BASIC

L ANGUAGE
REFERENCE

MANUAL

a— _— — s
—— o e Sm— i
— — e —— ———
—_— — = _—
i — = =
e S— — — S -_— =
e C— — — S—— = =
— me—— = - =
= —— s —
= e —" S—— ———
- — — — —

s

OPERATING SYSTEM SOFTWARE

MAKES MICROS RUN LIKE MINIS

BASIC

L ANGUAGE
REFERENC

MANUAL

Second Edition

" Revised

Documentation by: C. P Williams
Software by: Timothy S. Williams

p | SYSTEMS, INC.

- 7700 EDGEWATER DRIVE SUITE 830

_ OAKLAND, CALIFORNIA 94621 USA

‘ PREFACE

This manual describes the OASIS BASIC programming language interpreter/compiler
available with the OASIS Operating System. :

It is intended to be a reference manual, that is, the user is ‘assumed to have
general programming skills. When this 1is the ease "this manual can instruct the
user on. tg %eatures and uses of OASIS BASIC. ;

The OASIS BASIC 1an§uaﬁe conforms to, and is an extension of, the American National-
Standard for Minimal BASIC, BSR X3.60. |

The experienced BASIC programmer may find the appendices sufficient for his use.
However, OASIS BASIC offers many features not found in standard Dartmouth BASIC,
ANSI minimal BASIC or other dialects of BASIC.

This manual, named BASIC like all OASIS documentation manuals, has the manual
name and revision number (if applicable) in the 1lower, inside corner of each page
of the body of the manual. In most chapters of the manual the last primary subject

being discussed on a page will be identified in the lower outside corner of the
page.

Related: Documentation

The following publications provide additional information that may be required in
the use of the OASIS BASIC language. S

-

on:masxm.e-ner«mumuamuau~
OASIS Text Editor Reference Manual
OASIS EXEC Language Reference Manual
_ OASIS MACRO Assembler Language Reference Manual

-

TABLE OF CONTENIS
Section ’

CHAPTER 1 ‘ INTRODUCTIONC.'.C..Q.Ql.v..OQ.lQQ..-Q“OOQ....’I..OO.....'.l"'....

1‘1 organization of This ManualQ.’..0.0'I..Ql...‘ll.‘....O..Q‘l‘ﬂ...'.
.2 Documentation Standards 0 66006000 CS OO0 COOOEOELSEEOCOOO0 6 OO0 0ERESSSIOINCGEOSIOEOETCTES

b

3 BASIC command MOdules ..enoe.'0OOGOOOOQCOOSéQGCOQOQGOOO00000..00.0‘0.3'
BASIC Pro MFile I.ypes Q..G.QOOQQ089@0@06&00.@’.&0000.0.0‘IOOOOOBGQ.GV.
g Loading B s 0000.00&005000‘00.0@0ooeaooeeeeoéoeooaeeoo-o.cooooacooeei
BASIC and- RUN COmmands4.'00006‘00506OOQQQQOQQOOQQOOCOOOOOQ0.00.06000.00.
10601 BASIC Inter reter ooeooqeooeaoooaoooece%pooaoecoocoooo-ooooénoooon
1 10662 BASIC compi'er oooooeoeooooeaoeeeoeoooeneoobeaueaooooooeeueeoeoeée
1.6.3 Execution of Compiled Programs ..cccecocceccccoccosescosscscosacsss
‘1.7 European Format»fop Numbeps 00.000..0...!‘00.'00.609?0..‘000.5.003.....

CHAPTERZ FEATURES OF THE LANGUAGE G e e 0000060000006 060600600006608006000e60000ee
‘201 ata 1es o.e.}ooa<geo'@ooeoooeao‘ceeo.Ioeoeooeenoeooo’c'ooeao’ceotoooeonce!c
2.2 Cursor COntrol OOOQIGQOQQOG.vCOOOOO“Oanﬁ..OCO.Oﬁo..‘O.@QDBQQOG'QO..O.....

2.3 Chaini and Linkin 900003 00CE0O0000000CEEE00ECEEP008C00000C0C8000C00CCGCGDOLOESTS

2. User De ined ContI‘O Keys © 00 000080006000 600060606006006CCe66860066000600600

2‘5 compatibility‘....'.00‘...‘...°........’..........Q°.6....0‘...0..

2.6 Other Features S 26 00000038 0CODOOCRD 00006600606 932000¢0600800 900CPOOCECELOCOE®EIETS

CHAPTERB BECOMING FAMILIAR WITH BASIC .OVOOOQQl.'..‘..l000(.."'..."0.00"...0.
-1 Some Basic BASIC Concepts .c.cecccecocccescccosccccoccosascocossossanccse
.2 BASIC Uses Ugggr Case ® 9000900000636 3¢00000C0E0OECROCDPOCOEOENIOOIEOOIECEOEIQORRSROSTOTS

.3 - Typing to BA

1.
1o
1.
1.

P9 0 00 S CEE OGS0 008300 O9P0T00000EEICGECEREOIRELONOGOIOIEOIPOIOQORCRIREEOEOTOOGTSOSOES

LI

CHAPTER u PROGRAMMING IN BASIC .0000..0...000‘...Q.....O.l....;.CI.IQ.QI.O...Q
u.] Structure Of a BASIC Program 8000600006000 0C060C000060000600600000606G00CCOCRG

u01o1 s ntax 0000600000000 00080E000C0C00CCGC00C00CE0C0CIOEGECCIECEOEEOCEECEOIIOGIOIEOBRCOSEOTEORE

01.2 c aracter Set‘od-ooecoceo.oeoeoeeeooeceoaioéeoeoooouccooooeeoocoe‘

0103 Line Format 0.0.0000.09.00...0co.oﬂco.o.ooenoocolol.OC....GOOOO.’Q

=5

u'z Statements 'QO....‘...QOOOOOQODOOOG.0000..0006@000066.0....‘0"'.‘00..r

&=

2.1 Single Statement, Multi-Statement Lines .c.ccceccecescsccossscacses
.zLine Labels ® €000 OO O0EOCIER OO 08 O©CQCOOCCO0O800CCO0OCEGIROC00ER6O6000600600GCO®OCSSIESIOIEPOPOES
© Docmenting Prccedures 000 0 @000 6000 600CAQECOOQOOCIO OO 00000000000 CQSEESEESEESIODS
.5 Entering and quiming Progrms .elil.'.....DOOO..O0.0......&...0.....'.

CHAPTER 5 ELMNTS OF THE BASIC LANGUAGEQ.Q...‘..O‘.....‘....I"'..O.‘.QO.
5'1 Constants © 0880006 080006030000860806600060008EECECSQICESIEGEO0C0C00C0000CO0000OGOCESE
5.1.1'Nume!_"ic Constants e 6000 000088000060868C00000606006C0088 0000606060060 000

‘1'2 Integer constants © 00 00 CEC 8000 0600000 EHEOQOCCYECEBGOOC6 OO E8 08600000 CO®OS®CSES
°1.3 _strins Constants C‘QOO...‘I......00‘.'.0..."‘.......IO'I'..'OO.,,O.
5.2 Val‘iables 009000000 CBEOG0CCECCEEEEOOE0CGITIOCO0O00CIG3600060C00C0000COCQGECCOBGOCITCTETE
-2.1 Numet‘ie Va!’iables 0000000080608 00008CEE0O0CO0GCEOCCC0C0000CC0C0Q0S® SO0
.2.2 Integer Variables © 00 OO S S C0 T OOEE OO0 COOSOOOOBOPOCOCOECOCOIOROCTECEOEDES
.2.3 string Variables .l".'Q,Q..O.'O....l........‘..O..BO0.0.06"...0..
5lz Al‘ra Val'iables 0000060060000 000000C0E0C0000000006000060CCCCE0EC000COECEOOTE
5‘ Fune ions 000000000000 008620008608CePC000C0OC0C0000060006C00ACE0CC0C00C00G6E®G60Q
50.1‘.1 Intrinsic FunCtions6.....'.......l.‘...'.0.0906.00000000.05.
502‘.2 User Defined Functions ..0"......‘......"0.....‘0600?..600000'..‘
.u.3 USR Functions0..‘05.............‘00".0..0.0G..QOGOQOOOGOOOOQ
5.5 Expressions © 80 000 C€0CO0T3AIQOOC O OCCOELCIEPTOQ0EO00©E800C0EEO220C000CO0S0OC006ICODSSES
5.1 Arithmetie Expressions 00 00000 0QC0OC0 00000000 0CEICOO0O00CCGEOSCRCROEO0OCEOSITOE
0.2 String Expf'eSSions © 090000000009 EA0TEOO0G0060039023C0E00COEO0066C0300O0CGOS
Oﬁ LO%ical Expressions O S0 0 C O 0000 CO0OO0CO0O0GO0QCOE A0S G0C@@EE§GECOOEOEOSPEOEOC0CCOQGOCOOS
.5 Re

n
L
y

(18}

v

wm

atiogal Expressions .0..’..‘...!..‘O..‘5.’...QOIDQCQOODOOIIODOO
ExpreSSlon Evaluation 0600 0C0COI00CE0C003COE0O0O0COOOS0EOCEEOCCO00GEIEEDTE

FORMATED OUTPUT ® 6 6000000 E2C 9 O EQ Q090 0WOC0O0 660000660 0G6§OOCOICHOEOQCGCOOEOCOSROCOCDS
umeric Field Masks ..0...'.Q.....‘l..........ooﬂI_CGOQOOQQODO_DOQOQOCIGB
1 Specif{in& Number Of Di its @ 90 30 &0 060000 60000600 06O OCOO0COSOSeES OO O OO
2 Decimal Point Specification «.cceccececccsccecovccsscsssssossscooals
g comma Specifica ion .0..00'..‘.‘CCO"Q......'...Q....QIQOOQOOOOGQ.G
6

CHAPTE
6.1

DOllar Field SpeCificaticn © 00 000000600860 0000006080060300¢CE060060030700600
ASteriSk Fill SpecifiCation ® 900 €¢00 00RO 0 000000000 CEOECOECEESEESSGCSOOO OO
Sign Specification ©0C 00000090 0600800000060 0000600000600600080000C0OGCECSCE
Qg Exponential Field SpGCification © 00000060008 00COPCOOIRISICORCEOROCGROITEOEO0O
M Field SpeCification t"Oo small oooo.....ocoo'..o.oi..c.o..uto.oo.oo
PingiField MaSkS © 00 000006000 0¢000000060600080000000000080c0000300C00600e00ecC

. 1 n%le Character © 00 000060 0C000 0600606003008 080060000000000060060800008600
L] 2 Lef Justified Field ® 00000000 0600000000000C0800600000000000060800000600

o
o
O\O\N ONONOVNONONOYONOY ¥ UL

- iV -

© consisteney in Listing .l.’.’....0.Q'..l.....;.LOOOOOOQ‘.M....'..‘,I“.

N =B cud cd e b ord awd cmd wmd ook b b o e D cd D b ok wmd b

§

O~I-1OVAVIVIN &=WWWNNINNIN OOV OO EENNNINN ~2 s 2=

[=1Ve1.

TABLE OF CONTENTS

{

Section

6.2. Risht Justified Field ...0..0.0....‘....0.'.0.....0.“.‘.\..0.0.l..
6.2. center Justified Field .QQ.G..I..C.‘.‘..‘......‘..l......‘.....'..
. . Extended Field .tao..‘.o..oo......l.l...'00..0'o.......l.......ol.
Multiple Fields In One Mask ® ® 0 00 000006000 0E0Q LA QCE 0N OGDSSSOESEGQAOOSTQETEOSEISITOEssna
Re-usillg Mask FieldsQQ‘.Q..‘...C*...O..'...'..0.............'..'.

Using Errors CO.'..Q...C.0.0.'..0.......0.‘6‘0.0'0‘.......‘.0...0...06.

/ . , .

7 USING FIL% .0‘00.0'..000.0.00...0..0..OQOOle.‘l..'...’.......l...o‘
Access MOde .‘...!..o.o‘00.0.lo....QCQ.OQ...OO0...0.....000.‘.00.0‘..0.
Access MethOds - File Fomats QOOO......Q.O0.0...0.....0.I....O...COC..
Record Allocation Requirements ..ccecccoccecccocsesccccsssccccccoccscces
Multi-User File Protections ..ececccscicscecccscccsccsosscscscsccssnnse

CHAPT

N—I33g ooon
=

B W= UI-B(.A)

Q
o]
>
=

Cory
=]

8 COMNDS 00 00 00800 0.000600330000C0 00 CC06CCEICOICEEEEOESIIOECEISSINOIOSIOSICECEOIOSETITCOROOVTOEOSTOBCOS
UTO comman ® 0600060060608 0¢ 060060000008 00000C0CQ0C03CEOISECQRACIO0O0GCESESICESINISISISIIGCOSIOEOESOTEDSTOPGGEES
Bottom Command ® 00 00000 0000006000008 000CECO0CIN 008 00000 0000 ¢80 0RCCOSIPCIEOSELSPOEOIOGIETS

Ommand © 0000 000 CES 0008000000606 00000GAG0IC000000C0CECE0IEESIOEOEIOSGOOINSOSDBOEOCTDTS
CHANGE comand 0.....0..l...'.@..'.o00...0"00.0.'0..0.."’.00.'00...0.0.
CONTINUE Command © 20 00000 00000806 TSCOOHOC0COQCCI O SO0 COCSIOPSONESESIEIOCOOGCEOSOEOOSNSIBOCOTCE
DELETE Command ...0'..0'l.....ﬁ.ﬂ...‘."ﬁ.....OD...II.......O.Q..0.0@O.

Down Command 0..0.0.‘..0.’0'..‘..0..000..000.....0.....'.....l..‘...“.

S i) LWL LOLILILILILY
OWNIEN OO ~I~1O0O\ON it

£
oo~

HELP command 00 0000000000006 Q0000E00000006C000000CCE069I008CECEOESIOSOSSISCEONOSIDSOSECCETES

INDmT command ..0..0“..l'.‘O.....'.....JQG‘....QI...'......OQ.“...O.. ug
LENGTH Comand .Q.....l0.....'......O..O..‘O......G.‘0'0.‘....‘....... 50

LIST comand © 0000 0C0E0CE0000600000060030060000000C00060060000008CO0C0O0CQCEOCCEOIROSRETCES
LOAD command 00 0000 Q000030000000 SCDOOCCOO SO0 S 00O CEEEOELEDIESOCEOEOIQRIICGCOROCEEOSOSINESS

g1
LOCATE COmand © 0000 00000600006000600$080606000006000000000000660030060000600006 5
LPLIST Ccmand 00.....6......'.‘00-00000..6".OQOC..O..C.....'O.....O. 5
LPXREF Comand ® 00 0000080000800 0000000020 00CTE S 06000080000 00006006060C0CECESIOCOCELES 5 N
HODIFY comand ..'.0.....................l..‘.......l...‘.....‘....... 57
NAME commandQl.'.....‘...‘...‘O'C.'..0.....'..Q.'...O..'O....
NEW Comand $000000CCC00C0C6000000000CICCEC000C0000CA0C0000060ACOCCOC0OCOTE
QUIT comand © 90 0O CI OG0 C 0003090030000 0C0C0CCS SO POOLOLEIEOEOESNOIGCEOOINOEOOROCOCTESOOOCTOOES
RENUmER Command 200000060008 CCO0OCA30000CE0O0COO0E 0000000000600 CCESSIOSIEDPEOCODS
RUN COmmand 2000600000000 0000000000000C000000000008000000000000000060000
SAVE comand ® 0000000 C0S0E0CES0C00E8060C0C000208C800060000C0CO00C800060000e000000
STEP command D..0"......0...l..‘.........0....'........OO..Q.‘.'.OQO.

'.......“....‘...........0.0..0.‘....C........'...'....I.

To mmand
KCE and UNTRACE Comands © 00000 000C00C00CE000C8C006C00000060000000CQCE
UNBREAK command 00000006000 06060600C00006006000000000000800000060060600600006060006'®

U comand .0..0.......Q..Q...‘0...‘0..0..0........'.OC‘.....O..Q..OO.

NN NINI N NI NI NN b b ed b b eod ad d ek =IO OO~J O SN =2

WO CO~IOMN =W N 2 OO o~ TN EWN = O

® 6 06 & & &6 0 © 0o O © © © & 6 6 & O ¢ 9 0 0 &6 0 0 O 6 o o

.V scomman coooooc.oo-oooo.ouoo.oo-ooooooocooeooooooooooo.noo.o.ooo'
XREF command ...0......»'....‘0‘.........‘..'..‘...0'.'........‘-.......

STATMNTS 0000000600000 0600000000008 00000C00CEOCRCSEEBRCEECERESREECEEOCECQOCEOCECEOROCOIOGSOIDOTE
CASE Statement ® CP 00 0 CEP 0CC0 00 0C00C0C000800CET0000806000606060000080606006060600C0CT
CEND Statement ® 00 00 G 000000 00000000000 0CC0e80 80006000 C0CEB0C0E0C08E0CICCIIICOTS
CHAIN statement ..l.‘...0...Q...............‘..Q..............'..D..O'.
CLEAR Statement IOQQQ....0.0..‘.I.C...l...'.......‘......0.......000...
CL%E statement oooooo..oooo.'oo.o.ocootcooctot.oooo.....ooooecooo.o.oc
COMMON statement © 000 000 E050C0T 0G0 00L00000C00003000C0006000060006000600OCGCEe
CSI Statement 000 000 0000000600003 06030€000606002000006$0€¢€006000008606908000OSGO0ECEIEDO
DATA Statement ©' 00 0000000000000 0000000000003 000060008006$06000806006¢60000600060000
DEF Statement .O'....O......O..............‘Q.O‘.........O....'.....'..

DELETE Statement .O..Q'..“....'....l'.....0.0.l..'.."‘...........'..
DIM Statement 0 S 00000000000 00T 0 00E0 00000 8CED00 0080000000008 002060000008O0CDOLKES
ELSE Statement .Q..l.l......O...'......‘."...l............O....Ol....

D aemen ..QQ....‘.OOQ.Q..O....CQO0.0..uQ..0..00'00‘.'00..‘0......
FNEND Statement0......‘.O.........0'.....'..........C.....I..'..
FOR Statement ® 00 000092080 000000000090 PBCNCOSREOOEEICOCNIIIGEPCEROOCQOIOTSEOESITCSTS
GET statement © €0 000000 0000000000000 0 0006008060000 0000030000606060000¢C0600CGCBOCESD
GOSUB Statement © 08 00 0 0000000000 G000 EESESCEEOEONOEDPOISOIOOOC0NOCECESEEORESOEOOSNONOEESOICOESE
GOTO statement © 00 00 0000000000000 C0 0000800060800 060300860000C08C003003006606000CoO
IF Statement ® PV 00 0O O CEI OO0 00000 0CGS 0000000000000 8000000000000000CESSIOTDST
IFEND Statement o.o.-ooq-.c.uo.ooo-oooo.eeooocooocoooooao-oooooooooco.
INPUT statement l..C.OC.00.000.0.00..0.-.-'0.'......0..000.000.00....0
LET StatementI........0..0..‘...‘........l.....'..l.l‘.o......
LINK Statement 2 00600000 0000000060 006008 0806000000000 0000006006000000000OTVGCIDO
LINPUT Statement 0 00 00 00 000000000000 00600000000C00000600000000060089000s0s0s0
LINPUT USING Statement 0 2000000 0000000800008 06080066060860¢806060000¢00000008CIOGOIITCES
MAT Statement 0006 0000000008000 000800000008¢606060 006000006060 000000000000esc0

MAT INPUT Statement 00 000000080 PE0ECT 000000800000 000600600600000COCCOCOIEGRQRDITOITS

g 00000000000 000000 0000000000000 00000000 0000CO0000 0000

o
o o]
=
=3
2]
=

NN NN N NI NN — b b b b 3 ek ek et O CO~I OV U D =2

b wd e cod wncd b b) .
= O O~ OCVEN = O CO~IVIWN =2 OW M EWN = OW~IUT WN=2000~10WN &N = OW0

\O\O\OLO O \O\O\ OO OO O OO OAOA\OOAOLOLOLOLOO\ONOND
..‘........Iﬂ.......ﬂ....‘.

u'-

TABLE OF CONTENTS

£
:
§

MAT PRINT Statement ooo-.o-ooco...oocoooooaooo'eooteooogoooooo.aeocooe
MAT READ Statement ‘.......Q..‘..‘.G.QI..‘....OI.le.e.."....‘.'.ﬂ...ﬁ
MTWRITE statement .Q.........Q..O..O.'..'...O'...De..'ﬂ...........'.
MOUNT Statement .o..'.co..no....n.l0000.0086Qoooo.e.oce.oOOIQIOCQQODOO
NEXT Statement ooooooooooooooooeooouaoo.aoeouwaoeooaoooseaoooeeeoeooeo
ONERROR Statement .00."‘0.0@0.0.0.QOCOQOQ0OOO‘OO@OOGGOO*Q.OOGQOQGQOOO
ON GOSUB and ON GOTO Statements ...‘ﬂ0'90'000..00.6900000000060009000.
OPEN statement ..000..0.8QCOQO00..00.050000QOQGQGQOGQQGQQOOCGOCQOOQOQ5
OPTION statement 0.GOO0.G0.G96@6..0.00000000‘6@0.900'0‘900000080000@60
OTHERWISE Statement ooeoooeocoaocoeeooeoaoeoeonooooec.aoeoenoeeoaooeea
. PRINT statement .I000090¢¢608000Q000@0.000.@60000.00000095000090000090
PRINT USING statement .60.0.6000QQ50000000‘0000000‘00000@0@0'5006.0000
PUT Statement G000006500000'0OOQOGGOOGGOOOOOGOOOOOQQDQOOOOQOOQQOOG.OOQ
QUIT Statement 0.000099000000000000.0003@6@000.Ql.QOOOOQQ.OOO0.00QQCOO
RANDOMIZE Statement 0000.000600.600008..609...0..0500.0‘.00.0..0.50...
READ Statement &09.00.00.050.‘0.‘00OG.0.0000.00..IG.@‘06..‘5..0..‘....
READNEXT Statement anvoeo.coooooaooeooooo.oo.coeoa.cnoooooaooooooo-ooo
REMStatement ..'....0“90“0.'000.00.90.00000.'.....'.Q...Ol."o...‘.
RESTORE Statement 00...0....0000..009....@0....0...0.0..........‘...Q‘
RESUm Statement .0...0.'009000IOQGOSO.'...QQ.....GO........Q..‘GOOC‘Q
‘RETURN Statement‘0'.0"000.0.0Q.Sl.°0.°¢00000000BO..GOQ..OUQOO...
RUN Statement 0680006000000 00008600800C0003000000NE@000CEFCQCOCC000C€C03060C0600EC
SELECT Statement 0000000000080 06006600086066000000660C0606002002¢¢0006000600060000
SLEEP Statement ..'.'Q.C...S.OOOO..000..‘...000.0..&000.....0000030000
STOP Statement ...Q.....O‘QCQ......QCQ‘BOO...‘...OCOQOQGOOQOQBOOGOQQOO
THEN Statement €00 00000000008 0060060600000080008330C60006600000e800000600000E
UNLOCK Statement ‘Q.0.0‘ODO'Q.....O.‘.BQ.....Q.......G..O"0.0QQ.OQQQO‘
wAIT Statement 0...0...0..0..000.0'(..'0.6.0....0...0'0.'0..05..00‘000
me Statement ...'....0.0.0.0'00001000000000000'000.00000IOOQQ....OOO
WHILE statement O..O....O.‘GlQ0.0QOOO0.0QOO...050‘..000096'.0..000.00.
wRITE Statement ...0'..".00000.0.0..0.9.60000.0”0'0....0‘0..090090....

10 FUNCTIONS .".“.'QQO0.‘0B0000090600030@0.00.000@.0.0'BQ..O..COOQG..
Nwerie Functions Q960 66000000 0CG0C0CSS0O0COOCO00OIO6C00O©EQCO0VOO000QR@REEDC00CECS
Tri onometric Functions ©00 GO0 G060 OECO0ORCCEOOO0OOASOOCOOOGO0O00OQ00666€60CE6CGQ
strn?Functions 00..0'060.000090QOQOOOEQOBQOGGCOQOGQBGHQGGGOOODQBCCQO
Inpu output Functions ..QIO..@0.0‘0.@6.050....0.0@0009@0O'.OQ.OOO..Q.

fieal Functions ;.D0.0.0.."‘..C..QOQOOGG'.CI.G.QOOO.GQQ&‘O.Q....OQQ/

AO\O\O O LOLO\O\O\O\OOLO\O OO

e © 6 06 »# © @ 6 0 © © © P 0 © € O © © © O © © € O ©6 O & o o o

CO~IOWN £ =250 CO~JOWN =)

1\ =2 OO 00~ W1 L5 N == OO Co~TOMN O N = OO0

CHA

2]

e Function eoooocooa..uao.oo-ocooooec-oococonocoeoooocao'oooocooooo
Epror FunCtiOns O‘....'..Q....'00'..00.0.0.0......0...0'..‘...0'..0..0

USR Funetion QOOIOIOI‘...lao'......‘.‘.l‘...ODC...‘QO0.0.C.....‘Q.C...

APPENDIXA RESERVED wORDS .00....‘..........Q.\....‘.O......./.......".‘........ 169

APPENDIX B USER DEFINABLE KEYS -'o.o.c.o.06.0».0..00.‘...0..ooololtt;oOionocoo
B.1 ControlKey values .G'\O..'./...0‘.....-..0‘»..“?.0..“..'.0...0.0....v..°. 1

APPENDIX c COMMAND SUMMARX Q...UO...C..Qflll...'.C..‘.Q;QCOC.....Q;..I.@....;I.172
APPENDIX D STATEMENT SUMMARY 00‘..;.,0.c-.o..odo..o...o..;..o..o..o.Q.....Q;.c 17&
APPENDIXE FUNCTION SUMRY 0000 00000000000 0C00060000060000e80000606000000006000648800 177

APPENDIX F RUN2 STATEMENT AND FUNCTION EXCEPTIONS tevccesccssesctocscecsccecos
F.1 Statements Omit e G CI 06 PE6EQ0CEEEL0O0TIVNOESE00C0CLEOI0CEREI0TOCEOB0000QQOCEOECO©EQIIOGCS
F.z Functions Omitted P00 COCO000E0060CQ00000CCOECEEEAOECESIC©ICEO0E880C$000CGQEOCO®EGOO0ES

APPENDIXG ERROR MSSAGES "...000I.@O‘D".O.¢.O°90.00.0.09000000000050500.0..
G.1 Command EPPOPS ©90 08 000CC00000CCCO00DE000GReA000O0000C0000000000GO00€EO0CICRQRTOE
G 2 Edit EPPOPS .oeooos.o.c.oooooec-oooou-vcoce.-ooo-oaoc.oeoonoooocoooo.ee
G ﬁ compile Errors o'QooQQOOQCOQ.-looaao-060000600000.0000‘00!0.0600ec...ol

Execution Errors ."..00...0...00.".‘00...0.@9.0.‘O....‘Q“....0.00GGO

\ONO\O\O\OMNIUNIUT - VTV i b B B B i b = SO LU LARAILDUIAI R NI NI NI N emd b ood aed cnd o
CO~J OO OO URA -\O\OMO\UIJ'-'UJNJOOMWWNOQO\#AOMO\\”#N

b b e b b b ok b HY O AOAOLO OO OO WOAOOA\OLONOWO

00000000 H]

® @ © 0 0o 6 ©° ©

ey
3 -
oo

APPENDIXH PROGRAM EXAMPLES oa'oo..c.ooooocgoo.-oc-oooocoqooowoooo-o.ocaoooeoo
. ampe ne © 00 0600000000600 00006000000 E€0E006C000000000600000QC0CESISICEOESIOCOBCGQOCDOTC
2 Example mo-stl’lng Conversion © 6800000000000 00CEEECOROOCECCIOCEIEVESOOCIEOCGCBCBGOIOCO0OD0
z AExample Thl’ee-Slne wave 9 000000000000 00000008000000000000602303608008600060
Example FOUP - Bill Of Materlals 9 00 00000 0000 2 000 0-0C 808 QCOONTPQPOOCOOO OGO OCDO
2 Example Five sesecoees e 0006000000000 8000000000060 0800606000008 0600000
Example SlX-Se&uential File I/O 00000 0000000006000 00006000000000060000600
g Example seven - ndexed File I/O - Sequential Aceess o.ooocqooo'oo;ooco
Example Eight - Indexed File Create ..cccccccceccccecscsscsccccecncsncs

(VoY Yo TooTooTocTo o Mo TocTo o Te]

- ‘1 -

: , TABLE OF CONTENTS
Section I I . - Page

APPENDIxi ANSI MINIMAL BASIC Oo9.00-.é00...‘..O..C..K‘I......I.I;..‘..Q...Q."...‘ 193
APPENDIXJ CHARACTER CODES Oo0.00.'.‘.‘0.;...‘00‘0........'0..'.‘.......‘0...'...0. 191‘

, CHAPTER 1
- INTRODUCTION
This reference manual describes the BASIC language as implemented in the OASIS
Operating System. It is an interpreter/compiler language. This means that the
advantages of an interpreter exist (ability to make changes to the source program
and immediately re-execute, immediate mode, etc.).alonﬁ with the advantages of a

compiler (faster execution, smaller program size on disk and in memory, and source
program protection). _ > .

1.1 Organization of This Manual

This manual discusses each command or sfatement in a separate section of the
appropriate chapter ("COMMANDS"™, "STATEMENTS", or "FUNCTIONS").

Each command or statement is described in four subsections:

\

1. General form: defines the specific syntax of - the statement or
: command. This section is enclosed in a box at the top of the page.
Also included here is a "See also" reference listing commands or
statements that have a similar or related function and might be used
.instead of the command or statement specified.
2. Purpose: one or two sentences that summarize the purpose or general
function of the statement or command. :

3; Comment: detailed description of the statement or command specifying
any restrictions, exceptions or errors that may occur. .

4, Examples: general examples of the various forms of the statement or
command, if applicable. Invalid examples are also included, if
meaningful.

In addition, the appendices at the .end of this manual give summaries of thé
statements, commands, functions, error messages and some general examples of BASIC
_ programs. ’

1.2 Documentation Standards 7

In this documentation, the following standards will be used:

‘® A1l keywords are spelled out even though BASIC normally only requires
the first three characters of a keyword.

b Fie%ds enclosed with angle brackets <> are required for correct BASIC
syntax. :

®# Fields enclosed with brackets [] are optional and not required for
valid syntax. : *

Fields - grouged in vertical columns or separated by vertical bars
indicate that all are valid forms. ’

& Any parenthesis shown are required for valid syntax.
& The term <CR> indicates the entry of the‘key CARRIAGE RETURN.
1.3 BASIC Command Modules
The OASIS BASIC and RUN programs are held on disk in several separate files. This
is required due to the fact that program overlays are used. The five files
containin% the interpretive BASIC grogram must all reside on one disk. The four
ai

files containing the RUN program must both reside on one disk. The files and their
primary functions are as follows: . o

BASIC.COMMAND Initialization and set up.

BASIC.OVERLAY1 Editor and syntax analyzer.

BASIC.OVERLAY2 Compiler. :

BASIC.OVERLAY Cross-reference generator.

BASIC.OVERLAY Program execution and debugger.
BASIC.LOADFILE Re-entrant run time module (multi user only).
BASIC2.LOADFILE Re-entrant run time module for RUN2 (multi user only).
RUN.COMMAND Initialization and set up.

RUN2.COMMAND Initialization and set up for RUN2,
RUN.OVERLAY1 Run time monitor (single user only).
RUN.OVERLAY2 Run time monitor for RUN2 (single user only).

BASIC Rev B N

BASIC REFERENCE MANUAL

1.4 BASIC Program File Types

OASIS BASIC uses three different filé” types for programs. These file types are
BASIC, BASICOBJ, and BASICCOM.V o . . ‘ |

A BASIC program with a file -type of BASIC' is a file ih ASCII format and is usable
by TEXTEDIT and EDIT as text files. A program with a type of BASIC may be loaded
with the BASIC interpreter but may not be RUN, CHAINed, or LINKed to.

A BASIC program with a file type of BASICOBJ is a file generated by the BASIC
interpreter after the program has been syntax checked. -This type of a file cannot
be used by other system programs (except COPYFILE). A BASICOBJ file is a program
that is ~ "pseudo-compiled", that is, all Lkeywords have been coded to reduce the
storaie requirements and to increase execution speed. Even though this type of a
‘file is pseudo-compiled it is still listable by BASIC and still has all remarks,
variable names and line labels in it. This file type should be used for all source

programs and is the default type used by the SAVE command.

A BASIC program with a file tgpe of BASICCOM is a file generated by the BASIC -
compiler after the program has been compiled. This type of file cannot be used bﬁ
other system programs (except COPYFILE) and may only be executed with the RU
command. A BASICCOM file is a program that has had all remarks removed from it and
all variable names have been reduced to codes (variables defined as COMMON are not
affected) and all 1line label references have been changed to a shorter and faster
method of branching. :) ,

1.5 Loading BASIC

The BASIC command is a program module that is accessed by the Operating System
through the OASIS Command String Interpreter (CSI). After CSI has displayed it's
grompt character >), the operator may enter a BASIC command as described below.
SI will load the BASIC interpreter and enter the edit mode, allowing you to load,
execute, or edit any BASIC program. ‘

In the edit mode of BASIC, acceptable input is a command, an immediate statement,
or a numbered statement. An immediate statement is one that is executed

%ggediately, a numbered statement is stored in memory for execution at a later
e 5 '

1.6 BASIC and RUN Commands , ' / ,
The OASIS BASIC command allows the user to access the BASIC interpreter/compiler to

create, change, debug, execute or compile BASIC programs. .
1.6.1 BASIC Interpreter | |

The OASIS BASIC interpreter is invoked by using the command BASIC. The format of
the interprgtive BASIC command is: v ’

 BASIC [(coma[)]] .- ’
Where: '

coMMA Indicates that numbers ihput or output during execution of BASIC programs
are to use the European format for number representation (see below).

. When the'BASIC interpreter is invoked the- prompﬁ character for BASIC will be
displayed (-) and you will be allowed to enter any valid BASIC command to develop,
" test, or execute your interpretive programs (file type of BASICOBJ or BASIC).

1.6.2 BASIC Compiler ~

~ The OASIS BASIC compiler is invoked by using the same command BASIC as the
interpreter but with the additional specification of the program name to be
compiled. - The format of the BASIC compiler command is:

QASIC [<program-name> [(<compile options>[)1]
Where:

program-name Specifies the name of a BASIC program file that the user wishes to
compile. This operand has the format <fn[.ft][:fd]>, where: ,

fn Indicates the file'name of the BASIC program to be compiled. If
omitted (i.e., the entire program-name operand is omitted), then

-2 - : - BASIC Rev B

| cmn'm 1: INTRODUCTION
BASIC is invoked in the immediate mode. ‘

ft Indicates .the file ~t¥pe of the 8 §ram to be com Eiled - Only
BASIC programs with file type BASICOBJ can be compiled. o

Note: Programs written and compiled under a version of BASIC
grior to version 5.5 may be recompiled bK specifying the file
‘type of BASICCOM, This feature allows those users who do not
have the source (BASICOBJ) to programs to compile them with the
current version of BASIC.

fd- Indicates the label ‘of the directory or the name of the disk
that the program file resides on. When omitted the normal
search. sequence for user programs is used.

BASIC Compile Options
PRI!TER[n] Indieates that the program listing is to be output to the printer.

LIST
NOLIST

XREF
NOXREF

OBJ':dPV

NOOBJ

NOTYPE

Indicates that the program listing is to be output to the console.

Indicates that no program listing is to be - output to the console. This is
a default option. .

Indicates that the cross reference table is to be generated and output
with the program listing.

Indieates that no cross reference table is to be included in the program
listing. This is a default option. .

Indicates that "the compiled program is to be output to the‘'specified
drive, When this option is not specified and the NOOBJ option is not
"specified the compiled program will 'be output to the same drive as the
-source program currently resides on.

Indicates that the compilation is for test or listing purposes only--no
compiled program will be output to disk. -

Indicates that the compilation is to be performed in ‘'silent?
mode--display ' of compile statisties is suppressed--only _errors are
displayed if encountered. ‘

_Compiled programs are saved on disk with file type BASICCOM.

The COMMON statement must be used to specify variables that are used by more than

one segment of a compiled program.

The program listing generated by the BASIC compiler (option PRINT or LIST) includes
the relative address in hexadecimal of each statement-listed. This information is.
important in case an error is encountered during execution of the compiled program.
Since 1line numbers are removed by the compiler the location of an error is
indicated by its relative address.

At the

dicglayed ‘on the console (unless option NOTYPE is specified
uded the following information:

end of the compilation process statistics about the pro§ram Tggmpiéed ire
s isplay

Oasis BASIC compiler ver n.n (date) statistics.
.Input source lines: nnnn

- Input source size: ~ nnnnn
Output object size: nnnnn -
Source reduction: - nn% -
Compiler errors: : nnn
String variables: nnnn
Float variables: nnnn
Integer variables: nnnn
Compile rate: nnnn lines per minute.

BASIC Rev B | -3-

BASIC REFERENCE MANUAL N
1.6.3 Execution ovao-piled Programs

The OASIS RUN command allows -the user,té execute a compiled, BASIC program. The
format of the RUN command is: ~ _

RUN <program name> [(<option>[)]]
 Where: ' '
program-name Specifies'the file name of the program to be executed. The file tyge
may be specified, however it must be BASICOBJ. The file disk ma €
specified but when it is not specified all attached disk drives will be
searched for thevprogram° .) ' ‘ ,

RUN Options . o

COMMA Indicates that numbers input or output during execution of the compiled
grggr?ms are to. use the European format for number representation (see
elow) . C)

TRACE Indicates that the hexadecimal addréss of each statement executed is to be.
: displayed on the console. These hexadecimal addresses are the same as
thg?e listed when the program was last compiled with a TYPE or PRINT

Op on, - i) ’

The RUN command can, only execute compiled programs-;there is no immediate or
command mode available to the user when this command is in control.

A smaller version of BASIC may be used to execute a compiled program. This smaller
version is invoked by used the command RUN2 instead of RUN. Refer to the appendix
on "RUN2 Statement and Function Exceptions"™ in the back of this manual.

BASIC Prompting Character

When the BASIC interpreter/compiler is in immediate or command mode a hyphen (-) is
displayed at the 1left side of the terminal, indicatiné that BASIC is awaiting a
command. This is the prompting character for OASIS BASIC. :

1.7 European Format for lunbers

The OASIS BASIC interpreter and run time monitor support the European format for
number representation for input and output of numbers in ASCII format (i.e.,
to/from the console). The European format is invoked bgousing the COMMA option on

the command line to BASIC or RUN or by using the OPTION COMMA statement from within
the program being executed.) ‘ :

When the European format is invoked all input and output of numbers in their ASCII
format (INPUT and PRINT statements) will conform to he European standard for the
remainder of the session in BASIC or RUN. The only way to revert to the 'American'
format is to exit from BASIC or RUN and return control to the operating system..

The European format, as used by OASIS BASIC, denotes a 'decimal point' with the
character comma (,) and denotes the division of thousands with the decimal
character (.). This is the exact opposite of the 'American' format. An additional
convention used in OASIS BASIC is the separation of elements in a list of numbers
is the semicolon character (;). .

For some clarification examine the following examples:

American format European format
1 1
1,000 1.000
10.23 10,23
1,000,000.00 1.000.000,00
1.1, 5.4, 3.5 1,1 ;. 2,04 ; 3,5

As stated above, the COMMA option applies to all input and output of ASCII numbers.
This means thaé a file created with PRINT statements when the COMMA option was not
in effect will not be input properly with the COMMA option in effect.

In addition to input and output of ASCII numbers fhe COMMA option affeets the
operation of those functions that operate on numbers in ASCII format. The
functions affected include: NBR, STR$, and VAL.

The operation of the COMMA option does not change how programs are coded; i.e., the

-l - - BASIC Rev B

: : CHAPTER 1: INTRODUCTION
PRINT USING mask is coded using the 'American' format. ‘ ﬁ

BASIC Rev B , -5-

| 'CHAPTER 2
FEATURES- OF THE LANGUAGE
2.1 Data Files ‘ ‘

" OASIS BASIC su Eorts four types of files: Sequential, Direct, Indexed Sequential, .

and Keyed. All four file types may contain ASCII data or ﬁinary data, depending
upon ow the individual records were created. Good vpro%ramminﬁ practice will
restrict you from mixing ASCII and binary data within one file. ecords created
with the PRINT statement are ASCII and ma¥ only be read with the INPUT or LINPUT
statements. Records created with the WRITE statement are binary and may only be
read with the READ or READNEXT statements. ‘ : _

_SEQUENTIAL files are variable in length with variable length records--only as much .
space is used as is needed. Sequential files are accessed sequential, from the
befinning of the file to the end. 1In order to read any specific record in the file
all preceding records must be read. ' A :

DIRECT files are fixed in size with fixéd length ‘records. This file type is
accessed randomly by relative record number. - : . .

INDEXED Sequential files are similar to DIRECT files in that theX are fixed in size
and length and the records are accessed randomly but " with an ASCII key or index.
This file type also allows you to read the file sequentially, in the ASCII
collating sequence of the keys.

KEYED files aré(,similar to INDEXED with the exceptidh that the file, when accessed
seguentially, is in the physical sequence of the file on disﬁ, not in ASCII
collating sequence. - .

2.2 Cursor Control ' : -

-Man‘ t{pes of terminals are "known" to BASIC and their various tﬁpes of cursor
control are handled by common functions (AT and CRT). Refer to t

e OASIS System
gg%g;%ggg_;ﬂgggglb "ATTACH COMMAND", and the "Terminal Class Codes"™ Appendix for
. details. . ' . - - ’

" 2.3 Chaining and Linking

Chaining and linking allows very large programs to be segmented for execution in a
system with a relatively small amount of memory. Chainin% transfers control to the
named segment and closes all open files. Linking transfers control to the named
segment without closing any files.

2.4 User Defined Control Keys _

User programs can test whether one of several different = control keys were entered
as input, and take agpropriate action in the program. Refer to the chapter on User
Definable Keys in this manual for details. _ ' C

2.5 Compatibility ‘ '

BASIC is ugward compatible with Dartmouth BASIC and conforms to the American
National Standard for Minimal BASIC, BSR X3.60.

-6 = » BASIC Rev B

CHAPTER 2: FEATURES OF THE LANGUAGE
‘ ‘ R ,
2.6 Other Features T

QASIS BASIC provides many other features not normally found in other micro-computer
BASICs such as:)

Multiple statements on one line.

Multiple line user defined functions (DEF FN-FNEND)

Line length of up to 255 characters.

Long variable names.

Line labels.

Error trapping (ON ERROR GOTO).

Complex IF THEN ELSE statements.

Multiple line IF-IFEND structure.

Multiplé line WHILE-WEND structure.

Multiple line SELECT-CASE-OTHERWISE-CEND structure.

String handling with string 1eng£h of up to 255 characters.
String arrays. |]

Matrix (array) input/output and assignment.

Formatted output (PRINT USING).

Forﬁatting_functiono‘

Formatted input (LINPUT USING).

Européan format for numbers.

Interface to user written assembly subroutines (USR).
Interface to system commands (CSI).

Interface to any device (GET, PUT, WAIT).

Bit manipulating logical functions. .
Thirteen digit precision BCD (binary coded decimal) arithmetic.E
Floating point values in range 107126 to 10°-126

Integer arithmetic (-32767 to +32767).

Program debugging aids~éuch as single step, break-points, etc.
Automatic line number entry.

Syntax analysis on statement entry.

Extensive set of string functions.

Compile option to compress and protect the program.

w W W W I N DA N TN TN NN RN RN AN RN RN NN DN N DN DN DR BN NN B BN BN

Cross reference listing of Yariables.

' BASIC Rev B o -7 -

CHAPTER 3 _
BECOMING FAMILIAR WITH BASIC -

This section assumes that you have loaded BASIC and that you have received the
BASIC'grompting.character (=), indicating that BASIC is waiting to perform whatever
instuction you give. 1In order to make the most efficient use of your sessions with
BASIC, you need to know several things about communicating with the system.

For the time being the speéific statement, command and line syntax will be ignored.
These concepts are discussed in the next chapter. -

You will communicate with the system by using its primary input/output (I/0)
device, called the CONSOLE TERMINAL. This device will include either a printing
mechanism or a video screen (CRT), as well as a keyboard, similar to that found on
a typical electric typewriter. On a console terminal keyboard, however, there are
a few symbols and extra keys which may be new to you. Note the position of Yextra®”.
keys, especially the ones marked "CONTROL" (or "CTRL", or "CNTRL" or something

Simiiarz, "RETURN™ (or "CARRIAGE RETURN", or "NEW LINE" or something similar),
:gg%gggEngor "DEL", or "BACKSPACE", or something similar), "ESC" (or "ESCAPE", or

3.1 Some Basic BASIC Concepts
OASIS BASIC has two modes of operation:

IMMEDIATE MODE or command modé, in which lines typed to the system are
executed without delay;

EXECUTION MODE or program mode, in which the system executes instructions
which have been stored previously in the form of a PROGRAM.

- Prior to learning how to work with BASIC in these modes, you must understand
certain concepts and terminology, which are explained in this section.

A COMMAND is a special type of BASIC instruction which may be executed in immediate
mode, not as part of a frogram. Commands generally provide services which are not
meaningful or useful while a program is executing.

For example, the command LIST generates a listing of the pro%ram currently in the
BASIC program/data area of memory. (This is called the CURRENT PROGRAM.) It is a
rare applicgtion which requires a program to list itself, and so the LIST function
is a command.

A STATEMENT is a BASIC instruction which ma¥ be used as part of a PROGRAM or in
IMMEDIATE MODE. Typical among statements is PRINT, which causes_information to be

.outgut to the console terminal. Statements begin with a VERB from which the

statement derives its name. The verb may be followed by ARGUMENTs and keywords.

An argument is a giece of information on which the statement operates, or which is-
used to modify the operation of the statement. For example, the séring literal

"HI" is the argument of the following statement:

PRINT "HI"

A BASIC program is structured as a sequence of LINEs, each containing one or more
statements. A line starts with a LINE NUMBER, which is an INTEGER (that is, a
whole number) in the range of 1 to 9999. A statement follows the line number, and
the combination is called a PROGRAM LINE. A typical line is: -

70 PRINT "THIS IS ONE STATEMENT."<CR>

More than one statement may exist on a program 1line, as 1long as individual
statements on that 1line are separated by a backslant (\5 character. Here is an
example of a multiple-statement program line with three statements:

100 LET A = 0 \ LET B = 1 \ PRINT A,B

All statements may be executed in immediate mode in order to get immediate results.
This is accomplished by typing a statement without preceding it with a line number.
Such a statement is called an IMMEDIATE STATEMENT, and is executed as soon as it
has geen completely typed (indicated by striking the RETURN key). For example, if
you type:

PRINT 3+3<CR>

into BASIC, you will immediately get back 6 on the terminal. This ability to
execute statements in immediate mode greatly facilitates debugging bg allowing you
to examine (PRINT) and modify (LET) the contents of variables when a bug occurs.

-8 - BASIC Rev B

CHAPTER 3: BECOMING FAMILIAR WITH BASIC

Each command and statement has its own ‘rules as to ,what constitutes its proper
syntax and when it can be used correctly. : L

3.2 BASIC Uses Upper Case

BASIC requires that the instructions it executes be in ugper dase characters. To
facilitate this, instructions typed in BASIC are translated to upper case before
being stored for execution. For example, the following line is typed to BASIC:

10 if a1l > 25 then print "Greater than" else goto 100<CR>
That line is stored in memory in the following format: '
' 10 IF A1>25 THEN PRINT "Greater than" ELSE GOTO 100

Note that all of theA"keywords" have been translated to uppercase but the literal
is left as is. Because of this you will not have to worry about the case mode of
the instructions you type. : :

3.3 Typing to BASIC
Try typing some nonsense to BASIC:
-ABCDEFGHIJK<CR> . :

Be sure to . strike the RETURN key after you finish t{ping a line to BASIC, as
denoted by the <CR> symbol above. This is the signal for BASIC to accept and
process what you've typed. If you fail to strike the RETURN key, BASIC will
patiently wait forever for you to type more!

BASIC should respond to your nonsense with the message:
Unrecognized command

In general, this message is BASIC's way of saying "I don't wunderstand you", It
usually means ' that you typed the right thing incorrectly, or (as in this case) the
wrong thing altogether, his is an example of an ERROR SSAGE. Such messages are
sent to you in order to alert you to any difficulties which BASIC encounters as it
attempts to carry out zour instructions. The error message should provide a clue
as to the nature of the problem, and imply the possible steps you might use to
correct it. (Correcting computer problems is called "debugging". problem itself
is referred to as a "bug".)

Let's type something which BASIC will understand:

-PRINT 25/2<CR>
(Remember that the <CR> means to strike the RETURN key.)
You should get the answer displayed on the terminal.
Commands may be entered with abbreviations (such as LEN for the LENGTH command) but
incorrect syntax or spelling errors will not be allowed and you will have to
re-enter. the command.
Statements (immediate or stored) may also use abbreviations for the statement verb
(such a PRI for PRINT). Statements, different from commands, do not have to be
re-entered to correct spelling or syntax errors, just modified {o the correct form.
For example, try typing the statement: -

10 FOR I=1TOX<CR>
BASIC will respond by displaying:

Keyword Missing or mis-spelled
0010 FOR I=1T0X

The underscore character will be used to identifﬁ the cursor position. BASIC is
"saying®" that it recognizes the statement as a FOR statement but it can't find the
keywor TOX. This is due to . the fact that variable names may be more than one
character long and the letters TOX could be a variable name. You must surround
keywords and verbs with some delimiting character, usually a space.

1

“To correct the error in this statement, enter an I, space, <CR>, space, space, I,
space, <CR>, <CR>. This is explained below.

BASIC Rev B -9

BASIC REFERENCE MANUAL

When -an error is detected by the syntax analyzer the error message is displayed as _

above and an implied MODI command is executed with the cursor Eointing to the

location of the error. The correction - just specified causes MODIFY to go into

insert mode (the I character) insert a space at that location, exit the insert

mode (the <CR>), advance two places (the space, space characters), go into insert

%odg %é%%? and insert a space, exit the insert mode, then exit the modify mode (the
as . -

- The following display illustrates this correction:

0010 FOR I=1TOX " Enter I _

0010 FOR I=110X . ' Enter space

0010 FOR I=1 TOX . - Enter <CR>

0010 FOR I=1 10X = : .. Enter space

0010 FOR I=1 ¥8¥ Enter space

0010 FOR I=1 X ' Enter 1 .
0010 FOR I=1 TOX . Enter space

0010 FOR I=1 TO X Enter <CR> : -
0010 FOR I=1 TO X : Enter <CR>

- - : Enter <CR> (display command) -

0010 FOR I '

u
—
-3
o
Cose

When you exit the implied MODIFY command the syntax of the statement is re-examined
for errors. If no more errors. are detected the statement is saved (or executed if
an immediate statement) and control of BASIC returns to the mode it was in (in the
above case it returns to the command mode). .

