MACRO
ASSEMBLER
LANGUAGE

- REFERENCE
MANUAL

s

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

MACRO

ASSEMBLER

LANGUAGE
REFERENCE
I\/ANUAL

[
J

I
“:mu“'

il
I

&
_|

4 =
ge | ©
25

ol
>3

5’2 m!“'%!!!
58 | M unmuu

<

w

PREFACE ‘
This manual describes the OASIS MACRO Assembler Language. It assumes the reader is’
“familiar with computer software fundamentals and has had some exposure to assembly
language grograming on micro-computers. The section "Additional and Reference
Material" below lists documents that may prove helpful in reviewing those areas.
The user who is unfamiliar with OASIS should first read or review those chapters of
interest in the O0ASIS System Reference Manual to become familiar with system
conventions.
Included in this mahual is ay chapter on "Interfacing to OASIS" which provides
information about writing device drivers, assembly language subroutines that are
called by a BASIC program, console class code drivers, etc. ‘
This manual, named MACRO like all OASIS documentation manuals, has the manual
name and revision number (if applicable) in the lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary subject

being discussed on a page will be identified in the lower outside corner of the
page. !

Additional and Referenced Material

The following manuals and publications were used in the creation of this manual and
contain additional information not included in this document.

ZILOG Z80 Assembler Manual
ZILOG Z80-CPU Technical Manual
ZILOG Z80-CPU Programming Reference Card

" OASIS System Reference Manual

OASIS Text Editor Reference Manual

OASIS EXEC Language Reference Manual
OASIS DEBUG Reference Manual

OASIS Diagnostic & Conversion Utilities Reference Manual

TABLE OF CONTENTS
Section »

CHAPTER 1 INTRODUCTION o.oon.ooo..o.o.o;ooo.c.oaooo.ooo...o-o;oeaoal.oooooano.
1.1 Creatins A'source File ® 900 000 00RO O0OEEINOCI0OCEBO0COCO2000C000000CEOGEOGEOIIOES

CHAPTER 2 .OASIS MACRO COMMAND © 0 0 OCCOOE00CEEECOE006000600OEOECO00CGO0OE0OCEESOOCEGEO00CO0QO

CHAPTER3 MACRO INSTRUCTION SYNTAX 0000.00°0000000OD.GOCQQOQGOOG00000;00&06000
361 Line NUMbePS Q.eopootoo.boeoaeoaoa.eoeoaécoeooo&ooooo&oo@ooecaaoooeoooo

02 ADeLS ,cc00veccceeco006e8000000600000006000600000000000600€60006000000000600000G0CS
.g opocodes e 0000000000000 C00CC0EOCOPOOC000000006000000V00RCO00AC0000OOO00E660@
) Operands -ooeoveooooo-ooeooaoeoeoeoeeooooaoeouooeoooooooeac‘oo»aoooooeoec-

3.1;91 Expressions ocooooooooooeo-oooooeoooeo.nQooaeaoeoeooeeoaoeo/ooowooo

395‘ comments 6000 00000@E000000000GOGE00RC000000CEOE0000COE0CQR00C000C00C000O00600GC

CHAPTER u PROGRAM ADDRESS BLOCKS (PABS)‘noooaooqocoteOoe.oteoeuaueaoeeeooeoooe
ue1 PAB Restrictions .000000090006B.9{...QQ.OQOIIO00‘.0000660.09.0..0'000..

CHAPTER 5 MACRO DIRECTIVES & PSEUDQ-OPS ©© 90000000600 000006000CCEOCOOEOESIOCOR0OC0OOGEECECS

CHAPTER 6 MACROS 00 0O 0 @9 6 T C 6.6 0 8 9 0 GO OO0 6 OO 6608 0QOQCE 0000 ¢ 06000 ¢QCO0.©O 808088 0600COS®Q0OO6C
6.1 Preparing Macro PrototypPesS .eeececcccccccescoscecescscccassscoocscacsnace

.2 Macro Ca ls00.0....000.0....-‘0..0.0..0‘00....-.’000.0.0.@0.00060eeoo
03 Macro Keywords ® 00 00 ® 8 0 8 00 0O R OG0 0O PO QT OO S OO GO OO0 QOO0 OO OO0 OEOOO OO 0O 6QCCOS
Labels ® 00 © 00 6O O 00 59 SO OO RAO DV O SO SO0 S OO QOO0 COe OO IODECDOOO 06 OOO0E OO0 6CO00EC
concatenation 9 0€ 0003 % O 6O VO OO E S0 SO e ODRECOROOOBO0 0O OO0 DO 0 QO EC0OO0D0 OO0 OE OO OO 0O
Macro Substrinss S 00 9 0 9 0 09O G OO S0 B 00 OCIDO OO 6O S OO S OGO SOS 06000000 S 0O CECE

MaCPO Reserved VaPiableS 00 0602 006C0COE0E0CESSSC000C00CE0C0S0SS0OCOCOEOLSIOCESECECEOO
9 MaCPO Comments P 05 © 0 0G0 OCOCOE00PEOCOLECEO000CO0C0000CSEOO0OL0EC0OEE0OC0 00 6.6
6010 MaCPO Example © 0000006000000 L0000 ELI00BCO0080C000000600C6OCOO0©LCEIECSOCEESSCOCOOES

cHAPTER? SYSTEM CALLS ® % © 0 © 0 9 @ 0© 9 0 6O 06 OO L OO OO0 @ OO0 0Q 00 0OQPOOO0COOO 0 S 6 OC0O0OQO0 GO0 0CCQ OO
T-1 Documentation Conventions .ccoececcecocccocesccooccoocscccscsccoossosscsoce

CHAPTER 8 280 GPU OVERVIEW seeo.e;ooueeooceeoaoooaoooonoooeoeoooavo'oo..coeoo.

® PQSSIHQ modes 00 ©6©000QO0OCOOOCOOOOOOQ0QOOOOCO0CCOEOCDOBOOODROO0O00O0OOO0ORS®O00C600O0SES
802 Registers 00 0000000000000 000660000000000BO6000CC200C06000000CO60000O6E80C0OCSHS
803 lags © 00 0O000CO0OEQ@OE0000C330000008COE0O000DEE0CO0DVOOOOO0C0O800C00CRO0O0EC00COERVDOSOGEOOOCOE®

CHAPTEB 9 INTERFACING T0.0ASIS 0 008 0OOCEOCEOOPOOIO0O00E00000COSO000IGO©O0CREEOO0OCECEC
01 General Information @00 00 CI 000000200 C00CO00C0CCEOC00©000CEE00006OCDEESCESISESGICOCAETN
02 Peripheral DeVice DrivePS © 0003 G006 CO080600000C0T006C0000B0EOAOENCSEECIOOEESESIECCDS
eﬁ DiSk DeVice Drivers 060 00 0OCEP S0 E0 00000008000 CPI0EEIOCCEESEEOEOOESOCS08OCCOD0OCOCEC

Tape DeVice Drivers © 969 800000000000 O0000T0800SCOCO0 00060000 CEEDGSOSSEO0O0OC
2 TerMinal Class COde Drivers 090 0CO0C0CRCHNO0G00BCEESEE0ED0OESEIOSEOO0O000CG6000OOOES

s Stem Start-up Program ® €@ 00000000 00606000000000E0ELEIRPCOCO0O00@SICEOECRROGCSEC

9
9
9
9
9
g g~ U PrOgPamS © 90 0 0COS S OOGPO PN OOLOL0ECE0O000000000000RCOIOECECEOOOO0B0O0CBO0CQRRCOECEES
9 BASIC Flelds o.¢oeooc-c..s.ocoi.oooooooo..'.o.o.'.O.Qooo‘oooo.lo‘to.oo.
APPENDIX A SYSTEM CALL SUMMARY ©® 0 00008 0000000000000 0000000980800060080308006GOCCELE
APPENDIX B ERROR MESSAGES 08 600060000600 0080000 0000000006060 001°000060600080000008600660¢0
APPENDIX C CONTROL BLOCK DEFINITIONS 90 0002000000000 PO E0C000CEEE00600©000000OCDO0COCC
APPENDIX D PROGRAMMING EXAMPLES ®0 0600060060000 00200CE0VWOEOCCCEIOCOESOCOOOE0Q0006000O0600GOCO0

APPENDIX E CHARACTER SET 900000000000 O0OO0CCCS00000C0OCCISOEO00COCOCEIO0AO0600©006006GOCO O

°
°
°
e
©

- 1' -

-5
06
eg Macro Nestins ® 00 00 0 & 00 0 90O S C O SO OB OO0 DDOO O SO EC O OO0 OCE OO0 QPO OOe OO O OO

§

O O OO0 \O\O\O
N—=OCO~IEN) = =2

nd el cund

103
107
109
115
136

CHAPTER 1
INTRODUCTION

The OASIS MACRO Assembler (usually refered to as the Assembler) is a symbolic
assembly program for the 280 CPU. It is a two-pass assembler (reguirin the source
program to be read twice to complete the assembly process) designed fo run under
the OASIS Operatin% System. It 4is, therefore device independent, allowing
co%plete user flexibility in the selection of séandard input and output device
options.

The Assembler performs many functions, making machine language programming easier,

faster, and more efficient. Basicaliy, the Assembler processes the programmer's

source program statements by translating mnemonic operation codes to the binary

codes needeﬁ for the apprggrlate m%chine instrgct%on,tgelati ds mbolsdto nume{ic
1 ng memory addresses for program instructions and data, and prepar

Xg gﬁggugsfigginé mo? tge progranm whiehpingludes any errors encountéred dgrigg tﬁg

assen . :

The MACRO Assembler may be used to generate either absolute or relocatable obgect
code from a source program file. The type -of object file produced is controlled by
the occurence of certain directives, in the source file, Both tgpes of object
programs must be processed by the LINK command before they can be executed as
programs.

The value assigned to an instruction mnemonic is the binary bit configuration
recognized by the processor for that instruction. Predefined symbols are kept
separately by MACRO and reco%nized as reserved symbols only when they are
encountered in the Broper context. In context other than that where their usage is
predefined, the symbol will assume whatever value the user may wish to assign. For

example:
LD A,0
JP CALL
LX: ADD 2
CALL: CALL INPUT
JP XXXX

The Assembler has no problem differentiating the two CALL symbols since the one in
the gp;godg field is predefined and the one in the 1label and operand fields are
user-defined.

Along with relating symbols to numbers, another mafor function of the Assembler is
to enable the programmer to reference a symbol that is defined later in the
grogram. This is called FORWARD REFERENCING, and is resolved by the second pass of
he assembly process (some directives restrict the use of forward refereneinég.
References may be made to symbols defined in other programs (EXTERNAL REFERENCING) .
The values of these symbols is resolved by the linking editor (LINK).

An optional function of the MACRO Assembler is that of producing a tabulated

listing of all user-defined symbols, their value and all references to them. This

CROSS-REFERENCE table generation consists of recording all definitions of, and

Eﬁfgrenc§s to, user-defined symbols, sorting the references, and merging them with
eir values.

Another function of the MACRO Assembler is the maintenence of up to 16 PABs
(Program Address Blocks) which may be used to locate data and code at assembly
time. By using PABs the programmer gains the ability to write programs_ whose
actual execution addresses are determined at load time (relocatable programs).

A final function of the MACRO Assembler is to maintain assembler macros, hence the
name MACRO Assembler. A macro is a single user-defined instruction that is

ggplagid at assembly time with one or more assembler instructions and/or
irectives.

1.1 Creating A Source File

An assembly language source file is created by using the system editor. Refer to
the OASIS System Reference Manual for complete details on using the EDIT program.

Assembly language source files usually have a file type of ASSEMBLE, When the
Editor is invoked and given a file description including a file type of ASSEMBLE,
MACRO or COPY, the Editor sets some of its global commands to the values associated
with an assembly source file. These values include setting LINEMODE OFF because
line numbers are not normally used in the source file; setting TABSET 10 16 29
which allows for the standard format of source statements; setting CASEMODE AM.

' MACRO Rev B -1-

~ CHAPTER 2 ~
OASIS MACRO COMMAND

The MACRO command allows the user to translate Z80 source code and MACRO directives
into machine object code. The format of the MACRO command is:

i MACRO <file-desc> [(<option> ...[)1]

Where: '

file-desc Indicates the file description of the source file to be assembled. When
the file type is omitted from this description the default file type of
ASSEMBLE is used. : .

MACRO COMMAND Options

Options for the MACRO command include the foilowing:

NOOBJ Indicates that no object file is to be produced.

OBJ[=fd] Indicates that an object file is to be roduced. This is a default
option. An fd following OBJ indicates that the object file is to be
written to the disk whose directory has that label.

. IYPE Indicates that the 1listing is to be displayed on the console terminal.
Specifying this option pre-sets LIST to on.

~ PRINTER[n] Indicates that the listing is to be displayed on the primary printer or
PRINTERn. Specifying this option pre-sets LIST to on.

DISK[=fd] Indicates that the listing is to be.written to a disk file with "LISTING"
as the filetype. An fd followin§ LIST indicates that the listing file is
to be written to the disk whose directory has that label. Specifying this
option pre-sets LIST to on. The listing file created will be in packed
format, using ANSI forms control characters.

LIST Indicates that LIST is to be pre-set to on. Any LIST directives in the
source program may change this setting.

NOLIST Indicates that LIST is to be preset to off. Any LIST directives in the
source program may change this setting. .

SYM Indicates that the symbol table is to be included in any listing. This
ogtion may only be specified if an output device has been specified (TYPE,
PRINTER, or DISK).

NOSYM Indicates that no symbol table 1listing is to be produced. This is a.
default option. . . .

XREF Indicates that a cross-reference table is to be produced. This option is
Sgéi)effective when a listing device has been specified (TYPE, PRINTER, or

NOXREF Indicates that no cross-reference table is to be produced. This is a
default option. '

[o0) 24 Indicates that the source and object code produced from COPY files
included in the assembly are to be included in any listing. This option
is only effective when a listing device has been specified.

NOCOPY Indicates that the source and obgect code produced from COPY files
included in the assembly are not to be included in the listing. This is a
default option.

DATA Indicates that data defined by DC and DW directives is to be fully
included in any object code listinf. This option is only effective when a
listing device has been specified. In addition to the DC and DW
directives this option specifies that code generated by a REPT directive
is also to be included in any listing. .

NODATA Indicates that only the first four bytes of the data defined by DC and DW
directives is to be included in any object code listing. Also, code
%enerated by a REPT directive is not listed when this option is in effect.

"This is a default option.

MACRO Indicates that macro expansions are to be included in any listing. This
option is only effective when.a listing device has been specified.

- 2»-: - MACRO Rev B

CHAPTER 2: OASIS MACRO COMMAND
NOMACRO 1Indicates that only the macro calls, not the macro expansions, are to be
~ included in any listing produced. :) .

-IF Indicates that source code not assembled into object code due to
conditional assembly and the corresponding conditional assembly pseudo’
op-codes are to be included in any listing produced. This option is only
effective when a listing device has been specified. ‘ ;

NOIF - Indicates that source code not assembled is to be omitted from any listing
produced. This is a default option.

EXTRN Indicates that all undefined symbols are to be treated as external symbol
references (16 bit) and are not to be reported as errors.

EXTRN Indicates that all undefined symbols are to be treated and reported as
errors. This is a default option. - :

Durin§ the assemblg process the segment names and line numbers are displayed on the
console during both passes, unless the option TYPE was specified.

At thi end of the assembly the following statistic information is displayed on the
console: ,

OASIS MACRO version n.n (date) statistiecs

Source lines input: nnnn

Object records output: nnnn

Macro calls: nnnn

Machine instructions: nnnn ,

Symbols defined: - nnnn .

Pab summary: Name Type Length Origin
aaaaaaaa aaa nnnn nnnnH

Assembly errors: nn .

Assembly rate: nnnn lines per minute

MACRO Rev B -3-

MACRO REFERENCE MANUAL

(This page intentionally left blank)

-l - MACRO Rev B

CHAPTER 3
MACRO INSTRUCTION SYNTAX

An assembly lan%uage program consists of a sequence of statements in the assembler

language. Eac statement is written on one line, and terminated by a earriage
return. The MACRO Assembler is a free format assembler in the sense that the
various statement elements are not placed at specific numbered columns on the line.
The Editor does have default tab settings for the elements but these are used only
for purposes of consistency of the listing and are not required by the Assembler.

There are four elements in an assembler statement segarated from each other by
specific characters. These elements are identified ﬁy their order of appearance in
the statement and by the separating (delimitinﬁ)' character which follows or
proceeds the elements. Statements are written in the general form: : :

. line# label: op-code operandi,operand? ;comment
Not all of the elements are required for any specific instruction.
3.1 Line Numbers ’

The line number field is completely optional. The Assembler will create line
numbers for the source statements if there are no line numbers on the statements.
When a line number is included on the source statement it must: be the first field,
use only digits, and be followed by a space character.

Line numbers may be used for some of the source statements and not others. The
Assembler, when an unnumbered line is encountered, adds one to_ the line number used
for the previous statement. This facilitates identifging the lines associated with
a multi-segmented source file. The first line of eac segment would be numbered by
the programmer and the following lines would be unnumbered.

3.2 Labels

The label field is an optional field that may be specified with any or all of the
op-codes and directives. When used the label field must be the first field in the
source line (following the line number, if used). '

Labels are used to reference a specific location during assembly. A label may be
used on a line that is not referenced or even on a line by itself. :

A label is a sequence of one or more characters terminated by a colon (:). A label
.must start with a letter character (local labels are an exception to this rule) and
mg inglude only letters, digits, and the dollar sign ($). No embedded spaces are
a. Owe ° B

Labels longer than eight characters are tokenized internally to eight characters by
taking the first four characters and the last four characters of the actual label.
It is possible that this may cause a duplicate label error.

The dollar si%n character ($) used as a label by itself in the operand field, is
valid and indicates the current location counter. » .

Labels are of three types: global, local and external. A global label must be
uniquely defined within a source program and may be referenced from anywhere in the
program.

A local label may be duplicately defined within a source program but must be
uniquel{ defined between two global labels, and has a value onl¥ between those two

lobal labels. Local labels are identified by preceding the abel with a period
%.). All references to a local label must include the greeedlng period. The
character following the period in a local label must be alphabetic. Macro local
labels only have a value in the macro defining them. Macro local labels are
identified by preceding the label with an at-sign (€). All references to a macro
local 1label must include the preceding at sign and these references may only be
from within the macro defining them. , \

Local labels are maintained internally in the assembly process by appending the
most recent global label to the 1local 1label (macro labels are maintained by
appending the macro name and macro index to the label).

External labels are labels whose value is defined outside of the source program.
The values of these external labels are resolved by the Link program. ’

Examples:
LABEL DONE
MACRO Rev B -5a-

MACRO REFERENCE MANUAL
LSTO5 ~ OBJECT
NAME

. OKAY
"~ OKAY ' : M0000010
NOOBJECT . OUTPUT
<INPUT 6LABEL .
3.3 Op-codes

The op=code field of a source statement may only include the directives and 280
op=-codes described in this manual. . An op-code is separated from a label bg a
cglon,tspace, or tab. An op-code is separated from any operands by a space or tab
character. :

Op-codes must be spelled exactly as specified in this manual and they may not start
in column one. -

3.4 Operands

Operands modify the op=-codes and provide the information needed by the assembler to
perform the designated operation. Certain symbolic names are reserved as key words
in the assembly language operand fields. These are:

1. The contents of 8 bit registers are specified by the character
' gorﬁesgonginﬁ to the register names. The register names are A, B, C, D,
ey § 1 ? .

2. The contents of 16 bit double reéisters and register pairs consisting of
two 8 bit registers are specified by the two characters corresponding to
the register name or register pair. The names of double registers are
IX, IY and SP. The names of register pairs are AF, BC, DE, and HL.

3. The contents of the auxiliar¥ re%ister pairs consisting of two 8 bit
registers are specified by the two characters corresponding to the
.r:gister*pair names followed by an anstrophe. The auxiliary register
pair names are AF', BC', DE', and HL'. Only the pair AF' is actually
allowed as an operand, and then only in the EX AF,AF' instruction.

4. The state of the five flags is testable as follows:

FLAG ON OFF

Carry C NC

Zero Z NZ

Sign M (minusg , P (%ositive)
Parit PE (even PO (odd) -
Overflow \'f NV -

3.4.1 Expressions

Expressions in the operand vmay be simple or complex. A simple expression is an
expression that includes only one term. A complex expression includes more than
one term with logical, arithmetic, or relational operators joining them.

Expressions are allowed as operands whenever the symbols n, nn, or d are used in
the syntax of the instruction. '

Expressions are analyzed in a left to right manner with no implied hierarchy except
that specified by parentheses or brackets.

Expressions wholly contained within parentheses are evaluated as an indirect
address reference. Expressions that contain sub-expressions in parentheses or
brackets are evaluated as indicating a hierarchy of evaluation. Parentheses and
brackets are equivalent but not interchangable, tgat is, they must appear in pairs.

A term in an expression may be any one of the following:
label Indicates the current value of the specified label.

numeric-constant May be any unsigned numeric value 1less than 65536
expressed in decimal (default or terminate with D), hexadecimal
(terminate with the character H), octal (terminate with the
character Q or 0) (Q assumes number is 16 bit octal; O assumes
number is two 8 bit octal numbers), binary (terminate with the
character B). All numeric constanés must have a digit for the
first character. If necessary a hexadecimal value may have a
leading 0 such as OFFFFH, : '

-6 - MACRO Rev B

CHAPTER 3: MACRO INSTRUCTION SYNTAX

string-constant dne or two ASCII characters enclosed within a pair of
single or double quotes, (Storage definition directives DC and
DW allow longer strings.) ‘

The arithmetic operators allowed by the assembler include:

+ Addition or unary plus '

- Unary minus or binary subtraction (two's complement)
/ Division

'# Multiplication

The logical operators allowed by tpe assembler include:

.AND., Logical and, bit by bit

.OR. Logical inclusive or, bit by bit

.XOR. Logical exclusive or, bit by bit

.NOT. Unar{ one's complement

.MOD. Modulo (remainder function) _

. Logical shift left (vacated bits replaced by 0)
.SHR. Logical shift right (vacated bits replaced by 0)

The relational operators allowed by the assembler include:

.EQ. Test equality, arithmetic or string - both must be same
.GT. Test for greater than

.LT. Test for less than

.NE, Test for not equal to

.UGT. Test for unsigned greater than

.ULT. Test for unsigned less than

.NUL. Empty string or value.

The following examples represent typical expressions:

BASE+2100H

TA'

(LSTDSK

LNKLIT+ 8 is a decimal number

256 256 is a decimal number

« LABEL1 refers to the local label

S : indicates the current location counter
1232560 evaluated as: 0101001110101110B or 53AEH
123256Q evaluated as: 1010011010101110B or ACAEH

10110101B+324-12H/2Q evaluated as: 243 decimal or F3H
23+(M D-LABEL)

1 3+{ 5D-LABEL}§

123+ 45D-LABEL

gxgther réstrictions' in the use of éxpressions are discussed in the chapter on
s.

3.5 Comments
Comments may be included on any source line. To indicate a comment use the

semi-colon character (;). All characters after the semi-colon will be ignored b
the assembler except for listing purposes. A comment may start in any column. '

MACRO Rev B | -7 -

MACRO REFERENCE MANUAL

i

(This page intentionally left blank)

-8~ ‘ | MACRO Rev B

CHAPTER 3
PROGRAM ADDRESS BLOCKS (PABS)

The concept_ of Program Address Blocks (PABs) may be used extensively when
rogramming with the MACRO Assembler. A PAB is a name assigned to an address
eifther relative or absolute) that is referenced in a source program to define the

relationship between groups of code (instructions and/or data). :

The use of PABs allows the programmer to write several modules of code (each module
probably performing a small, but complete, function), each module defining the
instructions and data that it requires and accessing data defined in other modules,
that, when linked together, form a contiguous program and data blocks.

Absolute grograms must use an absolute PAB. When no PAB is defined in a program
the Assembler assumes that a relocatable PAB is implied. g

Normally a relocatable program would only have one or two PABs defined. One PAB
would grobably contain nonvolatile instructions and another PAB containing
nonvolatile and volatile data to be wused by the program. However, a complex
program such as an operati sgstem or compilor might wuse several PABs. In this
complex program the PABs would be differentiated by major functions such as device
drivers, logical I/O, arithmetic package, etc. _

There are essentially three types of PABs.
The Absolute PAB

The absolute PAB 1is the Program Address Block that most assembly language
programmers are familiar with, An absolute PAB is one whose base address is
" assigned by the programmer using the ABS directive. Symbols, instructions, and
data defined using an absolute PAB can be completely resolved by the Assembler into
executable machine code.

Instructions assembled in an absolute PAB can only be executed when the
instructions are loaded at the address they were assembled at (unless the
programmer uses position independant programming methods).

Programs that use an absolute PAB may only have the one PAB defined.

Different segments of code using the same absolute PAB name would, when linked
togegher, form a contiguous block of code, each segment being appended to the
previous, - .

The Relocatable PAB

The relocatable PAB is one whose base address is assigned by the program loader at
load time. Symbols instructions, and data defined using a relocatable PAB are
only completel resolved when the program is loaded into memory for execution. The
relocatable P allows the user to write, assemble, and link programs that can be
executed at any address they may be loaded at.

A relocatable PAB is defined by the programmer using the REL directive. More than
one relocatable PAB may be defined and used in a program. (The MACRO Assembler
allows sixteen PABs per assembly, the LINK program allows 128 PABs per load module.

Different segments of code using the same relocatable PAB name would, when linked
togegher, form a contiguous block of code, each segment being appended to the
previous, ‘

The Common Relocatable PAB

The common relocatable PAB is very similar to the relocatable PAB. Its base
address is assigned by the program loader at load time and the symbols,
instructions, and data defined using a common relocatable PAB are only completely
resolved when the program is loaded into memory for execution.

A common relocatable PAB is defined by the gro rammer using the COM directive.
More than one common relocatable PAB may be defined and used in a program.

The difference between é relocatable PAB and a common relocatable PAB is that when
different segments of code, usin% the same common relocatable PAB name, are linked
together the code from one segment overlays the previous segment's code.

This type of PAB is very useful for buffer definitions where several modules use
the same memory area for volatile working storage. Each segment would define the
layout of the buffer with the specific symbols and locations that it requires.
This sounds 1like the same result as using the EQU directive and in fact might

MACRO Rev B -9 -

MACRO REFERENCE MANUAL

produce the same results. However, when the common relocatable PABs are used no
one segment would have to allocate the maximum buffer size that would be used: the
Linkage editor would create the PAB as large as required by the segment that
defined the largest area. Mainly, when a common relocatable PAB can be used and is
called for in the design of the program, it results in a more easily coded and
maintained program. : N

The uses of PABs is probably best-ex lained with a few exampiese Rather than
invent some meaningless examples at his time it would be best 50 1look at the
programs in the appendix "Program Examples"”.

4.1 PAB Restrictions

Programmin% with PABs provides more versatilit* and makes the programming task more
dynamic but it does carry some restrictions. hese restrictions are mainly related
to the use of symbols that are defined in a relocatable or common relocatable PAB.

There are a few, but important, rules to keep in mind when formulating expressions
containing symbols. They are:

1. All relocatable simbols have full word (16 bit) values. This means
that a relocatable symbol or expression can only be used when a 16
bit value can be used. :

2. The sum or difference of/a relocatable symbol and an absolute symbol
is a relocatable value.

3. The difference between two relocatable symbols defined in the same
PAB is an absolute value.

4. The sum differeneé, product, or-qﬁotient of two absolute symbols is
an absolute value.

5. The difference between two relocatable symbols defined in different
PABs is an error. ’

6. All-other operations between two relocatable symbols defined in the
same PAB or in different PABs is an error.

T. All other operations between a relocatable symbol and an absolute
symbol are errors. ’

Another restriction in relation to relocatable PABs is that the execution address.
is not known at assembly time. This seems obvious and of littie imgortance except
when the 'program listing is taken into account: the addresses listed at the left
side of an assembly listing are not necessarily the execution addresses!

- 10 - | | MACRO Rev B

CHAPTER 5
MACRO DIRECTIVES & PSEUDO-OPS

The OASIS MACRO Assembler grovides many directives and pseudo-ops that make
programming in the Z80 assembler languaﬁe easier by providing a means of assigning
values to 1labels, allocating and in tializin§ storage, conditional assembly,
linking together several source files, incorporat ng source files into other files,
and access to powerful system subroutines incorporated in the operating system.

ABS Directive

The ABS directive defines an absolute PAB. The ABS directive, unlike the ORG

directive discussed later, does not change the location counter of the instructions

gglloging ; the USING directive is responsible for that. The general format of the
rective is: .

<label> ABS [exp] [; comment]

Although, as indicated, the 1label field is required for the ABS directive the
expression field is not. The label field is used by the USING directive to specif
which PAB to use. The expression field, when specified, indicates the address tha
the PAB is to start on. :

A PAB definition, such as the ABS directive, implies a USING directive following.
It is not necessary for you to follow an ABS directive with a USING directive.,

ALIGN Directive
The ALIGN directive can not be used when relocatable PABs have been defined.

The ALIGN directive allows the programmer to set the location counter to a user
defined boundary. The general format of the directive is:

[<label>] ALIGN <exp> [;comment]

All of the terms of <exp> must have been previously defined - no forward
references. <Ex§> is evaluated and then the location counter is set to the value
of the current location counter plus current location counter modulo <exp>. This,
in effect, advances the location counter to the next <exp> boundarK° For instance
if the 1location counter is 315 and an ALIGN 256 is encountered then the location
counter is set to 512.

BP Pseudo-op

The BP pseudo-op allows a break-point to be assembled into a program. The general
format of the BP is:

[<1abel>] BP [;comment]

When ‘assembled the BP directive occupies one byte of storage (a RST instruction).
DuringBErogram execution this code will cause a jump into the DEBUG grogram. If
the DEBUG program has not been loaded then the instuction has no effect. Refer to

the OASIS Dynamic Debugging Reference Manual.
COM Directive ’

The COM directive defines a common PAB. The general format of the directive is:
- <label> COM [<exp>] [;comment]

As indicated, the 1label field is required for the COM directive, like all of the
PAB definition directives. The <exp> field, when specified, is not used for the
location of object code but only for listinﬁB purposes, A common PAB is a
relocatable PAB but differs from a relocatable PAB defined by the REL directive in
that the Linkage editor overlays common PABs of the same name instead of appending
them. When several object files are being Linked that use common PABs each of the
common PABs define the same address area, starting with relative location zero.
(DS directives in a common PAB only cause previously undefined storage in the PAB
to be set to zero.)

A PAB definitioh, such as the COM directive, implies a USING directive following.

It is not necessary for you to specify a USING directive immediately following a
COM directive. 4

MACRO Rev B -1 -

MACRO REFERENCE MANUAL
COPY Directive

The COPY directive allows the pro%rahmer to specify that a sequendé of code is to
be found in another source file. he general format of the directive is:

[<label>] COPY <file-desc> [;comment]

The COPY directive is not a macro! No parameter replacement is allowed. When the
COPY directive is encountered by the assembler the specified file is copied into
memory and assembled at the current location counter as if the code were included
in the source program. The copied code will be 1listed according to the
specifications of the LIST directive. _

This directive allows the programmer to easily reference frequentl¥ used sequences
of code without entering the code in each program that references it.

Wheg the <file-desc> only specifies a file name the default file type of COPY is
used. .

DB Directive

The DB (Define Byte) directive is a synonym of the DC (Define Constant) directive
discussed next.

DC Directive

The DC directive is the most general form of the storage definition directives.
The general format of the directive is:

[<label>] DC <exp list> [;comment]

Similar to the DW directive the DC directive allows the terms in the expression
list to be forward references. Each exgression is evaluated independently of the
others. The individual expressions may be string literals (enclosed in quotes), 16
bit words (enclosed in €arentheses), inte%er values, floating point values (decimal
point specified), floating point scientific format values (decimal point and
exponent specified). .

The various forms of an expression are evaluated and assembled according to the
following rules:

strings strings Each ASCII character in the quoted stri is evaluated and the ;
bit code is generated, one per byte. If the ?uo es are double quotes ("
the last byte will have bit position 7 set (1). If the quotes are single .
quotes (') the last byte is not altered.

words The expression within the parentheses is evaluated identical to the DW
directive.

integers The expression is evaluated with the least significant 8 bits assembled at
the current 1location counter. Overflow error results if the high order 8
bits are not zero or FFH, :

floating goint The expression is evaluated and the eight byte value is assembled at
he current location counter. Floating point values are formatted using
excess 128 format for the characteristic and binary coded decimal for the
mangigia, consistent with the way that BASIC maintaines its numeric
variables,

The value is first normalized to be a fraction less than +1 reater than
-1, with no 2zeros to the immediate right of the decimal poin adjusting
the exgonent accordingly. The exponent is then added to 80H fo form the
first {te. The sign of the floating point number determines the value of
the next nibble (four bits): 0 for positive, 8 for negative. The binary
coded decimal (BCD) representation of the number follows this sign nibble

creating the eight byte value with thirteen digits of precision.

- 12 = MACRO Rev B

CHAPTER 5: MACRO DIRECTIVES & PSEUDO-OPS

DC Examples
Addr Obj=Code Line *## Source Statement #*##
0000 00 1 DC ?
0001 3412 2 DC 1234H)
0003 4142534F 3 DC *ABSOLUTE®
0007 4C555445
000B 4142534F y DC "ABSOLUTE"
000F A4C5554C5
0013 00010241 g DC 0,1,2,'A®
001 DS OFH
0025 FF00 E DW 255
002 83012800 DC 123.
002B 00000000 :
002F 83812300 9 DC =-123.
oog; 00000000
00 81012345 10 DC 1.234567890123
003B 67890123
003F 6D012345 1 DC 1234.5678E=-23
0043 67800000
0047 T7A098760 12 DC .0000009876
004B 00000000
004F 7B012340 13 DC .000001234
0053 00000000
0057 84012340 14 DC «1234E+4
005B 00000000
005F 7D043210 15 DC .4321E=3
0063 00000000

DS Directive

The DS directive allows the programmer to advance the location counter a specified
amount, thus reserving a storage area. The general format of the directive is:

[<1abel>] DS <exp> [;comment]

All of the terms used in <exp> must have been previously defined - no forward
gegerences. <Exp> is evaluated and the 1location counter is advanced that many
ytes.

DW Directive

The DW directive allows the programmer to define words of storage to be specific
values. The general format of the directive is:

[<label>] DW <exp 1list> [;comment]

The expressions in the list are separated bg commas. Each expression is evaluated
independently of the other expressions in the list. The terms of the expressions
may include forward references. Each expression is evaluated and assembled at the
current location counter. The word is assembled with the least significant 8 bits
(LSB) first followed by the most significant 8 bits (MSB). The location counter is
advanced by two for each expression evaluated.

EJECT Directive

The EJECT directive indicates that a page eject is to be generated in the listing.
The general format of the directive is:

EJECT [;comment]
The EJECT directive is only effective when a listing is being generated. The
directive, when encountered, causes an immediate page eject to be generated in the

listing. The EJECT directive itself is not listed in the listing, although it does
advance the line number.

MACRO Rev B -13 =

MACRO REFERENCE MANUAL
ELSE Directive

The ELSE directive allows the 'pnogrammer to specify an altérnate set of
instructions to be assembled when the <exp> of an IF directive is evaluated to be
false. The general format of the directive is: o

[<label>] ELSE [;comment]

The ELSE directive is an extension of a prior IF (or ELSEIF) directive and
therefore the ELSE directive may only be used between an IF and ENDIF ENDIF
directive.or between an ELSEIF and ENDIF directive. '

When the <exp> of an IF or ELSEIF directive is evaluated to be false the assembler
searches forward for an ELSE (or ELSEIF) directive. The instructions following the
ELSE directive are then assembled. When the <exp> is evaluated to be true the
instructions following the ELSE directive are not assembled.

