
-
.-

ELECTRONIC
DATA PROCESSING

SYSTEMS

PHILeQ

COMPUTER
DIVISION
Willow Grove, Pa.

PHILCO 2000

INFUT--OUTFUT PROGRAMMING S'YSTEM

(lOPS)

April 1962

PHILCO CORPORATION
A Subsidiary of' Ford Motor Company
Computer Division - 3900 Welsh Road

Willow Grove, Fa.

TM-18

PHILCO 2000

INPUT-OUTPUT PROGRAMMING SYSTEM

(lOPS)

This manual replaces Programming Research
and Development Note No. 18 (RD-18) dated
September 1, 1961.

TM-18, April 1962

© Copyright 1962 by Philco Corporation
Computer Division, A Subsidiary of
Ford Motor Company

PREFACE

An input-output programming system enables a programmer to
transfer information from input-output devices to memory, and
from memory to input-output devices. Depending upon the sophisti­
cation of the system, he may also be permitted to specify the form
in which he desires his data.

This manual discusses TOPS, a comprehensive input-output
programming system. Tt includes information concerning, (1) the
media used for the input or output of data, (2) the orders
necessary for the transfer of data, and (3) the many forms to
which the programmer can have his data converted.

A detailed knowledge of the Phi1co 2000 input-output operations,
although helpful, is not necessary for an understanding of TOPS.
However, a knowledge of TAC is assumed.

-i-

CONTENTS

PREFACE . . 0 •

INTRODUCTION

CHAPTER 1

CHAPTER 2

ENVIRONMENTAL STATEMENTS

IOUNITS .

IOUNITSF

ORDER STATEMENTS

ORDER STATEMENTS PARAMETERS

LIST

CLASSES OF ORDER STATEMENTS

CLASS I ORDERS ~

READ

WRITE

CLASS II ORDERS

READBT

WRITEBT 0

CLASS III ORDERS

BACKUP

ENDFILE .

RUNOUT

REWIND

REWINDLO

-iii-

Page

i

1

2

2

7

8

8

9

. . 11

· 12

. . " 12

· 12

" 13

· 13

" 14

" 15

· 15

" . . 15

. . 17

· 18

· 18

CHAPTER 3

APPENDICES

A.
B"
C.
D ..
E.
F ..
G ..

INDEX

FORMAT STAT~MENTS 19

FIELD DESCRIPTORS • • 20

Iw 21

Dw.d • • 22

Fw.d · . 24

Ew.d · . 26

Aw • • 28

Ww · • 29

¢w · . • 30

Cw · . 31

nH • • 32

Sw • • 32

MODIFIERS • • • 32

THE REPEAT MODIFIER (nR) · . . 33

THE TERMINAL POSITION FACTOR (nT) 34

THE EXPONENT MODIFIER (nP) · . 35

THE SIGN MODIFIER (Z) • • 36

THE LEADING ZERO MODIFIER (L) . • • 36

MULTI-RECORD FORMATS 37

MISCELLANEOUS EXAMPLES .

ILLUSTRATIVE EXERCISES
PROC INIT STATEMENT
BINARY RECORD FORMAT
HEXADECIMAL CHARACTERS
lOPS SYSTEM ERROR INDICATIONS .
PROC SYSTEM ERROR INDICATIONS
POSSIBLE GROUPING OF CHARACTERS a ~ IN lOPS

FORMAT STATEMENTS

-iv~

• • • 39

. 41

. 44

• • 45
· • 46
· . 47
· • 49

· . 51
• • • 52

INTRODUCTION

lOPS is a series of TAC library generators for the Philco 2000
computer systemo It provides programmers with a flexible, convenient
tool for performing a variety of input-output transfer, editing,
and conversion operations.. Through the use of easily written state­
ments, the routines inherent in lOPS automatically generate all the
coding necessary to perform the specified input-output operation.

When using lOPS for an input-output operation, therefore, the
programmer need not be concerned with many of the instructions that
would normally have to be included in the program when writing an
input-output routine.. lOPS also does the "housekeeping", such as
keeping track of the words in a block, inserting the proper number
of filler characters, and inserting end-of-line and/or end-of-block
characters.

lOPS statements are TAC Language statements.. As such, symbolic
addresses must be written in acceptable TAC form (1-7 alphanumeric
characters long)o

lOPS reads and produces data tapes and
tapes a record of information is considered
or output, or (2) a printed line of output ..
of information may consist of any number of

binary tapes 0 On data
to be (1) a card of input

On binary tapes a record
words or blocks~

lOPS generates magnetic tape macro-instructions and uses the
subroutine PROC to process the input-output orders (see R&D Note 25) ..
To call in and initialize PROC, the programmer must include an INIT
statement in his programo The INIT must appear before the first
logical executable lOPS ordero A comprehensive discussion of the
INIT statement is pI'esented as Appendix Bo lOPS makes no data
storage assignmentso The programmer must include ASTOR statements
for the areas which will buffer the input or output information ..

-1-

IOUNITS

CHAPTER 1

ENVIRONMENTAL STATEMENTS

There are three kinds of statements in lOPS -­
ENVIRONMENTAL, ORDER, and FORMAT statements.
Used together, these three types of statements
provide a means of transmitting information, in
prescribed forms, between core and I/O (input­
output) units.

ENVIRONMENTAL statements supply information about
the medium used for input or output, and may be
of two types -- IOUNITS or IOUNITSF.

An IOUNITS (or IOUNITSF) Statement includes
parameters which specify the type of I/O unit,
the unit used (in the case of magnetic tape),
the external form of the data, the address to
which the lOPS program will exit if the particular
unit requested is inoperable, and the starting
addresses of memory areas to or from which infor­
mation is buffered.

IOUNITS is written in the following general form
when indicating an input and an output unit:

LOCATION
I
I COMMAND
I

I¢UNITS

ADDRESS

TYPE, UNIT, GROUP SIZE,
RECORD SIZE, ERROR ADDRESS,
CSAl, CSA2;

TYPE, UNIT, GROUP SIZE,
RECORD SIZE, ERROR ADDRESS,
CSAl, CSA2$

(Note the use of the semicolon to separate complete
unit descriptions~)

-2-

• The parameter, TYPE, specifies the type of
input or output medium used, and may be one
of the following forms:

TYPE

DTI

DT¢

BTl

BT¢

BTI¢ (or BT,¢I)

PTl

PC¢

INTERPRETATION

DATA TAPE INPUT
Input data is on magnetic
tape in card format

DATE TAPE OUTPUT
Output data. is to be
recorded on magnetic
tape~ edited for the
printer ..

BINARY TAPE INPUT
Binary input is on magnetic
tape in lOPS format
(see Appendix C)

BINARY TAPE OUTPUT
Binary output is to be
recorded on magnetic tape
in lOPS format

BINARY TAPE INPUT OR OUTPUT
Binary input and output is
to be read from and recorded
on magnetic tape in lOPS
format

·PAPERTAPE·· .. TNPUT
Input data is on paper tape
in card format

PUNCHED-CARD OUTPUT
Output data is to be recorded
on magnetic tape edited for
the Card Punch

(Note that only binary tapes are used for both
input and output.)

-3-

• UNIT identifies the particular input-output
unit used, and may be any of the following:

UNIT

SYMB0L

nT

PT

INTERPRETATION

The symbolic address of a word whose
contents serve to id~ntify the
magnetic tape unit ('sum of the 4
bits at TIS and T23 is the unit
number) ..

The magnetic, tape connected to
channel ~ of the Input-Output
Processor.. (n is an integer 0-16.)
If n> 16, nT will be treated as a
symbol"

The paper tape system connected to
the paper tape channel of the central
computer.,

• GROUP SIZE is the number of records contained
ina block of information on magnetic tape.
The most frequently used Group Size is 12 cards
per blocko

• RECORD SIZE is the number of computer words per
record (usually 10 words per ,card).

Group and Record Size Parameters are used only
with input data tapes (DTI), punched-card output
tapes (PC¢) , or input paper iape (PTI). These
two parame'ters need not be included in an IOUN~TS
statement which describes either an output data
tape to be printed (D~) or binary tapes, but
the commas which would have separated them must
be retained.

• ERROR ADDRESS is an absolute or symbolic address
to which a jump i~ made whe~ a'non-recover~ble
tape error exists. (Refer to page 50.)

The Error Address Parameter may be omitted fzom
an IOUNITS statement when used with any Type
Parameter other than PTI. When thus omitted, the
error address is that specified in the PROC INIT
statement. (See Appendix B.)

-4-

• CSAI denotes the core starting address of a
block (128 words) that is to be used by lOPS
as an input or output buffer area.

