
PHILeOI!

'2000

PH I LCO® 2000

Electronic Data Processing System

PROGRAMMING MANUAL

PHILCO CORPORATION
GOVERNMENT AND INDUSTRIAL GROUP - COMPUTER DIVISION

3900 Welsh Road Willow Grove, Penna.

TM 10 (11.60)

TABLE OF CONTENTS

Chapter I, Functional Description of the PHILCO 2000 ..•.•.........•.

The Central Computer ...•..••..•....................•..•.•..•...
Centra 1 Processor ••••.•••.•.••.••••.•.•.••..•..••.•.•.•.••••..
Input-Output System .. .
Summary of PHILCO 2000 Characteristics

Chapter II, Detailed Description of the Central Computer••.•.

Progranl Control ..•.....••....•.....•...•••.......•.•..•........
Da t a Co 11 t r 0 1.
Terminology• ·00·0 0 ••••••••••• 0 ••••••••••••• 0 ••••••••• 0 0 •••

Chapter III, Introduction to Coding•...•..•••..... ~

Transfers alld Arithmetic•.........•.•.•....•......
Wri t ten Mnemonic Code•...........•................
Transfers of Information•.................
Arithmetic•... ,
Summary: Transfers and Arithmetic ..•........•................
Functions of Arithmetic Registers in Arithmetic Operations
Decision Making...•....•............•..................
PHILCO 2000 Binary Code for Alphanumeric Characters
Summary: Decis ion Making

Chapter IV, Flowcharting ..•...•....•....•....••...•..........••.....

Ba.sic Operations
Flowchart Symbols .•................. ·•............. '.' ..
Flowchart Connections _
Other Symbol s•...................... '

Chapter V, PHILCO 2000 Arithmetic and Constants ..•..•...•.....•..•..

Representing Numbers and Data•.......•.•...•••...•..
Binary Arithmetic•.....
PHILCO 2000 Ari thmetic ..•................•....................
Trans lator-Assembler-Compiler Constants•.•..............
Summary .. .

Chapter VI, Data Modification•....•......•••••.• •·•·

Modi fying Words •......•.•..•......•.. • ..• · . • ... • .. • .•. • • .. •
Shifting•...............•...............•..............
Symbolic Addressing .. ~•....................
Extracting
Other wgical Operations•.•.............•....•...
Summa ry•.......•....•.•...•..•..•...•....•..........

1

1
4
5

11

13

13
16
18

21

21
24
26
29
51
52
53
58
62

65

65
66
69
71

75

75
83
89

104
112

115

115
116
120
127
134
140

TABLE OF CONTENTS (cont'd)

Chapter VII, Subroutines and Program Switches 143

Subrou tines .•.••...•.••......•...•..•................ '. • 143
Program Swi tches.. • .. . • •• • • • .. • 148
Summary ... ~ • • 160

Chapter VIII, The wop... 163

Introduction. . •• . •. • •. .. . •. .. • . . . • • . .• • . • . .• • • . •• 163
Index Registers .. 167
Programming for Index Regis ters. •. • •• •..... 173
TAC and Index Regis ters ... 179
The Repeat Instruction......................... 190
Notes on the Address Parts of the D Register 196
Summary ... '. .. .• 199

Chapter IX, Programming Techniques... 20'3

Instruction Modification•........•.......................... 203
Internal Sorting, Merging, and Matching 210
External Program Control... 215
Summary -e " " " '. • .. .• .. .• .. •• .. .• 221

Appendices. . • • . • • • . • Al

Appendix A, Binary and Decimal Equivalents A2
Appendix B, Register Contents Altered by Instructions•......
Appendix C, PHILCO 2000 Instructions•.•........
Appendix D, Q~aternary Representation of PHILCO 2000 Commands ...
Appendix E, Floa ting Point Ari thme~ic ..••.......................

A3
A4-5-6
A7-=-8-9-10
All

Number

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
-Figure 7.

. Figure 8.
Figure 9.
Figure 10.

LIST OF FIGURES

Universal Buffer-Controller .. 0.00.0.0 •• 0 ••••••••••• 0 .••••• 8
Simplified Diagram of the PHILCO 2000 System .•.•....•.... 20
Micro-Flowcharts of All Addition Instructions 34
Micro-Flowcharts of All Subtraction Instructions•.. 35
Micro-Flowchart of All Multiplication Instructions ...• oo 41
Micro-Flowchart of All Division Instructions 47
Flowchart of Zero Suppression.... •.• 138
Flowchart of Su~routines•.................•........ o 145
Examples of Jump Instructions o. 0 ••• 0 .0 ••• 0 • 0 ••••• 0 0 0 0 0 • o. 149
Uses of the Jump Instruction. 0 0 0 .0. 0 ••• 0 • 0.0 0 0 •••• 0 0 0 • • •• 150

CHAPTER I

FUNCTIONAL DESCRIPTION OF THE PUILCD 2000

The PHILCO 2000 is a large scale, general purpose, electronic data
processing system. It is a single address system and operates in a parallel,
asynchronous mode. High speed, reliability, and compactness are achieved by
extensive use of transistors and printed circuits.

The PHlLCO 2000 is the result of two major research operations -
one concerned with parallel, asynchronous computers and the second with
transistors. In 1952, the Institute for Advanced Study at Princeton, New
Jersey, completed the lAS computer. lAS is a high-speed, binary, asynchron
ous, parallel computer. It proved very reliable and served as the basis for
such computers as MANIAC and JOHNNIAC as well as for TRANSAC.

In 1953, Phi1co began the study of the desirability of uSIng its
Surface Barrier Transistors for high-speed switching circuits for digital
computers. Results of extensive tests at the Lincoln Laboratories of the
Massachusetts Institute of Technology and at Philco's transistor plant at
Lansdale, Pa., proved that the long life and extreme reliability of these
transistors made them well suited for digital computer use.

Philco's efforts in this area were recognized by the government
with several orders for airborne, digital computers. Shortly thereafter,
Philco produced the TRANSAC S-1000, the first large-scale, transistorized
computer, which combined transistorized circuits with lAS design features.
The next step was the production of the prototype of PHILCO 2000. In early
1957, the PHILCO 2000 was incorporated into Philco's product line and the
first 2000 system was delivered in 1958.

THE CENTRAL COMPUTER

The heart of the PHILCO 2000 system is the Central Computer, the
actual data processor of the system. The major components of the Central
Computer are the internal storage units and the arithmetic and program
sections. These components store the data and instructions, execute the
instructions in sequence, and perform arithmetic and logical operations.

Magnetic Core Memory

The main internal storage IS a high-speed, coincident-current,
magnetic core memory with a basic capacity of 4096 words. A word is com
posed of 48 binary digits and may represent alphabetic, numeric, or alpha
numeric information. When representing alphabetic information, the word is
composed of eight binary-coded characters. When representing numeric in
formation, the word is the equivalent of 14 decimal digits. Alphanumeric
words contain less than eight binary-coded characters and a numeric equiva
lent of less than 14 decimal digits.

1

The basic core memory is available in one, two, four and eight
units of 4096 words each. Thus, memory capacity ranges from 4096 to 32,768
words, or 32,768 to 262,144 characters, or 57,344 to 458,752 decimal digits.

Access to words in any unit of the core memory takes place in
parallel in 10 microseconds (f.LS). Words are read from, or stored in, the
memory in two cycles - a 4-microsecond read cycle and a 6-microsecond write
cycle. When a word is read from memory, the read cycle reads and clears
the memory location, and the write cycle restores the contents of the
memory location accessed. When a word is stored in memory, the read cycle
clears the memory location and the write cycle stores the word in the ac
cessed memory location.

2

Substantial program running time IS saved in the computer be
cause a word read from memory may be operated on during the write cycle.
Thus, an addition of a word from memory to the accumulator only requires
the time to access memory - 10 microseconds. Furthermore, if the opera
tion is one that takes more than 6 microseconds, such as multiplication,
the write cycle is completely overlapped and the effective memory access
time is only 4 microseconds. This is illustrated in the following
diagram.

Read
4f.LS

Effective
Access

Time

Write
6f.LS

1--- Mu I tip I y ------j~

If the operation requires that the result be replaced in the
original memory location, the write cycle is delayed until the operation
is completed. Thus, the time to add a word from memory and replace the
original word by the sum will be 4 microseconds, plus the addition, plus
6 microseconds. The effective access time in such a case is 5 micro
seconds.

In contrast to this split-cycle operation, unsplit memory cycle
operations require two complete memory accesses plus the arithmetic opera
tion. Therefore, a saving of 10 microseconds is realized during every
split-cycle operation, as shown below.

\
\ (

,'" /)) /\ ~,- ,/ .,:\ ") (. - ", '? .s, LI,..., ,kl'~.,., j t,I_,

\ \.

Split-Cycle Replace ~Addition (AfV)S)

...-Access 1 t---i.~I....§.tor~1
Operand Result

Read Write TIME

4fl.S 6J.1S

o 11

Unsplit Cycle Replace ~ Addition

_Access Operand_I~I-Store Result .1
Add

Read Write Read Write
~--------r----------+--~---------r--------~~~ TIME

4J.LS 6J.LS IlLs 4J.LS 6f.LS

o 10 11 21

In addition to the split memory cycle, additional speed is achieved
because the Central Computer operates in an asynchronous mode. That is,
each operation is begun when a signal indicates that the last· operation has
been completed. Time is saved by not waiting for a signal from a "clock"
as in a synchronous mode type of computer.

Magnetic Drum Storage

Intermediate speed storage in the computer is provided by magnetic
drums. Each drum stores 32,768 words in eight bands of 4096 words each.
This is the equivalent of 262,144 alphanumeric characters or up to 458,752
decimal digits. Up to 32 drums may be incorporated in one system. Since
one drum controller handles up to four drums, eight drum controllers will
control all 32 drums.

The drum, which IS 24 inches long and 20 inches in diameter, re
volves at a·rate of 1750 rpm. One drum revolution, therefore, takes 34
milliseconds with an average access time of 17 milliseconds, plus 8 milli
seconds for band selection to the first word of a transmission. Because
each word is r~corded in parallel, subsequent words come under the read
write heads every 8 microseconds - less time than it takes to store the
word in the core memory. The words on the drum are interlaced to skip a
location between successive words and to give a transfer time to the core
memory of 16 microseconds per word.

3

The drums use the input-output register and memory access circui
try and are addressed individually by unit and drum addresses. The drum
addresses range from zero to 32, 767. The information on a drum must first
be transferred to core storage to be used. During the transfer, other in
put-output and processing are interrupted until the transmission IS com
pleted.

CENTRAL PROCESSOR

The Central Processor is the unit of the Central Computer which
processes data and instructions. It consists of the arithmetic section,
the program section, and the display and manual control section.

Arithmetic Section

Arithmetic in the computer may be performed in either the fixed
point or floating point mode. Numbers are represented in pure Hinary form
and are operated on in parallel. Negative numbers are represented in two's
complement for~. These design features increase the operating speed of
the system.

Some of the flexible and timesaving additions to the basic types
of arithmetic operations are multiplication yielding double length or
rounded products, division with double length dividends (all divisions are
self-correcting in the case of overflow), and combinations of multiplica
tion and addition or multiplication and subtraction. In all arithmetic
operations the operands may be in absolute value and the results may be
stored in memory. These additional operations add to the flexibility of
the 2000 and simplify the programming.

The basic transfer time and minimum addition time ar.e one micro
second. The average speeds of the arithmetic operations (including in
struction and operand access) expressed in operations per second are shown
below.

Addition and subtraction

Multiplication

Division

Program Section

Fixed Point

66,700

20,300

19,200

Floating Point

66,700

24,900

24,300

The program section selects and executes the instructions stored
In the core memory. Instructions are automatically selected in the se
quence that they appear in memory. Since instructions are stored two to a
word, two instructions are selected with each memory access, thereby reduc
ing access time per instruction by approximately 50%.

4

The PHILCO 2000 has a repertoire of over 200 instructions, includ
ing 59 floating point instructions. This large number of instructions pro
vides maximum program flexibility and minimizes the number of instructions
per program. Ease in learning and using the instruction code is ensured by
the simple mnemonic code and by the logical grouping of the instructions.

In addition to direct addressing, index registers may be utilized
for address substitution and modification for most instructions. Registers
may be selected in groups of 8, 16, and 32. The index register contents
may be automatically increased and used for counting and addressing sequen
tial locations~ Also, the contents of the registers may be increased or
decreased for convenient use in accumulating. Since.the index registers
are independent registers and not part of the core memory, program runnIng
time to use the contents of the registers is infinitesimal.

To further reduce program running time and to simplify the pro
grammer's task, a number of unique instructions have been incorporated into
the system. One is designed to facilitate the handling of records and
fields of any size. Others simplify sorting, merging, and table lookup op
erations. Some reduce the effort necessary to write mathematical programs
while another group simplifies the use of subroutines.

Display And Manual Control

An operator's console provides indicators, manual controls, and
other facilities for monitoring the operations of the PHILCO 2000 system,
for debugging programs, and for periodic maintenance. Adjacent to the con
sole is the Console Typewriter which furnishes the operator with direct,
immediate access to the core memory. By using the typewriter, the operator
can insert control information into the program and check the intermediate
results and control totals.

INPUT-OUTPUT SYSTEM

The PHILCO 2000 input-output system permits the programmer to
make effective use of the high operating speeds of the Central Computer.
All input-output data that can be scheduled is funneled through the Input
Output Processor unit. Random or high-priority input-output is connected
with the Central Computer through the real-time channel. When no real-time
connections are provided, this channel may be used for additional paper tape
input-output. Because of the PHILCO 2000 design feature called Multiple
Processing, all input-output operations may be prograwmed to proceed simul
taneously.

MUltiple Processing

The Multiple Processing technique of the PHILCO 2000 has greatly
improved and enlarged upon the processing method often referred to as simul
taneous read/write/compute. While the central processor is computing, as
many as nine input-output devices may be processing data simultaneously.
Four of the nine may be Magnetic Tape Units and four may be Punched-Card

5

Systems, High-Speed Printers, and Paper Tape Systems. The ninth may be
either a Real-Time Scanner or a Paper Tape System. Each of the nine de
vices may be either reading or writing. Multiple Processing is possible
because of a design feature that makes optimum use of memory (Memory
Sharing) and because of the advanced electronic design of both the Input
Output Processor and the Universal Buffer-Controller.

Input-Output Processor

The Input-Output Processor is the interconnecting ,and control
link between the Central Computer and the 16 input-output channels. Each
channel couples either a Magnetic Tape Unit or a Universal Buffer-Controller
to the Central Computer. The standard data transfer rate over a channel is
90,000 alphanumeric characters per second. By means of a multiplexing
technique, the Input-Output Processor can connect any four of the 16 channels
to the Central Computer at one time. Up to 16 Input-Output Processors may
be used in a PHILCO 2000 system to connect as many as 256 input-output
channels with the Central Computer.

Each Input-Output Processor also controls four Universal Buffer
Controllers simultaneously. In this case, while transmission takes place
between the computer memory and four tape units, any combination of four
punched-card readers and punches, High-Speed Printers, and paper tape
readers and punches may also be operating. Central Computer time is only
used when data is transferred between the memory and a buffer-controller.
The operations of the Punched-card, Paper Tape, and High-Speed Printing
systems are essentially off-line when under the control of buffer-control
lers.

Real-Time Channel

The real-time channel shares access to the magnetic core memory
with the Central Processor, the Input-Output Processor, and the Magnetic
Drum System. This channel may be used for paper tape input-output or with
a real-time unit for real-time input-output.

6

Magnefic Tape Unit

The magnetic tape has a one mil mylar base, is one inch wide and
comes in five real sizes: 600, 1200, 1800, 2400, and 3600 feet. Six-bit
characters are recorded at a density of 750 to the longitudinal inch. The
tape is pre-edited into areas called blocks, each of which contains 1024
six-bit characters. When tape is read by the computer, these characters
are assembled into words. Each word contains eight characters, or 48 bits.
Each block contains, therefore, 128 words. A full reel of tape contains
19 5 000 blocks or over 19,000,000 characters.

16 bits across the widih of the tape are considered a frame.
Each frame contains two characters, two parity bits (one per character),
and two timing bits. One block contains 514 frames. Of these, 512 are
data frames. A final frame provides a parity check on each channel, and an
initial frame provides symmetry for backward reading.

A tape speed of 120 inches per second provides a maximum reading
rate of 90,000 characters per second. Maximum efficiency, speed, and ease
of use are achieved because one block size and one recording density are
used throughout the system. Other magnetic tape specifications are listed
in the sum~ary of PHILCO 2000 characteristics.

Accuracy of reading and recording is ensured by parity checks and
separate" read" and "write" heads. Immediately after information has been
recorded, it is read back and checked for parity.

To insure against unintentional destruction of information, a
physical snap ring is provided with each tape reel. Without the snap r1ng,
recording cannot occur. Furthermore, a safety device can prevent the 1n
sertion of a snap r1ng. Whether or not the snap ring is used, data on the
tape may be read.

Information written on magnetic tape may be binary-coded informa
tion, pure binary information, or a combination of both. Regardless of the
data form, the Central Computer accepts six binary digits as a "character"
and discards the parity bit. Because all numeric data may be recorded and
read in pure binary form, tape and time savings of up to 50% will be real
ized& (A seven-place decimal number less than 2,097,152 is recorded in bi
nary-coded decimal form in 42 bits and in pure binary form in 21 bits.)

Magnetic tape reading and writing operations are controlled by the
Input-Output Processor. As many as four out of 16 tape units may be opera
ted concurrently with Central Computer processing. Since the character
transfer rate is 90,000 characters per second with one tape unit, with four
tape units operating simultaneously the transfer rate is 360,000 alpha
numeric characters or 628,000 decimal digits per second.

Universal Buffer-Controller

The Universal Buffer-Controller adds greatly to the flexibility
and economy of the PHILCO 20'00 system. This one unit controls off-line
conversions between any two media or on-line communication between the
Central Computer and any medium except magnetic tape. In general the
buffer-controller acts as a buffering device between two input-output units
or between one input-output unit and the Central Computer.

The input-output devices that may be operated with the buffer
controller include Punched-Card Systems, Magnetic Tape Units, Paper Tape
Systems, and High-Speed Printing systems. Up to five Punched-Card, Paper
Tape, or High-Speed Printer units may be connected to a buffer-controller
in addition to two Magnetic Tape Units.. If one or both Magnetic Tape Units
are not used, their channels may be used by any other Input-Output Unit
noted above. In the future any desirable device may be easily added to a
buffer-controller. A simplified diagram of a buffer-controller is shown in
the following figure.

7

PUNCHED.CARD SYSTEMS

PAPER TAPE SYSTEMS

HIGH-SPEED PRINTERS

1024

2 CHARACTERS

3- STORAGE
4 AND

5 CONTROL

MAGNETI C
TAPE

UNITS

INPUT·OUTPUT CHANNEL.
0- _ -0 __ > TO THE I NPUT·OUTPUT

\. /
" /

~r --\
fs\ (t;!J.
V~~/

PROCESSOR

Figure 1. Universal Buffer-Controller

When used off-line, the buffer-controller controls the conversion
of data from any medium to any other medium. For example, the buffer
controller is used to convert data from punched cards to magnetic tape,
from tape to printer, tape to tape, etc.

Data Select is an additional off-line feature. When Data Select
is used, only the data blocks containing selected control characters will be
converted. Thus the data for up to 15 reports, for example, may be record
ed on the same reel of magnetic tape or the same punched-card deck. Then
the Universal Buffer-Controller may be used to segregate the data and pre
pare the reports in sequence from the single data source. Data Select
simplifies and speeds up report preparation and allows the buffer-controller
to perform an off-line function which in other systems requires Central
Computer time.

The buffe'r-controller, which is switched on-line by a pushbutton,
can be used as buffer storage for the intermediate speed input-output units,
such as Paper Tape, Punched-Card, and High-Speed Printer systems. The trans
mission between the buffer-controller and an input-output unit is essential
ly off-line and does not require Central Computer time or control. The
transmission between a buffer-controller and the Central Compu ter, however, is
the same as it is fO'r magnetic tape and is at the same rate: 90,000 char
acters per second. Also, as for magnetic tape, the transmission is time
shared with other input-output operations and Central Computer processing.

The two Magnetic Tape Units which may be connected to the buffer
controller are very flexible in their use. If tape unit A, as illustrated
in the above figure, is provided with a buffer-controller, it is permanently
connected to the buffer-controller. Tape unit A is used for off-line con
versions to and from magnetic tape. If tape unit A is not provided with
the buffer-controller, another input-output unit may be substituted.

-,"-J) I L /
/(1 fE 1..) cit IlIU'U e . IJ 0 U) /17 ny I') /'f tJ (' '-/'JO ()

/o/; ! C h //? /1 '1/ ~ C tiS (fl rJ- / A?,Cif)/]! c;S/ () ;tJ
/ /

8

Tape unit B is extremely flexible in its connection and use. For
maximum flexibility of the buffer-controller, an optional electronic switch
may be set by a pushbutton to connect tape unit B either on-line to the In
put-Output Processor or off-line to the buffer-controller. Consequently,
tape unit B may be used in one position as another on-line tape unit to re
tain the capacity of the system when the buffer-controller is engaged in an
off-line operation. In the off-line position, tape unit B may be used as
an alternate for tape unit A for conversion to or from magnetic tape. For
a magnetic tape to magnetic tape conversion, tape unit B is used with tape
unit A.

Another use of tape unit B is to record the output data of a pro
gram. It may then be switched off-line to convert the output data to an
other medium through the buffer-controller. This operation avoids the
handling of tape reels and speeds preparation of reports. For economy,
tape unit B may be permanently connected to the buffer-controller in the
same fashion as is tape unit A. Finally, tape unit B can be omitted entire
ly and be replaced by another input-output system. In any case the Central
Computer cannot communicate with a tape unit through the buffer-controller
since this would result in poor utilization of the buffer-controller.

Punched-Card System

The Punched-Card System reads 2000 cards per minute by a new
photoelectric reading technique and punches 100 or 250 cards per minute.
The system may read or punch 51- or 80-column cards in either Hollerith or
card image mode. The standard l~llerith code used in most punched-card in
stallations has been expanded so that all 64 computer characters can be
punched and read. The cards are translated from Hollerith code to computer
code automatically. The card image mode facilitates the handling of binary
information and packs twelve bits or two computer characters in each column.
Card image mode also simplifies the use of punched cards prepared on differ
ent computers.

High-Speed Paper Tape System

Through the paper tape reader, data in the form of 5-, 6-, or 7-
level punched paper tape may be read directly into the core memory at a rate
of 1000 characters per second. With the paper tape punch, data may be
punched onto paper tape at a rate of 60 characters per second. Both reading
and punching are controlled by the paper tape controller.

For long tape life and higher operating speeds, reading is ac
complished ~hotoelectrically. The tape speed is 100 inches per second; up
to 4096 words may be read with one instruction and provisions are made to
pass blank tape. Operation of the reader is such that without reversing the
tape or leaving a record or block gap, reading begins with the character
immediately following the last character read.

9

The Paper Tape System may be connected directly to the Central
Computer or to a Universal Buffer-Controller. The direct Central Computer
connection is necessary when no Universal Buffer-Controllers are included
in a PHILCO 2000 system. The direct connection may also be advantageous in
a 2000 system since it allows the maximum number of input-output units to
be operated simultaneously.

High-Speed Printing System

The high-speed printing system consists of the printer controller
and the High-Speed Printer and operates in conjunction with a Ilniversal
Buffer-Controller.

Speeds of 600 or 900 lines a minute are obtained by the printe~. ..
By skip-feeding ~ non-~rinted areas are passed a tara te of 25 inches a. (! .:..)~ 000 l:k'5/!.'/;:l)
second. Each lIne prInts 120 characters spaced at ten characters per Inch /
horizontally and six per inch vertically.

Information to be printed on-line is received from a buffer
controller in standard blocks of 1024 characters. The 64 computer char
acters fall into the following three major classes:

a. decimal digits, 0 through 9

h. alphabetic characters, A through Z

c.twenty-eight special symbols.

In normal operating mode, three of the special symbols are control
characters and only the remaining 61 characters are printed .. In memory
dump mode, all 64 computer characters (including the three control char
acters) are printed.

(\(iV/b.) C)

~ \ ~ Horizontal format is controlled by computer programming and plug-
board editing. The plugboard is used to repeat characters on a line, and
to suppress and rearrange fields. Vertical format is accomplished by a
paper tape control-loop mounted on the print carriage mechanism.

The "print-on-the-fly" method of printing is used. One hundred
and twenty hammers are arranged horizontally to be fired at a 2-3/4 inch
diameter print roll which is constantly revolving about a horizontal axis.
The 64 computer characters are spaced around the circumference of th~ print
roll. The impulse hammers, when actuated, strike the paper and force it
against a print ribbon which lies across the character face. The print ribbon
is an inked, silk ribbon which is self reversing in operation and has a life
of approximatelyl\~W printing hours. One major feature of this printer is
the" controlled pen«rtr,ation" of the hammer .. The hammer travel is controlled
between physical stops and never actually strikes the print roll. This
feature produc'es clearer printing and reduces wear on the hammer, print
roll, and inked ribbon.

10

SUMMARY OF PHILCO 2000 CHARACTERISTICS

Central Computer

Memory capacity

a. basic core memory unit - 4096 words
(32,768 alphanumeric characters)

b. memory unit expandable to 32,768 words (262,144
alphanumeric characters) in units of 4096 words

Internal characteristics

a. binary - parallel - asynchronous
b. fixed point arithmetic (floating point optional)
c. word length -.48 binary digits
d. two's complement notation

Instruction code

a. single address
b. two instructions per word
c. over 200. instructions (including 59 floating point)

Index registers - 8, 16, or 32

Magnetic drum system

a. drum capacity - 32,768 words (262,144 alphanumeric characters)
b. maximum of 32 drums in a system
c. average access time - 17 milliseconds
d. under control of magnetic drum controller

Input-Output

Input-Output Processor

a. simultaneous read/write/compute operation
b. sixteen input-output channels
c. four simultaneous transmissions with transfer rate of

360,000 characters per second
d. connection between Central Computer and Magnetic Tape Units

and Universal Buffer-Controllers

11

Magnetic Tape Unit

a. reading/writing speed - 90,000 characters per second
b. tape dimension - up to 3,600' length, 1" width
c. reel capacity - over 19 million alphanumeric characters - 19,000 blocks
d. standard block size - 1024 characters (128 words)
e. density - 750 characters per linear inch
f. tape speed - 120 inches per second
g. immediate and automatic information verification of both reading

and writing

Universal Buffer-Controller

a. capacity - 1024 characters
h. off-line data selection
c. off-line conversion of data between any two input-output systems
d. on-line buffer for all input-output systems except magnetic tape

Punched-Card System

a. photoelectric reader - 2000 cards per minute
b. punch - 100 or 250 cards per minute
c. plugboard format control

Paper Tape System

a. photoelectric reader - 1000 characters per second
b. punch - 60 characters per second
c. 5-, 6-, or 7-level tape

High-speed printing system

a. printing rate - 600 or 900 lines per minute
b. 120 characters per line
c. 64 printable characters
d. plugboard and/or computer format control
e. print-on-the-fly method of printing

12

CHAPTER II

DETAILED DESCRIPTION OF TilE CENTRAL COMPUTER

In the previous chapter an overall view of the PHILCO 2000 was
given. This chapter provides some of the details necessary to understand
the basic programming requirements of the computer.

PROGRAM CONTROL

The PHILCO 2000 Word

As previously defined, a PHILCO 2000 word is composed of 48 bits
numbered left to right from 0 through 47. The word may be eight binary-coded
characters, a 47-bit n~mber with a sign bit, a data word containing pure
binary as well as binary-coded information, a constant, or an instruction
word containing two instructions. Regardless of the nature of a word, it
is individually addressable by the PHILCO 2000 instructions; that is, each
memory location has an address by which its contents may be located. A word
may be addressed directly by specifying its address in an instruction or
indirectly by specifying an index register which contains the address of the
word.

Program Section

TIle program section selects and executes instructions in an ordered
sequence. Instructions indicate how data is to be manipulated. Two in
structions, the left and right half instructions, comprise an instruction
word .. The normal sequence of executing instructions is first the left half
and then the right half instruction of one word, followed by the left half
and then the right half instruction of the next succeeding instruction word.

Each computer instruction contains 24 bits divided into a 16~bit
address part and an eight-bit command part.

Instruction Format

16, Bits 8 Bits

Address Command

Command Part. The command· part is further subdivided into the seven-bit
command, C, and the function bit, F.

13

Command Part

F C

c - Co ,fi mil!)]) /.) I /~)
.. ' fU!JC -/IM) /)/!

(f}o /4-f/.l;5 p'f:) t:? Ij ~ i

Some instructions may reqUIre all eight bits to define a command; some re
quire only seven, and others need seven bits modified by the function bit.
The F Bit specifies whether the arithmetic is to be performed in the fixed
or floating point mode.

Address Part. The address part is subdivided into an index register selec
tor bi t (S), a 3- to 5-bit index register number (N) to specify a particu
lar index register, and a 10- to 12-bit variable field (V). The size Nand
V are determined by the number of index registers in a system. The address
part may be a memory address or some number specified by the instruction.
The address part of an instruction in a system with eight index registers
is shown below.

V ::c. V /~ r~ I \';1 ES \.E"' j- If;' L ~ .b I ...),:::

IAdd Ie <: G '.:; r:~J Ck:! ('Inc u l' 5 J If) ~

N ~ }';.J De '< t:~ t: 6 . IJtlm ~ uc. hi {.=;
Address Part

,--I ---.JIIL...--_3
---'-___ 12 ___ ----11 S ~ 3"/,, c f" I b /l

S N V

Instruction Format. Each PHILCO 2000 instruction can be specified by vary
ing the configuration of the eight-bit command. Since the command code IS
pure binary, it is decoded in a compact, parallel, and very efficient
manner. This may be appreciated by examining the command code in more
detail.

F

Binary Digits 7 6

Non-Arithmetic 0

Arithmetic 1

Add 1

Subtract 1

Multiply 1

Divide 1

Do Not Store Result

Store Result

14

C

5 4

0 0

0 1

1 0

1 1

3 2 1

o
1

J

Assignment of zero or one to each of the eight pos1t10ns results
in a unique code combination which, when decoded, produces a specific com
mand. Further designation of bits 3,2, and 1 might call for the absolute
value of an operand, a "Clear" instruction, and other modifications. of the
four basic arithmetic operations. Thus the particular code combination

01000001

would add a word from memory to the word in the accumulator and store the
result in memory.

To remember over 200 eight-bit instruction codes would be very
difficult; therefore, 'to simplify programming, an English-decimal mnemonic
code is used, and the preceding instruction is expressed simply as AMS, Add
Memory and Store. This mnemonic code, which will be discussed in the next
chapter, is translated into the machine or computer code.

The computer instruction is sequenced through various control
registers. (See the block diagram at the end of this chapter.) The Pro
gram Register, PR, stores the selected pair of instructions to be executed.
The Program Address Register, PA, contains the address of the next instruc
tion word. The Memory Address Register, MA, holds the address of the memory
location to be accessed. The Jump Address Register, JA, stores the address
of the instruction following the last jump instruction. Of these registers,
only the Jump Address Register is program-addressable. It is used to fabri
cate subroutine exit jump addresses. (Subroutines are discussed in Chapter
VII.)

The sequence of operations in the program section begins with the
transfer of the address in the Program Address Register, PA, to the Memory
Address Register, MA, after this address has been established manually in
the PA Regis ter. Then the address is decoded and the corresponding i,ns truc
tion word is selected from memory and transferred to the Program Register.
TIle address in the PA Regis ter is then increased by one to become the ad ...
dress of the next sequential instruction word to be selected and executed.

The left half instruction in the PR is executed first. The
execution of the instruction may affect a word in memory, in the arithmetic
section, or an address in the PA, JA, or an index register but it cannot
directly affect the word in the PRo (A left half instruction may change the
sequence of executing instructions so that the right half instruction is
not immediately executed - but it cannot alter the right half instruction
in the pn.)

The right half instruction is executed following the left half
instruction, and the next pair of instructions is selected. This procedure
may be described symbolicall y as follows: (Parentheses mean" con tents of,"
and an arrow indicates a transfer of information.)

a . (P A) ---I"~ f\1A, (MA) s p e c i fie s M; (M) --.. PR

b. (PA) + 1 ~PA

c. Left half instruction 1n PR is executed.

v ?f~ 1_·" _
I
\ 15

v ..:I l ... _1

d. Right half instruction in PR is executed.

e. Steps a through d are repeated.

This sequence is continued until a Halt, Repeat, or Skip instruc
tion 1S executed, an error is detected, or a jump is effected.

DATA CONTHOL

Arithmetic Section

The purpose of the arithmetic section is to perform arithmetic,
comparisons, transfers of data, and other data manipulating operations.

The arithmetic section consists of an adder network and three
arithmetic registers, which have one word (48-bit) capacities. The regis
ters are the accumulator (A Register)tthe data register (D Register), and
the multiplier-quotient register (0 Register). For floating point opera-
tions, an optional unit is added to the basic section. \

16·

The registers have the following functions:

a. D Register:

1. rece1ves all data transferred between the memory and the
arithmetic unit

2. rece1ves all data transferred between arithmetic registers

3. contains the addend in addition, the subtrahend in sub
traction, the multiplicand 1n multiplication, and the
divisor in division

4. contains one of two factors 1n a compar1son

5. ...
--'

b. A Register:

ace ('5. S -/-0 / , \ "j .A

IV:((

1. contains the augend in addition, the minuend in subtrac
tion, and the dividend or the more significant half of
the dividend in division

2. contains the sum in addition, the difference in subtrac
tion, the product or more significant half of the product
in multiplication, and the remainder in division

3. contains one of two factors in a comparison

... J ~ !

f /, -"//- '., VL.{-, '" .r' I~

_ 'II I ',fJ I,",
)) I., . Lt \,;.,...-':. \ "

! I

.. , ,'- / :

c. Q Register:

1. contains the multiplier in multiplication; the less sig
nificant half of a double length product of a multiplica
tion; the less significant half of a double length divi
dend in division; and the quotient of a division

2. may contain a factor in a compar1son

3. con tains a masking pa t tern during an extracting opera tion.
, (' (Ji UIl:,) / I (.(

An arithmeticirrs-t:ruction is interpreted as a fixed point instruc-
tion if the F bit is a zero. In the fixed point mode, the binary point of
a data word lies immediately to the right of the sign or zero position as
shown in the following diagram: (A description of floating point numbers
will be found in Appendix E.)

I 0 [1 I 2 I 3 1 4 1)\ 143 144 1 45 146 147 1
~ Rinary Point

TIle maX1mum positive number is

1
0

[1 11111111111 11 11 11 11 I

fWhiCh is less than one as far as the computer is concerned. Negative num
bers are represented in two's complement form, the smallest computer nega-

l, tive number being minus oner; Any a,rithmetic result which would be outside
the above limits produces accon~it~on called overflow.

'"::>(1' 1"" , J' ? .J' / I " I
"'o/ I, / (t.' .~\;\: ~~(7/'J" 'j t /./" ~' ",),.'tt /"(,J (',,') / •• ~) C)IUt' .::

Index Registers C;,// i·.i/~·:'·.·'(·",,/ J('I':'-:l~:) ..

Index registers in the 2000 operate in several ways, depending on
the type of instruction using them. Their uses may be categorized as follows:

a. Instruction Address Modification: After an index register is
filled by the desired address modifier, the effective address
of the instruction using this register is the sum of the con
tents of the index register and the V field of the instruction.
Most PHILCO 2000 instructions can be address-modified in this
manner, without altering the instruction in memory or the con
tents of the index register.

b. Counting: An index register may be set to automatically in
crease itself by one each time it is used. Used with an in
struction which doesn't utilize the V portion (such as an
arithmetic register-to-register transfer), the index register
will contain the total number of executions of the instruction.
Using the counting function for address modification permits
consecutive memory locations to be addressed automatically.

17

c. Instruction Address Substitution: An address in an index
register may replace an address part of an instruction in
memory.

Input-Output Control

All input-output communication takes place between the magnetic
core memory and the input-output units. Simultaneous computation and
input-output operations are achieved by use of the Input-Output Processor,
an Input-Output Register, and the special mode of operation described below.

Input data is collected in independent one-word registers in the
Input-Output Processor or Paper Tape System while computation is in progress.
After a word has been collected, it is transferred to a one-word Input-Output
Register in the Central Computer. The program is then interrupted so that
the word may be transferred, in parallel, to the core memory. During the
transfer, the input unit is still in operation. After the transfer, the
Central Computer resumes process1ng.

Output operations occur in a similar manner. The program is
interrupted only when another word is required by the output unit. After
the word has been transferred to the Input-Output Register, the program
continues and the word is written or transferred to a buffer-controller
simultaneously with the computer operation.

The Console Typewriter operates independently of the normal
input-output circuitry.

TERMINOLOGY

The abbreviations of terms used 1n this manual excluding the
mnemon1C codes are defined as follows:

TAC: Translator-Assembler-Compiler

PR: The Program Register

MA: The Memory Address Register

PA: The Program Address Register

JA: The Jump Address Register

10: The Input-Output Register

X: An index register

c: The counter indicator bit of an index register

M: A memory location

18

A: The A Register

Q: The Q Register one-word registers

D: The D Register

I: An instruction.

The following letters may be used as subscripts with M, A, Q, D,
and I:

L: The left half of a word

n· The right half of a word

V: TIle variable field of an instruction

F: The function bit of an instruction

c: The seven-bit command part of an instruction

s: The index register selector bit of an instruction

N: The number of the index regis ter selected.

Associated with X, the subscript, c, may be used; with JA, the
subscript, F, may be used.

V-

I{-

The following additional abbreviations are also used:

() : The contents of

1 I: The absolute value of the contents of

~: Is placed 1n

. Is equivalent to. (.O.J I,;\:ttl, ut\ 11,,' (' ((I. {- C. . ("
(.1)- (-(- C •)

For example, the abbreviations listed have the following meanings:

DLV == the V part of the left half of (D)

JAF == the F bit associated with JA

.:: I I

"i\
',J

> 1.,1"
~ \

The contents of Index Register number 31 are equal to a
V part of (D) .

, I.'

\, 1 t ,; (1\
(\

!

(t t ;~" ... \

'J.-

19

PAPER TAPE

HIGH- SPEED
PRINTERS

INPUT-OUTPUT

MAGNETIC
TAPE UNITS

CONSOLE
TYPEWRITER

PAPER TAPE,
REAL- TIME

SCANNER, AND
AUTO-CONTRQL

INPUT
OUTPUT

PROCESSOR

UNIVERSAL

BUFFER-CONTROLLER

MAGNETIC TAPE
(OFF LINE)

MAGNETIC
DRUMS

ARITHMETIC SECTION

MEMORY

PROGRAM SECTION

JUMP
ADDRESS

MEMORY

ADDRESS

CONTROL

ADDER

INDEX

REGISTER

SELECT

MEMORY

PRESET

CONSOLE

SWITCHES

PROGRAM

ADDRESS

Figure 2. Simplified Diagram of the PHILCO 2000 System

YES

STOP

CHAPTER III

INTRODUCTION TO CODING

TRANSFERS AND ARITHMETIC

In the previous chapter, the PHILCO 2000 instruction was describ
ed in terms of its size and structure. It was seen that a binary instruc
tion code is very efficient for a machine. However, this code which is
suitable to the computer is not convenient for programmers. Therefore, a
completely functional English-decimal mnemonic code has been prepared for
the PHILCO 2000. (The reader should be aware that from this point on the
instructions described exist in the machine but not in the form shown here.
The term" mnemonic instruction" is used to distinguish the code that the
programmer writes from the" computer ins truction" or code tha t the computer
accepts.) The mnemonic code, by itself, is unacceptable to the computer
and cannot cause it to function. To enable the computer to operate, it is
necessary to use a translation program. This program, the Translator
Assembler-Compiler (TAC) J converts the mnemonic code wri tten by the pro
grammer into the binary computer code.

The PHILCO 2000 Mnemonic Code

The PHILCO 2000 mnemonic code has been designed to facilitate the
learning and use of the computer instructions, which number over 200. This
has been done by grouping the instructions into classes of computer opera
tions and then naming them mnemonically. Essential to data processing are
the following instruction classes:

a. addition
h. subtraction

c. multiplication
d. division
e. transfer of data
f. jump
g. shifting

h. extracting

1. index register housekeeping

J • input-output
k. special.

21

M~emonic Code Instructions

Just as a computer instruction has a command part and an address
part, so does the mnemonic instruction. TIle command part of the instruc
tion is composed of two to six letters and is divided into three sections.
TIle command completely defines an operation in one of preceding instruction
classes. It also specifies the origins of operands, the disposition of re
sults, etc. The composition of the three parts is shown below:

Size (in
number of
letters)

OPERATION

1-5

LOCATION OPTIONS
OF

OPERAND

0-4 0 ... 4

For example, Addition instructions (fixed point mode) are compos
ed of the following letters:

OPERATION

Add or
Clear Add

A
or
CA

LOCATION OF
OPERAND

The operand
from M or Q

M
or
Q

OPTIONS

In Absolute
value and/or

Store the result

A
and/or S or

blank

Thus, the possible operations are Add or Clear Add; the operand may be in
memory or in the Q Register, and the possible options are that the operand
may be in Absolute value and/or that the sum may be Stored. The following
commands are possible in addition:

AM
CAQ
AQS
CAMA
AQAS

Add Memory
Clear Add Q
Add Q and Store
Clear Add Memory in Absolute value
Add Q in Absolute value and Store.

The command part is followed by the address part of the instruction. The
address part usually specifies an address of a memory location or the number
of places to shift a word. This may be shown as

22

What to do With the word from , ~
COMMAND ADDRESS

Mnemonic instructions on the coding paper are shown below.

COMMAND ADDRESS AND REMARKS

A M 1 2 3 4" $ Add bonus

A Q s 00 4 6 $ Add overtime and store

Writing programs for the PHILCO 2000 on coding paper IS like
wrItIng a list of instructions for someone to perform a task. In each case
the writer indicates specific operations to be performed. The written
mnemonic code for the PHILCO 2000 doesn't look like computer code, but it
does meet the requirements of being legible and easily understood.

Each line on the coding paper represents one instruction; each
column or group of columns indicate a specific portion of the instruction.
The L, or Label, column may be used, if necessary, to specify whether the
instruction is a left half or a right half instruction.

The location field on the coding paper is used to specify loca
tions for the instructions, if necessary. The only need to do this arises
when one instruction must refer to another. In most cases the location
field is left blank.

The command field generally indicates the command portion of the
instruction; the address field generally indicates the address portion of the
instruction.

One PHILCO 2000 word is normally produced from two consecutive
instruction lines. This results in the first instruction becoming the left
half instruction and the second instruction becoming the right half in
struction.

In all of the illustrative examples and exercises it is assumed
that the computer instructions for each program have been stored in the
memory by a manual loading procedure. It is also assumed that the data for
each problem has been read into the memory by instructions which precede
the example or exercise. The choice of memory locations, as far as opera
tion mode IS concerned, is arbi trary - every location is the same as every
other.

In this chapter no concern will be gIven to computer representa
tion of numbers or other data. When numbers and data are shown in memory
locations or registers they are shown in English-decimal form. When the
contents of a memory location or register are not significant or zero they
are shown as 0----0, i.e., all zeros.

23

As indicated previously, two lines of mnemonic coding form one
PHILCO 2000 instruction word. The following diagrams illustrate the
computer representation of instructions:

WRITTEN MNEMONIC CODE

-~ ~

L LOCATION /
v

COMMAND~ ADDRf

0 0 6 3 I (N T M A~ , , '\
\. \.~ A M) ,

'1\ r\.. , A Q

\ T ~ M 1\

0063

0064

24

1t1 5 6 3)$
V ~O o 4 3)$

r\
1\ 0 o 9 6 $

'-1--- ./ ('""'"'\ --..
o 00 1563 0 TMA ~ ~O

"-o 00 0000 0 TAQ o 00

}
}-

become the instruc
tion word in
mpmory location 0063

become the instruc-
tion word in .
memory location 0064
unless otherwise
specified in the loca
tion column.

