is one, the entire order
is processed.,

5. Program Interruption by Input-Output Converter

When an Input-Output Converter has accepted an order from the
central processor, both units resume their operations concurrently. After
the converter has entered the end-of-transmission state, it sets the Inter-
rupt Request flipflop (IRQ) to "ONE"., At this point, the operation of central
processor is interrupted if the Disable Program Interrupt flipflop (DPI) is
zero. An interrupt can occur only at the beginning of the instruction access
phase. When an interrupt request is granted, DPI is automatically set to
"one", the address of the instruction about to be performed is automatically
stored in the @ portion of the B register, and control is automatically
transferred to a special memory location. At this point, normal computer
operation is resumed.

6. Communication with Central Processor
a. Computer IR to Input-Output Converter CIS

(1) During the instruction access phase, the instruction is
transferred to the IR from memory. The IR is then decoded and, if an
IO instruction is present, the device address in IR is placed on the Address
Distribution Bus (ADB). After the ADB is decoded, the selected converter
signals the central computer if it is ready to accept an instruction. If the
"Converter Ready" signal is not present,the central computer performs an
interrupt jump.

1-61

(2) During the operand access phase (OAC) the computer
transmits a SEND signal {CSI) to all converter units. The signal remains
active for 12 microseconds. The I/O instruciion then is transferred from
the IR to the selected CIS through the MTB. For the remainder of operand-
access time the selected converter determines whether the instruction is
consistent, the selected device exists, and whether the selected device is
serviceable. The six j-bits of the instruction designate the assigned device
but do not designate the converter as such. Gating in the converter decodes
the device address.

(3) If a malfunction or improper order is detected during the
first OAC of the I/O instruction, the converter sends a "Converter Initial
Malfunction" signal (CIM) to the computer. The computer then performs an
interrupt jump.

b. Input-Output Converter CIS to Computer

The following instructions cause the contents of a specified con-
verter instruction register (CISY) to be transferred to the computer via the
Major Transfer Bus:

LGM logical multiply
LGA logical add

CLA clear add

ADD arithmetic add
ADM add magnitude

CLS clear subtract

SUB arithmetic subtract
MLY arithmetic multiply
DVD arithmetic divide
DVL arithmetic divide long
LOD load

c. Addressable Flipflops

(1) Any of the addressable flipflops can be referred to by the
following instructions:

SNR (If FFB =1, Jump and clear FF)

SNS (If FFB =0, Jump and set FF to 1)
SEN (If FFB =1, Jump, and do not change the state of FF)

1-62

(2) Each converter unit which contains an addressed
flipflop signals the computer to jump if the flipflop addressed is in the
corresponding state. The state of the flipflop is then changed as required.
If this signal is not received, the computer continues to the next instruction.

d. Converter Data Register (CDR) to Memory (MO)

After a full word has been received by the converter assembly
buffer (CAB) from an input device, the word is transferred to the converter
data register (CDR) to await core memory assignment.

Bits 13-15 of the address counter (ADC) are then gated to the
memory selection bus (MSB) to select the desired memory unit.

The core location address then loaded into the memory address
register (MA) through MTB. The core readout cycle is then initiated and
the memory data register (MO) is loaded from MTB.

The memory cycle then proceeds, and the next unit in priority
receives a core memory assignment.

e. Memory (MO) to Converter Data Register (CDR)

When the converter assembly buffer (CAB) requires a new
word for transmission to an output device the contents of CDR are trans-
ferred to CAB. After a core memory assignment is requested and received,
the proper core memory unit is selected. The core address is then sent via
MTB to the selected memory unit and core readout is initiated. The in-
formation is placed on MTB and loaded into CDR to complete the operation.

C. ADDRESSABLE FLIPFLOPS AND REGISTERS
Each Input-Output Converter has the addressable flipflops listed below:

ADDRESSABLE FLIPFLOPS

Input-Output Alarm 10

Converter Busy CVB

Improper Order IMO

Malfunction DVA

Mag '].',‘apel Busy DB, The state of these flipflops
Mag Tape, Busy DB, can be sensed but not al-
Mag Tapes Busy DBj tered by the program.
Mag Tapeyq Busy DB4

1-63

Control Indication CI

End of File EOF
Input Output Parity Error IOPE
End of Tape EOT
Converter to Memory
Parity Error CMPE

Beginning of Tape BOT
Interrupt Request IRQ
Data Drop Alarm DDA

D. MAGNETIC TAPE TRANSPORTS

The FIELDATA magnetic tape transports connected to the Input-Output
Converter are described in U. S. Army documents SCL-1882A and
SCL-1886.

VI. COMMUNICATIONS CONVERTER

The Communications Converter transfers information between the BASICPAC
system and real-time communications links. Information is transferred
only when the communicator is prepared to transmit or receive and is not
program controlled. A Communications Converter can control up to seven
input and seven output channels. Any number of input channels can operate
at one time. Output channel transmission must be programmed. Access
through each channel is on the basis of one character at a time. Two types
of characters may be transmitted and received, FIELDATA Control Charac-
ters (contain a zero bit in position 6), and Alphanumeric FIELDATA Charac-
ters (contain a one bit in position 6). There are sixty-four possible control
characters and sixty-four possible alphanumeric characters. Parity is odd.

Control Character Alphanumeric Character
P CIIDDUDD P CIIDDDD
7 65432 1 0 7 6 54 32 1 0
x 0 x x x x x x x 1 x x x x x x

1-64

There are two types of interrupt channels: limited interrupt and
regular interrupt channels. A regular interrupt channel requests inter-
rupt when either one data word or one control character has been trans-
mitted. A limited interrupt channel requests interrupt when a specified
number (up to 512) of data words or one contrel character has been trans-
mitted. - Limited interrupt applies only to input.

A. INPUT

The seven input charnels are numbered 0 through 6. Two consecutively
numbered memory locations are associated with each input channel. The
even numbered location is used to store incoming data words; the odd num-
bered location is used to store an incoming control character. Memory
location 20g is reserved for data from channel 0 and 21g for control charac-
ters. Memory locations 22g and 23g are reserved for channel 1, etc.

Multi-channel machines include a seven-position input sequencer to keep
track of the channels which are prepared to transmit a character into the
central processor. The sequencer cycles repeatedly through each position.
When the sequencer determines that a character is waiting to be sent on
channel i {i= 0 to 6), it sends the channel number to the converter address
lines (KAA). KAA automatically translates the channel number into the
appropriate memory loc ation {odd for control and even for data). If the
character to be transmitted over channel i is a control character, it is
stored in bits 1-6 of the odd-numbered memory location associated with
channel i and the high order bits are set to zero. If the character is a data
character, it is stored in the even-numbered memory location associated
with channel i.

An input character counter ((KICi) is used to specify the character position
in which an incoming data character is to be stored. This counter is auto-
matically preset by the converter to the number of characters expected (6 or 7
depending on the state of the ISN flipflop) and is counted down as each data
character is received by the central processor. When KIC! has been counted
down to zero or when a control character is sensed on the i'th channel, the
program of the central processor is interrupted. At the same time, the con-
verter resets the Converter Input Free flipflop (KIU') to indicate that no more
information can be transmitted over the i'th input channel.

Thé Disable Program Interrupt flipflop is set to prohibit interruption of

the current interrupt, and the Communication Input Interrupt Request flipflop
(KAI) is set to indicate the source of the interrupt.

1-65

An F2 interrupt occurs at this point, and the program jumps to an
interrupt subroutine which determines the cause of interrupt and processes
the information accordingly. Memory location 00004 is assigned to store
information which defines the cause of communications converter input
interruption. Bit 37 indicates the presence of parity error. Bits 36 to 34
contain the value of the KIC counter at the time of interrupt in modified
Grey code, as shown below. Bits 12 to 1 give the address of the memory
location in which the interrupting information received by the central
processor is stored.

Since a control character interrupt may occur at any time, bits 36-34
of memory location 00004 will aid the programmer in determining the form
of his input information. If bits 36-34 equal 0, a data word has interrupted
and there are six or seven data characters, depending on the state of ISN
when the channel was permitted to receive. There are no control characters
to be processed. Parity error is indicated by bit 37 of memory location 4.
If bits 36 to 34 equal 1 to 5, in Grey code, and 6 characters per word had
been requested (ISN was 0 when the channel was activated), then from 5 to 1
data characters were accepted before a control character interrupted. Unused
character positions of the data word are zero. Parity error is indicated by
bit 37 of memory location 4 for data and by bit 37 of the properly numbered
memory location for control.

If bits 36 to 34 equal 7 in Grey code and ISN had been set, only 1 control
character was received.

- If bits 36 to 34 equal 1 to 6 in Grey code and ISN had been set, from 6
to 1 data characters were accepted before a control character caused inter-
rupt.

Grey code Binary Octal

(binary) equivalent equivalent
000 000 0
001 001 1
011 010 2
010 011 3
110 100 4
111 101 5
101 110 6
100 11} 1

Grey Code

Ex: A Grey Code binary configuration of 101 would correspond to
the octal number 6.

1-66

Only one input channel, channel .0, can be used as a limited interrupt
channel. The limited interrupt channel operates somewhat differently from
the other input channels, in that up to 512 data words can be received and
stored in sequence before a program interrupt is requested. An addressable
15-bit register, KIW, counts the number of incoming data words and speci-
fies the memory location in which each word is to be stored. Prior to
transmission, KIW must be set to the address of the first storage location
to be used. As each input word is stored, KIW is incremented by one until
either a control character is received or until the nine least significant bits
of KIW equal T17g (51210)° At this point a program interrupt is requested.

Since memory location 20g is not used to store the incoming data, it is
suggested that the programmer store the address placed in KIW in this loca-
tion also. Upon interrupt, location 20 supplies the address of the first data
word, and KIW the address of the last data word transmitted. The quantity
of information received can then be easily determined.

B. OUTPUT

The central processor sends information to the communications converter
under the control of the program. ICF and ISN may be set as desired. The
state of ICF determines whether the information to be transmitted from the
processor will be treated as data or as control.

The program places the word to be transmitted in the output word
buffer (KOU') associated with the channel to be used. The converter then
transfers the data word from KOUlto the memory location (10 to 17g)
associated with the desired channel.

In multichannel machines, a seven-position output sequencer cycles
repeatedly to keep track of the channel currently transmitting information.
An output character counter (KOC1) is automatically preset to six, seven or
one, depending upon the mode of transmission. When a given channel is
ready to accept a character, the character is taken from the character posi-
tion specified by the contents of KOCl. When a character is transmitted,
KOC is counted down and the process is repeated until KOC reaches zero.
When transmission is complete, the central processor is interrupted to
indicate that one word or one control character has been transmitted on the
i' th channel. The converter also sets the Converter Output Interrupt Re-
quest flipflop (KEI) and the DPI flipflop. The converter stores the follow-
ing information in memory location 3:

Bit 37 = parity error

Bit 1-12 = address (10 to 17g) of the memory location from which
data was transmitted.

1-67

8971

} MAJOR TRANSFER BUS ' . 4)

) ADDRESS BUS J

(KAN)=>MTBy {KAA)=e MTB (KAD}~+MTB
(MTB)=KIW- -
27] v‘.‘ (5)—DATA KADI-g
(KIW)—eMTB | I -~
I} CONTROL KAD?
| carity | CHARACTER
| NETWORK %‘ PARITY KADg
{ INDICATION
| ACTION N
INDICATION l _@} ® SELECTION .
’ acTion |
. 4 1 OTHER
i r——
| /\/\/ CHANNELS
{ .

(xiD)=—+kaD [[T |

e Ee
| ”
| v [RwE]]
Kiw

[(ADB}—®KAR

g s areve

L

LIMITED INTERRUPT

.
le
L
|
!
J
I
|
|
|
!
I
i
|
|

BEEBE L

e
|
I
1

CONTROL i SEQUENCER ®
e e e
GENERAL CONTROL TYPICAL [
CHANNEL |
CONTROL | paTa)
l CONTROL § KID
READY STROBE PARITY

FigureVI-1. Communications Converter, Input Section, Block Diagram

MAJOR TRANSFER BUS

GENERAL CONTROL

Figure VI-2

P

STROBE READY

Communication Converter, Output Section Block Diagram

(MTB) =+ KEB o
s S (MTB>KED
{KEB)~> MT8 ADDRESS 5 :
BuUS < 4
(&)
KEB SIGN)
1 3 I s 1)] SETTER
KEB —3 KEB
PARITY
L] [eee] g Bk
\ KED,-¢ .
(KEA)>MTB KED ¢
| —7 1 KEDg R
: [eee] I INDICATION _
I ACTION
' e
| : SELECTION
I 1 (KED) > KDB Yt
I ' —tm Xl g
% [KEL : o : l LPLc]] n]osfoef o of
| §]
: 1 : : | TYPICAL
| CHANNEL
| T
! J ' : | BUFFER
! ! l
i | | l ®
(ADB)=KEA | N I L B U
> l ————p e
: i { TYPICAL CHANNEL
| SEQ |
I |
| |
|

oLt

(MTB)»KEB
(ADB) —>KEA

(KEA) —» MA
(KEB) ——» MO

| —— KOMX

6 —»KOC*

0—eKOM?*
—» KOC X

|—>KOM X
7———»KOC?X

YES

NO

O0— KOFY

AUTONOMOUS OPERATION
OF TYPICAL CHANNEL UNIT

0 —» KoP*

FigureVI-3 Communications Converter Output Flow Chart (Sheet 1 of 2)

YES

KEIzO
8+Y—MA l
READ . \/
(MO)—ek0BY WRITE
(xomY)-»KoBY 7--MA
(KEO)'—’KOB‘ (KEA)->MO
(KoCY)-1»KoCY | -»KE|
I—eKomY (KOPY)->MO37
0 -»KOMY
0-=KOPY

0oDD
MEMORY
PARITY

YES

| —=KOPY

| —»KEE

(SEQ)+1—» SEQ

STROBE Y
|- KOFY

STAR
1 AGAIN

Figure V]-3 Communications Converter Output Flow Chart 1-71
(Sheet 2 of 2)

2L T

I. INSTRUCTION II. AUTONOMOUS OPERATION OF TYPICAL ‘ I¥. INTERRUPT

CHANNEL UNIT

READYl

NO YES

1-+ AFJ

6+ (ISN)+KIC*
1+ KiMX

O KINX

WRITE
00020 —» MA
(kich) = M0

T

9 sTrRoseVHYES
?

NO YES

1 —» KAl
— kipY) Lomo 5,
0 —»KIPY
0o —» KINY
o —» KiMY
o —» kicY

(ISN) =K It

(K10Y)=+-KAD
{KAD7)>-KAA,

II. ACTION

CONTROL

Y+1—SAQ

START
AGAIN

LIMITED
INTERRUPT

I
I
I
NUMERIC |
I
|
I
|

— e a—— — ——— — — — — e ot — — —

> > }

Figure VI-4 Communication Converter Input Flow Chart (Sheet 1 of 5)

EVEN 00D
y
1+ KIPY
1-» KAE
1—:MO (KAA) & MA
37 (KAD|-¢) >
(KAD,_-¢) - MO 1-e)>MO

O>KiMY
O+ KIFY
CONTROL
CHARACTER
1
SHEET 1

Figure VI-4 Communications Converter Input Flow Chart
(Sheet 2 of 5)

1> KIPY
1+ KAE

A 4

: {(KicY)-1-»KICY
NO YES 4
@ | SIGN CHAR.
4]

(KAA) +MA (KAD,) KINY 0 > KIFY
NO 3 YES
! '
REWRITE WRITE

y

(KINY) > MO 37

O+ KINY
4 ' . 1
SHEET 1

ALPHA-NUMERIC
ORDINARY CHANNELS

Figure VI~4 Communications Converter, Input Flow Chart (Sheet 3 of 5) | 7¢

EVEN

oDD

1> KIP°
1—» KAE

({KIW) —> MA

NO

KiC%=z 7
4

REWRITE

(KAD{) ® KIN®

L

(KIC®)-1»KIC®

LIMITED INT.
8 KIWUNSATIS.

(xico)08
1-9) 777,

?

(KIW)+ 1P KIW
O->KIN®
7-»KICO

YES

WRITE

(KIN®)—P MO 35
0—>KIN®

(KAD,_gl—®MO

O-»KIF®

SHEET 1

Figure VI-4 Communications Converter, Input Flow Chart (Sheet 4 of 5)

=75

Y
EVEN obD (KIC%)-1—=KIC®
|—eKIPO
I—=KAE (KIC®)z0 8\ YES
l KIW_gK777,
| —&KIN®
4
(KIW)+I—=KIW
0—+KIN®
> 6—eKIC®
(KIW)—+MA
-
NO YES
A J
REWRITE WRITE O—=KIF®
NO YES
(KlNo)'—‘.M037
0—eKIN®
(KAD|_g)—*MO
SHEET |

ALPHA -NUMERIC
LIMITED INTERRUPT

Figure VI-4 Communications Converter, Input Flow Chart (Sheet 5 of 5)

SECTION TWO

BASICPAC PROGRAMMING

SECTION. TWO

VII. INTRODUCTION

Section Two contains a detailed discussion of the logical steps followed
in preparing programs for BASICPAC. This portion of the manual is in-
tended to be self-instructive, with illustrative examples demonstrating the
application of newly introduced principles.

The manual is organized in such a manner that it proceeds from less
difficult to more difficult. Careful study will provide the basic knowledge
required to prepare programs for BASICPAC.

VIII. NUMBER SYSTEMS

A number system is essentially a means of counting. It consists of a
series of unique symbols ("digits"), each of which represents a specific
quantity. Number systems have been constructed on various "bases" (number
of separate symbols used), and many of these systems have found practical
applications. Most people use the decimal number system, containing ten
symbols (0 through 9). Most electronic digital computers use the binary
number system, containing two symbols (0 and 1). Communication between
human and computer is frequently in the octal number system, with eight
symbols (0 through 7). The programmer must be able to use all three sys-
tems with facility.

