
OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

TEXT
EDITOR
REFERENCE
MANUAL

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA

OPERATING SYSTEM SOFfWARE

MAKES MICROS RUN LIKE MINIS

TEXT
EDITOR
REFERENCE
MANUAL

Second Edition

Documentation by: C. P. Williams
Software by: Timothy S. Williams

From

PHASE ONE SYSTEMS, INC.

OAKLAND, CALIFORNIA
7700 Edgewater Drive, Suite 830

Oakland, California 94621
Telephone (415) 562-8085

TWX 910-366-7139

Second ed.ition, first printing: March, 1980

PROPRIETARY NOTICE

The software described in this manual is a proprietary product developed by Timothy
S. Williams and distributed by Phase One Systems, Inc., Oakland, California. The
product is furnished to the user under a license for use on a single computer
system and may be copied (with inclusion of the copyright notice) only in
accordance with the terms of the license.

Copyright (C) 1980 by Phase One Systems, Inc.

Previous editions copyright 1978, 1979, and 1980 by Phase One Systems, Inc. All
rights reserved. Except for use in a review, the reproduction or utilization of
this work in any form or by any electronic, mechanical, or other means, now known
or hereafter invented, including xerography, photocopying, and recording, and in
any information storage and retrieval system is forbidden without the written
permission of the publisher.

Z80 is a registered trademark of Zilog, Incorporated.

PREFACE

This manual describes the OASIS system text Editor. It provides sufficiently
detailed information necessary to the use of this Editor in conjunction with the
OASIS Operating System.

This manual, named EDIT, like all OASIS documentation manuals, has the manual name
and revision number in the lower, inside corner of each page of the body of the
manual. In most chapters of the manual the last primary subject being discussed on
a page will be identified in the lower outside corner of the page.

Related Documentation

The following publication provides additional information required in the use of
the OASIS Text Editor:

OASIS System Reference Manual

TABLE OF CONTENTS

Section

CHAPTER 1 INTRODUCTION ...
CHAPTER 2 INVOKING AND USING THE OASIS EDITOR

GLOBAL COMMANDS ..
Case Command
Htab Command

CHAPTER 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

· .. . · .. .
Linemode Command ••
Promp t Command ••
Renumber Command ••
Tabset Command ..
Truncate Command ••
Verify Command ••
Wra p Command ••

Zone Command •••

CHAPTER 4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

TEXT POINTER POSITIONING COMMANDS
Bottom Command ..
The Carriage Return Command •••
Down Command ••
Down Arrow Command ••
Find Command ••
List Command · .. .
Locate Command ••
Next Command ••
Page Command ••

4.10
4.11
4.12
4.13
4.14

Top Command ••
Type· Command •••
Up Command •••
Up Arrow Command
The nnnn Command

...

TEXT MODIFICATION COMMANDS
Change Command ••

CHAPTER 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Combine Command •••
Delete Command ••
Duplicate Command •••
Get Command •••
Inpu t Command •••
Pu t Command •••
Put and Delete Command ••
Replace Command •••
Split Command

FILE MODIFICATION COMMANDS
File Command

CHAPTER 6
6.1
6.2
6.3
6.4

Name Command
Quit Command
Save Connnand

CHAPTER 7 OTHER EDIT COMMANDS

iv

Page

1

2

5
5
6
6
7
8
9
9

10
10
11

13
13
13
13
13
14
14
14
15
15
15
15
16
16
16

19
19
21
21
21
22
23
24
24
24
25

27
27
27
28
28

29

Section

7.1
7.2
7.3
7.4
7.5
7.6
7.7

TABLE OF CONTENTS

Again Command •••
Co lumn Command ••
Error Command •••
The Edit Macro Commands ...
Ques tion Mark Command •••
CS I Command •••
Skip Comm.and ••

CHAPTER 8 MODIFY COMMAND ...
APPENDIX A COMMAND SUMMARY ...
APPENDIX B GLOBAL COMMAND DEFAULT VALUES

APPENDIX C EDIT ERRORS AND MESSAGES ..

-v-

Page

29
29
29
30
31
32
33

35

39

40

41

CHAPTER 1

INTRODUCTION

The OASIS text Editor allows you to create and maintain files for use by other
system programs such as the EXEC language processor, the BASIC interpreter, the
MACRO assembler, the SCRIPT processor, etc. Although the Editor is generally used
to create or maintain files for these other processors there is not restriction on
its use: you can maintain files to be used by your own programs.

A file that is created or maintained by the EDIT program for use by another system
program generally contains a mixture of commands and data to that program. These
commands or data should not be confused with the commands that the EDIT program
uses. For example the operator may wish to create a file of commands and data to
be used by the EXEC processor. All of these commands and data are treated as text
to the EDIT program.

The OASIS Editor is a full featured text editor with commands that allow you to
change, add or delete text from a file. All of these commands are oriented to the
user, that is, these commands are English words whose meanings indicate the
function that they perform in the Editor. For instance, the command that indicates
that you wish to locate the next occurence of a sequence of characters is "LOCATE".

All of the commands may be abbreviated to the first character except those that
might cause unrecoverable results and those whose first character would be
ambiguous. To clarify this the syntax of each command is given with the minimum
required characters in uppercase letters and the remaining unrequired characters in
lowercase letters. The commands may actually be entered in upper or lowercase
letters.

The OASIS Editor is a line oriented editor. This means that after a command is
executed the text pointer is positioned at the beginning of the current line and
the commands reference entire lines. For instance the "DELETE" command deletes a
line of text; the "INPUT" command inputs lines of text; the "TYPE" command types
lines of text; etc. There is a command available that allows you to use the Editor
as a character oriented editor. This is the MODIFY command.

For purposes of documentaion and clarity the commands will be divided into six
categories:

1) Global commands
2) Text pointer positioning commands
3) Text modification commands
4) File modification commands
5) Other commands
6) Modify command

Each of these categories is discussed in the following sections.
commands are discussed under the category headings.

The individual

Caution: Do not allow a CTRL/Z character to be placed in a file. This character is
interpreted by most programs as meaning the end-of-file and will probably cause
loss of data if placed in a file by an operator or user program.

EDIT - 1 -

CHAPTER 2

INVOKING AND USING THE OASIS EDITOR

To enter and use the OASIS Editor you use the CSI EDIT command in the following
format:

EDIT (file-des c) [«option)[)]]

Where:

option Indicates one of the two options available with the EDIT command: BACKUP
and NOBACKUP. The BACKUP option, which is the default, will create a
backup copy of the file being edited before allowing you to save it back
on disk. The NOBACKUP option suppresses this feature.

When this command is executed the EDIT program is first loaded into memory and the
file description is passed to the program. The Edit program then searches the
directory (specified or default search sequence) and, when the file is found, reads
the entire file into memory. If the entire file cannot fit into memory due to the
amount of memory available the Edit program will display the message: "Available
Memory Now Full:" followed by the last line of text that it was able to read. If
this line of text is not the last line of text in the file then the operator should
abort the edit session and reduce the size of the file by manipulating it with the
COPYFILE command.

If memory is filled up when the file is read in and the last line of text is the
line that is displayed after the error message the operator may continue the edit
session if he first deletes some of the text lines before adding any new text.

If the file is not found on the
directories then the Edit program
displaying the prompt character.

specified directory or the default search
will display the message "New File" before

Due to the fact that the disk image of a file being edited is not updated until the
operator either SAVEs or FILEs the memory image of the file the System Cancel
command is redefined in the Edit session. If this key were not redefined then it
is possible that hours of work may be lost by the inadvertant typing of this
command. To abort an Edit session the operator uses the QUIT command.

EDIT Prompting Character

After the EDIT command has been executed an asterisk (*) will be displayed on the
left side of the console terminal. This is the prompting character for the EDIT
program and indicates that the EDIT program is waiting for a command.

EDIT Modes

The OASIS Editor has two modes of operation: the command mode, which is indicated
by the Edit prompting character on the left side of the screen, and the text input
mode, which is indicated by no prompting character on the left side of the screen.

Most Edit commands operate in one mode or the other, depending upon the command
itself. Some commands can operate in both modes, depending upon the parameters
given the command. The most notable of the latter include the INPUT and the
REPLACE commands.

EDIT Commands. General

- 2 - EDIT

CHAPTER 2: INVOKING AND USING THE OASIS EDITOR

Most of the Edit commands have parameters following the command
parameters tell the Edit command interpreter what the operator
specifically. For instance:

Example 1:
Example 2:

TYPE
TYPE 5

word.
wishes

These
to do

In the first example there are no parameters included. The Editor will interpret
this command as meaning that the operator wishes to type the current line. In the
second example there is one parameter (5). The Editor will interpret this as
meaning that the operator wishes to type the current line and the next four lines.