ELSEIF Directive

RIS

The ELSEIF directive provides "case" statement conditional assembly capability.
The general format of the directive is:

[<1abel>] ELSEIF <exp> [;comment]

When used, the ELSEIF directive must be between an IF, ELSEIF or ELSE directive and
an ELSE, ELSEIF, or ENDIF directive. All terms in the <exp> must have been
previousiy defined. :

Onl{ one ELSE statement is allowed per IF statement but there may be several ELSEIF
statements following an IF statement.

During the analysis of an IF - ELSEIF...ELSEIF - ENDIF statement group assembly of
source statements is sugpressed until a true condition is detected for one of the

IF ELSEIF or ELSE statements. When this occurs the statements are assembled
until an ELéE, ELSEIF, or ENDIF statement is encountered--then the statements are
skipped until' the matching ENDIF is encountered. _
Examples
LABEL1: EQU 1
LABEL2: EQU 0
LABEL3: EQU LABEL2*LABEL1
LABELY: EQU LABEL2.AND,LABEL3
IF LABEL1
This code will be assembled
ELSEIF LABEL2
ELSE This code will not be assembled
This code will be assembled
ENDIF
IF LABEL3
This code will not be assembled
ENDIF
IF LABELY
ELSE This code will not be assembled
This code will be assembled
ENDIF

This code will be assembled
END Directive ‘
The END directive specifies the physical end of the source code. In addition this

girective may specify the entry point address. The general format of the directive
s:

[<1abel>] END [(exp>] [;comment]
It is not necessary to terminate the source program with the END directive,
however, it is recommended and when ‘used, it will be the last line of code
analyzea.
When the <exp> is specified it indicates the address to be used for the entry

point, That is the address at which execution will begin when the program is
executed.

- 1} = MACRO Rev B

: CHAPTER 5: MACRO DIRECTIVES & PSEUDO-OPS
ENDIF Directive :

The ENDIF directive is required to terminate the instructions' that are to be
conditionally assembled. The general format of the directive is: ’

[<label>] ENDIF [;comment]
Every IF directive must have a matching ENDIF directive.
ENDM Directive

The ENDM directive indicates the physical end of a macro prototype definition. The
general format of the directive is: ,
ENDM [;comment]
Thé usage of this directive is explained in the chapter on Macros.
ENTER Directive '

The ENTER directive is identical to the VALUE directive except that the <exp> is

entered from the keyboard during pass one of assembly. The general format of the
directive is:

<label> ENTER [<quoted string prompt>] [;comment]

When the ENTER directive is encountered during pass one of the assembly the <quoted
string prompt> is displayed on the console. If the <quoted strin% grompt> is
omitted the <label> name is displayed for prompting purposes. At his time the
operator enters the expression to be assigned to <label>.

The ENTER directive must have a label. When the ENTER directive is encountered by
the assembler during pass one the operator is allowed to enter the value (this
value ma be in the form of an expression usi literal and previously defined
labels. he 1label being defined with the ENTER directive may have been previously
defined and used. ,

Examples

DEBUG: ENTER 'Is this a debugging assembly? (Y/N)°
LABEL1: ENTER ‘'Please type the value of LABEL1!

iF DEBUG.EQ. 'Y'

ENDIF
ENTRY Directive
The ENTRY directive allows you to specify that a label, defined in the current
assembly, is an external reference (EXTRN) of another assembly. The general format
of the directive is: v .

ENTRY <label>[,<label>]... [;comment]

The list. of labels may be forward references to labels defined 1later in the
assembly but the labels must be defined at some time during the current assembly.
This directive is the logical inverse of the EXTRN directive.
The ENTRY directive would be used in a module of source code that defines a
label(s) whose value will be needed in another module(s) that is not to be
assembled with this one but will be LINKed with the current module.

For more explanation of the use of this directive and the EXTRN directive see the
OASIS LINK Editor Reference Manual.

MACRO Rev B - 15 -

MACRO REFERENCE MANUAL
EQU Directive

The EQU directive allows the programmer to assign a value to a labei. The general
format of the directive is:

<label> EQU <exp> [;comment]

The EQU directive must have a label. All terms in <exp> must have been previously
defined - no forward references are allowed.

When the EQU directive is encountered by the assembler <exp> is evaluated and
assigned to <label>. :

A label that has been equated with the EQU directive may not have been defined by
~any other directive or instruction in the program.

ERR Directive

The ERR directive is used to display an error message during the assembly process.
Normally this would be used in conjunction with the conditional directives when an
invalid condition has been detected. The general format of the directive is:

ERR *'message' [;comment]

When the ERR directive is encounted the message is displayed on the console along
with the 1ine number and the error message is included in any listing file bein%
enerated. This directive does not cause the assembly process to be cancelled bu
t will cause the return code to be set to a non-zero value. This return code can
be displayed when the RDYMSG has been set ON and it can be tested by an EXEC

program. ‘

EX Pseudo-ops

The EX pseudo-op provides a convenient method of expressing some frequently used
register exchanges with the Z80 registers.

MACRO Pseudo-op Equivalent Z80 Instruction
EXA ~ EX AF,AF!

EX AF,AF EX AF,AF!

EX HL,DE EX DE,HL

EX BCDEHL,BCDEHL' EXX

As can be seen, the pseudo-ops are more versatile in their use and would be very
meaningful for the programmer who is unfamiliar with the Z80 exchange instructions.
EXIT™ Directive

The EXITM directive is used in a macro E§°t°t pe, usuall¥hin conjunction with the

conditional directives, to skip to the ENDM directive. e general format of the
directive is:

‘ EXI™ [;comment]
The EXITM directive is discussed in the chapter on Macros.
EXTRN Directive

The EXTRN directive allows you to specify that a label is defined externally to the
current assembly. The general format of the directive is:

EXTRN [<label>[,<label>]...] [;comment]

The 1list of labels specified in the operand field cannot include any labels defined
during the current assembly, either before or after this directive.

Omitting a label specification indicates that all undefined label references in the
program are to be treated as externally defined.

For more information regarding the use of this directive and the ENTRY directive
see the OASIS LINK Editor Reference Manual.

- 16 - MACRO Rev B

CHAPTER 5: HACRO'DIRECTIVES & PSEUDO-0PS
IF Directive

The IF directive allows the programmer to include code that is assémbled only when
an expression is true. The general format of the directive is:

[<label>] IF <exp> [;comment]

All terms referenced in <exp> must have been defined previously in the program. No
forward references are allowed. _

The <exp> is evaluated and, if true, the instructions following are assembled.

When the value of the <exp> is false the instructions following, up to the next
ELSE, ELSEIF, or ENDIF, are not assembled.

LD Pseudo-ops ;
The LD pseudo-op provides a convenient method of pefforming some -frequently used
double register 1loads that are not available in the 280 instruction set. The
general format of the pseudo-op is:
[<label>] LD <rr>,<rr> [;comment]
[<1abel>] LD <rr'>,(<ii+d>) [;comment]
[<label>] LD (<ii+d>),<rr'> [;comment]

[<1abel>] LD <rr'>,(HL) [;comment]

Where:

rr Is any of the double register pairs: BC, DE, HL, IX, or IY.
rr! Is any of the double register pairs: BC, DE, or HL.

ii Is either of the index register pairs: IX or IY.

d Is a signed displacement value.

The LD pseudo-op 1is the same op-code as the 280 LD instruction except in 1its
permissible syntax. The LD pseudo-op generates the corresponding instructions to
perform the desired 1load. For example- the pseudo-instruction: LD HL,DE will
generate the 280 instructions: LD H,D and LD L,E.

LINK Directive

The LINK directive provides a means of segmenting the source program into more
workable units. The general format of the directive is:

LINK <file-desc> [;comment]

When the LINK directive is encountered by the assembler the specified file is used
for the next line of source code. Obviously the LINK directive should be the last

line og code in the current file as any code following the LINK directive will be
ignored.

When the <file-desc> onl specifies a file name the file type used in the OASIS
MACRO command is used - that command had a default file type of ASSEMBLE.)

LIST Directive

The LIST directive specifies how (and if) the assembler is to list the source
program. The general format of the directive is:

LIST [<option 1ist>] [;comment]

The LIST directive is only effective when one of the listing output options was
specified in the OASIS MACRO command. The LIST directive may be used more than
once in a source program to change the listing options. Similar to the USING and
ORG directives, when the option list is specified the current list options are
pushed onto an 8 level, internal LIST stack, When the option list is omitted the
previous list options are popped from this LIST stack.

» The options that may be specified include:
ON Indicates that a listing is to be created.
MACRO Rev B . - 17 -

MACRO REFERENCE MANUAL

OFF Indicates that_no listing file is to be created. ,
COPY igd%gates that code found in a ®COPY" file is to be included in the
sting.

NOCOPY Indicates that code found in a "COPY" file is not to be included in the .
listing. This option does not affect the object program generated.

IF Indicates that source code not assembled due to conditional assembly is
included in the listing. A

NOIF "Indicates that source code not assembled duefto conditional assembly is
not included in the listing. _

DATA Indicates that all data generated by the storage definition directives is
to be included in the lisfing. .

NODATA Indicates that only the first four bytes of data generated by each storage
definition directive is to be included in the listing.

MACRO Indicates that macro expansions are to be included in the listing.
NOMACRO 1Indicates that macro expansions are not to be included in the listing.

The options specified in the CSI MACRO command initially set the various list
options, however (assuming a listing output device was specified) the LIST
directive may override these options.

MACLIB Directive

The MACLIB directive allows the programmer to specify that a file of macro
gefinitions is to be located and remembered. The general format of the directive
s:

[<1label>] MACLIB <file name>[.<file type>][:<file disk>][;comment]

When the MACLIB directive is encountered by the assembler the specified file
(default file type of MACLIB) is located. The macro definitions contained in the
file are noted and the macros may be used by the program just as if the macro were
defined by the program.

No listing of the MACLIB file will be produced. The MACLIB file may only contain
macro definitions.

MACRO Directive

The MACRO Directive specifies that the code following (up to and including the ENDM

girective) is a macro prototype definition. The general format of the directive
S:

MACRO [;comment]

The MACRO directive, along with the other macro related directives, is discussed in .
the chapter on Macros.

ORG Directive

The ORG directive allows the 5rogrammer to change the value of the location
counter. This 1location counter is wused to determine the address at which to
assemble the next instruction. The general format of the directive is:

[<label>] ORG [<exp>] [;comment]

The ORG directive always specifies that the location counter is to be changed.
When the ORG directive is encountered in an ABS PAB the exgression specifying the
new location counter is absolute. When the ORG directive is encountered in a REL
or COM gAB the expression specifying the new location counter must be a relocatable
expression,

All of the terms in <exp> must have been previously defined - no forward references
are allowed. When the ORG directive is encountered <exp> is evaluated and assigned
to the location counter and <label>, when specified.

When <exp> is specified with the ORG directive the current location counter is
placed on an internal 8 level ORG stack. When ' <exp> is omitted the previous

- 18 - MACRO Rev B

CHAPTER 5: MACRO DIRECTIVES & PSEUDO-OPS
element on the internal ORG stack is popped off. _
This feature allows the programmer to place the code definin§ the'working storage
near the code referencing this storage even though in fact the address of the
working storage may be any place in memory.
For example:
Addr Obj-Code Line *#¥ Source Statement #¥#

1 MAIN: ABS

8 R
9

400 B 3 EX 2SP) HL

400 . 7 5 LD A,(HL)

400 23 6 INC H

400 E% g EX (SP) ,HL

4007 FEU5 CP VALUE2

4009 3805 9 JR C,LABEL2

400B 340090 10 LD A,(LABEL1)

400E 37 1" SCF

4OOF 9 12 RET

9000 13 ORG ?ooo

9000 0000 14 LABEL1: DC 0)

002 00 12 LABEL3: DC O

010 1 ®° ORG

4010 17 LABEL2:

REL Directive

The REL directive is used to define the relocatable PAB. The general format of the
directive is:

[<label>] REL [<exp>] [;comment]

Unlike the ABS directive, the 1label field is not required when there is only one
REL PAB in a program. When the label field is omitted the PAB will be assigned the
name of the program. When the label field is sgecified it is used b¥ the USING
directive to specify which PAB to use for assembling code. The <exp> rield, when
used, specifies an address relative to the load address of the program that tﬁe»PAB
is to start on for listinﬁ purposes only. Obviously, since this defines a
relocatable PAB, the actual addresses used during execution time may be different.

A PAB definition, such as the REL directive, implies a USING directive following.
%ELigi nog‘necessary for you to specify a USING directive immediately following a
rective,

REPT Directive

The REPT directive allows you to duplicate a line of source code several times
without coding several times.” The general format of the directive is: -

REPT [<exp>] [;comment]

When the REPT directive is encountered by the Assembler the next sequential line of
code will be duplicated the number of times specified by <exp>. exp> must be in
the range of 1 - 65535. No forward referencing is allowed.

The line that follows the REPT directive cannot have a label in the label field as
that label would be duplicated along with the rest of the code. This, of course,
would cause a duplicate label error.

The listin% of the duplicated lines of code is controlled by the DATA/NODATA option
of the LIST directive.

SC Pseudo-op

The SC allows the assembly language programmer to utilize various portions of the
operating system. The general format of a System Call is:

[<label>] SC <exp> [;comment]

The <exp> specifies which system routine control is to be transferred to. Although
<exp> may have a value between 0 and 255 the actual number of system routines
implemented is 1less. Reference to a system call number not implemented will cause
system call number 0 to be executed. SC 0 will cause control to return to the

MACRO Rev B - 19 -

MACRO REFERENCE MANUAL
OASIS operating system.
When assembled the SC occupies two bytes of storage.

The system routines implemented and the requirements for usage are discussed in the
chapter on System Calls. .

SUBT Directive

The SUBT directive allows the programmer to specify a sub-heading to be printed on
each page. The general format of the directive is:

SUBT <quoted string> [;cosment]

The <quoted string> replaces the second heading line message at the - top of each
subsequent page of the listing. ' :

TITLE Directive

The TITLE directive allows the programmer to specify the headinf to be printed at
the top of each page in the listing. The general format of the directive is:

TITLE <quoted string> [;comment]

The TITLE directive is only effective when a listing is being generated. When the
TITLE directive is encountered bz the assembler the heading for the next ggge of
the listing is changed to be the <quoted string> (exlusive of the del tin

quotes) and a pa%e eiect is generated in the listing. The TITLE directive itsel

is not listed in the listing, however the line number is incremented.

USING Directive

The USING directive is used in conjuntion with the ABS, COM or REL directives to
ggecig thg PAB that instructions following belong to. The general format of the
rective is:

USING [<label>] [;comment]

The USING directive can not have a label. The 1label specified in the operand

portion of the directive must be of a previously defined PAB (no forward

references). When label is used in the operand position the current "USING PAB" is
ushed onto an 8 level USING stack. When <label)>. is omitted the last "USING PAB"™
s popped from this USING stack. :

When a PAB is defined by the ABS, COM, or REL directive a USING directive is
implied. There is no need for you fo follow a_ PAB definition with a USING
directive unless you wish to sgecify some code "using" a different PAB than the one
Jjust defined. This implied USING performs a push onto the USING stack just as if
ou had specified the USING directive yourself. In fact, when you specify the
glgg directive following a PAB definition there will be two pushes onto the USING
S a L] °

VALUE Directive
The VALUE directive is similar to the EQU directive with the added ability of
redefining a previously defined 1label in the program. The general format of the
directive is:

<label> VALUE <exp> [;comment]

The VALUE directive must have a 1label. All terms in <exp> must have been
previously defined - no forward references are allowed.

- 20 = MACRO Rev B

CHAPTER 6

MACROS _
Macros are predefined sections of source code which may be used to facilitate the
codi of commonly used procedures. Macro source code is modified by the MACRO

Assembler to include labels and expressions passed as arguments by the main body of
source statements. Macro definitions are called "Macro Prototypes™ and are saved
for later access by the MACRO Assembler.

The OASIS MACRO Assembler allows macro prototypes to be defined either within a
source file (must be defined before referenced), in an external macro source file
(file type of MACRO, one per file), in an external macro library file (file type
MACLIBf one og more per file), or in a COPY file that was copied before the macro
was referenced.

6.1 Preparing Macro Prototypes
Macro prototypes must be defined in the following format:

MACRO E'comment]
[&<label>] name &<symbol>[(<default>)]1[,&<symbol>[(<default>)]]...
one or morgngﬁsembly anguage statements and macro directives

Each protdtype must start with the MACRO directive and end with the ENDM directive.

The second statement of each prototype. is called a "Macro Prototype Header" and
defines the name of the macro and any labels and symbols that may be replaced
during assembly. The name may be any 1 to 8 character smﬂbol that is not alread

predefined by the MACRO Assembler (Z80 op-codes and MACRO directives). Al

arguments shown in brackets are optional and may be omitted if not needed.

Notice that the label and symbols are preceded by the ampersand character. This is
also true of the assembly statements within a macro. The ampersand character
always precedes a substitution label or symbol.

Labels and symbols shown in the prototype header define items in the statements
that follow that may be replaced at assembly time. Followin% each symbol in the
header a default expression may be defined. The default will be used if a macro
reference in the source program fails to suppl¥ a replacement expression for the
preceding symbol. Spaces or commas may be used to separate the times in the list.

More than one macro may be defined in a program.
6.2 Macro Calls

Code from a macro prototype is included in assemblies by the means of "macro
calls"™., The general form of macro calls is:

[<1abel>] name [<exp>[,<exp>]...] [;comment]

The name used in the instruction field will be assumed to be a macro name if it is
not a recognizable MACRO Assembler instruction mnemonic or directive. The label
and expression arguments in Dbrackets are optional. Arguments defined in the
expression field are positional and must be defined in_ the same order as related
symbols in the macro's prototype header (except keywords).

Notice that a macro call does not use the ampersand character.

There is a purposeful similarity between the format of a macro call and macro
rototype header. They are closely related and determine the final code that will
e included in the assembly.

Header: [&(label)] name [&(sym)[((def>)][,&<Sym>[(<def>)]...]]
Call: <label>] name [<expression> ,<expression>]...]

The label for the call will reglace the occurrences of the header 1label in
prototzpe code during expansion. The first expression in the call will replace the
first header symbol in the prototype code, the second expression will replace the
second symbol, and so forth.

Arguments may be omitted in each list of macro call expressions by coding only the
trailing comma_to indicate the missing expression. Trailing commas after the last
expression included in a list are not required.

The rules for substitution are:

MACRO Rev B -21 -

MACRO REFERENCE HAIHAL’

" Macro Call Prototype Header Action

Label No label Label is defined normally before
expanded macro code is processed.

Label Label Call label substituted in
expanded macro code.

No label No label No change. ’

No label Label Prototype label is omitted.

Symbol No symbol Call symbol ignored.

Symbol Symbol Call symbol substituted for
occurrences in macro code.

No symbol Symbol-no default Header symbol disappears in

- expanded code.
No symbol Default substituted for

Symbol-default
_ occurrences in macro code.

Expansion example:
Macro prototype:

MACRO
&LABEL: CLEAR &FIELD,&SIZE(80{
~ ; Clear &FIELD to zeros for length &SIZE
&LABEL: LD B,&SIZE Get field length
LD ?%L§F§ELD Point to &FIELD

H
LOOP: LD , ; Set byte to zero
INC HL s Point next
gﬁgﬁ LOOP s Repeat till done

Macro Call:
LOOP: CLEAR BUFFER
Expansion:
; Clear BUFFER to zeros for length 80

HL
DJNZ LOOP Repeat till done

In the above examPle the symbols &LABEL and &FIELD in the prototype have been
reglaced by "LOOP" and "BUFFER" provided by the macro call. The symbol "SIZE™ did
nob tg%vg 3 replacement expression in the macro call so the default "80" was
substituted.

6.3 Macro Keywords
The MACRO Assembler provides an alternate format for prototype headers and macro

calls to allow easier implementation of macros with long symbol lists. This
alternate format uses the keyword feature.

LOOP: LD B, 80 ;s Get field length
LD HI,, BUFFER ; Point to BUFFER
LOOP: LD Hﬂ),o ; Set byte to zero
INC ; Point next
9

As described above the symbols in a prototype header and a macro call are
positional, meani that a one to one match is made between the first symbol
defined in the header and the first position of the call, the second symbol defined
in the header and the second position of the call, etc.

When the keyword feature is used the symbols are no ionger poSitionally defined and
called, This is important when a long list of “symbols and defaults are defined in
a header but only a few are used in the call. .

A symbol is defined as a keyword in a macro call by using the symbol with an equal
sign (=) followed by the value.

MACRO Rev B

CHAPTER 6: MACROS
Example:
Macro Prototype:
&LABEL: TEST &A(1),&B(2),&C,&D(256) ,&E(0) ,&F(5) ,&G(1
&LABEL: DC &AE&%’ (2),4C,&D(256),, »&F(5),86(1)
: DC &C
&D
DC &E, &F, &G

VMacro Call:
VALUE: TEST ,5,5,G=128 v

Expansion:
VALUE: DC 1,5
- DC 5
DS 256
DC 0,5,128
6.4 Labels

Labels within a macro are of three types: global, local, and macro local. The
global label within a macro functions the same as it does_outside of a macro: it
can be referenced from anywhere in a program. A global label defined within a
macro is different from a global label defined outside of a macro in that the
definition of the global label does not affect local labels.

The local label defined within a macro functions the same as it does outside of a
macro: it can only be referenced from locations between two global labels (global
labels defined outside of the macro.

The macro local label is a label that has a value onli when reference from within
ghe macro defining it., A macro local label is a label whose first character is a

6.5 Concatenation ‘

The concatenation character, vertical bar (|) is used in inner macro calls and
macro prototype expressions to separate a macro symbol from a literal that is to be
concatenated to the replaced value of the symbol. Macro symbols may be
concatenated by merely concatenating the symbol references in the prototype.
Example:

Macro prototype:

MACRO

MSG &AAA‘&BBB

MSG&AAA: DC &BBB {LOC, &BBB | SIZE
DC ' YERROR IN PHASE DCT&AAA!
DC (&BBB&AAA)
ENDM

Macro Call and Expansioh .

MSG 024 ,PHSY

MSGo24: DC PHS4LOC, PHSUSIZE
DC 'ERROR IN PHASE DCT024'
DC (PHSL4021)

In order to include the vertical bar character as part of a macro or macro call you
must duplicate it: ||

6.6 Macro Substrings

Substrings of macro variables can be used by specifying the startin% and ending
character positions of the variable, within parenthesis immediatelg ollowi the
variable name. For example: &NAME(3,5) indicates the substring of the value of the
variable &NAME from position three ﬁhrough position five (three characters). Any
time a variable name is used followed by a left parenthesis character the assembler
will try to substing the variable. When the left parenthesis character is used and

MACRO Rev B -23 =

MACRO REFERENCE MANUAL

sgbstringing is not desired you must use the concatenation character described
above.)

6.7 Macro Nesting

The OASIS MACRO Assembler allows.the nesting of macro calls within macro calls up
to eight 1levels deep. Macro Local labels cannot be passed as arguments to inner
macros. Local labels may be gassed as arguments to inner macros but this usage may
be restricted by the definition of global labels (same as non-macro code). The
passage of global labels and other arguments is unrestricted.

6.8 Macro Reserved Variables

Within a macro prototype or macro call there are four reserved variables available
to the user. These variables allow you to access the current date-and time, the
program name, and the current macro index value. If these variables are to be used
as labels then theg should be concatenated with other characters to generate unique
labels. The variables are as follows:

&DATE current date in mm/dd/yy format
&TIME current time in hh:mm:ss format
&PROG current source program name

&INDEX current macro call index number

6.9 Macro Comments

Comments may be included in a macro prototype in the same manner as comments in the
main grggram. Macro symbols may be included as part of a comment and these will be
expanded. :

A comment may be included in a macro prototype that is not to be expanded or even
listed in any 1listing file created. This type of comment (macro comment) is
indicated by pairing the comment delimiter (;;).

6.10 Macro Example

MACRO ;s Create FCB

&LABEL: FCB &CHANNNEL , &MODE, 4BUFFER
IF .NUL.&LABEL ? Asm only if &LABEL is empty
ERR 'Label field required for FCB!

EXITM
ENDIF
IF &CHANNEL.LT.0.0OR.&CHANNEL.GT. 16
R YACB channel number out of range!'
EXITM
ENDIF
&LABEL: DC &CHANNEL
IF .NUL . &MODE
ERR 'Access mode required!
EXITM
ELSE ;; Test the access mode specified
IF '&gODE(1,3)'.EQ.'INP'

DC 9
ELSEIF '&MODE(1,1)'.EQ.'0"
gESEIF §250DE(1,1;' EQ D!
|
gESEIF ?ggODE(1’)t EQ. IND'
] O' N
D 20H 3 Q :

ERR "Access mode undefined®

IF 1&BUFFER' .EQ.'!
DC (@BUFF)

6BUFF: DS 255

(&BUFFER)

-2 - MACRO Rev B

CHAPTER 7
SYSTEM CALLS

This chapter describes all of the system calls implemented in this version of the
MACRO Assembler. They are described because they do exist and are available for
use, not because they should be used by the programmer. In fact, some of these
sysEem calls should not Dbe used: 10, 11, 27, 28, 50, and 51, These system calls
are related to physical disk I/0 and if used indiscreetly, may destroy the
resident operating system or the contents of a disk or disks. Any conseguential
gﬁmages caused by the use of these specific system calls are the responsibility of
e user.

7.1 Documentation Conventions
This chapter describes the s§ntax and operation of the system calls available to
the programmer using the OASIS MACRO Assembler. Each system call is presented in
the same format:

1. System call heading, centered on the page.

2. Function of the system call.

3. Input parameters. This area defines all of the parameters that are
required to be defined before the system call is invoked.

4, Output parameters. This area defines any parameters that are
returned to the calling program.

5. Description. A general descriptive text of the function of the
system call.

6. Other system calls used. This area specifies if any other system
calls are used to perform the function and what they are.

T. Other registers altered. Any registers that may be changed by the
system call, excluding those specified as output parameters, are
listed in this area.

8. Example. A specific example of the calling sequence and result of
. the system call is given. An example is not given if the system call
is obvious or trivial.

System control blocks are referenced frequently through this chapter. Refer to the

appendix on System Control Blocks for information regarding the content and format
of each of the control blocks.

MACRO Rev B -25 -

O R e e D D SR G0 D P D ED D G AR W P T W G W > E e G Y D D W TS S G G T S D W GO OD S D e G GD OF OB SR =D B TD @ Gn OP GRG0 D D S0 OB D GD D S5 S ID On e 00 D GD e G0 b GO o G
O O 0 T OO0 € 0 € WS T G CE OB R O OD D 5 T b En T 0o b h G e D S e e ST S 5 GE 0 e b R o e B T G M O W O G GO B W G G0 0 G D D OB G0 O B0 G5 G0 G5 W T O 9B GO0 G0 5 G5 o €5 oo @6 o0

T s T T T T by Y p st - o o o e T v e A w o = ow an @2 aw
e i it ittt sttt it st ittt ittt -ttt 2 3t 2 1 1 2 3 1 ¢

Function: Reload the Command String Interpreter - restart.
Input parameters:
" ‘ Reg A -~ Return Code
Output parameters: none
Description:

The Command String Interpretef is reloaded and control is passed to the
CsI. This system call is enerall¥ used when an assembly program is
finished its execution and control is to return to the operating system.

Certain statuses and switches are reset by this system call: ESC,Q and
ESC,S are reset; DET and QET are reset; the stack pointer is reset to top
of memor{' any TEBs owned by this partition are cleared; all ACBs are
closed; a i known resources locked by this partition are released; and all
files and records locked by this partition are released.

The value in the A register is the return code. This return code is
displayed if RDYMSG is set ON and is accessible by the EXEC language.

Other system calls used: SYSIN (63, SYSOUT 57) MOUNT (9), RD1 _(10), GETSCR (48)
RD §50) SYSDISP (52), TIMER (?3 GETMEM (55), PUTQET (é;), PUTDET (74), GETACS -
(77); NOTONLY (85), UNEXCLUS (90), GETWORK (91), COMPARE (93

. Other registers altered: all (control returns to operating system)

Example Calling Sequence:

LD A,16 ; Return code
%gb 0 ; Re-=load CSI & exit

- e o . o D D S P D > - G £ €3 G G e R S P GD S WD W N EP S TP D D ED D WD G T A P R B AR D P D R O CD D A5 Gn S5 G5 D8 D GO SN GF D D TS RGP SP D G ED Ge Gh W W G0 . LD G e W o
- e e 5 e T T T T TD e R G0 S0 OO e Sh S G T S e e T R TR T T SO T D D D B e W e A O D M G WD GD D T WY B e A D e TR e G R WP WD R S D W S S R e D WD e e D O o

Function: Accept a line of input from the console keyboard.
Input parameters: k

Reg B =~ Max line length to accept
Reg DE - Address of buffer to store line

Output parameters:

Reg A - Actual line length accepted
Description:

Up to B characters are accepted from the console input device (CONIN).
All characters will be echoed to_the console output device, dependent upon
the controls set in the console control byte. Entri is terminated by
entry of B characters or a carriage return. The console control byte may
specify that any control character terminates input.) When the input is
3er?inated a carriage return, 1line feed is echoed to the console output
evice, .

If the input is not terminated by a carriage return (B characters entered)
~then a earriaﬁe return is appended to the end of the character string in
the buffer. or this reason the buffer length should be B+1. ,
Note: When there is information available from the EXEC stack this system
call will retrieve characters from that stack and echo it to the console
if the stack display switch is in effect.
Other system calls used: CONIN (4), CONOUT (5), CRLF (18), GETSCR (48)

Other registers altered: C, D, E, H, L

SC 1 KEIIN - 26 = ' MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Example Calling Sequence: "

LD B,64 ; Length

LD _ DE,AREA ; Input buffer

SC 1 s Get line from console
AREA; DS = 65 '3 Buffer

Function: Display characters on console output device.
Input parameters: '

Reg DE - Address of first character to output
Output parameters:

Reg DE - Address of last char output plus one
Description:

Characfers from the Abuffer addressed by register pair DE are displa{ed on
the console output device. A null character (00) terminates output to the
console and returns from the system call.

A carriage return will be displayed as a carriage return, line feed and
the system call will be exited. A line feed will be displa%ed as a
carriage return, line feed, output continues. An HT character (09H) will
be displaied as the proper number of spaces according to the Tab Set Block
(TSB). All other editing is done by the CONOUT system call on a character
by character basis.

Other system calls used: CONOUT (5), CRLF (18)
Other registers altered: A
Example Calling Sequence:

LD DE,MSG ; Point to message string
SC 2 ; Display on console
MSG: DC 'Any old thing',ODH

Function: Get status of console input device.
Input parameters: none
Output parameters:

Flag Z - set if no character ready; reset otherwise
Description:

The console input device is queried: the zero flag (Z) is reset if at
least one character is available for input, the zero flag is set if no
characters are available.

Other system calls used: GETSCR (48), DEVST (62)

Other registers altered: A

Example Calling Sequence:

SC 3 ; Test console ready
JR - Z,NOTRDY ; Jump if no char ready

MACRO Rev B ‘ -27 - SC 3 CONST

D G007 D e 3 o e e G e OB D £ WD OO0 3 0 SR W On G 9 W6 S0 T T M T Gn G G5 W e D G5 On e 6 w0 ED G0 e 0 Ge Ba e T wD S0 G0 Gu G5 B0 tn e G Se W I ED @0 OB G0 TP W G5 45 O OO O C¥ G0 o CF G0 Ge G0 G0 8 O o

D R G D O D D D O D O D P G s e D e D G e R e S G5 R S D P S W G I G D S Ol S G D G0 e e S D e G GO G e G e D R e GO G G OU GID D GO S G D WD OF e D e D G e 6D W D 6D
D €0 CIo O G5 e i T 0 e 10 0 o D WD T P D 0 G OF M0 B8 i G0 Mo G5 U3 WS S5 $8 W5 Se M 0 o G SL G N D G 0 S0 = S S5 S n G e e o e 0 e o W I O D OB S G T G OO O3 00 R 06 om &0 S0 G5 9B O ap W o @

Function: Accept one character from the console input device.
Input parameters: none
Output parameters:

Reg A - contains character input
Description:

One character is accepted from the console input device. Characters
accepted from the console device or EXEC stack are edited according to the
set values for UP, DOWN, etc, and the console class code, if anﬁ. The
underscore character is always translated to a RUBOUT character Dby this
sgstem call. Return from this system call is performed onlz after a
character is accepted. The character will be echoed to the console output
device with editing performed according to the switches set for
upper/lower case, rubout, graphic display, etc. This system call never
echos control characters (values < 32 or > 128). ‘ ’

Note: When there is information available from the EXEC stack this systenm
call will retrieve a character from that stack and echo it to the console
if the stack display switch is in effect.

?ggﬁr system calls used: CONOUT (5), GETSCR (48), GETMEM (55), PUTMEM (56); DEVIN

Other registers altered: none
Example Calling Sequence:

ScC 4 s Read & echo char from console

DD G G D D S . P TE T W S D G ST WS e T D e 0 G G R N s S D G S S W OD A W WP GD ER G O D 0 G G0 ED OB OO TP G OF S G 0 G0 Gn 49 P GD a6 O EP G0 SN D OU S S e S 0P B A G GN SPGB 65 W OB W G
e U e e e e e e 2 T o e T o T R U T e i D e = D G e S R G D P e e v O WD G e e e D 0 P T O G D D GO G T > G D e S T O3 G e S5 0 U R D TR G G e T R OB AR G e e e D M e e

Function: Display one character on console output device.
Input parameters:

Reg C = character to be displayed
Output parameters: none
Description:

The character contained in register C is displayed on the console output
device (CONOUT) with editing performed according to the console control
bgte: graphics, printer echo, etc. Output to the console is supgressed if
there is EXEC stack data present and the NOSTACK option is in effect.
When the character is displayed on the console the current cursor location
in the nucleus is maintained and auto new line is simulated if the
character is to be displayed past the end of the attached line length.

Other system calls used: SYSOUT (7), PRTOUT (8)
Other registers altered: A
Example Calling Sequence:

LD C,12? _ ;'Load a question mark
SC 5 s Display on console

Function: Accept one character from console.
Input parameters: none

SC 6 SYSIN - 28 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Output parameters:
, ‘Reg A - contains character input
Description:

One character is accepted from the console input device. Return from this
sxstem call is performed only after a character is accepted. The
character will - always be echoed to the console output device (status of
Console Echo-key ignored) with editing performed according to the switches
set for upper/lower case, rubout, graphiec display, etc. The character
will never be echoed to the printer device (status of Printer Echo-key
ignored). This system call never echos control characters (values < 32 or
> 128). In other respects this system call performs the same editing as
the CONIN system call,

The status of the EXEC stackvand the staek display switch is ignored by
83%80§¥?tem call ?character is 3;ggx§ accepted from CONIN and displayed on
Other system calls used: SYSOUT (7), GETSCR (48)
Other registers altered: none ‘
Example Calling Sequence:
sC 6 ; Get char from CONIN

Function: Display one character on console output device.
Input parameters: '

Reg C - character to be output
Output parameters: none ,

Description: ~
The character contained in register C is diaplayed on the console output
device (CONOUT) with editi performed according to the console control
byte: graghics,‘etc. The status of the Console Echo-key and the Printer

Echo-key is ignored.
The status of the EXEC stack and the stack display switch is ignored
(character is always displayed on the CONOUT).