Primitive number systems (such as the Roman) assigned symbols accord-
ing to an arbitrary pattern, with the result that a number can be represented
fairly easily in Roman numerals, but cannot be manipulated. (For example,
try to multiply CIV by XII.)

Manipulation of numbers, the basis of mathematics, is feasible only with
a positional number system, in which each symbol changes its value according
to where it is placed in the number. The decimal digit 1, for instance,
represents quite different quantities in the numbers 1, 10, and 100. Note
that the same symbol can be used for these different quantities only if there
is a symbol for "nothing", an empty position.

A. DECIMAL NUMBER SYSTEM

We are accustomed to a system in which we can count ten things (including
"nothing "), then must start over again with the same symbols in a new column:

t

l cycle of ten, + O
1 cycle of ten, + 1

— OO0 XN OO0k WD~ O

—

20 = 2 cycles of ten, + O

In this system, when we reach the symbol for 9 we have used all the
symbols available. We have gone through the complete cycle once, and we note
this fact by a 1 in the next column: 10. When we pass 19 we count two cycles:
20. An adding machine (which is a decimal-type digital computer) has a series
of wheels, each with ten teeth, As each wheel completes one revolution it
nudges the next wheel one position higher, so that the second wheel counts the
number of times the first wheel has completely revolved, the third wheel counts
the revolutions of the second wheel, and so on. These wheels correspond to the
columns of written numbers. The decimal number 4096 therefore means six
units plus nine cycles of ten plus no hundreds of cycles of ten plus four thous-

ands of cycles of ten:

4 0 9 6
|ﬁrneans 6 x 100 or 6
means 9 x 101 or 90
—smeans 0 x 102 or 000
smeans 4 x 103 or + 4000
4096

The position of each symbol gives its value in relation to a base of ten,
and the symbol itself indicates how many of each value.

The same system is used in moving in the other direction away from the
decimal point, giving tenths, hundredths, etc.

TABLE VIII-1
SOME NUMBER SYSTEMS

T " reey e e terne AR RA AR NN
Things 1 1" " [AR (2 R) " e e ey [RRRA} i [AR A
Roman I I mur v v VI VI VIII IX X X1 XII
(No Base)
Duodecimal
(Base 12) 0 1 2 3 4 5 6 7 8 9 t e — 10
Undecimal
(Base 11) 0 1 2 3 4 5 6 7 8 9 t — 10 11

P> DECIMAL
(Base 10) 0 1 2 3 4 5 6 7 8 9 — 10 11 12
Nonary
(Base 9) 0o 1 2 3 4 5 6 7 8 —10 11 12 13
p OCTAL ‘

(Base 8) 0 1 2 3 4 5 6 7 — 10 11 12 13 14
Septenary .
(Base7)- |0 1 2 3 4 5 6 — 10 11 12 13 14 15
Senary .
(Base 6) 0 1 2 3 4 5 _10 11 12 13 14 15 20
Quinary
(Base 5) 0 1 2 3 4-10 11 12 13 14 20 .21 22
Quaternary
(Base 4) 0 1 2 3-10 11 12 13 20 21 22 23 30
Ternary
(Base 3) 0 1 2-10 11 112 20 21 22 100 101 102 - 110
BINARY
(Base 2) 0 1— 10 11 100 101 110 111 1000 1001 1010 1011 1100

Positional values for the decimal number system are:

Units

Tens

Tenths

Hundreds

Thousands

Ten Thousands ===1

B. OCTAL NUMBER SYSTEM

10

103 102

Hundredths

r Thousandths

T en Thowils andths

4 v v v
10l 100 107 102 103 10%
X xX X X X xX

Decimal Point

The octal number system follows the same rules; that is, it is positional
For each column, however, there are only eight possible symbols

in nature.

instead of ten.

oSl bW N~ O

-

11
12

17
20

1]

1}

t

H

il

Octal counting is therefore as follows:

l_c:ycle of eight, + 0
1 cvcle of eight, + 1
I cycle of eight, + 2

1 cycle of eight, + 7
2 cycles of eight, + 0
etc.

2-4

In the octal system we run out of symbols with 7 and must then move to
the next column to count complete cycles. "Eight" (a complete cycle from
0 through 7) is therefore represented by 10. Two complete cycles, 20,
means we have gone through eight symbols twice, so the octal number 20 is
equivalent to the decimal number 16. Note that, in any number system,
"10" represents one complete base cycle. Decimal 10 means "ten", octal
10 means "eight", and binary 10 means "two." In the octal system, the first
column represents "units”, The second column represents "eights", the
third "sixty-fours”, etc. The positional pattern is exactly the same as in
the decimal system, but each column is related to a base of eight instead of
ten. The octal number 3742 (written 3742g) therefore means two units and
four eights and seven sixty-fours and three five-hundred-and-twelves:

3 7 4 2
’ L»means 2 x 80, or 2
means 4 x 81, or 32
means 7 x 823 or 448
» means 3 x 83, or 1536 +

Decimal Equivalent = 2018
That is, 3742g = 2018 ”

C. BINARY NUMBER SYSTEM

The binary number system follows the same positional pattern, but has
only two possible symbols for each column.

0
1
10 = 1 cycle of two, + 0
11 =1 cycle of two, + 1
100 = 2 cycles of two, + 0
101 = 2 cycles of two, + 1
110 = 3 cycles of two, + 0
111 = 3 cycles of two, + 1
1000 = 4 cycles of two, + 0

Here we run out of symbols at 1, and so we must move into the next
column for "two". The first column represents "units". The second
column represents "twos", the third "fours", etc. The binary number 101101
therefore means one unit and no twos and one four and one eight and no six-
teens and one thirty-two:

1 01 1 0 1

l I—~—'means 1 x 20, or
means 0 x 21, or

e e—»means 1 x 22, or
~means 1 x 23, or
+»means 0 x 24, or
+emeans 1 x 25, or 3

N O ®h O -

+

Decimal Equivalent = 45
The values of the binary position are as follows:

Binary
Point

Thirty- Sixteenths Fours Twos Units | Halfs Quarters Eighths Sixteenths Thirty-

B/ A A U O S S A

b4 X X X X o X x X X X

24 23 22 21 20 2-1 2-2 2-3 2-4 2-5

Memorize the first ten binary numbers:

Decimal Binary

= 0000
0001
0010
0011
0100

= 0101

= 0110

= 0111

= 1000

= 1001

= 1010

OWOJO U BN WN—O

—

D. NUMBER SYSTEM CONVERSION

1. Binary to Octal

A large binary number is difficult to read or understand at a glance,
but can readily be converted into the more easily grasped octal equivalent.

2-6

To convert from binary to octal,

1) Separate the binary number into groups of three digits,
starting at the binary point.

2) Recall the octal equivalent of each three-digit group.
(Same as decimal, but three digits cannot represent a
higher number than "seven'".)

For example, the binary number 110111101011010 is converted to
octal 67532 as follows:
110 111 101 011 010
— ~— ~— —— —
6 7 5 2

3

2. Octal to Binary

To convert an octal number to binary, recall the binary equivalent
of each octal digit.

7 5. 3.

AAAA A

110 111 101 0Ol1

3. Binary to Decimal

To convert a binary number to decimal form,
1) Multiply each digit by its positional value,
2) Add the results.

For example, the binary number 1100101.1011 is changed to its
decimal equivalent 101.6875 as follows:

1] 1 001 01 . 1 011
Ll x .0625 = . 0625
1x.125 = . 125
0x .25 = .00
1x.5 = .5
—»1x1 = 1.
»0 x 2 = 0.
»1 x 4 = 4,
»0 x 8 = 0.
»0 x 16 = 00.
»] x 32 = 32,
»] x 64 = 64,
101.6825

4. Decimal to Binary

Converting a decimal number to binary is performed differently for
whole numbers and for fractions.

Whole Numbers

1) Divide the decimal number by 2. The remainder will be either
1 or O.

2) If the remainder is :, the rightmost binary digitis 1. If 0,
the rightmostbinary digitis 0.

3) Divide the quotient (obtained in step one) by 2.
4) Write the remainder as the next binary digit.
5) Continue, writing the binary digits from right to left.

For example, the decimal number 76 is converted to binary 1001100
as follows:

38

2)?6— Remainder - 0
19

2)38 Remainder > 20
9

2 J19 Remainder > _1_00
4

2)9 Remainder > llOO
2

2)4 Remainder > 91100
1

2)2 Remainder ——» _QOllOO
0

2) 1 Remainder _——-——»_1001100

This system can be used to convert any whole number to the
equivalent number of a lower base. In each case, divide by the base de-
sired. If the decimal number 76 is first converted to octal (by dividing
by 8), fewer steps are required to reach the binary equivalent:

9

8)76 Remainder ——— i
1

8) 9 Remainder — _1_4

0
8 ’ 1 Remainder ————»_1_14

Then convert the octal 114 to binary by inspection:

1 1 4
{(} {O} {(% or 1001100
7610 = 1148 = 10011002
Fractions

1) Multiply the decimal fraction by 2.

2) If the result is 1.0 or more, the leftmost binary digit is 1.
If the result is less than 1, the leftmost binary digit is 0.

3) Continue. Do not multiply any number to the left of the decimal
point. Write the binary fraction from left to right.

4) Stop either when the result of a multiplication is exactly 1, or
when the binary fraction reaches the desired length.

For example, the decimal fraction 0.6875 is converted to the binary
equivalent 0.1011 as follows:

2-9

0.6875

x2
Ignore 1.3750 greater thanl, so 0.1
.3750
x2
.7500 1less than 1, so\\—O/.llg
. 7500
x2
Ignore 1.5000 greater thanl, so\oﬁl
.5000
x2
1.0000 exactly l, so 0.1011 and stop

N—,

This system can be used to convert any fraction to the equivalent fraction
of a lower base. In each case, multiply by the base desired.

E. BINARY ARITHMETIC

Arithmetic with binary numbers is quite simple, because only 1 and 0
are used. The rules for binary arithmetic are illustrated below.

1 0 1
Addition: +1 +0 +0 +1
1 1 0 1-0

Carry 1 to left

Borrow 1 from left

1—0 1 0
Subtraction: -1 -0 -0 -1
1 1 0
. : 0 1 0 1
Multiplication: x1 x0 x0 xl
0 0 0 1
O0-0 1. (not defined)
1 0

Division:

(not defined)

._l,_..
]
—
ojo

]

2-10

The following examples illustrate arithmetic operations for equivalent

decimal and binary numbers.

Addition:

29
+22
51

4.75000
3.59375
8.34375

Subtraction:

54,5390625
19,0234375
35,5156250

Multiplication: 5

4,750
x3.625
23750
9500
28500
14250
17.218750

111 4————carries
101
+ 011
1000
111e————carries
11101
+10110
110011
11114<~——carries
100.11000
11.10011
000.01011

—Borrow

1011
-110

101

Borrows /Borrow

L 3
110110.1000101
-10011.0000011
100011.1000010

100.110
11,101
100110
000000
100110
100110
100110

10001.001110

Division:

2.125

5)10. 625

F. ALGEBRAIC ARITHMETIC

BASICPAC adds and subtracts algebraically.

10

100) 1000

100
0000

10.001

101 51010.101

101

0000
101
101

000

Given an instruction to

"add, " for instance, it compares the signs of the two numbers to determine
The following rules are observed:

whether it must add or subtract.

Instruction Signs Operation Example
Add Alike Add {(+3) + (+7) = +10
Add Unlike Change sign of (+3) + (-7)

addend, subtract (+3) - (+7) = -4

Subtract Alike Subtract (+3) - (+7) = -4

Subtract Unlike Change sign of (+3) - (-7)

Subtrahend, add (+3)+ (+7) =10

-12

ny

the overall logic of the program has been established, these large segments
are analyzed and broken down into more detail. Eventually a detailed flow
chart is produced which clearly indicates all significant points in the pro-
gram and verifies all possible conditions which can occur during program
execution.

The detailed flow chart becomes the basis for coding. Once coding is
begun, machine logic may necessitate changes in the program logic, and
the flow chart may have to be altered. After coding, testing, and debugging,
the final corrected flow chart is combined with a narrative description, pro-
gram listing,and coding sheets to comprise the formal program description.

A. FLOW CHART SYMBOLS

Since BASICPAC is a member of the FIELDATA family, the standard
flow charting symbols established by the FIELDATA Application Systems
Techniques organization have been adopted. The following symbols are pre-
scribed in FAST Programming Standard No. 3, adopted on April 27, 1960,

and should be used for all application programming:

Start or Halt

Direction of Flow

Operation or Function —{

Decision <>
Closed Subroutine <

Visual Display

Communication Link

Fixed Connector

Variable Connector

Used to indicate which of several
paths is to be taken; the connectors
need not include the instructions
which cause the path to vary. When
the connector refers to a point on
another page, the page number -
should be shown.

Flag, Explanation, Parameter

lList, Etc.

Footnote or Supplemental

Information

)

Input /Output

Card

Printed Copy

General Files

The following letters
are used to designate
the particular type of
file and are inserted
in the symbol.

M - Magnetic Tape

P - Paper Tape
D - Disk
DR - Drum

B. EXAMPLES

To compute

n
S=Z ai Xi
i =0

a preliminary flow chart might read: ’

0—+sS aj . x; +5 No | . .
. 1+1"1_.®

Yes

2-21

The subroutine "a; x; + s — s" must be flow charted in detail at a later stage.

To compute a payroll, a repliminary flow chart might read:

®

Obtain
One
Record

Initialize Compute

Program Pay

Record and
Display
Information

all Records
been Proc-

The subroutines "Obtain Record", "Compute Pay" and "Record and Display
Information" must be described in detail at a later stage.

For example, "Compute Pay" might be flowcharted as:

Compute Compute
Federal City .
Income Tax Income Tax

Compute
Additional
Deductions

Compute
Gross
Pay

Compute
FICA

This process is continued until all steps are described in sufficient detail.

XI. CODING

The previous section discussed the methods of analysis used to prepare
a problem for solution on a computer. The flow chart which results from
this analysis describes the method of solution in a language readily under-
stood by humans; i.e., English-decimal. Unfortunately, computers cannot
understand either of these forms of communication. The information con-
tained in the flow diagram must be restated in a language which is meaningful
to the computer by a process called coding.

All stored-program digital computers have a definite set of orders (also
called instructions) which they can interpret and execute. These orders must
be selected and arranged in such a way as to accomplish the functions described
in the flow diagram. The resulting list of orders is called a program. A
completed program is placed in the computer storage unit and is executed by
the computer one order at a time. The data to be used in solving the problem
must also be stored in the memory unit in a form which can be operated upon
by the computer.

BASICPAC is a binary computer; that is, all information must be supplied
in binary form. A set of 37 binary digits (bits) forms one computer word. A
computer word may contain an order (instruction word) or data (data word),
as described in Section One.

The memory unit is divided into cells called memory locations, each of
which can store 37 bits. A unique numerical address is assigned to each
memory location for use in referring to the information stored there. There
are 4096 memory locations in one BASICPAC memory unit, numbered from
000000000000, to 111111111111,. A prefix of three additional bits is used to
specify the memory unit (000, to 1102), resulting in complete address of 15
bits.

Octal coding is a shorthand notation frequently used as an alternative to
binary coding. The ease of translation between the binary and octal systems
and the greater compactness of octal notation simplify the expression of in-
formation and instruction words. A thorough understanding of octal arith-
metic is of great value to programmers.

Coding in octal or binary is known as fixed or absolute coding. An
address is assigned to each instruction word and the content of each location
is specified. This method of coding can be very tedious, time-consuming, and
susceptible to error, particularly when it is discovered that an instruction
was omitted from the beginning of a long program.

Another form of coding evolved to simplify or avoid many of these
problems uses a combination of alphabetic and numeric symbols to
represent an instruction word. This form of coding, called mnemonic
coding, is closely related to the structure of an instruction word and is
easily converted into octal coding.

A three-letter mnemonic code is assigned to each order (ADD for
001010, SUB for 001110, etc.) The names of all instructions and the
corresponding octal and mnemonic codes are listed in Appendix D.

When coding in binary or octal, the arrangement of the sections of an
instruction word is fixed. In mnemonic coding, the parts of an instruction
may be written in any convenient order, so long as a given convention is
followed. The coding used in the examples which follow use the
mnemonic order codes but conform with the structure of the BASICPAC
instruction word to illustrate the correspondence between mnemonic and
fixed coding. An even more convenient method of coding will be outlined
in Section XIV.However, a firm understanding of instruction structure must
be acquired first.

All addresses and numbers in these examples are expressed in octal.
When decimal quantities are mentioned, it is assumed that their octal
equivalents have been already computed. All instructions and data used
by the examples are assumed to be present in memory when required. The
techniques for entering information into memory and obtaining information
from memory will be discussed in later sections.

A, TRANSFER OF INFORMATION

One of the most frequently used steps in programming is the transfer of
information from one section of the computer to another. Transfer of
information provides the computer with data to be processed, removes data
which has been processed, provides information for computer control func-
tions, and provides operands for arithmetic operations. The unit of informa-
tion transfer is one computer word.

Information can be transferred from memory locations to arithmetic
registers, from arithmetic registers to memory locations and from register
to register. The arithmetic registers include the A, Q, and WSR registers,
each of which is addressable. That is, the programmer can enter informa-
tion into these registers or obtain information from them by specifying their
addresses in an instruction. The names and octal address of all addressable
registers are listed in Appendix B. The use of each register will be explained
in conjunction with the instructions which utilize it.