Parameters to the Edit commands may be of two types: numeric and string. Numeric
parameters are always assumed to be decimal (base 10). String parameters are
always enclosed within delimiters. A delimiter is a character that indicates the
beginning or end of something. For more versatility the OASIS Editor allows many
characters to be string delimiters, including all non-alphabetic, non-numeric
characters. The delimiter may not be part of the string, and the terminating
delimiter, when used, must be the same as the starting delimiter. For
documentation purposes the slash character (/) will be used for the string
delimiter.

If, while typing a line of text or command, the operator should wish to cancel what
he has entered, he may type either the program cancel key or a CTRL/X. This will
abort the line being typed with no change to the text file.

EDIT HELP Command

The OASIS Editor has a HELP command to assist you by listing the commands available
while editing a program. The format of the HELP command is:

HELP

When this command is entered the Editor will display the commands available along
with the general syntax of the commands on the console. Since the list of commands
is longer than most console displays the Editor will wait at the bottom of each
screen for you to enter a key.

Editing Program Files

The OASIS Editor allows the editing of program files (Assembly, BASIC, EXEC, etc.)
with added intelligence. For each of these program types the global commands are
initialized to special default falues (see section on global default values). In
addition, the Editor "knows" that when a BASIC program file is renumbered all
references to line numbers must be adjusted to reflect the new line number
sequence.

For all of the program types the global CASEMODE command is set to uppercase, but,
when editing an Assembly program or BASIC program the CASEMODE is temporarily set
to mixed mode whenever the Editor detects that a REMARK (BASIC) or comment
(Assembly) is being edited. Also, the Editor temporarily sets the CASEMODE to
mixed when string literals are being edited.

EDIT - 3 - PROGRAMS

EDIT REFERENCE MANUAL

PROGRAMS - 4- EDIT

CHAPTER 3

GLOBAL COMMANDS

The following OASIS Editor commands are global commands in the sense that they
instruct the Edit program how to interpret all of the characters that are entered
from the keyboard. These commands are global in effect.

All of the global commands have an initial value depending upon the file type of
the file being edited. For instance, the LINEMODE command has a default of ON for
the program file types such as BASIC and EXEC but has a default of OFF for file
types indicating text files such as SCRIPT and all other file types.

3.1 Case Command

The CASE command instructs the Editor on whether to 'fold' the input from the
keyboard to uppercase, lowercase or to accept the input as is.

The format of the CASE command is:

Where:

Mode

u

M

L

CASE [mode]

Meaning

'Fold' or change all alphabetic input from the keyboard to upper
case. This is the default CASE mode for some program file types
(EXEC, FORTRAN, etc.).

Accept all input from the keyboard with no translation of case mode.
This is the default case mode for all non-program file types.

Accept all input from the keyboard with inverse translation. This is
the inverse of the CASE mode M. All alphabetic characters typed from
the keyboard as text input are translated to their inverse case
before display. This feature is useful when the console keyboard
does not have a shift lock key.

Program Case Modes

Program source files normally use only upper case characters for the lines of
text (statements), but mixed case is usually desired for literals and comments
or remarks. For this reason the OASIS Editor provides special case mode
features for these situations. In program files a dual case mode is provided
that allows you to specify the case mode for literals and comments or remarks
separatly from the case mode for the other sections of the text. An example
of this dual case mode is 'BL' which means BASIC over lower case mode. The
'B' indicates that the file is a BASIC program file and all non-literals and
non-remarks are to be forced to upper case. The 'L' indicates that literals
and remarks are to be translated to their inverse case mode.

It is necessary to specify which kind of language the program is written in
primarily because comments or remarks are specified differently in various
languages. BASIC always starts a remark statement with the characters REM;
the ASSEMBLER language, however, always starts comments with a semicolon, etc.

This "intelligent" interpretation of case mode only occurs during multiline

EDIT - 5 CASE

EDIT REFERENCE MANUAL

INPUT or REPLACEment of text. In all other subcommands and in the command
mode of the Editor the alternate case mode is in effect. In the above examle
this would be the 'L' mode.

The dual case mode may be specified at one time or separately.

A

B

C

blank

Indicates that the text is to be treated as if it was for an Assembly
source program. In this mode all characters are translated to
uppercase unless they are within quotes (literals) or follow a
semicolon in the line (comment). This is the default case mode for
file types ASSEMBLE, MACRO, and COPY.

Indicates that the text is to be treated as if it was for a BASIC
source program. In this mode all characters are translated to
uppercase unless they are within quotes (literals) or follow the verb
REM.

Indicates that the text is to be treated as if it were a COBOL source
program. iN this mode all characters are translated to uppercase
unless they are within quotes (literals) or they follow an asterisk
or slant (/) in column seven (7) of the line.

If no mode is specified then the OASIS Editor will display the
current CASE mode.

3.2 Htab Command

The HTAB command instructs the Editor about which character is to be used as a
tabulation character and whether or not to translate the character into the ANSI
tab character (CTRL/I) or the proper number of spaces. The format of the HTAB
command is:

HTAB [char] [ONIOFF]

Where:

char Indicates the character to be used on input for the tabulation character.

ON Specifies that the character, when input as text, is to be translated into
the ANSI tab character (CTRL/I).

OFF Specifies that the character, when input as text, is to be translated into
the proper number of spaces, according to the current TABSET command.

<blank> If no character or status is specified after the HTAB command then the
Editor will display the current HTAB character and status.

The HTAB command only affects the character specified when input as part of the
multiline INPUT or REPLACE command. (INPUT and REPLACE immediate and MODIFY are
not affected by this command.)

3.3 Linemode Command

The LINEMODE command instructs the Editor on whether or not to insert line numbers
before each line of text. This feature is especially useful when editing a program
file and for that reason the LINEMODE command has a default of ON when the file

LlNEMODE - 6 - EDIT

CHAPTER 3: GLOBAL COMMANDS

type is BASIC or EXEC.

The format of the LINEMODE command is:

LINEMODE [ONIOFF)

Where:

ON Indicates that the text is to contain a preceding line number. This
is the default for program file types. When the LINEMODE is ON the
operator does not type line numbers for each line of text added to
the file. Instead the Editor prompts the operator with the next line
number available followed by a space. The operator then enters the
line of text for that line number. While LINEMODE is ON the operator
cannot change the line number of a line of text except by deleting
the line and then re-adding it with the new line.

When the LINEMODE is first set ON, ZONE is set to 6, WRAP is set OFF,
and the Editor does a sequence check of the file to determine if all
of the lines are in their proper ascending sequence. Missing line
numbers are acceptable, but if the file contains lines that are out
of sequence the Editor will display an error message along with the
first line of text that it found out of sequence and set LINEMODE
OFF.

If the Editor finds no sequence errors then LINEMODE is set ON.

For more information regarding LINEMODE and line numbers see the
RENUMBER, ZONE, PROMPT, MODIFY, and nnnn commands.

OFF Indicates that the Editor is not to prompt the operator with line
numbers nor is it to perform any sequence checks. ZONE is set to 1.

blank If no ON or OFF is specified for the LINEMODE command then the Editor
will display the current status of LINEMODE.

3.4 Prompt Command

The PROMPT command instructs the Editor on the increment value for line number
prompts. The format of the PROMPT commrnand is:

Where:

nnnn

EDIT

PROMPT [nnnn)

Indicates the increment value to be applied to the current line
number when the Editor prompts the operator for the next line of
input. Unless otherwise specified the increment value has a default
of 10 for all file types.

The PROMPT nnnn command will always set the increment value but this
value is never used unless LINEMODE is ON.

The value of nnnn must be an integer between 1 and 9999, inclusive.

When the Editor is accepting input of lines of text between two lines

- 7 PROMPT

EDIT REFERENCE MANUAL

of current text and LINEMODE is ON the Editor first adds the prompt
increment to the previous line number and checks the line number of
the next line. If the prompt line number is greater than or equal to
the line number of the next line number then the difference of the
last line number and the next line number is divided by two and
rounded down to generate the prompting line number.

blank If no increment value is specified after the PROMPT command then the
Editor will display the current prompt value.

3.5 Renumber Command

The RENUMBER command instructs the Editor to renumber all line numbers of the text
file. The RENUMBER command can not be be used unless LINEMODE is ON. The format
of the RENUMBER command is:

Where:

startfl

incrfl

RENUMBER [start' [iner']]

Indicates that the current line numbers are to be renumbered starting
with this value. If the starting number is not specified the default
value is the current value of the PROMPT increment.

Indicates that when the lines are renumbered this value will be added
to the last renumbered line to produce the line number of the next
renumbered line. When this value is not specified the current value
of the PROMPT increment is used.

