
"Issue No. 10
September 1990

IN THIS ISSUE

From the Editor's Desk 2

High Density Drive Support 3
Pf68-K SK"'DOS now supports
1.2 meg and 1.4 meg floppies.

Beginner's Corner
Ron Anderson continues his dis
cussion of 68000 programming.

12

Convert HERC to CGA 1 Y
Robert Hartge tells us how to
convert the HERC driver to work
with a CGA card.

Disk Index Program 23
Dan Ewers' program for generat
ing a master disk index.

Disk Menu System 23
Fred Stuebner's FullList is a
menu program for navigating a
disk.

Applix Newsletter 23
News about a 68000 newsletter
from Down Under.

2 68 News

From the Editor's Desk ...
Well. the summer has gone, fall and winter are almost here, and it' s time

to go back to computing. Hope you all had a nice summer.

We need more articles. Gordon Reeder has sent us a few, Mike Randall
has one more in the queue, and we have a backlog of several more from
Ron Anderson. but after that we're going to need more. I had planned to
run more this month, but got carried away with information about the
changes we've made to SK*OOS over the summer. In fact, I ran out of
room so fast. I just kept making the type smaller and smaller until it fitl So
if you suddenly decide that you need a new set of reading glasses -- join
the over-40 setl

Did you hear the one about the two archeologists who meet at a conven
tion and spend all their lime bragging about their respective countries?

"My country. she is so wonderful," says the flfst, "we dug down 1000
meters under our capital city, and do you know what we found? Wires!
And you know what that proves? That in my country, 1000 years ago, we
had already invented the telephone!"

"That is nothing. my friend." replies the other. "We dug down 2000
meters under our glorious capital city, and do you know what we found?
Nothing!!! What better proof could you imagine to show that. 2000 years
ago in our glorious nation. we already had radio?!"

So much for the Scientific Method! Best regards from Pete Stark.

The 68 NEWS is published and copyright © 1990 by Star-K Software
Systems Corp. P. O. Box 209. Mt. Kisco NY, 10549. The editor is Peter
A. Stark.

The subscription price is $10 per year. We accept display advertising at
the rate of $10 per half-page (3.5" high by 4.5" wide). Readers are invited
to contribute articles. leuers. programs, tutorials, and other material for
publication. We publish only material and advertising which, in the opinion
of the editor, (a) applies to hardware or software for 68xx(x) type proces
sors. and (b) is of a nature which would not normally be of interest to the
major computer magazines. We simply do not have room for items of a
very general nature, or items which pertain to very popular systems like
the Macintosh or Amiga.

Please send articles or other material to us at the above address (prefer
ably on disk); you may also fax us at (914) 241-8607, send it via modem
to our BBS at (914) 241·3307, or call us at (914) 241·0287.

We thank you for your support.

April 1990

SK*DOS Support for HD Drives
by Peter A. Stark

3

This past summer, we updated SK*OOS to support high density (lID) drives such as
those used on the PC, on the PT-68K computer. The changes affect SK*OOS itself, the
FORMAT utility, and also (in some cases) the HUMBUG ROMs. We have also made
minor changes to DRIVE,IOSTAT, and some other utilities, but these are not essential
to operation. You may get the revised programs by updating your SK*DOS disk, or by
downloading them from the SK*DOS BBS at (914) 241-3307.

These new versions are primarily intended for the PT68K-4 computer, but they will
also run on a PT68K-2. The primary addition is that they support a 37C65 floppy disk
controller, in addition to the 1772 used until now. The 37C6S supports 1.2 meg 5-1/4
inch drives, and 1.44 meg 3-1fl inch drives, in addition to normal 40- and 80-track drives.
With a small conversion circuit, it also supports an 8 inch drive, though I don't know of
too many people who will need that.

The new PT6SK-4 computer can have two disk controllers - both the 1772, and also
the 37C65. Because Westem Digital is discontinuin~ the 1772, prices of this chip are
expected to rise (since the only other company making it is charging over $20 for it).
Hence Peripheral Tech expects that any future models of their computers will have the
37C6S only. In the meantime, though, the -4 can have both, although I suspect that most
users will have only one or the other.

Although the PT68K-2 does not have a 37C65, there are a number of floppy disk
controller cards available for XT systems which claim to support high density drives. I
don't know whether they will ALL run with this latest SK*OOS, but the one I have here
(which I got from Peripheral Tech, and which is about $40) works just fme on the -2. The
only change required IS that the TC line on the XT bus must be grounded, either on the
motherboard or on the controller card (the TC line is the fUth line from the front of the
card on the left side; ground is the first line from the front on the left side.) The TC card
on the -4 is already grounded; only the -2 needs the addition.

The primary reason for modifying HUMBUG is to allow it to boot from the new
controller; but the new HUMBUG also has a new IS command, which allows you to do
an Initial Setup - it tells HUMBUG and SK*OOS what controller(s) you have, and what
kind(s) of drives there are. The 37C65, both on the -4 computer as well as one the plug-in .
cards only support two floppies, so a system with both controllers can have up to six
floppies on line at one time (not that anyone is likely to want to do it.)

At this time, the new controller is only supported on SK*DOS versions for the WXl
or -GEN type hard disk controllers; we figure that there are so few users with the -HDO
controller that there is no need to modify that SK*DOS as well.

Disk Drives and Controllers

The SK*OOS manual has most recently been updated to cover additional features of
the PT68K-4 computer. Since this computer system has different floppy disk controllers
from previous versions, let's describe a few features which you should know. In
particular, it is helpful to understand the kinds of floppy drives and disks that are
supported. Don't let the depth of the following discussion turn you off; we give a lot more
detail than you need right now, so you can come back later and appreciate the flAe details.

Floppy disks come in three sizes: the ve!r. old 8" (inch) size, the newer 5-1/4" size, and
the most recent 3-1/2" size. A still newer 2 ' size is likely to come into use in the next few
years, but is not common yet.

The data on a disk is written in circular tracks. AIlS" disks have 77 tracks, while all
3-1/2" disks have 80 tracks. Ancient 5-1/4" disks had 35 tracks, but modern ones have
either 40 or SO tracks.

In the 5-1/4 II case, both kinds occupy slightly more than 3/4 II of total width on the disk,
but in one case there are 40 wide tracks, in the other there are SO narrow tracks. By making

4 68 News

dle tracks narrower and closer togelber. dte 8()" track drive puts extra tracks into the
position Ibat would nonnally be between tracks on a 4O-track drive. Hence an 8()..track
drive can read a 4()..track disk if it "double-steps"; Ibat is. if it skips over Ibe in-between
areas between tracks. The 8()..track drive can also write a 40-track disk, but a 4()..track
drive may not be able to read it! The reason is that the 8()..track drive writes a narrower
track. which leaves some unrecorded space on each side. Depending on Ibe exact widlb
and alignment of the track, the 4()..track drive may read so much of the "garbage" between
tracks that it makes too many·errors to be reliable. The only way to tell is to try.

Disks also come in Ibree densities: SD or single-density, which is now quite obsolete:
DDor double-density, which is tnostcommon; and HDorhigh-density, which has several
variations and is the newest. (What is most copfusing is that some very old SK*DOS
systems use single-density on their outermost track, but DD elsewhere.)

Finally. all modern floppy disks are DS or double-sided; only the very oldest drives are
still SS or single-sided. (It is easy to see why we need this short introduction to the topic.)

One more complication: the tracks are divided up into smaller sections called sectors.
In SK*QOS, each sector has 256 bytes, although other systems use 128,512, or even
more bytes per sector. The number of sectors that can be crammed into a track depends
on how fast the disk turns, and on how closel)' the bits are crammed togelber in time.
Most disks tum at 300 rpm (which is 5 revolutlons per second), while 8" and some high
density disks tum at 360 rpm (or 6 revolutions per second).