When information is transferred it is duplicated in a new section of
the computer. The information contained in the original section is un-
affected, but the information previously contained by the receiving section
is destroyed. The instructions which accomplish the transfer of information
are the Load, Store, and Clear and Add instructions.

The Load instruction (LOD, 51) transfers information from any address-
able register or memory location to any addressable register. The location
from which the information is to be obtained (Y) and the location to which it
is to be transferred (X) must be specified as follows:

OP 0% B o

LOD X Y |(Load X with Y)

Only the contents of the register specified by X will be altered.

The Store instruction (STR, 50) transfers information from the A register
to any addressable register or memory location. The instruction is written
as follows:

OoP Sy B a

. STR Y (Store in Y)

Only the location specified by Y will be altered.

The Clear and Add instruction (CLA, 10) transfers information to the A
register from any addressable register or memory location. The instruction
is specified as follows:

OP Y B a

CLA Y (Clear add Y)

Only the contents of the A register will be altered.

For example, consider the mnemonic coding:

OoP Y B a
CLA 1236]
LOD Q A
STR 1237

This would appear in octal coding as:

OP Y B o

10 0 0000 01236
51 0 0011 70010
50 0 0000 01237

and in binary coding as:

OoP 0% B o

001 000 000 000 000 000 000 000 001 010 011 110

101 001 000 000 000 001 001 111 000 000 001 000

101 000 000 000 000 000 000 000 001 010 011 111

Before the execution of these instructions, the contents of each location
might appear as follows:

A Register + 102 030

Q Register + 552 376

memory loca-

tions 1236 - 123 456
1237 + 765 432

After the execution of CLA 1236:

A Register - 123 456

Q Register + 552 376

2-26

Memory locations

1236 - 123 456

1237 + 765 432

After the executionof LOD Q A

A Register - 123 456

Q Register - 123 456
Memory locations

1236 -1 123 456

1237 + 765 432

After the execution of STR 1237:

A Register - 123 456

Q Register - 123 456
Memory locations

1236 - | 123 456

1237 - 123 456

If an address which refers to a non-existent memory location or
register is used in a BASICPAC command, the computer proceeds as
though an existing location containing positive zero had been specified.
Such addresses are called illegal addresses. Illegal addresses such as
70000g provide a simple method of clearing registers. However, if an
illegal address is specified in a STR instruction no action will occur.

For example, the instruction

OoP 0% B a

CLA 70000

will set the A register to +000 000 000 000.

Summary

1. Information can be transferred between memory locations and
addressable registers.

2. Information transfer instructions are LOD, STR, CLA.

3. STR and CLA always move information from or to the A register.

4. LOD can transfer information from addressable registers or memory
locations to addressable registers. LOD requires that two addresses

be specified.

5. Only the receiving element is altered.

B. ADDITION AND SUBTRACTION

BASICPAC arithmetic instructions require one of the operands to be
initially placed in the A register. This operand is replaced by the result.
The other operand may be taken from memory or from any addressable
register.

The addition and subtraction commands are as follows:

Command

Octal Mnemonic
10 CLA
12 ADD
13 ADM
14 CLS
16 SUB

Before execution
of ADD 1723

After execution
of ADD 1723

Before execution
of ADD 1724

After execution
of ADD 1724

Before executign
of SUB 1632

After execution
of SUB 1632

Explanation

O+(a) — A
At(a)— A
A+ |(a)| — A
0-(a) — A

A-(a)— A

012436705431

102030405060

114467312511

102030405060

012436705431

102030405060

067371477427

102030405060

012436705431

102030405060

067371477427

102030405060

Name

Clear Add («)

Add (o)

Add Magnitude (a)

Clear Subtract (a)

Subtract (o)

A register

memory location 1723
A register
memory location 1723

A register

memory location 1724

A register

memory location 1724

A register

memory location 1632

A register

memory location 1632

Before execution
of SUB 1633 + 012436705431 A register

- 102030405060 memory location 1633

After execution
of SUB 1633 + | 114467312511 A register

- 102030405060 memory location 1633

If the result of any operation is zero, the sign of this result is the
sign of the operand originally placed in the A register.

It is assumed that all numbers used in the examples have been properly
scaled.

Example 2:
A basic inventory operation consists of adding the quantity of an item
of stock purchased to the amount of stock previously on hand, and subtracting

from this sum the quantity of stock used.

If the following numbers represent quantities of a particular type of
transistor:

Amount on hand 11,463
Amount purchased 5,000
Amount used 7,500

then the updated inventory (new amount on hand) would result from the
following arithmetic:

11,463 + 5,000 - 7,500 = 8,963

With the octal equivalents of this data stored in memory as shown below,
the problem is to perform the arithmetic described above and to store the
new on-hand amount in memory location 6374:

Memory Location Contents
6371 Amount on Hand
6372 Amount Purchased
6373 Amount Used

‘The coding to do this is:

oP v 8 a REMARKS

CLA 6371 Clear Add On-Hand to A
ADD 6372 Add Purchased to A
SUB 6373 Subtract Used from A
STR 6374 Store Result in memory

The instruction CLA 6371 could be replaced by the instruction

OoP v B o
L.OD A 6371 and the effect would be the same.
Examgle 3:

The following payroll information for an employee is stored in memory
as shown:

Memory Location Contents
3475 Gross Base Pay
3476 Overtime Pay
3477 Social Security Tax
3500 City Income Tax
3501 Federal Income Tax

Compute the employee'’s net pay and store it in memory location 3502.

Solution:
oP Y B o REMARKS
LOD A 3475 | Load A with Gross Pay
ADD 3476 | Add Overtime Pay to A
SUB 3477 | Subtract Social Security Tax
SUB 3500 | Subtract City Income Tax
SUB 3501 | Subtract Federal Income Tax
STR 3502 | Store Net Pay in Memory

Exercises:
1. Add the number in memory location 4132 to each of the
numbers in memory locations 6142-6144 inclusive. Each

sum should replace its operand in 6142-6144.

2. Compute the sum of the numbers stored in memory locations

5301-5306.
Summary:
1. - All addition and subtraction occurs through the A register.
2. The operands are treated algebraically.

3. The addition and subtraction instructions are CLA, ADD, ADM,
CLS, SUB.

4. The resultis always placed in the A register.

5. A result of zero has the same sign as the operand in the A register.

C. MULTIPLICATION AND DIVISION

The multiplication of two 36-digit numbers (BASICPAC register size)
usually produces a product with more than 36 digits. Since this product cannot
exceed 64 digits, the A and Q registers are combined to hold the result of a
multiplication operation.

The Multiply instruction (MLY,20) forms the product of the contents of the
A register and the contents of any other addressable register or memory loca-
tion. The 36 most significant bits of the product are placed in the A register
and the 36 least significant bits are placed in the Q register. Both registers
have the sign of the product.

For example, consider the following instruction:

OoP 0% 8 o

MLY 1327

Before execution, the contents of the Q register are random, the A register
contains the multiplicand, and the address of the multiplier is specified by the «
portion of the instruction word.

Before After

+ 000123456000 A register + 000000000027
- 077700000000 Q register + 404740000000
+ 000000220000 Location 1327 + 000000220000

where (123456g) x (22g) = 2740474g.

Exa.mBIe 1

Compute the total cost of purchasing a quantity of items based on the
following information. Store the result in memory location 2732,

Memory Location Contents
1214 Quantity Purchased
3726 Unit Cost
1423 Percentage Discount
1500 - 1501 Working Storage

No consideration will be given to the actual format of the numbers used in
the example. It is assumed that all significant digits of the products will be
found in the A register, as can easily be arranged by the techniques described
in Section XI.

The necessary arithmetic for this example is:

a. (Quantity x Cost) - (Quantity x Cost x Discount)

or
b. (Quantity x Cost) x (1 - % discount)

A number of other arithmetic operations are also possible and each
operation can be coded in a variety of ways. Solution a is illustrated below as
a ' straightforward method.

OP Y B ! REMARKS

CLA 1214 Quantity to A

MLY 3726 Unit Cost x Quantity to A

STR 1500 Store temporarily

MLY 1423 Unit Cost x Quantity x Discount to A
STR | 1501 Store temporarily

CLA 1500 Unit Cost x Quantity to A

SUB 1501 Subtract Discount

STR 2732 Store result in memory

Another method of computing the same quantity is as follows:
Average Unit Cost = Unit Cost - (Unit Cost x Discount)
Total Cost = Average Unit Cost x Quantity

The coding for this solution is:

OoP v B o' REMARKS

CLS 3726 0-(Unit Cost) to A -
MLY 1423 -(Unit Cost) x Discount to A

ADD 3726 Unit Cost-(Unit Cost x Discount) to A
MLY 1214 Net unit cost x Quantity to A

STR 2732 Store Total Cost in memory

Exercise 1:

Part of a production calculation requires computing the cost of manufac-
turing parts. Using the information given below, compute the cost by multi-
plying Number of Assemblies x Number of Parts per Assembly x Unit Cost
per Part.

Memory Location Contents

4231 ' ' Number of Assemblies
4232 o Number of Parts/Assembly
4233 o Unit Cost

Exercise 2:

Compute the square of the sum of the quantities stored in locations 6271
and 6272. Show two ways of coding this problem.

(@ + b)% = a2 + 2ab + b2

The Divide instruction (DVD, 22) divides the contents of the A register by
the contents of the register or memory location specified by . The quotient
is placed in the Q register and the remainder is placed in the A register.

The Divide Long instruction (DVL,23) divides the 72-bit number formed
by contents of the A and Q registers by the contents of the register or memory
location specified by . Both the A and Q register must have the same sign.
The A register contains the 36 most significant bits of the dividend and the Q
register contains the 36 least significant bits. The quotient is placed in the Q
register and the remainder is placed in the A register.

For both instructions, the dividend must be smaller than the divisor or the
division will not be performed.

Examgle 1

Memory locations 4371 - 4373 contain the cost of living indices for three
years. Compute the average index; i.e., (Index 1 + Index 2 + Index 3) + 3 =
Average Index. Assume a constant of 3 in memory location 4374.

OP Y B o REMARKS
LOD A | 4371 Index 1 — A
ADD 4372 A+ Index2 — A
ADD 4373 A+ Index 3 — A
DVD - 4374 A+3— Q

The DVL instruction is generally used to divide a product previously
formed or to obtain additional accuracy.

Example 2:

An airplane travels a prescribed distance D a number of times. It travels
the course x times in a time period t;, y times in a period of time t, and z
times in a period of time t3. Compute the airplane's average speed R:

R =D M)
ty+ty+ta

Assume the following:

Memory Location Contents
1260 x
1261 y
1262 z
1263 t
1264 ty
1265 t3
1266 D
1267 temporary storage
Solution:
oP |y |p a REMARKS
i
CLA | 1263 [0+t ~ A |
' ADD | 1264 |A+t, >~ A |
~ ADD | 1265 | A+t3 A
1
i STR 1267 | t] +t, +t3 — memory
CLA 1260 | 0+ x— A
ADD 1261 A+vy->A
ADD ‘ 1263 | A+z— A
MLY 1266 | L(x+y+z) - A,Q
DVL 1267 | L(x+y+z)/t] +t, +t3 — Q

Exercise 1:

The following information is given:
Mei‘hory Location
3744 The number of sales for month 1
3745 The number of sales for month 2
3746 The number of sales for month 3
3747 The total dollar receipts for month
1 sales
3750 The total dollar receipts for month
2 sales
3751 The total dollar receipts for month
3 sales
1. Compute the average number of sales for one month.

2. Com

3. Com

1.

pute the average dollar receipts for one month.
pute the a.verage dollar receipt for the average monthly sales.

Sales 1 + Sales 2 + Sales 3

3 = Average Sales

Receipts 1 + Receipts 2 + Receipts 3 _ Average Receipts

30

3

Average Receipts _ Average Receipt/Sale

Assume,
Also assume

Summary:

1. The

Average Sales

as always, that the operands will be properly aligned throughout.
that the number 3 is stored in memory location 3752.

multiplication and division instructions are MLY, DVD, DVL.

2. Both multiplication and division assume the presence of one operand

in th

3. - The

4., The
in th

e A register.
product is placed in the A and Q registers.

quotient is placed in the Q register; the remainder is placed
e A register.

D. TRANSFER OF CONTROL

The instructions which comprise a BASICPAC program are stored in con-
secutively numbered memory locations for execution. These instructions are
performed sequentially, beginning with the smallest address and continuing to
the largest. The order of execution of the instructions is controlled by a
special register which specifies the address of the next instruction to be per-
formed. As each new instruction has been obtained from memory, the con-
tents of this register are increased by one to supply the address of the next
instruction in sequence. This special register is called the Program Counter
register (PC).

The sequential method of operation described above permits only one
possible sequence of events for each program. Depending upon the answers
to questions such as:

1. Have sufficient terms of a series been computed?

2. 1Is there a transaction for this record?

3. Is there sufficient stock available to fill this order?

A choice can be made of the appropriate action to be initiated.

Although these questions appear dissimilar, they can be generalized as
follows:

1. Is a number positive? Negative? Zero?
2. Is one identifying number or name the same as another?
3. Is a number greater than another? Less than another?

Answers to the first set of questions can be obtained by examining an
arithmetic register to see if the contents are positive, negative or zero.
Similarly, two quantities can be compared by examining their difference.

A group of instructions called the Transfer of Control instructions en-
ables the programmer to choose between the continuation of a sequence of
operations and the initiation of a new sequence.

The Transfer of Control instructions which depend upon information
supplied are called conditional transfers. An additional instruction called
an unconditional transfer transfers control to a new sequence of instructions
regardless of any data supplied.

All transfer of control instructions have a mnemonic code of the type
TRc, where c specifies the condition to be satisfied.

QOctal Mnemonic: Name
40 TRU Transfer Unconditionally
44 TRP Transfer on Positive A register
46 TRN Transfer on Negative register
45 TRZ Transfer on Zero A register
41 TRL Transfer and Load PCS register
42 TRS Transfer to location in PCS register
43 TRX Transfer on Index Register

In TRP and TRN, "positive" assumes only that the sign bit is zero;
"negative" assumes only that the sign bit is one. In TRZ, zero can be either
positive or negative. TRL, TRS, and TRX are discussed in later sections.

A graphic representation of conditional transfer instructions is:

No Perform next
sequential instruction

Are condition
satisfied

Yes Select next instruction
from specified address

A transfer of control instruction must specify the first address of the
alternative coding. This address is then placed in PC, and normal sequential
operation continues from this address.

Examgle 1:

Compute the new loan balance. If it equals zero, add one to the number
of cleared balances. If it does not equal zero, add one to the number of active
loans.

Memory Location Contents
3724 Loan balance
3725 Loan payment
3726 Number of active loans
3727 Number of cleared balances

Assume memory location 4212 contains a constant of one.

LOCATION oP 0% B o REMARKS

LOD A 3724 Loan balance— A

SUB 3725 Balance - payment —~ A

STR 3724 New balance to memory

TRZ NOBAL Transfer control if (A) = 0

CLA 3726 Add one to number of
active loans

ADD 4212

STR 3726

NOBAL CLA 3727 Add one to number of

cleared loans

ADD 4212

STR 3727

s o o o e of o o e o o e o s o e e le e s e & e o e e e o s s e e o

"NOBAL" in this case was used as the beginning address of the instruc-
tions which increment the number of cleared loans. When coding in machine
language, the correct numerical address must be placed in the a portion of
the TRZ (or any other Transfer of Control) instruction.

Unless this address is known, it is convenient to leave the a portion
temporarily blank and continue coding the "condition not satisfied" path. When
this path has been completed, the next address (or line on the coding sheet)
can be used to begin coding the "condition satisfied" path. The o portion of the
transfer of control instruction should be filled at this time.

The example above may be considered in two ways:

1. Has the new balance been reduced to zero?

2. Does the payment equal the balance?

The second way illustrates the method of comparing two quantities by
examining their difference.

For ifx> vy, thenx -y >0;ifx =y, thenx -y = 0; and if x <y, then
x -y <0.

Example 2:

Memory locations 4623 - 4625 contain information for an inventory
record. Memory locations 5326 - 5327 contain information for a transaction
record.

Memory Location Contents
4623 Inventory stock number
4624 Inventory amount
4625 Minimum required amount
5326 Transaction stock number
5327 Amount required for sale
1. If the stock numbers are the same (match), perform the processing

described below. If they do not match, perform the coding at NUFIL.

2, If they match, determine whether the order can be filled. (Is the
inventory amount greater than or equal to the amount ordered?) If
the order can be filled, record the new inventory amount and con-
tinue. If it cannot be filled, go to NUFIL.

3. If the new inventory amount is greater than or equal to the minimum,
go to DOMOR. If the inventory amount is zero, go to SPORD. If it
is not, go to REORD.
(SPORD, REORD, DOMOR, and NUFIL are not coded for this example).

The flow chart for this exercise appears below:

Do
stock numbers
match

Yes Subtract
ordered from
on-hand

Yes

on-hand >
ordered

2-41

LINE I.OCATION OP ’ o REMARKS

1 CLA 4623 Inventory stock no.— A

2 SUB 5326 A-Transaction stock no. - A

3 TRZ - START Same?

4 TRU NUFIL no: go to NUFIL

5 START CLA 4624 On hand =+ A

6 SUB 5327 On hand - order - A

7 TRN NUFIL On hand < Order?(A) <07

8 STR 4624 no: save new on-hand

9 { TRZ SPORD new on hand = 0?
10 | SUB 4625 no: on hand - minimum — A
11 TRP DOMOR on hand > minimum? A > 07
12 | TRU REORD no: go to REORD -

Analysis of the Coding:

Lines 1 and 2 compute the difference between the two stock numbers.

Line 3 examines their difference.

If they are unequal, there is a non-zero

difference and the next instruction (line 4) will transfer control to NUFIL. If
they are equal, the difference is zero and control will be transferred to START

(line 5).