Other system calls used: CRLF (18), DEVOUT (64)
Other registers altered: A
Example Calling Sequence:

LD C,12H 3 Load DC2 char
7 s Output to console

Function: Output one character to Printer‘1.
Input parameters:
Reg C - character to be output

Output parameters: none

Description:
If Printer 1 is not attached then this system call is exited. If the
printer is attached then the character in the C register is output to that
device along with any editing or options specified in the attachment of

MACRO Rev B -29- SC 8 PRTOUT

'MACRO REFERENCE MANUAL

that device. _
Other system calls used: DEVOUT (64)
Other registers altered: A \
Example Calling Sequence:

LD C,0CH ;s Form feed
8 s Output to PRINTER1

T R D D e D e G D P D P e LD GD D ED e G G WD D D G0 OF G G D SR e S S R D P e G G D G G0 ER 65 M G G0 GP E S P o TP S0 R Gl P G0 GF G =GP OF G5 GF G0 G GE OB D S Cb G O gB O O O G
T O3 e e 0 B0 o G D D D D B T O D G5 O T S0 0 e €5 0 €D D GD G0 D T0 D OIf g0 5 W 5 S0 a On Gn D n 8 3 5 W 0D EE W5 N 0 D % G0 R 6 OR D M W W O eR O N oD EE N GR oI TD 3 D e G B oD W D & M B

o - - - O s e P OD ED G OV TP OD) P TE G S5 SN e €O S0 S OF D D OF D GD e £D D D G
22432ttt ittt ittt ittt ittt ittt ittt ittt ittt - it ittt ittt 2 - At A E 4113

Function: Allow change of diskette on a specified drive.
Input parameters: _
Reg B =~ logical drive code (0 = 7) = (S = G)

Output parameters: none

Description: _
Internal switches are set to indicate that the next read or write to this
disk must first read the diskette ID. If the drive code in the B register
specifies a drive that is not attached or is invalid then nothing is done
by this system call. '

Other system calls used: GETUCB (21)

Other registers altered: A

Example Calling Sequence:

LD B,1 3 Drive code for A
;i Perform mount on A

a oo == o w0 - - - - an ey o S e e e e - - - -
3ttt ittt i ittt ittt ittt it i Lttt ittt ittt ittt t -t A - 3 1

Function: Read one sector from a diskette.
Input parameters:' :
Reg B = logical drive code (0 = 7) = (S = G)
Reg DE - sector address, relative to 0
Reg HL - buffer address
Output parameters: none
Description:
Specified drive is selected, if 1legal, and the indicated sector is read
into the 1location specified by the L register pair. If the drive or

sector is illegal or an error is detected during the read no error status
iﬁ returned--~disk errors are reported to the operator for handling (see SC

This system call, when used in a multi-user environment, checks the Sector
Lock Table (SLT) and waits if the requested sector is locked by another
partition.

Caution: Use of this system call is not advised.

Other system calls used: RD (50)

Other registers altered: A, C

SC 10 RD1 . =30 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Example Calling Sequence: :

LD B,0 ; Drive S

LD DE, 1 ; Sector 1

LD HL , BUFFER s+ Memory address

SC ;s Read a sector
BUFFER: DS 256

e I I T T T e T Y Y I T I I T I I I I r r - r 1 13
P R R R R S T e S T e e T e rE e e m e e r e T e e e s E E E C R R CE C e o e e O e 0 o e o o o o oo e e oe em o0 s ee 00 w0

Function: Write one sector to a disk.
A Input parameters: -
Reg B - logical drive code (0 - 7) = (S = G)
Reg DE - sector number, relative to 0
Reg HL - buffer address
Output parameters: none

Description:

The specified drive, if legal, is selected and the data at the location
indicated by regisfer pair HL is written to the specified sector. .If the
drive or sector number is illegal or an error is detected during the write

operation no error status is returned--disk errors are reporated to the
operator for handling (see SC 74).

This system call, when used in a multi-user environment, checks the Sector

Lock Table (SLT} and waits if the requested sector is locked by another
partition. ‘

Caution: Use of this system call is not advised.
Other system calls used: WR (51)
Other registers altered: A, C
Example Calling Sequence:

LD B,1 ; Drive A

LD DE, (SECT) : Sector address

LD L,D ; Memory address

SC 1 ; Write a sector
SECT: DC (112) ; Must be 16 bit word
DMA: DS 2

an o s e wp - o = oD o - I T I I I I T I T T I T e T T T T T
H ittt ittt v ittt t it L R R R R T R R]

Function: Return nucleus version number.
Input parameters: none
Output parameters:

REG H - Bina Coded Decimal version number
REG L - Alphabetic version suffix

Description:

This system call returns the system version number in the HL register
pair. The version number of the nucleus is always in the form of nna
- , where nn is the version number and 'a' is the version suffix letter (i.e.:
54F, 50B, or 55). The version suffix may be blank. The 'nn' portion of
the version number is returned in the H register in BCD format (i.e., when
version is S4F the H register will contain 54H). The 'a' suffix portion

MACRO Rev B -31 - SC 12 GETVER

MACRO REFERENCE MANUAL

is returned in the L register as an ASCII character (i.e., when version is
54F the L register will contain 46H). :

Other system calls used: none
Other register altered: none

- - - o o m n Om e e S S S = S S e D S > e S G0 S D G D e G0 e D e e e
-ttt it ittt it ittt 1ttt s 1ttt ittt ittt ittt ittt ittt ittt - 2 1 221 1

Function: Write file directory entry.
Input parameters:

Reg B - Logical drive code (0 - 7) = (S = G)
Reg DE -~ Address of DEB

Output parameters:

Flag C - Set if error; reset otherwise
Flag Z - Reset if error; set otherwise

Description:

The directory entry addressed by the DE register pair is written to the
direetorﬁBof the drive addressed by the B register. The directory entry
block (DEB) must be completely filled in (all ?2 bytes). If the directory

~is full or if the directory entry is a duplicate of an entry already on
file the carry flag is set and the zero flag is reset; otherwise the carry
flag is reset and the zero flag is set.

The user is advised to not use this system call to create directory
entries, When files are created using the other appropriate system calls
the directory entry is automatically created.

Other sgstem calls used: WR1 (11), LOOKUP (20), GETSCR (48), ONEONLY (84), NONTONLY
(85), GETWORK (91)

Other registers altered: A

0w e e e e e 0 o o - - 0 " o - D > o = .
ittt i it ittt t ittt ittt ittt sttt ittt -+ 2

Funcetion: Convert hexadecimal number to 16 bit binary.
Input parameters:

Reg DE - Address of hex string
Output parameters: ’
Reg DE - Address of byte following string
Reg HL - Binary resu1¥
Flag C - Set if overflow; reset otherwise

Description:

The string of characters addressed by the DE register pair is converted to
a binary value, conversion stopping on the first non-hexadecimal digit.
The resultant value is placed in the HL register pair, the DE register
pair is adjusted to point to the character following the last hexadecimal
digit or trailing 'H'. The system call is exited.

Other system calls used: none
Other registers altered: A

SC 14 HEXI ' -32 - ~ MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Example Calling Sequence: :

LD ~ DE, AREAH s Point ASCII hex
SC 14 ; Convert to binary
AREAH: DC ' ABCDH® ; Hex value

Function: Convert decimal number to 16 bit binary.

Input parameters:

‘Reg DE - Address of decimal'string
Output parameters: A

Reg DE - Address of byte following

Reg HL - Result

Flag C - Set if overflow; reset otherwise

Description:

The decimal string of characters addressed by the DE register pair is
converted to an unsigned binarz integer value and placed in the HL

register pair. Conversion stops when a non-numeric character is

encountered. The DE register pair is adgusted to point to the first
gharag%eg following the digits or trailing 'D' character. The.system call
s exited. '

Other system calls used: none
Other registers altered: A
Example Calling Sequence:

Point ASCII Decimal

LD DE, AREAD ;
SC 15 3 Convert to binary
AREAD: DC 1123451 ; Decimal value

- - y - > o T o = o o W A o T e o > e = oo = an e s
St ittt Pt it Pt it R e g R

Function: Convert 8 bit value to hexadecimal characters.
Input parameteré:

Reg B -~ Byte to be converted
Reg DE - Address of storage area

Output parameters: A
- Reg DE - Address of next location following
Description:
The 8 bit value in the B register is converted to the ' two hexadecimal
character equivalent. These two characters are placed in the storage area
addressed bg ~the DE register pair. The DE register pair is adjusted to
: po%gtdto the location following the second character. The system call is
exited. - -
- Other system calls used: none

Other registers altered: A

MACRO Rev B - 33 - SC 16 HEXO

MACRO REFERENCE MANUAL
Example Calling Sequence:

LD B, (HL) ; Get byte to convert

LD Dﬁ,AREAH ; Conversion area

sSC 16 ; Convert binary to hex
AREAH: ﬁS ' 2 ' ; Conversion area

- o - - - .- - - om > = -
T At i ittt it -ttt ittt 1t it ittt ittt 1ttt t 11

* Function: Convert 16 bit unsigned value to decimal string.
Input parameters:

Reg DE ~ Address of storage area
Reg HL - Value to be converted

" Qutput parameters:

Reg DE - Address of location following
Description: '

The 16 bit value in the HL re%ister pair is converted to the ASCII
character decimal equivalent leading -zeros are supgressed). The

resultant string is placed in the storage area - addressed by the register
air DE and the register pair DE is adjusted to point to the following
ocation. The system call is exited.

Other system calls used: none
Other registers altered: A, B, C, H, L
Example Calling Sequence:

LD DE, AREA s Work area
LD HL, (NUMBER) ; Get number
SC 17 ; Convert to decima
LD A,ODH : Get a CR ;
LD (ﬁE),A ; Mark end

AREA: DS

NUMBER: DC 256

T

= . - - - o= - - o > - - @ " o T > 0 TP D O S D D e - e
43+t ittt ittt ittt ittt ittt ittt ittt 1ttt 1ttt ittt it 1ttt

Function: Display carriage return, line feed on console.
Input parameters: none
Output parameters: none

Description:

A carriage return and a line feed character are displayed on the console
output device.

Other system calls used: CONOUT (5)
Other registers altered: none
Example Calling Sequence:
sSc 18 ; Display CR/LF

SC 18 CRLF . - 38 - MACRO Rev B

Function: Wait specified number of milliseconds
Input parameters: _
Reg A - Number of milliseconds

Output parameters: none

Description:
The number of milliseconds indicated by the contents of the A register are
"waited". An instruction sequence is performed that requires exactly one
millisecond to_ execute. he content of the A register is then
decremented. If the A register is not zero then the loogr is executed
again. If the A register is zero then control is returned to the
instruction following the system call.)
Note: If the A register contains a zero upon entrK then 256 msec will
elapse before control is returned. Any interrupts that occur while this
rgg ine is executing will cause minor inaccuracies in the actual elapsed

€. _
Other system calls used: none
Other registers altered: A

Example Calling Sequence:

LD A,10 s Get count

sc 18 ; Wait for 10 msec
i ; Wait for 1 secon

LD A,232. s Initial value -

SC 19 s Wait 232 msec

SC 19 ; Wait 256 msec

SC 19 s Wait 256 msec

SC 19 ; Wait 256 msec

Function: Locate directory entry of specified file.
Input parameters: -

Reg DE
Reg HL

Output parameters::

Address of DCB
Address of 256 byte work area

If found- Flag Z - Set
Flag C - Set
Reg A -0 1
Reg B_ - Logical drive number (0 - 7) = (S - G)
Reg DE - Sector address of directory block.
Reg HL - Address within work area of entry
If not found- Flag Z - Reset
Flag C - Reset if directory not full
Set if directory full
Reg A - 01 if directory not full
FF if directory full
Description: .

The specified file description is searched for in the directory of the

~drive indicated. If the director{ entry for the file is found then the
reifv?nt ig{ogmation is placed in the indicated registers and the. system
ca s exited.

If the directory entry for the file is not found then the relevant
information is placed in the indicated registers and the system call is

MACRO Rev B 7 -3 - SC 20 LOOKUP

fana cE MANUAL _ ;

exited. In this situation the calli program should create a director
entry for the file at the location within the work area and write the wor
area to disk using the WRFDIR (13) system call. ‘

This method of creating file entries is not intended to be used for
general purpose file creation - the system utilities provide this ability
with proven safety. Be very carefull if you do use this system calll

??3?? system calls wused: RD1 (10), DIV (38), GETSCR (48), TSTDEV (58), GETUSER

Other regigters altered: C
Example Calling sequence:

jd A

LD - DE,FNFTFD ; Point DCB
LD HL , WORK s+ Point work area
SC 20 y Directory lookup
JP NZ,NOFND 3 Branch if' not found
WORK: DS 256 |
FDFTFD: DC 1, 'TEST ', 'FILE ' 3 TEST.FILE:A
""""""""""""""""""""" sCc 21 Geroc8

Function: Get address of UCB (Unit Control Block).
Input parameters:

Reg B - Logical device number
Output parameters:

Reg HL - Address of UCB for ghysieal device
Reg C = Physical device number
Flag C - set if no attachment

Description:.
The logical device indicated is tested for an attachment to a physical
device. If no attachment then the carry flag is set and the system call
is exited. If the device is attached then the address of the Unit Control
Block is placed in the HL register and the physical device number that the
logical device is attached to is placed in the C register.

Other system calls used: TSTDEV (58)

Other registers altered: A

Example Calling sequence:

LD B,9 ; Log device number

sc 21 ; Point UCB of CONOQUT
LD DE, 10 s Displacement to delay
ADD HL,DE 3+ Point delay value

LD (Hﬁ),o ; Reset to zero

- - = - G 50 = W e = = - o . oo W
1+ttt it 3t 3 it it i ittt t ittt tit it ittt it tttit ittt i1ttt i1ttt s -ttt ¢ ¢+

Function: Load a program.
Input parameters: '

Reg HL - Load address
Reg DE - Address of DCB

SC 22 LOAD ' - 36 - _ MACRO Rev B

CHAPTER 7: SYSTEM CALLS
OQutput parameters:

Reg A « Return code:
01 relocatable program loaded
02 absolute program loaded
04 program not found . :
02 absolute program - load address different
06 insufficient memory
Reg B =~ Drive code that file was found on
Flag C - reset if program loaded successfully
set if program not loaded

Dgscription:
The program specified by the directory control block pointed to by the DE
register pair is loaded into memory at the load address referenced by the
HL register pair.)

Other system calls used: RD1 (10), LOOKUP (20), GETSCR (u48), RD (50), GETWORK (91)

Other registers altered: none

Example Calling sequence:

Point to name

LD DE, SUBRNAME H
LD HL, SUBR s Memory address
SC 22 s Load 5
CALL SUBR s Execute the program
SUBRNAME : DC 0, 'USER ' ,'PROGRAM * ; USER.PROGRAM:S
SUBR: EQU $; Load here
""""""""""""""""""""" sC 23 pRINT T

- = o o e e o> o - - w - o - e > > om e o A T = o o = e > = e e - o w w -
S ittt 11t ittt ittt 2 1 3t 1ttt e Pt R R - 2 4

Function: Output a line to printer 1

Input parameters: ' ,
Reg DE - Address of line to print

Qutput parameters: none

Description:

The characters in the buffer addressed by the register pair DE are
transmitted to printer 1 until a carriage return or null is encountered.
Carriage returns and 1line feed characters are printed as a carriage
return, line feed sequence. Other editing is performed according to the
options associated with the attached printer.

Other system calls used: PRTOUT (8)
Other registers altered: A, C
Example Calling sequence:

LD -DE, LINE ; Point to message
SC 23 s Output to PRINTER1
LINE: DC '"Now is the time',10,'for all etc.',13

Function: Store ACB (Assign Control Block)

MACRO Rev B | -37T - ' SC 2% ASSIGN

MACRO REFERENCE MANUAL
Input parameters:

Reg B

“ACB number (0 - 16
Reg DE

)
Address of formatted ACB

Output paramters:

Reg A Set to 255 if error
Flag C - Set if error; reset' otherwise

Description:

The ACB number is verified to be in the range 0-16, if not the value 255
is placed in the A register and the system call is exited. The formatted
ACB referenced by the DE register pair is placed in the specified ACB.
The A register is set to zero and the system call is exited.

Other system calls used: GETACB (77)

Other registers altered: C, H, L

Example Calling sequence:

Channel 6

LD B,6 ;

LD DE, ACB ; Point to my copy of ACB

SC. 24 ; Store assign control block
ACB: DeC 1, 'FILENAME', 'FILETYPE',1

E P2 22 1 2t 2 2t 3 1ttt 1 1 T i T A P 2 2 2 2 2 2 ¥ 1

- o e e oo = - o= - - - - - o - - - o o o - e -
Bt ittt ittt ittt i1ttt 1ttt 1ttt i1t ittt i+ttt 1ttt it ittt i i ittt ittt ittt it

Function: Convert logical/drive code to logical drive number.
Input paramfers:

Reg B ~ Logical drive code (S - G, ¥)
Output parameters:

Reg A - Logical drive number (0 - 7, 255)
Flag C - Set if error.

Description:

-~

The drive code (alphabetie) is converted- into a number in the range of 0
thru 7. If the drive code is an asterisk (¥*) the number is 255.

Other system calls used: GETLUB (87)
Other registers altered: none
Example Calling sequence:

s Load drive code
SC 25 , ;s Convert to number

- S W A Y GS P WP G D D D WP P D WD G G D NS W G G0 Y D D G P e O A G D G D R G0 W O D G S D G e G O U0 S T Y G AR G e G W G T S e SR e O 00 G S D O GO OGN G D e & 6D
- e e T e S - D O5 e D D e e WD T On O T S e e e S P D DD W . e e S e e D S e -) P W O D D s D O =D WD S W6 D =0 on e e GO S ae D OB ©D o0 G0 O a5 an G B

- s - e - .- - an wmo en e - - O) I G G G G AR D SE R G S G W D S R D G G 0 D DD G G S D D S5 G S G D G G GER CED T D D T G D I G S e D
223 it it i it i ittt - it ittt it t s ittt t ittt ittt -ttt T4 &

Function: Convert logical drive number to logical drive code.
Input parameters:

Reg B - Logical drive number (0 - 7, 255)
Output parameters:

Reg A - Logical drive code (S - G, ¥)

SC 26 BDRV -38- MACRO Rev B

CHAPTER f: SYSTEM CALLS

Description:

The logical dri#e number is converted to the external logical drive code
(alphabetic). i

Other system calls used: TSTDEV (58)
Other registers altered: none
Example Calling sequence:

LD A,(FD) ; Get logical drive number

LD B,A ;s Move to B

SC 26 ; Convert to drive code
FD: e 1

Function: Allocate disk space.-
Input paramters: - ‘

Reg B - Logical drive number (0 = 7) = (S - G)
Reg DE ~ Number of 1K disk blocks to allocate

Output parameters:

Reg HL - Sector’ address of first block.
Reg A - 00 if space allocated
. . FF if disk full or write protected
Flag Z - Set if space allocated

reset if disk full for write protected
Flag C - Set if space allocated "

Reset if disk full or write protected
Description: v

The specified disk allocation map is searched for a contiguous block of
unallocated disk space equal to the number of disk blocks desired. If
insufficient space is available the 2 flag is reset, If space is
available the Z flag is set, the allocation map is updated and written to
the disk, and the first sector address of the allocated disk space is
loaded into the HL register pair.

Caution: Use of this system call is not advised.

Other system célls used: RD1 (10), WR1 (11), TSTDEV (58), ONEONLY (84), GETWORK
(91), CALLOC (99) o |

Other registers altered: none
Example Calling sequence:

LD B,0 s Drive S

LD DE, 1 ; One block

SC 2 3 Allocate

JP NZ,FULL ; Branch if full

LD (SkcT),HL ; Else save sector address

- - - o - > om ™ = o e 0 2w v P o e aw e o ow o am n > o - -
2332ttt ittt ittt it ittt ittt ittt 3 it ittt it ittt ittt ittt ittt 2 ¥ 1 1 1 & ¢+

Function: Deallocate disk space
Input parameters:
Reg B - Logical disk drive number (0 - 7) = (S - G)

Reg DE - Number of 1K blocks to deallocate
Reg HL - Starting sector number

MACRO Rev B -39 - | SC 28 DEALL

MACRO REFERENCE MANUAL
Output parémeters: _ _
) Flag Z - Status:
: set = okay
reset - error
Description:

The specified disk allocation map is searched for the indicated allocated

. Space. If the indicated space is not already allocated the Z flag is
reset and the system call is exited. Otherwise the allocation map is
updated and written to disk; the Z flag is set and the system call is

exited. ,
Caution: Use of this system call is not advised.

Other system calls used: RD1 (10), WR1 (11), GETUCB (21), TSTDEV (58), ONEONLY
(84), NOTONLY (85), GETWORK (91)

Other registers altered: H, L

Example Calling sequence:

LD B,0 ; Drive S

LD ,2 3 1K bytes

LD HL, (SECT) ; Sector address

SC s Return to avail status

Function: Erase logical file from a disk.
Input parameters: ‘ -

Reg DE - Address of DCB
Output parameters:
Reg A -~ Return Code:
00 Successful
FF File protected
Flag Z - Status:
set = okay
reset - error
Flag C - reset if successful

set if file or disk protected
Description: v
The directory for the specified disk drive is searched for a match with
the file description. When a match is found the file disk space is
deallocated, the directory entrK is placed in a delete status and the
directory block is updated on disk.

Other system calls used: RD1 (10), WR1 (11), LOOKUP (20), GETUCB (21) DEALLOC (28),
. GETWORK (91), GETUSER (101)

Other registers altered: none
Example Calling sequence:

LD DE,FN - ; Point to DCB
SC 29 s Erase file if it exists
FN: DC 1,"TEST ', 'FILE '

Funection: Load program into memory, execute and return to CSI.

SC 30 FETCH - 40 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Input parameters:

Reg B -~ Logical drive code
Reg DE - Directory entry pointer

Output parameters: none
Description:

The eventual return address is replaced with the address of the boot
loader; system call 22 is executed with control returned to the boot
loader upon completion of the program execution.

Other system calls used: RD1_ (10), LOAD (22), GETSCR (48 RD (50), GETMEM (55)
TSTESCCY(69). GETWORK ?91), ERR&UI%'(97) (22), (48), s : !

Other registers altered: B, C
Example Calling Sequence:

LD DE,DCB ; Point to DCB
LD HL,WORK ; Point work space
SC 20 ; Get directory entry
EX DE, HL s+ DE points directory
LD A, {DCB) : Point to drive
LD B,A ;
SC 36 ; Load & execute
DCB: DC 1, 'MYPROG ', 'COMMAND '
WORK : DS 256

o e 6P G D S - G Y S G G AP G G S S T G Gw S S Y W W S S S G A G G G S P G G P P S S G OB G S @S S ED G G P G G0 D D WS R SN G G D G Gy G G D P e SR D S W ew e
R e e e e e e e R e e e e e e e e e R e e R e e e R e e e i e T T o e W D e s e e e e W WO

Function: Rename a logical disk file.
Input parameters:
Reg DE - Address of DCB

Reg HL - Address of new DCB
Output parameters:
Flag Z - Status:
‘ Set if successful
Reset if error
Reg A - Return code:

00 if okay

04 if old file not found

08 if new file description exists
0A Protected file or disk

Description: ‘

The new drive code is set equal to the old drive code. The directory for
the specified disk is searched for the old file description, If the
directory entry cannot be found then the A register is set to O4 and the
system call is exited, - If the file is found then the directory is
searched for the new file description. If the directory entry is found
then the A register is set to 08 and the system call is exited.

If the old file description does exist and the new file deseription
doesn't exist then the old file entry is placed in delete status, the
directory block is updated, the new file entry is created (duplicating the
attributes of the old file), and the directory block is updated. The
system call is exited.

Other system calls used: WR1 (11), WRFDIR (13), LOOKUP (20), GETUCB (21), GETWORK
(91), GETUSER (101) ;

Other registers altered: H, L

MACRO Rev B | -M - SC 31 RENAME

MACRO REFERENCE MANUAL
Example Calling Sequence:

LD DE, OLD s+ Point to old name
LD HL , NEW ;s Point to new name
SC 21 s Rename it ‘)
JR s OKAY s Error?

ERROR: .

OLD: pC 1, OLD ",'FILE !

NEW: DC 1, *NEW ', 'DESCRIPT®

22+ttt t ittt 13t 1t 1 X3ttt 2+ 1 §E=§§-6§ﬁ -----------------------------------

- w0 = e 6z oo @ = =0 o @ - o 0w o - - - e O o o D G e 0 D e D 2 P D D D D S0 D D IS D S O AP DD G W @ oo
i i ittt it i1ttt ittt ittt 1ttt 11ttt i1ttt ittt ittt ittt ittt ittt tt ittt + 1

Function: Open a logical file.
Input parameters: ,
Reg DE ~ Address of FCB
Output parameters: ’
Reg A

Return code:

00 Successful

01 Already open

04 Invalid file definition
08 Invalid file number

OA File protected :

10 Disk full

20 Directory full

40 File not found

Device assigned to file
Status:

set = okay (Re% A=0)
reset - error (Reg A <> 0)

Reg B
Flgg YA

Description:

The file specified by the FCB is opened in the mode indicated with the
appropriate return code set if the open is unable to be accomplished.
Register B is set to the logical drive code that a new sequential file was
opened to if the drive was not specified explicitly in the ACB.

This system call checks the File Lock Table (FLT) and waits if the file is
locked by another partition. When the file is not locked by another

?aptition or is released bg that partition this system call will lock the
ile if specified by the FCB. .

Other system calls used: RD1 (10), WR1 (11), WRFDIR (13), LOOKUP 2203, GETUCB £21;,
ALLOC (21) DEALL (28) ERASE (29), pAtEPACK (46), TSTDEV (58), DEVOUT (64),
GETWORK (91), GETUSER (101)

Other registers altered: C, H, L

Example Calling Sequence:

ig gﬁ1gCB16 ; Assign I/0 ch 16

SC 2y’

LD DE,FCB1 s Point to FCB-

SC 2 s Open the file

JR NZ ; ERROR s BRIF error
FCB1: DC 16 : ACB = 16

DC 10001100B H Seg, append
BUEF gg gggFF1) 3 I/0 buffer
ACB16: Bg },'REPORT t,'LISTING °

SC 32 OPEN - 42 - MACRO Rev B

- s 0 o > o > > P o = > Y e wr =P =P W G S = G o e o G e
i3ttt ittt ittt i1ttt ittt ittt i1ttt ittt i1ttt it ittt i1ttt i1ttt i1ttt t -ttt

Function: Close a logical file.
Input paraﬁeters: "

Reg DE - Address of FCB
Output parameters: ’

Reg A =~ Return code
00 Successful ‘
08 Invalid file number
, : 10 Disk full -
Flag Z - Status: '
: set - okay.(Re% A=0)
: reset - error (Reg A <>-0)

Description: . _ ‘ , : » ,
The specified file is logically and physicallﬁ closed with the appropriate
return code set. Closi a file involves the updati of the disk file
with the :data in the I/0 buffer; updating the directory entry for the
file; flagging the ACB as closed. , o :)
When the file being closed is a console file a CR, LF is output to the
console. When the file being closed is a printer file a CR, LF, US is
output. v . ’ - . '
gﬁ%s system call unlocks the file and all related sectors from the FLT and

Other system calls used: WR1 (11), LOOKUP (20), DATEPACK (ue), DEVOUT (64), ONEONLY _

(84), NOTONLY (85), GETWORK (91) . , . -

Other registers altered: B, C, H, L

Example Caliing Sequence:

_ : 3 Using current assign
%g kD§5FOB1 ' 3 Open FCB1
JR ' ﬁZ,ERROR‘, ; BRIF error
FCB1: - DC . |
DC 10001000B H Seg, output
' .~ DC . (BUFF1) ; I/0 buffer
‘BUFF1: DS 256 ,
"""""""""""""""""""""" §é=§i*§5§§5"“"'"“‘""""“"""""""

Function: Get a logical record from a sequential file.
Input parameters: '

- Reg DE - Address of FCB
Reg HL - Address of record area

Output parameters:. -
Reg AF - Return code
00 Successful -
01 End of File ‘
.08 Invalid file number
FF File not open
Flag Z - Status: -
set - okay (Re% A =0) , -
reset - error (Reg A <> 0)

MACRO Rev B : - a3 - | SC 3% RDSEQ

MACRO REFERENCE MANUAL
Description: ‘

The ACB is validated for: ogen, sequential, and input, The A register is
set to 255 if ACB invalid. he ACB is tested for an EOF condition and the
appropriate return code is set if true and the system call is exited. If
everything is okay the next record is passed to the record buffer
addressed by the HL register pair with file input performed as required.
ASCII sequential file records are always terminated with a carriage return
character (ODH). R '

This system call like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB. '

Other system calls used: INPUT (1), RD1 (10), DEVIN (63)
Other registers altered: B, C

s

Example Calling Sequence:

LD DE,FCB1 s Get record from file
LD HL ,BUFF ; Put in BUFF buffer
SC ﬁu “ s Do it '
- JR ~ NZ, CHKERR s Analyze error routine
, . '
FCB1: DC 10 3 I/0-ch 10
DC 10010000B ;s Seg input
DC (BUFF1) ; I/0 buffer
BUFF1: DS 256 ,
BUFF: DS 128 ; Max rec length = 128 o
e e e it i Eé-gg ---

- - T T T O T S T T T T T T]
it 3+ i i ittt 1ttt ittt 1t et b R R R R R R 2

Function: Write a logical record to a sequential file.
Input parameters:)

Reg DE - Address of FCB
. Reg HL - Address of record
Qutput parameters:
Reg AF - Return code.
00 Successful _
08 Invalid file number
i0 Disk full v
: FF File not open, etc. .
Flag Z - Status:
: set - okay (Re§ A =0)
reset - error (Reg A <> 0)

Description:

The ACB is validated: open, sequential, and output or append. The
agpropriate return code is set when invalid and the sysem call is exited.
The record is transferred to the file buffer and physical output is
performed as required. When the file is a disk file and the file requires
more allocation to perform the physical output then the file is expanded.

When the FCB is for PRINTER1, PRINTER2, PRINTER3, or PRINTERY4 logical
device the output record is assumed to contain an ANSI forms control
characﬁer as the first character of each record.

This system call, 1like all 1ogical' record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Note: Be sure that the record addressed by the HL re%ister pair contains a
carriage return character (QDH) as the terminating character.

Other system calls used: CONOUT (5), WR1 (11), ALLOC (27), WAIT (49), DEVOUT (64)
Other registers .altered: B, C '

SC 35 WRSEQ / -85 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS

Example Calling Sequence:

LD DE,FCB2

3 Write seq record
gg g%'BUFF '3 From BUFF buffer
JR . Z,0KAY 7 Skip if okay - .
CP 108 } Check for disk full
- JR _ Z,DFULL ; BRIF full '
- ; - else ignore error
OKAY: . -
FCB2: DC 2 ;3 1/0 channel 2
C >z0001000B ; Seq output
DC (BUFF2) s I/0 buffer
BUFF2: DS 256
BUFF: DS 128 -

- er - D e D TP G WP P R D P P G I T D G T D D ew WP S B P SR P G G G GD AP SR D E G G P WD G P WP S G e G S G W P G S R G AP S e P S G A A G . .
R R R R 2 2 2 2t 3 2 22 P 2 R 3 T 2 P2 T TP

Function: Get formatted date.

Input parameters:

Reg DE - Address for storage

Output parameters:

Reg DE - Address of byte following formatted date.

Description: -

The packed system date is wunpacked and placed in the storage location
addressed by - the DE register pair. The format of the resulting date
string is determined by the currently set date format (see the "SET
COMMAND", DATEFORM option in the OAS%S ystem Reference Mg%ug;). The DE
register \ pair is adjusted to poin o e Dbyte following the last
character of the date string.

Other system calls used: DATEOUT (106)
Other registers altered: A
‘Example Calling Sequence:

LD DE, WORK ; Point to work area
‘SC 6. ; Get system date
LD 1?) ; Get C
LD (BEY, A ; Mark end
LD - DE,Mé s Point to beginning of message
SC - 2 ' s+ Display on console
MSG: DC 'The current date is !
WORK: DS 9 » :

Function: Get formatted time.

Input parameters:

Reg DE - Address of storage

- Output parameters:

Reg DE - address of byte following formatted time

MACRO Rev B

-%5 -

SC 37 GETTIME

MACRO REFERENCE MANUAL

Description: ‘ : v .

The current packed system time is unpacked and placed in the storage
location addressed by the DE register pair. The colon character is used .
to separate the hours, minutes, and seconds. The DE register pair is
adjusted and the system call is exited. : -

Other system calls used: HEXO (16) - \

Other registers altered: A - | |

Example Calling Sequence: . ' , : .

Point to work area

LD . DE, WORK H

SC : 27 : Get sgstem time

LD 1? ; Get C

LD (BE), A ; Mark end |

LD DE,MéG ; Point to message

SC) 2 3 Display on console
MSG: DC "The current time is !

- o - - - - o = > W 5 ow 22 = o aw o e 2w o @
=231ttt 1t it ittt 11111ttt ittt ittt it 1ttt ittt 1ttt ittt t ittt ittt 2 it i i A A 2 4 1 1

D D D G - G > A P W e P TP G S D D S G e G0 G P e S G I G G e G G S G G S G G D R OF SR e WP e S S AR O G DGR ES SR P P AP S Gn OD WP OO SR Ep SR WD G0 ov W OB O GO W ao

Function: 16 Bit, binary,
Input parameters:

unsigned divide.

Reg DE - Divisor
] Reg HL - Dividend
Output parameters: _ -
Reg DE - Remainder ‘)
Reg HL - Quotient) . .
Flag C - Set if divide by zero; reset otherwise

Description: .

If zero the HL register pair is set to zero, the
carry flag is set and the system call is exited, The value in tﬁe HL
register pair is divided by the value in the DE register pair. The result
is placed in the HL register pair and any remainder is placed in the DE
register pair. .)) _ . -

The divisor is tested.

Other system calls used: none
Other registers altered: A
Example Calling §equence: N

LD - DE,&VALUE1§ ; Divide valuet
gg Hg, VALUE2 s into value2 .
JR g,DIVZERO ; Divide by zero. err?
VALUE1: DS 2
VALUE2: DS 2 -
""""""""""""""""""" sc 39 moL.

- - e e oD - - -n o - D D 0D D O LRGP YD G5 T TS o
233ttt i ittt it it -t it ittt 1 s Pttt ittt sttt E 2 E 2t t R R L2

Function: 16 bit, unsigned, integer'multiply.
Input parameters:

Reg DE - Multiplier

Reg HL - Multiplicand

- 5C 39 MUL - % - MACRO Rev B

CHAPTER T: SYSTEM CALLS
Output parameters: - ‘

Reg HL - Product
Flag C - Set if overflow; reset otherwise

Description:

The value in the HL register pair is multiplied by the value in the DE
register pair. The result is placed in the HL register pair. If overflow
occurs (more than 16 bits of product) the carry flag is set. The sytem

- call is exited. S : _ '

‘Other system calls used: none

Other registers altered: A

Example Calling Sequence:

LD DE,$VALUE13 ; Multiply valuel -
gg ‘ -\Hg,_VALUEZ ; by value2
~JR g,OVERFLO ; BRIF error
VALUE1: DC 23)' |
VALUE2: DC -(12345)
=====================================§E=ia=§l-)iﬁ -----------------------------------

Function: Read logical record from a direct disk file.
Input parameters: ;
Reg BC - Record number

Reg DE - Address of FCB .
Reg HL -~ Address of record storage area
Ohtput parameters:
' "Reg A - Return code)
00 Successful
08 Invalid ACB number
80 Invalid record number -
FF File not open, etc.
- Flag Z - Status: :

set - okay (Reg A = 0)
reset - e¥ror %Reg A <> 0)

Description: , -
The required I/0 overlay is loaded, if necessary. The ACB is tested for
an open, direct file and the appropriate return code is set if invalid.
The record number and the file's filesize are compared. ' If the record is
outside of the filesize the apgropriate return code is set. The record is
'trangfegred from the file uffer with physical input performed as
required, .