Now on to specifics. Most SK*OOS systems use a version of the Western Digital 17xx
or 27xx FIX (Ooppydiskcontroller)chip. In particular, bolbthePT68K-2 andPT68K-4
use dte WD1772 controller. which supports SO or DO disks (but not HD or high density)
disks. SS or DS. and either 3-1/2" or 5-1/2" disks. These controllers could also support
8" disks. but are usually not wired up to do so.

This controller can therefore typically handle the fonowing situations:

-----DRIVE TYPE----- ---------------------DISICI'YPE-----------------------

-
Drive Type TfllCks Sides Density Sect/l'rk KCapacity

5-114" 40 I SO 10 lOOK .. 40 1 OD IS lSOK .. 40 2 SO 10 200K .. 40 2 DO IS 360K
5-114" SO track 80 1 SO 10 200K .. SO 1 DO 18 360K

" 80 2 SO 10 400K
" SO 2 DO 18 720K
" 40 I SO 10 looK*
" 40 1 DO 18 lSOK*
" 40 2 SO 10 2ooK* .. 40 2 DO 18 360K*

The 1772 controller can read and wnte all of tile above fonnat&, but cannot format the
double-stepping formats labelled with * above.

The PT68K-4. however, also has a Western Digital WD37C6S controller. which can
also handle several types ofhigb density drives of the type commonly used on PC clones.
It can also easily handle an S" drive.

The high density drives come in two types. One, commonly called a J .2 meg HD drive.
uses 5"114" disks, but rotates at 360 rpm instead of 300 rpm. By using SO tracks and a
data rate the same as 8" disks. it squeezes almost 1.2 megabytes of data on the disk. The
second. usually called a 1.44 meg disk. uses 3-1/2" disks. but rotates at 300 rpm and uses

April 1990 5

the same data rate as the 1.2 meg drive. Because it rotates slower, it has a capacity 20%
higher than the 1.2 meg drive.

Both of these high density drives can read and write the lower density disks as well,
but SK·OOS does not implement single density for them. Hence the WD37C65 controller
can handle the following combinations:

-----DRIVE TyPE------ --------------------------DISKTYPE----------------------

-
Drive Type Tracks Sides Density Secl/l'rk KCapacity

5-1/4" 40 1 SD 10 lOOK

5-1/4" 40 trk 40 1 SD 10 lOOK •
" 40 1 DD 18 180K •
" 40 2 SD 10 200K

" 40 2 DD 18 300K

5-1/4" SOtrk 80 1 SD 10 200K·

" SO 1 DD 18 3OOK·

" SO 2 SD 10 400K

" SO 2 DD 18 720K

" 40 1 SD 10 lOOK·

" 40 1 DD IS 180K·

" 40 2 SD 10 200K

" 40 2 DD 18 300K

1.2me~HD 80 2 DD 18 720K

" SO 2 HD 2S 1120K

" 40 2 DD 18 3OOK·

1.4megHD 80 2 DD 18 720K

" 80 2 HD 34 1300K

S" 77 2 SD 15 577.5 K

" 77 2 DD 26 1001 K

" 77 2 DD 13 500.5 K+
As before, thiS controller can read and wnte all formats lISted above, but cannot format

those shown with a •. (fhe last format. indicated with a +, is a special format using
128-byte sectors, developed for a specific customer, and not very useful for general use.)

Since the 1772 controller can only handle two kinds of drives (which really only differ
by the number of tracks), the software and hardware can fairly well differentiate between
the different kinds of disks without your having to tell it. The only place where you must
specify what kind of disk you want is during formatting, when you must answer several
questions as to the number of sides and tracks, and the density.

The 37C65 controller, on the other hand, can handle five different kinds of drives, and
twenty different kinds of disks. It can generally figure out what kinds of disks yop are
using, as long as you tell it what kind of drives you have. You must do this in HUMBUG
before you boot by using HUMBUG's IS command to do an Initial Setup.

Disk Numbers

SK.DOS users are sometimes confused by the variety of numbers used to identify the
various disk drives. Disk drives are identified by three different sets of numbers:

6 68 News

a Logical Drive Numbers
Logical drive numbers are what you use in nonnal operation when you refer to your

main drive as "drive 0", or set up your RAMdisk as drive 4. The DRIVE command refers
to these by "L" numbers. Por example, if you have a hard drive and one floppy drive. you
might set up the hard drive as drive 0 (called LO by DRIVE), and the floppy as drive I
(or Lt).

b. Physical drive numbers
This is what the file control block calls PHYDRV, or what DRIVE calls "P" and "H"

numbers. For example, issuing a DRIVE command which says

DUVB LO-Pl
tells SK*OOS that logical drive 0 should be physical floppy drive 1.

c. Drive Select numbers
The drive select number is the number that the controller thinks the drive is. For

example, a floppy drive has a set of three or four jumpers, often labelled DSO through
DS2 or DS3, which identify a particular drive to the controller. Typically, the first drive
on the controller is DSO, the second is DS1, and so on.

But there is a problem here - changing a drive select number requires that you move
these tiny jumpers on the drive. Some manufacturers (such as IBM and Tandy) don't want
their customers messing with these jumpers, and instead do the drive selection in the drive
cable. Tandy used to do it by removing pins from the drive connector; IBM does it by
twisting part of the cable. In IBM's case, both floppy drives are jumpered as DSI, but
the cable makes one into DSO and the other into DSl. Because IBM-style cables are so
cheap, that is the approach we use with the WD37C65 controller.

PT68K-2/4 PROGRAMS UNDER SK*DOS

EDDI

SPELLB

ASMK

SUB CAT

a screen editor and formatter

a 160,OOO-word spelling checker

a native code assembler

a sub-directory manager

$50.00

$50.00

$25.00

$25.00

KRA CKER a disassembler program $25.00

NAMES a name and address manager $25.00

Include disk format and terminal type with order. Personal checks
accepted, no charge cards please.

PALM BEACH SOFTWARE
7080 Hypoluxo Farms Rd.

Lake Worth, FL 33463
(704) 965·2657

April 1990 7

As long as a computer had only one floppy controller. then the F number was the same
as the drive select. Thus floppy drive PO was DSO on its controller. But now that we can
have two controllers <as the PT68K-4 has both a WD 1772 and a WD37C65) we can have
two DSO drives. one on each controller. It is HUMBUG's Initial Setup <IS) command
which tells HUMBUG and SK.DOS which physical drive number corresponds to which
drive select.

To properly set up a system. therefore. requires that you use the IS command in
HUMBUG to tell the system which controller and drive select goes with which F number.
and then use the DRIVE command in SK·DOS to tell it which F number goes with which
logical drive number.

When you do the IS command, HUMBUG will ask you which controller you want to
boot from; that controller will then have PO. Since the 1772 can have up to four drives.
selecting it for booting will give it FO through F3; the 37C65 would then get F4 and F5.
On the other hand, if you select the 37C65 for booting. it will get PO and Fl. while the
In2 will get F2 through F5. The system will always boot from PO when you give the
FD command, so there must always be an PO drive. Other than that, you can skip drives.
so there could be an FO and an F5 perhaps.

Any time you want to know what the relationship is between F numbers and drive select
numbers. you can fmd out by using HUMBUG's IS command, or by using DRIVE or
lOST AT in SK·DOS.

8-Incb Floppy Disk Drives
It is unlikely that you will want to use 8-inch floppy drives. but in case you do, the

WD37C65 controller can do it. But you will need a conversion cable to allow you to
connect the 50-pin connector from the disk drive to the 34-pin connector on the computer.
The required connections are as follows:

34-pin cable 50-pin cable Function
2 2 Track 44-76
8 20 Index

10+16 18 Head load
12 28 Drive 1 select
18 34 Direction
20 36 Step
22 38 Write data
24 40 Write Gate
26 42 Track 0
28 44 Write protect
30 46 Read data
32 14 Side select

If you connect thIS adapter dlfectly to the controller, the 8" dnve will be drive select 1
on the controller; if you connect it to the twisted end of a normal floppy connector. then
it will be drive select 0 on the controller.