Lines 5 and 6 compute the difference between the amount on hand and the
amount ordered. Line 7 examines the difference.
greater than or equal to the amount ordered, the difference is positive since
the quantities are positive and the instruction on line 8 will be performed. If
the amount on hand is less than the amount ordered, control will be transferred

to NUFIL.

If the amount on hand is

Line 8 replaces the old amount on hand with the new amount on hand for

future reference.

Line 9 inquires whether all supplies on hand have been depleted. (Is the
new amount on hand zero?) If it is zero, control is transferred to SPORD. If
it is not zero, control continues to line 10, which computes the difference be-
tween the new amount on hand and the minimum amount required.

Line 11 inquires whether the amount on hand is greater than or equal to the
minimum. (Is the difference positive?) If the amount is greater than or equal,

control is transferred to DOMOR.

tion (line 12) transfers control to REORD.

If the amount is smaller, the next instruc-

Exercise:

The following data in memory pertains to an employee:

Memory Location Contents
4727 Number of Hours Worked
4730 Hourly Pay Rate
4731 Overtime Pay Rate
4732 Number of Exemptions
- 4733 Union Dues
4734 Hospitalization Contribution
4735 Year to Date Gross Pay
4736 Year to Date Net Pay
4737 Year to Date Social Security Tax
4740 Year to Date Income Tax ‘
Definitions:

Overtime hours Hours worked in excess of 40.

Gross pay = Hours (not more than 40) x Hourly Rate +
Overtime Hours x Overtime Rate.

Income Tax = [Gross Pay - 13 x Number of Exemptions_]
x ,18.

Social Security
Tax o = 3.00 x Gross Pay.

Net Pay = Gross Pay - Income Tax - Social Security Tax -
Union Dues - Hospitalization Contribution.

This exercise has five parts.

Part 1:

Determine whether the employee worked overtime. If sd, store
the Overtime Hours in memory location 4741.

Part 2:

Compute Gross Pay, store in 4742, and add it to Year to Date
Gross Pay.

Part 3:

Compute Income Tax, store in 4743, and add it to Year to Date
Income Tax.

Part 4:

Compute Social Security Tax, store it in 4744, and add it to
Year to Date Social Security Tax.

- Part 5:
Using the above results compute Net Pay, store it in 4745, and
add it to Year to Date Net Pay.

The new Year to Date Social Security Tax must not exceed $ 144. 00.
Therefore, do not deduct the full 3. 00 if it will cause the Year to Date total
to exceed $ 144, 00.

The necessary constants for this routine are stored as follows:

Memory Location Contents
3000 40
3001 13
3002 .18
3003 .03
3004 144. 00
Summary:

1. Transfer of Control instructions permit alternate paths of proc-
essing. The information being processed can be used to determine
the path to be chosen.

2. All Transfer of Control instructions have the mnemonic form TRc,
where c indicates the condition required. The transfer of control
instructions are TRU, TRP, TRN, TRZ, TRL, TRS and TRX.

3. When coding, leave the @ portion or "go to" address blank until the
"go to" coding can be written. This method enables the programmer
to keep track of the coding which remains to be written.

4. When subtracting two quantities for comparison, remember that the
operation will be performed algebraically, and that a zero result
will have the same sign as the operand originally placed in the A
register.

2-44

5. Transfer of Control instructions do not alter the contents of the
arithmetic registers.

A special type of transfer of control instruction is the Halt order
(HLT, 00). This instruction transfers control to the operator and all com-
puting stops, but any input-output orders currently being performed will be
completed. No new orders will be accepted.

E. INFORMATION FORMATS

In the preceding examples and illustrations, no consideration was given
to the numbers actually used by the computer. Decimal numbers and decimal
arithmetic were assumed. However, the specific form of information used
within the computer is of great importance to the programmer. The programmer
has a wide degree of latitude in selecting the formats to be used in his program,
subject only to the necessary restriction of no more than 37 bits in a computer
word.

There are two generalized forms of computer data words: octal and alpha-
numeric.

An octal word consists of twelve octal digits and a sign bit. Bits 34-36
form the most significant octal digit, bits 31-33 form the second, etc., and bits
1-3 form the least significant digit. An example of an octal word is shown below.

+ |12 |3(4|5|6|7|0]|1]2]3]|4

Octal Word Format

An octal word may contain numerical data, an information code, or a con-
stant. The quantities 40, 3.00%, and $144. 00 in the previous exercise were
constants. That is, they would remain fixed for each employee. They are
specified in the program and stored in memory as part of the program, rather
than being read into memory with each set of data processed.

The alphanumeric format permits the programmer to obtain and process
information within the computer in a form which can be easily converted into
English-decimal notation. The alphanumeric word may represent payroll or
inventory information, information which is to be typed for the operator, or
any other information. The alphanumeric characters are six-bit binary coded
characters. The word format is shown below. The FIELDATA alphanumeric
code is shown in Appendix D.

37 36-31 30-35 24-19 18—-13 12—7 6-1
SN F 0 R M A T

Alphanumeric. Word Format.

2-45

ExamEles :

P| Al R| T|A | 9

The constant "PART 9" might be a portion of a typewriter display. " A"
indicates the space character. The alphanumeric word could also be shown
in octal form; P=25g, A=06g, R=27g, etc.

2|15]J0(6f2(7|3]|1]o|5]|]7]1

P A R T AN 9

The sign is usually ignored or assumed positive for alphanumeric con-
stants. Note that the decimal digits 8 and 9 can be expressed in alphanumeric
form. The symbol "@" is used to distinguish the letter O from the numerical
0\-

Exercises:

1. Convert to octal form:

3IN|-12|8]A

M{A|[R|.|A]e6

2. Convert to alphanumeric form:

2|51]5|1|{6|l2f1|1]02]4

6[3|7](6|6|1]|6|4]6]|1]|6]6

F. FLOATING PQOINT ARITHMETIC

Floating point operations can be executed in BASICPAC by means of
suitable routines. In floating point arithmetic the BASICPAC word is divided
into a nine-+bit characteristic and a 27-bit mantissa.

P S8 «+——Characteristic > Mantissa ————

38 |37 |36 28 | 27 1

2-46 h

The sign and parity bits are identical in. function to those in a fixed-point
numeric word. All exponents are represented in an excess-256 system, in
which the characteristic is equal to the exponent plus 256. The most significant
bit of the characteristic can be thought of as the sign of the exponent. Positive
and negative exponents in the range -256 to +255 are represented by a positive
characteristic ranging from 0 to 511.

A floating point number is said to be normalized when the fractional part
(if non-zero) is equal to or greater than 0.5 in absolute value. (The mantissa
contains a "one" bit in position 27.) A normalized zero contains zeros in bits
1-36. Normalized floating point numbers permit a retention of the maximum
number of significant bits.

G. SCALING AND SHIFTING

BASICPAC interprets all numbers as having absolute values of less than
one. (The binary point is located between bits 36 and 37.) However, the pro-
grammer is not restricted to this range; he may assume a binary point any-
where within a word or outside of a word. Having made this choice, the pro-
grammer must keep track of the assumed point throughout all subsequent opera-
tions. This process of representing any desired number by selecting an appro-
priate binary point is called Scaling, and the number of positions between the
computer's point and the assumed point is called the Scale Factor. The scale
of a number is that power of two which, when multiplied by the computer number,
produces the desired number. '

For example:

To represent the number 4, using the computer number .5, the scale
factor must be 3; i.e.,

The computer number .5 (binary .1000. . . .)

with a scale factor of 3 .100A 00. . . (The caret, A, indicates
the assumed binary point) This number would be written as the octal
constant +400 000 000 000.

A positive scale factor indicates that the assumed point is to the right of
the BASICPAC point. A scale factor of zero indicates that both points coincide.
A negative scale factor indicates that the assumed point is to the left of the
BASICPAC point. A "B" prefix is used to indicate the scale factor.

Number Scaled Number Binary

4.0 4.0B3 . 100 A000...
2.0 2.0B2 .10 A000....
4.0 x 2.0 4.0B3 x 2.0B2

=4,0X 2,.0B5

=8.0B5 .01000A00...
8.0 8.0B5 .01000 A00...
2.0 2.0B2 .10,000...
8.0+2.0 8.0B5 + 2.0B2

(8.0+ 2.0) B3

= 4.0B3 .100,00... -
x xBa
y yBb
XXy xBa x yBb

=x x yB (A + B)

X xBa
y yBb
x+y xBa + yBb
=x+y B (a-b)
Exercises
}. Determine the products and quotients of the following pairs of
numbers:
16.25B 22 3.5B7
6.5B 10 .125B0
.375B 1 2,.0B4

2. Show how the above operands and results would appear in
binary words. In octal words.

When adding and subtracting numbers, the programmer must be certain
that the operands have the same scale factor. Since the value of a number is
relative to its position in the word, some method of altering the position must
be used to align two operands with different scale factors. This re-positioning
could be accomplished by multiplying or dividing by the required power of two.
It can also be accomplished by shifting the word the required number of positions.

For example, shift the number in the A register five places to the right:

1|2 |3|4|5|6|7|0|0]|0}|0]0O0 Before shifting

lofofo]JofJo]1]2]3]4]5]6]7] After shifting

Three types of shifts are possible in BASICPAC:

1. Ordinary
2. Double - Length

3. Circular

Ordinary shifts can be performed only in the A register. The sign bit is
not affected.

Double-length shifts treat the A and Q registers as a single 72-bit register.
The signs are not affected.

Circular shifts treat the A and Q register as a single circularly connected
register. All bits including the sign bits are treated alike.

For each position shifted, one bit is shifted out of one end of the register
and one bit is introduced at the other end. For ordinary and double length
shifts, the bit shifted out is lost and zeros are introduced at the other end. For
ordinary and double length shifts, the bit shifted out is lost and zeros are in-
troduced at the other end. For circular shifts, the bit shifted out of one end
is introduced at the other end.

Shifts can be made either to the right or to the left. The shift instructions
are:

Octal

30
32
31
33
35

Mnemonic

SHL
SHR
SLL
SRL
CYL

Name

Shift Left (A)

Shift Right (A)

Shift Left Long (A, Q)
Shift Right Long (A, Q)
Cycle Left (A, Q)

The number of bit positions shifted is specified by the « portion of the

instruction word.
A shift of zerc has no effect.

From 0 to 63 positions can be specified by one instruction.

Shifting can be used to align scaled numbers for arithmetic processing

or to align alphanumeric data.
dividing the number by 27,

plying a numbexr by 27,

Examples:

A shift right of n positions is equivalent to
A shift left of n positions is equivalent to multi-

Add the numbers 74.25B6 and 743. 68B2,1.,

' LOCATION | OP v 8 @ REMARKS

CLA L FIRST | 74.25B6 - A

!

SHR, 17 211 -5=16,, = 20g

ADD | NEXT A+ 743.6B 21 = A
FIRST 74 2 5000 | 00000 original number

00 0 0074 | 25000 shitted number
NEXT 00 0 0743 | 60000 second number

Notice that if 743.6B21 had beer aligned with 74.25B6 a shift left of 15
positions would have been required, and the significant digit "7" would then
have been shifted out of the register.

Given the number

14B6:

shift it right once = 7.B6:

or shift 14B6 left

once = 28B6:

bit #

37 36 35 34 33 32 31 30

+ 0 0 1 1 1 04 O
+ 0 0 0 1 1 1a 0

+ 0 1 1 1 0 0,0

2-50

Multiplication by numbers which are not powers of two can be done
by shifting and adding.

For example:

Multiply 6 x 9 by shifting.

The number 6 110 =6
shifted left 3 times 110000 =6 x 23 =6 x 8
plus the original
number 110110 =6 x 23 + 6
=6 x (23 + 1)

Shifts can also be used to determine which of a series of possible opera-
tions is to be performed.

The high~order three data bits of the word in memory location CODE
represent yes or no codes as follows:

36 | 35 | 34

1 = Union member

0 = not member
1 = hospitalization plan
0 = not member

1 = member of payroll savings

0 = not member

i

The instructions necessary to determine whether or not to make payroll
deductions for union dues, hospitalization or payroll savings is shown below.

LINE | LOCATION | OP |y 8 a REMARKS
1 LOD A | C@DE|code word - A
2 CYL 1
3 TRN SAVE |If first bit=1, go to SAVE
4 CYL !
5 TRN H@PSP |If next bit=1, go to HOSP
6 CYL 1
7 TRN UNION] If third bit=1, go to UNION

Overflow

Five arithmetic (ADD, ADM,SUB,DVD,DVL) and two logical instructions
(SHL,SLL) can cause a condition known as overflow. These instructions can
produce a number in the Accumulator too large to be accommodated. The
result is a carry into the adjacent bit position, which in this case represents
the overflow indicator. Overflow can be used by the programmer to indicate
an error condition such as improper scaling, or can be used as a programming
feature (e.g., to indicate whether certain bits are ones or zeros). No one
automatic procedure is ideal for all possible cases, so the BASICPAC pro-
grammer has been given complete control of overflow procedures.

The addressable overflow flipflop is used to indicate to the program that
overflow has occurred under the conditions set by the program. This flipflop
can also halt the computer upon the detection of overflow, if so directed by the
program.

Bits 16-18 of the portion of the instructions which can cause overflow de-
termine the procedure to be followed:

Action Before If Instruction
5'18 p 17 '816 Instruction Causes Overflow

000 Clear OA Set OA and halt
001 Clear OA Set OA

010 Clear OA Set OA and halt
011 Clear OA No action

100 Halt if OA=1 Set OA and halt
101 No Action Set OA

110 Halt if OA=1 Set OA and halt
111 No Action No Action

It is assumed that the coding at SAVE, H@SP and UNION will perform
the required processing and return control respectively to lines 4, 6, and 8.
These methods will be discussed at greater length in the section on subroutines.

H. LOGICAL INSTRUCTIONS

The unit of information transfer discussed in the preceding sections was
one computer word. The BASICPAC logical instructions allow transfer of only
part of a computer word.

The operation of these instructions is based on the rules of logical addition,
multiplication,and negation. The rules for logical addition are like the rules
for binary addition, except that in logical addition, 1+1=1. There is no carry.
The rules for logical multiplication and binary multiplication are identical.
The symbols "v" and "." are used to distinguish logical addition and multiplication
from arithmetic addition and multiplication.

2-52

Logical negation replaces all binary ones with zeros and all binary
zeros with ones, forming the "one's complement" of a quantity. Negation
is denoted by """ or " ' ".

Examples:

Ifa=1,b=0

then a.b=1.0=0
ayb=1v'0=1
a'vbz 1'v0'= Ov0 =0
avb=1v0 =0vl =1
avb' =1.0' =1.1=1

If (Q) = 110 001 101 110...
(Q)'= 001 110 010 00l...

The instruction Logical Add (LGA, 02) performs the logical addition of the
contents of the register or memory location specified by a to the contents of
the A register and places the result in the A register. The sign bit as affected.
This instruction can be used, for example, to insert ones in a yes or no code
word, or to change an unknown sign bit to one.

Logical Multiplication (LGM, 03) forms the logical product of the contents
of the A register and the contents of the register or memory location specified
by @. The result is placed in the A register. The sign bit is affected. This
instruction can be used to transfer portions of a word to the A register.

The Mask instruction (MSK, 55) replaces specified portions of a register
or memory location with the information in the corresponding portions of the
A register. The logical expression of the operation of the mask instruction is:

A). Q' - (@) — a

A special constant called a mask is placed in the Q register before execution
of the MSK instruction to specify the bit positions to be altered. A bit value of
one indicates that the corresponding bit position is to be altered; a bit value of
zero indicates that the corresponding bit position is not to be changed.

Example:

Assume an employee's rate of pay is to be changed. The rate of pay is
stored with other information in memory location PAY in the following format:

(1) | (1) | () (21) (3) (9)
U H S Rate of Pay Tax Code Bonds

2-53

Numbers in parentheses indicate the number of bits occupied by the
field. Assume the new rate of pay is stored in location NUPAY in the
following form:

| Other information

(21)

Rate of Pay

The coding to update the word PAY would be:

LINE | LOCATION OP v B o REMARKS
1 LOD Q MASK mask — Q
2 CLA NUPAY | new rate of pay— A
3 SHL 22 2110 - 1 = 207 = 22g
4 MSK PAY
MASK 07 7 777 70000
NUPAY 00 0 00XX XXXXX | X =desired information
PAY zY Y YYYY YZZZZ |Y =rate of pay

Z = other information

After the above coding has been performed, the registers and
memory locations will appear as follows:

A REGISTER
Q REGISTER

NUPAY
PAY

OoX
07
00
ZX

X

7
0
X

XXXX
7777
00XX
XXXX

X0000
70000
XXXXX
XZ222272

The Replace Address instruction (RPA, 54) replaces bits 1-15 of the speci-

fied memory location with bits 1-15 of the A register.

The contents of the A

register are not affected. This instruction will be discussed in greater detail
in the section on subroutines.

Exercises:

Parts of an inventory record and a transaction record are stored in memory
in the formats shown below.

2-54

Memory Location Contents

INV1 Stock number (27) v Other information

INV2 Other data On hand amount (9)

TRANI1 Stock number (27) (00 l0 Alphanumeric transaction
code

TRAN2 Other data Amount (9)

The numbers in parentheses indicate the number of bits in each field.
The processing to be performed is:

1. Determine whether the stock numbers are equal; if they are not, go
to NXTRTN.

2. If they are equal, test the transaction code’to determine whether the
transaction indicates an amount sold (S) or received (R). If the
transaction code is not R or S the data is in error,.

3. For an amount sold, subtract the transaction amount from the on-hand
amount. Then go to NXTRTN.

4, For an amount received, add the transaction amount to the on-hand
amount. Then go to NXTRTN.