MNEMON
REPRESENT

IC
ATION

OF
COMPUTER M EMORY

~ . . :----......,
0043 0 AM

~096 0 !rAM

--~ .. ---- ~-......,.,'--'---""'-. ~ ~

SNVFCSN V F C

LEFT HALF
INSTRUCTIONS

RIGHT HALF
INSTRUCTIONS

The following would be the actual computer code for the left half
instruction in memory location 0063:

S N V F C S

S N

MNEMONIC
REPRESENTATION
OF COMPUTER
MEMORY

c

ACTUAL
COMPUTER
MEMORY

_----- ,----------") V

25

TRANSFERS OF INFORMATION

Transfer Instructions

One of the most common operations in data processing is the trans
fer of information from one place to another. Iliustrative data transfers
are transfers of information from magnetic tape to memory and vice versa
and of punched-card data to and from memory, transfers from memory to the
arithmetic and control sections, and transfers from one arithmetic register
to another.

Some of the functions of transfers are to provide the computer
with data to be processed, to remove data which has been processed, to pro
vide information for computer control functions, and to provide operands
for arithmetic operations.

Transfer instructions can cause

a. transfers of one word
b. transfers of address parts of words
c. transfers of single binary digits.

All other types of data transfer can be accomplished by other
classes of instructions, such as Input-Output instructions.

A transfer operation within the computer is analogous to trans
ferring a number, written in one ledger column, to a second ledger column
without affecting the original number. If there were a number in the
second column it must have been erased before the transfer occurred. Thus,
a transfer of information is a duplication of information. Also, the in
formation is permanently stored unless replaced by (or for) a transfer.
Transfer instructions in the computer duplicate a word or part of a word In
another section of the computer. The original information is unaffected by
the transfer and the contents of the receiving element are replaced.

Arithmetic transfers may be from core memory to the arithmetic
unit, arithmetic unit to core memory, or arithmetic register to arithmetic
register. This section will describe only these one word transfers. How
ever, all transfer instructions haxe the following three letter format:

Letter 1 Letter 2 Letter 3

Transfer From this To this
Location Location

26

All transfers involving the arithmetic section requ1re the following com
binations of letters:

Transfer From To

M M

T
A A
Q Q
D D

where ~!, A, Q, D are abbreviations for Memory location, A Fegister, Q Regist
er, and 0 Register, respectively. Transfers from one location to the same
location, 1.e., from~: to M or from A to A, or from Q to Q, or from 0 to D,
are not possible.

The arithmetic transfer commands and their abbreviated definitions
are as follows:

COMMAND EXPLANATION

TMA

11\'ID

TMQ

TAM

TAD

TAQ

TQM

TQA

TQD

TDM

TDA

TDQ

(M)--.... A (II)) _ . .:-; D .-'.J A

(M) --Itr ... D

(M) ---I"~Q (n,,)-····-;JJ) "',, /~

(A) --~ .. M (I~) -) D.) ,I]

(A)--~ .. D

(A) ---I"~ Q (r)):-;; D . ,I (~:~

(Q) ---I M 6..1) - ",) [j ,.) /, I

(Q) .. A, G. 'j -0 D -~Jt\

• D (Q)

(D)--~. M

(D)--~ .. A

(D)--~. Q

Transfer (M) to A

Transfer (M) to D

Transfer (M) to Q

Transfer (A) to ~,lemory

Transfer (A) to D

Transfer (A) to Q

Transfer (Q) to Memory

Transfer (Q) to A

Transfer (Q) to D

Transfer (D) to Memory

Transfer (D) to A

Transfer (D) to Q.

The parentheses are read as "the contents of", and the arrow 1n
dicates the transfer of information and the direction.

The D Register is the data register and is used 1n all arithmetic
transfer instructions even though it is not always shown. When a word is
transferred from memory to the arithmetic section, it is first transferred
to the 0 Register. Conversely, when a word is transferred from the arith
metic section to memory, it is first transferred to the D Register. The
same holds for transfe~s between registers. Therefore, several of the above

27

transfers might be shown as follows:
COMMAND EXPLANATION

TMA (M) • D then (D) ~ A

TCA «() ~ D then (D) ~ A
T(~~'} (C') • D then (D) ~ ~,~ .

Transfer instructions involvine memory require an address written
in the address column to complete the instructi·on. If the transfer does
not involve nlemory, the address column may be left blank. For example, two
Transfer instructions may be written as follows:

COMMAND ADDRESS AND REMARKS

T M A 1 0 2 4$

T Q M 1 o 2 5 $

The first of the followinG diagrams represents the arithmetic
section and the memory before the execution of the preceding instructions;
the second and third diagrams represent the arithmetic section and the
men10ry after execution of the instructions.

1. before the
instruct ions
are executed.

AR ITHMETI C SECTION

AA 123 123

RB 456 456

ADDER NETWORK

1234 ABCD

10

IA

1024

1025 WXYZ 5678 MEMORY

ARITHMETIC SECTION
2. after

TMA t 024 r--tl AA 123 t 23 \0

28

~ 1234 ABCD A

t
ADDER NETWORK

I

_~ 1234 ABCD 10
t

1024 ~r--t-;-;"';:;:';';'·"'-:-· ~-'~-'~-"-'---"'-"'-'''''''']
1025 ~~_'X_Y_Z ___ 5_67_8 ____ ~ MEMORY

~------------~

~------------~

,- ~- "-
3. after

TCiM 1025

1024
1025

AR I TH~J1ET Ie SECT I ON

AA 123 123 Q

1234 ABCD A
.\

v

ADDER NETWORK
I

t
D

,.J"" , ..

1234 ABeD
AA 123 123

MEMORY

Frequently it is necessary to store an arithmetic result or other
quantity in memory. This may either be a final or intermediate result. In
either case it must be decided which particular memory location to use. The
following factors are guides in making this decision:

a. Final results are usually stored in a special output
area In memory.

b. Unless the input data is to be reused, input data
areas may be used as output storage areas.

c. Any unused areas of memory may be used for inter
mediate storage.

In the examples on page 28 particular locations were chosen to
illustrate a variety of storage uses. In preparing solutions to exercises,
any locations may be used unless a specific location is designated.

Clear Instructions

Clear instructions are similar to Transfer instructions. These
instructions - CM, CA, CD, and CQ - clear a location to zero. Unlike the
Transfer instructions, however, the D Register is not affected, except in
the CD instruction.

ARITHMETIC

Addition and Subtraction

In the PUILCO 2000, addition and subtraction take place with
operands in the A and D Registers, such that

and
(A) + (0)- A

(A) - (0)- A.

TIlis is read as the contents of the D Register are added to or subtracted
from the contents of the A Register, and the result is placed in the A
Register.

Prior to the addition or subtraction instruction, one operand,
the augend or minuend, must have been placed in the A Register by a Transfer
instruction or another arithmetic operation. The particular Addition or
Subtraction instruction transfers the other operand from memory or from the
Q Register to the D Register. However, the instruction may utilize the
existing word in D. The addition or subtraction then takes place between
the contents of A and D with the result going to A, as illustrated above.

29

Arithmetic operations in the 2000 are performed similarly to
those done on a scratch pad by a person. The person writes down the two
numbers - just as the 2000 places the two numbers in the A and 0 Registers.
The arithmetic is then performed. The person writes the result on the pad
for further use - just as the 2000 places the result in the A Register.
This may be illustrated as follows:

10--01247 A 0- 0507634 A

+ 10--0436 D 0 04271 D

10-- 01683 A 0- 0503363 A

When an operand comes from memory or the Q Register, either, both,
or neither of the two options, A and S, are possible. Tile absolute value of
the operand may be added or subtracted and the result may be stored in a
specified memory location. (Vertical lines on either side of a location are
read as "the absolute value of. ")

(A) ± I MI~M

(A) ± I QI--+-M

When an operand is in memory and the result is to be stored in memory, only
one memory location is affected, and the operand is replaced by the arith
metic result.

Addition and subtraction commands may be graphicaI'ly illustrated
as follows:

Operation Operand Options

Add Operand In
or to or from Absolute

Subtract (A) value

Store
result

The following letters are used to make up the commands:

Operation

Add

I
A

Operation

Subtract S

30

Operand

M

Q

Operand

M
Q

Options

A
S

Options

A
S

As in the Transfer instructions, a result IS first transferred to
the 0 Register before it is stored.

The preceding arithmetic operations, therefore, would be shown as
follows:

a. (M) or (Q) • 0

b. (A) ± [(D) or 10\] ~A
c. (A)~ D, (D)~ M, when the result is stored.

The basic addition and subtraction operations are

(A) ± [(M) or (Q) or (D)] ---... A.

Clear Add, Clear Subtract

Supplementing the above instructions are the Clear Add and Clear
Subtract instructions which clear the A Register to zero before adding or
subtracting is accomplished. The Clear Add and Clear Subtract instruciions
may be written by prefacing the instructions on page 30 with a C.

TIle Clear Add instructions, in effect, result in one-word trans
fers. If the absolute value of the operand is used, the magnitude of a
number, regardless of its sign, is transferred. Clear Subtract instructions
transfer numb~rs with signs opposite to the oriGinal signs. In the floating
point mode, these instructions can be used to normalize numbers.

Other Addition and Subtraction Instructions

The Addition and Subtraction instructions, AD and SD, use the
existing word in the 0 Register with no options possible. The contents of
the 0 Register are added to or subtracted from the contents of the A Register
and the result is placed In the A Register. This is illustrated as follows:

(A) ± (D) • A

However, the Addition and Subtraction instructions may be executed
In the floating point mode by preceding the conunand with an." F".

All fixed point addition and subtraction commands, including
abbreviated definitions, are listed on the following page.

31

COMMAND EXPLANATION MEANING

AD (A) + (D) -t A Add 0

AM (A) + (M) A Add Memory

AMA (A) + 1M 1 A Add Memory, Absolute

'AMS (A) + (M) -t M Add Memory, Store

AMAS (A) + I M I -t M Add Memory, Absolute
and Store

AQ (A) + (Q) A Add Q

AQA (A) + I Q I -t A Add Q, Absolute

AQS (A) + (Q) -t M Add Q, Store

AQAS (A) + I Q I -t M Add Q, Absolute and Store

CAM 0 + (~n -t A Clear Add Memory

CAMA 0 + I M I -+ A Clear Add Memory,
Absolute

CAMS 0 + (M) -t M Clear Add Memory, Store

CAMAS 0 +IMI -t M Clear Add Memory,
Absolute and Store

CAQ 0 + (Q) -t A Clear Add Q

CAQA 0 + I Q I -t A Clear Add Q, Absolute

CAQS 0 + (Q) -t M Clear Add Q, Store

CAQAS 0 + I Q I -t M Clear Add Q, Absolute
and store

SD (A) - (D) -t A Subtract D

SM (A) - (M) -t A Subtract Memory

SMA (A) - I M I -t A Subtract Memory, Absolute

SMS (A) - (~1) -t M Subtract Memory, Store

SWIAS (A) - I M I -t M Subtract Memory, Absolute
and Store

SQ (A) - (Q) -) A Subtract Q

SQA (A) - IQ I -~ A Subtract Q, Absolute

32

COMMAND EXPLANATION MEANING

SQS (A) - (Q) -+ M Subtract Q, Store

SQAS (A) -I·Q I M Subtract Q, Absolute and
Store

CSM 0 - (M) A Clear Subtract ~":emory

CSMA 0 -I MI A Clear Subtract ~1emory ,
Absolute

CSMS 0 - (M) M Clear Subtract Memory, Store

CSMAS 0 - I MI M Clear Subtract Memory,
Absolute and Store

CSQ 0 - (Q) A Clear Subtract Q

CSQA 0 - 1 QI A Clear Subtract Q, Absolute

CSQS 0 - (Q) M Clear Subtract Q, Store

CSQAS 0 - I QI M Clear Subtract Q, Absolute
and Store.

Micro-Flowcharts

Tl~ following two figures, called micro-flowcharts, graphically
illustrate all possible additions and subtractions. The ovals containing
questions represent computer functions which are necessary whenever an
arithmetic order is interpreted by the computer. The operations of one
complete and particular operation may be seen by tracing through the flow
chart from "Select Instruction" to "Select ~rext Instruction. U Certain de
tails, which will be explained in a later chapter but which do not affect
the basic operation, have been omitted from the flowcharts.

Note that in these flowcharts, as in others to follow, each branch
on the chart produces another subclass of instructions.

;\
(\

F/\

Ci~
FC{\

1! \

rn

i () -, --..

1-\

-I - \
I I

I \

\,"' ... ,..--.1

1'1,\

33

Figure 3. MICRO-FLOWCHARTS OF ALL ADDITION INSTRUCTIONS

I. IF THE ADDEND IS IN THE D REGISTER:

(A)+(D)~A

2. IF THE ADDEND IS IN MEMORY OR THE Q REGISTER:

HO

~---- YES ,...-----,
IS ADDEND -=.t L
IN M01ORY? I (M)~D If

NO

ABSOLUTE -

VALUE OF

ADDEND?

NO

I !)'I--~/ [«',)-1
CD .:~H- (~i) ---,.' ,;:~

STORE THE

THE

SUM?

YES

w
CJ1

Figure 4. MICRO-FLOWCHARTS OF ALL SUBTRACTION INSTRUCTIONS

2. IF THE SUBTRAHEND IS IN MEMORY OR THE Q REGISTER:

CLEAR

SUBTRACT?

NO

IN MEMORY?

NO

The following example illustrates the Addition, Subtraction, and
Transfer instructions:

Example 1

A basic inventory operation 1S to add the quantity of an item of
stock on order to the amount of stock on hand and then to subtract from
this sum the quantity of the stock sold. This is a part of the operation
known as updating an inventory.

If the following numbers represent quantities of a particular
kind of transistor:

a. amount of transistors on hand: 11,463

b. amount of transistors on order: 5,000

c. amount of transistors sold: 7,500,

then the updated inventory (new amount on hand) would result from the fol
lowing arithmetic:

11,463 + 5,000 - 7,500 = 8,963.

With data stored in the following memory locations, the problem is
to perform the arithmetic described above and store the new on-hand amount
1n memory location 3971:

T M

A M

S M

T A

Memory Location

3968
3969
3970

The coding to do this follows:

Contents

On-Hand Amount
On-Order Amount
Sold Amount

COMMAND ADDRESS AND REMARKS

A 3 9 6 8 $ Transfer 0h Hand to A

3 9 6 9 $ Add 0n ~rder to A

3 9 7 o $ Subtract Solel from A

M 3 9 7 1 $ Transfer result to memory

Diagrams of the arithmetic section and the memory follow.
Diagram 1 represents the two areas before the execution of the preceding
instructions. Diagrams 2 through 5 represent the arithmetic section and
the memory after execution of each instruction. The numbers shown in the
registers and memory locations are assumed to be properly aligned. Treat
ment of non-aligned numbers will be glven in Chapter VI.

36

2. after
TMA 3968

3968

3969

3970

3971

4. after
SM 3970

3968

3969

3970

3971

1. before the
i nst ruct ions
are executed

ARITHMETIC SECTION

-~I 0 0 f 0

1 0 0 IA
t ,.

ADDER NETWORK
I
f

-~ 0 0 ID
t

, ~~-~-~
'1.463 3968

3969

3970

5.000 ~.iEMORY

ARITHMETIC SECTION

···1 0 0 10

i 11.463 IA
;

ADDER NETWORK ,
t

-.;I 11.463 ID
t

-- J - ../"--

11.463

5.000
7.500

0 0

-
ARITHMETIC SECTION

-..t 0 0 IQ

~ 8.963 A

" .. '
ADDER NETWORK

I

t
ID ~I 7.500

4
v - 1 ---' --

" .463
5.000

7.500
0 0

I-y -~

7.500

0 0

I,,~ ~

MEMORY

MEMORY

3. after
AM 3969

3968

3969

3970

3971

5. after
TAM 3971

3968

3969

3970

3971

ARITHMETIC SECTION

~ 0 0 0

~ 16.463 A

_I

ADDER NETWORK

I

t
L:J 5.000 ID

+
A. -,J-,- -.r-"V

11.463

5.000

7.500

0 0

w..: - --

ARITHMETIC SECTION

-.j 0 0 0

~ R 9fi3 A

:
ADDER NETWORK

I
t

L:I 8.963 D

t
'V". ---- J -, ~ -

11 dfi~

5.000
7 500

8.963

-'" - """"---~

MEMORY

MEMORY

37

T

If it were desired to store the new on-hand amount in memory lo
cation 3970, only three instructions would be necessary. The third instruc
tion would be SMS 3970: subtract the contents of memory location 3970 from
the contents of the A Register and store the difference in memory location
3970. It should be realized that in doing thi~ the amount sold is erased
and replaced.

Similarly, if it were desired to replace the original on-hand
amount with the new on-hand amount, the following instructions could be
used:

COMMAND ADDRESS AND REMARKS

M A 3 9 6 9 $ Transfer 9n-YJrder to A

SM 3 9 7 o $ Subtract Sold from A {on order}

A M S 3 9 6 8 $ Add (On-Hand to A and .store the sum In 3968

Example 2

The f.allowing figures for an employee's paycheck are stored In
memory as shown:

Memory Location Contents

3968 Gross Base Pay

3969 Overtime Pay

3970 Social Security Tax

3971 City Income Tax

3972 Federal Income Tax

Calculate the employee's net pay and store it In memory location
3973.

Solution:

COMMAND ADDRESS AND REMARKS
T M A· 3 9 6 8 $ Transfer Gross Pay to A

AM 3 9 6 9 S Add 0vertime Pay to Gross Pas:
S M 3 970 $ Subtract Social Security Tax

S M 3 9 7 1 $ Subtract City Income Tax

S M 3 9 7 2 $ Subtract Federal Income Tax

T A M 3 9 7 3 $ Transfer net pay to memory

38

Exercises

1. Add the number from memory location 3840 to the numbers in
memory locations 3968 through 3970. Each sum should replace its operand
in 3968 through 3970.

2. Memory locations 3968 through 3972 contain numbers repre
senting cash receipts. Compute their sum.

Multiplication

Several types of multiplication are possible in the PHILCO 2000.
For each type, the multiplier must first be placed in the Q Register. This
may be accomplished by a Transfer instruction, a Division instruction
(quotients are developed in the Q Register), or a Shift instruction. The
Multiplication instruction transfers the multiplicand to the D Register
from a specified memory location or from the A Register. The actual multi
plication then follows between the contents of the D and Q Registers.

One of two types of products may be specified in multiplication:
unrounded double length products or rounded single length products. A
double length product appears in the A and Q Registers, with the major half
in A and the minor half in Q. In rounded multiplication the single length
product appears in the A Register with the multiplier reappearing in the Q
Register. Basic multiplication is shown in the formula,

[(M) or (A)] x (Q) ---.... A, Q.

In each of the multiplications the options of storing the product
(or major half of the product) and of using the absolute value of the multi
plicand are possible. These operations may be shown symbolically as fol
lows:

x

(}1 1 J~j ,\ I. . ..J ,) c,.! 7(/"//1..,) l/('d"

a. (M) or (A) • D

b o [(0) or IDI] x (Q) .. A, Q unrounded
or • A rounded

c. (A) .. D, (D) .. M, when the result is stored.

A double length multiplication IS illustrated as follows:

+000000123450000 D

+000000678910000 Q

+000000000000083 +811439500000000
Q A

(Note that the + signs are illustrative only.)

,1/,_,. ", iJ /:. /, .,'" J
I ' r " C .. ' / I. _,J , ," "

J') I '/ /,/') ,I" , ' / ,(. / ; I , ., .. I . #.. " (' e.

1

•

./
,'; \ 7

39
"

The multiplication command is constructed as follows:

follows:

COMMAND

MM

MMR

MMS

MMRS

MMA

MMAR

NTh/lAS

MMARS

MA

MAR

MAS

MARS

MAA

MAAR

MAAS

MAARS

40

Operation Operand Options

Multiply (M) or (A) Absolute operand
and/or

by (Q) Rounded result
and/or

Store result

M A A
F (I') M R

S

A list of multiplication commands and abbreviated definitions

EXPLANATION

(M) x (Q) -t A,Q

(M) x (Q) -t A, rnd.

(M) x (Q) -t M,Q

(M) x (Q) -t M rnd.

IMI x (Q) -t A,Q

IMI x (Q) -t A,rnd.

IMI x (Q) -t M

IMI x (Q) -t M rnd.

(A) x (Q) -t A,Q

(A) x (Q) -t A rnd.

(A) x (Q) -t M

(A) x (Q) -t M rnd.

IAI x (Q) -t A,Q

IAI x (Q) -t A rnd.

IAI x (Q) -t M

IAI x (Q) -t M rnd.

MEANING

Multiply Memory

Multiply Memory and Round

Multiply Memory and Store (A)

Multiply Memory, Round and
Store (A)

Multiply Memory in Absolute value

Multiply Memory in Absolute value
and Round

Multiply Memory in Absolute value
and Store (A)

Multiply Memory in Absolute value,
Round and Store (A)

Multiply A

Multiply A and Round

Multiply A and Store (A)

Multiply A, Round and Store (A)

Multiply A in Absolute value

Multiply A in Absolute value and
Round

Multiply A in Absolute value and
Store (A)

Multiply A in Absolute value,
Round and Store (A)

Figure 5. MICRO-FLOWCHART OF ALL MULTIPLICATION INSTRUCTIONS

NO

,
t
!

V
----- ___ . \i

J'"

\
\

- --.-~- -----

-(.t» :. ~ 0-(-) -.:. /\~~~\

NO NO

NO

~---1" (D)X (O)-e.A, 0

! /JO
L ___ -

Special Multiplication Commands

Two special Multiplication instructions are possible in the
PHILCO 2000. They are Multiply and Add (MAD) and Multiply and Subtract
(MSU). The first step in each multiplication is .(M) • D. Then this
word is transferred to a duplicate of the D Register for the multiplica-
tion, and (A) • D. The ~ultiplication yields a rounded product in A,
and the contents of the Q Register are unaltered. The .contents of the D
Register are then added to or subtracted from the contents of the A Regis
ter, and the result replaces the contents of the A Register. At the con
clusion of these instructions, theD Register contains the original contents
of the A Register. Instruction MAD is especially useful for accumulating
the sum of the products of two series of numbers.

/m) -7J)-·",,1)~'.f . ('/) ') ... ,} i) . (Al -7 I."\~). 'r':)~., (D) -,;',..':Q,' Q~--:' (;1 ',,'J 'i..,. (\'J -': '/\ C'., ',' /" '.") y U(" /") .,

Example 1

Compute the total cost of purchasing a quantity of items based
on the following information and store the result in memory:

Memory Location

3968

3969

3970

Contents

Quantity Purchased
Unit Cost

Percentage Discount

As stated previously, no consideration will be given to the for
mat of the numbers u~ed in the example. Also it will be assumed that the
significant digits of the products are only in the A Register. As will be
shown in the next chapter, the programmer can ensure this result by a suit
able arrangement of the data.

The necessary arithmetic in this example 1S (Quantity x Cost) x
(1-% Discount). Numerous coding solutions are possible for this arithmetic
operation. The following solution has been chosen because it is straight
forward:

COMMAND ADDRESS AND REMARKS

T M Q 3 9 6 8 $ Transfer Quantity, (3968) to Q

M M 3 9 6 9 $ Unit Cost x Quantity to A, Q

T AQ Transfer(Unit Cost x Quantity) (A) to Q

M MR S 3 9 7 o S Multiply % x (Q) to A and 3970

T QA Transfer (Unit Cost x Quantity) (Q) to A

S MS 3 9 7 0 $ Subtract Discount (3970) from (A) to 3970

42

The following diagrams, which illustrate the effects of the pre
ceding coding on the registers and memory, use the numbers below:

2. after
TMQ)968

3968
3969
3970

a. quantity purchased: 75

$.15 b. unit cost:

c. % discount: 10% (.10)

ARITHMETIC SECTION

1. init ial condit ions
-~ 0 0 10

~ 0 0 A

:
ADDER NETWORK

I

t
L:I 0 0 D

t
-.. - -,-,,-~- -~

75 3968

3969
3970

.15 MEMORY

.10

~ -
ARITHMETIC SECTION

-,.1 75 I

~ 0 0 A

t
ADDER NETWORK

I
t

~ 75 ID
t
+ -........

75
.15
.10 MEMORY

~ --"""---

--

.3. after
MM)969

3968
3969
3970

ARITHMETIC SECTION

--\. a 0 10

~ 11.25 A

t
ADDER NETWORK

I
f

L:t .15 D
I
~ --
7~

.15

.10

~
_

_!.-o..

MEMORY

43

4. after
TAO

3968

3969

3970

6. after
TQA

44

3968

3969

3970

ARITHMETIC SECTION

~ 11.25 0

~ 1 t .25 A

+
ADDER NETWORK

± :f 11.25 D

t
- 1 -- '"'

75

.15

.10

v- -~

ARITHMETIC SECTION

r-4 11.25 o

~I 11.25 A
~----,..---.,....---I

1
ADDER NETWORK ,

t
L.!I 11.25 D
~''------"r------'

_---_1-- - -
75

• 15

1 . 13

~?-----~--....---~~-

MEMORY

MEMORY

5. after
MMRS ,3970

3968

3969

3970

7. after
SMS ,3970

3968

3969

3970

r-+I 11.25 0

~I 1.13 A

l
ADDER NETWORK

I
i

L':f 1.13 D
f

............ --.....- •• ---- -
75

.15 MEMORY
1.13

- -~'--V'-'

ARITHMETIC SECTION.

r+1 11 .25 10
~ 10.12 IA

t
ADDER NETWORK ,

1
~ 10.12 D ,
----~ ~- -

75

.15 MEMORY
10 1?

i..ov' - -- ~

Example 2

Although instruction MAD is normally used in matrix and statis
tical calculations, it will be helpful in the following type of operation:

Gross pay c hours x rate + overtime hours x overtime rate.

The factors are stored in the following memory locations:

Memory Location

3968

3969
3970

3971

Contents

Hours Worked

Base Rate of Pay
Overtime Hours

Overtime Rate of Pay

The coding to calculate gross pay IS

COMMAND ADDRESS AND REMARKS

T M Q 3 9 6 8 $ Hours -Q

M M 3 9 6 9 $ Hours x Rate - A, Q

T M Q 3 9 7 o $ ~ertime Hours -. Q

M A D 3 9 7 1 $ «({)vertime Rate x Y'vertime Hours) +

Hours x Rate - A

Exercise 1

Part of a production problem requires that the cost of manufactur
Ing parts be calculated. The data includes the quantity of assemblies to be
produced, the number of parts per assembly, and the unit cost per part.
Compute the cost by multiplying Number of Assemblies x Number of Parts per
Assembly x Unit Cost. Store the result in memory location 3971.

Exercise 2

Memory Location

3968
3969

3970

3971

Contents

Number of Assemblies

Number of Parts per Assembly

Unit Cost

Result

Memory locations 3968 through 3970 contain gross amounts due by
customers. Each one is to be discounted by multiplying it by the factor in
memory location 3967. (This number is actually a discount percentage sub
tracted from one.) Replace the gross amounts with the discounted amounts.

45

D 1 \) \ LA.: ; '; \ >" 1\) , ;' \ (-.,) (t})

D \ V \ ';;:. () (.: C D
-_) 0 U_' r) --r' / /;~: I".,' /-.' -,'- ") , J)

~ t. '-- - { •• t'.' }l/- /\,~ __ .~ .. " i

Division

In the 2000, division involves single length or double length
dividends. In double length division the dividend is in the A and Q Regis
ters, with the major half in A and the minor half in Q. The sign of Q is
ignored. In single length division, the dividend is only in A. In both
cases the divisor is selected from memory and is placed in D.

The dividend must first be transferred to A, or A and Q, by trans
fer orders or by arithmetic operations. A double length dividend can be
created by an unrounded multiplication. Then the Division instruction
transfers the divisor from memory to the D Register, division proceeds, and
the quotient is developed in the Q Register with the remainder appearing in
A.

There are four divide orders. These operations may be shown sym-·
bolically as follows:

a. (M) - D

b. [(A) or (A,Q)J + (D) -+ Q, remainder - A

c. (Q) - D,(D) - M, when the result is stored.

The following are the division commands and their abbreviated sym
bolic definitions:

46

COMMAND EXPLANATION

DA CA) (M) - Q

DAS (A) (M) -M

DAQ (A,Q) + (M) - Q

DAQS (A,Q) + (M) - M

I

/UL ~\ -:9 __ 1_9.1 :) 0

\0:0\10 0
I

'11 , I

MEANING

Divide A

Divide A and Store

Divide A and Q

Divide A and Q and Store.

(M) -> D

Figure 6. MICRO-FLOWCHART OF ALL DIVISION INSTRUCTIONS

I--~ (A, Qr. (D}->Q
REMAINDER-> A

NO

(A) -:- (D) -> Q

1----81 REMA I NDER -> A

(Q) ~ D f-. (D) ~ M

NO

Division is more time consuming than any other arithmetic opera
tion and, if possible, should be avoided. Two ways of doing this are multi
plication by the reciprocal of the divisor, and shifting, which has the ef
fect of dividing by a power of two. Shifting will be explained in more de
tail ln Chapter VI.

Example

Memory locations 3968, 3969, and 3970 contain the cost of living
indices for three years. Compute, and store in memory, the average index,
i.e., (Index 1 + Index 2 + Index 3) + 3 = Average Index.

T

A

A

D

(Assume a constant of 3 in memory Iocation 3967.)

COMMAND

M A

M

M

A S

3 9 6 8 $

3 9 6 9 $

3 9 7 o $

3 9 6 7 $

Memory Location

3967

3968

3969

3970

ADDRESS AND REMARKS

Trans fer Index 1 t·o A

Add Index 2 + (A) -A

Add Index 3 + (A) -A

Divide (A) by 3 - 3967

Contents

3

114

130

140

The following illustrations show the effects of the preceding instructions
on the memory and arithmetic section.

48

2. after
TMA .3968

3967

3968
3969

3970

4. after
AM .3970

3967
3968
3969

3970

ARITHMETIC SECTION
1. initial

condit ions

3967

3968
3969
3970

ARITHMETIC SECT:ON .-

-I O-----{) --lo

~L 114 IA

~
ADDER NETWORK

I
t

,-tf 114 D

t
~ --------

3

H

-:I

"'-

,,-.../

114 MEMORY
130

140

"'-./ --------~
ARITHMETIC SECTION

--I 0 0 10

~ 384 A

t
ADDER NETWORK

I
+

-:I 140 D

+
...- ----- + ~ ~

3
114 MEMORY
130

140

..-v'
_ -

0 0 Q

0 0 A

t
ADDER NETWORK

I
-,-

0 0 0

-of

- ~ ___-- l'

3

114 MEMORY
130
140

..3. after

AM .3969

5. after

3967

3968
3969

3970

DAS .3967

3967
3968
3969

3970

ARITHMETIC SECTION

~ 0 0 I 0

~ 244 A

~

ADDER NETWORK
I
t

"-~ 130 D

t
..... ____.___........,1 ~ ---

3

114
130

140

IA..r -- --..........

ARITHMETIC SECTION

~- 128 0

-I 0 0 A

1
ADDER NETWORK

I
t -:r 128 D ..

"'.- ---- -~ -- - ~
128
114
130

140

"...,- --.-- - -:.--

MEMORY

QUCTIENT

REMAINDER

MEMORY

49

,.- .
I

Exercise 1

The following information 1S glven:

Memory Location Contents

3968 The Number of Sales for Month 1

3969 The Number of Sales for Month 2

3970 The Number of Sales for Month 3

3971 The Total Dollar Receipts for Month 1

3972 The Total Dollar Receipts for Month 2

3973 The Total Dollar Receipts for Month 3
"-
.~

a. Compute the Average number of Sales for one month.

b. Compute the Average dollar Receipts for one month.

c. Compute the Average dollar Receipt for the Average monthly Sale.

1. Sales 1 + Sales 2 + Sales 3 • Average Sales f\ 'I

3

2. Receipts 1 + Receipts 2 + Receipts 3 = Average Receipts
3

3. Average Receipts
----~------~--c Average Receipt/Sale
Average Sales

Sales

Sales

Sales

-(Assume, as always, that.,the operands will be properly aligned throughout.
Also assume that the number 3 is stored in memory location 3967.)

Exercise 2

An airplane travels a prescribed course of length (L) a number of
times. It travels the course x times in a period of time (tl)' y times in

a period of time (t2)' and z times in a period of time (t3). Compute the
airplane's average rate of speed.

L (x + Y + z
R = ---------------

50

SUMMARY: TRANSFERS AND ARITHMETIC

a. Data transferred between memory and the arithmetic section
and within the arithmetic section passes through the D Register.

b. The transfer instructions are

T (From Location 1) (To Location 2).

The locations are M, A, Q, D; location 1 can not be the same as
location 2.

c. The basic arithmetic operations are

Addition: (A) + [(M), (Q) , or (D) J t A

Subtraction: (A) - [(M) , (Q) , or (D)] t A

Multiplication: [(M) or (A)] x (Q) -+ A, Q, or A rounded

Division: [(A) or (A, Q)] (M) -+ Q, Remainder -+ A.

In every case except AD, SD, ~~D, MSU, and division, the absolute
value of one operand may be used.

d. Arithmetic rules of thumb:

1. Use replace type operations when the result is needed
in memory and when one instruction less will be necessary.

2. When transferring a word from one memory location to another,
use only the 0 Register. This saves time and doesn't disturb
the other registers.

3. Whenever possible, keep an addition or subtraction operand
which is to be used again in the Q Register to save memory
access.

4. If possible, use an operand from the 0 Register. This pro-
vides the fastest operation speed.

5. Use addition instead of multiplication.

6. Use multiplication instead of division.

7. Use shifting instead of multiplication or division.

8. When computing the product of several numbers, each partial
product may be transferred from the A Register to the Q
Register for the next multiplication.

9. To accumulate the sum of products use MAD. The sum rema1ns
in the A Register while the products are formed between the
contents of Q and M.

10. The contents of all registers and memory locations are unal
tered by transfers from the registers and memory locations.
Thus, in store type arithmetic operations the results are re
tained in the D Register and the original register (A or Q
Register). The results may then be used without additional
transfer operations.

Sl

FUNCTIONS OF ARITHMETIC REGISTERS

IN ARITHMETIC OPERATIONS

(Result Not Stored)

Operation Time A Register D Register Q. Register

Before operation Augend Addend -
Addition

After operation Sum Addend -
Before operation Minuend Subtrahend -

Subtraction
After operation Difference Subtrahend -

Multiplication: Before operation - Multiplicand MIltiplier

Ihuble Length
Left half Right half

Product After operation
of product

Multiplicand
of product

Multiplication: Before operation - Multiplicand Multiplier
Rounded

Product Rounded Multiplicand Multiplier After operation Product

Left half Divisor Right half Division: Before operation of dividend of dividend Double Length

Dividend After operation Remainder Divisor Quotient

Division: Before operation Dividend Divisor -
Single Length

Dividend After operation Remainder Divisor Quotient

Note that when the result is stored in memory, the D Register will contain
the result rather than the operand shown in the table.

52

DECISION MAKING

Electronic data processing systems have proven very valuable in
their" ability" to make simple, routine decisions. So significant is this
feature that eventually all routine decisions might be made by machines,
and management's time would be reserved for" the exception" decisions.

Routine decisions are those which result from answering such
simple questions as

a. Does the employee have a bond deduction?

b. Is there a transaction for this record?

c. Has the customer remitted?

d. Have the deductions reduced a loan balance to zero?

On the basis of the answers to these questions appropriate action can be
initiated.

Although these questions appear dissimilar they can be general
ized as follows:

a. Is a number positive? negative? zero?

b. Is one identifying number or name equal to another?

c. Is one identifying number or name greater than another?
~ Less than another?

The PHILCO 2000 can "answer" the first category of questions bY"examin
ing" the contents of an arithmetic register to" see" if its contents are
positive, negative, or zero. It can answer the other questions bY"com
paring" the contents of two arithmetic registers to" see" if the contents
of one are equal to, or greater than another.

Jump Instructions

To enable the 2000 to make decisions, Jump instructions have been
provided. Depending upon the answer to a question, each Jump instruction
is followed by one of two possible courses of action. Either the normal
sequence of executing instructions is maintained, or it is interrupted, and
a new sequence is begun.

The definitions that follow summar1ze the preceding statements and

53

apply throughout this manual:
a. Jump: The operation that causes the computer's control sec

tion to select the next instruction to be executed from the memory location
specified by t-he address part of a Jump instruction. This interrupts the
normal sequence of executing instructions.

b. Conditional Jump Instruction: An instruction which causes a
jump to be effected if certain conditions (usually within the arithmetic
section) are satisfied. If the conditions are not satisfied, the next in
struction to be selected will be the next sequential instruction.

c. Unconditional Jump Instruction: An instruction which causes
a Jump independent of any conditions.

The PHILCO 2000 jump command codes begin with the letter J. The
letters that follow the J specify the type of jump or the conditions. The
following are jump commands:

JMP: Unconditional Jump

JAN: Jump if (A) are Negative

JAP: Jump if (A) are Positive

JAZ: Jump if (A) are Zero

JDP: Jump if (D) are Positive

(Note that "positive" assumes only that the sign bit of a word is zero;
u negative" assumes tha t the sign bit is one.)

The last four "if" jump commands are conditional jump commands. A graphic
representation of conditional Jump instructions follows:

STORE
ADDRESS OF

NEXT SEQUENTIAL
INSTRUCTION

IN JA

ARE
CONDITIONS
SATISFI ED?

YES
JUMP

SELECT NEXT
SEQUENTIAL
INSTRUCTION

(The reason that the address of the next instruction 1S stored in JA will be
given in Chapter VII.)

The complete PHILCO 2000 Jump instruction consists of a command
part and an address part

COMMAND ADDRESS

JMP

which reads: Jump to ••••••••• the instru~tion at this,location.
;'.,

54 .

L

. .

The designation of the location jumped to may be any name, number, or com
bination of letters and numbers, necessary to identify the instruction to
be executed following the jump. This designated location is called the
"jump to address or location", and the instruction at this address is call
ed the" jump-to instruction".

Example

The following illustrative example illustrates the addressing re
quirements for Jump instructions:

Memory Location Contents

3968 Loan Balance

3969 Loan Payment

3970 Number of Active Loans

3971 Number of Cleared Balances

Compute the new loan balance. If it equals zero, add one to the
number of cleared balances. If it doesn't equal zero, add one to the
number of active loans. Assume that the constant of one is in memory loca
tion 3972.

For the sake of simplicity, only the instructions relating to the
above operations are shown.

LOCATION COMMAND ADDRESS AND REMARKS
C S M 3 9 6 9 $ o - Loan Payment - A

A M S 3 9 6 8 $ Loan Balance + (A) - 3968

J A Z Z R 0B A L $ Jump if (A) are zero

T M A 3 9 7 2 $ Add one to Number of

A M S 3 9 7 0 $
} Active Loans

.
Z R 0 B A L T M A 3 9 7 2 $ Add one to Number of

A M S 3 9 7 1 $ Cleared Balances

55

This coding is read as follows:

a. Subtract the payment from the loan balance.

b. Test (A) for zero.

c. If (A) are zero, execute the instructions TMA 3972,
AMS 3971 - at location ZROBAL.

d. If (A) are not zero, execute the next sequential
instructions: TMA 3972, AMS 3970.

Symbolic Addressing

By now the reader is aware that symbolic addressing is a coding
convenlence. Before executing the program, the Translator-Assembler
Compiler will assign computer memory addresses to all symbolic addresses.
If the programmer wants to have "jump to" coding begin in a particular
memory location he writes the address of this memory location in the address
part of the Jump instruction and the location column pf the" jump to"
instruction.

Unless the" jump to" address is known, it is convenient to tempo ..
rarily omit the address parts of Jump instructions. Following a condition
al Jump instruction, write the coding for the no jump case. After this,
the next line can be used to begin the" jump to" coding, and the address
part of the Jump instruction can then be completed. Caution must be exer
cised that the blank" jump to" addresses are filled in. Otherwise, they
will cause jumps to memory location zero.

Equality Comparisons

Numeric or alphanumeric words may be compared for relative magni
tude or equality. The two PHILCO 2000 jump commands performing equality
comparlsons are

JAED:

JAEQ:

Jump if (A) equals (D)

Jump if (A) equals (Q).

All comparisons in the computer take place between the A and D
Registers. Therefore, in a comparison between the contents of the A and Q
Registers, the contents of Q are automatically transferred to D, thereby
erasing the contents of D.

56

Magnitude Comparisons

The two instructions JAGD and JAGQ cause magnitude comparisons.
One number, or group of symbols, is compared to another riumber or group of
symbols to determine their relative magnitudes. For comparison purposes, a
word in the PHILCO 2000 should be considered either as a signed number or as
an alphanumeric word.

If the word is alphanumeric it' consists of eight binary-coded
characters, whose relative values or weights can be determined from the
subsequent chart. Then, depending on whether the words to be compared are
alphanumeric or numeric, the appropriate Jump instruction is selected. The
following Jump instructions cause magnitude comparisons:

JAGD: Jump if (A) are greater than or equal to (D).

JAGQ:

The contents of the registers are considered
to be alphanumeric. ----.... -.. -"' .. ~-

Jump if the number in A is greater than or
equal to the number in Q. (If the numbers
are floating point numbers use JAGQF.) The
contents of the registers are considered to
be signed numbers.

Representation of Characters

, '\ >- \'\ "'J i / ,J

;\

i,

I;

To make magnitude comparisons, every representable character must
have a size or weight to distinguish it from every other character. This is
analogous to the different values of numbers, i.e., 1 is smaller than 2; 3
is larger than 1, and so on.

The weights are determined by the six binary digits representing
each character as shown in the table, PHILCO 2000 Binary Code for Alpha
numeric Characters (page 58). The first two bits of each character are the
Zone bits and the last four bits are the Numeric bits. Thus the binary con~
figuration for the letter A appears' as 010001 and contains an 01 zone and an
0001 numeric part.

The smallest configuration is 000000, and the largest is 111111.
Within a column the lower characters are larger than the higher characters,
i.e., H(011000) is larger than A(OlOOOl). From column to column, every
character in a column is larger than any character in a column to its left,
i.e., -(100000) is larger than 0(000000), but is smaller than 6.(110000).

Use of this table 1S illustrated by two alphanumeric compar1sons
uS1ng the JAGD instruction.

A Register D Register Jump ?

12345678 .2345678 No

ABC12345 ABC12344 Yes

Referring to the table, 1 is represented by 00 0001 while the period (.) 1S
represented by 011011. Since 1 is not greater than. , the jump is not
made.

57

PHILCO 2000

BINARY CODE FOR ALPHANUMERIC CHARACTERS

~ 00 01 10 11
Numeric

0 20 '10 GO 0000 0 + - D.

0001
I

/ 1 A J
L

0010 2 B K S

" 0011 3 C L T
,.1

0100 4 D M U

0101 r 5 E N V

0110 ~
6 F

I
rf w

7
0111 7 G P X

o 1(,) ~o SD 70

1000 8 H Q Y
I

1001 9 I R Z

1010
2- -5;1>(, --, I @ n
.,

• F''I.\~ ,(1011 = $ CC)"J I' .'"._0 ,

1100
<,

) * (;

1101 J'

% < > :E

1110
,

& ? 11 :

7
F~i:;:~S,

Cl'/ rj
1111 , tI, e ft I)

L-..J /,V/lV,}

D.: Space symbol
Example

)

x >1 X v,/
'-.~;.) ,:'-,:': .. :'.:- ,,,)

20lJt: ()Ur1I c,;,'IC:.

D\T~:,

Memory locations 3968, 3969, and 3970 contain information for an
inventory record. Memory locations 3840 and 3841 contain information for
a transaction record.