• CSA2 denotes the core starting address of a
second block to be reserved for input or output.
This parameter is optional, and need not be
included in an IOUNITS statement. If CSA2 is in­
cluded and is not equal to CSA1, then doubl-e­
buffering will occur. This option of double
buffering is not available with binary tapes or
with paper tape input.

(Note: ASTOR statements must be included in
the program to -reserve storage for these
buffer areas.)

Example:

LOC1\TION COMMAND ADDRESS I
I

-------1

I¢UNITS DT I, 11 T, · 1 ~, · 10, ERR IN , I
BUFFI, BUFF2; DT¢, 12T , ;, 1 ',!_

ERR¢UT, BUFF3, BUFF4$

(Spaces preceding a parameter are ignored.)

Only one IOUNITS statement may be used in a program
or a compilation error will occur. The IOUNITS
statement may be placed anywhere in a program.

The following example further illustrates the use
of the IOUNITS statement:

(1) I¢UNITS DTI, 9T, 12, 10 ERRIN, BUF1, BUF2;
(2) DT¢, lOT, , , ERR¢UT, BUF3, BUF4;
(3) PC¢, lIT, 16, 8, ERR¢UT, BUF5, BUF6;
(4) BT¢, 12T, , , ERR¢UT, BUF7;
(5) BTl, 13T, , , ERRIN, EUF8;

(6) BTI¢, 14T, , , , BUF9;
(7) PTr, PT, 12, 10, ERRIN, BUFIO $

-5·-

!

1,

i
, I

• Line (1) describes tape unit 9 as an input
data tape. There are 12 records per block
and 10 words to a record; the system error
address is ERRIN, and the input ·data is to
be double buffered.

• Line (2) describes tape unit 10 as an output
data tape to be edited for an off-line High
Speed Printer. The system error address is
ERROUT, and the output data is to be double
buffered.

• ~ine (3) describes tape unit 11 as a punche.d~
card output tape to be edited for off-line
punching (16 cards per block, 8 words per card).
ERROUT is the system error address, and the
output data is to be double bu:ffered"

• Line (4) describes tape unit 12 as a binary
output tape. The system error address, is
ERROUT, and the output data is to be single
buffered.

• Line (5) describes tape unit 13 as a binary
input tape. The information which was recorded
on this tape as a result of a WRITEBT order is
single buf:fered. ERRIN is the system error
address.

• Line (6) describes tape unit 14 as a binary
input or output tape. Info~mation written on
or read from this tape is single buffered.
The system error address is that appearing in
the INIT statement. ,

• Line (7) describes the Paper Tape Channel as
an input channel. The paper tape format is
made to resemble card to tape format, 12
records per block, 10 words per record. ERRIN
is the system error address, and the in:formation
is to be single buffered.

-6-

I¢UNITSF An IOUNI~SF statement is normally used in FORTRAN
programs that are being prepared for ALTAC
compilation., IOUNITSF is written in the same form
and with the same parameters as the IOUNITS
statement 0

An IOUNITS statement produces coding which assumes
that the programmer is supplying both v (vertical
format) and s (data select) control characters
for every line that is to be printed; IOUNITSF
automatically produces an J2. character of 0 and
makes the following changes in the v character:

PRINTER PROGRAM-
CONTROL CHARACTER V S MEANING

0 becomes{: :}DOUble space

L1 (a space symbol) becomes 1 0 Single space

1 becomes 7 0 Skip to top of

+ becomes 0 0 No space

A filler character becomes 1 0 Single space

Anything else becomes 7 0 Skip to top of

There is no other difference between IOUNITS and
IOUNITSF o

-7-

page

page

ORDER
STATElYIENTS
PARAMETERS

CHAPTER 2

ORDER STATElYIENTS

ORDER statements specify the transmission of
information and usually contain a list of the
quantities to be transmitted. The ~ist also
indicates the sequence in which the quantities
are to be transmitted.

The following shows a general form of an ORDER
statement;

LOCATION COMMAND ADDRESS

ORDER UNIT;SYMB¢L;LIST$

Note that the statement parts (parameters) are
separated by semicolons in the address field.

PARAMETER

ORDER

UNIT

ACTION EXAMPLES

This parameter speci- READ
fies the operation
to be performed with WRITE
a particular I/O
(input-output) unit. READBT

WRITEBT

REWIND

For an explanation K
of the UNIT parameter,
see IOUNITS, page 4. 7T

LAMBDA

-8-

LIST

PARAMETER

SYMB¢L

LIST

ACTION

This is an address
identifying the
FORMIN or F9RMOUT
statement associated
with the I/d order.
(For an explanation
of FQRMIN and
FORMOUT, see Chapter
3.)

LIST refers to a
sequence of locations
which contain or will
contain the informa­
tion that will be
transmitted.

EXAMPLES

BETA

NAME. TAG

A ; DELTA; GAMMA

A parameter or element of a LIST is any legitimate
decimal or symbolic TAe address composed of up to
40 characters. A LIST can be comprised of any
number of these elements, each separated by semi­
colons.

An element of a LIST may be written in anyone of
the following six basic forms, indicating Index
Register Modification (IRM) or Non-Index Register
Modification (NIRM).

BASIC FORMS EXAMPLES EXPLANATION

NIRM ALPHA This element refers
or to the contents of

1000 symbolic memory
location ALPHA, or to
decimal location 1000.

-9-

BASIC FORMS

NIRM (Decimal
Integer)

NIRM (Symbol)

IRM

IRM (Decimal
Integer)

EXAMPLES

ALPHA+7(5)

EXPLANATION

This element refers
to the contents of 5
consecutive locations
starting at symbolic
memory location
ALPHA+7.

1000 (ALPHA) Symbolic memory loca­
tion ALPHA must
contain in bits 1-15,
the number of
consecutive locations
to be processed,
starting at decimal
location 1000.

0,4

3,4(2)

This element refers
to the contents of
the memory location
whose address is con­
tained in Index
Register 4.

The effective memory
address is the contents
of Index Register 4
incremented by 3.
This element therefore
refers to the contents
of two consecutive
memory locations
starting at the
effective memory address.

IRM (Symbol) RHO,3X(Q.DEL) The effective address
RHO,3X is the starting
address of the number
of locations (defined
by bits 1-15 in
location Q.DEL) to be
processed.

-10-

CLASSES OF ORDER statements may be divided into three
ORDER STATEMENTS classes:

@ DATA TAPE ORDERS: Order Statements specifying
transmission and conversion of information.

~ BINARY TAPE ORDERS: Order Statements specifying
transmission only.

o Orders dealing essentially with the manipulation
of tapes.

The general form of these orders is as follows:

GENERAL FORM

COMMAND ADDRESS

CLASS I ORDER UNIT;SYMB¢L;LIST $

CLASS II ORDER UNIT; LIST $

CLASS III ORDER UNIT $

Note that the SYMB¢L parameter is omitted from
CLASS II orders because no conversion of binary
information is required. Also note that both the
SYMB¢L and LIST parameters are omitted from CLASS III
orders because neither transmission (in most cases)
nor conversion of data is required.

The ORDERS available with lOPS are:

CLASS I CLASS II CLASS III
or or or

DATA TAPE BINARY TAPE TAPE MANIPULATION
ORDERS ORDERS ORDERS

READ READBT BACKUP
WRITE WRITEB'],' ENDFILE

RUN¢UT
REWIND
REWINDL0

-11-

CLASS I ORDERS

READ

WRITE

Class I Orders concern data tapes and provide for
the transfer of coded information. All three
parameters (Unit, Symbol and List) are usually
included in these order statements.

The READ order is used only with data tapes;
information on these tapes is in card format, x
words per card, y cards per block. Each card is
considered as one record, and each READ order
starts a new record.

An example of a READ statement follows:

LOCATION ~OMMAND ADDRESS

'READ 10T;SYMB¢L;ALPHA;BETA(3);GAMMA(2)$

According to the above statement, information is to
be read from magnetic tape 10, converted according
to the FORMIN statement identified as SYMB~, and
stored in six memory locations (in location ALPHA,
in three consecutive locations starting at location
BETA, and in two consecutive locations starting at
loca tion GAMMA).

WRITE statements follow the same general form as
READ statements. For example, if information in
symbolic memory locations ALPHA, BETA, BETA+l,
BETA+2, GAlVlMA and GAMMA+l i,s to be written >J according
to FORMOUT statement K) on the data tape connected
to channel 5 of the Input-Output Processor, the
ORDER statement could be written as follows:

LOCATION COMMAND
I

ADDRESS

~RITE 5T;K;ALPHA;BETA(3),GAMMA(2)$

-12-

CLASS II ORDERS

READB!