The flow chart of this processing is:

Transaction TransactiomN\JN@ | Data

Received

On-hand ! On-hand |

- amount | + amount +
NX — on-hand —> on-hand ’
RTN R B — I

X
RTN '

2-55

I. SENSE INSTRUCTIONS

The yes-or-no codes discussed previously are valuable programming aids,
but these codes require all information to be present in memory. This re-
quirement can be inconvenient under certain circumstances. The decision of
whether or not a certain section of coding is to be performed may depend upon
conditions external to the computer or conditions which may not be known in
advance. The Sense instructions enable the operator to enter information into
a set of eight one-bit registers (Sense flipflops) at any time before or during
the execution of the program. A set of eight three-position switches on the
control panel supply information to the flipflops. The up position of the switch
corresponds to a binary value of one, called the "set state"; the down position
corresponds to a binary value of zero, called the "reset state ", The center
position places the flipflops under program control. The switches automatically
return to the center position when released by the operator, but the flipflop re-
mains in the new state until altered by either the program or the operator.

Sense instructions can be considered as a special class of conditional
Transfer of Control instructions. Instead of being dependent upon the contents
of the A register, the behavior of the instructions depends upon the state of the
flipflop specified by the B portion of the instruction word. The instructions used
with flipflops are the Sense, Sense and Set, and Sense and Reset instructions.

The Sense instruction (SEN, 05) interrogates the specified flipflop. If it is
set (SFFEB = 1), control is transferred to the instruction in memory location «.
If the flipflop is reset (SFF3= 0), the next instruction in sequence is performed.

Sense and Set (SNS, 06) interrogates the specified flipflop. If the flipflop
is reset (SFFB = 0), it is set to one and control is transferred to memory loca-
tion o. If the flipflop is already set, the next instruction in sequence is per-
formed.

Sense and Reset (SNR, 07) interrogates the specified flipflop. If the flipflop
is set, it is reset to zero and control is transferred to memory location a. If
the flipflop is already set, control is transferred to the next instruction in se-
quence.

Note that for SNS and SNR a transfer of control occurs whenever the flipflop
specified changes its state. A physically or logically non-existent flipflop; e.g.,
B = 0363, or IRQ for a non-existent converter, when addressed by the Sense in-
struction always results in a transfer of control to the next instruction in sequence.

There are other addressable flipflops in BASICPAC, most of which are con-
cerned with input-output and will be discussed in the appropriate section.
They can be addressed by any of the Sense ins‘tru_ctions and behave exactly like
the sense flipflops.

2-56

‘Examples:

When updating inventory records the computer may be required to pre-
pare special reports or data summaries at the end of each month. This
reporting might be done by running different programs or by having some
method of informing the computer that the special reports were required at
this time. Assume sense flipflop 3 has the following significance:

SFF3 =1 End of month., Prepare
summaries.
- SFF3 =0 Not end of month. Do not

prepare summaries.
Then the coding to determine whether special reports were required is:
SEN | SFF3 END OF
TRU NORML

Note that a SEN was used to preserve the state of sense flipflop 3. If
the special reports were prepared piecemeal after processing each item, the
information would be required for each file. If the processing were to be per-
formed at the end of all files, the information would no longer be required and
a SNR instruction could be used. This instruction would also inform the
operator of the progress of the program, since the state of the flipflops is
displayed by lights on the control panel.

Assume it is desired to compute | x | 174 when coding which yields
| x| 1/2 is available. | x| 1/% can be obtained by performing | x | 1/2
twice. The square root coding can be written twice or some method of per-
forming it twice can be arranged. Consider the following:

1 SNS SFF1 NEXT
2 NEXT SQRT
3.]
4

SNR SFF1 NEXT
x+1 CONTIN

Line 1 insures that SFF1 is set to one. The coding at NEXT computes
the square root of the absolute value of x.

The SNR inquires if SFF1l=1. It does, SFF1 is reset to 0 and control is
transferred to NEXT. The second time SNR is encountered, SFF1=0 and the
next instruction CONTIN is performed. This type of coding, called a loop,
will be discussed at greater length in the next section.

Given the following coding, which routine will be performed if SFFb6=1,
SFF7=0 and SFF8=1? If SFF6=0, SFF7=1, SFF8=0? If SFFé6=1, SFF7=1,
SFF8=1? Note these values correspond to binary equivalents of 5, 2, and 7.

LOCATION OP | v B a REMARKS
SEN SFF8 | LPCA
SEN SFF7 L@CB
SEN SFF6 CAT (1)
D@G . .o . . .|
!
|
LPCB SEN SFF6 | PIG (3) 1
COW
(2)
LPCA SEN SFF7 L@CccC
SEN SFF6 RAT (5) |
KID .. .o N) \
i
|
L@CC SEN SFFé6 | GNU (7) |
BAT (6

J. PROGRAM MODIFICATION AND LOOPS

The preceding examples and exercises assumed that only one set of
information was to be processed, whereas inventory and payroll records,
for instance, normally contain more than one set of information, each set
of which must be processed. The coding for processing one record could
be duplicated the required number of times with appropriate changes of -
addresses for each set, but this method might require an enormous amount
of program storage space. It would also be an extremely boring task.

2-58

An alternative method codes the processing for the first record, then
modifies the coding for each successive record and performs the modified
coding. This modification is possible because the program is stored in
memory in number-coded form, and the computer can distinguish between a
data word or an instruction word only by the fact that control is transferred
to the instruction word. Hence, any instruction which can be used to modify
data can be used to modify instructions.

For example, assume the entire payroll record for a company is stored
consecutively in memory in a consistent format. Each item requires six
memory locations. The first word of the first item is stored in memory loca-
tion 2000. The flow chart for processing these items would be

Process Increment
one All necessary addresses ———
Item by six [

The coding is given below. It is assumed that locations L@Cl, L@C2,...,
L@CN all refer to addresses in the first item.

LOCATION | OP B o REMARKS
L@Cl CLA 2000
. . process
Lpcz ADD 2003 one
item
L@CN STR 2005
CLA LY Cl
ADD SIX
STR L@Cl modify
CLA L@ C2 addresses
ADD SIX for
STR L@C2 next
CLA L@C3 item
STR L@GCN
BACK TRU LOC1
SIX 00 00 | 00006

However, each instruction which refers to a part of the first item must

be modified.

An alternate method would be to code the processing for a specific work
area, then transfer each item into this area for processing. The flow chart

would be:

Process

one
item

Move next
item to
work area

Some method of exiting from these loops must be allowed, or the cyclic
nature of BASICPAC memory will result in processing the program as well
as the data, or other undesired results.
essed is known in advance, a count can be kept of the number of items proc-
essed. Similarly, if an unspecified number of items are to be processed,
the loop can be completed by examining each item for a pre-determined

sentinel. These two methods are flow charted below.

2-60

If the number of items to be proc-

Decrement by 1

f Process N 4 Select

next item

. l umber of items
one 1item .
L to be processed|

Complete

Is
~ next item
sentinel

! Process Select
one item next item]

The following sets of coding would then replace BACK in the first example:

Complete

BACK CLA C@UNT
SUB @NE
TRZ EXIT
STR C@UNT
TRU LgCl

BACK CLA ITEM
SUB SENT L
TRZ EXIT
TRU L@Cl1

If this set of coding is to be performed again, the addresses of instructions
which refer to the data must be reinitialized to their original values. This can
be accomplished by subtracting a number to reduce each instruction address to
the original amount (CLA, SUB, STR), replacing each word with a constant
with the correct address (CLA, STR), or by replacing the addresses with the
correct values (RPA). Since the RPA instruction does not alter the contents of
the A register, one method of reinitializing the loop is to place a constant whose
o field equals the address of the first word of the first item, replace the address
into all locations which required this address, increment the o portion of the A
register by one and replace the addresses of locations requiring this address,

and repeat the cycle of incrementing and replacing the address until all addresses
have been 'restored.

The process of altering program addresses can be extended to other uses,
such as controlling the program. Alternative methods of processing may be
desired, depending upon the results of a comparison. Frequently, some inter-
vening and common processing is required between the comparison and the
selection of alternate methods, and the results of the decision must be

2-61

remembered. The decision is recorded by setting a "switch. " A switch

is a transfer of control instruction whose a portion is altered by a preceding
series of events. A switch is said to be "set" when a specific address is in-
serted in the o portion. A switch is shown in flow chart symbolo
circle: The setting of a switch is shown in a square: |Set

SW1b

y as a

Process 2

Deci Set
ecide SWilb Process 1

Set
SWla

b Process 3

i

The instructions included in the box PROCESS 1 will always be per-

formed. Either PROCESS 2 or PROCESS 3 would then be performed, depending
upon the decision made at DECIDE.

A switch can have any number of alternative paths.

Example:

The following equation is to be evaluated for calculated values of Y:

Z=2Y +4Y,+2Y, +.

2Y +-Sum .
2
— Sum ' ()
Set SW T
SWla Calculate
4Y + Sum
@ | = Sum

0O~ Sum

1

Set Set
hY \
C— o —0 G —O

Note that the o portion of location SW1 is SW1; i.e., a will be replaced
with the corresponding address. Should the programmer forget to set the
switch, this instruction would be repeated indefinitely to indicate the cause.

2-62

n
I= Z 2Y, ¢, + 4Y2;

i=0
LOCATION OP vy | B a REMARKS
START CLA 70 000 0 — A (illegal address)
STR SUM (A) — SUM
LOD A | C@NI
RPA SW1 Set switch 1A
CALC . . . compute Y
1LOD A |Y Y— A
SW1 TRU SwW1 Switch 1
SW1A SHL 1 Ax2— A
ADD SUM A + SUM
STR SUM — SUM
LOD A | Cc@N2
RPA SW1 set switch 1B
TRU CALC
SW1B SHL 2 Ax4— A
ADD SUM Z + SUM
STR SUM — SUM
LOD A | CONl
RPA SWl1 set switch 1A
TRU CALC
C@N1 SWI1A constant
C@N2 SWI1B constant
SUM
Y

A switch can be used to "eliminate" part of a program after it is
no longer needed.

Set
SWla

Select
item

Start
1a\ _ new .‘ I_\:I_?_

@

2-63

Process
“_ process 1
?
Yes
Set
SWlb
Process
2

(D

A switch can be used to alternate methods of processing.

Example: A code in a transaction record may indicate any additional
processing required. ‘

@ ~ substitute information

——--@ add record

@ deiete record
replace record

Another method assumes one path will be used more frequently.

<1a\v Process__,@
\\// __ __Z_W_

Set Process
la | Decide 10

5 (1b)— Set i Process_..(: >
o tta L3

K. INDEX REGISTERS

Two of the most frequently performed functions in coding are counting
and address modification. These activities, performed as described in the
preceding sections, are both awkward and space consuming. The use of
index registers permits a more efficient procedure.

An index register is a twelve-bit addressable register with three
special properties:

1. It can be used in addition and subtraction.

2. It can add its contents to the twelve low-order bits of the
o portion of the instruction register.

3. The contents of the index register and the contents of the

memory location containing the incremented instruction
are not altered.

2-64

Incrementing the address portion of an instruction by the contents of
an index register is called index modification. Instructions which can be
altered are said to be indexable.

The sum of the o portion of an instruction and the contents of an index
register (@ + (IV) is called the effective address of the instruction. The
effective address is either an actual address or a number such as the num-
ber of shifts to be performed. If no index register is specified, then the
effective address of an instruction is the o portion alone.

There are four index registers included in BASICPAC, although logical

provision has been made for seven. Index registers are specified as I*, I7,...

or, more generally, as IY . TheY portion of an instruction word specifies
the index register to be used.

Consider the instruction:

OoP y| B a
CLA 2 1432

This instruction has the effective address 1432 + (I2). If, for example, (IZ) =
32, the effective address is 1432 + 32 = 1464, and the above instruction is
equivalent to

CLA 1464

Similarly, if (12') = 2000, the effective address is 3432; if (IZ) =0, 1432;
if 201, 1633,

Consider the example in Section XI-J. If the instructions which refer
to addresses of data were index modified, the index register could be in-
cremented by six after processing each item, and the series of CLA, ADD,
STR instructions to modify each instruction could be omitted. The flow
chart would read

7
I +6—»Iy‘

— 00— 1 Process
One Item

The instructions can then be performed as follows:

2-65

The first time the loop is performed, (I7) = 0, and the effective
address for LOCL is 2000 + 0 = 2000; the first item is processed. 17
is then incremented to equal 6. The effective address this time is 2000 +
(IY.) = 2006, which refers to the second item. The next time, 1Y =12,
and 2000 + (IY) = 2012. Similarily, L@C2 has an effective address of
2003, 2009, 2015, etc.

Before processing of this type can begin, the contents of the index
registers must be set to the desired initial values. The instructions which
set and alter the contents of index registers are called index register in-
structions.

The Load Index instruction (LDX,53) sets the contents of two index
registers to any desired value. The y portion of the instruction specifies
the first index register to be used (17). The actual numbers in the B
portion of the LDX instruction are placed in 1Y, and the actual numbers in
the o portion are placed in I Y+l If there are only four index registers,
and v =4, then Y +1 = 1.

2

For example, the instruction LDX 2 200 7007 sets I" to 200 and I3

to 7007.

The Transfer on Index instruction (TRX, 43) is a conditional transfer
instruction which depends upon the contents of a specified pair of index
registers. The y portion of the instruction specifies the index registers to
be used (IY and IV +1). The operation of the TRX instruction is shown in
the following flow chart:

Yes Perform next instruction
in sequence

v

._\

—_ I‘Y +1
?
I =0 N\ Yes Perform next instruction

v in sequence
l No

I +B8— 1v

1 Perform instruction in location 2

2-66

The TRX instruction can be used both to count and to modify
addresses by a predetermined amount. The number in the § portion of a
word is added to Iy. 1 Y+l can be decreased only by one.

For example, if only 400 items are to be processed, the coding in the
preceding illustration would read:

LOCATION| OP |y B o REMARKS
1 2
LDX |1 0000 4 0 -~ 1,4— 1
LgcCl CLA |1 2000 2000+(1l) — A
L¢c2 ADD |1 2003 (A) + (2003+(11)— A
LGCN STR |1 2005 (A) — 2005+(1})
TRX |1 6 L@Cl1 All items processed
yes:
NEXT

The first time the loop is performed, Il = 0, IZ = 4. Then the TRX
instruction decreases I” by 1, increments 1! by 6, and transfers control
to location L¢C1. Il now = 6, IZ = 3. The next time, Il=12, IZ=2, again
1l =18, I =1. After the processing has been completed, I% will be tested
for zero and be decreased by 1. 12 now = 0, so the next instruction in
sequence will be performed (location NEXT).

Index registers are cyclic in nature. That is, addition and subtraction
are performed modulo 10,000g. If (Il) = 0132, and the instruction

} OP | vy B Y
TRX| 1 | 7776 | LOOP
|

is performed, (11) will be 0130O since 0132 + 7776 = 10130 = 0130 (mod

10, 0008); This fact can be used to decrease index registers by any number
during an index modified loop. If the index register is to be decreased by n
(where n is expressed in octal), set the g8 portion of the TRX instruction to
10,000g-n.

Index registers can also be addressed by the o portion of all instructions
except the Transfer of Control instructions. The contents of the index regi-
ster'are placed in the low-order 12 bits of the computer word and the re-
maining bits are set to zero. The sign is always positive. When trans-
ferring information from a memory location or larger register into an index
register, only the low-order 12 bits are used.

2-67

For example:

Assume (A) -123 456 701 234

(Q) = +000 100 010 001
Iy _
aly = 1234
oP |w 3 o REMARKS
CLA 1! A = +000 000 001 234
ADD A A = 4000 100 011 235
1 1
STR I t=1235

L. SUBROUTINES

A program or routine is defined as a series of instructions arranged in
the sequence necessary to perform a major function. A subroutine is de-
fined as a part of a routine which performs a specific function within the
routine. The use of subroutines in flow charting and coding significantly
reduces programming time and effort, program testing time, and computer
time. Moreover, the use of subroutines enables the programmer to con-
centrate upon the major processing path of a routine by deferring the pro-
gramming of minor functions until a more convenient time. A subroutine
which is used in many programs need only be coded once. Whenever the
function performed by the subroutine is required in a new program it is
merely copied into the program. An accumulation of such frequently-used
subroutines is called a subroutine library.

A desired end in programming is to code a subroutine once, to transfer
control to it whenever its function is to be performed, and return control
to the proper place in the program when the function has been completed.
A special register called the Program Counter Store register (PCS) is used
to keep track of these return addresses.

Two transfer of control instructions are used with PCS to enter and re-
turn from subroutines. These instructions are Transfer and Load PCS, and
Transfer on PCS.

When a Transfer and Load PCS instruction (TRL, 41) is issued, the
contents of PC are loaded into PCS, the index register specified (if any) is
loaded with the g portion of the instruction word, and PC is loaded with the
o portion. Since PC was incremented as soon as the TRL instruction was

2-68

obtained from memory, PCS now contains the address of the first instruc-
tion consecutive to the TRL. The TRL instruction can be considered an
unconditional transfer of control instruction.

The Transfer on PCS instruction (TRS, 42) automatically transfers the
contents of PCS to PC, and transfers control to that address. TRS may be
considered a special type of TRU instruction in which the cpntents of PCS
rather than the o portion of the instruction word specifies the "go to" address.

Consider the following flow chart:

EDIT is the first address of a subroutine which prepares a word for output.
This subroutine is coded only once, and is entered from a number of places in

the routine. A subroutine is depicted by a hexagonal figure in flowchart
symbology.