The RENUMBER command is very powerful when used with a BASIC program. (For the
Editor to recognize a file as a BASIC program it must have a file type of BASIC.)
The Editor is programmed with the intelligence to update all references to line
numbers that are changed; this includes any statement that transfers control to
another line in the program, such as GOSUB, GOTO, IF-THEN, etc.

For example:

)EDIT EXAMPLE BASIC S
EDIT
*PAGE

10 REM This is an example - do nothing program
11 FOR I = 1 TO 10
18 PRINT I
22 NEXT I
26 GOTO 11
32 IF 1)5 THEN 10 ELSE NULL
40 ON I GOSUB 50,51,52,53,56,70,75
41 STOP
50 RETURN 41
51 RETURN
52 RETURN
53 GOTO 50
56 RETURN 41
70 STOP\RETURN
75 GOTO 50

100 END

RENUMBER - 8- EDIT

*REN 100 10
*TOP
*p

100 REM This is an example - do nothing program
110 FOR I = 1 TO 10
120 PRINT I
130 NEXT I
140 GOTO 110
150 IF 1)5 THEN 100 ELSE NULL
160 ON I GOSUB 180,190,200,210,220,230,240
170 STOP
180 RETURN 170
190 RETURN
200 RETURN
210 GO TO 180
220 RETURN 170
230 STOP\RETURN
240 END

CHAPTER 3: GLOBAL COMMANDS

3.6 Tabset Command

The TABSET command instructs the Editor what column numbers the tab character is to
be translated to for display purposes. The TABSET command has different default
values depending upon the file type of the file being edited. The format of the
TABSET command is:

Where:

list

blank

Is a list of column
the columns that a
buffer pointer to.
with a typewriter.
pointer and cursor
sixteen (16) columns

TABSET [list]

numbers separated by spaces or commas indicating
tab character (CTRL/I) will position the text

This command is similar to setting the tab stops
When a tab character is encountered the buffer
are positioned to the next tab column. Only

may be specified as tab stops.

The default TABSET for ASSEMBLY Programs is: 10 16 28.

the default tabset for COBOL programs is: 8 12 16 20 24 28 32 36 40
44 48 52 56 60 64 68 72.

the default tabset for FORTRAN programs is: 5 10 15 20 25 30 35 40 45
50 55 60 65 70 75 80.

The default TABSET for all other file types is: 6 11 16 21 26 31 36
41 46 51 56 61 66 71 76 81.

When no list of column numbers is typed the Editor will display the
current tab settings.

3.7 Truncate Command

The TRUNCATE command informs the Editor what the longest line of text will be. The
format of the TRUNCATE command is:

EDIT - 9 - TRUNCATE

EDIT REFERENCE MANUAL

TRUNC [nnn)

Where:

nnn Indicates the column number that text is not to exceed. Whenever a
line of text is INPUT, CHANGEd, or MODified this value is checked by
the Editor and, if the length of the line exceeds this value the line
will be truncated to this length and the message: "Truncated:" is
displayed along with the line of text after trunctation.

blank

The default
source files
255.

value for the TRUNCATE command for FORTRAN and COBOL
is 72. For all other file types the default value is

When no parameter is entered the Editor will display the current
TRUNCATE value.

The TRUNCATE command is destructive in the sense that characters entered after the
truncation column are lost before the line of text is saved in memory.

3.8 Verify Command

The VERIFY command instructs the Editor whether or not to display the current line
after a command has been executed, or a line of text has been changed, and, if so,
what column number to stop the verification on. The format of the VERIFY command
is:

VERIFY [ONIOFF) [nnn}

Where:

ON Indicates that the Editor is to display the current line before the
Edit prompt character is displayed. In addition, whenever a line is
changed by the CHANGE command, the line will be displayed after the
change has been made. This is the default status of the VERIFY
command.

nnn Indicates the column number of the last character that is to be
displayed when a line is verified. The initial value of this
parameter is 255. After the Editor is entered, this parameter is
only changed by the operator by using the VERIFY command.

OFF Indicates that the Editor is not to display text lines unless
specified by a PAGE, LIST, or TYPE command. The operator may include
a verify column number with the OFF option and the Editor will save
the column number but not use it until VERIFY is set ON again.

blank When no parameters are specified with the VERIFY command the Editor
will display the current status of the VERIFY mode.

3.9 Wrap Command

The WRAP command informs the Editor that new lines of text may "wrap" from one line
to the next, and that when this occurs the Editor is to clean up the word
boundaries at line overflow time. This command is only helpful on text files,
especially SCRIPT type files. The format of the WRAP command is:

- 10 - EDIT

CHAPTER 3: GLOBAL COMMANDS

WRAP [ONIOFF]

Where:

ON Indicates that the WRAP mode is to be set ON. This is the default
setting for all non-program file types. When the WRAP mode is set ON
the Editor will check the character input as the last character of
the physical line. If this character causes the line length to
exceed the physical line length (63 for the VDM) then the Editor
checks to see if it needs to wrap the line to the next line.

OFF

blank

WRAP mode may not be set ON while LINEMODE is ON.

If the character checked is a word delimiter (the space or tab
character) the Editor will insert an end-of-line code, position the
cursor to the next line and continue to accept input as if the
operator had finished the line with a carriage return.

If the character checked is not a word delimiter, the Editor will
search backward to find the beginning of the word, and transfer this
partial word to the next line of text. The partial word is erased
from the current line in the buffer and on the screen; the line is
closed off with an end-of-line code and the cursor is positioned to
the next line after the partial word. The operator continues to
enter text. All of this "text manipulation" occurs so fast that the
operator will notice no degradation of input speed.

When WRAP is ON and the user enters a line of text that contains no
word delimiters, the Editor will insert a word delimiter (space) at
the end of the physical line. If this feature causes any problems
the user should set WRAP OFF before entering a line of text that
contains no word delimiters.

When wrap mode is on a multiline input or replace is being performed,
the bell will sound five (5) columns before the truncate column.

Indicates that the Editor is not
"wrap" from one line to the next.
program file types.

to allow lines of input text to
This is the default mode for all

When no parameter is specified the Editor will display the current
WRAP mode.

3.10 Zone Command

The ZONE command instructs the Editor which column of text is to be treated as the
first character. The ZONE column number is used by all of the line oriented,
string related commands, except the FIND and MODIFY commands. These commands will
ignore all characters before and including the ZONE column. The format of the ZONE
command is:

ZONE [nnn]

Where:

nnn Indicates the character position that the string related commands are

EDIT - 11 - ZONE

EDIT REFERENCE MANUAL

blank

to use as the first character of text. This number is automatically
set to 6 by the LINEMODE ON command. ZONE may not be set to a value
less than 6 while LINEMODE is ON.

When no parameter is specified the Editor will display the current
ZONE column number.

The ZONE command is non-destructive, that is, the characters before the ZONE column
number are not lost, they are just ignored by the string related commands. For
instance, if ZONE were 5 and the operator typed a LOCATE /string/ command the
editor will only search for that string in each line of text after column 5.

ZONE - 12 - EDIT

TEXT POINTER POSITIONING COMMANDS

The following OASIS Editor commands allow the operator to change the position of
the text buffer pointer.

4.1 Bottom Command

The BOTTOM command allows the operator to position the pointer to the end of the
text. The format of the BOTTOM command is:

BOTTOM

The BOTTOM command will position the pointer to the line before the end of file
marker, and, if the VERIFY mode is ON, display the line. If there are no lines of
text in the file then the BOTTOM command will display TOF: indicating that the line
before the end of file marker is the top of file marker.

4.2 The Carriage Return Command

The carriage return command is provided as a quick and easy means of advancing the
text pointer to the next line of text in the file. It is identical in effect to
the DOWN 1 command or the NEXT 1 command. The format of the carriage return
command is simply to enter a carriage return after the Edit prompt character.

4.3 Down Command

The DOWN command allows the operator to position the pointer down a number of lines
or down to the next line that contains a specified string. The DOWN command, when
used with a string parameter, a ?, or no parameter, is interpreted by the Edit
program to be a LOCATE command. The format of the DOWN command is:

Where:

nnn

string

?

blank

DOWN [nnni/string 11]

Indicates that the Editor is to position down nnn lines. If the
value of nnn is greater than the number of lines remalnlng in the
file then the Editor will position down to the end of file marker.

Indicates that the Editor is to LOCATE the next occurrence of string.
(The LOCATE command is actually executed.)

Indicates that the last valid LOCATE command is to be displayed on
the console.

When no parameter is specified after the DOWN command then DOWN 1 is
assumed.

The DOWN command is identical in effect and format to the NEXT command.