58

Memory Location
3840
3841
3968
3969
3970

Contents
Transaction Stock Number
Amount Ordered
Inventory Stock Number
On-Hand Amount
Minimum Required Amount

a. If the stock numbers are the same (a match), perform
the processing defined below.

b. If the numbers are not the same (no match), perform
the coding at location ADVFILE.

c. If they match, determine whether or not the amount
on hand is greater than or equal to the amount
ordered, i.e., the order can be filled. If it is
greater than or equal to, replace the on-hand amount
by the difference between the on-hand and the
ordered amounts and go on to the processing defined
below. (If the on-hand amount is less than the
ordered amount, go to the ADVFILE routine).

d. Compare the new on-hand amount, i.e., the above
difference, to the minimum required amount.

e. If the new on-hand amount is greater than or
equal to the minimum, go to NXTRTN.

f. If it is less, go to REORDER - unless it 1S zero,
1n which case go to SPREORD.

The routines ADVFILE, NXTR1N, REORDER, AND SPREORD will not
be coded for this example.

This problem may be graphically explained as follows:

COMPARE
STOCK

NUMBERS

ADVFILE

SAME

NEW
ON HAND

EQUAL 01

~NO
REORDER

COMPARE
ON HAND

& ORDERED

LESS

ADV I LE

YES

EQUAL
OR MORE

SPREORD

SUBTRACT
ORDERED FROM

ON HAND

COMPARE
NEW ON HAND

& MINIMUM

LESS

EQUAL OR
MORE

NXTRTN

59

L

S

U

The coded solution to this problem becomes

LOCA1'ION COMMAND ADDRESS AND REMARKS

T

P

T M A 3 9 6 8 $ Inventory Stock Number ~ A
T M D 3 8 4 0 $ Transaction Stock Number ~ D

J A E D S TA R T$ Jump to START if (A) = (D)

J M P A D V F I L E $ If no match, jump to ADVFILE
AR T T M A 3 9 6 9 $ ~-Hand Amount ~ A

T M Q 3 8 4 1 $ Amount ~dered ~ Q

J A G Q U PD A T E $ Jump" to lJH)L\'IE if (A) ~ (0)

J M P A D V F I LE $ If (Al < (0) iumo to ADVFIlE
DA T E S QS 3 9 6 9 $ ~ Hand - 0rdered ~ A. 3969

T M Q 3 9 7 0 $ Minimum Reauired Amount ~ Q

J A G Q N X T R T N$ Jump to ~XIRIN if (A) ~ (Q)

J A Z S P R E 0 R D $ Jump to S~ if (A) = 0

J M P R EI0 R D E R $ Jump to REllfIDER if (A) < (0) and (A) J 0

Analysis of the Coding

TMA 3968 and TMD 3840 place the Stock Numbers in the A and 0
Registers so that they may be compared for equality. JAED performs the
comparison and jumps to START if (A) = (D). If inequality is the case,
the next instruction, JMP ADVFILE, is executed. TMA 3969 and TMQ 3841 place
the On-Hand and OTdered Amounts in the A and Q Registers to compare their
relative magnitudes.

JAGQ performs the compar1son and jumps to UPDATE if (A) ~ (Q).
(JAGQ rather than JAGD is used because the information being compared is
numeric rather than alphanumeric, i.e., binary-coded.) If (A) < (Q), more
material has been ordered than is on hand, and the next instruction, JMP
ADVFILE, is executed.

SQS 3969 subtracts the Ordered Amount (in the Q Register) from
the On-Hand Amount (in the A Register) and places the result in the A and 0
Registers and memory location 3969.

TMQ 3970 places the Minimum Required Amount in the Q Register to
compare it to the new On-Hand Amount in the A Register. JAGQ performs the
comparison and jumps to NXTRTN if the new On-Hand Amount i.s greater than or
equal to the Minimum Required. If the new On-Hand Amount is less than the
Minimum Required, a reorder is necessary.

JAZ SPREORD checks (A) for zero. If the new On-Hand Amount is
zero, SPREORD is jumped to; if (A) are not zero, the next instruction, JMP
REORDER, is executed.

60

Exercise

The following data In memory pertains to an employee:

Memory Location Contents

3968 Number of Hours Worked

3969 Hourly Pay Rate

3970 Overtime Pay Rate

3971 Number of Exemptions

3972 Union Dues

3973 Hospitalization Contribution

3974 Year to Date Gross Pay

3975 Year to Date Net Pay

3976 Year to Date Social Security Tax

3977 Year to Date Income Tax

Definitions:

Overtime Hours = Hours worked in excess of 40.

Gross Pay = Hours (not more than 40) x Hourly Rate +
Overtime Hours x Overtime Rate.

Income Tax = [Gross Pay -(13 x Number of Exemption~J x .18.

Social Security
Tax 3.00% x Gross Pay.

Net Pay = Gross Pay - Income Tax - Social Security Tax -
Union Dues - Hospitalization Contribution.

This exerCIse has the following parts:

Part 1:

Determine if the employee worked overtime. If so, store the
Overtime Hours in memory location 3978.

Part 2:

Compute Gross Pay, store In 3979, and add it to Year to Date Gross
Pay.

61

Part 3:

Compute Income Tax, store in 3980, and add it to Year to Date
Income Tax. If the computed Income Tax is negative, assume the tax is
zero.

Part 4:

Compute Social Security Tax, store it 1n 3981, and add it to
Year to Date Social Security Tax. The new Year to Date Social Security
Tax must not exceed $144.00. Therefore, do not deduct the full 3.00% if
it will cause the Year""'tO-I)~te total t·oexceed $144.00.

Part 5:

Using the above results, compute Net Pay, store it in 3982, and
add it to Year to Date Net Pay. Mak£; only the deductions that can be made
in the above order of priority.

The necessary constants for this routine are stored as
follows:

Memory Location Contents

3000 40

3001 13

3002 .18

3003 .03

3004 144

SUMMARY: DECISION MAKING

a. Jump instructions are necessary to allow for alternate paths
of processing. A jump may take place depending on the comparison of one
word with another or one binary digit with another.

b. The jump is effected by transferring the address part of the
Jump instruction to the Central Computer control section. When a Jump in
struction is written, the address part of the instruction is also written
in the location column of the i~struction to be executed next IF the jump
1S effected.

c. Regardless of the type 'of jump, the address of the next se
quential instruction is stored in the Jump Address Register, JA.

62

follows:
d. The Jump instructions listed below may be summarized as

1. Jump if (0) are positive.

2, Jump if (A) are positive, negative, or zero.

3. Jump if (A) equal (0) or (Q) •

4. Jump if (A) are equal to or greater than (0) or (Q) .

COMMAND EXPLANATION

JMP Unconditional Jump

JDP Jump if (0) are positive

JAP Jump if (A) are positive

JAN Jump if' (A) are negative

JAZ Jump if (A) are zero

JAED Jump if (A) equals (0)

JAEQ Jump if (A) equals (Q)

JAGD Jump if (A) are greater than or
equal to (0): alphanumeric

JAGQ Jump if (A) are greater than or
equal to (Q): numeric

(Note: Jump instructions involving the Q Register only will be
described in Chapter VI.)

e. Because the computer may only compare (A) with (0), (Q) are
transferred to 0 in the JAEQ and JAGQ commands.

f. Decision making rules of thumb:

1. When comparing (A) and (0), fill the A
Register before the 0 Register. This
is a must because words transferred to
the A Register go through the 0 Register.

2. The signs of arithmetic results, except
after division, may be determined by
testing the sign of the A Register with
JAN or JAP. Use JAZ to determine if a
sum, difference, or rounded product is
equal to zero. (This use of JAZ does
not apply to floating point zero.)

63

64

3. When wrItIng instructions, it is help
ful to leave" jump to" addresses blank
until the" jump to" coding can be writ
ten. This enables the programmer to
keep track of the coding which remains
to be written. Be careful to fill all
addresses which have been left blank.

4. Equality comparisons (Jump instructions)
apply to alphanumeric as well as to
numeric words.

5. JAGD may be used for posItIve numbers
because the actual magnitude of the
number is not affected by the sign,
which is zero.

6. JAGQ may be used for alphanumeric words
if the sign positions are zero, i.e.,as
if positive numbers were being compared.

CHAPTER IV

FLOWCHARTING

BASIC OPERATIONS

As programming operations become more detailed and complex, it
grows increasingly difficult to remember and write down all of the possi
bilities in a problem which must be coded. To minimize this condition, a
system to graphically represent the logical flow of processing has been
devised. This system is called flowcharting.

A good flowchart is, in effect, a very detailed and accurate
statement of the problem and at the same time is one type of solution.
(Coding is another solution.) The basis of flowcharting is that a program
can be represented as a series of several kinds of operations connected in
a logical sequence. The following are typical operations in programming:

a. transfers of information

b. arithmetic operations

c. logical decisions

d. input-output.

In addition to these basic types of operations there are

e. start and stop situations

f. flowchart connections - Jumps

g. subroutines

h. program switches.

The subject of subroutines and program switches will be covered
ln Chapter VII.

65

chart:

START
RUN

The use of flowcharts can be illustrated by the following flow-

THEN DECIDE
WHAT NEXT

OR THIS

OPERATION
A

OPERATION
B

FLOWCHART SYMBOLS

Because flowcharts contain many operations, it is convenient to
have each type of operation appear in a box of unique shape. The following
shapes are recommended for flowcharting and will be used throughout this
manual.

a. Starts and stops will appear In squares:

b. Transfers and arithmetic operations will
be shown in rectangles of various sizes:

D

~~
~

c. Decisions will be shown In flattened ovals
of various sizes: (~--"")

d. Flowchart connectors are small circles of . .
varIOUS SIzes: o

66

e. Input-output media utilize the following forms:

1. Paper tape or magnetic tape:

2. Punched cards: (

3. Console Typewriter:

4. Magnetic drums:

f. Subroutines utilize diamonds:

g. Program switches are small circles and are
set by small squares:

Illustrations of Symbol Usage

STARTING

and

STOPPING

Start the program or
computer run.

Stop computation~ specify
reason (as end of run, data
error, etc.

Stop computation: continue
when advance bar is depressed.

67

-l 0 ~ PAY ~ Transfer zero to the location
containing the pay.

mANSFERS OR

-l CLEAR PAY ~
and

-1 ADD 1 TO ~ Add one to the location
TOTAL containing the total.

ARITIIMETIC
OPERATIONS OR

-l ~
The old total 1.S replaced by

T + l~T the new.

It is convenient in arithmetic operations to distinguish between the
operation in which an original value is changed, as in the example above,
and the operation which merely holds the result in a different memory
location or register. If the old total were not to be replaced, the oper
ation could be shown as

-l T + 1 ~ t

To replace the old total

-l t~T
DECISIONS

-{-----.,....--.-B = 0 1)~
~ NO

68

YES --.

~

~
A decision based on a number
B (Balance) being zero

This is the same operation
described in words.

ARITHMETIC

-C ___ N_:.,...T ___) :MP
~<

HAND=O?

FLOWCHART CONNECTIONS

Sampling of the overflow indicator

If desired, the two factors being
compared can be shown inside the
oval and the type of comparison
can be shown with symbols outside
the oval.

It will often be convenient to
write the symbolic jump address
on the appropriate arrow.

Whenever it 1S necessary to change the course of flow a COllnector
is used.

IOC = 128?) YES ..

INO

Because of limitations of paper,
a numbered connector is used to
indicate a change in course.

To connect merging lines, an
unnumbered connector may be used.
(IOC • Input-Output Counter)

69

INPUT -OUTPUT

~r ____ ~_~_~~_~ ____ ~------~~ ..
_ Card

Type

70

A jump to the part of the
program called NET (JMP NET)

The part of the program
called NET follows the
arrow from a connector.

The arrow on the left may
or may not indicate a Jump.

Paper tape or magnetic tape.
The entry below the line 1S

a unit number or file
identification.

Punched cards

Console Typewriter

Magnetic drums

OTHER SYMBOLS

Use of the following symbols will be explained 1n Chapter VII:

SUBROUTINES

Process

Entrance Exit

PROGRAM SWITCHES

Execute the net pay
subroutine and return.
(JMP NETPAY)

The net pay
subroutine

Set program switch 4 to
the U aU path.

Path U aU of switch 4

Pa th U b" of switch 4

Path" c" of switch 4

71

Example

The example 1n Chapter III, page 58, 1S used to illustrate two ways
of flowcharting.

1.

START

72

INVENTORY S.N.
EQUAL

TRANSACTION

NO

ON-HAND
MINIMUM

ON-HAND ~
ORDERED?

NO

ON-HAND
O?

YES

NO

ON-HAND - ORDERED
-"ON-HAND

2.

START ISN = TSN1 OH > 01

NO NO

OH < MR1 OH : 0

NO

Key:

ISN = Inventory stock number
TSN = Transaction stock number
OH On-hand
o = Ordered
MR = Minimum required

OH - g ... OH

From this it should be evident that the coding operation can be
greatly simplified if the problem is analysed and defined in a flowchart.

It should also be evident that the first flowchart is easier to
read but takes more space. The programmer may draw a flowchart as detailed
as the coding. Although this produces the largest flowchart, the detail
simplifies the coding. When flowcharting then, the programmer should strive,
for a compromise that suits his own interests.

73

Exercise 1

Flowchart the exerC1se 1n Chapter III, page 59.

Exercise 2

Flowchart and code a payroll operation which employs the follow-
ing data:

Memory Location Contents

3840. Employee Number
I "

3841 Type of Record Code

3842 Dollar Amount

3968 Employee Number

3969 Bond Deduction Code

3970 Bond Accumulation

3971 Company Store Balance

Memory locations 3840, 3841, and 3842 contain data which refers
to an employee's weekly paycheck. The remaining data refers to an employ
ee's permanent record.

a. Determine if the paycheck data applies to the permanent
record. If it doesn't, go to NXTMAN.

b. If both records refer to the same employee, determine if the
type of record code equals the bond deduction code. If the
codes are not equal, the dollar amount is a company store
payment.

c. On the basis of the above determination, adjust the appro
priate accumulation in th6 permanent record; add to the bond
total or subtract from the store balance.

d. Determine if the employee can purchase an $18.75 bond or has
eliminated his store balance, whichever is appropriate.

If the bond total equals or exceeds $18.75, deduct this amount
and go to BOND. Go to NXT~MN after the last step.

(Assume that the amount, $18.75, is stored 1n memory location
3839.)

74

CHAPTER V

PHILCO 2000 ARITHMETIC AND CONSTANTS

REPRESENTING NUMBERS AND DATA

The basic operations of data processing and the associated
computer instructions were discussed in Chapter III. This chapter attempts
to give the reader a more complete understanding of PHILCO 2000 arithmetic.
It also describes the Translator-Assembler-Compiler (TAC) method of repre
senting constants.

The PHILCO 2000, like most present day computers, uses the binary
digit (bit) as the basic unit of information. The reason for this is that
the two digits of the binary number system are easier to represent and use
electronically than are the ten digits of the decimal system. However,
since people normally use the decimal number system, some methoq or device
must be provided to enable the programmer and the computer to communicate
in a common language. The computer's method of accomplishing this is the
Translator-Assembler-Compiler.

In most cases it will be sufficient for the programmer to think
and write ln English-decimal terms. In some cases, however, such as scal
ing numbers, shifting, extracting, and in certain programming techniques,
a knowledge of binary representation and arithmetic is necessary.

Decimal Number System

Before discussing binary numbers and arithmetic, the decimal num
ber system will be briefly reviewed. This is a positional number system of
base ten in which a digit can have one of ten possible values from zero to
nine: 0, 1, 2, ... , 9, and in which a digit position determines an associ
ated po~er of ten.

15

For example the decimal number, 4073, 1S described as follows:

4 0 7 3

L 3 X 10° = 3 X 1 = 3

7 X 101 = 7 X 10 = 70

o X 102 II: o X 100 = 0

4 X 103 4 X 1000 = 4000

and the value of the decimal number = the sum of
the products = 4073.

Each digit pos1t10n has a value equal to the product of the
digit appearing in the position and a corresponding power of ten. To the
left of the decimal point powers of ten are of ascending order; to the

.right of the decimal point powers of ten are of descending order.

76

Thus the positional weights of a decimal number are represented as
follows:

10 3 102 101 10°

'-- --''-.
V'"

INTEGRAL
PART

10- 1 10-2

-y'

FRACTIONAL
PART

10 -3
..J

DECIMAL
NUMBER

Regardless of the base in a positional number system, each number can be
considered as the sum of the products obtained by multiplying the digits
by the corresponding powers of the base.

Binary Number System

In the binary number system the base is two, and digits can have
one of two values: zero or one. The positional weights (powers of two) of

77

a binary number can be represented as follows:

BINARY NUMBER

-2
24 23 22 21 2° 2- 1 2- 2 2- 3 ? =- ::

/'J ?S- 4-L

'-- / '-- J
~ V--

INTEGRAL FRACTIONAL
PART PART

From this it can be seen that to the left of the binary point powers of
two are of ascending order; to the right of the binary point powers of
two are of descending order.

Decimal-Binary Equivalents

The decimal equivalent of the binary number, 101101, for example,
is determined as follows:

1 0 1 1 0 1

L:~ X 2° 1 X 1 I: 1

X 21 = o X 2 I: 0

1 X 22 = 1 X 4 = 4

1 X 23 = 1 X 8 I: 8

0 X 24 = o X 16 = 0

1 X 25 = 1 X 32 = 32

value of the binary number = sum of the
products I: 45.

78

Correspondingly, the binary fractional number, .1011, has the equivalent
decimal value, .6875, and is determined as follows:

. 1 0 1 1

.5 = 1 X .5 = 1 X 1/2 = 1 X 2-1 ~ .0 = o X .25 = o X 1/4 o X 2- 2

.125 1 X .125 = 1 X 1/8 = 1 X 2- 3

.0625 = 1 X .0625 = 1 X 1/16 = 1 X 2- 4

. 6875
sum of the

value of the binary number • = products

When these results are combined, the decimal equivalent of the binary
number, 101101.1011, is 45.6875.

The most frequent necessity for reading binary information is
from the operator's console, since the contents of the computer's registers
are displayed in binary form. This reading can be simplified by grouping
every three hi ts and ass igning to them thei r equi valen t cde:..c:imal value. It
should be noted that every three hits can have a value fro{? to 7.

"-".". oc: //\ ,.
Weights Weights Weights

421 421 421

000 0 o 1 1 = 3 110 = 6

001 = 1 100 = 4 III = 7

o 1 0 = 2 101:c 5

When this group1ng 1S completed, the resulting number is then an octal
number. For example, the number, 110111101011010, separated into groups
of three bits, could be written in octal notation as follows:

1 101 1 1 1 0 101 1 010
I ! \

:' : \
i ! \
j ! \

1 1 0 1 1 1 1 Oi 1 0 i 1
---.....' ~ "'---" ----.,

7

f . :
5 3

\

o i 0 -----
2

When octal notation is used, therefore, the reading and writing of binary
numbers is simplified.

./ .
I ~ :: "

.,'! ~ (

'",)" . (,i (,I ,"_ j .' // <" ". ,,' i! ':
'f I /

• / ",: /1:' ::, (,.\ (

Binary Representation of Data

Source data usually appears in English-decimal form. To be
intelligible to most c9mputers, such data must be in some binary form.
Many computers, including the PHILCO 2000, represent each character by
six bits called a binary-coded character, BCC. (Refer to the chart in
Chapter III, page 58, for the representation of every binary-coded character.)

The following diagram illustrates binary-coded characters, and
then a binary-coded number is compared to a pure binary number:

...... ~--,-~-.. " -.,..,..' --_ .. -_ -..... _ ,_ .. ~-,-... -"" .-,.,.~ ,".,,, . ~ .. ,,~ .. , ~_., , . "'. - . ~

o 1 2 3 4 5 7 8 9

000000 000001! 000010 I 000011 ! 000100 ! 000101
I ' I

The pure bin~2:y representation of the binary coded number 12345789 IS

101111000110000110111101.

Some computers perform arithmetic with binary-coded numbers;
however, the 2000 and others per form ari thmetic only on pure binary numbers. L;.·;,\r' 0' N r.-

Each type of representation has its'own merits, with the advantages of speed
of operation and compactness of numbers going to the binary computer. For
example, a 48-bit PHILCO 2000 number is the equivalent of decimal digits
which would require 84 or 90 bits to represent in binary-coded form.

Whenever it is necessary to determine the number of bits needed
to represent a decimal number, Appendix B (Binary and Decimal Equivalents)
can be used. For example, the number of bits necessary to represent any
three decimal digits is 10, although the same number of bits will represent
a decimal number up to 1023. /oe,,:;"" /1/.'/£ = r,:::; ',.':' 0<,," :,;

;;,1 I IV :: 7:;?;: ~ <! / / 1// i/i " / C ~i::;' ~ I -J -; • } -
J , • •.• i IO '.I S - / /1/ //,/)/

o/);!.;
Number Sys tern Conversion I ~" I -

/0 i' s

Occasionally it is desirable to manually convert a number from
one system to another, e.g., to find the binary representation of a decimal
number or the decimal representation of a binary number. These conversions
may be performed as follows:

Decimal to Binary - Integral Numbers

80

a. Divide the decimal number by two; the remainder will either
be one or zero.

h. If the remainder IS one, the least significant digit of the
binary number is one.
If the remainder IS zero, the least significant digit is zero.

c. Divide the quotient by two.

-p '\ /,."" ,/ / /1' / ',J I,' ',: i ,/,.,
I;) C C /: : ". : u· '

d. If the remainder 1S one the next to the least significant
bit is one.
If the remainder is zero, the bit is zero.
(Note: Bits should be written from right to left.)

e. Repeat the above steps until a quotient becomes zero.

This process of successive division and recording of remainders
may be used to convert any integral number from a higher to a lower base.

The decimal number, 76, is converted to binary as follows:

, I r,/ ('i Ii, I • ~ ! / ; t ,"" 11

38

2]76

19

2.J3"8

9

2JT9

4

2 J9
2

2)4

1

2 52
0

2 Jl

Remainder

Remainder

Remainder

Remainder

Remainder

Remainder

Remainder

Successive Stages
of Equivalent
Binary Number

------------------------~~ JL

-----------..0 0

---------... 1 0 0

--------:.~ 1 1 0 0

--------.~ Q. 1 1 0 0

-------... Q 0 1 1 0 0

-----or. 1 0 0 1 1 0 0 :II 76

By dividing by eight to convert to octal first, fewer divisions
are performed. The above conversion may be performed as follows:

I OJ 'I ",:1 (
Successive Stages
of Equivalent
Octal Number

9

8176
1

8}9

o
8.Jl"

Remainder --------------I.~ 4

Remainder ------------------~. 1 4

Remainder ----------... 1 1 4

81

(!·/'Ci,.', /

The binary equivalent. of the octal number 1S

(rAt/2~s-r[~)
()',: tt,~ / SOl ,

I ,. J
.. (I /. i . i •

C . \. \. \ '
Octal I I 4

~ ,:', /) • .>:
...... ' ... 1, Binary o 0 1 0 0 1 1",,- 0 .i0

'--"" ~ -
Decimal to Binary - Fractional Numbers"

2

follows:

Double

Delete 1

Double

Double

Delete 1

Double

Delete 1

a.

b.

Double the decimal number. (11"1, '0"'(<.' (,

If the product is greater than one, record a one and delete
the integral part of the product. If the product is less
than one, record a zero. (The bits are written from left
to right, i.e., away from the binary point.)

c. Repeat a and b until a resulting product equals one exactly
or until the desired length of the binary number is attained.

The fractional decimal number, .6875, is converted to binary 'as

Decimal
Number

0.6875

1.3750

I
0.3750

i ~ ..

0.7500
, i 7-.

1.5000

I
0.5000

1.0000

I

0.0000

Successive Stages
of Equivalent
Binary Number

.1
•

.10
t

.101
t

.1011 ... Equivalent binary
number

and all further bits are zero.

This method can be generalized to convert any fractional number
from a higher to a, lower base, i.e. I decimal (base 10) to octal (base 8).

82

... / "

'I
I

[,2

·1 r; S.
-.+ ~l

~5- 0 I

Binary to Decimal. To convert from a number of a base less than ten to its
decimal equivalent, simply find the sum of the products of each digit by
the correspondi~g power of the base.

The decimal equivalent ot the binary number, 1100101.1011, 1S

determined as follows:

1 1 o 0 1 0 1 . 1 0 1 1

L:: X .0625

X .125

'-----.- 0 X .25

1.....-----.- 1 X .5

L--_______ ! 1 X ,1

'---------opo.... 0 X 2

.. 1 X 4

'------------.:- 0 X 8

o X 16

1 X 32

1 X 64

=

=

=

=

=

=

0.0625

0.125

0.0

0.5

1.0

0.0

4.0

= 0.0

= 0.0

= 32.0

= 64.0

Decimal equivalent = sum of the products = 101.6875

(The reader should verify for himself that this 1S the correct
number.)

BINARY ARITHMETIC

Rules of Binary Arithmetic

Since the binary number system uses only two digits the rules of
binary arithmetic are quite simple. These rules are shown below.

83

Addition: 0 1 1 0
+1 +0 +1 +0
1 1 1~0 0

(Carry 1)
(Borrow 1)

Subtraction: 1~0 1 1 0
-1 -0 -1 -0 - -
1 1 0 0

Multiplication: 0 1 1 0
xl xO xl xO

0 0 1 0

Division: 0 Not 1 Not 1 0
-= -= -= 1 -= 0 o defined 0 defined 1 / 1

Note: fC Carry 1" means tha t a one is carried to the next (Ie ft) bi t
position. U Borrow 1" means that a one is borrowed from the next
(left) bit position.

Examples of Binary Arithmetic - Positive Numbers

Addition:
_11_1 __ Carries

5 101
+3 +011 -
8 1000

__ IlL-Carries

29 11101
+22 +10110

51 110011

1111 Carries

4.75000 100.11000
+3.59375 + 11.10011
8.34375 1000.01011

84

Subtraction:

15
-8

7

54.5390625
-19.0234375
35.5156250

Multiplication:

Division:

5
x3
15

4.750
x3.625

23750
9500

28500
14250

17.218750

2
4 f8

2.125
5)10.625

Complements in Arithmetic

1111
-1000
0111

110110.1000101
-10011.0000011
100011.1000010

101
xlI
101

101
1111

100.110
x 11.101

100110
1001100

100110
100110

10001.001110

10
100) 1000

100
0000

10.001
101) 1010.101

101
00 101

101
000

An understanding of complements in arithmetic is necessary to the
understanding of PHILCO 2000 arithmetic. The complement of a given nUf!lQer
i.s-d.eJ).necLa&n.~JJ)~., 9i-.~ferenc(! bet\Veen the gi.yen ~umber and~.the-bas-e-o·{··the
num~er . system raisedt~-'~:n" api;ropr 1. a te power. The appropriate power
(eip~onenfr'''i's'''equ''ar to'"tlie , number of digits necessary to represent the
given number. It may also be defined as that number which produces a ~
(followed by zero, or zeros) when added to the given number.

85

For example:

Given the decimal number 4

Its ten's complement is +6 because 101 - 4 = 6

10

Given the decimal number 136,

Its ten's complement is +864 because 1000,i.e.,103 - 136 = 864

1000

Given the binary number 101

Its two's complement is +011 because 1000 - 101 = 011.

1000

These complements are named from the bases of their respective
number systems. By using complements, all arithmetic in a computer may be
performed by addition. Subtraction, fo;-;xample, would be performed as
follows:

7 7
-4 _ +6 (Ten's complement of 4)

3113
~~ -

TIle last carry 1S

of three.
ignored, because 7 - 4 = 7 + (10-4) -10 to yield the answer

Examples

(Note: The symbol, =, means" is equivalent to.")

26 =
-14 =
12 =

469 469
-237= +763 (ten's complement of 237)

232 ~-'_~32_
and

11010 . 11010
-01110 = \1/ +10010

1

01100 ~
(two's complement of 01110)

A simple method of obtaining the two's complement of a binary
number is to change all zeros to ones and all ones to zeros and then add
one to the rightmost bit. The number obtained before the addition of one
is called the one's complement.

86

Example

Given the number

Its one's complement 1S

and its two's complement 1S

Proof: The g1ven number
+Its two's complement,

Produces a one followed by
zeros:

i.e., the next higher power of
the base.

Two's Complement Arithmetic

1011010 (=90) / :: .

0100101
+ 1

0100110 (=38).

1011010 = 90
+0100110 =+38

10000000 =128 = 27 , -) .. , . /~) rJ
,--';. '" "j I;;

Because of the nature of complements, as explained above, negative
binary numbers can be represented in two's complement form. The correspond-
1ng arithmetic is called two's complement arithmetic. \

To illustrate two's complement arithmetic, six-bit numbers (rather
than 48-bit numbers) are used. Minus eight in two's complement form appears
as

51
+ 8 = 6\001000

1;110111
+ 1

- 8 = 1111000 • I

Similarly for m1nus three,

:5
+ 3 = 0 000011

One's complement

Two's complement.

I 111100 One's complement
'""I 1

- 3 Q '[111101 Two's complement.

In the computer, as in these examples, the first bit is a sign
indicator. Positive numbers begin with zero whereas negative numbers begin
with one.

87

Examples of Two's Complement Arithmetic - Negative Numbers

Addition:

15
+(-3)

12

14
+(-19)

-5

S
0\001111
1+111101

I gj001100
it>J etC'. '('l"" i 'I..:) /f ,·r!.',

01001110
I t101101
11111011

(} i i
! /

/0,' / /
i"." .: 0(.'

I ;',' i , (),,'

Proof of the last sum 1S obtained by complementing the result

111011 Sum
000100 One's complement of sum

+ 1
000101 Two's complement

and the magnitude of the result is seen to be 5.

Another example is

-3
+(-5)

-8

Proof:

1\111101
I +111011

IlJ111000

complementing the sum
1 I

t"':-::_/ \ l; !.: J (~.'.

;

pc.') ./ \1-" (,' G. /')u.'~ I',. /:.:1

;,ui. ~!' 000111
+ 1

(L,I i,;/ ,),:
<.,

001000 = 8

J\.t~"" \',~ '{ !-"c~
I '.,

_ • .A..f!...- I

.OAC·

/_.
(~ ...

Subtraction is performed by obtaining the two's complement of the
number to be subtracted and then performing addition.

Subtraction:

15 001111
-8 +111000 Two's complement of 8

7 J:.J 000111

15 001111
-(-3) +000011 Two's complement of -3

18 010010

-3 111101
-(-5) +000101 Two's complement of -5

2 ~ 000010 ..

88

C'>Ll .• >C(n:),j 3
.J

'J. ~:~ I :-

C"· .. 1 I J' .:"

PHILCD 2000 ARITHMETIC

The PIIILCO 2000 incorporates the features of two's complement
arithmetic to perform all arithmetic by the single process of addition.
Subtraction, then, is performed by the addition of the two's complement of
the number to be subtracted. Multiplication is a process of addition and
shifting; division is a process of addition of two's complements and
shifting.

Computer Representation of Numbers

Positive and negative numbers in the computer are represented by
48 bits in the same way as the previous six-bit numbers were. That is, if
the sign bit is zero, the 48 bits represent a posItIve number. If the sign
bit is' one, the 48 bits represent a negative number in two's complement
form.

The arithmetic section assumes that all numbers are fractional
with the binary point positioned between the sign and the most significant
bit positions. However, as will be shown later, the programmer may assume
the binary point is positioned anywhere in relation to the 48 bits.