__,| Compute go?putfe;
edera
gross pay i income tax
<) Compute | Compute)
city additional Edit
income tax deductions

4 Compute]
Lnet pay - |

The entrances to and exits from the EDIT subroutine might be coded
as follows:

2-69

LOCATION OoP 0% B 0" REMARKS
GROSPA CLA compute
gross pay

1L.OD A AMOUNT

TRL EDIT edit result
FIT compute

. . . . Federal Income Tax

LOD A FI TAX

TRL EDIT edit result
CIT . . . compute

. .. city income tax

LOD A Cl TAX

TRL EDIT edit result
DEDUK compute

. .. additional deductions

LOD A SUM

TRL EDIT
NETPA compute

LOD A NET net pay

TRL EDIT edit

TRU CONTIN
EDIT STR WORD

edit the (A)
TRS return control

Note that the word to be edited is placed in the A register before
transferring control to EDIT. All information or parameters required by a
subroutine must be presented in the method required by the subroutine. An
alternative approach consists of loading an index register with the address of
the word to be edited. Or the a portion of the A register can contain the
address of the first word to be edited and an index register filled with the
number of consecutive words to be edited.

The method by which parameters are supplied to a subroutine is called
the calling sequence of the subroutine.

It is occasionally convenient to have a number of exits from a subroutine
(such as error exits) each of which requires different processing. One tech-
nique of providing such exits is to place in sequence after the TRL a series

of unconditional transfers to various locations. The contents of PCS
can then be augmented to obtain the required exit. Or. the contents of
PCS can be inserted in an index-modified TRU. The index register is
loaded with the constant required to produce the correct address.

N. INTERRUPT SUBROUTINES (See also Section XII)

All interrupt subroutines perform three functions:

1. Determine the cause of interrupt.

2. Perform processing as required by the problem.

3. Return control to the main program.

The first step upon entering an interrupt subroutine usually consists of
saving the contents of any registers required for the subroutine. The MLY,
DVD, DVL, MSK, LGA and LGM instructions should be avoided, since they
alter the contents of the B register.

The next step is to obtain the return address from the B register. The
a portion of the B register contains the address of the instruction about to
be performed when the interrupt occurred. The B register can be addressed
only by the o portion of a LLOD instruction.

Wheh the return address has been obtained the reason for interrupt can
be determined. It will be assumed that only one Input-Output Converter is
present. If there is more than one converter, the coding is simply duplicated
with appropriate changes in addresses.

Consider first an F1 subroutine. Possible reasons for an Fl interrupt are:

1. Addressing a non-existent converter.

2. Addressing a busy converter.

3. Issuing an improper order.

4. Initial device malfunction.

Condition 1 can be determined by checking for non-zero contents of CIS.
Conditions 2, 3, and 4 can be determined by interrogating the corresponding
addressable flipflops: Converter Busy (CVB), Improper Order (IMO) and

Device Alarm (DVA). The Input-Output Alarm flip flop (IOA) will be set
if any of the following flipflops are at 1:

CMPE
IOPE
DVA
DDA
IMO

See Appendix D, Input-Output Converter Flipflop Addresses.

If more than one converter is present, the interrupt subroutine should
be supplied with the number of the converter addressed. In certain cases,
separate interrupt routines for each converter may require fewer memory

locations than one "all-purpose" interrupt routine.

An example of an F1l subroutine flow chart follows:

' [Compute
i { —— —_—
—0‘ Store (A) H\B) A Exit ﬂddreSH (CIS) A —-®

F1l interrupted in
No
@ error. Alarm
es

operator. Halt

Try again
y ag Device malfunctio

o Alarm operator.
Halt.

l’ Converter busy]

3

‘O DPI

converter. Alar
operator. Halt

Non-existent
m
|

Improper order

Return
to
I/O Orde

Alarm operator
Halt

Note that the above flow chart does not require the device address.
The return to the I/O order must be preceded by the resetting of DPI to
permit future interrupts. However, the return address could be placed
in the o portion of an SNR DPI instruction.

An F2 interrupt routine can be as simple or complex as the problem
requires. Possible reasons for an F2 interrupt are:

1. Completion of an order (normal case).
2. Error condition.
3. Reception of a control character in interrupt control mode.

These conditions can be determined by interrogating the corresponding
addressable flipflops.

A flow chart for an F2 interrupt routine follows:

(B) — A RO\ No [Possible
| Save (A)] ISet Exit = F2 Error

Restore (A)
0 =~ DPI

<Control characte?>
subroutine /
1/0 error procedur

depends on problem.
Halt or isolate reas

Transmissi‘on
complete

The IRQ flipflop must be reset before DPI is reset or an interrupt
will be requested for the same converter each time DPI is reset. If more
than one converter is present, the IRQ for each converter is interrogated.
If none of these are at 1, and if there is no Communications Converter in
the system, the F2 jump has been made incorrectly,

- When the IRQ of the converter requesting the interrupt has been found ‘

'the "YES" path of "IRQ=17" is followed, using the correct addresses for
- the corresponding flipflops of the converter.

2-73

XII. INPUT-OUTPUT PROGRAMMING
A. CONTROL UNIT INPUT-OUTPUT EQUIPMENT

The preceding sections assumed that both the program and the data
required for the program were present in memory. However, it is always
necessary to initially load the program and frequently necessary to obtain
or record information while a program is running. The process of entering
information into memory and of obtaining information from memory is
called input-output.

BASICPAC inpuc-output devices include paper tape equipment, magnetic
tape units, and real-time communication channels. These devices are con-
trolled by three types of equipment:

1. Control Unit
2. Input-Output Converter
3. Communications Converter

This section discusses the operation and programming of the control
unit input-output equipment. Section B discusses the Input-Output Converter
devices, and Section C discusses the use of the Communications Converter.

The Control Unit input-output equipment consists of a paper tape reader,
a paper tape punch, and a FIELDATA typewriter. The paper tape reader is
used to enter information into the computer memory. The paper tape punch
and the FIELDATA typewriter are used to obtain information from the com-
puter memory. All three devices can be controlled by the program through
the input-output orders. The format of the BASICPAC input-output instruc-
tion word is shown in Section III A 26.

A list of input-output device addresses is given in Appendix C.

There are two methods of transmitting information: octal mode and
alphanumeric mode.

In octal mode, thirteen FIELDATA characters form one computer word.
Twelve data characters and one sign character correspond to twelve octal
digits and one sign bit. When writing or punching information, the computer
automatically translates each octal digit into the equivalent numeral by pre-
fixing to the three bits from the computer word the fixed bit pattern 1110.

(See Appendix D, Binary Codes for FIELDATA Characters.) The sign bit
is translated into the corresponding FIELDATA characters "+" or "-". When

reading information, only the least significant bit of the sign character

and the three least significant bits of the twelve data characters are used

in assembling the word to be placed in memory. In both cases the sign bit
is processed first, then the data characters from the most significant to the
least significant positions.

The: Read Octal instruction (ROK, 72) reads the number of words speci-
fied by k from the device specified by j into consecutive memory locations
beginning at address . The address of the paper tape reader is 018.

The Write Octal instruction (WOK, 76) writes k words from consecutive
memory locations beginning at address o on device j. The address of the
paper tape punch is 02g; the address of the typewriter is 03g. A stop charac-
ter (57g) is automatically punched at the end of each order.

In alphanumeric mode six FIELDATA characters are transmitted, cor-
responding to the 36 data bits of a computer word. Each set of six data bits
forms one FIELDATA character. The treatment of the sign bit depends upon
the state of the addressable Interpret Sign flipflop (ISN) when the input-output
order is issued. If ISN = 1, the sign bit forms a seventh character. If
ISN = 0, no sign character is generated for output, and the sign of all input
information is automatically made positive.

A second addressable flipflop which affects the alphanumeric mode of
operation is the Interpret Control Function flipflop (ICF). When ICF = 0,
alphanumeric information is processed as described above. When ICF =1,
all information is punched as control characters. When reading information,
if ICF =1 and the first character read is a control character, this character
is placed in the low-order character position of a word, the high order bits
are cleared to zero, the word is stored in memory and transmission ceases.
If ICF =1 and the first character read is a data character, the entire order
is processed. If both ISN =1 and ICF = 1, ISN takes precedence.

The Read Alphanumeric instruction (RAN, 70) reads k words from
device j into consecutive memory locations beginning at address «.

The Write Alphanumeric instruction (WAN, 76) writes k words on de-
vice j from consecutive memory locations beginning at address «.

Care must be taken that information is read in the same mode in
which it was punched.

When reading in any mode described above, the computer continues
processing until either k words have been read or a stop character is read.
In the latter case, the stop character is placed in its correct position within

the word being assembled, the remainder of the word is cleared to zero,
the word is stored in memory, and transmission ceases. Upon completion
of any I/0O instruction except those involving the Communications Converter
the ICF and ISN flipflops are automatically reset.

When punching in any mode, stop characters are treated as any other
character.

The typewriter neither stops processing nor prints a character when
the stop code is transmitted.

The computer halts if any error occurs during control unit input-output,
except in the case of a parity error when the Error Override switch on the
control panel is "ON". In this case, the Control Parity Error flipflop (CPE)
is set to one and processing continues. CPE can be addressed by any of
the Sense instructions.

Example:

When debugging programs, the programmer usually finds that a number
of memory locations must be changed. The following routine reads a paper
tape which contains a list of corrections in the following format:

C, XXXXXX + YYYYYYYYYYYY

Where X - X is the address in octal FIELDATA characters of the loca-
tion to be corrected and Y - Y are the desired contents of that location.

The program coded below reads in the list of corrections and stores them
in the desired memory locations. The flow chart is:

Assemble Replace
i address of STR
address))
o instruction
@ ’
Read one octal
word into Two — A STR —~(A)
location Two

Read one
alphanumeric word

into location One

LOCATION | OP k| o REMARKS
Y B
START SNR :ISN NEXT 0 — ISN
NEXT SNR |ICF READ 0— ICF
READ RAN 0 fo1) 01 @NE READI one wordz - ONE
1LDX 1 | 0 5 0—-1,5 —+1
LOD | A gNE (ONE) - A
LGGP SRL | 3 generate octal address
SHR | 3 in bits 22-36 of Q
TRX 1 | 0 L@GP finished ?
SLL | 17 yes address — Ay
RPA | ST@RE replace address
ROK 0 {01 01 TWG read one octal word - TWQ@
LOD | A TWO (TWF) — A
ST@RE STR | () correct specified location
TRU | START
ONE (|) storage for address
TWO (|) storage for word
|

B. INPUT-OUTPUT CONVERTER

Unlike the Control Unit, the Input-Output Converter does not inhibit
central processor operations. The computer continues under program con-
trol until either an error is detected or until the input-output order is com-
pleted. The normal computer operation is then interrupted.

An interrupt can occur only if the Disable Program Interrupt flipflop
(DPI) is at zero and if the computer is obtaining a new instruction word
(between instructions). At this time the contents of PC equal the address
of the instruction about to be performed. Instead of obtaining the instruction
the computer automatically stores the contents of PC in the o portion of the
B register, sets DPI to one, and transfers control to a special memory
location.

The location to which control is transferred depends upon the reason
for interrupt. If an error was detected prior to acceptance of an input-output
instruction, control is transferred to memory location 00001. If an error
was detected after acceptance of the instruction, or if an order has been
completed, control is transferred to memory location 00002. The first type
of interrupt is called an F1 interrupt; the second, F2. ("F1" and "F2" are
used to refer both to the type of interrupt and to the memory location cor-
responding to the interrupt.)

The instructions at locations Fl and F2 should be unconditional
transfers to subroutines which will determine the cause of the interrupt,
perform any required processing, reset DPI to permit new interrupts,
and return control to the main program.

Since the actual operation of these subroutines will depend heavily
upon the current program, subroutines should be written specially for each
program. The unconditional transfer instructions at F1 and F2 must be set
by the program before any input-output orders are issued, otherwise the
programmer may lose control of his program when an interrupt occurs. (A
general discussion of the procedure in writing interrupt subroutines is in-
cluded at the end of this section.)

A set of addressable flipflops in each converter are used to indicate
the existence of errors to the program. The programmer can decide upon
the course of action to be taken by using Sense instructions to determine the
status of these flipflops. Appendix B lists the addressable error flipflops
for all Input Output Converters.

If the coding which follows an input-output order requires the order to
be completed before the subsequent coding is executed, the programmer must
allow time for the input-output to be completed. Alternately, the programmer
can have the program "wait" for the completion of input-output by entering
a time delay loop immediately after issuing an input-output order. Completion
of input-output interrupts this loop and allows the program to continue.

For example, the following coding issues the input-output order at
READ and enters the loop at LOOP. Assuming an F2 interrupt, control is
transferred from LOOP to 00002 to F2, the interrupt subroutine. In this
routine the contents of A are stored and the return address is computed.
Note the negative sign of the input-output order. When the negative instruc-
tion is encountered the o portion of location FIND will be READ. At this
point the constant TWO is added to the address to produce the machine
address of NEXT, the return address. The cause of the interrupt is then
determined. Any required processing is then performed, and EXIT trans-
fers control to the main program. The original contents of A should be re-
stored before exiting from the subroutine. This method of processing
interrupts assumes that the signs of all input-output orders are negative.

k
LOCATION OP Y B o REMARKS
|
00001 TRU | F1
00002 TRU I F2
|
READ RAN 0 20 20 | INPUT
LOOP TRU | LOOP
NEXT CLA 2 ‘ INPUT
TWO 00 0 OJOO 00002
ONE 00 0 0000 | 00001
F2 STR | STOR A store (A)
LOD A B (B)y — A
RPA l FIND (Bg)— FIND «
FIND CLA (00000)
TRN \ ouT I/O word?
CLA FIND no
SUB ONE try next word
STR FIND
TRU FIND
ouT CLA FIND store return
ADD TWO
RPA EXIT address in EXIT,
............... D R
LOD A STORA
TRU | {00000) return to program

When an input-output order is issued to an Input-Output Converter
device, the converter, the device, and the order are each examined for
errors. If the converter is non-existent or busy, if the device is non-
existent or busy, or if the order requests a device to do something for which
it is not suited an F1 interrupt occurs. If no error condition is present the
order is accepted and processing begins.

The accepted order is placed in the Converter Instruction Register
(CIS) for execution and the central processor continues operation. As each
word is processed, the o portion of CIS is incremented by one and the K
portion is decremented by one. When the K portion equals zero the order
has been completed. If an error condition is detected during processing, if
a control character is received in interpret control mode, or if transmission
is completed, the Interrupt Request flipflop (IRQ) on the converter is set to

"one" to indicate to the central processor that an F2 interrupt is being
requested. In this context a Stop character is considered a control
character regardless of the mode in which it was written.

There is a separate Converter Instruction Register for each Input
Output Converter. These registers can be addressed by the LOD, LGA,
LGM and arithmetic instructions. The programmer can examine these
registers in the interrupt subroutines to obtain information concerning the
number of words processed, the last address processed, etc. The CIS
of a non-existent converter is an illegal address and therefore appears
to have positive zero as its contents.

Paper Tape Equipment

The paper tape set connected to the I/O Converter is physically and
functionally identical to the Control Unit paper tape set. The only difference
in operation is the interrupt feature. All input-output orders which can be
issued to the Control Unit paper tape set can be accepted by the Input-Output
Converter paper tape set, assuming correct device addresses. The octal
addresses for Input Output Converter #l paper tape equipment are:

Device Address (octal)
Paper tape reader 20
Paper tape punch 22
FIELDATA typewriter 26

Magnetic Tape Equipment

Magnetic tape equipment and programming techniques are discussed
in U.S. Army documents SCL-1882A and SCL.-1886.

C. COMMUNICATIONS CONVERTER

There are no fixed procedures to be followed in programming the
Communications Converter. The program prepares for transmission, and
transmission occurs whenever both the sending and receiving devices are
available. A list of the conditions which must be fulfilled and a few rules
of thumb are listed below for input and output.

InEut

If there is a limited interrupt channel, KIW should be set at the be-
ginning of the program and reset as required after each input interrupt.

Input can occur when DPI equals one, but no interrupt will occur
until DPI is reset.

A change of the state of KIU! from 0 to 1 indicates that the computer
is ready for input. This change in state must be programmed by using the
SNR and SNS instruction pair. There is a KIU flipflop for each input channel.

Each KIU! has two addresses, either of which can be used interchange-
ably.

When it has been determined that an input caused an interrupt, the con-
tents of memory location 00004 should be saved along with the input words
(both data and control) before the input request flipflop KAI is reset. If KAI
is reset before the input information is stored or processed, new information

may be received which would destroy the first set of information, even though
DPI is at one.

On limited interrupts, remember that the address with which KIW is
loaded is the first address used, and that the number of words received
equals (last address) - (first address) + 1. For example, if KIW is set to
5372g, input will continue to location 5777g, and up to 5777 - 5372 + 1=0405+1=
04068 words can be received before an interrupt will occur.

Output

Use a LOD instruction to load KOUi with the word to be transmitted.
Note that this instruction can be index modified.

Only one word can be transmitted at a time. If a message of more than
one word in length is to be transmitted, set an index register to count the
number of words to be transmitted and use a TRX instruction to loop over
the transmission instructions. Be careful to return control to the TRX in-
struction after each output interrupt has been processed.

General

F2 must be set to transfer control to the interrupt subroutine.

ICF and ISN need be set to the desired states only once at the beginning
of the program. However, if any input-output orders are issued either to

the Input-Output Converter or to the Control Unit devices, these flipflops
are reset to zero when each input-output order is accepted.

2-81

If information is to be transmitted in more than one mode (ISN,ICF),
set DPI to one before setting the required flipflops and loading any required
registers. Reset DPI to enable transmission when the conditions have been
prepared.