4.4 Down Arrow Command

The down arrow command provides a quick and easy means of specifying that the text
pointer is to advance one line of text. When the operator types the down arrow key
the Editor will interpret it as the DOWN 1 command, display the message DOWN 1, and
advance the text pointer one line of text. Some terminals label the down arrow key

EDIT - 13 DOWN-ARROW

EDIT REFERENCE MANUAL

as "line feed" or "LF".

4.5 Find Command

The FIND command allows the user to locate or find a line of text that starts with
a specific sequence of characters. The format of the FIND command is:

FIND [stringl?]

The FIND command does not allow the string of characters to be surrounded with
delimiters.

The FIND command searches the text file starting with the line following the
current line, searching for a line of text that begins with string. Trailing
blanks in string are ignored. Preceding blanks (other than the separator between
FIND and string) are treated as part of the string.

The FIND command uses the value of the ZONE to determine the first character of
each line. This is useful when program files are being edited.

When the FIND command is used with no string parameter, the last valid FIND command
will be ~xecuted again.

The FIND command may be used in conjunction with the question mark, indicating that
you wish the last valid FIND command displayed on the console. For example:

*FIND The
The quick brown fox jumped over the lazy black and pink dog.
*FIND?
The
*F
The beginning of this line starts with the word "The".

*
4.6 List Command

The LIST command is a synonym of the TYPE command and is provided as an alternate
means of displaying text. The syntax of the LIST command is identical to the TYPE
command except that the command name is LIst.

4.7 Locate Command

The LOCATE command allows the user the ability to locate and position to the next
occurrence of a sequence of characters. The format of the LOCATE command is:

Where:

string

LOCATE

LOCATE l/string[/]I?]

indicates the sequence of characters that the Editor is to search
for. The search begins with the line following the current line. If
the sequence of characters is found then the text pointer is
positioned to the line that contains that string, and, if VERIFY is
ON, the line is displayed. If the sequence of characters is not
found then the Editor displays the message: "Not Found:" followed by
the command that is was trying to execute. The text pointer is not

14 EDIT

CHAPTER 4: TEXT POINTER POSITIONING COMMANDS

changed when the string is not found.

blank Indicates that the last valid LOCATE command is to be executed again.

The LOCATE command may be used in conjuntion with the question mark, indicating
that you wish the last valid LOCATE command displayed on the console. For example:

*LOCATE IThel
The quick brown fox jumped over the lazy black and pink dog.
*L?
IThe

*
4.8 Next Command

The NEXT command is a synonym of the DOWN command and is provided as a more natural
word for the function of advancing to the next line of text. The syntax of the
NEXT command is identical to the DOWN command execept that the command name is
Next.

4.9 Page Command

The PAGE command allows the user to display a page of text and to position the text
pointer to the end of the next page of text. The format of the PAGE command is:

PAGE

The PAGE command will display one screen of text.

The first line of text displayed by the PAGE command is the current line. The last
line of text displayed on the screen by the PAGE command is determined by the class
of terminal designated by the OASIS ATTACH command. For the CRT this would be 15
lines of text. At the end of the execution of the PAGE command the text pointer
will be positioned to the beginning of the last line displayed. This means that if
two PAGE commands are typed consecutively then the first line displayed by the
second PAGE command is the last line displayed by the first PAGE command. In this
manner it is easy to observe the flow of text in spite of the page break.

4.10 Top Command

The TOP command allows the operator to position the text pointer to the beginning
of the text file. It has the inverse effect of the BOTTOM command. The format of
the TOP command is:

TOP

Upon execution of the TOP command the text pointer will be positioned to the top of
file marker which is before the first line of text. The Editor will display the
message: "TOF:". This command is the only command that will allow the operator to
enter lines of text before the first line of text. Refer to the INPUT command.

4.11 Type Command

The TYPE command allows the operator to view several lines of text and to position
the pointer at the end of the text displayed. The format of the TYPE command is:

EDIT - 15 - TYPE

EDIT REFERENCE MANUAL

TYPE [nnn]

Where:

nnn Indicates the number of lines of text to display. If no parameter is
entered after the TYPE command then the current line of text is
displayed. The text pointer will not be changed. The TYPE command
always displays the current line of text as the first line displayed.
After displaying the number of lines specified the text pointer will
be positioned to the beginning of the last line displayed. If VERIFY
mode is ON the current line will not be displayed again after the
TYPEd display as this would be confusing.

blank When no parameter is specified after the TYPE command then the
default value of 1 is used and the current line of text is displayed.

4.12 Up Command

The UP command allows the operator to position the text pointer backward in the
text file. The effect of the UP command is the reverse of the DOWN command. The
format of the UP command is:

Where:

nnn

string

?

blank

UP [nnni/string 11]

Indicates that the Editor is to position up nnn lines from the
current text pointer. If the value of nnn is greater than the number
of lines that precede the current line then the text pointer will be
postioned to the top of file marker and the message: "TOF:" will be
displayed.

Indicates that the Editor is to search the file backward for the
first occurrence of the sequence of characters indicated by string.
The search starts from the current text pointer.

Indicates that the last valid UP command is to be displayed on the
console.

When no parameter is entered after the UP command
/string/ command is used. If there have been no
commands executed then UP 1 is used.

then the last UP
prior UP /string/

4.13 Up Arrow Command

The up arrow command allows the user a quick and easy means of specifying that the
text pointer is to back up one line of text. When the operator types the up arrow
key the Editor will interpret it as an UP 1 command, display the message UP 1, and
back the text pointer up one line of text. If the console terminal does not have
an up arrow key then the user may use the CTRL/Z key instead.

4.14 The nnnn Command

The nnnn command allows the operator to position the text pointer to a specific
line number in a text file that contains line numbers. The nnnn command can only
be used when LINEMODE is ON. The format of the nnnn command is:

nnnn 16 EDIT

CHAPTER 4: TEXT POINTER POSITIONING COMMANDS

nnnn

The nnnn command does not position to absolute line number nnnn nor to relative
line number nnnn. The UP and DOWN commands provide this ability. The nnnn command
positions the text pointer to the line whose text begins with the line number nnnn
and can only be executed when LINEMODE is ON. The line whose number is nnnn can be
either before or after the current position of the text pointer. The Editor
determines the direction of positioning by "knowing" that line numbers are in
ascending sequence.

EDIT - 17 - nnnn

EDIT REFERENCE MANUAL

nnnn - 18 - EDIT

TEXT MODIFICATION COMMANDS

The following OASIS Editor commands allow the operator to add, change, or delete
lines of text from the file.

5.1 Change Command

The CHANGE command allows the operator to change a sequence of characters to a
different sequence of characters. This change can be for one or more occurrences
of the string in a line and for one or more lines. The format of the CHANGE
command is:

CHANGE [/from-string/to-string[/ [nl [n2 [n3]1111

Where:

from-string Indicates the sequence of characters that the operator wishes to
change.

to-string Indicates the sequence of characters that the operator wishes the
from-string to be changed to. The terminating delimiter is not
necessary if the defaults are used for the following parameters.

nl Indicates the number of lines that the CHANGE command is to examine
and possibly change. When this number is not specified the default
value of 1 is used and n2 and n3 cannot be specified but have values
of 1 also.

An asterisk (*) may be used instead of a number indicating that all
lines from the current line through the end of the file are to be
examined. After the CHANGE command has executed, whether any changes
were made or not, the text pointer will be positioned down nl minus
one lines. In other words if nl is 2 then the current line after the
CHANGE command is the next line.

n2 Indicates the number of occurrences per line that are to be changed.
When this number is not specified the default value of 1 is used and
n3 cannot be specified. An asterisk (*) may be used instead of a
number indicating that all occurrences from the starting occurrence
are to be changed.

n3 Indicates the starting occurrence number of the from-string on each
line that is to be changed. When this number is not specifed the

?

default value of 1 is used.

Indicates that the last valid change command is to be displayed on
the console.

Entering the CHANGE command with no parameters indicates that the last valid CHANGE
command is to be executed again.

EDIT - 19 - CHANGE

EDIT REFERENCE MANUAL

The following examples and explanations should clarify the use of the CHANGE
command.

Example 1 : CHANGE /abcdef/xyz

Example 2: CHANGE /abcdef/abc/ 1 1 2

Example 3: C /abc// 1 * 1

Example 4: C /abcd/dcba/ 2 1 3

Example 5: C /abcd/efgh/ 1 *

Example 6: CHANGE

Example 7: CHANGE ""'Z" ••• "

Example 1 specifies to the Editor that the current line is to be examined and the
first occurrence of the string "abcdef" is to be changed to the string "xyz". Only
the first occurrence of this string on the current line is to be affected.