HUMBUG Changes

HUMBUG has been changed primarily to allow it to boot from the new controller. We
have added a new IS command, which asks you for the following information:

1. Which floppy controller(s) do you have. You can have either one. or both.
2. Which of the two controllers do you want to boot from. This is the controller which

will be used with the FD <floppy disk boot) command.
3. For the two controllers. what kind of drives are connected. For the 1772, you can

specify up to four drives, and there are three choices for each: <a> none, (b) 4O-track, or

8 68 News

(c) SO-track. For the 37C65. you can specify up to two drives. and the choices are (a)
none, (b)40-track, or (c) SO-track, (d) 1.2 meg high density, (e) 1.4 meg high density, or
(f) 8-inch.

If you specify that you want to boot from the 1772, then the 1 m drives will be
numbered FO through F3. while the 37C65 wiD be F4 and F5 (assuming you have the full
complemenl).1f you specify the 37C65 for booting, then the 37C65 drives will be FO and
Fl. while the 1712 drives are F2 through F5.

Only the information for FO is used by HUMBUG; the other information is stored for
use by SK*DQS.

This information is stored in the battery-hacked-up portion of the static RAM, so it will
be preserved when power is turned off. If the information is not stored then the new
HUMBUG wiD refuse to boot until you run the IS command to do a setup. If you use the
new SK*OOS with an old HUMBUG, then SK*OOS will only be able to use the 1712
controller unless you set the data in manually. This is possible to do with the ME
command, but the locations which store drive data in the SRAM are also used by the
PT68K-2 HUMBUG's Basic; hence using that Basic will erase the drive data and you
will have to reset it again. (The new HUMBUG avoids that problem.)

The locations which are used to store this data are:

ADDRESS NAME Function
FFOBE9 FLOC Controller type for drive PO
FFOBEB FLOD Drive type for drive PO
FFOBED FLIC Controller type for drive FI
FFOBEF FLID Drive type for drive FI
FFOBFl FL2C Controller twe for drive F2
FFOBF3 FL2D Drive type for drive F2
FFOBF5 FL3C Controller twe for drive F3
FFOBF7 FL3D Drive type for drive F3
FFOBF9 FUC Controller twe for drive F4
FFOBFB FUD Drive typeJor drive F4
FFOBFD FLSC Controller type for drive FS
FFOBFF FLSD Drive type for drive FS

The twelve FLOC through FLSD bytes specify the controller and drive type for up to.
six Ooppy disk drives (8 maximum of four on a 1772 controller, and two on a 37C65
controller.) FLOC through FL5C specify the controller type for the six drives normally
called FO through F5 by SK*OOS:

VALUE CONTROLLER
00 None
17 1712
37 37C65

other 1712.(default with older versions of HUMBUG)
PLOD through FLSD specify the drive types for those six drives. These bytes are split

into two 4-bit nibbles: 'I'he left four bits (representing the numbers 0 through 3 for the
1772, or 0 through 1 for the 37C65) $ive the physical drive number the drive is selected
as. either through jumpers on the drive or through a twist in the drive cable. The right
four bits specify the drive type as follows:

April 1990 9

VALUE ORIVETYPE
0 None
1 360K (standard 40-track 300 rpm)
2 nOK (standard 80-track 300 rpm)
3 1.1 meg (80-track 360 rpm "high-density")
4 1.4 meg (80-track 300 rpm 3-1/2" "high-density")
5 1 meg 8" (special interface cable required)

NOTE: If you have fewer drives than a controller allows, then you should number them
starting with the lowest number. For example, if you have only two drives in a 1772
controller, then they must be numbered 0 and 1; neither drive can be drive 2 or 3. In
particular, SK*DOS will only boot from the rust drive on a controller, so there must be
a drive FO.

If you have a PT68K-2 computer, but attempt to run a PT68K-4 version of SK*DOS
and have trouble using rour floppy disk, make sure that location FLOC (at SFFOBE9)
does not have a $37 which is telling SK*DOS to use a 37C65 controller which you do
not have.

Incidentally, disks which are booted on the 37C65 need no longer be linked. The
purpose of linking was to tell the "super-boot" program, located on track 0 sectors 1 and
2 of a floppy, where SK*DOS.SYS is located on the disk. But since the 37C65 requires
different (and longer) program code than the 1772, we decided it wasn't practical to try
to squeeze a 37C65 super-boot on the disk. It wouldn't fit, and besides, 1t would make
the disk boo table on only one kind of controller. Hence the 37C65 boot routine in the
new HUMBUG bypasses the super-boot altogether, and boots directly off the disk. You
stillnced to LINK a disk, however, if you intend to boot it on the 1772.

The Fly in the Ointment

For tllOse of you not familiar with U.S. slang, this means "what are the disadvantages']"
As you can see the 37C65 can do almost everythin~ the 1772 can, but there is one thing

it can't do - while formatting a disk, it cannot wnte disk data to the disk at the same
time. When ilie 1772 formats a disk, it simultaneously writes zeroes into each sector and
sels up Ille disk linkages. So the complete format process is to format the disk, go back
to the outside track, and then verify - a fairly fast operation.

The 37C65, on the other hand, first formats all tracks and writes zeroes into each sector,
but (because of a basic limitation in the 37C65) it cannot write the linkages at the same
time. So between the formatting and verifying, it has to go through an extra step to write
the linkages. Because this is a separate operation, the 37C65 formats a disk a lot slower
than ilie 1772. The process is particularly slow on high density disks, because there is a
much larger number of sectors per track than normal.

The only reasonable way to speed up the process is to read and write an entire track at
a time, rather than a sector at a time. This is a modification which we are working on right
now, and we expect it to make quite a difference. It should speed up not just formatting,
but other operations as well.

It will be some time before we are ready to release that change, though. The problem
is to make sure iliat the process is safe. The problem wiili writing an entire track at once
is that software may send data to SK*DOS to putonthedisk,butSK*DOS may hold that
back until it has a complete track of data before actually writing it. While this saves time.
if for some reason you pull the disk out or shut off the machine before the data has been
written. you will lose data. Worse yet, if you should swap disks in the meantime, SK*DOS
might write the data in the wrong place on the new disk. thereby leaving the old disk
incomplete, and also corrupting the new one. We're still working on alternative solutions
to that problem.

Which all brings up a question several people have asked about SK*OOS, namely

10 68 News

Why is SK"'DOS Slower than XX-DOS?

A number of users have asked why SK"'OOS is not as fast as other OOSes when writing
disks. To explain what is going on, let's talk a bit about how a OOS works. (In this
discussion, when I use the word "OOS", I'm talking about all DOSes, not any particular
one.)

The major job of a OOS is to keep track of files on a disk. This is broken down into
three subjobs:

1. The OOS has to keep a list of the current files on the disk, including their names,
sizes, dates, attributes, and where they are on the disk.

2. The OOS has to keep a list of free space on the disk, so it knows where to place new
files.

3. When files are added to orrernoved from the disk, the DOS has to modify the above
two lists to keep them current.

These jobs are complicated by the fact that the disk is divided into dozens or even
hundreds of circular paths called tracks, and each track is further divided into dozens or
even hundreds of sectors. Thus the typical SK"'OOS floppy disk may have as many as
2800 sectors, while a hard disk may have 50,000 sectors or more.

When a disk is freshly formatted, new files placed on the disk occupy consecutive tracks
and sectors; in other words. they are neatly stacked, one after another, beginning from
the outside of the disk. But once a disk has been used a while, files are added and deleted
at various spots, and the deleted files leave empty sectors between other sectors which
are still used. The DOS reuses these empty sectors for new files, so as new files are written
on the disk they begin to occupy these empty holes. Quite often the new files are larger
than the empty holes, and so the DOS splits them into smaller sections, putting a few
sectors here. a few there. the rest over there, and so on. The disk is now said to be
fragmented.