computer,:
TIle following configuration of any number IS assumed in the

rLeast significant
bit position

~~~~~)~1-44~14-5~14-6~147~1 

significant bit position 

"'----- Computer binary point 

~------Sign bit position 

Thus, the computer's interpretation of the following numbers would be: 

010000 ... 0 = 0.10000 ... 0 I: 1/2 I: .5 

001000 ... 0 • 0.01000 ... 0 =- 1/4 I: .25 

011000 ... 0 = 0.11000 ... 0 = 3/4 I: .75 

010010 ... 0 = 0.10010 ... 0 I: 9/16. I: .5625 

101000,.· .. 0 = 1.0100 ... 0 = -3/4 = -.75 

89 



I 
1 
i 
j 
I 
f 

~ 

Fractional Arithmetic 

Because the 2000 is a fractional computer the differences between 
fractional number and whole number arithmetic are important. These differ
ences ar1se from the fact that fractional numbers are aligned at the left 
rather than the right. In multiplication, the product is generated to the 
right. For example, .1 x .1 (in either decimal or binary arithmetic) 
yields .01. As a result, a product is never larger in absolute value than 
the multiplier or the multiplicand. In division, the divisor must be 
larger than the dividend so that a 'fractional quotient can be obtained. 

The following examples illustrate fractional arithmetic in the 
2000: 

Multiplication: 

.5 
x.5 

.25 = 

0.1000 .•. 0 
0.1000 .•. 0 
0.0100 .•. 0 

Division: 
0'\-1 

.125 .;- .5 = .25 
0.0010 ... 0 
0.1000 ... 0 

= 0.0100.' .. 0 

Since the binary point precedes the number, the largest possible 
computer number is less than plus one and is represented by a zero in the 
sign bit position and ones in the remaining 47 positions. 

o 1 2 3 44 45 46 47 

I 0 11 11 11 I II I 1 11 11 11 I 
TIlis number is equivalent to .99999999999999 .... which 1S very close to but 
not equal to one. 

The smallest computer number is minus one and 1S represented by a 
1n the sign position followed by all zeros. 

o 1 2 3 44 45 46 47 
-/ ~!)V~:. +1 

the one's complement of the largest positive number.} 

Therefore, within the PHlLeO 2000, all numbers resulting from 
arithmetic operations must be within the following range: 

a. They must be less than plus one. 

b. They must be greater than or equal to minus one. 

Any results, which would be outside this range, produce overflow. 

90 



Overflow 

When overflow occurs, it usually signifies that an invalid result 
has been formed. However, it may be used as a control for such operations 
as double precision arithmetic and counting. Some examples of addition 
causIng overflow follow: 

Carry 

Carry ::t~ 
o 1 

0.10000 ... 0 
+ 0.10000 ..• 0 

1.00000 ..• 0 

= 1/2 
= 1/2 
t 1 

Carry In 

Carry out l 1 
~ 0 

1.00000 ... 0 -1 
+ 1.10000 ... 0 = -1/2 

0.10000 ... 0 + -1 1/2 

Note that overflow changes the sign but that all other positions In the sum 
are correct. Another definition of overflow is that the carry into the sign 
position is not the same as the carry out of the sign position (no carry is 
a carry of zero). The occurrence of overflow in the computer's arithmetic 
operations IS summarized below. 

Addition and Subtraction: Overflow occurs if a result equals or exceeds a 
computer value of plus one or is less than a 
mInus one. 

Multiplication: 

_I,') 
I • ..,' -/ .() 

Division: 
I . 
!;\ , t' \ i' > 
i I 

Ie 

-/ /' ':'::::l 

Overflow occurs if a computer value of mInus one 
is multiplied by minus one. This should yield 
plus one. After such a multiplication, the 
product reappears as minus one. Addition or 
subtraction in a MAD or MSU instruction may bring 
the plus one back into representable range. 
OWerflow, however, will still be indicated. The 
addition or subtraction in a MAD or MSU instruc
tion may also cause overflow, even if the product 
IS a representable value. 

If the dividend is larger than the divisor (in 
absolute value), potential overflow is detected 
and division is not performed. Instead, the A 
and Q Registers are altered as follows and the 
next instruction is selected. 

91 



~ lV1Slon Single Length Double Length 
Register 

A Register Shifted numerically one Shifted numerically one 
place to the right. place to the right (into Q) • 

Q Register Cleared to zero. Shifted numerically one 
place to the right. 

, f I A\ 1\ "'\\ I--~ i/ ,,,))1 J ).J ~. iUt.c /" (\) ) .- 1\ t, ,,' ···.1' ) . ' J / 
I (v~ 

If the store option were used with the instruc
tion, the contents of Q would be stored in mem
ory, replacing the divisor. 

U The following table indicates the results if the dividend lS 

\ 

A- \, 
I I 

equal to the divisor (in absolute value): 

Sign of 
+ + Dividend .. -

Sign of + - + .. 
Divisor 

Potential 
Overflow Yes Yes No No 

Quotient No division. Dividend (tt[l.f' ~) -1 One's comp-
lS shifted one place lement of -1 
to the right. (all .•.. 111) 

Remainder Two's Equal to 
comple- divisor 
ment of 
the 
divisor 

Detection of Overflow 

For the detection of overflow, the programmer must consider the 
following: 

a. the overflow indicator 
b. the overflow instructions 
c. the overflow switch on the control panel of the console 

Overflow Indicator 

The overflow indicator has two states or conditions, one and zero. 
cc One" is indica ted by a neon 1 ight on the panel being on; for Ie zero," the 
light lS off. Normally, the indicator is automatically cleared to zero 

92 



before each Arithmetic instruction, Shift instruction, or four of the 
Index Register instructions (AIXOL, AIXOR, SIXOL, SIXOR). It is auto
matically set to one each time overflow occurs. 

The programmer may test the indicator to see if overflow has 
occurred with the JOF or JNO instructions, as long as no instruction which 
would clear the indicator occurs between the time overflow occurred and the 
JOF or JNO instruction. 

JOF: Jump if Overflow 1S indicated. 

Jump to the location specified by the address portion of 
the instruction if the overflow indicator is set to one. 
If the overflow indicator is zero, proceed to the next 
• • ~/L' 'I / I I 1nstruct10n. lie l):'(Jl:J:(,';U)/1 -;-.s~ ) /.:: 'h,!.(J;.),;/,~~,><·',.I,."·:·( I 

JNO: Jump if No Overflow is indicated. 

Jump to the location specified by the address portion of 
the instruction if the overflow indicator is set to zero. 
Proceed to the next instruction if the overflow indicator 
is one. -rh 't"' () 'j ( I / -J III (U) I -r . c, ,,( )' I ( I ~ . ''j' ': 

Overflow Instructions 

The clearing of the indicator by the Arithmetic, Shift, and Index 
Register instructions may be inhibited by the reos instruction until a con
venient time for testing the indicator occurs. 

leos Inhibit Clearing the Overflow indicator 

This instruction clears the overflow indicator and then in
hibits its future clearing by Arithmetic, Shift, or Index 
Register instructions. 

This inhibition on the clearing of the overflow in~icator may be 
removed only by the reoz instruction. 

reoz Remove Inhibition on Clearing the Overflow indicator 

Overflow Switch 

This instruction removes any inhibition on clearing the 
overflow indicator set by the reos instruction. 

The overflow switch on the console is an on-off switch which can " 

be used to stop the computer when overflow occurs. It has effect only if 
there is P9. ~nhiJ!i tign on the clearing of the overflow indica tor. When it. 
i~ ~et to ON, the computer .will st~p if overflow )has ~ccurred! and n~ inhi-
b1t10n was set by an reos 1nstruct10nc9.Al(i'·)U,' JV/C 1/ I" ',<" ',';' ;:'( ,:; ',}!~II") 

I' i l 

C!':' t '. i /:. /; -r-:' 'It' '. 93 

(:J 



· The operations which are automatically performed by the computer 
when overflow occurs are as follows: 

a. The overflow indicator IS set. 

h. If there is no inhibition on clearing the overflow indicator, 
the overflow switch is examined. 

1. If the switch is off, control proceeds to the next 
instruction. 

2. If the switch IS on, the next instruction IS selected 
and examined. 

a) If the next instruction IS an overflow Jump instruc
tion, it is executed. 

b) If the next instruction is not an overflow Jump 
instruction, the computer stops with the overflow 
neon lighted. 

A flowchart of these steps IS shown below. 

OVERFLOW 
OCCURS 

OVERFLOW 
IN D I CATOR 

IS SET 
IS INHIBITION 

SET? 
IS OVERFLOW 
SWITCH ON? 

SELECT NEXT 
I NSTRUCTI ON 

YES 

Use' of Overflow 

NO 

SELECT AND 
EXECUTE 
NEXT INST. 

YES 

CLEAR THE OVER 
FLOW IND~CATOR 
AND JUMP 

Overflow may be expected and used as a control, or it may be un
expected, i.e., caused by an error in the data or in scaling the numbers. 
(Scaling is described in the next section of this chapter.) 

94 

STOP 



When overflow is used as a control, the overflow switch should be in 
the off pos1t1on. Overflow is used as a control in double precision addi
tion and subtraction in which two words are used to represent a number. To 
add (or subtract) two numbers, corresponding halves are added (or subtracted). 
When overflow occurs in the addition of the right half words, a carry must 
be added to the addition of the left half words. 

Left half of number Right half of number 

Number 1 Word 3 Word 1 

+ Number 2 Word 4 Word 2 

Sum - Word 3 + Word 4 

\ 
Word 1 + Word 2 

~ ~ 
Left Hal f Sum Right Half Sum 

Carry 1 if overflow 

Example 

The coding to perform double preC1S1on addition with positive 
numbers is shown below; it is assumed that the overflow switch is off. The 
numbers and their corresponding memory locations are as follows: 

Memory Location Contents 

3968 Right Half Number 1 

3969 Left Half Number 1 

3970 Right Half Number 2 

3971 Left Half Number 2 

3972 Right Half Sum 

3973 Left Half Sum 

3974 A One 1n the Sign Position 

3975 A One as the Least Signi fican t Digit 

The number in 3974 is needed to correct the sign position if 
overflow has occurred, and the number in 3975 is used for the carry of one. 

9S 



L LOCATION COMMAND ADDRESS AND REMARKS 

TM A 3 9 6 8 $ 0btain the Right Half Sum 

AM 3 9 7 0 $ 

IN 0 N 0 F L 0 W $ Jum~ if no carry to Left Half Sum 

AM 3 9 7 4 $ Correct the sign of Right Half 

TA M 3 9 7 2 $ Store Right Hal f Sum 

TM A 3 9 7 5 $ Trans fer" Carry" ~ A 

AM 3 9 6 9 $ 
\ / / ' 

! J / 
I 

A D D AM 3 9 7 1 $ 0btain and store Left Hal f Sum 

TA M 3 9 7 3 $ ) L 1/ 

J M P N X T RT N $ 

N 0F L 0 VI TA M 3 9 7 2 $ Store Right Half Sum 

TM A 3 9 6 9 $ Prepare to obtain Left Half Sum 

J M P A D D $ 

Overflow is also used as a control in counting. If an operation 
is to be performed a number of times, a sum can be kept which will overflow 
when the desired number of operations has been performed. This is an in
frequent use for overflow. 

Overflow is more often used to detect errors in data, or in scal
ing. (For present purposes an error in scaling can be taken to mean that 
a result became larger or smaller than was assumed possible or that numbers 
being added or subtracted were placed too close to the sign position.) 
When overflow occurs in either of these cases, two possible courses of 
action exist: The computer can be made to stop, or the programmer can 

Ie program around" the overflow. 

The computer will stop whenever the overflow switch is on and an 
overflow Jump instruction doesn't immediately follow the overflow. \Vhen 
the computer stops the operator can examine the instructions being executed 
and the operands which caused the overflow. 

The lCaS instruction can be used when the overflow indicator is 
to be examined after groups of instructions. The purpose of doing this is 
to guarantee the detection of overflow without using an overflow Jump in
struction after each arithmetic operation. 

Example 

Assume that a series of arithmetic operations are to be performed. 
Overflow may occur anywhere in the computation and it is undesirable to 
place·an overflow Jump instruction after each Arithmetic instruction. One 
way of avoiding this is to execute an lCaS instruction just before the 

96 

Sum 



IL 

S 

computation begins and an overflow Jump instruction after the computation 
ends. Prior to running the program the overflow switch should be off. 

If overflow occurs, the overflow Jump instruction should direct 
the processing to a part of the program which tells the operator, by print
ing on the Console Typewriter, to set the overflow switch and which then 
stops the computer. After setting the switch, the operator depresses the 
advance bar. Then an Ieaz instruction and a jump to the start of the com
putation is executed. \fuen the computation is repeated, overflow recurs 
and the computer stops at the point of overflow. The operator thus can 
determine where in the program the overflow occurred and why it occurred. 

A skeleton form of the coding for this procedure is shown below. 
Note that ln this case the Jump instruction signifies overflow by not 
Jumplng. An instruction which cannot cause overflow precedes JNO because 
the computer will not stop if overflow occurs immediately preceding an 
overflow Jump instruction. 

LOCATION COMMAND ADDRESS AND RErJARKS 

I e 9.} S Inhibit clearing of overflow 

T A R T · · !, 

· · The serles of computations ln 

· · ;> which overflow can occur 

· · 
· · I""" 

An instruction which cannot cause overflow 

J N 0 N XT R T N $ If no overflow, jump to continue the program 
1\ · · 

· · "Set overflow switch" ~ Console 

· · Typewriter 

· · / 

H L T Stop to allow operator action 

I e o z Remove inhibition on clearing overflow indicator 

J MP S T AR T $ Jump to repeat the computation 

97 



L 

D 

The next two examples illustrate programming around overflow. 

Example 

The coding which produces a quotient even if overflow occurs is 
shown below. If potential overflow is detected, the Divide instruction 1S 
repeated after the dividend has been automatically shifted one position 
right. The dividend is assumed to be in memory location 3968 and the 
divisor in 3969. 

LOCATION COMMAND ADDRESS AND REMARKS 

T M A 3 9 6 8 $ Dividend :;. A 

I V I D E D A 3 9 6 9 $ Divide[shifts(A)Reg.R one hi t if overflow detected] 

J 0 F D I V I D E $ Jump to DMm if the overflow . 
: . indicator is set to one. 

Additional coding to count the number of shifts of the dividend is required. 
This count indicates the number of positions necessary to shift the quotient 
left to maintain the same scale factor. The coding will be illustrated in 
Chapter VIII under the subject of Index Registers. 

Example 

If overflow occurs due to an error 1n the data, it is desirable 
to detect it and jump to a part of the program to correct the error. For 
example, the coding below will jump to CORRECT if (3968) plus (3969) cause 
overflow. 

L LOCATION COMMAND ADDRESS AND REMARKS 

TM A 396 8 $ 

AM 3 9 6 9 $ 

Jyj F Cyj R R E C T $ 

Additional Features of PUlLCO 2000 Arithmetic 

Multiplication. In multiplication, rounding is accomplished by adding 
one to the most significant bit of the Q Register which contains the minor half 
of a double length product. The original contents of Q are then restored. The 
product in multiplication will be negative if the signs of the two operands are 
different. It will be positive if the signs are the same. In unrounded multi
plication, the sign bits in the A and Q Registers will be the same. 

98 



Division. The results of division, when no overflow 1S detected, 
are shown on the following table: 

DIVIDEND IS: I-

/ \ 

') 
POSITIVE NEGATIVE POSITIVE NEGATIVE 

DIVISOR IS: -' POSITIVE NEGATIVE NEGATIVE POSITIVE 

IF DIVISION IS 
NOT EXACT 

RESULTS RESULTS RESULTS RESULTS 

SIGN VALUE SIGN VALUE SIGN VALUE SIGN VALUE 

QUOTIENT IS: + True + True - One's - One's 
comple- comple-
ment ment 

REMAINDER IS: + True - True + True - True 

IF DIVISION 
IS EXACT 

QUOTIENT IS: + True +- One less - One's - True 
than the comple- (two's 
true ment comple-
value in ment) 
the least 
signi fi-
cant bit 

REMAINDER IS: + Zero - Same as + Zero - Two's 
di visor comple-
(two's ment of 
comple- divisor 
ment) 

The table shows that 

a. The sign of the remainder 1S always the same as the s1gn of 
the dividend. 

b. Negative quotients are normally produced 1n their one's comple
ment form. 

99 



Two special cases arlse from these characteristics of division. 

Scaling 

a. In cases of exact division involving a negative dividend, a 
negative remainder of zero cannot be formed, as zero is a 
posltlve number. In such a case, the value in the A Register 
(remainder) is made equal to the two's complement of the abso
lute value of the divisor. During this process the value of 
the quotient is made smaller by one in the least significant 
bit position. 

b. The last step noted above causes the quotient in an exact 
division involving a negative dividend and negative divisor 
to be one less than its true value. In an exact division 
involving a negative dividend and a positive divisor, this 
last step causes the quotient, which would otherwise be in a 
one's complement form, to be expressed as a two's complement-
thereby representing its true value. 

Representing Whole and Mixed Numbers. Despite the arithmetic 
section's interpretation that all numbers are less than one or greater 
than or equal to minus one, the programmer is not restricted to this 
range. He may assume a binary point anywhere within a word or outside 
of a word. Having made this choice, the programmer must keep track of the 
assumed point throughout all subsequent arithmetic operations. This pro
cess of representing any desired number by selecting an appropriate binary 
point is called SCALING, and the number of positions between the computer's 
point and the assumed point is called the SCALE FACTOR. The scale of a 
number is that power of two which, when multiplied by the computer number, 
produces the desired number. 

For example, to represent the "number 4, uSlng the computer number, 
.5, the scale factor must be 3, i.e., 

The computer number.5 = 0.10000 ... 

with a scale factor of 3 0.100,,00 ... 

is equal to .5 x 23 = .5 x 8 = 4 = 100, 

where the caret, 1\ ' indicates the assumed binary point. 

In TAC notation this number would be written as 

4.0 B 3. 

B3 means that the position of the assumed binary point is three places to 
the right of bit posltl0n zero. (A complete description of TAC notation 
will be found in a subsequent section of this chapter.) 

100 
L 



A positive scale factor indicates that the assumed point is to 
the right of bit position zero. A scale factor of zero indicates that the 
assumed point coincides with the arithmetic section's point. A negative 
scale factor indicates that the assumed point lies to the left of bit posi
tion zero. Note that a negative scale factor must indicate a fractional 
number because it specifies a binary point which precedes the number. Sim
ilarly, except for minus one, a zero scale factor indicates a fractional 
number. For example: 

, .-
-i ll,) : 

I.' 4.5 B4 

.25 R-l 
. 5 BO 

= 0.0100,,10 .. . 
,,0.100000 .. . 

0.100000 .. . 
1\ 

~anipulation of scaled numbers only requ1res that the programmer 
keep track of the assumed point which may move or have to be moved for 
arithmetic operations. How an assumed binary point moves will become evi
dent by reviewing the computer's interpretation of numbers being multiplied 
and divided. 

.5 
x .5 

.25 

.75 
x .25 

375 
150 

.1875 

= 

= 

PHILCO 2000 ~"ul tiplica tion 

0.10000 ..• 0 
0.10000 ... 0 

0.01000 ... 0 000000 ... 0 

0.11000 ... 0 
0.01000 •.• 0 

0.00110 ..• 0 000000 .•• 0 

If the numbers of the first example are scaled to represent 4.083 
and 2.0B2, respectively, the multiplication may he considered as 

0.100,,000 ... 0 
I 

0.10,,0000 ... 0 

0.01000,,000000 ... 0 = 8.0B5. 

That 1S, (.5 x 23) x (.5 x 22) = .25 x 25. 

From this it can be seen that the assumed binary point has now moved to the 
right to a position five places from bit position zero. This result may be 
generalized as follows: 

a. In multiplication, the scale factor of the product is equal 
to the sum of the scale factors of the multiplier and the 
multiplicand. 

101 



b. In division, the scale factor of the quotient is equal to 
the difference between the scale factors of the dividend and 
the divisor. 

For example, consider the division of 1/4 by 1/2. In the PHILCO 
2000 this division produces the following result: 

{ .~~ J = 
0.01000 •.. 0 _ 0 
----- - 0.10000... = .5. 
0.10000 ••. 0 

If the numbers are scaled so that the dividend represents 8.0 B 5 
and the divisor represents 2.0 82, the quotient must be 4.0 B3 or 

8.0 B5 
2.0 B2 

0.01000 A ••• 0 = = 0.100AOO ..• 0 = 4.0 B3. 
0.101\000 ... 0 

c. When performing addition and subtraction, the scale factors 
must be the same; that iS 1 the binary points must be aligned. 
Thus, to add 

9.0 B4 
and 

3.5 B2 

= 

= 

0.10011\0 .•. 0 

0.111\100 ... 0 

the second number must be shifted right so that the assumed 
point is at 84. That1s, 

9.0 B4 
+ 3.5 B4 
12.5 B4 • 

0.1001,,0 ••• 0 
0.0011,,10 .• 0 

O. 1100,,10 .• 0 

Sometimes it will be convenient to work with whole numbers rather 
than mixed numbers. For example, instead of dollars and cents, all figures 
and computations can be expressed in cents. Then the only time that a 
distinction between dollars and cents need be made is when the numbers are 
to be printed or punched in cards or paper tape. 

Examples of scaling 

Number 1 is to be multiplied or divided by Number 2. 

Number 1 Number 2 Product Quotient 

6.0 85 3.0 B2 18.0 B7 2.0 B3 
4.25 B17 .5 B12 2.125 829 8.5 BS 

13.75 B21 .S BO 6.875 B21 27.5 B21 
.125 B-1 .0625 B-3 .0078125 B-4 2.0 B2 

a Bx b By ab B(x+y) alb B(x-y) 

102 



These numbers would have the following appearance In PHILCO 2000 
words. Note: Blank positions represent zeros. 

6.0 BS 

3.0 B2 

18.0 ill 

2.0 B3 

4.25 B17 

.5 B12 

2.125 B29 

8.5 B5 

13.75 B21 

.5 EO 

6.875 B21 

27.5 B21 

.125 B-1 

C 1 2 :I 45678 9 1011.2131415161718192021222324252627282930313233343536373839404142"344454647 

1 1 0 
I 

1 1 
/1'-

1 0 o 1 0 
/j\. 

1 0 
I .... 

1 0 o 0 1 , .... 
1 

f\ 

1 0 o 0 1 
.n 

1 0 o 0 1 
1\ 

1 1 o 1 1 1 
II\-

I 
~, 

11 o 1 1 1 

1 1 01 II 
Ii' 

001 , ... 
. 0625 B-3 ,,00 

.0078125 B-4 AOOO 

2.0 B2 

o 1 

o 0 o 1 

1 0 
o 1 2 3 4 5 6 7 8 9 1011 12131415 161718192021 22232425262728293031 3233343536 37 38 39 40 41 4243444546 47 

Exercises 

/,,'" 

I " 
) ,~' I 

II ::' ,,' 
,;11 • 

1. Perform the following binary arithmetic and determine the 
decimal equivalents: 

a. Add and subtract 1101101 
± 0011011 

10110.001101 
± 01101.010110 

b. Use two's complement subtraction in part a. 

c. Mul tipl y . 
x 

10'110.101 
1.010'11 

/ .', 

/{j,(~'" 

2. Determine the products and quotients of the following paIrs 
of numbers: 

16.25 834, 3.5 B10 
6.4 B10, .125 BO 
.375 BO, 2.0 B3 

3. Show how the above operands and resul ts would appear In PHILCO 
2000 words. Stop converting a result to its binary form if 
it is a repeating fraction. 

103 



TRANSLATOR-ASSEMBLER-COMPILER CONSTANTS 

Use of Constants 

The preceding section was concerned with the PHlLeO 2000 repre
sentation of numbers, letters, and symbols. This section is concerned with 
the Translator-Assembler-Compiler representation of constants. 

The term "constant" is derived from the fact that, unlike data, 
constants generally do not vary but are fixed. A constant may be a word, 
part of a word, or a number of words. A constant usually applies to many 
units of data but, rather than be repeated in the data, is included once 1n 
the program. This saves magnetic tape space and tape running time. 

Constants were used in several examples in Chapter III. The last 
exerC1se in that chapter required such constants as the dollar amount, 
$144.00, and the percentage, 3.00%. All constants in Chapter III were 
assumed to be stored in certain memory locations. No mention was made of 
how they got there or what their format was. These points are the subject 
of this section. 

TAe constants are not instructions but are written on coding paper 
along with instructions. They may be written in place of instruction ad
dress parts or in place of entire instructions. An identifying letter fol
lowed by a slash precedes the TAe constant and distinguishes it from an 
address or instruction. For example, to represent the alphanumeric constant, 
MAY 6 1958, the following notation will be used: 

A/MAY 6 1958 

AI identifies the characters that follow as alphanumeric. TAe, 
of course, deletes the letter and slash before placing the constant in the 
program. 

Pool and Non-Pool Constants 

A constant written in the address column is placed in the constant 
"pool" by TAe, and its address is inserted in the ins truction referring to 
it. By definition. such a constant is called a pool constant and the part 
of the program allocated to such constants is called the constant pool. A 
constant beginning in the command column, however, appears in the sequence 
in which it was coded rather than in the constant pool. This type of con
stant is called a non-pool constant. 

There are the following distinctions between pool constants and 
non-pool constants: 

a. Pool Constants 

1. The constant 1S placed in the constant pool. 

2. The length of the constant is limited to one word. 
I 

3. TAe insures that no constantYis unnecessarily repeated. 

104 
\j\0\~~ ~r~~'~), 

\J 



h. Non-Pool Constants 

1. The constant appears In the program where written. 

2. Some non-pool constants may be any size and occupy as 
many successive memory locations as necessary. 

3. Repetition of constants may occur. 

The programmer determines the location of the constant by con
sidering the above points. If a constant is to be modified, for example, 
it should not be a pool constant. Similarly, it is simpler to make a mes
sage or sentence, that is to be printed on the Console Typewriter, a non
pool constant. In most other cases, however, it is simpler to write the 
constant as a pool constant. 

Note that when constants are written in the Command column, the 
Central Computer does not distinguish between them and instructions. There
fore, it is the programmer's responsibility to ensure that a constant is 
not executed as an instruction. This is done by placing constants after 
Jump or machine Halt instructions or by writing constants as addresses. 

In order for TAC to distinguish the end of the address part from 
the beginning of the remarks section, the dollar sign ($) must follow the 
address. This symbol may be written each time or omitted if it is under
stood that the keypunch operator will punch the sign after every address. 
(This assumes that the program is keypunched onto cards. It is also possi
ble to punch the program onto paper tape; however, the same convention 
applies.) 

A constant written both as a pool constant and as a non-pool con
stant IS shown below. The two TMA instructions produce the same result. 

L LOCATION COMMAND ADDRESS AND REMARKS 

TM A A / M A Y 6 1 9 58$ 

T M A C 0N S T $ 

· · 
· · 
· · 

C 0 N S T A / M A Y 6 1 9 5 8 $ 

105 



Types of Constants 

TAC constants and their formats are listed below. The lower 
case letters represent characters or digits which vary according to the 
particular constant. The upper case letters are a part of every constant. 
The configuration, xx ... xx, indicates a variable number of characters. 

Fixed point decimal number: D/Number EC,Bd ..)1 

Floating point number: F/Number Ec ) to A II 
IJ 

Word constant: W/xxxxxxxx 

Alphanumeric: A/xx .•. xx 

( ") ~ 

I 

Octal: ~/xx ... xxTd .:)t..",) J ,.\\ (I 
( ,f, 

\\(. 
;) 

U rj ";I...l. 

Hexadecimal: H/xx ••. xxTd 

Numeric: N/xx ... xxTd 

Binary: Decimal/Binary Td 

(Other specialized constants are described in subsequent chapters and 1n 
the TAC manual ) 

For the first three types of constant--Floating Point, Fixed 
Point, and Word constants--TAC produces only one full word. For the re
maining types,TAC produces a constant which may be a part of a word, or 
a full word, or in the case of alphanumeric constants, a number of words. 
If a constant requires only a part of a word, the programmer may specify 
that other constants occupy the same word. The number of constants which 
may be combined in a word is limited by the size of each constant and the 
size of the word. 

A combination of constants is specified by wr1t1ng all the desired 
constants and separating them by semicolons. Thus, the following notation 
refers to a word which will be composed of an octal constant, a hexadecimal 
constant, and a binary constant: 

~/425; H/976; 27/1 

Fixed and Floating Point Decimal Constants 

In the listed format, Number represents the decimal number, 
Ec represents the power of ten, positive or negative, by which it is mul
tiplied, and Bd represents the binary scale factor or position of the 
binary point for a fixed point decimal number. 

For example, D/.I016875 E3 840 would represent the number 101.6875 
placed in a PHILCO 2000 word with the binary point positioned 40 places to 
the right of bit position zero. That is 

106 



o 1 2 3 .. 5 6 7 B 9 1011 12131415161718192021 22232<425 262728 2930 3132333<4353637383940 41 424344 4S 46 47 

III II III I II III I IIII I I I III I II I I II I I lililikhlHililihll I I 
i 101 t .6875 

rl '/ E') Binary Point .> B40 
.' ) 

1',(1 

This constant could be written as an address 

COMMAND ADDRESS AND REMARKS 

T 

or In place of an instruction 

COMMAND I ADDRESS AND REMARKS 

8 

In writing a decimal constant, the principal part (number) is 
written first and is followed by the exponent and the binary scale f?ctor. 
If a scale factor is zero, BO must be written. \Vhen the principal p~rt is 
a whole number, the decimal point may be omitted. In the special case where 
both the binary scale factor and the decimal point are omitted, the constant 
is treated as an integer with scale fac~_().~.Q4I~ Note that in this case, a 
fractional part of a number would faIr-outside the 48 bits of the word and 
would be lost. 

0/15 

0/15 E3 

0/15 E-3 

15 847 

15 E3 847 

o (since the fractional part IS lost) 

Floating point decimal constants mayor may not contain a decimal 
point and do not contain a binary scale factor, i.e., 

F/lS.O Floating point number 15 

For both forms of decimal constants a POSItIve number is indicated 
by a plus SIgn or it may be omitted; a negative number is always indicated 
by a minus sign. 

Word Constants 

A special type of alphanumeric constant is the Word constant which 
is designated by the symbols W/ followed by any combination of eight computer
acceptable characters. The constant must contain ~~~ly eight binary-coded 

107 



'/ 

:r< 

characters to be stored in the order that they are written. Word constants 
permit the use of such symbols as the semicolon and the dollar sign. (Refer t,o 
alphanumeric constant.) 

Examples of Word constants are: 

COMMAND ADDRESS AND REMARKS 

TM A W I ; I A ) $ 6 R6.$ 

wi ; I A ) $ 6 R 6. $ 

'/ lj 
(/ (('I/i) 

! j-;//,,, 
) , ! .-,., 

/ 

Alphanumeric constants are composed of binary-coded characters. 
When written as an address, a maximum of eight characters, that is, one 
word, may be used. If less than eight characters are written, they 
are placed in the high order positions of a word and zeros fill the re
mainder of the word provided that no other constant shares the word. 

Alphanumeric constants in place of instructions may be any length 
and may be continued from line to line. This is a unique feature of 
alphanumeric constants. The first instruction line begins in the Command 
column and may contain up to 62 characters. Subsequent lines begin in the 
Address column and may contain up to 56 characters. TAC places every eight 
character group in a consecutive word of memory. If the number of char
acters written is not a multiple of eight, TAC fills the remainder of the 
last 'word with non-printing" space" symbols. 

Alphanumeric constants are written with the symbols AI immediately 
preceding the constant. Each alphanumeric constant is terminated by a 
dollar sign, $, unless this type of constant is only one part of a constant 
word. As a result, no alphanumeric constant may contain a dollar sign, 
semicolon, or right parenthesis. This type of constant will be described 
later. 

COMMAND ADDRESS AND REMARKS 

T M A A I c D E 1 2 3 45$ An eight character pool constant 

A I C D E 1 2 3 4 5 $ An eight character non-pool constant 

T M A A I C D E $ A three character pool constant 

A I p R I C E 6. Q U 0 T A T I 0 N 6. T0DAY 6.IS $ 
A three word ~~n-pool constant (space 

a character 

108 

1S 



I I 

These constants would appear In PHILCO 2000 words as follows: 

c D E 1 2 3 4 5 

c D E o o o o o 

P R I C E 6. Q u 

0 T A T I 0 N 6. 

T 0 D A Y 6. I S 

where each character IS represented by ,six bits. 

Octal Constants 

Octal constants have the form 0/xx ... xx Td. TIle x's represent 
up to 16 octal digits (one word) and the T entry indicates the termination 
position of the constant. The T is analogous to the B in fixed point deci
mal constants. 

Octal constants are always considered to be integers by TAC. 
These constants are converted directly to binary form, three bits per octal 
digit. Octal constants are positioned within a PUILCO 2000 word by the T 
entry, which indicates the position of the least significant digit of the 
octal constant. 

If no termination is indicated, an octal constant fills the 
PIIILCO 2000 word from left to right, high order to low order. If sixteen 
digits are not written and no other constant is to share the word, the low 
order positions of the word are filled with zeros. Similarly, if a constant 
is written which doesn't specify digits for the high order positions, they 
too are filled with zeros. 

The following are examples of octal constants and their binary 
equivalents: 

o 1 2 3 .. 5 6 7 8 9 )0 J1 )213141516171819 2021 222324 2S 262728 2930313233343536 37 38 39 40 41 4243444546 47 

~/75 

~/75 T23 lilt lilt 1IIIIIIIIIII1111IJ I LIIIIIIIIIIIIIIIIIIIIIIIII 
Note: Blank positions indicate zeros. 

109 



Hexadecimal Constants 

Hexadecimal constants are indicated by the symbols H/ followed 
by the constant. The constant may consist of up to 12 hexadecimal digits. 
A hexadecimal digit is a number 0 through 9 or a letter A through F. Each 
of the digits requires four bits to represent it according to the following 
table. 

Hexadecimal 
Digit 

o 
1 
2 
3 
4 
5 
6, 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Decimal 
Equivalent 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Binary 
Equivalent 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

The format for hexadecimal constants is H/xx •.. xx Td. The x's 
represent up to 12 (one word) hexadecimal digits. In all other aspects 
hexadecimal constants are treated in the same way as are octal constants. 

The following are examples of hexadecimal constants: 

Numeric Constants 

H/1234ABCD78EF 

H/AB 

H/DEF T16 

Numeric constants are designated by the symbols N/. The decimal 
number following these symbols must be positive and integral in value. The 
format for this constant is N/Number Td. A termination indicator, Td, must 
follow the decimal number to indicate the right boundary. The decimal num
ber will then be converted to its binary equivalent and inserted in the 
word in the proper position. For example, N/1149 T35 would become 

o 1 2 3 .. 5 6 7 8 9 1011 12131415161718192021 22232425262728293031323334353637383940 41 4243 44 4~ 46 47 

I III II 1IIIII1II III1III 1IIIIJo 1010Iilf!i]1111&111 III1II III I 
1n a PHILCO 2000 word. 

110 

1149
0 

': 2 1l:; 3 



binary 
is too 
lost. 

Sufficient space in the word must be allocated to contain the 
equivalent of the decimal integer.· If the termination indicator 
small J the number will" overflow" and the high-order bi ts will be 
For example, N/1149 T9 would become 

o I 2 3 .. 5 6 7 a 9 10 II 121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31323334 35 36 37 3839.w 41 .. 2 .. 3 «<15 <46 .. 7 

1 \01010\11111hhlollllllllllllllllllllllllllllllllllllllIII 
~ 

and the most significant bit would be lost. 

Binary Constants 

Pure binary constants are written by specifying the desired num
ber of binary ones, zeros, or combinations of ones and zeros in the follow-
1ng format: 

Decimal Number/Binary Number rd. 

The decimal number may have any value from 1 to 48 and the binary number 
represents the desired binary configuration. The decimal number indicates 
the number of groups of this configuration to be placed in the constant. 
The right boundary may be specified by a termination indicator. 

For example, 20 binary ones terminating 1n the 19th position, 
20/1 T19, would appear 1n a PHILCO 2000 word as ,.?cJ L,rj:: == 0 .-.- / 9 

o I 2 3 <I 5 6 7 8 9 1011 1213 U 15 16171819202122232425262728 29303132333 .. 35 36 37 38 3940414243 of .... 5 46 .. " 

1111111111hhh11h1111h111111/Illh11111111111111111111111I1IIIIII 
----- -..r ---' 20/1 

Since the semicolon is used to separate constants, 20 binary ones, 
followed by two groups of 101, followed by 22 ones would be written as 
follows: 

20/1; 2/101; 22/1 

This constant would appear as 

o 1 2 3 .. 5 6 7 8 9 1011 12 13 1" 15 16 17 18 19 2021 22232 .. 25262728 2930 3132333 .. 35 36 37 38 39 40 41 42 .. 3 .... 45 46 47 

/111111111111111111111111111111111111111111011111011111111111111111111111111111111111111111111111 
\ /\ JL I 

20/1 2/101 22/1 

When a number of constants are to occupy a word, they are written 
1n the order that they are to appear in the word. Unspecified parts of a 
word are filled with zeros. A termination indicator (T entry) may be used 
to determine the right boundary of each constant (except alphanumeric con-

III 



L 

stants). Otherwise it will be determined by its own size requirement. The 
left boundary of a constant is determined by the preceding constant. If 
a constant is too long to fit within the existing boundaries, its high 
order bits are lost. To avoid this loss, the programmer must maintain a 
count of the bit positions used per constant, so as not to exceed 48 bits. 

For example, the following binary information might be written 
as: 

LOCATION COMMAND ADDRESS AND REMARKS 

T M A A / A B ; 0 / 7 7 ; H / 9 9 ; 1 0/1 T4 

Dr 

A / A B ; 0 / 7 7 ; H / 9 9 ; 1 o / 1 T4 5 $ 

Dr 

A / A B ; 0 / 7 7 T 1 7 ; H / 9 9 ; 1 0 / 1 T4 5 $ 

and would appear in a PHlLeO 2000 word as 

o 12 3 " 567 8 91011121314151617J81920212223242526272829303132333435363738394041424344454647 

SUMMARY 

112 

B 7 7 9 9 10/1 T45 

a. Because of the economy and efficiency of binary manipulation, 
most computers use a form of binary representation. 

h. The rules of binary arithmetic are: 

Addition 

0 0 1 1 
+0 +1 +0 +1 
0 1 1 1 0 

"- Carry 

Subtraction 

Borrow 
......-:i 

0 0 1 1 
-0 -1 -0 -1 

- -
.0 1 1 0 

5 $ 



Multiplication 

o 
xO 
o 

o 
xl 

o 

1 
xO 
o 

1 
xl 

1 

c. Conversion from one number system to another with a lower 
base is accomplished by successive divisions by the lower 
base. The remainder digits make up the converted number. 
Conversion from the lower base number to the higher base 
number is accomplished by forming a sum of the products of 
the digits in the number by the appropriate power of the 
base. 

d. An octal number is a number with a base of eight and may be 
converted directly to binary by converting each octal digit 
to three binary digits. 

e. Hexadecimal numbers have a base of 16. Each hexadecimal 
digit is converted to four bits. 

f. All numbers in the arithmetic section are considered to be 
less than one and greater than or equal to minus one. Nega
tive numbers are represented in two's complement form. 

g. An arithmetic result which falls outside of the above limits 
sets the overflow indicator and produces a Slgn which is the 
opposite of the correct one. 

h. The instructions used in the detection of overflow are 

Inhibit Clearing of Overflow indicator reps: 

reaz: 
l 

Remove Inhibition on Clearing of Overflow indicator 

Jump if Overflow is indicated 

Jump if No Overflow is indicated 

1. Despite the computer number range, any number may be repre
sented in the Central Computer by scaling. When arithmetic 
is performed, the scale factors must be considered for the 
positioning of the binary point. The necessary factors are 
as follows: 

1. Addition and Subtraction 

The binary points must be aligned. 

2. MUltiplication 

The scale factor of the product is the sum of the 
scale factors of the multiplier and multiplicand. 

113 



114 

3. Division 

The scale factor of the quotient is the difference 
between the scale factors of the dividend and the 
divisor. 

J. TAe constants, except for those to be described In subsequent 
chapters, are listed below: 

1. One to a word 

Fixed Point: 

Floating Point: 

Word: 

D/Number Ec Bd .~"'-, 
U 

F/Number Ec 

W/xxxxxxxx 

2. More than one to a word permissible (FJ L/cl COlJs·LitJl-) 
Alphanumeric: 

Octal: 

Hexadecimal: 

Numeric: 

Binary: 

A/xx ... xx 

0/xx ... xx Td 6-1;C~:("". ( 

H/xx ... xx Td"iJ 

N/Number Td lY"l'-A,N,(Cctcc,-, _ u 

Decimal/Binary Td I"x:it\..-,,·\rJ 
u 

k. All constants may be pool or non-pool constants. Pool con
constants are written in place of addresses; non-pool con
constants are written in place of instructions. A dollar 
sign is used to separate the remarks from the instruction 
or constant. Semicolons are used to separate combined 
constants. 



CHAPTER VI 

DATA MODIFICATION 

MODIFYING WORDS 

Prior to this chapter, all data modification was accomplished by 
transferring entire words to the adder network. The modification perform
ed was that of arithmetic. In this chapter, methods will be described 
which allow the programmer to modify parts of words and to alter the posi
tion of data within words. These functions are called extracting and 
shifting and can be illustrated by the following diagrams: 

a. Extracting: Extract the unit designation from a word 1n 
memory to the D Register. 

QUANTITY UNIT COST Word 1n memory 

'--O_-___ -=--=--=--=--===_o-1.... __ U __ N_I_T_--'--_O~=~~~~_O~1 D Regis ter 

The primary purpose of extracting, is to select one of sever
al data elements which have been packed in one word. 

b. Shifting: Shift the number in the A Register to the right. 

A Register 

11234567600000000 Before shifting 

0000000012345676 After shifting 

Shifting establishes the position of the binary point of 
numbers before and after arithmetic operations. Since the 
value of a number is relative to the position of the binary 
point in a word, shifting is equivalent to multiplying or 
dividing by a power of two. Shifting is also used to align 
alphanumeric data which is to be compared. 

115 



SHIFTING 

Types of Shifts 

Only words in the arithmetic registers may be shifted. They may 
be shifted individually, or they may be shifted as one double length unit, 
as in the case of words in the A and Q Registers. 

Three types of shifts are possible in the Central Computer: 

a. ordinary 

b. numerical 

c. circular. 

Ordinary shifts treat every bit in the affected register or registers alike 
and are usually used for nonnumeric data. Numerical shifts treat words in 
such a way as to preserve the signs of numbers. A circular shift 1S an or
dinary shift except that bits shifted out one end of the register are re
turned at the other end of the register. 

For each bit position shifted in each type of shift, one bit is 
shifted out of one end of the register and one bit is introduced at the 
other end. In ordinary shifts and numeric left shifts the bits introduced 
are zeros. However. in numeric right shifts the bits introduced to the 
right of the sign bit are the same as the sign. 
(6"~'{A !CJ-t.r .)j .. ..c.((. (~I , ,) ~ / (!,.( 1.\~,O_1 , (c/~I (-:J 11.1'/( C ,~~~-{-~.(,) t' '<!It \!, / 

.' ;"1' --I. . - , -1 ---! / / i, I .. 1-/ . i I / ' -' 
I '-l'1 V ~ Itcll, /, l. r ,',,,..1,. L ... :~,,' G'.(. . ) , I (It ,. ,',:' lit: • : .... ' I' 

,~... The following diagrams illustrate the three types of shifts: 
(Arrows indicate the movement of one bit.) 

116 

ordinary 
right 

numerical 
right 

circular 
right 



ordinary 
left 

numerical 
left 

circular 
left 

The following diagrams illustrate shifts of two-bit posltlons: 
(For simplicity each register is shown as if it had a ten-bit capacity.) 

Right Shift Left Shift 

Before 

Ordinary 

After 

Before 
Numerical 

After 

Before 

Circular 

After 

(Note: Left circular shifts are only possible with the conditional jump 
instructions described later in this chapter.) 

117 



The following diagrams show the additional effects of shifting 
the contents of the A and Q Registers together: 

A Register Q Register 

ordinary 
right 

numerical 
right 

ordinary 
left 

numerical 
left 

The shift commands have the following format: 

OPERATION REGISTER OPTION 

Register A Numerical 
Shift"Left or Q (blank 
Shift Right or D* for 

or A and Q ordinary) 

Shift Circular D* None 

SL A 
Q 

SR D* N 
AQ 

SC D* None 

*The contents of the D Register may only be shifted to the right. 

118 



The complete list of shift commands follows: (The shift IS 
ordinary unless stated otherwise.) 

COMMAND 

SLA 

SRA 

SLAN 

SRAN 

SLQ 

SRQ 

SLQN 

SRQN 

SRD 

SRDN 

seD 

SLAQ 

SRAQ 

SLAQN 

SRAQN 

EXPLANATION 

Shift Left A 

Shift Right A 

Shift Left A Numerically 

Shift Right A Numerically 

Shift Left Q 

Shift Right Q 

Shift Left Q Numerically 

Shift Right Q Numerically 

Shift Right D 

Shift Right D'Numerically 

Shift Circular D (right) 

Shift Left A and Q 

Shift Right A and Q 

Shift Left.A and Q Numerically 

Shift Right A and Q Numerically 

The number of binary positions shifted is specified by the address 
part of the instruction and may be from zero to 63 positions. {The reason 
for this limit is that the control section determines the number of posi
tions to shift by the right six bits of the address. The largest number 
represented by six bits is 63 which is the first sum of·powers of two ex
ceeding 48. Usually there is no reason for shifting more than 48 positions, 
i.e., an entire word length. However, if it is necessary to shift more 
than 48 positions, it is faster to use a Transfer instruction for the first 
48 and then a Shift instruction. 

A zero position shift has no effect on the computer. No shift 
occurs and the computer does not stop. If the address part of a Shift in
struction specifies a shift of more than 63 positions, the number of places 
shifted is determined by the value of the right six bits of the address. 
This number will be equal to the address written minus a multiple of 64. 
For example, if 143 is specified, the number of positions shifted will be 
143 - (64 x 2) • 15. 

119 



Another characteristic of Shift instructions is that the overflow 
indicator is cleared before they are executed. Also, left shifts may set 
the overflow indicator if the bit in the sign position differs from the next 
bit for one of the positions shifted. This allows the programmer to deter
mine if the sign had changed in an ordinary shift or if a significant bit 
were lost in a numerical shift. 

These conditions are shown 1n the following diagrams: 

After Shifting Left One Bit 
Overflow 

Before Shifting Ordinary Numerical Indicator 

0 I 2 0 I 2 0 I 2 

1 1 X 1 X {~o sign 
1 X ~NO significant Not set 

0 0 X 0 X 
change 

0 X bit lost Not set 

1 0 X 0 X {Sign 
1 X {Significant Set 

0 1 X 1 X change 0 X bit lost Set 

LSign bit position 

SYMBOLIC ADDRESSING 

Up to this point, symbolic addressing has only been used in ref
erence to instructions. Because of its convenience and ease of use, sym
bolic addressing may also be used in reference to data. 

The programmer assigns a meaningful symbol, name, or abbreviation 
of up to 21 characters to the first word of a data area 1n memory. All 
words following this word may be labeled by adding one to each preceding 
symbol. For example, a payroll data area might be labeled as follows: 

PAY First word of area 

PAY + 1 Second word of area 

PAY + 2 Third word of area 

120 



As in all symbolic addressing, TAC substitutes an actual or computer address 
for each symbolic address. 

(Chapter V should now be reviewed for representation of numbers 
and constants and for the placement of the binary point in PHILCO 2000 
arithmetic.) 

Example 1: Aligning Values for Addition, Subtraction 

Add the numbers 104.125 B8 and 749.5 B24. 

To add the two numbers, their binary points must be aligned; i.e., they 
must occupy the same relative positions within their respective words. 

COMMAND ADDRESS AND REMARKS 

T M A Dj 1 0 4 • 1 2 5 B 8 $ 

·T M D Dj 7 4 9 . 5 B 2 4 $ 

S R A N 1 6 $ 

A D 

To align the points at B24, the number 104.125 1S shifted right 16 POS1-
tions. 

The notation used is 

o 1 2 3 4 5 6 7 8 9 1011 121314151617181920 

I I I : : ~? ~ : .:1 ~ ;S I I I I I I I I I I 
where the number 104.125 is in a word in binary positions 2 through 11, in
clusive. Since the binary point is placed 8 positions to the right of bit 
position zero, the scale factor is 8 or E8. The diagram that follows shows 
the contents of the registers before and after shifting: 

o 1 2 3 .. 5 6 7 8 9 1011 1213 14 15 16 17 18 19 2021 22232425 262728293031323334 
I I I I I I I 

I IIII I IIII 104 .125 (A) after TMA 
I 749 .5 

I I 
(0) after TMD 

I II 104 .125 
J I I I 

(A) after SRAN 16 
I I 

I 853 .625 
I I I I I I I I I 

(A) after AD 

For two reasons, the number 749.5 cannot be shifted left to 
align the points. First, the contents of the 0 Register cannot be shifted 
left. Second, since ten bits should be allocated to a three decimal digit 
number, part of the number would be lost in aligning the points even if 
the word in 0 could be shifted left. 

121 



Example 2: Aligning Words for Comparisons 

Memory location ALPHl contains a four character alphanumeric 
serial number. Memory location ALPH2 contains another four character 
serial number. Compare them and jump to MATCH if (ALPHl) ~ (ALPH2). The 
serial number in ALPHl occupies the first four binary-coded character posi
tions and the serial number in ALPH2 occupies the last four binary-coded 
character positions (the first four positions contain zeros). 

The coding for this example follows: 

L LOCATION COMMAND ADDRESS AND REMARKS 

TM A AL P H 1 $ 

SR A 2 4 $ 

TM D AL P H2 $ 

JA G D M A T CH $ 

The following diagram shows the status of the registers: 

(A) after TMA 

(A) after SRA 

(D) after TMD 

In the above example, Q could have been used with JAGQ even though the data 
1S alphanumeric. 

Example 3: Multiplication and Division by Shifting 

Given the number 14: 1110 

Shift it one position right: III = 7 

or shift the number 14 one position left: 11100 = 28 

Each right shift of one pos1t10n is, in effect, a division by two without 
remainder, and each left shift of one position is equivalent to multiply
ing by two. 

122 



Multiplication by numbers which are not powers of two may be done 
by shifting and adding. For example) shifting a number three places left 
(i.e., multiplying by eight) and then adding the result to the original 
number is equivalent to multiplying by nine. 

Example: Multiply 3 by 9 by shifting. 

Given the number 3: 

Shift it three positions left: 

Add the 'shifted number to the original: 

Example 4: Shifting by Multiplication 

0011 

11000 = 24 

11011 = 27 

Given the following data format, perform the calculations re
quired in the example in Chapter III, page 42. Assume five decimal 
digits for quantity and cost and two decimal digits for the percentage 
discount. 

o t 2 3 .. 5 6 7 8 9 to II 12 13 14 1516 17 IB 19 2021 22232425 262728 2930313233343536 37 38 39 40 .. 1 424344 4S -46 47 

:::11 ; i i t~t~~~~:t: : ; ; ; ; 1111111111111111111111111111111 

COMMAND ADDRESS AND REMARKS 

T MQ 3 9 6 8 $ I~ 

M M 3 9 6 9 $ 
>Quantity x Cost -. A 

11 

T A Q Quantity x Cost ~ Q 

M M R S 3 9 7 0 $ Quantity x Cost x % ----A, 0, M 

T QA Quantity x Cost ~ A 

S R A N 4 S Align binary points 

S M S 3 9 7 0 $ Quantity x Cost - Quantity x Cost x % 
...A, 0, M 

123 



The status of the registers during this operation are as follows: 

o 1 2 3 .. 5 6 7 8 9 1011 12131" 1516 17 18 19 202122'232" 2S 26272829 30 3132333" 3S 36 373839.co 41 "2 "3 .... "S.elI "7 

Quantity x Cost (A) and (Q) after MM 
~-+~~~~~~~~ __ +-~ __ ~~~~~+-~-+~+-+-~~~-L~L-~-L~~~~~ 

Quantity x Cost (A) after MMRS 
~-+~+-~~~~~~~+-~~~~-T~~~~~~+-+-~~+-~r+~IT-rIlTlIT~;-; 

(A) after SRAN 

Circular Shifts of the Q Register 

Four conditional Jump instructions cause circular shifts of the contents of 
the Q Register. 

JQP Jump if (Q) are positive } Left shift 
JQN Jump if (Q) are negative 

JQO Jump if (Q) are odd } Right shift 
JQE Jump if (Q) are even 

Each time JQP or JQN is executed, the contents of the Q Registers are cir
cular shifted one position to the left regardless of conditions. Each time 
JQO or JQE is executed, the contents of the Q Register are circular shifted 
one position to the right regardless of conditions. 

Unlike the Shift instructions, JQP, JQN, JQO, and JQE have no ef
fect on the overflow indicator. These instructions have many uses, includ
ing determining the sign of a quotient, counting, and testing individuil 
bits which represent yes or no codes; i.e., 1 corresponds to yes and 0 to no. 
(The use of these instructions for counting will be illustrated in Chapter 
VIII. ) 

Example 

The right three bits of the word 1n memory location CODE represent 
yes or no codes as follows: 

t I 
44 

124 

45 46 47 

1 
i 
1 = Member of payroll sav1ngs 
o c Not a member of savings 

1 = Hospitalization plan 
o = No hospitalization plan 

1 = Union member 

o c Not a union member 



Code the instructions neceBsary for each code to be examined and 
Jump to SAVE, and/or HOSP, and/or UNION, depending on the combination 
of ones and zeros present. Note that if the first code is a one, a jump to 
SAVE is effected. In order to have the next two codes examined it is neces
sary to store the contents of the Q Register in memory after the jump. 
Then, after the SAVE operations are completed, the code word must be re
placed in Q and a jump, to the instruction JQO HOSP, executed. The same 
procedure must be provided for each Jump instruction. These provisions are 
not shown in the coding but will be covered in Chapter VII under sub
routines. 

The required coding 1S as follows: 

COMMAND ADDRESS AND REMARKS 

T M Q C 0D E Code word .. Q 

J Q ~ S A V E If last bit 1S one, Jump to SAVE 

J Q 0 H VJS P If next to last bit 1S one, J unp to H0SP. 

J Q 0 U N I 0 N If third from last bit is one, jump to UNI¢N. 

To illustrate the effect of the above instructions, assume that 
each code is a one. Because the remaining bits of the word are not sig
nificant to this illustration, they are left blank. The contents of Q 
would then have the following appearance after each of the above 
instructions. 

o 1 2 3 4 5 6 7 8 9 10 JI 

~J 
1 

) 

1 1 

Il 1 l 

Inclusive OR 

3S 36 37 38 39 40 41 4243444546 47 

11 1 

1 1 

1 

(Q) initially 

after JQO SAVE 

after JQO HOSP 

after JQO UNION 

The following command performs an inclusive OR operation with two 
words - one in D and the other in the memory location designated by the 
address portion of the instruction: 

COMMAND 

DORMS 

EXPLANATION 

D or M and Store: 

A composite word is formed in which there 
are binary ones in every position for which 
there is a one in'" the .!2. Regis ter OR in the 
specified Memory location. This is equiva
lent to transferring all the ones from the 
word in memory to the D Register without 
changing the remaining bits of D. The re
sulting word in 0 is then ~tored in the 
specified memory locationo 

125 



396 

396 
397 

397 

397 

397 
397 

The rules that this operation follow are 

0 1 0 1 0 Before execution 

0 0 1 1 M Before execution 

0 1 1 1 D and M After execution. 

For example: 

Before executing DORMS 

o I 2 3 .. 5 6 7 8 9 10 II 12131415161718 19 2021222324 2S 262728 2930 313233343536373839 40 41 42 oC3 oCoC,45 U. .. 7 

1 0 1 0 1 1 10 o 1 1 0 00 1 0 10 1 0 00 01 1 1 1 1 10 01 11 o 0 00 1 1 10 1 0 1 1 01 

1 1 00 o 1 00 1 1 1 0 11 o 1 10 1 0 11 00 10 01 00 00 1 0 1 1 00 1 1 o 1 o 1 1 0 00 

After executing D,ORMS 

1 1 1 0 1 1 10 11 1 0 11 11 1 0 10 1 1 01 11 1 1 10 o 1 1 1 11 o 0 11 11 11 1 1 o 1 

1 1 1 0 11 t1 0 11 10 11 11 10 10 1 1 01 11 11 1 0 o 1 1 1 1 1 00 11 11 11 1 1 01 

Memory location 

D Register 

Memory location 

D Register 

These two instructions are used for combining fields in words, for Boolean 
operations, and when it is necessary to preserve particular bits in words. 

Exercise 

Using the data format illustrated below, recode the exercise in 
Chapter III, page 62. The constants which were stored in memory loca
tions 3000-3004 are to be allocated by the reader. 

o 1 2 3 .. 5 6 7 8 9 1011 1213141516 17 18 \9 2021 222324 2S 262728293031323334 3S 36 37383940 .. 14243 .... 4546 47 

8 1 'H " ours 

9 Hourly (I rate 

0 Overtime rate 
• 

1 Exemp's 

2 Union Dues 
1 

3 I 
Hospitalization . 

4 YIT: Gross I , I I • 

I , I . , I I . 1 

3975 

3976 
3977 

YTD 

, , Y1D 

N~t 
I 

I I 

YTD Social 

~ncomr Tax., I 

S 1 • ecur1ty . 
I I • I 

126 



EXTRACTING 

Records, Fields,.and Record Layouts 

In data processing a "record" is defined as the unit of informa
tion which completely describes one member of a class of data. Within the 
record are fields which describe each element of the record. 

Typical data processing records are the following: 

a. master employee record 

b. inventory record 

c. stock transaction record. 

Typical fields in an inventory record are the following: 

a. stock number 

b. unit of Issue 

c. on-hand amount 

d. low level amount. 

A record, then, is the totality of all its fields. (A file is the totality 
of all the records which are common to a given subject. The above mention
ed records are part of a master employee file, ~n inventory file, and a 
stock transaction file.) 

Extracting may be required when more than one field occupies a 
PHILCO 2000 word or when a field is not the sole occupant of a word. 

Before starting to program, all pertinent records must be defined. 
This definition should include a layout which shows the disposition of 
every field of a record as that field will appear in the computer. The 
layout is done on a record layout sheet which shows the location of all 
fields in terms of bits, characters, and words. 

127 



The format of a PHILCO 2000 Record Layout 1S shown below. 

RECORD LAYOUT 

Record Name 

o I 2 3 4 5 6 7 8 9 10 II 1213 1415 16171819 202122232425262728293031323334353637 38394041424344454647 

I I I I I I I I I I I I I 1 I I I I I j I I I I I I I 1 I I I I I I I I I I I 1 I I 1 I I I I 

1 I I I I I 1 I I 1 1 I 1 I I I I I I 1 I 1 I I I I I I I I I I 1 I I I I I I 1 I I , 1 1 I I 
o I 2 345 678 9 101112 1314151617181920212223242526272829303132333435363738394041424344454647 

Proj ec t Remarks 

Date 

Runs 

REMARKS 

PHILCO®2000 

The numbers at the top and bottom of the record layout specify the bit 
positions in a word. To simplify the allocation of binary-coded characters, 
heavy vertical marks separate every six bit positions. Since each rect
angle represents a PHILCO 2000 word, a record layout contains as many rect
angles as there are words in the record. 

128 



A part of a master employee record 1S shown below. 

RECORD LAYOUT 

Record Name 

o I 2 3 4 5 6 7 a 9 10 1112 131415161718 19 2021 222!Z42526272B29303132333435363736394041424344454647 

I J I I I I I I I I I I I I I I I I I I I I I I Iii iii Iii iii I I i I I iii Iii i I REMARKS 

BAD G E N U M B E R Rate of Pay 

E M P LOY E E 'S N A M E 

E M P LOY E E 's N A M E 

E M P LOY E E 'S N A M E 

~_1J--_-~~~ _______ --___________ ~ ~--------..... 
Field 

Badge Number 
Rate of Pay 

Company Club Code 

Eension Cc;de 

Hospitalization Code 

Bond Deduction Code 

!lnion Membership Code 
Gender Code 

Salary Type Code 
Name (alphanumeric) 

Number of Bits Decimal Equivalent 

27 
14 
1 

1 

1 

1 

1 

1 

1 

3 words 

8 

4 

24 characters 

The reader must be careful, from this point on, to use the follow-
1ng terms as they are defined: 

a. character: 

b. digit: 

one of the 64 six-bit representations 
for numbers, letters, punctuation 
symbols, etc. 

one pos1t10n or element of a number. 
In this text, it may be binary, octal, 
decimal, or hexadecimal. 

129 



c. bit: 

d. number: 

a binary digit. 

a group of digits. The slgn of the 
number is assumed to be positive un
less otherwise noted. 

To program an application, a tentative record layout which repre
sents the prograwmer's best estimate of an efficient layout i& prepared. 
Then the program is begun. From this point on, the program and the layout 
are revised together to make each as efficient as possible. Since one de
pends on the other, a final record layout cannot be prepared until the pro
gram which utilizes the layout has been completed. 

1wo factors which should be considered when prepar1ng a record 
layout are the following: 

a. Fields which are used together should occupy 
the same relative positions in words. 

b. Fields should be so placed in words as to 
minimize the amount of shifting and ex
tracting needed to use them. 

Note that in order for the final program to operate, all of the 
data must be recorded on magnetic tape, paper tape, or punched cards in the 
form specified by the record layout. 

The following steps are necessary to prepare original master data 
1n the final record layout form: 

a. The final record layout 1S determined as stated above. 

b. Then a record layout is prepared for recording the original 
data. In it, all fields will be in binary-coded form and 
most fields will be in separate words. 

c. From the layout described in step h, the original data is 
then recorded on tape via punched cards. 

d. From the final record layout, a program is prepared which 
converts the original data on tape (step c) to the final 
tape record format. This master data tape is then used 
in subsequent data processing. 

Extract Instructions 

The Extract instructions cause the transfer of a desired field 
without the transfer of extraneous data which surrounds the field. This is 
accomplished by a masking transfer, i.e., a transfer in which part of the 
word is masked or covered. 

For example, to utilize the Rate of Pay field in the record des
cribed previously, it is necessary to isolate it from the Badge Number and 
the single bit codes. An extraction or masking transfer will mask the 
latter fields and allow only the Rate of Pay field to be transferred from 

l~ 



memory. This is accomplished by placing a mask, composed of binary ones 
and zeros, in the Q Register. The ones must correspond to the Rate of Pay 
field; the zeros, to the unwanted fields. The Extract instruction causes 
the masked word to be transferred to the D Register where the Rate of Pay 
will appear and all other positions will be zero. 

This is shown by the following diagrams which illustrate the ex
traction of the Rate of Pay field. The original contents of the 0 register 
are not shown because they are replaced: 

Before Extracting 

o 12 3 " ~ 6 7 8 9101112131"151617181920212223242526272629303132333"353637363940<414243.4.445046"7 

H BUG S Memory location 
~+++4~rr++~lIrr+T~~r+~II-rITIlII-rITTlllrrTlIIIIM 

• I 

00 

o 0 

Q Register 

After Extracting 

• BADGE' 'N U ~1 'B 
r I T r I I • • •• •• 

E R RATE OF PAY CP H BU GS 

00 o 0 00 o 0 o 0 o 0 o 0 o 0 00 o 0 o 0 o 0 o 11l1111~111111111Jlll111111 o 0 o 0 00 0 

o 0 o 0 o 0 o 0 o 0 o 0 o 0 00 00 o 0 o 0 o 0 0 Il{\T~ OF'! PAY 
I I 

o 0 o 0 o 0 0 

Memory location 

Q Register 

D Register 

The following Extract instructions may be used to transfer desired 
information: 

COMMAND 
ETD 

ETA 

EA 

EXPLANATION 
Extract transfer to D 
Extract from the specified memory location 
according to the mask in the Q Register and 
transfer to the D Register. 

Extract Transfer to A 

Extract from the specified memory location 
according to the mask in the Q Register and 
transfer to the A Register. The D Register 
receives and retains the extracted field(s}. 

Extract Add 

Extract from the specified memory location 
according to the mask in the Q Register and 
add to the contents of the A Register. The 
sum is placed in the A Register. The D 
Register receives and retains the extracted 
field(s}. (For a floating point addition, 
the command is FEA.) 

131 



ES Extract Subtract 
Extract from the specified memory location 
according to the mask in the Q Register and 
subtract from the contents of the A Register. 
The difference is placed in the A Register. 
The D Register receives and retains the 
extracted field(s). (For a floating point 
subtraction the command is FES.) 

The following two Extract instructions operate in a slightly dif
ferent manner. As before, field(s) from a word in memory are extracted and 
transferred to the D Register. Then the extracted part, corresponding to 
the ones in the Q Register, is inserted in the A Register without disturbing 
the remaining positions of the A Register. The composite word in A may then 
be stored In memory. 

COMMAND 
EI 

EIS 

EXPLANATION 
Extract Insert 

Extract from the specified memory location 
and insert in the A Register. The D Register 
receives and retains the extracted field(s). 

Extract Insert and Store 

The same as EI. The result is stored in the 
specified memory location after passing 
through the D Register. 

To illustrate the use of the Extract Insert instruction, assume 
that the aforementioned employee has a rate of pay change and that the first 
word of his record has been transferred to the A Register. The new rate 
must be extracted from some memory location, say RATE, and inserted into the 
A Register. The status of the registers before and after the Extract Insert 
instruction (E1 RATE) is shown in the following diagrams: 

Before executing EI RATE 

o 1 2 3 A 5 6 7 8 9 101t 1213141516171819 2021 22232425262728 293031323334 3S 36 37 38 39.w 41 4243 4C 45 46 41 

After executing EI RATE 

132 

DATA RATE 

Q 
C PHB U GSA 

RATE 
Q 

A 

D 



With the same initial conditions, the A Register, the D Register, 
and memory location RATE would all contain the same word after the instruc
tion, EIS RATE, is executed. 

Another way to accomplish the insertion of the new rate of pay 
field is shown in the following diagrams which show the effect of executing 
the instruction EIS RATE. 

Before executing EIS RATE 
o t 2 3 " 5 6 7 8 9 1011 121314 J5 16. 17 18 J9 20212223242526272829303132333435363738394041 424344 45 46 "7 

C P H BUG S RATE 