This WRITE order could also have been written as:

WRITE 5T;K;ALPHA;BETA(XRAY);GAMMA(Y~KE)$

where XRAY a'n:c;1 YOKE are the symbolic addresses of
two words containing the quantities 3 and 2,
respectively, in bits 1-15.

The elements bf a LIST can also be index register
modified. For example, if the absolute address
assigned to the symbol ZEBRA, is in index register
7 and the contents of three sequential locations
starting with location ZEBRA+9'are to be converted
and transferred to magnetic tape 5, the ORDER
statement should be of the form:

LOCATION COMMAND ADDRESS

WRITE 5T;K;9,7(3) $

If the index register counter has been sex
to one, the contents of the index register would
'be incremented by one. (Index Registers 1 and 2
should not· be used with LIST entries.)

Orders in this class provide an intermediate
storage facility involving only binary tapes.
Since no conversion is required with these orders,
only two parameters (Unit and List) are specified
in the address field.

Because a READBT order .only accepts information in
lOPS format (see page 45), this order should only
be given for a tape written with the WHITEBT order,
which insures that information written on that tape
is in lOPS format.

-13-

WRITEBT

Inrormation on a binary tape is transmitted a
record at a time and each record starts a new block.
The size of the binary record is of variable length
because it is determined by the number of words
specified in the LIST of a WRITEBT statement. After
all or a part of a record is read, the tape is
positioned at the beginning of the next record.

The following is an example of a READBT order:

LOCATION ~OMMAND ADDRESS

READBT llT;ALPHA(3);BETA(DELTA);S,6(Y¢KE)$

A~sume that the quantities 2 and 4 are in bits 1-15
of symbolic memory locations DELTA and Y¢KE,
respectively, and that index register 6 contains the
absolute address assigned to the symbol TAG. Then,
according to the above READBT statement, the binary
information that is read from magnetic tape 11 would
be stored in 3 consecutive locations starting with
location ALPHA, in 2 consecutive locations starting
with location BETA, and in 4 consecutive locations
starting with location TAG+5 b

After a READBT operation is completed, the tape is
positioned at the beginning or the next record
(which, in IOPS-, starts anew block). Attempting
to read more words than exist in the record will
result in an lOPS error.

A WRITEBT order causes binary inrormation to be
recorded on magnetic tape in lOPS format.

The following is an example of a WRITEBT statement:

~OCATION ADDRESS

RITEB 9T;ALPHA(1000) ;BETA(5DO) ;GAMMA(985)$

-14-

According to the above statement, one record of
2485 words (1000 words starting from location ALPHA,
followed by 500 words starting from location BETA,
followed by 985 words starting from location GAMMA)
would be written on tape 9.

The larger the LIST of binary information to be
transferred the more efficient will be the execution
of the pertinent section of the programe

CLASS III ORDERS Except for the ENDFILE and RUNOUT statements,
statements or orders in Class III deal only with
the manipulation of tapes. They specify neither
transmission nor conversion of inrormationo

BACKUP The BACKUP '.order refers to binary records only $

BACKUP orders are used to space backwards over a
binary record and are written as follows:

ENDFILE

LOCATION COMMAND ADDRESS

BACKUP l3T $

The above order causes the tape specified by the
Unit Parameter (13) to be backspaced one record~
so that the next block to be read forward will be
the beginning of the record just spaced over. If
the tape is not in binary format, the tape will be
moved backwards until the beginning of tape is
reached or until a block appears to be in the proper
binary format ..

The ENDFILE statement is used with both output data
and binary tapeso When an ENDFILE statement is used
with an output data tape, it causes information that
remains to be written on the tape indicated by the
Unit Parameter, to be edited in the form specified
by the Type Parameter of the IOUNITS (or IOUNITSF)
statement. ENDFILE also causes an additional block
containing an absolute data-select stop character
to be written directly after the last data block
on that tapeQ

-15-

If printer output is specified by the Type parameter
in the IOUNITS (or IOUNITSF) statement, the absolute
stop character is determined by the data select
character of the previous block. For example, if
the data select character for the previous block was
06(8)' the absolute stop would be 66(8) and the
pr~nter would halt only on data select 6.

If punched-card output is specified by the Type
parameter in the IOUNITS (or IOUNITSF) statement,
the additional record will contain the absolute stop
character (Octal 72) and a series of blank cards,
since the data select for PC¢ is 10. (See page 19.)

When ENDFILE is used with a binary tape, a special
record with an end-of-file control word (see Appendix
C) is written after the last binary record. This
special record can be passed over in a forward
direction by a READBT order with no LIST, and in the
reverse direction by a BACKUP order.

The following is a representative example of an
ENDFILE statement:

LOCATION COMMAND ADDRESS

I,0UNITS DT,0, 12T, , , ,BLKA$

ENDFILE 12T $

According to the example above, ENDFILE will edit
(for the Printer) the data remaining in the buffer
area, and will write the block on magnetic tape 12.
Immediately after this last data block, an additional
block containing an absolute stop character (which
is based on the data select character of the previous
block) is written.

-16-

RUNOUT The RUNOUT order refers to data tapes only and has
no effect on binary tapes. Although RUNOUT is
mainly used with output data tapes to ensure the
writing of partly filled output buffer blocks, it
can also be used with input data tapes.

When a RUNOUT order is given to an input data tape
(DTI), it so positions the tape that a READ order
following this RUNOUT will force a new block of
information to be brought into memory; any
unprocessed record in the previous block will be
10stG If the input tape is double-buffered,
RUNOUT causes the tape to be backspaced one blocko

When a RUNOUT order is given to an output data tape
(DT% or PC¢), the information which partly (or
completely) fills the buffer block is edited and
written on tape. Any subsequent WRITE order will
automatically start a new block o

RUNOUT performs the same output operation as ENDFILE~
except that with RUNOUT no terminal block (with a
stop character) is added.

RUNOUT will complete the editing of the buffer block
for the card punch and will write the block on
tape 9, when written as follows:

LOCP~TION COMM1-\ND ADDRESS

I¢UNITS PC¢,9T,12,lO,BLK2 $

RUN¢UT 9T $

If the Unit parameter is omitted in a RUNOUT state­
ment, all output blocks will be transmitted; input
tapes will be positioned or backspaced as previously
indicated. The following is an example of such an
order:

-17-

REWIND
or

REWINDL.d

LOCATION COMMAND ADDRESS

RUN¢UT $

A REWIND or REWINDLO order causes the magnetic
tape specified by the Unit Parameter in its address
field to be rewound (with or without lockout) ..

Written as follows,

LOCATION COMMAND ADDRESS

REWIND 12T $

REWIND causes magnetic tape 12 to be rewound to the
beginning-of-tape posi tion', regardless of its
previous position.

With output tapes, it is mandatory that the programmer
issue an ENDFILE or RUNOUT order prior to the REWIND
or REWINDLO order. If this is not done, data w.ilI
be lost, or subsequent use of the tape will cause an
lOPS error condition.

-18-

CHAPTER 3

FORMAT STATEMENTS

FORMAT statements specify the form in which data
is desired and the type of conversion to be
performedo There are two types of FORMAT state­
ments -- FORMIN and FORMOUT statements~

FORMIN statements are used with READ orders;
FORMOUT statements with WRITE orders 0

FORMAT statements are not executed~ and may be
placed anywhere in the programo They specify the
arrangement of data by providing field specification

. information (such as field widths, the number of ,
decimal digits after the decimal point, etc.), and
data conversion information (such as integer, fixed-,
or floating-point conversions)~

FORMIN and FORMOUT statements are of the following
general form:

LOCATION COMMAND ADDRESS

SYMB¢L F¢RMIN field descriptors and modifiers $

SYMB¢L field descriptors and modifiers $

Each FORMIN or FORMOUT statement defines a record
or a sequence of records to be transmittedc

In a FORMOUT statement, Data Select(s) and Vertical
Format(v) control characters must be specified for
a data tape described as DT¢ in an IOUNITS statement 0

However, only the v character need be specified with
DT0 in an IOUNITSF statement (see page 7)0 With
PC¢, neither ~ nor ~ characters should be specified
in the FORMOUT statement, since the ~ is autqmatical1y
set to 10 by IOPS 9 and the v does not apply 0

-19-

FIELD
DESCRIPTORS

Field Descriptors and Modifiers are presented as
elements of a FORMIN or FORMOUT statement and are
separated by commas, semicolons, or slashes"

Field Descriptors define the size of external fields
and the nature of the data within them as well as
the types of conversions to be performedo Modifiers,
as their name implies? modify descriptors, thus
providing additional flexibility in data conversion"

lOPS descriptors include: the Iw, Dw~d, FW0d,
Ew 0 d;, Aw, Ww j yfw ~ Cw, nH, and Sw descriptors 0

PESCRIPTOR EXTERNAL FOR.M INTERNAL FORM

Iw DECIMAL INTEGER BINARY INTEGER

Dw DECIMAL INTEGER
or or FIXED-POINT BINARY

DWod FIXED-POINT DECIMAL

Fw DECIMAL INTEGER
or or FLOATING-POINT

FWod FIXED-POINT DECIMAL BINARY

Ew FIXED-POINT DECIMAL
or or FLOATING-POINT

EWod FLOATING-POINT DECIMAL BINARY

Aw ALPHANUMERIC ALPHANUMERIC

Ww ALPHANUMERIC ALPHANUMERIC

¢w OCTAL BINARY-CODED OCTAL

Cw HEXADECIMAL BINARY-CODED
HEXADECIMAL

nH ALPHANUMERIC A FIXED FIELD IN A
FaRMOUT STATEMENT"

Sw Number of spaces to be inserted during
output? or number of characters to be
skipped during input~

I

-20-

Iw ~ When used in a FORMIN statement, the Iw descriptor
permits conversion from decimal integer to binary
integer form.