Example 2 specifies to the Editor that the current line is to be examined and the
second occurrence of the string "abcdef" is to be changed to the string "abc".
Only the second occurrence of this string on the current line is to be affected.
After the current line is examined and changed if it qualifies then the text
pointer is advanced one line and the new current line is examined in the same
manner. No other lines are examined or affected.

Example 3 specifies that all occurrences of the sequence of characters "abc" on the
current line are to be changed to the null string.

Example 4 specifies that the third occurrence of the sequence of characters "abcd"
on the current line and the line following is to be changed to the string "dcba".
A maximum of two occurrences could be changed with this command: one on the current
line and one on the line following. After this command has been executed the text
pointer is at the beginning of the line that follows the "old" current line.

Example 5 specifies that all occurrences on all lines that the current line,
including the current line, are to be changed. In this example n3 has a default
value of 1 meaning that the change will start with the first occurrence on each
line.

Example 6 specifies that the last valid CILANGE command is to be executed again. In
this case the last valid CHANGE command is example 5: CHANGE /abcd/efgh/l *

Example 7 shows the special case of changing the end of line marker (specified with
the CTRL/Z) to three periods. This does not actually change the end of line marker
but adds the period character immediately in front of it. This provides a fast and
convenient method of changing characters at the end of a line or group of lines.

The CHANGE command
that you wish the
example:

may be used in conjunction with the question mark, indicating
last valid CHANGE command to be displayed on the console. For

*CHANGE /abc/def/l *
*CHANGE?

CHANGE - 20 - EDIT

CHAPTER 5: TEXT MODIFICATION COMMANDS

/abc/def/l *
*

5.2 Combine Command

The COMBINE command joins the current two lines of text (the current line and the
line immediately following) into one line of text. The format of the COMBINE
command is:

COMBINE

For example, if the current line of text is:

Now is the time for all

and the next line of text is:

good men to come to the aid of their country.

then the COMBINE command would remove those two lines and replace them with:

Now is the time for all good men to come to the aid of their country.

5.3 Delete Command

The DELETE command allows the operator to delete whole lines of text from the file.
The format of the DELETE command is:

DELETE [nnni/string]

Where:

nnn Indicates the number of lines to be deleted, including the current
line.

string

blank

Indicates that the current line is to be deleted and all lines that
follow, up to, but not "including, the line that contains string. If
no occurrence of string is found following the current line then all
lines are deleted from the current line to the end of the file.

When no parameter is specified after the command DELETE then only the
current line is deleted.

5.4 Duplicate Command

The DUPlicate command allows the user to duplicate the current line of text one or
more times. The format of the DUPlicate command is:

DUP [nnn]

The DUPlicate command can only be used when LINEMODE is OFF as it would create
duplicate line numbers otherwise.

The DUPlicate command will duplicate the
duplicate lines following the current line.
value of 1 is used.

EDIT - 21 -

current line nnn times and place the
When nnn is not specified the default

DUPLICATE

EDIT REFERENCE MANUAL

5.5 Get Command

The GET command allows the user to add lines of text to the file in memory,
previously stored on a temporary work file or an external disk file. The format of
the GET command is:

GET [(file-dese)] [/fr-string/lfr-eount l/to-string/lto-eount]]

Where:

file-desc Indicates the external file description of a sequential disk file
that is to be opened and added to the file in memory.

When file-desc is not specified then the temporary work file used by
Edit is used. Text is added to this temporary work file with the PUT
command and only exists during the current edit session.

fr-string Indicates a delimited string. The file is searched for this string
and the first line of text that contains this string is the starting
line of text transferred to the file in memory.

fr-count Indicates that the first fr-count minus one lines of the work or
external file are to be ignored. For instance, if fr-count is 5 then
the fifth line of the work or external file is the first line
transferred.

When fr-string or fr-count is not specified to-string or to-count may
not be specified. In this case the entire work or external file will
be transferred.

to-string Indicates that lines of text are to be transferred up to and
including the line containing to-string.

to-count Indicates the number of lines of text to be transferred.

The GET command may be used only when LINEMODE is OFF.

Example

If a file named SAMPLE.TEXT:S contains the following information -

The OASIS Editor allows the user to create and
maintain data files that are used by other
system programs such as the OASIS BASIC inter
preter or the SCRIPT processor. The files
maintained by the EDIT program are not necessarily
restricted to use by these other system programs.

and the operator type this command:

*GET SAMPLE.TEXT:S /system/ 3

the following lines of text will be added to the file in memory -

GET - 22 - EDIT

CHAPTER 5: TEXT MODIFICATION COMMANDS

system programs' such as the OASIS BASIC inter
preter or the SCRIPT processor. The files
maintained by the EDIT program are not necessarily

After the lines are added the current line will be the line starting with the word
"maintained".

5.6 Input Command

The INPUT command allows the user to add new text to the file.
modes: single line and multiple line. Single line input mode
immediate mode. The format of the INPUT command is:

INPUT [string]

It operates in two
is referred to as

When the INPUT command is followed by a space and text the text will be input to
the file as a new line after the current line and the new text will become the
current line. Only one line of text may be input in this immediate mode.

When LINEMODE is ON then the line of text being input with the immediate mode must
include a line number or an error message will be displayed. The line number must
be followed by a space.

When a line of text is input using the immediate mode the space that separates the
INPUT command and the text is not added to the file; it is only a delimiter.

When the INPUT command is followed by a space and no text a blank line will be
added to the file after the current line and this blank line will become the
current line.

When the INPUT command is not followed by any text but only a carriage return then
the INPUT command will allow multiple lines of text to be added. ' These lines of
text will always be added after the current line. As each line of text is added to
the file it becomes the current line.

When the Editor is accepting multiple lines of text no prompting character is
displayed on the left side of the console. This is because the prompting character
indicates that the Editor is ready to accept a command and in this case it is not
accepting commands but text. When LINEMODE is ON the operator is prompted with the
next available line number at the beginning of each line of text. When LINEMODE is
OFF no prompt of any kind is displayed.

It is only when the Editor is accepting multiple lines of text that the WRAP mode
ON has any effect. In addition to the normal use of the WRAP mode ON as explained
in the WRAP command, the user gains the ability to add "null" lines. This means
that when you wish to have a blank line of text the operator does not have to type
a space followed by a carriage return but may type a carriage return only.

There are two methods of returning to the command mode, depending upon the status
of the WRAP mode. When WRAP mode is OFF the user merely types a carriage return
with no text preceding it. When WRAP mode is ON the user must type the Program
Cancel-key to end the input. If the Program Cancel-key is typed in the middle of a
line of input that line will not be added to the file.

EDIT - 23 - INPUT

EDIT REFERENCE MANUAL

5.7 Put Command

The PUT command allows the operator to save lines of text in a temporary work file
or an external disk file. The format of the PUT command is:

PUT [file-dese] [eountl/to-string/l*l

Where:

file-desc Indicates the file description of the external disk file. When this
parameter is not specified the temporary work file is used.

count Indicates the number of lines of text that are to be written to the
file. The transfer of text always starts with the current line.

to-string Indicates that lines of text are to be transferred to the file up
through and including the line that contains this string. When this
string is not found in the text then the remainder of the text is
copied to the file.

*

blank

Indicates that the remainder of the file in memory is to be copied to
the file specified.

Indicates that the current line only is to be copied to the file
specified.

The PUT couuuand is a destructive write. By this is meant that the previous
contents of the external disk file or temporary work file are erased before the new
text is written.

The text pointer will be positioned to the last line of text that was transferred
to the file.

5.8 Put and Delete Command

The PUTD command allows the operator to save text in a temporary work file or an
external disk file and to delete that text from the file in memory. The syntax of
the PUTD command is identical to the PUT command with the exception that the
command name is PUTD.

The PUTD command functions similar to the PUT command with the addition that the
lines of text are deleted from the file in memory as they are transferred to the
work or external file. The text pointer will be positioned to the line following
those lines transferred.

5.9 Replace Command

The REPLACE command allows the user the ability to replace an existing line of text
with a new line or lines of text. The format of the REPLACE command is:

REPLACE [text]

Similar to the INPUT command discussed above the REPLACE command has two modes:
immediate and multiple line. In the immediate mode the REPLACE command is
separated from the text by one space. When executed the text replaces the current
line and the Editor returns to the command mode. The immediate mode of the REPLACE

REPLACE - 24 - EDIT

CHAPTER 5: TEXT MODIFICATION COMMANDS

command is not allowed when LINEMODE is ON.