This system call 4iike all ‘logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Other system calls used: RD1 (10)
OtherAregisters altered: none

{

MACRO Rev B | - a7 - . SC %0 RDDIR

MACRO REFERENCE MANUAL
Example Calling Sequence:

LD - HL, (RECNUM) 3 Get record number
) %B ' %,é s Copy to BC reg

LD HL , BUFF ! Point to record buffer

LD DE, FCB1 s Point to FCB, ch 1

SC 0 s Get the record .

JR NZ, RDERR s Jump on error
RECNUM: ﬁs , 2 ¢ Current recordvnumber
FCB1: DC - 1,01011000B ; Direct I/0 with record lock
' DW 10BUFF1 . ; I/0 buffer addr
BUFF: DS 2 3 Record buffer
BUFFi: DS 256 ;s I/0 Buffer

"""""""""""""""""""""""" sC a1 woDX2

- am = ew - -3 “ - e e en - o e oo L T I T T 3 3 T 3T 3T -3 33333333333 335X
222323 i3 3 3t i i it i ittt ittt - ittt i1ttt 1ttt ittt r it 21

Function: Write a logical record to a direct disk file.
Input parameters:

Reg BC - Record number
Reg DE - Address of FCB
Reg HL - Address of record to be written

OQutput parameters:

Reg A - Return code
00 Successful :
08 Invalid ACB number
QA Protected file -
. 80 Invalid record number
FF File not open .
Status:
set - okay (Re

Flag Z
A=0)
reset - error %Reg A <> 0)

Description:

The required I/0 overlay is loaded, if necessary. The ACB is tested for
an open direct file and the appropriate return code is set if invalid.
The fiie's filesize 1is compared to the record number specified and the
appropriate return code is set if the record number is invalid. The

record is transferred to the file buffer with physical output performed as
- - required. ‘ !

This system call like all logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB.

Note: The record will be truncated or padded with zeros as necessary to
make the record the length specified for the file's DEB. ‘

Other system calls used: RD1 (10), WR1 (11)
Other registers altered: none \
Example Calling Sequence:

LD HL,(RECNUM) ; Get record number

kg g,% 3 Copy to BC reg

LD HL,BUFF ; Point to record storage

LD DE,FCB1 ; Point to FCB, ch 1

SC 41) ; Write it

JR : NZ,WRERR s Jump on error
RECNUM: DS 2 ; Record to be accessed
‘FCB1: DC 1,01011000B ; Ch 1, direct I/0 with record lock

- DW BUFF1 ;i I/0 buffer address

BUFF1: DS 256 ; 1I/0 buffer
BUFF: DS 32 s Record buffer

SC A1 WRDIR -28 - , ' MACRO Rev B

: - an e an . o o G e D T W TR S R W R D D D TP W SR D G T SR SR I ORGP TR G SN AR TR AR G W D A
i it ittt it it ittt ittt ittt it ittt ittt ittt t t t f t 3 1t t 18

Function: Convert numefic string (hex or dec) to 16 bit #é;ue.
Input parameters: '

Reg DE - Address of character string
Output. parameters: o

Reg DE - Address. of character following

Reg HL - Result

Flag C - Set if overflow; reset otherwise

Description:v' '
The string of characters is examined and the number base is determined
The apgropriate' conversion routine is used to produce the equivalent 16
bit value in the HL register pair. : ' .

Other system calls used: DECI (15), HEXI (14)

Other registers altered: A

Example Calling Sequence:

Point to number‘string

LD DE, INPUT ;
sSC 42 ; Convert it
JR C,CONERR - s Jump on overflow
LD (fuMB), HL ; Save value
INPUT: DC 112345D! ; Number to convert
) - NUMB: DS 2 s Value
"""""""""""""""""""" sc a3 X T

Function: Read a logical record ffom_aq indexed disk file. ~
Input parameters: ,
Reg BC - Address of ke

Reg DE - Address of FC .
Reg HL - Address of record storage area
Output parameters:

Reg A -~ Return code

00 Successful

01 Record not found

08 Invalid ACB number

‘'FF File not open -
Flag Z - Status:.

set - okay (Reg A = 0)
reset - error %Reg A< 0)

Description: N)
‘The required I/0 overlay is loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The record
key is searched for in the file. If the record keg is found the record is
transferred to the record address specified in the HL register pair and
the return code is set. If the record key is not found the return code is
set and the relative record number of the next record that would logically
collate after the specified key is saved in the ACB. ,

This system call like all logical record input/outgut system calls,
maintains the Sector Lock Table (SLT) according to the FCB, ' °

Other system calls used: RD1 (10), ONEONLY (84), NOTONLY (85), GETWORK (91)
Other registers altered: AF', BC', DE', HL'
MACRO Rev B =49 - : SC 33 RDIX

MACRO REFERENCE MANUAL
Example Calling Sequehce:

LD HL ,KEY 3 Point to key string
B g,& : Copy to BC reg ,
LD - HL, BUFF ! Point to input buffer
LD DE, FCB1 3+ FCB for ch 1
SC.. ug -3 Read the record
JR. NZ,NOFIND ; Jump if record not found
FCB1: DC 1,00111000B ; Ch 1, Indexed I/0 with record-lock-
-~ DW BOFF1 .} 1/0 buffer address, . :
-~ BUFF1: DS 256 ; 170 buffer , o
KEY: DS 10 y Key of 10 characters
BUFF: DS 122 H

Rec of 122 characters

Function: Read the next logically sequential record of indexed file.
Input parameters: ')

Reg BC - Address of keg storage area

Reg DE -~ Address of FC -

Reg HL - Address of record storage area

Output parameters:
Reg A .- Return code

00 Successful

01 End of file

08 Invalid ACB number

FF File not open -

Status:

set - okay (Re%-Anz 0)

reset - error (Reg A <> 0)

Flag Z

Description:

The required I/0 overlay is loaded, if necessary. The ACB is tested for
an ogen, indexed file and the aggropriate return code is set. Using the
relative record number in the ACB indicating the disk address of the next
logically se?uential record in the file, the record and key are read into
the file buffer_ and transferred to the key and record storage areas.
specified by the BC and HL register pairs. The following logically
sequential record is located and the relative record number 'is saved in
the ACB. The return code is cleared and the system call is exited.

This system call like all 1logical record input/output system calls,
maintains the Sector Lock Table (SLT) according to the FCB. :

Other system calls used: RD1 (10), DIV (38), RDIX (43), ONEONLY (84), NOTONLY (85),
GETWORK (91) : '

Other registers altered: AF', BC', DE', HL'
Example Calling Sequence:

LD HL,KEY . "3 Point to key string
1 | g,g ; Copy to BC reg -
LD Hl,, BUFF ! Point to input buffer
LD DE,FCB1 s FCB for ch 1
. - SC 4y s Read the next record
JR NZ,NOFIND ; Jump if record not found
FCB1: DC 1,00110000B s Ch 1, Indexed Input
DW BUFF1 { I/0 buffer address
BUFF1: DS 256 ; I/0 buffer
KEY: DS 10 ; Key of 10 characters
BUFF: DS 122 s+ Rec of 122 characters

SC 3% EDNIX o ~ -50- 'A MACRO Rev B

- o an an am > - - - e o - o - - T ow P P e G D S ST SR S S G TR R P S Gn G G SPGB G G D e . =
2333313t i1 ittt it 1t ittt ittt i ittt -ttt 1ttt it ot 2 2+t 2t 1 & 3 & ¢ ¢

- o > G T ' . = P W M D AT B D D G G G S D G G S G D S G G G G N A D G G R S S P D P SR S G G GP T G G G D S D (W D S AN S G TN G G Y S e
e e O T i G5 D s T S TE R T T e e o e i e e T S e e 0 G S G e e e G 0 G G W D S e e T W 4 G G N G G e e S G G O e e e G G e e S S e e Gn e Gn S0 o= a0 o o

Function: Write a logical record to an indexed disk file.

Input parameters:

Output parameters:

‘Reg BC - Address of ke
Reg DE - Address of F
Reg HL - Address of record

Return code

00 Successful

OA Protected file

10 File full - record not written
FF File not open

Status: .

set - okay (Re% A = 0)

reset - error (Reg A <> 0)

Reg A

" Fleg Z

Description:

The required I/0 overlay is loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The file is
searched for a current record with the same ke{. If a record does exist.
the record is overwritten with the new record he return code is cleared
and the system call is exited.. If a record does not exist a location for.
the ney record is found and the record is written to the file. The return
code is cleared and the system call is exited. If no'sgace is available
for the new record. the return code is set to 10H and the system call is
gx{teg, No attempt is made to write the record to the file in this.
ituation. ~

This system call like all. logical record input/outgut system calis,
maintains the SecﬁorvLock Table (SLT) according to the FCB. :

Other system call d: RD WR1 (1 DIV (38), ONEONLY (84), NOTONLY (8 S
GETWORK' (91) s used: RD1 (’O)y 1 (1), (38), (84), ’ (85),

Other registers altered: AFf, BC', DE', HL' _ . ' o '_

Example

Calling Sequence; . o
Point to key string

LD HL,KEY H

ﬁg N g,é ; Copy to BC reg . ‘

LD - Hﬂ,BUFF 2 Point to input buffer

LD . DE,FCB1 ; FCB for ch 1

SC 45" . s Write the record

JR. NZ, ERR s Jump if error)
FCB1: DC 1,00101000B ; Ch 1, Indexed output

DW BUFF1 ; I/0 buffer address
BUFF1: DS 256 : ; I/0 buffer . o
KEY: DS 10 ; Key of 10 characters
BUFF: DS 122 ; Rec of 122 characters

- om - - - > - = o T 22 aw = S o = S S8 A e e S S e a0 W2 o O o -
i+ 2t 3 333ttt it 1ttt ittt 1ttt 1ttt ittt Tt 2t 1

Function: Pack system date and time into 24 bit value.

"Input parameters:

P

Reg DE - Address of storage area

MACRO Rev B =51 - SC 36 DATEPACX

MACRO REFERENCE MANUAL
Output pa:amete:s:

Reg DE - Address of location following
C 3 byte storage area - .

4 bits of month (1 - 12)
5 bits of day (7 - 31)
4 bits of year (year - 1977)
g-bits of hour (0 - 24)

bits of minute (0 = 59)

_ . \

Description:

The system date and system time are converted, formatted, and packed into
a 24 bit (3 byte) format. The result is placed in the location addressed
by the DE register pair and the DE register pair is adjusted.
This system call is normally only used for conveﬁting‘the date and time
for use in a file's directory entry, although it can be used for other
purposes. There is no corresponding unpack system call.

Other system calls used: none ’ ‘)

Other registers altered: A, B, C

Example Calling Sequence: o

: LD DE,DIR+25 = ; Point to storage
sC 46 - -3 Get date and time
DIR: DS 32 | ‘; Directory entry buffer

- - > v - > > o o e = T o G = = = P - o D -
it ittt ittt tt t 1ttt ittt ittt 1t it ittt it 2 1 3+ £ 24

Function: Find disk with spegific label.
Input parametérs: _ /

| Reg DE - Address of 8 character label
Output parameters: - ‘

Reg A - - Logical drive number (0 = 7) = (S - G)
Flag C - Set if not mounted; reset otherwise

Description:

The disks mounted in the attached disk drives are interrogated for a match
with the specified disk label. The drive code of the first match found is
placed in the A register. If no match is found the carry flag is set.

?gg?r system calls used: RD1 (10), GETUCB (21), GETLUB (87), GETWORK (91), COMPARE

Other registers altered: none
Example Calling Sequence:

LD DE,LABEL 3+ Point to desired label
SC 47 ; Find disk with label
JR C,ERR 3 Check if found ,
LD (DRIVE),A ; Save drive number
LABEL: DC . 'WORK '
DRIVE: Ds 1

SC N7 LABEL -52 - . - - MACRO Rev B

T SC 48 GETSCR . - T
Function: Get base address of your System Communication Region.
Input parameters: none - '
Output parameters: ’ ;
Reg IY - SCR address : -

Description:

The first address of your SCR is placed in- the IY index register and the
system call is exited. : : ’ : '

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

SC 48 : ; Get SCR base : J
LD (BASE),IY ; Save base address

Function: Wait for operator to release current console page.

‘Input parameters: none

Output parameters: none

Description:

The Console Screen Wait-key status is tested and, if disabled, the system
call is exited. When _the Console Screen Wait-key is enabled the page
gause prompt character (%) is disglayed at the 1lower left hand corner of
he console output device (CONOUT) (unless the console terminal class is
0) and processing is suspended until the operator tﬁpes a key to indicate
that the page ma{- be released. At this time a CR is displayed on the
console and control is returned to the calling program.

?gg?r system calls used: CONOUT (5), SYSOUT (7), GETSCR (48), GETPL (59), DEVIN

Other registers altered: A

Example Calling Sequence:

Code to output 'page!
of information

Wait at bottom if enabled

YT YE 1)

Function: Read multiple sectors of a disk.

Input parameters:

Logical drive number (0 - 7) = (S - G)

Reg B =

Reg C -~ Number of sectors to read
Reg DE ~ First sector address,
Reg HL - Storage address

Output parameters: none

MACRO Rev B | -53 - | SC 50 RD

'MACRO REFERENCE MANUAL
" Deseription: -

- The specified drive is selected, if legal, and the sector specified by the
contents of the DE register pair is read into the location indicated by
the HL . register pair. The sector count is decremented, the DE register
pair is incremented, - the HL register pair is adjusted, and, if the count
is greater than zero the next sector is read. * .

If any errors are reported- by the disk driver this sYstem call passes
control to the user DET if any or reports them to the operator on the
console screen and awaits a reply. - " ; -
- This system call, when used in a multi-user environment, checks the Sector
Locg_ggble (SLT5 and -waits if the requested sector 'is locked by another
partition, . » : o et/ |

" Caution: Use of this system call is not advised. o
Other system calls used: QUIT (0), SYSIN (6), SYSOUT (7), HEXO (16), DECO (17),
GETUCB y(21.) BDRV (26), DIV S38;;;SYSDISP (5%), SNU (793: ONEONLY (84), NOTONLY
(85), GETWORK (91), CONESC (102 T , T

Other registers altered: A, C

Example Calling Sequence: .
. Drive S ‘

LD B,0 ’

LD DE, 256 ; Starting at sector 256

LD C ; For 16 sectors

LD HL , BUFFER : Read into buffer

SC. 50 - : ; Read the sectors
BUFFER: =

REPT . 16 ; Buffer for 16 sectors

DS . 256 9

- e o o w0 D G e e e e S WP GO W D WD e D D A0 D G G OB S @ o I
-+t 3ttt ittt 1+ttt 1+t i1ttt ittt ittt ittt 1ttt ittt ittt ittt ittt ittt i ittt ittt ittt

- o o o o > e = G o OV e P G D B D D o D T D 3 OB I IR D D 4 D O S GD G SO e R CR S D S O s D D D S E3 S G O GO e A e o e e e O G Gn G o O @S aD OO
4 24 3 34333 i it -t ittt 2 i 22ttt st 2 2 P 2 R 22 2 2 2 2 14

Function: Write muitiple sectors to disk.
Input parameters: | ,
Logical drive number (0 - 7) = (S - G)

. Reg B =
Reg C =~ Sector count
Reg DE - First sector address -
Reg HL - Address of data to be written

Output parametérs: none

Description: i
The specified drive is selected, if legal. The data stored at the
location referenced by the HL register pair is written to the sector
sgeeified by the DE register pair. The DE register pair is incremented,
. the HL register pair .is adjusted, and the sector count in decremented. If
the sector count is not zero then the next sector is written.:

. If any errors are reported by the disk driver this sgstem call passes
control to the user DET if any or reports them to the operator on the
console screen and awaits a reply. ' .

This system call, when used in a multi-user environment, checks the Sector
Locg.ggble (SLT) and waits if the requested sector is locked by another
partition. ,

gaugion; Use of this system call is not advised. .
Other system calls used: QUIT (Og,’ SYSIN (6), SYSOUT (73, HEXO (16), DECO (17)
GETUCB (21), BDRV (26), DIV (38), SYSDISP (52), SNU (79), ONEONLY (8u), NOTONLY
(85), GETWORK (91), CONESC (102) T .

Other registers altered: A, C

'S¢ 51 VR , . -s- MACRO Rev B

| | CHAPTER 7: SYSTEM CALLS
' Example Calling Sequence: , ' .
/ ” Drive S

LD B,0 ; C
LD DE, 256 ‘i Starting at sector 256
LD c,16 ; For 16 sectors

LD HL ; BUFFER ; Write from buffer

SC » ; Write the sectors.

BUFFER: ')

REPT 16 : 3 Buffer for 16 sectors
DS | 256 ;- :

Function: Display characters on console output device.

Input parameters: | : v B ‘ ’ .

» Reg DE - Address of first qhaﬁécter to output -
Output parameters: o ' o
' Reg DE - Address of last character output blus one
Desgription: -

Characters from the buffer addressed by register pair DE are displayed on
. the console output device. A null character (00) terminates output to the
console and returns from the system call. S
A carriage return will be “displayed as a carriage return, line feed and
the system call will be exited. A line feed will be displayed as a
carriage return, line feed, output continues. An HT character (09H) will
?%sg§splayed as the proper number of spaces according to the Tab Set Block

This system call, unlike SC 2 (biSPLAY)'wiil always displai the characters
on the console and never echo them to the printer (the status of Console
Echo-key and Printer Echo-key is ignored). :

Other system calls used;‘DISPLAY (2), SYSOUT (7)

Other registers altered: A ' ’ S

Example Calling Sequence:

LD DE, MSG Point to message string

SC 52 ; Display on console
© MSG: DpC ‘tThis is a message',13 . !

Function: Set up for a clocked -interrupt (event)
Input parameters: ;

Reg DE - Number of "ticks"
Reg HL -~ Address of TEB-

Output parameters: none

MACRO Rev B -5 - - SC 53 TIMER

‘MACRO REFERENCE MANUAL
Description:

This system call initiates a Timer Event. The contents of the DE register
pair are stored in the TEB (Timer Event Block) specified by the contents
of the HL re%ister pair. he re%uired links are made to other TEBs and
control is returned to the instruction following the system call.

When the number of "ticks" specified by the DE register pair have eiapSed
the interrupt service routine is executed. The service routine must

physically follow and be continguous to the TEB. Upon entry interrupts
are enabled. ’ .

It is the responsibility of the interrugt Service routine to save any and
g%%1§egisters~,used and to execute a RET when service is complete (not a

®

The TEB should in no'way be modified by the user until the interrupt
service routine has been entered. Any changes to this TEB or ani other

TEBbSt%ll in process will cause the operating system to act erratically,
at best. .

The length of time for a "tick" is dependent ugon' the system. Refer to
the Supplemental documentation supplied with the OASIS System Reference
Manual for the specific length of time for a "tick" on your machine.

Other system calls used: GETBYTE (104), PUTBYTE (105)

Other registers altered: none

Example Calling Sequence: N
LD DE,60 ;Set up for timed interrupt:
LD HL,LABEL1-

B SC 53 ‘ ;Start the clock
LABEL1: DS 6 : ;s TEB for above-must be 6 bytes
. ;Code for interrupt service
. smust follow the
- RET . : ‘ sResume normal processing
T TR sc 58 xa®

Function: Execute a command.
Input parameters:
Reg DE - Address of CSI command text

Output parameters: none

Description: ')) ,
The Command String Interpreter is loaded and the command, with options,

. specified by the DE register is executed. The command is translated to

upper case before interpretation, Upon completion of the command the
system call is exited back to the CSI level. o
When the first character of the strin% of characters addressed by the DE
re%ister pair dis a '>' the string will be displayed on the user's console
bef'ore it is executed. :

Other system calls used: 2?2????

Other registers altered: all (No Return)

Example Calling Sequence:

LD DE, COMMAND 3 Point to command string
sC 54 s Transfer control
COMMAND: gﬁn 'ERASE # BACKUP:A (NOQUERY NOTYPE) ', 13

SC 5% EXCMD - 56 - MACRO Rev B

Function: Get stored memory siie.

Input parameters: none

Output parameters: o

‘Reg HL - Address of 'end of memory'

Description: . , :

The currently stored value of the address of the end of memory is placed
in the HL register pair and the system call is exited. This value may not
be the actual address of the physical end of memory determined when the
system was first IPL'd, The value is the currently saved address. This
address can be changed by system call 56. g -

Other system calls used: GETSCR (48) ’

Other registers altered: none

Example Calling- Sequence:

Get current‘EOM

SC ?5’ H
LD EOM) ,HL ; Save current EOM .
LD DE,-1600 :
ADD HL,DE ; Compute new EOM
sC 56 . ; Protect it

SC 56 PUTMEM

Function: Store memory size.
Input parameters: ‘ ‘
' | Reg HL - Address of end of memory
Output parameters: none
Deseription: ‘ v ,
The value in the HL register pair updates the currently stored value of
the address of the end o% memory. This system call is the logical inverse
of system call 55.)
- Other system calls used: GETSCR (48)
Other registers altered: none

Example Calling Sequence: see SC 55 (GETMEM)

X I I I It T T T T I T I Tt I I T T e s T T T T T T T T e I I T
A i ittt ittt - -t - 1

- - o o o - o o > e o2 = o W e e e e me e e e
3ttt it it ittt 1t ittt 3 1ttt Ittt ittt -ttt Tttt 1 11

Function: Set quit error trap (System Cancel-key).

Input parameters: ’ "

_ . Reg HL - Address of break routine

Oﬁtput parameters:\nohe '

Description:) ‘
The value in the HL register is loaded into the quit error trap vector and
the system call is exited. This routine addressed bx HL will be given
control whenever the System Cancel-key is typed. n ‘address of zero

(0000) in the HL register pair indicates that the user QET is to be.
disabled. ‘ _

MACRO Rev B - 57 - SC 57 PUTQET

' MACRO REFERENCE MANUAL | ,
An jexample of the use of this syétem call is the BASIC interpreter. The
BASIC interpreter sets the quit error trap to execute.a routine that
; closes all open files before exiting. : -
Other system calls used: GETSCR (48)
Other registers altered: none -

Example Calling Sequence:

LD HL,QETSERVC - -; Point to service routine
SC Y { i ‘ "3 Set trap - S
QETSERVC: = . = ;s Routine to handle
. : 9

- System Cangel-keyaentry

G En e w G0 OD D en 0D E CP e D O e . - e - ar aw T Y Y T
A e s I ittt ittt ittt -ttt ittt ittt ittt - - 1

-0 e o e a0 aw oo o o @ e e - = - - o o o o D o D R D B w2 e O D O S e AR D e o s
112122233322t it i ittt it ittt 3t i1t ¥t i it ittt ittt ittt ittt trttt t tt 2 2 1 2 2

Function: Test device attachment.
Input parameters:

- Reg B -’Logical'device number

-

Output parameters:

" Reg A - Physical device number
Flag Z - Set if not attached; reset otherwise
Flag C - Set if not attached; reset otherwise

Description:

The specified device is tested for attachment. If the device is attached
the physical device number that it is attached to is placed in the A
register, the 2 flag is reset and the sistem call is exited. If the
device is not attached to anything then the A register is set to FF, the Z
flag is set and the system call is exited. ; v - -

Other system calls used: GETLUB (87)
Other registers altered: none o
Example Calling Sequence: ‘-

- LD ‘B, 16 "5 Point to COMM1 device
sc - 58 ; Test if attached
JR 7., NOCOMM ; Jump if not .
e i e 55-:55 -- GETP i --------------------------------

- - W O S G G S D D e TP ED S G G W G D S G o G G P G LD G UD G G @S S0 W S G D G S3 OO G N S0 W G e TD G OGN e S S5 SN D = G D Ge G0 OF Ge e Ne Gr e ae S G G w0 e G0 WD e e =
- 0 0 e - S > G D . 5 G D G T S WS T e D . R G D CI P G R G G W ST e O 0 D T e G D TR D D G G I D G e R e 40 O G S D G G Gn SO B e G0 R S @S Ga En Gn W6 e . e OO W 0 B e w0

Function: Get console/printer page and line parameters.
Input parameters::

Reg B = Logical device number
Output parameters: '
" Reg B - Line length
‘Reg C - Page length
Reg A - Class code

Description:

The device number specified in the B register is validated to determine if
it is the console or one of the printer devices, If the device number is-
invalid the system call is exited. If the device number is valid then the
ATTACHed 1line and page size parameters are loaded into the B and C
register, respectively and the class code is loaded into the A register.

SC 59 GETPL - 58 = ‘ MACRO Rev B

CHAPTER 7: SYSTEM CALLS

If the specified device is not attached then =zero values are returned in
the registers. - - ' . o

Other system calls used: GETUCB (21)
Other registers altered: none

Example Calling Sequence: :

LD B,9 ; Point to CONOUT device
SC ?9) 3 Get parameters
tg _CgASS),A ; Save class code
b L%NE),A ; Save line length
P LD (ﬁAGE),A ; Save page length

Function: Delete record from indexed file.
Input parameters: | ’
Reg BC - Address of ke
Reg DE - Address of F
Reg HL - Address of record storage area

Output parameters:

Reg-A - Return code

00 Successful

08 Invalid ACB number
. FF File not open
Flag Z - Status:

set - okay (Reg A = 0) '
reset - error %Reg A <> 0)

Description: | o :

The required I/O0 overlay is.loaded, if necessary. The ACB is tested for
an open, indexed file and the appropriate return code is set. The record
key is searched for in the file. If the record key is found the record is
transferred to the record address specified in the HL register pair, the
record key buffer is modified to indicate that the record is deleted
_ (first character changed to OFFH value) and the record is written back.
The record linkages are updated to reflect the deleted record.

If the record key is not found the relative recofd number of the next

ggcngBthat would logically collate after the specified key is saved in
e . .

This system call, 1like all logieal record input/outggt system calls,
maintains the Sector Lock Table (SLT) according to the FCB, If any of the
sectors needed for the search and_deletion of the record are locked by
angtherd partition this system call will wait for the sector to be
released. - , .

Other system calls used: RD1 (10), WR1 (11), DIV (39), RDIX (43), ONEONLY (84),

NOTONLY (85), GETWORK (91)
Other registers altered: none

-

MACRO Rev B - 59 - SC 60 DELIX

MACRC REFERENCE gllﬂlL
Example Calling Sequence:

LD HL,KEY 3 Point to record key
LD B,H ; Copy to BC reg
LD Cc,L H .
LD -Hﬂ,REC ; Point to record buffer
LD DE, FCB1 ; Point to channel 1 file
- SC 0 ; Delete the record
JR NZ,DELERR : Jump on error’
FCB1: DC 1,00111000B - ; Indexed, ch 1 with record lock
DC BUFFER i 1I/0 burfer address
BUFFER: DS 25 .
EY: DS 32 : Key is 32 character lonf
REC: DS 32 s Record is 32 character long

D D TD e S Gn an - - - am @ T I3 33 T 3T 3 T X L T X T T L S T X X 8 3 1
i ittt s ittt ittt sttt ittt ittt ittt it i1ttt ittt % 1

Function: Initialize a device driver.
Input parameters: '
Reg B - Logical device number
Output parameters: none
Description:

The physical device driver attached to the logical device specified in the
B register is entered at its initialization entry point. The actual
process of initia%ization is device dependent., However, when the device
number is 12-15 (PRINTERs) the UCB is initialized for current line, last
character, and side. v

The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

Note: This system call is used by the ATTACH command when a device is
first attached and should not be used by user programs. :

Other system calls used: GETUCB (21), CONESC (78)
Other registers altéred: all
Example Calling Sequence:

17 ~; Point to COMM2 device
s Init driver

- ew e o > e av we - e o oo e ew o G e o e 22w - - o o - o 00 W G0 or O G e O OB 3 SR S8 S S0 Go D SF SR G SR 0N D M e me e e
11ttt xt i + 11t it i st i ittt E -ttt 2t i+ttt AR e]

Function: Get status of device driver.
Input parameters:

Reg B - Logical device number
Output parameters:

Flag Z - Set if input character not ready; reset otherwise
Flag C - Set if ready for output; reset oﬁherwise

Description:

The attachment of the specified device is tested. If the device is not

attached the system call is exited. If the device is attached the status
. of the phisical device attached to the logical device specified in the B
~register is returned in the Z flag. '

SC 62 DEVST ' - 60 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS

The address of the UCB associatéd with this device is loaded into the IY
register and passed to the device driver along with the B register. o

If the device driver is user written (see chapter on Interfacing to OASIS)
the status of the device is dependent upon the device driver subroutine
accessed by entry point 1. .

Other system calls used: GETUCB (21), CONESC (78)
Other registers altered: A
Example Calling Sequence:

17 ; Point to COMM2 device
; Get driver status

......... emsssssssssssssssimssssssseme e esssssssssssssssssssssssmssss
Function: Get input of device driver.
Input parameters: .

Reg B - Logical device number
Output parameters: |

Reg A - Character input

Description:

The attachment of the specified device is tested. If no device is
attached the system call is exited. If a device is attached the physical
device driver attached to the logical device specified in the B register
is entered at the input entry point. OASIS physical device drivers will
not return to the caller until a character is ready. Use system call 62
- to test if a character is ready. : '

‘The address of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

Other system calls used: GETUCB (21), CONESC (78)
Other registers altered: none
Example Calling Sequence:

; Point to COMMZ device
s Get device input

Funetion: Put output to device driver.
Input parameters:

- Reg B - Logical device number
Reg C - Character to be output

Output parameters: none
Description:

The attachment of the specified device is tested. If not attached the
sKstem call is exited. If attached the physical device driver attached to
the logical device sgecified in the B register is given the character in
the C register, The communication of the character to the device is
dependent upon the specific device driver.

MACRO Rev B - 61 - SC 6% DEVOUT

MACRO REFERENCE MANUAL N

The éddress of the UCB associated with this device is loaded into the IY
register and passed to the device driver along with the B register.

This system call performs special rocessing when the device is the

-console or one of the printers. When the device is the console any LF

and/or FF delay specified in the device attachment is performed when the

character output 1is a CR or LF (LF delay) or FF (FF delay). In addition,

- this system call handles any character del specified by the operator
with the Console Display-fast and Console Display-slow keys. .

When the device is the primary printer (PRINTER1) and thevspooier is
active the character is passed to the spooler, not the device driver.

When the device is the primary printer and the spooler is not active or
when the device is one of the secondary printers (PRINTER2-PRINTERY)
special processing may occur if the character output is: '

CR If last character was not CR or the printer is not performi ALF then
a CR is output and any LF delay specified is performed; if the last
character was a CR and the printer is performing ALF then an LF is
output with any LF delay; otherwise the charcter is ignored.

'LF Maintains line count; suppresses output of the LF when the previous
character was a CR and the printer is performing automatic line feeds;
performs any LF delay specified.

FF Maintains page side and line count; if printer is incapable of form
feeds will simulate with proper number of CR, LF to advance printer to
top of form; performs any FF delay specified.

US Translates to FF and processes as such.
Other system calls used: SYSOUT (7), GETUCB (21), DELAY (76)
Other registers altered: A
Example Calling Sequence:

LD © B,17 s Point to COMM2 device
gg gﬁA s Get character to output
; 9

Output char to device

- - o - - - o = o - . o > Gy 5P OF G = G e W G0t D G D W > S e e @ e o
2223t i3t i ittt i1ttt ittt 1t ittt i1ttt 1ttt ittt -ttt ittt -ttt 11

- - T e e T P e T T T T
i+ttt ittt it it it ittt ittt ittt i1ttt 1ttt i1ttt ittt ittt ittt ittt -ttt -ttt 11

Function: Get disk label of a drive.
Input parameters: |

Reg B = Logical drive number (0 = 7) = (S = G)
Reg DE - Address of storage area (8 bytes)

- Qutput parameters: none

Description: ’
The drive code is tested for validity: if greater than 7 then the system
call is-exited. The specified drive's UCB is tested to determine if the
disk label must be read from the disk = if so then the label is read. The
disk label is transferred to the storage area addressed by the DE register
pair and the system call is exited.

Other system calls used: GETUCB (21)

Other registers altered: A

SC 66 GETLAB | - 62 - MACRO Rev B

o : CHAPTER 7: SYSTEM CALLS.
Example Calling Sequence: f '
Point to system disk

LD 0 ;

LD DE, LABEL ;0

SC ; Get disk label
LABEL: DC ' 1,0

0 a8 e e e e 0 e e 2 e > o o o o o o o - - e o ww o -
B L s ittt 1t i3ttt 1 ittt - -ttt 11t 1ttt 1ttt -ttt 1 & &+

Function: Store device driver address.
Input parameters: o

Reg B - Physical device number
Reg HL - Address of device driver

Qutput paraqeters: none -

Description:

The device number is verified to be in the range 8-32, if not the system
call is exited. The address specified is loaded into the device table,
overlaying any current device address in that location of the table. An
address of zero (0000) in the HL register pair indicates that the
specified device has been unloaded. _ ,

This system call is normally only used by the ATTACH command. It will be
a lot easier for the user to allow that command to set the driver address
as all of the other related house-keeping is performed by the command at
that time. This system call might be used by the user for a program that
uses a device in a manner different from al other programs and has its
own driver for the device embedded in its code. ’

Other system calls used: none

Other registers altered: A, D, E, H, L \

Example Calling Sequence: ' A - -
B Point to COMM2 |

LD B,17 ’ ‘
LD HL,ENTRY s Point to device driver
sC 67 ;

Set driver address

Function: De-initialize a device driver.
Input parameters:)
Reg B - Logical device number

Output parameters: none

Description: : _

The attachment of the specified device is tested. If not attached the
system call is exited. If attached the physical device driver attached to
the logical device specifed in the B 'register is entered at the
de-initialize entry point.

The address of the UCB associated with this device‘ is loaded into the IY
register and passed to the device driver along with the B register.

Upon return from the un-~init routine of the driver the associatéd terminal
class code file is unloaded from memory (if currently at top of memory)
and t?e device driver is unloaded from memory (if currently at top of
memory) .

MACRO Rev B - 63 - * SC 68 DEVUNINIT

MACRO REFERENCE MANUAL

Note: This system call is used'by the ATTACH command when a device is
detached and should not be used by user programs. : ‘ B}

Other system calls used: GETUCB (21), GETMEM (55), PUTMEM (56), CONESC (T78)
Other registers altered: can be all ' ’ k
Example Calling Sequence:
LD B,17

68

Point to COMM2 device
Un-init driver

wewo

S o - G0 D .S D D D D P O G e S G G D e G D N e G e D R G D a2 G G2 aR O
=+ttt i3ttt ittt ittt i1t ittt 1ttt ittt ittt ittt 2 k212 1

Function: Test if Program Cancel-key entered.
Input parameters: none
Output parameters:

Flag Z - Status
Set = Not entered
Reset = Entered

Description:

The sgstem control flag is tested to determine if the Program Cancel=-key
has been entered. The Program Cancel-key is defined in the System
Reference Manual., If the Program Cancel-key has been entered then the 2
flag 1is set and the A register contains a non-zero value, The control
flag is cleared by this test process. If the ke¥ has not been entered
then the Z flag is reset and the A register is set to zero.

E%e gg§tus of the control ‘flag is also cleared by System Call 30 and by
e . _ .

The Program Cancel-key is only used b{ OASIS language products such as the
BASIC interpreter, Text Editor, and the Debugger. It would be consistent

; to use it in .user programs that are iterative and/or interactive in .
funection.