Iw causes a field of information w characters wide
to be converted to a binary integero (w must be
an unsigned decimal integero) This converted
quantity is then stored in a memory location
specified in the LIST of the ORDER statemento A
field may be as large as 14 decimal digits8 Its
binary equivalent occupies a full computer word
scaled 47T, unless it is modified by a position
factor (see Modifiers)~

The· ~ count includes spaces, plus and minus*signs,
and any number of decimal digits; the use of any
other character will result in an IOPSsystem
error~ Leading spaces (those before the first
non-space character) are treated a$ spaces 0 All
other spaces are regarded as zeros o When a sign
is punched, it must precede the number, although
spaces may separate it from· the number.

Examples:

DECIMAL EQUIVALENT
of

EXTERNAL FORM Iw INTERNAL BINARY NUMBER

256 13 256
-256 I4 -256
+256 14 +256
-4LlL\256 17 -256
Ll.4367 15 +367
L\Ll-367 16 -367
LlLl-lILlt1367 19 -367
LiL136t17tlLi 18 +360700
Lt1 +AAL\ 16A 19 +160

(In all examples, spaces are indicated by ~ 'Sd)

* In an input fi~ld the 11 punch and the 8-4
multiple punch are recognized as a minus signa

-21-

Dw.d
or

Dw

• When used in a FORMOUT statement, the Iw descriptor
permits conversion xrom binary integer to decimal
integer xorm.

Iw causes the contents ox a memory location (which
is assumed to be scaled 47T unle~s an nT modi£ier
is used) specixied in the LIST of the ORDER state­
ment to be converted to a decimal integer and
written in a field w characters wide. w can be as
large as 120, and includes spaces, sign, and any
number of decimal·digits.

The least significant digit will be positioned at
the right end of the field4 Leading zeros and
plus signs are suppressed (i .. e., replaced with
spaces) unless a Zero or Sign Modifier (see page 36)
is used to xorce their presencec

If w is smaller than the number ox digits in the
quantity to be transmitted, only the w right­
most digits are printed~

Examples:

DECIMAL EQUIVALENT
ox

INTERNAL BINARY NUMBER

+256
+256
-367
-367
-367
+256

Iw

13
15
14
16
13
12

EXTERNAL FORM

256
AA256

-367
.&1-367

367
56

• When used in a FORMIN statement, the Dw.d descriptor
permits conversion from fixed-point decimal or
decimal integer form to fixed-point binary form.

-22-

Dw.d causes a decimal field w characters wide
(including any fractional part) to be converted
to a fixed-point binary number. (Both wand d
must be unsigned integers.) The right-;ost ~-
digits of the field is the xractional part unless
a decimal point is punched in the input field,
in which case the decimal point takes precedence
over the d specification. The number may have as
many as 14 decimal digits, with its binary equivalent
occupying a full computer word scaled 47T, unless
it is modified by a position ractoro (See
Modifiers6) The descriptor may be written without
the d specification (Dw); when this is done,
d = 0 is assumedo

The ~ count includes spaces, plus or minus sign,
decimal point, and any number of decimal digits;
use of any other character will result in an rops
system error. Leading spaces are ignored, all
other space characters are regarded as zeros o

When a sign is punched, it must precede the number,
although spaces may separate it from the number o

When a :fixed-point decimal field is read in.to
memory according to an unmodified-* Dwl.1d
descriptor, the field is scaled 47T in a word and
the fractional part~of a field, if any, is losto

The following examples show the loss o:f the
fractional part when Dwod is unmodified o Other
examples (page :34) show the fractional part
preserved when nT is used with the Dw 0 d descriptor,_

Examples:

EXTERNAL FORM

6541
6541
-65 .. 41
-65 ct 4l
.liLl-L\123
L1c1 +LlI2Ll34t1

Dw .. d
"'"--

D4 .. 2
D4
D6.0
D6.4
D7 .. 4
DIO o 2

DECIMAL EQUIVALENT
of

INTERNAL BINARY NUMBER
(Scaled 47T)

65
·6541

-65
-65

o
1203

* A Terminal Position Factor, nT, is normally used
with the Dw~d descriptor (see Modi£iers, page 34)0

-23-

Fw~d

or
Fw

• When used in a FORMOUT statement, the Dw~d
descript'or permits conversion .from :fixed-point
binary to .fixed-point decimal .form.

Dw.d causes the contents of a memory location
specified in the LIST of the ORDER statement to
be converted to a decimal quantity, w characters
wide, with d decimal places to the rIght o:f the
decimal point. (I:f ~ is omitted, d = 0 is
assumed.)

Leading zeros and plus s~gns are suppressed,
unless the Zero or Sign Modi:fiers are used to :force
their presence.

The .following examples show the e:f:fect o:f an .
unmodi.fied Dw~d output descriptor. ------, ..
Examples:

DECIMAL EQUIVALENT
of

INTERNAL BINARY NUMBER
(Scaled 45T)

+6.25
13 .. 5
-5.25

Dw.d

D5 .. 2
D4
D6.2

EXTERNAL FORM
(Scaled 47T)

25.00
454.

-21.00

Other examples (page 34) show Dw.d properly
modi.fied.

• When used in a FORMIN statement, the Fw.d descriptor
permits conversion :from :fixed-point decimal or
decimal integer :form to :floating-point binary :form.

Fw.d causes a field o:f data w characters wide
(including any :fractional part) to be converted
to a floating-point binary number and stored in a
memory location specified in the LIST of the ORDER
statement.. The right-most ~ digits of the :field
is the fractional part unless a decimal point is
punched in the input :field, in which case, ;:the
decimal point takes precedence over the ~ specifi­
cation. The descriptor may be written without the
d speci:fication (Fw), in which case, d = 0 is
assumed~ Both wand d must be unsigned integers.

-24-

~ may indicate a field or any width, but because
only a maximum or 10 places or accuracy can be
maintained in a floating-point word, only the first
10 digits in the field will be significant 9 the
remaining digits will be treated as if they were
zeroso

The w count includes spaces, plus or minus sign,
decimal point, and any number of decimal digits"
Use of any other character will normally result
in an lOPS system erroro* Leading spaces are
ignored, all other spaces are interpreted as zeros~

When a sign is punched, it must precede the number,
although spaces may separate it from the number o

Examples:

EXTERNAL FORM

-237
-237

53,,61
Ll-3L\480

-39

F4
F4.2
FS.1
F702
F3 .. 3

DECIMAL EQUIVALENT
of

INTERNAL BINARY NUMBER

-2370
-2 0 37
53,,61

-304,,80
-0039

G When used in a FaRMOUT statement, the FwQd
descriptor permits conversion from floating-point
binary form to fixed-point decimal form o

The floating-point quantity in the memory location
specified in the LIST is converted to a fixed-
point quantity that is rounded to the d th digit
after the decimal point. It is the wright-most
characters of this rounded quantity that are printed
or punched. When d is omitted, d = 0 is assumed.
The w count includes sign, decimal point, and any
number of decimal digits. Leading spaces are also
included to make up the ~ count, where necessary •

. * If the input field appears in a :form :for the E
conversion (see page 26), the field will be
handled as a :floating decimal number w

-25-

Ew.d
or

Ew

If the quantity reserved for output is less than
I and if w,> (d+l), a zero will precede the decimal
point. Plus signs are' suppressed unless a Sign
Modifier is used to force their presence.