~~~~~~~~~~~~~~F+~~~~+4~~~~~~~~~~~~Q 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A 

After executing EIS RATE 

C P Ii BUG S RATE 

Q 

CPHBUGS' A 
CPHBUGS D 

The reader should reV1ew the octal notation for writing masks 
that was described in Chapter V. The two masks used in the Extract instruc
tions, EI RATE and EIS RATE, are represented octally as 0000000007777600 and 
7777777770000177, respectively. Because of the positioning features of TAC 
constants, 0000000007777600 may be written as 0/77776T41, or as 27/0; 14/1, 
or as 14/1T40. 

Logic of Extract Instructions 

The Extract instructions are basically logical bit-by-bit multi
plications between the contents of Q and the corresponding bits of the de
signated memory location. This 1S actually a logical Al\lJ) opera.tion •. The 
rules for this operation are 

o 
o 
o 

1 

o 
o 

o 
1 

o 

1 

1 

1 

Q 
M 

D 

Before and after execution 

Before and after execution 

After execution. 

This operation forms the basis for all Extract instructions. 

133 



OTHER LOGICAL OPERATIONS 

Exclusive OR 

The following command performs a bit-by-bit exclusive OR opera
tion with two words - one in A and the other in the memory location desig
nated by the address portion of the instruction. 

COMMAND 

Awes 

EXPLANATION 

Add Without Carry and Store: 

The contents of the A Register are added to 
the contents of the specified memory location. 
The sum, without carries, is placed in 
the D Register and is then transferred to M. 
The original contents of the A Register are 
unaltered. 

The rules for Addition Without Carry are 

o 1 o 1 A Before and after execution 

~ .Q. -1. ~ M Before execution 

o 1 1 0 M and D After execution. 

This instruction may be used to alter single bit codes, such as C, P, H, V, 
G, and S in the preceding illustration. For example, if the employee IS a 
member of the company club (C = 1) and he resigns, a one may be added to the 
C position, bit position 41, using Awes. Adding without carry changes C to 
zero without affecting the next field. 

Example 1: Inventory Problem 

Parts of an inventory record and a transaction record are stored 
In memory and have the following format: 

Memory 
location 

Contents 

Inventory record 

0' a 141 &.,. "OIl'2'31411§"l7laI920l'22Z1l42&25Z728293031321!14~3&3731394041424J44~4647 
I I I I I I I I Iii I Iii I i I I I iii Iii i I I I iii i I Iii iii Iii iii I 

INVL� _____ S __ T_o __ C_K ___ N __ U_M __ B_E_R ____ (3_0_) ______ ~ ____ O_T_H_ER ___ D_A_T_A ____ ~ 

!~IL __________ O __ T_H __ E_R ___ D_A __ T_A __________ ~IO_N_-_H_A_N_D_A_M_O_V_N_T ___ (1_7_)~ 

134 



START 

'IDNS 

Transaction record 

o • I I .. 5 • 7 •• 10 II 12 IJ.4 I~ II 11 t. 1920 21 2223242~ 26 21 2829 30 3132333415 3£ 313139 404142 43444546 47 
Iii iii I ' • iii iii iii iii iii iii i I ·1 Iii I I i I I i I Iii iii I 

STOCK NUMBER (30) TRANSACTION CODE 
ALPHANUMERIC 

~SIL ___________ o_T __ H_E __ R ___ D_A __ T_A __________ ~ ____ A_MO_U_N_T __ (_1_7_) __ ~ 

The numbers in parentheses indicate the number of bits In each field. The 
following processing is to be performed: 

a. Determine if the stock numbers are equal; if they are not, go 
to NXTRTN. 

h. If they are equal, test the transaction code to determine if 
the transaction indicates an amount sold (SLD) or received (RCD). If the 
transaction code is not ReD or SLD, the data is in error. 

c. For an amount sold, subtract the transaction amount from the 
on-hand amount. Then go to NXTRTN. 

d. For an amount received, add the transaction amount to the on
hand amount. Then go to NXTRTN. 

The following is a flowchart of this processIng: 

ARE STOCK TRANSACTION TRANSACTION NO DATA 
NUMBERS 

CODE = SLD? CODE = RCD? ERROR 
EQUAL? 

NO YES YES 
SOLD RECVD 

ON-HAND - AMOUNT ON-HAND + AMOUNT 
~ ON-HAND • ON-HAND 

135 



The coding for these operations follows: 

L LOCATION COMMAND ADDRESS AND REMARKS 

T M Q 3 0 / I $ 30-bit mask -+ Q 

E T A I N V$ Extract inventory stock number -+ A 

E T D T R N S$ Extract Transaction Stock Number -+ D 

J A E D T E S T$ Jump to TEST if (A) = (0) 

J M P N X T R T N $ 

T E S T T M Q 1 8 / I T 4 7 $ 18-bit mask -+ Q 

E T A T R N S $ Extract Transaction code -+ A 

T M D A / 0 0 0 0 0 S L D $ SLD constant -+ D 

S R Q I $ Shift mask for next operations 

J A E D S 0 L D $ Jump to SLD for sale transaction 

T M D R C o $ RCD constant -+ D 

J A E D R E C V 0 $ Jump to RECVD for receipt transaction 

J M P E R R 0 R $ If not SLD or RCD, the data is in error 

S !0 L D T M A I N V + I $ On-hand -+ A 

E S T R N S + I $ Extract and subtract transaction amount 

T A M I N V + 1 $ New on-hand -+ memory location INV + I 

J MP N X T R T N $ 

R E C V D T MA I N V + I $ On-hand -+ A 

E A T R N S + 1 $ Extract and Add Transaction amount 

T AM I N V + 1 $ New on-hand -+ memory location INV + I 

J MP N X T R T N $ 

R C 0 A / o 0 o 0 0 R C 0 $ 

136 



To understand the coding, the reader should recall the methods 
used by TAC to handle constants. From the instruction TMQ 30/1, TAe pro
duces a constant of 30 ones and 18 zeros. This eventually goes into the 
constant pool in memory as part of the running program. After the constant 
IS produced, its address is inserted in the TMQ instruction. 

The address part of the instruction TMQ 18/1T47 causes TAC to 
produce a constant which has 18 ones. Because the termination position, 
T47, is given the 18 ones appear in the right hand part of the word. The 
remaining positions are zeros. 

TMD A/OOOOOSLD is another instruction whose address part is ~ 
an address. In this case because of the A/, the code, OOOOOSLD, is incor
porated in the program in binary-coded, alphanumeric form. 

TMD ReD is illustrative symbolic addressing in the same way as are 
JAED TEST, JMP NXTRTN, JAED RECVD, etc. TAe assigns an address to the lo
cation RCD and inserts the address in the TMD instruction. The contents of 
location RCD is the alphanumeric constant OOOOORCD. 

In a similar manner TAC ~ssigns addresses to symbolic locations 
INV, INV + 1, TRNS, and TRNS + 1. The addresses are then inserted in the 
appropriate instructions. 

Example 2: Zero Suppression 

Memory location WORD contains a number to be printed. It IS, 

therefore, in binary-coded form and contains 8 decimal digits. The number 
contains at least one non-zero decimal digit, and zeros precede the first 
such digit. For example, the number might be 00000004, or 01234567, or 
00045678, or 87654123. 

The number is to be edited for printing without leading zeros. 
That is, the numbers are to be printed as 4, 1234567, 45678, or 87654123. 
The non-printing of leading zeros is called zero suppression. To accomplish 
this, leading zeros must be replaced by non-printing space symbols(~: 110000). 
That is, before the above numbers are printed, they must be changed to 
~ ~ ~ ~ ~ ~ ~4,~ 1234567, and ~ ~ ~ 45678. The fourth number is correct 
as written. 

Zero suppression is achieved by comp~ring each decimal digit (six 
bits) to zero and then replacing all zeros by spaces. This is accomplished 
by successive extraction of sequential decimal digits and comparison of the 
extracted word with zero. When the extracted word becomes non-zero, the 
number of leading zeros has been determined and is replaced by spaces. 

To extract the first decimal digit a mask containing six ones 
followed by zeros is used. If the first decimal digit is zero, the mask is 
numerically shifted right six positions, thereby producing a mask with 12 
ones. Through the use of this mask, the first two decimal digits are ex
tracted. Since it has already been established that the first decimal digit 
IS zero, the second comparison tests.only the second digit. 

This process continues until a non-zero digit is detected, at which 
time the mask corresponds to the leading zeros and the first non-zero decimal 
digit. In order to insert space symbols into the positions containing zeros, 
the mask is shifted left 6 positions and is then used in the extraction. 

137 



The following figure 1S a flowchart for zero suppreSS10n: 

EXTRACT A 
CHARACTER 

CHARACTER 
= ZERO? 

NO 

ALIGN MASK WITH 
ZERO DIGITS 

EXTRACT SPACES 
INTO ZERO POSITIONS 

YES SHIFT MASK 
RIGHT ONE 
CHARACTER 

Figure 7. Flowchart of Zero Suppression 

138 



L 

S 

E 

S 

L 

Zero suppress10n 1S accomplished by the following coding: 

LOCATION COMMAND ADDRESS AND REMARKS 

H I F 

XT R 

P A C 

T M Q 6 / 1 $ Six-bit mask - Q 
J M P E X T R A C T $ Jump to extract the first digit 

T S R Q N 6 $ Shift the mask for next digit 
, 

creates 

A C T E T A W Y' RD $ Extract a digit - A ( the 

J A Z S H I F T $ Jump if the digit is zero proper 

S L Q 6 $ Align the mask with the zero digits..,J mask 

T M A W Y' R D $ Transfer the number - A 

E I S P A CE S $ Extract spaces into the zero positions 

T A M W 0 R D$ Store the zero suppressed number 

J M P N X T RT N $ 

E S A / 6 6 6 66 6 6 6 $ 

(Note: The instructions SRQN, ETA, and JAZ form a "loop". That 
is, they are executed as if the instructions were inscribed on a loop with 
SRQN following JAZ. The topic of loops will be treated in Chapter VIII.) 

Two alternative methods may be used to place the space symbols 
in the word to be printed. The following coding may replace the instruc
tions following the SLQ 6 instruction: 

LOCATION COMMAND ADDRESS AND REMARKS 
E T D S P A C E S $ Spaces corresponding to zeros - D 

D Y' R M S W ~ R D $ Spaces and Number - WORD 

J M P N XT R T N $ 

S P A C E S A /6 66 6 6 6 6 6 $ 

0 r 

E TA S P AC E S $ This produces the same result, 

A M S W ~ RD $ ) by addition 

J MP N X T R T N $ 

S P A C E S A /6 66 6 66 6 6 $ 

139 



Exercise 

Using the following data format, code the Exercise In Chapter III, 
page 62. All blank fields contain other data. 

WORD 

3968~_B __ A __ D __ b __ E ___ N __ U-4 __ B __ E_R ___ (_3_0_) __ ~~~~~+-~~~~~ 

39691 
~ ____________ J-______ ~I~ ________ ~ __________________ ~I ____________ ~ 

3970l
L 

__________ ~ ___ OV_E_R_T_I~~--RA--T-E--~----yEA--R--T-O-D-A-T-E--N-ET~~-P_A_y ________ _ 

3971 

3972 

YEAR TO DATE INCO~E TAX 
o 

YEAR TO DATE SOCIAL 
o 0 0 0 SECURITY TAX 

J 

The hospitalization and union dues deductions are only made if 
the Hand U codes are 1. Assume the Hours Worked to be in word 3840 and 
any necessary constants to start in word 3000. The positions within words 
are to be allocated by the reader. 

SUMMARY 

Shift Instructions 

Shifting IS necessary to align fields which must be added, sub
tracted, or compared. It is also necessary for editing, i.e., to place 
digits and fields in the desired positions for printing, storing on tape, 
punching cards, etc. Shifting may also be used when multiplying or divid
ing by a power of two. 

The Shift instructions cause the contents of the arithmetic re
gisters to be shifted to the right or to the left. The shift modes are 
ordinary, numerical, and circular. The chart below represents the types of 
shifts possible in the Central Computer. 

140 



Register Modes Directions 

A 
Ordinary 

Q Left 
Numeric Right 

A,Q 

Ordinary 
0 Numeric Right 

Circular 

Q Circular Left 
(conditional Right 

jumps) 

Extract Instructions 

Extracting is necessary to isolate a field from one or more other 
fields In the same PHILCO 2000 word. 

The Extract instructions transfer a word from memory to the D Re
gister. All positions are masked except those corresponding to binary ones 
in the Q Register. The masked positions are made zero. The extracted word 
may then be added, subtracted, inserted, or transferred to the A Register. 
The instructions which do this are the following: 

ETD: Extract Transfer to D 

ETA: Extract Transfer to A 

EA: Extract Add 

ES: Extract Subtract 

EI: Extract Insert 

EIS: Extract Insert and Store 

Other Logical Operations 

Instructions Awes and DORMS have functions which are similar to 
the Extract instructions. 

Awes: Add Without Carry and Store 

(A) + (M)~ M, without carries. 

DORMS: 0 or M Stored: a binary one in D or M causes a 
binary one to be placed in 0 and M. 

141 



Record Layout 

A record layout should be made for every record. When preparing 
the layout, the programmer should attempt to align all fields used together 
and, whenever possible, to place all fields in positions which minimize 
shifting and extracting. The record layout then indicates the location of 
each field and the format for the necessary masks. 

Rules of Thumb for Shifting and Extracting 

142 

a. Use numerical shifts 

1. on all numbers 
2. whenever it is desired to preserve the slgn bit 
3. whenever a mask is to be "generated." 

b. Use the Q Register conditional Jump instructions to test single 
bit codes. Put all single bit codes together at one end of a 
word in the order of their use. 

c. Whenever possible, use a single bit code rather than a code 
of more than one bit. This will save space in the record 
and also allow for simple testing of the codes. Establish or 
modify the codes with instruction Awes. 

d. Align all fields to be used together to reduce the number of 
masks necessary and the number of times a mask must be placed 
in the Q Register. 

e. Place numbers which are to be multiplied or divided in such 
positions that the products or quotients do not require 
shifting. 

f. If it is necessary to execute ETA and ETD consecutively, 
execute ETA first. 

g. Placing more than one field in a word saves space on tape 
but requires additional computer time for extracting. 
Thought should be given to the placemen~of fields to 
minimize the overall processing time. Factors to 
consider include the frequency of using a field and the 
amount of magnetic tape saved by packing fields in words. 



CHAPTER VII 

SUBROUTINES AND PROGRAM SWITCHES 

SUBROUTINES 

Introduction to Subroutines 

In programming, a routine is defined as a series of instructions 
or operations arranged in the sequence necessary to perform a major function. 
Typical data processing routines perform payroll operations, inventory oper
ations, data reductions, and simulation studies. 

A subroutine is a part of a routine which performs a specified 
function within the routine. Although this is a simple statement, the use 
of subroutines in flowcharting and coding is significant in reducing pro
gramm1ng time and effort, program testing time, and computer time. 

Furthermore, through subroutines, a more logical and convenient 
approach can be taken towards programming. The programmer can concentrate 
on the major processing path of a routine and defer programming a minor 
function by making it a subroutine. The subroutine may then be programmed 
at a more convenient time. 

Typical subroutines in a program calculate the sine of an angle, 
compute net pay, perform data validity checks, and edit words for printing. 

A subroutine which can be used repeatedly from program to program, 
such as the Calculate a Sine subroutine, is usually recorded on magnetic 
tape as part of a tape library. Then whenever a program requires a sine 
calculation, the Sine subroutine need not be coded but merely withdrawn 
from the tape library. Such subroutines are called library subroutines. 
The Translator-Assembler-Compiler has a library of subroutines and the 
facility to incorporate the desired ones in every program. 

For the purpose of this chapter, subroutines 'will be restricted 
to those which may be required in several parts of the same routine or pro
gram. Examples of this type of subroutine include Edit-a-word-to-be-printed 
and Read-a-record subroutines. 

The desired end in programming 1S to program the subroutine once, 
be able to jump to it whenever its function is to be performed, and enable 
the subroutine to jump back to the proper place in the program. A graphic 
illustration of this is shown in the following chart. The heavy line repre 
represents the main routine. At points 1, 2, and 3 it is necessary to per
form an editing function. The broken lines indicate the jumps to and from 
the subroutine. Point A is the entrance to the subroutine and point B is 
the exit from the subroutine. 

143 



A 

EDIT-A-WORD 
SUBROUTINE 

B 

The method of U telling" the subroutine where to return to the 
main program will be covered when the coding is explained." The flowcharting 
conventions for subroutine use are shown in the following diagram: 

Execute the Edit 
subroutine. 
This diagram corresponds 
to points 1, or 2, or 3 
in the preceding diagram 
and is a Jump instruction. 

The Edit subroutine: 

Main 
routine 

Entrance 

Edit the 
word 

Exit 

Main 
routine 
continued 

When a subroutine is coded, its name is usually placed ln the 
location column of the first instruction of the subroutine. This location 
is the entrance or "jump to" location of the subroutine. The last instruc
tion of the subroutine, the exit, is usually an unconditional Jump instruc
tion, JMP. When the exit jump is coded, its address part may be left blank 
since it will be fabricated each time the subroutine is performed. 

The following example illustrates the use of subroutines ln 
flowcharting: 

Example 

In addition to calculating gross pay, income tax, net pay, etc. 
in the exercise in Chapter III, Page 62, zero suppress each of these quan
tities (see Chapter VI, Example 2: Zero Suppression). The flowchart, with 
a minimum of detail, is shown on the following page. Note: "Convert Word" 
in the subroutine indicates the conversion from binary to hinary-coded form. 

Even from this abbreviated flowchart it should be evident that 
space consuming repetition of the editing function is avoided hy incorpo
rating the editing as a subroutine. 

144 



START HRS. X RATE + OVERTIME 
X RATE ~ GROSS 

.0225 X GROSS 
--. SOCIAL SECURITY 

CONVERT 
WORD 

EXTRACT A 
DIG IT 

[GROSS - (13 x EXEMP-
T! 0 N S ) ] X • 1 8 - -;; INC 0 MET A X 

GROSS - INCOME TAX 
- SOCIAL SECURITY -

OTHER DEDUCTIONS 
---b- NET PAY 

EXTRACT 
SPACE 

SYMBOLS 

Figure 8. Flowchart of Subroutines 

STOP 



The Jump Address Register 

Subroutine exits are fabricated by taking advantage of the fact 
that before every Jump instruction is executed, the address of the next 
sequential instruction is placed in the JA Register. This Jump Address 
is the one needed by the subroutine to return to the appropriate place in 
the program. Thus, the subroutine exit, or return jump, is fabricated by 
merely storing the contents of JA as the address part of a Jump instruction. 

The coding necessary to calculate gross pay and income tax, ex
cluding the zero suppression subroutine, is shown below. It assumes that 
the subroutine EDIT will convert a number in the A Register to binary-coded 
form (for printing), edit it, and place the edited number in the A Register. 
The coding below will store the edited numbers in the successive output 
data locations OUT and OUT + 1. 

COMMAND ADDRESS AND REMARKS 

T MQ 3 9 6 8 $ Hours x 
\ 

M M 3 9 6 9 $ hourly rate + Calculate 

TM Q 3 9 7 8 $ overtime hours x Gross 

M A D 3 9 7 o $ overtime rate Pay 

T A M 3 9 7 9 $ .. 3979. ./ 

J M P E D I T$ Edit gross pay 

T A M 0 U T $ Edited gross pay ~ OUT 
'T' M Q • 3 9 7 1 $ Exemptions x "" 
M M 3 0 o 1 $ 13 

T A Q ~Q Calculate 

T M A 3 9 7 9 $ Gross Pay Income 

S Q - (Exemptions x 13) --+ A Tax 

T M R 3 0 o 2 $ 18 ----. Q 

M A Income tax .. A 

T A 1\1 3 9 8 0 $ Income tax .. 3980 .J 

J M p E D I T $ Edit income tax 

T A ~\1 o U T + 1 $ Edited income tax • OlTT + 1 

146 



L 

E 

S 

E 

E 

The subroutine, EDIT, has to return to the instruction TAM OUT 
(the seventh instruction) after the subroutine is used for the gross pay. 
It has to return to the instruction TAM OUT + 1 (the last instruction shown) 
after the subroutine is used for the income tax. JA receives the addresses 
of the two TAM instructions when the jumps to EDIT are executed. 

The first instruction of the EDIT subroutine establishes the sub
routine exit by storing the Jump Address as the address part of its exit 
Jump. The instruction which does this is 

TJM: Transfer (JA) to Memory 

Transfer the contents of the Jump Address Register to an 
address part of the word in the specified memory location. 
After executing TJM the D Register contains the changed 
word. The flowchart for this instruction is 

I<M) ~ D H<JA) )rD~kddressH<D) ~ M ,. 
(JAF) -7 .pp\ ~ ) 

For example, the instruction TJM EXIT in the following coding 
stores the Jump Address in the address part of the instruction JMP at loca
tion EXIT. The following coding is for the subroutine EDIT. The conversion 
from binary to binary-coded numbers is excluded. 

LOCATION COMMAND ADDRESS AND REMARKS 
D I T 

H I F T 

X T R A 

X I T 

T J M E X I T $ Store the Jump Address In EXIT 

· ""'\ 
Convert the number in the · 

· · > A Register to binary-coded form 

· · / and store it in STRA 

TM Q 6 / 1 $ 

J M P E X TR A C T $ 

S R Q N 6· $ 

C T E T A S T R A $ 

J A Z S H I F T $ 

S L Q 6 $ 

T M A S T RA $ 

E I A / ~ ~~ ~6 ~ 66.$ 

J M P . · . . . . . . (Edit Subroutine Exit) 

(Note: Instead of coding the converSlon in the Edit subroutine ,a second 
subroutine, CONVERT, could be specified. This would illustratt the 
occurrence of a subroutine within a subroutine.) 

147 



To illustrate the TJM command in terms of computer code, the 
code produced by the Translator-Assembler-Compiler assumes that the in
structions to compute the gross pay begin in memory location 0100. (See 
coding on following page.) The first JMP EDIT will appear as the right 
half instruction of memory location 0102. The corresponding Jump Address 
is 0103, left half. The next JMP EDIT will appear as the right half in
struction of memory location 0107. The corresponding Jump Address is 
0108, left half. The Jump Addresses will automatically be placed in JA. 
Then the TJM EXIT instruction in the subroutine will cause the exit jump 
to become JMP 0103, left, the first time and JMP 0108, left, the second 
time. 

Note that if a Jump instruction occurs as a left half instruc
tion, the Jump Address will be the same as the address of the Jump in
struction but it will be right half. Thus, if the Jump instruction is 
1432, left half, the Jump Address is 1432, right half. (See Figure 9.) 

In the example illustrating the JQO instruction in Chapter VI, 
SAVE, HOSP, and UNION could have been subroutines. The coding that follows 
shows some of the instructions necessary to enable them to function as 
subroutines. 

(Note that these subroutines are probably not called upon from 
any other point in the program. When the programmer detects a situation 
like this, he may eliminate the TJM instruction and specify the address 
of the exit jump.) (See Figure 10.) 

PROGRAM SWITCHES 

Logical Program Switches 

The logical decisions of Chapter III were characterized by the 
following sequence of steps: 

a. A comparison was made. 

b. Based on the compar1son, one of two operations was performed. 

Situations arise in every program in which it is desirable to 
make comparisons and then to perform some intervening processing between 
Steps a and b. That 18 

a. A comparison 18 made. 

b. Some intervening processing 1S performed. 

c. Based on the comparison, one of two operations 1S performed. 

148 



L LOCATION COMMAND ADDRESS AND REMARKS 

0 1 o 0 T M Q 3 9 6 8 $ 

M M 3 9 6 9$ 

o 1 o 1 T M Q 3 9 7 8 $ 

M A D 3 9 7 0$ 

0 1 0 2 T A M 3 9 7 9$ 

J M P E D I T $ [First Jump EDIT] 

0 1 0 3 T A M 0 U T $ 

T M Q 3 9 7 1 $ 

0 1 0 4 M M 3 0 0 1 $ 

T A Q 

0 1 05 T M A 3 9 7 9 $ 

S Q 

0 1 06 T M Q 3 o 0 2 $ 

M A 

0 1 07 T A M 3 9 8 o $ 

J M P E D I T$ [Second Jump EDIT] 

0 1 0 8 T A M 9} U T + 1 $ 

. . . . . . . . . . . . . . . . . · . . . . . . . . . . . . . . . . . . . 
E D IT T J M E X I T$ 

· · · · · · · · 
T M Q 6 / 1 $ 

J M P E X T R A C T $ 

S H IF T S R Q N 6 $ 

E X TR A C T E T A S T R A$ 

J A Z s H I F T $ 

S L Q 6 $ 

T M A S T R A$ 

E I A / ~ ~~ ~ !J. !J. !J. !J. $ 

E X IT J M P . . . . . . . . 

Figure 9. Examples of Jump Instructions 

149 



L LOCATION COMMAND ADDRESS AND REMARKS 

T M Q C 0 D E $ 

J Q 0 S A V E $ 

J Q 0 H 0 S P $ 

J Q 0 U N I 0 N $ 

· · · Continue processing payroll · ).-

· · · · 
S A V E T J M S A V E E X $ Store the Jump Address 

T Q M S T R Q $ Store the code word 

· · , 
· · 
· · · > Coding for payroll · sav1ngs 

· · · · I 

T M Q S T R Q $ Replace code word in Q 
S A V E E X J M P · · · · · . Exit from SAVE 

H 0 S P T J M H 0 S P E X $ Store the Jump Address 

T Q M S T R Q $ 

· · · · 
· · · > Coding for hospitalization plan · , 
· · · V · 

T M Q S T R Q $ 

H 0 S P E X J M P · · · · · Exit from HOSP 

U N I 0 N T J M U N I 0 N E X $ Store the Jump Address 

T Q M S T R Q $ 

· · · · 
· · · Coding for union members · II 

T M Q S T R Q $ 

U N I 0 N E X J M P · · · · · . Exit from UNION 

Figure 10. Uses of Jump Instructions 

150 



In order that the resul t of the comparison be "remembered" at 
Step c, it must be stored after Step a. That is 

a. A comparison is made. 

b. The result of the comparison 1S stored. 

c. Some intervening processing is performed. 

d. Based on the stored result, one of two operations 1S performed. 

These four steps are analogous to a train traveling a length of 
track which branches at a switch. 

a. Before the train reaches the switch someone must decide which 
branch the train will take. 

b. Accordingly, a lever in the control tower 1S thrown which 
places the switch 1n the proper position. 

c. The train travels down the track towards the switch. 

d. Finally, it branches according to the setting of the switch. 

These steps are illustrated by the following diagram: 

a. DECIDE 
WHICH 

PATH 

b. THROW 
THE 

SWITCH 
LEVER 

c. TRAVEL 
THE 

ROUTE 

d. TAKE THE 
PREDETERMINED 

PATH 

Note that at Step a as many decisions are possible as there are 
paths from the switch and levers to activate it. 

Flowcharting Program Switches 

Because of the similarity to the railroad switch the programming 
counterpart is called a Program Switch. The flowcharting notation parallels 

151 



the preV10US railroad illustration as shown below: 

a. DECIDE 
WHICH 
PATH 

DECIDE 

b. THROW 
THE 

SWITCH 
LEVER 

SET 

l\.a 

SET 

l\.b 

c. TRAVEL 
THE 

ROUTE 

PROC ESS 

d. SW ITCH 

At the point in the flowchart where the H lever" 1S thrown, a 
square 1S drawn to indicate the setting of a switch 

---... 1 S"Ea
T ~----tl.a SET SW ITCH l\. TO TH E 

• '+ _ -a- PATH. 

The switch itself 1S generally shown as 

Thus, when the process flow passes through the box Set 4a, the path from 
Switch 4 is established, and the process flow, upon arriving at the switch, 
follows path 4a. 

In many cases the switch is a Jump instruction. Setting the 
switch 1S accomplished by providing the Jump instruction with one of a 

152 



number of "jump to" addresses. For this reason, the following flowchart 
symbology is very helpful: 

This means that after passing through Switch 5 the process flow proceeds 
to location SAVE, HaSP, or UNION, depending on the setting of the switch. 
Switch settings of this type are shown as 

Coding Program Switches 

SET 5 
TO 

HOSP 

The coding for this method of setting switches places an address 
In the JA Register (without a Jump instruction) and then transfers the ad
dress from JA to the address part of a Jump instruction. 

The instruction which places an address In JA IS 

TIJ: Transfer the Instruction address to JA 

The address part of the TIJ instruction is placed in JA 
and replaces the original contents of JA (which may be a 
Jump Address). 

As in subroutine use, the contents of JA are stored by the In
struction TJM .. 

Note that prior to this, all transfer instructions transferred 
the contents of a register. TIJ transfers a part of a word from a register 
- the Program Register. Furthermore, in previous transfers which specified 
a memory address, the contents of that location were transferred or re
placed. In TIJ a memory address is specified but the memory location is 
not affected. 

153 



* 

For example, the following instructions cause the Jump instruc
tion at location SWITCH to Jump to location SAVE: 

L LOCATION COMMAND ADDRESS AND REMARKS 

T I J SA V E $ The address SAVE ~ JA 
T J M SW I TCH $ (JA) ~ address part 

L S W I T C H J M P . . . . . This becomes JMP SAVE 

*Note that if the TJM and JMP instructions are assembled in the 
~ word by TAC, JMP SAVE is not executed immediately following TJM. 
(The reader should now review the operations of the control unit in Chap
ter II.) When TJM is executed in this example, the instruction JMP SAVE 
is formed in the memory, but the Jump instruction executed is in the Pro
gram Register with TJM and will not be JMP SAVE. 

PROGRAM REGISTER 

Left half 

TJM SWITCH 

t 
This instruction 
will affect memory 
location SWITOf, by 
fo rming JMP SAVE. 

Right half 

JMP 

i 
This instruction, the 
next instruction to be 
executed, is in PR and 
will not be affected 
by TJ~ 

Therefore, at least one instruction should separate TJM from the 
JMP instruction. Another solution, as shown in the coding, would be to 
place an L in the Label column of the JMP instruction. This forces TAC 

of SWITCH 

to place JMP . . . . in the left half of a word, thereby making certain that 
TJM and JMP cannot appear in the same word. Other uses of the Label column 
will be explained in Chapter VIII. 

Other methods of setting switches incluge modifying "jump to" 
addresses by addition and subtraction, and replacing one instruction pair 
by another. Refer to Chapter IX. 

Sometimes a switch has an initial setting. That is, at the 
start of a program, the process flow is to take a particular path from 
the switch. This fact is indicated by a box over the flowchart. If 
Switch 6 of a program is to be initially set to the "b" path, the 

154 



flowchart would contain the following notation: 

START 

Example 1 

INITIAL CONDITIONS 
Set SW 6b, etc . . 

1---~1 Calculate ) 

The values Y1 , Y2, Y3 , Y4 , etc .. are to be calculated. (The 

actual calculation is of no concern to this example.) Then the following 
summation is to be performed: 

A program switch is used to alternate between a multiplier of 2 
and a multiplier of 4. Note that here the decisions are not made in the 
program but have been made beforehand. 

START 

INITIAL CONDITION 
SET SWla; SUM = 0 

CALCULATE 
ONE VALUE 

OF Y 

2Y + SUM ~ SUM 

J.l.Y + SUM --+ SUM 1-----111 

SET 
lb 

SET 
la 

Note that because of the paper limitation the first SW 1 symbol is used as a 
connector. Note also that this program has no end. Ending a loop of this 
kind will be explained in Chapter VIII. 

155 



L 

C 

S 

S 

S 

The following coding assumes that the calculated value of Y is 
placed In the A Register, and the numbers 2 and 4 have their binary points 
at B4. 

LOCATION COMMAND ADDRESS AND REMARKS 

A 

W 

W 

W 

L C · · 
· · > Calcula ted value of Y 

· · i) A Register 

· · k' 
1 J M P S W 1 A $ The address of JMP may also be SWIB 

1 A T f'i1 Q D / 2 • OB 4 $11 
M A ) 2Y + (SUM)~ SUM 

A M S S U M $ 

T I J S W 1 B $ > Set address at location SWI to SWIB 

T J M S W 1 $ I) 

J M P C A L C $ 

1 B T M Q D / 4 • o B 4 $ 

M A > 4Y + (SUM)--4 SUM 

A M S S U M $ 

T I J S W 1 A $ Set address at location SWI to SWIA 

T J M S W 1 $ 

j M P C A L C $ 

Note that in the example the instructions MA, AMS, TJM, and JMP 
CALC are repeated in the SWIA path and the SWIB path. These instructions 
could be grouped together in a subroutine to be used by both switch paths. 
Although no substantial saving of memory space would be realized in this 
small example, it illustrates common operations which may be grouped to
gether. In a larger example, common operations should be detected in the 
flowchart and grouped together for a subsequent saving of memory space. 

156 



Example 2 

A large number of inventory transaction records, representing 
quantities sold or returned, are to be processed. A code word in each 
record distinguishes a sale from a return transaction. Numerous calcula
tions are to be performed for each record and it is desirable to avoid 
testing everyone to determine if it is a sale or return. Therefore, the 
transactions are grouped so that all of the returns follow all of the 
sales. 

A program switch can be used to "eliminate" a part of a program 
after it is no longer needed. In this case the test to determine Sale or 
Return is eliminated when all of the sales have been processed. 

START 

An abbreviated flowchart of this process follows: 

INITIAL CONDITION 

SET SW 1 TO TEST 

SELECT 
A 

TRANSACTI ON 

CALCULATIONS 

FOR SALES 

SET 
SW 1 TO 

RTRN 

CALC U LA T ION S 

FOR RETURNS 

The initial loop is from SLeT to SWI to TEST to 2 and back to 
SLCf. When all of the sales records have been processed, the loop becomes 
SLeT to SWI to RTRN and back to SLeT. No exit from the loop is shown. 

157 



L 

The coding which accomplishes the switching follows: 

LOCATIUN COMMAND ADDRESS AND REMARKS 

S L C T · · · · 
· · · Coding to select a · > 

· · · transaction · 
· · · · 

S W 1 J M P T E S T $ 
... 

T E S T T M A Transaction code ~A Is 

T M D Return code ~D > transaction 

J A E D S E T $ Compare ) a return? 

· · · · 
· · · > Process the sale · 

J M P S L C T $ 

S E T T I J R T R N $ > Set the switch 

T J M S W 1 $ 

R T R N · · · } 

· I · · · > Process the return · 
J M P S L C T $ [/ 

Note: Methods of selecting a transaction will be explained 1n the chapter 
on index registers, Chapter VIII. 