Other system calls used: CONST (3), GETSCR (48)
Other registers altered: A '
Example Calling Sequence:

SC 69 3+ Test program cancel
JR NZ,NOCAN 3 Jump if not

e e O D e 20 e > o> W as € e e e I I rr e - o e o e o > o - w = -
ittt s ittt it Lt P i i E Pt E 3 f t i i t ittt it sttt 1ttt ittt 11t ¢t 1 1]

- = e ow - e = . - - - - - - e > = - - - - - o o 0 D e T =D 9 WD o = w» oe e = w0 e av
A Ittt it i i it i ittt t ittt t it x t -t -ttt 1t ittt ti1 1t ittt 1t

Function: Execute a program and return.
Input parameters: "

Reg HL - Return address
Reg DE - Address of command string buffer

Output paramgters: none
Description:

This is £he system call used by the system programs BASIC and EDIT when a
CSI sub-command is executed. The DE register contains the address of a

work area which is the CSI command string along with any options desired,
terminated by a CR (13). '

When this system call ié executed high memory 1is set to the address in the
SC TO EXCMDR - 68 - | MACRO Rev B

CHAPTER 7: SYSTEM CALLS

HL register, the CSI is loaded and it intergrets the command in the work
area specified by the DE register pair. This command may be any valid
command (ineluding an EXEC) that can fit in the memory available with the
exceptions of: EBUG and ATTACH when the device being ATTACHed is not
currently attached to a logical device. These exceptions are due to the
fact that those commands would normally cause a program to be loaded into
high memory and "protected™ at that location. -

After the command has completed its execution control returns to the
current high memory location.

Execution of this s{stem call will disable'any and . all timer tasks whose
TEB location is not included in the "protected" memory area, and a disk
error trap set up by SETDET (SC 74).

Other system calls used: EXCMD (54)
Other registers altered: all (unknown)

Example Calling Sequence: not recommended for use by end user.

- e o = ow w0 - - - e L e Y T T L T T
3t 2ttt i ittt 3t ittt ittt ittt it i+ttt t 1ttt i1ttt 1ttt ittt ittt t &1ttt

Function: Get éharacter'from buffer.
Input parameters:

- Reg HL - Address of buffer grefix
_ Prefix: Byte 0 uffer length
- 1 current size
' ' : 2 = current location
Prefix followed by buffer storage.

Output parameters:

Reg A - Next character from buffer
Flag C - Set if buffer empty

Description: , : . . , ,
This system call gets the next character ready for output from a FIFO
buffer, probably loaded by system call 72 (BUFFO). The two system calls
should be used in conjunction with each other to assist you in maintaining
a FIFO stack of up to 256 byte length. '

This routine and the BUFFO routine are designed to be operated b
interrupt service routines although they could be used for norma
processing.

Other system calls: used: none

Other registers altered: none

Example Calling Sequence:

Poinﬁ to buffer

LD HL,BUFFER H
sC T1 _ ; Get a byte
BUFFER: DC 128 ; Buffer length
v DC 0 ; Currentl{ used
DC 0 ; Current byte
DS 128 H
======:==:::::::::=-====:==========--§E=:?; ----- 6 -----------------------------------

- - - - . G AP P P e > S P Gy BB WD NP D S S D N AR AP D S SR D WP WS e s e S
1+ 3 3 3 3 3t 3 3 1 Ittt ittt ittt ittt ittt ittt it it i1ttt t i1ttt -ttt ittt 1t 2 2 2 2t) 2

Function: Add character to buffer.

MACRO Rev B - 65 - SC 72 BUFFO

MACRO REFERENCE MANUAL
Input parameters:

Reg A - character to be added to buffer
Reg HL - address of buffer grefix
: Prefix: Byte Q0 = buffer length
, - 1 = current_size
: : 2 = current location
" Prefix followed by buffer storage.

Output parameters: none
Description: A N
"~ This system call adds one character to a FIFO buffer maintainit . the

buffer pointers, etc. This routine should be used in conjunction with the
BUFFI system call and is designed to be - the buffer management for an -
interrupt service routine, although it could be wused for . normal
programming. ,
When there is no room in the buffer for the character to be added the
routine "hangs" until space becomes available. If the characters are not
bei removed by an interrupt routine the routine will continue in a
two=- nstructionvloop. - :

Other system calls used: none

Other registers altered: none

Example Calling Sequence:

LD HL , BUFFER ; Point to buffer
SC T2 ; Put a byte
BUFFER: DC 128 ; Buffer length
DC 0 ¢ Currently used
DC 0 3 Current byte
DS 128 H
..................................... éé_;i---__----------,--------_----------,--,--~

Function: Get/set console control byte.
Input parameters:

Reé B - Enable mask
Reg C - Disab;e mask

Output parameters:
Reg A = Result
Description:

The console control byte is° a bit-mapped byte controlling the console
display and keyboard. The byte in the B register is logically ORed with
the control byte and the Kte in the C register is logically 1's
complemented and ANDed with the control byte. The resulting control byte
status is returned in the A register. If-the B and C registers contain
zero then the control byte is not changed and the system call merely
returns the status of the control byte.

The bit—mapping.of the control byte is as follows:
Bit Funet;on / I

7 Echo, on/off. When this bit set then all non-control characters
tgped on CONIN are displayed on CONOUT, after conversion due to
the status of the other bits in this control byte.

6 'Fold to upper. When this bit is set then all lowercase
. characters typed on CONIN are converted to uppercase.

-SC 73 PUTCONM - 66 - MACRO Rev B -

1
0

| CHAPTER 7: SYSTEM CALLS

Fold to lower. When this bit is set and bit 6 is off then all
characters typed on CONIN are converted to their - inverse
casemode (only letter characters are affected). ‘

Bits 5 and 6 function as a unit:
6 5 Function

OFF OFF No translation
ON X Translate to upper
OFF ON Translate to inverse

CTRL stop, When this bit is set then entry of any control
character (value less than 32) will terminate the input.

CTRL delete. When this bit is set then all control characters
Bxﬁe?23§)CONIN are ignored (except BS (8), TAB (9), CR (13), and

CTRL graphic. When this bit is set and bit 7 is set then all -
control characters giped on CONIN are displayed on CONOUT in
their graphic e%uiv ent (an up arror é ? followed by the
character equal to the control character +

Not used.

Stack. Indicates EXEC stacked data available. This bit is not
changeable by the system call. :

Other system calls used: GETSCR (48)

Other registers altered: none

Example Calling Sequence:

The following instructions will set the console
control b{te to perform the following:

set echo on

no case translation :

accept and display CTRL char in graphies

LY T Y Y XYY

LD B,10000100B ; Enable mask

LD C,01111010B ; Disable mask

SC 7§ o ; Set console control
"""""""""""" sc 78 POTET .

Function: Trap disk errors before message displayed.

‘Input parameters:

Reg HL - address of user errdq,routine

Output parameters: none (see description)

Description:

This system call does not have any output parameters upon return to the
calling program; however, when a disk error does occur certain registers
do have defined values: .

MACRO Rev B

- 67 - ' SC 7% PUTDET

MACRO REFERENCE MANUAL

Reg B = disk drive number

Reg DE - relative sector number L
Reg HL - memory location of disk buffer
Reg A - disk error code

Disk not ready

Disk write protected

Disk not initialized

-Data CRC error

Invalid parameters

Disk label changed

Sector not foun

"Track not found , _

Address (sector/track headér) CRC error

When the disk error occurs control is transferred to the address specified
in the HL register pair. After {our routine has done its processing and
is read{ to return control to OASIS the A register should be set to one of
the following values: :

00 Ignore erfor
01 - FE Retry operation (no change)
FF Quit = return to CSI

To disable your disk error routine then use this system call with the HL
register containing. 0. (Your routine will automatically be disabled when
the CSI is loaded??
An example of the use of this system call is the VERIFY command. That
command performs disk readability diagnostics and therefore needs to gain
eqntrol when a disk error occurs. ’

Other system calls used: GETSCR (48)

Other registers altered: none (see description)

WO 0O~ VI &0)=
B0 98 80 40 80 08 Q8 80 6¢

Example Calling Sequence:

LD HL, DISKERR
T4

Point to error routine
SC 0s

Inform

wowe

[-3 -3 -3 2331 - - - - D S TD G D G G D D D D G0 - D G
PR s+ttt it ittt i ittt i+ttt ittt 43+t sttt ittt ittt ittt E 2 £ 131

Function: Change system disk.
Input parameters:
Reg B - new physical drive number (0 = T)
Output parameters: none
Description:

This system call performs the same operation as the ATTACH command when
the system disk is to be changed. Register B is loaded with the new
physical drive number of the system disk. When the system call is
executed the current sistem disk is accessed to read in any necessary
overlays, a message is displayed to the operator asking for the new system
disk to be mounted .in the specified drive. . (No message is disglayed if
the new system disk is in a different drive then old system disk). After
the operator loads the disk and responds to the messaﬁe the new system
disk 1is accessed, the necessary SYSTEM files (NUCLEUS, CSI, EXECLANG,
EXEC1, and ERRMSG) are located and control returns to the &sI.

The new system disk must contain a SYSTEM.NUCLEUS of the same version as
ghedgg§renttsystem disk. The results will be unpredictable if the version
s erent.

(i Lo ths, “SEha'TE 0GR (h)y SOV
DEVIN (63), PUTDET'(T4), DELAY (76), GETLUB (87), GETWOR
Other registers altered: none

SC 75 NENSYS - 68 - MACRO Rev B

MOUNT RD1 (10), WR1
8ysDISP (?%é) DE%ST)(éz),
K (91), ERRQUIt (97)

CHAPTER 7: SYSTEM CALLS
Example Calling Sequence: . '

LD B,0 ; Point to drive 0
SC 75 ; Change system disk

Function: Delay/processing for specified period of time.
Input parameters:

Reg A - formated delay time. :
Bit 7,6 - Unit of meas?re
00 = 1/1000 (millisecond)
01 1/100 second
10 = 1/10 second
11 second
Bit 5-0 = count (1 - 63)

-

Output parameters: none .
Description: -

This is a general purpose processin§ delay routine. It was developed for
the timing delay required by serial I/0 devices but can be used for any
gurpose. When the system call is executed the formated delay factor in
he A register is decoded into milliseconds and a TEB is initiated for the
specified time. Then the sgstem call waits for the TEB to be exhausted
before returning control to the calling program. '

Althoﬁgh you have access to the TEB syscall and MSEC this is a much easier
and straight-forward method of long delays (up to a minute)..

Processing of your proiram is suspended for the specified 1length of time
but all interrupt service routines are still enabled.

Other system calls used: MSEC (53)
Other registers altered: none
Example Calling Sequence:

LD A, (DELAY) ; Set up for delay
SC 76 3 Delay processing
- DELAY: 6c, '11000101B ; 5 second interval

- - - o - =P > o o > w0 S e > o > = S W e o - .
33ttt ittt i 13t F -ttt i E P P i a3 222 2 2 1 2 1 3

- - o - - o 2 o o o e T e e s G A e 2 W S T = W S W W
12234 333 ittt ittt ittt P P A Pt A A 2 2 2 2 2t 2 2+ 3]

Function: Point to Assign Control Block entry.
Input parameters:
Reg B - ACB number (0 - 16)
Output parameters:
‘ Reg HL - Address of ACB
Deseription:

The address of ‘any assigned Assign Control Block for the number specified
b{ the contents of the B register is returned in the HL register pair.
This ACB is not the ACB address used in system call 24 but the internal
copy of that ACB. " '
Other system calls used: none
Other registers altered: A

MACRO Rev B - 69 - SC TT GETACB

MACRO REFERENCE MANUAL

Example Calling Sequence: not recommended for use by end user.

R O e TR ED D e e O G G G D O e e e T S e S G R A e 0 S G WD SD I SR G e M QR S R Y T S D T D P A P D O G D e G D e S0 G0 gE D 9D SN GP e G B A G O G0 W B

Function:_Analyze escape sequenée and execute if system defined.
Input parameters: - | _ ')

Reg A - Second eharacter of escape sequence'
Output parameters: ‘ ‘ | |

Reg A -~ Status:
, - 00 System handled
unchanged = undefined

Description:

This system call first changes the character in the A register to its
ugperease eguivalent and checks it_against_ the defined system escape kegs
(A, B, C, D, I ' s S, W,], and "). When a match is found the -
appro'riaée action is ﬁaken and control is returned to the calling grogram,
with the A register cleared and the Z flag set. If a match is not found
the 2 f}ag is reset and the A register is 1left as is (folded to
uppercase).

This system call is used by the SYSTEM.CLASSnn files to cause the system
to act on a system defined escape sequence. When an escape character is

. detected the next character received is loaded into the register and
this system call is executed. :

This system call could be used by a program to force a system defined
function such as toggling the printer echo feature, etc. Merely load the
A register with the character corresponding to the second character of the
escape sequence that would be used to invoke the function from the
keyboard. For a listing of -these functions and character see the QASIS
System Reference Manual, "System Control Keys".

Other system calls used: CONST (32 SYSIN (6), PRTOUT (8), CRLF (18), GETUCB (21),
GETSCR (48), SYSDISP (52), TSTDEV (58), DELAY (76), SNU (79), GETWORK'(91)

Other registers altered: none (may not return if A reg contains a 'Q' or 1I1)
Example Calling Sequence:

LD A,'P!
8

Toggle the PRT echo
SC 7

Function: Select next usen.
Input parameters: none

Output parameters: none

Descripfion:

The next active user partition is selected and control of the system
transfers to.it. .)

Although this system call is used by all other system calls that are

waiting for action (input/output operations) you should use it in any_ code
that is performing a wait without a system call. (The next user will be
selected automatically when your time slice elapses but the performance of
%he‘.sysgem will be enhanced if you can give up control instead of just
ooping.

When your user paftition is activated again your program will continue
execution at the instruction after this system call. .

SC 79‘3!0 : ‘ - 70 - : MACRO Rev B

CHAPTER T: SYSTEM CALLS

Note: On single user system this system call returns immediatelyf
Other system calls used: noné ' -
Other registers altered: AF', BC', DE', HL!'
Example Calling Sequence:

~

-SC 79 -~ ; Select next user

Function: Get monitor (NUCLEUS) location.
Input parameters: none
Output parameters:

Reg 1Y - Monitor address
Description:

and the system call is. exited.
Other system clls used: noné
Other registers altered: none
-Example Calling Sequence:

SC 80 ; Get NUCLEUS base
LD (BASE),IY 3 Save '

- r o > o - e P W es e I WS - -
223ttt i it i 1 i 1ttt t 11t sttt ittt it ittt ittt 13t ittt it 11

Function: Get manufaetufef number of systemQ
Input parameters: none 7
Output parameters:

| Reg A - Manufacturer number

Description:

-~

The first address of the SYSTEM.NUCLEUS is placed in the IY index registerA

Each combuﬁer manufacturer that supports the OASIS ogerating system is

assigned a unique value. This value can be accessed wit
and used to determine if the manufacturer is the same as require

this system call

d by the

program requesting it (some programs may use hardware dependant code). By
usi this system call a program can determine what type of computer it is

running on. -
Other system calls used: none
Other registers altered: none
Example Calling Sequence:

sC 81 ; Get MFG number
LD (MFG) ,A ; Save
--—-=================‘===============§é—§§.~.-==== -------------------------- ==

Function: Get your user partition number.

Input parameters: none

MACRO Rev B -7 - SC 82 GETPIN

MACRO REFERENCE MANUAL

Output parametérs: | o

| Reg A - Your user partition identification number"(£IN)

Description: -
Your user partition identification number is return in the A register.
the: On single user systems this system call will always return a 0.

Other system calls used: none '

Other registers altered: none

Example Calling Sequence:

' SC 82 ; Get PIN

00 0 - - D = = = o w ow - o - D 0 e e o e e W 0 o - . 98 O a0 - e O o 0 > %2 D G D D e O
ittt ittt ittt i it ittt i ittt 1t 3ttt ittt ittt it ittt ittt ittt it ti ittt

- o om o en @0 w0 @ e oo e - o o D - w0 oo e e e
it ittt ittt it ittt t i i i t 3ttt t 2 1t i 13ttt ittt it ittt ittt 1t 1t %

Function: Release a file record for another partition's use.
Input parameters: »
Reg BC - Address of key, indexed files or
' Record number, direct files
Reg DE - Address of FCB
Output. parameters: none
Description: |
The sectors of the record currently locked in the file referenced by the
FCB are unlocked, allowing other users to access it. If the record is not
currently locked or the system is a single-user system then nothing is
, performed except the return from the system call.
Other system calls used: none
Other registers altered: none

Example Calling Sequence:

LD BC,(RECNUM) ; Get record number
LD DE,FCB1) ; Point to FCB, ch 1
sc 83 3 Unlock the record
RECNUM: DS 2 ; Current record number
FCB1: DC 1,01011000B 3 Direct I/0
DW 10BUFF1 3+ I/0 buffer address
=======:::=====—==--==-===-=========§é-§:-mi -----------------------------------

"Function: To indicate that your partition has exclusive use of a function/resource.
Input parameters: ‘
Reg HL - Address of semaphore
Output parameters: none '
Description: , :
The byte addressed by the HL registers is tested to determine if another
user has exclusive control of it. If no other user has control then the
byte is flagged to indicate that you have control and the system call is
exited. If another user does have control then the next user is selected;
upon return to your partition the byte is tested again, etec. .
The byte addressed by the HL registers must be in true global memory

SC 83 ONEOHMLY -T2 - MACRO Rev B

i CHAPTER 7: SYSTEM CALLS
(non-bank selectable). _
Note: On a single user system this system call returns immediately.
Other system calls used: SNU (79) | |
Other registers altered: none

Example Calling Sequence:

LD HL ,USERFLAG ; Point to your usér communication flag

sc - 84 ; Get exclusive use of flag

LD HL,USERFLAG . ; Point to your’user communication flag

sC 85 ; Release exclusive use of flag
e sc 85 worowry =

- P - G GD DD AP G TS GD W W G G G S G G I TP G W G D D S R R WD W P R . W . -
ittt i i 3ttt sttt -ttt t it ittt 1ttt 1ttt ittt ittt 1t ittt sttt E -t 4 b it 4

Fuhction: To release exclusive use of a function/resource.

Input parameters:

' Reg HL - Address of semaphore

Output parameter: none

Description:
The byte addreésed’by the HL registers is tested to determine if another
user has exclusive control of it. If your partition has exclusive control
of the byte then that control is released. If your partition does not
hag: exglgsive control of the byte then the system call is exited with. no
action taken.

The byte addressed by the HL- registers must be in true global memory
(non-bank selectable). : ’

Note: On a single user system this system call returns immediately.
Other system calls used: none
Other registers altered: none
Example Calling Sequence:

LD HL ,USERFLAG 3 Point to your user communication flag
sC 84 s Get exclusive use of flag

LD HL , USERFLAG s Point to yohr user communication flag
SC 85 _ ; Release exclusive use of flag

Function£ To activate another, specific partition to execute some code.
Input parameters: _ .

Reg A ;,Partition number to activate
Reg HL - Address to start execution at

Output parameters: none
Description: -
This system call is used by the system and the multi-user commands START,

STOP, FORCE, and MSG to cause another partition to become active and
execute some code.

MACRO Rev B . =13 - . ~ SC 86 ACTIVATE

" MACRO REFERENCE MANUAL | | |

‘ It is advised that the end user does not use this syStem call,
Other system calls used: none ' o
Other registers altered: none

D G0 o . G0 € CR a0 WP e O @) E GO OP CU GD G0 BN G SR AR ER D EE AP G S D R D WY i WD 0 T G D G G S G oI S U GIF NS G S G G Cn e OD D SN e Gr G G S OP e G O S T D G .G e S G 6D 6D WS K D T
5 O €0 6D MR G5O G T G e N G G5 G0 G5 CF e WD 6 T G Gl S5 TR IS Of s 6 W e G s T D S G e S e G O o TP S S G G D R WD e e % e O e O b 4D T O G D OO W5 S G5 95 m SO G5 0 OB OB O Oe o 3D a0 o a0

o e o @ o w - - o e e o e = oo e e o 2 92 G 90 o = e o e 2 e Or G0 an S o8 oo oo an
33334433+t 11ttt 1 1ttt ittt ittt ittt i 2 k22 223 2 2 2 f- £ 4121

Function: Get base address of LUB table.
Input parameters: none ‘
-Output parameters: o _ .
Reg IY_; Base address of LUB table . ., -
Description: |

This system call is used in some system commands. The user should not use

Other system calls used: GETSCR (48) ;
Other registers altered: A - ' -

= - - - o = 00 o - € TP e me P W > =D W B8 W W @
it ittt ittt ittt ittt 3ttt i1ttt ittt ittt 1 411 3

5 e o om ow wn - - - 0 50 P o o > o o > S e e SO D w e W v S S o W G Gm e o
ittt ittt ittt ittt i it 1t -2t ittt et 2 2 1

Function: Send a message to another user's console.
Input parameters: ‘

Reg A ~ Partition number to send message to
Reg DE - Address of message to send

Output paraméters: none
Description:
T ste ‘ not in ed for general usage.

The message addressed by the DE register pair is displayed on the user's
console owned by the partition specified in the A register. If the
gartition is invalid, or inactive the system call will return immediatelgo
£ Ehe destination's message switch is set off the message will still be
sent. : '

Note: On a single user system this system call returns immediately.
?gg?r system calls used: CONOUT (5), SNU (79), ONEONLY (84), NOTONLY (85), ACTIVATE

Other registers altered: none

- an o o o e WD O e D - aw SD G P e SR W D P e D S e U3 SR e
it it ittt it ittt 1t it it R R Rl

Function: To gain exclusive control of key system tables, etc.
Input parameters: none -

Qutput parameters: none ‘
Description:

Certain critical system tabies are locked so_that other partitions cannot
access them, thus allowing your program to alter them in some way without
damage to other user's processes.

The system tables locked by this system call include: PCB table, schedule
table, mailbox file, etc. :

SC 89 EXCLUSIVE - T4 - MACRO Rey B

- - CHAPTER 7: SYSTEM CALLS

) Noté: On a single user system this syétem céll returns immediately. o
Other system calls used: ONEONLY (84) | .
Other registers altered:knOné

Egample Calling Sequence:

SC 89 ; Get exclusive use of system tables |

Sc 90 , _ ; Release exclusive use of system tables

Function: Releaée exclusive control of system tables.
Input parameters: none - >

Output paramgters: none

Description:

The critical system tables locked by SC 89 are released for other user's
use. :

The system tables released by this system call include: PCB table,
schedule table, mailbox file, etc.

Note: On single user systems this system call returns immediately.
Other system calls used: NOTONLY (85)
Other registers altered: none
Example Calling Sequence:

SC 89> ; Get exclusive use of system tables
sc 90 3 Release exclusive use of system tables
T ooooTeneemEEEREREES sCc 91 cETWORK

e - - - . e - - - . D S A D S e G G e S D b . .-
3t ittt i3 i Ittt E t r t F sttt -t 1t - 1 i 1 i1ttt sttt 1ttt ittt 1ttt ttttt ittt tttttt ittt it 1t

Function: Get base addréss of yohr,éCB work area.
Input pérameters: none ‘
Output parameters:
|) Reg HL - Address of 256 byte SCR work area
Description:

The first address of the start of the 256 byte ﬁork buffer used by your
partition's System Communication Region is return in the HL register pair.

Other system calls used: GETSCR (u8)

Other registers altered: none

Function: Get the current privilege level of user.

Input parameters: none

MACRO Rev B =715 - SC 92 GETPRIVY

MACRO REFERENCE MANUAL
Output parameters: ‘
' Reg A « Privilege level of user
Description: 1 '

The current privilege level of the user is returned iﬁ the A register.
Other system calls used: GETSCR (48) | ﬁ
Other Pégisters altered: none
Example Calling Sequence:

SC 92 ;s Get privilege level

cp 3 T s Compare with 3 ‘

JR NC,OKAY 3 BRIF less

SC s Else exit
w---========================-==-=-=-§E=;§ --

-3 N L I 3 I X P T X T T ¥ I 3 3 X X X i 3 I P I I T I I i T T I X T X 3]
2+t 433 233t 3ttt ittt it ittt ittt ittt 1 1ttt ittt ittt it ittt i1ttt ittt 123 ¢+

Function: Perform string comparison.
Input parameters:
Reg BC - Length
Reg DE - Address of string 1
Reg HL - Address of string 2
Output parameters: '

When string‘1 = string 2:

Reg BC - 00 -
Reg DE - Address of byte following string 1
Reg HL - Address of byte following string 2
Flag Z - Set :
Flag C - Reset

When string 1 <> string 2:
Reg BC ~ Count of bytes remaining
Reg DE - Address of string 1 byte not equal
Reg HL - Address of string 2 byte not equal
Flag Z -~ Reset
Flag C - Set if string 2 > string 1; reset otherwise

Description: .

The string of characters addressed by the DE register is compared with the
string of characters addressed by the HL register for the number of
characters specified by the BC register. f the two sequences of
characters exactly equal each other then the Z flag is set and the C flag
is reset, If the two strings do not equal each other then the Z flag is
reset and the C flag is set if the second string is greater in value than
the first string.

Other system calls used: none
Other registers altered: A

SC 93 COMPARE | - 76 - | 'MACRO Rev B

Example Calling Sequence:

LD A,(STRING1) ; Get length
tg g,g s Copy to C reg
LD Dk,§STRING1+1;’; Point to string
LD HL, (STRING2+1) ; Point to string
SC 23 R Comgare strings
JR s « MATCH 3 BRIF equal

STRING1: DC 5, ' ABCDE"

STRING2: DC 5,'ABCde"

-----==-=--==================-§é-§i-ﬁ -----------------------------------

Function: Get binary data stream from sequential file.
Input parameters:

Reg B = B¥te count to get
Reg HL - Storage area
Reg DE - Address of FCB

Output pérameters:

Reg A Return code

00 Successful
01 End of file

08 Invalid file number

FF File not open '
Status: ,
set - okay (Reg A = 0)
reset - error %Reg A O 0)

Flag Z

Description:

The required I/0 overlay is loaded, if necessary. The ACB is validated:
ogen sequential, and input. The A register is set to 255 if ACB invalid.
The ACB is testéd for an EOF condition and the appropriate return code is
set if true and the system call is exited. If everything - is okay the
number of ~ bytes indicated is read in from the file and transferred to the
buffer designated by the HL register pair.

This system call like all 1logical record input/outggt system calls,
maintains the Sector Lock Table (SLT) according to the FCB. -

Other system calls used: KEYIN (1), RD1 (10), DEVIN (63)
Other registers altered: B, C
Example Calling Sequence:

LD B,25 ; Get next 25 bytes from file
LD DE, FCB1 ; Point to file on ch 1
gg H{.l.,BUFF ; Put in BUFF buffer
“JR - gZ,CHKERR ; Jump if read error
FCB1: DC 1,10010000B ; Sequential input, ch 1
DW BUFF1 : I/0 buffer :
BUFF1: DS 256 3
BUFF: DS 25 s+ Input buffer
==============================§=;§-iﬁﬁ--------------‘------3 -------------

Funetion: Put binary data stream to sequential file.

MACRO Rev B - -7 - ' ‘ SC 95 WRBIN

MACRO REFERENCE MANUAL
Input parameters: '

Reg B Byte count to write
Reg DE - Address of FCB -
Reg HL - Address of data to write

Output parameters:
Return code

Reg A

) 00 Successful ~
. 08 Invalid file number -
10 Disk full
FF File not open
Status:
set - okay (Reg A = 0)
reset = error %Reg A <>0)

Flag Z

Description:

e

The required I/0 overlay is loaded, if necessary. The ACB is validated:
open, sequential, and output or append. The agpropriate return code is

set when invalid and the system call is exi

ed. The number of bytes

specified in the B register are writen to the file buffer and physical
output is performed . as required. When the file is a disk file and the
file requires more allocation to perform the physical output then the file

is expanded. . :

This system call, like all log{cal' record input/ougggt syétem calls,

maintains the Sector Lock Table (SLT) according to the
Other system calls used: DISPLAY (2), WR1 (11), ALLOC (27), DEVOUT (64)
Other registers altered: B, C o '
Example Calling Seguence:

LD B, 25 s Write 25 bytes to file
LD DE, FCB1 : On ch 1
gg H%,BUFF : s From buffer BUFF
JR : BZ,CHKERR ; Jump on error
FCM1: DC 1,10001000B 3 Ch 1, se
W BUFF1 T » 569
BUFF1: DS 256 : I/0 buffer
BUFF: DS .25 ; Data buffer
=================:==================§é-§g_i§ﬁi§ -----------------------------------

- - - - w - w w o = o> = o e S e - e oD D Ge e e e -
2ttt 23t ittt it 1ttt ittt -ttt 1t ittt ittt ittt it ittt tt ittt ittt it

Funetion: Display error message on console
Input parameters:

Reg DE - Tokenized parameter list
Reg HL - Error number

Output parameters: none
Description: ’ ‘ a .
This system call is used by all system roE§ams to displa

standard information messages ‘kept in the SYST
Reference Manual).

error and
ERRMSG file (see System

The DE register pair need only be loaded with the address of the tokenized
arameter list if the message contains parameter replacement codes. T

gokenized parameter list is a list of {argmeters in ASCII, each
eight (8) bytes in length with no delimiting characters. Use
spaces if the parameter is not eight characters.

Other system calls used: CONOUT (5), RD1 (10), CRLF (18), GETSCR (48), GETWORK (91)

Other registers altered: none

SC 96 ERRDIS - 78 - MACRO Rev B

| CHAPTER T: SYSTEM CALLS
Example Calling Sequence: ' :

LD DE, PARAM ; Point to parameters

LD HL, 47 ; Display message # U7

sC . 96 H v '
PARAM: DC 1123 HELLO

D D WD W W e P B G G G P W WD W WD G SO WD G G W W G S S S G P G S WD R P PR G G D AP M e D GO D P P G G G G 5 S AR WD S AR S S G N AW P G OB S D G S S D SR o Gn S S SR G0 B D o G e
T o s e P G . - G T S T S G T M e WP TP TS G0 TP 0 e e S TL P AT T R TR G L D e I ST D Gn P R D G S U A i G G S e e S T8 e R W B R Gn P OO SR R e D W om e e GD an e

Function: Display error message and re-boot.
Input parameters: ' o
Reg DE - Address of parameter list
. Reg HL - Message number
Reg A - Return code
Output parameters: none
Description: : X :
This system call is identical to system call 96 (ERRDIS) except that
control does not return to the calling program. After the message is
displayed control will return to the CSI with the return code set to the
value in the A register. - -
Other system calls used: QUIT (0), ERRDIS (96)
Other registers altered: all (no return)
Example Calling Sequence:

Message # 23

LD HL,23 ;
LD A 3 Return code = 4
sC 9% ;- |

Y D - - S B N R P D D R D S G D i D G S S T Gn T G R D n T R T D I e T e G R T I e e T R A T S0 M e R I P D R T T OE AP e e T T R A G W S e . e

“Function: Program overlay load (for system use only).
Input parameters: ' - ,
' Directorg type (1 = relocatable, 2 = absolute)

Reg A =~

Reg B - Drive code

Reg DE - Starting disk address of program
Reg HL - Address of overlay list

0-1 Memory address to load into
. 1=3 Length to load, in bytes
4 = Number of sectors to load
5-6 Sector -number, relative to program start

Output parameters: none
Description:

The overlay segment of- your program indicated by the input parameters is
-loaded into memori at the address indicated. This system call always
performs the overlay, even 1if it is the same overlay as is alread¥ in
memory. Therefore, it is the responsibility of your program to test
- whether the overlay is needed.

The drive code and starting sector number of Kour program used in the
input registers B and DE respectively are available when your program is
first invoked by the CSI. For more information refer to the chapter
"Interfacing to OASIS" in this manual.

When the overlay is relocatable the sector count of ' the overlay must
include the relocation table.

MACRO Rev B -79 - ~ SC 98 OVERLAY

MACRO REFERENCE MANUAL ; - / .
Other system calls used: RD1 (10), GETSCR (48), RD (50), GETWORK (91) -
Other registers altered: none . :

Example Calling Sequence: ‘

LD A,(OVERLAY) ; Get current overlay number
CP 1 s Test if already loaded
JR Z,OVERLAY+1 : BRIF is
LD A, s Segment is relocatable
LD B»(PRGDRIVE% s Drive code of program
LD Dﬁ,(PRDSECT ; Starting sector of program
LD HL,SEG1TABLE ; Overlay table 1
SC 98 ; Get overlay
JR OVERLAY+1 s Continue in overlay

SEG1TAB: DC 20VERLAY) . s Address of overlay region
DC OVEREND-OVERLAY+1) ; Overlay region length
-DC b 3 Sector count, including rel table
DC 23 s Relative sector # of segment

' SC 99 CALLOC

D G P P e T D R h T €D D WD W T e G S G D S @O T 0 e Bt A e S0 G O R D e T T G B D M T W G D T e O e S P S0 e TE D e G G =D S WD OP R TGP R G DGR S0 WD £ B3 0 G o @ SO e w0 w o

- Function: Conditional allocation.
Input parameters: '

Reg B - Logical drive code (0 - 7) = (S = G)
Reg DE - Maximum desired blocks of allocation
Reg HL - Minimum desired blocks of -allocation

00 successful; FF unsuccessful

Actual number of blocks allocated

.Sector number of first block allocated

Set if able to allocate minimum; reset otherwise
Set if error; reset if okay /

]
anB
1t

Dgscription:

The disk is tested for its largest contiguous area available. If this

area is smaller in size than that requested for the minimum allocation the
Z flag will be reset and the system call exited. If this area is at least
the size of the minimum allocation requested space will be allocated, up
to the maximum space requested. The return refistersv are set to refiect
the amount and location of the space actually allocated.

?g??r system calls used: RD1 (10), WR1 (11), TSTDEV (58), ONEONLY (84), GETWORK

Other registers altered: A
Example Calling Sequence:

LD B,1 . s Point to A drive

LD DE, 20 ; Maximum of 20 blocks
LD HL,4 3 Minimum of 4 blocks
SC 39) s Allocate space

JR Z,NOSPACE ; Insufficient space

LD 2SiZE +DE 3 Save actual alloc size
LD SECT) ,HL ; Save first sect number

- - o e - o " o - - - - o e - o D = D D W M S W W SR D W A D e e e
A T i 4t 1ttt ittt 1t it ittt ittt R

=== - - T T T Y P T T 4+ 44
2214313433 1 i 1 f 1 P ittt 1ttt ittt -ttt ittt ittt i ittt i 2ttt

Function: Perform table lookup.

SC 100 DISPATCH | - 80 - MACRO Rev B

CHAPTER 7: SYSTEM CALLS
Input parameters:

Reg DE -' Address of string to lookup
Reg HL - Address of start of table
Table: Minimum sielling
Match string
Related address

Output parameters: ,
Related address if match found

Reg HL -
Flag Z - Set if match found
reset otherwise
Description: .

The table designated by the HL register pair is searched for a match with
. the string addressed by the DE register pair., If a match is found the Z
flag is set and the HL register pair is loaded with the third field in the
matching table entry. If no match is found the Z flag is reset and the HL
register pair is undefined.

The string addressed bK the DE regiéter pair and the strings in the table
are of variable length, The string to 1look up is terminated b{ a
non-alphanumeric non dollar sign character. The 1last character of the
strings in the table is marked with the parity bit (bit 7 on%. This is
automatically performed by the assembler when the double quote mark is
used (see DC directive). » .
The end of the table is marked with a binary zero entry.

Other system calls used: none \

Other registers altered: A, B, C

Example Calling Sequence:

LD DE, STRING

; Point to string
LD . HL,TABLE s Point to table
SC 10 ; Lookup
JR NZ, NOTFOUND ; BRIF not found
-JP (HL) s Else branch to related address
STRING: DC '*THIS IS A STRING',0
TABLE: DC 1 3 Minimum spelling
DC "FILELIST" s Match string
DC (FILELIST& ; Related routine
DC I, "FILT8080", (FILT8080)
DC 2,"FORCE", (FORCE) _
DC 16,"THIS IS A STRING",(EXIT)
DC 0 ;s End of table

Function: Get the current user account number.
Input parameters: none
Output parameters:
Reg A - User account number id
Description:
The user id number currently logged onto this partition is returned in the
A register. The wuser id number is the number used by the system to
distinguish different owning accounts, The system accounts have an id
number of zero; user accounts have an id number in the range 1 - 25i4.
Other system calls used: GETSCR (48) . ' ' \
Other Registers altered: none

MACRO Rev B - 81 - ‘ SC 101 GETUSER

MACRO REFERENCE MANUAL
Example Calling Sequence:

Get;user id

SC. 101 ' H
LD (CUR$USER) ,A ; Save it
-_-==a=====:==-==========.-.:::::=::=:§é:?3§-=-==_--_=...,,_¢.-_=_-=..,=¢-=-=-=====:

= oo w o o = - - - D o > €D D D > O e O G e D TP D N U D e e e G D AP WP GO B D b
2233+ i+t i3t 3333 it 3 3t 2 ittt t -ttt ittt ittt ittt ittt ittt ittt ittt ittt it ittt 1t

Function: Perform console input character translate and escape sequence actions.
Input parameters: | ‘

‘Reg A =~ Character inpﬁt

Reg 1Y - Address of UCB
Output parameters: o

Reg A - Character to be used

Flag C -

Set if character to be ignored by driver
reset otherwise .