Examples:

DECIMAL EQUIVALENT
ox

INTERNAL BINAFY NUMBER

.73
-.329
-.329
-.329
-.329

Fw.d EXTERNAL FORM

F4.2 0.73
F4.2 0.33
F7,,4 -0.3290
F3 .. 4 290
FB .. 4 4-0 .. 3290

With the FwQd descriptor there can be as many as
10 significant digits of output. If more than 10
digits are needed to express the number, the
additional digits will be zeros.

.. When used in a FORMIN statement,the Ew.d
descriptor permits conversion from fixed-point
decimal or floating-point decimal (mantissa­
exponent) form to floating-point binary form.

The acceptable mantissa-exponent forms or floating­
point decimal fields ~re illustrated below:'

±mantissa±exponent
±mantissaE±exponent
±mantissaEexponent

Although the mantissa may be of any magnitude, only
the first ten decimal digits will be significant.
The exponent may be any integer in the range
-600 to 600.

Ew .. d causes a field of data w characters wide to be
converted to a floating-point binary number .and
stored in a memory location specified in the LIST.
The ~ count includes blanks, E, plus or minus sign,
decimal point, and any l.l.umber of decimal digits;
use of any other character will result in an lOPS
system error.

-26-

The right-most ~ digits of the mantissa is the
fractional part, unless a decimal point is punched
in the field, in which case, the decimal point takes
precedence over the d specification. The descriptor
may be written without the ~ specification (Ew);
when this is done, d = 0 is assumed. Both wand d
must be unsigned decimal integers.

Examples:

DECIMAL EQUIVALENT
of

EXTERNAL FORM Ew.d INTERNAL BINARY NUMBER

-1.62E+5 E8 -.162xl06

-162E5 E602 -o162xl06

-162+5 E6.2 -.162xI06

l567E-2 E7.l .1567xlO
l5E-4 Es . IS xl 0:"" 2

IsEO E4 ol5xl02

1\ l6.5~LlE3 E8 .105x108

o When used in a FaRMOUT statement, the Ew.d
descriptor permits conversion from floating-point
binary form to floating-point decimal (mantissa­
exponent) form.

The general form of the output field if an Exponent
Modifier (see page 35) is not used, is as follows:

±O.xxxxxxxxxx±eee

The mantissa will have a zero to the left of the
decimal point when ~> (5+d). For example, if w
is 10 and ~ is 4, the output field will be of t~e
form Ooxxxx±eeeo The exponent part, whose output
form is always ±eee~ is also included in the w
count 0

The floating-point quantity in the memory location
specified in the LIST is first converted to decimal
mantissa-exponent form. The mantissa is then
rounded to the d th digit after the decimal point,
and the ~ right-most characters of the .·~ounded
mantissa-exponent qu~ntity are printed or punched.
(Both ~ and ~ are unsigned decimal integers.) When
~ is omitted, a d = 0 is assumed. The ~ count
includes sign, decimal point, any number of decimal
digits, and the signed exponent. Leading spaces

-27-

Aw

are included to make up the w count where necessary.
Plus signs are suppressed unless a Sign Modifier is
used to force their presence~

With the Ew.d descriptor there can be as many as
10 significant digits of output" If more than 10
digits are needed to express the mantissa, the
additional digits will be zeros.

Examples:

DECIMAL EQUIVALENT
of

INTERNAL BINARY NUMBER

+"S38xl03

+"S38xl03

-"S38xl03

+.7031xlO-4

+.6391xlOS

-.6391xl05

- .. S38xl03

Ew.d

E9,,3
E9 .. 2
E13 0 4
EII.S
E14,,7
ES.3
E6 .. S

EXTERNAL FORM

00538+003
~0 .. 54+003

~~-0.S380+003

0,,70310-004
60 .. 6391000+005

9+005
00+003

(The last two examples above~ although not
completely representative, are included to enhance
the reader's understanding of the editing process.)

• When used in a FORMIN statement~ Aw describes a
field of alphanumeric-coded characters which is
to be transferred to a word in memory.

Aw causes a field w characters wide to be transfer­
red and stored left-justified with trailing blanks
in a memory location specified in the LIST of an
ORDER statement o All characters are acceptable
to the Aw descriptoro w should not be greater
than 8 because a word in memory can only accomodate
a maximum of eight alphanumeric characters ..

Examples:

EXTERNAL FORM

illl$lo2S
D./j~VALUE

DATA3

Aw

A7
A8
AS

-28-

ALPHANUMERIC REPRESENTATION
of

INTERNAL BINARY QUANTITY

At. $ 1 ,,25.6.
~6b.VALUE

DATA3~/::;l~

Ww

e When used in a FORMOUT statement, Aw describes
the field that is to contain an arrangement of
alphanumeric-coded charactersa

According to this descriptor, the left-most w
characters of a location specified in the LIST
of the ORDER statement will be transferred to the
output record ..

Examples:

ALPHANUMERIC REPRESENTATION
of

INTERNAL BINARY QUANTITY Aw EXTERNAL FORM

L\ LI$l. 251\
Ll 111\ llABLE
DATA3L1Llil

A6
A8
A4

L~Ll $102
LtL! t1 LlAB LE

DATA

o When used in a FORMIN statement, Ww describes a
field of alphanumeric-coded characters which is
to be transferred to a word in memorYG

Ww causes a field w characters wide to be trans­
ferred and stored right-justified with leading zeros
in a memory location specified in the LIST of an
ORDER statementG All characters are acceptable
to the Ww descriptor~ As is the case with the Aw
descriptor, the width of a field should not exceed
8 characters 0

Examples:

EXTERNAL FORM

4$ o25~
L1hL\VALUE
DATA3

Ww

W6
W8
W5

ALPHANUMERIC REPRESENTATION
of

INTERNAL BINARY QUANTITY

00L1$~25L\
LlLlL\VALUE
OOODATA3

@ Wh en used in a FORMOUT statement, Ww describes
the field that is to contain an arrangement of
alphanumeric-coded characterso

According to this descriptor, the right-most ~
characters of a location specified in the LIST
of the ORDER statement will be transferred to the
output recorda

-29-

¢w

Examples:

ALPHANUMERIC REPRESENTATION
of

INTERNAL BINARY QUANTITY

Ll $1 .. 2511L\
t1~ LlL\ABLE
t.!1/JAINFP

Ww

W4
W8
W4

EXTERNAL FORM

25LlLi
MLlL1ABLE
INFO

• When used in a FORMIN statement, 0w describes a
field of octalcharacter~ to be transferred to a
word in memory.

%w causes the right-most three bits of ~ six-bit
characters in the input field to be combined and
stored right~justified (terminating at the 47th
bit position, or at the nth bit position if an
nT modifier is used) in a word specified in the
LIST of the ORDER statement. For example, the
letter UGH (binary 010111) would be converted to
octal 7 (binary Ill).

All characters are acceptable to the ¢w descriptor;
however, as illustrated in the preceding example,
only the decimal digits 0-7 can be unmistakeab1y
represented with this descriptor.

~ should not be greater than 16, since 16 is the
maximum number of octal digits that can be
represented in a 48-bit computer word. Blank
characters are included in the ~ count, but are
ignored in the conversion process.

Examples:

EXTERNAL FORM ¢W INTERNAL (48 Bits) FORM

2673 ¢4 0 ..•••. 010 110 111 011
7065 ¢4 O 111 000 110 101

6GH ¢3 O ••••••••• 110 111 000
6GLl ¢3 O ••••••••••••• 110 111

19 ¢2 O ••••••••••••• 'DOl 001

-30-

cw

• When used in a FaRMOUT statement, %w describes
the field that is to contain an arrangement of
octal characters.

According to this descriptor, the right-most ~
3-bit characters (terminating at the 47th bit
position, or at the nth bit position if an nT
modifier is used) of a word in the LIST of the
ORDER statement will be converted to w 6-bit
characters for output.

Examples:

INTERNAL (48 Bits) FORM EXTERNAL FORM

000 ••••• 000 111 011
000 ••••• 000 111 011

3
073

• When used in a FORMIN statement, Cw describes a
field of hexadecimal characters which is to be
transferred to a word in memory.

Cw causes ~ six-bit characters in the input field
to be converted to its hexadecimal (4-bit) equivalent
and stored right-justified (terminating at the
47th bit position, or at the nth bit position if
an nT modifier is used) in a word specified in the
LIST of the ORDER statement. Although all characters
are acceptable to the Cw descriptor, only the
decimal digits 0-9 and the alphabetic characters
A-F can be unmistakeably represented with this
descriptor.