When the REPLACE command is not followed by any text the operator may replace the
current line with multiple lines of text. The current line is not actually deleted
until it is replaced by at least one line. This feature allows the operator to
recover from a bad replace if he has not actually finished typing the first line.
When the first line is a return to the comma~d mode with no text, the Editor
restores the current line with no change to the text file.

The exit from the multiple line REPLACE command is identical to the INPUT command.

5.10 Split Command

The SPLIT command divides the current line into two lines of text. The format of
the SPLIT command is:

SPLIT /string[/]

Where:

string Indicates the string of characters after which the split is to be
performed.

For example, if the current line of text is:

Now is the time for all good men to come to the aid of their country.

and the command SPLIT laidl is given then the text will look like:

Now is the time for all good men to come to the aid
of their country.

with the second line becoming the current line.

EDIT - 25 - SPLIT

EDIT REFERENCE MANUAL

SPLIT - 26 - EDIT

CHAPTER 6

FILE MODIFICATION COMMANDS

The following OASIS Editor commands affect the disk image of the text file being
edited. The various commands allow the user to update the file and return to the
CSI; update the file and continue the EDIT session; return to the CSI without
updating the file; interrogate the name of the disk file; change the name of the
file. None of the update commands may be abbreviated due to the chance of an
inadvertant typing error.

You may not SAVE or FILE a file that is delete protected (all non-private files
have an implied delete protections).

6.1 File Command

The FILE command allows the user to terminate an EDIT session normally by updating
the file and returning to the CSI. The format of the FILE command is:

FILE [<file-desc)l

Where:

<file-desc> Indicates an optional file description. When the <file-desc> is
specified, only as much as is necessary need be entered, the omitted
parameters will default to the current file description. The current
file description may be interrogated with the NAME command.

When <file-desc> is specified the current file description is not
changed but the <file-desc> specified is the description used by the
FILE command.

When no <file-desc> is specified after the FILE command the current file
description is used. In either case when the FILE command is executed the Editor
writes the file in memory to the disk file. If the Editor finds an existing file
on the specified disk with the same .name and type as that being filed, the file
type of that file is renamed to BACKUP, erasing any other file by that same
description. When the Editor has successfully "filed" the text file the file
description that it was saved as is displayed on the console terminal along with
the message "filed". Control returns to the CSI.

6.2 Name Command

The NAME command allows the user to interrogate the current file description or to
change the file description. The format of the NAME command is:

NAME [<file-desc)l

Where:

<file-desc> Indicates the file description to be changed to. Only as much of
the description as is necessary need be entered. For instance if
only the file name is to be changed then only the file name need be
entered. If the file type is to be entered then both the file name
and type must be entered because the parameters are position
dependent. An asterisk may be used for the file name to indicate it
is the same as the current file name.

EDIT - 27 - NAME

EDIT REFERENCE MANUAL

blank When no file description is entered then the Editor will display the
current file description.

6.3 Quit Command

The QUIT command allows the user to abort an Edit session without updating the file
on the disk. This may be necessary for many reasons such as specifying the wrong
file in the EDIT command or the operator has decided that the changes made to the
file should not be saved. The format of the QUIT command is:

QUIT [command] I [return code]

When the QUIT command is executed with no command or return code following, the
Editor will set the return code to zero and return control to the environment that
invoked the EDIT command (CSI or EXEC) without updating the file. When the command
parameter is specified the Editor will pass the command to the CSI without updating
the file. The specified command must be a valid OASIS command with all parameter
and options included. After the specified command has been executed control will
return to the environment that invoked the EDIT command. When the return code is
specified it must be a numeric value between 0 and 255. The value is assigned to
the return code and control is returned to the environment that invoked the EDIT
command.

6.4 Save Command

The SAVE command allows the user to save the current status of the text file on the
disk and to continue the Edit session. The format of the SAVE command is:

SAVE [<file-dese)]

The <file-desc> option is the same as for the FILE command. When the SAVE command
is executed the Editor updates the disk file using the file-desc specified or the
current file description when not specified. Any file on the disk with the same
description is renamed to file type BACKUP.

When the SAVE command has successfully updated the disk file the file description
used is displayed on the console terminal along with the message "saved". Control
returns to the Edit command mode.

The Program Cancel-key may be used during the execution of the SAVE command. When
it is used the disk file being updated is erased to insure that the disk does not
become misallocated and control is returned to the command mode.

SAVE - 28 - EDIT

CHAPTER 7

OTHER EDIT COMMANDS

This section discusses the OASIS EDITOR commands that do not fit int~ the previous
categories due to the fact that these commands may invoke commands from various
categories. These commands include the AGAIN command which re-executes the last
command executed; macro commands which may be a series of commands from any
category; the question mark (?) command which displays the last valid command
executed; the CSI command which executes most of the OASIS commands.

7.1 Again Command

The AGAIN command re-executes the last valid, action type command executed. The
format of the AGAIN command is:

AGAIN

All action type commands are repeatable by the AGAIN command. These commands
include: BOTTOM, CASE, CHANGE, COMBINE, CSI, DELETE, DOWN, DUP, FILE, FIND, GET,
HTAB, INPUT, LINEMODE, LIST, LOCATE, MODIFY, NAME, NEXT, PAGE, PROMPT, PUT, PUTD,
REPLACE, SAVE, SPLIT, TABSET, TOP, TRUNCATE, TYPE, UP, VERIFY, and ZONE.

7.2 Column Command

The COLUMN command displays the column numbers across the console screen. The
format of the command is:

For example:

*TYPE
Now is the time for all good men
*COL

COLUMN

1 2 345 6 7
1234567890123456789012345678901234567890123456789012345678901234567890123456789
Now is the time for all good men

*
7.3 Error Command

The ERROR command, available only when used within a macro, allows you to specify
an action to be taken when another command within the macro fails (specifically,
CHANGE, FIND, and LOCATE commands). The format of the ERROR command is:

Where:

count

ERROR [count]

Indicates the number of commands following the ERROR command to be skipped
if the command following the ERROR command fails.

For example, the following macro will insert a line of text after the last line
that starts with HI.

EDIT - 29 - ERROR

EDIT REFERENCE MANUAL

I I
I \11

X ERROR 2&FIND HI&SKIP -3&1 THIS IS A LINE OF TEXT

7.4 The Edit Macro Commands

A macro command is a stored Edit command or list of commands that can be recalled
later for execution. The OASIS EDITOR has three macro commands available to the
operator: X, Y, and Z.

The macro commands allow the user to repeat any command or sequence of commands.

The three macros are labeled X, Y, and Z. For documentation purposes only the X
macro will be discussed. Each of the three macros can be used in the same manner
as the other two. Each may be loaded with a command or list of commands and each
may be later executed independent of the other two. One macro may execute another
macro as a command in its list.

Loading A Macro

Before a macro command may be executed it must first be loaded with a command or
list of commands. To do this the user types the macro name followed by the command
or commands joined with the ampersand (&) character. For example:

X CHANGE labcdldcbal
X TOP&TYPE 5&DOWN 22

If one of the strings to be specified in a macro contains an ampersand character
the operator must type two ampersand characters for the Editor to accept it
correctly (&&).

The commands that are loaded into a macro may be abbreviated in the same form as if
they were typed for normal execution. When the commands are loaded they are not
executed but only stored in the macro.

Any valid Edit command may be loaded into a macro for later execution.

Each of the macros may contain up to 255 characters.

Executing A Macro Command

A macro command may be executed any time the Editor is in the command mode and the
macro being executed has at least one command stored in it.

An Edit macro is executed by typing the macro name, optionally followed by the
number of iterations that the macro is to be executed. For example:

X
X 3

When a macro is executed the commands are not displayed on the console terminal but
the results of each command will be displayed if VERIFY mode is ON.

The execution of a macro does not change the contents of the macro.

MACRO - 30 - EDIT

CHAPTER 7: OTHER EDIT COMMANDS

A macro will be executed as many times as the user so specifies in the iteration
number.

The execution of a macro may be aborted by the Editor if it contains a LOCATE,
FIND, or CHANGE that is not successful.

The execution of a macro may be aborted by the user by typing the Program
Cancel-key.

The current contents of a macro may be interrogated by typing the macro name
followed by the question mark.

Edit Macro Examples

The following examples illustrate some of the uses of the macro commands.

Example 1 : X L /OPEN/&U&I CLOSE
Example 2: X L /abcde/&C /XYZ/the/&U 2&P
Example 3: X
Example 4: X 4
Example 5: X LOCATE /abc/&DEL&X
Example 6: X ?

Example 1 loads the X macro with three commands. When this macro is executed it
will first locate the string "OPEN", and then input a line before the line that
contains the string "OPEN". If it cannot locate the string "OPEN" an error message
will be displayed and the macro will be exited.