This fragmentation affects not onl)' existing files, but also the free space. On a well-used
disk. the free space may be broken IOto dozens or hundreds of empty spots, scattered all
over the disk. Some of these empty spots may have just one sector in them, others may
consist of many sectors. You can get an idea of this by running REOOFREE on a
well-used disk and looking at the track and sector display. (Incidentally, REDOFREE
does not recombine these holes into larger ones unless they are adjacent to each other -
it merely rearranges the free space so all these empty holes are reused in order from outside
to inside tracks. not in the order that they were freed up.)

Thus. to keep track of (1) where each file is, and (2) where all the free space is. the DOS
actually has to be able to track thousands of little sectors. This raises some problems.

First of all. a file placed on a well-used disk may be broken up into many different
pieces and spread all over a disk. You can even visualize the possibility of a lOOO-sector
file. being stored in 1000 different I-sector chunks on the disk. This does not happen very
often, but it is possible, and so the DOS has to be built so it can handle it. This could make
the directory very complex, and so in most DOSes the directory only contains some very
sketchy information about where the file is on the disk. In MS-DOS, for example. the
directory only tells us where the file be~ins; in SK"'OOS it only tells us where it begins
and where it ends. Think of the "where It begins" info as being a pointer or arrow -- it is
a number which points to the track and sector on the disk where the file's flfSt sector is
located.

So that raises the next question -- if the directory only tells us where the file begins,
how do we find the rest of the file? This is done With another series of pointers. each of
which points to the next part of the file. Now this is where the big difference appears
between various DOSes:

1. In SK"'DOS (and other linked-chain DOSes). these pointers are inside the file. The
first two bytes of each sector of a file contain the track and sector number of the next
sector. Once you find the first sector (from the directory listing). you follow the pointers
until you get to the last sector, which has a pointer of 00-00 to signify that this is the end.
The sectors are linked together to form a linked chain through their pointers.

April 1990 11

2. In MS-DOS (and similar DOSes), all of these pointers are stored in a common area
of the disk called a FAT or File Allocation Table. The directory tells you where the first
sector is, and then you follow the pointers in the FAT to find the others.

3. In a few DOSes (such as CP/M) these pointers are stored in the directory itself. The
problem here is that the directory gets very complex if a fIle needs more pointers than the
directory entry has room for.

What about the free space? In SK*DOS, the free space is also a linked chain. The System
Information Sector on track 0 lists the beginning and end of the free chain; once you find
the first free sector, you follow the pointers to fmd the next and so on. MS-DOS and other
FAT-t~ DOSes do not need that, because free space is signalled by having an empty
pointer m the FAT table.

This helps to explain why SK*DOS is so much slower when writing a fIle. Before
writing a file, SK*DOS has to find an empty space to write it into. To do that, it first has
to follow the pointers down the free chain. For example, to write a 1 OO-sector file, it must
first read 100 pointers from 100 sectors. This tells it which 100 sectors it can use, and
also which will be the next unused sector after the fIle; this sector will then become the
first sector in the remaining free space. We call this the pre-read process, and you can
watch it when you use COpy to copy a file to a floppy disk. COpy will display the letter
"p" when itis pre-reading the empty space, the letter "w" when it is actually writing the
file, and then the letter "v" when it is verifying the file to make sure it was written without
errors.

MS-DOS, on the other hand, figures out where the free space is by looking for empty
entries in the FAT table. In most cases the FAT table is already in memory, so it dives
right in and writes the file on the disk. Note that MS-DOS does not normally verify the
file after writing it, which has always struck me as odd. Considering that PC systems are
paranoid to the point that they use special memory parity checking circuitry to catch very

Micronics Research Corp.
(604) 854-6814

RBASIC
Enhanced BASIC Interpreter for 68000 SK*DOS

US$99.95 + $5 Shipping/Handling for USA and Canada
($10 S/H elsewhere)

Please specify Disk Size and Format
(Le., 5-inch 80-track)

Sorry! No credit cards!
Checks may take up to 2 weeks to clear.

For fastest delivery make
Bank Draft or Money Order payable to:

R. Jones, 33383 Lynn Avenue, Abbotsford,
B.C., CANADA V2S 1£2

12 68 News

rare memory errors, you would expect them to verify all disk writes, since errors here are
much more likely. But they do not -- in MS-DOS you may use the VERIFY command
to tell the DOS that you want to verify, but the normal or default case is no verification.
SK*DOS, on the other hand. defaults to verification, though you can use the VERIFY
command to tum it off. MS-DOS slows down a lot when you turn verification on;
SK*DOS speeds up a lot when you turn it off. The choice is yours.

SK*DOS's pre-read is done in two different ways. In the COPY program, where we
know exactly how large the file is, we pre-read as many sectors as are needed for the file
all at once. Elsewhere, where the DOS does not yet know how much free space is needed,
it pre-reads only one sector at a time. TIlis is the major reason for the slow write
performance of SK*DOS - we pre-read a sector, wait one whole revolution of the disk
before we can write it, then wait one more revolution before we can verify it. Having to
wait an entire revolution until the sector is under the head again means that it takes two
revolutions of the disk for every sector written. Thus a loo-sector file takes 200
revolutions; at a rate of 5 revolutions per second for a floppy disk, this takes 40 seconds.

Now that we know why SK*DOS is so much slower, let's talk about the advantages or
disadvantages of each approach.

First of all, 50% of SK*DOS 's slowness comes from the verification. You can tum it
off if you want to do a more fair comparison with MS-DOS or other systems, but I think
it would be wiser to tum MS-DOS's verification ON instead. This makes things a bit
slower, but it is safer in the long run.

The other 50% comes from the linked-chain structure of an SK*DOS disk. But the
chain has some other advantages to compensate. One advantage comes from the ability
to undelete files. Under MS-DOS, when you delete a file, all the files' pointers in the FAT
table are erased. If you then decide you really want the file back, it may be very difficult
to find its pieces on the disk -- even if you realize your mistake right away. Wait a few
days, and you might as well give up. There are $50 and $100 programs whose main
function is to recover deleted files on MS-DOS disks, and even they often fail. In
SK*DOS, on the other hand, we provide an UNDELETE command which has been
known to recover deleted files days and weeks later. Unless you overwrite the deleted
file with new files -- which may not happen for weeks if the disk is reasonably big -- or
unless you rearrange the free space with REDOFREE, the pointers are still there, and
UNDELETE will bring the file back. This may not be so great if you want to cover up
deleted files for security's sake, but it sure helps recover from silly mistakes.

But the linked chain approach has another advantage as well. In order to be useful, a
FAT table has to be small enough so it fits into memory all at once, instead of having to
be read off the disk in pieces each time it is needed; this is the only way in which it can
save us time. Consider a hard disk, for example, which has 50,000 sectors. If each sector
were listed in the FAT table, we would need 50,000 two-byte pointers, for a total FAT
table of 100,000 bytes. With two or three hard drives, we would need 200,000 or 300,000
bytes of RAM just to hold the FAT tables! Wow!

This is obviously not practical, and so the FAT-type DOS again takes some shortcuts.
First, it may use larger sectors so there are fewer of them. For example, MS-DOS uses
512-byte sectors, whereas SK*DOS uses only 256-byte sectors. Using double-sized
sectors cuts the FAT table size in half.

In addition, FAT tables usually do not list individual sectors. For example, MS-DOS
lumps sectors into larger groups called clusters (on other systems these are called blocks
or granules). On a typical MS-DOS hard disk, four 512-byte sectors are grouped into a
2K cluster (and often clusters can be even larger). The FAT table then lists clusters rather
than individual sectors. A disk with 25,000 double-sized sectors thus has only 6250
clusters, and therefore needs only 12,500 bytes for the FAT table pointers. This is a
tremendous improvement over needing 100,000 bytes.

Although clusters save space in the FAT table, they waste space elsewhere. Suppose
you save a lOO-byte file on the disk. With SK*DOS, this file will use one sector. Of the
256 bytes in the sector, 100 bytes will be used and 156 bytes will be wasted. Under
MS-DOS, on the other hand. this file will use a cluster. Of the 2048 bytes in the cluster,

April 1990 13

100 bytes will be used and 1948 bytes will be wasted. That 1948 bytes could have held
seven other files under SK*DOS!