As another example, consider the following:
-10 PRI SQR(23;NOW IS THE TIME;AB<CR>

.Missinﬁ parentheses .

0010 PRI SQR(233:NOW IS THE TIME;Ang Enter I

0010 PRI SQR(233:NOW IS THE TIME;A$B Enter)

0010 PRI SQR(23¥;NOW IS THE TIME;AB Enter <CR>
-Comma required -

. 0010 PRI SQR(23);NOW IS THE TIME;A$B Assumes NOW is variable name
0010 PRI SQR(23);NOW %S THE TIME;A$B Enter back space
0010 PRI SQR(23);NOW_IS THE TIME;A$B Enter back space
0010 PRI SQR(23);NOW IS THE TIME;A$B Enter back space
0010 PRI SQR(23);NOW IS THE TIME;A$B e Enter 1 ,

0010 PRI SQR(23);NOW IS THE TIME;A$B Enter ¥

0010 PRI SQR(23):WNOW IS THE TIME;A$B Enter F;

0010 PRI SQR(23);"NOW IS THE TIME:;A$B Enter 1

0010 PRI SQR(23);"NOW IS THE TIME;A$B Enter "

0010 PRI SQR(23);"NOW IS THE TIME";AB Enter <CR><CR>
Comma required : :

0010 PRI SQR(23);"NOW IS THE TIME";A$B: Enter I

0010 PRI SQR(23);"NOW IS THE TIME";A Enter ; .

0010 PRI SQR(23);"NOW IS THE TIME";A$;B$ Enter §g§§<CR>

: Enter
10 PRINT SQR(23);"NOW IS THE TIME";A$;B$.

3.4 Consistency in Listing

Because OASIS BASIC is an interpreter/compiler it saves statements in a compact,
coded format. When a pro%ram listing 1is requested (or even a single line
displayed) the coded format must be expanded to a display format. It does this
expansion in a very consistent manner--consistency is desirable in programming:

All keywords and verbs are always spelled out fully.

All keywords and verbs are surrounded by spaces.

Multi-statement line separators are surrounded by spaces.

Lists of variables, expressions, -and line references are separated by
their proper punctuafion. :

I/0 channel specifications are surrounded by spaces.

Commas are added when the statement syntax requires.

Expressions are displayed without any embedded spaces.

The assignment operator is surrounded by spaces. ,

Any leadi spaces in a line are maintained.

String 1literals are always surrounded with the double quotation mark
character ("). :

For example, the following is performed (entry and display):

- 10 = ’ BASIC Rev B

CHAPIER 3: BECOMING FAHILIAR WITH BASIC

-AUTO<LCR> - : -
10 REM This is a remark(
20 IF (A$ > B$) * 5/ (5+ VALUE%) THEN GO SUB 1000\STOP<CR>
0 A=23 # BLCR>
~ BO<CR> . -
-~LIST<KCR> -

10 REM This is a re
gg iF (A$>B$)'5/(5+VALUE%) THEN GOSUB 1000 \ -STOP

~ BASIC Rev B , -1 -

CHAPTER A
‘PROGRAHHIEG IN BASIC
4.1 Structure of a BASIC Program

A BASIC program consists of a set of statements constructed with the language
elements and syntax described in the following chapters. Expressions, 1line
numbers, labels, and statements are goined to solve a particular problem, with each
“.line containing instructions to BASIC. :

llai.i Syntax

Syntax is a term refering to the striucture of the parts of a statement and the
punctuation characters separating those parts. As an examgle, the syntax of a
sentence in the English language is: <subject> <verb> <object> <punctuation>.
Unfortunately for elementary school children {and university professors) the syntax
of sentences has many acceptable variations with each variation having variations
and options and exceptions.

On the other hand, computer languages are very structured with very specific syntax
requirements for each statement (sentence). There may be options to the structure
butf there are no exceptions. . : ,

§.1.2< Character Set

OASIS BASIC uses the full ASCII (American Standard Code for Information
Interchange) characte_r- set for its alphabet. This set includes:

® letters A through Z , -
® Letters a through z :

® Numbers 0 through 9

Special characters (see ASCII character set in appendix).

This character set enables you to include any ASCII character as part of a program.
BASIC translates the characters that you type into machine 1language; some
characters are processed and some are left as entered.

The BASIC editor translates characters in ﬁhe follbwing manner:

® Letters A through Z - left as entered.

® Letters a throu z = left as entered if in a statement remark or
string literal (enclosed in quotation marks); translated to upper case
equivelent in all other contexts. :

® Non displayable characters (BELL, DC1, FS, etc) - ignored.

& Other control characters - .

BS treated as editing character (backspaces one position); is not
entered into the actual line.

HT when entered after line number and before the start of the
statement: translated to five (5) spaces; when entered in middle: of
statement translated into one space.

LF ignored.

VT ignored.

FF ignored. : .

CR treated as end-of-line character. In auto entry mode the next line
number will be displayed.

® Special characters: —
3+ When entered at start of statement is translated into REM.
Statement separator for multi-statement line. :

3.1.3 Line Format
The general format of a program line is as follows:
line number 'label verb operand
1010 LABEL: PRINT SQR(X"2+Y"2)
All lines in a BASIC program must begin with a line number. This number must be a
positive integer within the range of 1 through 9999. A BASIC 1line number is a

label that distin%uishes one line from another within a program and determines the
placement of that lIine in the program.

Leading zeroes (as well as leading and trailing spaces) have no effect on the
number. However, you cannot have embedded spaces within a line number.

—

-12 - | BASIC Rev B

CHAPTER 4: PROGRAMMING IN BASIC
4.2 Statements ‘ ‘

-BASIC statements consist of keywords that you use in conjunction with the elements
of the language set: constants, variables, and operators. These statements divide
into two major groups: executabie statemenfs and non-executable statements.

At least one space or tab must follow all statement keywords in order for BASIC to
recognize the keyword as such. For example: - _

Acceptable . 10 PRINT CUR.DATE$
Unacceptable 10 PRINTCUR.DATE$ —

Some keywords consist of two words such as PRINT USING, ON ERROR, MAT INPUT. These
keywords must also be separated by at least one space or tab character. Two
- exceptions to this are the GO TO and GO SUB keywords. It is acceptable to use the
keywords GOTO or GOSUB without a separating space. .

Statement keywords are reserved, _and therefore, cannot be used as a variable name
(see appendix "Reserved Keywords"). However, keywords can be used as line labels.

3.2.1 Single Statement, Multi-Statement Lines

You have the option of typing either one statement on one line or .several
statements on one line, o ,

N

A single statement line consists of:

A line number (from 1 to 9999). _
An optional line label followed by a semicolon (:).
A statement keyword.

The bOdi of the statement.

A line terminator.

This is an example of‘a‘single statement line:
10 PRINT.A,BETA®TODAY+3.

To enter more than one statement on a single line (multi-statement line), separate

~ each complete statement with a backslant (\). The backslant symbol is the

statement separator. You must type it after every statement except the last in a

%gﬁﬁ%-sgagemeng line. For example, the following 1line contains three complete
statements: - :

10 PRINT ALPHA$;BETA; \ PRINT CUR.DATE$ \ PRINT "Total =";TOTAL

The line number 1labels the first statement in a line. Consequently, you must take

this into consideration if you plan to transfer control to a particular statement

gﬁthig % pro%ram. For instance, in the previous example, you cannot execute just
e statemen .

PRINT CUR.DATE$.
without executing PRINT ALPHA$;BETA; and PRINT "Total =";TOTAL
All executable statements can appear in a multi-statement line.

The rules for structuring a multi-statement line are: .
® Only the first statement in a series has a line number.

® Only the first statement in a series can have a line label.
& Successive statements must be separated with a backslant.

4.3 Line Labels

All OASIS BASIC lines have line numbers and the line may be referenced by other
statements using the 1line number of the line (GOSUB, GOTO, etc.). Lines may also
have a line label. ' ,

Line labels are useful for referencing lines when the line number is unknown, when
you wish to "document" the function of a line or sequence of lines, etc.

A line 1label consists of one or more letters, digits, or periods with the first
character being a letter. There is no limit on the length of a line label but you
should use labels that are short, but still meaningful (you have to type the entire
label each time it is referenced).

BASIC Rev B -13 -

BASIC REFERENCE MANUAL

A line label must be unique within a program. When a line label is defined it must
precede any statements on the line and be separated. from the first statement by the -
colon character (:). . . ' .

The fqllowing'linesfare>all acceptable uses of line labels:

10 MAINLINE: WHILE CONTROL = 0

20 GOSUB INPUT.ROUTINE o

0 IF INPUT$ = "" GOTO ERRORS

0 INPUT.ROUTINE: REM Subroutine to accept input

It is germissible for_a line label to be a keyword (né confusion arises due to the’
ioggex R%ﬁ which a line label appears), however a label may not start with the
. letters . , : -

4.4 Documenting Prdceduréa

BASIC allows y6u ‘to document your methods insert notes and eommenfs, or leave
yourself messages in the source program. This type of documentation is known as a

remark or comment. There is only one way of inserting comments within a BASIC
Source program: the REM statement. v ‘ ’ '

~

-BASIC ignores anything in-a line following the keyword REM including a backslant
character. The only character that ends a REM statement is a line terminator.
Therefore, a REM statement must be the only statement on a line or the last
statement in a multi-statement line. - : ‘ ’

.10 LET A=B REM Variable A receives current value of B

You can use the semicolon character (;) instead of the keyword REM. BASIC will

translate this into the keyword REM and display it as such whenever a listing is
produced. . : ’)

You can use the iine "number of a REM statement in a reference from another
statement, i.e. GOSUB. .

Another method of documentation, used in conjunction with remarks, is indentation.
Any spaces or tabs entered between the line number and the first character of the
line will be maintained by BASIC for listing purposes. This allows you to show the
structure or hierarchy of the program. ,

Remarks and/or leading spaces have no impact on a program after it is compiled (one
of the functions of compilation is to remove these from the program).,

Refer to thé_ appendix containing 'program examples for illustrations of
documentation techniques. ' : ,

4.5 Entering and Modifying Pnogra-s‘A

OASIS BASIC allows programs to be entered debusged, and modified while in the
BASIC environment. Refer to the chapter on %BASIC Commands" for information on the

use of the commands in editing a program (AUTO, CHANGE, DELETE, DISPLAY, DOWN,
LIST, LOCATE, MODIFY, and UP). ,

It is important to note that BASIC performs syntax analysis when the statement is
entered, not when the statement is executed. This not only increases the speed of
~execution but also- prevents any syntax errors from be¥ng entered. The main
advantage of this pre-execution syntax analysis is that the program is free of all

syntax errors . even though some of the ines in the program have never been
executed.

-1 - BASIC Rev B

CHABTER 5
’) ELEMENTS OF THE BASIC LANGUAGE v
In order to write programs in BASIC you must be familiar with the terms and phrases
used to describe the program elements. You will probably recognize most of these
terms from previous experience; however, the following sections define these terms
within the context of OASIS BASIC. :
5.1 Constants ‘

A constant is an element whoée value does not and cannot be changed during the
execution of a program. : : .

There are three types of constants in BASIC: _
& Numeric éalso called floating point numbers)
& TInteger (whole numbers) .
‘ String (alphanumeric and/or special characters)
5.1.1 Numeric Constants , - .
A numeric constant is one or more decimal digits, either positive or negative, with
a decimal - goint specified. (The decimal point may be omitted when the constant is
a whole number outside of the range +32767 to =327b67.)

The following are all valid numeric constants:

25, 3.14159 . 234567
-1234.01 ~.000002 32760. :
12345678901.23 29876543210123 21234567890123

Numeric constants cannot contain any embedded space characters.

g@sgg‘aecepts and ‘maintains numeric constants within a range of 13 significant
igits. : - - 4 .

When you type a numeric constant with more than 13 significant digits specified the
excess, least significant digits will be truncated. ‘

It is possible to enter and maintain a number that is outside the range of
precision by using an alternate format: :

{+ Or =>X.XXXXXXXXXXXXE<+ or =>nnn
Where:

<+ or -> is the sign of the number. The plus sign is optional with positive
numbers; the minus sign is required with negative numbers.

X is the number with up to 13 significant digits.
E represents the words "times 10 to the power of"
nnn is the exponential value (the power of 10) in the range of +126 to =126

This method of mathematical shorthand is called E format, floating point notation,

or scientific notation. It is BASIC's way of representing scientific notation. To

use this format, append the letter E to the number, follow the E with an optionally

gignﬁd integer constant. This constant is the exponent--it can be 0 but never
ank, :)

The following are all valid numeric constants, E format:

1.2568E10 8.25&681%2525 E-120 1235E-30
-1.234567890123E-126 2358.256824798E2 1.2E60

All E notation numeric constants are normalized after entry, that is, the decimal
point (and the nnn value) is adjusted to be after the first significan£ digit. For
example, entry of the constant 12345.58E10 will be normalized to be 1.234%58E+O1&.
If a number entered in E notation can be expressed in normal notation, it will be.
For example, entry of the constant 1.25E6 will be printed as 1250000. :

5.1.2 Integer Constants

An integer constant is a special type of numeric constant that is a whole number
(no fractional part) written without a decimal point and in the range of +32767 to
-32767. For example, the following numbers are all integer constants:

BASIC Rev B :) - 15 =

BASIC REFERENCE MANUAL
\ o . =1234 -
25 v -15 100
32767 ' ' - =32767 10000 ‘
Integers, though normally entered in decimal format (base 10) may be entered in
hexadecimal format (base 16). When this is done the integer constant must ' be
terminated with the letter H. Hexadecimal values may use the digits 0 through 9

and the letters A through F. A hexadecimal constant must start with a digit (use a
zero if necessary). ' - o

The following are all acceptable hexadecimal integer constants:

123 4H OABH : 245H
OFFFFH . -1234H . OFH

The foilowing are all unacceptable integer. constants: -
12AB , Invalid decimal or missing "H"
OFFFGH - G is not valid hexadecimal character
123456 Qutside of range of integer
1.24 . Not an integer
12E10 Outside of the range of an integer

5.1.3 String COnsfants

4 string constant (also called a string literal) is one or more alphanumeric and/or
special characters, enclosed in a pair of double quotation marks (") or single
quotation marks ('). Include both the starti and ending delimiters when typing a
string constant in a program. These delimiters must be of the same type (both
double quotation marks or both single quotation marks).

Each character in a string constant can be a letter, a number, a space, or any
ASCII character except a line terminator. The value of the sﬁring constant is
determined by all of its characters. BASIC maintains every character between the
delimiters exactly as you entered it into the source program.

BASIC does not normally print the delimiting quotation marks when a string constant
is printed on the console, printer, or file. ' . ' .

Quotation marks may be included as part of the text of a string constant by either:
using the opposite type of delimiting quotation marks (i.e. single within double,
double within single); or by doubling the embedded quotation mark ("" or ''). ‘

The following are all acceptable string constants:

String constant , Internal representation
"This is a string constant® This is a string constant
. 'This is also a string constant' This is also a string constant
"Look at Spot's spots." . : Look at Spot's spots.
*Look at Spot''s spots.' Look at Sgot's spots.
"He said, ""Open the book,""" He said, "Open the book."

5.2 Variables

Variables differ from constants in that their values may change during the
execution of the program. For this reason variables are refered to by their name,
not their current value. BASIC uses the most recently assigned value of a variable
when performi calculations. This value remains the same until a statement is
encountered that assigns a new value to that specific variable.

BASIC allows three types of variables:

Tnteger variables (name terminated with
String variables (name terminated with $

The type of a variable is determined by the name of the variable. BASIC allows
variable names to be of unlimited length (a reasonable maximum is about two hundred
characters due to the line length restriction of 255 characters).

& Numeric variables §name terminated with letter, digit, or period)

- 16 - BASIC Rev B

CHAPTER 5: ELEMENTS OF THE,BASICoLAIGUAGB
Variable names for the three types of variables have a common Syntax:

® First character must be a letter (A - Z))

® Subsequent characters are optional and may consist of letters (A - Z),
digits (0 - 9) or the period character (.). - : - :

8% The space character cannot be used as part of a variable name.

® The variable name cannot be a reserved word. ')

The following are all acceptable variable names:

TOTAL SUM - INTEREST

SUB. TOTAL SUM1 . . PRIME. INTEREST
SUB.TOTAL1 CUST.NAME$ P, INT

A INDEX$

BO '
The following are all unacceptable variable names:

1234 Must start with letter _

Ag NE Only special character allowed is period
PRINT Reserved word .
SQR Reserved word

A variable name is identified as one of the three types of variables b{ a
terminating t{pe character. This type character is part of the name and makes the
name different from a variable name with a different type character. For example,
the following three variable-names each refer to a different variable:

CUSTOMER numeric variable;
CUSTOMER% integer variable
CUSTOMER$ string variable)

5.2.1 Numeric Variables

A numeric variable is a named location in which a single numeric value is stored.
Numeric variables contain numeric ifloating point) values. -A numeric variable is
identified by a variable name (discussed above) without a terminating type
character (last character is a letter, digit, or period).

The foilowing abe all‘aeceptable numeric variable names:

A . At - B9
COUNT ' : INDEX . RECORD.NUMBER -
MAXIMUM ; o MINIMUM TOTAL
The following are all unacceptable numeric variable names:
6 TOTAL-TALLY RECORD*COUNT
. 9TOTAL 1A TWO/3

When a numeric variable is first defined its value is set to zero (0). Execution
of the RUN instruction clears all variables. If you require an initial value other
than zero you must assign it with the LET statement.

Note: Because other BASIC languages may not set all
variables to zero before pro&gam execution you should
not rely on this feature. od Erogrammin§ practice
dictates that you initialize all variables at the
beginning of the program. .

5.2.2 - Integer Variables

An integer variable, similar to a numeric variable,'is a named location in which a
single integer value is stored. Inte%er variables contain integers (whole,
non-fractional values). An integer variable is identified b¥ a variable name
(discussed above) with a terminating type character of a percent (%) symbol.

The following are all acceptable integer variable names:

INDEX%

A% : A1%
RECORD% RECORD.NUMBER% CODE%
The following are all unacceptable integer variable names:
A ' B2 ' 1TOTALY
TOTAL1$ - | NAME$ONE REC. INDEX

BASIC Rev B -17 -

BASIC REFERENCE MANUAL

When an integer variable is first defined its value is set to zero (0). Execution
of the RUN instruction clears all variables. If {ou require an initial value other
than zero you can assign it with the LET statement. s

An integer variable always contains an integer value (see integer constants for
restrictions). If a numeric constant or variable is assigned to an integer
variable, BASIC first truncates the fractional part of the floating goint number,
If the resulting whole number is outside the range of an integer (+327067 to ~€2767)
the number is set to 32767 with the proper sign and an error occurs (refer to the
ON ERROR GOTO statement and the appendix on error codes).

When you assign an integer variable or constant to a numeric variable BASIC will
gr%nt t?i numeric value as an integer but maintains it as a floating point number
nternally. _ .

5.2.3 String Variables

A string variable,,is a named location in which a single alphanumeric string of
characters is stored. A string variable is identified by a variable name
(discussed above) with a terminating type character of the dollar sign ($).

The following are all aceéptable string variable names: ~

A$ B5$, " NAME$
CUST.NAME$: DESC

’ CITY$ o
CUST.CITY.STATE.ZIP$ - DEBIT.CREDIT$
The following are all unacceptable string variable names: K
T » 1B COUNTY
CUST-NAME$ $NAME AB
Strings have a value and a length. BASIC initializes all string variables to a
length of zero--referred to as a null string--when a string variable is first

referenced. - During the execution of a program the length of a character string
associated with a string variable can vary from zero to a limit of 255.

5.3 Array Variables

An array is a list or table of numeric, integer, or string variables with one or
two subscripts. The subscript is a pointer to a specific 1location in a list or
table in which a value is stored. You designate the pointer with either one or two
subscripts enclosed by parentheses. When there are two subscripts they are
separated by a comma. The value stored may be a numeric, integer, or string value,
depending upon the array type. .

To name an array start with a numeric, inﬁegeh, or string variable name:

ITEMS ITEMSY ITEMS$
Then add the subscript reference:
ITEMS(4) ’ ITEMS%(2,10) ITEMS$(15)

ITEMS(Y4) refers to the fifth value in the array ITEMS. It is the fifth value
because the first value has a subscript of zero (a number base of 0). This may be
changed by the OPTION statement. _ .

%¥E§§§(2’10) refers to the value "indexed" by row two, column ten in the table

As mentioned,‘an array may have one or two subscripts. The number of subscripts is
refered to as the number of dimensions of the array (see DIM statement). An array
defined with one dimension must always be referenced with only one subscript.

Likewise, an array defined with two dimensions must always be referenced with two
subscripts. ' ‘

Array names must be unique from variable names (the subscript references are not
actually part of the name). This means that after the array ITEMS has been defined
all references to a variable ITEMS are unacceptable because the name ITEMS is an
array and must have subscripts. (The MAT statements are an exception to this
because they only operate on arrays.) An attempt to use a variable name as an array
and a non-array will result in an "Inconsistent usage" error.

- Arrays are defined either explicitly with the DIM statement, or implicitly by using
the array name in an assignment statement (LET) or as a term in an expression.

- 18 - BASIC Rev B

CHAPTER 5: ELEMENTS OF THE BASIC LANGUAGE

When an array. is define& implieitly it is .éutomatically dimensioned with an upper
subscript of ten with one or two dimensions, depending upon the -number of
supscripts in the array reference. For example:

LET ITEMS(4) = 1234

will dimension the array ITEMS to have eleven elements with subseripts: 0, 1,.2, 3,
y, 5, 5’ 7, 8, 9, and 10. B _ P)

LET ITEMS$(2,7) = 23

will dimension the array ITEMS$ to have two dimensions with maximum subscripts of
EBP%?Oﬁaggsgi??nsion. his equates to 121 elements (OPTION BASE 0) or 100 elements

If it is desired to.have eifher’fewer or more elements in an array you must use the .
DIM statement. : C

References to an -array with a subscript greater than the size that the array was
defined as will cause an error to occur (see ON ERROR GOTO statement and the
appendix on error messages). _

Most people find it inconvenient to work with a subscript number base of zero, For
that reason the OPTION BASE 1 statement is provided. Refer to the OPTION statement
for details on its use, , ‘

Note: It is always a good practice to wuse the DIM
statement to define the size of an array to avoid
wasting - storage space and to document the arrays and
dimensions in use.

Arréy Example A ;
As an example let the array ITEMS# be dimensioned to a size of 4 rows EK 8 columns,
e

To accomplish this you would use the statement: DIM ITEMS%(3,7) and layout of
the array would be;) , o
~’ COLUMNS ' ,
0 1 2 .3 4 5 6 7
R 0 { (0,0) { (0,1) | (0,2) | (0,3) | (0,%) { (0,5) | (0,6) | (0,7) |
o 1 e TG, LG, (3 | (L (L5 | (1,8 | (LD |
W2 (2,00 | (2,1 | (2,2) | (2,3) | (2,8 | (2,5) | (2,6) | (2,7) |
s 3 1GoGn G2 NENTR "Gz06) | (3,10 |

(3,3) (3,5)°

5.4 Functions

A funciion, in BASIC, is a special type of variable or constant. It is a
predefined (or user defined) series of numeric and/or string operations.

A function name looks very much like an array name except that instead of one or
two subscripts the function has 2zéro or more Marguments"., The arguments of a
function are values that the function operates ‘on or returns to the statement
referencing it. ’ .

There are three types of functions:

8 ‘Intrinsic functions
® {User defined functions
® USR functions «

A function is wused just like a variable or constant with one éxception: a function
cannot be assigned a value. : : :

The- following are all acceptable function names:

SQR(25) Intrinsic - return square root of 25 -
INT(TOTAL) Intrinsic - return integer value of TOTAL

FNA (A1§ B2) User defined function

USR(3,A 5 USR subroutine function

BASIC Rev B -19 -

BASIC REFERENCE MANUAL
5.4.1 Intrinsic Fumetions

Intrinsie functions ére functions that are aﬁ integral part of BASIC and need not
be defined by the programmer,

The intrinsic functions provided with OASIS BASIC include functions to perform
trigonometric operations, algebraic operations, general string operations, general
numeric operations, logical operations, and screen control operations.

For a detailed description of the intrinsic functions refer ‘to the chapter
"Functions™" later in this manual. :

- Intrinsic function names are all reserved words and as sﬁch, cannot be used as
variable names. (See appendix on "Reserved Words".)

5.4.2 User Defined Funections

A user defined functions is one that must be defined by the programmer in each
program, ,

A user defined funetioh name always starts with the letters FN.

For a description- of how to write a user defined function refer to the DEF
statement. :

When a reference is made to a user defined function name and that function is not
defined with a DEF statement the reference will be interpreted as an array
reference. This may cause an error when the function arguments are analyzed as
subsecripts. '

5.4.3 USR Functions -

A USR function is a call to a user written, assembly language, subroutine.

N

‘There can only be one USR function available at any one time, although it may have
several "entry points®, . oL

Refer to the OPTION USR statement for details on the USR function. Refer to the
OASIS MACRO - Assembler Language Reference Manual for details on writing a USR
unction. . o

5.5 Expressions

Expressions are used extensively throughout this manual and within BASIC itself.
Basically an expression is the specification of a series of operations to be
performed on variables, constants, and functions, resulting in one value.

The use of an expression in BASIC is similar to " expressions you use in your
-everyday work. For example, the term "work week" is used in estimating the time it
takes to do_a particular job. To determine the meaning of the term "work week" you
normally multiply the number of hours a person works in a day by the number of days
he works in a calendar week (normally 8 hours by 5 days). at is an example of an
expression. Of course, in BASIC, you don't exactly use the same wording but it is
quite similar: . ;

- LET WORK.WEEK = HOURS #* DAYS
In BASIC there are several types of expressions:

% jArithmetic expressions
% String expressions
Logical expressions
Relational expressions

The type of an expression is determined by'the type of operations it peﬁforms and
the type of the constants, variables, or functions that it performs the operations
on. L
An expression can be as simple as a single constant or as complex as sSeveral
hundred terms and operators.

- 20 - ' BASIC Rev B

. CHAPTER 5: ELEMENTS OF THE BASIC LANGUAGE
The following are examples of expressions in BASIC: K

2.345 Arithmetic expression
A*SQR(GIRTH%) : Arithmetic expression
NAME$&"abcdef%" String expression
"Name: "&SPACE$(4)&NAME$.String expression

A OR B Logical expression
NOT TRUE% Lo%ical expression
NAME1$ > NAME2$ Relational expression

CAT <= (BIRD AND DOG) Relational expression with
_ logical subexpression

An expression is composed of terms (constants, variables, and/or functions) and
operators (+, *, &, etc.). Operators are either binary operators (operate on two
terms) or unary (operate on one term). An example of a binary operator is the
multiplication operator (%), An example of a unary operator is the negative
operator (-). ome operators can be either binary or unary such as the plus
operator (+). : ’ ,
Expressions are frequently used in BASIC assignment statements (LET) but there are
many other uses for expressions. The syntax of each of the statement descriptions
specifies where an expression can be used and what type of expression is allowed.

Although there are four distinct tyges of expressions many expressions used in a
BASIC program are generally a combination of two or more types of expressions.

5.5.1 Arithmetic Expressions

The arithmetic‘-éxpression is the most common type of expression. An arithmetic
expression has an arithmetic value (integer or floating point) and is defined as:

<arithmetic term> [<arithmetic operator> <arithmetic term>]
Arithmetic term ' '
An arithmetic term may consist of any of the following:

Numeric constant
Integer constant ’
Numeric variable or array
Integer variable or array
Numeric function
Integer function
- Logical expression
Relational expression
Arithmetic expression .

Arithmetic opérators

Operator Function . English
Exponentiation raised to the power
* Multiplication : times
/ Division divided by
+ Addition (or unary positive) plus
- Subtraction (or unary negative) minus

An arithmetic expréssion whose terms are mixed in type (both integer and floating
point) yields a floating point value. An arithmetic expression whose terms are the
same type (all integer or all floating point) yields a value of the same type.

You cannot place two arithmetic operators together unless the second operator is a
unary minus or unary plus. - :

The following are examples of valid arithmetic expressions:

A% Integer result
A%+2% Integer result
SUB. TOTAL+CURRENT®UNIT.PRICE Numeric result
ONEZ *THREE Numeric result
+1/=4 " Numeric result
PI*RADIUS"+2 Numeric result
3%#4/(PI*R"2) Numeric result

. / .
Note that the 1last example uses parentheses. Parentheses may be used anytime to
clarify the sequence of operations or to change the sequence (see section on

BASIC Rev B - 21 -

BASIC REFERENCE MANUAL
"Evaluating Expressions" below).
'5.5.2 String Expressions _
A string expression has a string value and operates only on string terms.
String term _ ' ' _
A string term may consist of any of the following:

String constant

~ String variable or array
String function-
_ String expression

String operator l
A string operator may consist of:

Operator Function English
- . Concatenation is concatenated with
-[n:m] Substring from character n

through m (unary operator)

The concatenation operator allows two strings to be joined . together. Thus
"ABCDEF"&"GHIJKLMN" produces ABCDEFGHIJKLMN. The concatenation operator always
operates on two terms (binary operator).

The substring operator extracts characters from a string. The n in the operator
represents the starting character position; the m in the operator represents the
ending character position. The result of a substring operation is always a stri
of length m-n+1, even when one or both of n and m are greater than the curren
length of the string being operated on. The m value must be greater than or equal
to the n value. The substrinﬁ operator is a unary operator that operates on the
preceding term, rather than the following term like other unary operators. The
substring operaﬁor may be followed by the concatenation operator. ' .

The following are examples of string expressions: (assume all string variables
contain the constant "ABCDEFGH")

Expression ' . - Result
NAME$ ABCDEFGH
"John Doe" ~ - John Doe
A$&"Messa§e" ' ABCDEFGHMess%ge

) géTg$ﬁ", &ST$&" "&STR$(ZIP%) g%gDEFGH,.AB EFGH 12345
tHigALPHAS[4: 91 &ALPHAS[11:12]& """ "DEFGH "
(A$&B$[5:95)[3: 10] _ CDEFGHEF

Note that in the last example parentheses were used. Parentheses are discusséd in
the section "Evaluating Expressions" below. In this example the parentheses are
used to produce a "sub-expression"™ for the second substring operator.

The following are invalid string expressions:

A$/"ABCD" - Cannot include arithmetic operator .
A$[4:1] Invalid substring reference :
A$>B$. Relational expression (see below)

A3&123 Cannot include arithmetic term
A$[2:3]& Concatenation requires two termns

5.5.3 Logical Exbressions

A logical expression operates on‘ihteger values.and producés~ an integer value. A
logical expression is defined as: : _

<arithmetic term) <logical operator> <arithmetic term>
Arithmetic ‘term was defined above in the section "Arithmetic Expressions".

-22 - ' - ' BASIC Rev B

| CHAPTER 5: ELEMENTS OF THE BASIC LANGUAGE
-Logical operators) ’
A logical operator is any Qf the folibwing:

Operator Function - ‘
NOT Invert bits (on => off; off -> on) in one term (unary)
AND ., Tests for bit on in bofh terms ;
_ OR - Tests for bit on in either term '
- XOR . Tests for bit on in either but not both terms .
IMP Test first term--if bit on then bit bust be on in second t
EQV Tests for equality--both bits on or both off .

Logical expressions are comparisons between the corresponding "bits" of the two
terms of the expression. A bit is a binary (either on or off) piece of

information., An integer value is composed of sixteen bits. A decimal integer is ir

expressed in bits by converting the number to base two notation and adding any
leading binary zeros, if necessary. The following is a list of some equivalent
values in decimal and binary: _ o : '

Decimal) Binary'bits

00000000 00000000
00000000 00000001

0

1
5 ‘00000000 00000101
23 ~ 00000000 00010111
100 00000000 01100100
32767 01111111 11111111
-32767 10000000 00000000

-1 M1

' Note that a decimal zero has all zero\bits‘and a decimal minus one has all one
-bits. This relationship between decimal and binary is used in the result of
relational expressions, discussed in the following section.

The terms of a logical expression must be integers. When the terms are floating';_
poigt 13 value BASIC will integerize them before the 1logical operation is
performed. _ v

Logicél expressions are valid wherever arithmetic expressions are allowed in BASIC,
gggevggj both terms must be integers (floating point terms will automatically be -
xe . s - - _

The following tables are called truth tables. The show>€raphically the results of
the logical operations for every possible combination of two bits.

Logical'rruth‘tables;‘

Kor OR

i A% "TTNOT 43 i 7 M B% A% OR BY |

[G I SR A

| L9l] |

b R R 1 |
AND | g XOR

' A% B% A% ANDBY | | A% B% A% XOR B | -

l P |

I S S B S R

L3 o 0 L T R 1 Lo

b1 1 A B 0 !
mr - EQV

i A% B§ A% IMP B | | A% B% A% EQV BY |

I s I O R

b1 o 0 Ll 1 o 0 }

it 11 1 S S B | 1 i

BASIC Rev. B ,) i -23 -

BASIC REFERENCE MANUAL |
- The following aré examples of valid logical expressions:
NUM1§ OR NUM2¢ \ :
1% AND %ﬁ .
g AND (NUMBER XOR TOTAL) IMP TEST%

I
(A AND B) OR (A AND C)
STRING$ >= "A™ AND STRING$ <= "Z"

Note that in the next to the last example parentheses were used. Parentheses are’
discussed in the section "Evaluating Expressions" below. In this example the
parentheses are used to specify the sequence of evaluation. :

The following are all unacceptable logical éxpressions:‘

STRING$ OR "HELP®

ﬁust‘be arithmetic terms
NUM1%4 AND OR NUM2 -

‘Binary ogerators cannot be
. ad jacen

Loiical expressions are normally used to evaluate terms that are the result -of
relational expressions (bits all on or all off); however, since the logical
expression does compare all sixteen bits of each of'éhe terms there are many other
uses for logical expressions. One of the more common of these other uses is binary
coded information or "bit swtiches", d

So?e examples will illuétrate how the logical \operators” work on non-reléfional
values: . : : ‘ '
15 AND 14 _0000000000001111 £15g
AND 0000000000001110 (14
11
1

0000000000001110 (14) (True)

0000000000001010 210;

10 OR 23
‘ -OR 0000000000010111 (23

NOT 153

25 XOR 13
29 XOR 29

234 EQV 3429

NOT

XOR

XOR

EQV

0000000000011111

.0000000010011001

1111111101100110

0000000000011001
0000000000001101

0000000000010100

0000000000011101
0000000000011101

0000000000000000

0000000011101010
0000110101100101

(31) (True)
(153) ,
(=154) (True)
2

(333

(20) (True)

2

(333

(0) (False)
234) -
(2320

1111001001110000 (-3472) (True)

0000000000111000 gss)
IMP 0000001011010000 (720)

1111111111010111 (-41) (True)

As you can see there doesn*t appear to be a relationship between the decimal terms
and the decimal result of the expression; however, using the binary representations
of the integers (as BASIC does) there is a definite, Boolean, relationship. This
can be utilized to make an integer value contain sixteen, binari (on/off) switches.
When using binary switches the logical expressions can be utilized to set or mask
the number to expose the bit switch desired. ’

56 IMP 720

- 24 - BASIC Rev B

. CHAPTER 5: ELEMENTS OF THE BASIC LANGUAGE
5.5.% Relational Expressions S o
A relational expression operates on numeric or string terms and'prbduces a sixteen
(16) bit integer value of -1 (true - all bits on) or 0 (false - all bits off). A
relational expression is defined as:
' <arithmetic term> <relational operator> <arithmetic term>
Loy or .
<string term> <relational operator> <{string term>

Arithmetic and strin terms were defined above under‘ thé sections "Arithmetic
Expressions" and "String Expressions®™ respectively. -

Relational operators
A relational operator is any of the following:.

Operator - Function
> , Greater than
o= , , Greater than or equal to
< . Less than
<= : + ~ Less than or equal to
= ‘Equal to
<O Greater than or less than (unequal to)

The following are all acceptable relational expressions:

STRING$ > "HELLO" - ‘String relation
NUM1 <= NUM2 : Numeric relation
" NUMBER% <> 225%(5-0ONE) Numeric relation with
S "arithmetic sub-expression
539 = ONE 7 Numeric relation (not assigment)
The following are all unacceptable relational expressions: . ‘
"Goodbye" <> 25 : Can't mix string with numerics

NUM1 # NUM2 : Invalid operator
5.5.5 Expression Evaluation -

BASIC evaluates expressions accordin to operator precedence. Each arithmetic,
string, logical, and relational operator %oining an expression has a predetermined
osition in the hierarchy of operators. he operator's position tells BASIC when
o0 evaluate the operator in relation to the other operators in the same expression.

Parentheses may be used to change the sequence of evaluation of an expression.
Nested parentheses (one set of parentheses within another) may be used to cause the
innermost subexpression to be evaluated first. '

‘Parentheses may also be used as a documentation aid to clarify a complex
expression. - :

The folloﬁing table lists' all of the expression operators in the hierarchy of
evaluation.

BASIC Rev B -25 -

BASIC REFERENCE MANUAL . S
S ‘Operator Precedence

Operator N { Hierarchy

)
- * (exponentiation)
funetions ‘
substringing
unary ‘
unar{ S
multiplication)
division
addition
subtraction)
concatenation)
%reater,than)
= (greater or equal)
(less than) :
= (less_then or equal).

= (equal -
<> (unequal) -
NOT . , .

AND -
. XOR T

EQV

IMP

"N AAVVRY +\us'ﬂ_+
-~

b b ok - B '

Notice that some operators have the same hieraréhy number. This means that they
are equivelent in precedence and will be evaluated in a left to right manner. This
also gpplies to an expression with more than one occurence of the same operator.
As an example, consider the-following expression:

A = 15%2+412°2-35%8 |

BASIC evaluates this expression in five, ordered stebs:

1. 1572 = 225 Exponentiation éleft most) .
2. 1272 = 14}]Exfonentiation next) .
g. 35%8 = 280 Multiplication
. 225+144 = 369 Addition
5. 369=-280 = 89 Subtraction
Result is 89 -

Agithmetié expressions with mixed arithmetic types (floating point and integer)
will "float" all of the terms before expression evaluation.

‘As mentioned, parentheses can alter the sequence of evaluagion (and possibly, the
result). Considgr the following, similar expressions and evaluations:

25°2+30%2/2 : (25%2+3072)/2
_ 1. 2572 = 625 - 1.2572 = 625
2. 3072 = 900 2. 30"%2 = 900
'30 200/2 = 1‘50 ze 25+900 = 1525
. 6254450 = 1075 _ . 1525/2 = T62.5
Result is 1075 ~ Result is 762.5

Note that in the above precedence table the relational operators have precedence
over the logical operators.

Consider the foliowing’expression and evaluation:
mpgnywgw QR mpm<znpm

1. "AnSWRW - 0000000000000000 (false)
2. WAWC=MDW - .1 - 1111111111111111 (true)
3.0 OR =1 = =1 ~ 1111111111111 (true

- 26 - _ " BASIC Rev B .

CHAPTER 6
. FORMATED OUTPUT

Sometimes the format of output is as important as the content. - BASIC grovides a
means of controlling this format with the PRINT USING statement: - and the FORMAT$
function. Both the statement and the function allow you to control the appearance
of data, thus enabling you to create formatted list, tables, reports, and forms.

The following exémple programs print a. series of numbers. One program uses the
PRINT statement and the other uses the PRINT USING statement.

S ' _ , 0005 MASK$ = "#, #######, ##-"
0010 PRINT 1 ' 0010 PRINT USING

MASK$, 1

0020 PRINT 10 : o 0020 PRINT USING MASK$,10
0030 PRINT 123.5 : . 0030 PRINT USING MASK$,123.5
0040 PRINT 100 , 0030 PRINT USING MASK$, 100
0050 PRINT 23433 0050 PRINT USING MASK ,.23u38
0060 PRINT 1000000 , - 0060 PRINT USING MASK$,1000000
0070 PRINT -3 0070 PRINT USING MASK$,=-3
-RUN -RUN .

1 . ' , , 1.00

10 ' 10.00

123.5 123.50

100 o 100.00

0.23433 ; i S 0.23

1000000 - 1,000,000.00
-3 . 3.00~-

/

As can be seen the PRINT statement left justifies numbers, performs no rounding,
and indicates negative values with a leading, floating, minus sign; PRINT USING
(and the FORMAT$ function) allows you to format numbers in several ways, making it
easier to read and intepret the output. - - X .

There are several number formatting functions £hat the PRINT USING statement and
the FORMAT$ function allows you to specify: ;

Number of significant digits. -
Location of decimal point. :

Exponential format. :
Inclu?ion of special symbols (asterisk fill, dollar sign, commas, leading
zeros). o

Alternate methods of indicating negative values (trailing sign, < >,
trailing DB or CR). '

There are also several string formatting functions that the PRINT USING statement
‘allows you to specify: - ;

Number of characters.

- Left justified format.
Right justified format.
Center justified format.
Extended format.

All of the formatting functions for the PRINT USING statement and FORMAT$ function -
are sgeeified by using a mask that contains the formatting information. For
details on the general syntax of the PRINT USING statement and FORMAT$ function
refer to their respective sections. A ‘ v

PRINT USING and FORMAT Masks

 PRINT USING and FORMAT$ masks are string expressions that contain formatting and
non-formatting characters that control the format of the field output.

A PRINT USING mask ma{ contain the format information for more than one field; a
FORMAT$ mask ‘contains the format informattion for only one, numeric field.

Non-formatting characters include any, and all, characters not specified here as
formatting characters and act as literal information and field separators. These
non-formatti characters will be included in the outpuf, field. Formating
characters that operate in gairs (\\ $$ **= DB CR ") will act as
non-formatting characters if they appear separately ($ * DB C R “). Additionally,
the formatting characters comma, period, minus, DB, CR,~ +, and > act as
non-formatting characters. if - £hey‘ appear separate from a numeric field
specification. ,) o

)

BASIC Rev B | -27 -

. function.

BASIC REFERENCE MANUAL
For example: - =

0010 PRINT USING "Example 1: ##",1 ~
10029 PRINT USING "This is a'DB récord 99", 1
Examplé‘1: 1
This is a DB record 01

6.1 Numeric Field Masks

Numeric field masks may be used for both the PRINT USING statement and~the FORMAT$

A numeric field mask requires a numeric value as input. When an attempt
‘ 121?ade to use a numeric field mask with a string field the error "Invalid using"
W oceur, ~ . . , :

The output of a numeric field specification mask will always be the same length as
the length of the specification mask (unless there is insufficient space--see
PField Specification too Small™). If necessary, the number to be output is rounded
by truncating digits to the right of the decimal point not specified in the mask or
- rounding the last digit specified to the right of the decimal point if the next

digit was five or greater. When a number must be rounded to make it fit in the
speci{ied mask rounding will be performed on the absolute value of the number. For
example: . .

0010 PRINT USING "##",1.4,1.5,1.6 - 0010 PRINT USING "##%,=1.4,=1.5,=1.6
RUN RUN ;

I -1
2 . _ -2

" 6.1.1 Specifying Number of Digits

All of the numeric, formatting characters are used to specify the total length of
the output field; however, only the #, 9, comma, **, and §$ are used to specify the
number of digits to be included. éonventionally, the # and/or

used-to specify the number of digits. o

The 9 character reserves space for one digit and, if it appears before the decimal
point specification, indicates that leading zeros are not to be suppressed. The 9
character cannot be used to format negative values.

9 characters are

The # character reserves Spaée for one digit and indicates that leading zeros are
to be suppressed. : _

The # and 9 chéracters may be mixed; however, if one or more 9 characters appear
before the decimal point. specification, leading zeros will not be suppressed.

When no sign specification is used and a -negative value is output, a leading,
floating, minus sign will be output, using one of the digit positions (as stated
earlier, the output field will always be the same length as the mask field).

For example:

0010 PRINT USING " #",1 0010 PRINT USING " 9",1
0020 ‘PRINT USING " . ##",1 0020 PRINT USING " 99", 1
0030 PRINT USING M#####",1 0030 PRINT USING "99999",1
0040 PRINT USING "9####",1 0040 PRINT USING M#o#9#" 1
0050 PRINT USING "J####n-1 0050 ERINT USING #99999-4,-1
0060 PRINT FORMAT$(23," #HH") 0080 PRINT FORMAT$(23;Po#d##n)
1 , 1
1 C 01
1 . 00001
00001 00001
-1 : 00001~
23 00023

6.1.2 Decimal Point Specification

You can specify the number of digits to the left and right of the decimai point by
using a period embedded in the number field specification. The number of digits to

the right of the decimal point specification will always be printed, even if zeros
are required to do so. T

If one or more digits are specified to the left of the decimal point there will
always be at least one digit output, even if a zero is required to do so, unless

- 28 - BASIC Rev B

A | CHAPTER 6: FORMATED OUTPUT
there is only one place specified, the number is -negative and less than one; and
i

there is no sign specification used, in which case the negative sign will be output . ‘
immediately before the decimal poiné. . : :

Specifyihg’fewer'places to the right of the decimal point than the number actually
contains will cause rounding to occur to allow the number to fit., Specifying fewer
places to the left will cause an error (see Specification too Small). : ,

Only one decimal point mayk be specified in a-numericlfield mask. Specifying a
second decimal point will indicate the end of the mask field and the start of .
another numeric field. ; ' ' o

. For example:

0010 PRINT USING " AEN,0 0010 PRINT USING "

.99",0
0020 PRINT USING " #.44%,1 0020 PRINT USING " 8.98"&1 _
0030 PRINT USING " ##.##",1.2345 0030 PRINT USING "99.99-",-.2
O%Ug PRINT USING,"#####;####“,1.24 . Ogug PRINT USING "™ 9.999",-.234569
.00 ! . . . 000

1.00 ~1.00

1 023 ’ 00020-

1.2400 %-.234569

6.1.3 Comma Specification . , ~

Commas may be inserted in the output field by’using the comma character‘anywhéfe in
the field, to the left of the decimal point specification, if wused.

When the comma- character is - used the output field will be formatted with a comma
agpearing every third digit from the decimal point (or least si%nificant digit if
the decimal point specification is not used), working from right to left. .

The comma character is al§o a digit specifier.

More than one comma may be specified for easier reading of the format mask:
#, ######4#+ has the same effect as #i##,###,### although the second form is more
graphic in its meaning.)

For example: .

0010 PRINT USING "#,####" 1 10010 PRINT USING »##, #4#7, 1234 .

0020 PRINT USING "#'#####4#44#4" 1E9 0020 PRINT USING "#,%H##,#44, 343", 1E"9

0030 PRINT USTNG "#h, d##Ht. 447, 1234 56 0030 PRINT USING ng’ 544 #4838, 1234756

1 odo1boo 000 | ~ 128362000, 000 |
77711234 56 | 7711234 56

6.1.4 Dollar Field Specification

A number may be formatted with a dollar sign immediately before the most
significant digit by using the floating dollar sign specification of two dollar
8ign characters together. (To format a number with a dollar sign before the field
uge a tsi,ngle dollar sign character and it will be treated as a non-formatting
character.) |

The double dollar sign characters must be at the start of the field (the asterisk
fill specification, if used, must be before the floating dollar sign
specification).

The double dollar sign characters indicate that a floating dollar sign is to be
generated and one position is to be reserved for a digit. _ ‘
If the number to be formatted is negative you must use the sign specification,
otherwise a using error will occur. :

The numeric field specification character 9. ma not be used in a field with
floatin%,dollar sign specification. When it is it will be interpreted as the end
of the field and the start of the next numeric field.

Extra dollar sign characters may be used instead of the # character. For instance,
$$38888$ is the same as $$##H###. , -

BASIC Rev B _ =29 -

BASIC REFERENCE MANUAL

For example:

PRINT USING "

0010. PRINT USING "$$###. #4712 0010 %ﬁw 1

0020 PRINT USING " #1533y 0020 PRINT USING "$$,##43%. 34" 12315 |
ogég PRINT USING "Ei A AT 0030 PRINT USING nSbiia a3 8 :
-’125;'88~ o - %12 33% 00 ’ ' o -
2123uloo- - . o g12§3u5ioo~ -

6.1.5 Asterisk Fill Specification

A number may be formatted with leading asterisk instead of leading zeros by using .
the asterisk fill specification of two asterisk characters.

The asterisk fill specification, if used, .must appear at the very start of a
numeric field specifiqation. s

The double asterisk characters indicate that any leading zeros are to be replaced
with asterisks and that two positions are to be reserved for digits.

If the number to be formatted is negative yodrmﬁst use the sign specification,
otherwise a using error will occur. N :

The numeric field specification character 9 may not be used in a field with
asterisk fill specification. When it is it will be interpreted as the end of the
field and the start of the next numeric field.

Extra asterisk characters may be used instead of the # character. For instance,
RERRARXE i3 the same as *R{FF##d. ‘ ,

For example: A . , N
0010 PRINT USING "*%## #4#",123 0010 PRINT USING m### ggw 123

0020 PRINT USING "**##.##-“,-123 0020 PRINT USING ”**ii.##" 1
0030 PRINT USING "*#$$$$3-",-2 0030 PRINT USING "** ", .5678
:153.88 - \ , - ;;23,08

wa¥Rigo_ : , ;&ﬁ%’o

6.1.6 Sign Specification

BASIC provides several methods of specifying how to print signed values. As stated
above, when the mask field does not specify how to format a negative value, a
leading, minus sign is generated. This is unacceptable in many cases and,BAéIC
will no£ allow it if the format sgecifieation includes leading zeros (9), floatin
dollar sign ($$), or asterisk fill (**), In these situations you must use one o
the sign specification characters. : : : -

All of the sign specification characters, when used, must appear at the end of
format field (if they aggear at the beginnin§ or middle of a format field they will
be treated as non-formatting characters or field separators, respectively).

Trailing Sign Specification

A plus sign character (+) at the en& of a format specification indicates that
the sign of the field (+ or =) is to be output at the end of the number. -

Trailing Minus Sign Specification

A minus sign character (-) at the end of a format specificétion indicates that
the _sign of the field (-~) is to be output at the end of the number if the _
value of the number is less than zero. ’

Trailing Debit Sign Specification : ,
Debit specification characters (DB) éggearingr at the end of a format

specification indicate that a literal is to be output at the end of the
number if the value of the number is less than zero.

Trailing Credit Sign Specification 1
Credit specification characters (CR) aggearing at the end of a format
specification indicate that a literal is to be output at the end of the
number if the value of the number is less than zero.

- 30 - BASIC Rev B ~

| CHAPTER 6: FORMATED OUTPUT
Angle Bracket Specification ‘ _ , . ,
An angle bracket character (>) at the end of a format specification indicates

the. the number is to be surrounded with angle brackets if the value of the
number is less than zero. -

'Note that this specification is somewhat different from the other ‘- sign
\ specifications in that not only is a character added at the end of the number
' output but also at the beginning of the number.

-

“ This sign speeificétion may not be used with the numeric field specification

characters 9, $$, or ##%, ‘ -
Negative value"specifications may be used with any - of the other numeric field.
- formatting characters with the exception of exponential field specification.