Example 2 loads the X macro with four commands. When it is executed it will first
locate the string "abcde" then change the first occurrence of "XYZ" on that line to
"the". After the CHANGE command is executed the text pointer is positioned UP two
lines and a PAGE of text is displayed. Again, if the first string cannot be
located the macro will be exited.

Example 3 executes the X macro one time.

Example 4 executes the X macro four times. For the second through the fourth
iterations the macro begins execution with the text pointer positioned as it was
left by the previous iteration.

Example 5 loads the X macro with two commands and a call to itself. This macro,
when it is executed, will LOCATE the line that contains the string "abc" and DELETE
it. Then it will execute itself. This "recursive" sequence of events will
continue until the string "abc" cannot be found. At this point the macro will be
exited.

Example 6 will display the current contents of the X marco.

7.5 Question Mark Command

The question mark command (?) allo\vs the user to display the last valid command
executed. When the a question mark is entered at the command level, the Editor
will respond with the last command executed. For example:

EDIT

*CH /abcd/efgh/
*?

- 31 - ?

EDIT REFERENCE MANUAL

CH /abcd/efgh/
*up 5
*?
UP 5

In addition to the "stand alone" question mark command the question mark may be
used in conjunction with certain other commands to display the current status of
the command in 'question'. The commands that may be used with the question mark
include: CHANGE, FIND, LOCATE, UP, DOWN, and the macros X, Y, and Z.

For example:

*LOCATE /abcde/
*LOCATE?
/abcde
*CHANGE /abc/def/l *
*FIND The
*?
FIND The
*C?
/abc/def/l *
*L?
/abcde
*FIND?
The
*?
FIND The
*X?
LOCATE /abc/&DEL&X

7.6 CSI Command

The CSI command allows the operator to execute most of the OASIS commands without
leaving the Editor. The format of the CSI command is:

CSI <command>

The command is any valid OASIS command including all of the parameters and options
desired. When'the CSI command is executed by EDIT the status of the EDIT program
and the text file itself is saved in high memory. Control is transferred to the
Command String Interpreter along with the command.

When the first character of the command is a greater than character (» the command
will be displayed on the console. When the first character is not a greater than
then the command is executed "silently". Output from the command is determined by
the command itself.

When the command has completed its execution control is returned to EDIT. At this
time EDIT reloads itself, restoring the status and text file from high memory.

You not use the CSI command to execute the larger OASIS commands such as EDIT,
BASIC, etc.

CSI - 32 - EDIT

CSI Example

*TOP
TOF:
*CSI)RENAME TEXT3A.BACKUP:S = OLD3A

)RENAME TEXT3A.BACKUP:S = OLD3A =
TEXT3A.BACKUP:S has been renamed TEXT3A.OLD3A:S

*
7.7 Skip Command

CHAPTER 7: OTHER EDIT COMMANDS

The SKIP command, available only within a macro, allows you to specify branching
within the set of macro instructions. The SKIP command is usually used in
conjunction with the ERROR command. The format of the SKIP command is:

Where:

count

SKIP [[-]count]

Indicates the number of commands to be skipped counting from the command
following the SKIP command.

For example, the following macro will skip back to the ERROR command after each
successful execution of the FIND command:

X ERROR 2&FIND HI&SKIP -3&1 THIS IS A LINE OF TEXT
/1\ 1

1 1

EDIT - 33 - SKIP

EDIT REFERENCE MANUAL

SKIP - 34 - EDIT

MODIFY COMMAND

The Edit MODIFY command is discussed separately in this section for two reasons: it
is the only command that allows the Editor to act like a character oriented text
editor, and when the MODIFY command is being executed there is a new set of
commands available to the user. The format of the MODIFY command is:

Where:

nnn

*

blank

MODIFY [nnnl*]

Indicates the number of lines that are to be modified.

Indicates that all lines starting with the current line to the end of
the text file are to be modified. To exit from this mode before the
end of the file is reached you must use the Program Cancel-key.

When no parameter is specified then the default value of one is used
indicating that the current line is to be modified.

When the MODIFY command is executed the line to be modified is displayed on the
console terminal and the cursor is positioned at the first character position. The
Editor is now in a character oriented mode and the MODIFY command makes full use of
the fact that the console terminal is normally a CRT with cursor positioning
controls. The cursor indicates the current text pointer position in the line. Any
changes made to the line are immediately indicated by the display of the line and
the position of the cursor.

Any control characters imbedded in the line are expanded for display purposes to
two characters: an up arrow character (A) followed by the ASCII representation of
the control character. For example, a CTRL/I is displayed AI. Even though the
control character is displayed as two characters it actually is only one character.
When a control character is deleted from the line both characters are erased from
the display. When a control character is skipped over, both characters are
skipped, etc.

The commands available to you when the Editor is modifying a line are one character
commands, but still the one character is the first character of the word that it is
an abbreviation for. When possible, it is the same character that would be used in
the Edit command mode.

The following sub-sections discuss the commands available from the MODIFY command.
When you type a command it is not displayed as that would disrupt the display of
the line being modified. Any effect that a command has on the text in the line is
immediatly displayed however.

Insert Characters Subcommand (I)

To insert new characters into the line the user types the insert command (I). Any
characters typed after the I has been typed are added to the line before the
current character. As each character is added to the line the remainder of the
line is re-displayed.

To exit from the Insert character command you type a carriage return.

While in the insert character command you may backup one character position by

EDIT 35 - MODIFY

EDIT REFERENCE MANUAL

typing the RUBOUT key. This backs the text pointer up one position, the cursor is
backspaced, and that character is deleted. It is possible to backspace past the
position that the insert command was given.

Delete Character Subcommand (D)

To delete a character from the line you use the delete character command (D).
Every time a D is typed the current character is deleted from the line and the
character is erased from the screen. This is an immediate command.

Replace Characters Subcommand (R)

To replace characters in the line you use the replace character command (R). After
the R command has been typed each character that is typed replaces the current
character and the text pointer is advanced one character position.

To exit from the replace character command you type a carriage return.

While in the replace character command, you may backup a character position by
typing the RUBOUT key. This will back the text pointer up one position and the
cursor will backspace. No characters are deleted and the Editor is still in the
replace character command. It is possible to backspace past the position that the
replace character command was typed and still remain in the replace character mode.

Advance Character Subcommand ()

To advance the cursor and text pointer one position you type the advance character
command (), a space. When the space is typed the text pointer and the cursor are
advanced one character position. You may not advance past the end of the line,
however you may insert new characters at the end of the line or replace characters
at the end of the line.

The right arrow has the same effect as the space key and is more graphic in its
meaning. Both may be used interchangeably.

Find Character Subcommand (F)

To advance the cursor and text pointer to the next occurrence of a specific
character you use the find character command (F) followed by the character to be
positioned to. When the F is typed followed by another character the cursor is
advanced to the next occurrence of that character in the line being modified. The
character specified must be entered in the same case as the character to be found.
When the character can not be found the cursor will be positioned to the end of the
line.

Backspace Character Subcommand (RUB)

To back the text pointer and cursor one character position you type the backspace
character command. This command is any of the keys defined as the character delete
keys, such as left-arrow, CTRL/H or RUB. The left arrow is more graphic in its
meaning and is usually the key that is used for the RUBOUT. When this key is typed
the text pointer and the cursor are backed up one character position.

Uppercase Character Subcommand (U)

To change the current character to uppercase you type the uppercase character

MODIFY - 36 - EDIT

CHAPTER 8: MODIFY COMMAND

command (U). When the U character is typed the current character is translated
into uppercase, redisplayed and the text pointer and cursor are advanced one
character position.

Lowercase Character Subcommand (L)

To change the current character to lowercase you type the lowercase character
command (L). When the L is typed the current character is translated to lowercase,
redisplayed and the text pointer and cursor are advanced one character position.

Beginning of Line Subcommand (B)

To position the cursor and text pointer to the beginning of the line being modified
you use the beginning of line command (B). When the B is typed the cursor is
positioned to the first character in the line.

End of Line Subcommand (E)

To advance the cursor and text pointer to the end of the line you type the end end
of line command (E). When the E is typed the cursor and text pointer are advanced
to the end of the line.

This command allows the user to easily add or change text at the end of the line.

Quit Subcommand (Q)

To quit the modification of the line and restore any changes made to the line you
type the quit modify command (Q). When the Q is typed the line is re-displayed as
it was before any changes were made and the modification of the line is terminated.
If there are any iterations of the MODIFY command remaining then the text pointer
advances one line and the next line is placed in the MODIFY mode.

End Modify Subcommand (RET)

To end the modification of the line and save any changes made to the line you type
the end modify command (carriage return). When the carriage return is typed the
line is re-displayed with all changes saved and the modification of the line is
terminated. If there are any iterations of the MODIFY command remaining then the
text pointer advances one line and the next line is placed in the MODIFY mode.