The KIU flipflops for non-existent or unconnected channels will always
appear to be in the zero state, contrary to the rule for illegitimate flipflop
addresses. The following coding is one example of programming output on
the Communications Converter. It assumes the existence of a subroutine
beginning at GENER which places 64 words of output information in the con-
secutive memory locations beginning at OUT.

LOCATION| OP Y B o' REMARKS

START TRL 2 0100 GENER | generate 100g words of
DX | 1 0000 | 00100 | output. 0 — I, 100~ 1%

BEGIN SNS DPI NEXT

NEXT SNR ISN NEXTI1 0 — ISN

NEXTI SNR ICF NEXEZ | 0-— ICF

NEXT2 SNR KEI NEXT3 0— KEI

NEXT3 LOD 1 KOB° | OUT output word -~ KOB®
SNR DPI NEXT4 0 — DPI

NEXT4 TRU NEXT4 wait for interrupt
TRX 1 1 BEGIN all words transmitted?

yes continue

00002 TRU INTER
obtain address of negative

INTER TRL ADDRS instruction

ADD ONE add one

RPA EXIT set exit address

SEN KAI INPUT input interrupt?

SEN KEI JUMP no: output interrupt?

TRU I10C no: to I/O converter test
JUMP CLA 00003 memory location 3 A

TRN PARER | parity error?

SNR KEI EXIT no: return
EXIT SNR DPI (00000) 00— DPFI

The following coding is one example of preparing for input on the
Communications Converter. The coding at locations NEXT1 and NEXT2
must be duplicated with corresponding address changes for the KIU flipflops
of each channel from which input is expected. It is assumed that channel
10 is a limited interrupt channel, and that all data messages will contain
128 (200g) words. These initialization procedures must be repeated after
each input interrupt.

LOCATION | OP 0% B o REMARKS
START LOD A CON1

STR 00002 set F2 jump

SNS ISN NEXT]— 1ISN
NEXT SNR ICF NEXTI1 0— ICF
NEXT1 SNR KIu! NEXT2 prepare for input
NEXT2 SNS KIU? NEXT3 on channel 11
NEXT3 LOD KIwW CON2 prepare for
NEXT4 SNR KIU® NEXT5 input on
NEXT5 SNS KIU©° NEXT6 channel 10
NEXT6 process
CONI1 TRU EF TWO
CON2 00 0 0000 07600 expect 200g words input
EF TWO interrupt

routine

The coding methods used for input-output through either the Input-
Output Converter or the Communications Converter are closely related to
the coding methods used in the interrupt subroutines. Both methods should
be carefully planned before any coding is written, and the conventions
selected must be consistently followed.

There are as many ways of coding interrupt subroutines as there are
programmers. However, three general categories of interrupt routines
exist: the special purpose, the general executive, and the all-in-one.

The special purpose subroutine assumes only one type of converter
will be used. It is known in advance whether certain registers (A, Q, PCS,
17, etc.) will always be immediately used or whether their contents must
be stored before using. Only certain information concerning the interrupts
is desired, and the routine transfers control directly to the appropriate
routine. - It is an integral part of the program.

In contrast, the general executive routine may be a library subroutine.
It merely collects data concerning the interrupt and returns control to the
main program for processing an additional order.

The third type of subroutine is a combination of the other two. Itis
designed for the system being used, which may include more than one
converter or more than one type of converter. It determines the cause of
interrupt, checks for errors, processes incoming information, determines
where to transfer control and does so. Again it is an integral part of the
program, but it performs many more of the interrupt functions than the
special purpose subroutines.

XIII. DEBUGGING METHODS

Very few programs run correctly on the first try. Coding errors, tape
preparation errors, and, worst of all, logical errars tend to creep into the
best-written program like ants into a sugar bin. The detection and correc-
tion of these errors, or "bugs", is called debugging.

There are as many ways of debugging a program as there are of coding
it. One or more methods may be used at any time in debugging a program,
and other programs can be used to help in debugging. This section dis-
cusses some of the more widely used methods.

1. Optimist's Method

Read the program into memory and press the ADVANCE bar.
This method, generally used by novice programmers on their first pro-
grams, usually results in a memory full of garbage.

2. Step Method

Read the program into memory and execute each instruction in
Step Mode, checking all relevant registers and memory locations. This
method is recommended only if programmer and computer time are
available in unlimited quantities.

3. Dump Method

A dump is a program which edits the contents of specified
memory locations for output to the FIELDATA typewriter or line printer.
The amount of editing and the degree of sophistication vary widely.
Generally, the starting address, the format (octal, alphanumeric,
mnemonic, floating point, etc.) and either the number of words or the
stopping address are specified. The dump can be operated under control

2-84

of either the program being debugged or of the operator. A method
commonly used under operatcr control consists of storing a halt instruc-
tion at some intermediate point in the program, running the program to
the halt instruction, and taking a dump of the results, program, or both.

4, Trace Method

A trace program executes the subject program one instruction at
a time and prepares edited output of the contents of any affected registers
and memory locations. Trace programs vary widely in scope. Certain
types of instructions, instructions in a given address range, or any other
set of instructions can be selected for tracing.

5. Trapping Method

This method uses a combination of programming and computer
hardware to trace the action of the Transfer of Control instructions. A
non-addressable flipflop called the Trapping flipflop (TRA) is used to indi-
cate to the computer that Trapping mode is desired. When the computer is
in Trapping mode, all instructions are executed normally except for the
Transfer of Control and Sense instructions. When a Transfer of Control
or Sense instruction is placed in the instruction register in Trapping mode,
the contents of PC are stored in the o portion of the B register, the TRA
flipflop is set to zero, and control is transferred to memory location 00000.
The trapped instruction is not executed.

The instruction in memory location 00000 transfers control to a
special routine which performs any desired processing. The a portion of
the B register contains the address of the trapped instruction. Since the
TRA flipflop was reset when the order was trapped, normal operation con-
tinues until the TRA flipflop is again set to one.

The trapping mode is controlled by bits 16 and 17 of the uncondi-
tional transfer instruction and by the previous state of the trapping flipflop
as follows:

TRA before
TRU

- 0O OO

e]

Bi17 B1e Trapping Effect on
of TRU Action? PC Remarks

00 no No Action No Action

01 no No Action)} ——— TRA

10 no No Action No-Action

11 no No Action 0-—— TRA

00 yes PC-1 - B, Trap TRU order
0— PC

01 no No Action 1] —— TRA

10 yes PC-1— B, Trap TRU order
0— PC

11 no No Action 0 —— TRA

Note that the TRA flipflop must be set to one after each instruction
has been trapped.

- A switch on the control panel labeled TRAP MODE acts as a trapping

over-ride when in the OFF position.

The operations described above will

occur only when the TRAP MODE switch is in the ON position.

A flow chart for a sample trapping subroutine and a sample of coding
for a program which uses the trapping routine are given below.

LOCATION OP |7 B a REMARKS
START TRU 1 START+1 | Set TRA =1
CLA
} Process :
(No transfer of control instructions)
SUB CON 5
TRZ REDO Instruction will be trapped.
REDO SNS SFF3 REDO+1 TRA = 0 not trapped
TRU 1 REDO+2 1 — TRA
} Process
SEN SFF3 DONE Instruction will be trapped.
TRU 1 HERE
HERE TRZ CALC } Both instructions
TRU 2 FIX will be trapped.
TRU 3 LOOP 0 —— TRA for LOOP
LOOP
TRX |3 2 LOOP
TRU 1 CONTIN 1 — TRA f{for program

2-86

Store

(A), (Q)

| - Replace (%)
'l‘B) - oA] " Address

(*)
Edit and print
trapped order
and addresses

(%)
@ Obtain exit >
addresses

Determine
trapped
order

Restore
(A), (Q)

TRP
TRZ
TRN

TRX

r :
TRS Edit and print
(PCS)

TRU

No

ak

y flipflop state

[Edit and print
and address

-
~ |

Edit and print C

(A)

S
'Edit and print
icontents of '
index register

Edit and print
(index reg.)and
(PCS)

¥
©)
—0

Exit
to next

jump

Yes

order

Exit
to order

27

Before preparing any program on an input-output medium for de-
bugging, it is suggested that another person thoroughly examine the coding
sheets and flow charts for errors. A surprisingly large number of errors
can be detected in this way. This process is called "code checking". An
extremely thorough method of code checking includes the simulation with paper
and pencil of the effect of each instruction on all relevant registers. This
process is called "bench checking".

A partial list of possible errors is given below. These errors do not
include logical errors, which are the hardest of all errors to detect and
correct. Although many items on this list may appear trivial they can cause
complicated results.

I. Are all lines of coding consecutively numbered?
2. Are all lines of coding numbered in octal?
3. Are index register settings and number of places

to shift specified in octal?

4, Are the correct addresses listed for constants?
5. Are the correct addresses listed for transfers of control
instructions?
6. Are constants specified correctly?
7. Are all instructions legitimate?
8. Has the correct overflow procedure been specified where
required?
9. Are all branches of the flow chart included in the coding?
10. Have all transfer of control addresses been filled in?
11. Has provision been made for interrupt subroutines?

Are F1l and F2 set early in the program?

12. Are all switches and counters properly set to the required
initial state?

13. Does the coding accomplish the functions described in the
flow chart? In the same order as the flow chart?

14. Are the correct input-output device addresses used?
With the correct orders?

15. Is the 8 portion of all LOD instructions specified correctly?

2-88

XIV. FIELDATA ASSEMBLY LANGUAGE

The process of coding the concepts described in a flow chart into
meaningful sequences of octal digits is to a considerable extent a clerical
and bookkeeping task. Locating a program, determining the correct
addresses of registers, flipflops and I/O devices, and of entering con-
stants and alphanumeric information can be made easier and less subject
to error by using the computer to accomplish this translation. Assembly
programs permit a programmer to code his program in a symbolic form.

An assembly program translates a program coded in symbolic form
into an absolute form suitable for direct loading into the computer.

The FIELDATA family of computers will possess a group of assembly
programs prepared for general use in writing programs. Three assembly
programs are currently in existence or in a development stage:

Program Prepared by
FIELDATA Assembly Program I (FAP I) Sylvania
FIELDATA Assembly Program II (FAP II) Philco
FIELDATA Assembly Program III (FAP III) USASRDL

The FAP II Program was specifically designed for use on a minimum
BASICPAC configuration, consisting of a Central Processor with 4096 core
registers and a paper tape set. Magnetic tapes are not required. FAP II
assembles a program in one or two passes. (If the program is to be
assembled in a single pass a more restrictive set of "ground rules" for
coding are imposed.)

A complete discussion of the procedures and rules for coding in FAP II
language are included in the FAP II Assembly Manual. The programmer is
encouraged to use FAP II in the preparation of programs for use on BASICPAC.

The general features of the FAP II program are as follows:

1. FAP II input formats are identical to those of FAP I and III.

2. FAP II permits complete symbolic representation of coding; i.e.,

ADD TQP, 1, BIG; where "TOP" and "BIG" represent symbolic

quantities defined or to be defined.

3. All addressable registers, flipflops, and I/O devices can be
referred to symbolically; i.e., QRG in place of 70011.

4. FAP II processes twelve pseudo-ops: PRG, REM, SYN, DEF,
EQU, END, ¢3CT, DEC, ALZ, ALF, BES and BSS. Provisions

2-89

have been made for the inclusion of additional pseudo-ops
for a system with more than 4096 core registers and/or
magnetic tapes.

5. Address arithmetic is permitted; i.e., ADD TOP-3,2.

FAP Il is an assembly program of the type exemplified by the
Symbolic Assembly Program (SAP)*, but specifically adapted to BASICPAC.

>kFor a description of SAP, see: Grabbe, Ramo, Wooldridge,
Handbook of Automation, Computation and Control, Vol. II, 1959,
J. Wiley and Sons, Inc.

2-90

XV. LIBRARY ROUTINES

1. Diagnostic Routines

CLASSIFICATION ROUTINE

1. Hardware De- D.1.1 Manual Diagnostic
bugging Routines Tests

2. Acceptance Tests D.2.1 Operations Test

3. General Equipment D.3.1 General Test
Tests

4. Daily Maintenance D.4.1.1 Biased Random
Tests Memory Test

D.4.1.2 Worst Pattern
Memory Test

D.4.1.3 Random Number
Test

D.4.1.4 T-Tests

D.4.1.5 Console Paper
Tape Test

D.4.1.6 Communications
Converter Test

D.4.1.7 1/O Paper Tape Test
D.4.1.8 210 Magnetic Tape Test

2. Input-Output Routines

1. Interpreter Routines E.1.1 Relative Address Interpreter
E.1.2 Check Sum Routine
E.1.3 Program

E.1.4 BASICPAC Output to MOBIDIC
Input Tape Conversion

2-91

Input-Output Routines (Continued)

CLASSIFICATION ROUTINE

2. Conversion Routines E.2.1 Fixed Decimal to
Binary Mixed Numbers

E.2.2 Floating Decimal to
Binary

E.2.3 Fixed Fractional Binary
to Decimal Output

E.2.4 Fixed Integral Binary
to Decimal Output

E.2.5 Double Precision Decimal
to Binary Mixed Numbers

E.2.6 Double Precision Floating
Decimal to Binary

E.2.7 Double Precision Fractional
Binary to Decimal Output

E.2.8 Double Precision Integral
Binary to Decimal Output

E.2.9 Floating Binary to Decimal

E.2.10 Double Precision Floating
Binary to Decimal

Service Routines

1. Mathematical Sub-

routines
1.1 Fixed Single Pre- U.1l.1.1 Complex Arithmetic
cision (Add, Subtract, Multiply,

Divide)

U.1.1.2 2%, &%, 10¥

U.1.1.3 Log, X, Log,, X,
Log, X

2-92

Service Routines (Continued)

CLASSIFICATION

1.2 Fixed Double
Precision

1.3 Floating Single
Precision

2-93

« ROUTINE .
U.l.1.4 Square Root
U.1.1.5 Sine and Cosine
U.l.1.6 Tangent

U.1l.1.7 Arcsine, Arccosine,
Arctangent

U.1.2.1 Double Precision
Fixed Arithmetic (Add, Sub-
tract, Multiply, Divide)

U.1.2.2 Double Prevision
Complex Arithmetic (Add,
Subtract, Multiply, Divide)

U.1.2.3 Fixed Double Pre-
cision Square Root

U.1.3.1 Internal Fixed to
Floating Conversion

U.l.3.2 Internal Double,
Precision Fixed to Single
Precision Floating Con-
version

U.1.3.3 Internal Floating
to Fixed Conversion

U.1.3.4 Floating Point
Arithmetic (Add, Sub-
tract, Multiply, Divide)

U.1.3.5 Floating Point
Square Root

U.1.3.6 Floating Point
Complex Arithmetic

Services Routine (Continued)

CLASSIFICATION

1.4 Floating Double

Precision

U.1.3.7 Floating Point Logarithms

U.1.3.8 Floating Point Exponentials

U.1.3.9 Floating Point Sine and Cosine

U.1.3.10 Floating Point Tangent

U.1.3.11 Floating Point Arcsine,
Arctangent

U.1.4.1 Internal Double Precision
Fixed to Floating Conversion

U.1.4.2 Internal Single Precision
Fixed to Double Precision Floating

Conversion

U.1.4.3 Internal Double Precision
Floating to Fixed Conversion

U.1.4.4 Internal Double Precision
Floating to Single Precision Fixed

U.1.4.5 Floating Double Precision
Arithmetic

U.1.4.6 Floating Double Precision
S quare Root

U.1.4.7 Floating Double Precision
Complex Arithmetic

U.3.1 Random Dump

2-94

APPENDIX B

ADDRESS ASSIGNMENTS FOR MEMORY LOCATIONS,

AND ADDRESSABLE REGISTERS AND FLIPFLOPS

B-1
TABLE I
1
ADDRESS ASSIGNMENTS FOR MEMORY LOCATIONS

A, Basic Assignments

Address Name

00000 - O7777 Memory Unit Zero
10000 - 17777 Memory Unit One
20000 - 27777 Memory Unit Two
30000 - 37777 Memory Unit Three
L0000 - LTT77 Memory Unit Four
50000 - 57777 Memory Unit Five
60000 - 67777 jemory Unit Six

B. Reserved Assignments

Under certalin conditions as specified below, selected
memory leccations are reserved for specific functions.

1. In Trapping Mode

Address Name
00000 First instruction of the trapping subroutine.

2. If I/0 Converter(s) Connected and Activated

Address Name

00001 First instruction of the Interrupt subroutine
entered whenever errors are detectedzbefore
acceptance of I/0 Converter orders.

00002 First instruction of the Interrupt subroutine
entered whenever an I/0 instrugtion has been
accepted by an I/0 Converter.

B-2

3, If Communications Converter Present and Actlivated

Address Name

00002 First Instruction of the Interrupt subroutine
entered following completion of any.
Communications Converter function. 3

00003 Communications Converter Output Interrupt Word L

00001 Communications Converter Input Interrupt Word 5

00010~ Communications Converter Output Storage 6

00017

00020~ Cormmunications Converter Input Storage

00037

TABLE I NOTES

1
Every memory location requires a 15 bit address
designator and 1s addressable only through the<K
portion of the instruction word. Note that memor
locations are sometimes referred to as "registers" or
"pseudo reglsters',

2 Before execution of an 1/0 order involving an I/0
converter, both the order and the equipment involved
are examined, If any of the following conditions
exist the program jumps to memory location 00001,

a, Non-existent I/0 converter addressed.
b. Busy I1/0 converter addressed.
¢c. Improper order
d. Initial device maifunction.
3

The program jumps to memory lccation 00002 1if any
of the following conditions exist and if the DPI
flip flop is set equal to zero:

a. Termination of an I,/0 instruction by an
I/0 converter when:

i, A control character is received in
interpret control mode.

ii, An error condition is detected in the
1/0 converter,

iii, Transmission is complete.