Description:

This system call provides a simple and consistent method for a device
driver to make sure that the OASIS system console escape sequences are
handled properly. It is advised that all user written device drivers that
accept input from a device and that might be attached ag a console device
use this system call for each character that is input. (The driver should
check to see if it is the console first to improve performance.)

This system call tests to see if the device is -the conole input device.
If not then the system call is exited with the carry flag reset. When the
device is the console the system call checks to see if there is a
SYSTEM.CLASSnn file loaded-=if so then the character- is passed to that
routine. If not then the character is checked to see if it is part of an
escape sequence. When the 'character is part of an escape sequence from
the console input device the agpropriate action is taken and the carry
flag is set before the system call is exited. ' ,

‘Other system calls used: GETSCR (48), CONESC (78)
Other registers altered: A~ '

For an example see the appendix on programing examples.

I I T T T T T T T ppeprpaee - - D W e W W e T D T T o P o W e e Ge e W W D w0 e G0
I ittt it it -t it -t i i ittt ekt s R 2 1 2 2 2 1 11

Function: To insert an interrupt vector address into the system table.
Input parameters:

Reg A - Relative vector number
Reg DE -~ Vector transfer address

Output parameters: none
Description:

This system call is used to inform the operating system where an interrupt
service routine is 1located at. It is mandatory that this system call be
used for this purpose in a multiuser, multi-memory bank system and it

should be wused in all other types of systems for convenience and
consistency. ' ' ‘

The relative vector number in the A register is.a number in the range of 2
- 6 (mode 0), 0 =7 (mode 1) or @ - 127 (mode 2), corresponding to the
desired riority_of the interrupt (mode 1) or the vector number that the
interrupting device will give to the system when it interrupts (mode 0 or
2). The interrupt service routines for the three modes of interrupts are
similar except the mode 1 service routine must first poll its device to

. SC 103 PUIVECT - 82 - MACRO Rev B

' CHAPTER 7: SYSTEM CALLS

determine if it was the device causing the interrupt; if not then the
routine performs a return without enabling -‘interrupts (the system will
call the next routine in the.vector table). The relative vector number
for mode 1 determines the "priority"™ or sequence that the service routine

will be called when an interrupt occurs.

The vector transfer address in the DE register pair is the address of the
interrupt service routine for the vector number in the A register. When
the Sﬁs em has multiple memor¥hbanks available to it the operating system

will

Other system calls uSed: none

eep track of which bank

Other registers altered: none
Example Calling Sequence:

LD A2 ; Vector number 2
LD DE, INT ; Ingut interrupt
SC 10§ 3 Put vector.

Function: Transfer byte(s) from another partition space.
Input parameters:

Reg A
Reg BC
Reg DE
Reg HL

Output parameters:

Reg BC
Reg DE

Count of bytes to

Interrupts are disabled '
Description:)

at particular address is in.

0 :
Address following bytes transferred
Reg HL - Address following bytes transferred

Partition identification number of partition to get from»

et
Address of bufferl%o transfer bytes to (your partition)
Address of buffer to transfer bytes from (his partition)

our partition)
is partition)

This system call functions similar to an LDIR instruction in a single user

"system.

In a multi-user system this system call allows you to transfer a character
or string of . characters from another partition to your partition, even
though that other partition may be in different bank of memory.

Note: Upon return from this system call interrupts have been disabled. It
is your responsibility to re-enable them if they should be on.

Other system calls used: none
Other registers altered: none

Example Calling Sequence:

LD A2 s+ From partition two
LD * HL,5000H ; From his location 5000
LD DE, 4FQ0H 3 To my location 4FQO
LD BC,20H s For 32 bytes
gg 10k ; Transfer
H

Function: Transfer byte(s) to another partition space.

MACRO Rev B - -83 -

Enable interrupts

MACRO REFERENCE MANUAL
Input parameters:

Partition identification number of partition to put to

Reg A -
Reg BC - Count of bytes to put .
Reg DE - Address of buffer to transfer bytes to (h%s partition%
“Reg HL - Address of buffer to transfer bytes from (your partition)
Output parameters: :
.Reg BC = 0 ‘
Reg DE - Address following bytes transferred ihis partition)
. Reg HL - Address following bytes transferred

your partition)
Interrupts are disabled

Description:

Thi: system call functions similar to an LDIR instruction in a single user
system. .

In a multi-user system this system call allows you to transfer a character
or string of characters to another partition from your partition, even
though that other partition may be in different bank of memory.

Note: Upon return from this system call interfupts have been disabled. It
is your responsibility to re-enable them if they should be on.

Other system calls used: none

Other registers altered: none

Example Calling Sequence: _

To partition two

LD A,2)

LD HL.,5000H ; From my location 5000
LD DE,4FO0H : To his location 4F00
LD BC,20H } ; For 32 bytes

SC 108 ; Transfer

EI] ¢ Enable interrupts

Function: Translate a packed BCD date to string format.
Input parameters:

Reg C - Month number (BCD)
Reg H - Day number (BCD)
Reg L. - Year number (BCD)
Reg DE - Storage area
Ouﬁput parameters: .
Reg DE - End of formatted date plus one

Description:

The date specified by the C, H, and L registers is converted and formatted
according to the curréntly set DATEFORM.

Note: This system call does not validate the date input.
~ Other system calls used: HEXO (16), GETSCR (48)

Other registers altered: none -
Example Calling Sequence:

LD C,03 s Month 3 =~ March

LD H,22 3 Day 22

LD L 9% ; Year 1993

LD DE UFFR s Storage area

' Sc 106 ; Convert to string form

SC 106 DATEOUT , - 88 - MACRO Rev B

Fﬁnction: Deactivate éurrent’partition until interrupt occurs.
Input parameters: none

Output parameters: none

Description:

This system call is similar to system call 79 (SNU) in that the next user
partition. is activated. Unlike SC 79 - this system call informs the -
operating system that the current partition is no to be activated again

until an interrupt occurs that needs this partition to be serviced.

This system call allows greater throu%hput for a multi-user system in that
a gartition using it that is waifing for an event to happen (i.e.
waiting for the operator to t{pe another key) will not waste a lot of chy
time merely determining that it is still waiting.

When this system call is used (as it 1is in all OASIS sugplied device
drivers) control will return to the instruction followi he call when
any interrupt occurs from a device attached to this partition. However,
the interrupting device may not be the event that was reguired by your
partition. herefore upon return to your program you should re-check the
status of the device that you were waiting for. ,

Other system call used: SNU (79)
Other registers altered: none
‘Example Calling Sequence:

IN: gALL STATUS Check status of device

R NZ, IN1 ; Skip if ready
SC , 10? ; Else deactivate
JR IN ; Re-check status

Function: Return address of a loaded, re-entrant program.
Input parameters:
Reg DE - Address of program name desired (8 characters)
Output parameters: .
Flag Z - Set if found , ‘
- Reset otherwise. .
Reg HL - Address of program if found :
Deser;ption: ;
This system call searches the Re-entrant Program Table (RPB) for a match
with the program name specified by the DE register pair. If the program
is found in the table the starting address is loaded into the HL register
pair, the Z flag is set and the system call exited.

When the program name specified by the DE register pair is not found in
the RPB the Z flag is reset and the system call is exited.

Other system calls used: COMPARE (93)
Other registers altered: none

MACRO Rev B -85 - SC 108 FINDPGM

MACRO REFERENCE MANUAL
Example Calling Sequence:

LD - DE, NAME s Point to program name

-SC 10 : .3 Find program

JR NZ %OADIT s+ BRIF not found _ :

JP (HL ; Else branch to loaded program
NAME: DC 'BASIC ! '

O D O 0 D D S R G P e D D P D G O S W G R D G W GD €D OD OB ED G P G GP €D Cn A aN D 6P I O CP O 4P 6D GO €5 6P OD Wb 0D D O S8 Gy S TP 0D 42 G O W G G E AP G G0 S0 GD OD EP WO G G0 oD TS TR T G2
D R A G0 Th O 5 S WD e D OO = ED D D U5 W G @R 60 G5 W0 00 TN e €5 60 €0 #5 €D €5 OB @5 GO ©D ab =D G0 D € % 55 €5 65 00 B 5 a8 €000 00 o &5 T G5 TD A G G5 G €5 s G0 D S 0 4 G5 Gb 3 06 3 Ob a5 @ @0 o G OB e e oo

D o e 5D e D P D D D W AR G D AR OB A G S O D R OD D G D e D P D o oo A O e G S D D O D e S D D OO G m e S G D G D O G G D G G D D S D D O OB O € D
DG B e S R O O W GO O GO P B G0 W SR B6 G W0 G5 G A e TF e =D G5 @D @O G 6O G W WO G On CO D6 W -0 OF @B W o T OO 0D G T8 M0 G0 G O5 O e W8 O 6P £ W5 On an G O T On e G5 0 OB 55 £ 00 G5 OB 6o G a8 6O @ oo o

Function: Pass system time of day to uséf supplied time of day routine.
Input parameters: none l '
Output parameters: none
Description£

The currently set system time of da{ is passed to a user supplied routine
that.will initialize a time of day clock

Other system calls used: none
Other Registers altered: none

- o > - . W D e = s S S O S S S e =P > S W e D G o e
3+ttt ittt tt -t 1ttt 1ttt i1ttt ittt ittt 11ttt ittt ittt -ttt 1 131

- - o 0 oo 2 T 5 o . - - - = 90 G D i D . B2 D G D e S A G P A e S G e G e G =
3+ttt it ittt t i 1t 3ttt i3ttt ittt it ittt ittt 1ttt it 22t e 2 2 2 1 2 4 ¢+ 2 22

 Function: Pass system date to user supplied date routine.
Input parameters: none - | ‘
Qutput parameters: none

Description:

The currently set system date is passed to a user supplied routine that
will initialize a calendar/clock. _

Other system calls used: none

Other. Registers altered: none

- 86 - - MACRO Rev B

- ’ . CHAPTER 8
o Z80 CPU OVERVIEW
‘8.1 Addressing modes

Most of the Z80 instructions operate on data stored in internal CPU registers,
external memor¥ or in the I/0 ports. Addressing refers to how the address of this
data is generated in each instruction. This section gives a brief summary of the
types of addressing used in the Z80. R «

Immediate - In this mode of addressing the byte following the op-code in memory '
.contains the actual operand. Examples of this type of instruction would be to .
load - the accumulator with a constant, where the constant is the byte
immediatlely following the op=-code. :

LD 4,25

Immediate Extended - This mode is merely an extension of immediate addressing in

that the two bytes following the OP code are the operand. Examples of this

‘gy e of instruction would be to 1load the HL register pair -with 16 bits of
ata. ‘

LD HL,LABEL

Modified Page Zero Addressing - The Z80 has a special single byte call instruction
to any of 8 locations in page zero of memory. This instruction (referred to
as a restart) sets the—Proiram Counter (PC) to an effective address in pa%e
zero. The value of this instruction is that it allows a single byte o
specify a complete 16 bit address where commonly called. subroutines are
located, thus saving memory space.

RST 38 .
Relative Addressing - Relative addressing uses one byte of data following the

op-code to speci a displacement from the existing‘program to which a grogram
Jjump can occur. s displacement is a signed two's complement number that is
added to the address of the op-code of the following instruction. .

JR LABEL

The value of relative addressing is that it allows Jjumps to nearby locations
while only requiring two bytes of memory space. For most progams, relative
jumps are by far the most prevalent type of jump due to the proximity of
related program segments. The si%ned displacement can range between +127 and
-128. Another advantage is that if allows for relocatable code. .

Extended Addressing - Extended addressi provides for two bytes (16 bits) of
address to be included in the insfruction, This data can be an address to
which a program can iump or it can be an address where an operand is located.
%ﬁ%ended addressing is required for Jjumps with a displacement greater than

LD HL,(LABEL)

When extended addressing is used to specify the source or destination address
of an operand, the notation (nn) is used to indicate the content of memory at
nn, where nn “is the 16 bit address specified in the instruction. This means
that the two bytes of address nn are used as a pointer to a memorg location.
The use of the parentheses always means that the value enclosed within them is
used as a pointer to a memory location. For example, (1200) refers to the
contents of memory at location 1200.

Indexed Addressing - In this type of addressing the byte’' of data following the
op=-code contains a displacement which is added to one of the two index
registers (the op-code specifies which index register is used) to form a
pointer to memory. The contents of the index register are not altered by this
operation. An example of an indexed instruction would be to load the contents
of the memory location (Index Register + displacement) into the accumulator.
The displacement is a signed two's complement number. Indexed addressing
great1¥ simglifies programs using tables of data since the index register can
point to the start of any table. Two index registers are provided since_very
often operations require two or more tables. ndexed addressing also allows
for relocatable code. :

_ LD HL,(IX+3)
To indicate indexed addressing the notation: (IX{d) or (IY+d) is used. Here d
MACRO Rev B : - 87 - -

MACRO REFERENCE MANUAL

is the displacement specified after the OP code. The parentheses . indicate
thattthis value is used as a pointer to external memory. R

Register Address - Many of the 280 op-codes - contain bits of information that
specify which CPU register is to be used for an operation. An example of
register addressing would be to loag the data from register B into- register C.

LD A,B

Implied Addressing - Implied addressing refers to operations where the op-=code
automatically implies one or more CPU reigisters as containinf the operands.
An example is the set of arithmetic operations where the accumulator is always
implied to be the destination of the results. : .

ADD C

Register Indirect Ad?ressing‘- This type of addressing specifies a 16 bit CPU
reiister pair such as HL) to be used as a pointer to any location in memory.
This type of instruction is very powerful and it is used in a wide range of
applications. The symbol (HL) specifies that the contents of the HL register
are to be used as a pointer to a memory location. _ .

LD A,(HL)

Bit Address ~ The 280 contains a 1large number of bit set, reset and test
instructions., These instructions allow any memory location or CPU register to
be specified for a bit operation through one of three previous addressing
modes (register, register indirect and indexed) while three bits in the
op=code specify which of the eight bits is to be manipulated. '

SET 3,D .

Many instructions include more than one operand (such as arithmetic instructions or
loads). In these cases, two types of addressing modes may be employed.

| BIT 7,(IX)
8.2 Registers

The Z80 CPU contains 208 bits of Read/Write static memory that are accesible to the
g£%gram§e€e This memory is configured into eighteen 8 bit registers and four 16
registers.

General Purpose Regiétera

There are two matched sets of general purfose registers, each set containing six 8
bit registers that may be used individually as bit registers (B, C, D, E; H, L)
or as 16 bit register pairs by the Erogrammer. - One set is called Bb, bE,’ and HL
while the complementary set is called BC', DE°* and HL'. At an one Lime the
programmer can sSelect only one set of registers {o work with, althrough a single
exchange command exchanges the contents of the entire set. In systems where fast
interrupt response is reguired, one set of §eneral purpose registers- and an
accumlator/flag register may be reserved for handling this very fast routine. Only
a simple exchange command need be executed to go between the routines. -

 Accumulator and Flag Registers

The CPU includés two independent 8 bit accumulators (A and A') and associated 8 bit
flag registers (F and F'?. The accumulator holds the results of 8 bit arithmetic
or logical operations while the flag register indicates specific conditions for 8
or 16 bit operations, such as indicating whether or not the result of an operation
is equal to zero. e programmer selects the accumulator and flag pair that he
wishes to use with a single exchange instruction so that he may easily work with
the contents of either pair.

Special Purpose Registers

1. Program Counter (PC). The Program Counter holds the 16 bit address of the
current instruction being fetched from memory. The PC is automatically
incremented after its contents have been transferred to the address lines.
ghen a program jump occurs the new value is placed in the PC, overriding the

ncrementer. ' ‘

2. Stack Pointer (SP). The stack pointer holds the 16 bit address of the current
top of a stack located anywhere in external system RAM memory. The external
stack memory is organized as a last-in, first-out (LIFO) file. Data can be

- 88 - 1 MACRO Rev B

',cmrms:zaocmovmm‘

pushed onto .the stack from specific CPU registers or popped off of the stack
into specific CPU registers through the execution of PUSH and POP instructions.
The data popped from the stack is always the last data pushed onto it. The
stack allows simple implementation of multiple 1level interrupts, unlimited
subroutine nesting and simplification of many types of data manipulaﬁion..

3. Two Index Registers (IX and IY). The two independent index registers hold a 16
bit base address that is used in indexed addressing modes. In this mode, an
index register is used as a base to point to a region in memory from which data
is to be stored or . retrieved. n additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is
specified as a two's complement signed integer. This mode of addressing
gregtly simplifies many types of programs, especially where tables of data are

sed. . . v

5. Interrupt nge Address Register (I). The 280 CPU can be operated in a mode
where an indirect call to anx memory location can be achieved in response to an
interrupt. The I Register 1s used for this purpose to store the high order 8
bits of the indirect address while the interrupting device provides the lower 8
bits of the address. This feature allows interrupt routines to be dynamically
located anywhere in memory with absolute minimal access time to the routine.

Caution: The Interrupt Page Address Register is used extensively by the OASIS
Operating System. Any. change to this register will cause unpredictable and
.probaply disastrous results.

5. Memory Refresh Register (R). The 280 CPU contains a memory refresh counter to
enable dynamic memories to be used with the same ease as static memories. This
7 bit register is automatically incremented after each instruction fetch. The
data in the refresh counter is sent out.on the lower portion of the address bus
along with a refresh control signal while the CPU is decoding and executing the
fetched instruction. This mode of refresh is totall ransparent to the
grosrammer and does not slow down the CPU operation. The programmer can load
he R register for testing purposes, but this register is normally not used by
the programmer. ‘

8.3 Flags

The fla% register (F and F') supplies information to the user regarding the status
of the CPU at any given time. The bit positions for each flag is shown below:

7 6 - 5-4% 3 '2 1 0

S Z X H X P/V N C

Where: S si 1
= n
Z = Zego flag
H = Half-Carry flag
P/V = Parity /Overflow flag
g = édd/Su?iaet flag
= Lar
X = Notrzseda8

Each of the two CPU flag registers contains 6 bits of status information which are
set or reset by CPU operations. Four of these bits are testable (C,P/V,Z and S)
for use with conditional jump, call or return instructions. Two fiags are not
testable (H,N) and are used For BCD arithmetic.

Carry Flag (C)
The carry flag is sometimes referred to by the symbol CY.

The carry bit is set or reset depending on the operation being performed. For ADD
instructions that generate a carry and SUBTRACT instructions that generate no
borrow, the carry flag will be set. The carry flag is reset by an ADD that does
not generate a carry and a SUBTRACT that generates a borrow. Also the DAA
instruction will set the carry flag if the conditions for making the decimal
adjustment are met. ~ :

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the
LSB and MSB for any register or memory location. During instrucitons RLCA, RLC s
and SLA s, the carry contains the last value shifted ouf of bit 7 of any register
or memorz location. Dur1n§ instructions RRCA, RRC s, SRA s and SRL s the carry
contains the last value shiffed out of bit.0 of any register or memory location.

MACRO Rev B , - -89 -

MACRO REFERENCE MANUAL) .
For the logical instructions AND s, OR s and XOR s, the carry will be reset.

The carry flag can also be set (SCF) and complemented (CCF).
Add/Subtract Flag (N) '

This flag is used by the decimal adjﬁst accumulator instruction (DAA) to
distinguish between ADD and SUBTRACT instructions. For all add instructions, N
will be set to 0. For all subtract instructions N will be set to 1. .

Parity/Overflow Flag (P/V)) , ,
This flag is set to a particularfstate depénding on the operation being perfqrmed,'

For arithmetic operations, this flag indicates an overflow condition when the
result in the Accumulator is greater than the maximum possible number (+127) or is
-less. than the minimum possible number (-128). This overflow condition can be
determined by examining the sign bits of the operands. :

This fla% is also used with logical operations and rotate instructions to indicate
the parity of the result. The number of '1' bits in a byte are counted. If the
total is odd, then P is set to 0. If the total is even then P is set to 1.

When inputting a byte frém an’i/o device, the flag will be adjusted to indicate the
parity of the data, ‘ '

Zero Flag (2)

The zero flag is set or reset if the result generated by the execution of certain
“instructions is a zero. _ . :

For 8 bit arithmetic and logical operations, - the Z flag will be set to a 1 if the
resu%t%ngobyte in the Accumulator is zero. If the byte is not zero, the Z flag is
reset to 0. o ,

For compare and search instructions, the Z flag will be set to a 1 if a_comparison-
is found between the value in the accumulator and the memory location pointed to by
the contents of the register pair HL.

When testing a bit in a register or memory location, the Z flag will contain the
complemented state of the indicated bit.

Sign Flag (S)

The sign flag stores the state of the most significant bit of the accumulator.
When - the CPU performs arithmetic operations on signed numbers, binary two's
complement notation is used to represent and process numeric information.
Therefore bit 7 of the accumulator indicates the sign of the result.

When inputting a byte from an I/0 device to a register, the S flag will indicate
either positive (S=0) or negative (S=1) data. :

v

- 90 - MACRO Rev B

CHAPTER 9
, | . INTERFACING TO OASIS
9.1 GeneralAInrOr-ation “

.All programs to be accessed by the Command String Interpreter should be written as
?QU;%?rge" subroutine using a RET instruction when finished or, preferably, SC 0

When a program is executed by the CSI the HL register pair will contain the address
of the first character of the tokenized command strin% (the grogram name is
excluded); the IX index register will contain the address of the list of .delimiters
used " in the command string; the B register will contain -the drive code that the -
grogram came from; the DE register pair will contain the starting sector number of
he program on disk. - e

The tokenized command string is a list of the words used in the command, each word
ranslated to upper case and filled out (or truncated) to eight characters
trailing spaces are added when necessary). The open parentheses a the~beginnin§

‘of an option 1list is considered to be a word by itself and the list is terminate

by a token of a carriage return (ODH). ‘

The list of delimiters used is merely a list of the characters that were used to
. sefarate the words in the command string. This 1list matches in a one-to-one

relation to the tokenized command string starting with the delimiter between the
program name and the first word following: When multiple characters (spaces) are
used to separate two words only the first character is placed in the 1list of
delimiters. An open parentheses is assumed to be followed by a space character
egen twhen no delimiter is actually used. The list is always terminated by a CR
charcter. o

For example: :
- >PROG NAME.TYPE:LABEL (OPT1 OPT2,0PT3

When control is passed to the program named PROG the HL and IX registers will be
addressing the following character strings: g . .

(HL): 4E414D45 20202020 54595045 20202020 'NAME = TYPE '
- - HCh14245 14C202020 28202020 20202020 'LABEL - ('
4F505431 20202020 4F505432 20202020 'OPT1 OPT2 '
4F505433 20202020 0D202020 20202020 'OPT3 . ‘ '

(IX): 202E3A20 20202C0D 9 tr .t

The quotes used in the tokenized list are only for documenting the trailing spaces
and are not actually in the list.

Note: The list of tokens is always terminated By a CR token.

The information provided'by these two registers,alloﬁs the program to access all of
~the data and options specified in the command.

The-infofmation provided in the B and DE registers allows the program to get any
program overlay segments, if used. /

-

MACRO Rev B ' -91 -

MACRO REFERENCE MANUAL
9.2 Peripheral Device Drivers

The OASIS operating system contains many of the device drivers that are normally -

needed. For special peripherals or applications it might be desirable for you to
write your own device driver v ‘ v s

A user written device driver should bevwritten using the same format and protocalls
as the OASIS device drivers, even when you don*t plan to interface OASIS to your
driver--you may want to in the future.

OASIS device drivers are written- as relocatable.subroutines. Each device driver
has five entry point vectors, one for each major function of the driver. The
sequence of these entry point»vectors is as follows:

JP ST ¢ ST is entry point of device status subroutine

JP IN : IN is entry point of input byte routine

JP OUT 3 OUT is entry point of output byte routine

JP INIT s INIT is entry point of device initialization

JP UNINIT ; UNINIT is entry point of device de-intialization

It is not necessary to actually use the éump instructions at these entry points but
each entry point vector must be three bytes in length. '

Each of the five routines in a device driver is a subroutine that is ealled by
certain system calls. These subroutine functions, requirements, and sSystem calls -
are described below. ' :

ST Accessed by system call 62. Input to this routine is the phzsical
device number in the B register, and ¢the UCB address in the IY
register. The resgonsibilit of this routine is to return the status
of the device in the Z and flags. This routine should not actually
read the byte of data. If it is necessary to read the byte to
determine the status then the byte should be saved in an input buffer

area.
z Set = no input available
Z - Reset = input available
C Set = output read{
C Reset = output not ready

If the device is an output only device then this routine should alwggs
e

'getithe Z flag, indicating that there is no data to be read in from
evice, ‘

IN Accessed by system call 63. Input to this routine is the phisical
device number in the B register, and the UCB address in the IY
register. The resgonsibility of this routine is to return one byte of
input from the device in the A register. If no byte is available from
the device this routine should wait (use SC 107 _for interrupt driven
device or SC 79 for non-interrupt driven devices). It should be the
responsibility of the calling program to test if a byte was available
or not. When register A is set fto zero it means that a data byte of
zero was input, not that there was no byte available. '

If the device driver is for an output only device then this entry point
should return immediately. :

This routine (non-interrupt system) or the interrupt input routine
should use system call 102 (CHARIN) for every character input to trap
any escape sequence entered and to perform character translations,

OUT @ Accessed by s¥stem call 64. Input to this routine is the physical
device number n the B register, the UCB address in the IY register,
and the character to be oulput in register C. This routine accepts a
byte of output from register C and outputs the byte to the device. An
interrupt driven device might just store the byte in its buffer and
return control to the caller, ailowing an interrupt service routine to
actually . output the byte. However, this routine should handle all
error conditions relating to output to the device.

INIT Accessed by system call 61. Input to this routine is the ph{sieal
device number in the B register, and the UCB address in the IY
register, The responsibility of this routine is to initialize the
device driver and the device. The OASIS ATTACH command calls this
entry point once when the device is attached to a logical name.

) CHAPTER 9: INTERFACING TO OASIS

If the device is an interrupt driven device this routine would
e:tablish the interrupt vector using SC 103, initialize the I/0 buffer,
etce, :) ’

UNINIT Accessed by system call 68. Input to this routine is the phisical
: device number in the B register, and the UCB address in the IY
register. . The responsibility of this routine is to un-intiialize the
device. The OASIS ATTACH command calls this entry point once when the
device is detached from a logical name. o

- If the device is an interrupt dfiven‘device this routine would probably
make sure that the I/0 buffer was empty, disable the interrupt for this
routine using SC 103, etec. . : -

When an interrupt service routine is entered the interrupts are
disabled. The routine must enable the interrupts before an RETI
instruction is executed. The interrupts mag be enabled any time after
entrg to the routine but make sure that the routine is prepared for
another interrupt to itself when the interrupts are enabled.

All routines, interrupt.. or otherwise, should restore the status of a
registgrs used and not specified as part of the input or outpu
parameters.

Multi-user note: an interrupt ‘driven device driver must take into
account the fact that the owning partition may not be the active
partition when the calli interrupt occurs. It may be necessary to
activate the owninﬁ Earti jon in order to service the interrupt. The
iysggg cgllﬁ 84 (ONEONLY), 85 (NOTONLY), and 86 (SETPIN) may assist you
n s task. : \ .

Interfacing user written device drivers to OASIS

To interface a user written device driver to the OASIS operating system
you must follow these steps: .

1. Decide upon a device number. OASIS references physical device
drivers by their number. The numbers used by OASIS for the device
drivers supplied may be found by listing the file SYSTEM.DEVNAMES.
If your device driver is to replace the one provided with the
operating system then,gou should use the same number as that (you

may want to save the OASIS driver by renaming it).

2. After you have decided upon a number for your device driver then
you mnust five it a name that OASIS will recognize as a device
driver, Al device drivers have a file name of SYSTEM and a file
type of DEVnn where nn is the device number. The OASIS LINK
command has an option (SYSTEM) that will cause the load image
gro ram generated to have a name of SYSTEM and a file type equal

o the flle name of the object file being processed.

The device number that you use to give a name to your device
driver also determines the UCB number that it uses. Keep in mind
that external device numbers (device names, attach numbers, etc.)
are base 1 and the internal device numbers are base 0.

3. If you are not replacing an existing device driver you will
robably have to add an entry to the SYSTEM.DEVNAMES file so that
he driver can be loaded b¥ the ATTACH command by specifying a
name rather than a number. he format of this file is discussed

in the Q0ASIS System Reference Manual in the appendix "System

Files",

4, Attach your device to a logical device name using the ATTACH

- command, Your device driver is now available for other programs
to use by referencing the logical name or number attached to the
device. If the system is re-booted the driver will not be
reloaded automatically unless a SYSGEN was performed while your
device was ATTACHed. To reload your driver all that is necessary
is that it be re-ATTACHed. :

For an example 1listing of a peripheral device driver refer to the appendix on
"Program Examples". '

MACRO Rev B ' - 93 -

- MACRO REFERENCE MANUAL

9.3 Disk Device Drivers

The OASIS operating system contains at least one disk device driver to handle the

disk sL that the operating system resides on. Disk drivers to handle other types

of disk drives and controllers can be written by the end user or distibutor and can

ggm loaded with the ATTACH command to make multiple disk drivers -on-line at one
€. - : ~

A user written kdisk 'device driver’ should be written using the‘same format and
protocalls as the OASIS disk device driver. - , ' :

OASIS disk drivers are written as relocatable subroutines. Each disk driver has
four entry point vectors, one for each major function of the driver. The sequence
of these entry point vectors is as follows: - g

"SELECT is entry point of disk select subroutine -

JP SELECT ;

-JP RESTORE ; RESTORE is entry point of disk restore subroutine
JP READ s READ is entry point of disk read subroutine
JP WRITE - ; WRITE is entry point of disk write subroutine

It is not necessary to actually use the gump instructions at these entry points but
each entry point vector must be three bytes in length. ‘ ~

Each of the four routines in a disk device driver is a subroutine that is called by
certain system calls. These subroutine functions, requirements, and system calls
are described below.

. \

SELECT Accessed by system calls 50 and 51. Index register IY contains the
- address of the UCB of the disk to be selected; register A contains the
physical drive number (0 - 7) of the drive to be selected. This
physical drive number may have to be adjusted to properly address the
drive(s) associated wit| this device driver. his routine doesn't
perform an function with the disk drive or controller-~it merely
specifies which drive subsequent operations are to be performed on.

RESTORE Accessed b{ 3ﬁstem calls 50 and 51. Index register 1IY contains the

v address of the UCB of the disk to be restored. his routine’s function
is to "recalibrate™ the drive~-position the heads on track 0 with the
assumption that it is unknown where the heads are currently located at.

It is probable that this routine would perform no direct function other
than setting a switch indicating that the next read or write operation
to this drive is to. first perform the restore operation.)

READ Accessed by system call 50. Index register IY contains the address of

‘ the UCB of the disk to be read from; register A contains the number of
consecutive sectors to be read; register B contains the head number;
register C contains the -sector number; register pair DE contains the
cg inder number; register pair HL contains the address in memory that
the information is to be read into. All values are base zero.

This routine should perform the physical I/0 required to read the
specified sectors into the memory area indicated. Sectors are always
considered 256 bytes long, independant of the actual sector size of the
disk. It is the responsibility of this routine to adjust the number

and location of the sectors desired to correspond with the physical -
sector size of the disk, if different. : .

This routine should not perform anﬁ error recovery procedures. If an
error occurs the operation should be stopped, the pertinent registers
ad justed to reflect the location of the error, the A register should be
set to reflect the type -of error, and the ﬁ flag should be reset to

. indicate that an error occured.. Any retrK or recovery operations will
be handled by system software outside of this device driver.

When the disk read is succesfull the pertinent registers should be
adjusted to point to the sector following that which was just read, the
. A register should be set to zero and the Z flag should.be set.

This routine, as called by the OASIS system call, never asks to read
consecutive sectors that cross a cylinder or head Boun ary.

WRITE Accessed by system call 51. Index register IY contains the address of
the UCB of the disk to be written to; register A contains the number of
consecutive sectors to be written; register B contains the head number;
register C contains the sector number; register pair DE contains the

T " MACRO Rev B

CHAPTER 9: INTERFACING TO OASIS

~ eylinder nuﬁber; register pair HL contains the address in mémory that
the information is to be written from. All values are base zero. -

This routine should perform the physical I/0 required to write the
specifiied sectors from the memory area indicated, Sectors are always
considered 256 bytes long, independant of the actual sector size of the
disk. It is the responsibility of this routine to adjust the number
and location of the sectors 'desired to correspond with the physical
sector size of the disk, if different. .

This routine should not. perform any error recovery procedures. If an
error occurs the operation should be stopped, the pertinent registers
ad justed to reflect the location of the error, the A register should be
set to reflect the type of error, and the 2 flag should be reset to
indicate that an error occured. Any retrK or recovery operations will
be handled by system software outside of this device driver,

When the disk write is succesfull the pertinent registers should be
adjusted to point to the sector following that which was just written,
the A register should be set to zero and thefz flag should be set.

This routine, as called by the OASIS system call, pever asks to write
consecutive sectors that cross a cylinder or head boundary.

Note that there is no initialization entry point. It is the responsibility of the
select routine to check if the device needs initialization (maybe a DC of zero is
coded--when routine is first loaded that 1location will still be zero--that the
select routine sets to a one after the device is initialized).

Disk érror codes

The following standard error codes should be returned by a disk device driver when
an error occurs: ‘ . ‘ -

Disk not ready ,

Disk write protected

Disk not initialized -- possibly a time out or wrong density dete
Data CRC error » L

Invalid parameters =-- can't happen T
.Disk label changed == or disk changed or door opened .

~ Sector not foun - ’ o
Track not found

. -Address CRC error

Interfacing user written disk device drivers to OASIS » -

To interface a user written disk device driver to the OASIS operating system you
must follow these steps: . . .

WO IV N ~
ERAREREN

1. Decide upon a device number--QASIS references the disk drivers by their

number. The numbers used by OASIS for disk devices are in the range of

1 through 8. however, do not use a number associated with the disk
driver included in the OASIS NUCLEUS (generally 1 thru 4).

2. After you have decided upon a number for your driver then you must give
it a name that OASIS will recognize as a device - driver. All device

. drivers have a file name of SYSTEM and a file type of DEVnn where nn is
- the device number. The OASIS LINK command has an option (SYSTEM) that
will cause the load image program generated to have a name of SYSTEM
and a file type equal to the file name of the object file being linked.

3. Add the device name of your driver to the SYSTEM.DEVNAMES file. A disk
driver maz have multiple entries in this file to reflect the multiple
disks that it controls. A record in this file for a disk device driver
has the following format: C

<1qgica1'name> <device number> D <other numbers shared>
The <logical name> is a two to eight character name that you will use
when you ATTACH a drive code to a disk. It is best if the name also
identifies the disk drive in some meaningful manner. For example, a
g%gk dr%ver for a XYZ hard disk drive should probably be named XYZ1 or
2, etc. ‘)

The <device number)> is the number that you decided upon in step 1.