Examples: .
0010 PRINT USING "####+",123 ‘ 0010 PRINT USING "####+",=-123
- 0020 PRINT USING "####-"&122 0020 PRINT USING "####-",-123
0030 PRINT USING "####DB",123 0030 PRINT USING "####DB",=12
0040 PRINT USING "####CR",123 0040 PRINT USING "####CR",=12
0050 PRINT USING "####>",123 0050 PRINT USING "####)",-12%
Ogug PRINT USING "######.##>",12 O%gg PRINT USING "######.##>%,-12
123+ . : 123~
123 , : 123=-
123 123DB
123 - 123CR
123 - <123>
12.00 . <12.00>

'6.1.T Exponential Field Specification

BASIC normally prints a. number - in E format only when it is larger than 13 digits
long, for example: 12 u56782012%u5 would be printed as 1. %h567890123E+ 14,
However, with PRINT USING or the FORMAT$ you can force a number to be output in E
-format. This is done with the exponential field specification: o '

When a number is to be formatted in E 'format you cannot specify an other
formigtin%)charaeters other than the number of digits (#) or the decimal point
position (.

The exponéntial field specification, when used, must be at the end of the numeric
field specification: ##.###4#°°°"", .

The exponential field specification maK be used with fewer than five up-arrow
characters when it is known that the exponent will fit in the smaller
specification. For example: - ‘ o

~e~e% allows for exponents from -126 to +126
allows for exponents from -99 to +99
allows for exponents from -9 to +9
allows for exponents from 0 to 9

ARAAAN
AAN
AL

For example:

0010 PRINT USING "#.##°~~""% 124 |
0020 PRINT USING "#d#d#####~"2"%n 123415
0030 PRINT USING "Hé###,Hiis 12345678
0QUQ PRINT USING "#.#HH# ", 1234567

1.24E+002

153107 6oses3
. +

1-2356E6

6.1.8 'Field Specification too Small ‘ ‘
" When a number field specificatioh does not specif sufficient digit to allow the

number to be output a percent symbol character (%) will be output followed by the
number, unformatted. ~ .

This situation can happen for several reasons:

BASIC Rev B ' -31 -

BASIC REFERENCE MANUAL

Field isn't large enough: mask= ### number = 1234 S '

: Fie%d 1?2'35 large enough to include the commas specified: mask= #,###
number= o : : : - : : i
Fie%d ‘1?22§5 large enough to include floating dollar sign: mask= $$###
numobers . : : ‘ v
F%g%d isn't large enough to include leading minus sign: mask= ### number=

In the. following exampies a double field'mask~is used to print two numbers £he
first number won't fit in the first mask but the second, identical number will fit
in the second mask. ' : - _

0010 PRINT USING "### ####.#4",1234
0020 PRINT USING "#,### ####4",1234
0030 PRINT USING "fé### HHE" 12345
0040 PRINT USING "##### #####",12345
0050 PRINT USING "### ###-",-153,2123
0080 PRINT USING "#.## -~~~ s > "2 n 1,1

0070 PRINT USING "#.##°* #.#4 ***n 1E+15,1E+12

Ule

1234

»12345
12345

12345

)

o e e o ot

123=
-1.00E+000
1000000000000 1.00E+12

6.2 String Field Masks

String field masks may only be used for the PRINT USING statement, not in the
FORMAT$ function. A string field mask requires a string value as input. When an
attempt is made to use a string field mask with a numeric value the error "[26]
Invalid using™ will occur,

The output of a string field specification mask will always be the same 1enﬁth as
the length of the specification mask with one exception: extended fields. hen a
string value is longer than the string field mask BASIC will print as much of the
string as will fit and truncate the remaining.

6.2.1 Single Character
You can specify that only the first character of the string value is to be printed

b{ usin% the single quote character as a- single character string mask field.
Alternately the exclamation mark (!) may be used.

0010 PRINT USING "!", "ABCDEFGH" 0020 PRINT USING "'", wXYAX™
RUN | RUN ,

A . .
6.2.2 Left Justified Field

If you specif{ a left justified string field, BASIC prints the string starting at
the left most position. If there are any unused places, BASIC prints spaces after
the string. If there are more characters in the string value than in the string
mask, BASIC truncates the string and does not print the excess characters.

-To specifg\a left justified string field use the single quote lead in character (')
followed by one or more L characters. The number of L characters (upper or lower
case) plus the lead in quote specify thg length of the left justified field.

B
Alternately you may use the back slant character to mark the beginning and end of
the string mask. In this form spaces must be used between the two back slant
characters. The number of spaces. plus the two back slant characters specify the
length of the left-justified field to be printed. :

With either method the minimum string length is two.

-32 - i BASIC Rev B

‘ CHAPTER 6: FORMATED OUTPUT
For example: N v : o e

0010 PRINT USING "'L","ABCDEF" 0010 PRINT USING “’LLLLL”,"12§4567890“'
0020 PRINT USING ™'LLL" "12%%567" 0020 PRINT USING "'LLLLL“ﬁ"AB -
38%0 PRINT USING ™\ ("," cn ggﬁo PRINT USING "\ \",®"ABCD"

AB ' 123456

1234 AB

ABC

‘ ‘ABCD
6.2.3 Right Justified Field ‘ : , _
If you specify a'right justified string'field, BASIC prints the string so that the
last character of the strin% is in the right most place of the -field, If there are:
any unused places before the string, BASIC prints spaces to fill the string. If

there are more characters in the string value than in the string mask, BASIC
truncates the string and does not print the excess characters.

To specify a right Jjustified string field use the single quote lead in characters
(') followed by one or more R characters, _The number of R characters (upger'or
lower case) plus the lead in quote specify thé length of the right justified field.

For example:

0010 PRINT USING "'RRRRRR","ABCD"

0020 PRINT USING "'RRRRRR","AB"

0030 PRINT USING "'RRRRRR","ABCDEF"

gg 0 PRINT USING "'RRRRRR","ABCDEFGHIJKLMNOP"

N
ABCD

AB
ABCDEF , . . .
ABCDEFG - S ' B - o

' 6.2.4 Center Justified Field

If you specify a centered field, BASIC prints the string so that the center of the
string is in the center of the field. If the string cannot be exactly centered,
such as a two character string in a five character field, BASIC prints the string
one character off center to the left. If the length of the string is longer than
the mask field the string will be truncated. . -

To specify a center Jjustified string field use the single quote léad in. character

(') followed by one or more C characters. The number .of C charactersv(quer or

%gwig case) plus the lead in quote specify the length of the - center justified
e L] ’ ’ B ’

For example:

0010 PRINT USING "™'CCCCCCCCCCY,"ABC"

0020 PRINT USING "'CCCCCCCCCC"™,"ABCDEF"

0030 PRINT USING "'CCCCCCCCCC™, mAn :

0040 PRINT USING. "'CCCCCCCCCC®, "ABCDE" ‘
gggO/PRINT USING "rccccccccec®, "ABCDEFGHIJKLMNOPQRSTUVWXYZ®

ABC
ABCREF
ABCDE
ABCDEFGHIJK

6.2.5 Extended Field

The extended field is the only field that automatically prints the entire string.
When ¥ou specify an extended field, BASIC left justifies the string as it does for
a left Jjustified field, but, if the stri as more characters than there are
places in the field, BASIC extends the field and prints the entire string. This
extension may cause other items to be misaligned. ‘

To specify an extended field use the single quote lead in character (') followed by
one or more E characters. The number of E characters (upper or lower case) plus
the lead in quote specif% the minimum length of the extended field. The resulting
output field will always be at least the length of the mask field. ‘

BASIC Rev B - 33 -

BASIC REFERENCE MANUAL
For example:

0010 PRINT USING "'E-","ABCDEF" _
0020 PRINT USING "'EEEE-", " EF" . ,
gggo PRINT USING "'EEEEEREEEEEEEEEEEEE-" ,"ABCDEFGHIJKLMNOP"

ABCDEF- : . ~
ABCDEF- :
ABCDEFGHIJKLMNOP - = _ _
6.3 Multiple Fields In One Mask

The PRINT USING statement allows multiple fields to be specified in ome mask. When
this is done the values of the expressions in the PRINT USING statement are matched
in a one to one relation with the fields in the mask. (The FORMAT$ function only
allows one numeric field to be specified in the mask. A second field, if
specified, will be used to mark the end of the mask.) : ‘ ‘

For example:

0010 PRINT USING "#i## #### #### ##%”,}65,3,4
s

0020 PRINT USING "999 9999 9999 99%"),123,5,2 2
10030 PRINT USING "'RRRRRRRRAR FPELLD "ITEM§:2§,"THIS IS THE DESCRIPTION"
1 2 3 43 : N - |
100 0123 0005 02% |
ITEM 23 THIS IS THE DESCRIPTION

As mentioned earlier, any non;formattin% characters in the mask field are treate
as literal characters to be. included in the output: , :

gg&o PRINT USING "ITEM 9999 Amount each: $$$$$$.##",23,15.40
ITEM 0023 Amount each: = $15.40
6.4 Re-~using Mask Fields

The PRINT USING statement will re-use the mask field if there are more values
»specified as input than there are fields in the mask. BASIC will output a carriage
return, line feed each time that the mask is re-used. " - ;

For example:

0010 PRINT USING "$$$$$$, 8.4#,1,23.4,34,234,5467.2,1235.924

$1.00 :
§23:00 -
$234.00

5 ,u27 .20
1,235.92

6.5 Using Errors

A using error occurs (and a message is displayed) if:
The format string is not a legal string expression.

There are no valid fields in the format string.

A string is printed in a numeric field. -

A number is printed in a string field. \

P

-34 = : BASIC Rev B

_CHAPTER 6: FORMATED OUTPUT
PRINT USING and FORMAT$ Format Characters - Numeric Fields

Character | Function . . . 5

9 Reserves place for one digit. Also specifies no zero R
:) suppression. - ,

Reserves place for one digit, with .leading zeros

, * suppressed. .
$$.~ | Reserves place for one digit and floating dollar sign.
e , Causes leading asterisks to be printed instead of

spaces. Also reserves place for two digits.

oy Causes a comma to be printed between every third digit
’ ~ starting from the decimal point and proceeding from
right to left. Also reserves place for one digit.

Specifies location of decimal point.

- ‘| Causes a trailing minus sign to be printed when number
—~ - - 1is negative. . : y
+ © 1 Causes a trailing minus or plus sign to be printed ;
, depending upon the sign of the number
DB { Causes a trailing DB to be printed when number is
- negative. . ; ’ :
CR. . Causes a trailing CR to be Brinted_when number is
] negative. - S :
>) Causes a leading, floating < and a trailing > to be

printed when number is negative.

AN

Causes the number to be grinted in E format. Only
allows for single digit, unsigned exponent.

AAA

.Causes the number to be printed inm E format. Only
allows for single digit, signed exponent.

AAAAN

Causes the number to be Erinted in E format. Only
allows for double digit, signed exponent.

Causes the number to be printed in E format. -
PRINT USING Format Characters - String Fields

AAAAAN

Character | Function
i3ttt i 3 it it sttt t i ittt t ittt 1ttt ittt t ittt 1ttt ittt ittt ittt ittt ittt
! | Single character field printed. _
\ Marks beginning or ending of a left justified field
(. and reéserves one place for a character.
' Sinfle character field printed or treated as the
‘ ead in character for following four format :
characters and reserves one place for a character.
L Causes string to be left justified and reserves place
for one character. Also lower case 1. ,
R Causes string to be right justified and reserves place -
~ for one character. Also lower case r. ,
c - Causes string to be center justified and reserves
place for one character. Also lower case c.
E Causes string to be left justified, reserves-place for
one character, and causes entire string to be

printed. Also lower case e.

BASIC Rev B -35 -

* CHAPTER T
: USING FILES

BASIC supports file ineut and output to the on-line disk drives, console %rinters,
and other devices. arious file access methods are supporﬁed: SEQUEN IAL (one
record after another from beginnin% of file); DIRECT (random by relative record
number); INDEXED (random by key); KEYED (random by key). .) -

Files have both an external name by which it is known within the system, and an
internal file designator used within.the BASIC program. For example, a file might
exist on a disk, with the name INVEN.MASTER. This is the external name (i.e., -
INVEN.MASTER:A&° In the BASIC pro§ram it might be opened on channel 1. This is
done through the OPEN statement. All further references to the file in the program
will be to #1 not to the file name of *INVEN.MASTER:A'. '

There are sixteen (16) channel numbers available to the user program, and all
sixteen may be in use at one time. This means that there can be sixteen data files
available for use at any one time in the BASIC program. Each open I/0 channel
requires buffer space and a small amount of space used for pointers, etc. The
amount of buffer space needed varies, depending upon the device.

A seventeenth channel is always open to the CONSOLE. This channel is only accessed
with INP and EOF functions, and the INPUT, LINPUT, and PRINT statements.

The sequence of statements in a BASIC'program that uses a file is:

OPEN o
INPUT, LINPUT, PRINT, READ, WRITE, etc.
CLOSE , : }
OPEN This statement must be used before other file access statements to specify

the file to be used, the internal channel to use for the file, the access
mode and method, and various options that are to be used with the rile.

INPUT,PRINT These statements perform the input and outgut to the file. They are
: gerformed as often as necessary to accomplish the function of the program.
he specific statement to be used depends upon the access mode used in the
OPEN statement and the file format. -

CLOSE This statement is used last ﬁo designate that the operations/to that file
are complete. ’ '

T7-1 Access Mode

There are three types of access modes that may be specified with the BASIC OPEN
statement.

INPUT This mode indicates that the file is to be used for input operations onl{.
. When this mode is in effect BASIC will not allow output type operations to
be performed on the file's I/0 channel. -

OUTPUT This mode indicates that the file is to be used for output operations
only. BASIC will not allow input type operations to be performed on this
file's I1/0 channel. This mode is normally used when a file is first being
built or created or on output only devices like a printer.

UPDATE This mode allows both input and output operations to be performed on the

file.
T.2 Access Methods - File Formats

The OPEN statement requires that you specify the access method of the file. This
is the same as the file's format. :

SEQUENTIAL Indicates that the records in the file are to be read or written

‘ sequentially, one after the other, starting at the beginning of the file.
With this access method, to access any specific record, all records before
that record must be accessed.

Records in this type of file are of variable length and the file does not
have to be pre-allocated before it is’used.

DIRECT Indicates that the records in the file are to be read or written randomly,
by record number. This access method allows any record in the file to be
accessed without accessing any other record in the file (i.e., directly).
This file format is quite useful for frequently accessed master files that

-3 - - BASIC Rev B

CHAPTER 7: USING FILES

have sequenfially numbered keys such as a customer file or a vendor file.
Access to this tyge of file is fast, as the system can compute the address
of the record on the disk without searching a separate index. o

Direct files are only supported on disk devices, and must be created with
the CSI command CREATE,

INDEXED Indicates that the records in the file are to be read or written randomly,
b{ record key. . This access, similar to DIRECT, allows any record in the
file to be accessed without accessing any other record in the file;
however, the record is accessed usigf a -generic kex,.or name, of the
record. This type of file is also maintained in alphabetic sequence by
key and may be read in the sorted order.

Because of the necessity of keepingkthe index in sequence, updating this |
type of file is slower than using the direct or keyed file format.

Indexed files are _only supported on disk devices, and mnmust be created by
the CSI command CREATE, ,

KEYED Indicates that. the records in the file are to be read or written randomli,
by record key. This access is identical to INDEXED except that the file
is not maintained or accessible in any sorted order. i :

T.3 Record Allocation Requirements

Since indexed, direct, and keyed files must be preallocated by the user before the
BASIC program can access them it is necessary for the user to calculate the maximum
record size required for each file. To do this the user must determine the field
types to be written to the file. g ‘ '

For each string field in a record the user must allocate space for the length of
the longest field plus 2. :) ’

For each floating point field in a record the user ‘must allocate space for 9
positions. v

For each integer field in a record the uéer‘must allocate space for 3 ﬁositions.
Thus the record size for the following direct file must be 32:

WRITE #1,&:"RECORD",1,2,A,B
7.4 Multi-User File Protections

A BASIC program run on a multi-user OASIS system will operate the same as on a
single user OASIS system, except that file contention may occur. This means that
two users may attempt to access the same file or the_same record in a file at the
same time. This situation may, or may not be allowed, depending on the file
protections used by the two programs. ‘

A program that doés<‘extensive input and output to a file should lock the entire
filg ro% other user's use. This is done by specifying the LOCK option in the OPEN
statement. : _ .

If a file is not locked in its entirety other users may access the file (unless the
other user attempts to lock the entire file which would not be allowed). :

When a file is opened for INPUT or OUTPUT no record locking will be performed and
it is possible - that a record read by your program might be updated by another
gger;glprogram without your program's knowledge. This could result in errors in
he e. - . .)

When programming in a multi-user system the programmer must always ask the
question: What happens if another user wants this record? and program accordingly.

BASIC Rev B] ' -37 -

BASIC REFERENCE MANUAL

(This page intentionally left blank)

- 38 - BASIC Rev B

CHAPTER 8
COMMANDS

BASIC commands are used . to enter, change, and debug programs. They only may be

used in the command mode.

Command mode is when BASIC prompt character is displayed

BASIC command functions may be divided into four categories:

A. General
HELP
- LENGTH
NAME
NEW
B. Editing
AUTO
BOTTOM
CHANGE
DELETE
DOWN
INDENT
LIST
LOCATE
LPLIST
LPXREF
MODIFY

Display list of commands available.

Display current memory utilization ofiprogram,
Display or change name of program in memory.
Initialize BASIC work area, new program.

Automatic line number prompting for new line entry.
Position to the iést line in the program.

Change string in one or more lines of code.

Remove line(s) of code from program.

List next line.

Perform standard program indentation.

List one or more lines of program.

Locate line containing string.

List oné or more lines of program on printer.

List cross reference table on printer.

Character by character change of one or more lines.

RENUMBER - Renumbervall or part of program.

TOP
UpP
XREF

Position to the first line in the program.
List prior line.

List cross reference table on terminal.

C. Disk programs

LOAD
RUN
SAVE

D. Debugging

BREAK

Retrieve program from disk.
Execute program from disk or already in memory.

‘Save current program on disk

Specify condition to break on.

CONTINUE - Resume execution.

STEP

~ TRACE
UNTRACE
UNBREAK
VARS

BASIC Rev B

Execute next statement and stops.
Display line numbers executed and optionally variables changed.
Discontinue trace mode. A
Remove one or all bréakpoints set.

Display contents of all variables defined.

-39 - COMMANDS

BASIC REFERENCE MANUAL
8.1 AUTO Command

1 AUTO
2 AUTO <start> _
3 AUTO <start)> <{increment)>

Where:
<start> ::= <line number)) N
<{increment> ::= <{line increment value>
I
Purpose: -

The AUTO command allows you to enter new lines to the program with automatic line
numbering. , ' ' .

Comment:

The AUE? command cannot be used if a program in memory is read protected (see LOAD
command) .

The AUTO command is intended to be used for creating new programs or adding new
sections‘to an existing program in memory.

The <increment> value, when specified, sets the current increment value for this
AUTO and subsequent executions of the AuTO command.

When the AUTO command is executed BASIC will display the current line number plus
the current increment on the console (or the <start line number>, when specified)
followed by a space. You may then enter a program line. After a program line has
been entered and terminated by a carriage return, the line number is incremented by
the current increment and the process is repeated.

To terminate the 1line input process enter a carriage return when BASIC prompts you

with the line number. No blank line will be added to the gro ram. Lines entered

with this command cannot replace any line in the program with the same line number

nor can it be used to add multiple lines that merge around existing lines. 1In

quer to add 1lines that merge around exising lines you must enter them one at a
ime.

Examples: : -

~LIST . -

10 INPUT "RADIUS OF CIRCLE",RR

20 PRINT "DIAMETER =";2%R

0 PRINT "AREA =";pT#k*2

0 PRINT "CIRCUMFERENCE =";2#PI*R
=DELETE 10 20 .

~-AUTO
10 PRINT "HELLO"
20 LET R=55
AUTO cannot replace or merge lines

~LIST
10 PRINT "HELLO"
20 LET R=55
0 PRINT MAREA =";PI*R"2
0 PRINT "CIRCUMFERENCE =";2#PI*R
-AUTO 50,3
50 PRINT "AGAIN";\INPUT Y$
5§ IF Y$="Y" THEN 20
oo

I 3 3 1 X 3 - T T T T T T T e T T L T T T O T R P D S D P D G A R S . S e D G D . D P D WD D D
AL 2t ittt it ittt ittt 1 ittt ittt ittt -ttt it

AUTO - J0 = BASIC Rev B

.GBAPTER'B: COHHIIDS
8.2 Bottom Command

————

Purpose: .
T?e bgttom command positions to the last line in the program and displays that line .
of code. '

Co-lent:

The bottom command cannot be used if the program in memory is read protected (see
LOAD command).

Examples:
Sggp at line 0020
999 END

BASIC Rev B C - - BOTTOM

BASIC REFEREICB MANUAL
8.3 BREAK Command

1 BREAK
2 BREAK [AT] <line reference> ‘
3 BREAK [AT] <line reference> [AFTER] <count>
§ BREAK [ON] <variable> |
5 BREAK [ON] <variab1e} CHANGE
6 BREAK [ON] <variable> AFTER <count>
T BREAK [ON] <variab1e>‘CBAlGE AFTER <count>
8 BREAK [ON] <variable> <relation> <value>
Where: , k
<line reference> ::= <line number>
"<line label> -
<relation)> ::= <relational operator>
<value> ::= <numeric literal
{quoted string literal>
<numeric variable>
<{string variable>

See also: STEP, TRACE, UNBREAK, UNTRACE, and VARS commands

Purpose:

The BREAK command provides the capability of dynamic debugging of the BASIC
program.

Comment :

<count> is a numeric value referring to the number of times that the specified
break condition is to occur before a break is actually performed.

<{variable> is a simple numeric variable, not a subscripted variable. An array name
is acceptable.

Format 1 of the BREAK command will display the current break table.

Format 2 will cause a break to occur at the next execution of the statement on the
line referenced, before the statement is executed.

Format 3 will cause a break to occur at the <countd execution of the statement on
the line referenced, before the statement is executed.

Format 4 will cause a break to occur the next time that the <{variable> is used,
after the statement using the variable is executed.

Format 5 will cause a break to occur the. next time that the <variable> is changed
by a statement, after the statement changing the variable is executed.

Format 6 will cause a break to occur after the <variable> is referenced <count>
times, after the statement referencing the variable the <count> time is executed.

Format 7 will cause a break to occur after the <variable> is changed <count> tlmes,
after the statement changing the variable the <count> time is executed.

Format 8 will cause a break to occur when the relationship is true, after the
statement causing the relationship to become true is executed.

The BREAK command may be abbreviated to the letter B.

When a break occurs execution of the pro%ram stops and the message "Break at"
or "Break ON ceee is displayed. Confrol returns to the command mode. When a

break occurs on a variable reference or chan§e the statement causing the break w111
be completly executed. Executing a CONTINUE command will - cause the statement

BREAK - 52 - ' BASIC Rev B

CHAPTER 8: COMMANDS
following to be executed. ‘ B }

0n1¥ one break will be set for a specific variable or line at ‘oné time. When'
multiple break points are attempted to be set for a variable or a line only the
last one specified will be in effect.

Note: Break points are only cleared by the UNBREAK, NEW, and LOAD commands. Durin%
execution, if a different program is brought into memory the old break points will-
still exist. The RENUMBER command does not change the 1line numbers specified in
any break points. K : : .

10 FOR I%=1 TO 4
20 RINT I
0 . GOSUB SUM
NEXT
50 GOTO 9999
60 SUM: TOTAL% = TOTAL%+I% RETURN
9999 END

-BREAK AT SUM

~BREAK ON I% CHANGE AFTER 4
-BREAK

Break at SUM

ngﬁk on I% changed after 4
Break at line 60

=VARS TOTAL%

TOTAL% =

-VARS I%
I

= 1
-UNBREAK AT SUM
-CONTINUE ‘
Break on I¢ at line 40
~VARSuI%,TOTAL%

If =
TOTAL% = 6

=
o

BASIC Rev B ' - B3 - BREAK

BASIC REFERENCE MANUAL
8.4 CHARGE Command

1 CHANGE
2 CHANGE <char><from string><char><to string><char>
3 CHANGE <char><from string><{char><to string><char><range>

Where:
<char> ::= <delimiting character>
r {from string> ::= <string>

<to string> ::= <string> v
<{range> ::= <line number>[<line number>]

See also: MODIFY comménd

Purpose:

The CHANGE command allows you -to make a change to an existing line, or lines, of
code without re-entering the entire line.

Comment:

The CHANGE command cannot be used if a program in memory is read protected (see
LOAD command).

Format 1 of the CHANGE command will execute the last executed CHANGE command on the -
current line. :

Format 2 of the CHANGE command will change all occurrences of the <from string> on
the current line to the <to string>.

Format 3 of the CHANGE command will change all occurrences of the <from string> on
each line of the lines within <range> to the <to string>.

The <from string> and <to string> must be delimited by the same character, similar
to the CHANGE command in the system editor. The delimiters must be quotation marks
if you wish to change from or to a mixed or lower case string. You may not change

from a mixed case string to a mixed case string. To do that you must use the
MODIFY command.

Each time that the CHANGE command actually makes a change on a line the line will
be displayed with the change made. ’

Note: To change only one occurrence on a_line;use the MODIFY command.

Examples: ' ' Explanation:

-LIST
10 INPUT "Item 1",R
- 20 PRINT R
0 INPUT "Item 2",R1
0 PRINT R1
-CHANGE /INPUT/LINPUT/ 10 40
10 LINPUT "Item 1",R
‘ 30 LINPUT "Item 2",R1
-CHANGE "Item"VALUE" 10
10 LINPUT "VALUE 1",R

= e e - w0 @ - e -
Bttt i3ttt ittt ittt ittt 13 ittt ittt ittt ittt i it ittt At 2 1

CHANGE o R | BASIC Rev B

. | CHAPTER 8: COMMANDS-
8.5 CONTINUE Command ' .

1 ’ . ’ ’]
| 1 cowrmve / S
] . L]

Pufpoae:
The CONTINUE command allows you to resume execution of a program that was
interrupted. .

Comment :

The CONTINUE command, when executed will continue the execution of a program whose
gxecu{ign was 1interrupted by a STOP statement, an error, or entry of the Program
ancel-Key. '

When a program has a normal exit, i.e., execution of the END statement, the
CONTINUE command has no effect. : ' .

The CONTINUE command is a valuable debugging aid. If a "bug" is suspected in a
portion of a program STOP statements may be inserted at strate%ic positions of the
program. When the 8TOP is executed, you may use the commands to examine variables
and/or change statements in the program and continue execution. If an error
occurs, you ma examine the suspected statement and change it as required and
continue execution.)

When an error occurs, a CONTINUE command will re-execute the line that containéd
the statement that was interrupted. If the error occurs in a multi-statement line,
the CONTINUE command re-executes the entire line.

If a STOP ocecurs, a CONTINUE command will execute the statement following the STOP
statement, even if that statement is on the same line. :

Note: Executing an immediate instruction after a stop or error has occurred will

prevent you from using the CONTINUE command. An immediate instruction, when
executed, causes the line pointer to be lost. ‘

- BASIC Rev B -5 - CONTINUE

BASIC REFERENCE MANUAL
8.6 DELETE Command

1 DELETE
2 DELETE <range>)
Where: - » ' : L T

<range> ::= <line number> <line number>
<line number>,<line number>

Purpose:

ghe DELETE command allows.the user to ;remove a line or group of lines from the
rogram. :

Comment: / | ; ©on
Format 1 of the DELETE command removes the current line from the program in memory.

Format 2 of the DELETE command removes all lines from the program‘in memory whose
line numbers are included in the range specified. -

The DELETE command cannot be used if the program' in memory is read protected (see
LOAD command). :

The restrictions for first and last line numbers as described for LIST apply to the
DELETE command; however, the DELETE command must have at least one operand. -

\Using the first example in Appendix G as the program in memory:

Examples: ; Explanation:
-DELETE 40 Line 40 is removed from the

: rogram.
=-DEL 15,45 ines 20 and 30 are removed

: ‘ from the program.
-LIST

10 INPUT "RADIUS OF CIRCLE",R

50 END-
Incorrect Examples:k ‘ Explanation: v
-DELETE 50,20 Last line number must be greater

" Invalid command syntax than or equal to first line number.

DELETE - / - 46 - . BASIC Rev B

. CHAPTER 8: COMMANDS
8.7 Down Command

]
i <line feed>
i . "

Purpose: _
The down command advances and displays the next line of source code.
COlIent:_

The down command cannot be used if the program in memory is read protected (see
LOAD command). :

When the down command is entered the current line pointer is adjusted one line
forward and the current line is displayed. ‘ -

Attempting to executed the down command when the current line is at the last line

gglthe program the message EOF: is displayed indicating that you are at the end of
e.

BASIC Rev B | - a7 - ' DOV

BASIC REFERENCE MANUAL
‘8.8 HELP Command

i
{ 1 HELP
. .

!
e

Purpose: . . _
The HELP command displays the commands available to the operator 1nZBASIC,,
Comment :

When the HELP command is executed the help message of command names and general
syntax is displayed on the screen, one page at a time.

o Do o e e Go Gn e o WD e P O ST O T e OF 60 G0 E G ED PSP @D G0 D CN D 6D GD GD G2 G O OP CD S S D SO € G G G Ee G A GE S AR G S £D W) Gn N 6N D &R W SV £ P D GD GD G 60D I &2 & &3 9
Rk e e R R R R R R R SR SR e i S e E R R e s E e e R R I e e R R T TS s SRRz sz eEzEzEE

-HELP

AUTO [<start>[,<incr>]]

BOTTOM

BREAK tAT <line> [AFTER <count>]]

BREAK [ON <var> [CHANGE] [AFTER <count>]]
BREAK [ON <var <relat> <value>]

Y I s It T Tt T T T T I I T T I I T e e T Ty e r e I I I 3 33 3+ 3 3+ 3 3 3 134
D i 2 2 2 A I R 2 1 R 1 R R e R e R

HELP ' - 138 - BASIC Rev B

; CHAPTER 8: COMMANDS
8.9 INDENT Command - ' '

1 INDENT [<indent value>]

Purpose:

The INDENT command provides an easy and consistent method of performing . program
line indentation for documentation purposes.

Comment :

When the INDENT command is executed the program currently in memori is modified by
strigp%?g ail current line indentation and performing new indentation according to
a se rules:

® Indent level initially set to <indent value> or, when not spécified,
to the default value of 5.

® The statements . CASE, CEND, ELSE, IFEND, REM, and THEN cause: the
indent level to be adjusted =<indent value} before the statement.

% The statements CASE,'multiline DEF, ELSE, FOR, REM, THEN, WHILE, and
line 1label cause the indent level to 'be adjusted +<indent value>
after the statement or label.

® The staﬁeﬁents CEND,'FNEND, IFEND, NEXT, and WEND cause. the indent
level to be adjusted -<indent value} after the statement.

® The statements IF and SELECT cause the indent level to be adjusted
+2%{indent value> after the statement.

® 211 6ther'statements perform no adjustment on the indent level.

D O D BO . O T W D - G = D D O ST D D D A5 WD S KD S M > €D G D PR D D G5 SR SR AR P M M S A AR S R D A D P D D GD . R D S S D G O D OO S5 SR S G G S S D SR B D
T D D D T D S OB € e D R W G 0 P R D R D G e G e D S P D e P T D i D T T S P SR T T D i of e D e D SR TR D S e e e e e Oe R R ae T =T e e D e o w @n OO

Example:
=LIST
10 REM This is a comment
20 FOR I=1 TO 10
30 PRINT I
0 NEXT I
20 SELECT A
CASE 1 RETURN
go CASE 2 STOP
0 CEND
90 REM This is a subroutine
100 RETURN
~INDENT
=LIST :
10 REM This is a comment
20 FOR I=1 TO 10
EO PRINT I
NEXT I
0 SELECT A
0 CASE 1 RETURN
go CASE 2 STOP
0 CEND
90 REM This is a subroutine
100 RETURN :

O e e o e =S o D > o = oo - v an - > 6 WD P GO WP WP R D e G O G P TR WD P D G D D D e
e A ittt ittt i3ttt ittt Pt ittt R R A R R R R 2 A T

BASIC Rev B . ' -9 - _ INDENT

The LENGTH command allows the user to determine the current memory utilization.

Comment :

The LENGTH command displays thirteen quantities:

USR program loa

& Length of source program,in bytes. ,

& g;%ggy space used by symbol table, numeric and integer variables, in

% Memory space used by string variable storage area in bytes.

®# Memory space used by subroutines in process.

8 Memory space used by FOR/NEXT loops in. process.

& Memory space used by SELECT/CASE/CEND structures in process.

Memory space used by WHILE/WEND structures in process. -

& Memory space used by debugging break points.

& Memory space used by I/0 channels used (266 bytes per channel). .

Memory space available for grogram and work usage. The expression
analyzer requires about 512 bytes of this area during execution.

USR program name, if loaded.

: USR program lensﬁh, if loaded.

address, in hexadecimal, if loaded.

Some programs may'usé all of memory. This command informs the user how much memory
is available for modifications, how much memory was made available by modifications
(by using the length command before and after).

(o]
o
o
[
as oo
E—{

Buffgrs: 532
Free: 19193

-OPTION USR "PRINT1"

Source: 3110
szmbol: 178
String: 236
GOSUB: 0
FOR/NEXT: 0
CASE: 0
WHILE: 0
Debug: 4
Buffers: 532
Free: 1878

USR NAME: PRINT{
- Length: 409
Addr: F6A2

_Length of source Erogram code.

S ols and numeric variable values.
String variable values.

No open subroutines

No open FOR/NEXT loops.

No open SELECT/CASE/CEND structures.
No ogen WHILE/WEND structures.

One breakpoint set.

Two I/0 channels defined.

Load USR program named PRINT14

- S =D O D OB D D D G G G0 e T D e e e e YD O S D e G S e G S . e S n D S S S D G S s G - G S e G TD M S T G e TR N GO O G A W OB 4D €5 OO0 €5

- 50 - | BASIC Rev B

| CHAPTER 8: COMMANDS
8.11 LIST Command ’ '

1L

2 LIST <{range>

3 <line number>

j§ <carriage return>

Where: »

<{range> t:z <line number) ,
line number) <line number>

<line number>,<line number>

See also: Down, LPLIST; LPXREF, and XREF commands

Purpose: . = . ' - _ »
The .LIST command allows you to display a line, or group of lines, of the program.
 Comment: ‘

The LIST command cannot be used if the program in memory is réad protected (see
LOAD command).

Format 1‘of the LIST command will iist the entire program.

Fogmgt 2 of the LIST command with one line number will list only that 1line, if it
exists. .

When a program is in memory you may list a line by entering its line number (format
3), followed by a carriage return. This not only causes the specified line to be
‘displayed but assigns that 1line number to an internal 1line display pointer.
Entering a line feed character causes the line displa¥ pointer to be advanced to
the next line and causes that line to be displayed. This provides an easy means of
stepping through the display of a program. Additionally, the line display pointer
is affected b{ an error during execution. When an error is detected and a message
displayed on he console, you need only enter a carriage return to cause the error
line to be displayed. -)

A carriage return only entry (format U4) will act in one of two ways: when it is the

first entry of the carriage return the current line will be displayed; subsequent

entries of a carriage return only will cause the internal line display pointer to

?e éncrgmented causing the next program line to be displayed, acting like a line
eed entry. ,

- Format 2 of the LIST command with two line numbers will list all lines within the
range of the operands, inclusive. The beginning and ending line numbers need not
be line numbers that exist in the program. The 1last line number must be greater
than or equal to the first line number.

When more lines are specified to be displayed than will fit on the console at one
time and the console screen wait is enabled (see System Control Keys in the QASI

§¥§§em Refefgnge Manual), BASIC will display one page of the program, display a
circumflex a e lower left side of the.page and wait for the operator to
respond. A response of any character will cause AéIC to display the next page of

the program, if included in the line number range. The Program Cancel-=-key will
cause the listing to be terminated immediately.

BASIC Rev B - - 51 - LIST

10 INPUT "RADIUS OF CIRCLE",R
20 * PRINT "DIAMETER =";2#R
3 - PRINT "AREA =";PI*h*2
0 PRINT "CIRCUMFE

=LIST 20 N
20 PRINT "DIAMETER =";2%R

~LIST 0,15 .
10 INPUT "RADIUS OF CIRCLE",R

RENCE =";2#PI¥R

Explanation: v
Entire program is listed on terminal.

Line 20 is listed.

Lines 0 through 15, inclusive, are 1istéd.

Incorrect Examples:
=LIST 15
=LIST 20,10

Explanation:

Since there is no line 15 nothing will
be listed. -
Last line number must be greater than or

‘equal to first line number.

-52 - ' BASIC Rev B

‘ CHAPTER 8: (xl!unnms
8.12 LOAD Command ‘ ; p : Lo

1 LOAD <program name>

Where:
<program name> ::= [<file name>][.<file type>][:<file disk>]
<file type> ::= BASIC ,
BASICOBJ

See also: RUN command

Purpose: .
The LOAD command allows the user to retrieve a program previously saved on disk;
Comment : '

A program name must be specified but the program file type is optional. The
rogram file type, if specified, may only be BASICOBJ or BASIC--no other program
ypes are allowed. .

The program file type defaults to BASICOBJ and BASIC:

When no file tgie is specifiéd then a search is made for a program with
the file type BASICOBJ. If one is found it is loaded.

If a program with a file type of BASICOBJ is not found then a search is
made for a program with the file type of BASIC. If one is found then it
is loaded with syntax analysis of each and every line.

It is much faster to ' load programs saved with a file type of BASICOBJ because no
syntax analysis is performed. '

When no program disk is specified the seérch for the program includes all attached
disk drives. ‘ ;

If the specified program is not found thenxﬁhe error message "File not found" is
disglayed and no program is loaded. However, any program that was in memory before
will have been erased. ;

The LOAD command can load a read protected program file; however, most other
commands will not operate if the program in memory is from a read proﬁected file.
Specifically, the following commands will inform you that they cannot be used when
the program is read protected: AUTO, BOTTOM, CHANGE, DELETE, INDENT, LIST, LOCATE,
LPLIST, ' LPXREF, MODIFY, NAME, RENOMBER, SAVE, TOP, XREF, carriage return, liné
eed, up-arrow. : g :

Examples: 3 7 Explanation:

~LOAD TEST : The program named TEST.BASICOBJ or
TEST.BASIC will be located and loaded
into memory.
The program named TEST.BASICOBJ:S, or

~ TEST.BASIC:S will be located and loaded
into memory.

=LOAD TEST:S

Incorrect examples: Explanation:

-LOAD Program name must be specified.
«LOAD TEST:T Invalid unit specified.
-LOAD PROGRAM.TEST ' Invalid file type.

===:==='-'===

BASIC Rev B | -53 - LOAD

BASIC REFERENCE MANUAL
8.13 LOCATE Command

1 LOCATE
2 LOCATE <string>
3 LOCATE <string> <range>
Where: .
<string> ::= <delimited string>
, <range> :3= <line number>

<line number> <line number>
<line number>,<line number)>

Purpose:
The LOCATE command allows you to qulckly find a line of the program that contains a
specified sequence of characters. ,

Comment :

The LOCATE command cannot .be used if the program in memory is read protected (see
LOAD command). .

The LOCATE command searches the program in the specified range of line numbers for
. the sequence of characters specified.

A LOCATE command with no arguments (format 1) will cause a LOCATE to be performed
using the string specified in the last LOCATE or CHANGE, from the current line to
the end of the program.

Format 2 of the LOCATE command causes the program to be searched from the line
after the current line to the end of the program.

Format 3 of the LOCATE command with only one line number specified causes the
program to be searched from the line speeified to the end of the program.

Format 3 of the LOCATE command with two line numbers specified causes the program
to be searched only within the range indicated. .

If the sequence of characters is found the line containing them will be displayed,
and the current line pointer will be positioned at that line.

 If the sequence of characters is not found nothing will be displayed and the
current line pointer will not be changed.

The search is performed independent of the case mode of the characters in the
program.

Example:

0010 FOR I=1 TO 20
0020 PRINT "Now is the time for all good men to come to the aid of"
38 gg%gTI”ccuntry.

-LOCATE "%" 10 40
0030 PRIN "country."
~LOCATE / .
0040 NEXT

-LOCATE /I/ 10 40
0010 FOR I=1 TO 20
-LOCATE

0020 PRINT "Now is the time for all good‘men to come to the aid of®

LOCATE | - 54 - \ BASIC Rev B

: CHAPTER 8: COMMANDS
8.1% LPLIST Command - :

1 LPLIST
2 LP<nOLIST
Where:

<n> ::= 1
2

i

See also: Down, and LIST commands

'Purpoae:)

The LPLIST command allows the user to list the current program on the list device
(usually the line printer). =

Comment : ’

The LPLIST command cannot be used if the program in memory is read protected (see
LOAD command). :

The LPLIST command functions identically to the LIST command except the output is
placed on the 1listing device (PRINTER1) instead of the console and no line number
range is allowed.

The alternate form of the command (LP<n>LIST) specifies that oné of the alternaée
l%gtiﬁgd devices is to be wused (PRINTER1, PRINTER2, PRINTER3, or PRINTERY), if
attached. . - v)

BASIC Rev B - 55 - o ' LPLIST

BASIC REFERENCE MANUAL
8.15 LPXREF CG-land

1 LPXREF -
2 LP<n>XREF
. Where:

<n> ::= 1
2

:

See also: XREF’command ‘ -

Purpose: _ . m o

The LPXREF command produces a listing of the program followed by a cross reference
listing of the source program in memory on a printer.

Comment :

The LPXREF command cannot be used if the program in memory is read protected (see
LOAD command).

The LPXREF command functions identically to the XREF command except the output is
placed on the listing device (PRINTER1) instead of the console.

The alternate form of the command (format 2) sgecifies that one of the alternate

listing devices is to be wused (PRINTER1, PRINTER2, PRINTER3 or PRINTER4), if
attached. _

LPXREF - 56 - » " BASIC Rev B

_ CHAPTER 8: COMMANDS
8.16 MODIFY Command

1 MODIFY
2 MODIFY <range>
Where:
' <{range> ::= <line number)> ,
. <line number> <line number>
<line number),(line‘number>

See also: CHANGE command /

Purpose:

The MODIFY command allows you to make changes to a line or lines of code without
re-entering the entire line. '

Comment :

The MODIFY command cannot be used if the program in memory is read protected (see
- LOAD command). ' ,

The MODIFY command operates very similar to the MODIFY command in the OASIS system
EDIT program.

When no- <ranﬁe> is specified the current 1line disgla ed and you are éllowed to
modify it. fter finishing the modification of- that line control returns to the
command mode of BASIC. : ,

When <range> is specified the first line included in the range of lines specified -
is disglayed and you are allowed to modify it. After finishing the modification of
that ine the next 1line included in the ran%e of lines specifies is displayed,
etc., until the last line in the range is modified, at which point control returns
to the command mode. ' ’

While in the modify mode of BASIC there is a certain set of sub-commands available
to facilitate modification of each line:

I Allows you to insert characters at the current cursor position. All"
characters typed after the I has been entered are added to the line
before the current character. As each character is added to the line
the remainder of the line is re-displayed. :

To exit from the insert character command type a carriage return.

While in the insert character command you may backup one character
position by typing the RUBOUT key. his backs the cursor up one
position and deletes that character. It is possible to backspace
past the position that the insert command was given.

D Allows you to delete the current chéracter from the line. Every time
a D is typed the current character is deleted from the line and the
character is erased from the screen.-

R Allows %ou to replace characters in the line. All characters typed
after the R has been entered will replace the characters in the line.

To exit from the replace character command type a carriage return.

While in the replace character command ¥ou may backup one character
position - by typing the RUBOUT key. his backs the cursor up one
osition without deleting that character. It is possible to
ackspace past the position that the replace command was given.

<sp> Allows ¥ou to‘ advénce.the current character one position to the
right. ou may not advance past the end of the line, however, you .
may insert new characters at the end of the 1line or replace
characters at’the end of the line.
The right arrow key has the same effect as the space character.

BASIC Rev B - 57 - ' MODIFY

BASIC REFERENCE HAIUAL

F " Allows you to advance the current character gointer to a specified.
character. ' The F character is followed by the character to find.
- When the second character is entered the cursor is advanced to the-
next occurrence of that character in the line.

U Allows you to convert characters to thelr upper case value. When the
U is entered the current character is converted and re-displayed in
igs ugper case form, and the cursor is advaneed to the next
character.

L Allows you to convert characters to their lower case value. When the
L is entered the current character is. converted -and re-disglayed in
its lower case form, and the cursor is advanced he next
character. This command is only effective within a quoted ‘string
literal or a remark statement.

- <RUB> Allows you to backspace the current character one 31tion to the
left. You may not advance past the beginning of the line. 4

The left arrow and CTRL/H have the same effect as the RUBOUT key°
B Allows you to quickly posztlon to the beginning of the line.
E Allows you to quickly position to the end of the line.
<CR> Terminates the modification of the line.

ESC,C Terminates the modification of . the line and restores the line to its
original, unmodified, contents.

Due to the graphic and character by character nature of the modify command no
- example will be given here. Instead it is suggested that you experlment with it.

MODIFY : , - 58 = . BASIC Rev B

. CHAPTER 8: COMMANDS
. 8.17 NAME Command ’ ' ‘

1 NAME
2 NAME <{program name)>
Where: ‘ S ; ‘
' <program name> ::= [<file name>][.<file type>[:<file disk>]]
<file type> ::= gﬁg%gog . o

See also: SAVE command

Purpose: _
The NAME command allows you to change the name of the program in memory.-
Comment:

The NAME command operates in two " modes: display current name (format 1); change
current name (format 2). - . - :

~

Format 1 of the NAME command causes the current program name, type, and disk to be
displayed. '

Format 2 of the NAME command causes the current program name to be changed to the
name specified. If the program type is omitted the program type will be changed to
BAiIgO g. If the program disk is omitted the current program disk will be
retained. - : J

The file type of a read protected prograﬁ should not be'changed from BASICOBJ.

Note: The OASIS command RENAME should not be used to change the file type of a
BASIC program due to unpredictable results. :

Example:
-NAME TEST.BASIC:A
NAME :

TEST.BASIC:A
~NAME TESTIT
=NAME
TESTIT.BASICOBJ:A

BASIC Rev B - 59 - NAME

BASIC REFERENCE MANUAL

]
{ 1 NEW
]

Purpose: - , ‘
The NEW command allows the user to enter a new program.
Comment : -

The NEW command effectively clears memory. In actuality all of the BASIC pointers
are reset to indicate that there is no program in memory. All of the BASIC work
area is available for use by the new program to be entered. Additionally the name
of the program is cleared. v

A NEW command is executed automatically when BASIC is loaded and executed by the
Operating System. ; . : '

BASIC. B)
Specifically; the NEW command performs the following actions:

® A]1]1 files are closed.

& A1l file buffers are deleted from memory.

® The current program and program name are erased.

& Any USR program is erased and memory restored.

® A1l variables, constants, and internal tables are initialized.

The NEW command is the only method of unloading a USR program without exiting

G o - TP A SO0 W G G0 GRS Y S S G o S G S R D G A e e S D S S G ORGP D A GU S e e R S D SN S G G S WD M e Se S S W ST an 2P Nm I e
o = T s e T i o e T @ T e G T P e T e W W M D W e P P G W e T e e T A o O > s o . - A8 D D IO T B e S W S e e v 6 M S e G WD GO W D TP P S WD S e A W @ e

Examples: : : S

~NEW ‘ - Memory is initialized.

Incorrect examples: ,
" -NEW TEST1 - " No operand is allowed.

- e o s 9 o ED W O D D D S T P > T e e > S D S > G D > A0 D e o - - o e = e W > > o g T w2 W > > - - - - =
R 2 L i - 2 ittt 1t - -ttt 1 1t ittt

NEW : - 60 - v - BASIC Rev B

| CHAPTER 8: COMMANDS
8.19 QUIT Command - ,

1 QUIT
2 QUIT <string literal)
3 QUIT <numeric literal>

Purpose: . ’

The QUIT command allows the user to exit from the BASIC environment.
Comment: '

When the QUIT command is executed all open I/0 channels are c;psed.

The QUIT command always exits from BASIC., If BASIC was invoked by a keyboard
command then control is returned to the Command String Interpreter environment. If
BASIC was invoked by an EXECutive procedure then control is returned to the
EXECutive procedure that called it. he EXEC resumes control with the statement

that followed the BASIC command. In either case the return code is set to zero. »

To exit BASIC without returning control directly to the environment that it was
invoked from one of the optional litergls is specified.

A numeric value indicates the value that the return code is to be set to. ‘ This
return code may then be examined by the EXEC that invoked BASIC. If BASIC was not
invoked by an EXEC then setting the return code will have no usable effect.

A string value indicates a CSI command to be executed. -The value must specify the
command name and all arguments . and options desired. After the command has
completed execution the return code is set by that command. If BASIC was invoked
by an EXECutive procedure and a string value is sgecified with the QUIT command,
contrgi .will return to the EXEC program after the CSI command has completed
execution.

When the first character of the stri value is the character ">" the string will
Ee gispéayed on the console terminal, just as if it had been entered from the
eyboard. .

Examples: Explanation:

=QUIT Control returns to the environment
v from which BASIC was invoked.

=QUIT LIST DAILY REGISTER BASIC is exited and the file named

DAILY REGISTER is listed on the console.

BASIC Rev B - 61 - QuUIlT

BASIC REFERENCE MANUAL

8.20 RENUMBER Command

1 RENUMBER

2 RENUMBER <first>

3 RENUMBER <first><char><increment>

4 RENUMBER <first><chai)(1nere-ept><ehar><start>

"5 RENUMBER <first><{char><increment><char><start><char><end>

Where: ‘ ‘
<{echar> ::= <space> . .

<{comma> ‘ ' ')

{first> ::= <line number> o ' -
<increment> ::= <line number> : -

<{start> ::=z <line number>
<end> ::= <line number>

/

Purpose: ‘ ; . v
The RENUMBER command allows you to resequence all or part of the program in memory.
Comment : '

Format 1 of the RENUMBER command will resequence all of the program in memory, from
the beginning of the program through the end of the grogram.‘ The resulting program
will have its first line numbered usi the default increment value (default is 10)
with each subsequent line incremented. by the-current increment value.

Format 2 of the RENUMBER command will reseguenee all of the program in memory from
the beginning of the program through the end of the program. The resulting program
will have its first line numbered according to the <first> line number as specified
with each subsequent line incremented by the default increment value. '

Format 3 of the RENUMBER command will resequence all of the program in memory from
the: beginning of the grogram through the end of the grogram° The resulting program
will have its first line numbered according to the <first> line number as Specified
with each subsequent line incremented by the <increment> as specified. '

Format 4 of the RENUMBER command will resequence that portion of the program in
memor¥ as specified b{ the <start> parameter through the end of the program. The
resulting program wil have that <start)> line numbered according to the <first>
line nu%berl as specified with each subsequent 1line incremented by the current
increment value. . , . -

Format 5 of the RENUMBER command will resequence that portion of the progarmvin
memory as specified by the <start> parameter through the line specified by the
<end> parameter. The resulting program will have that <start> line numbered

accord to the <first> 1line number as specified with each subsequent line
incremented by the <increment> as specified. : :

Formats 4 and 5 of the RENUMBER command will not allow gou to resequence a program

such that the result would cause lines to be merged. or example, a program with

lines consecutively numbered from 10 through 100 could not be renumbered with

RENUMBER 20 5 50 100 as this would cause lines 50 through 100 to collide with other

g§is§ingdlines. When this is attempted the error message "Renumber Range Error" is-
splayed. :

All of the formats of the RENUMBER command will adjust all references in the
program from the old line numbers to the new line numbers. This includes
references made b the statements: ELSE, GOSUB, GOTO, IF, ON ERROR, ON GOTO, ON
GOSUB, RESTORE, RESUME, RETURN, and THEN. Additionally, relational expressions
with the function ERL on the left of the relation with a integer literal on the
right (line number) will be adjusted.