On the average, the last sector of an SK*DOS file will tend to be half-empty; thus an
average SK*DOS file wastes 128 bytes. An average MS-DOS file, on the other hand,
wastes half of a cluster. With 2048-byte clusters. this wastes 1024 bytes -- eight times
more. Put 100 files on a disk. and you will waste about 12K on an SK*DOS disk, lOOK
on an MS-DOS disk.

FAT-type DOSes try to reduce this loss by using different cluster sizes on different
disks. Small disks will have small clusters and small FAT tables. large disks may have
huge clusters and huge FAT tables. On my MS-DOS system. for example. my floppy
disks use lK clusters; one partition of my 4O-megabyte hard disk uses 2K clusters; another
partition on the same drive uses 4K clusters. The need for different cluster sizes and FAT
table sizes makes the DOS more complex; it partially explains why sometimes changing
to a newer version of the DOS requires hard disks to be reformatted. because the new
DOS cannot handle the format of the old disk.

So there you have the full story. In a nutshell. a linked-chain DOS like SK*OOS is less
efficient in terms of time. but more efficient in terms of space and in terms of recovering
from errors. I suppose that helps to explain why the 4O-megabyte hard disk on my
MS-DOS system is almost full. whereas the 20-megabyte hard disk on my 68000 system.
despite having tremendous amounts of source code text files for mUltiple versions of
SK*DOS and all its utilities, has lots of room.

Beginner's Corner
by Ron Anderson

Last time We talked briefly about the 68XXX processor's Data and Address registers.
We wrote a short program that used the Data registers and calls to SK*DOS routines. I'd
like to start off by explaining how the SK*DOS routines are actually called or invoked.
The 68XXX has some illegal instructions. All 68XXX machine code instructions are an
even number of bytes long. They may be two, four or six bytes. No legal instruction
starts with $AO or $PO. The $AOxx codes cause the 68XXX to jump to an error trap
routine. Peter has simply written an $AO error trap routine that interprets the next byte
as an instruction to jump to the appropriate SK*DOS routine. For those of you who have
used the Motorola 6809, it is very similar to a Software Interrupt. Perhaps this is not very
clear at the moment, but we have a lot of easier concepts to learn before we have to get
into the detail of this. Actually you can take it at face value (it works) and not worry
about it forevermore.

Well, last time we wrote a simple program to add two constant numbers and print the
total in decimal and hexadecimal. If that were all we could do with computers, they
wouldn't be very interesting. We learned how we could output the result of the addition
last time. Now let's figure out how to ask the user to input the two numbers and then
print the result. To do this simply, we will use two more SK*DOS routines, one to print
a "string" and the other to input a decimal value.

* ADD TWO NUMBBRS rNPUT BY USBR

*BQUATBS

WARMST BOU $A01B RETURN TO S~*DOS BY JUMPrNG HERE
PSTRNG BOU $A035 PRrNT A STRrNG PorNTBD AT BY A4
PCRLP BOU $A034 OUTPUT A CARRrAGB RETURN AND LrNBPBBD
OUTsD BOU $A038 OUTPUT A 16 BrT rNTBGBR AS A DBcrMAL NUMBBR
DBcrN BOU $A030 rNPUT A DBCrMAL NUMBBR PROM COMMAND LrNB

START DC DBcrN GET prRST NUMBBR FROM COMMAND LrNB
MOVB.W Ds,DO

14

DC DBCIN GBT SBCOND
MOVB.W D5,D4
ADD. W DO, D4 ADD THE TWO
LEA MSGi (PC) ,A4
DC PSTRNG PRl:NT MESSAGB
CLR.L D5 SBT TO LBADING SPACBS FOR OUT5D
DC OUT5D OUTPUT THE RESULT
DC WARMST BACK TO SK*DOS

MSGi DC.B "SUM IS: ",$04

BND START

68 News

This program uses some features of SK*OOS that we have not used before. First,
the routine DECIN, which gets a decimal number from the command line that you have
typed. Then we used a literal string constant. TIle line DC W ARMST ends the program
since it causes ajump back to the SK*OOS command processor. What follows is a label
MSG 1 and then a "string" of characters enclosed in quotes, and lastly the byte value $04.
This causes the assembler to place the message in memory starting just after the DC
WARMST instruction. The label gives the assembler a "handle" on where it is. We've
used a new instruction in 1I1e 68XXX set, the LEA instruction. LEA stands for Load
Effective Address. TIle (PC) indicates that the address is to be relative to the program
counter. That is, MSG 1 is some number of bytes beyond the LEA instruction. The
assembler adds the address of the LEA instruction to 1I1at number of bytes to arrive at the
location of MSG 1 and puts 1I1at memory address in Address Register A4. If you refer to
1I1e SK*DOS manual you will see lila! for PSTRNG to function it expects to find the
address of the text string in A4, and 1I1at the last byte of the string must be 04 (04 or just
4 is the same in Hex and Decimal, so we could use $04, $4, 04 or 4 equally well for the
"string terminator".

Now assemble 1I1e program using ASM ADD2 +L. Assuming you are in 1I1e A
directory, run it using 1.a/ADD2 345 123 and it should report SUM IS: 468 and return
to SK*DOS. Now we're getting somewhere. We have generalized our specific program
to add 5 and 7 to one that can add any two numbers input by the user. Well, almost any
two numbers. Remember that we have used Word length operations so that the input
numbers and 1I1eir sum must all be within the range -32768 to 32767, the maximum and
minimum numbers that can be represented in signed binary notation with 16 bits.

Try adding a positive and a negative number (actually the same as a subtraction) and
notice that the result is incorrect DECIN, though the manual doesn't say so, apparently
doesn't like a minus sign. It returns a value of 0 if you try to input a negative value.

r said last time that if there were no .L or .B on an instruction, a .W would be assumed.
Generally I like to include the .W anyway for clarity and as a reminder that the length of
the operand must be specified even if by default Leaving the .W off might lead to
forgetting to use a .B or a L at a crucial place, which can lead to long debugging sessions,
particularly if you are just learning to write Assembler programs. I do leave the .W off
for SK*DOS calls as in DC PSTRNG. You can choose either way.

Now, the above works reasonably well, but the two numbers to be added have to be
supplied on the command line. How might we ask the user for them and let him enter
them? In our first program we used only Data registers. In the one above we have added
a "constant" declaration, the text of the message. Now let's add space to store a
"Variable". The creators of the 68XXX processors made a decision for the future users,
that they should only be able to access constants (i.e. read only values) on the Program
Counter Relative basis. To write to a memory location that is within fue program requires
some finnagling. Also, the DECIN routine in SK*DOS uses one of the SK*DOS pointers
that points to the command line in order to get fue value of fue number fuere. We can
still use DECIN, but we will have to fool it by altering the command line pointer. A
"Pointer" is a register or a memory location that holds fue Address of somefuing else,
usually some data.

April1990 15

This is probably moving too fast for most of you who are new to Assembler
programming, but of course you have a month to digest what is here. so let's push on.
There are several new concepts to discuss before we get to the next program. First we
need to look at Address Registers.

MOVI.L A1,AO
moves the contents of At to AO. That's pretty straightforward and nothing new from
what we had discussed previously except that we are using Address registers rather than
Data registers. The real usefulness of them is that they may be used as pointers.

MOVE.B (Al) ,D7
Now that is totally different Those parentheses around At change the meaning of the

instruction completely. This instruction says to use the contents of Al as the memory
address from which to get a Byte value and move it to 07. This is called RegisterInderect
addressing. We use the value in the register as a Pointer to the data. This addressing
mode has an additional feature. We can do the following:

MOVE.B 6(A1),D7
This moves the contents of the memory address 6 beyond the pointer in At, to 07. The

6 in this case is an "offset". If an offset is not present it is assumed to be O. This is called
Register Indirect with Offset.

Let's list the program here and then discuss the remainder of the new things in it.