A field may be as large as 12 characters 0 Space
characters are included in the ~ count, ~ut are
ignored in the conversion process~

Examples:

EXTERNAL FORM

38AF
7lD

9A90

Cw

C4
C3
C4

-31-

INTEI{NAL (48 Bf ts) FORM

O~~~o.OOll 1000 1010 1111
OQ~~._ ~0111 0001 1101
O$~o.o~oo~.lOOl 1001 0000

nH

Sw

MODIFIERS

• When used in a FaRMOUT statement, Cw describes the
field that is to contain an arrangement of hexa­
decimal characterse

According to this descriptor, the right-most ~
4-bit characters (terminating at the 47th bit
position, or at the nth bit position if an nT
modifier is used) of a memory location specified
in the LIST of the ORDER statement will be converted
to w 6-bit characters for output~

Examples:

INTERNAL (48 Bits) FORM

0 •••••• 0000 1001 1111
0 •••••• 0011 1000 1010

Cw

C3
C3

EXTERNAL FORM

09F
38A

• The nH descriptor is only used in FORMOUT state- '.
ments; it defines a fixed field ~ characters wide.
The characters (alphanumeric or special) are written
in the FaRMOUT statement immediately to the right
ox the descriptor.

Examples:

HOLLERITH FIELD

7HAASUM=4
6HSAMPLE

EXTERNAL FORM

A~SUM=4

SAMPLE

• When used in a FORMIN statement, the Sw descriptor
causes a field of w characters to be spaced over
or bypassed in the record. Sw may not be used to
bypass a record.

• When used in a FaRMOUT statement, this descriptor
produces ~ space characters in the output record,

This section deals with tpe various rops modifiers,
and the additional flexibility that they provide in
the arrangement of data, such as:

• The repetition of similar fields
• The positioning (scaling)of data fields in memory

locations
• The controlling of signs and the suppression of

leading zeros in output fields.

-32-

THE REPEAT
MODIFIER

nR

lOPS modifiers include:

eThe Repeat Modifier (nR)
• The Terminal Position Factor (nT)
o The Exponent Modifier (nP)
• The Sign Modifier (Z)
• The Leading Zero Modifier (L)

Modifiers are prefixed to descriptors, each modifier
to the descriptor it is to qualify_ It is ,also
possible for several modifiers to be used with a
single descriptor.

A discqssion of lOPS modifiers and their specific
functions is presented below.

When successive fields are to be read or written
(printed or punched) in the same form, a repeat
modifier may be used to indicate the number of times
a particular arrangement is to be repeateq.

If nR immediately precedes the descriptor, the R may
be omitted, thus, 2RF6.2 and 2F6~2 are equivalent,a

Example:

U~ing the repeat modifier, the statement

LOCATION COMMAND

<I>

TAG F¢RMIN

could be written as

LOCATION COMMAND

41

TAG F¢RMIN

--33-

ADDRESS

F6.2,F6.2 $

2F6,.2 $
or

2RF6 .. .2 $'

ADDRESS

.. .. .

. .. .

THE TERMINAL
POSITION FACTOR

nT

The Repeat Modifier may also be used to repeat a
group ox descriptors. (See -example,: page 38.)

The Terminal Position Factor, nT, is used to position,
and to indicate the position of, the quantity in a
computer word. n, which may be any decimal number
0-47, refers to ~ne of the 48 bit positions in a
computer word.

When used with an ¢W, Ww, or CW descriptor, nT
indicates the right-most position of the least
significant character of the input or output field
in a word in memory. With the Iw or Dw.d descriptor, nT
indicates the position of the binary point. If nT
is not specified, 47T is assumed, and the field is
positioned at the extreme right end of the word.

The nT modifier is used only with l, D, ~, W or C
descriptors. The following are examples of nT used
with a Ow.d descriptor:

Examples:

EXTERNAL FIELD

6550
~65.75

-809375
Ll +L112L125
A +Jl12ll25

6550

nTDw.d

46TD.4.2
45TD6.0
43TD7.4
44TD8.3
OTD8.3
47TDS.2

DECIMAL EQUIVALENT
" of

INTERNAL BINARY NUMBER
(Scaled 45T)

+6.25-
+6.25
+6.25
+6.25
-13.5
-13.5
-5.25

-34-

DECIMAL EQUIVALENT
of

INTERNAL BINARY NUMBER
(Appropriately Scaled)

nTDw.d

45TD5.2
4!?TD5.1
45TD5
46TD5.1
45TD5.1
43TD6.3
45TD6.2

65.5
-65.75

-80,,9375
+12.025

.025
6S.

EXTERNAL FORM

116.25
tlL\6.3
L1 LlL16 •
/l12.5
-13.5

-3.375
t1-S.25

THE ,EXPONENT
MODIFIER

nP

Examples ox nT used with¢w and Cw descriptors are
presented below:

DESCRIPTOR
EXTERNAL WITH
FIELD MODIFIER INTERNAL (48 Bit's) NUMBER

73 44T¢2 0 ••••••• " ••• " ... 111 .011 000
73 4lT¢2 0 111 all 000 000
97 43TC2 0'0.0 •• .,00 ••• 1001 0111 0000
97 39TC2 Oo~o.~o1001 0111 0000 0000

DESCRIPTOR
WITH EXTERNAL

INTERNAL (48 Bits.) NUMBER MODIFIER FORM

O •• ~o#oa~o •• oo.lll all 000 44T¢2 73
O ~.ooo •• o.lll all 000 4lT¢2 07
Oo ••• oq •••• 1ll011 000 000 44T¢2 30
O. '0' •• " (J is .. (0 <I .. 1001 0111 0000 39TC2 09
0 •• 1)01:).1001 0111 0000 0000 43TC2 70

The Exponent Modi.fier, nP, is used as a decimal
scale xactor with I, D, and F descriptors, or as a
position factor with the E output descriptor"
(nP has ~ effect ~ ~ input descriptors,,)

The quantity described by an nP~modified I, D or F
de~criptor is multiplied by lOn, where ~ may be any
negative or unsigned decimal integer. When nP is
used with an E output descriptor, the mantissa of
the quantity in memory is multiplied by IOn and the
exponent is reduced by n. The modifier can be
regarded as acting after the descriptor when
describing input, and bexore the descriptor when
describing output"

.-35-

THE SIGN
MODIFIER

Z

THE LEADING
ZERO MODIFIER

L

Examples:

EXTERNAL FIELD

DESCRIPTOR
WITH

MODIFIER

DECIMAL EQUIVALENT
OF

INTERNAL BINARY NUMBER

658
3e987
532+3

-1376E+004

IPF3.2
2PFS
-4PE5
-2PEIO.l

DECIMAL EQUIVALENT
OF

INTERNAL BINARY NUMBER

.658xlO- l

.732xl03

.486xlO-4
2 -s37l8xlO

• 658xl02

• 3987xl03

• 532xl06

-'.1376x107

DESCRIPTOR
WITH

MODIFIER

3PF5.2
-4PF6.4
2PE8.l,
lPElO.3

OUTPUT FORM

65.80
0.0732

48.6-006
-3.718+001

When used in a FORMOUT statement, the Sign Modifier,
Z, causes positive numbers to be printed with + signs.
(Negative signs are always printed.) When used with
an E descriptor, Z controls the sign of 'the mantissa.
The sign of the exponent'is always printed,

Normally, when a quantity is printed or punched in
an output field, leading zeros are s'uppressed
(i.e., replaced with spaces). If the Leading Zero
Modifier, L, is used in a FORMOUT statement however,
leading zeros will not be suppressed and will
appear in the output field.

-36-

MULTI-RECORD
FORMATS

The following chart indicates which MODIFIERS may
be used with each FIELD DESCRIPTOR:

MODIFIERS

FORM IN or FORMOUT FORMOUT only

R T P Z L

I x X X X X

0 E X
Output

only X X

E
S F X X X X

C
R D X X X X X

I W X X
P
T ¢
0

X X X

R C X X X
S

S

A X

Records with different formats can be described in
a single FORMIN or FORMOUT stat~ment by using a
slash (/), end-~£-record indicator, to separate the
descriptors of different records. For example, if
the statement

LOCATION COMMAND ADDRESS

. . . .
TAG F¢RM¢UT 2HlO,I2, FB.2/2HIO, IS, 3F12.6 $

. . .

-37-

were used with an ORDER statement speci:fy.ing a print
operation, all odd numbered lineswouid''be printed
according to the descriptors 12 and F8.2, and all
even numbered lines according to descriptors IS and
3F12.6.

Repetition of' similar :formats can also be accomplished
by using parenthesesa~d/or repeat modi:fiers. For
example., 2(12, ¢S, S2)':is'equivalent to 12, ¢S, S2,
12, ¢S, S2. .Parentheses within parentheses ~. not
permitted in lOPS FORMAT statements. 'Thus, if' the
statement

k:OMMAND ADDRESS

• • • •
TAG F¢RM¢UT 2H70, IS, ·3F8. 2/2HIO, 2110, F9. 21

2HlO,12(I6, F4.1)$.