One common programming technique combines the use of a program 
switch and a number of subroutines. The necessity for this combination 
ar1ses when one of a number of subroutines is to be executed depending on 
an indicator, key, or code in the data. 

For example, a change key may indicate that the master file or 
a master file record be changed in the following ways: 

Key 1. substitute new information in a record 

Key 2. add or subtract an amount from a record 

Key 3. delete an entire record 

Key 4. place a new record in the file. 

158 



This can be accomplished by a Function Table Lookup of Subroutines. 
The flowchart notation for a four subroutine lookup is as follows: 

SET 
1 TO 
KEY 

Another switching method assumes that one path is to be used 
more frequently than another. The following flowchart illustrates this 
method: 

SET 
lb 

INITIAL CONDo 
SET SW la 

PROC ESS B 

SET 
la 

PROCESS A 

PROCESS C 

159 



In general, because fewer instructions are required for a given 
program, program switches save program running time and/or memory space. 
Most program switches permit a particular processing path to be followed 
for a specific interval of time after which a new path is taken, thereby 
altering the nature of the processing or discontinuing it. As stated in 
the introduction to program swi tches, the swi tch stores or "remembers" the 
appropriate processing path. 

Exercise 

Over 100 orders resulted from a promotional scheme by a depart
ment store. The amounts of each order have been stored in memory locations 
ORO, ORD + 1, ORD + 2, ••• , etc. Each of the first 100 orders are to be 
discounted by 10%. 

Flowchart a procedure which will process all of the orders and 
discount only the first 100. 

Code only the parts of the process concerned with changing the 
procedure after the first 100 orders have been processed. 

SUMMARY 

Subroutines and Program Switches 

160 

a. A subroutine is a part of a program which performs a well
defined function. 

b. A subroutine is usually entered by a Jump "instruction. The 
first instruction of the subroutine fabricates the exit Jump 
with a TJM instruction. 

TJM: Transfer (JA) to Memory 

The steps in this operation are: 

I (M)--+D H (JA)---.D Address H (D)---.M I 
c. Program switches control the flow of processing 1n a program 

in a manner similar to that of conditional Jump operations. 
They save time and/or memory space. 

d. The simplest method of coding switches is to make the switch 
a Jump instruction. Setting the switch is accomplished by 
inserting an address in the address part of the Jump instruc
tion. This is accomplished by the pair of instructions, TIJ 
and TJM. 

TIJ: Transfer the Instruction address to JA 

The address part of the TIJ instruction 1S placed 1n 
JA and replaces the original contents. 



Rules of Thumb for Subroutines and Program Switches 

a. Flowchart and code the main path of a routine and defer all 
parts which may be prepared in subroutine form. 

b. If the subroutine is not entered from more than one point in 
the program, it may be coded in the main body of the coding. 
This is called an open subroutine. 

c. If several parts of a routine require that the subroutine 
employ different parameters, the parameters should be in 
registers just prior to entering the subroutines. If more 
parameters are needed than there are registers, use memory 
locations. 

d. As a safeguard, perform TJM instructions as soon as possible 
nfter the JA Register receives the desired address. The 
first instruction of a closed subroutine, one which is called 
from more than one place in the program, should be a TJM 
instruction. 

e. Set switches, which are Jump instructions, by TIJ - TJM pa1rs 
of instructions. 

f. The TJM instruction functions as described above when it is 
used to provide addresses for Jump instructions. As will be 
explained in Chapter IX, TJM will not function as expected 
when providing addresses for other types of instructions. 

C?mputers whic~ have an Auto-Control Unit employ two 
special jump instructions: J~ and JR. These instructions 

, permit a left or right unconditional jump which does not . . , 

a'ffecf'the conten:ts of theJA Regfster. Because of this 
facility, the original contents of the JA Register can be 
restored by the Auto-Control Executive Routine and a 
return can be made to the main program through use of a 
JL or JR instruction. 

If either of these instructions is used with a computer 
which does not have an Auto-Control Unit, a Command Fault 
will occur. 

161 



NOTES 

162 



CHAPTER VIII 

THE LOOP 

INTRODUCTION 

In the preceding chapters, several references were made to loops. 
Simply defined, a loop is a group of operations which applies to and is 
repeated for a number of similar records, words, characters, unknowns, 
parameters, values, etc. The name "loop" stems from the repetition of op
erations. This can be shown by a general flowchart of all loops: 

SELECT 
FIRST 

CASE 

follows: 

NEXT 
CASE 

PROCESS 
ONE 

CASE 

HAS LAST 
CASE BEEN 
PROCESSED? 

YES 

EXIT 

For example, the loop in Example 2, page 211, can be condensed as 

SELECT 
THE NEXT 

TRANSACTI ON 

PROCESS 
THE 

TRANSACTION 

HAS LAST 
TRANSACTION 

BEEN PROCESSED? 

YES 

STOP 

163 



In order to understand the programmIng requirements for loops, 
one must consider the nature of data handling in data processing. Before 
data can be processed by the PHILCO 2000, it must be recorded on punched 
cards, punched paper tape, or magnetic tape. For simplicity, and because 
this chapter is not concerned with input-output, it will be assumed that 
all data to be processed is recorded on magnetic tape. 

This data must then be read, or transmitted, into the memory. It 
IS read in blocks of 128 words, the block being the unit of data on magnet
ic tape. In memory the block will occupy 128 consecutive locations. If, 
for example, a payroll file composed of records of 16 words each were to 
be processed, one block would contain 8 records. The relations between 
blocks, words, and records, are shown in the following two diagrams: 

MEMORY 

MAGNETIC 
TAPE 

MEMORY 
LOCATIONS 

REMAINING 
RECORDS 02lJ. 

RECORD tfl - 16 WORDS I 
039 

RECORD tf2 - 16 WORDS 0lJ.0 
055 

RECORD tf3 - 16 WORDS 056 
I 

011 
DATA 072 

RECORD tflJ. - 16 WORDS I 

087 
088 

RECORD #5 - 16 WORDS I 
103 

RECORD #6 - 16 WORDS 
10lJ. 

I 

119 

RECORD tf7 - 16 WORDS 120 
I 

135 

READ RECORD #8 - 16 WORDS 136 
I 

BLOCK 151 

164 



Record 
til 

Record 
tl2 

( 

Word 

1024 

1025 

1039 

1040 

1041 

1055 

0123.4 Ii 11 7 0 91011121:'j141!'j11l171f)19202122B"120Z6272.0?'JJ03IJ23J34~~6313839"041424344~"647 
I Itt, I I I I iii I i I Iii I I I I I i I Iii iii iii I iii i I I I I iii iii 