* ADD TWO NUMBBRS INPU'l' BY OSD

*BQUATBS

VPOINT BQU $AOOO SETS A6 TO POINT AT TO SIt*DOS VARIABLES
WAJlMST BQU $A01B TR:IS TO JUMP TO SIt*DOS AT BND OF PROGRAM
PS'l'RNG BQU $A035 PUN'!' S'l'JUNG PO:IN'!'BD AT BY A'
PCRLP BQU $A03' OU'l'PU'l' CR AND LP
OUTSD BQO $A038 OUTPUT DBClMAL NUMBBR A' IS POINTER
DEC:IN BQO $A030 GET A DBC:IMAL NUMBBR POINTED AT BY LPOINT
GBTCR BQO $A029 GBT A CHARACTBR FROM TO ~YBOARD
LPOIN'!' EQO 758 VARIABLE OFFSET TO LPOINT

START DC VPOINT GET POINTBR TO SIt*DOS VAJUABLES
MOVE.L A6,AO SAVE POINTBR TO VAJUABLES
LEA MBG1(PC) ,A' GBT ADDRBSS OF _g1 IN A'
DC PS'l'RNG PRINT CR/LP, TON S'l'JUNG
BSR.S GETSTR GET TO FIRST NUMBD AS ASCII CHARACTERS
LEA STDOJI' (PC) • A1
JroVE. L A1, LPOINT lAO) POINT LPOINT AT S'l'JUIOP
DC DBCIN UsB DBCIN TO CONVERT ASCII RBPRBSBN'l'ATION TO INTEGD
MOVI •• D5,DO SAVE IT FOR LATBR
LBA MBG2(PC) lA'
DC PS'l'RNG
BSR. S GETSTR GET SBCOND NUMBER
LEA S'l'RBOP (PC) , A1
MOVE. L A1, LPOINT (AO)
DC DRCIN TRANSLATE ASCII CHARACTERS TO INTBGBR
ADD.. D5. DO ADD TO TWO NUMBERS
LEA MBG3(PC) .A4
DC PSTRNG
CLR.L DS SBT TO LEADING SPACBS, NOT ZDOS
MOVE •• DO,»4 SBT OP FOR 0U'l'5D
DC 0U'l'5D CALL IT
DC .AJIMST RETURN TO SIt·DOS

16

* GBTSTR SUBROUTINE
GBTSTR LEA STRBUF(PC),Al
GBTl DC GETCH

CMP.B '$lO,D5 COMPARE INPUT CHARACTBR TO SPACB
BBQ.S DONGBT BRANCH IF BQUAL
CMP.B '$OD,D5 COMPARE INPUT CHARACTBR TO CR
BBQ.S DONGBT BRANCH IF BQUAL
MOVE.B D5, (Al)+ OTHBRWISB MOVE CHAR TO STOUF
BRA. S GBTl GO AROUND AGAIN AND GBT ANOTHBR CHARACTBR

DONGBT MOVE.B '$OD,(Al) TBRMINATB ASCII NUMBBR WITH CR
RTS RETURN TO LINE APTBR b8r IN MAIN PROGRAM

MSGl DC.B "INPUT FIRST NUMBBR ",$04
MSGl DC.B "INPUT SBCOND NUMBBR ",$04
MSG3 DC.B "SUM lSI ",$04
STOUP DS.S 30

BND START

68 News

In the [lISt program we did this time, we used a literal constant, the message. Tins
time we have three messages. The technique for using them is exactly the same. I
mentioned altering a command line pointer in SK*OOS in order to use DECIN this time.
See Appendix A in the SK*OOS manual for a list of SK*OOS variables that are available
to user programs. You will see LPOINT listed as one of them. The SK*OOS routine
VPOINT does nothing but set A6 to point at the start of these variables in memory.
LPOINT has an offset of758. In the above program we have set LPOINT EQU 758. An
EQU directive causes a substitution in the remainder of the program. Wherever the word
LPOINT appears, the assembler will substitute 758! Of course we could have used 758
directly, but substituting the name makes a program much more readable and more easily
modified.

SK*OOS uses several of the data and address registers, but calls to it don't disturb
03-DO and AJ-AO. We did the VPOINT call and then moved A6 to AO where the pointer
to the variables will be safe.

This program introduces the concept of a subroutine. We have used a subroutine
called GETSTR which gets characters from the terminal and puts them into a buffer
STRBUF that we have defined at the end of the program. Notice that the constants are
defined with DC.B and the buffer is defined with OS.B, which means Declare Storage
bytes. DC.B allocates memory bytes, but puts specific values in them. DS.B simply sets
them aside without doing anything to the data or random garbage that is in those memory
locations. We have made the buffer 30 bytes long. GETSTR points Al at the buffer with
LEA STRBUF(PC),Al. It uses the SK*OOS call GETCH to get a character at a time
from the terminal. CMP.B is an instruction to compare two byte values. There must be
two operands following it. In this case we have CMP.B #$20,05. GETCH places the
character input by the user in D5. If the character is a space ($20) or a Carriage return
($00), GETSTR puts a Carriage retunl in the buffer as the last character and returns to
the main program. If the character is anything else it goes into STRBUF and Al is
incremented by 1 (That is, the pointer that shows where to put the next input character).
The next instruction is BRA.S GETl. BRAnch is an unconditional instruction. When
ever program execution gets here it jumps back to the label GETl and continues. The
code from the GETl label to the BRA.s GETl comprise a loop. All loops must have a
way out. In the present case, either of the two BRA.S instructions branch out of the loop.
That is. detection of a space or CR will end the loop.

In the instruction MOVE.B D5,(al)+. The parentheses around Al tell us that Al is
the address of a place to move the value in D5 to. The + after the (AI) is called a
post-increment operator. We moved a byte. so the post increment causes Al to point at
the next byte address in memory. If we were to move a Word, Al would be incremented

April 1990 17

by 2 and if a Long, Al would be incremented by 4. This is a convenience since it allows
us notto have to ADD.LIII (or 20r4).AI as the nextinslrUction.

The BEQ.S DONGET ins1rUction says that if the result of the comparison is equality,
go_ to the program step with the label DONGET. The.S means "short". If the label
DONGET is within 128 memory locations of the branch ins1rUction, the .S form may be
used. It generates .Jess object code than the regular BEQ instruction which may branch
anywhere in the 68XXX memory. The.S version of the branch is more efficient and
faster and should be used when it is within range. Test or Compare and Branch
instructions are the means by which we can control the flow of a program's execution.
When control returns to the main program, It gets the address of STRBUF into
LPOINT(AO) and calls DECIN. You need to look in the User's manual or a book on
programming the 68XXX and study the branch ins1rUctions.

Why use a subroutine? There are several reasons. The one that seems the best one
actually is not, but it is a good one. You will notice that we used GETSTR twice in our
program. If it were not a subroutine we would have to include it 1WICE, once at each
place where it is called by the program. In some programs subroutines are called many
times and it is obvious that the code will be much smaller by using a subroutine rather
than repeating the required code at each place where it is needed. Actually, we have been
using subroutines all along, but they have been disguised as system calls using the DC
PSTRNG approach.

A better reason to use subroutines is that it breaks the program up into small "chunks"
(we could say they are bite sized). A good programmer tries to break up his code into
logical units that some of us call routines (particularly in discussions of assembler
programs). In higher level languages they are called procedures or functions. but they
amount to exactly the same thing. Rather than write the whole program at once and then
start testing it, a good programmer would write the GETSTR subroutine and write a
simple main program to test it. The main program would probably call GETSTR and then
point A4 at it and call PSTRNG after changing the terminating SOd to $04. If the program
didn't print out what you put in, you could debug that much program rather quickly. Then
knowing that the subroutine works correctly, when you fmished the main program you
would not have to consider the subroutine if a problem were to occur. Of course if a
particular subroutine were only to be used once, it could be included where it is needed
and the BSR and RTS instructions dropped. It still would be reasonable to test it as a
subroutine. It is also a good idea to set it apart from the rest of the code with some
comment lines to indicate what it does. The name of the game is divide and conquer.