Statements that previously referenced an undefined line number will be adjusted to
reference an undefined line in the same relative location as before. For example,
a program with lines consecutively numbered from 10 through 100 by 10s with a line
reference to 1line 11 (non-existent) that is renumbered will have that line

RENUMBER ‘ o - -62- , BASIC Rev B

CHAPTER §: COMMANDS

reference adjusted to line 15.

Because good, complete examgles of program renumbering would be quite lengthy none
will be given. Instead, it is suggested that you "play"™ with the command on one of -
- your own programs;, Be sure to save the program on disk if it is a program that you
do not want renumbered. o ’

BASIC Rev B -63 - REWUMBER

BASIC REFERENCE MANUAL
8.21 RUN Command

1 RUN
. 2 RON <{program name)
3 RUN <starting line> 7 o
B RUN <program name> <starting line>
Where: '

<{program name> ::= <file name>[.<{file type>][:<file disk>]
<file type> ::= BASICOBJ - ' ,
{starting line> ::= <line number>

See'also: LOAD command

Purpose:

The RUN command allows the user to execute a program already in memory or one
. stored on disk. : A

Comment :

When <program name> is not specified, the program currently in memory is executed,
starting with the first line of the program, or at the line number specified.

Before the RUN command is executed, a CLEAR command is automaticélly executed.

- {program name>, when sSpecified, may be a string literal or an unquoted string
literal. <program name> may not be a variable.

When the <program name> is specified, a search is made for the program. If the
program is not found the error message 'File Not Found'! is displayed. If the
grogram is found, a NEW command is executed and. the specified program is loaded.
xecggog begins with the smallest 1line . number, or at <starting line>, if
specified.

<starting line> may be a line number that does not exist in the referenced program,
in which case execution will begin at the first line greater than or equal to the
" specified line number. ‘ :

Examples: ; - Explanation:
-=RUN | ' Program in memory is executed. .

-RUN TEST v Program "TEST" is loaded and executed.

RUN | - 68~ | BASIC Rev B

| CHAPTER 8: COMMANDS
8.22 SAVE Command)

1 SAVE

2 SAVE <{program name>
Where: ,
éis§5f11° name>][.<file type>][:<file @isk)]
BASICOBJ

Sée also: LOAD and NAME commands

<¥rogram name> :
<file type> ::=

Purpose:
The SAVE command allows the user to save .a program as a disk file.
Comment : ;

The entire <program name> operand is optional, and when omitted, the program will
be saved under the name that it was LOADed, CHAINed, LINKed, or RUN under. If a
name is not currently defined and the operand is omitted, an ntnvalid Program Name"
error will result. .

<File disk> is -optional--when not specified drive A will be used. The <{file type>
gﬁf%glts to BASICOBJ unless the program already has a name with a file type of -

The programlname, type, and disk will be displayed on the terminal after the

N

program has been successfully written to disk.

When a file already exists with the saﬁe file description that file will be renamed
to have a file type of BACKUP. : :

Examples: - Explanation:
-SAVE TEST:A - The program in memory will be written to
"TEST.BASICOBJ:A" save disk and given the name 'TEST.BASICOBJ:A'.
-SAVE The program will be saved under the same

ecoees SAVE - . name as loaded, i.e,, the program will be

, updated on disk. -
-SAVE TEST:S ‘ The program in memory will be written .
"TESI.BASICQBJ:S" saved - . _ to disk and given the name 'TEST.BASICOBJ:S
:Incorréct Examples: Explanation: ‘
~SAVE Program name must be specified if there is
no prior LOAD, CHAIN, LINK, or RUN executed.

-SAVE TEST:T Invalid unit speqified.

BASIC Rev B : " - 65 - SAVE

BASIC REFERENCE MANUAL
8.23 STEP Command

1 STEP
~ 2 STEP <count> ‘ : .
See also: BREAK, TRACE, UNBREAK, UNTRACE, and VARS commands

e s v s s s o
0 oo D s R R St D <Y

Purpose:

The STEP command allows the program to "singie step" through the execution of the
program. _ ' S

Comment :

Format 1 of the STEP command causes the next statement in the program to be
executed and a debugging break occurs. : ‘ ;

-

Format 2 of the STEP command causes the next <count> stateménts in the program to
be executed and a debugging break occurs. ‘

Note that the STEP command operates on statements, not linés. Therefore it is
possible to single step through each statement in a multi-statement line.

- e W o e w ww O 9 o aw W W = om W e - - - - oo o o s o D O W0 o oD GO oD W
44+ttt 2t ittt ittt ittt ittt At it At st At At i i i P -ttt Rt R R 2

10 FOR I%=1 TO
PRINT I :
_NEXT : o

Break at line 20

Break at line 30 .
Break at line 20 _ | .

- . - —-— - P - @ - b D oD
B e R e e e e R R R

STEP , - 66 - | : BASIC Rev B

CHAPTER 8: COMMANDS
8.28 Top Command

i TOP
i

Purpdae: ’

Thevtop command positions to the first line in the program andvdisplays that line.
Comment : : | | ‘
gggmggg)éommand cannot be used if the program in memory is reaq protected (see LOAD%A

Examples:

sz:og at line 0020

-<CR> - ,
8% MIDDLE$ = LINE(0)/2.
10 REM Program: SAMPLE

-BASIC Rev B - - 67T - , TOP

BASIC REFERENCE MANUAL ;
8.25 TRACE and UNTRACE Commands

1 TRACE
2 TRACE VARS
~ 3 UNTRACE

R et e et e s s @
s s D i s s s evcon &

Purpose:

The TRACE and UNTRACE commands allow the programmer to trace the line numbers being
executed by a program. :

Comment: ; ,
Format.j of the TRACE command turns the line number display on during execution,

Format 2 of the TRACE command turns the line number display on during execution and
causes the display of all variables changed during the execution of each statement.

The UNTRACE command turns the line number display off during execution. This is
the normal mode of program execution, _ -

When a program is being traced each statement that is executed causes the line
number of the statement to be displayed on the left hand sided of the console, in
angle brackets. When TRACE VARS is in effect and a variable is changed 6 a
statement the variable name and value that it was set to will be displayed on the
left hand side of the console, in angle brackets. ‘ :

Each statement of a multi-statement line, when executed, causes the line number to -
be displayed. The second and subsequent statements in a multi-statement line will
be indicated by an offset count after the line number, indicating the relative
offset of the start of that statement, from the start of the line. This offset
value relates to the offset in the compressed internal format, not the displa{ed
format of the 1line, Nevertheless, his vaiue ~is helpful in determining which
statement of the multi-statement line is being executed. . > ,

Example: Explanation:

0010 GOSUB 100 \ PRINT TOTAL
0020 FOR I3 = 1 TO 3

0030 PRINT I%
0040 NEXT -
0050 STOP -
0100 TOTAL = 4.34 \ RETURN
-TRACE
"~ =RUN '
<10> Execute line 10, GOSUB statement
<100 ~ S " 100, LET statement -
<100,18> " " 100, RETURN statement
<10,%> 4.34 " " 10, PRINT statement
<203 n " 20, FOR statement '
<30> 1 w " 20, PRINT statement, 1st time
<40> " " 0, NEXT statement, 1st time
<30> 2 " " 30, 2nd time, prinés 2
<30> n " 0, 2nd time
<30> 3 n w 0, 3rd time, prints 3
<40> " " 0, 3rd time
<50> " " 50, STOP statement

Stop at line 50

TRACE/UNTRACE - 68 - BASIC Rev B

~TRACE VARS -
-RUN

<10>
- <100>
<TOTAL =

.Execute 1ineA10 GOSUB statément
" L 106

LET statement

§.34> Variable ehan? c
<100,18> Execute line 00, RETURN statement
<10,5> 4.34 " " PRINT statement
<203 o " 2o FOR statement
<I% = 1> Variable changed N
<302 1 Exeeute 1ine io, PRINT statement, 1st time
<40> 0, NEXT statement, 1st time
£I% = 2> Variable chan ed
<30> 2 Exeeute line SO 2nd time, prints 2
<40> 2nd time
<I% = 3> Variable chan eé
»éﬁgg 3 Execute line 0 grd timg, prints 3
<I1% = 4> Variable chan e& :
<50> Execute line 50, STOP statement

BASIC Rev B | . -69 - TRACE/UNTRACE

BASIC REF!HHIGE ullUAL
8.26 UNBREAK Command

2 UNBREAK AT <line reference>
3 UNBREAK ON <variable>

Where:

<line reference$ t:= <line nuﬁber>
<line 1abel>

See also~ BREAK STEP, TRACE, UNTRACE, and VARS commands 7

Purpose: : -

The UNBREAK command clears break'points set by the BREAK command.

Comment : o , .b | ; | ~
Format 1 of the UNBREAK command will clear all break points currently set.
Format 2 will clear all break poinﬁé referring to the speéified line reference./

Format 3 -will clear all break points currently set referencing the specified
variable. ' . =

For an example see the BREAK command.

UNBREAK " | - 70 - ~ BASIC Rev B

CHAPTER 8: COMMANDS
6,21' Up Command ’

]

i 1 <up arrow)
I 2 <control/z>
|
|
]

See also' Down, and LIST commands

/

Purpose: , s A . .
The Up command allows you to backup and display the previous line in the program,-
Comment: |

The updgommand cannot be used if the program in memory is read protected (see LOAD-
command) . .

The actual key that you should enter to perform this function is dependant upon the
currently set value for the UP key (refer the the QA§1§ System Beference Eanual,
"SET Command"™) and the console class code.)

When the up command is entered the current line pointer is adjusted one line
backward and the current line is displayed. ,

Attempting to executed the u command when the current line is at the first line of
ggg program the message TO is displayed indicating that you are at the top of
€. - : ‘ .

BASIC Rev B =Tt - ~ UP

BASIC REFERENCE MANUAL
- 8.28 VARS Command

1 VARS .
2 VARS <variable list>
~ Where: ‘ .
- <variable 1ist> ::= <variable name>[,<variable 1ist>]
See also: BREAK, STEP, TRACE, UNBREAK, and UNTRACE commands

Purpose: , - ‘ ' ‘ .

The VARS command allows the programmer to easily see the status of all variables
defined in a program. .

Comment : =

Format 1 of the VARS comand causes each variable currently defined in the program
to be displayed on the console, one variable per line, along with the contents of .
the variable. The sequence 1in which the variables are 1listed is the inverse
sequence that the variables were initially defined in.

Format 2 of the VARS command causes each variable in the list to be dlsplayed one
variable per line, along with the contents of the variable.

Dimensioned arrays are displayed one element per line.

.34
R1$ = "TgTAL"
R=1023u567
Y(1) = 1
Y(2) = 2
Y§=3
Y = 22 -
~VARS A$ R1$,R
A = " é$é3
R1 = 12.34
R3 = 1.23“567

- P A T - G G P R G e e A R R P e S G WD € G0 SR O w5 G e CD G G D G @D DD D D D Ch D =N G P GD D = P G0 EE D S e D Cr S G Ge OR Go =0 P Gn e op G G2 G S oP Ge G oD 3 o o3
e o o o o e o o s o o o e o o o o e % T v e S T D O S Mo e G G P O T D G W WD O OO 0 G G NS e Cn M O D M N S D N D e e A e e e s n e o G o om0 S0 o o o €0 S o e S

VARS -T2 - ’ ‘ BASIC Rev B

/ - CHAPTER 8: COMMANDS -
8.29 XREF Command : . o oL

1 XREF
See also: L?XREF command

Purpose:

The XREF command allows you to display all of the variables and lines used or
referenced in the program.

Cosment :

The XREF command cannot be used if the program in memory is read protected (see
LOAD command).

The XREF command 1lists the program in memory on the console and then lists two
tables of cross references for the program.

The first table 1lists all 1line numbers referenced and 1line labels defined or
referenced alon% with the line number of the statement referencing the line number
or label. he table of references to line labels the line number of the line
defining the label will have a colon following the line number.

The second table 1lists all variables and constants referenced in the program, in
alphabetic order, followed by the line number of the statement with the reference
to the variable or constant. A statement with multiple references to the same
variable or label w111 have multiple occurrences of the line number 1n the table.
Array names are denoted by a pzilr of parentheses following the array name.

Each of the line number references in the second table will be followed by a single‘
letter code indicating the type of reference to the variable or constant:

R Term used in an input type statement (INPUT, LINPUT, LINPUT USING,
. MAT INPUT, MAT READ, READ, READNEXT, and GET).

W Term used_ in an output type statement (DELETE, MAT PRINT, MAT WRITE,
_ PRINT, PRINT USING, PUT, and WRITE).

M Term was modified by statement (LET, FOR, and MAT).
All other types of statements are unmarked.

The variables and constants are listed in the following sequence: variables, string
constants, floating point constants, and integer constants.

.
O D IR D W - W - D . D D G S P G S D D G . Y . . G G G . G G T G WS D WP S D P D M R D TP e G D SE P P hr P N D W N R D SR e P P O% P e e = o
o 0 0 e T D o R St o O T o o 4 e s e A e T e W M T R D e e T Y M P e G S T S e S S5 R M G D S e e R D W T D R SR e WD G e N S WD o D D e e e e

Example:
-XREF

10 OPEN #1: "NAME.DATA", INPUT SEQUENTIAL
20 LOOP: PRINT CRT$("c"j;

) 0
30 I PUT' LINPUT #1: A$
0. IF EOF(1) THEN GOTO EXIT
0 PRINT AT 26 , I3+ ; ;EXT 2 §,1 og;
0 PRINT AT$(6 I§+ :EXT 4,0);
0 19 = 1345 1445<23 THEN Ggoto INPUT
90 - WAIT
100 GOTO LOOP
110 EXIT: END
Line/Label References
EXIT: 50 0110:
INPUT: : ho: 80
LOOP: 20: 100

BASIC Rev B o -73 - , | XREF

BASIC REFERENCE MANUAL

Variable/Constant ‘References

A$: : 4OR 60W '~ TOW :
Ii _ " 30M- 60W TOW 80M 80
nce L - 20W
"NAME,DATA®™ - 10 -
0 - 30 60W T70W
-1 10 4OR 50 60W
g 60W ~
23 -OW
2 0 80
60W TOW TOW
23 0 ,

80

D T G G D O G GO D D O GD D D e G N U G0 O GO Gv GD D OB e G D DR e G0 GD Ob M G0 GO G GP 08 OB P ED 0D D O O KD €D 5D G O €0 G0 €D S0 P an b G G €3 0N aD ON G O O o @ Gp GO D O3 ©F 5 & @ o
o o G5 an T T O D 6 W0 T S O €D DGR W D € e G0 GO OB @ €0 G D @ 6 6 I w . T B Gn e €5 Gn B 6o G0 0 = 0o S5 S0 06 & OB GO Eh S6 O W €S OO Gh 43 65 4P € G W1 Gp O 9D O3 O W6 R an O &5 O3 W 60 © o @

'xmn? - T4 -

BASIC Rev B

CHAPTER 9
STATEMENTS

This chapter discusses each statement in a separate section. Each statement is
described in four subsections: .

1

1. General form: defines -the syntax of the specific statement. For
visibility this - information is glaced in a box at the toB of the page.

Note: the characters ::=z should

~ 2. Purpose:

e read as. "is defined as

one or two sentences that summarizes the purpose or general

function of the statement.

”3 Comment:

detailed .deseription of the statement specifying any

restrictions,- exceptions or errors that may occur.

N, les:
- applieable.

general examples of the various forms of the statment 1f

For the convenience of novice pro rammers “the BASIC statements are listed below by

logical groups.

In the body of this chapter, however, the statements are 1isted in

alphabetlc sequence, for quick reference purposes.

An appendix at the back of this manual lists all of the statements with their .

general syntax requirements.

A. Control and/or'BranchlngvStatements

CASE

CEND

"ELSE -)
END

FNEND

FOR

GOSUB

GOTO

. IF

- IFEND
NEXT
ON ERROR

. ON GOSUB
ON GOTO
OPTION
OTHERWISE
QUIT . :
RESTORE
RESUME
RETURN
SELECT
SLEEP
STOP
THEN
WAIT
WEND .
WHILE .

Used with SELECT o
Used with SELECT

Used with IF

Exits program

Marks end of user defined function

. Loop control

Execute subroutine

Unconditional branch

Test expression-branch or execute depending on result
Marks end of multi-line IF

Used with FOR

Invokes user written error handling routine

Selects subroutine depending upon value ,

Selects branch depending upon value -
Set various options :
Used with SELECT P

Exits BASIC . .

Resets DATA pointer

Exits user written error -handling routine

Exits subroutine

Specifies value that determines statements to be executed
Susgends processing for period of time

Exits program

Used with IF

Pauses at bottom of screen display

Marks end of WHILE structure.

Executes statements while expression is true

B. Assignment and Declaration Statements

CLEAR
COMMON
DATA
DEF
DIM
LET
MAT _

Erase variables from memory

Defines variables used between program modules
Defines data constants

Defines user defined function

Allocates array space

Assigns value to variable

Assign values to arrays

C. File Input and Output Statements-

CLOSE
DELETE
GET
INPUT
LINPUT
LINPUT USING
"MAT INPUT
MAT PRINT

. MAT READ

BASIC Rev B

Closes file

Erase record from file

Get data from I/0 devices’ ,

Accepts ASCII data from file -

" Accepts line of ASCII data from file

Accepts line of ASCII data with control
Accepts ASCII data from file-assigns to array
OQutputs ASCII data to file from array

Accepts data from file-assigns to array

-T5 = o STATEMENTS

BASIC REFERENCE MANUAL

MAT WRITE

PRINT

PRINT USING.
. PUT -

READ

READNEXT

D. Program Lihkage

CHAIN
CSI
LINK
RUN

Outputs data to file from array

Allows change of disk

Opens file for subsequent input and output
Modifies memory ,

Outputs ASCII data to file

Qutputs formatted ASCII data to file

Puts data to I/0 devices ,

Accepts data from file

Accepts data from indexed file

" Release record for other users use

Outputs data to file

’Statements

Branches to another program
Executes system grogram ,
Branches to another program
Branches to another program

E. Other Statements

empty or null statement

- RANDOMIZE
REM

STATEMENTS

- 76 -

BASIC Rev B

‘ ~ CHAPTER 9: STATEMENTS
9.1 CASE Statement i '

1 CASE <expression>)
See also: CEND, OTHERWISE and SELECT statements

- ——————————
O e s e e

Purpose:

The CASE -statement is part of the SELECT-CASE-CEND programming structure that -
allows conditional execution of statements in a structured manner.

' Co-ent:

The form and function of the CASE statement depends upon which format of the SELECT
statement was used at the. beginning of the SELECT-CASE-CEND structure. . Format 1 of
the SELECT statement requires that the CASE statements have relational expressions;
format 2 of the SELECT statement requires that the CASE statements have expressions
the match in type to the expression-used in the SELECT statement--numeric with
numeric, string with string.

When the CASE statement is used with format 1° of the SELECT statement the
relational exEression» of the CASE statement is evaluated and, if true, the-
‘statements following the CASE statement will be executed. -

When the CASE statement is used with format 2 of the SELECT statement the .
expression of the CASE statement is compared to the expression of the SELECT
state%egt and, if true, the statements ollowing the CASE statement will be
executed.

When the evaluation of the CASE statement causes the statements following the CASE
statement to be executed, execution will continue until another CASE, CEND, or
OTHERWISE statement is encountered at the same level.

When the coﬁparisbn is false the statements following are skipped until another
C%SE,t CEND, or OTHERWISE statement is encountered for this SELECT-CASE-CEND .
structure. S

SELECT-CASE-CEND structures may be nested to any level.

It is best to use different levels of indentation to illustrate the structure of a
nested SELECT structure--~the "~ CASE statement does not indicate which SELECT
expression is being used--only the BASIC execution module "knows"™ unless you use
some form of documentation. . ' -

This programminé/‘ structure should be used to replace complex IF-THEN-ELSE
statements, ON-GOTO, and ON-GOSUB statements to produce a more structured program.
It is much. more versatile than the ON statement because the conditional execution
is determined by a general expression rather than an integer expression with only
positive, sequential values. '

This structure is particularly useful for a menu tree when the controlling
expression is a string. . :

Note: Any statements between a SELECT statement and the first CASE étatement‘will
never be executed unless they are branched to., - ' :

Note: The program should never branch out of a SELECT-CASE-CEND structure without

executin% the CEND statement as the internal SELECT stack will not be cleaned up
which will result in un-necessary memory usage.

BASIC Rev B | | : ~ CASE

- e - o Gn e - - oD G e o W e G = b G e o S o e D E
i+ 2+t 2t 222 -+ 2+ 3 1+ 3 1 F 4224

Example:

© 0010 INPUT CONTROL$
0020 SELECT CONTROL$
0030 CASE "n

0040 - PRINT CONTROL$

'0020 GOSUB 1000

0060 = CASE "HELP"

0070 GOSUB 2000

0080 QUIT - ‘ ‘
- 0085 CASE CONTROL$ If control =

0087 -~ PRINT "Invalid input®;

0 CEND
0 SELECT
CASE CONTROL$=""

010

0110

0120 PRINT CONTROL$

0130 GOSUB 1000

0150 CASE CONTROL$="HELP"

0150 ~ GOSUB 2000

0160 QUIT

0170 OTHERWISE N

o180 PRINT "Invalid input®

CEND

=ttt 5t

- CASE

' Explanation: -

Accept control value

Using this control value then:

If control is null execute following
else skip to line 60 :

Ogly gxesuted wgen CON3ROL$ is empty

If control is "HELP" execute following
else skip to next CASE or CEN
Only executed ween\CONROL="HELP"'
control (always true)

End of select structure = -
Same as above

- 78 - ' BASIC Rev B

| . _CHAPTER 9: STATEMENTS
9.2 CEND Statement

1 CEND o
See also: CASE, OTHERWISE and SELECT statements

Purpose: :) _ _ : :

The CEND. statément is part of the SELECT-CASE-CEND programming structure that
allows conditional execution of statements in a structured manner. -
Comment : - | , '

. The CEND sfatement marks the end of the SELECT structure.

There is only one CEND for each SELECT. |

Example: : . Explanation:

1010 SELECT OPTION$ = ' Using variable OPTION$
1020 CASE "HELP"™ - :

1030 GOSUB DISPLAY.HELP Perform if OPTION$="HELP"
1040 CASE "INIT"™

1050 GOSUB INIT.VAR Perform if OPTION$="INIT™
1060 GOSUB INIT.FILE " " n

10%0 : .CASE "PRINT" . o
1080 DEVICE.NUM%Z = 16 Perform if OPTION$="PRINT"
1090 CASE "TYPE" : : v :

1100 DEVICE.NUMZ = .15 Perform if OPTION$="TYPE"
130 reTURN | |

RETURN Perform always

BASIC Rev B -79 - CEND

| BASIC REFERENCE HAIUAL
" 9.3 CHAIN Statement

1 CHAIN <program name expr>
Where: - -
{program name expr) ::= <file name>[.<{file type>]l[:<file disk>]
{file type> ::= BASICOBJ Ewith BASIC)
' BASICCOM (with RUN)

See also: CLEAR, LINK and RUN statements

- Purpose: : S o ‘ ' ' | -
The primary use of the CHAIN statement is to link together BASIC program segments.
Comment : -

The CHAIN statement terminates the execution of the program in which it is
encountered, loads the program indicated, and continues execution at the beginning
of the program segment. - _

The CHAIN statement will close all open channels (files) and all variables that
have not been defined as COMMON variables will be cleared from memory. :

Previous versions of OASIS BASIC supiorted a <line number> operand. The
recommended method of transferring control to another pro%ram at a specific line is
the use of a control variable (defined as COMMON) that is tested by an ON-GOTO
statement at the start of the program transferred to. ' -

The,<program' name> must be a valid string exfression. If the program cannot be
found in the directory, a non-trapable error will occur.

Note: When the RUN version of BASIC is being used (execution of compiled programs
only) only programs that have been compiled and have a file type of BASICCOM will
be searched for by this command. ' :

The CHAIN statement will "wrag up" all active grogramming structures: FOR-NEXT,
gHILEEWEgg, IF-THEN-ELSE, IF-IFEND, SELECT-CASE-CEND, and the ON ERROR will be
urned off. '

The CHAIN, RUN, and LINK statements ali perform similar tasks, but with significant
differences: v]

Program Linkage Statements

i Statement | I/0 Channels | Variables ! COMMON i
]
{ RUN i Closed ; Cleared j Cleared i
I CHAIN I Closed 1 Cleared I Not cleared i
i LINK ‘i Not closed | Cleared i Not cleared ;
Examples: . Explanation:
,‘0010 CHAIN "SEGMo1" Program named tSEGMO1*' will be

loaded, all files will be closed,
& control will pass to the first
3 statement of 'SEGMO1*.
0030 CHAIN “SEGMO"&NUM(I)&":S™ When I equals 1, this statement -
. is the same as example 10.
‘ If I is equal to 3, program
. 'SEGM0O3* will be executed, etc.

: CHAPTER 9: STATEMENTS
9.3 CLEAR Statement ' o

1 CLEAR

2 CLEAR <variable list>

Where: _ v

<variable list> ::= <numeric variable>[,<variable list>]
<string variable>[,<variable 1list>]
<array name)[,(variable list>]

See also: CHAIN, COMMON, LINK and RUN statements

Purpose:
The CLEAR statement initializes the working‘storage area.
Comment: ' ‘ :

The CLEAR statement effectively erases all variable names and their contents from
memory. . S o

Variables’defined as COMMON variables are not erased by this command. B

This operation is performed automatically whenever a CHAIN, LINK, LOAD, NEW, or RUN
command is executed. It may be necessary to use this segarate command when there
are many variables defined in working storage that are not going to be used again,
and there are no variables whose loss would be detrimental to program execution.

The main advantage gained is a fresh work area that may allow the program to
cogg%ngi execution that, without it, might have required more memory than
available. , : v > , , :

Optionally this statement may clear specific variables (or complete arrays) from
memory when they are no longer needed by the program.

Examples: - . Explanation:

0010 CLEAR 4 _ All variables are cleared from memory..

0020 CLEAR A,B,INDEXY . Only the variables A, B, and INDEX% are
cleared from memory (unigss they were

‘ defined as COMMON).
0030 CLEAR ARRAY1$,A,B : The entire array ARRAY1$ is erased from
- memory along with the variables A and B.

BASIC Rev B - 81 - ' CLEAR

. .or in the file itself. It is acceptab

BASIC REFERENCE MANUAL
9.5 CLOSE Statement -

-1 CLOSE #<channel>
Where: -

‘<chanhe1> :2= <{integer expression>

' See also:.CHAIN, CSI, END, MOUNT, OPEN, QUIT and RUN statements .
Purpose: e R | / ‘
??f CLOSE statement is used to terminate I/0 between the BASIC program and a data
e. o ~ ; o R ,
Comment:

The CLOSE statement causes the output of the last block of data to the file.-
Execution of .a CHAIN, END, or CSI statement automatically closes all open files.
The RUN command automaticaily closes any open files before execution begins. The
QUIT command will close any open files. before exiting BASIC. ‘ -

The <channel> must have the same value as that used with the OPEN statement.
Once a file has been closed, it may be reopened on any available channel number.

If the user should happen to abort a BASIC program (by an IPL.or power failure)
when indexed or sequential files are‘pgen errors may exist in the file directory

! ' e to abort the program by using the Program
Cancel-key or the System Cancel-key, but exiting by a sysfem reset button or power
failure can be disasterous. o '

1 - - oo -3 3545831 -3 - - - - D G D W D S S D G O
R R S R S S e R R R L R S e R S S R S S N S S S R S S S S S S S S S R S e S e e S S S S R R E S S S S R R RS ==Es ===

Exqules: ‘ Explanation: -
0010 CLOSE #1 - = | | File opened on channel one is-closed.
0020 CLOSE #INPUT% 7 File opened on channel corresponding

to value of variable INPUT% is\cloged.

-

Incorrect examples: , ; Explanation:
0010 CLOSE "IVY MASTER A" File names are not allowed.
0020 CLOSE #u?#s,#s,#1o Multiple channels not allowed.

0030 CLOSE #17 .~ Channel 17 is invalid.

CLOSE) - 82 - ' BASIC Rev B

| | | CHAPTER 9: STATEMENTS -
9.6 COMMON Statement - ; |

1 COMMON <variable list>

Where:

o~

<variable list> ::= <simple variable>[,<{variable list>] -

_ ' <dim variable>[,<variable list>] .
<dim variabled> ::= <array name>(<dimension>[,<dimension>])
{dimension> ‘::= <numeric expression>)

See also: CLEAR, DIM, OPTION, and RUN statements

. Purpose:

The COMMON statement allows you to sgecify that certain variables ~are shared
between segments of a program and are, therefore, not to be cleared.

Co-ent:

The COMMON statement must be the first stateﬁent'on a line--there can be no line -
label specified on the same line as a COMMON statement. _ -

The COMMON statement is an executable statement,‘similar to the DIM statement-=in

fact, it must be executed before any references are made to the variables it is
defining as common. . '

When a program is RUN, CHAINed to, or LINKed to, the entire program is scanned for
any and all COMMON statements. When one is found the variables specified on that
statement are searched for in the COMMON variable storage. When a variable is
found it will be left as is.. When a variable is not found in the COMMON variable
storage area it will be defined or dimensioned in that. area. o : v

Note: If a variable was used in a previous program but not defined as_COMMON before
its use, the value will not be retained at the time it is defined as COMMON.

-Although it is not necessa to re-define all of the variables that are COMMON
between programs it is definitely a good programming practice. It is also not
necessarg to specify the variables in a COMMON statement in the same sequence as
" they might have been’ defined in a previous program's COMMON statement--variables
are accessed by name, not location or sequence.) ‘

Examples: o .- : Explanation: , ,
0010 COMMON-A,B,A% ' The variables A, B, and A% were defined,
‘ . or will be used, by another program. !
‘0020 COMMON ARRAY$(5,22),CONTROL Similar to above but also dimensions ARRAY$

D D O O D O 0 e e e e e e e = e G e w D GD G0 P D D R S D DF D G0 0 G GR D €5 ON 0D @D TD 6D G0 e D WP G GF =N D P D S R e G EP G G SR EP G G w2 S WP OR SN OF S 6D W 0P oD & D e G o
o D D - W G e D G S S S - D WS D AT RSP e e D D WD T e B D e YD G 0 AP D GO e s e e D D P W T R e D D e D D 4D R P M P R T D T W e e W s M R e G e D D R OO e -

BASIC Rev B ~ -83 - | | COMMON

BASIC REFERENCE MANUAL
9.7 CSI Statement

1 CSI <string-exp>

o e o
b

Purpose:

The csi statement allows the_BASICﬁprogram~to-execute any OASIS eommand, resuming
. execution of the BASIC program afterwards. . . ' -

Comment : , . _ .
All I/0 channels will be closed when the CSI statement is executed.

<String-exg> is any valid OASIS command, with all arguments and optioﬁs required by
the specific command. Refer to the 0O ste eference Manual for “complete
specifications of these commands. ; i .

When the first character of <string-exp> is the ">"_ character, the sfrin will be
displayed on the console device, otherwise the string will not be isplayed
(command executed in "silent™ mode).. - : :

- When the CSI statement is executed your BASIC program and all of its work areas are
marked as protected memory. A special call to the operating system gasses the
string exgression to the Command String Interpreter which executes the desired
grogram. pon completion of that program the operating system reloads the BASIC or-
UN. command, if necessary, unprotects the memory area containing your program, and
continues execution of your program. _ : ~ -

. !
The CSI statement should not be used to execute large OASIS commands because of the
restricted memory available, Additionally, when the following commands are
executed the result will be unpredictable: DEBUG ASSEMBLE, BASIC, and RUN. The
ATTACH program cannot be called to attach a new device driver; however, it may be
called to change some options on a currently attached device. In addition the
stack of the EXEC language must be empty. .

S e S S S S S S S S S R S R S S S C S S T I S T T T R R R R R S R S R S S S SRR RRE==zIsEEEEs

Examples: Explanation:

0010 CSI "LIST CUSTOMER MASTER (PRINT NOHEAD)¥ ‘
The file CUSTOMER MASTER is printed without.
‘ headings. ' '
0015 Ag$=">filelist a (exec append)"
0020 CSI A$, . Command is displayed. The file
' named SELECTED.EXEC is appended with the
current filelist from the directory of
the A disk.

D G D D WD D D S R S GO WO TR S D D TR0 W S D G G S - o e -~ e == - - r2 22T rrrrrrrxrxry T Y T T T X T 2 2 3 3 <+ 42 3 L X .83
a3 a3 3 22t 1 2 2 R R R R R R R

CcsI | -8 - BASIC Rev B

: CHAPTER 9: STATEMENTS
9.8 DATA Statement '

1 DATA <data list>
Where: }
<{data list> ::= <data element>[,<data list>]
<data element> ::= <numeric constant>
<quoted string constant>
<unquoted string constant>

See also: READ and/RESTORE statements -~

Purpose:

The DATA statement is used to define information to be read by thé READ statement.
The DAT% and READ statements are useful for defining the initial contents of an
array, ete.

Comment :

The DATA statement must be the first, and only statement on a line--there can be no
line label specified on the same line.

The data elements in one or more DATA statements are used sequentially, in the
order that they appear in the line, in the order that the lines agpear in the
program. (It is possible to re-use data elements—-see\RESTORE statement.)

When a data element is to contain leading or trailing sbaces or embedded commas it
must be defined as a quoted string constant.

This statement, along with the READ and MAT READ statement, is very useful for
"defining the initial values to be used for variables and array elements. It is
much faster to perform a READ or MAT READ than it is to use the L T statement.

Examples:)
10 DATA 1.23,2.34,3.45,LITERAL, ANOTHER LITERAL
20 DATA "He said ""Brin% the §1ass.""","T. J. Collins, Jr."
3ODATA 1,1’2,1,1,1,0,1, ,5’1, 6,1,-1 .

BASIC Rev B - -8 - DATA

BASIC REFERENCE MANUAL
9.9 DEF Statement

) . —

"1 DEF Fl<variable>(<arguments>) = <expression>
2 DEF FN<variable> = <expression>

3 DEF Fn<variab1e>({arzunents))

A DEF Fl<variable>

Where:

{variable> ::= <simple variable name? o ‘
{arguments> ::= <simple variable name>[,<arguments>]

See also: FNEND and LET statementsv o -

Purpose: _ 4
The DEF statement allows the progranmer to define a user defined function.
Comment: R

In some programs you may want to execute the same sequence of statements in several
glaces. You can define a sequence of operations as a user-=defined function and use
his function like you use-the functions BASIC provides.

" The DEF. statement has two basic forms: single line (formats 1 and 2);‘mu1t141ine~“
(formats 3 and 4). . . ,

The DEF statement must be the first statement on a line--there can be no line label
specified on the same line as tne DEF statement. :

The <variable> following the characters *'FN! is independent from the program. The
function is referenced by the complete name, including the FN characters.

Any variable referenced in the expression which is not an‘argunent of that function
has its current value in the user program. : o o B
The expression’ ma{ include any valid element. It should be noted that a single
line function should not reference-itself as this causes an infinite loop. -

The <argument> is a dummy argument: it has no relation to the program and cannot be
changed b{ the program. If the dummy - argument is also a variable used by the
program, they are independent of each other. .

ghe iigument' nust be a simple variable name, that ie,(array referrences are
nvalid. - - :

In the single line format of the DEF statement, the variable and the expression
must match in type, i.e., string variable with string _expression, or numeric
variable with numeric expression. ‘ °

During execution the expression is analyzed and the value is assigned to the
function. This value takes the place of the function call in the expression that
references the function.) ;

In the multi-line forms of the DEF statement there must be a-corresponding FNEND
statement to mark the end of the function definition. ’

In the multi-line forms of the DEF ~statement the statement following the DEF
statement are executed until the FNEND statement is encountered, at which time the
value of the function is returned _and execution resumes at the location of the
function reference: The value of the function is assigned by a LET statement in
the function definition: LET FN<variable)> = <expression>. There can be more than
one of these assignment statements in a function definition but only the last one
executed will be the assignment used. o :

There can be only one FNEND statement for each multi-line function definition.

Most statements can be used within the function definition (between the DEF and
FNEND statements). However, transfers into or out of the definition (with GOTO.or

DEF | o - 8 - ~ BASIC Rev B

CHAPTER 9: STATEMENTS

GOSUB) should not be used. (There are no restrictions in this regards except that
th% FNEND)statement cannot be executed without performing a multi-line function’
reference. ,

DATA statements may. be READ from a statement within a funotibn definition.

A multi-line function definition that does not execute an assignment statement
%ssi 2ing the value of the function will return the last defined value of the
unction. - ’ .)

The DEF statement may be placed anywhere in the program, however, it is executed
only -when referenced by another statement. .) , .

You may not re-define a DEF function. No error occurs when this is attempted but
only the first definition is used. N -

- i T 3 T 3 S 3 T E X 2 X 3T X XX 1T X3 2 X 4
341+t i ittt it ittt 1t ittt ittt 11ttt t 1ttt 1ttt i1ttt 1ttt ittt ittt ittt ittt ittt ittt 1ttt

Examples: Explanatidn:

0010 DEF FNA(X) = SQR(X"2+Y"2))-SQR(X) - : : -
. , . X is the dummy argument. The value of Y
’ ' is taken from the program, 10 in this
example. Each of the two calls to this
function in line 50 cause the value of

0020 2 '
? : the argument, 2 in the first call and 5
F

0030
0040
0050

N<OQW
wunn

0 v ~ in the second call, to take the place of
NA(B)/FNA(C) any and all references to that dummy
_ variable in the expression of the
' function. The function is evaluated, Line
100 is an equivalent statement as line
—~ n oo . without usin§ the function calls.
- (SQR(B"2+Y"2)-SQR(B))/(SQR(C"2+Y*2)-SQR(C)] ‘
' ; As can be seen this is not only more
"difficult to read, but when there are
more references to the same function

o
-~
o
o

N
n

. there will be more code involved.
1000 DEF FNX%(A,B) ‘ Multi-line def, arguments of A, B
1010 IF A>B THEN FNX%=A*B+3.4 GOTQ 1030
Defines value of function and exits.
1020 FNX% = A*B) Define value of function
1030 FNEND ' - End of definition
1040 PRINT FNX%(3.1,2.3) , ~ Will print 10..

Incorréct‘examples: Explanation:

0010 DEF FNA(S™2) = 2%S+S ' Dummy argument must be a simple variable.
0020 DEF FNA$(B) = 2%B Funct%on name must match expression in
: > type (string or numeric). :

BASIC Rev B - 87 - DEF

BASIC REFERENCE MANUAL
' 9.10 DELETE Statement

1 DELETE #<file>,<key>
" Where:
{file> ::= <integer expression>

<key> ::= <string expression>
© <numeric expre381on>

Purpose: - :
ggfybELETE statement deletes a specified indexed or direct record from an~~open,'
ee) . 1

crllent°*

<file> is the -channel number of an open, indexed or direct, disk file, w1th access
-.mode of OUTPUT or UPDATE, and an access method of DIRECT or INDEXED.

<key> is a string expression representing the key of the indexed record to be.
deleted or a numeric expression representing the record number of the direct record
to be deleted. A string key is required if the I/0 channel was opened with access
-method INDEXED, and a numeric key is required if the I/0 channel was opened with
access method DIRECT.

Thg rggord specified by the <key> is removed from the file and the EOF 1ndieator is
set o

When the record is not found the sequential access pointer and the EOF indicator
will be the same as if the record were found and deleted.

- o oo e @ @ o - . ™ . P P D D o oo R e e D D D S P N TU D TP R D G T Om G D RGP GP O S S SR 0D GD av) S D @F U WP D Co S e S W 0PSB On e S
.—Q—---—---.’----‘n-n-::-—----:------:--—-n-—---—------—-----------------Q---_m----nu

Examples:
0010 OPEN #1: F$,UPDATE INDEXED
0020 OPEN #2: F1$,UPDATE DIRECT
0030 DELETE #1, "0601"

0040 DELETE #2,30

- Explanation:

Record with key "0001" is deleted.
Record number §o is deleted.

Incorrect Examples:

0020 DELETE #1,2
0030 DELETE #1 K$ A1$,A2%

DELETE

Explanation:

Indexed files use strin% keys.
Record variables not allowed.

-88 - | ~ BASIC Rev B

o ' : : CHAPTER 9: STATEMENTS
9.11 DIM Statement

1 DIM <dim variable list> . | o)
Where:

<dim variable list> ::= <dim variable>[,<dim variable list)]-
<dim variable> ::= <simple variable>(<num expr>[,<num expr>})

See also: COMMON, MAT, MAT INPUT, MAT PRINT, MAT READ, MAT WRITE,
. and-OPTION statements o . .

Purpose:

The DIM statement instructs the system to reserve storage space for . an array by
specifying a maximum subscript (dimension).

Comment:

The DIM statement is an executable statement. In fact, it has to be executed in
order to be effective. ' :

Numeric or string variables may be dimensioned with one or two dimensions. The
maximum value for each dimension is 32767, however, the restraints of memory size
usually limit this to a much lower value. An array may not be re-dimensioned.

When a variable is dimensioned a reference to the same variable name will refer to
the array. - This is only allowed with certain types of statements (i.e., MAT). 1In
other statements the error "Inconsistent usage" will occur. '

Any reference to an array beyond the allocated size will cause a subscript error.

Arrays are created with a zero element in each dimension, unless OPTION BASE 1 is
in effect. For instance, if the array X were dimensioned X(5), there would be six
elements in the array with subscripts of 0, 1, 2, 3, 4, and 5.

Examples: Explanation:

0010 DIM X(20),¥(2,5),4$(5,5) Array X has 21 elements, array Y has 18
elements, string array 1$ has 36 elements.

Incorrect Examples: - Explanation: .

0010 DIM X(2,2,23 ' Can have only 2 dimensions.

0020 DIM Y(99999 Maximum dimension is 32767.

- D D D . P R W D P EE E” D P WP P WD G WP G D O T S W T S P S D T W W S P D P OGP W W G M LD G AR U G s P G P S U S R D S e R O e e O e G G G S OF e G G a2 E Eh e e e o

. ’ :
BASIC Rev B | - 89 - DIM

' BASIC REFERENCE MANUAL
 9.12 ELSE Statement .

See

1 ELSE [<statement>]

also: IF, IFEND and THEN statements

Purpose:

The ELSE statement specifies the action to be taken when a multiline IF statement:

relation is not true.
Comment:

The ELSE. statement is only valid as part of a multzollne IF statement however, the

ELSE verb may be used in a single line IF statement.

<{statement> may be any valid statement or statements, ineluding another

statement.

It should not, however, be an IFEND statement

["

IF

T e - .. > g . P > - > > - - - - - - - o
. ----::::::::2::::::::.‘.‘=================:========::::::::3::::------—--—-----------.

Examples:<

0010 IF A

0020 THEN GOSUB 2000

0030.- PRINT USING "###",A
0040 . GOTO TOP.QF.PAGE
0050 IFEND

0010 IF VALUE > CONTROL

-0020 ‘THEN IF VALUE > LIMIT
0030 THEN GOSUB ERROR

0040 GOTO EXIT

0050 - ELSE IF ERR.NUM < ERR.LIMIT
-0060 IFEND

0070 IFEN

Explanation:

Test A for non zero
Pergqrm %f A<>0

" w0

"~ End of conditional execution

Test expression
Perform if expr is true

. Perform if bo h expr are true

THEN QUIT
‘Perform only if first expr is true
and second expr is false

End conditional execution from second expr

End of condit10na1 execution

Incorrect Example: .
0010 IF CONTROL<LIMIT THEN WAIT

0020

ELSE PRINT "ERROR"

Explanation:

Not in multi-line IF statement

- - o - - - o o > ™= w o w
=-==--=-====--::::----—-----—-------—-.’--

-90 - ~ BASIC Rev B

: CHAPTER 9: STATEMENTS
9.13 END Statement ‘ : -

1 ~
{ 1 EWD |

i . See also: STOP and QUIT statements
] N .

> et e 20 mnm e

Purpose:’ -)
The END statement terminates execution of the progranm.
- Comment : - - S :

The END statement, uhlike the STOP statement, not onl{ terminates execution of the

ro§ram but also closes all open I/0 channels and, if the RUN command is bein% used-
fno EASIS), exits from the BASIC environment; otherwise control returns o the
command mode. T ~ . .

The END statement should be the last statement in a program. Although this is not
required by OASIS BASIC it is required b{ ANSI and is a good grogramming practice
because i can serve as an indicator that you intended it 0 be the end of the
program. . . '

-~

You cannot CONTINUE after an'END statement has been executed.

BASIC Rev B | -91 - - END

" BASIC REFERENCE MANUAL
9.14 FNEND Statement

1 FNEND

See also: DEF statement

Purpose:
- The FNEND statement marks the end of a multi-statement user defined‘function,
Comment : '

The .FNEND statement may only be used, and must be used, in a multi-line user.
definied function.) ; '

There may only be one FNEND'stateméht for each multi-line function.

The statement between and including the DEF and FNEND statements are not executed
' unless referenced from a statement in the body of the- program.)

- o= - - - 0 e o o o w2 o O o w2 W we W
i+t 33422t 22 4t 2 1t 2 i ittt 1ttt ittt Attt i R g

Example: : , ' Explanation:
0010 DEF FNTEST(A) Start of function definition
0020 FNTEST=PI*#A%a
0030 - FNEND . End of function definition
0040 DEF FNCENTER$(STRING$ LENGTH) S art of function definition o
0050 IF LENGTH=0 THEN FNCENTER$= GOTO 110 :
0060 IF LEN(STRING$)-0 THEN FN ENTER$ SPACE$(LENGTH) GOTO 110
0070 FILL = LENGTH=L EN(S RING$)
0030 IF MOD(FILL ,
- 0090 - ﬁCENTERi = SPACE éFILL/Zi&STRING &SPACE éFILL/Z)
8%?8 %%SE FNCENTER$ = SPACE$(FILL/2)&STRING$&SPACE$(FILL/2+1)
0120 FNEND End of function definition
~

FNEND : -92 - BASIC Rev B

‘ : CHAPTER 9: STATEMENTS
9.15 FOR Statement

1 FOR <num index>=<start> TO <limit> o
2 FOR <num index>=<start> TO <limit> STEP <increment>
3 FOR <index>=<expression list>

Where: '

<{num index> ::= <simple numeric variable>
<{start> ::= <numeric expression)
<limit> ::= <numeric expression> _
<increment> ::= <numeric expression>
<index> ::= <{simple variable)>
<expression list> ::= <num expr list> ‘
<string expr list>
<num expr 1list> ::= <numeric expr>[,<num expr list>]
<string expr list> ::= <string expri[,(string expr list>]

See also: NEXT statement

Purpose:

The FOR statement define a program loop and execute that loop until a terminating
condition is met.

Comment :

The FOR statement assigns an initial value, <start>, to the index and saves the
limiting value <limit>. '

The STEP inefement (format 2), ié saved for use b the corresponding NEXT
statement. If the STEP value is not specified (format 1), a value of +1 is used.

The following paragraphs pertain to formats 1 and 2 of the FOR statement:

Upon initial execution of the FOR statement, the index variable is assigned its
initial value. The index variable is then compared to the limiting value and, if
the index has not surpassed the 1limit, execution is passed to the statement
followi the FOR statement. When the index has surpassed the limit, execution is
passed o the statement following the matchi NEXT statement. If there is no
matching NEXT statement an error occurs: "FOR without NEXT".

The STEP value, when specified,‘ may be a negative value. When the STEP is

ositive, the iimiting value must be %reater than or equal to the initial value.
.hggi {he lSTEP is negative the 1limiting value must be less than or equal to the
initial value. ' - :

-The value of the index variable surpasses the limiting value when it is more
positive (for a positive STEP value) or more negative (for a negative STEP value).

A FOR NEXT 1loop is defined by the FOR and NEXT statements, with each statement
marking the beginning and end of the loop.

FOR NEXT loops may be nested to any depth.

If a FOR NEXT loop is nested, it must be completely contained within the next
higher FOR NEXT loop. An error will occur if the system detects an illegal form of
nesting. A common ractice to determine if ¥our FOR NEXT 1loops are eial is to
draw lines between the matching FOR and NEXT statements (see examples). f a line
crosses another then it is an illegal form of nesting. : ‘

The FOR NEXT 1loop may be exited with a GOTO statement. When this is done, the FOR
NEXT loop will remain ogen until another FOR NEXT loop is executed using the same
index_variable or when this loop is re-entered.

Upon termination of a FOR NEXT loop the index variable will retain the first value
that exceeded the limiting value. For instance, the first example below will have
the value +11 upon termination.

Format 3 of the FOR statement allows the loop to operate on a "set" of values with

" BASIC Rev B , -93- FOR

' BASIC REFERENCE MANUAL

~ the set being defined by the expresszon list. In thls form the expressions must -
mateh in type (numeric or string) with the index variable. :

‘In this format the index . variable is initialized to the value of the first'.
expression. There is no limit testing as there is no limit defined. Rather, the
FOR NEXT 1loop is performed until the list of expressions is exhausted’ w1th each
execution of the matchin§ NEXT statement causing the next expression to be
evaluated and assigned to the index variable. . ' ,

e e e e D ee D G S0 D AP D Go W G GB UD G OO NGB e e G ED G om B G W G o D G e D WD eGP S GD G me 6D 60 G OF Gr GP G e0 =D 05 GP OF WGP D 0D TGP OB GV GD 65 6D O G D G D WD GRS D ap oo o O
- 0 e B € e S D D D D S5 £ €5 W T W0 O % D C2 0D Sb e GO e OD @5 G2 Co MD E5 G0 G0 G5 0n w8 =0 £ 05 TO e = 4% 00 G 65 T eD D Gn T G G G5 0o @b ek 0 S5 €5 €5 aD 4D 0 €5 Gb GO TD 9D op W A o O &b S0 € 0 D W

Examples: -~ _' .Explanation: .
=== 10 FOR.I=1 TO 10 ~ Loop will execute 10 times.

L

°

. === 50 NEXT I)

=== 10 FOR I$=C+3 TO R¥2 STEP .2 " Initial value is 3 plus the
. . , _ current value of Limiting

© value is current value of : -

. : . . R times 2. If limit is less than

—— 20 NEXT 1% , v _ . initial value the loop is not excuted
0 « « & A o and control will pass to line 60. -

* : E If variables C or R are changed within
the loop, initial value and limiting
value will not be affected as-they are
evaluated only once.