MACRO Rev B | -95 -

MACRO REFERERCE MANUAL

<Other numbers shared> is a list of device numbers that are controlled
, bg this one disk driver. This is best explained by an example. _Sa{
that you have written a disk driver for a disk controller tha
interfaces to four drives, numbered 5, 6, 7, and 8, You would probably
use the number 5 for the disk driver . number and the name XYZ5 for its
logical name. The entries in the SYSTEM.DEVNAMES file would then look

like this:
XYZ D56738
fesaes s
x*zz“bss'ra

The above example indicates that device numbers 5, 6, T, and 8 are all "
controlled b{ device driver number 5. There will only be one copy of
gheigriver oaded into memory for all four drives that may be attached
o it. , ‘ : .

4. Attach your device to a logical name usin% the ATTACH command, similar
to the wag you attach 1logical names to the OASIS supplied disk
driver--4, B, etc. , - ;

Note that there is no -un-initialize entry point in a disk device driver. This
means that the device driver will not be unloaded from memory when all disks are
detached from it. Once this auxillarg disk driver 1is loaded into memory the only
way to recover the memory used by the driver is to re=boot ‘the system (assuming
that it was not sysgened).

For an example listing of a disk device driver refer to the appendix on "Program
Examples®™. _

- 96 - : MACRO Rev B

'CHAPTER 9: INTERFACING TO OASIS
9.4 Tape Device Drivers : '

Tape drivers that interface to certain tape controllers are available with the
OASIS operating system. For other tape controllers it might be desirable for you
to write your own device driver. - -

A user written tape device driver should be- written using the same format and
rotocalls as the OASIS device drivers, even when you don't plan to interface OASIS
0 your driver--you may want to in the future.

OASIS device drivers are written as relocatable subroutines. Each tape device
driver has six entrg point vectors, with the first five being dummy entry ioints
corresponding to the five entry Eoints for general eripheral device drivers,
These first five entry points merely clear the carry f a%, set the zero flag and
return. The six entry point-is the only real entry to the age driver. Upon entry
to this routine the A register contains the command to be performed by the driver:

80 Select drive and track-

81 Rewind selected drive

Read from selected drive

Write to selected drive -

Backspace selected drive one record
Forspace selected drive one record

Write record gap on selected drive

Write tape mark on selected drive

Stop the selected tape . -
Return status of selected tape

ooooononocoaoag’o

O O~V W

The return status from the driver is in the 2 flag and the A register:

Z 00 Success - okay ,

NZ 01 Drive not ready

NZ 02 Drive write protected
NZ 03 Tape mark sensed

NZ 04 CRC error detected

NZ 05 End of tape sensed

NZ 06 Start of tape sensed

NZ 07 Data late

Interfacing user written tape drivers to OASIS

" Refer to the section 'Peripheral 'Device Drivers' in this chapter for information
about interfacing your tape driver. ,

For a listing of a model that cah be used to write your tape driver routine refer
to the appendix on "Program Examples", _

MACRO Rev B -97 -

MACRO REFEBENCE MANUAL
9.5 Terminal Class Code Drivers

The OASIS operating system provides a uniform interface to the console terminal
cursor controls. - ecause most terminal manufacturers use a sli§ht1y,different‘and>
unique_coding. sequence to control the actions of the terminal it is cumbersome fog
an application program to be coded such that it is capable of communicating wit
different types of terminals. In OASIS an application program 1is coded using an
internally defined standard (another, unique standard) for cursor control. The
characters used in the standard are described in the OASIS System Reference Manual,
appendix "Terminal Class Codes". C .

The translation between the OASIS internal standard and the control codes used by
the actual - terminal is performed in a small subroutine that interfaces between the
operating system and the device driver. Several different terminal class code-
subroutines are supplied with the operating system.: ‘ :

If your terminal uses a set of cursor control codes that is not handled by one of
the class code subroutines supplied you will have to write your own or not use
cursor control. However it is verg easy to write your own subroutine to handle
Exgs agf%gular terminal .due’ to the macro definitions supplied in the file

To write your own terminal class code subroutine create an assembly program with
the name CLASSnn where the nn is the elass code number Xgu wish to use. Use the
MACLIB pseudo op-code to get the macro definitions .in CLASS.MACLIB file into your
program. 'The three macros you will be using are described below: .

INIT Performs the subroutine initialization required of a class code
subroutine. This macro reference must be the first code in your Brogram.
This macro routine has all the code in it to_ _handle ang character
translations undefined with the following macro (DEFINE) and handles all
of the standard& OASIS input escape sequences (see QASIS System Reference
Manual, chapter "System Control Keys").

This macro also allows you to sgecif¥ up to eight characters that are to
be translated and the values that they are translated to. To use this
feature merely specify the -translation list in the operand field (see
example six in the appendix of program examples in this manual).

DEFINE Defines the relationship between the internal codes and the codes used by
the terminal. The first argument to this macro is the name of the
internal code such as CLEAR, H s, EOL, etc. Subsequent arguments to this
macro are the characters to be sent to_the terminal to perform the desired
function, " All of the ASCII control characters are defined with the
appropriate value so that you may use names. such as ESC, DC1, etc. «

The DEFINE macro reference is used as many times as is necessaby to define.
- the functions of the terminal. No special sequence is required and any
undefined functions may be omitted. :

Any function that your terminal is not capable of performing (i.e., BON)
should be defined with no output list (see example six again).

Any function that your terminal is not cagable of performing but can be
simulated by the oaeratinf system (EOL -and EOS only) should not be defined
in your program. hen this is done the operatin% system will simulate the
{unc%%on by outputting spaces and repostioning the cursor to the orginal
ocation, ; . « ,

Any function that should be followed with the ATTACHed form feed delay
should have its definition end with the argument 8CH which will be
interpreted by the macro as indicating the form feed delay is to be added
after the output of the function.

DCA Indicates the start of the cursor address coding routine. The DCA macro
- name may be followed by a numeric operand specifying the pre-defined class
code number that uses ¥he exact same cursor control algorithm.

S

- 98 - . MACRO Rev B

CHAPTER 9: INTERFACING TO OASIS

The DCA maérO' cail is f0110wed by the routine that will output to the
terminal the proper codes to perform the addressing of the cursor. Upon
entry to the routine the following registers will be defined: B

_A Contgol) character to translate (not used by your cursor address.
- routine) - ‘ ' :
B Device number of the console terminal (always a 9)
C Same as register A ,
‘H Column number to position to, base 0
L Line number to position to, base 0

When your routine outputs ﬁhe codes to the terminal you must use System
call 64, (Using system call 2, 5, 7, or 52 might cause an infinite loop.)

After you have output the proper codes to the terminal clear the carr
flafxand perform a return. If the carry flaﬁ _is set when you return it.
will indicate to OASIS that the function could .not be performed and that:

. OASIS 1is to try to simulate it with software. This may be done by
pgrforming a HOﬂE followed by line feeds and non-destructive cursor
advances. : : , : _

Example six in the appendix of progrém examples 1lists a terminal class code
subroutine for the SOROC IQ 120 terminal. -

'

MACRO Rev B " ' =99 -

MACRO REFERENCE MANUAL

- 9.6 System Start-up Program

The OASIS operating system provides the capability of 1loading .and executing a
%rogram (machine language) automatically whenever the ogerating system is "booted",
he program that is loaded must be named SYSTEM.STARTUP, must reside on the system
disk, be owned by the system (public) account, and be relocatable. »

The SYSTEM.STARTUP program may do "anything" that you may're%gire this type of
program to do (i.e., automatically interface to calendar circuitry). This program
is loaded after memory is sized by the operating system but before any device
drivers are loaded. The program is loaded into current high memory and is called
by the ogerating system. The program should do whatever is necessary at this time
and exit by executing a RET imnstruction. : ' .

It is the responsibility of thi% program to,prbtect itself when you want it to be
in memorg after the system is started. Use system call 55 and 56 to protect the
memory that the program needs. !

If you are using the SYSTEM.STARTUP program capability to interface a
calendar/clock device you. should be aware of four locations in the SYSTEM.NUCLEUS -
that help you in this regards: -

'BASE+004AH Should contain the address of your subroutine that will return the
current time of day. v

BASE+Q04CH Should contain the address bf’your subroutine that will return the
current date. -

BASE+0062H Should contain the address of {our subroutine that will program your
clock to the currently set system time. This location is used by SC
109 and the SET TIME command to program your clock.

BASIC+0064H Should contain the address of your subroutine that will program your
calendar to the currently set system date. This location is used by SC
110 and the SET DATE command to program your calendar.

The system startup rogram must set these locations in the NUCLEUS to the proper

addresses of your subroutines (contained in the SYSTEM.STARTUP. program) if you want
OASIS and its utilities to use your calendar/clock hardware.

- 100 = | _ nhcno Rev B

9.7 USR Programs _

A USR program 1is an assembler language subroutine accessed by a -BASIC language -
program throu a special function call. Only one parameter is passed to the
subroutine and only one parameter may be returned to the BASIC program. The input
and output parameter types must be the same: 16 bit numeric or a character string.

CHAPTER 9: INTERFACING TO OASIS

The USR routine must be a relocatable program

A USR subroutine may have an unlimited number of entry points but each entry point
may only perform processing on one type of parameter.: This is due to the fact that
there is no way of detecting what the parameter type is. A USR routine may perform
processing independent of the input and/or output parameter. '

The BASIC program accesses the various entr¥ points of a USR routine by specifying

. the address of the entry point relative to the load address of the subroutine., I

is best to make the entry points simple, such as: 0, 3, 6, etc. To do this jum

vectors should be used, similar to the device drivers disdussed above, This no

-only makes the entry point addressing simple but also allows for modifications to
the program without requiring changes to the entry point addressing in the BASIC
program. : .

A USR routine may use, without restoring, any and all of the registers. BASIC
makes no assumptions regarding the integri&y of the registers (with the exception
of the HL register pair and the SP!). The USR routine, in turn, should make no
assumptions about the integrity of the registers (except the HL register pair and
the SP!) as BASIC may use any and all of the registers between calls to your USR. :

A numeric parameter is passed to a USR routine via the HL register pair. If a
parameter is to be returned to the BASIC program it must be placed in the HL
" register pair. This implies a limit of 16 bit numbers. » A

A stri parameter is passed to a USR routine via the BASIC string accumulator.
The str ng‘accumulator start address is in the HL register, The strin% accumulator
is a 256 byte buffer used by BASIC for all string manipulations. The first byte of
this buffer is a count of the number of characters following. The string parameter .
returned to the BASIC program may be in the string accumulator or in an internal -
buffer (up to 256 b¥tes). In either case the HL register pair must address the
first byte of the buffer used when the return is made to BASIC and this first byte
must be the count of the characters in the buffer. If the string accumulator is
used care must be taken to insure that - the 256 byte limit is not exceeded because
volatile information precedes and follows this buffer. :

When LINKing your USR routine be éure to use the USR option as it will cause the
{i%e tyEe of your load module to be BASICUSR, a requirement of the BASIC
~interpreter.

For example listings of USR routines refer to the appendix on Program Examples.

'MACRO Rev B - 101 -

MACRO REFERENCE MANUAL
9.8 BASIC Fields

It is not advised that you write programs that access the variables in a BASIC
program directly. ‘This is primarily due to. the fact that the. variable storage area
of BAS: is dgnamic - even its base address. You should use . the USR feature of
BASIC to pass the field to your assembly program. ' However, it may be necessary for-
you to know the format of variables maintained by BASIC, internally to BASIC and/or
externally in a file. -)

Format of BASIC.Vapiables

BASIC variables are formatted the same whether maintained internally or on a disk
~file, However, file fields have an extra byte of information preceding the content
of the field. This extra byte is a code indicating that the field is a string,
- integer, or floating point field. . o

String Fields : - S . g

String fields are simplistic in format: the code is a binary 6 followed by the
%gngt% gf the string (range of 0 to 255) followed by the individual characters of
e string. T

Integer Fields e -
An integer field has a code of a binari 4 followed by the 16 bit signed binary ’
number, most significant byte first. '

Floating Point Fields

A floating point field has a code of a binary 3 followed by a one bgte
characteristic in excess 128 format (characteristic in two's complement plus 128),
followed by a .nibble (four bits) specigging the sign of the mantissa, followed by
- 52 bits of the normalized mantissa in BCD. : .

A code field of 0 indicates the end of record.

Examples:]
Field _ Type Contents
06055061676520 S Pa
0n1334 100 B A 1)
O4FEAT I =345
038202345678000000 F +.23456T8E+2
03TE81234567890123 . F -.1234567890123E~2

-102 - MACRO Rev B

 APPENDIX A
SYSTEM CALL SUMMARY

0 QUIT Reload the Command String Interpreter - restart
1 KEYIN Accept a line of input from the console keyboard
2 DISPLAY Display characters on console output device v
3 CONST Get status of console input device
CONIN Accegt one character from the console input device
g CONOUT Display one character on console output device '
SYSIN fAcceft one character from console, ignoring ESC,0 and ESC,P
g SYSOUT - Display one character on console, ignoring ESC,0 and ESC,b
PRTOUT Output one character to PRINTER1 device : : .
9 MOUNT. Allow change of diskette on a specified drive
10 RD1 . Read one sector from disk ; .
11 WR1 Write one sector to disk :
12 IPL ~ Perform initial program load _
12 WRFDIR Create new file directory entry o L
14 HEXI Convert hexadecimal number to 16 bit binary
12uDECI - Convert decimal number to 16 bit binary
16 HEXO Convert 8 bit value to hexadecimal characters
1Z‘DECO " Convert 16 bit unsigned value to decimal string
18 CRLF Disglay carriage return, line feed on console
19 MSEC Wait specified number of milliseconds
20 LOOKUP . Locate directory entry of file -
21 GETUCB Get address of UCB o . o , ,
22 LOAD Load a program . o - E
23 -PRINT Output a line to PRINTER1 device .
24 ASSIGN Store ACB . y
25 ADRV Convert logical drive code to drive number
26 BDRV Convert drive number to logical drive code
2T ALLOC Allocate space for file on disk
28 DEALL Deallocate space for file on disk
29 ERASE Erase logical file from a disk
0 FETCH Load program in memory, execute, restart
1 RENAME = Rename a logical disk File .
32 OPEN . Ogen a logical file - ,
"CLOSE Close a logical file
RDSEQ Read a logical record from a sequential file
WRSEQ Write a lo%ical record to a sequential file
GETDATE Get formatted date’
GETTIME - Get formatted time s :
DIV " 16 bit, binary, unsigned divide
MUL 16 bit, binary, unsi%ned, integer multigl{ ’
RDDIR Read logical record from a direct disk file

WRDIR Write a logical record to a _direct disk file

NUMBER Convert numeric string to 16 bit value

RDIX : Read a logical record from an- indexed disk file

RDNIX Read the next logical record from an indexed disk file
WRIX Write a logical record to an indexed disk file
DATEPACK Pack system date and time into 24 bits

LABEL. Find disk with specified label ' .

GETSCR Get base address of user System Communication Region
WAIT Wait for operator to release current console page

RD Read multiple sectors of a disk

220 N = OO 0O~ OV N = OO 00~ W £ N = OO Co~JI U £0LD N = OW0 00~IOWN =0
o

WR ’ Write multiple sectors to a disk '
SYSDISP . Display characters on console, ignoring ESC,0 and ESC,P
TIMER Set up for a clocked interrupi
Execute a command :
GETMEM - Get current high memory
PUTMEM Set new high memory
PUTQET Change routine for service of System Cancel-key
TSTDEV Test device attachment :
GETPL Get console/printer page and line Earameters
DELIX Delete a record from an indexed file
DEVINIT Initialize a device driver
DEVST Get status of device driver
DEVIN Get input from device driver
DEVOUT Put output to device driver
GETLAB Get label of specified disk drive
PUTDEV - Store device driver address :
DEVUNINIT Uninitialize a device driver
TSTESCC Test if Program Cancel-key entered
EXCMDR Execute a program and return
BUFFI Get character from buffer
BUFFOQ Put character to buffer
PUTCON Get/set console control byte
PUTDET Set address of disk error trap

MACRO Rev B - 103 -

' MACRO REFERENCE MANUAL

T5 NEWSYS
76 DELAY
73 GETACB

gg SN :
GETBASE
81 GEIMFG -

3
5 NOTONLY
6 ACTIVATE
g GETLUB
MSG
EXCLUSIVE
UNEXCLUSIVE
GETWORK
GETPRIVLEV
COMPARE
RDBIN
WRBIN

9

0

1

;

5

i

9 CONDALL

0 DISPATCH

1 GETUSER

2 CHARIN

% PUTVECT
GETBYTE

g PUTBYTE
DATEQUT

g WAITINT
FINDPGM

9 PUTTOD

0 PUTDAY

8
8
8
8
§
8
g
g
9
9
9
9
9
9
0
0
0
0
0
0
0
0
0
0
1

1
1
1
1
1
1
1
1
1
1
1

Change system disk .

Delay processing for specified period of time
Point to Assign Control Block

Perform System Control-key function

Select next user _

- Get base address of NUCLEUS

Get system manufacturer number '
Get your user partition id number
Unlock record of file

Set flag for exclusive use of resource

- Release exclusive use of resource

Activate specific partition
Get Logical Unit Block table base address
Send message to another usert®s console

- Get exclusive control of key resources

Release exclusive control of key resources

Get user System Communication work area address
Get current privilege level S
Perform strin% comparison

Get binary data stream from file

Put binary data stream to file

"~ Display error message

Display error message and quit

Load overlay of pro%ram

Conditional allocation

Perform table -lookup

Get current user account number

Console input character analysis

Point vector to interrupt service routine
Get bytes from another partition

Put bytes to another partition

Convert BCD date to standard format
Deactivate partition until interrupt occurs
Get address of re-entrant program

Put time of day to clock device

Put date to calendar device

- 104 -

MACRO Rev B

N = OW OOV IS N = OV IO W — O
g

£ 4= 4= = SO LWL
EUWN 2O 00

=

=]

o

—

=

S

DO =
"
-3
=3
fa]
>
Q
=~

PUTDEV
DEVUNINIT
TSTESCC
EXCMDR

113~ O\ OVONONONONONONOMT T TN UTUTUTUTUTUN B
22N =2 OV OOV =UWN) = O\O 0O~V £ N = OO
o
=
[
H
»d

PUTDET

MACRO Rev B

Inputs
A=return code
DE=addr,B=len
DE=addr ;

C=char
C=char

C=char
B=drive

" B=drive, DE-sect HL=zaddr

B= drive DE-sect HL=addr
B-drive DE=sect’
B-drive DE=DEB

DE-addr

DE=addr
B=number,DE=addr
DE=addr, ﬁL-number

A=msec count
DE=DCB,HL=buffer addr
B= device

DE=DCB, HL=addr

DE=addr

B=ACB #,DE=ACB

B= ASCII drive #

Bzbin drive #
B=drive,DE=block count
B= drlve DE=block count,HL=sect
DE=DCB

B=drive,DE=DEB

DE=old DCB, HL=new DCB

DE=FCB

DE=FCB

DE=FCB, HL=addr

DE= FCB HL=zaddr

DE=addr

DE=addr

DE=divisor,HL=dividend
E-multiglier HL-mullplicand

BC=key,DE=FCB,HL=addr

BC= key,DE-FCB HL=addr

DE=zaddr

BC=key addr,DE=FCB,HL=addr

BC=zkey addr DE= FCB HL=addr

BC-key addr DE-FCB HL=addr
DE=addr

DE=label addr

B=drive, C-count DE=sect,HL=addr
B= drive C= count DE-sect HL=zaddr
DE=zaddr
DE=count ,HL=TEB
DE=zaddr

APPENDIX A: S!STEH CALL SUMMARY

. Outputs

no return
A=len,DE=next
2E=next

A=char
A=char

HL-num DE=znext
HL-num DE-next-v
DE-nex£

DE=next

ZLDE-sec ,HL=addr

CY,A=code,B=drive -
VDE-next ,

A=bin drive
A=ASCII drive
HL=zsect

no return

DE=next
DEznext
HL=quotient
HL=product

‘DE=next,HL=number

'DE=next

A=drive
IY=SCR

DE=next

no return

" HL=addr

HL=addr
HL=addr
B=device #

B=dev
BC=key,DE=FCB,HL=rec
B=dev :

B=dev

B=dev
Bzdev,C=char

B= dev DE=zaddr
B-phy dev,DE=addr
B=dev

DE=cmd,HL=ret addr
HL=buffer
Azchar,HL=buffer addr
B-sets C=clears

zaddr .

_ - 105 -

NZ, A=code '
B=line,C=zpage

NZ=zin rdy,CF=out rdy
=char

Z=no ESC,C
All regs 'modified
A=char

A=new mask

MACRO REFERENCE MANUAL

Sc
75 NEWSYS

MS .
EXCLUSIVE

GETPRIVLEV
COMPARE

9

0

1

:

5

6 ERRDIS

] ERRQUI
OVERLAY

9 CONDALL .

0 DISPATCH

1 GETUSER

2 CHARIN

3 PUTVECT

7

8

9

0

UNEXCLUSIVE
GETWORK

v DE-garms,

Inputs
B=new phy S
A=time code

- B=ACB #
_A=2nd esc char

DE=FCB
HL=resource
HL=resource

~ A=PIN,HL=addr

A=PIN,DE=addr-

BC-len DE=1st,HL =2nd
B=1len,DE=FCB, HL=addr
B=len, DE-FCB HL-addr

DE= arm zmsg #
dri E= base HL=zaddr
drive DE=min,HL=max

DE-string,HL table

A=char

A=num,DE=zaddr

BC= len DE=m HL-his
BC-len DE=his ,HL=my
C=mm, H=dd L-yy,DE-addr

DE=name -

= 106 =

Outputs

A=0
- HL=ACB addr

IY:base
A=MFG
A=PIN)

IY¥=LUB
DE=next

HL=addr
A=priv

no return

DE-actual HL=addr
Z,HL=arg from table
A=user

~ NC,A=new char

DI, like LDIR
DI, like LDIR
DEznext

Z,HL=addr

-MACRO Rev B

. APPENDIX B
ERROR MESSAGES

Operator Cancelled

Duplicate Label -or- Phase Error;"'

Indicates that the address of the instruction has a different value . between
pass one and pass two. Usually indicates that the label is defined more than
once. B

nn errors in program

. macro definition.

Indicates the total number of detected érrors in the program.
Invalid Expression #i#
Label Error #&#

Indicates that an invalid‘characﬁer was used in a label. Labels must use only
the alphabetic characters and the dollar sign character. Local labels must
sgart glth a period character. Macro local labels must start with the at (@)
character. . :

Label Required #&#

The label field is blank on a directive that feguires a label. These
directives include: ABS, COM, ENTER, EQU, REL, and VALUE.

Macro Definition Error #:#

Indicates a construction or .syntax error in a macro definition. Usually
results from a missing ENDM directive or an attempt to define .a macro within a

Nested too Deep sss

Indicates that an attem t'wés made to push more than eight IF, ORG, USING,
LIST, or macro calls onto their respective nesting stacks or an attempt was
m%dek to pop one of the above from their stack when no argument was on their
stack.. ;

Overflow &% | -

Indicates that more bits are required to containn;alue than are permitted in
expression type. For example a relative jump of more than +127 or -128. .

Relocation Error %88

Indicates that an expression containing relocatable symbols is in error.
Usually the error is one of the following: a difference between two relocatable
symbols of different PABs; the sum of two relocatable symbols; the Broduct of
two relocatable symbols; the quotient of two relocatable symbols; the product
or quotient of a relocatable symbol and an absolute symbol; a valid relocatable
exprgsgion used in an operand that may only have eight or seven bits of
precision. : : '

~—

Segment not Found #%# _

Indicates that the file description of a COPY or LINK directive can not be
found in any of the attached directories. - ‘

Statement Syntax Error %

Indicates that the operand is invalid for the op-code or thét there is a -
missing delimiter in the operand. . ' : '

Symbol Table Overflow

The size of the sgmbol table is determined by the amount of available memory
during the assembly process. There are several things that can be done.to
remove this error: add more memory; unload the system Debugger if loaded;
unload unused device drivers; unload an{ loaded, re~entrant programs (SPOOLER

BASIC, etc.); remove unreferenced symbols from the program; reduce the use of
local labels; - use shorter symbol names; segment the program to allow for
smaller assemblies (make the LINK program join them together).

MACRO Rev B . - 107 = -

MACRO REFERENCE MANUAL |
#88 gUndefined Operation #8% ‘ ‘
Indicates an invalid op=code or directive was used or a reference is made to an
undefined macro. _Sgecifically the Assembler searches its op-code table, its
in

directive table, ernally defined macros, external macro files. When the

op-code field does not match any of these it is determined to be an undefined
operation. , , o

88 Pndefined Symbol S&%

Indicates a reference was made to a s&mbol not defined.

- 108 - MACRO Rev B

| APPENDIX C
. CONTROL BLOCK DEFINITIONS

The followinf short diagram illustrates the bidirectional communication linkages
that are followed when a program (user or system) requests input or -output to a
logical file. Non file input or output is similar except that the program links
directly to the Logical Unit Block. - .

/\3
t

File Contro] Block (FCB)

Assign COntroJ; Block (ACB)
, |

Logical Unit Block (LUB)

Unit Control Block (UCB)

\ .
I/OIPort

\i/ '
Peripheral Device

MACRO Rev B ’ =109 -

MACRO REFERENCE MANUAL

Unit Control Block (UCB)
o Devices (8T- 31)

- - @ o o o - - o o> me W o - e e P = D D D W e e Gr e P G e ee eP S om e e
--::::--:-—=-========-==--:-‘-=—==-==q:----------m--’------k-u—n-u-------.

Byte Description

00 Driver address
Line length
Oz Page length
. Class code

Code Baud Code Baud Code Baud
1 75 6 600 . 11 9600
2 110 g - 1200 . 19200
3 - 134.5 - 2400 3 1800
~ . 150 9 4800 1 2000
- 00 10 7200 3600
05 Bit 7 on indicates CONIN device

‘ Bit
06 CR/LF delay
0 FF/EOS/EOL" delay
Bit On

0¢ off
Z Parity enable No pariti
g Even parity
g bi data T bit data
Syncronous Asyncronous
g Page Earity p Earity
auto
1 No FF ability
- 0 SDLC
0 Overflow eount
0 Current line
0B Reserved
0oC Reserved
oD Speed delay
0E Device driver length
10 Translate routine length
12 Input buffer address
14 OQutput buffer address
16 Translate routine address
18. Video base address/ i-o address base
1A Video cursor address
iC Bit Output-busy Input-busy
0 =DTR -DSR
1 XOFF/XON XOFF/XON
2 ETX/ACK _ ETX/ACK
a CTS =-RTS
1D ork area (2 bytes)
1F Owner pin

- - 110 -

on indicates ESC lead in received- (used by class code files)

MACRO Rev B

IPPEIDIZ C: CONTROL BLOCK DEFIIITIOIS
Unit Control Block (UCB)
Disk Devices (0 - 7)

Byte Description

00 Driver address
02 Volume id label
0A Number of heads .
0B Number of cylinders
oD Number of sectors
- QE ' Directory size
10 Clusters available (blocks)

12 Interleave count
13 WP/IBM/Additional =
Bit Meaning

Z - Write rotected
Track n%Ie density (IBM 2D)
5-0 Number additional map sectors

14 Current cylinder

16 Head load delay

1% Step time dela

1 Settle time delay
19 Work area gtes;
1F Owner (OFFH-pu lie

File Control Block (FCB)

Byte Description

00 ACB number (0 - 16).
01 File format and I/0 mode
Bit On
Sequential
g Direct
E Indexed
Input
% Output 4 :
Append - (sequential format only) -
1 Reserved -
0 File lock

Both bits 3 and 4 on means update with record lock.
Both bits 5 and 6 on means keyed format.

02-03 Address of I/0 buffer
(same length as sector size)

Assign Control Block (ACB)

Byte Description

00 Drive code (0-T, 255=all)
01-08 File name traiii blanks, if neeessary;
09-10 File type traili blanks, if necessary

11 Logical device number, base 0
0 = not assigned
1 = any disk
8 = console
10 - 23 = logical:-device number (i.e., PRINTER1, COMM2)
255 = dummy

' HICRQ'ROV B - 1M1 -

MACRO REFERENCE MANUAL
12=1F System defined

Dirgctory Control Biock (DCB)

44333 - 3 3 L X X X X XT3 - 3 - - - - ow o o - e - - e L X X Y P T T XX
R R e T R R R S S e E T S S S E R S R R S T R e e e e T e S R e R R TSRS EEEs

Byte Description

00 Drive code (0-7, 255=all) .
01=08 File name Etraiiing”blanks, if necessary;
09=10 File type (trailing blanks, if necessary

‘Directory Entry Block (bnn)

Byte Contents

00 File format: -
11111111 = Deleted
00000000 = Empty - never used
.10000000 = Synonym ~
+ 200001 Relocatable
+++00010 = Absolute
« 2200100 Sequential
e 2001000 Direct
+0010000 = Indexed
«0s 11000 = Keyed

08

10 File type.

}% Record count.
16
18

Block count.
Address of 1st sector.
Variable by file format: -
;K - = Byte 17 is eight 1lsb of rec len .
Byte 18, b0 is msb of rec len; b1-b7 is key length
S Record iength of longest record i
D Allocated record length
A,R '= Record length (sector length)
9-1B Date and time of update. .
C Owner Id. ,
D Shared from owner Id.
E-1F Variable by file format:
;K = Allocated file size
= gisk address _of last sector in file
= Lero .
= Program length :
= Origin address

oo

Timer Event Block (TEB)

Byte Description

00-01 Number of ticks remaining

02 Reserved

Oz Partition id number of owner
04-05 Forward 1link to TEB (0 = node)

- 112 - | _ MACRO Rev B

APPENDIX C: CONTROL

Partition Control Block (PCB)

BLOCK DEFINITIONS

Byte Description

"~ 00-01 SCR addres
02

s .

Bank and activitj flags:

Bit On

Z Not active
- Waiting for disk
Waiting for interrupt
Waiting for resource
3-0 Bank number

Bank Control Block (BCB)

Byte Contents.

00-01 Nucleus origin (global bank)
02-03 Nucleus end + 1)

04-05 Bank 0 low address

06-07 Bank 0 high address + 1

08-09 Bank

40-41 Bank 15 low address

1 low address
- OA-0B Bank 1 high address + 1

42-43 Bank 15 high address + 1

Re-entrant Program Block (RPB)

Byte Contents

00-07 Program 1
08-09 Program 1
0A-11 Program 2
12-13 Program 2

46-4D Program 8
4E-U4F Program 8

name eight'character, padded if necessary
start ad ’

ress
name eight character, padded if necessar
start address .

name eight character, padded if necessary
start address :

Sector Lock Table (SLT)

Byte Contents

The following six byte entry is repeated as often as

necessary.

00 Drive and

ACB number (OFF indicates_end of table)

Bit Meaning

T7-3 ACB number
2=-0 Drive number

01-02 Sector start address

Owner Partition id number (PIN)

8%-0& Sector end address

MACRO Rev B

- 13-

MACRO REFERENCE MANUAL e e ,
' File Léek ‘Table (FLT)

Byte Contents

The follow1ng four byte entry is repeated as often as
necessary.

00 Drive number (QFF indicates end of table)

01=02 Sector number (from DEB
03 Qwner Partition id number (PIN))

- 118 - | MACRO Rev B

APPENDIX D

This appendix contains a listi ’6? several working'programs. The first éxémple is
the-listing of the program VERIFY, which is an early version of the VERIFY program
included with the operating system. '

The second example is a USR subroutine to be used by a BASIC program. This routine
is not provided as part of the operating s*stem bu ¥ou might wish to add it as it
is a useful routine to have available. he basic function of the routine is to

translate a string of characters to uppercase. -

Example three is a sophisticated serial device driver (SIO%.. This driver is
. probably more 1lengthy than the serial -driver on your system (although it may
actually be the driver on {our system) because it is' designed to interface to a
complex, programmable, serial I/0 integrated circuit. Included in the driver is
all the code necessary to analyze and support the various ogtions that may be
specified with the ATTACH command and the various primary devices that a serial
device may be used as (CONSOLE, PRINTER, other). ‘ : .

The forth example is a " simple, parallel printer device driﬁer. - This driver
performs the minimum tasks necessary to drive a parallel ppinter output port.

The fifth example is a disk driver for a hard disk drive. The particular drive and
controller that this driver was programmed for is relatively intelligent (performed
a lggligf the detail work itself), and included direct memory access (DMA)
capa Y. o - . SR

Examgle six is a terminal class code control character translator (SYSTEM,CLASSY:S
file). The example giveg is for a SOROC IQ 120 terminal. -

Please note the abundant use of comments in the examples. It is a good practice'toXA

use a lot of comments, especially in assembly language coding--no sgeed or memory '’

gs:ge ge radation occurs and you, or another programmer, will appreciate them at a
ater date. ‘ o ‘ b

Also note that most of thé labels are coded on separate lines. This also-
facilitates program maintenance.

MACRO Rev B - ‘ - 115 -

MACRO REFERENCE HAlUAL L
' Example 1 — VERIFY Command
Addr 0bj~Code Line #%% Source Statement ###

1 CODE' REL
0000 -2 VERIFY:,
0000 E5 3 - PUSH HL s Save token loc
0001 113F01 ; - LD . DE,HELPL 3 Point literal
e B L
8386 gé ’ 'g : %E %ﬁ{DE) ; Get mask byte
0008 200C 9 JR NZ,NOHELP BRIB not HELP
0008 23 no e m < § Bump
000C 1%F8 12 DJNZ TESTH s Loop
000E 114801 12 LD DE, HELPM ;. Message
0015 KF 2 i %R 2 HE
9013 CFo0 }2 vopep: O } Quit |
0016 E1 1@) OP HL ;s Get loc-back
001% TE 19 LD -A,(HL) ;. Get drive
med. oF B om e
0013’320501 22 LD (DRIVE),A ; Save drive
001E 300 , 2 . JR NC, OKFD 3 BRIF o
0020 11E600 2 LD DE,M861 s Else disglay err msg
0023 CFQ2 2 SC 2 s And quit - RC = 1
0025 3E10 2 ‘LD 4,16
0027 TF00 % oKD s 0
0029 21B800 29 LD HL,QUIT : Set System cancel-key
CF 30 - SC 57 ; clean up
88%% g;uloo g; ég gﬁ SERR . ; Set disk error routine
00 g 3AO501 2 LD A,(DRIVE) ; Get drive code
OO% % LD B,A ;s Move
g SC 9 s Mount drive
33 CF15 3 SC 21 s Get UCB
% 3% PUSH HL ; Save it
003C DDE1 3 POP IX : Into IX
003E DD7E08 29 LD A, (IX+8) ; Get msb
0041 07 0 RLCA H Exehange bits T4
0042 07 41 RLCA + with bits 3-0
L N
0045 E60F y AND OFH ; Number surfaces
OOHZ BZFDOO .Hg ‘ : LD (SURF), A s Save
004A DD6EO 4 LD L,EIX+3; : Get tracks/surface
004D DDT7EQ 4 : - LD A, (IX+ s 12 bit value
o o gh e
0053 220101 50' LD (TRACKS) HL ; Save number of track
0056 DD7EOA 51 LD A, (IX+10 ; Number sectors/track
0024 %600 22 D La i Move to HL
005C 3AFDOO 5 LD A, ?SURF) ; Get number of surfac
o P
0062 CF27 ' g SC s Multiply
0064 22FF00 5& LD CYL) ,HL ; Store total sect/cyl
0067 ED5B0101 59 LD DE,(TRACKS) } Get tracks/eyl
006B CF27 60 sSC 9 ; Compute sect/drive
889% %%gggg g; tB ?TOTLEN) HL ; Total length
0073 220301 6% LD éTﬁACK) HL ; Clear track/cyl
0078 22FB00 6 LD SECT),AL ; and sect/track
N 88; CF12 gg LOOP SC 18 ; CR/LF on console
007B OEOD 6g) LD C,13 ; Display CR only
007D CF05 6 sSC 5 ; on console
007TF 2A0301 69 . LD HL,(TRACK) ; Get current track #
0082 113501 . 70 LD DE, WORK ; Convert to ASCII str
0085 CF1i1 71 SC 17
0087 AF T2 XOR A

- 116 - | MACRO Rev B

00B8 g%OSOT

00BC CFO09
AF

00BF CF00

D5
g
00¢3 Fé3g
100C7- 327801

— ot b b FX] e D) I

(=
o
=1

[a Ve ¥ 8 B Vo]

NIV

o
s
o

44697368
20“572Z2
6F722043
6F6146520
3D20

2C205365
637“6%72
203D20

£ = OO0 O 7 3> OV

00000000000
P Gar S Ghr hir Sur Qurgirourgn
MVt et e e OO OO

g
-~

— wnd b wd b b wd b b i el wed wmd ed e e b D b e e)) evd cad wed e D

Ve
. — wnd b e ad cnd b b

- 92

NI SR BBt ed et 2 OO QOO O O O O OLO\O\OLO\O\O\O

N OV =D N = OO 00~ AU D N = OO 0o~ OV LI) — OO Co~IOMWN =W

LILLLLLLLILI N N
TN = O\O 0o

— b
ww
[

138

QUIT:

ERR:

MSG1:

ERRCD:

ERRSECT:

DS
DC .