BADGE NUMBER 1 I RATE OF PAY 

FIRST EMPLOYEE'S NAME 

I OVERTIME RATE I YEAR-TO-DATE INCOME TAX I 

BADGE NUMBER 2 I RATE OF PAY 

I SECOND EMPLOYEE'S NAME I 

~~~~~ 
I I OVERTIME RATE I YEAR-TO-DATE INCOME TAX I

1056 I

The processing for this data would begin with record number one,
which relates to the first employee. Then record number two would be pro
cessed, ,and so on to record number eight. After the eighth record has been
processed, the second data block with eight more records, numbered nine to
sixteen, is read into memory. Then record nine is processed, record ten,
and so on to record sixteen; whereupon the procedure repeats itself for the
next block, and the next, until every data block has been processed.

The general flowchart for processing blocks of records has two
loops and is as follows:

Select First
Block and Record

Process
The Record

Loop for One
Block of Records

NO

Select
Next

Record

Has Last
Block Been
Processed?

Loop for Each
Block on Tape

NO

Select
Next

Block

Ending
Subroutine

Assume that part of the payroll processing is to add this week's
income tax, which will be properly aligned in the A Register for each re
cord, to the year-to-date income tax. Also assume that the year-to-date
total cannot exceed its allotted 25 bits. The latter assumption avoids the
necessity of extracting.

165

The appropriate parts of the flowchart for this procedure are

SELECT

FIRST RECORD
TAX + Y.T.D. TAX

-to NEW Y. T.D. TAX

SELECT
--.... - - ~ NEXT RECORD

The instruction necessary to perform the addition for the first
record is AMS 1039, and the necessary instruction for the second record is
AMS 1055.

The instructions for the remaInIng records In the block are the
following:

AMS 1071

AMS 1087

AMS 1103

AMS 1119

AMS 1135

AMS 1151

One way to code a program which executes these instructions is to
code all of the processing for the first record, then code all of the pro
cessing for the second, and so on to the eighth record.

This method, called straight line coding, requires the most
memory space and in many data processing situations would require more
memory than is available. Note that the instructions are the same for
each record but that the addresses differ by a factor of 16 which is the
number of words in the record.

Another method is to code the processing for the first record.
For all ~ubsequent records, the address parts of all instructions which refer
to the first record would be modified by addition. This is illustrated

166

by the following additions:

AMS 1039
+ 16

+ AMS 1055 > {
_16

AMS 1071

Instruction coded for the first record

Instructions for the second and
third records produced by
addition.

This method may require less memory space but is more time consuming, S1nce
an addition must be performed for every instruction which refers to a re
cord in memory.

Still another method is to transfer every record to some area in
memory from which it will be processed. This area is called a working
storage area. Then the processing is coded for a record in the working
storage area. The only instruction addresses which would require modifica
tion are those which transfer each subsequent record to the working
storage area. This method is preferable to the previous two.

However, the procedure which should be followed wherever possible
1S to use index registers for address modification.

INDEX REGISTERS

The main purpose of index registers 1S to provide instructions
with the proper addresses in a minimum amount of time and with a minimum of
memory space being used.

All the functions of index registers can be summarized as follows:

a. Instruction Address Modification:
instruction addresses by addition,
to the loops previously mentioned

to modify
as applied

b. Counting: to count operations that have been
performed and to address succeSS1ve memory
locations automatically

c. Instruction Address Substitution: to substitute
one address for another in the same way as is
done by the TJM instruction. This function will
be discussed in Chapter IX.

167

Index registers are" address sized"; that 1S, they have a capa
city of up to 15 bits and can accommodate addresses and numbers up to
32,767 depending on the memory size of a particular PHILCO 2000 system.
The capacity or length of index registers is shown in the following table:

Size of Memory Capacity of
(words) Index Registers (bits)

4096, 12

8192 13

16,384 14

32,768 15

Each index register has a counter indicator bit associated with
it. The index registers - - there may be from 8 to 32 in one system -- are
designated as XO' Xl' X2, X3, ..• , X31; and the counter bit for each is
designated as Xc.

Almost every instruction can have its address part modified by
the addition of the contents of an index register. The sum is called the
effective address part and will be an actual or effective memory address
or a number, such as the number of places to shift. Instructions which
can have their addresses modified in this manner are called indexable.
The effective address part of an indexable instruction whose S bit is one
is the sum of the contents of a specified index register and the V field
of the (computer) instruction. The symbolic notation for this definition
1S

Effective Address Part = IV + (X).

This sum does not alter the contents of the index register or the instruc
tion 1n memory.

The instructions which cannot be index register modified are the
Repeat,Skip if no Fault, Skip Check and those instructions which have an X
in the mnemonic command. All of these instructions will be described
later.

If the specified index register is set so that it functions as a
counter, it will automatically increase its contents by one every time it is
specified by an indexable instruction. An exception to this feature is
that counting will not take place if the indexable instruction is executed
under the Repeat Mode which will be explained later.

168

Note that when an index register is not specified by an instruc
tion, its effective address part is the address written, which may be from
o to 32,767, depending on the size of the memory. In this case the Nand
V fields of the instruction are combined into a IS-bit field.

If an index register is specified, the maximum address that can
be written is limited by the number of bits of the V field. (The bits of
the N field are used to address the selected index register.) In turn, the
size of the V field is dependent upon the number of index registers in the
system. For example, a system having 32 index registers has a five-bit N
field and ten-bit V field. Therefore, the maximum address that can be
written for an instruction, when an index register is specified, is 1023.

The TAC notation for specifying an index register is a comma
after the number or address written in the address part of an instruction,
followed by the specified index register number-- 0, 1, 2, 3, ••• , 31.

For example, the instruction

TMA 1024,2

specifies that the contents of a memory location, whose address is the sum
of 1024 and the contents of Index Register 2, is transferred to the A Re
gister. Thus, the effective address of the TMA instruction is

The TAC instruction is related to its Central Computer counter
part as shown below:

TAC
instruction

Central
Computer
instruction

COMl\fAND ADDRESS, Number of selected index register

S N V F C

10 ~ Specify the address part ~

Index ~
register Field
number

tIndex register Selector bit

1 added to (Xl-1

169

As indicated in the preceding diagram, if S c 0, the N and V
fields together specify the address part of the instruction. If ScI, an
index register will be selected. In this case, N is the number of the se
lected index register, and V is the field added to the contents of the in
dex register to produce the effective address. The selector bit S is made
one when the TAe instruction calling upon an index register is converted to
the corresponding computer instruction.

In the previous example, if Index Register 2 contained the number
16 and the instruction

TMA 1024,2

were executed, the effect would be the same as executing

TMA 1040.

That 1S,

TMA 1024
+ 16

1S equivalent to TMA 1040.

If X2 contains the address 1024, the instruction

TMA 16,2

1S also equivalent to TMA 1040.

If the counter indicator of Index Register 2 had been set to one,
1.e., to count, it will contain the address 1025 after executing TMA 16,2.

If the index register already contains the desired address, the
address part of the instruction is either left blank or a zero is written.
Thus if X2 contains the address 1024, either of the following instructions:

L LOCATION COMMAND ADDRESS AND REMARKS

T M A J 2 $

o r

T M A 0 J 2 $

would have the same effect as TMA 1024.

Note that the sum IV + (X) must be less than or equal to the
largest memory address. The sum of the largest memory address and one,
therefore, is zero. Thus in a system with 8192 words of memory, the
address 8191 + 1 = 0, the address 8191 + 2 = 1, etc. This type of memory
addressing is usually referred to as being cyclic.

170

The general method of utilizing index registers will now be ex
plained in relation to processing the payroll records described earlier.
The programming procedure should be as follows:

a. Place the address of the first word of the first
record of the block in an index register. This
address can be written as either an absolute or
a symbolic address.

b. The address part of each instruction which re
fers to a word in the record must contain the
number of the word in the record. That is, the
number of the first word is zero; therefore, the
address part of an instruction referring to it
is made zero or left blank. For an instruction
referring to the second word, i.e., word number
one, its address part would be one. Therefore,
for this illustration, address parts of in
structions will have values from 0 to 15.

c. After a record has been processed, increase the
contents of the index register, i.e., the address
of the first word of the present record, by the
size of the record -- in this case 16.

d. Test the new contents of the index register to
see if the last record of the block has been
processed.

1. If it has been processed, read the
next block of data and r~turn to
Step la.

2. If it hasn't been processed, process
the record and return to Step 3c.

A flowchart of this procedure follows:

ADDRESS OF FIRST
WORD OF FIRST

RECORD-X

PROCESS
THE

RECORD

I NCREASE (X)
BY

RECORD SIZE

ENDING

LOOP FOR EACH

BLOCK ON TAPE

LOOP FOR ONE BLOCK OF RECORDS

S UBROUT I NE

171

For the payroll records, the address 1024, or an equivalent sym
bolic address, would be placed in an index register, for instance X3. The

relation between the instruction address parts, the numbers of the words in
the record, and the corresponding effective addresses for one record is
shown in the following example in which (X3) = 1024.

Instruction Effective Address:
Address Part Word Number IV + (X3)

0, 3 0 1024

1, 3 1 1025

2, 3 2 1026

3, 3 3 1027

15, 3 15 1039

As illustrated, all of the address parts written are relative to the con
tents of the specified index register; i.e., when X3 contains 1024, the
instructions with the above address parts refer to record number 1.

After the contents of X3 have been increased by 16 to 1040, the
instructions refer to the second record. When X3 contains 1056, the in
structions refer to the third record, and so on. After eight records have
been processed (the contents of X3 will have become 1152), the next' block
of data is read into the same area of memory, i.e., locations 1024 to 1151,
and the address 1024 is again placed in the index register. Now instruction
address parts (0,3 to 15, 3) refer to the first record of the second block.
This procedure is repeated until all the blocks have been processed.

However, before anY'processing can begin, the desired address
must first be placed in the selected index register. Instructions which
place addresses in index registers and which manipulate the contents of
index registers are called Index Register Instructions. Index register
instructions are distinguished from indexable instructions in the following
ways:

172

a. Some index register instructions modify the contents of
index registers; no indexable ones do (except for the
counting function and under Repeat control).

b. Index register instructions cannot have their addresses
modified by the contents of index registers; indexable
ones can.

c. Some index register instructions store the contents of
index registers in the D Register and JA; no indexable
ones do.

PROGRAMMING FOR INDEX REGISTERS

Index Register Instructions

Two index register instructions used to place addresses and num
bers in index registers are TIX and TDX.

TIXc: Transfer Instruction address to Index register

The instruction address part, IV, is transferred
to the specified index register. If S is written
for c, the counter indicator bit is set to one.
If Z is written for c, the counter bit is made
zero.

The following coding and diagrams illustrate the effects of this
instruction:

L LOCATION COMMAND ADDRESS AND REMARKS

T IX S 1 0 2 4 , 3 $ 1024--+X3, 1 ----Xc

T MA , 3 $ (1024) ·A register

T IX Z , 3 $ 0~X3t 0 ... X
C

X3 Xc

Initial contents of X3 (assumed) 32 760 101

After executing TIXS 1024,3 01024 III
After executing TMA, 3

III [which performs (1024) -. AJ 01025

After executing TIXZ, 3 00000 10 I

Note that the effect of the last instruction is to clear the index register
to zero. This is another use of the TIX instruction.

In the preceding examples, absolute addresses were used to illus
trate the mechanics of index registers. However, as stated in a preV10US
chapter, the programmer will most often use symbolic addresses. Thus, the
instruction TIXS 1024,3 would normally be written as

TIXS PAYROLL, 3

173

The size of the address part, IV, transferred by TIX depends on
the number of index registers in the system. The reason for this can be
seen by examining the format of the computer instruction corresponding to
the TIX command. The following chart shows the sizes of the N and V fields.

1 1 1..-. __ 15 bits __ .ll~7 bits---1

lilil V JFI TIX I
+ .-

Specify Transfer
index register to X

Number of Number of Maximum
Index Bits in V, Equivalent

Registers Number of Transferred Address
In System Bits in N by TIX for IV

8 3 12 4095

16 4 11 2047

32 5 10 1023

For example, if a PHILCO 2000 system had 16 index registers, the
largest address that could be transferred by TIX to the specified index
register would be 2047, l.e., an 11 bit V field.

If V bits are less than the capacity of the index register, the
high order or leftmost bits of the index register will be cleared to zero.
For example, assuming a PHILCO 2000 system having a memory capacity of
32,768 words and 16, index registers, the instruction TIXZ 2047, 3 would
have the following effect:

174

Initial contents of X3
(assumed to be 32,760)

After executing
TIXZ 2047,3

~ 15 bits _____ ~Xc
1111111111111000 101

Cleared to V field transferred
zero to X3

T 0

T 0

When it is necessary to transfer to an index register an address
which requires more bits than are available from IV, the TIX instruction

cannot be used. For example, in the above system, an address greater than
2047 could not be transferred to X3 by the TIX instruction. Instead, the

o Register and the TDX instruction ~ be used.

Because the 0 Register is used to place addresses in index re
gisters and to receive addresses from index registers, it is necessary to
think of 0 as containing a pair of instructions. Thus, it will be conmon
to refer to the address part of one half of D and to refer to other parts
such as OS, OF and so on. Special constants, which will be explained later,

are used to specify the address parts of 0 and the associated F bits
(the command parts are of no concern for this use). The TDX instruction is
written as follows:

COMMAND

X L C

X R

TDXhc: Transfer a 0 address to Index register

The address part of the" h" half (L or R for
left or right) of the contents of the 0 Register
is transferred to the specified index register.
If C is written for U c", the counter bit of the
index register is replaced by the corresponding
F bit of the 0 Register. The counting functi6n
is determined by the F bit. If the" c" entry is
left blank, the F bit is not transferred to Xc
and the counting function remains the same. The
address part of the TDX instruction is ignored
by the PHILCO 2000 except for the index register
specification.

The following are two examples of the TDX instruction:

ADDRESS AND REMARKS

, 2 $ Left half D address --...X2' °LF

, 3 $ Right half D address .X3

.. X2c

The preceding section was concerned with the methods of loading
addresses and numbers into index registers in preparation for their use.
The reverse of these operations, transfers from index registers to the 0
Register, are performed by the TXD instruction.

TXDhc: Transfer from Index to 0 Register

A field in the specified index register is
transferred to the address part of the" h"
half (L or R for left or right) of the word
in the 0 Regis ter. If C is wri tten for II c", the
counter bit is transferred to the F bit position
of the specified half of O. The address part

175

of the TXD instruction is ignored by the
PHILCO 2000, except for the index register
specification. Only the specified address
part of D is affected the remaining parts
are unaltered.

In addition to these effects of the TXD instruction, it must also
be noted that the JA Register is affected. The transfer is actually

(JA) --+ D address.

If the counter bit is specified by the instruction, the following transfer
1S made:

This feature of the TXD instruction will be utilized in Chapter IX under
the subject of instruction modification. The TJM instruction is also used
to modify addresses. Examples of the TXD instruction are

COMMAND ADDRESS AND REMARKS
T X D R C , 2 $ (X?) JA, X')~JAF; (JA) ,JAF-t- D right address

T X D L , 3 $ (X3) --+ JA; X3~ JAF; (JA) left D address

The next two instructions modify the contents of an index register
(using the D Register) by addition or subtraction.

ADXh

SDXh

176

Add a D address to Index register

The address part of the "h" half of the word
in the D Register is added to the contents of
the specified index register. The sum replaces
the original contents of the index register.
The "h" may be L or R to specify left or right.
Except for the index register specification,
the address part of ADX is ignored.

Subtract a 0 address from Index register

The address part of the U h" half of the word
in the D Register is subtracted from the con
tents of the specified index register. The
difference replaces the original contents of
the index register. The U hIt may be L or R to
specify left or right. Except for the index
register specification, the address part of
SDX is ignored.

The following four instructions modify the contents of an index
register by addition or subraction and then cause a comparison:

AIXJ

SIXJ

AIXOh

SIXOh

Add Instruction address to Index register and Jump

The instruction address part, IV, is added to the

contents of the specified index register. The sum
replaces the original contents of the index register
and is then compared to the address part of the left
half of the word in the D Register. If the two are
not equal, a jump is effected to the location speci
fied by the address part of the right half of the
word in the D Register. If the two are equal, the
next instruction selected is the next sequential in
struction.

In either case, the address of the next sequential
instruction is placed in JA.

Subtract Instruction address from Index register and
Jump

The instruction address part, IV, is subtracted from
the contents of the specified index register. The
difference replaces the original contents of the index
register and is then compared to the address part of
the left half of the word in the 0 Register. If the
two are not egual, a jump is effected to the location
specified by the address part of the right half of the
word in the D Register. If the two are equal, the
next instruction selected is the next sequential in
struction.

In either case, the address of the next sequential in
struction is placed in JA.

Add Instruction address to Index register and set Overflow

The instruction address part, IV, is added to the con
tents of the specified index register. The sum re
places the original contents of the index register and
is then compared to the address part of the "h" half
of the word in the 0 Regis ter; "h" maybe L or R. If
the two are egual, the overflow indicator is set to one.
Prior to executing AIXO,the overflow indicator 1S

cleared to zero.

Subtract the Instruction address from Index register
and set Overflow

The address part of the instruction, IV, is subtracted
from the contents of the specified index register. The
difference replaces the original contents of the index
register and is then compared to the address part of
the "h" half of the word in the 0 Register; "h" may be Lor
R. If the two are equal, the overflow indicator is set
to one. Prior to executing SIXO,the overflow indicator
1S cleared to zero.

177

When using these instructions, the reader should recall the cyclic
nature of memory addressing; i.e., in a system with 4096 words of memory,
the address 4095 + 1 = 0, and the contents of an index register, 2036, minus
2040 is equivalent to 4092. That is,

2036 - 2040 = 4092 = 4096 + 2036 - 2040

The following are four examples of the effects of the SIXJ, AIXOR,
and SIXOL instructions:

Example 1

Initial
Conditions

After
SIXJ 32,1

Example 2

Initial

Xl Xc

02048 10 1

02016 10 1

DATA 10 1 Conditions ~------------~~

After
AIXOR 8,1

Example 3

Initial I
Conditions

After
AIXOR 8,1

Example 4

Initial I
Conditions

After
SIXOL 4,1

178

DATA + 8
10 I

DATA + 120 10 I

DATA + 128 10 I

32767 10 I

32763 10 I

S N V F C S N V F

(01 01919
101 0}1 PROCESS

1
0

1
~ ~ "Y'""

DL ~

Jump to PROCESS.

IaI 00000
1
0

I
0 101 DATA + 128 10 1

The overflow indicator IS cleared to zero,
and it remains zero.

1
0

I
00000 10 I 0 10 I DATA + 128 10 I

The overflow indicator 1S set to 1.

10 I 32639 10 I 0 10 I 00000 10 I

The overflow indicator IS cleared to zero,
and it remains zero.

C

0]

0

0

0

The normal procedure is to follow an AIXO or SIXO instruction with
one of the overflow Jump instructions to determine a course of action based
on AIXO or SIXO.

The last index register instruction is rcx which is used when it
1S desired to establish or alter only the counter indicator of an index
register.

TCXci Transfer Counter to Index register

1be counter indicator of the specified index register
is set to one if S is written for "c" and zero if Z is
written for U cu. The" i" may be C or omitted and may
only be used with TCXS. TCXSC sets the counter indi
cator to one and immediately increases the contents of
the index register by one.

Note that in Appendix D, the instructions TCXZ and TCXS are not
listed with the other index register instructions but are listed in the
Special column. TCXSC is not listed at all but its command configuration is
the same as that of TCXS. The difference between the two is that the S bit
of the instruction is zero for TCXS and one for TCXSC.

TAC AND INDEX REGISTERS

TAC Constants

Before most index register instructions can be used, ·the program
mer must place in the D Register a constant which looks like an instruction
word. The constant can be one of two types -- a Location or a Command con
stant. Either of the two types can be a pool or a non-pool constant. Lo
cation constants are used with the instructions TDX, ADX, SDX, AIXO, and
SIXO. Command constants may be used with the preceding five instructions
and also with the AIXJ and SIXJ instructions.

A Location constan~, is a word which contains two identical address
parts, two like F bits, and zeros everywhere else. The format for this con
stant is L/LOCATION where LOCATION can be either a symbolic or absolute ad
dress which is stored in the address part of both halves of the word.

As a pool constant, this would be written as follows:

L LOCATION COMMAND ADDRESS AND REMARKS

T MD L / L o C AT I 9) N $

179

As a non-pool constant, it would appear as follows:

L LOCATION COMMAND ADDRESS AND REMARKS

T MD C 10 N S T $

· · · · · ·
CI0 N S T L I L 9' CA T I 0 N $

The symbolic address, LOCATION, is converted to its actual address by TAC
and the resulting constant would appear in memory as follows:

s N,V F C S N,V F C

Actual address Actual address
0 of LOCATION 0 0000000 0 of LOCATION 0 0000000

Note that this illustration assumes an F bit of zero.

When a Location constant is used by an index register instruc
tion, it is sometimes necessary to consider the F bits of the constant.
The reason for this is that the F bit establishes the counter bit of an
index register for the instruction TOXC.

Normally, a symbolic data address, like LOCATION, would be a left
half address and OF would therefore be zero. Note that the F bit of an

address indicates left or right half. When F is zero, the address is left
half. When F is one, the address is right half. Ther~fore, to make DF a

one, which would cause a TOXLC instruction to make the index register count,
the constant. should be written as L/LOCATION + IH.

LOCATION + 1 is the address of the word following LOCATION.
LOCATION + 1H is the address of the half word following LOCATION.
When LOCATION is a left half address, LOCATION + IH is a designation for
the right half of LOCATION.

The second type of constant placed in the D Register to be used
with index register instructions is the Command constant. This is a half
word constant composed of a complete TAC instruction whose parts are sep
arated by commas. An example of a Command constant is C/JMP, NXTRTN, 2.

If this is the complete constant, the Command constant occupies the left
half of a computer word and the right half of the word is all zeros. When
two constants are written, a semicolon is used to separate them as in the
following example:

C/TMA, DATA, 2 ;C/MP, NXTRTN

180

The constants occupy a whole word and appear as follows:

S N v F C s N and V F C

1 2
Actual address

0 TMA 0
Actual address of

0 JMP of DATA NX1RTN - ./ ""-

Left half Right half

Usually the programmer is not concerned with the S bit because a,
combined N and V field of the D Register is used, in which case the S bit
is zero. When it is necessary to specify an S bit of one, the Command con
stant written nlust be an instruction calling upon an index register.

The C fields of the D Register are not significant when used in
index register instructions. However, when an F bit of D must be specified,
as in a TDXLC instruction, it is convenient to use instructions such as
HLTL or HLTR and JMPL or JMPR in the appropriate Command constant. An L
then specifies an F bit of zero and an R specifies an F bit of one. Other
instructions with this facility may be found in Appendix C. It should be
noted that because of symbolic addressing, Land R are not normally used
except in constants. Further use of Command constants will be illustrated
in Chapter IX.

To place the address PAYROLL in Index Register 3 and to set the
index register to count, the following instructions may be used:

L LOCATION COMMAND ADDRESS AND REMARKS

T M D C / IlL T R , P A y. R Y' L L $

T 0 X L C , 3 $
o r

T M 0 C 0 N S T $

T 0 X L C , 3 $

. ·
·

. ·
C 0 N S T C / H L T R , P A YR 10 L L $

181

T

T

A

T

T

The use of these index register instructions and their effects
upon the registers involved are illustrated in the following paragraphs.
The following coding is illustrative only:

COMMAND ADnRESS AND REMARKS

M D C .; HL T L, INPUT; C/HLTL, 16 $ Constant~ 0

D X L C t 1 $ Left o address -to Xl; DJ F, 0, ~ X,.

D X R , 1 $ (Xl) + Right D address -to Xl

X D L , 1 $ (Xl) -+ Left D address part

D M S TR D$ (D) -. Memory location STRD

The effects on Index Register 1 and the 0 Register are shown in
the following diagrams. Note that TAC converts the symbolic addresses and
mnemonic commands before executing the program. They would never appear in
the registers as shown.

Selected
Index Register

x c

Initial I 28761 III
cond i t ions '-______ .l--J

After
TMD

After
TDXLC

After
ADXR

After
TXDL

28761 III
INPur 101

INPur + 16 10 I

INPur + 16 10 I

Condition of JA:

182

D Register

S N v F C S N v

II I II II I

INPUT 00016

FI INPUT JoI liLT 10 I 00016

INPUT 00016

\01 INPUT + 16
1

0
1 HLT 1

0
1

00016

JA JAF

INPUT + 16
1
0 I

F C

II

101 HLT

101 HLT

101 HLT

\01
HLT

L LOCATION

P R 9' C E S

The four instructions, AIXO, AIXJ, SIXO, SIXJ, enable the program
mer to test the contents of an index register against some predetermined
limit and then to select one of two processing paths according to the re
sult of the comparison. For example, if the payroll records described
earlier were to be processed using index registers, the instruction AIXJ
could be used to add to the address in an index register and to determine
when one block of records had been processed.

Assuming that the first word of the block is cal1ed PAYROLL, the
coding for this procedure, following the steps outlined earlier, would be
as follows:

COMMAND ADDRESS ANn REMARKS

T MD L / P A Y R Y' L L $ PAYROLL to address parts of D

T DX L C , I $ Left half address of 0 - Xl' 0 - Xc

S ·
\

·
· ·
· · >- All the coding to process one record

· ·
· · J

T MD C / H L T, P A YH~fLL+ 128; C/HLT,I PROCESS $

A I X J 1 6 , 1 $ (X I) + 16 - X I ; Jump to PROCESS if

·
'\ (Xl) I PAYROLL + 128 ·

· · > Coding executed after one block

· · J of records is processed.

183

Analysis of the Coding

TMD L/pAYROLL transfers to the D Register a constant which has in
both address parts the actual computer address represented by PAYROLL. The
remainder of the word contains zeros.

TDXLC, 1 places the left half address part of D, PAYROLL, in In
dex Register 1. The counter indicator is made zero because DF is zero.

After one record has been processed, 16 is to be added to the ad
dress in the index register so that the processing coding will refer to the
next record. This is the first function of AIXJ 16,1.

After the addition, the new contents of the index register are
compared to the address part of the left half of the D Register. This ad
dress is PAYROLL + 128. When the two are not equal, as will be the case
for the first seven records, a jump is effected to PROCESS, the address
part of the right half of the word in D.

After the eighth record has been processed, the AIXJ instruction
causes the contents of Xl to be increased to PAYROLL + 128. Then the jump
of AIXJ is not effected because PAYROLL + 128 equals the left half address
part of the word in the D Register.

The status of Xl during the processing of the block of records is
as follows:

Contents of Xl

Prior to proceSSIng 1st record PAYROLL

After proceSSIng 1st record PAYROLL + 16

After proceSSIng 2nd record PAYROLL + 32

After proceSSIng 3rd record PAYROLL + 48

After proceSSIng 4th record PAYROLL + 64

After proceSSIng 5th record PAYROLL + 80

After processing 6th record PAYROLL + 96

After proceSSIng 7th record PAYROLL + 112

After proceSSIng last record PAYROLL + 128

184

L

0

N

rAC and the S Bit of Instructions

The S bit of all instructions specifying an index register is made
one by TAC, except for the TCXS instruction. The N bits of any index regis
ter instruction specify which index register is to be used. The reduced ad
dress field (IV) is involved as long as the S bit remains one. If the S bit
is a zero, the N bits continue to specify which index register is to be used,
but the full address field, including possibly some of the N bits, are used by
the instruction.

An index register is specified for an instruction by a comma fol
lowed by the number of the index register desired. This configuration is
written in the address field. If an S bit of zero is desired, no comma or
index register number should be written. The most significant bits of the
address may then fill the N bits if the address is large enough.

Example 1

In Chapter V potential overflow in division was described and part
of the coding to produce a quotient in such a case was shown. Omitted from
the example was the coding to count the number of shifts of the dividend.
This count is necessary, for example, if the quotient is to be used as an
operand in another arithmetic operation. If an addition is to be performed,
the other operand must be shifted right to align the binary points. Caution
must be exercised to avoid losing significant bits when the shift is effected.

An index register is used as a counter to count the shifts of the
dividend and then to provide the effective address for a shift instruction.
The instruction NOP, No Operation, is merely a filler instruction whose ad
dress part is ignored; it is used simply to ~ause Index Register 2 to count.

Should the division proceed normally, i.e., if there is no poten
tial overflow, the right shift will be a shift of zero positions. This shift
has no effect.

The coding to perform an addition after the division follows:

LOCATION COMMAND ADDRESS AND REMARKS
T I X S 0 , 2 $ Clear X2 to zero and set it to count

TM A D IV I D E N D $ Dividend -A

I V I D E DA D I V I S 10 R $ Divide

IN 0_ N 10 10 F L 10 w $ If overflow doesn't occur, jump

N0 P , 2 $ (XC)) + 1 - X?: Automatic counting

JM P D I V I 0 E $ Jump to divide again

10 '0 F L 10 w TM A 10 p R A N 0 $ _Qperand - A

SR A I, 2 1$ Shift (A) "right to align points

AQ Perform the addition

185

L

S

Example 2

A list of special account numbers is stored in successive loca
tions in memory such that the first number is in location LIST. There is
one account number consisting of eight alphanumeric characters in each lo
cation. The size of the list is not known so the sentinel word, END~LIST
follows the last account number in the list. An account number is in memory
location NlThffiER. This example illustrates the technique called table look
up.

The problem lS to jump to FOUND if the account in location NUMBER
is a special account, 1.e., is in the list, or to jump to ORDINARY if the
account number is not in the list. A counting index register is used to
address the successive locations in the list. A flowchart of this problem
follows:

SELECT A WORD
FROM LIST

The coding for the problem follows:

LOCATION COMMAND

IS NUMBER
IN LI ST?

NO

IS WORD FROM
LIST THE

SENTINEL?

NO

YES~
V

ADDRESS AND REMARKS
T M D C II H L T R , L 1ST $ \ Place address of list in

T D X L C , 1 $) Xl and set it to count

T M Q A II E N 0 6- L I S T $; Sentinel w_ord -0
, 1 $ One word from list -A E AR CH T M A

T M D N U M B E R $ Account number - D

J A E D F 9' u N D $ Jump if account number is ln list

J A E Q ~ R D N A R Y $ Jump if word in list is sentinel

J M P S E A R C H $ Jump to examlne next word

186

L
(J

After exam1n1ng the entire list, the index register contains the
address of the word following the sentinel because of the counting opera
tion.

If it were desired to place an account numb~r, not in the list,
at the end of the list, it must be placed in the sentinel position. The
address of the sentinel may be found by subtracting one from the contents
of the index register. This may be done by the instructions SIXO or SDX.
SIXO is usually more convenient -- assuming that the possible setting of
the overflow indicator is of no concern.

The instructions which place the new account number at the end of
the list J and then place the sentinel word after it, are shown in the fol
lowing diagram:

LOCATION COMMAND ADDRESS AND REMARKS

R 0 N

L

S

A R Y S I X f1 I , I $ Account number to last position

T M D N U M B E R $ in list; (Xl) + I-Xl (counting)

T D M , I $

T Q M , 1 $ END 6. LIST to location following

last word

If the problem were the same except that two or more words in the list ap
plied to one special account, AIXO or ADX would be used to increase the in
dex register which would not be set to count.

The most frequent type of index register use will be to address
successive words or records 1n a specific area of memory, such as a data
block from magnetic tape.

The preceding table look-up for a two-block (256 words) table
without a sentinel is coded as follows:

LOCATION COMMAND ADDRESS AND REMARKS

T M 0 LII L I S T $ List - Xl
T D X L C , 1 $ o -+ Xc

T M Q NU M B E R $

E A R C H T M A , I $

J A E Q FlO u N 0 $

T M D CI H LT, L I S T+ 256; C/HLT, I SEARCH' $
\

A I X J 1 _, I $
) Coding for number

J
not in the list

1/

187

Exercises

1. Using AIXO and an overflow jump instruction, recode the two
block table look-up. ~r'--, \}"\.(", C,~(c~': \

'.l,

2. A data block beginning at location DATA contains 32 inventory
records, each of which has the following format:

Word O. 2 3 4 5 6 7 8 9 .0 II .2 .3.4.5.6.718.92021 22232425262728293031 ~2333435363738394041424344454647
Iii j i I I I ill' I •• i I • Iii i I I Iii iii I • , iii Iii iii I i I I I I I

o

1

2

3

STOCK NUMBER

OTHER DATA SPECIAL CONDITION (BCC)

ON-HAND AMOUNT (WHOLE NUMBER, B 47)

ORDER-POINT AMOUNT (WHOLE NUMBER, B 47)

Another data block beginning at location TRANS contains 64
transaction records, each of which has the following format:

Word 0 • 2 3 4 5 6 7 8 9 .01112 13141516171819 202122232425262728293031 32333435363738394041424344454647

Iii 1 1 I Iii iii I iii I I I , iii I i I I I I I I iii I I Ii, iii iiI I i

o

1

188

STOCK NUMBER

TRANSACTION TYPE (BCC) AMOUNT (WHOLE NUMBER, B 47)

The Special Condition can be HOLD or SHIP and the Transaction
Type can be SALE or BACK. All records are in numerical order
within the blocks according to the stock numbers.

Match the transactions with the inventory records having the
same stock number. There need be no transaction for a given
inventory record but there must be an inventory record for
every transaction record. However, both matching records
need not be in memory at one time; i.e., one may not yet have
been read from magnetic tape. Also there may be any number
of transaction records to be applied successively to a g1ven
inventory record.

When a match is found, determine the transaction ty'pe. If the
type is SALE, check the Special Condition, and if it is SHIP,
subtract the transaction amount from the On-Hand Amount, and
replace the old On-Hand Amount with the new. Do not subtract
if the Special Condition is HOLD (see below). Then, determine
if the new On-Hand Amount is less than or equal to the Order
Point Amount. If this is the case, execute the subroutine
ORDER (no coding necessary).)In any case, the next operation
is to select the next transac~ion and continue processIng.

Ci_LCv'k \e, - i, l I J' _' "

o -(jn' :; {-({({\: ~(O L J:;;.

If the Special Condition is HOLD, execute the subroutine
SPECIAL (no coding necessary); by-pass any and all transaction
records which apply to the inventory record, and select the
next inventory record.

If the Transaction Type is BACK, add the transaction amount to
the On-Hand Amount and replace the old On-Hand Amount with the
new.! Then select the next transaction and continue processing.

" ,', 'f,.' \:2!((', -/ ,- !:,', '\,' I ~:'()11) ~.~ ~::.J,I (v';.~
,

When all inventory records in memory have been processed, exe
cute the subroutine INPUT-! (no coding necessary), which will .
record the updated inventory records on magnetic tape and
place the next block of records, from magnetic tape, in the 128
locations beginning at DATA. When all transaction records in
memory have been' processed, execute the subroutine INPUT-T
(no coding necessary), which will place the next block o~.
transaction records, from magnetic tape, In the 128 locations
beginning at TRANS.

3. Under certain circumstances the programmer may have an effec
tive address formed by subtracting a number from the contents
of an index register. This can he accomplished by using the
complement of the number as the instruction address part. For
ex'ample,' in some cases a V part of an instruction equal to
4095 will form an effective address which is one less than the
contents of an index register. In other cases a V part of an
instruction equal to 8191 will form an effective address which
is one less than the contents of an index register.

What are the requirements for two PHILCO 2000 systems where a
complement in V is possible; two more where it is not possible?

189

THE REPEAT INSTRUCTION

The Repeat instruction, RPT, performs a small loop of one or two
instr~ctions a specified number of times up to 4095. It is very valuable
in transferring records from one area of memory to another, in table look
up, and in sorting.

The definition of the Repeat instruction follows:

RPT The next instruction or instruction pair following
the Repeat instruction is performed the number of
times specified by the address part of the Repeat
instruction. If the Repeat instruction is a left
half instruction, the right half instruction in
that word is performed. If the Repeat instruction
is a right half instruction, the next pair of in
structions is performed. An L or R in the label
column specifies the Repeat instruction as a left
or right half instruction. The address part can
be any number up to 4095. If this number is zero,
the Repeat instruction has no effect and the other
wise repeated instructions are ignored. This causes
one or two instructions to be skipped.

The Repeat instruction, itself, cannot be index register modified.

However, the instruction{s) repeated can specify index registers
for address modification of either or both addresses in the normal mode, as
explained earlier in this chapter, or in the Repeat mode.

Under the Repeat mode the effective address of a repeated instruc
tion is the contents of an index register, if that instruction is under the
A or S option (refer to the following page) of the RPT. After the repeated
instruction is executed, its address part, IV' is added to or subtracted
from the contents of its index register; the result replaces the original
contents of the index register. If an index register is specified under
Repeat mode modification the counting function of a specified index regis
ter is bypassed, even if the counter bit is set to one.

190

SET
UP ...

REPEAT'
COUNTER

The following IS the format of the two possible Repeat commands:

L LOCATION COMMAND

L Rr T r

a n d
R R P T 1 r

where I and r specify any Repeat mode modification for the left and right
half repeated instructions. Note that I and r each may be N, A, or S for
No Repeat mode modification. Add Iy to the contents of the index register
or Subt~act Iy from the contents of the index register. If N is specified,
the repeated instruction may specify normal index register use. The counter
will be operative. The following flowchart illustrates the loop formed by
a Repeat instruction, when two instructions are being repeated:

EXECUTE LEFT
HALF IHSTRUC

TION

~
~

MODIFY
ItWEX

REGISTER?

lYES
~10D I FY

I HDEX
REGISTER

NO EXECUTE RIGIiT .. HALF IHSTRUC- -+ .. L- Tlatl

-

NO

~lOD I FY
INDEX

REGI STER?

YES

""r
NODIFY

INDEX
REGISTER

MODIFY REPEAT
COUNTER

i".
EHD OF

REPEATS?

YES

"l'
SELECT

NEXT
INSTRUCTION

WORD

NO

~
~

If an index register is not specified by the repeated instruction,
the full address field of that instruction is used as the effective address.

If the A or S option is selected, the computer uses the contents
of the index register specified by the N bits of the repeated instruction as
the effective address for that instruction. It then modifies the designated
index register by that instruction's reduced address field I y . Note that the
computer assumes that if the A or S option of the Repeat is used, an index
register is involved. If the repeated instruction does not specify an index
register by a 1 in its S bit, the effective address for that instruction

191

L

L

R

becomes OOOOO~ Moreover, the index register designated by the N bits of that
instruction is modified by the full address field of the instruction.

Following the completion of the number of performances of an instruc
tion specified by a RPT instruction, the next instruction word is brought to
the Program Register, and the program proceeds.

If a RPT with an address field of zero is executed the instruction or
instructions which would normally fall under the Repeat are s~~eP=~1' and the
program proceeds with the next instruction word.

If a jump instruction that is located in the left half of an instruc
tion word is being repeated, the number of times remaining to be repeated may
be determined from the contents of the JA register. The Repeat Counter is
counted by passing its contents through the Control adder, into the MA register,
and back into the Repeat Counter. Therefore, an indication of the count is in
the MA register every time (except the first) that the repeated instructions
are performed. Since a left jump always causes the contents of the MA register
to be transferred to the JA register, this indication of the count appears in
the JA register after the jump instruction is performed. Therefore, if a jump
occurred from the left half of an instruction word being repeated, the number
of times remaining to perform the right half instruction may be determined by
storing the contents of the JA register, and then solving the formula (JA)-
4096 + N, where N is the address portion of the RPT instruction.

If the right half of an instruction word being repeated is a Jump
instruction, the JA register contains the address of the instruction word
which follows the instruction word being repeated. This occurs because a right
half jump causes the contents of the PA register to be transmitted to the
JA register.

If the repeated instruction is an Index Register instruction, an A
or S option on the RPT for that instruction has no effect. The effect is the
same as if the N option had been selected. The command parts of the TCX
instructions, however, have a bit configuration different from that of other
Index Register instructions (refer to Appendix D) and behave, under repeat con
trol, ~~ __ .. ~~?~~~.?~e ra ther than Index Regis ter instructions.

The following instructions illustrate two Repeat instructions:

LOCATION COMMAND ADDRESS AND REMARKS

R P T A 4 8 $ Repeat next. instruction 48 times; its

specified index register is increased.

R P T N S 1 6 $ Repe~t next pair of instructions 16

times; no modification of an index

register that may be specified by the

instruction takes place; the index

register of the right half instruction

is decreased.

192

left half

L

If

L J

L

L

·
·
·
L

Example 1: Testing the Q Register

One of 48 possible courses of action can be selected by placing a
word in the Q Register, in which every bit position represents a different
course of action, only one of which is significant, i.e., not zero. Forty
eight Jump instructions are necessary and are stored in consecutive memory
locations starting at JUMP. The following coding examines such a word and
jumps to the proper one of 48 subroutines.

LOCATION COMMAND ADDRESS AND REMARKS

UM

TI X Z J U M P , 1 $ JUMP_Xl' 0- Xc

R P 1 A 4 8 $ Repeat JQO 48 times

.J Q 10 1 , 1 $ Jump if (0) are odd

N ¢ f · ·
·

P J M P R T N 1 $

J M P R T N 2 $

J M P R T N ~ S!;

·
·

· ·
J M P R T- N 4 8 $ This 1S the last Jump instruction.

Index Register 1 contains the address Jill~P initially, JUMP + 1 for
the seco~d execution of JQO, JUMP + 2 for the third execution of JQO, and so
on up to JUMP + 47. Note that to use TIXZ JUMP, the address of JUMP must be
represented in V bits or less.

Example 2: Transfer of Sequential Words

This type of operation is a frequent one in data process1ng. It
is often used to transfer an input record which has been processed to an out
put data area prior to recording an output block on tape or cards. At other
times, when a record may expand or contract because of processing, the input
record may be transferred to a working storage area. After ~he record is
processed in working storage, it is transferred to the output data area.

193

L

R

L

R

The following coding illustrates the transfer of a 16-word record
which starts in location INV and continues to the area starting with loca
tion OUT:

LOCATION COMMAND ADDRESS AND REMARKS
TM D C / HL T L, I NV;C/HLTL, ~UT $ \ Addresses

T DX LC , I $ ~ I NV--X 1

T DX RC 2 $
. J OUT-X2 , .I

R P TA A 1 6 $ Repeat next 2 instructions 16 times

T M 0 1 , 1 $ (M)-D, Increment Xl

l~ lit, l11 ' 1 , 2 $ (D)--+M, Increment X2

Each of the Repeat instructions increase the contents of its in
dex register by one so that the effective instructions executed are TMD INV,
TMD OUT; TMD INV + 1, TDM OUT + 2; etc. After 16 repetitions of the TMD
TDM pair of instructions, Xl contains the address INV + 16, and X2 contains
the address OUT + 16.

Example 3: Table Look-Up Under Repeat Control

Assume that a table in memory consists of 64 two-word entries.
The first word of the entry is an identifying key and the second word is an
associated data field. A key in question is stored in KEY and the table
begins at location TABLE. Jump to FOUND if the key in question is in the
table.

The coding to accomplish this follows:

LOCATION COMMAND ADDRESS AND REMARKS

T MD L / TA B L E $ Address, TABLE ---,--+X1

T DX L , 1 $

TI MA K E Y $ Key In question-A

R PT AN -6 4 $

T MD 2 , 1 $ Successive keys from table-D

J A E 0 F0 UN D $ Jump if (A) = (D)

· · \

· · If key is not in the table

· · J

194

If the instructions were performed 64 times the effective address
of TMD would be TABLE, TABLE + 2, TABLE + 4, and so on up to' TABLE + 128
which would be the effective address after the last execution. The in
struction would not be performed 64 times if a jump was effected. After an
entry in the table is found, the index register contains the address of the
first word of the entry, plus two. To utilize the entry, it is necessary
to subtract from the contents of the index register. However, table look
up may also be performed by searching the table backwards, i.e., starting
with the last key rather than the fi~st. When an entry is found, the index
register contains the address of the. first word of the entry minus the size
of the entry. To utilize the entry, the contents of the index register need
not be corrected by an extra instruction. Instead, the address part of the
indexable instructions utilizing the entry will contain normal but compen
sating increments.

Exercise

A record composed of 32 words is to be transferred from one area
of memory to another. The order of words in the record is backwards and is
to be reversed during the transfer. The following diagram illustrates the
memory locations concerned before and after the required transfers:

InEut Area OutQut Area

Word 31 OUTPUT Word 0
Word 30 Word 1
Word 29 Word 2

Word 3

RECORD

Word 3
Word 2 Word 2
Word 1 Word 30

Word 0 Word 31

195

NOTES ON THE ADDRESS PARTS OF THE D REGISTER

The size of the address part of one half of the word in the D Re
gister is determined in the same way as is the address part of a computer
instruction, i.e., by the S bit. An S bit of one indicates that the V part
is to be used, and an S bit of zero indicates that the combined V and N
parts are used. With an S bit of zero, only as much of N is used as is
necessary to represent the largest memory address in the system.

In any system, the combined V and N parts would be as follows:

a. 12 bits for 4096 words of memory

b. 13 bits for 8192 words of memory

c. 14 bits for up to 16,384 words of memory

d. 15 bits for up to 32,768 words of memory

Thus, if Os were one and a TDX instruction were executed, only a V part
would be transferred to the index register. Similarly, if a TXD instruction
weie executed, only V bits would be transferred from the index register to
the 0 Register. When the number of bits transferred to an index register
is less than the capacity of the index register, the leftmost bit positions
of the index register are cleared to zero.

It should be recalled from the preceding examples and exercises
that in the majority of cases it is not necessary to be concerned with the
size of the 0 address. However, with some instructions, such as the TXD
instruction, the programmer can vary Os to regulate the size of the address
to be placed in the index register. He will usually want to ensure that DS
is zero (by clearing the 0 Register) in order to transfer the entire con
tents of the index register. With AIXJ, SIXJ, AIXOh, and SIXOh instructions,
the number of bits from the appropriate half of 0 to be compared to the con
tents of the specified index register is determined by the S bit of that
half of D. Also, with AIXJ or SIXJ, the address to which a jump may be
made is designated by the full address field of the right half of D if the
S bit of that half is zero or by the reduced address field (with no index
register modification) if the S bit is one. ADXH and SDXH modify an index
register with the number of bits designated by the Os bit of the appropriate
half of the D Register.

These points are illustrated by the following diagrams and il
lustrations:

196

a. TDXLC in a system with 32 index registers and 8192 words
of memory (DLS ~ 1)~

5 10
S bits bits

11 I I]FI I]
Left half of

N V C ° Register
<;; =-v-

~l ~~ 1
I X 3 I 10 I IXc

b. SDXR in a system with 16 index registers and 16,384
words of memory (DRS = 0):

4
S bits

11
bits

~ol~ I -v_v JFI C

Subtracted from

• --------~-------xC 14 bits J IXc

Right half of
D Register

c. TXDLC in a system with eight index registers and
32,768 words of memory (DLS = 0):

3 12
S bits bit!=)

lo~ I V JFI c I \ Left half of
D Reglster

"""'--- 'V

i i
JA 15 bits I IJAF

1 i
xl 15 bits I I Xc

197

d. TXDR in a system with eight index registers and 16,384
words of memory (DRS = 1):

3 12
S bits bits

(Ill N l JFI
Right half

V C o Register

"v""""

i
JA 12 bi ts JAF

t t O~

Xl2j 12 bi ts X
c

e. AIXOL in a system with 16 index registers (DLS = 1);

IV + (X)-X:

4 11
S bits bits

of

III I] FI ij
Left half of

N V C D Register
<:::::;

"V

t
Then ..••.• compared to (X)

Although the addressing characteristics in the preceding des
cription were related to index register instructions, they also apply to
the instructions TJM and INCA. Further description of these instructions
will be found in Chapter IX.

198

SUMMARY

Index Registers

A Loop is a sequence of operations which 1S repeated for a group
of similar cases.

Index registers provide a convenient method of modifying the ad
dresses of instructions. In a loop the modification is necessary so that
the repeated instructions apply to successive records or units of data .in
memory. All instructions except RPT. SKC. SKF. and the Index Register in
structions may utilize index registers for address modification. The mod
ification determines the effe~tive address part of the instruction as
IV + (X).

This sum does not alter the contents of the index register or the instruction
1n memory.

Index registers have a capacity equivalent to the largest memory
address in a system, and a system may have up to 32 index registers. Each
index register has a counter indicator which may be set to one or zero.
When set to one, the contents of the index register are increased by one
every time the register is specified by an indexable instruction and TCXSC,
except for instructions executed under the Repeat mode.

The basic functions of the Index Register instructions are the
following:

a. transfer the contents of an index register to
the D Register

b. transfer the specified address part of the D
Register to an index register

c. transfer the address part of the index register
instruction to an index register

d. add or subtract the address in the D Register to
or from the contents of an index register

e. add or subtract the address part of an Index
Register instruction to or from the contents
of an index register. Then the new contents
of the index register are compared with an
address in the D Register; several options
are then possible.

199

200

The following are the Index Register instructions:

COMMAND

TCXci

rIXc

TDXhc

TXDhc

ADXh

SDXh

AIXJ

SIXJ

EXPLANATION

Transfer Counter to Index

For c = S, 1 ---;;a. Xc ; (X) + 1 ~ X if 1 I/: C

For c = Z, 0 -?>Xc •

Transfer Instruction address to Index

For c = Z, O~Xc'

Transfer 0 address to Index

h half 0 address ~X. If c I/: C.

DF~ Xc' h may be L or R.

Transfer from Index to 0

(X) ~h half 0 address.

If c = C, Xc~ OF. h may be L or R.

Add D address to Index

h half D address + (X) ~ X.
h may be L or R.

Subtract D address from Index

(X) - h ha If D address ----7X.
h rna y beL 0 r R.

Add Instruction address to Index and Jump

(X) + IV~ X. If (X) do not equal the
left half D address, a jump is effected
to the location specified by the right half
D address.

Subtract Instruction address from Index and
Jump

(X) - IV~ X. If (X) do not equal the
left half D address, a jump is effected
to the location specified by the right half
D address.

COMMAND

AIXOh

SIXOh

Repeat Instruction

EXPLANATION

Add Instruction address to Index and set OWer
flow

(X) + IV -7 X. The overflow indicator is set
to one if (X) equal the h half D address. h
may be L or R.

Subtract Instruction address from Index and set
OWerflow

(X) - IV -7 X. The overflow indicator is set
to one if (X) equal the h half D address. h
may be L or R.

The Repeat instruction permits the repetItIon of one or a pair
of instructions up to 4095 times. It is very useful for record transfers,
a table look-up, and internal sorting.

RPT lr

TAC Constants

The next instruction or instruction pair is
performed the number of times specified by IV.
A left half RPT repeats one instruction, where
as a right half RPT repeats a pair of instruc
tions. The letters I and r indicate the type
of Repeat mode index register modification to
be effected with the left and right Repeat in
structions. I and r may be N, A, or S for No
modification, Add to the index register, or
Subtract from the index register.

The following two constants are used primarily to load the D
Register for use with the Index Register instructions:

Location Constant:

Command Constant:

L/xx ..• xx

This creates a word with xx ••• xx in the N and V
parts of both halves of the word.

C/Command, Address, Index.

This creates a half word identical to the com
puter instruction corresponding to the mnemonic
form written.

201

D Register: S Bit, Address Portion, and F Bit

The size of the address part of D 1S determined by the S bit
(first bit) of the appropriate half word in D. If DS is 1, the address
part is DV; if Os is 0, the address part is the size of the index register.
Most of the time little or no consideration is given to OS. A TAC constant
is usually written to be placed in D; its most important part is a symbolic
address, and its S bit is generally zero.

The F-bit positions of the ° Register are of concern only with
TDXC and TXDC because the F bit corresponds to Xc. The F bit of DR speci
fies left or right for the jump in AIXJ and SIXJ and is established by
TAC if symbolic addresses are employed. If necessary, a command constant
can be written with instructions, such as HLTL or HLTR, to specify an F
bit of zero or one.

Programming Rules of Thumb

202

a. Place the base or reference memory address in the
index registers. Then place the increments or
decrements to the base in the address parts of the
instructions specifying the index register.

b. Whenever it is necessary to store the contents
of an index register in memory, clear the 0
Register first with the CD command to insure a
transfer of the entire contents of the index
register.

c. For a general program, place addresses in index
registers with TDX rather than TIX because of the
addressing limitations of TIX. Use TIX to clear
index registers to zero.

d. Use the Location constant if an address is needed
for one index register and the counter is not to
be set. Otherwise, use a Command constant.

CHAPTER IX

PROGRAMMING TECHNIQUES

INSTRUCTION MODIFICATION

As explained in the preceding chapter, index registers should be
used wherever possible for instruction address modification. In some pro
grams, however, situations may arise when an index register isn't available
for address modification, or the instruction to be modified is not indexable,
or the command is to be modified. In these cases, the programmer must em
ploy techniques of programmed instruction modification utilizing such in
structions as TJM and the Extract instructions. This type of modification
differs from the index register type of Chapter VIII in that it occurs before
the modified instruction is executed rather than while it is executed.

Whenever such instruction modification is to be effected, the pro
grammer must be certain that he is thoroughly familiar with the binary
structure of the instruction to be altered and with the details of the in
struction which will cause the modification. In general, it is advisable
to use Extract instructions rather than TJM to cause instruction address
modification.

Programmed Address Modification By Substitution

Instruction addresses may be modified by substitution or by arith
metic. When modifying addresses by substitution the most straightforward
method is to use the Extract instructions. Other methods, to be described
shortly, use either of the pairs of instructions: TXD-TJM and TIJ-TJM.

The introductory remarks and the advisability of using Extracts
rather than TJM will become evident by considering the address modification
of a Repeat instruction.

Since the Repeat instruction 1S not indexable, it can only be modi
fied by programmed address modification. For example, in the transfer of
variable sized records within memory, the number of repeats varies according
to the size of the record and must be determined during the running of the
program. In order to perform the transfer of such a record, one field in it
must specify its size in words. The programmer will insert this field in
the address part of a Repeat instruction which repeats a TMD-TDM pair of in
structions.

203

Before doing this, however, he must be acquainted with the format
of the Repeat instruction. This format is as follows:

la I b Ie Id I 12 bits IFI RPT
1/ '- ~ t
1 l ~--------No significance

Specify Specify
type of number of

repeat mode repeats .
The type of repeat mode modification (N,A and S in mnemonic form) is speci
fied by the first four bits, such that a and b apply to the left half Re
peat instruction and c and d refer to the right half Repeat instruction.

The following are the effective configurations of a, b, c, and d
and the corresponding type of modification (x indicates not significant):

rAC PHILCO 2000

Left Right
Left Right a b c d

N N 0 x 0 x

A A I 0 1 0

S S 1 1 1 1

N A 0 x 1 0

A N 1 0 0 x

N S 0 x 1 1

S N 1 1 0 x

A S 1 0 1 1

S A 1 1 1 0

Note that TAC makes" a" and "b" zero for any Repeat instruction
of the form RPTr, because it is assumed that only a right half instruction
is being repeated. However, left half Repeat instructions take the form
RPTlr to make" a" and It b" any combination of ones and zeros.

204

L

L I

Because the" a" bi t is the S bit of the Repea tins truction and
because the S bit determines the size of the field transferred from the JA
Register by TJM, caution must be exercised when using TJM to modify a Repeat
address. Specifically, TJM will transfer a V-sized field from JA if the S
bit is one, or it will transfer the entire contents of JA (the number of
bits to represent the largest memory address) if the S bit is zero. Thus,
if the "a" bit of a Repeat instruction is zero, TJM may alter the repeat
mode bits. For example, if the size of the memory is greater than 4096
words, more than 12 bits will be transferred. Similarly, the maximum number
of repeats, 4095, cannot be trans ferred from JA if the" a" hi t is one and
the size of the V field is less than 12 bits.

Therefore, for most general usage, it is preferable to modify the
address of the Repeat instruction by extracting, as shown in the following
example:

Example

Assume that the word in DATA is the first word of a record and
that it contains the record size in its rightmost twelve bit' positions.
Twelve bits were allocated because this is the maximum size of the address
part of the Repeat instruction. Assume also that the entire record is in
memory and that it is desired to transfer it to the locations beginning with
OUTPUT.

The following coding will accomplish this:

LOCATION COMMAND ADDRESS AND REMARKS
\

T MD C / HL T L . D ATA; CjI-~TLJ ~UTPur $ Set up index

T D X L C J 1 $ DATA---X, J O---'X,(, > registers

T DX R C J 2 $ OUTPl.IT-' X2 ' 0 -. X2C)

T M A J 1 $ Record size field to right half address

S L A 8 $ part of A Register

T M Q 2 8 / 1 ; 1 2 / O· 8/1 $/ Extract Insert record S1ze field

E I S I N S TR $) in address part of RPT

NS T R N0 P

RP T AA '\
TM D 1 , 1 $ Transfer the record

TD M 1 J 2 $ /

205

The following diagram shows the formats of the significant words
1n this example:

Before EIS

o 1 2 :I .. 5 6 7 • 9 1011 12 13 14 15 16 17 18 19 20 21 2223 2 .. 25 262728 29 30 3132 3J:l4 3~ 30 :17 38 39.tO 4' 4243444546 47

IIIlll I I I Record Size

Record Size

11 1 1 1 1 1 1 1 1 11 1 1 11 11 1 1 1 1 11 1 1 1 1 01010101010101010\01010 1 1 1 1 11 1 1

N 0 P 1 0 1 a RPT
tit I I I I I I I I I I I I , I , , , t I I I ,

After EIS

Location

DATA

A after shift

Mask in Q
INSTR

junction
memory.
are the

As mentioned in Chapter
with TJM instructions to
The steps to follow when

following:

VIII, index registers can be used in con
substitute addresses in instructions in
using index registers for this purpose

a. Place the desired address 1n an index register.

b. Execute a TXD instruction to place the address in the
JA Register. Care must be exercised to ensure that DS
is zero if the entire contents of the index register
are to be transferred.

c. Execute a TJM instruction for each substitution.

In a similar manner, address substitution may be effected with a
TIJ-TJM pair of instructions. This combination was used in Chapter VII,
and the substitution provided addresses for Jump instructions. At that
time no consideration was given to the fact that JA has an F bit associated
with it and that TJM transfers the F bit. This F bit may be zero or one
and replaces the F bit of the instruction being altered. If the JA Register
contains a Jump instruction, the F bit is automatically set to indicate
which half of an instruction word is the next to be executed (zero for a
left half, one for a right half) if the Jump is not effected. If the JA
Register contains a TIJ instruction, the F bit of the TIJ instruction is