- This illustrates a eprrect form
- of nesting.

Iz .
J% .

.
L]

]
]
-poo

20 NEXT J%
- 0 FOR J% e o o
- ioo NEXT J%
—— 150 NEXT I3
- 10 FOR INDEX$="A", "B" "ABCD"&SPACE$(2) Loop will execute 3 times.

i ﬁo , NEXT INDEX$ X%riabge must match FOR index variable,
: used. -
====- 10 FOR Iﬁ- 1 6 8 22 29 Will execute 7 times.
- 20 A$- i Will execute 3 times for each of the
! : seven major loops.
- U0 NEXT A$ Terminate current loop
===== 50 ° NEXT I%) . Terminate current loop (major)
Incorrect examples: V - Explanation: » | ;"
10 FOR 1 TO 50 STEP 2. "~ Index variable mlssing.
20 FOR X = 1 STEP =3 - Limiting expression is missing.
0 FORJ = 5 TO 1 STEP 2 - Loop will fail initial test.
0 FORK =.1 TO 4 STEP -5 Loop will fail initial test.

—e——— ;8 ggg } o o Illegal nesting.
' - e o o . ; ~ .

s et éo NEXT I - : Note that lines cross here.
- 2= 90 NEXT J -

FOR N | | - 9% - : " BASIC Rev B

o * CHAPTER 9: STATEMENTS
~ 9.16 ' GET Statement ' : . '

1 GET DEVICE <device number>,<variable list)>
2 GET MEMORY <address>,<variable list>
3 GET PORT <port)>,<variable list>
' Where: o »
{device number> ::= <numeric expression>
‘{address> ::= <numeric expression>
<{port> ::= <numeric expression>) :
<variable list> ::= <numeric variable)[,<variable list>]
- . <string variable>[,<variable list>]

See also: PUT and WAIT statements

Purpose: : - o ' ;

The GET statement allows you to accept a single byte or list of bytes from an I/0

device such as an analog to digital converter. The GET statement is also useful
for accepting keyboard input, f available, and without any prompting or waiting
for the operator. : o , -

Comment: : \
This statement is not available when using the RUN2 version of BASIC.

<device number>, <address>, or <port> is a numeric expression which is rounded up
and integerized. <Device number> must be in the range of 9 throu%h 32. This
"number is the address of a lo%ical device (CONIN, CONOUT, PRINTER1, etc.) <Port>
must be in the range: 0-255. his number is the address of the I/0 port.

<address> must be in the range: -32767 - +32767. This value, unlike other
integers, is evaluated as an unsigned integer which adjusts its range to 0 - 65565.
It is best to use hexadecimal values for <address)> as they are easily interpreted -

as unsigned integer values. ' ‘ '

The data accepted from the .port, device, or memory is mapped in-a one to one
relation with the variable list. If the variable is numeric it receives an eight
bit integer.- If the variable is a string, only. one character is ‘assigned to it.
When more than one variable is specified each variable is evaluated independently
of the others. When GET MEMORY is used with multiple variables the memory address
is incremented by 1 for each byte accepted.

BASIC does not test to see if the I/0 device is read% before accepting the input.
When the device is npt ready the data "accepted"™ will be null or zero.

The GET statement along with the PUT and WAIT statements discussed in their
respective sections, provides a means of communicating with any device in the
system, These statements would normally be used to access devices that are not
supported by the ogerating system although there is no restriction in this regards.
In fact, these statements may be used to destroy the system, so please...don't.

The GET DEVICE statement accepts a b{te or bytes of data from the logical device
driver specified. A table of the logical device driver numbers is included in the
OASIS §xs§em Reference Manual. If your system is not interrupt driven you should _
got uie és statement. If the device has no information ready a null or zero byte
S returned. ' N : : :

The GET MEMORY statement reads the random access memory in the system. This
statement could be used to read data stored by your own user written device driver.
Because of the interpretation of the <address> as an unsigned value it is easiest
to use hexadecimal values (see section on "Integer Constants" at the beginning of
this manual and the section on "Numeric Functions"). .

The GET PORT statement accepts a byte or bytes of information from a physical port.
All devices have port numbers, usually determined by the hardware interface
electronics. If you have a reason to use this statement you would already know the
port number of the device that you wished to access. If the port has no
information ready a null or zero value is returned.

BASIC Rev B) - -95 - ' GET

BASIC REFERENCE MANUAL

The GET DEVICE statement is wuseful on system with an interrupt driven console.

Sometimes you need to accept a reply from the operator that he wasn't expecting to

be asked (error message response). In this situation it would be desirable to make
e

sure that the "type ahead_ buffer"™ was cleared before asking for the operator
response. See example line 50 for a method "'of doing this. ‘

- e A oo > T > = - - o o e o o - - - - - o a o oo - - - o o - o o = e o e w2 e S e o o G e o
S ittt 2t 1 1 1 2 ittt 1t it 2 it i s it Pt 2 2 > £ L - 1 0

Examples: : ' Explanatgon:
0010 GET MEMORY 0800H,A$,B$ Two bytes of data from memory address
o Ogoo.and 0801 hex are assigned to A$ and
- B$, respectively. .
Q920 GET DEVICE 32,4,B,C,D Four bytes of data from device #32 are

assigned to the numeric variables A4,B,C,
‘ ' and D respectively. ‘ L
0030 GET DEV 9,A$ ‘ Gets one character from the console and

assignes it to A$.)
0050 GET DEV 9,A%IF A%.THEN 50 This line will get information stored in

the console inpuf buffer until that
buffer is empty (null returned).

GET - 96 - BASIC Rev B

. CHAPTER 9: STATEMENTS
9.17 GOSUB Statement ' ‘

1 GOSUB <line reference>
2 GO SUB <line reference)
Where:

<line reference> ::= <1iné number>:
<line label>

See also: ON and RETURN statements

Purpose: .
The GOSUB statement transfers control to the specified line.
Comment : ‘

The GOSUB statement eliﬁinates the need to repeat frequently used grou s of code in
a program. Such a roup of statements is a subroutine. The subroutine must
logically end with a RETURN statement. - :

The subroutine may contain GOSUB statements, even a GOSUB to itself. This is
called a recursive subroutine. There is no 1limit on the number of _unreturned
;gggg;tlnes in progress, however, each unreturned subroutine requires 5 bytes of

When a GOSUB statement (dr- an ON-GOSUB statement) is executed, BASIC saves the

location of the statement that
statement; control transfers to t

Example:
0010 GOSUB 100 \ A = A+1

0100 PRINT A

0150 RETURN |

1000 GOSUB INPUT

hysically follows. Upon execution of the RETURN
e statement whose location was saved.

- > > = o o = > w w -
3ttt ittt R

‘Explanation:

Subroutine starting at line 100 will be
executed. Upon return from the subroutine th
the variable A will be incremented.

Control will be transfered to the statement
following the 'GOSUB' that called this
subroutine. .

The subroutine starting with the label INPUT
will be executed with execution resuming
with the line following 1000 when the-
subroutine's RETURN statement is executed.

Incorrect example:

~ Explanation:

Should not exit from a subroutine except
with a 'RETURN' statement.

0010 GOSUB 100 \ A = A+1
0020 LET X = SQR(Y(4/7))
0100 PRINT A
0110 GOTO 20
BASIC Rev B

 BASIC REFERENCE MANUAL
9.18 GOTO Statement

1 GOTO <line reference>
2 GO TO <line reference>
‘Where: :

<line reference> ::= <line number> . — .
, <line label> i o -

See also ON and ON ERROR statements

Purpose: _ :
The GOTO statement transfers'control, unconditionally, to a specified line.
Comment:

GOTO must be followed by a 1line reference of a line that exists. This line
reference may be of a line of a non-executable statement. If so, .control will pass
to the first executable statement following the referenced line. When the line
referenced does not exist, an error will occur,

A GOTO statement should not be used to jump into the middle of a FOR-NEXT loop
because a "NEXT without FOR" error will occur. If it is necessary_ to branch into a
F(gRt-:NEXTt loop to save coding, a switch should be used that will bypass the NEXT
statement. - .

Similaréﬁ a GOTO should not be usetho jump into the middle of a subroutine,
_ WHILE-WEND and SELECT-CASE-CEND structures. ‘ ')

The GOTO statement can be entered as the two words GO TO.

- e T T e I T It T o D G e . - . G D - T e W T
i+ it i it ittt 1t it i it it it Pttt -t R R

Examples: . ' ~ Explanation:

0010 GOTO 1020 Control is unconditionally transferred
_ . to line 1020.

0020 GOTO BEGIN Control is unconditionallly transferred

to the line wigp the label BEGIN.

Incorrect examples: - Explanation: ‘
0020 GOTO -20 Infinite loop - this is not detectable
by BASIC. :

0030 IF I > 4 THEN I = I-1 \ PRINT I \ GOTO 30 Valid single line loop.

GOTO : | -98- BASIC Rev B

» CHAPTER 9: STATEMENTS
9.19 IF Statement s

1 IF <expression> THEN <then clause> ELSE <else clause>
2 IF <expression> THEN <then clause> |

3 IF <expression> .

Where: -

<{expression> ::= <arithmetic expression> -
{logical expression> : .
' <relational expression>
<then clause)> ::= <{statement>
IR <line number> ~
' <{empty statement>
. <else clause> ::= <{statement>
<line number>
<line reference> ::= <line number>
: <line. label>

See also: ELSE and THEN statements

Purpose:
The IF statement provides for the conditional exécution of a statement o
statements or- the conditional branching to a different section of code.

Comment : I R |
<statement> may be any valid BASIC statement.

In the IF statement, . formats 1 and 2, the <expression> is first tested. If the
result is non-zero, then the THEN clause receives control. Since <{statement> may
be multigle statements separated by backslants, control will . be retained by these
statements until the end of line or a matching ELSE is encountered. When this
occurs, control will pass to the line following the IF statement.

~

If the result is zero, a search is made for a matching ELSE; when found, control
will pass to the statement or line number followinf the ELSE_term. When no
matching ELSE is found, control will pass to the line following the IF statement.

Any ELSE term encountered by BASIC is assumed to match to the most previous,

unmatched THEN clause, Tabs and indentation are not considered by BASIC in

determining matching THEN ELSE clauses, they are only for use as a programming aid-
in the intended structure of the code. .- ~ -

Format 3 of the IF statement provides for'COmplex multi-line IF statements, where
the other 1lines contain THEN and/or ELSE statements. This multi-line structure is
terminated by the IFEND statement. . < :

In any format, the IF statement may be nested up to 127 levels.

=:=====================:======:===============:=:====================:=============
Examples: . . Explanation:

0010 IF A=1 THEN PRINT "A = 1" When variable A is equal to 1
: , R the literal 'A = 1' is printed;
. o otherwise control passes to the

. ' line following.
0020 IF A=1 THEN PRINT 'OK' ELSE 30 When variable A is equal to 1,
- * o the literal 'OK' is printed;

. otherwise line 30 is executed.

0030 IF INP THEN GOSUB 1000 When the value of the function

- INP is greater than zero, the

subroutine at line 1000 1is
executed; otherwise control is
passed to the line following.

BASIC Rev B R =99 - IF

'BASIC REFERENCE MANUAL

0050 IF VALUE>0 THEN PRINT "POSITIVE” ELSE PRINT "NEGATIVE"
When the variable VALUE is positive,
_ the literal 'POSITIVE'! will be
- grinted otherwise the literal
N NEGATIVE' is printed.

0060 IF mAn=nA " THEN T0 ~ Unequal length strin%s being
compared. Will test false.
1010 IF A Test A for non zero
1020 THEN GOSUB 2000 Perform if A<>0
1020 PRINT USING "##4#",4 -on T on
1040 GOTO TOP.OF.PAGE " " n :
1050 - IFEND End of eonditional execution
1210 IF VALUE > CONTROL Test expression
1220 "~ THEN IF VALUE > LIMIT Perform if expr is true
1230 THEN GOSUB_ERROR Perform if bo h expr are true
1240 , GOTO EXIT
1250 A ELSE IF ERR.NUM < ERR LIMIT THEN gUIT Single line IF.
: : Perform only if first expr is true
: . and second expr is false
- 1260 - IFEND - End conditional execution from second expr
1270 IFEND , End of conditional execution
Incorrect examples: ' Explanation:
0010 IF D THEN X = A+D GOTO 100 Statement separator (\) missing
between A+D and 'GOTO
0020 IF Q=50 ELSE X=10 \ PRINT Y The 'THEN' clause is missing.
0030 IF I>1 THEN 200 \ I = I+1 Statement I = I+1 will never
, ~ ggsgéecuted. Error undetected by

i | - 100 - | BASIC Rev B

._ CHAPTER 9: STATEMENTS
'9.20 IFEND Statement -

1 IFEND
See also: ELSE, IF, and THEN statements

e o et et e
e amam

Purpose: ,

~ The IFEND statement marks“the end of a multi-line IF-THEN-ELSE structure.

Comment: | ' v A

The IFEND should not be part‘of a~THEN or ELSE statement.

The IFEND statement can only be used in conjunction with a multi-line IF statement.

The IFEND statement closes off the corresponding IF statement, marking the end of"
the conditionally executed statements of the THEN and ELSE staﬁements.

Examples: B Explanation:

0010 IF A . Test A for non zero

0020 THEN GOSUB 2000 Perform if A<>0

0030 PRINT USING "###",A " non

0040 GOTO TOP.OF.PAGE " n on

0050 IFEND - End of conditional execution .
- 0010 IF VALUE > CONTROL Test expression

0020 THEN IF VALUE > LIMIT Perform if expr is true

0030 THEN GOSUB ERROR Perform if bo h expr are true

0040 GOTO EXIT

0050 ELSE IF ERR. NUM < ERR. LIMIT THEN QUI

Perform only if first expr is true -
c and second expr is false
0060 IFEND . End conditional execution from second expr
0070 IFEND ' End of eonditional execution

O - W I T SO ST G S T S G G =D S S TP e S e G R P T G S S W D D D e WP TR Y P e S T P S D G D e S G G S G AD D G A G S 4N D MR SR ST A Gn B @B ER Y a0 wo oD
O S0 e o e e e e B e e e R T e T P e e e e R e R T e R T T N T T N R R T R e R R R C R e E R E AR a e R R R G- = e .=

BASIC Rev B - 101 - IFERD

BASIC REFERENCE MANUAL
9.21 INPUT Statement

1 INPUT <variable list>

2 INPUT <{prompt>,<variable list>

3 INPUT #<channel>: <variable list>

4 INPUT #<{channel>,<key>: <variable list>
Where: o ' '

<channel> ::= <numeric expression> : _
<prompt> ::= <string literal expression> -
{variable list> ::= <numeric variable>[,<variable list>] . ~
<string variable>[,<variable list>]
<key> ::= <stri expression> .
» <numeric expression> ‘

See also: CLOSE, LINPUT, MAT INPUT, MAT READ, OPEN, OPTION, READ,
and READNEXT Statements & |

Purposé:

The INPUT statement allows data to be~entered through the conSOIe; device, or disk
file during program execution. . :

Comment:

The various formats of the INPUT statement provide different capabilities with one
ggnggign in cggmon: input fields are always ASCII characters even when the input
'ie s numeric. : v . : ; :

Format 1 of the INPUT statement accepts one or more fields of data from the console
terminal device. g

Format 2 of the INPUT statementbaccepts one or more fields ofﬁdata from the console
terminal device after displaying the prompting message.

Format 3 of the INPUT statement accepts one or more fields of data from a
sequentially accessed device or disk file.

Format 4 of the INPUT statement accepts one or more fields of data from a device or
disk file with either direct, indexed, or keyed access. : : ' ‘
Format 3 and 4 of the _INPUT statement may only be used when the I/0 channel has
been opened with INPUT or UPDATE access, not OUTPUT.

The <prompt>, when used, must be a string literal expression. That is, the string
expression must start with a strinf literal. When the <Brompt> is used the system
will evaluate the expression and display the result at the current cursor location
followed by the. promgt character(s) ?see OPTION statement). When the <Erompt> is
got useg,it(fgpmat 1), the prompt character(s) will be displayed at the current
. eursor position. o '

The <variable list> is the list of variables that the input is to‘be assigned to.
This list may be as long as the line allows and may contain a mixture of variable
types (numeric, integer, string, array). 3

When more than one variable is to be entered, each eiement of data entered must be
separated by a comma from the previous element. (Note: when OPTION COMMA is in
effect the e ements must be separated with a semicolon character.)

When'fewer data fields are entered than requested by the 1list of a format 1 or 2
INPUT, an "Insufficient data"” messa%e will be displayed and all data must be
re-entered from the beginning of the list. When fewer data fields are entered than
requested by the list of a format 3 or 4 INPUT, an "Insufficient data" error occurs
*(trappable) and execution stops if no ON ERROR is defined.

Input is terminated with a <CR> or end of record indicator.

When using format 1 or 2 and the first character of the first field is a control

INPUT ' o - 102 - , BASIC Rev B

| | | , CHAPTER 9: STATEMENTS
character (ASCII value less than 32), the input will be terminated immediately and .

)
the value of the control character wiil be saved in the INP .function. Refer to the
INP function and the User Definable Keys for more information in this situation.

When the input chanacters‘are not enclosed in quotation marks, leéding and trailing
spaces will be ignored, and embedded commas will be treated as field separators.

The error "Illegal number™ will occur when the input variable is numeric and the
operator (or file) inputs a non-numeric entry. The system will stop execution if
no ON ERROR is defined. - . ' :

The Line’Cancel-key .and the backspace ke may be used to make corrections to the
data being input from the console with INPUT formats 1 and 20 :

When the BASIC program was execdted from an EXEC program and data was placed in the - '

EXEC Stack, these statements, along with other - BASIC statements that accegt‘ |
information from the system console, retrieves the next element from that EXEC" -
Stack. When the EXEC Stack is empty the data must come from the console.

Examples: . . ‘ Explanation: .
0010 INPUT N , " A-question mark, space is displayed on
» S ~ the terminal, th

e program supends execution
. until the operator types a return or .
_ . ‘ - o enters a control character only.
0020 INPUT "NAME",CUST.NAME$,A,B The prompt NAME? is displayed and three
fields are accepted, one string and two
‘ , numeric. : -
0030 OPEN #1: "CONSOLE",INPUT SEQUENTIAL . -
0040 INPUT #1: A$,B,C . o Aﬁain, three fields are accepted from
o i ' the operator, one string and two numeric.
‘No prompt wiil be displayed and no control

: : characters are allowed.
0050 OPEN #2: "DATE.FILE",UPDATE DIRECT i ‘
0060 INPUT #2,13:RECORD$ The 1§th record in the file is read
. : :) into the variable RECORD$. ‘

Incorrect examples: Explanation:

0020 INPUT A,B,2.3,D ' Onli variables may be. INPUT. . -
0030 INPUT ' At least one variable must be specified.

0040 INPUT "FLD1",F1,"FLD2",F2 : Only one prompt is allowed.

0050 OPEN #1: "DATA.FILE", INPUT DIRECT :

0060 INPUT #1,"ABCDE": ‘A$,

0070 OPEN #2:’ "DATA.FILE2
?

0080 INPUT #2,"ABCDE": A$

B v Must use numeric key for direct access.
UTPUT INDEXED : :
Bs Access must be INPUT, not OUTPUT. -

BASIC Rev B ' - 103 - ~ INPUT

BASIC REFERENCE MANUAL
' 9.22 LET Statement

1 [LET] <numeric variable> = <mumeric expression>
2 [LET] <string variable> = <string expression>
3 [LET] <string variable><substring> = <{string expression> .
4 [LET] <user defined function> = <expression> \
MS [LET] ERR = <numeric expression)>
Where: ‘

<substring> ::= [<numeric expréSsion):(numeric expressiond>]

Purpose:
The LET statement assigns a value to a variable. :)
Cosment: ‘ A ‘ -

This is the only statement where the statement verb (LET) is not required for
proper syntax.) : .

For all of the forms of the LET statement the expression is evaluated and assigned
to the element on the left of the first equal sign (may be more than one equal sign
because of relational expressions). The previous contents of the element are lost
but only after the expression has been evaluated. Therefore, the variable may be
an element in the expression. '

Formats 1 and 2 of the LET statement are the standard forms of the assignment
statement used by all BASIC implementations. The type of the expression (string or
arith%etic) must match the type of the variable on the left side of the assignment
operator. - :

The third format of the LET statement provides a powerful method of modifying
stgiggi vagiables by means of the substring operator. The general form of this
substring is: . , : ‘

<string variable>[<from>:<to>]

Replacement When <from> is less than or equal to <to> a character replacement
- is performed on the variable from column <from> to column <to>. The
stri expression on the right side of the assi§nment operator will be
padded with spaces or truncated to a length of <to> minus <from> plus one.

Deletion When <{from> is greater than <to> a character deletion is performed
on the string variable. The contents of the variable on the left side of
the assignment operator is first modified by deleting the characters from,
but not including, column <to> through column <from>. The strin
expression on the right side of the assignment operator is then inserte
into the variable after the <to> column.

Insertion When the <{from> is zero the string expression on the right side of
the assignment operator is inserted after the <{to> character position.

.

These rules and operations are best explained by example:
_ Assume that A$ contains ABCDEFGHIJ

A$[4:6] = m123" ABC123GHIJ

A$[6:4] = " ABCDGHIJ

A$16:4] = "mO1234" ; ABCDO1234GHIJ
A$10:6] = "0123" ABCDEF0123GHIJ
A$L0:0] = "0123456" Q123456 ABCDEFGHIJ

Format 4 of the LET statement is the user defined function assignment statement and
may only be used within a multi-line user defined function and the function name
used on the 1left side of the assignment operator must be the same as the DEF
statement of the user defined function that the LET is a part of. For an example
see the DEF and FNEND statements.

LET . - 108 -« BASIC Rev B

 CHAPTER 9: STATEMENTS

S ' N . .
Format 5 of the LET statement provides the capability of testing: error handling
routines during the develogment phase of a program. This format of the LET allows
you to assign a value to the ERR function (error number). When this statement is
executed the system will act exactly like it would act if an error occurred. The
type of error . is determined by the value of the numeric expression on the right
. side of the assignment operator. :

It is advised that this format of the LET statement, when used, should be used in a
multi-line statement on the same line as the statement that mi%ht cause the same
error. - For example, use ERR=30 on the same line as an OPEN statement. This is
advised because here is no method of setti the ERL function to have a different
value than the value of the line number that the LET statement is on. .. .

Examples: - _ Explanation: ‘
0005 LET A = 1.23 N The constant 1.23 is assigned to the
: . variable A. :
0010 A = 1.23 o © Same as previous example. S
0020 LET A = A+1 The current value .of the variable A is
: : o "~ incremented by 1. N :
0030 LET A$ = "ABCDEF™ The string variable A$ is assigned th
' - ASCII string 'ABCDEF',
0040 LET A$ = A$&"GHIJ" The string variable A$ is concatenated

with the stri 'GHIJ' and: afterwards
will contain *ABCDEFGHIJ'.

0050 ERR =. 30 OPEN #1: F$,INPUT SEQUENTIAL Your error handling routine is

. invoked, if an ON ERROR statement has

' been used. When the routine is entered

ERR = 30 and ERL = 50.
Incorrect Examples: : : Explanatidn: % _
0010 LET A$ = B+2 . Cannot mix string and numeric expressions.
0020 LET B=-A = C : Must have a single variable on the left
, of the assignment operator.

0030 LET +1 = A . Cannot assign a value to a constant.

T T I I ryryrrr
i3t ¢ttt ittt 1 ittt 1ttt ittt -ttt ittt R R R R R

BASIC Rev B - 105 - _, | LET

BASIC REFERENCE MANUAL
9.23 LINK Statement

1 LIli (ﬁrogran name> - ; ' ' o -
Where: . - '
:= <file name>[.<file type>][:<file disk>] K
BASICOBJ 2with BASIC) | =

BASICCOM (with .RUN)

See also: CHAIN, CLEAR, LINK and RUN statements

<{program name> :
. <file type> ::=

Purpose: _

The primary use of the LINK Statement is to 1link together the segments of a BASIC
~ program. ‘ o R ,
Comment:

The'LINK‘ statement teﬁminates the execﬁtion' of the program in which it is
encountered, loads the program indicated, and continues execution at the beginning
of the program segment. -

The LINK statement does not close any. files, however, all variables that have not
been defined as COMMON variables will be cleared from memory. '

Previous versions of OASIS BASIC. supported the <line number> operand. The
recommended method of transferring control to another program at a specific line is
the use of a control variable (defined as COMMON) -that is tested by an ON-GOTO
statement at the start of the program transferred to.

<{Program name> is ‘a string expression. If <program-name> cannot be found in the
directory, a non-trappable error will oceur. : .

. The CHAIN, RUN, and LINK statements all perform similar tasks, but with significant
differences: :

Program Linkage Statements.

f ! I/0 Channels | Variables .| COMMON i
| "RuN | Closed i Cleared | Cleared |
| CHAIN | Closed | Cleared j Not cleared |
i LINK i Not closed | Cleared i Not cleared |
Examples:) R Explanation: v
0010 LINK "SEGMO1" Program named 'SEGMO1' will be loaded _
_ - . . and execution resumes at the first line.
0020 LINK NAME$(INDEX%) T?etgrogram indicated by the contents
) o

e string array variable NAME$
subscript INDEX will be loaded and
g execution will resume at the first line. .
0030 LINK "SEGMO"&NUM(I)&":S™ When I equals 1, this statement -
is the same as example 10. When I equals
3 .program 'SEGM03' will be executed, etc.

Incorrect example: o Explanation:

0010 LINK "SEGMENT-1" 8 . Program name can only be 8 characters
’ . long. Also, - is invalid.

LINK . : - 106 - BASIC Rev B

CHAPTER 9: STATEMENTS
9.2% LINPUT Statement -

1 LINPUT <string variable> |

2 LINPUT <pro-pt>, <string variable> ; - ‘ -
3 LINPUT #<channel>° <{string variable> ’
§ LINPUT #<channel>, <key>. <str1ng variable>
Where: ,

::= <numeric expression> »
t:= <string literal expression) :
= <numeric expression> . h
<string expression> '
See also. INPUT LINPUT USING, MAT INPUT, MAT READ, READ, and READNEXT state

<{channel>
<£rompt>
<key> ::

Purpobe:‘
The LINPUT statement allows 'entr{ of ‘an entire line of data as a single- eharacter'
“string, including spaces and punctuation.

Comment:

The LINPUT statement’ operates identieally to the INPUT statement with one
exception: only one variable may be specified for input and the variable must be a
string variable. .

Examples: s ‘ L Explanation~

0010 LINPUT A$ Prompt character(s) is displayed at the
. o current cursor position, program execution
is suspended until the operator terminates
"the input. -

0020 LINPUT "NAME" JA$ ' L The literal "NAME? " is displayed, executionl
: ,is sgspended until the operator terminates
ut.
0030 OPEN #1: ™CONSOLE", INPUT SEQUENTIAL
0040 LINPUT #1: STRING$ Similar to line 10 but no prompt nor

INP capabilities.
0050 OPEN #2: "DATA.FILE", INPUT DIRECT
0060 LINPUT #1,5: RECORD$: Record number g of file is read into
S variable RECOR

Incorrect Examples: Explanation: ' | .
0020 LINPUT A1 R Must be a strin% variable.
0030 LINPUT A$,B$,C$ ’ P Only one.variable is allowed.

BASIC Rev B - 10T = o - LINPUT

BASIC REFERENCE MANUAL
9.25 LINPUT USING Statement

1 LINPUT USING <string literal expression>,<string variable>
2 LINPUT <prompt>,USING <string literal expression>,<string variable>
3 LINPUT USING <string expression>,<string variable>
3§ LINPUT <prompt>,USING <string expression>,<string variable>
Where: B } '
<prompt> :¢= <string expression>

See also: INPUT, LINPUT, MAT INPUT, MAT READ, READ, and
READNEXT statéments

Purpose:

The LINPUT USING statement allows entry of an entire line of data from the console
as a single character string, including sgaces and punctuation, with length control -
and the ability to "modify" an existing field. :

Comment:

The LINPUT USING statement, similar to the LINPUT statement .discussed previously,
allows entry of an entire line of text, including any embedded quotes and commas,
as one string field. Similarly, the LINPUT USING allows a prompting message to be
displayed before accepting input. :

However, unlike the LINPUT statement, the LINPUT USING statement provides greater
control of the terminal display bK {imiting the number of characters input. The .
most significant feature of the LINPUT USING statement is that the operator can.
make corrections to the line being entered without re-entering the entire line.

Formats 1 and 2 of the LINPUT USING statement use a <string literal expression> as
the using mask. A <string literal exgression> is_ a string expression that starts

with a string 1literal. For example: ""&SPACE$(10) is a string literal expression
of length 10.

With either of ‘these formats the statement will disg1a¥ the prompting message if
specified. The input area is the area from the starting position or a length
specified by the length of the string literal expression.

If the first character of the string literal expression is an exclamation mark (!),
BASIC will perform an auto carriage return when the input area if filled. This is
generally used on single character input lengths. L

Formats 3 and 4 of the LINPUT USING statement use a <string expression> as the
using mask. With either of these formats the statement will display the prompting
message if specified, then display the string expression in the input area. The
input area is the area from the starting gosition for a length specified bﬁ the
length of the string expression. Additionally, these formats of the LINPUT USING

sta gment will copy the string expression into the input variable before accepting
input. :

At this point all four formats of the LINPUT USING statement act the same with the
difference bei that formats 3 and 4 have pre-filled the input area with the using

mask and < formats 1 and 2 have a null string in the input area. The ogerator may

enter any ASCII character into the input area., . A carriage return will cause the

contents of the variable to be saved and exegution of the program resumes.

Certain keys are available to the operator to make editing .changes:

<{carriage return> Terminates entry.

<right arrow> Is a non-destructive advance. When this key is entered (or its
equivalent: CTRL/F) the cursor will be advanced over the next character.

<left arrow> Is a non-destructive back space. ‘When this key is entered (or its
equivalent: CTRL/H) the cursor will be backed over the current character.

LINPUT USING - 108 - - BASIC Rev B

'CHAPTER 9: STATEMENTS

<rub out> Is a destructive back space. When this key ié'entered:the cursor i
backed up one position and that character is replaced with a space. '

<CTRL/D> Is a destfuctive "delete. When this key is entered the current charécter |
: is deleted and the remaining characters in the input area are shifted one
character to the left. ' :

<CTRL/I> Is a "destructive" insert. When this key is entered (or its equivalent:
<tab>) the remaining characters in the input area are shifted one
character to the right and a space character is inserted at the current
position. If a _character shifting to the right would exceed the input
area length it will be deleted.

Any other character entered by thewoperator will replace the current character.

UnfOrtunatelﬁ, this statement is difficult to illustrate with a printed example. .
Therefore, the following grogram is provided for ¥ou to execute so that you may see
its uses, Keep in mind that what you see on the terminal in the input area is what
is actually in the field being entered.

Any control character (ASCII value less than 32) will terminate the entry and will
set the INP function to that value. This implies that the control characters 4, 6,
8, 9, 13 cannot be used as user defined control keys from a LINPUT USING statement.
This does not apply to the INPUT or LINPUT statements. -

-------------- O 0 W D > D > G GO P s G T > P . . > D D P D G S S BD G G S G S D P WP S S W W T P . . S G G " - e o - .

0010 OPTION PROMPT "®, 2 CASE "M" o
0020 PRINT CRT$("CLEAR®)

0030 PRINT "The following is a simgle illustration of the LINPUT USING"

0040 PRINT "statement in both of its primary forms. The first input reauest"
0050 PRINT "will use the statement with a string literal expression of%
0060 PRINT "len%th 30. The second input request will use the statement with"
0070 PRINT "a string expression of length go. The contents of the string"
0080 PRINT "expression will be the field entered by the first input request,"
PRINT "Ba ded to the grogar length."

0100 OPTION CASE " AT$? CRT$("EOS") 3

t

E "M" PRIN E1,1o ;)
0110 PRINT AT$(1 10)'"Ingut 1: [";SPACE$(30);"1";AT$(11,10);
0120 LINPUT USING "m"ksSPACE$(30),FIELDS \ 3
0130 PRINT AT$(1,12);"Input 2: "‘SPACE$§30);" " AT$(11,12);
0140 LINPUT USING RPAD$(FIELD$,30},FIELD ,
0120 PRINT AT$(1,14);"The field you entered contains:"
0160 PRINT " In;FIELD$; "I "; ,
0150 OPTION CASE "y® .
0180 LINPUT ""&AT$(1,16)&"0Okay to regeat (Y/N)? N"&CRT$("L"),USING "!",ANSWER$
0190 IF ANSWER$="Y" THEN 100 ELSE EN ,

BASIC Rev B - 109 - - LINPUT USING

BASIC REFERENCE MANUAL
9.26 MAT Statement

3 E
%’ 1 MAT <array name>
2 MAT <array name>

o s mesma.
t

<{array name>

(<expresasion>)
See also: LET statement '

o o i s e e

Purpose: S

" The MAT statemént allows you to either copy oné array to another or to assign one

value to all of the elements of an array.

Comment:

Format 1 of the MAT statement copies one array to another.
the same dimensions or a "Subscript Range" error will occur.

N

Both'arrays nust have

Forrmat 2 of the MAT statement sets all elements of the array to a specific value. .

- D G0 6P D G > S D 0 . G P e G S R D S W S G M WP S D W D S D TP G T G G SR A P Gn S D P D S R O D G OD D S G e D S . G N S e e P S G e D G T e S G W - S O
D G0 B0 T 0 S > s . - D G D G S Do =6 G 5 T WD SO D S D D T G G S e P n R e R W D G TR S S G D G IS O R D D M A T D e T T e S R OB e S - e O

Example:

DIM A$(5),B$(5),C(20)
9929 FOR IE20125 2 stacre)
0 2 |

Explanation:

Define size of arrays A$, B$, and C

Set. array B$ to initial values

Copies B$ into A$ (B$ unchanged)

Sets all 6 elements in B$ to be empty.

Sets all 21 elements of to be 1

_ Incorrect Example:

0020 MAT
0030 MAT A
0040 MAT B

0010 DIM ﬁi(?)(B (5),C$(5,2)

Explanation:

Defines size of arrays A$, B$, and C$.

- Expression must match array in type.
- Arrays are of different size:

MAT

- 110 -

BASIC Rev B

o | 'CHAPTER 9: STATEMENTS
9.27 MAT INPUT Statement g

1 MAT INPUT <array name>
2 MAT INPUT #<channel>: <array name>
3 MAT INPUT #<channel>,<key>: <array name>
Where: ') ‘ '
<{channel> ::= <numeric expression> : ' 3 o
<key> ::= <numeric expression> : :
‘ <string expression>

See also: COMMON, DIM, INPUT, LINPUT, LINPUT USING, MAT READ, and
: READ statements o |

~

Purpose: " ‘ '
The MAT INPUT statement allows an entire array to be input at one time.
cn l I !' nt= . N\ . B . . . _ - . ¢ :

Format 1 of the MAT INPUT statement accepts input from the console, assigning each
field input to the elements of the array specified. If fewer fields are entered.
than the remaining elements in the-array will be set to zero or null, depending
upon the type of the array. The zero subscript of the array will not be input to.

Format 2 of the MAT INPUT S£atement is identical to format 1 excépt that the input
comes from the file specified by the I/0 channel. :

Format 3 of the MAT INPUT statement accepts ASCII ingut from a direct, indexed, or
keyed data file. A numeric key must be used if the I/0 channel has been -opened
with access method 'DIRECT. A string key must be used if the I/0 channel has been
opened with access method INDEXED. If the wrong type of key is used an "Invalid
Key" error will occur. ; , '

Formats 2 and 3 may onl{ be used if the I/0 channel was opened with access method
INPUT or UPDATE. If the channel was opened with access method OUTPUT a "Wrong
Access"™ error will occur. : : ' ‘

It is important to note that only one record will be input. If there are fewer
fields in the record than there are data elements in the array the remaining
elements will be set to zero or null, Zero subscripts will never be input to.

S - D G P D D D A WS D R D D G G D R SO D W W G F - 3 3 3T T 3T T 3 T X X - - - an aw - D DGR TR D D D D D G G . . .
a2 g st ettt s+ttt 1t 3 3t ittt 2t 3ttt -ttt - t -ttt -t - 1 1 1 ¢ 11

Examples: o - Explanation:

0010 OPTION BASE 1 o i - .
0020 DIM ARRAY(4) g ’ , .
0030 MAT INPUT ARRAY - Accept 4 fields from console

0040 INPUT ARRAY(1),ARRAY(Z),ARRAY(3).AﬁRAY(&%, o ,
‘ - ‘ , ghiiis aggment is identical in function
o] ne

- BASIC Rev B ‘ - 11 - v MAT INPUT

- BASIC REFERENCE MANUAL
9.28 MAT PRINT Statement

1-MAT PRINT <array name list>
. 2 MAT PRINT #<channel>: <array name list>
3 MAT PRINT #<channel>,<key>: <array name list>
Where: ~ ' *
<array name list> ::= <array name><punct>[,<array name 1list>]
<{channel> ::= <numeric expression> .
<key> ::= <numeric expression>

: <{string expression>
. <punct> ::= <comma>

. <semicolon>

See also: ggg¥ggénEgM, ﬂAT WRITE, PRINT, PRINT USING, and WRITE
Purpose: _ _ v
The MAT PRINT statement allows an entire array or arrays to be output at one time.
Comment: |

Format 1 of the MAT PRINT stafement outputs the arrays to the console.

Format 2 of the MAT PRINT statement outputs the arrays to the file designated by
<{channel> that was opened for SEQUENTIAL access method. .

Format 3 of the MAT PRINT statement outputs the arrays to the file desiinated by
{channel> that was oBened for DIRECT, INDEXED, or KEYED access method. numeric .
key is required for DIRECT, a string key is required for INDEXED and KEYED, Using
the wrong type of ke wili result in a ™Wrong Access" error. This format of the
print statement outputs only one record containing all of the elements in the
arrays that will fit with the files allocated record length.

Formats 1 and 2 of the MAT PRINT statement may output multiple records. In these
formats, the number of records output depends upon the number of dimensions of each
array and the number or arrays specified in the 1list. Additionally, the
punctuation character used may cause additional records to be output.

A comma character afer an array name indicates that the array is to be output using
print zones, similar to the PRINT statement. A simicolon character after an array
name indicaﬁes that the array is to be output in a "packed" format, similar to the
PRINT stagement. When no punctuation is used the array will be output one element
per record, : :

When oﬁtputting two dimension arrays ﬁsing format 1 or 2 of the MAT PRINT statement
the second dimension varies fastest. A new record (line) will be started when the
first dimension changes. ’

When multiple arrays are specified a new record will be started for each array.
Again, this applies only to format 1 and 2 of the statement.

The zero subscripts of an array are never output with this statement.

MAT PRINT - 112 - / BASIC Rev B

Examples:

0010 DIM A;S) B(¥61o) A(TE) =

I$ NEXT
MAT PRIN
PRINT A(1) A(z) ;A(3);A(4);A(5)

'Explanation:

I
Statement is identieal to line 30
Initializes array B

Output from line 30
Output from line 40

‘Elements B 1,1) - B(1,10
Elements B 2 1 B %,}8
1

Elements B 3 1

0020 F
0030
0040
0050 PRINT
MAT B = (1)
0070 MAT PRINT B;
~RUN :
1.2 3 4.5
1.2 3 45
111111
111111
111 1 1 1
BASIC Rev B

- 113 -

MAT PRINT

 BASIC REFERENCE MANUAL
9.29 MAT READ Statement

1 MAT READ <array name>
2 MAT READ #<{channel>: <{array name>
3 MAT READ #<channel>,<key>: <array name)>
Where: , ; L
<channel> ::= <numeric expression>
<key> ::= <numeric expression>
‘ <string expression>

. See also: COMMON, DIM, INPUT, LINPUT, LINPUT USING, READ, and
| READNEXT statement .

Purpose: : .
The MAT READ statement allows an entire array to be read at one time.
Comment: Lo ' '

Format 1 of the 'MAT ‘READ statement accepts data from the DATA statemenis-in the
program. If there. are fewer DATA elements remaining than there are elements in the
array an "Out of Data™ error occurs. _ ‘

Format 2 of the MAT READ statement accepts data from the file opened on the I/O
channel specified. Only one record will be read. If there are fewer data elements
“in that record than there are elements in the array the remaining elements will be .
set to zero or null, depending upon their type.
The data file wused by the second format of the MAT READ statement must have been
opened with access method SEQUENTIAL. SR

Format 3 of the MAT READ statement accepts input from a direct, indexed, or keyed
data file. A numeric key must be used if the I/0 channel has been opened with
access method DIRECT. A string key must be used if the I/0 channel has been opened
with access method INDEXED or KEYED. If the wrong type of key is used an "Invalid
Key" error will occur. . : '

Formats 2 and 3 may onl{ be used if the I/0 channel was opened with access method
INPUT or UPDATE. If the channel was opened with access method OUTPUT a "Wrong
Access™ error will occur. : .

It is important to note that only one record will be input. If there are fewer
- fields in the record than there are data elements in the array another record will
not be read automatically--the remaining array elements will be set to__zero or
nul&,idgpending upon the array type. Add tionagly, the zero subscript will not be
read into. ‘ :

Although there is not MAT READNEXT statement available performing a READNEXT
followed by a MAT READ of the same key will perform the same function.)

Examples: ' ‘ Explanation:

0010 OPTION BASE 1
0020 DIM ARRAY(Y4),A$(2,5) ' :
0030 MAT READ ARRAY Accept 4 fields from DATA statement

0040 READ ARRAY(l),ARRAY(Z),ARRAY(;) ARRAY(Y4) Same function as above
0050 DATA 1.23,45,123456788,123353456 45E~23
0060 OPEN #1: DA&A.FILE", iNPUT DIRECT)
0070 MAT READ #1,1: A$ Ten elements will be read from the.

_ . ; first record in DATA.FILE .

A H ” ! ’A 2’
l2?é; B)Tﬁgglsggééig; 5%5 géeng%éql to line T70..

. CHAPTER 9: STATEMENTS
9.30 MAT WRITE Statement ‘ -

1 MAT WRITE #<channel>: <array name>
2 MAT WRITE #<channel)>,<key>: <array name)
Where: | S
<channel> ::= <numeric expression>
<key> ::= <numeric expression>
. <string expression>

See also: COMMON, DIM, MAT PRINT, PRINT, PRINT USING, and WRITE
statements S : o » ‘

" Purpose: ‘ < .
The MAT WRITE statement allows an entire'array to be output at one time.
Comment: ' o . : .

Format 1 of the MAT WRITE statement outputs data to the file opened on the I/0
channel specified. Only one record will be output.

The data file used by this format of the MAT WRITE statement must ha#e been opened
with access method SEQUENTIAL. - '

Format 2 of the 'MAT WRITE statement outputs data to a direct, indexed, or keyed
data file. A numeric key must be used if the I/0 channel has been opened with
access method DIRECT. A string key must be used if the I/0 channel has been opened
with access method INDEXED or KEYED. If the wrong type of key is used an "Invalid
Key" error will occur, ' o ‘ .

Formats 1 and 2 Emay only be used if the I/0 channel was opened with access method
OUTPUT or UPDATE. If the channel was opened with access method INPUT a "Wrong
Access" error will occur, . Lo

It is important to note that only .one record will be written. If there is
insufficient space allocated for the record it will be truncated.: -

- The zero subscript of the array will never be written.

Examples: o - Explanation:

0010 OPTION BASE 1 -

0015 OPEN #1: "TEST.FILE:A", OUTPUT SEQUENTIAL, EXTEND .
0020 DIM ARRAY(4),A$(2,5) - '

0030 MAT WRITE #1: ARRAY , Outputs 4 fields to the file on channel 1

0040 WRITE #1: ARRAY(1),ARRAY(Z),ARRAY(%&iARRﬁYgu) t is identical in functi
' . . S statiemen S entica n runccion

_ to line 30
0060 OPEN #2: "DATA.FILE"™, INPUT DIRECT , _
0070 MAT WRITE #2,1: A$ Ten elements will be written to the
' first record in DATA.FILE

(1,3),A8(1,4),A8(1,5),A8(2,1),
) This,sﬁatement is identical to line TO.

I P r I I T P 4 3 T T 4 33 T 3 T I I I T I I T I I I I r e s s e e e e 3
T T o 0 S e D G o T U i P G G i T I G R S P M M T G T T G e i e R e B G G s e e T e e i s e P e e G G W S S D S D N v G S S G G e S G G A S G o S O W o e o W

BASIC Rev B - 115 - | MAT WRITE

BASIC REFEIEICB.HIIUALJ
9.31 MOUNT Statement

1 MOUNT <string exp>)
- See also: CLOSE statement:

—— — e v
oD e cs o cmcuns emem 0

Purpose:

- The MOUNT statement allows the operatob;to change a disk without réturning to the
operating system.

Comment :

The MOUNT statement may only be used td changé a privately owned disk. (In single
user OASIS all disks are privately owned.) '

When OASIS is in BASIC, or any {ro am, a record is kept of the disk labels and in
which drive these disks are loaded. - By doi this the -ogerating system is
protecting the user from inadvertantl{ changf hout the
germission of the program being given. n BASI

OUNT statement. ‘

The MOUNT statement instructs thé operating systemkthat the program is prepared for
a change of disk. No messages are displayed by the operating system at this time:
any prompting messages to the operator must be handled by the BASIC program.

The string expression specifies which drive is to be mounted (4, B, C, etc.).

When BASIC executes the MOUNT statement a check is made to insure that.there are no
open files on the specified disk. If there are any open files the statement is not-
executed and an error message is displayed: 'File Error at Line nnnn'.

After the MOUNT statement has been executed the disk may be changed (with the
exception of the system disk). -

ng disks wi express
this permission is given by the

- om e e e o o0 ow 23 e e W ww - o= - - 0 0 oo o e e D O o . e G G e e A S e G o o
313ttt 23t 3 it ittt sttt -ttt tt ittt ittt ittt i R R

Example: . Explanation:

© 0010 MOUNT maw . - System checks for any open files on disk A.
If no files are open then pointers are set
~to indicate that the disk may be changed.

o o e - o = o o0 W S = o e = @ - - - - - o o W o W e = - e
i 3t - it A - A R R R

MOUNT , - 116 = , , BASIC Rev B

CHAPTER 9: STATEMENTS
© 9,32 HNEXT Statement ‘ ' '

1 NEXT <variable>
2 NEXT
See élso: FOR statement

e s e e o A
R . 1B

Purpose:

The NEXT‘statement marks the outer limit of control of a FOR stafement and causes
the loop to be repeated if the 1limit has not been reached. o :

Comment :

The variable, if specified, must be the same variable in use as an index variable

for a currently open FOR ioop. When the variable is not specified the current FOR
index variable is used. :

When the NEXT statement is executed control of the program returns to the FOR
statement indicated, at which time the index variable will get its next value, the

value will be tested against the limit, and the program will continue depending
upon the result of the test. .

An attempt to execute a NEXT statement when no FOR lobg is oben (or the variable
" specified does not . match any FOR loop that is open) will cause an error to occur:
"NEXT without FOR", . ,

Caution: Format 2 of = the NEXT statement should not be used if it is possiﬁle that
another, unfinished FOR-NEXT 1loop might be in existence-~control = will be
tgansggrred to that other unfinished loop. This situation is difficult to debug
when it occurs. . _ _ ,

v'Examplegz : Explanation: : _
0010 FOR I%=1 TO 5 Repeats following instructions five times.
0020 PRINT I9% .
0030 ~ NEXT 1% : This marks the end and causes repeat
0060 FOR I$=1 TO 5 STEP 1 Same as above.
0070 PRINT I% . ; S
0080 NEXT
0100 FOR I$="Aw, wBnm nCn ‘Performs loop 3 times.
0110 PRINT I$
0120 FOR I§=1 TO 5 . Performs this loop 5 times
0130 RINT 14 = for. each of the 3 major loops.
0140 - - NEXT I% Marks end and repeat of sub-loop.
0150 NEXT - . Marks end and repeat of major loop.

= --- - on o - - - - - - -
S i i ittt ittt ittt 1ttt ittt - ittt ittt i - it At 1]

BASIC Rev B - 17 - ‘ ‘ ~ NEXT

"BASIC REFERENCE MANUAL
* 9.33 ON ERROR Statement

1 ON ERROR GOTO <line reference>
2 ON ERROR GOTO 0 | -
Where: - o N ’ N : -

<line reference) ::= <line number>
: <line label>

See also: RESUME statement

Purpose:

The ON ERROR statement éllows 'you to specify the error subroutine to be used for
trappable errors. : ~ - ,

Comment:

Normally BASIC detects an error while- exeeutihi a program and either terminates
execution or prints a warning message. However, if you plan ahead, you can prepare
alternatives which can save you time in the event of an error (and avoids confusion
on the part of the operator). You can build an error handling routine that is
activated when, and if, BASIC finds an error. This routine takes control away from
the normal system errors and gives it to your error handling routine. :

The ON ERROR statement instructs BASIC that a user error handling routine exists at
giceggaép line or that the currently defined error handling routine is to be
sabled. SR , :

Format 1 indicates that the specified line is to receive control; format 2
indicates that BASIC is to handle all errors. : :

When an error’oécurs before the execution of a format 1 ON ERROR statement or after
the execution of a format 2 ON ERROR statement, BASIC proceeds with normal system
error handling. T - : :

When format 1 of the ON ERROR statement is- executed and a trappable error oceurs
control will be transferred to the line specified. That line should be the start

of your error handling routine.
An error handling routine can make decisions about how - to handle the error by
intergreting the error functions ERR and ERL which return the number of the error -
and the line number that the error occurred on.

Note: When an error handling routine is being executed errors will not be trapped.

Note: An error handling routine will always be disabled by RUN, CHAIN, or
LINK--each segment must redefine the error handling routine.

An error handli routine may be tested by using one of the formats of the LET
statement to invoke the error routine. ’

The ON ERROR statement may bé usedeithin an error handling routine.
The error "ESC=C" is not trapped while interpretive BASIC is running a

grogram--only durinﬁ execution of a comgiled program. This allows the programmer
o stop a program while he is still developing it. :

ON ERROR | - 118 - = BASIC Rev B

Example:
0010 ON ERROR GOTO E

8018—ERROR ROUTINE.

_ - . Explanation: _ _
RROR.ROUTINE Trappable errors will be handled by user. -

N

SELECT ERR ‘ . _ Using error functin, select error routine.
9030 CASE 1 Perform if ERR=1 (escape,C)
9040 IF ERL<1000 OR ERL>1999 THEN RESUME Ignore if not of interest
9050 GOSUB_CLOSE.REPORT else do this.
9060 - RESUME MENU
9070 _ CASE 20 -~ Perform if ERR=20 (on range)
98 8 o IF %ﬁ% =990 THEN RESUME 991
§1 0. C ; Perform if ERR-30 (file not found)
110 RINT AT$(1 2&) "Invalid file name" ; CHR g L
9120 LINPUT Type <return> to continue:’",USING "in ANSWER$
9130 RESUME
9140 CEND
9150 RESUME 0
BASIC Rev B - 119 - : ON. ERROR

BASIC REFERENCE MANUAL , ,
9.3% ON GOSUB and ON GOTO Statements

+ 1 ON <num expr> GOTO <line list>
2 ON <num expr> GOSUB <line list>
Where: : 4)
<line 1ist> ::= <statement reference>[,<line 1list>]
<statement reference> ::= <line number$. :
o <line label>

Seevalso: ON ERROR, GOTO, GOSUB and RETURN statements

Purpose:

These statements transfer control td a line selected from a list by the integer
- value of an e;pression.