. . .

were used with an ORDER sta·tement specif'ying a print
operation, three lines would be printed per pag~;
the first line p,ccording to' the descriptors. IS and
3FS.2, the second line according to descriptors 2110
and F9.2, and the third line' according to the
descriptors represented as .12 (16, F4.l). If' the list
comprised 32 elements, the contents of the 32nd
element would be printed on the first line o:f a new
page, according to descriptor IS, becaus~ when the
end of a FORMAT statement is reached and the LIST is'
not satisf'ied (i.e., not all elements pr9gessed) the
next element will begin a new record start~ng with
the f'irst descriptor of the FORMAT statement.

Multi-sla::;hes are used to ~y-pass' record~, i.e., to
skip a card on input, or to produce a record of blanks
when printing or p'unching •. For example,

II would cause one record to -be skipped.
III would cause two records to be skipped.

-38-

MISCELLANEOUS
EXAMPLES

Q Only the first 4 columns of each of 100 cards will
be read, according to the following statements.

LOCATION

ABC

COMMAND

I¢UNITS
READ
F¢RMIN

ADDRESS

DTI,BT,12,lO,ERR,BUF $
BT;ABC;INF¢(lOO) $
A4 $

@ The statements below cause 20 four-column fields
to be punched on each card, until five cards are
punched 0

LOCATION

DEE

COMMAND

I¢UNITS
WRITE
F¢RM¢UT

ADDRESS

PC¢,12T,12,10,ERR, BUF $
12T;DEF;INF¢(100) $
20A4 $

o According to the following statements, B
alphanumeric characters will be printed per line,
until 100 lines have been printedo

LOCATION

MAT

COMMAND

r¢UNI'TS
WRITE
F¢RM¢UT

-39-

ADDRESS

DT¢, 13T", ERR, BUFF$
13T; MAT; ¢UTPUT (100) $
2HIO, AB $

• The following statements cause 20 lines of data to
be printed, each line having 5 eight-character
fields (each field being separated by 4 space
characters).

LOCATION COMMAND

I¢UNITS
WRITE
F¢RM¢UT

ADDRESS

(I " •

DT¢, l3T",ERR, CSA $
13T; F¢RM; DATA (100) $
2HlO, 5(S4, A8) $

" . .

• According to the following, an 8-column field will
be punched on each card, until 100 cards have
been punched. All odd numbered cards wi~l be
punched according to the E descriptor, while all
even numbered cards will be punched according to
the F descriptor.

LOCATION

Ff2$RM3

COMMAND

I¢UNITS
WRITE
F¢RM¢UT

ADDRESS

(I t "

PC¢, 12T, 12, 10, ERR, BUF $
12T; F¢RM3; ¢UTPUT (100) $
E8.3/F8.3 $

• • •

• The statements shown below cause the word "VALUE"
to be printed at the top of a new sheet of paper,
after which two lines are skipped, and 3
alphanumeric characters printed per line, until
50 lines have been printed.

LOCATION

EDIT

COMMAND

"
I¢UNITS
WRITE
F¢RM¢UT

-40-

ADDRESS

DT¢, 13T, , ,ERR, CSA $
13T; EDIT; DATA (50) $
7H70VALUE///SO(2HlO, A3/) $. . .

SAMPLE PROBLEM 1

APPENDIX A

ILLUSTRATIVE EXERCISES

Read data from tape 9 having the following card
format 0 (Assume that the tape was prepared by
reading 10 words per card, 12 cards per block,
code-modeo)

Columns

1-10

11-18

19-30

31-40

41-45

46-80

Instruction

Sequence information for sorting, do not
reado

Alphanumeric data to be stored in location
IDENo

Data to be converted to floating point and
stored in location VALUElQ If the field
contains no decimal point, the last three
digits are to be considered the fractional
part"

Data to be converted to fixed point scaled
B20 and stored in location VALUE2~ If the
field contains no decimal point, the last
three digits are to be considered the
fractional parto

Scaled data which is to be multipliep by
100, converted to floating point and stored
in location SPECIAL~ If the field contains
no decimal point, the last four digits are
to be considered the fractional parto

Other information to be ignoredo

The necessary coding could be of the form:

lOCATION COMMAND

READ
XYZ F¢RMIN

I¢UNITS
ERR HLT
BUFFI AST¢R

ADDRESS

9T;XYZ;IDEN;VALUE1;VALUE2;SPECIAL$
SlO ,A8, Fl2 0·3, 20TD10 Q 3, 2PFS" 4$
DTI,9T,12,10,ERR,BUFFl$
M/77777$
128$

-41-

SAMPLE PROBLEM 2

Assume that three sequential memory locations contain
data to be transferred to tape 12 for off-line
punching of an 80 column card. Location DATA contains
alphanumeric data which is to be punched in columns
1-8, location DATA+l contains a fixed-point binary
integer to be punched in columns 11-22, _and location
DATA+2, a fixed-point binary integer to be punched
in columns 23-800

The necessary coding could be as follows:

L fL,OCATION COMMAND

BUFJ. .
BUF2
ERR

WRITE
F¢RM¢UT
I¢UNITS
AsT¢R
AST¢R
HLT

-42-

ADDRESS

12T;UVW;DATA(3)$
A8;S2,I12;I58$
PC¢,12T,12,10,ERR,BUF1,BUF2$
128$
128$
M/22222$

SAMPLE PROBLEM 3

The main purpose of the following example is to show
lOPS .coding in a TAC language program. There are 5
data columns per field, 16 fields per record. Each
field is to be conver~ed from fixed-point decimal to
floating-point binary, maintaining at least two
decimal places in each field. Input is from tape' 10,
and output, edited for the printer, is to be on tape
11.

Read 160 items into ~he array starting at symbolic
location ABLE; reverse the order of information in
array BAKER, and print out the contents of array
BAKER, columnwise, in fixed-point decimal form,
accurate to two decimal places.

L LOCATION COMl\1AND

•
I PR¢GRAM

NAME
SET
I¢UNITS

START INIT
READ

INPUT F¢RMIN,
TMD
TDXLC
TDXRC

R RPTSA
TMD
TDM
WRITE

)lfUTPUT F¢RM¢Ut

ENDFlLE
REWIND
REWINDL¢

END HLT
ABLE AST¢R
BAKER AST¢R
CSAI AST¢R
CSA2 AST¢R

END
..

-43-

J¢HN $
M/lOOO $

ADDRESS

• • •

DTI, lOT, 12, 10, ,CSAl;
DT¢, lIT, CSA2 $
16; END $
lOT; INPUT; ABLE (160) $
l6FS.2 $
C/HLT, ABLE+159; C/HLT, BAKER$
0,4 $
0,5 $
160 $
1,4 $
1,5 $
lIT; ¢1TPUT; BAKER (160) $
2H70, S5, l2HTHEAARRAY~IS/
l60(2HlO, SlO, FS.2/) $
lIT $
lOT $
lIT $
M/3333 $
160 $
160 $
128 $
128 $
START $

APPENDIX B

PROC:·INIT STATEMENT

The INIT statement is wri tten in the .f.ollowing .format:

LOCATION COMMAND ADDRESS

• • •
INIT n;ERR¢R$

• • o.

The parameter, n, is written as an unsigned decimal
integer, representing the number (not exceeding 16)
o.f input~output orders which PROC is expebted to
process at any given timeo

The parameter, ERR~R, is written as the symbolic or
absolute address o.f a location to which a return will
be made i.f a non-recoverable error occurs within
PROC or lOPS. ·Appendices E and F indicate the status
o.f the A and Q registers when such an error occurs.

-44-

APPENDIX C

BINARY RECORD FORMAT

Binary records are written on tape (by a WRITEBT
statement) in a special format, namely lOPS
format, and may consist of any number of blockse
At present, each block can contain as many as 126
data words; the l27th word is a control word, and
the l28th word is a checksum of the preceding 127
words.

The format of a control word is as follows:

Bit 0 = 1, if this is the first block of a record

Bit 47 = 1, if this is the last block of a record

Left Address - indicates the number of data words
in a block

Right Address - indicates the order or place of
this block within the record Q

In agreement with the above format, the end-of­
file control word in the special record that is
written as a result of an ENDFILE statement is
1/lTO;1/lT39;1/lT47~

-45-

APPENDIX D

HEXADECIMAL CHARACTERS

HEXADECIMAL DECIMAL BINARY
CHARACTER EQUIVALENT EQUIVALENT

a a 0000
..

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 110;1. I

E 14 1110

F 15 1111

-46-

1.

4.

5 ..