EDIT - 37 - MODIFY

EDIT REFERENCE MANUAL

MODIFY - 38 - EDIT

APPENDIX A

COMMAND SUMMARY

Command Page
===

Repeat last command executed.
Locate end of file.

AGAIN
BOTTOM
CASE
CHANGE
COLUMN
COMBINE
CSI
DELETE
DOWN

Set upper, lower, mixed, BASIC, or ASSEMBLE case input.
Change text.
Display column numbers.
Join two lines together.
Execute system command and resume edit session.
Remove lines of text.
Advance line pointer.
Duplicate lines of text. DUP

ERROR
FILE
FIND

Action to be taken when macro sub-command fails.
Save text file on disk and return to system.
Locate line starting with specified string.

GET
HELP
HTAB
INPUT
LINEMODE
LIST
LOCATE
MODIFY

Add text from disk file or temporary work file.
Display commands and syntax.
Specify tabulation character and action.
Accept text from keyboard.
Set status of line numbering switch.
Display portion of file on console.
Locate specified string in text.
Allow character-by-character change of current line.
B Beginning of the line. Q
D Delete one character. R
E Advance to end of line. U
F Position to character. <sp)
I Insert characters. <DEL)
L Convert to lower case.
Display name of text file.
Advance line pointer.
Display one screen of text on console.
Set line number increment value.

Quit modification.
Replace characters.
Convert to upper case.
Advance one character.
Backup one character.

NAME
NEXT
PAGE
PROMPT
PUT Add text from text file to external file.
PUTD Move text from text file to external file.
QUIT Abort this edit session.
RENUMBER Resequence line numbers of text file.
REPLACE Replace current line with text from keyboard.
SAVE Save text file on disk and resume edit session.
SKIP Branch within macro command.
SPLIT -Divide one line into two.
TABSET Set tab stops for input and display.
TOP Locate top of file.
TRUNCATE Set maximum line length of input text.
TYPE Display portion of file on console.
UP Position line pointer backwards in file.
VERIFY Set verify mode.
WRAPMODE Set wrap mode.
X,Y,Z Execute or load macro.
ZONE Set column number that CHANGES and LOCATES can examine.
? Display last command executed.
<CR) Advance line pointer one line.
<up-arrow) Position line pointer up one line.
<LF) Position line pointer down one line.

EDIT - 39 -

29
13
5
19
29
21
32
21
13
21
29
27
14
22
3
6
23
6
14
14
35

27
15
15
7
24
24
28
8
24
28
33
25
9
15
9
15
16
10
10
30
11
31
13
16
13

APPENDIX B

GLOBAL COMMAND DEFAULT VALUES

Type Type Type Type Type Type
Command ASSEMBLE COPY/MACRO BASIC EXEC FORTRAN COBOL Other
===
Case AL AL BL U U CL M
Linemode OFF OFF ON OFF OFF ON OFF
Prompt 10 10 10 10 10 10 10
Truncate 255 255 255 255 72 72 255
Verify ON 255 ON 255 ON 255 ON 255 ON 255 ON 255 ON 255
Wrap OFF OFF OFF OFF OFF OFF ON
Zone 1 1 6 1 6 1 1
Tabset 10 16 28 10 16 28 every 5 every 5 every 5 every 4 every 5

- 40 - EDIT

APPENDIX C

EDIT ERRORS AND MESSAGES

Message Explanation
===

Not Sequential Error message - occurs when an attempt is made to EDIT an indexed or
direct file.

Out of Sequence: Information message
LINEMODE ON when the file
sequence.

occurs
contains

when an attempt is
no line numbers or

made to set
it is out of

Renumber Lines: Information message - occurs when LINEMODE is ON and lines are
being added. Indicates that the next line has a line number one greater
than the current line and there are no numbers available to assign to new
lines.

Invalid command syntax Error message - occurs during edit command mode. This error
message indicates that the operator has typed a valid command name but has
used the wrong parameters or has made a typing error.

Unrecognized command: Error message - occurs during edit command mode.
is usually caused by the operator typing text when the Editor
a command. Also occurs when a command abbreviation is
separated by a space from text that follows it.

Too many parameters: Error message - occurs during edit command mode.

This error
is expecting
used and not

Invalid numeric Error message - occurs when the command syntax requires a numeric
parameter but the operator has entered a alpha character.

Space required following command Error message -

Required parameter missing: Error message occurs when the operator has not
entered all of the parameters required by the command syntax.

Must be ON or OFF Error message - occurs when user types a global command that
requires a parameter of ON or OFF and something else was specified.

Must be U, L, M, A, B, C, Ax, Bx, or ex Error message - occurs during CASE command
and operator has not specified a valid CASE mode.

Invalid filename Error message occurs when operator has specified a file
description. File names must start with an alphabetic character, contain
only alphbetic, numeric or the $ character and can be no more than eight
characters in length.

Line number not in range 1-9999 Error message - operator has specified a negative,
zero or a line number greater than 9999. Retry operation.

No prior macro in effect: Error message - occurs when the operator specifies the
execution of a macro that has not been loaded with any commands.

fn.ft:fd filed Information. message - displayed after the Editor has successfully
FILED the text file.

EDIT - 41 -

EDIT REFERENCE MANUAL

fn.ft:fd saved Information message - displayed after the Editor has successfully
SAVED the text file.

File Name Missing Error message occurs when operator has specified a file
description with a missing name field.

File Type Missing Error message - occurs when the operator has specified a file
description with a missing type field.

NEW FILE: Information message - displayed when the EDIT program is first entered
and the specified file to be edited is not found.

EDIT:

INPUT:

Information message - occurs when the Editor re-enters the . Edit command
mode after a multiple line INPUT or REPLACE has been exited.

Information message - displayed when the Editor enters a multiple line
input or replace mode.

EOF: Information message - displayed when the Editor encounters the end of file
marker.

TOF: Information message - displayed when the. Editor encounters the top of file
marker.

Not Found: Information message - displayed when the Editor can not LOCATE or FIND
the sequence of characters specified.

No Room: Error message - occurs when the Editor detects that there is insufficient
memory available to save the line of text just entered by the operator.

End of Memory Reached: Information message - occurs when the Editor detects that
there is probably insufficient memory available to add more lines of text.

DOWN Information message - displayed in response to the operator typing the
down arrow in the command mode.

UP Information message - displayed in response to the operator typing the up
arrow in the command mode.

Available Memory Now Full: Information message occurs during input of text or
when EDIT is loading the file into memory. Indicates that the text was
accepted and saved in memory but there is not sufficient space available
for any more text input.

The operator should delete some text to make space available or divide the
file into multiple files (if the purpose of the file will allow multiple
files).

Not while LINEMODE is OFF: Error message - the operator has attempted to execute an
EDIT command that requires LINEMODE to be ON. These commands include:
RENUMBER and nnnn.

Not while LINEMODE is ON: Error message - The operator has attempted to execute an
EDIT command that requires LINEMODE to be OFF. These commands include:
INPUT immediate, REPLACE immediate, DUPlicate, WRAP ON, and ZONE less than
6.

- 42 - EDIT

APPENDIX C: EDIT ERRORS AND MESSAGES

Truncated: Error message - the operator has INPUTed, CHANGEd, or MODified a line
whose new length is greater than the length allowed by the TRUNCATE
length. The line has been truncated to the specified length and is
displayed following the error message.

BACKUP File is Protected Error message - Indicates that the Editor cannot rename
the input file to BACKUP because a BACKUP file already exists and it is
delete protected.

Can't save a BACKUP File Error message - An attempt was made to file or save a file
with file type BACKUP.

Disk Full Error message - During an attempt to SAVE or FILE the file being Edited
the disk became full. When this occurs the input file has already been
renamed to file type BACKUP. Use the CSI command to erase some of the
unused files on the disk or use the NAME command to designate that a
different disk drive is to be used.

EDIT - 43 -

Reader's Comments

Name _________________ Date __ / __ / __
Organization ---Street --City ---------------------------- State Zip

Name of manual:

Did you find errors in this manual? If so, specify with page number.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of
the software described in this manual? If not, what material is missing and where
should it be placed?

Indicate the type of user/reader that you most nearly represent:

Assembly language programmer
Higher-level language programmer (BASIC, FORTRAN, etc.)
Occasional programmer (experienced)
User with little programming experience
Student programmer
Non-programmer interested in computer concepts and capabilities
Data entry operator

Mail t'o: OASIS Documentation
Phase One Systems, Inc.
7700 Edgewater Drive #830
Oakland, CA 94621