Qo-ent:
The keywords GOTO and GOSUB may be entered as GO TO and GO SUB.

The expression following ON is evaluated and the value is integerized. The integer
is then used to select the first, second, third, etc., line reference. A trappable
error occurs when the value of the integer is less than or equal to zero, or the
value of the integer is greater than the number of line references.

The subroutine given control by an ON GOSUB statement should be exited only with a
RETURN statement. When the RETURN statement is executed, control returns to the
statement following the ON GOSUB. statement. This is further explained in the
descriptions of the GOSUB and RETURN statements. :

The line references following GOTO or GOSUB must be separated by commas or spaces.

There may be any number of line references in the 1list, (limit of 255 characters
per line?. .

Line references may be omitted by using the comma separator as a placeﬂholdere
When this is done and the value of the expression corresponds to that line
irgfgrencg place then control will be transferred to the statement following the ON
statement. ‘

If the value of the <numeric expression> is less than one or greater’thah then
number of line references in the <line. list> an "ON range®™ error will occur.

- o - - - o > o - - - D - 6. D e S Ge D e e S » OGP G2 SO OB On O S on Ow eo e
-+ttt it ittt ittt ittt 1t ittt ittt i i 2t R R R D R

Examples: k Explanation:

0010 ON I GOTO 100,110,120,130 When I=1 control passes to line
o 100, I=2 then line 110, I=3 :
then line 120, I=4 then line 130.

0020 ON I+1 GOTO' 100,120 When I=0 control passes to line
100, I=2 then line 120.
0030 ON I GOSUB 100,200,300 When I=1 the subroutine starting

-at line 100 is executed, I=2 the
» subroutine at 200 is executed, etec,
0040 ON INDEX+4 GOTO LINE1,,LINE3 When INDEX=z-3 control passes to LINE1;
. . INDEX==-2 control passes to line
following this§ INDEX=«1 control

asses to LINE All other values of
NDEX will cause an error to occur.

Incorrect example: Explanation:
0020 ON I$'GOTO 100,200,300 Expression must be numeric.

e e e e e e G = > S S G OB S S S e S T S T D S T S S T S S P e T S G B9 G T WD s S G G S S G Ee W S e X G ER SD W G N AR T A ST SR U We e D= ev Ge we G
Rttt ittt ittt i1t ittt ittt ittt it ittt ittt e kR

| | CHAPTER 9: STATEMENTS
9.35 OPEN Statement i - |

1 OPEN #<channel>: <file>,<access mode> <access method>[,<options>]

2 OPEN #<channel>: <device>,<access mode> <access method>[,<options>]
3 OPEN #<channmel>: <null)>,<access mode> <access method>[,<options>]
Where: . S ,
<channel> ::= <numeric expression> : -

{file> ::= <string expression> , : '

{device> ::= <str nﬁ expression> : -
{access mode> ::= PUT : -

, - OUTPUT
- UPDATE . _
{access method> ::= SEQUENTIAL
DIRECT
INDEXED
_ KEYED
<options> ::= <ogtion>[,<0ptions>]
<option> ::= EXTEND .
' QUOTE '
FORMAT
LOCK

<number> ::= <integer constant>
See also: CLOSE and UNLOCK statements

Purpoée: o . .
The OPEN statement pfovides you with the initial means of accessing I/0 devices
other than the console. '

Comment :

<chahnel> must be a number with a value between 1 and 16. This number is the
channel number that the file is assigned to. ,

<file> represents the file description of the disk file to bevobehed.

<{device> represents the device name of the device to be opened. The table at the
end of this section defines the allowable device names. The device name must be
spelled out (no appreviations or synonyms). o

The <file> must .include the file name (fn) and file type (ft), but the file disk
(fd = A, B, S, etc., or the disk label) is optional. The proper separators must be
used: a period before file type and a colon before the file disk. f the file disk
is omitted the system will search the directories of the disks attached in the
default search sequence. A :

When the <file> or <device> is a null strin (format 3) the channel is opened for
the device or file that was last opened on this same channel number. This feature,
in conjunction with the ASSIGN command in OASIS, allows you to write BASIC programs
that are device independant. For example I/0 channel 16 might be used for report
files. An ASSIGN command (see QA§;§‘§§s§gm Reference Manu%; "might assign channel
16 to PRINTER1. In the BASIC program channe is opened to a null string. BASIC
opens PRINTER1 on channel 16.

<{access mode> represents an unquoted literal indicating the primary access modé or
direction of the device or file: ' : -

INPUT indicates that the file or device is to be used as an input source of an
, existi data base, No record locking will be performed on a file
opened for INPUT. . .

OUTPUT - indicates that the file is to be used as an output storage base. No
- record locking will be performed. :

UPDATE indicates that the file is to be used as a general data base for both
input and output. Input operations (input and reads) on this file will
cause the specific record to be locked. This record will be released by

BASIC Rev B - 121 - OPEN

_BASIC REFERENCE MANUAL » | | : .

a subsequent read or write to the file, an UNLOCK of the.file, or.by
closing the file. - : .- : ,

<access mode> restricts how a file will be used: INPUT mode only allows the -
statements INPUT, LINPUT, MAT INPUT, MAT READ, READ, and READNEXT to be executed on
the specified channel; oUTPUT mode only allows the statements MAT PRINT, MAT WRITE,
PRINT, PRINT USING, and WRITE to be executed on the specified channel; UPDATE mode
allows all file access statements to be executed on the specified channel.

<access method> specifies what access ﬁethod is to be used: -

SEQUENTIAL indicates that records will be accessed in a sequential manner, one
after the other. This applies to both input and output to the file.

DIRECT ind%cates that records will be accessed in a raﬁdom manner by relative
: ‘number, . : a ‘

INDEXED indicates that records will be accessed in a random manner by key and
ﬁhat the file will be maintained in the ASCII collating sequence of the
eys. ’

o~

»KEYED indicates that records will be accessed in a random manner by key.
<access method>,aléo refers to the file format.

Note: a file opened for OUTPUT SEQUENTIAL will erase any existing file with the
same description and create a new file. , i

The specific access method- specified in the OPEN statement affects the required
syntax of the file access statements. For example, a file opened with access
method INDEXED or KEYED will require that all statements accessing that channel use
a string key; similarly, access method- DIRECT will require that all statements
accessing that channel use a numeric key; access method SEQUENTIAL will require
that all statements accessing that channel not use a key.

The access mode in éombinatiqn with the access method have other implications and
corresponding requirements: -

INPUT SEQUENTIAL implies that the file already exists.

OUTPUT SEQUENTIAL implies that the file is to be created by this program (unless
option EXTEND is used). - ,

UPDATE SEQUENTIAL is the same as OUTPUT SEQUENTIAL.
<option> specifies additional functions to be performed by the OPEN statement:

EXTEND indicates that the sequential format file's disk allocation is to be
R extended. : , :

QUOTE indicates that string fields output with the PRINT statement, as part of
~ -a record, are to be surrounded with quotes if the string contains an
embedded quotes or commas, or leading or trailing spaces. A comma wil
always be output between fields. .

FORMAT indicates that the SEQUENTIAL access method file is to use ANSI forms
_ control characters supplied by each PRINT or -PRINT USING statement.

LOCK indicates that the entire file is to be locked from other usefs use
until the file is closed by this program.)

An error occurs when a nonexistent file is opened for mode INPUT or access methods
DIRECT, INDEXED, or KEYED.

An error occurs when the channel number is still in use by another file.

When a file is opened for SEQUENTIAL, the record pointer is set to the first
record, This is the only statement that sets. the record pointer to the beginning
of a file opened fpr access method SEQUENTIAL. ’

When a disk file is opened for OUTPUT SEQUENTIAL, the file is first erased, and
then created. When a disk file is-opened for OUTPUT SEQUENTIAL with option EXTEND,

and the file exists, the output record pointer will be positioned to the end of the
file where records will be added. f :

A file with delete protection may not be opened for OUTPUT. If this occurs, the
OPEN ’ - 122 - BASIC Rev B

error message "Protected File"‘will“be displayed.

- -Device/Mode Relationships

T I I I I r r I I r I I rrrrrrrryrsrrm
2 22 23t 2 2 2 2

device .

CONSOLE
PRINTER[n]
TAPE[n

mode method | sequential | direct | indexed | keyed
INPUT SEQUENTIAL | file must exist
INPUT DIRECT N/A - X
INPUT INDEXED N/A : X
INPUT KEYED Yo N/a .
OUTPUT SEQUENTIAL | file recreated
OUTPUT DIRECT i N/A X
OUTPUT INDEXED ~ N/A : X
OUTPUT KEYED N/& ‘
UPDATE SEQUENTIAL | file recreated
UPDATE DIRECT N/A lox -
UPDATE INDEXED N/ A X
UPDATE KEYED -~ N/A
Examples: ,
0010 OPEN #1: "MAST.DATA:A", INPUT SEQUENTIAL
0020 OPEN #1: """, INPUT DIRECT ,
0030 OPEN #5: "TEST.DATA:C",OUTPUT DIRECT
0040 OPEN #I: "PRINTER",OUTPUT SEQUENTIAL,FORMAT
0050 OPEN #8; F$&":S", UPDATE INDEXED,LOCK
0060 OPEN #16: "CONSOLE",OUTPUT SEQUENTIAL _
0070 OPEN #15: "PRINTER",OUTPUT SEQUENTIAL
0080 OPEN #4: "PRINTER.FILE:S",QUTPUT SEQUENTIAL,EXTEND,FORMAT
0090 OPEN #16: "CUSTOMER.MASTER",UPDATE KEYED }

BASIC Rev B - 123 -

OPEN

BASIC REFERENCE MANUAL
9.36 OPTION Statement

1 OPTION BASE <base value> ‘
2 OPTION CASE <case mode string expression>
3 OPTION PROMPT <prompt> ’
§ OPTION USR <usr-name)>
5 OPTION PRIV (privlev)l »
6 OPTION SERIAL <serial-number>
7 OPTION COMMA |
Wherez
<base value> ::= 0 | 1 '

- <case mode string expression)> ::= "MW | ny® | npm
<prompt> ::= <stri expression>
{usr-name> ::= <st§ 932e¥pre§sioq>

]

<{privlev> ::= 0 | i i i i 5
<serial-number> ::= <unsigned int 1>-<unsigned int 2>
<unsigned int 1> ::= 8 - gggss, .

<unsigned int 2>
See also: USR function

o9 00 a0

Purpose:

The OPTION statement allows the programmer to specify the status of certain global
options: array subseript base value, input casemode, and input prompt character(s).

Comment :

The OPTION BASE statement must be in a position to be executed before any variables
are dimensioned or defined. This also means that the subscript base cannot be
changed after COMMON has been defined. Normally the OPTION BASE statement would be
the first statement of the first segment of the program.

When the OPTION BASE statement is not used the default base is 0.

Since most programmers do not wuse the zero element of arrays the OPTION BASE 1
allows for a saving in the memory space used for working storage.

More than one option may be specified in an OPTION statement by separating the
options with a comma. For example: 10 OPTION BASE 1,PROMPT CHR(0),CASE "M"

The OPTION CASE and OPTION PROMPT statements may be used in any location of the
program that a BASIC statement is allowed. The OPTION CASE statement specifies the
casemode for characters entered from the console input device (CONIN). When the
casemode is not set by the programmer the default mode of upper is used. :

OPTION CASE "yU" indicates that all alphabetic characters entered from
CONIN are to be translated to their uppercase equivalent before display
and before the character(s) are transferred to the BASIC program.

OPTION CASE "M" jindicates that all alphabetic characters entered from
CONIN are not to be translated. ,

OPTION CASE ®L" indicates thét all'»alphabetic characters entered from ,
CONIN are to be translated to their inverse casemode equivalent before
display and before the character(s) are transferred to the BASIC program.

When BASIC or RUN is first invoked the casemode of input is "U". In order to use
mixed or lowercase characters for input to the BASIC program an OPTION CASE "M" or
CASE "L"™ statement must be executed. This may be done in the immediate mode.

The OPTION PROMPT statement changes the prompt literal. The default prompt literal
is the question mark followed by a space. By using this statement you can change
the prompt to be any character, or sequence of characters, or you can change the

OPTION - 128 = BASIC Rev B

CHAPTER 9: STATEMENTS

Brom t to be a null string not followed b{ a space. OPTION PROMPT "" and OPTION
ROMPT CHR$(0) are equivalent and indicate that no prompt literal is to be used for
INPUT and LINPUT statements to the console. s ' - :

Format 4 of the OPTION statement loads a USR assembly language subroutine into
gﬁgggy. Note: this is the only way that a USR program is loaded for use by the .
program, ' . ‘

When the USR program referenced is already in memory no action will be taken by
this statemgnt. : .

Format § of the OPTION statement specifieé the lowest privilege level allowed to
ggggu?ed the compiled program. (Privilege level is not checked in the interpretive

Format 6 of the OPTION statement specifies the serial number of the operating
system that may execute the compiled program. (Serial number is not checked in the
interpretive mode.) ' ' . T :

Note: Formats 5 and 6 of the OPTION statement if used, must be the first executable
statement in a program. : ,

Format 7 of the OPTION statement specifies that input and output of numbers in
their ASCII format is to conform to the European standard regarding commas and

periods. See chapter "Introduction" in this manual.

Examples: ‘ Explanation:

0001 OPTION SERIAL 3-12345, PRIV 3
0010 OPTION BASE 1 . Set index base for arrays to 1.
0020 OPTION CASE "M" Accept input with no translation
0030 OPTION PROMPT CHR$(0) .No prompting character or space.
0040 OPTION PROMPT "Enter:", CASE "L" The input grompting literal changed to
: - the characters: Enter: followed by a
space; the case mode of input set to invert.

000 CLEAR \ OPTION BASE 1 Array subscript base set to 1. ;
010 OPTION PROMPT "What? ",USR "XX" Prompt literal changed to What? and the

: : USR program named’ is loaded into memory.

BASIC Rev B - 125 - : : OPTION

’BASIc'x:Exnzlcz'uAlunL
9.37 OTHERWISE Statement

1 OIHEIHISB
~ See alsa: CASE, CEND and SELECT statements

~

i

_ Purpose:

The OTHERHISE statement specified the action to be taken in a SELECT-CASE-CEND
structure if none of the previous cases were true. .

Comment : . -

The OTHERWISE statement functions similar to the CASE statement exeept that there
is no expression specified--the OTHERWISE statement is always true.

The OTHERWISE statement allows you to specify an action (se uence of statements) to

be executed when none of the cases is true in a SELECT-CASE-CEND programming :
structure.

There should only be one OTHERWISE statement in any particular SELECT structure
(only one will be executed).

The OTHERWISE statement should follow all CASE statements in a SELECT structure (no
CASE statements will be evaluated after the OTHERWISE statement is encountered).

. R e o o o T T T T R R R R m o e . e e e e e R C T P B T e R R ETrTaE R DR m e w - o w

Examples'_ : ‘ ' Explanation:

3000 SELEETS§A8*2.'PI) ‘
3828 SELECgagﬂBVALUE% Perform only if RAD%*2.%PI= 0

38 0 T CASE" 32 Perform only if RAD#2.*PI=0 and SUBVALUEz-zo
3060 . . Perggrm only if RAD#2,%PI=0 and SUBVALUE%-32
§061 OTHERWISE - N

062 e gergorm if neither of the above cases

s tru

3070 CEND End of nested SELECT structure

3080 CASE I-14 4

3090 .« , ' Perform only if RAD®*2,#PI=I-1}

3100 . . w " ”® ” "

3110 CASE J%

3120 . — Perform only if RAD#2,¥*PI=J%

3130 . CEND ' End of SELECT structure

P L Y T L e
323t e i s it e 22 22 2 it 2 2ttt Pt 2+ 2 3+ + 3 3 1 E E E E E F E + t F t + ¢+ ¢t E 4 t 4 4 ¢ 2 £

OTHERVISE - 126 - | BASIC Rev B

_ CHAPTER 9: STATEMENTS -
9.38 PRINT Statement

1 PRINT

2'PRIIT <{expression list><punctuation>
. 3 PRINT #<channel>

A PRINT #<{channel>,<key>

5 PRINT #<channel>: <{expression list><punctuation>
‘6 PRINT #(channol) <key>: <expresaion list>

o Where. P , .
<expression list> ::: <expression>[< nct><expression list>
- AB(<num expr> E(punot)(expression list>
{punctuation> ::= <comma>
<semi-colon>

<channel)® ::= <numeric expression>
<key> ::= <numeric expression> :
' {string expression>

See also. CLOSE, MAT PRINT MAT WRITE, OPEN, PRINT USING, and
WRITE statements

Purpose:

' The PRINT statement allows. text, numbers, - results, etc., to be displayed on the
console or output to a file.

Comment :

The various formats fo the PRINT statement provide different capabilities with one -
function in common: output is always ASCII, even when the output field is numeric. .

Format 1 of the PRINT statement prints a carriage return on the console.
Format 2 of the PRINT statement prints one or more fields of data on the console,

Format 3 of the PRINT—statement outputs a null or empty record on the sequentially
accessed device or disk file.

-

Format 4 of the PRINT statement outputs a null or empty reoord on the direct or
indexed accessed disk file. ,

Format 5 of the PRINT statement outputs one or more fields of data to the
sequentially accessed device or disk file, :

Format 6 of the PRINT statement outputs one or more fields of data to the direot or
indexed accessed disk file.

The PRINT statement, formats 3 through 6, may only be used on an I/0 channel that
was opened with access mode OUTPUT or UPDATE. An attempt to execute a PRINT

statement on a channel opened for INPUT will cause the error "Wrong access" to
oceur, N .

{?etegpressions (formats 2, 5, and 6),will'be output in the order that they are
sted.

Using the expression feature (e.g:, 2*R"3-B) can be very valuable in savin§
programming time, execution time, and memor{ usage. For instance. if the result o
an expression is only calculated in order to be output d there is no repetition
of it's output, it is best to use .the expression in tﬁe PRINT statement. In this
case line 20 below is the more efficient way to code: .

10 LET A = 2%R" 3-B \ PRINT A
20 PRINT 2#R"3-B :
Both statements will yield the same results. ‘
BASIC Rev B ’ | =27 - - PRINT

BASIC REFERENCE MANUAL

All numeric expressions (literals, fields, and expressions) will be;printe&' with
%eag%gg zero suppression, left Justification, 1leading sign or space, and one
railing space. - : . ‘

The term "print head", used bellow, refers to the cursdf (terminals), the print
meghanism'(printers) or the record pointer (disk files), whichever is applicable.

An output record is considered to be divided into print zones of twenty one spaces
each, To use these zones for tabulation, the punctuation character is a comma. In
the PRINT statement, an expression followed by a comma will cause the value of the
expression to be printed at the current print position. After printing, the "print
head™ will be moved to the next available print zone (from 1 to 21 spaces away).
If the last g int zone on a line is filled, the "print head"™ will move to the first
print zone of the next line. ‘

In the PRINT statement, an expression followed~b¥'a»semieblon (;) will cause the
value of the expression to be output at the current print position with no movement
of the "print head"™ after printing. , ~ ,

~

Any PRINT statement which ends with no punctuation causes the "print head"™ to move
to the first column of the next line after output. ‘ '

Printing to an I/0 channel (formats 3, 4, 5, and 6) may require the use of ANSI
forms control characters, depending ufon whether or not the option FORMAT was used
- in the open statement for that channel. The FORMAT option should only be used for
terminal or printer files. When it is used it means that the PRINT statement will
supply the forms control character as the first character of each record output.
. When it is not used it means that each record output is to start a new line on the
output device. For a list of these forms control characters refer to the QASIS
re ual, appendix on "ANSI Forms Control". These characters allow
¥ou toi ggee fy single, double, triple spacing, forms eject, or no 1line spacing
overprint). ,

If the option QUOTE was used on the open statement - for the I/0 channel used by a
PRINT statement, the fields output to the device or file will be enclosed in a pair
of gquotation marks if the field contains any of the following: leading spaces,
trailing spaces, embedded comma, or embedded quotation mark. If it is unknown
whether this will happen it is best to use the QUOTE option--no action is taken
unless needed. Additionally the QUOTE option causes multiple fields to be
separated by commas in the ouﬁput record. . : '

\The QUOTE option causes punctuation in the expression list to be ignored (commas
are used as stated above). :

If the QUOTE option is not used then leading and trailing spaces will be removed.
from the fields before output. Additionally, when a field is output that contains
an embedded comma a subsequent INPUT of that record will treat the comma as a field
segarator, not as an embedded comma (LINPUT will not be concerned with this).
Embedded quotes in a field might also cause a problem for the INPUT statement.

In general, the output rules for the PRINT statement are:
1. Sugpgession of leading and trailing zeros to the right of a decimal
point. . - L

~

2. Where a number can be represented as an integer; printing of the
' decimal point is suppressed.

3. At most, thirteen significant digits are printed.

4. Most numbers are printed in decimal format. Numbers too large or too

?%allt to - be printed in decimal format are printed in exponential
rmat .

5. Eitra commas cause rint zones to b ki d. Unless option QUOTE
: is in effect.) P © s‘lppe (P

| 6. A semicolon at the end of the list indicates that no carriage return,
line feed is to be printed. ’

7. Leading and trailing spaces in string expressions are removed (unless
option QUOTE is in effeect).

8. Numeric fields are out?ut with a leading sign (negative valuesé or
igaggfgggﬁltive values) and a trailing space (unless option QUOTE is

PRINT . | . - 128 - ' BASIC Rev B

GHIPTER 9: STAIEHEITS
The examples are followed by the printout caused by their exeeution.; _ '

Examplos:

0010 LET A = 1,23 \ B = 34.56- \ C = 345.678

0020 LET A$ = WABCDEFG" \ B$ = "HIJKLMN® \ C$ = A$+B$

0035 OPEN #1: "PRINTER", OUTPUT SEQUENTIAL, FORMAT

0030 PRINT #1: " A -"'A' B =":B; c = ;c

0040 PRINT #1: " A =":B

0050 PRINT #1: " ;A+é+é A*B & A B/A A/B :

0050 PRINT #1: " ";A$:B$;C$;

0070 PRINT #1: "

0080 PRINT #1: " é

0100 OPEN #2: DATA LE: A", OUTPUT DIRECT QUOTE

0110 PRINT #2,5: A$,B$,C,D,E Filth record is output to the file
A=1.23B=33550=3u5678 : : :
A381 487090398 ° §275087095999 425.183939999 28.0975609756
32060577717 8E-02 ’ :
ABCDEFGHIJKLMNABCDEFGHIJKLMN HIJKLMNABCDEFG

Incorrect examples: ’ Explanation:

0010 PRINT "ABCDEF , Expression illegal.

0020 PRINT A,B:C Invalid punctuation.

BASIC Rev B - 129 - PRINT

BASIC REFERENCE MANUAL
9.39 PRINT USING Statement

| 1 PRINT USING <laak>,<expresaion list><punctuation> , :
2 PRINT #<channel>: USING <mask>,<expression list><punctuation>

" 3 PRINT #<éhannel>,<key>: USING <mask>,<expression list><punctuation>
Where: \ ' '

<mask> ::= <string expression> - .
-<expression 1ist> ::= <expression>[,<expression list>
{punctuation> ::= <semi-colon>
{channel> ::=z <numeric expression> , ' ' :
. <key> ::= <numeric expression> . o -
<{string expression>

See also: MAT PRINT, MAT WRITE, PRINT, and WRITE statements

Purpose:

The PRINT USING statement allbws text, numbers, results, etc., to be displayed on
the console or output to a file,) - .

Comment :

The PRINT USING statement operates similar to the PRINT statement except that:
fields must be output, output is formatted. :

Format 1 of the PRINT USING statement outputsv formatted data to the console .
termigal. o . .

Format'2 of the PRINT USING statement outputs formatted data to a device or disk
file opened for SEQUENTIAL access. ,

Format 3 of the PRINT USING statement outputs formatted data to a disk file opened
for DIRECT or INDEXED access. - _

The PRINT USING statement may only output to an I/0 channel opened for OUTPUT or
UPDATE access. An attempt to access a channel opened for INPUT will cause the
error "Wrong access" to occur.

The exgressions will be displayed in the order that they are listed, in the format
sgecif ed by the mask expression. For details on the mask specifications refer to
the chapter on "Formatted Output™ in this manual. Expressions can be string or
numeric literals, variables, expressions, or functions, as long as they match in
type to the formatting masks specification types.

Option QUOTE of the OPEN statement has no effect on the PRINT USING output;
however, option FORMAT has the same effect as it does for the PRINT statement.

In the PRINT USING statement, all expreséions must be se arated by commas. A
semicolon is allowable as the ﬁerminatin% punctutation and, . if used, operates the
same way the semicolon punctuation character operates in the PRINT statement.

A PRINT USING statement which ends with no punctuation causes the prinﬁ head to
move to the first column of the next line after printing.

The exaﬁples are followed‘by the printout caused by their eigcution.'

For examples of the PRINT USING statement and its output capabilities refer to the
chapter on "Formatted Output®. .

The following ﬁrogram example, when entered and executed, will show some of the
uses of the PRINT USING statement.

PRINT USING o - 130 - BASIC Rev B

- - o O > P S S WS P P MY BT S D G P WP G G S TP e S D G D D G S G S P S S S S SR ST D P S G S GO D WS L EP S SR SR SR Sh P P SN Sn S Sn e G Sx Sn G Gr Sw S e G am n W o

00000000

[D R
own

[=l=le]

OO 0o

. OPTION PROMPT ""

BASE 1

DIM NUMBER(5) ,STRING $(5)
nM® PRINT CRT$("CLEAR")
PRINT "PRINT USING example program"

OPTION CASE

LINPUT "W&AT
LINPUT "mE&AT
PRINT

tié

&"Numeric mask: "
)&"String mask:

,MASK$
n)MASK1$

PRINT "Enteg five numbers:";TAB(40);"Enter five strings:"

FOR I

INPUT NU

FOR I
gRINT
LINPUT

PRIN* AT i
PRINT

ING$(3),NUMB
OPTION CASE "
LINPUT "W&AT
IF ANSWER$="
END

T%?MS

STRING

1 TO
RINT AT$?5 I$+;) i 1%;

I 3175
e

&" "&MASK $
h '"The formatted output of: "&MASK$

PRINT USING MAsk

ER(4
ngw

,NUMBER 1) STRINGS(1
,STRING$(4J , NUMBER

(33 SrRing

g 3STRING$(2) yNUMBER(3),STR

%(1 ﬁ%&&;gkay to repeat (Y/N)? ", USING "!",ANSWER$

e I T T I T I T T I T T T T T T T T T T I T T T T T I T e e T T T T T e e Y S T T T T T Ty
R R 2 L 2 2 2 2 2 2 2222 ¢ 2t 1 2 ¢t 2 2 2 1t 1 2 1 ¢ 1 21

BASIC Rev B

131 -

PRINT USING

BASIC REFERENCE MANUAL
9.30 PUT Statement

1 PUT DEVICE <device number)>,<expression list>

2 PUT MEMORY <address>,<expression list>

3 PUT PORT <port>,<expression list>

Where: | _
<device numbery ::= <numeric expression> : -
{address> ::= <numeric expression> : _ ~ -
<port> ::= <numeric expression> , :

<expression list> ::= <numeric expression>[,<exp list>]
_ <string expression>[,<exp 1list>]

See a1so:~GET and WAIT statements

Purpose:

The PUT statement allows the user to output a single byte or a list of bites to an
I/0 device such as an digital to analog (D/A) converter or some other device.

Comment :

<Port>, <device>, and <address> are numeric expressions which are rounded up and
" integerized, <port> must be in the range: 0 - 255. This number is the address of

the 1/0 port. <device> must be in the rafge of ? « 32. This number is the logical
device number (see ste feren ual) . -

<address)> must be in the vrange -32767 = 32767. This value, unlike other integer
values, is intergreted as an unsigned value, which automatically adjusts the range
to 0 = 65535. It is best to use exadecimal values for <address> as they are more
easily interpreted as unsigned values. : -

The expressions in the expression 1list are evaluated. If the expression is
numeric, it must be in the range 0 -~ 255. If the expression is a string, only the
first byte is used. When more than one expression is specified each is evaluated
independently of the others. When PUT MEMORY is used with multiple expressions the
memory address is incremented by 1 for each byte transmitted.

BASIC does not test to see if the I/0 device is ready before transmitting the byte.
This is the responsibility of the user (see WAIT statement). .

The PUT statement is identical to the GET statement except that data is output to
the lo§1ca1 device driver) gort address (PORT) or memory locations
(MEMORY), instead of input. When the PUT PORT or PUT MEMbRY statements are used
you must be careful not to destroy the operating system. It is very easy to do.

D > o e e o e > - - - - - - - - - = - - =
a2 23231ttt 3ttt 111t 2t ittt it it ittt it i1 it - 12ttt 1ttt R]

Examples: ‘ - Explanation:

0010 PUT DEVICE 10,65,66,"C" On the console outgut device (number 10),
~ the characters A, B, and C are output.

0020 PUT PORT 1,"A" The letter "A"™ is written to port 1. ‘

0030 PUT MEMORY 3000H,0,0,0FFH At memory locations 3000, 3001, and 3002

hexadecimal, the values 0, 0, and 255 are
placed, respectively.

—-------------------‘-—-------------—-------------------‘-------------—Q----------Q-

PUT ' : . - 132 - BASIC Rev B

o _ CHAPTER 9: STATEMENTS
9.1 QUIT Statement ‘ :

1 QUIT

2 QUIT <string expression>

3 QUIT <numeric expression>

See also: END statement and QUIT command

Purpose: R
The QUIT statement allows the user to exit from the BASIC eﬁvironment.
Comment : - s . o .
When the QUIT statement is encountered by’BASIC all open I/0 channels are closed. -

The QUIT statement always exits from BASIC. If BASIC (or RUN) was invoked by a

keyboard command then control is returned to the Command String Interpreter -

environment. If BASIC (or RUN) was invoked by an EXECutive procedure then control

is returned to the EXECutive procedure that called it. The EXEC resumes control

gith ghg statement that followed the BASIC command. In either case the return code
s set to zero. ‘ N

To exit BASIC without returning control directly to the environment that it was
invoked. from one of the optional expressions is specified.

A numeric expression 'indicates the value that the return code is to be set to.
This return code may then be examined by the EXEC that invoked BASIC. If BASIC was
not invoked by an EXEC then setting the return code will have no usable effect. ‘

A string expression indicates a CSI command to be executed. The expression must
specify the command name and all arguments and options desired. After the command
has completed execution the return code is set by that command. If . BASIC was
invoked by an EXECutive Erocedure and a string expression is specified with the
QUIT statement control will return to.the EXEC program after the CSI command has
completed execution. . :

When the first character of the strinf expression is the character ">" the string
command will be displayed on the console terminal. . ~

- - T O e T T Y Tt I I I I I I I I r r r r rr r r r r r 1 I+ 1 r 3+ I+ 3 rr I rr i
R L a2 1 R P - -2 2 3P 3 2 ¥ 14

Examples: . - Explanation:

0900 QUIT "Control exits BASIC
9998 QUIT 2 Return code set to 3; BASIC is exited.
9990 QUIT "LIST DAILY REGISTER" BASIC is exited and iIST executed.

O D Or OGN G S S TN CH S S R DGR ED G AR AR G0 W B0 SP SD SR GD P TE TP G5 G G G TP EP TP G 4R G WP S GD T SD ER AP Ge D G GD G OF G SR WP S P GO G $P D G IO WD WD Ew SR OF G Gp O 63 = A G 4R S dr S e e S

BASIC Rev B ' : - 133 - : ’QUIT

BASIC REFERENCE MANUAL | o +
9.2 RANDOMIZE Statement

]
i 1 RANDOMIZE

Purpose: ,) , . - :
The RANDOMIZE statement causes the_RND function to use a random starting value.
Comment: - ‘ : : ’

The RANDOMIZE statement is used when a program that uses the RND function is to
have a different set of random numbers each time the program is run.

The RND function does not produce truly random numbers: it has a "table" of
seudorandom numbers available to it. Using the last random number % nerated, the
D function chooses another ‘'random' number. Every time that BASIC is loaded into
memory it has the same starting pointer to6 the pseudorandom number "table®™. The
RANDOMIZE statement causes this pointer to start at a different location each
execution of the program.

‘It is a good practice to debug a program completely before inserting the RANDOMIZE
statement.

The RANDOMIZE statement is normally used only once in a program, generally at the
beginning of the logic.

. -------q———-—--—--------------—--—---—-------------—-----—----------u------——-—-—--

Examples:~ : o Explanation:' _

0010 RANDOM " ’ o Choose a random starting point.

0020 PRINT INT(RND'10) Print a random number between 0 and 10.
Incorrect examples: ~ ~ Explanation:

0010 RANDOMISE ’ Misspelled.-

0020 RANDOM (I) No operands allowed.
========:‘-'================:===========================:======================:====5

RANDOMIZE - 138 = BASIC Rev B

ol - CHAPTER 9: STATEMENTS
9.3 READ Statement ; ‘ S

1 READ <variable 1ist>
2 READ #<channel>: <variable list>
3 READ #<channel>,$qu>:'<var1able list>
Where: o ‘ o
<variable 1ist> ::= <variable>[,<variable list>]
<channel)> ::=z <numerdic expression>
<key> ::= <numeric expression> :
<string expression>)

See also: DATA, INPUT, LINPUT, MAT INPUT, MAT READ, OPEN, READNEXT,
. | and RESTORE' statemehts , o

Purpose:

The READ statement is used to: accept data from DATA statements (format 1); accept
data from a seguentially formatted file (format 2); accept data from an indexed or-
direct formatted file (format 3). : -

Comment: : o ' -

The READ statement, format 1, causes the variables listed to be assigned values
from the next data elements of the DATA statement. If there is more than one DATA
statement in the program. then, when the first DATA statement's elements are used
%g, the next data element will come from the next DATA statement in the program.

en there are no more DATA statements in the program, an "Out of data"™ error will
occur when a-READ is executed. _ . '

When it becomes necessary to use the same data more than once in a'pro ram, the
RESTORE statement makes it possible to recycle through the complete set of DATA
statements in the program or a partial set, , B

The other two formats of the READ statement operate similar to the INPUT statement
discussed earlier. The primarK difference between the READ statement and the INPUT
statement (and LINPUT) is that the INPUT accepts ASCII data only (i.e., quoted
gkg%gg? andtcharacters) and the READ statement accepts fields of data in internal
ormat. : - R

Formats 2 and 3 of the READ statement accept data from a file that was created with
its complementary WRITE statement. - C

The READ statement can only access an I/0 channel that was opened with access mode
INPUT or UPDATE, not OUTPUT.

Foggag 2 of the READ statement accesses a file opened with SEQUENTIAL access
method.

Format 3 of the READ statemént accesses a file opehed with DIRECT or INDEXED access
method. A numeric key is used for a file opened with DIRECT access and a string
key is used for a file opened with INDEXED access. -

After a format 2 or 3 READ is performed the EOF function will indicate whether or
not-the read was successful. The EOF function will return a true value on a
SEQUENTIAL access READ if the end of file was encountered; on an INDEXED access
READ if the record with the specified key could not be found; on a DIRECT access
READ if the record read was deleted or never written to. ’

On a DIRECT access READ the._trappable error "Invalid Kkey" will occur when an

- attempt is made to access a negative or zero record number or a record number
greater than the maximum number of records in the file. - '

BASIC Rev B o - 135 - READ

- e e e e o - oD G e a» e ae - - - - 3 - - - cw my € - -
-ttt 2+ 12 2t 23122 1 3 2 3t 1 2 1 1 1 2ttt E 2 1 E E 2 i3 2+ it 2 2 2 2 2 2 2 2 2 2 2 1 23 2 E 2Vt i+ 2 4422ttt EL T

0040 READ B,C -

0050 RESTORE 9010 .
0100 READ A$ |

0130 RESTORE 8000

Explanation:_

-The value 1.23.is‘assigned to A,

The value 2. gh is assigned to B,

the .value 3.45 is assigned to C.

Next data element will come from
line number 9010.-

The literal '1.23' is assigned to A$.

Next data element will come from

line number 9010.

9010 DATA 1.23, 2. LITERAL 2ND‘LITERAL
235,218 Bep 43

9020 DATA 2.2

¢pE FeHIUK, "
0010 OPEN #1: "DATA.FILE",INPUT DIRECT

ABCDE FGHIJK "

0020 OPEN #2: "TEST.FILE", s UPDATE SEQUENTIAL, EXTEND
0030 OPEN #3: “FILE DATA", INPUT INDEXED

0040 READ #1, 13 A$,B$,C, D%
0050 READ #2,

B$,C$ A -
0060 READ #3,KEY$: FLD1$,FLD2$,TOTAL

The 13th record is read
The next record is read

Record with key matching eontents of

KEY$ is read.

Incorrect examples:
0010 READ A

0040 READ B
9000 DATA ABCD .

Explanation°

First data element is alpha -
'Conversion Error' will occur.

No data elements left.

- a0 o = eD e e ar 0P SN G0 e S D e WP P CP BT G0 e ED Y OD ED SD OB D M S B EY S5 Gh WP S T G @R S0 b M SN X QO S ED GD CD G5 Gp UB S OF BE OD GO GP GO G G G0 GD U D N 5 UGB o0 ON GO Ch GF OF OO €5 @ On OO W) > o
O OB D = P S e D T Ol S e e D G T Sk G D P T S0 T TR R R T G TP G e TR TP G TR T G P TP e T D B G G0 e G O e SO PR S T GG GO O D G S G D WD 2 T MO @D D OO G0 W o &

- 136 -

BASIC Rev B

| - . CHAPTER 9: STATEMENTS
9.4% READNEXT Statement | S

1 READNEXT #<{channel)>,<key>: <variable list)>
_ Where: ‘ ' '
<channel> ::= <numeric expression>
<key> ::= <{string expression>
<variable list> ::= <variable>[,<variable list>]

See also: INPUT, LINPUT, MAT INPUT, MAT READ, and READ statements

Purpose:

The READNEXT statement will access the next record followiné the previous READ,
WRITE, or READNEXT from an indexed file.

Comment :

‘This statement is very similar to the READ statement, however-this statement onlj
operates on a file opened with access method INDEXED. The key must be a string
variable, not an expression. - : ‘

When the READNEXT statement is executed the indexed disk file specified by the
<channel> is read in a sequential manner. The record read b{ the READNEXT
statement is the record whose key is the next key greater than the last record ke
accessed in this file. If there are no records whose key is greater than the las
record accessed then the file pointer is considered to be at end-of-file and the
EOF function may be used to detect this condition. -

If a record is réad by the READNEXT statement then the contents of that recdrd's
key is placed into the variable <key> and the contents of the individual fields of
that record are placed into the variables specified in the <variable list>.

When an’ indexed file is first OPENed, the file gointer is positioned before the
first record in the file. Therefore if the first access to an indexed file is a
READNEXT statement then that statement will retrieve the first record in the file,
if any exist. Each .access of an indexed file by a READNEXT statement causes the
file pointer to be advanced to the next record. Access to an indexed file by the
READ statement causes the file Bointer to be positioned to the record specified by
that READ. statement. (If the READ statement is unsuccessful the file pointer is
gositioned to the place that the record would have been at, if it had existed;
herefore a READNEXT statement, following an unsuccessful READ statement will
ﬁgzgiezetthe tm;.xt record that 1ogically follows the record searched for with the
statement. :

An attempt to use,the' READNEXT statement to access a record created with a PRINT
statement will cause an "Invalid file format®™ error. The READ and READNEXT
statement can only access records created with the WRITE statement.

Examples: . : Explanation:
If a indexed file contains records with the following keys:
000100

000124
001001

. 004000
then the following statements will print the string 7003234"
0100 READ #1,"002000":A Position after record 001001

0110 READNEXT #1,KEY$:A Get record following, i.e. 003234
0120 PRINT KEY$

- o > o o o 2 > G o s 4 - o W G O T w o e
3ttt it it 1 ittt 13ttt ittt ittt i1ttt ittt ittt Akt R i 2 2 2 2 1]

'BASIC REFERENCE MANUAL
9.45 REM Statement

1 REM o
2 REM <unquoted string literal.

Purpose: ‘ i o . : B

The REM statement allows the insertion of a comment or remark into a program.
Comment : P
REM-statements are valid BASIC statements and may be used anywhere that a statement
can be used., They are saved as part of the program and appear whenever the program
is listed, however they are ignored when the program is executed.’

All characters after REM are i%nored b{ the BASIC statement analyzer. For “this -
reason, the REM statement must always be the last statement on a line. '

/

The REM statement should never be used on the same line as a DATA statement. This
is explained in the section on the DATA statement.

Examples: ' ' ‘ Explanation:

0010 REMARK: THIS IS A REMARK

0020 REM: THIS IS A REMARK

0040 LET A = B \REM THIS IS A REMARK Recommended syntax for u51ng a REM on the
. same line as a statement.

Incorrect examples: : Explanation:
0010 DATA 1,2,3,4,5, \REM ABCDEF The REM will be treated as a DATA element.
0020 LET A=B REM This is a remark Statement separator missing. ’

e e - .- .- - - - D S e S e w G On S G e S W op @s es G
.a-------====-====::==========================:============-------—---------—-----.

REM | - 138 - | ' BASIC Rev B

CHAPTER 9: STATEMENTS
9.6 RESTORE Statement - T

1 RESTORE . - S o ” ; ‘ ; l
2 RESTORE <line number> |
. See also: READ and DATA statements - \ : . S 'v!
')] : » .

Purpose: o ' o - , _ :
The RESTORE statement is used to re-use data elements from the DATA statements.
Comment : ' , o : o '

When it is neccessary to use the same data elements from the DATA statements more
than once in a program the RESTORE statement makes it possible to recyle through
the complete set or a partial set of the DATA statements.

If the 1line number option is wused the referenced line need not be of a DATA .

- statement.

When the RESTORE statement is executed the internal Bointer used for aecessin% the
data elements. of a program is set to point to the e%inning of the program (line
reference option not used) or to the line referenced. n either case the next READ‘
gtatement will read the first data element at, or following, the statement pointed
O,

Note: The 1nterpretive mode of OASIS BASIC does not allow the RESTORE statement to
be used with a 1line label reference. However, since the compiler translates all
line label references to statement address references a program using the RESTORE
:ﬁatement with a 1line label reference would execute using the compiled version of

e program. . P

Examples: _] vExplanation~
0050 RESTORE - - The next READ will read the first data
' ’ element of the first DATA statement in the
) rogram.
0060 RESTORE 1 ame as line 50.
0070 RESTORE 9000 The next READ will read the first data

element of the first DATA statement at or
) following line 9000.
R The next READ will read the first data
element of the first DATA statement at or
'following the line number 9900.

0080 RESTORE 9900

' BASIC Rev B \ =139 - . RESTORE

BASIC REFERENCE MANUAL
9.A7 RESUME Statement

1 RESUME

2 RESUME 0

3 RESUME <line reference>
- Where:

<line reference> ::= <line numﬁér>
: <line label>

See also: ON ERROR statement

.Pﬁrposo:

ThetRESUME statement terﬁinates an error handling routine and specifies what to do
.next. ° : : - ' :

Comment :

The RESUME staﬁement acts 1like a‘RETURN statement except that it may only be used
in an error handling routine. ,

After an error handling routine has performed the tasks required for the specific
error (see ON ERROR statement) the routine must return control to BASIC. The
RESUME statement performs this task. The RESUME statement - must be used to return
control from an error handling routine. If the error routine does not use the
RESUME statement then BASIC will continue executing the program but no errors will
be trapped (the program becomes a "large" error routine).

At this time BASIC needs to know what was done and what to do. There are three
possible situations that might exist: 1) the error was corrected by the error
routine and the statement that caused the error is to be re-executed; 2) the error
could not be corrected bK the routine and the system is to handle the error; 3) the
error was corrected by the routine but a different statement is to be execufed.

-These three situations correspond to the three formats of the RESUME statement:

RESUME with no 1line reference (format 1) indicates that BASIC is to
ignore the error and to re-execute the statement causing the error.

RESUME 0 (format 2) indicates that BASIC is to handle the error. 1In this
event BASIC will display the error message corresponding to the _error

~along with the line number of the statement causing the error (ERL). If
the program was executed from the RUN environment then BASIC will be
exited; if the program was executed from the BASIC environment then the
command mode of BASIC will be entered (prompt character of "="),

RESUME <line reference> (format 3) indicates that the error was corrected
but control is to be transferred to the line specified. -

Examples: ' : Explanation:

9000 IF ERR=2 THEN 9020
9005 IF ERR=1 THEN 9030

9010 RESUME 0 Error cannot be handled - this lets
: BASIC handle it.
9020 RESUME Error was corrected (or ignored) and

the program resumes execution-at the
statement causi the error. X
9030 RESUME EXIT - Error was corrected (or ignored) and
_ control is to be transferred to the
’ line with the label EXIT.

| CHAPTER 9: STATEMENTS
9.48 RETURN Statement : - S

1 RETURN B
2 BETURN <line reference)
Where:

<line reference> ::= <line number>
' <line label>

See also GOSUB and ON GOSUB statements

Purpose:

The RETURN statements terminates the execution of subroutine and transfers
control back to the statement following the call (GOSUB? to the subroutine. '

Comment:

There may be more than one RETURN statement in a subroutine, however, the first one

~executed causes the subroutine to terminate. It is a §°°d pro rammi practice to
have only one RETURN statement in a subroutine and, if multiple exit points are

needed, ranch to that one statement from the vari

This makes the routine easier to read and maintain.

The RETURN statement cannot be executed without a previous execution of a GOSUB
statement. When this is attempted a "Return stack egpty" error occurs.

ous parts of the subroutine.

When a line is referenced on the RETURN statement the referenced line must exist in
the program (same as the GOTO statement). : o

" The RETURN statement with the optional line number reference used causes.the
location of the statement following the GOSUB call to be discarded and control
transfers to the line referenced.

It is bad practice to use the 1line reference option’ except' in unusual or
exceptional cases., A better, and approved method of performing a similar function,
is to use the SELECT or WHILE statement structures. :

- - - - - - G P > D P S G P T WS W S D TR D D R P G S G S R S D S S P TP P G R G P OP N G P D P D G D G S0 YR S SR G P W S e R G e e P e S S S e @ W
R T T T e Sk U T T R R R G e D D S % D R D TP T T T W @D P I Eh T D D) G Gl G R T P TS TR TP R O P SR P L e TP P G S TP e T T S G S S R R AR S e O

Examples: o ~ Explanation:

0010 GOSUB zg | . Execute subroutine at line 30

0020 PRINT GOTO 9000 Statements executed after RETURN

0030 REM Subroutine entry Beginning of subroutine \
0090 RETURN Exit subroutine A

0100 GOSUB INPUT Execute subroutine a label INPUT

0560 INPUT: REM Input subroutine «Beginning of subroutine

0590 RETURN CLOSE.UP Exit subroutine and transfer control

to CLOSE.UP label.

BASIC Rev B » -1 - RETURN

BASIC iEFEIEch MANUAL L_
' 9.19 RUN Statement

2 RUN <{program name> ' S -

Where: ' : _
<program name> ::= <file name>[.<file type>][:<file disk>]
<file type> ::= BASICOBJ gwith BAS}C) C :

, BASICCOM (with RUN) .

See also: CHAIN, CLEAR and LINK statements

The RUN statement allows the user to execute a program already in memory or,one‘
stored on disk. ' , <

Comment : B , i
When <program name> is not specified, the program currently in memory is executed,
starting with the first line of the program. . : :

Before the RUN statement is executed, a CLEAR command is automatically executed.

<program name),\when specified, must be a string expression. Whén BASIC is being
used (not the compiler RUN time command) only BASICOBJ files will be searched for,

ghen RUNhig fbeing-useg_(not the interactive interpreter) only BASICCOM files will
e searched for. v

When the <program name> 1is specified, a search is made for the program. If the
Erogram is found, a NEW command is executed and the specified program is loaded.
xecution begins with the smallest line number. ;

Previous versions of OASIS BASIC supported the <line number> operand. The
recommended method of transferring control to another gro ram at a specific line is
the use of a control variable (defined as COMMON) that is tested by an ON-GOTO
statement at the start of the program transferred to.

The CHAIN, RUN, and LINK statements all perform similar tasks, but with sfgnificant :
differences: . , : . _ v

Program Linkage Statements

Variables

| Statement | I/0 Channels | { COMMON |
i RUN | Closed i Cleared i Cleared !
| CHAIN | Closed | Cleared | Not cleared i
i LINK i Not closed i Cleared i Not cleared ;
Examples: ‘ _ Explanation:
-LOAD TEST - ’ .~ Program "TEST" is loaded,
~RUN : ' then executed.
-RUN TEST » S Same as above.
1000 RUN : ' ’ Re-execute program in memory.
1010 RUN "JOE" : - Execute program named "JOE".
Incorrect examples Explanatidn]
10 RUN PROGRAM e Program name must be an expression.
20 RUN "PROGRAM" LABEL . . -~ Line labels not allowed.

; o) o CHAPTER 9: STATEMENTS
9.50 SELECT Statement R o : R S

1 SELECT : - -
2 SELECT <expression> o ,
See also: CASE, CEND and OTHERWISE statements = e

Purpose: \,_ . ; _ B , L
The SELECT statement defines the start of a SELECT;CASEeCEND programming structure.
Format 1 of the SELECT statement specifies that subsequent, matching CASE

statements will specify the complete relational expression that must evaluate true
for the statements following to be executed. ' ' - '

Format 2 of the SELECT statement specifies the éxpressiqn that is to be compared
with the expression of subsequent, matching CASE statements.) _

SELECT structures may be nested to any depth. .

The SELECT-CASE-CEND programming structure is a powerful aid to the programmer
wishing to write structured programs in BASIC, a language that doesn't lend itself
to_structured programming techniques. (Also see ON ERROR, FOR-NEXT, IF-IFEND, and
WHILE-WEND structures.) _ . :

- > > > 22w o> - - T e T e T T P
S L i s i i1t i it 1ttt Sttt 2 i i 2 2 1 R 3
- ~

. Explanation:
3000 SELECT RADIUS#2,%pI : Define VALUE
3010 " CASE 0 '
3020 : SELECT : Perform only if VALUE=0)
%030 ‘ CASE SUBVALUE%=20 ' :

030 . : Perform only if VALUE=0 and SUBVALUE%=20
3050 ' ' CASE SUBVALUE%>32 _ : - ’
3060 . Perform only if VALUE=0 and SUBVALUE%>32

062 CASE ERROR% :

064 ' Perform only if VALUE=0 and ERROR%<>0

3070 CEND End of nested SELECT structure
3080 CASE I-14 |
, Ferform only if VALUE=I-14

_ Perform only if VALUE=J%
CEND , . . End of SELECT structure

- o o = o > 2> - - - - - wn e o o > o 9> e o o> o - a
B gt i - 1 1 Et it E R E tt t t t t t t -t 1 ittt ittt ittt ittt i At 4 1 ¢ ¢

BASIC Rev B T .13 - . SELECT

" BASIC REFERENCE MANUAL
9.51 SLEEP Statement

Purpose:

The SLEEP statement causes BASIC to pause for a period of time, allowing the
operator time to read a message, etc. ,

Comment :

- The value of <intege§'expression> is rounded up and integerized. The value of thi
expression must be between 0 and 32767 (approximately 9 hours), inclusive. .