I said earlier that the Data registers and Address registers were not all there is to the
68XXX processor. The time has come to mention another, the Program Counter. The
program counter is a register that always contains the address of the next inslrUction in
the program that is running.

A subroutine makes use of one of the address registers. A 7 serves a special purpose.
It is used as the Stack Pointer. It is usually set to point somewhere in memory well past
the end of the user program. When you do a BSR, A 7 is decremented by four bytes and
the address of the next ins1rUction after the BSR is moved to the place where A"1 points.
The Program Counter is set to the address of the subroutine and program execution
continues there. When the RTS instruction is found, the address pointed to by A 7 is
moved to the program counter and A 7 is incremented by four bytes. All this takes place
automatically. Most of the time you don't have to think about it. The operation of the
stack is totally hidden when you use a subroutine. Since a subroutine can branch to
another subroutine, and programs frequently do that, it is a good thing that the stack
handling for BSR and RTS are automatic. Most programs use subroutines "nested" to a
depth of five or six. That is, the program calls a subroutine which calls another subroutine,
etc. six times.

There are times when the programmer may want to move information from the
registers to the stack temporarily. See the 68000 User's Manual, and in particular the
MOVEM instruction. If you don't have the Motorola manual but you do have a book on
programming the 68000 in Assembler. look at the description of the MOVEM instruction

18 68 News

there. The most common use for MOVEM is for a subroutine to save the contents of
selected Data or Address registers on the stack because it is going to use those registers
for something else, and then to use MOVEM in reverse to restore the initial contents of
the registers. The process is called Saving and Restoring registers. Many mysterious bugs
in assembler programs are later traced to having destroyed the contents of a register in a
subroutine. The cure is to save the contents and restore them at the end of the subroutine.
A worse error is to save the contents of a register on the stack at the beginning of a
subroutine but to forget to restore the register before the RTS command. The saved
contents of the register are then interpreted as the return address for the subroutine. always
with serious consequences.

Well, have we gone a long way adrift of our "Beginner's Comer" title? I don't really
think so. This stuff is really fundamental to an understanding of what goes on in your
computer. You now have a much better feel for what an operating system does, though
we haven't begun to get into such subjects as disk rues, arithmetic, etc. These fairly short
and simple examples should provide some insight into how assembler programs work. If
you haven't already done so, type in the last example above and assemble it. Now run it
and observe how it asks you for input and calculates the sum.

One other thing. The above program is very "Fragile". It assumes that you answer
the prompts correctly and doesn't check for errors. If you enter a letter rather than a
number, GETSTR will accept it nicely. DECIN will cough at it, accepting it as a
terminator of the number. I.e. if you put in 12A in place of 123, DECIN will see 12 as
tlle number that you input. Sometimes a fragile program is OK if it is written to be used
now and then by its author. If it is part of a system to be used by lots of others, it needs
extensive error control. GETSTR in tllis program is used only to get integer numbers. It
ought to allow a backspace to correct a bad entry. It ought to complain "Not a Number"
when you input something outside of the digits 0 • 9. It should accept a CR as a terminator.
Since DECIN doesn't like negative numbers, GETSTR ought to produce an error message
if a minus sign is detected "Negative Numbers Not Allowed". Such refinements come
later. For now, let's keep it simple so as not to obscure tlle point.

One final note. When you program in assembler it is very easy to write code that will
hang up the computer or cause it to make an error:

LOOP MOVB. B '3, D7
LOOP 1 SUB.B '1,D7

BEQ.S ESCAPB
BU.S LOOP

BSCAPB ••••••
The second line decrements D7 to a value of 2. The tllird tests for it to have reached

zero, and this is the only way out of the loop. The 4th line is the error. It branches back
to LOOP which puts 3 into D7 again. It ought to branch to LOOPl which simply
decrements D7 so it will reach 0 tlle third time through the loop.

Another very similar error is to branch to LOOPl, but to forget the SUB.B #1
instruction so that tlle loop count never changes.

Want to kill the computer (software wise, anyway) with two lines of code?

LINBl BSR.S LINB2
LINB2 BSR.S LINBl

BND LINBl
This program will run briefly, the subroutines calling each other and pushing the return

address on the stack until the stack fills all of memory, and then the computer will either
just hang up or it will eventually print an error message. Which it will do depends on
whether the stack fllSt causes an error or overwrites the error reporting mechanism of the
operating system. I just tested it and on my system it just bangs up the computer, requiring
a reset to get it going again.

WeU. that is much more than enough for this time.

April 1990 19

How To Convert The Here Driver To CGA
by Robert E. Hartge, 14 Wentz Ave., Shelby, Ohio 44875

This driver will run theHERC software on the CGA board. Thanks to Sidney Thompson
for the HERC driver. The CGADVR and CGA.TXT files should now be available
through the User's Group and Star-K BBS.

Before we start make a copy of HERC.TXT and rename it CGA.TXT. First we will
explain the change we will make and why. Then we will show you the change to make.

1 - The first thin$ we will change is the device name. This is so the proper name will
show up in the devIce table when the device is loaded.

DRNAMB DC.S 'MoDO_~.DVR'"

In the line listed above change (Mono_Kbd) to (CGA_Kbd).
2 - Next we will change the monochrome attribute table to a CGA attribute table to be

used with BLINK, UNDERLINE, and REVERSE.
Find and delete the monochrome attribute table listed below. Then insert the CGA

attribute table where the monochrome table was at.

* VIDBO ATTRIBUTBS POR THB MONOCHROME CARD

ONDLATT BQO $01
BLNltATT BQO 0
NORMATT BQU $07
REVATT BQO $70
NOSB01f BQO 0
BILTATT BQO $08

* CGA ATTRIBUTES

Under lin.
Blank
Normal
Rever.. video

REV dc.b $4f rever ••
NORM dc.b $1e DOrmal
BLINlt dc.b $cf blink
OLINE dc.b $5f underline

NOTE You do not have to use these attributes. You may change these to whatever
colors you wish.

3 - Next we have to change the values that will be written to the 6845 video controller
to setup the video and sync.

Delete the top table from the monochrome text and insert the bottom table which is the
CGA table. It is not necessary to put in the comments but they could be helpful if you
have any sync trouble with your monitor.

MONOCHROME TABLE
* work location. ~ n.c •••• ry .vil.
crtint dc.b $61 crtc~rO data
chrlin dc.b $50 crtc~rl char. per lin. on crt

dc.b $52 crtc~r2

dc.b $Of crtc-r3
dc.b $19 crtc~r'

dc.b $06 crtc-r5
lincrt dc.b $19 crtc~r6 lin •• on crt

dc.b $19 crtc-r7
dc.b $02 crtc-r8
dc.b $Od crtc-r9

CGA TABLE
* work location.
* this info. .et. regi.ter. 0 to 15 in the video card 68'5

20

crtint
cbrlin

dc.b $6f
dc.b $50
dc.b $5g

68 News

ao horizontal total (work with sync)
a1 number of cbr.s per display line
8l increase to shift display left or

visa versa
dc.b $Of R3 horizontal sync width
dc.b $23 a4 vertical total
dc.b $06 as vertical adjust

lincrt dc.b $lg &6 vertical lines displayed
dc.b $le a7 vertical sync position
dc.b $02 aa interlace mode
dc.b $07 ag scan lines per display line

4 - The next change is made to correct a problem encountered with carriage return and
line feed at the bottom of the screen on the eGA board.

Delete the monocluome lines listed below and insert the eGA lines in place of the
monochrome lines.