transferred to JAF. The F bit of the TIJ instruction may be set to zero if
TIJL is written or to one if TIJR is written.

206

The F bit need not be considered as long as TIJ and TJM instruc
tions utilize symbolic addresses and are applied to Jump instructions. The
reason for this is that TAe will make the proper F-bit assignment when sym
bolic addresses are used. In other situations, the programmer must be
aware of the effect of transferring an F bit to an instruction to insure
that TJM does not alter the instruction receiving JAF, unless an alteration
1S desired.

The following list illustrates the use of the F bit with some of
the instructions:

Instruction Purpose of State of
Class F bit F bit

0: Fixed point

Arithmetic Arithmetic Mode
1: Floating point

Left 0: Left
Jumps or

Right 1 : Right

Counter 0: Left or No counter
Index Register or

Half of 0 1: Right or Set counter'

Arithmetic Transfers 0
Part of Command

Shifts 1

Some instructions, such as RPT, HLT, NOP, operate in the same manner re
gardless of the F bit. Other instructions, such as the Extract instruc
tions, requ1re eight bits including the F bit, to define the command.

Also to be considered with TJM is the fact that the size of the
address transferred from JA is determined by the S bit of the instruction
receiving the contents of JA. Thus, if IS = 0, the largest address sized
field 'is transferred and if Is = 1, a V sized field is transferred.

207

L

L S

N

Programmed Address Modification By Addi.tion

If it is necessary to increase an address by one without uS1ng
index registers, the instruction INCA may be used.

INCAh Increase Address in memory

A one is added to the address part of the instruc
tion at the specified memory location.

The execution of this instruction'uses JA and·tne-'D Register as follows:
1 (", \
\,) .. ,'\/, . j, " "). _ ... ,J

~------------~~--~~ ~~~~------------~
D (JA)~ D address

If INCA addresses an instruction symbolically, "h" may be omitted.
If INCA addresses an instruction word, "hit specifies the half to be modi
fied: L or R, for left or right. The F bit of the half of the word ad
dressed is not altered.

As previously stated, the size of the address part of the 1n
struction being modified depends on its S bit. For S = 1, the V field 1S
modified, and for S = O,the field modified is the size of the largest
memory address.

If a number of instructions are to contain the same address parts,
TJM instructions can follow INCA for the necessary substitutions.

Example

Assume a l28-word table starting at location TABLE, and a key to
be looked up in location KEY. Jump to FOUND if the key in question is in
the table or to NOENTRY if it is not. In the preceding chapter this exam
ple used a counting index register to address successive memory locations.
INCA is used in the following coding for the same purpose:

LOCATION COMMAND ADDRESS AND REMARKS

E A R C H TM A K E y $

"
Jump to FOUND if the table entry equals

I

TM D T A B L E $ the wo rd in KEY

JA E D F ~ U N D $)
TM A S E A R C H $ \ Test to see

TM D C / T M A K E Y; C/TMD, TABLE + 127 $ \ if last table .,

JA E D N ~ E N T R Y $) entry used

IN C A R S E A R C H $ Add 1 to TMD TABLE

JM P S E A R C H $ Jump fo r next table test
..,

~ E N T R Y TM D C / T M A , K E Yj C/TMD, TABLE $ Restore original

TD M S E A R C H $ / instructions

208

L

L S

N

Analysis of the Coding

The instruction in location SEARQI is specified as a left half
instruction which makes T~ID TABLE a right half instruction. Because the
computer compares whole words, the pair of instructions in location SEARCH
must be compared with the pool constant shown, to determine when the ad
dress part of TMD TABLE has been increased to TABLE + 127, the last word in
the table. If the two words are not equal, INCAR adds one to the address
part of TMD TABLE and the next table comparison is made. The instructions
at NOENTRY restore the original word at memory location SEARCH. Note that
the address part of the TMD TABLE instruction can also be restored by the
instructions TLJ TABLE, TJMR SEARCH. Note also that it is usually prefer
able to preceed a subroutine like SEARCH with the instructions at NOENTRY.

This method may be extended to instruction address modification
by amounts other than one, in which case a single INCA cannot be used.
Instead, the programmer may write a constant with the necessary address
increment and perform an addition to the instruction word to be altered.

Example

TIle following coding will perform the same table lookup as In
the preceding example if the entries consist of two words:

LOCATION COMMAND ADDRESS AND REMARKS

E A R C H

~ E N T R

T M A K E Y $ \

T M D T A B L E $ > Table look-up

J A E 0 F 0 U N D $ J

T M A C / H L T L , 0 ; C/HLTL, 2 $ 1 Add 2 to address of

A M S S E A R C H $) TMD TABLE
T M D C / T M A , K E y. , C/TMD, TABLE + 128 $ L Test to see if

J A E D N {{) E N T R Y $ J last entry used

J M P S E A R C H $ Jump for next table test

Y T M D C / T M A , K E Y; C/Th1D, TABLE $ 1 Restore original

T D M S E A R C H $) instructions

Programmed Command Modification

The final type of instruction modification concerns the modifica
tion of commands rather than addresses. Although situations requiring this
type of modification occur less frequently than the preceding types, the
programmer should be aware of their possibilities.

209

There will be instances, for example, when one quantity is to be
added to a total and another is to be subtracted from the total. This may
be a program switch situation and can be satisfied by modifying a command.
The alteration may be performed by extracting or by instructions such as
AWeS, which modifies by addition. In either case, the programmer who per
forms command modification must be fully aware of the bit structures of
the commands involved.

INTERNAL SORTING, MERGING, AND MATCHING

Sorting

In most data processing operations, the order or sequence of
records in files is important. Sequence is important to minimize the time
necessary to locate records in a large file. If the records were in ran ..
dom order, i.e., no particular sequence, it would be necessary to search
through half the file, on the average, to find a given record. The time
to search for many records would, of course, be prohibitive. Because of
the importance of data sequence, it is necessary to consider the require
ments of establishing the sequence -- a process known as SORTING.

Internal sorting is the process of arranging records in memory
1n an ordered sequence. One method of performing an internal sort begins
by comparing the identifying keys of a group of records against one another
and selecting the record with the smallest key, if an ascending sequence 1S
desired. This record is transferred to another area of memory. The re
maining keys are compared and the record with the next smallest key is
placed behind the one with the smallest. The process is continued until
of the records have been transferred, in ascending order, to the other
area of memory. If a descending sequence is desired, records will be
selected according to the larger keys. .

The PHILCO 2000 was designed to facilitate internal sorting of
the above type by incorporating the following two special instructions:

210

SWD Smaller Word

The word from the specified memory location is trans
ferred to the D Register. Then the words in the A and 0
Registers are compared in the alphanumeric sense. If the
word from memory is smaller than the word in A, it is
transfe~red to A and its address is placed in the JA
Register. The F bit of JA is made zero. If the word
from memory is larger than or equal to the word in A, the
instruction has no effect other than that the comparison
is made.

T
T

S

(M) -+ 0

A micro-flowchart of this instruction follows:

(D)
SMALLER THAN

(A)?

NO

LWO Larger Word

M ADDRESS
-+ JA

o -+ JA F

The word from the specified memory location is trans
ferred to the D Register. Then the words in the A and D
Registers are compared in the alphanumeric sense. If the
word from memory is larger than the word in A, it is
transferred to A and its address is placed in the JA
Register. The F bit of JA is made zero. If the word
from memory is smaller than or equal to the word in A,
the instruction has no effect other than that the com
parison is made.

A micro-flowchart of this instruction follows:

(D)
LARGER THAN

(A)?

NO

M ADDRESS
-+ JA o -+ JA F

The SWD instruction is used to produce an ascending sequence and
LWD is used to produce a descending sequence. Prior to the use of either
instruction,the A Register and the JA Register should contain the first
key and its address, respectively.

An equally valid procedure is to first place in the A Register
the largest possible word, all ones, for SWO, or the smallest possible
word, all zeros, for LWD. These two procedures will insure the validity
of the fi rs t execu tion of SWD or LWO.

For example, if it is desired to select the smaller of two words
and SWO is used) the following instructions can be written:

COMMAND ADDRESS AND REMARKS

I J W {O R D 1 $ Address of word 1 - JA

M A W ~ R o 1 $ Word 1 - A

W 0 W 0 R 0 2 $ Smaller word -to A, its address - JA

211

Thus, if word 1 is smaller than word 2, SWD has no effect;
the A Register contains the smaller word, and JA contains its address. If
word 2 is smaller, it is transferred to A and its address is placed in JA.
In either case, A contains the smaller word and JA contains its address.

To sort a group of records, LWD or SWD is used under control of
the Repeat instruction. This combination tests a key against all other
keys in the group. After the tests have been made, the record with the
smallest key, for an ascending sequence, is transferred to the sorted area;
a dummy key which is larger than any real key is substituted for the origi
nal, and the process is repeated until all records have.been sorted. A
flowchart for this operation follows:

SELECT EXECUTE ALL RECORDS YES ... TRANSFER SMALLEST .on ~ FIRST A~ ... SWD p TESTED? ~

RECORD RECORD

NO
,~

REPLACE
ORIGINAL

SELECT KEY NEXT
RECORD

"
ALL RECORDS

NO
TRANSFERRED?

YES
~r

END
SORT

Example

Assume a block of two-word records beginning in location PAY.
The first word of each record contains a key. Sort the records into ascend
ing order by the key and store the sorted records starting at location
SORTED.

212

L LOCATION

S 9> RT

L

R

D U MM Y

The coding to accomplish this IS as follows:

COMMAND ADDRESS AND REMARKS

T M D L / S 9> R T E D ~ Set up Xl for output of sort

T 0 X L C , I $ I)
T M Q 4 8 / 1 $ Dummy key, all ones, - Q

T M D L / P A Y $ }Set up X2 for first record of block

T D X L C . 2 $
)

T Q A Largest word, i.e., dummy key -ea A

R P T A 6 4 $ I) Place smallest of 64 keys in A,

S W D 2 , 2 $) its address in JA

T J M 0 U M M Y $ Address of smallest key-TQM instruction

T D X LC , 3 $ Address of smallest key-.. X3; O-X3c

R P T A A 2 $
1\

T M D 1 3 $ Record wi th smalles t key- SORTED area ,
T D M

,
1 , 1 $)

T Q M Dummy key replaces smallest key

T M D C / tIL T L , S &iR TED + 128; C/HLT, S0RT $ Test if

A I X J , 1 $ c SORTED area
J is complete ,I

Merging

Merging is the operation which produces one group of records in
sequence from two or more groups of records, each of which is in sequence.
Other names for merging are collating and interfiling. Merging is neces
sary in internal sorting techniques and in the sorting of large quantities
of data. Its function is to produce larger and larger groups of sorted re
cords. When all of the records to sort do not fit in memory at one time,
merged groups of records are written on magnetic tape. The remaInIng re
quirements for sorting include a knowledge of magnetic tape input-output.

Example

It is desired to merge two blocks of records. Assume that they
are four-word records, that the first word of each is a key, that the first
block begins in ADATA, the second begins in BDATA, and that the merged re
cords are to begin at MERGED.

213

L

M

R

E

RT

An abbreviated flowchart, which doesn't indicate index register
use for selecting the next record, follows:

8- IS B KEY
SMALLER THAN

A KEY?

YES

NO A RECORD
~ ~1ERGED

AREA

B RECORD
'------I~~ MERGED

AREA

The coding for the merge follows:

IS MERGED
AREA

COMPLETE?

YES

~
~

LOCATION COMMAND ADDRESS AND REMARKS

TM 0 C / H L T L , A DATA; C/HLTL, BDATA $\
TD X L C , 1 $ Set up Index

TO X R C , 2 $? Registers

TM D L / M E R G E 0 $) 1, 2, 3 - no

T D X L C _J 3 $ / counting

E R G E T MA 1 $
'\

Compare keys: J

TM D
J

, 2 $ ~ Jump if A key ~ B key

JA G 0 TR F
J

R B $./

RP T A A 4 $
1\ Transfer A record (4 words)

TM 0 1 , 1 $ to MERGED area

TO M 1 , 3 $ /

NO T E S T T MO C j H L T L, M ERGE 0 + 256;CjHLTL, MERGE $ ') MERGED

R

A IX J -' 3 $)
J MP EN D M R G E $ Jump after all records merged

F R B R PT A A 4 $

T MD 1 , 2 $ } Transfer B record (4 words)

T 0 M 1 , 3 $) to MERGED area

J MP EN D T E S T $ Jump to the ending test

Note that in order to merge the last record in each of the two
blocks, a word consisting of all ones would have to follow each block.
Normally, however, it is more common to test for the last record of every
block.

214

complete?

Matching

Matching is the operation used to determine if one record applies
to another by comparing their keys.

If it were necessary to change various records of a master file,
for example, it would be accomplished by preparing one change record for
each record to be changed. The change record would contain the key of the
record to be changed and some indication as to what is to be changed. This
type of matching has been illustrated throughout the manual. A realistic
example in which transactions were applied to inventory records was included
In thapter VII, page 211.

An abbreviated flowchart for the matching required in File Main
tenance is shown below. File Maintenance requires that a master file in-
corporating all changes be reprod~ced.

8 MASTER KEY
UO ~1ASTER KEY YES EFFECT CH ' St·1A LLER THAN "'- EQUAL

-y

CHANGE KEY?
P' " CHANGE

CHANGE KEY?
.d~

YES NO

l' 'III" " MASTER
ERROR IN

SELECT
RECORD NEXT

--.. OUTPUT CHANGE KEY CHANGE

, .. ~,

SELECT 8 NEXT
MASTER

EXTERNAL PROGRAM CONTROL

Several means are provided to allow the programmer to introduce
or examine small amounts of data from the computer. The Console Typewriter
permits typing or transmission of information on punched paper tape into
and out of the computer. The Toggle Register allows for the entrance of one
word in binary form. The Breakpoint switch allows the program to be halted
at approprIate times. These devices provide programs with small amounts of
data during the running of a program, permit manual options in the program,
enable the program to print control totals, and allow for printing directions
for the computer operator.

215

L

R

Console Typewriter

The Console Typewriter accepts punched paper tape or keystroke
input and punches paper tape and produces typed copy. The keystroke input
through the Console Typewriter enters the computer in binary-coded form.
Although there are less than 64 keys on the Console Typewriter, all 64
Philco characters may be represented by preceeding certain characters with
a shift to lower case. This shift to lower case has its own six-bit repre
sentation, and certain characters transmitted through the console type
writer will therefore be represented by 12 bits-- six for the lower case
shift and six more for the character of which it is the lower case. The
Console Typewriter will then remain in the lower case until a shift back
to upper case (with its own specific six-bit code) is made. These special
lower case characters are clearly indicated on the keyboard.

The two instructions for the Console Typewriter are:

TCM: Transfer from Console Typewriter to Memory

TDC: Transfer from 0 to Console Typewriter

The TCM instruction transfers one character from paper tape or
the keyboard to the rightmost six-bit positions of the D Register, without
altering the remaining positions of D. The word in the 0 Register is then
transferred to the specified memory location.

The IDC instruction transfers the character in the leftmost six
bit positions of the D Register to the Console Typewriter. The character
is then typed or punched in paper tape. To transmit more than one character
to or from the Console Typewriter, a loop must be programmed. This loop is
usually under Repeat control and shifts the contents of the D Register to
make the next character or character position ready for the next transfer.
The right circular shift, SCD is used regardless of which typewriter oper
ation is required, and in both cases it will be a shift of 42 positions.

The instructions necessary to type eight characters from the
keyboard to memory location WORD are the following:

LOCATION COMMAND ADDRESS AND REMARKS

R P T N N 8$

S C D 42 $ Shift seven characters

Te M Wl0 R D !$ One character -. D, (Dl---WORD

216

The following drawings illustrate the effects of these instructions
when used to enter the word PHILC066. Only the D Register is shown because
the contents of WORD are the same.

D Register

Initial Condition 1 2 3 4 5 6 7 8 I
After SCD 2 3 4 5 6 7 8 1 ~ 1st repeat

After TCM 2 3 4 5 6 7 8 P ~_From typewriter

After SCD 3 4 5 6 7 8 P
2 I} 2nd repeat

After TCM 3 4 5 6 7 8 P H id-From typewriter

After SCD 4 5 6 7 8 P H 3
3rd repeat

After TCM 4 5 6 7 8 P H I --From typewriter

After SCD 5 6 7 8 P H I 4

After TCM 5 6 7 8 P H I L From typewriter

and so on until the last repeat:

After scn PH I L C O~ 8

After TCM PHI L C 0 ~ ~ I+-From typewriter

217

L

T

R

fL)

The program that follows illustrates a loop to type instructions
to the operator from memory. It will cause the Console Typewriter to print
the contents of the three consecutive memory locations starting at location
OPRlR.

LOCATION COMMAND ADDRESS AND REMARKS

T M D L / 10 p R TI R $ '\ Set up Xl to address the words to

T D X L C , 1 $) to be typed

~ P E 10 u T T M D , 1 $ One word to be tvped ____ D

R P T N N 8 $ I"

T D C Type eight characters

S C D 4 2 $ II

T M 0 C / H L T , 10 P RlR + 3; C/HLT, TYPE@UT

A I X J 1 , 1 $

P R T R A / SE T6. TH E 6. fL) V ER F L ro W 6. SWITCH. $

The type out operation for the first word has the following ef
fects on the D Register:

D Register

Initially Is E T 6. THE 6.

+
After IDC US" is typed

, } 1st
lET

repeat
After seD 6. T H E 6. S

+
After TDC "E" is typed ,} IT 6.

2nd repeat
After seD T H E 6. S E ,
After TDC "T" is typed

and so on until eight repeats complete the first word.

218

$

Toggle Register

The Toggle Register is a 48-bit register composed of 48 switches
on the control conso Ie. Each swi tch maybe placed in the" on" or "off"
position to correspond to a binary one or zero, respectively. After a word
has been established in the Toggle Register the instruction

TID: Transfer from Toggle Register to 0

transfers the word to the D Register. Then the programmer can use the word
as a series of yes/no codes, as a mask, or as a control key or total. An
advantage of the Toggle Register over the Console Typewriter is that the
switches can be set while the computer is in operation. Thus, the time to
enter such information is merely the time to execute the TTD instruction.

The Toggle Register may be used to allow for an option in the
runn1ng of a program. For example, in a payroll operation it may be desired
to have the computer" inform" the payroll department when a record indicates
that an employee has worked more than 60 hours. This may be achieved in two
ways. Either the badge numbers of such employees may be typed on the Console
Typewriter, or they may be recorded on tape for subsequent printing. To
accommodate an option like this, coding for both pussibilities must be in
cluded in the program, and a program switch provided to select the option.
Then the program switch may be set according to the setting of a Toggle
Register switch.

For example, the program may initially cause the badge numbers to
be printed on the Console Typewriter. If the operator decides that too
much time is being taken because of many typeouts, he will stop the computer
and depress the rightmost toggle switch. Then the computer is started aga1n
and the program interprets the setting of the toggle switch to set the pro
gram switch which determines the disposition of "over 60-hour badge
nl).mbers."

The following 1S a flowchart for these operations.
initially set to lao

MORE THAN
60 HOURS?

NO

TOGGLE
SWITCH SET?

YES

SET
I b

PREPARE TO
WRITE BADGE

NUMBERS ON TAPE

Switch 1 1S

TYPE OUT

BADGE NUMBER

219

L

The coding to cause the examination of the Toggle .Register and
the setting of Ib follows:

LOCATION COMMAND ADDRESS AND REMARKS

SWI JM P S W 1 A $ Switch 1 set to la

SW

S W

1 A T T 0 Word 1n toggle switches ~D

T 0 Q (D) .Q

J Q E T yp E9} U T $ Type badge number if toggle swi tch is not set

T I J
1\

Set Ib if S W 1 B $)

T J M S W 1 $ II toggle switch 1S set

1 B
Prepare badge numbers for tape

)

This type of option 1S usually referred to as a breakpoint option.
Breakpoint is defined as the point in the program where a manual operation
is performed which may break the normal sequence.

Breakpoint Switch

Another method of exerc1s1ng a breakpoint option 1S to use the
Breakpoint Jump instruction:

JBT: Halt, Jump, or Proceed depending on the setting of the
Breakpoint switch.

Associated with this instruction is a three posltl0n locking switch
on the control panel. The switch positions are labeled HALT, JUMP, and
IGNORE. JBT is interpreted as an HLT instruction when the switch is on
HALT, as a JMP instruction when the switch is on JUMP, and as a NOP
instruction when the switch is on IGNORE. This gives the programmer many
options. For example, when a program is being tested, JBT instructions
jump to subroutines to print the contents of specific locations if the
switch is placed on JUMP. During the normal running of the program, the
switch is placed on IGNORE, and the JBT instruction acts as a NOP.

220

Exercises

SUMMARY

1. Code the program switch which is an arithmetic order to add
or subtract the contents of WORD from the contents of the A
Register. Set the switch to add or subtract by modifying
the command. (AMS: 01000001; SMS: 01010001).

2. The block of memory beginning at FILE-A contains 32 records --
4 words each -- in descending order according to the key in
the first word of the records. The block in memory beginning
at FILE-B contains a similar group of records. Furthermore,
the words in each record are in reverse order. Thus the last
four words of a block contain the record with the smallest
key in the block, and the last word of the block contains this
key. The problem is to merge the two blocks to produce an as
cending sequence starting at location MERGE. The words in
each record should be in the proper order.

Instruction Modification

Instruction modification is the alteration of an instruction
either before or during its execution. Most frequently, the part of the
instruction modified is the address part. The simplest address modifica
tion is performed by index registers during the execution of the instruc
tion. Other types of modification occur before the execution of the in
struction and require the use of such instructions as TJM or the Extract
instructions. The latter instructions are more straightforward to use.

Instruction address modification may be performed either by sub
stitution or by addition. When performing address modification by substi
tution,the Extract instructions or either of the pairs of instructions,
TXD-TJM and TIJ-TJM. can be used. Address modification by addition may be
accomplished by using the instruction INCA.

INCAh Increase Address in memory

The address of the" h" half of the word at the
specified location is increased by one.

Before attempting instruction modification, however, the program
mer must be thoroughly familiar with the binary instruction format and the
mode of operation of all the instructions. Several pertinent facts on this
subject follow:

a. The JA Register has an F bit associated with it and
the TJM instruction transfers it to memory.

h. The S bit of the instruction to be modified determines
the size of its modified address. This applies to
the instructions TJM and INCA.

221

c. The address part of the RPT instruction is always
12 bits; the first four bits are concerned with
the Repeat instructions, and the F bit is not
significant.

d. When symbolic addresses are used, TAC inserts the
appropriate F bits in such instructions as TIJ,
TJM, and Jump instructions.

e. During INCA, JAF is zero.

Sorting, Merging and Matching

Sorting places
or number in the record.
or more sorted groups of
keys from several files.

records in an ordered sequence according to a key
Mergirig produces one sequence of records from two

records. Matching associates records with identical

Two instructions which are useful In sorting are LWO and SWD.

~D

SWD

Larger Word

If the contents of the specified memory location
are larger than the contents of the A Register,
they are transferred to A and the address of the
word is placed in JA. The F bit of JA is made zero.

Smaller Word

If the contents of the specified memory location
are smaller than the contents of the A Register
they are transferred to A and the address of the
word is placed in JA. The F bit of JA is made zero.

External Program Control

A program may require information which is not a part of the ori
ginal program or the data. This information can be provided by the Console
Typewriter and the Toggle Register. Similarly, the program may communicate
with the operator via the Console Typewriter. The instructions for these
operations are TCM, TDC, and TTD.

TCM

222

Transfer from Console to Memory

One character, typed or from paper tape, is
transferred to the right six-bit positions of
the 0 Register. The contents of D are then
transferred to memory.

TOe Transfer from D to Console

The character in the left six-bit
positions of the D Register is typed
on the Console Typewriter or punched
in paper tape.

Manual program options are exercised at B~eakpoints 1n the
program. The transfer from Toggle Register and the Breakpoint Jump instruc
tion may be used to specify options.

TTD Transfer from Toggle Register to D

The word created by setting the
Toggle Register switches 1S transferred
to the D Register.

JBT Breakpoint Jump:

If the Breakpoint switch is set at Halt, the
computer stops. If set at Jump, an uncondi
tional jump 1S effected. If set at Ignore,
the command 1~ treated as a NOP.

223

NOTES

224

APPENDICES

Al

APPENDIX A

BINARY AND DECIMAL EQUIVALENTS

(I) Number '. '2,) , -4}
Maximum Dec.imal

Integral Value
of(71 Number

Decimal of
Maximum Decimal Fractional Value

A2

Digits Bits

1 1.5
3 2 .75
7 3 .875

15 1 I-_~_ ~~n_~
TI r---- 5 .968 75

63 6 .984375
1.37 2 __ 7 __ .992 187 5
255 8 -:99"6 09375

This chart provides the information nec
essary to determine:

511 9.998 046 875
"!""!g3 f- _ L _ _ 1.Q.... _:...999 J!.n __ 437.i.
2047 11 .999 511 71875

a.

4 095 12.999 755 859 375
8 191 13 .999 877 929 687 5

16383 4 14 .999938964843 75
32767 --- -15- ~99 969482421875 b.
65 535 16.999 984 741 210 937 5

131071 5 17 _ .99999237060546875
262 i43" ----fa ~99996Ts5302734 375

524287 19 .9999980926513671875
1 048 575 6 20 ,__ .999 999 046 325 683 593 75
2097 ill - -- -21 .999999523162841796875

c.

4 194 303 22.999 999 761 581 420 898 437 5
8 388 607 23 .999 999 880 790 71044921875

16777215 7 _~_ .999999940395355244609375
33 55443f-- - 25. :-9999999701976776123046875
67 108 863 26.999 999 985 098 838 806 152 343 75

134217727 8 27 .999999992549419403076171875
268435455 -- - 28--:999999996274 70970(5380859375
536870911 29 .999999 998 137 354850769 042 968 75

The number of bits needed to
represent a given decimal
number. Use columns one and
three or four and three.

The number of bits needed to
represent a given number of
decimal digits (all nines).
Use columns two and three.

The maximum deci'mal value
represented by a given
number of bits, use columns
one and th,ree or three and
four.

1 073 741 823, 9 30 .999 999 999 068 677 425 384 521 484 375
2147 483647"r---- 31-'-:999999999 5343387iz692260 742ls75
4 294 967 295 32.999 999 999 767 169 356 346 130 371 093 75
8 589 934 ~91 33.999 999 999 883 584 678 173 065 185 546 875

17 179 869 183 10 I- 34 ,_ .999 999 999 941 792 339 086 532 592 773 437 5
34 35973836if-- - ,_32_~..29 999 9rO 896169543266296 3s67187s
68719476735 36 .999999999985448034771 633 148 193 359 375

137438953471 11 37 .9999999999927240423858165740966796875
274877906943 r--- - - -3S-f-. 999999'999 996 3620z119290'8287 04833984375
549755 813 887 39 .999999999998 181 010 596454 143 524 169 921 875

1 099 511 627775 12 40 r--:999 999-2JU9.2....02..Q..5~298ELQ7.!.....762 084 960.1)'L2...
2199"--023255 551 t--- - 41 .999 999999999 545252 649 113 535 881 04248046875
4 398 046 511 103 42.999 999 999 999 772 626 324 556 767 940 521 240 234 375
8 796093022207 43 .999999999999 886313 162278383970260 620 117 187 5

17 592 186044415 13 44 ~999.222..1?:L921. 943..!2U8.!.....112..191 '985...!l0.....llQ.....Q~5..2l. Ii...
35'184372 0888ll - - - 45 .999 999 999 999 971 578 290 569 595 992 565 155 029 296 875
70 368 744 177 663 46.999 999 999 999 985 789 145 284 797 996 282 577 514 648 437 5

.!i.°.2n_i8~322.. 327 t-- li _ f-il. _ ~9L9.2.i 999 ..2.i9....2.9.L894 572-M2.....1.9§._n.!L1..1.! .l§U~324 118.2!2.:
281 474976 710 655 48

APPENDIX B

REGISTER CONTENTS ALTERED BY INSTRUCTIONS

The following chart indicates which registers have their contents
altered by particular instructions. The reader is advised to refer to the
manual if the reason for an al teration is not apparent. An" A" indicates
always altered; a number refers to a note following the chart.

Register
Instruction or Contents Altered

Instruction Class
A Q. D JA X O.F.

Addition A A* A
Subtraction A A* A
Multiplication A 1 A A
DiVIsion A A A A
Transfers and Clears 2 2 A*
Shifts 3 3 3 A
Jmnps A

JQ0, JQE, JQP, JQN A A
JAEQ, JAGQ, JAGQF A A
J~F, JN~ A A

Index Register
TCXS A
TIX, TDX, ADX, SDX A
TXD A A
AIXJ SIXJ A A
AIX~, SIX~ A A

Extract A
ETA, EI, EIS A A
EA, ES A A A
~RMS, Awes A

LWD, SWD 4 A 4
TJM A
TIJ A
INCA A A
TCM, TID A

NOTES

1. Q will contain the minor half of a double length product.
2. (A) and (Q) are altered by transfers to A and Q~ respectively.
3. (A), (Q), and (D) are altered by shifts involving A, Q, and D,

respectively.
4. (A) and (JA) are altered when LWO or SWD finds a larger or smaller

word, respectively.

Instructions under Repeat control can modify the contents of index reg
isters. (MA).are altered whenever the memory is accessed. MA may not be
accessed by the program but may be used in conjunction with the Memory Pre
set switches on the control panel. PR'and PA cannot be accessed by the
program. However, PA is altered whenever a jump is effected.

* Except if the operand is in D originally.

A3

APPENDIX C

PHILCO 2000 INSTRUCTIONS

The following chart lists the instruction codes by illustrating
the three necessary parts of each instruction class. The first part of
the instruction code is the operation, such as: A for add, S for subtract,
etc., and may be one to five letters. The second part of the instruction
code representg an affected register, or a condition, or a particular half
word, or another operation. The second part contains one or two letters.
The final part contains options.

A particular command code is formed by selecting one of the
entries in the Operation column, followed by one of the entries (if there
is one) from the next column, followed by any or none of the options ex
cept where otherwise noted.

An abbreviated description of each operation is included in the
chart. Although not specifically stated in each description, the D Reg
ister plays a part in all instructions which involve memory access, arith
metic operations, and transfers of data between arithmetic registers.

A4'

Instruction
Class Ins truction

Mnemonic Code

Register
or

Operation Condi tion Cption

APPENDIX C (cont'd)

PHILCO 2000 INSTRUCTIONS

Description of Cperation Notes

Add A 1. (A) + Operand~ A Options: A = absolute operand
M 2. When resul t IS stored: (A) ~ M (and D). S = resul t stored

Addition Q A,S The operand is from M or Q and may be in F = floating point
Clear Add CA absolute value. Before step 1, A is cleared Overflow: The overflow indicator is set

to zero for Clear Add. when the result ~ 1 or < -1. 1--.----------- --- ---- -------------------- ----------------------------- ------ - - -- -- - ----- ------ ----- -----------
Add D AD (A) + (D)) A

Subtract S 1. (A) - Operand~ A Cptions: A = absolute operand
M A, S 2. When resul t stored: (A) --7' M (and D). S = result stored
Q The operand is from M or Q and may be in Overflow: The overflow indicator is set

Subtraction Clear Subtract CS absolute value. Before step 1, A is cleared when the result ~ 1 or < -1.
to zero for Clear Subtract.

~-- -- ----- - - ---- - - ---- ---- -- -- ------------ - --- - -- ------------- ---- ------- ---- ------------------
Subtract D SD (A) - (D) ~ A

A 1. Operand x (Q)~A, Q or A rounded. * Cptions: A = absolute operand
A 2. When resul t stored: (A) ~ M (and D). R = rounded product

Multiply M R The operand is from M or A and may be in S = result stored
MUltiplication M absolute value. Overflow: when the result = 1

Division

Transfer

Shift

Jump

S * (Q) are unaltered when rounded. -- ----- --- - - - - --- ---- ------------- ------------ --- - ----- --- ------- -- ----- -- - --- ----- --- --------------
Multiply and Add MAD [(M) x (0)] + (A) ~ A The product is rounded.

tfultiply and Subtract MSU

Divide A register DA
S

Divide A and Q registers DAQ

[(M) x (0)] - (A) ~A

1. [(A) or (A,Q)] (M)--)Q, remainder~A.
2. When result stored: (Q)~M (and D).

(Q) are unaltered.

Option: S = result stored.
Potential overflow is detected if IMI<IAI
or if IMI = IAI and (A) are positive.

Clear C M,A,Q,D O---=)M 01: A or Q or D ---
Transfer T M,A,Q,D M,A,O,D* Transfer [(M) or (A) or (Q) or (D)] to [M or A *These are not optional. One letter must be

or Q or D]. selected. TMM, TAA, TQQ and TDD are not
permitted.

Shift Left SL

Shift Right SR

A
AQ
Q
o

N

Shift the contents of the registerCs) the number of
places specified by the address. A numerical shift
will preserve the sign of a word.

Option: N = numerical shift. No option
specifies ordinary shift.
(D) may only be shifted right.

--'---------~--

Shift Circular (D) SCD Shift (D) in circular mode right

Jump
Breakpoint Jump
Jump if Overflow
Jump if No OverfLow
Jump if (D) are Positive
Jump if (A) are + , -, 0

*Jump if (Q) are + , -, odd, even
Jump if (A) Equal (D) or (Q)

tJump if (A) are Greater than or equal to
(D) or (Q) or (Q)-floating point

J Ui'I'f C Au-}·o-err:.) ~ L1 f L~!J(I i!).)/)

JMP
JBT
JOF
JNO
JDP
jA
JQ
JAE
JAG

T

P,N,Z
P,N,O,E
D,Q
D,Q.QF

Unconditional Jump
Stop if breakpoint switch set, jump if not
Jump if overflow indicator is set
Jump if overflow indicator is not set
Jump if (D) are positive
Jump if (A) are pos~t~ve or negat~ve, or zero
Jump if (0) are pos1t1ve or negat1ve, or odd or even
Jump if (A) equal (D) or (Q)
Jump if (A) are greater than or equal to (D), or
(Q), or (0) if (A) and (0) are floating point numbers.

I /
L/lj(\J,U{); "),~:,: L ,/::; '/) -_._- J II).10 r (:. '/ I (,_~.

1. Address of next instruction ~ JA.
2.- Effective address --) PA.

*Shift (Q) in circular mode left (for P
or N) or right (for 0 or E) one position
re~rdless of conditions. In these
cases, positive is defined as sign
bit = 0; negative as sign bit = 1.

+See notes for NOP and TJM.
tJAGD treats words as alphanumeric.
For A and Q comparisons~ (0)---) D.
Then (A) are compared to (D). In
JAGQF the numbers should be
normalized.

Code
Example

AM
AMA
CAQS
CAQAS

SM
SMS
SQA
CSQAS

MAR
MMRS

DA
DAS
DAQ
DAQS

CM

TMA

SLA
SRQN

JAP
JQE
JAED
JAGQ

AS

A6

Instruction
Class

Index
Register

Extract

Special

Instruction

Transfer Counter to Index
Transfer Instruction address to Index

Transfer from D to Index
Transfer from Index to D
Add (D) to Index
Subtract (0) from Index

Add Instruction address to Index and
Jump
Subtract Instruction address from Index
and Jump

APPENDIX C (~ont'd)

PHILCO 2000 INSTRUCTIONS

Mnemonic Code

Operation
or

Operation Hal f Word Option

TCX
TIX

S,Z
---- - --------- ------------

IDX
TXO L,R C

AOX
SOX L,R

AIXJ

SIXJ

~scription of Operation

1 ~ Xc if S, 0 --) Xc if Z.
lv~ Xi l~ Xc if S, 0 -7 Xc if Z.

D address ~ X •
(X)~D address via JA.

(X) + D address ~ X.
(X) - D address -) X.

(X) + Iv ~ X } Jump to 0 right address if
(X) I 0 left address

(X) - I ~ X
v

Add Instruction address to Index and set
Overflow AIXO (X) + Iv ~ X)
Subtract Instruction address from Index L,R Set overflow if (X) = D address
and set Overflow SIXO (X) - Iv ~ X

Notes

Option: C = Counter indicator is
transferred.

Land R specify left or right half of
D Register.

---------------------------------- -------------- ---- ----------- ----- ----- ---- ------- -- ------------------------------Repeat. The next instruction or instruction pair is repeated the number *N,A, and S are not optional and specify no

Repeat

Extract from memory and
Transfer to D'
Transfer to A
Add
Subtract

,....----------- - - --- ----------
Insert
Insert and Store

Larger Word
&naIler Word
No Operation
Halt
Transfer (JA) to Memory
Transfer Instruction address to JA
Increase Address in memory
Inhibit Clearing of Overflow indicator
Inhibition on Clearing of Overflow
indicator made Zero
Transfer from Console Typewriter to Memory
Transfer from D to Console Typewriter
Transfer from Toggle register to 0
Transfer control to Input-Output
Skip if no Fault
Skip Check

(0) or (M) bit by bit Stored
Add Without Carry and Store

RPT N,A,S N,A,S*

ETD
ETA
EA
ES

of times specified by the address part of the RPT. If RPT is
left half instruction, next instruction is repeated; if RPT is
right half instruction, next pair of instructions is repeated.

Extract: bit by bit logical multiply (M) . (Q)~D; or mask
(M)~ D according to (0).
1. e.g. M' Q---) D

100
000
111
010

2. (D)~A or (A) ± (D) ~ A.

modification, add to, and subtract from the
index register(s) specified by the repeated
instruction(s).

Floating point mode is possible with EA
and ES but is only in effect after the
extraction.

--------------- ------------------------------- ---------------- ----- - --- ------------------
EI 1. M Q A A after 2. Vfuen result stored After EI: (D) = (M) . (0).
EIS lOx x (A)~ D, (D)---+ M.

LWD
SWD

-"tNOP---- -------- --------

_.!!!.~~____ L
:j: TJM or
:j:TIJ R

:j:INCA '------ -- -------- ----- ---
ICOS

ICOZ
TCM
'IDC
TID
no

1!lSKF 1-0
1!lSKC 1-0

DORMS
AWCS

o 0
1 1 x 1
o 1 x 0

(M) --7 A and M address ~ JA, O~JAF'
(M) ~ A and M address ---4 JA, 0 ~JAF •

*If (M) > (A),
*If (M) < (A),

No operation
Stop computation
(JA) -4 M address, JAF -) MF vi aD.
Effective adqress JA; O~JAF if L, l~ JAF if R.
1 + M address ~ M address via D and JA; 0 ~ JAF•
Inhibits clearing of O.F. indicator
Removes the inhibition on clearing the overflow indicator
set by an Icas
One character ~ six right bit positions of M and D.
Transfer left (six bits) character of D~ typewriter
Word set up with toggle switches ~ O.
(D)~ input-output control; execute this I-O instruction.
If no fault exists, the next instruction is skipped.
Skip the next instruction if IV ~ the number in the specified
input counter.
Binary ones from (D) or (M) ~ D, M (1+0=0+1=1+1=liO+0=0).
(M) + (A) without carries ---+ D, M (1+1=0+0=0;0+1=1+0=1).

*Actually, (M)---+ D and (D) and (A) are
compared in the alphanumeric sense.

tL or R specifies IF as 0 or 1.

tL or R specifies the particular half
word of M.

#The Skip instructions have a number of
options described elsewhere in con
nection with the Input-Output instructions.

APPENDIX D

QUATERNARY REPRESENTATION OF PHILCO 2000 COMMANDS

The quaternary representation of PHILCO 2000 commands uses four
digits in place of the 8 binary digits. The instruction CAQA, Clear Add
Q in Absolute value, for example, is represented as follows:

F C

17 16 5 4 3 2 1 0 I
Binary o 1 0 0 1 1 1 0

rTTT
Quaternary 1 0 3 2

The commands are listed in quaternary order to facilitate locat
ing a binary command. Any quaternary configuration not shown is a command
fault. Commands with an asterisk (*) are listed twice and differ only by
their F bits, not in effect.

A7

APPENDIX D (cont'd)

Quaternary Mnemonic Quaternary Mnemonic

SPECIAL
AND OllIER JUMPS-LEFT

0000 HLTL* 0200 JMPL
0001 JBTL 0201 JAZL
0002 I COS 0202 JNOL
0003 NOPL* 0203 JOFL
0010 TIO 0210 JAPL
0011 TCM 0211 JANL
0012 SKC 0212 JAEQL
0013 TCXZ 0213 JAEDL
0020 TJML 0220 JQPL
0021 INCAL 0221 JQNL
0022 TIJL 0222 JQEL
0023 RPT* 0223 JQOL
0030 ETD 0230 JDPL
0031 DORMS 0231 JAGQFL
0032 EI 0232 JAGQL
0033 LWD 0233 JAGDL

TRANSFERS INDEX-LEFT

0100 CM 0300 TDXL
0101 TMA 0301 TnXLC
0102 TMQ 0302 TXDL
0103 TMD 0303 TXDLC
0110 TAM 0310 ADXL
0111 CA 0311 SDXL
0112 TAQ 0321 TIXZ
0113 TAD 0330 AIXJ
0120 rOM "0331 SIXJ
0121 TQA 0332 AIXOL
0122 CQ 0333 SIXOL
0123 TQD
0130 TDM
0131 TDA
0132 TDQ
0133 CD

A8

APPENDIX D (cont'd)

Quaternary Mnemonic Quaternary Mnemonic

ADDITION MULTIPLICATION

1000 AM 1200 MM
1001 AMS 1201 MMS
1002 CAM 1202 MMR
1003 CAMS 1203 MMRS
1010 AMA 1210 MMA
1011 AMAS 1211 MMAS
1012 CAMA 1212 MMAR
1013 CAMAS 1213 MMARS
1020 AQ 1220 MA
1021 AQS 1221 MAS
1022 CAQ 1222 MAR
1023 CAQS 1223 MARS
1030 AQA 1230 MAA
1031 AQAS 1231 MAAS
1032 CAQA 1232 MAAR
1033 CAQAS 1233 MAARS

DIVISION
AND SPECIAL

SUBTRACTION ARITHMETIC

1100 SM 1300 DAQ
1101 SMS 1301 DAQS
1102 CSM 1302 DA
1103 CSMS 1303 DAS
1110 SMA 1320 MAD
1111 SMAS 1321 MSU
1112 CSMA 1322 EA
1113 CSMAS 1323 ES
1120 SQ 1330 AD
1121 SQS 1331 SD
1122 CSQ
1123 CSQS
1130 SQA
1131 SQAS
1132 CSQA
1133 CSQAS

A9

APPENDIX D (cont'd)

Quaternary Mnemonic Quaternary Mnemonic

SPECIAL
AND OTHER JUMPS-RIGHT

2000 HLTR* 2200 JMPR
2001 JBTR 2201 JAZR
2002 ICOZ 2202 JNOR
2003 NOPR* 220S JOFR
2010 TID 2210 JAPR
2011 TDC 2211 JANR
2012 SKF 2212 JAEQR
2013 TCXS 2213 JAEDR
2020 TJMR 2220 JQPR
2021 INCAR 2221 JQNR
2022 TIJR 2222 JQER
2023 RPT* 2223 JQOR
2030 ETA 2230 JDPR
2031 AWCS 2231 JAGQFR
2032 EIS 2232 JAGQR
2033 SWD 2233 JAGDR

SHIFTS INDEX-RIGHT

2100 SLAQ 2300 TDXR
2101 SRAQ 2301 TDXRC
2102 SLAQN 2302 TXDR
2103 SRAQN 2303 TXDRC
2110 SLA 2310 ADXR
2111 SRA 2311 SDXR
2112 SLAN 2321 TIXS
2113 SRAN 2330 AIXJ
2120 SLQ 2331 SIXJ
2121 SRQ 2332 AIXOR
2122 SLQN 2333 SIXOR
2123 SRQN
2130 SCD(\ FLOATING POINT
2131 SRD'! ARITHMETIC
2132 SCD~'
2133 SRDN 3000

3331

AIO

APPENDIX E

FLOATING POINT ARITHMETIC

FLOATING POINT DECIMAL ARITHMETIC

Almost everyone is familiar with the representation of very
large or very small numbers by the convenient device of separating such
numbers into three parts: the mantissa, the base, and the characteristic
or exponent. For example, the very small decimal number: 0.00000000625
can be compactly represented as:

6.25 -..,.-
MANTISSA

(Significant Digits)

Equally valid representations are

x 10-9

r t..EXPONENT

BASE OF NUMBER
SYSTEM

625 x 10-11

62.5 x 10-10

or

.625 x 10-8

Note that each of these numbers was obtained from the first representation
by shifting the decimal point and adding or subtracting from the exponent
the number equal to the number of shifts. The name floating point arises
from the fact that the decimal point cc floats U in reference to the mantissa
-- its position being determined by the exponent. Note also that both the
mantissa and the exponent of a floating point number can be either positive
or negative, and that the exponent must be an integral power of ten.

Normalized Floating Point Values

Floating point values are often expressed in normalized form.
A normalized decimal floating point number is one whose most significant
digit immediately follows the decimal point. Thus, of the above four
floating point numbers only the last number, .625 x 10-8, is in normalized
form. Normalization allows for the maximum number of significant digits
in a given number of digit positions.

All

MUltiplication and Division

In multiplication the mantissas are multiplied and the exponents
added.

62.5 x 10-10 }
x 2.5 x 10 5

Adding exponents

.J 3125
1250

156.25 x 10- 5

Normalized, the answer becomes

or

.15625 x 10-2 .

In division the mantissas are divided and the exponents subtracted

62.5 x 10-10

2.5 x 10 5
=

62.5

2.5

.25 x 10-13 normalized.

x 10-10 - 5 = 25 x 10-15

Addition and Subtraction

In the preceding two examples the multiplication and division
proceeded without regard to the relative values of the exponents -- they
were simply added or subtracted, respectively. However, addition and sub
traction cannot be performed unless the exponents are the same. For ex-
ample, the following addition: .

1.25 x 10-7

+ 0.375 x 10-5

cannot be performed until the exponents are equalized. This can he accom
plished by moving the decimal point of the addend two places right and
subtracting two from its exponent, after which the addition proceeds

1.25 x 10.7

+ 37.5 x 10.7

38.75 x 10.7

or

.3875 x 10.5 normalized.

An equally valid procedure would have been to adjust the value of the
augend and then perform the addition.

The similarity between the treatment of exponents in floating
point arithmetic (performed manually) and that of scale factors in fixed

A12

point arithmetic 1S shown by the following chart:

Multiplication

Division

Addition
and

Subtraction

EXPONENTS

Added

Subtracted

Equalized

FLOATING POINT BINARY ARITHMETIC

SCALE FACTORS

Added

Subtracted

Equalized

Just as numbers can be represented in decimal floating point form
so can they be represented in binary floating point form. The essential
difference 1S that the exponent is an integral power of the base two rather
than ten. Of course, both mantissa and exponent are expressed in binary.

For example, the number, 127, can be represented in decimal form
as .127 x 103•

It could also be expressed 1n binary form as

127 127
x 27 or x 27

27 128

which 1S also normalized.

The treatment of the exponents in floating point binary arithmetic
is .. the same as that of floating point decimal arithmetic. In multiplica
tion, exponents are added; in division, they are subtracted. Before addi
tion or subtraction can proceed exponents must be made equal. Equalizing
exponents is accomplished by multiplying or dividing the mantissa of one
operand by a power of two and subtracting or adding to its exponent,
respectively. The arithmetic operations themselves are performed in two's
complement arithmetic as described in Chapter V.

Addition

106.0 x 2°
+ 6.25 x 21

-127.0 x 2°
+ 6.25 x 21

•
+

•
• +

106.0 x 2°
12.5 x 2°

118.5 x 2°

-127.0 x 2°
12.5 x 2°

-114.5 x 2°

A13

Subtraction

Multiplication

Division

63.25
- 5.75

64.00

-(-5.75

=

x 2-1
II

x 2 2) II

63.25 x
-11.50 x

51.75 x

8.00 x

+ 5.75 x

13.75 x

12.5 x 23

x 5.25 x 22
Adding exponents

625
250

625
65.625 X 25 E----..-......I

62.5 x 23

2.5 x 22

62.5
= -- x

2.5

Subtracting
!exponents

23-2 = 25 x 21

23

23

23

22

22

22

FLOATING POINT ARITHMETIC IN THE PHILCO 2000

For the PHILCO 2000, floating point arithmetic 1S specified by
writing an F in front of the mnemonic command of any of the fixed point
arithmetic instructions. The advantages of using floating point arithmetic
are that the programmer is relieved of the necessity of scaling and that a
greater range of values can be expressed in computer words.

During the execution of floating point arithmetic operations, all
arithmetic registers are treated as if they were divided into two parts:
a 36~bit mantissa and a 12-bit exponent, as shown below.

Sign Bit
~

tBinary Point

....-Mantissa - 36. bits--+. ~Exponent - 12 bits----)~I

A14

The mantissa is considered to be fractional, but the exponent
represents an integral power of two. Both can be either positive or nega
tive as indicated by their sign bits.

The number

127 ::
127
--x

27

127
-- x 27 ,
128

has the following PHlLCO 2000 floating point form:

I 0 11 11 11 11 11 11 11 I 0 I ~[G I 0 I 0 I 0 I 0 I }~ I 0 I 0 11 11 11 I
o 1 2 3 4 5 678 35 36 37 38 39 43 44 45 46 47

Mantissas of negative numbers and negative exponents are repre
sented 1n two's complement form. Thus, the number

127

128
x

would be represented 1n floating point form as the following PHlLCO 2000
word:

o 1 2 3· 4 5 678 35 36 37 38 39 43 44 45 46 47

Arithmetic operations performed on the mantissas of floating
point numbers are essentially the same as those of fixed point arithmetic.
The differences between the two types of arithmetic lay in the treatment
of the exponents and the handling of overflow and normalization which will
be covered shortly.

Addition and Subtraction

In addition and subtraction, the mantissa of the value with
smaller exponent is shifted to the right the number of place~ equal to the
difference between the exponents. If the value with the smaller exponent 1S
the addend or subtrahend, its mantissa is shifted in the D register after
the original value has been rewritten in memory, if necessary. If the
absolute value of the difference is greater than 35, the operand with the
smaller exponent is made floating point zero, and no time is taken up for
shifting. If there is no difference between exponents, the mantissa of
the addend or subtrahend is shifted in the D Register one place to the
right before the arithmetic starts. However, since the arithmetic pro
ceeds with the unshifted value of the addend or subtrahend from the slave
register of D, the shift in D does not affect the result.

A15

If the value in the D Register does not have to be shifted or
changed and the Store option is not used, the value in D is rewritten into
memory while the mantissa of the value in the A Register is being shifted
and the arithmetic is taking place. This time saving function can take
place only if the exponent of the augend (or minuend) is smaller than that
of the addend (or subtrahend). In any case, the addition or subtraction
proceeds with the mantissas being added or subtracted and the exponent of
the result set equal to the larger exponent. .

For example, the following numbers are to be added:

The difference between the exponents is 1. Therefore, multiplying and
dividing the number with the smaller exponent by 21 (equivalent to setting
the smaller exponent equal to the larger and shifting the mantissa to the
right) yields

=

and the addition is performed:

1/2 x 23 + 1/4 x 23 = 3/4 x 23 = 6.

For convenience, in this example and those to follow, 'eleven bit
registers will be shown rather than 48-bit registers as in the PHILCO 2000.
Also, to emphasize the split function of the registers in floating point
arithmetic, they will be shown in two parts.

becomes:
Expressed in floating point binary form, the preceding example

Mantissa Exponent

Difference between
exponents equals 1.

Before the addition is performed, the mantissa of the addend is numerically
shifted one place right (i.e., divided by 2), and its exponent is assumed to

A16

be equal to three (although the exponent of the value In D IS not changed):

After
shifting
mantissa

Adding
mantissas

1011101010101 10101011111

1010111010101 10101011111

Another example IS

1/2 x 23 + 1/2 x 2-1 •

After equalizing
exponents

I: 3/4 x 23 I: 6.

The difference between the exponents is 4. Therefore, multiplying and
dividing by 24, the addend becomes

C.~4)
and the addition is performed:

17
• -x 23 -= 4.25.

In binary, the example becomes

+

32

Difference between

exponents equals 4.

Since division by 24 is equivalent to a right shift of four places, the
mantissa of the addend is numerically shifted right four places and its
exponent is assumed to be equal to three.

After
shifting
mantissa

Adding
mantissas

1011101010101 10101011111

1010101010111 10101011111

1011101010111 10101011111.

After equalizi~g
exponent

17 x 23 •
32

A17

Except for the fact that the complement of the mantissa of the
subtrahend is added to the mantissa of the minuend, floating point sub
traction is performed in the same way.

Multiplication and Division

When multiplying two floating point numbers, the computer adds
the exponents and multiplies the mantissas. For example, the following
numbers are to be multiplied:

Expressed in floating point binary the example becomes

101 1 III 1 I 0 I 0 I 101 0 I 0 I 1 III

x 101111101010110101011101

Mul tipl ying
mantissas I 0 II I 0 11 I 0 11 I I 0 I 0 11 I 0 11 I Adding exponents.

Rounding in floating point multiplication is accomplished by
adding one to the most significant bit of the mantissa of the Q Register,
which contains the minor half of a double length floating point product.
The original contents of the Q Register are then restored. In unrounded
multiplication, the exponents of both halves of the product are the same.
(Note that, except for the split registers, the functions of the arithmetic
registers are the same as those in fixed point arithmetic. Refer to Chap
ter III, page 52, Functions of Arithmetic Registers in Arithmetic Operations.)

In floating point division, the arithmetic section, subtracts
the exponent of the divisor from the exponent of the dividend and divides
the mantissa of the dividend by the mantissa of the divisor. In double
length division, the exponent of the dividend used is only that in the A
Register; the exponent in the Q Register is ignored.

Example:

In floating point form the operands are:

= 10 111 1 III 1 1 0 1 I 0 I 0 I 1 I 0 I 0 I

AlB

Multiplication and division begin immediately after the read
from memory is completed, except in the case of FMAD and FMSU. The re
write time is thereby overlapped by the arithmetic time. For FMAD and
FMSU, the multiplicand 1S restored before arithmetic begins.

/),

Floatirig"P6int Numbe~ Hange

,I /
. I' /,"

I
,.' I

The largest representable mantissa is a zero in the sign position
followed by 35 ones; the largest exponent is a zero followed by 11 ones.

Mantissa Exponent

1 0 II 11 1111 \\ III 11 11111 I 0 11 11 11 11 \\ 1 11 11 I
01234 31 32 33 34 35 36 37 38 39 40 45 46 47

This number is equivalent to .9999999 ... x 2 2047 , which is very close to

but not equal to +1 x 2 2047 . This value is equal to slightly more than

10 616 .

Similarly, the smallest computer number 1S equal to m1nus one

times the largest exponent, 1.e., -1 x 2 2047 .

Man tissa Exponent

11 I 0 I 0 I 0 I 0 \~ 0 I 0 I 0 I 0 I 0 I
01234 31 32 33 34 35 36 37 38 39 40 45 46 47

However, the normalized non-zero floating point value which is smallest In
magnitude is

Mantissa Exponent

I 0 II I 0 I 0 I 0 \\ 0 I 0 I 0 I 0 I 0 I
o 1 2 3 4 31 32 33 34 35 36 37 38 39 40 45· 46 47

This value 1S equivalent to .5 x 2- 2048 (or 1 x 2- 2049) which is slightly less
than 10 - 61 7 .

The range of non-zero magnitudes in floating point representation,

therefore, is from slightly more than 10 616 to slightly less than 10-617 .

Mantissa CWerflow

Since mantissas of floating point numbers represent binary frac
tions in the arithmetic section, mantissa overflow results when the com
puter attempts to produce a mantissa equal to plus one or less than minus
one. l~like fixed point arithmetic, the overflow indicator is not set

A19

although it is cleared pr10r to each floating point operation. Instead,
mantissa overflow is automatically corrected, except in the case of divi
sion. In division, potential overflow is detected and prevented before the
division is performed.

When mantissa overflow occurs during an addition, subtraction, or
multiplication, the mantissa of the result is shifted right one place and
the exponent is increased by one.

For example, the following numbers are to be added:

5/8 x 23 + 3/4 x 23 • 11/8 x 23.

Expressed in binary, these numbers are

Mantissa
overflow

+

10 I 11 0 1110 101 [!I 0 10 1111 I
101111101010110101011111
f\o ~1

As shown above, mantissa overflow resulted. The computer then
shifts the mantissa one place, right and adds one to the exponent, as
follows:

Uncorrected
result

Corrected
result

+ 1

E.. x 24 = 11.
16

In floating point division, the mantissa is tested for overflow
before division is performed. If overflow is detected, the dividend is
shifted right one place; the exponent is increased by one, and another
attempt is made to perform the division. This process is repeated until
either the dividend has become smaller in absolute value than the divisor,
or the dividend has shifted 36, places. Any time the dividend has been
shifted 36 places, division by zero was attempted. The Exponent Fault
neon is lighted; a jump to memory location 00000 is effected, and the ad
dress of the next instruction word is placed in JA. The F bit of JA is
set to 0 if the fault occurred in a left half instruction or to 1 if the
fault occurred in a right half instruction.

A20

The following 1S an example of potential overflow 1n division:

or 1n floating point binary

1 01 1 1 0 1 1 1 0 1 01 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 111 1

1 0 I 1 1 0 1 0 1 1 10 1 1 0 1 0 1 1 1 01 0 1

=
Potential

overflow.

Since the dividend, 81/128, is greater than 9/16, the test for
divisibility indicates potential overflow. Therefore, the mantissa of the
dividend is numerically shifted right one place and its exponent is in
creased by one.

Corrected
dividend

81
= -- x 28

256

9
-x 24
16

81 9
The division can now be performed since 1S less than
is as follows: 256 16

The result

9
-x
16

Normalization

A floating point number is in normalized form if the most signifi
cant digit of the mantissa immediately follows the binary point. This is
equivalent to requiring that the sign bit of the mantissa and the adjacent
bit be different. Thus, of the following four numbers only two are normal
ized, as indicated:

3
23 = 1011111010101 1 0 1 0 1 o 1 1 1 1 1 -x

4
Normalized

1 1 I 0 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1 1 1
5

23 = - - x
8

Normalized

1010111111101
7

23
J: 10101011111 -x

16
Not normalized

11]1101111101 10101011111
5

23 = - -x
16

Not normalized

A21

Although original operands need not be in normalized form, the
computer will always attempt to normalize the result of a floating point
arithmetic operation. The reason for normalizing is to allow for the max
imum number of significant digits in arithmetic results. The method by
which the computer normalizes numbers is as follows:

The first two bits of the result are examined. If they are alike,
the mantissa of the result is numerically shifted one place left and the
exponent is reduced by one. This procedure is repeated until either a
normalized value results or 36 shifts have been made. If the result is
still unnormalized at the end of 36. shifts, the result is made floating
point zero, which 1S represented as

Complete normalization takes place 1n the following two examples:

Example 1

In floating point form the operands are

1 01 1 I 0 I 0 I 0 I 0 I I 0 I 0 1 01 1 I 1 I
Unequal exponents.

After shifting and equalizing, the operands are

1011101010101 10101011111

+ I 1 I 1 I 1 101 0 I 0 I I 0 I 0 I 0 I 1 I 1 I

I 0 I 0 11 I 0 I 0 I 0 I I 0 I 0 I 0 11 11 I ~ ~ x 2
3

•
~

Since the first two bits of the mantissa are the same, the result is not
in normalized form. Normalization is accomplished by numerically shifting
the mantissa left one place and decreasing the exponent by one.

A22

Examp'le 2

1
0 10 1 1 I 0 I 0 1 0 1 1

0 1 0 I 0 I 1 I 1 I
Shifting left

one place

In floating point form the operands are

Subtracting 1

1
= - x 22 = 2

2

Adding
exponents

I 0 I 0 I 0 1 0 1 1 I 0 I 0 I 0 III 0 I 0 I I 0 I 1 1 0 1 0 I 0 I

17
=--x

256

The result is normalized by shifting the mantissa left three t1rnes and by
subtracting 1 from the exponent three times. The normalized result is

17
-x
32

Exponent Overflow and Underflow

In the arithmetic section, exponent overflow occurs when an
attempt is made to produce a floating point number which would have an
exponent greater than +2047. This is the largest possible exponent and 1S
represented as follows:

Sign bit~

j'--o -r-j1"""--1 -r1 1-1 1"""--1 -r-11-""'-j ---'-1 1-1 """--11 ""-11"""""1 ---'-1 1----'1 I = +2047.

Exponent

By definition, exponent overflow results whenever the carry 1n to the ex
ponent sign bit is one and the carry out 1S zero.

A23

Exponent overflow may occur during multiplication or division or
during a correction cycle for mantissa overflow. If it occurs during the
operation, the overflow may disappear after the result has been normalized.
If exponent overflow still exists after normalizing or if it had occurred
during a mantissa correction cycle, the Exponent Fault neon is lighted; a
jump to memory location 00000 is effected, and the address of the next in
struction word is placed in JA. The F bit of JA is set to 0 if the fault
occurred in a left half instruction or to 1 if the fault occurred in a
right half instruction.

Exponent underflow,/occurs when an attempt is made to produce an
exponent smaller than -2048/and is defined as a carry into the sign bit of
zero and a carry out of one. In the computer, -2048 is the smallest pos
sible exponent and is represented as follows:

= -2048.

Exponent

Exponent underflow may occur during multiplication or division
or duri~~·any normalization cycle. If it occurs prior to normalization,
the resul t is··made zero. If it occurs during a normalization cycle, the
underflow may c~~re~t a previous exponent overflow. If there had been no
previous exponent ov~rf~ow and underflow occurs dtiring a normalization
cycle, the cycle is disc~ntinued and processing continues.

example:

I /

.I), ,

(1('/ .

/:'

A24

Exponent overflow 1S automatically corrected 1n the following

(1/2 x 22047) x (3/8 x 21) -= 3/16 x 22048,
Exponent

The result is normalized as follows:

3/16 x 22048 -= 3/8 x 22047 • 3/4 x 22046. ,

, 'I :'

/

: I .,i,
1'(' I:, , I

Exponent

overflow

corrected

~) I l,' : / I '

I /

'\

(
' i _ .

" ",.~ I \ I! \ !,; ~

/
/ 1,1 /

/, ' i

. //
''!'

.' I

overflow.

/., " .'

/ / I "

/

, , J /'/" ,0':,,'

The multiplication 1n binary of the preceding example would pro
ceed as follows:

Adding
exponents

3
-x
16

Since the result 1S unnormalized, the mantissa is shifted left one place
and the exponent 1S decreased by one as follows:

Shifting left
one place + I 1 I 1 I 1 I 1 I~~ I 1 I 1 I 1 I

Subtracting
one

I 0 I 0 11 11 10 10 13m I 0 11 11 11 111111 III =: x 22047,

Man~sa unnormalized LExponent overflow corrected

A second shift left is performed; one is subtracted from the exponent, and
the normalized answer is obtained as follows:

3
=-x

4

Exponent overflow can not be automatically corrected in the
following example:

(1/2 x 22047) x (3/8 x 23) = 3/16 x 22050 ~

The result 1S normalized as follows:

Exponent
overflow.

3/16 x 22050 = 3/8 x 22049 = 3/4 x 22048 ~ Exponent

overflow
rema1n1ng.

A25

The multiplication 1n binary of the preceding example would proceed as
follows:

I a II I a I a I a I a 1JlliE] I a Illllll}>llll 11 I
xla 10 Illllalal}rEEJ lalalalal}?lalllll

~o ,r-l

~Exponent overflow

The result 1S normalized as follows:

I a I a I a 11 11 I a 15lEE] 11 I a I a I a I II a 11 I a I
Shi fting left

one place

Shiftin9 left
aga1n

+ 11 11 11 11 I ?211 11 11 I

3 vi. - x 22050
16

Subtracting

one

3 rI- x 22049
8

3
,J -x 22048.

4

In the preceding example, the normalization process did not
eliminate the prior exponent overflow. Consequently, the Exponent Fault
neon is lighted, a jump to memory location 00000 is effected, and the ad
dress of the next instruction word is placed in JA. The F bit of JA indi
cates whether the fault occurred in the right or left half of the instruc
tion word before the one whose address is in JA.

PROGRAMMING FLOATING POINT OPERATIONS

The programming for floating point arithmetic is essentially the
same as that for fixed point arithmetic, except that the numbers used must
be in floating point form. TAe converts decimal data to binary floating
point form and provides floating point constants.

A26

Floating point constants may be pool or non-pool constants and
have the form, F/Number Ec. This formula represents a decimal number mul
tiplied by some power of ten, Ec.

For example, to express the decimal number .127 x 103 In floating
point binary form the programmer writes

F/.127 E3 or F/127

and TAC will produce the normalized floating point number

127
- x 27
128

which would appear as the following PHILCO 2000 word:
01234567 8 910111213104151617181920'212223242S26272B293031323334'l5363738394041424344454647

101111h h 1111hl 010101010101 q 010 101 0101010 1010101010 101 0101 0101010101010 101010101010 1010 111111\
~,-------------------------~------------------------~'--------~------~

Mantissa Exponent

In addition to the previously described fixed point instructions,
the instruction JAGQF compares the magnitudes of floating point numbers.

JAGQF Jump if (A) are greater than or equal to (Q) in the
Floating point sense.

The first step of this instruction transfers the con
tents of the Q Register to the D Register. The contents
of A and D are then compared. As in all Jump instruc
tions, the address of the next sequential instruction
is placed in the JA Register. Both numbers must be in
normalized from prior to the comparison.

Note that all floating point numbers produced by TAC and most of
the results of arithmetic operations will be in normalized form. Should
some situation arise in which the programmer must normalize a floating
point number, he may use one of the floating point Clear Add instructions,
such as FCAM.

Example

Add the floating point numbers in locations Y1 and Y2. Jump to
COMPUTE if the number in Y3, which is normalized, is less than the sum.

COMMAND ADDRESS AND REMARKS

T M A Y 1 I,
\. Floating point addition

F A M Y 2 II Y1 + Y2 ----. A Regi ster

T M Q Y 3 Y3 -----. Q Register

J A G Q F C ~ M PU T E Jump if sum >z: Y3

A27

Rules of Thumb

A28

a. If maX1mum speed is desired when executing FAM and FSM in
structions and the magnitudes of the operand are known,
place the smaller operand in the" A Register. Then the
equalizing of exponents can take place during the memory
restore cycle of the transfer of the larger operand to the
D Register.

b. Note that whenever floating point number systems are used,
the normal laws of associativity are not always valid. When
a mantissa is shifted right to equalize exponents, significant

digits may be lost. In the example below, when 10- 50 is

added to 10+ 50 , all of the significance of 10- 50 is lost.

For example,

because

10- 50 + 10+ 50 = 10+ 50 •

PHILCO ~

~r
QUALITY
~~(!J~

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	A01
	A02
	A03
	A04
	A05
	A06
	A07
	A08
	A09
	A10
	A11
	A12
	A13
	A14
	A15
	A16
	A17
	A18
	A19
	A20
	A21
	A22
	A23
	A24
	A25
	A26
	A27
	A28
	xBack