The minimum time that the SLEEP statement will pause is one second. Specifying anj
value less than one will be interpreted as the default, one second. -

D OB S P D D €D D TP D WD S . . G S D S Y G D D R S S S S D G SR GD G G I W S P TP G D O S GD A D GO D G G W D P TP AR D O S S D Gn R G S ED G G U S Sh ED OGP G S GR GRS G 8 a0
T D T T e e e T e O G S0 S ST S D T T i e e R D T T T S O T o G s e i G T T W T S % A D GO TP R e R G D R D e B e e T TSP T G G P T % WS P WD S Gn S O e OB W G o m e e
b /

Examples‘ | ‘ Lo Explanation
10 SLEEP 10 N v Suspend processin§ for 10 seconds.
95 SLEEP X/4 Wait for one fourth of X value.

200 SLEEP .5 , - Wait for one second.

SLEEP ' - 1M - A BASIC Rev B

v o R CHAPTER 9: STATEMENTS
9.52 STOP Statement ; “ _ . - L

. .
| 1 srop 3

2 STOP <expression> ,

See also: END and QUIT statements

Purpose:

The STOP statement terminates execution of a prograﬁ without closing any files nor
altering working storage. A ' . .

Comment :

The STQOP, END and QUIT statements all terminate execution of a program. The-QUIT
and END statements are the normal termination of a program in a non-development

- mode. :

The STOP statement 1is used when an abnormal exit from the proiram is desired, as
needed during the development and debugging of a grogram. When it is executed, the
status of the program remains unchanged, and the message "STOP at Line nnnn" is
gigglayed on the terminal. BASIC will enter the command mode (prompt character of

If a STOP statement was executed, a CONTINUE. command will resume execution at the
statement following the STOP staﬁement. This allows the programmer to examine or
alter portions of /he program or to. change the value of some variables. ‘

When an expression is® specified’ after the STOP verb that expression will be
evaluated and displayed with the stop message: "STOP <value of expression> at line
XXxxe, This allows the programmer to put identifying messages on the screen to
assist in the debugging. : '

Examples: - o / Explanation: -
0010 STOP ‘ Program stops execution and allows
: maintenance.
0020 STOP A$, Program stops execution, as above and
disglays the current vaiue of the
string A$. _
BASIC Rev B \ - 15 - | | ~ STOP

BASIC REFERENCE MANUAL
9.53 THEN Statement

1 THER [<statement>]
2 THEN [<line number>] A
" See also: ELSE and IF stapements

_ Purpos&:

The THEN stétement specifies - the action to be takeh"when a multiline IF statement
relation is true. . , ' : : S _

Comment :

The THEN statement is onI{‘a statement when used in conjunction with the mulﬁi—line
format of the IF statement. When used in this manner the verb THEN is optional.

<statement> ﬁay be any statement or statements, including another IF statement.
Format 2 of the THEN statement is an implied THEN GOTO <line number> statement.

B P .
D G T " TS AP GBS TN AP TP GD WD WP WP G A G G e W D G G WD G D G G D G D Y R D S D TS G S G SR SR SR R G G0 S D R SR e Gn Gn S E e S S5 G e e I G o G SN OB b S D o oD
D e M S O e e A i e G B WP G D D G G T G 4w e ™ S G W D W S S D G D W T R S W G e GO M G D S T e R S T T AR N S S D D GO R S D G S W T O D Gn e . S W W O S e o

Examples:s , Explanation:

0010 IF A ' Test A for non zero

0020 THEN GOSUB 2000 . Perform if A<>0

0030 ' PRINT USING "###",A ‘ n " "

0040 . GOTO" TOP. OF. PAGE " L

0050 IFEND : . End of conditional execution
0010 IF VALUE > CONTROL Test expression '
0020 - THEN IF VALUE > LIMIT . Perform if expr is true

0030 THEN GOSUB ERROR Perform if both expr are true
0040 GOTO EXIT : u " n n " n
0050 ELSE IF ERR.NUM < ERR.LIMIT THEN QUIT

Perform only if first expr is true
and second expr is false

0060 - IFEND ' End conditional execution from second expr
0070 - IFEND v : End of conditional execution i
Incorrect Examples:) : - Explanation:

. 0010 IF VALUE>S THEN 100 : - g
0020 THEN PRINT "XYZ“‘ N Not in a multi-line IF statement

THEN | -1 - | BASIC Rev B

CHAPTER 9: STATEMENTS
9.5% UNLOCK Statement

1 UNLOCK #<channel>
Where: ‘
‘<channel>1::= <numeric expression>
See also: CHAIN CLOSE DELETE, INPUT LINPUT, MAT INPUT
MA WRITE, OPEN

PRINT, MAT READ PRINT, PRINT
. USING, READ, READNE&T, and wnx&s state ents

Purpoae.

The UNLOCK statement operates in multi-user OASIS only and allows a program to
release a record for other users use.

Comment:

The UNLOCK statement is only effective when the channel was opened with UPDATE
access, not INPUT or OUTPUT. .

The UNLOCK statement releases the record read from the channel with an INPUT, MAT‘
INPUT, -MAT READ, READ, or READNEXT statement. After the UNLOCK statement is
executed another user partition may read the record just released.

An unlock function is performed automatically when any of the followi ‘statements
is executed: CLOSE, DELETE, INPUT, LINPUT, MAT INPUT, MAT PRINT, MAT READ, MAT

WRITE, PRINT, PRINT’ USING, READ, NEADNEXT and WRITE Note that’ the input type. .

statements may lock another record.

Examples: v L Explanation:

0010 OPEN #1: "DATA.FILE",UPDATE SEQUENTIAL

0020 READ #1: RECORD$ Read the first record and locks it.
0030 UNLOCK #1 y : Releases the record for others use.

- o = = o oo > - - e o > P S B e S A O P S S W A G W S G e O S D e P o
33t ittt 33 3 i 3t 1 32 i ittt i 3+ttt 1ttt it it it 2 i 2t E 2 1 2 2 1 1 1

. BASIC Rev B - 187 - ' UNLOCK

BASIC REFERENCE MANUAL
9.55 WAIT Statement

1 WAIT ,)
2 WAIT DEVICE <device number>
3 WAIT MEMORY <address>,<and mask>[,<zor mask>]
5 WAIT PORT <port>,<and mask>[,<xor mask>]
Where:
<device number> ::= <numeric expression>
<{address> ::= <numeric expression>
<port> ::= <numeric expression>
<and mask> ::=z <numeric expression>
<{xor mask> ::= <numeric. expression>

See also: GET and PUT statements

Purpose: ; o , ;
Thé WAIT statement suspends execution until some event has occurred.
Comment :

The most frequent use of this statement (format 1) is to suspend operation until
the operator has t{ped any key on the console keyboard. This use is the same as
the systems when it displays a page of information and then waits for the operator
to release that page before disg azing the next page. An up-arrow character ()
will be displayed in the bottom, left hand corner of the screen while the system is
waiting for the operators response. This is a conditional wait determined by the.
status of the System Screen-~wait key (see QASIS System Reference Manual). ,

This statement causes BASIC to test a b{te from the specified device (format 2)
memory address (format 3), or gort (format 4), logically AND it with <and mask)> an
logically eXclusive OR it with <xor mask>. The statement is re-executed if the
result is not zero (true). , : ~ : '

The <port> expression must evaluate to an integer between 0 and 255; the <device
number> expression must evaluate to an integer between 9 and %2' éhe <address>
expression must evaluate to an integer in the range =32767 =~ +32 6%. (This value,
unlike other integers, is interprefed as an unsigned value, which automatically
adjusts its range fo 0 - 65535.) .

If <xor mask> is omittéd, it is assumed to be equal to zero.

This statément can be very useful for waiting for an I/0 device to become ready for
output, or waiting for a character to be input from a device. :

The WAIT DEVICE has no masks available because it returns control to BASIC as soon
as any change (non zero) occurs with the device.

The WAIT statement does not read the data from the port or device, only the status
of the device or gort is tested. This statement would normally be used to
determine the time that an event happened in order to synchronize two processes.

- s e s e P G e e e o e O v = em e 9o e - oo - - - T I
L2 i e L i i i 2 i1 2ttt 2 1 2t 1t it 2 Pttt 2 R 1 2 2t R 2

Examples: ' Explanation:

0010 WAIT DEVICE 9 The program suspends execution until a key
‘ is entered from the console keyboard. When
any ke¥ is t ged the program will continue
_ execution wi the statement following.
0020 WAIT PORT 25,0FH , The grogram suspends execution until
a byte is input on port 25 that has the
» four low-order bits off,
0030 WAIT Wait for operator to release current
page of data on screen.

- e e ww o o - o o = o I Sy T e T T - e e @t e 0 e e oo oz
i+t ittt it i ittt ittt ittt 1t ittt 1ttt ittt i1ttt tt i1ttt ittt t ittt ittt t i+ttt tt 1 ¢+

| | CHAPTER 9: STATEMENTS |
9.56 WEND Statement o '

]
l 1 WEND
I See also: WHILE statement

~

Purpose: v
The WEND statement' marks the end of a WHILE-WEND programming structure.
Comment : '

The WEND statement requires that a corresponding WHILE statement exists and that
the WHILE statement must have been executed prior to the WEND statement. -

The WEND statement performs two functions: marks the end of a WHILE-WEND

structure--~the statement following the WEND statement 1is executed when the -

expression in the WHILE statement is false; causes the corresponding WHILE

gﬁatfmegttzg be re-executed when the expression of that WHILE statement was true -
e las e,) .

WHILE-WEND structures may‘be nested to any depth.

Example: ’ - Explanation:

0010 WHILE CONTROL% : Test the variable CONTROL%

0020 GOSUB 1000 Perform if CONTROLY is non-zero

0030 - GOSUB 1200 b " b "

0040 WHILE 0PTION%="HELP" b " : "

0050 GOSUB HELP.ROUTINE Perform if CONTROL$<>0 AND OPTION$="HELP"
88 8 . 8%]1)0}]*:” ” n " . n n " 1]

0080 WEND , _ Go back to 10 if CONTROL$ was non-zero

BASIC Rev B o | c= 189 - | , WEND

BASIC REFERENCE MANUAL
9.57 WHILE Statement

1 WHILE <numeric expression>

. 2 WHILE <logical expression>
3 VHILE <relational expression>
See also: WEND statement '

Purpose: = v. _ v - _ _ -
‘The WHILE statement- marks the beginning and qualifying condition of a WHILE-WEND
programming structure. o ‘ : o

Comment : N

The WHILE statement requires a corresponding WEND statement;,which marks the end of
the WHILE-WEND structure. ’ , i ’ , .

When the WHILE statement is encountered the expression is evaluated. If the result
of the expression is non-zero or true the statements following are executed. If
the result of the expression is zero or false then the statements following, up to-
and including, the corresponding WEND statement are skipped..

~.

If the expression was true and the statements were executed, when BASIC encounters
the corresponding WEND statement control will be transferred back to this WHILE
statement for expression re-evaluation. Because of this looping feature, there
should be some statement within the loop that could modi he results of the
exgression evaluation, or a statement that will transfer control out of the loop;
otherwise the loop will be executed indefinitely. o

WHILE-WEND structures may be nested to any depth.

L X T 3 3 3 S T 3T T X T X X3 - an v - - - 3 - - e e 3 333 DD G D G0 GE G Gr WP G Y S G OO G GD G G G OD W GRS ow
3331ttt i+t it ittt 11ttt ittt ittt 1ttt it ittt ittt ittt 111ttt 1 13

Example: A ~ Explanation: .
0010 WHILE A%<10 Test the expression

0020 AY = A%+I% : Perform only if true.

0030 FOR I%=1 TO § R " " "

0040 PRINT I% . " " - "

0050 . NEXT I% - " " "

0060 - WEND) If exp was true then go back to 10
0070 PRINT A% 4 Otherwise perfqrm this and continue. -
0010 IF NOT (A%$<10) THEN 70 This is the same as above example.
0020 A? = A%+T1 CL . _

0030- FOR I%=1 TO § . .

0040 PRINT I% o

0050 NEXT _

006 10

-3t -] - o 3 D ED GG D GD GRS SR G R . e D
it ittt it i it 1ttt i 1 i it 11 ittt 1t ittt i1ttt ittt i1ttt -ttt ittt 1

VHILE | - 150 - | BASIC Rev B

o _ . CHAPTER 9: STATEMENTS
9.58 WRITE Statement \

1 WRITE #<channel>: <expression list)> ‘
2 WRITE #<ehannel>,<key>. <expression list> -
Where:
<channel> ::=_<numeric expression>
<{expression list)> ::= <expression>[,<expression list>]
<key> ::= <numeric expression>]
<{string expression>. -

See also. DELETE, MAT PRINT, MAT WRITE, PRINT, and PRINT USING statements

—

Purpose:

The WRITE statement allows the user to create or update sequential, direct or
indexed file records.

Ccllinﬂh

<channel> is the internal I/O channel numﬁen of a éhannel that was opened - for
OUTPUT or UPDATE that does not have write protect status. If an attempt is made to
write to a protected file, the error message "Protected File" will be displayed.

Format 1 of the WRITE statement is used for sequential format files opened with
access method of SEQUENTIAL. This format causes the next record in sequence to be
written to the file i.e. if the last record written to the file was the 11th
record then this statement will write the 12th record to the file).

Format 2 of the WRITE statement is used for files opened with access method of
DIRECT or INDEXED. A file opened with access method DIRECT will require a numeric
‘key expression; " a file opened with access method INDEXED will require a string key
expression. In either case the record specified by the key will be written to the
"file, replacing any existing record with the same key.

Whern the ke is numeric its value must be greater than zero and less than or equal
to the number of records allocated to the file. Using a key outside of this range
will cause an "Invalid key" error.

‘The WRITE statement always locks the record- before writing it to the file. The
WRITE statement also unlocks any record that was locked in the file by this program
(unless option LOCK was used with the OPEN statement).

The only proper way to retrieve a record written to a disk file with the WRITE

statement is with a READ or READNEXT statement. Using an INPUT or LINPUT statement

gn atnrecord that was output with a WRITE statement will cause an "Invalid file
ormat" error. .

‘Examples:]
0010 OPEN #1: "DATA.FILE",OUTPUT SEQUENTIAL : -
0020 OPEN #2: "CUSTOMER.MASTER",UPDATE INDEXED : .

0030 OPEN #3: "TRANSACT.DETAIL:A" UPDATE DIRECT LOCK -

0040 WRITE #1: DATA1,DATA2 STRINGS, 1 %
0050 WRITE #2, "Name™ } ADDR* CITY$ éTA E$, FORMAT$(ZIP "99999") ,BALANCE
0060 WRITE #3, sk A,B,C,D,E,F, TOTAL LINK%)

Incorrect Examples: : o Explanation: R

0070 WRITE #1,23: A,B “Not valid for sequential access.,
0080 WRITE #2: A$ BﬁTA Indexed access requires key.
0090 WRITE #3,“RE6"&STR(I%) Direct access requires numeric key.

BASIC REFERENCE MANUAL

(This page intentionally left blank)

- WRITE = 152 = BASIC Rev B

CHAPTER 10
| FUNCTIONS |
A function is a relation between two variables such that for each value of the

independent variable there is .one
When a function is used

100 LET Y =,SQR(x)

and onl

one

For example:

X is the independent variable and must be defined before the function, SQR

called.

Functions are not statements.

BASIC provides many predefined functions for the grogrammer's use.
trigonometr

one file function, four logica
Specifically they are: -

thirti numeric functions (ineludi
four input/output functions,
functions, and one user function.

Numeric functions:

ABS Absolute value

ASC Decimal value of character
ATN Arctangent)

BIN Convert from binary base

Ccos - Cosine

DAY Convert from ext date format
EXP Exgonential ‘

FIX Integerize number

FLOA Float integer number

HEX Convert from hexadecimal base
INT Return integer portion

LEN Return length of string

LOG Natural logarithm

MATCH Compare string with mask

String functions:

T$ Cursor control .
BINOF$ Convert to binary base
CHR ‘Return ASCII of number

CRT Cursor control
DATE$ Convert to ext date
DEL Delete sub-string field
DTE Validate string for date
-EXT Extract sub-string field -
FORMAT$ Format string -
HEXOF$ Convert to hexadecimal base
INS$ Insert sub-strinf field
LEFT Return left portion of string
LPAD Add leading spaces

Input/Output functions:

INP
LINE

: Logical functions

LRL Logical rotate left
LRR Logical rotate right

File function: _
EOF Test for end of file
Error functions:

ERL Line number of error
User function:

USR

BASIC Rev B

Value of control char entered
Return line length of channel

- 153 -

The value of the function, SQR(X) is the dependent variable and, in
example, is assigned to the variable Y.

MAX Return maximum of two numbers
MIN - Return minimum of two numbers
MOD Perform modulo of number

NBR Test string for numerics

OCT Convert from octal base

PI Constant: 3.141592653590

RND Pseudorandom number

- ROUND ' Round number
SCH Search string for sub-string
SEC Convert from ext time forma
SGN Return sign of value
SIN Sine ,
SQR Square root of number

TAN Tangent
Numeric value of string number

LTRIM$ Removebleading spaces -
MID Return middle of string

" OCTOF$ Convert to octal base

OVR Overlay string with string
REP Replace sub=string field

RIGHT$ Return riiht»port on of string
RPAD$ Add trailing spaces

PT$ Generate string of characters
RTRIM$ Remove trailing spaces
SPACE$ Generate string of spaces
STR$ Return ASCII value of character
TIME$ Convert to ext time format
TRIM$ Remove leading & trailing spaces
PAGE Return page length of channel
POS Position of output rec pointer
LSL Logical shift left
LSR Logical shift right
ERR Error number of error

User written assembly language subroutine call.

value of the dependent variable.
(called} in BASIC, the independent variable(s) is the
parameter and the dependent variable is the value of the function. ’

These include
c), twenti six string functions,
functions, two error

FURCTIONS

BASIC REFERENCE MANUAL

The followigﬁ functions always return an integer value: ASC, EOF, ERL, ERR, FIX,
HEX, INP, LEN, LINE, LRL, LRR, LSL, LSR, MATCH, NBR, PAGE, PGS, SCH, SGN.

The following functions return an integer value when the parameter to the function
is an integer: INT and USR. R , :

All othep numeric functions retﬁrn flqafing,poini values.
A function call has the general form of: ‘

{function name>[$J(pgrameters) : | -
In addition to the pre-defined functions listed above, the user may define his own
functions with the DEF statement. These functions are only defined while the
program defining them is in memory. _ : .
The parameters passed to a function are not changed by the function.

Function names cannot be ébbreviated,and function names cannot be used as variable
names. g : . ' - ~

References to string funetions do not reguire the dollar sign character. For
example, SPACE(5) is acceptable for SPACE$(5?. ‘

FUNCTIONS | : . = 158 - . . BASIC Rev B

10.1 Numeric Functions

ABS(<num-exp>)
ASC(<atr1ns-exp5)

BIN(<string-exp>)

DA1(<str1pg-exp>)‘

-interpreted as. DATEFORM 2).

CHAPTER 10: FUNCTIONS .

The numeric expression is evaluated and its aBsolute value is -
assigned-to the function. _ :

Example: PRINT ABS(23);ABS(-2
xample al (23); 3)

The string‘.ex ression is evaluated and the ASCII, integer value
of the first character in the resulting string is returned. .

Example: Pg%NT ASC(AS$)

The string expression is evaluated and the resulting string is
interpreted as a binary value with its equivalent decimal,
integer value - returned. Remember that binary values only use
the digits 0 and 1. . . .

Example: PRINT BINg“0101010101010101");BIN("0000111100001111“)
21845 3855 : ,

The string expression is evaluated and interpreted as a date
field according to the currentlﬁ set DATEFORM (DATEFORM 3 is
on numeric characters in the

* string expression are 1ntergreted as delimiters between the

E!P({nun;exp>)

FIX(<num-exp>)

FLOAT(<num-exp>)

HEX(<string-exp>)

‘intepret

month, day, and year. The number of days since December 31,1899
to tﬁat date is returned. An invalid date string expression
will cause the function to return a =1. .

Example: PRINT DAY("5/17/77"),DAY("1=1-0")
28261 1 L

The expression is evaluated; the constant e is raised to the "
value of the expresion and assigned to the functiop.

The fractional portion of the value of the ex ression is
truncated; the resulti integer portion is assigned to the
function (32767 to =327677. ; , L
Example: P¥INS F%X(lés);FIX(.5);FIX(5.5);FIX(-H3.5)

The numeric expression is evaluaﬁed and éonverted, if necessary;;
to a floating point value. - L

Example: PRINT 1/4;1/FLOAT(4);1/4.
- 0 025 025 ~

The stfing expression' is evaluated and the besulting string is
e as a hexadecimal value with its equivalent decimal,

. integer value returned. Remember that hexadecimal vglues use

INT(<num-exp>)

LEN(<string-exp>)
LOG(<num~exp>)

BASIC Rev B -

the digits 0 through 9 and the letters A through F.
Example: PRINT HEX("OFF");HEX("100")
: 255 256

The expression is evaiuated and the greatest signed inte%er'of
that value is assigned to the function. The result of this

‘function is an intefer or floating point, depending upon the

argument of the funct on.

Example: P?IN% IgT(1.5);INT(.S);INT(—&.6)

The string expression is evaluated and its length is returned as

an integer. ; : .

Example: PgIN?OLEqé"ABCDEF");LEN(" X ");LEN(SPACE$(10))

The éxpression is evaluated and the natural logarithm of that

value is assigned to the function. (Natural logarithms are

logarithms to base e). . ' ,

The common logarithm (base 10) may be computed by dividing the
- 155 = ~ NUMERIC FUNCTIONS

BASIC REFERENCE MANUAL - o e
' natural logarithm by LOG(10), i.e.: LOG10(X) = LOG(X)/L0G(10).

HAICH((atring-exp1> <str1ng-qxp2>) The two string expressions are evaluated and the
second expression is used as a mask for match gurposes. If the
first string does match the mask a true value 1s returned -1),
if the str does not match the mask a false value is returned
(0). The mask characters are interpreted as follows:

e An¥ halphabetic character or space in this position is a
match, -
Any numeric digit in this osition is a match.
? Any character In this position is a match.
%@ Ong hor more alphabe ic characters in these positions will
match.
8§ One or more numeric digits in these position will match.
%2 One or more characters in these positions will match.
$ This is the ‘escape' character: the special character

following (@, #, ?, ® or %) is treated as a literal match
character).

All other characters are treated as literal match characters

i.e.,, the corresgonding position in +the first string musﬁ
eontain the specific character, .

The following are example masks along with a deseription of what
they will match:

Mask: TABC?"

Matches: Any four character string starting with the upgercase
letters A and C. The following striggs will match
this mask: ABCX", "ABC1", following
strings will not match this mask° "ABDE", "XXXX"
"ABCDEFGH®™, "ABC", "WXYZ".

Mask: TABC#?®
Matches: Any four or more character string starting with the
‘ ugfercase letters A, B, and C. The followinﬁ strinﬁs
1 match this mask: M"ABCDEF"
following strings will not match this mask- "
"ABDXLK

Mask: "ABC#?DEF"
Matches: Any string whose first three letters are A, B, and C,
. and whose last three letters are D, E, and F. One or
more characters between these are acceptable. The
: followi strinﬁB will match this mask: "ABCXDEF",
- " ABCXXXXXDEF" C12433ABCDEF", The following strings
will not match this —mask: "ABC", "ABCD", :
. - WADEF®, W®ABCDEF", ,

Mask: " =PE-FEFEN

Matches: Any eleven character string with: three digit
hyphen, two digits hyphen, and four digits like a
Social Security ﬁumber¥ the following stri will
match this mask: "123-45 6789" The followi

will not match this mask: 123&56789“ “123?%5/678
"12ABD",

Mask: n"eea##E" ‘
Matches: Any six character string whose first three characters
. « are letters or spaces and whose last three characters
. are diﬁits. The following strin S will match this
mask: abc123", "AB 123" "Xyz002". The following
strings wilsondt Amsten this mask' "123ABC", "AB1234",
", MABCX123"

Mask: ngRERG Ry g0 ,
Matches: Any six character string whose first three characters

are asterisks and whose 1last three characters are

§its. The followi strings will match this mask:

#XRO3N . nERETIQN e f lowin§ strings will not
match his mask: "# 123&” ‘n{12456",
n®#%#ABCDEFG".

MAX(<num-exp1>,<num-exp2>) The two expressions are evaluated and compared to each
other. The value of the expression whose value is greatest is

NUMERIC FUNCTIONS ' - 156 - ’ BASIC Rev B

V‘CBlrig. 10: FUNCTIONS
returned. ‘

Example: PRINT MAX(5,21) ;MAX(PI,3.14);MAX(1,1)
, 21 3.141582653590 13 3MAX(1,1)

HII((nmh—oxp1> <num-exp2>) The two expressions are evaluated and com ared to'eaéh'
_ ’ otger. dThe value gf the expression whose value ig smallest is
returned. . _

Example: P§1N¥ Mgg(5,21);MIN(1,-1);MIN(3'23,70)

HUD((nm-—exp1>,<nhn-exp2>l The two numeric expressions are evaluated. The value”of
‘ the first expression . is divided by the value of the second
expression and the remainder is assigned to the function. .

Example: PgINTbMOD(11,u);MOD(Z.Z,.B)

NBR(<string-exp>) Analyzes the string expression to determine if it could be
converted to a number, The string expression is first
evaluated. If the resulting string contains any non-numeric
characters (other than digits, plus or minus sign, period (or
comma if OPTION COMMA is in effect), leading or trailing spaces,
or letter E) an integer 0 is returned (false). If the resulting
string is a valid decimal or hexadecimal number then an integer
-1 is returned (true). . ‘ :

Example: P?INE N?R("123");NBR("OABCH");NBR("1.23E23")
PgINT NBR("NAME")

OCTI(<string-exp>) The string expression ié evaluated and the resulti stri isv
' interpreted as a octal value with its equivaggnt decggal,
integer value returned. Remember that octal values only use the
digits 0 through 7. , .

Example: PRINT OCT("0T1");0CT("100")
‘ 57 64

PI The constant 3.141595653590 is aésigned to the function.

RND The value of the next pseudorandom number is assigned to the
function. The value is a floating point number between zero and
one. ‘

ROUND(<num-exp1>,<num-exp2>) The two numeric expressions are evaluated and the
first expression is rounded to the number of places specified by
- the value of the second expression. Positive values for the
second expression indicate the number of diﬁits to the right of
the decimal point; negative values for the second expression
indicate the number of digits to the left of the decimal point.

Example: PRINT ROUND(PT,4);ROUND(1234.567,-2)
3.1 1200 |

416
PRINT ROUND(1.23456T,4);ROUND(2.34,0
ey 34567,4) ; 34,0)

SCH(<num-exp> <str1ng—exg1> <{string-exp2>) The expressions are all evaluated. A
! ~ searc 12 made of the resultigg <{string one>, starting at the

ghagacter position <number one>, for the sub-string <{string
wo>. : '

If <strin§ two> is found in <string one> then the starti

position in <string one> is returned. If <string two> is no

{gu?d %n <string one> then the integer value zero is returned
alse).

When <string two> is the null string (equal to "") the integer
value one is always returned. The null strinf is a proper
substring of any ‘s ring and is treated conventionally as the
first element of every string. ' :

BASIC Rev B - 157 - ‘ . NUMERIC FUNCTIONS

BASIC REFERENCE MANUAL . | S

SEC(<string-exp>)

Example: PﬁINg SCH(1,"ABCﬁEFGH",?D");SCH(B,"ABCDE?GH","EFGF)
ngng‘scn(1,nABanFGH","x");scn(1,"ABc","ﬁ)

The string . expression is evaluated -and interpreted as a
normalized time of day.(hh:mm:ss). The value of the number of
seconds since midnight (00:00:00) to the time represented by the
string expression is returned. The times iggut to this function
may use any non-numeric character for delimiters between hours,
minutes, and seconds (except semicolon and comma). For example, -
valid input to this function includes: "1.1.1%, "i-1+1",
"1H1M1S", “1 . 1"’ "’1”, etco C) - .

Example: PRINT SEC("12:00:00");SEC("01:05:08");SEC("2.3") . -
432000 3908° 7380 . . " o

 Note: To g§§ the current time of day in seconds use:

SGI(<nnl-§xp>)

s§8(<nn-exp>)

SEC(TIME$(0

The numeric expression is evaluated and the sign (+1, 0 or =1)
of the value is assigned to the function. S

Example: .P¥IN¥ S?N(EI);SGN(-f}O/-Z,O);SGN(—43);SGN(PI—PI)

The expression is evaluated and the square root of the resulting

- value 1is assigned to the function.

VlL((atring-exfs)

NUMERIC FURCIIONS

Example: PRINT san(n)-son(zg);son(11)
2 5 3. 6624791 ...

The string expression is evaluated and interpreted as a numeric
constant. If the string contains any non-numeric characters
(see section on "Numeric Constants") a trappable error occurs.
If the string is a valid- number then the value of that number is
assigned to the function. ' =

Example: PRINT VAL("123");VAL("1.234E23")
. 123 1.234E+023 ’

PRINT VAL("ABCD")
Illegal number -

- 158 - BASIC Rev B

| CHAPTER 10: FUNCTIONS
10.2 - Trigonometric Functions L -

ATN(<exp>) The expression 1is evaluated and the arctangent of that value is.
. assigned to the function. - oo) ,
COS(<exp>) The expressioﬁ is evaluated -and the cosine of that value is-
, assigned to the function. ’
SIN(<exp>) . The expression is evaluated and the sine of that value is
assigned to the function. < : ‘ . : ’
TAN(<exp>) The - expression is evaluated and the tangent of that value is

- assigned to .the function. '
The argument for the SINe, COSine, and TANgent functions is an angle expressed in
radians. Althou§h any angle will be accepted as a valid argument, some accuracy
will be 1lost if the angle is outside the range of plus or minus 2PI. This is
because the function routine must first reduce the angle to the first quadrant
before evaluati the function., If the angle is known in degrees, it ‘"must be
converted to radians before it is used as the function argument. This may be done
as part of the expression. ‘) R . -
The argument of the ArcTaNgent function may be any number (the tanﬁent of any
angle).. The result will be an angle in the range plus or minus PI/2 radians.

The following identities may be used to compute trigonometric functions other than
- sine, cosine, tangent, and arctangent: :

Function Identity
Cotangent DEF FNCOT(ANGLE) = 1/TAN(ANGLE) B
Secant ' DEF FNSEC(ANGLE) = 1/COS(ANGLE)

Cosecant DEF FNCOSEC(ANGLE) = 1/SIN(ANGLE)

Arcsine DEF FNARCSIN(ANGLE) = ATN(ANGLE/SQR(1-ANGLE"2))

Arccosine DEF FNARCCOS(ANGLE) = ATN(SQR(1-ANGLE"2)/ ANGLE)

Arccotangent ‘DEF FNARCCOTAN(ANGLE) =vATN(1/ANGLE)

Arcsecant DEF FNARCSEC(ANGLE) = ATN(SQR(ANGLE"2-1))

Arccosecant DEF FNARCCOSEC(ANGLE) = ATN(1/SQR(ANGLE"2-1))

Degrees to Radians DEF FNRAD(ANGLE) = ANGLE*PI/180 -

Radians to Degrees DEF FNDEG(ANGLE) = ANGLE®180/PI
;;;:;;ziiz;;;gziigz===i§;;:;:;===
Hyperbolic sine DEF FNHSIN(ANGLE) = (EXP(ANGLE)-EXP(=-ANGLE))/2

Hyperbolic cosine DEF FNHCOS(ANGLE) = (EXP(ANGLE)+EXP(-ANGLE))/2

Hyperbolic tangent DEF FNHTAN(A) = (Exp(A)-Exp(-A))/(EXP(A)+EXP(-A))

Hyperbolic secant DEF FNHSEC(ANGLE) = 1/FNHCOS(ANGLE)

Hyperbolic cosecant DEF FNHCOSEC(ANGLE) = 1/FNHSIN(ANGLE)

Hyperbolic cotangent DEF FNHCOTAN(ANGLE) = 1/FN§SEC(ANGLE)

BASIC Rev B - 159 - TRIG FUNCTIONS

BASIC REFERENCE MANUAL
10.3 String Functions _ S
In the examples, assume thét A$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AT$(<num-exp1> (nun—eng)) Generates a string of characters representing the cursor -
T ' control “commands for gﬁe terminal designated by the console

terinal attachment. The first expression is

interpreted as the

horizontal coordinate. The second expression is interpreted as
-the vertical coordinate. Both coordinates are relative to one,
For exampleS the upper left corner of the screen is referenced

as AT$(1,1 Only values that are within
attached console may be used, Any values

the range of the
greater than the

- maximum or less than one will cause the function call to be

ignored.

BIIOF$(<nn-—exp$) The numeric expression is evaluated, integerized and translated
: into the string of characters representing the value in binary.
A sixteen character string is always generated. /

Example: PRINT BINOF$(123):" ":BINOF$(23129)
| PN SooooEet1as 6101%01001311301

CHR$(<num-exp>) Generates a one character string whose ASCII value is the value
: ’ of the expression (see appendixngn "Character Codes").

Example: zRIﬁT‘CHR$(65)

CRT$(<num-exp1>,<{num-exp2>) This is a synonym for the AT$ function (see above).

CRT$(<string-exp>) Generates a string of characters representi
; . commands for the terminal desi ngted; b

the cursor control
e CONO attachment.

Correct values for string expression and their functions are:

HOME Move cursor to upper left corner.
CLEAR Clear screen.

EOS Erase to end of screen.

EOL Erase to end of line.

UpP Move cursor up one line.

DOWN Move cursor down one line.

LEFT Move cursor one position to left.
RIGHT Move cursor one position to right.

BELL Sound the buzzer or bell on the console.

IL Insert line.

DL Delete line.

IC Insert character.
" DC Delete character,

PON Following characters are to be screen protected.
POFF Following characters are not screen protected.

EU Erase unprotected.

KON Keyboard unlock.

KOFF Keyboard lock.

FON Format on. , o
FOFF Format off, :

BON Following characters are to "blink".

BOFF Following characters are normal (no blink).

ULON Following characters are to be underlined. o
ULOFF Following characters are not to be underlined.

RVON Following characters are to be displayed in reverse video

(black on white background).

RVOFF Following characters are to be displayed in normal video

(white on black background).

Note: The control codes generated by this
internal codes used to perform the function.

function are the
‘The code is only

translated to the proper character sequence when it is output by

. the system.

This function always generates the internal code but it is only

meaningful when that code is output to the CONSOLE. Refer to the
A e ference al appendix on "Terminal Class Codes"
or the specific controls implemented for each type of terminal

class.

STRING FUNCTIONS - 160 -

BASIC Rev B

DATE$(<num-exp>)

DEL$(<string-exp>,

DTE$(<string-exp>)

: interpge%ed as the number of days since December

| ,” CHAPTER 10: FUNCTIONS
Returns a strihg of characters in normalized date format

. accordi to the currentl set DATEFORM (DATEFORM 3 -is

interpreted the same sa DATEFORM 2) representing g?e ?gsgess%gn
. .The

value zero) is interpreted as the current system date.) ;
Example: PRINT DATE$(10);" ";DATE$(0);" ";DATE$(28262)

" 01/10/00 05715718 05/18/71 .

/

<num-exp1>,<{num-exp2>) Returns the stri expressioﬁ with the

subfield whose position in string is indicated by the values of
the two numeric expressions deleted. The string deleted 1is the
subfield of the string whose position is the <num-exp2> subfield
of <num-expi1> subfield, including its delimiter.

Example: B$ = AAAA“BBBBC1C1C1]C2C2C2]C3C3C3*DDDD

X§£§IC?E%8$?85538%]C3C3C3“DDDb

PRINT DEL$(B
AAAA*BBBB§C131%%3%202c2“nnnb

PRINT DEL$(B$,3,0
A@AA“BBBB§£D353’)

As illustrated, when the, second numeric expression is zero the
entire field referenced by the first numeric expression is
deleted. When the field designated by two numeric expressions
doesdggg dexist in the string, the string expresion is returned
unmo ed. - - '

gote: Field and subfield delimiters are not really the characters
and] because the.garity bit is turned on to indicate that the
character is a delimiter and not a normal ASCII character.

Validates the string expression for a valid date according to the
currently set DATEFORM (DATEFORM 3 is the same as DATEFORM 2).
If the s rin§ is valid, the standard date _format is created for -
that date. f the string is invalid, a null string is generated.
A date may use any non-numeric character as a delimiter between
month, day, and year except for the semicolon or comma.

E le: PRINT DTE$("7/6/76"),DTE$("2/30/T76"),DTE$("112154")
XAMPLEE O7/06/7T6 ("7 4),DTES 1?/21/53’

v EXT$(<string-exp>,<num-exp1>,<num-exp2>) Returns with the subfield of the stri

BASIC Rev B

expression whose position in string is indicated by the values g%
the two numeric expressions, The string returned is the subfield
of the string whose position is the <num-exp2> subfield of
<num-exp1> subfield. , :

Example: B$ = AAAA“BBBB“C1C1C1]CZCZC2]C3C3C3‘DDDD

PRINT EXT$(B$,2,0)

BBEB =

PRINT EXT$(B$,3,3)

€3C3C3 =

PRINT EXT$(B$,3,0)

cic1ciIcacaczicicaes

PRINT EXT$(EXT$(B 0),1,2)

C202C2 $ $93, %ty
As illustrated, when the second numeric expression is zero the
entire field referenced by the first numeric expression is
extracted. When the field designated by two numeric expressions
does not exist in the string, a null string is returned.
Note: Field and subfield delimiters are not really the characters

and] because the parity bit is turned on to indicate that the
character is a delimiter and not a normal ASCII character.

- 161 - STRING FUNCTIONS

BASIC REFERENCE MANUAL

FORMAT$(<num-exp>,<string-exp>) This function has the same capabilies as the PRINT
; ' USING stggement in regards to the formatinﬁ of numeric values.
- The two expressions are evaluated and the numeric value is

formateg according to the masking characters in the string

expression. - - N

bdd Leading asterisk fill.
~ Leading floatinf dollar sign. -

Trailing literal of DB for negative values only.
Trailing literal of CR for negative values only. - ' .
Number “surrounded with angle brackets (<>) for negative -
values only. A .

Digit position with leading zero supgression°

Digit position with leading zero fill. o

Trailing sign for positive and negative values,
- Trailing minus sign for negative values only. -

Normalize number with commas every three digits. .

g:gon eﬁponential format with single unsigned digit

eNt. . :
oo Use exponential format with signed single digit exponent.
naana USe exponential format with signed double digit exponent.
Use exponential format with signed triple digit exponent.

 Example: PRINT FORMAT$(23,799999");FORMAT$(23, "###4"
P PRINy Fony $(23,"99999),' $(23,)

éRiNT FORMAT$(S MREEpENY) o0 ﬁ-fORMAT$(123u56.78 LETY
88823 4123, 5618 T T

PRINT FORMAT$(12345, "#. ###4#°°")
1.2345E8 |

PRINT FORMAT$(-12345.67,"#, ####8¢. H4>7)

For more information and exaﬁples see\ the chapter "Formatted
Input & OQutput™ in this manual.

HEXOF$(<num-exp>) The numeric exgression'is evaluated, integerized and translated
into the string of characters representing the value in
’ hexadegimal.. A four character string is always generated.

Example: PRINT HEXOF$(94);"™ ";HEXOF$(23129)
""" 0OSE 5459

:o I AT-1] Vgga

~

INS$(<string-exp1>,<num-expi>,<nmum-exp2>,<string-exp2>) This function . 1is the
inverse of the s$'function, that is, it inserts a subfield
' into a string. - The substring <string-exp2> will be inserted
after the subfield designated by the values of the two numeric
exgressions; ‘It is important to note that the field is inserted
after the one designated. . :

"Example: B$ = AAAATBBBB"C1€1C1]C2C2C2]C3C3C3"DDDD

PRINT INS$(B$,2,0,"NEW") —
AAAABBBB"NEW"C1C1C1]C2C2C2]C3C3C3°DDDD

PRINT INS$(B$,0,0,"NEW") "
NEW"AAAA"BBBB”C1C1C1]C2C2C2]C3C3C3"DDDD

PRINT INS$(B$,3,1,"NEW") o
AAAA™BBBB”C1C1C1]NEW]C2C2C2]C3C3C3"DDDD

- PRINT INS$(B$,3,-1,"NEW") .
. . ,AAAA*BBBB§NEwJéiC161]czczcalcsc303‘DDDD

PRINT INS$(B$,7,2 "NEW"E .
AAAA*BBBB*C1C1C1]62C2C21€3€3C3~DDDD~~** 1 INEW

Note: Field and subfield delimiters are not really the

~

. characters and] because the parity bit is turned on to

indicate that the character is a delimiter and not a normal
ASCII character.

. STRING FUNCTIONS - 162~ ' BASIC Rev B

_ CHAPTER 10: FUNCTIONS

LEFT$(<string-exp> <nu-;exp>)'1ndicatés a substri of the string expression from
‘) "the first character through tﬁg nth character where n is the - -
value ‘of the numeric expression. - . A :

Example: PRINT LEFT$(A$,7)
_ " BBCDEFG . |
LPAD$(<string-exp> <nn-ei¥>) Adds leading spaces to a string. The two ex ressions
, ’are evaluated and thengesulting string eg%ression is exganded to-
~the length indicated by the value of the numeric expression by
addi sufficient leading spaces. If the string expression is

alrea reater than or equal to the length indicated no spaces
are added and the string 1s returned, unmodified. .

Example: PRINT "#";LPAD$(™1234",6);"#"
P‘ #123'4#, 3 1075

#1234

'PRINT "#";LPAD$("1234",3);mg" PR
LTRIM$(<string-exp>) Removes leadingAspaces from a string. The string éxpression

is evaluated and any leading spaces are removed.
- Example: PRINT LTRIM$$" ABC DEF ®);ngn
: ABC DEF ‘

MID$(<string-exp>,<num-exp1>, 2>)- Indicates a substri of the string

expression starting with character N1, for N2 characters where -

N1 and N2 are the values of the two numeric expressions. The

- lﬁngtht of the string returned will be at most N2-N1+1
characters. : ‘.

Example: PRINT MID$(A$,15,5)
P OPQRS $(A$,15, .

into the string of characters representing the value of the
number in octal. A six character string is always generated.
Example: PRINT OCTOF$é123);" ":0CTOF$(94)
‘ , 000175 000156 -

OVR$(<string-exp1>,<{num-exp1>,<num-exp2>,<string-exp2>) Truncates or expands the
second string expression to exactly N2 characters, where N2 is
the value of the second numeric expression. then the first

. string exgression is overlaid by the second string expression,
- from position N1 for N2 characters. ~

Example: PRINT OVR$(A$,2,3,"0123456")
P AO123FGHIJKLM&0§3§STU XYz

REP$(<string-exp1> <nmn-ex¥1> <num-exp2>,<string-exp2>) This function is similar to
"the INS function-except that it replaces a subfield instead of-
' insertin% the subfield. The - substring <string-exp2>- - will
replace the subfield designated bg the values of the two numeric
expressions. If there is no subfield to be replaced then the
the substring will be inserted in its proper place. If the
value of the second numeric expression is zero, the replacement
is fori the entire field designated by the first numeric
. expression, - : .

VOCIOF$(<nnu-exp>) The numeric expression is evaluated, integerized and translated

_ If the first string expression does not have sufficient
subfields, sufficient null fields will be added. -

The string expréssioh must not dontainaany characters whose
value is greater than 127 or the results will be unpredicatable.

.Using the character ~ as the field delimiter and] as the -
subfield delimiter:. . . ;

Example: B$ = AAAA“BBBB"C1C1C1]C2C2C2]C3C3C3°DDDD

_ o PRINT REP$(B$,6,0,"HERE")
| AARA*BBBB*¢1C1c]162C2C21C3C3C3~DDDD" “HERE

PRINT REP$(B$,3,2,"NEW")
BASIC Rev B : - 163 - STRING FUNCTIONS

BASIC REFERENCE MANUAL |
i) AAAA"BBBB"C1C1C1]NEW]C3C3C3“DDDD

PRINT REP$(BS$,2,2) RO
AAAA*BBBBINEW*CiCic1]C2C2c21¢3C3C3°DDDD

Note: Field and subfield delimiters are not really the
characters © and] because the parity bit is turned on to
indicate that the character is a delimiter and not a normal
ASCII character. ’ :

RIGHT$(<string-exp>,<mum-exp>) Returns the substring of the string expression from
i ' the nth character through thegglast charactgg in the string
- expression where n is the value of the numeric expression.

Example: . PRINT RIGHT$(A$,20)
= TUVWXYZ ™

RPAD$(<string-exp> <nm-—ex£>) Adds traili spaces to a string. The two
: : ’express ons are evaluateggand he resulting stringngxpression is

) expanded to the 1length indicated b{ the value of the numeric
expression by adding sufficient trailing spaces. If the string

- expression is already greater than or equal to the lengt

- indiggggddno spaces are added and the string is returned,

unmo ed. . . e

Example: PRINT "#";RPAD$(™1234",6);"#"
S S

PRINT "#";RPAD$("1234",3);"#"
ot A $("1234",3);

- RPT$(<num-exp>,<s -exXp>) Generates a string of <num-exp> repetitions of the
; - , <{string expression>. -

Example: PRINT RPT$(3,"ABCD")
P mmnwmﬁ’,

RTRIM$(<string-exp>) Removes trailing spaces from a string. The strihg expression
is evaluated and any trailing spaces are removed.

Example: PRINT "#";RTRIM$(" ABC DEF ");"#"
ABC DEF# v :

SPACE$(<num-exp>) Returns a string of spaces of <num-exp> length.
' Example: PRINT LEFT$(A &SPACE$(4)&MIDS$(AS,4,5
P i DEFél(i $,.3) $(u) v$($,4,)f

STR$(<num-exp>) Indicates a- afring of numeric characters representing the value
, : g{, the numeric expression. There are nnpleading or trailing

Example: PRINT "ABC";STR$(1.23);"DEF"
. ABC1.23DEF

PRINT "ABC";1.23;"DEF"
ABC 1.23 DEF

TIME$(<{num-exp>) Indicates a string of characters in normalized time format
i.e., hh:mm:ss) representing the numeric expression interpreted
as the number of seconds since midnight of the current day. The
value 0 (zero) . is intergreted as the current time of day:. The
numeric expression must be in the range of 0 - 86399 or the
function will return the time *00:00:00".

Example: PRINT TIME$(T7199),TIME$(0)
15:24:32

01:59:59

TRIM$(<string-exp>) Removes anyrleadiné or trailing spaces and reduces all embedded
‘ " multiple spaces to a single space.

Example: PRINT "#";TRIM$(" ABC DEF HIJ Mm);nmgn
#ABC DEF AIJ#

SYRING FUNCTIONS | - 168 - " BASIC Rev B

10.3 Input/Output
INP -

LIlE((nni—exp))
PAGE(<num-exp>)

POS(<num-exp>)

BASIC Rev B

\ CHAPTER 10: FUNCTIONS -
Functions _ . o

Returns the ASCII, integer value of the first character of the
last input, if the first character was a control character or a
user defined key. When the first character was not a control
character, the value of the function is 0. For example: if the -
last inpul was a CTRL/D the value of the INP is 4. If the last

input was a CTRL/Z the value of INP is 26. If the last input
was ABCDEFG the value of INP is 0. . ’ _

Also see the'apbendix on "User Definable Keys". ,
Returns the integer value of the ATTACHed line length of device
opened on the I/0 channel whose value is <num-exp>. I/0 channel
0 may be used to indicate the console device.

Example: P;gnr LINE(0) REM Console terminal

Returns the integer value of the ATTACHed page length of device
opened on the I/0 channel whose value is <num-exp>., I/0 channel
0 may be used to indicate the console device. : :
Example: ngNT PAGE(0) REM Console terminal

Returns the integer count of the number of characters output on
the I/0 channel indicated by the numeric expression.

Example: PRINT "123456";P0S(0)
‘ 123456 6

- 165 - I1/0 FURCTIONS

' BASIC REFERENCE MANUAL -
10.5 Logical Functions

The following functions allow the programmer to manipulate the bits of an integer;
value (binary word=--16 bits). All of the arguments are numeric expressions whose
value will be integerized.

LRL((nn-exp1>,<nun-exp2)) Ir the value for either of the expressions is negative
hen it is replaced with the value 0. -If the first exprression
is greater than 65535 then it is replaced with the value 0. If
the second expression is greater than 15 then it is replaced
with the value 0. A 1logical rotate left is performed on the
first integer for <{num-exp2> bit- positions.

Lll((nn-exp1> <nul-exp2>) If the value for either of-the expressions is negative
en it is replaced with the value 0. If the first expression
is greater than 65535 then it is replaced with the value 0. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical rotate right is performed on the
value of <num-exp1> for <num-exp2> bit positions.

LSL((un-exp1> <nnl-exp2>) If the value for either of the expressions is negative
: ‘ hen it is replaced with the value 0. If the first expression
is greater than 65535 then it is reglaced ‘with the value 0. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical shift left is performed on the
value of <{num-exp1> for <{num-exp2> bit positions.

LSR((nn-exp1> <nmn-exp2>) If the value for either of the expressions is negative
- then it is replaced with the value 0. If the first expression
is greater than 65535 then it is reglaced with the value 0. If
the second expression is greater than 15 then it is replaced
with the value 9. A logical shift right is performed on the
value of <num-exp1>'for <num-exp2> bit.positions.

10.6 File Function -

EOF(<num-exp>) The numeric expression is evaluated and the I/0 channel
. eorrespondin§ to that value is checked for end-of-file
condition. f the channel has not reached end-of-file the value
of the function is 0 (false). If the channel has reached
end-of-file the value of the function is =1 (true).

- Channel zero (console) is never at end-of-file and will cause an

error if tested with this function. Use the INP function to
test for a CTRL/Z.

FILE FUNCTION | ‘ - 166 - ' BASIC Rev B

| | CHAPTER 10: FUNCTIONS
'10.7 Error Functions - '

The following two functions do not have anﬁsaﬁgumentS’and should on1y>be used inian
- error handling routine (see ON ERROR and RESUME statments).

" ERL Returns the integer ‘line number of the statemént causing the .
: . error to occur. A value of zero is returned if no error has.

- occured.,

Note: When this function is used on the 1left side of a
" relational expression and an unsigned integer is used on the
- right side o the same relational expression the RENUMBER
command will assume that the unsigned integer is a line number
and adjust it accordingly. S

Note 2: When this function is used in a compiled program the .
value returned will be that of the hexadecimal address of the
statement causing the error. This address is the same as that
listed when the program -was compiled. This should not affect-:
the programmer except when the value - of this function is
displayed on the screen. ‘ .