DS

=N

APPENDIX D: PROGRAMMING EXAMPLES

(DE), A
DE, M3G3

2
HL, (TRACK)
HL -

| éf§ﬁ§§3ﬁ§L

é:§°YL)

ok, (SECT)
HL , BUFF

i g0
(SECT) ,HL
DE, HL

HL, (TOTLEN)
HL,DE
NZ,100P

(DRIVE)
A

A
31
A
0

=

BC
DE
HL .
'0'
(ERRCD) , A
DE, HL

DE, ERRSECT
B,A
16
B,L

:
At
(BE), A
DE

'Drive Code

Disk Error

1
1, Sector =

10

- 17 -

wowoevewe ws we

wewewe we

“we

wevewe

-e

-e

-we

Mi

MeMeNINIVINIVIVIVIVS

Mark end of string ‘
Display current track

‘Point to current track

Add one

"Save as next track #

Drive code ' -
Cyl length -

Sector number

ég%dc 1 len

Compute next seét addr
Store .

Put to DE

Get total size
Clear CY

Test if done
Loop if not
Else CR/LF

Get drive code
Mount it

RC =0

Quit

Save all registers

Save error code in msg
Convert track, sect
for display .

‘Mark end of message

Display error msg .
Restore all register

Ignore
Continue
ssing',13

Code = !

t

~ 012E 54726163
8}32 6B3A20
0038
O1ﬁF 48454C50
01 20202020 -
0147 0D
0148 U6756E63
014C TU696F6E
0150 2A2 3623
0154 6C6C20
0158 69736B20
0120 7 6164
0160 20% 6F20
0164 6% 86563
0168.6
0169 20202020
016D 20202020
0171 20206469
0175 T36B2065
0179 T2T26FT72
01£D T 2EOA
0180 0
0181 g 86E7u
0185 T83A20
0189 202026”5
018D 52#2
0191 206
0193 766
0198 0A
0199 57686572
012D 65% g
01A0 20206472
01A4 69766520
01A8'20206323
01AC 20746865
01B0 20 47262
01BY4 g66520
01B8 6F206265
0iBC 202665 2
01C0 69666965
01C4 6
01C5 00
01C
01C

139 MSG3:
140 WORK:

1”1 CR:
2 LF:

1u3 HELPL:

144 HELPM:

145

147

148 -

149

150

No assembly errors.,

Cross Reference List

Symbolew- Value Type

-BUFF . 01C6
CR 000D
CYL O0OFF
DRIVE 0105
ERR 00C1
ERRCD 0118

. ERRSECT 0124

" HELPL ~ 013F
HELPM 0148
LF 0004
LOOP 007B
MSG1 00E6
MSG2 0106
MSG3 012E
NOHELP 0016
OKFD 002
QUIT 00B
SECT 00FB
SURF 00FD
TESTH 0006
TOTLEN 0OF9
TRACK 0103
TRACKS 0101

o
o
b ed e b md b md D b d d D b

S0 50 S0 S0 0 S0 S0 S0 S0 500 S 0 S B S0 50 S S S0 S 5 > 5T
o
o

QWLWIN LN N =200 N OV 2= LI OIS

o
o
ok d b oD

N OO 00~NOUNT=IOWN) £0 OO - fred =2)

' Tr ekf '
‘ESUL 13 |
“EQU 18
DC THELP ¥,

CR

DC- . *'Function: Full disk read to check®

DcC v

¢ LF
DC \ 'Syntax:

DC LF
DC. *Where:*,LF

DC ' drive

Dc .0

END

Line #%#%# References #&#

s
U&= 00
owu

81 86

22 33 79
31
9

1
133 146 147
2

i

9

33

63 8 88
45 5

12

&3 &
50 59

- 118 =

disk'errorso',LF

VERIFY drive® ,LF

is the drive to be verified:®

96

148 149

78

MACRO Rev B

VERIFY
WORK

MACRO Rev B

0000 R 00

0135 R 00

2 .
140

70

-119 -

_ APPENDIX D: PROGRAMMING EXAMPLES

’

MACRO REFERENCE MANUAL

Example 2 - BASIC USR Subroutine

Addr Obj-Code Line ¥##* Source Statement ###

2 UPPER: -
0000 C30300 a '
0003 - ENTRYOQ:
0003 E5 g
3005 kT |
000 E -LOOP:
0006 2% 9 -
000% Z 10
0008 FE61 11
0004 3807 12
000C FETB 13
000E 300 1 »
0010 D62 1?]

0012 77 1
0013 1% ~NOTLOW:
0013 B 19
0012 20 STRIP:
0016 ES 21 ‘
' 22
2

'001§ E 2

- 0018 47 2
0012 85 2
001A 3001 2
001C 24 28
001D 29 .NOC:
001D 6F - 30 :
001E 1 .LOOP:
001E TE 32
001F FE20 3
0021 2003 3
0023 2B gg -
0024 10F8
0026 33 +RET:
0026 %8
0023 1 9
0028 77 0
0029 C9 i1
0000 42

No errors in program

REL

JP ENTRYO
PUSH HL

LD A,(HL)
ID Bl

INC HL
LD A,(HL)
Ccp fat

JR C, . NOTLOW
CP o}

JR NC, . NOTLOW
SUB e

LD HL),A
DJNZ .LOOP
POP :
PUSH HL

LD A, (HL)
LD ,A

ADD L

JR_ NC,.NOC
INC H

LD L,A

LD A,(HL)
CP !

JR Nz, .RET
DEC H

DJNZ .LOOP
LD A,B

POP

LD (HL),A
RET /
END

- 120 -

wowo WIWOWE WOWE WVOWE WO woweoswe

WoWoWwo WewowWE

Convert to upper case only

. Save current HL
‘Get string length

Copy to B reg
Point next character

Get character -

Test lowercase a -
Ignore if not lowercase
Test lowercase z
Ignore if not lowercase
Iranslate to uppercase
Restore to string

Repeat
Restore HL register

Restore , B
The following code will str
trailing blanks from the st
Get string length - ‘
Copy to B reg

Compute end address

Get ending character
Test if space

Point prior

Store adjusted count
Return to caller

MACRO Rev B

APPENDIX D: PROGRAHHIIG EXAMPLES
Example 3 - Serial Device Driver
Addr Obj-Code Line *#* Source Statement ¥#%

relocatable

1
2 DEV1T: REL H
0000 C30F00 3 JP ST ; get status
0003 €35D00 g JP IN ; get byte
000 ‘C37F00 JP 0uT ; but byte -
0009 C39C00 g" JP INIT . s initialize
000C C35401 g JP UNIN ; un-initialize
000F »}? ST:
’ .
}2 ; get SIO status
1
00OF 3A5C01 <13 LD A (BUFI) ; get count
0012 12 OR ; test if any
001 F 1 PUSH A 3 save
001 DB13 1% IN A, (DA+2) ; get port status
0016 C 37 1 BIT 2 .3 test txrdy
0018 2 19 JR Z,.NOTRDY ; brif not ready
001A FD7E1C 20 LD (IY+28) ; get enab type
001D CB4T 21 BIT s CTS/DT
001F 202D 22 JR Né,.ENAB1 ;
0021 CBYF 2 BIT 5 -
0023 2021 2) JR Ni,.ENAB2 ; brif DC1/DC3
0025 CB57 25 BIT 2,A ; test
0027 282F 26 JR Z, .RDY s brif not ETX/ACK
0029 27 .ENAB3: »
0029 F1 2 POP AF ; get in flags -
0024 Fg 29 PUSH AF _ 3 re-save
002B 2810 30 JR Z, .TEST3 s brif no char rdy
002D F1 31 POP AF .3 else, throw away
002E CD6600 32 - CALL INCH ; get ¢
0031 E67F 3 AND TFH ; mask
0033 FEO06 3 CP ACK s test ACK
0035 20D8 32 JR NZ,ST 3 brif not
0037 ans1noo 3 LD (I%+29),0 } store
003B 18D2 , 3% JR. ST , ; g0 around
003D 38 .TEST3: o :
003D FDgE1D , 9 LD . A §12+29) ; get busy
0040 FE80 0 CP ; wait for ACK?
0042 2014 41 JR RDY ; brif ready
004k 1815 42 JR 6TRDY ; else, busy
it FD7E1D ip EBZE L (o 29) t busy fl
, + ; get bus
0049 BT 5 OR A’ P Gesy) o8
004A 200F 46 : JR NZ, .NOTRDY ; brlf busy
004C 1804 I JR .RDY ;
O04E 48 .ENAB1:
004E 3E10 49 LD 10H H
0050 D313 50 ouT (ﬁA+2) ; reset ext/status int
0052 DB13 5 IN (DA+é) ; get reg 0
0054 CBSF 52 BIT 3 A s+ test DIR
0056 2803 5 JR Z,.NOTRDY H .
0058 54 .RDY:
0058 F1 5 POP AF ; get input status
0059 37 5 SCF ; turn on cy
0054 C9 sg RET s return
005B 58 .NOTRDY:
005B F1 59 POP AF ; get input status
005C C9 g? RET ; return
005D 22 IN:
?
gg ; get byte from SIO
?
005D CDOF00 66 CALL ST ; get status
0060 2004 6% JR INCH ; brif some char
0062 CF6B 6 - SC : f ; deactivate until interrupt
0064 18F7 69 A JR IN 5 loop
0066 T0 INCH: .
0066 C5 71 PUSH BC ; save regs
0067 D5 T2 PUSH DE ; .

7% PUSH HL 5)
215C01 ; _%g HL,BUF1 i point buffer
gg. 1 DEC (HL) =} decr length
E T LD C,(HL) ; get length
0600 T LD 0 ; zero msb :
23 9 INC HL ; point first cha -
7 0 LD A, (HL) ; load it
2805 81 JR Z,.MT 3 brif buffer now empty
545D 82 LD DE,HL ; copy register
2% 83 INC HL s .
EDBO 35 - LDIR ; compress the buffer
FB 86 EI - s turn on ints
E1 8& POP HL ; restore regs
D1 88 . POP DE H :
C1 89 POP BC L
C9 g? RET s return
© 92 OUT:
93 H _
85 y put byte to device
y N
CDOFO00 96 CALL ST s get status .
804 93 JR C,0UT1 3 brif output ready :
F4F 9 ' SC 7§ ; snu (non interrupt output)
18F7 183 0UT1 JR ouT 3 loop .
'FD341D 101 INC (IY+29) -3 bump count
FESO " 103 T S
' : ; max
2006 103 JR NZ,0UT2 s no
3E03 105 LD A,ETX ; else, send ETX
17 106 ouT (Da),A { writé -
18E7 %8% —_— JR ouT s wait for ACK
79 109 LD A,C ; get char
D311 110 ouT (Da),a ; write
C9 }}; INTT RET s return
FD229D01 11% LD (uc) ,IY ; save ucb address
E18 114 LD A, 18H H ,
313 115 OUT (DA+2),A } reset device
FDTE0S5 11 LD A,(IY¥+5) } get baud rate
E6F0 17 AND OFOH ; mask
47 118 LD B, A ; sSave enab
FDTEO5 119 LD A, (I¥+5) : load again
E60F 120 AND OFH : mask
2006 121 JR NZ,.SOMEB ; brif some
3EOB 122 LD A,i1 s default to 9600
BO 12% OR B s merge
FDTT05 }S SOMEE LD (IY+5),4A H
E60F 122 ‘ AND OFH ; mask
FEOE 12% CP 14 s too biE?
3806 12 JR C,.OKB ; brif o
3EOB 129 . LD A, 11 ; else, 9600
BO 130 OR B 3 merge
FD7T05 }g; OKB LD (IY+5),A ;
E60F 13% AND OFH ; mask
3D 13 DEC A ; less one
F 132 LD E,A . ; Save
T 1 ADD A ; times two
83 13% : ADD' E ; times three
5k 13 LD E,A ;
1600 1%9 LD D,0 s zero high
219F01 140 LD HL ,BAUD ; point table
1% 141 ADD HL,DE ; offset
0k25 © 142 LD C,erC ; :
0602 143 LD B,2 ; two bytes
EDB3 14 OTIR - 3 program it
ES 1u2 PUSH HL ; save pointer
FE 14 DI ; turn off ints
3E08 14g ‘ LD. A,8 ; vector/2-
11CA01 14 LD DE,RETI : dummy addr

- 122 - MACRO Rev B

LDWNINNDINDNOINDNIN ALt ad ad cd 200 0000000
) = 1] D TIO—UTUTIW = O O tho~IW) = 115 Q O 5 5> o OV

o

0000 OO0 O00000 OOO0OO0O0D0OOO0O0O0OOCOOODOO0O0O0O0OODOODOOOOOOOOOODOOOOO
O QOO - — D cd b b O N N N N T N N T i N N N S N N N S N N i S N S i i G i i S G T G Ny

SON= ; UV QIUINIVIVIVT UV = b= = £ b 2 0 LW
w —OUI= OO moNuEE womumm»aomcuw

' APPENDIX D: PROGRAMMING EXAMPLES

0567 }gg ?gc 103 ; put vect
. }
éF67' 151 SC 103 ; put vect
11CDO1 152 LD DE, INTI 3 input interrupt
C 15 INC A
9’
3F67 15% SC 103 s put vect
c 155 INC A ;)
F67 156 sC 103 ;
EQ2 153 - A,2 ;s reg 2.
313 15 oUT (DA+2),A a
g 10 129 LD 4,01 s int vector
313 180 oUT (Da+2),a 3 -
El 161 POP HL ; get pointer
EOY4 162 LD A4 ;s wr 4
313 163 : OUT (DA+2),4 : .
FDCBOSTE 1g BIT .%,(IY+5 ; parity enable?
0C 1 2 _ JR » « NOPAR 3y brif none
FDCB0O876 16 BIT 6,(IY+8) ; test even/odd
3E0D 165,- LD 4,00001101B ; even
2006 168" JR NZ,.0UT ;
3EQF 169 LD 4,00001111B ; odd
1802 1;? NOPAR: Jr .Ut ;
3E0C };2 ouT LD 4,00001100B ; noparity
B6- 17% ’ OR §HL) ; merge clocks
D313 172 . OUT (DA+2),A ;
3E03 176 LD A3 ; wr 3 (rev logic)
D313 17g 0UT (DA+2),4
FDCBOSTE 17 BIT = 7,(IY¥+8) : parity?
3EC1 139 LD A,11000001B ; default
2802 180 JR Z,.NP : brif ok
3E41 }gé ﬁNP LD A,01000001B ; else, 7 bits
FDCB1C66 183 BIT 4,(IY+28) 3 auto enable?
2802 18 JR Z,.NOEN ° ; no
CBEF }gg NOEN SET 5,A ; else, turn on
D31 183 ouT (DA+2) A
3E0 18 LD 1 3 wr-1 (control)
0313 189 ouT bA+2 A :
3E1 190 LD 0001{1005 : int mask
13 - 191 ouT (A+2),A
g 05 192 LD A,5 ;s wr 5 (trns)
313 193 ouT (bA+2) A
FDCBOSTE 19 BIT 7,(IY+8) ; test Earity
3EEA 192 LD A, 111010108 ; defau
2802 19 JR z ; brif ok
3EAA . }8§ TP LD 4,10101010B ; else parity = 7 bits
D313 199 - OUT (DA+2),A ;
FB 200 EI ;s allow ints now '
AF 201 XOR A s—leave pointing to 0
+ ’
D31 202 OUT (DA+2),A :
F 771D 20 LD IY+29§,A ; ,
FD7T1E 20 LD (IY+30),4 ;
gg B1C6E 20 BIT g,(IY+2é) { test enable 2
- E2
3EFF 20 LD A,0FFH ; ,
FDTT1E ~ 20 : LD (1Y+30),4 ; set sw
Cc9 g?g - RET s return
211 UNIN:
AF 212 XOR ;
D31 213 ouT (DA+2) ;
3E1 21 LD 00011000B s reset channel
D313 215 OUT ﬁA+2 ;
C9 g}g RET ; return
00 218 BUFI: DC ; buffer length
g;g DS 64 - ;- the buffer itself
221 DA: EQU 11H H port address
222 CTC: EQU 25H ;
223 UCB: DS 2 ;
2l DC1: EQU 11H ;

[eleloleloleleleloleoleole]

purGurQurGur QurQur Gur Gur Qur GurGuroure

QQ W ot ol
BEE&N

WO T~

[eleleleolelole]
-l) ed) cd D aud gnad b
QAOAOQQQO

o
Q
o

P GnrQur i G S G Shr Gur G Qur Gur e
[wlo]u]vlvlvivlwlvlvlvielolele]
~I~JUI =1 T O 1> OOOWJS} =2 "'-ZINU :

0000000000000
i ol e e = cend =D) D b = e =D oD
p vy oy oy ¥ Py v e g v g U U D
mu»mﬂmwmmomnbm

0 = B O~JONOY

225 DC3 EQU 13H H
226 ETX: EQU OgH H
22g ACK: EQU 06H H
) 22
229 BAUD:
076680 230 DC 7,102,80H ;3 75 = 32x16x102.4 timer
0714680 231 DC 7,70,80H ;.110 = 32x16x699.8181 timer
073980 232 DC Z 57 ,80H ; 134.5 2 32x16x57.1003 timer
4780C0 23 DC 7H,128,0C0H"; 150 = 6Lx128
4740CO 23 DC A4TH,64,0COH ; 300 - 6LUx6l
4720C0 23 DC 47H,32,0C0H ; 600 = 64x32
4710CO 23 DC 47H, 16 ,0COH 3 1200 = 64x16
4708C0 23 DC 47H.8,0C0H : 2400 = 6ux8
4T04CO 23 DC YTH,4,0COH ; 4800 = 64xi
470580 239 DC 47H,5,80H ;s 7200 = 32x%x5.3333
4702€0 240 DC 47H,2,0COH ; 9600 = d4x2 -
4701C0 241 DC 47H,1,0COH ; 19200 = 6ix1
470240 532 DC 47H,2,40H ; 38400 = 16x%2
24 :)
245 SIORET: ’
C1 2u6 POP BC ; restore regs
FDE1 24 POP IY 5
F1 24 - POP AF ; restore a,flag
249 RETI:
FB 250 EI ' ; turn on ints
ED4D 251 ' RETI : return
252
25 INTI.
254 .
gg ; service receiver interrupt .
) 4
FB 25 EI s turn on ints-
F5 = 25 PUSH AF ; save reg A,F
FDES 259 PUSH 1IY H
FD2A9D01 260 LD IY (ucB) : point to ucb
o 261 PUSH ; save B,C
gE01 262 LD ; read reg 1
13 262 , ouT (ﬁA+2) ;
D 13 26 IN DA+é } get second status
262 LD B A ; Save it
DB1 266° IN gDA) ; get char .
‘FDCB086E 26 BIT IY+8) H bit char
2002 26 JR Ni (EIGHT § yes
CBBF 269 RES 7,k : turn off parity
) 270 .EIGHT: : ‘
4F ' g;; LD C,A ; save char
9
S; ; test parity
CB60 275 ’ BIT 4,B ; test for parity even
2806 276 JR Z,.NOPE s brif not
QE3F 27 LD c, '?' s replace char
5?8 579 ity (bi 2),4 t parit
_ + s reset parity error
2§0 -NOPE:
AF 281 ~ XOR . ; reset to zero
%12 282 ouT (DA+2) A H
CF6 28 sC 02 s translate input char
zSCD 28 JR C SIORET 3 ignore it?
F 285 LD C, ; save char
§A2001 286 : LD A, (BUFI) ; %et prev count
ELO- 28 CP 6k : Test ful
28C5 %gg ROC JR Z,SIORET y full?, 1gnore
FDTE1E 290 LD A (IY+30) ; see if enab2
Bg , 291 OR :
2814 292 JR Z,.NOENAB ;s not
72 29 LD ;
EGTF 29 AND 7#3 ;
FE11 295 Cp DC1 H
2804 296 JR Z,.CTLQ ;
FE13 29g cP D&3 :
2009 29 . JR NZ,.NOENAB 3
: 299 .CTLS:
FD771D 300 LD (IY+29),A ; set the busy sw

- 128 - MACRO Rev B

C3C601

AF
18F7

17 -
E1

D1
C3C601

NN P e b b ed 3 0 O OO0 OO0 000

N =W O~T1OWN £WN = OW IO W N =

No assembly errors.

MACRO Rev B

.CTLQ:

.NOENAB:
R2:

JP . SIORET

XOR A

JR .CTLS

LD A,C

PUSH DE

PUSH HL

LD HL,BUFI

INC (HL)
LD E,(HL)

ID D,0

ﬁ?” HL,DE

LD (HL),A

POP HL

POP DE

JP SIORET

END

- 125 -

APPENDIX D: PROGRAMMING EXAMPLES

-

wewe

wewewewe T T T Y Y LYY)

reset .
turn off busy sw

get this char
save DE and HL regs

oint buffer
urn off ints
iner count
load it

zero high
point next

store the character
restore regs

return

MACRO REFERENCE MANUAL

Addr Obj-Code Line

A - 1 REL
0000 o 2 BEGDEV:
0000 C30F00 z] JP . STATUS ;
0003 C€31900 . Jp INPUT :
0005 C31A00 2 ~JP OUTPUT :
0009 €31900 JP INIT :
000C €32300 Z JP DEINIT :
13‘§ Status routine = output only de&iee
000F 11 STATUS: | '
0031 Eeo] 13 R L S
0013 2002 L JR NZ,.BUSY =
0015 37 15 SCF ;
o917 @ L ;
0017 AF L Btk R ;
0018 C9 ; - | RET _ ;
Sg ;‘Input routine = output only
0019 23 INPUT:
0019 C9 35 RET
. SG ; Output routine
0014 28 bUTPUT: '
001A CDOF00 29 . CALL STATUS
SR e
0020 D300 2 OUT (DATAO),A
0022 C9 3 RET
32 § Initialization routine
0019 3 tnrr: EQU INPUT s
33 ; Deinitialization routine
0023 41 DEINIT: EQU INPUT :
0007 42 STATO: «EQU 1 ;
0000 ug DATAO: EQU 0 :
0001 4} STAMSK: EQU 01 ;
15 END .

No assembly errors.
Cross Reference List

Symbol-=~ Value Type
' gyoo

EGDEV 0000
-BUSY 0017 C 00
DATAQ 0000 A 00
DEINIT 0019 C 00
INIT 0019 R 00
INPUT 001 C 00
QUTPUT 001 C 00
STAMSK 0001 A Q0
STATO 0001 A 00
STATUS O000F C 00

T

43 32

4 1

37
R
yy 13
u2 12

11 3 29

- 126 -

Wwowowowowe .

—T"

‘Example 4 - Parallel Printer Device Driver

#%% Source Statement ¥#%#

‘Return status

Get input from device
Put output to device
Initialize driver
Deinitialize driver

Get device status byte
Test for busy '
BRIF not ready
Turn on carry flag
Return with Z and C set

Set Z flag - reset C flag

device

Get device status -
Loop till ready

Cogy character to A reg
Output the character
Return to caller

No initialization needed

No deinitialization
Printer status port
Printer data port
Mask to get status bit

MACRO Rev B

o APPENDIX D: PROGRAMMING EXAMPLES
' Example 5 - Disk Device Driver o
Addr Obj-Code Line *** Source Statement ###
2 N$DISKIO: REL

i ENTRY DISK
0000 ,_'g DISK:

é ; transfer vector
0000 C30C00 107 JP SEL ’
0003 C€31700 11 JP RES
0005 C31900 12 JP READ
0009 32000 EI JP WRITE

}2 ! select drive
000C - 1% SEL:
000C E603 1 AND % ; mask
000E 327F00 19 LD - (DESC+4),A ; store
0011 3EQ7 20 LD A,T - 3 force controller to select
0013 328400 21 LD (DEsc+1s),a S
0016 C9 32 . RET ' 3y return

53 ; rezero -
0017 22 kES:
001% AF 2 XOR A ;s not implemented
0018 C9 2 RET

. 29 3

30 ; read

310
0019 32 READ:
0019 328300 3 LD (DESC+8),A ; store
001C 3E00 3 LD 4,0 ; get cmd
001E 1805 % JR . CcOM ; 20 common

g : write
0020 WRITE: N R
0020 328300 LD (DESC+8),A ; store
0023 3EO01 LD A,1 : cmd

'> { common - ‘

0025 Som: ,
0025 DDES PUSH IX ; save ix

0027 DD217B00
002B DD7701

LD IX,DESC
LD (Ik+1),A "3 store

store head, cyl and sector

wowowe

O\ 00~ OWIT £ N =2 O\ 00~J OV LD N =2 OO Co=~10MN LI =

M
3
i
oy
4
y
3
3
y
g
002E DD7105 5 LD IX+5),C 3 Sector
0031 DDT202 5 LD 1X+2),D ;y msb cyl
003u DD7303 g LD IX+3),E y 1sb eyl
g ; store mem address \
0037 DDT406 58 ' LD EIX+6§,H ; msb mem
003A DD7507 g . LD IX+7),L s 1lsb
' g; { perform operation
wRE CH BB
003F ES5 65 PUSH HL
0010 CD7700 66 CALL DESC-4 ; Jump to vector
S - A
QQHS C1 gg POP BC
‘;; ; restore regs ,
0046 DD4EOS =~ 73 LD - C,(IX+5) ; sector

MACRO Rev B - - - 127 -

MACRO REFERENCE MANUAL

0049 DD6606 LD H,(IX+6)

74 : mem
72 H
‘ ; 3 test for error
004C DDTE00 7% ! LD A,(IX) ; get status
004F DDE1 19 POP IX ; restore ix reg
0051 Bg 0 OR A ; test
0052 C g; - RET 2 : return no error
?
gi ; decode the error
$
0053 CB6F 8 BIT 5,A ; test illegal
0055 2018 82, JR N2, ERRS ! bpif is o
0057 CBSF az BIT 3 i : test format error
0059 200C 8 JR NZ, ERR3
005B CB 89 BIT 2,4 ; test checksum
005D 200C 90 JR NZ,ERRM ,
005F CB67 91 BIT L ; test seek
0061 2010 82 | JR NZ,ERRT ’
?
3§ ; else, disk fault = overrun
N
0063 3EO01 96 LD A1
0065 180E 1 JR ERR
0067 98 ERR3:
0067 3E03 99 LD - A,3
0069 180A 100 JR ERR
006B 101 ERRU: .
006B 3E04 102 LD A4
006D 1806 103 JR ERR
Q06F 104 ERRS5: :
006F 3EO05 105 LD A,5
0071 1802 106 JR ERR
0073 10% ERRT:
0073 . 3E07 10 LD A,7
0075 109 ERR: :
0075 BT 110 - OR ; set nz
0076 C9 }}g RET ; return
; .
}}2 ; desceriptor follows
. $
0077 CDUOFY 115 CALL OF440H ; prom address
007A C9 _ 116 RET : ; return
007B 00 11% DESC: DC 0 ; status '
007C 00 1 DC 0 ; command (O=read,l=write)
007D 00 119 DC 0 ; msb track
007E 00 120 DC 0 : 1sb track
007TF 00 121 DC 0 s head
0030 00 122 DC 0. ; sector
0081 00 123; DC 0 ; msb mem addr
0082 00 12 DC 0 ¢ 1sb mem addr
0083 00 125 DC 0 ; sector count
0084 00 126 DC 0 ; unit
0085 01 12& DC 1 s option
0086 00 12 DC 0 : s max head '
0087 0O 129 DC 1000.SHR.8 ; max track msb.
0088 E 130 DC 1000.AND.OFFH ; max track lsb
0089 40 131 DC 64 ; max sector
008A 07 132 DC 7 ; curr unit
008B 00 133 DC 0 ; curr track msb -
008C 00 13 DC 0 ; curr track 1lsb
008D 00 135 DC 0 ; error count
008E 00 136 DC 0 s err track
008F Q0 13% DC 0 ; err track
0090 00 13 DC 0 s err head
0091 00 139 DC 0 ; err sector
0092 FF }u? DC ° OFFH s bad track table
0093 142 END

No assembly errors.

- 128 - "MACRO Rev B

APPENDIX D: PROGRAMMING EXAMPLES

Example 6 - 01ass‘Code Conversion

TITLE

MACLIB

INIT
DCA
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

END
>ASM CLASSY (/ SYSTEM
>MACRO CLASSY4
>LINK CLASSY4 (SYSTEM

CYeovevevevowivwevweve

'Class Code 4 (SOROQ IQ) Terminal Converéion'

Entry parameters:

control character to translate:
console device number

. control character to translate
cursor address column number
cursor address line number

LASS ; Get MACRO definitions R
Translate value 11 to 26 (UP ARROW& :
Translate value 12 to 6 ERIGHT ARROW)
Translate value 30 to 1 (HOME)

OBH,1AH,OCH,06H,1EH,O1H
gOME s Use class 4 cursor controls

R .
CLEAR,ESC, *#' 8CH
EOS,ESC, '¥',88H
EOL,ESC, ' T*,8CH
LEFt,BS’ -
RIGHT, FF
upP, VT
EU,ESC, +,8CH
PON, ESC, 29H
POFF, ESE

28H
FON, ESC, 26H
FOFF
BON
Function not available

,ESE,2TH
H function not available
BOFF
7 Function not available
RVOFF ; Function not available
?
?

Cmouws
(I I I A |

wewewe

Function not available
Function not available

>ATTACH CONSOLE SIO1 (B19200 C4 FF6

MACRO Rev B

- 129 -

MACRO REFERENCE MANUAL

TAPEDRV: REL.

owowe

fake transfer veetor ‘

fAKESEL: XOR A
RET
' NOP
FAKEIN: JP FAKESEL
FAKEOUT: JP FAKESEL
FAKEINIT: JP FAKESEL
FAKEUNIN: JP FAKESEL

nOW‘thé cmd vector

WO Wewo

eswowo

t=Fe
=
g
g
=
<3

enter with'a = cmd code

01 NZ not ready

02 NZ write protected
03 NZ tape mark

04 NZ crc error .
05 NZ end of tage

06 NZ begin of tape
07 NZ data late

. N)
GONININMINO DI IM OB OVNOVINONINVOWOINEINEVIVMOVIWOIWOVOWEWE WO WO

test cmd code

_CP 80H

RET

CP 899-&-1

CCF

RET C
dispatch to proper routine

SUB 80H

-PUSH HL

PUSH DEW

ADD A
LD E,A

LD

LD HL DISPTAB
ADD
LD (HL)
INC Hﬂ

LD (HL)
EX Dﬁ
POP

EX (SP) HL
RET

dispatch.table

ISPTAB:
DC (SEL
DC 5m§

“weworwo
WONWOVIWOWE

Wovewoewowe

WeweweWo wo.

Teeweve

80 = select drlve and track
81 = rewind

82 = read

83 = write

84 = back space record

85 = forward space record
86 = write gap (erase)

87 = write fape mark

88 = stop the tape

83 = return tape status
return codes:

00 Z success

wowowe

' ‘Ega-ple T - Tape Driver Model
TITLE - 'Tape Driver Model?®

set ne,z
retupn
filler

HERBRBARRERRARARRERA B R AR R RARRE R BERBERBR XL AR RELEERERRARERRN

min
return no good
max

invert

return no good

strip off msb
save hl

and de

times two

to de

point table
sum

load address
msb

to hl
restore de

get hl
Jump 1ndirect

MACRO Rev B

APPENDIX D:. PBOGRAHHIIG;EXAHPLESL\

DC RDB
DC WRB
DC BSR
DC FSR
DC GAP
DC WM
DC STOP)
GETST) -
SUBT 'Select unit, track!
SEL:

on entri

D = t (0 - 3)

E = track (0 - 3)

##% INSERT CODE HERE #*##
W SUBT 'Rewind routine!

rewind tape td loadpoint
possible errors:

00 success

01 not ready

##% INSERT CODE HERE nn
DB SUBT 'Read block!

on entr
DE

M) wevevevowevewevwe IY] wevewevevewe

E = {ock length >= 80
HL = buffer location

possible errors:
00 success :
01 not readK or not select
~ tape mar
04 cre
05 eot (not an error')
07 late

#%#% TNSERT CODE HERE ###%
SUBT.'Write block routine!

s WOV INININIVININININIYI VI Ve Ve
o

RB: _
on entr{
DE = block size (min 80)
HL = buff address

possible errors:

00 success

01 not ready

02 write protect

04 crec error

05 eot (warning)
"~ late

#2% INSERT CODE HERE ###
SUBT 'Backspace record!
SR: .
backspace one record

"#%% TNSERT CODE HERE #%#%
SUBT 'Forward space record!

INSERT CODE HERE #*#¥#%
SUBT 'Write gap!

INSERT CODE HERE ###
SUBT 'Write tape mark!'

INSERT CODE HERE ###% _
SUBT 'Stop tape! .

INSERT CODE HERE
MACRO Rev B - 131 -

o] wevewewelJ] wevewevovevewIwivewINIwowewe
Q
-3

2o

>
*xg
Moo
»

-e % wo E we ()
S w2
g Mee

MACRO REFERENCE MANUAL

/ © SUBT 'Get tape status'
GETST: o

return céded status in A:
bit meaning if high

 max number of tracks (base zero)

has last unit selected
has last track selected

END

g selected
ready
2 BOT -
3 write protected
2 busy
1&0
D
E-

WO.VOWEWOCWVEWOWOIWIWINVOWOWIWOWEWE

- 132 - MACRO Rev B

\MSD} 0 [1 | 2 | 3 | & 1 5 1 6 | 7
Lsp \ ! ooo ! oo1t!oto! 011)00 101} 110} 119
"0 0000 | NUL | DLE | SP | 0o ! e | P | ~ 1 P

10001 | SoH | D61 |7 1 1 41l al alq
2000 | stx {pca! » 2t B8 R {9b ! r
30011 lElx Ipe3! =1 3 1 cls el s
¥ol00 EOT | Dey | 4 | ¥ 1 D 1T 1 d |t
5 0101 | ENQ | NAK s | E| U)¢ |u
60110 | Ack | syv | & Flv sl v
70111 | Bec [EmB ! * | 7 1l ¢ !l w !l g !l w
8 1000 | BS | CAN 8 | H | X | b ! x
9 1001 | HT | M o T Ly i 1y

1010 | LF | SuB f L gl s

Bio11 v PEsc! « | 5 | k | {
C 1100 | FF 1 FS | . 1 < | L 1 N 1 1 !
p1i0i {cR tes P2l =t Ml 1t aw)}
E1110 | so [rs | T V5> L W n | ®
Fimrist {fos | /7 1 20 ol _ 1 o lomL

ﬁ‘ morg complete character set chart is available in the OASIS System Reference
anual.)

MACRO Rev B ‘ - 133 -

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133