B-3

b. Completion of any Communications Converter
function when:

i. A control character i1s received.
ii. Input or output transmission is complete.

This memory location is reserved for storage of the
following information when an Interrupt occurs on
output from the Communications Converter.

a, The address from which information was
transmitted is placed in theo(portion of 00003.

b. If parity error has occured during trans-
mission, a "1" is placed in bit 37 of 00003,

This memory location is reserved for storage of the
following information when an Interrupt occurs on
input to the Communications Converter.

a. The address to which the last character was
transmitted is placed in the portion of 0000L.

b. If parity error has occurred during trans-
mission, a "1" is placed in bit 37 of 0000L.

c. An indication of the number of characters
missing from the expected transmission is
placed in bits 3L4=36 of 0000L4. (The number
of characters 1is represented by a form of
Gray code). If no characters are missing
"000"™ is placed in bits 3L4-36.

There 1s one memory location reserved for each output
channel of the Communications Converter; e.g. Location
00010 for Channel O; Location 00011 for Channel 1, etc.

There is a palr of consecutive memory locations re-
served for each input channel of the Communications
Converter. The even-numbered location is reserved

for data words, the odd-numbered location for control
function characters. e.g. Locations 00020 & 00021 for
Channel 0; Locations 00022 & 00023 for Channel 1.

B-

TABLE II
ADDRESS ASSIGNMENTS FOR ADDRESSABLE REGISTERS 1

A, Central Processor Registers

oC Address B Address YAddress Name Code

70001-70007 0001-0007 1-7 Index Registers I 4
Nos. 1=7 =1,2,.0.7)

70010 0010 - Accumulator A
70011 0011 - Q Regilster Q
70012 - - B Reglster B
70013 - - Program Counter PC
7001l 001l - Program Counter Store PCS
70020 0020 - Word Switch Register WSR

B, Input-Qutput Converter Reglgsters

,;Address 4 Address Name Code

70030-70036 0030-0036 I/0 Converter ;1 3
Instructlion Registers CIS
(1=1,2,...7)

C. Communications Converter Registers

A Address /4Address Name Code
70021 0021 Address and Word

Counter for
Communications Con-
verter Limited

Interrupt Channel N
(Channel 0) KIW

_— 0050-0057 Communications
Converter Output 15
Channel Registers KOoU

(i=0,l,...7)

TABLE II NOTES

All registers except the KOU

i have been assigned

individual 15-bits address designators beginning
with an octal "7".

8,

If a register is addressed through theé(
portion of the instruction word, this 15-bit
designator is employed.

If a register is addressed through the"f

portion of the instruction word, a 12-bit

designator is employed. Note that when both
& Paddresses exist for a register, they are
dentical in bits 1-12,

e.g. A 1s: 70010 if addressed inA’<
0010 if addressed ind

Index Reglsters only may also be addressed
through the 7 portion of the instruction word.
A 3-bit octal designator is provided for this
purpose. Note that theq ,8 & J designators for
Index Reglsters are identical in bits 1-3,

e.g. 1! 1s: 70001 if addressed in o

0001 if addressed in 4
1 if addressed ino(

All Central Processor Registers shown in

Table II A, except Registers PC & B can be
loaded under program control with the LOD
instruction by addressing the register through
the Aportion of the instruction word.

A1l Central Processor Registers shown in
Table II A are leglitimate addresses in theo(
portion of the LOD instruction.,

All Central Processor Reglsters shown in

Table II A, except B, are legitimate addresses
in theo(portion of the LGM, LGA and arith-
metic instructions,

All Central Processor registers shown in
Table II A, except Registers B & PC, are
legitimate addresses in theo(portion of the
instructions STR, RPA, and MSK,

B-6

e. The A register is the only register from which
information can be stored in memory locations.

Each I/0 Converter in the system (maximum seven) 1is
assigned an individual CIS register.

e.g. CIST= 70030 is provided for I/0

2 Converter No. 1.

= 70031 is provided for I/0
Converter No., 2.

cIs

a. Any CIS Register can be loaded under program
control with the LOD instruction by addressing
the CIS through the 4 portion of the instruction
word.,

b. Any CIS Register is also a legitimate address
in the f portion of the LGM, LGA and arithmetic
instructions.

KIW counts input words and addresses for the limited
interrupt channel.

a, KIW can be loaded under program control with
the LOD instruction by addressing the KIW
through the portion of the instruction word.

b, KIW is a legltimate address in theo{portion
of all arithmetic instructions.

There is one KOU register provided for each output
channel of the Communlcations Converter,

e.g. KOU®

1 70050 1is provided for Channel O.
KOoU

70051 is provided for Channel 1.

a. Any KOU reglster can be addressed only in the/d
portion of the LOD instructlon.

B-7

TABLE TIII

ADDRESS ASSIGNMENTS FOR ADDRESSABLE FLIP-FLOPS 1

2
Central Processor Flip-Flops

Address Name Code

0100 Overflow Alarm OA

0102 Interpret Sign ISN

0110-0117 General Sense SFFi
Flip-Flops (1i=1,2...8)

0136 Interpret Con- ICF
trol Function

0137 Disable Program DPI
Interrupt

0360 Control Unit Stop STP (EOF)

(End of PFile)

0361 Control Unit Con- ICC(CCI)
trol Indicsator

I/0 Converter Flip-Flops 3

1. Assignments for I/0 Converter No. 1 (BasicPacuType

A only)
Address Name Code
0140 Interrupt Request IRQ1
0141 Converter Busy cvet
o142 Control Indicator CI1
0143 End of File EOF'l
01l=-01L7 Device Busy DB%

(1=1,2,3,4)
0150 I/0 Alarm TOA

B-8

Address Name Code

0151 Converter Memory CMPEl
Parity Error

0152 Improper Order IMO1

0153 Device Malfunction DVA1
Alarm

015) I/0 Parity Error IOPEl

0155 Data Drop Alarm DDAl

0156 Beginning of Tape BO‘I'l

0157 End of Tape EOTl

2. Assignments Reserved for I/0 Converters Nos. 2-7

The following addresses are reserved for the addressable
flip flops of the I/0 Converters indicated.

Addresses I/0 Converter
0160-0177 No. 2
0200-0217 No. 3
0220-0237 No. L
021,0-0257 No. 5
0260-0277 No. 6
0300-0317 No. 7

C. Communications Converter Flip-Flops

Address Name Code
0370 Input Interrupt KAI
0371 Input Error KAE
0372 Output Interrupt KEI
0L420-0437 Communications Con- KIUi

verter Input Channel (1=0,1,2...7)
Flip-Flops

TABLE IITI NOTES

1

Every flip-flop has been assigned a 12-bit address
designator; flip-flops are always addressed through
the 4 portion of the instruction word.

All Central Processor Flip-Flops shown in Table III A
are capable of being sensed, set and reset,

All I/0 Converter Flip-Flops shown in Table III B,
Section 1, except Bi are capable of being sensed, set
and reset. The DBy ~can only be sensed,

The address assignments shown in Table III B, Section 2,
are applicable only when a BasicPac type A I/0 converter
is connected as I/0 Converter No. 1. If any other
converter is connected as I/0 converter No. 1, specific
assignments within the address range 0140 - 0157 would
apply for the I/0 converter involved., If a BasicPac

type A I/0 converter is connected as I/0 converter No, i,
where 1 = 2,3,...7, new address assignments would be
made in the approprlate address range as shown in Table
IIT B, Section 2.

All Communications Converter Flip-Flops shown in Table
ITII C are capable of being sensed, set and reset,

A pair of Communications Converter Input channel flip-
flops 1s provided for each communications converter
input channel, '

1 _
e.g. KIU = 0420 or OL421 are provided for
Channel 0
2
KIU = 0422 or OL423 are provided for
Channel 1, etc.

APPENDIX C

ADDRESS ASSIGNMENTS
FCR
INPUT-OUTPUT DEVICES

C-1

APPENDIX C

ADDRESS ASSIGNMENTS FOR INPUT-OUTPUT DEVICES

Input-Output address assignments are given below.

Octal

assignments Ol through 12 are designated as unlque spares to

be given definite assignments at a late date.
ments 71 through 77 are reserved for specialized spares.

Octal assign-

They

are to be used in any system requiring temporary spares for

their system alone.

Simple logical testing of the various

binary bits will provide information as to the type of input-
output devices being addressed.

evice Address Assignment Device Address AssTgnment
Octal Binary Octal Binary

Lo 100000
01 000001 Console Reader L1 100001
02 000010 Console Punch L2 100010 /N
03 000011 Console Tyrewriter| L3 100011
Oé 000100 “Unique Ll 100100
0 000101 Spares to be L5 100101
06 000110 assigned L6 100110
07 000111 L7 100111
10 001000 50 101000
11 001001 51 101001
12 001010 52 101010
13 001011 Area Display 53 101011 Mag Tapes
1l 001100 Card Reader Sh 101100
15 001101 Card Punch 55 101101
16 001110 Line Printer 56 101110 '
17 001111 Line Printer 57 101111 J
20 010000 8-Ch, Pt. Reader 60 110000 7~
21 010001 8-Ch. Pt. Reader 61 110001
22 010010 8-Ch, Pt. Punch €2 110010
23 010011 8~*—*Ch° Pt, Punch 63 110011 Mag Tape Spares
2l 010100 S-Ch, Pt. Reader 6l 110100 '
2 010101 S-Ch, Pt., Punch 65 110101
26 010110 Typewriter 66 110110
27 010111 Typewriter 67 110111

A\

30 011000 Informer 70 111000 Control Panel
31 011001 Informer | 71 111001 A
32 011010 Spare Mass 72 111010 Specialized
33 011011 Spare \xﬁemoéy 73 111011 Spares
3l 011100 Spare 7 ' yn 111100
35 011101 Spare | 75 111101
36 011110 Mobidic B 76 111110
37 011111 Mobidic %} 77 111111 N

APPENDIX D

CODES

1. Arithmetic Orders

Octal Code

10
12
13
14
16
20
22
23

2. Transfer Orders

Octal Code

40
41
42
43
44
45
46

3. Sense Orders

Octal Code

05
06
07

BASICPAC ORDER CODES

Mnemonic

CLA
ADD
ADM
ClS

SUB

MLY
DVD
DVL

Mnemonic

TRU
TRL
TRS

TRX
TRP
TRZ
TRN

Mnemonic

SEN
SNS -
SNR

Instruction

Clear and Add
Add

Add Magnitude
Clear and Subtract
Subtract

Multiply

Divide

Divide Long

Instruction

Transfer Unconditional
Transfer and Load PCS
Transfer to PCS
Transfer on Index
Transfer on Positive
Transfer on Zero
Transfer on Negative

Instruction

Sense
Sense and Set
Sense and Reset

4.

5.

Logical Orders

Octal Code

00
02
03
30
31
32
33
35
50
51
53
54
55

Input-Output Orders

Octal Code

66
67
70
71
72
74
75
76
77

Mnemonic

HLT
LGM
LGA
SHL
SLL
SHR
SRL
CYL
STR
LOD
LDX
RPA
MSK

Mnemonic

SKP
BSP
RAN
RRYV
ROK
WAN
WWA
WOK
RWD

Instruction

Halt

Logical Multiply
Logical Add
Shift Left

Stift Left Long
Shift Right

Shift Right Long
Cycle Long
Store

Load

Load Index
Replace Address
Replace Through Mask

Instruction

Skip

Backspace

Read Alphanumeric
Read Reverse

Read Octal

Write Alphanumeric
Rewrite Alphanumeric
Write Octal

Rewind

FIELDATA Standard Code

The complete FIELDATA Code, including the alphanumeric characters and the
contral functions, is presented below in the standard 8-bit form which uses odd parity

and the basic pattern for control (1 = data, 0= control).

7 6 5 4 3 2 1 0
P C I I Dy D D, Dg
ALPHANUMERIC CONTROL
76543210 76543210 76543210 76543210
Character PCLIDDDD|Character PCIIDDDD|Character PCIIDDDD|Character PCIIDDDD
Master Sp. 01000000) 11100000|{Dial0 00100000 Blank/Idle 10000000
U.C. 11000001 - 01100001 |Dial 1 10100001 |Control UC 00000001
L.C. 11000010 + 01100010 |Dial 2 10100010 [Control LC 00000010
TAB 01000011 < 11100011 |Dial 3 00100011 |Control Tab 10000011
Car. Ret. 11000100 = 01100100Dial 4 10100100 [Control CR 00000100
Space 01000101 > 11100101 |Dial 5 00100101 |Control Spa 10000101
A 01000110 - 11100110(Dial 6 00100110 |{Control A 10000110
B 11000111 $ 01100111 |Dial 7 10100111 |Control B 00000111
C 11001000 % 01101000{Dial 8 10101000 |Control C 00001000
D 01001001 { 11101001 |Dial 9 00101001 [Control D 10001001
E 01001010 " 11101010(SOC 00101010 |Control E 10001010
F 11001011 : 01101011|SOB 10101011 [Control F 00001011
G 01001100 ? 11101100|SOD 00101100 {Control G 10001100
H 11001101 : 01101101 {SPARE 10101101 |Control H 00001101
I 11001110 ’ 01101110{SPARE 10101110 |Control I 00001110
J 01001111 @ 11101111|STOP 00101111 |Control J 10001111
K 11010000 0 01110000|RTT 10110000 [|Control X 00010000
L 01010001 1 11110001 |RTR 00110001 |{Control L 10010001
M 01010010 2 J1110010|NRR 00110010 |Control M 10010010
N 11010011 3 01110011|EOBK 10110011 |Control N 00010011
O 01010100 4 11110100/{EOB 00110100 |Control O 10010100
P 11010101 5 O1110101|EOF 10110101 |Control P 00010101
Q 11010110 6 01110110|EOC 10110110 |Control Q 00010110
R 01010111 7 11110111]AKR 00110111 |Control R 10010111
S 01011000 8 11111000|RPB 00111000 |Control S 10011000
T 11011001 9 01111001}ISN 10111001 |Control T 00011001
U 11011010 ! 01111010{NISN 10111010 |Control U 00011010
VvV 01011011 ; 11111011|CWF 00111011 |Control V 10011011
w 11011100 / 01111100|SPARE 10111100 |Control W 00011100
X 01011101 . 11111101|SAC 00111101 |Control X 10011101
Y 01011110| Special 11111110|SPC 00111110 |Control Y 10011110
Z 11011111 Backspace O0l111111|DELETE 10111111 [{Control Z 00011111

FIELDATA Paper Tape Code

The complete FIELDATA Paper Tape Code,including alphanumeric and control
characters, is presented below in the 8-bit form for paper tape, which uses even °
parity and the paper tape pattern for control.

5 4

7 6
P C I I

3 2

1

0

ALPHANUMERIC CONTROL
76543210 76543210 76543210 76543210
Character PCIIDDDD|Character PCIIDDDD |Character PCIIDDDD|Character PCIIDDDY
Master Sp. 11000000) 10100000 |Dial O 01100000 {Blank/Idle 00000000
U.cC. 01000001 - 00100001 (Dial l 11100001 [Control UC 10000001
L.C. 01000010 + 00100010 [Dizl 2 11100010 |Control LC 10000010
Tab. 11000011 < 10100011 |Dial 3 01100011 |{Control Tab 00000011
Car. Ret. 01000100 = 00100100 |Dial 4 11100100 |Control CR 10000100
Space 11000101 > 10100101 |Dial 5 01100101 |Control Spa 00000101
A 11000110 - 10100110 |Dial 6 01100110 |Control A 00000110
B 01000111 Q 00100111 [Dial 7 11100111 [Control B 10000111
C 01001000 % 00101000 |Dial 8 11101000 |Control C 10001000
D 11001001 { 1010100} |Dial 9 01101001 [{Control D 00001001
E 11001010 w 10101010 [SOC 01101010 |Control E 00001010
F 01001011 : 00101011 [SOB 11101011 [Control F 10001011
G 11001100 ? 10101100 |SOD 01101100 |Control G 00001100
H 01001101 ! 00101101 [SPARE 11101101 |Control H 10001101
I 01001110 , 00101110 |[SPARE 11101110 |Control I 10001110
J 11001111 ©) 10101111 |STOP 01101111 |{Control J 00001111
K 01010000 0 00110000 {RTT 11110000 |Control K 10010000
L 11010001 1 10110001 |RTR 01110001 |Control L 00010001
M 11010010 2 10110010 [NRR 01110010 |Control M 00010010
N 01010011 3 00110011 [EOBK 11110011 {Control N 10010011
@] 11010100 4 10110100 |EOB 01110100 |Control O 00010100
P 01010101 5 00110101 {EOF 11110101 {Control P 10010101
Q 01010110 6 00110110 |[EOC 11110110 |Control Q 10010110
R 11010111 7 10110it1 |JAKR 01110111 |{Control R 00010111
S 11011000 8 10111000 |{RPB 01111000 |Control S 00011000
T 01011001 9 00111001 |ISN 11111001 {Control T 10011001
U 01011010 ! 00111010 INISN 11111010 |Control U 10011010
\"% 11011011 ; 10111011 |CWF 01111011 |[Control V - 00011011
w 01011100 / 00111100 [SPARE 11111100 |Control W 10011100
X 11011101 . 10111101 |SAC 01111101 |Control X 00011101
Y 11011110} Special 10111110 [SPC 01111110 {Control Y 00011110
Z 01011111{Backspace 00111111 |DELETE 11111111 |[Control Z 10011111

	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	2-00
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	2-80
	2-81
	2-82
	2-83
	2-84
	2-85
	2-86
	2-87
	2-88
	2-89
	2-90
	2-91
	2-92
	2-93
	2-94
	B-00
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-00
	C-01
	D-00
	D-01
	D-02
	D-03
	D-04