ERR - Returns the integer error number of the error that occured,' A

value of zero is returned if no error has occured. For a list

- of error numbers, their meanings and what might cause them see

the appendix "Error Messages".

" This function may be assigned a value with the LET statement in
order that error handling routines may be tested.

BASIC Rev B | - 167 - ERROR FUNCTIONS

BASIC REFERENCE MANUAL
10.8 USR Function

"The USR' function allows the~ BASIC programmer to interface a assembler language
subroutine to the BASIC language program. ,

When the user requires a procedure to be accomplished that requires real-time
rocessing or can only be done with the features of the CPU that are not available
o the BASIC program, he must write an assembler language program. In many cases

it is advantageous to only have a part of the procedure written in assembler code

with the more routine processes accomplished with a BASIC language program. In
order - to- transfer control and data between the user written subroutine .and the

BASIC program the USR function is used. - o ;

USR(<addr>,<num-exp>) o ‘ ' , .

USR(<addr>, <string-exp>) R - '

<addr> ggfggg ggé the entrz point address, relative to the load address
; embler subroutine. 4 -

<num-exp> when evaluated and rounded to the nearést integer, is the

sixteen bits of signed integer data to be transmitted to the

assembler subroutine via the HL registers. When the subroutine

is ready to return control back to BASIC the numeric value to be

agiigned to the function should be placed in the HL register

, pair. , :

<string-exp> when evaluated, is 1left in the "string accumulator®. The
address of this string accumulator is placed in the HL register
pair before control is given to the user subroutine. The strinﬁ
accumulator is a 256 byte area that contains a one byte lengt
followed by ui to 255 characters. This area may be used by the
subroutine as long as care is taken not to exceed the 256 byte
limit. When the subroutine is ready to return control back to
BASIC, it should 1load the HL,register pair with the address of
the sﬁring that is to be returned. '

The USR function is a standard function call and may be used in any pcsiéion of a
BASIC statement that the other functions may be used.

Only one user written assembler language subroutine may be in memoéy while BASIC is
executing, however the one subroutine may in fact be several subroutines

concatenated together. Information may be found regarding assembly language
programming in the QOASIS MACRO Assembler {ggguggg Reference Manual. :

The subroutine is loaded into memory by specifying it in an OPTION USR statement.

The %A§I§ MACRO Assembler Language Reference Manual has an example of a USR
routine.)

USR FUNCTION - 168 = BASIC Rev B

APPENDIX A -
nnsmmvonns

The followfing words are reserved and may not be used for variable names. The
notation [...] means that a variable mai not even start with the word indicated, if
that variable is ever used with an impl ed LET statement.

ABS FIX MAX RIGHT
AND FLOAT MID
ASC FNEND MIN ROUND
AT FNL...] MOD RPAD
ATN OR MOUNT PT
BIN FORMAT NBR RTRIM
BINOF GET NEXT RUN
CASE GOSUB "~ SCH
CEND GOTO OCTOF SEC
HAIN HEX ON SELECT
CHI HEXOF QP SG
LEAR IF , OPTION) SI
CLOSE IFEND - OR SLEEP
COMMON IMP) OTHERWISE SPACE
CoS INP OUTPUT SQR
CRT INPUT OVR - STEP
CsSI INS PAGE STOP
DATA INT PI STR
DATE LEFT .POS TAN
DAY LEN PRINT THEN
DEF LET PROMPT TIME
DEL LINE PUT
DELETE LINK _ QUIT UNLOCK
DIM LINPUT . - QUQTE USR
DTE LOG ; - . RANDOMIZE : VAL
ELSE LPAD READ . WAIT

- END LRL READNEXT WEND
EOF LRR ' REM ' - WHILE
ERL LSR REP ' XOR
ERR LTRIM v RESTORE
EXP MAT RESUME
EXT MATCH RETURN

All "variables" ‘that start with the letters FN will ays be treated as a

reference to a user defined function. (See DEF statement.

BASIC Rev B - - 169 - " RESERVED WORDS

APPRNDIX B
USER DEFINABLE KEYS.

OASIS BASIC allows the programmer to code programs in such a manner that he can
test whether certain keys were entered and then take whatever action he has
programmed. These certain keys are the control keys, usually refered to by CTRL/x
where x is one of the standard alphabetic keys modified by the control key.

~When a program asks for keyboard input (MAT INPUT, INPUT, LINPUT, or LINPUT USING,)
and the operator responds with a control key, program control will return to the
BASIC program. The operator need not tgpe a carriage return after the control key.
No tchiricters will be displayed on the console device when the operator types a
control key. - : ; .

The program can test which control kei, if an was entered by using the INP
function. Only input from the console eyboard;¥i/0vchannel 0) may be tested with
the INP function. The programmer may specify whatever action he wishes when the

- correct control key is entered. . » : '

This can be a very useful feature if the programmer is consistent in defining the
v meanings of the control keys. For instance he may define the CIRL/D to mean the

current date. This is obviously easier for the operator to enter than typing the
current date. It is also safer than programming a carriage return only to mean the
current date or some other default value. T

Some terminals have additional keys available to the operator. These are generall
called function or grogram keys. If these keys generate an 8 bit code that is no
one of the displayable ASCII characters then these keys may also be used as user
definable keys by BASIC. The displayable ASCII characters have decimal values
between 32 and 127, inclusive. 'To determine the exact values generated by these
keys refer to the operators or users manual for the specific terminal. ‘

N

Example:

The following 1s- a simple program that 'shows the user definable key feature of
0ASIS BASIC. - ' ‘

i0 OPTION PROMPT CHR$(0) ;
. 20 LOOP: PRINT "Please type a control key: ";
30 LINPUT USING "!" KEY$\PRINT
0 IF INP=0 THEN IF KEY$<>"" THEN GOTO ERROR
go PRINT "The key {og typed has a value of";INP;
8 PRINT "and was thé key ";CHR$(INP+64) :

~_GOTO LOOP A -
0 ERROR: PRINT "You don't follow directions very well.®
90 GOTO LOOP : ' :

B.1 Control Key Values L

Key Value Key Value Key Value Key Value
=========================:==========::::‘-‘:=============:======:=::::2:::::3::::::::
€ 0 H g * P 16 X 24
A 1 I g * Q 1 Y 25
- ¢ 3 k19 s 1 £ 2w
D 3* L 12 T 2 { %

E § M 13 U 21 1 29
F._6 % N 1 Vv 22 30 N
G 7 0 15 W 23 ' T 31 Ens

3 4+ 3 3 3 3T T 3T X T X T X 3 - - am oo - P o G P Ee OD GD G5 OF A4n W -
it i1ttt ittt ittt ittt st ittt ¥t ittt 1ttt ittt i1t ittt ittt 2 1t 1 1

* These key values are used/for editing by LINPUT USING, and/or INPUT statments.

*% This is the escape code. Because_ the system control keys are escape sequences
entry of this key once is an indication to OASIS that the next character may be a
system request. To get a value 27 passed to the INP function the operator must
tgpe this keg twice, When this is done one escape character is passed to BASIC
g7ich, if it is the first character of an input field, will set the INP function to

%###% This value may also bew generated by some‘terminals'by a CTRL/DEL or CTRL/RUB;

Some systems have other keys‘ that may be tested by this function. If this
situation is possible then you should use the above program to detect and determine

USER DEFINABLE KEYS - 170 - - BASIC Rev B

APPENDIX B: USER DEFINABLE KEYS

the value Of'the specific keys.

It is possible that a particular system may have other or different keys that are

trapged b{ the operating system and never passed to the BASIC program. "It is also

possible that some keys may generate different values than those listed here. Both

of these situations are dependent upon the SET values for: RUBOET% LEFTi RIGHT, UP,
nfo

DOWN CANCELéo ESCAPE and the console class ¢ode. For more rmation see the
OASIS System Reference Mapual :

chapter "SET COMMAND®, in the . apual.

BASIC Rev B : | -1 - USER DEFINABLE KEYS

o o o 0 e o e e e T B e O e R G TR O GO U G G i S A G GO C W G i O G D G G i P CD WD W= WD D OB G G P o @ T T T b @b G G2 W TS T T M WO G @D D D T M W P SR @O o @ GO WS e @ an W o

AUTO [<start 1ine>[,<increment value>]]
: o .
: BOTTOM
BREAK ' ’ '
REAK [AT <line reference> [AFTER <count>]]
AK [ON <variable)> [CHANGE] [AFTER <count>]]
AK LON <variable> <relation’> <value>] : -
CHANGE /from string/to string/ [<range>]
CONTINUE .
CONTINUE
> - .
DELETE [<range>]
DOUN '
{line-feed>
<down arrow key>
HELP —~
HELP
INDENT ”
INDENT [<indent vglue>]
LENGTH
LENGTH
IST [<range>])
carriage return> . , 4
LOAD ‘ :
_ LOAD <program name> [<prcgram type>]
LOCATE R '
LOCATE /<string>/ [<range>]
 LPLIST ,
- LP[n]LIST [<range>]
LPXREF
LP(n]XREF
MODIFY -
. MODIFY [<range>]
NAME . ' o
NAME [<program name>[.<program type>[:<program disk>1]]
NEW
NEW
QuUIT : A
8%%? E<number>] .
T L<unquoted string>]
RENUMBER .
RENUMBER [<first> [<iner> [<start> [<end>]]1]]
RON . . .
RUN [<program name>] [<starting line>]
SAVE _
SAVE [<program name> [<program type> [<program disk>]]]

STEP [<count>] o »
~ COMMAND SUMMARY - - 172 - 'BASIC Rev B

- o APPENDIX C: COMMAND SUMMARY

TOP)
, h IQP
TRACE
ACE
ACE VARS
: REAK [AT <line reference>]
- REAK [ON <variable>]
UNTRACE
UNTRACE
P A
, <{up-arrow key>
<control/zZ>
YARS
YARS [<variable 1ist>]

- .- - - | I T F ¥ 5 X 3 I I 3 X L X X I P r E ¥ T T L I XX - s an - - aw ow - e on e
-+ 4+ttt 1331ttt 13ttt 1t i1ttt 1ttt ittt 1ttt 1t ittt ¢t t it 1+ttt t ettt 1 4+ £+t £ 13

BASIC Rev B - 173 - | COMMAND SUMMARY

[<line-no>] [<label>] CASE <expression>

[<line-no>] [<label>] CEND

CHATN | . o
- [<line-no>] [<label>] CHAIN <string expression>

[<line-no>] [<label>] CLEAR [<variable list>]

E(line-no)] [<label>] CLOSE #<channel>

E(line-no>] [<label>] COMMON <variable list>

[<line-no>] [<label>] CSI <string expression>

DATA , . : S :
[<lipe-no>] [<label>] DATA <literal>[,<literal>]...

[<line-no>] [<label>] DEF FN<simple variable>[(<arg 1ist>)] [= <expression>]

D ' - -
i(line-no)] [<label>] DELETE #<channel>,<key>

[<1line-no>] [<labe1>]'DIM <simple var>(<numeric expr>[,<numeric expr>])>...

E<line-no>]~ ELSE <statement> ~
<line-no> ELSE <line number> -

END ' |
[<line-no>] [<label>] END

[<line-no>] [<label>] FNEND

E(line-no)] [<1abel>] FOR <num var>=<num exgi TO <num éxp)[STEP <num exp>]
<line-no>] [<label>] FOR <var> = <literal list> ‘

[<line-no>] [<label>] GET <device> <numeric expr>,<iariable-list>

<line-no>} [klabel>] GOSUB <line reference)
<line-no>] [<label>] GO SUB <line reference>

Lo 2o |

<line-no>] [<1abe1>] GOTO <line reference>
<line-no>] {<label>] GO TO <line reference> T

=

~<line-no>1 t(label>1'IF <{relation> THEN <statement> [ELSE <statement>]

<line-no> <label>] IF <relation> THEN <line-ref> [ELSE <line-ref>]
<line=no> <label>] IF <rel> - . .

R

[<line-no>] [<label>] IFEND

:

<line-no>] [<label>] INPUT #<channel>:<variable list>

<line-no>j t<label>i INPUT [<prompt expression>,]<variable list>
<line-no>] [<label>] INPUT #<channel>,<key>:<variable list>

-y

STATEMENT SUMMARY ' ' - 173 - BASIC Rev B

APPENDIX D: STATEMENT SUMMARY

<line-no> <label>] [LET] <numeric var> = <numeric expr>
.<line-no>] {<label>] [LET] <stri variable><substrin§ = <strin§ expr)
<line-no> <label>] [LET] <user defined function> ex

<{line-no> <label> LET] ERR = <numeric expression>

<1line-no>}-[<label>] [LET] <string variable> = <string expression>
pressio

-[<line-no>] [<label>] LINK <string expreésibn)
LIN

LINPUT [<prompt expression>, J<string variable>
LINPUT #<channel>:<string variable>

LINPUT #<channel>,<key2>:<string variable>

LINPUT [<prompt expr>,] USING ask>,<string var>

<line-no> <label>
<line-no>] [<label>

<line-no>i E(labe1>
<line-no>

<label>]

T [<11ne-no>] [<1abel>

MAT <array name>
<line-no>] [<label>

<{array name>
MAT <array name>

(<expression>)

<line-no>] [<label>] MAT INPUT #<channel>. <array name> ’
<line-no>} [<label:>] MAT INPUT #<channel>,<key>: <array name> -

'MAT PRINT <array name list> <punct>
MAT PRINT #<channel)>: <array name list> <punct>
MAT PRINT #<ehannel> <key> <array name list> <punct>

<line-no> <label>

T PRINT : o
t(line-no)} E<label>
<line-no> <label>

<line-no> <label>
<line-no>] [<label>
<line-=no>

MAT READ <array name>
MAT READ #<channel>: <array name>

MAT READ #<channel>,<key>: <array name>

T INPUY .
{<line-no>1 E(label)i MAT INPUT <array name>
<label>1

T WRITE ’
(line-no)] [(label)] MAT WRITE #<channel): <{array name>
<line-no>] [<label>] MAT WRITE #<channel>,<key>: <array name)

[<line-no>] [<label>] MOUNT <string expression>

<line-no)> NEXT [<variable>]

= .
<11ne-no>] <1abel>] ON ERROR GOTO <line referenee)
<line-no> <label>] ON ERROR GOTO 0

[(line-ho)] [(iabel>] ON <numeric expression) GOTO <line reference list>
<line-no>] [<label>] ON <numeric expression> GOSUB <line reference list>

OPEN : o : B .
[<line-no>] [<label>] OPEN #<channel>:. <string expr>,<mode> <method>[<options>]

o C '
[<line-no>] [<label>] OPTION <option list>

[<line-no>] [<label>] OTHERWISE

-

<line-no> <label> PRINT [<expression list><punct>]
<line-no> <label>] PRINT #<channel)[:<expression 1list>< unct)]
<line-no> <label>] PRINT #<channe1> <key [:<expression ist><punct>]

<line-no> <label>]| PRINT #<channel’: ﬁSING <mask>,<expr list><punct’>

i<line-no>i t(label>1 PRINT USING <mask>,<expression list><punct>
<line-no>] (<label>] PRINT #<channel>,<key>: USING <mask> , <expr ist)(punct)

[<line-no>] [<label>] PUT <device> <numeric expression)>,<expression 1ist>

BASIC Rev B - o -175- STATEMENT SUMMARY

BASIC REFERENCE MANUAL

[<line-no>].[<labe1>] QUIT [<expression>]

~ E(line-no)] [<label>] RANDOMIZE -

<line-no> <label>] READ #<channel)>: <variable list>

READ . | A |
‘ {<line-no>1 [<1abe1>j READ <variable list> :
1<line=-no>] [<label>] READ #<channel>,<key>: <variable list>

<line-no>] [<label>] READNEXT #<channel>,<string key>: <variable list>

[<line-no>] [<1abe1>] REM <any characters>

RE ———-
{<line’no}] [<label>] RESTORE [<line number>]

RESUME ‘
<line-no>] E(labe1> RESUME <line reference>
<line-no> <label>] RESUME 0

[<line~no>] [<label>] RETURN [<line ref>]

[<line-no>] [<label>] RUN [<string expression>]

I<line~no>] [<label>] SELECT [<expression>]

i(line-no)] [<label>] SLEEP <numeric expression>

[<line-no>] [<label>] STOP [<expression>]

[<line-no>1 THEN <statement>
{line-no> THEN <line number>

[<line-no>] [<label>] UNLOCK #<channel>

<line-no>] [<label>] WAIT DEVICE <numeric ex ression>
<line-no>] [<label>] WAIT PORT <numeric expr.,<numeric expr)[,<numeric expr>]
9

ATT
vE<line-no>1 E(label)i WAIT
-[<line-no>] [<label>] WAIT MEMORY <numeric exp’,<numeric exp>[,<numeric exp>]

"{<1ine-no>] [<label>] WEND

[<line-no>] [<label>] WHILE <numeric expression>

i(line-no)] [<1abe1>} WRITE #<channel>: <expression list>
<line-no>] [<label>] WRITE #<channel>,<key,: <expression list>

STATEMENT SUMMARY - 176 - BASIC Rev B

APPENDIX E
FUNCTION SUMMARY

In the following summary the arguments N, N1£ and N2 all represent numeric
s

expressions; the arguments A$ and B$ all represen

ABS(X)
ASC(A$)
ATH(N1,H2)

ATH(N)

BIN(A$)
BINOF$(X)
CHR$(N)

COS(N)
CRT$(A$)
DATE$(N)
DAY(A$)
DEL$(A$,N1,N2)
DTE$(AS)
EOF(N)

ERL

KRR -

EXP(N)
EXT$(A$,N1,N2)

FIX(N)
FLOAT(N)

FORMAT$(N,A$)

HEX(A$)
HEXOF$(N)
Inp

 Returns the arctangent of N (N in radians).

tring expressions. oo
Returns the absolute value of N. |
Returns the ASCII value of the first character in A$.

Returns the = string of characters that, if printed, would position -
the cursor at N1,N2. (N1 is horizontai, N2 is vertical.)

Returns a decimal value for the binary A$.

" Returns a string representing the binary}value of N.

Returns the character having the ASCII value of N.
Returns the cosine of N (N in radians).

Performs nbg x/y console output control.

Internal date to external date.

External daﬁe to internal date.

Returns A$ with field designated by N1 and N2 removed.

Test A$ for valid date. When valid converts to normalized format,
else returns null string. -

Returns End-0f-File flag.for I/0 channel N.
Returns line numbgr of statement causing error.
Returns number of error. ‘

Returns the value of e”N.

gitggn§1the substring of A$ for field N1 of A$ and subfield N2 of
e R .

Returns the integerized value of N.

Converts integer N to floating point.

Formats N according. to mask A$.

Returns a decimal value for the hexadecimal A$.

Returns a string representing thé‘hexadecimal value of N.

Returns the numeric value of the control character input' to
console. ‘

INS$(A$,N1,N2,B$) Returns the string of A$ with string B$ inserted after the
u

INT(N)
LEFT$(A$,N)
LEN(A$)
LINE(N)
LOG(N)
LPAD$(A$,N)
LRL(N1,N2)
LRR(N1,N2)

BASIC Rev B

substring of A$ for field N1 of A$ and subfield N2 of field Ni.
‘Returns the greatést integer which is less than or equal to N.
Returns A$ from the first character to the Nth character.
Returns the length of string A$.

" Returns line length of device opened on channel N. _

Returns the natural logarithm of N.

Adds leading spaces to A$ to make’string of length N.
Logical rotate left N1 for N2 bit positions. '
Logical rotate right N1 for N2 bit positions.

- 177 - FUNCTION SUMMARY

' BASIC REFERENCE MANUAL

LSL(K1,N2)
'LSR(N1,H2)
| LTRIM$(A$)
MATCH(A$,B$)
MAX(N1,N2)

'MID$(A$,H1,H2)

MIN(N1,N2)
MOD(N1,N2)
~ EBR(2$)

OCT(A$)
OCTOF$(N)

Returns a decimal value for the octal A$) '

\

Logical shift left N1 for N2 bit positions.
Logical shift right N1 for N2 bit positions.

- - Remove leading spaces from string A$.
Tests string A$ against mask B$;- returns true/false (- 1/0)e

Returns the greater value of N1 and N2.

Returns A$ from the Nith.charecter for'Né characters.
Returns the lessor value of N1 and N2.

Returns remainder of N1 divided by N2.v

Test A$ for numeriecs.

Returns 0 if any non-numeric characters
A$, else returns -1,

N

Returns a string representing the octal value of N.

in

OVR$(A$,N1,H2,B$) Returns A$ with B$ overlaid, starting at Nith character for N2

PAGE(N)
PI
POS(R)

REP#(A;,!1,!2,B$) Returns the string .

RIGHT$(A$,N)
RED
ROUND(N1,N2)
RPAD$(A$,N)
RPT$(N1,A$)
RIRIM$(AS)
- SCH(N1,A$,B$)
SEC(A$)
- SGH(N)
SIN(N)
SPACE$(N)
SQR(N)
STR$(N)
TAN(N)
TIME$(N)
TRIM$(A$)
USR(N1,N2)

- USR$(N,A$)

VAL(A$)

FUNCTION SUMMARY

characters,

Returns page length of device opened on channel N.

Returns the constant value 3.141592653590.

Returns the current character positien of output channel N. .

of A$ with string B$
of A$ for field N1 of A$ and subfield N2 of f

Returns A$ from the Nth cheracter to the end.

eld N

- Returns a random number between 0 and 1, exclusive.

Rounds N1 to number of positions indicated by N2.

Adds trailing spaces to A$ to make string of length N.
Returns the string of N1 repetitions of A$. -
Removes trailing spaces from string A$.

Returns the character position of the string B$ within A$ with
search starting at character position N1.

External time to internal time.

the algebraic sign of N (+ or =),
the sine of N (N in radians).

the string of N blanks.

the square root of N.

the
the

Returns
Returns
Retﬁrns
Returns
Returns string of charactere represehting the number N.

Returns tangent of N (N in radians).

Internal time to external time.

Remove leading and trailing spaces from string A$.

Calls assembly subroutine at relative location N1, passing N2
the routine,

re lacin§ the substring

the

to

Cals assembly subroutine at relative location N, passing A$ to the

routine.
Returns the numerie value of A$.

- 178 -

BASIC Rev B

) APPENDIX F
RUN2 STATEMENT AND FUNCTION EXCEPTIONS

- RUN2, the smaller version of the OASIS BASIC, performs exactly like the standard
RUN command exceit that certain statements and functions of OASIS BASIC have been
omitted, '~ Omitting these features reduces the overhead requirements of BASIC by
approximatelﬁ g thousand bytes of memory., As can be seen the statements and
functions that have been omitted from RUN2 are not normally used by most
application programs and will cause no problems for most users.

When a pnogram is executed using RUN2 and an attempt is madeAto execute one of the
statements or functions that have been omitted from RUN2 a non-trappable error- 4i
oceurs. : _

F.1 Statements Omitted - |
The statements that have been omitted from RUN2 are: GET, PUT, RANDOMIZE, and WAIT.
F.2 Functions Omitted =

The funec ions that héve been omitted from RUN2 are: ATN, BIN ﬁINOFg COS, DELS$,
EXP, EXTS, HEX, HEXOF$, INS$, LOG, LRL, LRR, LSL, LSR, oct, ocTOF$, REP$, RND, SIN,
an . _ ~ : _

BASIC Rev B _ =179 - -] ~ RUN2

APPENDIX G
BIROR MESSAGES
G.1 Command Errors ’
AUTO cannot replace or merge lines
Indicates that the AUTO command attempted to use a 1ine number already in
use or that there was a line whose line number was between the last auto
line nnmber and the next auto line number to be used.
Disk Full
Indicates that the disk used by the SAVE command is full. Remember that
saving an existing file causes the previous version of the file to be
N renamed BACKUPo
Insufficient Memory

An attempt was made to add another line to the program in memory that
~eould not fit into the available memory.

Invalid command syntax
Indicates that the command was recognized but a syntax error was detected.
Invalid Program Name
An attempt was made to NAME, SAVE, LOAD, or COMPILE a program using an
invalid name, The program name nust be a£ least two characters in length
and start with a letter.
Invalid Statement Number

An attempt was made to enter or display a line with an invalid line
~ number. Line numbers must be between 1 and 9999.

Renumber Range Error
Indicates that the 1line numbers that would be generated by the RENUMBER
command would cause lines to0 change their relative location in the
program.

String missing or invalid

Occurs on a CHANGE or LOCATE command when no previous CHANGE or LOCATE
command has been executed and no valid string arguments were specified.

Unrecognized command

Indicates that the command name was abbreviated too much or mlsspelled to
an extent that the command desired could hot be discerned.

G.2 Edit Errors

Comma Required

Colon Required

End of Line Required

Equal Sign Required
Expression Required

File Mark Required

Keyword Missing or mis-spelled
Missing Parenthesis |
Numeric Expression Required
Numeric Variable Required
Statement Number Required
ERROR MESSAGES - 180 - BASIC Rev B

| : APPENDIX G: ERROR MESSAGES
String Expression Required "
String Variable Required
Terminating Quote Required
Too Many Subscripts
Unbalanced Parenthesis
Unrecognized Statement | |
G.3 Compile Errors ‘ : . -
CASE without SELECT. . .o _ i

CASE statements may only be used within a SELECT-CASE;CEND’strueture.
CASEless SELECT. | |

Each SELECT-CASE-CEND structure must have at least one CASE statement.
CASE following OTHERWISE.

CASE statements may not follow an OTHERWISE-statement as it will not be
executed.

CEND Uithout SELECT.

CEND statements may only be used to denote the end of a SELECT-CASE-CEND'
structure. ’

ELSE without IF. S
ELSE statements may only be used in a multi-line IF-IFEND structure.
FNEND without DEF.

FNEND statements may only be used to denote the end of a multi=line
function definition.

FNEND missing.

FNEND statements must be used to denote the end of a multi-line function
definition.

FOR uithout NEXT,

Every FOR statement must have one matching NEXT statement following it in
_the program, . '

FOR nested too deep.
FOR-NEXT structures may only be nested to 32 levels.
IF nested too deep.
IF-IFEND structures may only be nested to 32 levels.
IFEND without IF.

IFEND statements may only be used to denote the end of an IF-IFEND
structure,

Illegal DEF nesting.
, Multi-line function definitions may not be nested.
IF without IFEND, . . ‘

Every multi-line IF-IFEND structure must have one matching IFEND statement
following the IF in the program.

Label is multi defined.
Line labels may only be defined once in a program.
BASIC Rev B , - 181 - - ERROR MESSAGES

BASIC REFERENCE MANUAL

More than one OTHERWISE. .
A SELECT-CASE-CEND structure may only have one OTHERWISE statement

More than one ELSE. :

_ An JF-IFEND structure may . only have one ELSE statement.

NEXT uithout FOR. ~ ’ '

The NEXT statement ma only be used to denote the end of a FOR-NEXT
structure and the NEXT statement must physically follow the FOR statement
‘ in the(program, .

OTHERWISE without .SELECT.
The OTHERWISE statement may only be used within a SELECT-CASE-CEND
structure.

Reference to undefined line
Line numbers referenced in a program must exist in the program.

Reference to undefined label . S -

Line labels referencec in a program must.be defined in the program.

RUN, LINK, or CHAIN has line number. |

The line number operand of the RUN, CHAIN, and LINK statements is no
longer available. _

SELECT nested too deep. : _

SELECT-CASE~-CEND structures may only be nested to a level of 32 deep.
SELECT uithout CEND.

SELECT-CASE-CEND structures must be terminated with a CEND statement.
‘Too long '

A line may not exceed the 253 character limit during compilation.
WEND without WHILE,

WEND statements may only be used to denote the end of a WHILE-WEND
structure. .

WHILE's nested too deep.
WHILE-WEND structures may only be nested 32 levels deep.
WHILE Hithout 'WEND. ‘
WHILE-WEND structures must be terminated with a WEND statement.

-

A}

¢

ERROR MESSAGES ‘ - 182 - ~ BASIC Rev B

| L APPENDIX G: ERROR MESSAGES
G.d Execution Errors , - S '
The following errors may occur during the execution of a program. They are all
trapgahle by user written error routines unless stated otherwise. Eeneral, the
non-trappable errors indicate a programming logic error that could not e corrected
at run time anyway. ,
1 ESC-C
, Operator typed an ESC,C during execution of the program.

2 Divide by Zero ' -

Occurs during expression analysis if an attempt is made‘te divide by zero.

3 Overflow _ . : T

An integer exgression resulted in a value outside the range -3276T to

+32767 loati point exprression resulted in a value outsi e the

range of -10 126 to +10™126. o~
N Underflow ’

A floating point expression resulted in a value outside the range of

-10°=126 to +10" "=126..]

5 Illegal Number
Occurs on input type statements or strin% to. numeric conversion type
functions when the string of characters contains characters that are not
allowed in numeric fields.

6 SQR of Negative

T LOG of Zero

8 LOG of Negative

9 Insufficient Memory (non-trappable)

Occurs during execution when a statement attempts to define additional
working storage that exceeds the amount of memory available.

10 Line not Found (non-trappable)
Occurs on the statements: CHAIN, ELSE, GOSUB, GOTO, LINK, ON ERROR, ON,
RESTORE, RESUME, RETURN, RUN, or THEN when the liné numl’aer- specified is
not used in the program.

11 Label not Found (non-trappable)

Occurs on the stateﬁents: ELSE, GOSUB, GOTO ON ERROR, ON, RESUME, ahd
RETURN, when the line label specified is not defined in the progran.,

12 Return Stack Empty (non-trappable)
Occurs on the RETURN statement when there is no GOSUB in effect.

13 WEND without WHILE (non-trappable)
Occurs on the WEND statement when,there is no WHILE in effect. (A WHILE
statement without a WEND is okay because the end of the program is
~encountered.)

14 NEXT without FOR (non-trappable)
Occurs on the NEXT statement when there is no FOR in effect. (A FOR
statement without a NEXT is okay because the end of the program is
encountered.) -

15 Insufricient Data _ .

Occurs on the INPUT statement when multiple fields are to be input and
fewer fields are actually entered.,

BASIC Rev B | - 183 - o ~ ERROR MESSAGES

—

BASIC REFERENCE MANUAL ,
16 Invalid File Number (non-trappable) ‘ _ _
- Can occur on any of the file I/O statements when the channel number
expression is less than 1 or greater than 16. Can also occur on any of
_ the file functions. ' :
17 RESUME without Error (non-trappable) i
Occurs on the RESUME statement when there is no error in effect.
18 Invalid Address (non-trappable) '

Can occur on any of the statements or fﬁnctions that access memory when
the address is out of range. :

19 Invalid Separatorﬁ
’ Occurs on input statements.
20 ON Range Error

Occurs in the ON GOSUB or ON GOTO statement when the numeric expression is
less than one or greater than the number of line references specified.

21 CEND without SELECT (non-trappable)
' Occurs on the CEND statement when there is no SELECT in effect.
22 Type Mismatch (non-trappable)

Occurs during file reads when the variable type requested does not match
the variable type actually read, or in a SELECT structure when the
expression type of the expression selected does not match the type of the
case tested. '

23 Invalid Zero Dimension (non-trappable)

Occurs if an OPTION BASE 1 has been executed and a reference ié made to
the zero-subscript of an array. -

2% Inconsistent Usage (non-trappable)
Occurs when a DIM or COMMON atteﬁpts to dimension a array with the same
name as a .varible already defined or after an array is dimension and a
reference is made to the same name in a variable.

25 Subscript Range (non-trappable)

Occurs on any reference to a subscripted array less than or greater than
the number of elements dimensioned in the array. - -

26 Invalid Using (non-trappable) . o N , g
Indicates that a PRINT USING statement mask specified string when the
expression field was numeric or the mask specified numeric when the field
was string. , v

27 File is Closed ‘

" Oecurs on an attempt to CLOSE an I/O channel that is not currently open.

28 File is Open _ , '

Occurs on an attempt to OPEN an I/0 channel that is currently in use.

29 Invalid File Name
Occurs on the OPEN, CHAIN, RUN, or LINK statement when the file or Ero%ram
name is invalid. File and program names must start with a letter.
Program file t¥ es must be BASIC or BASICOBJ. Can also occur on the OPEN
statement when the device name is mis-spelled. ,

30 File notvFound

ERROR MESSAGES - 188 - BASIC Rev B

APPENDIX G: ERROR MESSAGES
31 Disk Full o
Indicates an attempt was made to add more data to the disk when there
wasn't sufficient space available on the disk. Can only’ occur on
sequential file format output.
32 Directory Full
33 Protected File

Indicates an attempt was made to OPEN a file that was read rotected, or .

an attempt was made to re-create a file that was delete protected, or an

attempt was made to output to a file that was write protected.

3% Invalid Iey -

' Indicates that an input or output the statement used a 'key on a
sequential format file or did not use the proper type of key for a direct
or indexed format file. .

35 Wrong Access

Occurs on input t{pe statements when the file was opened for output or on
an output type sta ement when the file was opened for input.

36 Out of DATA .
Occurs on the READ statement when there are no more DATA elements.
37 OPTIOI BASE must precede DIM (non-trappable)

Occurs on the OPTION BASE statement when there are variables defined.
Should perform a CLEAR first. _

38 No USR Program (non-trappable)

%ndgcgtes a reference to a USR function when there is no USR program
oaded. .

39 Invalid Drive Code (non-trappable) ,
Occurs on the MOUNT statement when the drive is invalid or not attached.
X0 Program not Found (non-trappable)

gccgrs gn a CHAIN, LINK, or RUN statement if the specified program cannot
e found. .

I1 Invalid File Format (non-trappable)
Occurs on any attempt to input from a file created prior to version 5.31
OASIS and not converted with the FILECONV grogram' using READ on a record
that was output with a PRINT; or using INPUT on a record that was output.
with a WRITE.

A2 FNEND without DEF (non-trappable)

Occurs when an FNEND statement is encountered outside of a user defined
function definition.

43 DEF not found (non-trappable)

Occurs on any reference to a user defined function that is not defined in
the current program. .

3% Unimplemented feature (non-trappable)

Occurs during execution with RUN2 when a reference is made to a statement
or function that is not available with the smaller version of OASIS BASIC.

A5 File Full (non-trappable)

Oceugslgurlng an attempt to write more records to an indexed file than it
can hold.

BASIC Rev B - 185 - ERROR MESSAGES

' BASIC HEFERENCE MANUAL
36 Device not Attached (non-trappable)

Occurs- during an attempt to OPEN a channel to a deviee that is not
attached.

ERROR MESSAGES - - 186 - . BASIC Rev B

APPENDIX H
PROGRAM EXAMPLES
H.1 Example One |
=10 INPUT "Radius of circle" R
=20 PRINT "Diameter =:§g. %R

=30 PRINT "Area =";PI%R"2,
=40 PRINT "Circumference =":;2,%PI*R

Radius of circle? 2.5
Aroas e o 63195408493
rea =
Circumference = 15 70796326795

H.2 Example Two - String Conversion

- The followi examgle illustrates a method of translating the individual characters
of a string into the decimal equivalents.

20 LET STgING? "CAT"®
0 X(0) = LEN(STRING)

0 - FOR. I§ TO X(0
I) ASC(MID$(STRING$ I%,1))

, 0 . PRINT “ ING = ":STRING$,"Length of STRING$ =";X(0)
8 ERINT X006}, x(1); x(é) x(3)$’ "8 \

sgnmc:s = CAT L6e'rrxgth of STRING$ =

H.3 Example Three - Sine Wave
This example will produce a sine wave on the console terminal.

10 MAGNITUDE% s LINE(O)*3 /8
20 MIDDLEZ = LINE(0Q)/2

0 FREQUENCY 175 /
0 FORJ = 0 TO 100 STEP FREQUENCY , ‘
50 SINE = INT(MAGNITUDE%*SIN(g)

60 ggigT SINE; TAB(MIDDLE%+SINE) ; &

' BASIC Rev B ’ - 187 - EXAMPLES

BASIC REFERENCE MANUAL

H.A Example Four - Bill of Materials

-AUTO
10:- REM Accept Bill of Materials
20 PRINT "How many items™;
0 INPUT ITEM.COU Téu
20 FOR 1% ot g?I%? P(gg?NT’
20 ‘ NEXT ,
0 PRINT
0 REM Disglay Bill of Materials, extension ‘and . total
‘188 RINI - Quantity price Amount®™
110 MASKi$=" ##"&SPACE$(11)&"#####“&SPACE$(9)&"$### ##"&SPACE$(7)&”$# $¥§ . #47
}28 FOR 1 RIN% ggl%gEgASK1g I%) P(I%) Q(I%)'P(I%) o
140 'LET TOTAL = TOTAL+ s
150 NEXT '
160 . PRINT
170 LET MASK2$ = " TOTAL"&SPACE$(35)&"$# ### FE
180 PRINT USING MASK2$ TOTAL :
190 END
200
~RUN
How many items? 5
? 0
¢ %5320
3 138,208
? 75,2.35 : 4
Item Quantity .= Price Amount
1 . 2 750.00 1 500 00
2 25 2350 8705
z S 10 85.35 53 50
145 0.08 1.60
5 75 2.35 176.25
TOTAL $3,128.85
EXAMPLES - 188 - BASIC Rev B

.,Arrnlntx H: PROGRAM EXAMPLES
H.5 Ezalple Five) ‘

The followi sample illustrates the use of three functions (INP, INS REP) and
.uses a disk i) o

=-AUTO
10 OPEN #1: "NAME.DATA:A", OUTPUT\ﬁggUENTIAL\REM Create file

20 PRINT CRT$("C) Clear screen

0 PRINT AT$(1,6); "Name"; \REM Display all the input fields

0 PRINT AT 1, ; "Address"; - ,

0 PRINT AT$(1,8):"City"; :

0 PRINT AT$(33, ;;”State"; _ ‘
-70- PRINT AT$(B3,8):nzZip";

0 PRINT AT$(1,9):kssi¥; , _

90 OPTION PROMPT h:w ; . :
100 R§ =z \REM Initialize record
110 PRINT AT$(5,6); . \REM Position for first input field
120 LINPUT USING n “A$
120 IF INP = 26 THEN 92? : \REM Entry of CTRL/Z means end
140 R$ = INS$(R$,0,0,A - \REM A$ is first field
150 PRINT AT$(8,7) \REM Position for second input field
160 LINPUT USING » A
1go ag = INS 2R$ 1,0,A$) \REM Aé is second field
180 PRINT AT$(5,8): \REM Position for third field
190 LINPUT USING
200 R$ = INS Eng,z 0,A8) \ﬁEM A$ is third field
210 PRINT AT % ,8’; \REM Position for fourth field
220 LINPUT USIRG' " ’'n A '
230 R$ = INS gng g 1,A8$)" \REM A$ is second subfield of third
240 PRINT AT$(56,8); , \REM Position for fifth field
250 LINPUT USING ™ "oA$
260 Rﬁ = REP 2R$ §,3,A$) \REM A$ is subfield 3 of third field
270 PRINT AT$(4 § H \REM -Position for sixth field
280 LINPUT USING n " oA
290 R$ = REP$(R$,4,0,A$) \REM A$ is fourth field
300 PRINT #1:R$ \REM Create new record in file
310 GOTO 20 \REM Start over
3 o -

Lines 20 through 80, when executed, will display the field names:

Name
City State Zip

Lines 110 throuﬁh 280 when executed, position the cursor after each field name and
allow input. ach eld input is saved in the string R$ with appropriate field
delimiters. For instance:

Name: JOSEPH E. BROWN : -
Address: 12% .E. MAIN STREET

City: SAN F ANCISCO State: CA Zip: 99999

SSN: 123-45-6789

The above entry will produce a record that looks llke this:

JOSEPH E. BROWN" 1234 S.E. MAIN STREET"SAN FRANCISCO]CA]99999 123-&5-6789

- The characters * and] are the field delimiters. They differ from the normal ASCII
character by having the parity bit turned on.

BASIC Rev B < - 189 - EXAMPLES

. BASIC REFEIEICE HIIUAL i
H.6 Example Six - Seqnantial File I/0

g&g ggllowing example illustrates file input ‘and formatted output using the AT
ction. ,

 SAUTO “ B |) | -
10 OPEN #1: "NAME. DATA“ INPUT SEQUENTIAL - :
20 LOOP: PRI§T cags(" cri; o _

0 © INPUT: LINPUT #1: A$ o
50 Ir Eor(1) THEN GOTO EXIT
0 . PRINT 6,I2+3)sEXT3(A8,1,00;
0 - PRINT AT$(6,I%+1)SEXT$(A3.2.0)¢
80 o PRINT AT$(6,I1%+5) ;EXT$(A$,3,1);\L = LEN(EXT$(A$ % 1))
90 PRINT AT$(84L, I8+5);EXT$(A3.3,2)5\L = L+LEN EXT$ ks,3,2))
100 : PRINT AT$(1041, T9+5) ;EXT4(A4;3,3;
110 PRINT, AT3(6,1146 sExts(as,u,0y:
120 I3 = I%+5 \'IF I345 < 23 THEN &oTO INPUT
130 WAIT : TS
1 GOTO LOOP : o

0
120 EXIT: END
0

Assuming that the file "NAME" contains the record from Example 5 the display will
‘be.as follows: . . , ; - .

JOSEPH E. BROWN

234 S.E. MAIN STREET
S FRANCISCO CA 99999
123-45-6789

Eﬁere w%ll be four names per page with two blank lines separating each name from -
e next. ,

EXAMPLES - | -190- BASIC Rev B

} ' . o APPENDIX H:' PROG!AH EXAMPLES
H.7 Example 30ven Indexed File I/0 - 80quontial Access

' The following example illustrates a simple sequential list to the primary printer
of a name and address file, printing in label format. :

The format of the file being read is: Key = name, last name first separated by a
comma, space from first name; record = address, ciﬁy, state, zip, ete.

-AUTO 1000

1000 OPEN #1: "NAMES, ADDRESS" INPUT INDEXED S
1010 OPEN #2: "PRINTER1", OUTPUT SEQUENTIAL, FORMAT

1828 READ: READN?X? #1 KEY? ADDR$ CITY$ﬁg§ATE$ ZIP$ \REM Get next record

1040 C-SCH(KE $ 1 " \REM Find end of last name

1050 -~ IF NOT C Not found - assume okay

060 - KEY$-RIGHT§(KEY§ C+2)&LEFT$(KEY£ﬁC-1) \REM-Restructure name .
0 PRINT Print the name -
0 %g L%N ADDR$z-O T%EN 1100 \REM-If no address skip

PRINT #2: " "'CITY g “°STATE$'" \REM Print city and state
IF LEN(Z ¥ Th zip full then skip
ZIP$-FORMA $(VAL(ZIP),“99999" \REM Format Zip
PRINT #2: ZIP$ Print the zip code
IF. LEN(ADDR$2-0 THEN PRINT #2' " ® \REM Account for lost line
PRINT # \REM Triple space for next 'label'
GOTO READ \REM Get another record
REM End of file - clean u Q '
CLOSE #1 \ CLOSE #2 \QUIT

(=lelelelelelelolelalo]

O O~IOMA SNV N) = OO

In addition to illustrating the primary use of the READNEXT statement the above -
grogram shows a method of formating a number with leading zeroes printing (see line

- BASIC Rev B ‘ - 191 - EXAMPLES

BASIQ REFERENCE MANUAL
u.a Example Eight - Indexed File Create

The following example illustrates a method of creating new. indexed file from a
BASIC program when the programmer is unsure of the amount of contiguous disk space
available. This routine allows the operator to specify the number of records
desired in the file or allows the operator to sge fy that the file is to be
allocated for the largest record count that will fit in the available spaceo

3550 Ci$=AT$(1, PAGEsOZ;&CRT i"EOS"g
3552 C2%=AT$(1,PAGE(0))&CRT$("EQOS™
C5$=CHR$(?) REM Bell code
Create new file
REM S1 = record length
REM S2 = file size in records
REM Ke¥1en = 30 .
REM S is number of bytes to be used for record+key+overhead storage
- REM SO is number of bytes to be used for sequential record pointers.
REM V1 is number of contiguous bytes available on disk
OPTION CASE ®"y®
PRINT C1$;"Please mount the disk to contain the file"'F$
PRINT "in the apgrggriate drive (Y/N)? ";R V$="N
- 81=158 '\ REM Si=
LINPUT USING v$
IF INP=17 OR IN§-26 OR V$="" OR V$="N" THEN 3940
PRINT C1$;"How many records do you wish allocated? LH
LINPUT USING ™ v
IF V$="n THEN é-999999 \' GOTO 3700
IF NBR(V$)=0 THEN PRINT C5$; \ GOTO 3650 ELSE S2=VAL(V$)+3
IF S2<=0 THEN S2=999999
PRINT C2$;"What is the largest area on the disk? "
- LINPUT USING "
IF V1$="" OR NB (V1gEM0 THEN PRINT C5$; \ GOTO 3700
V1—VAL(V1$)*102H Convert to bytes
?-S1+ 2 \ REM KEYL %? overhead-z, S3-KEYLEN+RECLEN+2
IF S2>V1/S3 THEN S2=INT(V1/ 53{ REM s2 must be realistic
IF MOD(S2 l<>3 THEN S2=S2- 0 3760
IF S3#52+82%#2571 THEN S2=S2-4 \ GOTO 3770\REM Make more realistie
REM Take into account the overhead of r B to nearest 1024
S=S2#33 \ IF MOD(S 102&3)0 THEN S-S+102H-MO (S
S0=S2%#2 \ IF MOD sb 512)>0 THEN SO-SO+512~MOD(50 51
IF S+SO>V1 THEN S2= éz-u GOTO 3780\REM Make sure it will fit!
REM Make S2 a prime number.
FOR I=S2 3 STEP =4
FOR J=3 TO SQR(I) STEP 2

Ji=I/Jd
IF INT(J1)=J1 THEN 3870
NEXT :
GOTO 3880
NEXT
CLOS ES$1I
- 3900 CSI "CREATE "&F$&" (IND KEY 30 REC "&STR(S1)&" FILE "&STR$(82)

Note_that line 3570 will force ingut to be upper case only, Line 3640 validates
the Y/N input--default to NO--and checks for exit (CTRL/Q or CTRL/Z indicate exit).
Lines 3680 and 3720 validate the input for a numeric value. .

Line 3750 forces S2 to be a value that is close to the value to be used Line g760
then forces S2 to be the next lowest value whose remainder is 3 when divided '
(a requirement for indexed file sizes). Line 3770 then forces S2 to be a value
that would fit in the available space but does not take into account any rounding
to the nearest 1K boundary. Lines 3780 through 3800 then adjust S2 to account for
rounding, keeping modulo 4 of S2 = 3.

. Lines 3810 through 3880 then force S2 to be a prime number (another requirement of
indexed file sizes). The STEP value of -4 keeps the modulo 4 of S2 = 3.

COOO0O0OCOONSWN =0

O QO3 O L£=UU) = OO Co~I O 4 OO 00~ AT OYOYONOYOWN

OV =W N = O

AU LA L L UL A A LA LA AN A LS LD LU A A L) L) L LA LA LA LA LAY ALY
000 00 00 00 G0 DI T I T I IT TN T OAOARRA AN IR

000000
O
OQOOOVIOO0O0O0O00O0O0OWOOO0O000000OCO0

EXAMPLES - 192 - - BASIC Rev B

Functions: ABS ATN COS EXP INT LOG RND SGN SIN SQR TAN TAB
DATA ' '

'<1ine-no> DATA <literald[,<literal’l...

DEF .
<line-no> DEF FNx [(<var>)]=<exp>

DIM '
<line-no> DIM <var> (<int>[,<int>1)[,<var>(<int>[,<int>])]...

FOR

<line-no> FOR <var>=<exp> TO <exp> [STEP <exp>]

<line-no> GOSUB <line-no>

<line-no> GOTO <line-no>

H

<line-no> IF <rel> THEN <line-no>

g |

<line-no> INPUT <var>[,<var>]...

<line-no> LET <var>=<exp>

Bl &

<line-no> NEXT <var>

<line-no> ON <exp> GOTO <lineano>[,<line-no>]...

o .
<line-no> OPTION BASE 0
<line-no> OPTION BASE 1

PRINT :
- <1line-no> PRINT [<exp>[<punct>[<exp>]]...]

<line-no> RANDOMIZE

<1line-no> READ <var>[,<var>l...

<line-no> REM.(chgracters)

<line-no> RETURN

P
<line~no> STOP

ANSI Minimal BASIC, BSR X3.60 only requires: string length of 18 characters; six
significant digit accuracy; dimensioned arrays for numeric variables (not string)*
string variable names have <letter><$> only; single statement lines. Keywords must
bgb sefagaged from operands by at least one space and keywords may not be
abbreviated.

If you wish to write BASIC programs that are portable from machine to machine, the.
above restrictions should be kept in mind to minimize the changes required.

- BASIC Rev B -193- o ANSI BASIC

0 NUL CTRL/@ 4 + 86 v
1 - SOH CTRL/A y s . 8 W
2 STX CTRL/B a5 - 8 X
2 ETX CTRL/C 46 o 89 ¥ :
~ EOT CTRL/D i / Slash 90 2 :
‘i CTRL/E 4 0) 81 g left bracket
ACK CTRL/F 49 1 2 \ back slash
g BEL CTRL/G 50 2 93 1 right bracket
i BS CIRL/H 51 3 9 - eircumflex
3. HT CTRL/ 52 82 - underscore
i LF CTRL/J 5 2 : back quote
11 VT CTRL/K 5 . 83 a :
12 FF CTRL/L 5 g : b
1% CR CTRL/M 5 99« ¢
1 S0 CTRL/N 53 9 100 d
15 SI CTRL/0 5 s 101 e
16 DLE CTRL/P 59 H 102
1%* DC1 CTRL/Q ~ 60 < 102 g ‘
1 DC2 CTRL/R- 61 = 104 h
19 DC CTRL/S 62 > 102 i
20 DC CTRL/T 63 ? 10 J
21 NAK CTRL/U . é 10% k
SYN CTRL/V 62 A 10 1l
2 ETB CTRL/W 6 B 109 m
2 CAN CTRL/X : 6% C 110 n -
2 CTRL/Y 68 . D 111 o
2 SUB CTRL/2Z 69 E 112 p
2 ESC CTRL/ 70 - F 11%- q
2 FS CTRL/\ ;1 G 11 r
29 GS CTRL/ 2 H 112 s
30 RS - CTRL/ 73 I 11 t
31 Us CTRL/ T J 113 u
32° SP SPACE™ 72 K 11 v
gg] 7 L 119 W
" 75 . M 120 X
gg # 7 N 121 y
39 0 122 z
gg g : 0 P 12% { left brace
& ampersand 81 Q 12 vert line
I quote 82 R 125] right brace
0 (83 S 126 = tilde
41 z 8 T 127 DEL rubout
4o asterisk 85 U _

O D S S D G P G S S G S W O G D SR - . , - X1
B sttt sttt ittt i i ittt sttt E 2 i 1 -t E E 2t 2t 2 2 2 ¢ 1

A more complete character set is documented in the QOASIS Svstem Reference Manual. -

CHARACTER SET o - 198 - BASIC Rev B

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194