8"

APPENDIX E

lOPS SYSTEM ERROR INDICATTONS

REGISTERS

ERROR

Attempt to use a tape which has not
been defined in the IOUNITS statement.

Attempt to read a tape described in the
IOUNITS statement as "write only".

Attempt to write on a tape described in
the IOUNITS statement as "read only"e

Attempt to read more words from a binary
tape than there are in the recorda

The checksum of the block after reading
does not equal the checksum written with
the blockc This is applicable to binary
tape on1yo

A

1/1

2/1

3/1

4/1

5/1

Attempt to store, for printing, more than 6/1
120 printable characters for a given 1ine Q

Attempt to read from a binary tape which 7/1
is not in the correct format.

The program was run even though an error 8/1
occurred at compilation time ..

Either a machine error, or the program has 9/1
destroyed some lOPS coding (2GNC)0

More characters are requested from a card 10/1
than were described in the record size
parameter in the IOUNITS statement

Same as 90 (BIWTR)

Illegal character or illegal exponent
field in floating to floating (E) input
conversiono

-47-

11/1

12/1

Q

Unit
TIS or T23

Unit
T15 or T23

Unit
Tl5 or T23

last character
processed, T5

13.

14.

15.

16.

IOP$ SYSTEM ERROR INDICATIONS (Cont.)

ERROR

Illegal character or illegal exponent
field in fixed decimal .to floating (F)
input conversion.

Illegal character in fixed-point
decimal to fixed-point binary (D)
input conversion.

Illegal character or exponent field
in integer to integer (I) input
conversion.

Rewind order to a unit defined as
paper tape.

-48-

REGISTERS

A

13/1

15/1

16/1

Q

last character
processed, TS

last character
processed, T5

last character
processed, T5

A Register

Zeros

Location of macro­
instruction being checked
ln left address;
1/lT47 (D/l)

Location of macro­
instruction being checked
in left address;
1/lT46 (D/2)

Location of macro­
instruction being checked
in left address;
1/lT45 (D/4)

I
~ Unit #T23; 1/1 T44 (D/8)
\.0
J

Locatiori~of macro­
instruction being. checked
in left address;
1/lT43 (D/16)

Unit #T23; 1/lT42 (D/32)
Location of macro­
instructionbe~ng checked
in left address

Unit #T23; 1/lT4l (D/64)
Location of macro­
instruction being checked
in left address

APPENDIX F

PROC SYSTEM ERROR INDICATIONS

Q Register

Location of macro-instruction in
left address

Normal exit of check macro­
instruction in left address

Normal exit of check macro­
instruction in left address

Normal exit of check macro­
instruction in left address

Location of macro-instruction
being checked in left address

Normal exit of check macro­
instruction in left address

Location of macro-instruction
being checked in left address, and
location of check macro at T40

Location of macro-instruction
being checked in left address, and
location of check macro at T40

Meaning

List full

Not in list

Checking non-magnetic tape
order with magnetic tape check
macro-instruction

Checking for completion of more
blocks than were to be processed
(B = NBP of.original order.)

Rewind not accepted after TI¢

Checking out of sequence

Tape in local command

Write or read only

FROC SYSTEM ERROR INDICATIONS (ContI.)

Ix a tape error is encountered while executing an input­
output order, and i:f attempts by PROC to correct this error f'a"il,
PROC will return too the error address specified for a particular
tape unit in the IOUNITS (or IOUNITSF) statement. When this
happens, the A and Q registers will contain:

A Register Q Regi~ter

1. The :fault register 1. The address o:f an ERRORS
con:figuration at TIS macro used by rops at

T"16.
:

2. The tape" unit at T23 2. The original CSA at T39
, I

3. The assembler counter 3. 'The original NBP at T47.
register configuration
at T39

4. The original NBS at T47~

-50-

APPENDIX G

POSSIBLE GROUPING OF CHARACTERS a f3 IN lOPS FORMAT STATEMENTS

ex = preceding character Y = permitted

~ = succeeding character N = not permitted

~
" ,

n $ / . () I F E D ¢ A W C S H R T P Z L + -,

n Y Y Y Y Y Y y y y y y y y y y y y y y y N N N N

; and ~ y N N Y N N N Y Y y Y Y Y y Y Y N N N N Y Y Y Y

$ N

/ y N Y y N N y y y y y y y y y y N N N N y y y y

"
y y y y N N y N N N N N N N N N N N N N N N N N

(y N N y N N N y y y Y Y Y Y y Y N N N N Y Y Y Y

) N y y y N

I Y N

F Y N

E Y N
D Y N
¢ Y N
A y N

W y N
C Y N
S Y N

H(+n) N y y y N N y N N N N N N N N N N N N N N N N N

R y N N N N N N Y Y Y Y Y Y Y Y Y N N N N y y y y

T Y N N N N N N y y y y y y y Y N N N N N Y y, Y Y

P Y N N N N N N y y y y y N N y N N N N N Y y N N
2 Y N N N N N N y y y y y N N y N N N N N N y y y

L Y N N N N N N y y y y y N N Y N N N N N Y N y y

+ y N

- y N

-51-

INDEX

A descriptor •
Alphanumeric characters
ALTAC

BACKUP statement
Binary tape orders
Binary tapes II •••

Blank characters •
Buff"er area • II

•
o

e

Bypassing characters

C descriptor
Card format

•
•

•
•

• •
II II

•

e

•

•

• • e

• •

• •
e

D descriptor •• . ••••
Data select control characters

•

.,

• •

•
• •

•
Data transmission and conversion •
Data tape orders • • • 0 0 •

Data tapes • ~ • • • • • ~ ~ 0 • e

Double buffering • • •• • e II

• E descriptor ••••
End of" record indicator
ENDFILE statement
Environmental statements
Exponent modifier

F descriptor
Field descriptors
Fixed-point numbers
Floating-point numbers
Format statements ••
FORMIN statements
FORMOUT statements •
FORTRAN • • • • •

H descriptor
Hexadecimal characters
Hollerith f"ields 0

I descriptor
INIT statement

o

• •
Input orders •
Input-output units

•
•

•

• • e

•
• • II

• .,
II •

•

..

•

•
•

•
•

e

•
•
•
II

e

II

•
' .

II

•
•

-52-

•
• • • • •

• •

• •
• •
• •

• • • •
• • • •

• • • •
• • •

,.
• • • • •

• ••
e • • • •
• • II 1, 3,

• •

· '. • • ,. • •
• • • •

•
• o

•

• •
• •

• •

• •
• • •

• •

•

•

•

• • •

•
28,

20,
29,

28
3?

7

15
.11, 13-15

1, 3, 6, 1:).,' 15
7, 21, 28, 30, 32

•
•

•
• •

•
•
• 8,

• •
4, 6,

• •

• • · .
•

•
•

•

•

•

• 2, 5
• 32

20,
3, 6,

31
16

• 20, 22
7, IS, 16

11, 19, ~o
12, ls-i7

II, 12,,1 17

1,

•

•

•

•

9,
9,

•

S, 6

20, 26
37, 38

15
2, 7

33, 35

20, 24

• 20
,22-26
26-28

19
12, 19
15, 19

•

20,
31,

•

7

32
46
32

20, 21
4, 6, 44

12, 13
2-4

lOPS
lOPS format
lOPS system error indications
IOUNITS
IOUNITSF

Leading zero modifiers
Leading zeros
List

Modifiers
Multi-record formats

¢ descriptor
Octal numbers
Order statements
Output orders

Paper tapes
Parameters
Printer control characters
Printer output
PROC
PROC system,error indications
Punched-card output

READ statement
READBT statement
Record 0

Repeat modifier
REWIND statement
REWINDLO statement
RUNOUT statement

S descriptor
Scale factor (see terminal position factor)
Sign modifier
Skipping records
Space symbols (see blank characters)
Spacing over characters
Symbolic addresses

TAC
Tape error exit
Tape manipulation orders
Terminal position factor
Trailing blanks <>

-53-

1,

1, 4,

1
3, 13, 14, 45'

47, 48
2, 4, 5, 8

7

33, 36
22, 29

8, 9

20, 32
37

20, 30
30, 31

8
12, 14, 15, 17

4, 6
2-5, 8, 9, 11

7
3, 16

1, 4
49, 50
3, 16

12
13

1'4, 15, 16, 45
33
18
18
17

20, 32

33, 36
15, 38

32
1, 4, 5, 9

1, 9
4, 50

,11, 15-18
33, 34

7

Vertical format control character

W descriptor •
WRITE statement
WRITEBT statement •

-54-

7

20, 29
12
14

A SUBSIDIARY OF a;;a,~?!l~

Pr_ in U.S.A.

	0000
	0001
	0002
	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	xBack