HONOCHROMB LIHBS to delete
ctllf2 moveq '0,d6

addi.w .aO,disped(a5)
andi.b 1$07,dbpad(a5)
move.w dbpad(a5) ,d6
move. 1 d6,-(a7)
addi.w I1g20,d6
andi.w 1$07ff,d6
lal.l 12,d6
movea.l d6,a6
addiel IBNWRAH,a6
move. 1 IBNWRAH+$2000,d6
move. 1 1$00200000,d7
move.b MAT'l'a,d7
moveq 19,d5

*
* blank new line for scroll

*
ctllU move.l d7,(a6)+

move.l d7, (a6)+
move. 1 d7,(a6)+
move. 1 d7, (a6)+
move. 1 d7, (a6)+
move. 1 d7, (a6)+
move. 1 d7,(a6)+
move. 1 d7,(a6)+
cmpa.l d6,a6
bmi.s ctllf6
suba.w 1$2000,a6

ctllf6 dbra d5,ctllf4
move. 1 (a7)+,d6
move.b 113,BNWADD
move.b d6, BNWADD+2
lsr.l la,d6
move.b 1l2,BNWADD
move.b d6, BNWADD+2
bra chrxit

eGA L:IHBS to insert
ctllf2 moveq 10,d6

move.w d6,dhpad(a5)

do hwd scroll

get start disp addr
save for later
addr of new line

displace for PT6ak

end od display memaddr
space/attribute
add attribute

to disp mem

5th

time to wrap mem7
br if not
back to logical zero

hi byte to low pos

set display start to 0

April 1990 21

lIIOVe.l 46,-(a7) .av. for lat.r
lIIOV.a.l 46,a6
aMi.l ,cOLRAM,a6 g.t ram .ereen ram a4-

dre ••
lIIOVe •• 11920,45 ..t point.r for 2' lin ••
lIIOVe.l '320,46 point to ehr to .hitt up

2 line.
etllf4 lIIOVe.l 0(a6,46.1),(a6)+ • hitt 2' lin.. up 2 lin ••

dbra 4S,etllf'
lIIOVe.l '$00200000,47 .peee
lIIOVe.b CATTR,47 a44 attribute
lIIOVe •• 180,45 •• t pointer to blank ne.

line
etllf6 lIIOVe.l 47, (a6)+ loop to blank new lin.

dbra 4S,etllf6
lIIOVe.. 11920,linadr(aS) .et lin. aaar •••
lIIOVe.. 11920,euradr(aS) .et eur.or aaare ••
andi.b I$07,linadr(aS)
andi.b I$07,euradr(aS)
lIIOVe.l (a7)+,d6
move.b 113,COLADD
lIIOVe.b d6,COLADD+2
lsr.l 18,46 hi byte to low po.
lIIOVe.b 112,COLADD
move.b 46,COLADD+2
bra chrxit

5 - The next corrections to be made are in BLINK, UNDERLINE, and REVERSE on
and off. These corrections are needed because the eGA doesn't support these functions.
We are going to have the eGA board change colors to represent these functions.

To make it easier to edit this section the monochrome and eGA text are both listed.
The mono lines to delete are marked with XX as the flfSl two chr.s on the line in the
listing, and the eGA lines to insert are marked with XXX as the first three chr.s on the
line in the listing. When inserting the lines omit the XXX as this is just a marker and will
create problems in assembly.

* BliD1l: on
* xx orLb '$80,MAt"1'R
XXX 1IIOV •• b BLX_ (as) , CAt"1'R

bra •• •• eign

*
e.ej cmpi.b 1$6a,44

bn ••• e.ek
* * Rever.. vi4eo on
* xx
XX
XXX

*

andi.b '$88,MATTR
ori.b '$70,MATTR

lIIOVe.b RBV(aS),CATTR

blillk bit on

' j , ,

kill DOrmal ai.play
rev.r.. vi4eo on

* kill the proee •• ing of an •• eape .equ.ne.
*
•• eign lIIOVe.w 'O, •• ea4r(aS)

bra chrign
*

cmpi.b 1$6b,4' 'k'?
bne.. e.el

22 68 News

•
• R.v.r •• vid.o off
•
xx
XX
XXX

andLb 1$88,MATTR
ori.b '$07,MATTR

kill r.v.r.. vid.o
normal video on

mov •• b NORM(aS),CATTR
bra.. ..cip

•
cmpi.b '$6c,d4
bn... ..em

•
• Und.rlin. on
•
xx
XX
XXX

•
•• em

•

andi.b '$88,MATTR
ori.b '$Ol,MATTR

mov •• b ULINB(aS),CATTR
bra.. ..cign

cmpi.b 1$6d,d4
bn... ..cq

• Und.rlin. off
•
XX
XX
XXX

•
•• cq

•

andi.b '$88,MATTR
ori.b '$07,MATTR

mov •• b NORM(aS),CATTR
bra.. ..cign

cmpi.b '$71,d4 bu.... bad •• c

• Blink off
•

'1'1
br if not

normal vid.o off
und.rlin. on

'1D'1

no r.v.r •• /no und.rlin.
normal di.play

'q'1

XX andi.b '$7f,MATTR blink bit off
XXX mov •• b NORM(aS),CATTR

bra.. ..cign
bad •• c mov •• w ,O, •• cadr(aS) kill •• cap ••• q

bra not •• c
6 - Next we change all monochrome references in the body of the program (not the

equate table) to the corresponding CGA references. This disables the monochrome board
and enables the CGA board so the information will go to the CGA board.

In the list is the monochrome reference to change from the CGA reference to change to
and the number of lines that need the change. DO NOT CHANGE TIlE EQUA TE TABLE
I!!!

MONO from CGA to LINES
MATTR CATTR 8
MCURV CCURV 14
MCURH CCURH 17
BNWRAM COLRAM 14
BNWADD COLADD 9

To list all the lines would take to much room so just scan through the listing after the
equate table and make the changes from mono to CGA. the LINES list tells how many
lines must have the mono to CGA change made to them so you may want to keep count.

At this point save the changes, and assemble the file CGA.TXT . This should generate
a file named CGA.COM . Rename this file CGA.DVR. This file will be loaded by
DEVICE like a serial driver or HERC.DVR .

April 1990 23

Disk Index Program
Dan Ewers has sent me a neat little program which generates a master index of all your

disks. Assuming that you have numbered your disks when formatting them (you can
change numbers with DISKNAME), you then run Dan's INDEX program, which asks
you to feed it all your disks in any order. It compiles a master index of all your files and
which disk they are on. The master index can get saved on your system disk. You can
then use INDEX to search that file for any specific program, and it will tell you where it
is. INDEX can update that file to keep it current as you go on. It seems like the program
can save a lot of looking. Dan has offered to send out the program to anyone interested;
send $5 to cover postage and costs to Dan Ewers, L178, 12375 Military Trail, Boynton
Beach FL 33436.

Disk Menu System
If you have seen some of the PC-DOS menuing systems such as Norton Commander,

you will like Fred Stuebner's FULLLIST program.
When you start it, FULLLIST puts a listing of all your system disk files on the screen;

if tbey don't all fit, you can scroll up or down through the list. By default, the list is sorted
by date and time (latest on top), but it can also be sorted by file name, extension, or
directory sequence. Using the arrow keys, you select a flIe by puuing the cursor on it;
then with just a few keypresses, you can list, edit, rename, delete, assemble, or do various
other operations on the file. It makes operation of your system really easy and convenient,
especially if you have a lot of flIes on your system.

The program is available for $30 from Fred Stuebner, 7 Kuchler Drive, LaGrangeville
NY 12540, (914) 223-3336.

Applix Newsletter
For some months, we have been

exchanging newsletters with the
Applix users' group in Australia.
The Applix is an Australian 68000
.1rit"'tOmputer using an Australian
OS called 1616/0S. For anyone
interested" subscriptions to the
newsletter are $10 Australian (con
tac{ your· bank for the exchange
rate); best payable by US money
order.,(~ider from Eric Lindsay, 6
Hillcrest Avenue, Faulconbridge,
NSW 2776, Australia. I particu
larly enjoyed the cartoon at the
right, which appeared in the Applix
newsletter a few months ago.

.,
;-J--

From: Star-K Software Systems Corp.
P. O. Box 209
Mt. Kisco, NY 10549

Address Correction Beg,yested

To:

