
SK*DOS 68K 
Configuration Manual 

by Peter A. Stark 

Copyright © 1984, 1991 
by 

Peter A. Stark 
Star-K Software Systems Corporation 

P. O. Box 209 
Mt. Kisco, N. Y. 10549 



All rights reserved 

Copyright © 1984, 1991 by Peter A. Stark 

All Star-K computer programs are licensed on an "as is" basis without warranty. 
Star-K Software Systems Corporation shall have no liability or responsibility to customer or any other person or entity with 

respect to any liability, loss or damage caused or alleged to be caused directly or indirectly by computer equipment or programs sold 
by Star-K, including but not limited to any interruption of service, loss of business or anticipatory profits or consequential damages 
resulting from the use or operation of such computer or computer programs. 

Good data processing procedure dictates that the user test the program, run and test sample sets of data, and run the system in 
parallel with the system previously in use for a period of time adequate to insure that results of operation of the computer or program 
are satisfactory. 

SOFTWARE LICENSE 
A. Star-K Software Systems Corp. grants to customer a non-exclusive, paid up license to usc on customer's computer the Star-K 

computer software received. Title to the media on which the software is recorded (cassette and/or disk) or stored (ROM) is transferred 
to customer, but not title to the software. 

B. In consideration of this license, customer shall not reproduce copies of Star-K software except to reproduce the number of 
copies required for use on customer's computer and shall include the copyright notice on all copies of software reproduced in whole 
or in part. 

C. Although the source code for HUMBUG and parts of SK*DOS are supplied with this manual, such code is provided strictly 
for the convenience of the purchaser in implementing SK*DOS on his system, and is not to be used for any other purpose. 

D. The provisions of this software license (paragraphs A through D) shall also be applicable to third parties purchasing such 
software from customer. 

NOTES 
SK*DOS and HUMBUG are registered trademarks of Star-K Software Systems Corp. Whenever used in this manual, the term 

FLEX is a trademark of Technical Systems Consultants Inc. 
6809 SK*DOS was formerly known as STAR-DOS. 
We provide support for SK*DOS users via the Star-K Software BBS at 914-241-3307. This computerized system operates 24 

hours a day at 300 and 1200 baud, 8 bits, no parity, 1 stop bit. Feel free to call the BBS at any time - it is a popular medium for 
interchanging ideas, opinions, and programs among the many users of Star-K software and hardware. 

This is revision 1.09 of the manual, last revised on May 25, 1991. 



BEFORE STARTING 
CHAPTER 1 - INTRODUCTION 

What Systems Star-K Supports 

CONTENTS 

The Files on the Configuration Disk(s) 
What You Need to Configure SK*DOS for Your Equipment 
What the Target System Needs 
What Kind of Host System is Suitable? 
How is SK*DOS Configuration Generally Done? 

CHAPTER 2 - A SK*DOS OVERVIEW 
What is a DOS? 
What is SK*DOS? 
Disk Format 
The Directory 
SK*DOS Memory Map 
Startup Area 
Secondary Driver Area 
Trap Flag Area 
Primary Disk Driver Area 
Console Driver Vector Area 
Getting to the above variables 
SK*DOS I/O Philosophy 

CHAPTER 3 - HUMBUG AND BOOT ROMS 
HUMBUG 
HUMBUG Commands 
HUMBUG I/O Control 
Boot ROM 

CHAPTER 4 - BIOS 
PART I-A. Driver Select 
PART I-B. Floppy Disk Drivers 
PART I-C. Hard Disk Drivers 
PART I-D. Hard Disk Initialization 
PART 2. Console Drivers 
PART 3. Get Date Routine 
PART 4. Get Time Routine 
PART 5. OFFSET Calculation. 
PART 6. Vectors which connect SK*DOS with the BIOS 
P ART 7. Miscellaneous 
Interrupt-driven I/O and keyboard typeahead 

CHAPTER 5 - THE SUPER BOOT PROGRAM 
CHAPTER 6 - THE FORMAT PROGRAM 
CHAPTER 7 - DEVICE DRIVERS 
CHAPTER 8 - ADDING DATE AND TIME 
CHAPTER 9 - OTHER MATERIAL 

Sending Binary Data Over a Serial Line 
Appending Drivers to SK*DOS 
Memory Usage by SK*DOS 
Upper!Lower Case File Names 

4 
5 
5 
5 
5 
6 
6 
6 
8 
8 
8 
8 
9 
9 
10 
10 
10 
11 
11 
12 
12 
13 
13 
14 
15 
16 
17 
17 
17 
17 
17 
18 
18 
18 
18 
18 
18 
18 
21 
22 
23 
24 
25 
25 
26 
26 
26 



BEFORE STARTING 

In general, it is important that you develop good habits when 
using any floppy disk system. It is important that you make 
frequent backup disks, since it is very easy to lose a file, or even 
the data on an entire disk, due to a slippery finger or careless 
mistake. 

Since a Disk Operating System (DOS) is an extremely 
powerful program which allows you to access the disk on a most 
elementary basis, exercising caution and making frequent back
ups is especially important. 

If at all possible, you should make backups of your original 
SK*DOS system disk before proceeding. You may do so on a 
system running SK*DOS (either 6809 or 68K) or FLEX. It may 
also be possible to make a backup on other computers if they 
allow a "mirror image" copy of one disk to another. 

SK*DOS system disks are supplied in several different 
formats. Disks configured for a specific system are generally 
supplied in the format most suitable for that system. For exam-

pIe, 68K SK*DOS boot disks are generally double-density, 
double-sided, 5-1/4", with 40 tracks, numbered 0 through 39, 
and with 18 sectors per track. 

The disks supplied with this manual, on the other hand, may 
be different, depending on the system they are intended for. For 
example, those disks intended for use with a 6809 Flex or 
SK*DOS system will be 5-1/4", single density, with 40 tracks 
numbered 0-39, and 10 sectors per track, numbered 1-10. They 
may also be supplied as 8", single density, with 77 tracks 
numbered 0-76, and 15 sectors per track, numbered 1-15. Disks 
intended for reading on an IBM or compatible PC will be 
double-density, double-sided. 

During the entire configuration process, make sure to write
protect your SK*DOS disks at all times. On a 5-1/4" disk this is 
done by putting an opaque tape strip over the notch on the side 
of the disk; on an 8" disk it is done by making sure there is no 
tape on the write-protect notch at the rear of the disk. 



CHAPTER 1 . INTRODUCTION 

This manual describes how to adapt the SK*DOSI68KDisk 
Operating System to systems different from those normally 
supported. In order to do that properly, it is important to fully 
understand how disk operating systems work and what they do. 
The next chapter will give you a short overview of SK*DOS, 
but before proceeding further, you should read the 
SK*DOSI68K User's Manual. (This manual does notrepeat any 
of the information in the User's manual.) In addition to this 
manual, your SK*DOS Configuration Pack includes one or 
more disks which contain source code for the various routines 
you will have to write or adapt to your system. These disks are 
essential to your configuration, so treat them gentIy. 

What Systems Star-K Supports 
Although most 68K systems are similar in many ways, they 

sometimes have major differences in their internal or I/O struc
ture, and in how they are programmed. For that reason, it is 
difficult for us to support every conceivable kind of system. We 
therefore provide off-the-shelf versions of SK*DOS for a small 
number of the more popular 68K systems, and rely on our 
customers to do tIleir own adaptation to more unusual situations. 

In addition, some manufacturers have provided interface 
software for adapting SK*DOS to their equipment, or have done 
the adaptation themselves. It is thus entirely possible that the 
copy of SK*DOS you have obtained is already configured to run 
on the specific equipment you have. In that case, all you need 
do is to boot tile system as described in tile User's Manual. (And 
you should try to do so ... but make sure that your master 
SK*DOS disk has a write-protect tape installed!) You may not 
even need this Configuration Manual. 

If, however, you have hardware for which a specific version 
of SK*DOS does not yet exist, then this manual will provide 
information to allow you to adapt it to yoiJr system. 

BUT NOTE: Such adaptation requires a good knowledge of 
machine language programming and disk system theory. It may 
be better for you to contact the manufacturer of your equipment, 
and ask tIlem for assistance. It is quite likely tIlat tIley already 
have similar software developed for use with another DOS, and 
that tIley can supply tile adaptation to SK*DOS with littIe effort 
on tIleir part. 

The Files on the Configuration Disk(s) 
Depending on the disk format, there may be one or more 

Configuration Disks supplied with this manual. The following 
files are on these disks: 

SK*DOS.SI9 SK*DOS in SI-S9 fonnat,less BIOS, for 
loading via a serial line 

SK*DOS.COR Binary code for SK*DOS, less BIOS 
HUMBUG.TXT Source code for a debugging system 

ROM 
BOOTROM.TXT Source code for a boot ROM 
BIOS.TXT Source code for tile BIOS 
FORMAT.TXT Source code for the floppy disk 

FORMAT program 

HDFORMAT.TXT Source code for tile hard disk 
FORMAT program 

SKEQUATE.TXT Library file 
P.TXT Source code for the printer driver program 
DATEADD.TXT Source code for tile calendar date routine 
TIMEADD.TXT Source code for the time stamping 

TIME.TXT 
PARK.TXT 
SEND.TXT 

routine 
Source code for the clock set utility 
Source code for a hard disk park utility 
Source code for a SI/S9-to-keyboard 

translator 
SENDPROM.TXT Source code for a SI/S9-to-Intel format 

translator 

What You Need to Configure SK*DOS for 
Your Equipment 

To configure SK*DOS to run on a new computer, you 
essentially need four things: 

1. The new 68K computer itself; in the rest of this manual, 
this is called the 'target' computer. Information on the minimum 
target computer configuration appears below. 

2. Some way to edit and assemble the system- specific 
software which has to be adapted to your target syStem. Al
though some of these - such as FORMAT - can conceivably be 
done on the target 68K system itself, tile others - boot routines, 
disk and console drivers - cannot, since they must be properly 
adapted before SK*DOS itself will even run. Unlike earlier 
6809 systems, where it was possible to hand-assemble code, this 
is not a practical alternative for 68K systems due to tile extreme 
complexity ofthe machine language. Hence you will need some 
other system, called tile 'host' system, on which to do tIlis 
conversion. Moreover, you will need a text editor and 68000 
cross-assembler which run on that host system. (But note: if 
your target system is already configured to run some other DOS, 
then the target system can also act as the host.) 

3. Some way to get assembled object code from the host 
system into the target system. This is best done by transferring 
object code from the host system into the target system on a serial 
RS-232C link. Alternatively, if the host system is another 
SK*DOS system (either 6809 or 68K) or Flex (6809) system, 
tIlen its disk format is compatible WitIl the 68K SK*DOS disk 
format. Then object code can be written to a disk and read in 
with tile aid of a simple disk-read routine which can be entered 
by hand into the 68K tllrget system. 

4. Finally, some sort of a ROM is needed on the 68K target 
system which (a) provides a way of initializing the system, (b) 
provides facilities for debugging 68K object code, and (c) pro
vides a way of accepting serial data from an RS-232C line and 
storing it in memory, if that is how you are transferring object 
code into your target system. At tile very least, that ROM must 
be able to enter machine code into memory, and start and stop 
programs. The more functions that program has, the better; 
ideally, it should also contain simple character input and output 



routines which can be used by SK*DOS as well. A disk read 
routine which can read a disk sector into memory would also be 
very useful. 

What the Target System Needs 
Your 68K target system needs to have the following: 
1. A minimum of 32K of RAM. Of this, about 24K will be 

used to hold SK*DOS, while the remainder is needed for the 
minimum utilities. But to be really useful, your system should 
have more memory - a lot more. To run application programs, 
you may need 128K or more (for example the stock SK*DOS 
assemblerrequires more than 128Kofmemory). In addition, you 
may want additional memory for a RAM disk. 

2. A boot ROM which will bring up the basic system and 
then load SK*DOS from disk. A general purpose ROM monitor 
may be useful, but even a special purpose 'boot- only' ROM will 
do the job. This topic is discussed further in the next two 
chapters. 

3. At least one, and hopefully two or more, disk drives with 
an appropriate disk controller. Although any kind of a disk drive 
can be used to run SK*DOS (with the appropriate driver pro
grams), you will need a 5-1/4" floppy disk drive for the initial 
work ofreading the SK*DOS disk we supply, and implementing 
SK*DOS on your system. 

4. A means of communicating with this computer, such as 
a CRT terminal. This device will probably already be able to 
communicate via your monitor ROM. 

What Kind of Host System is Suitable? 
Although many kinds of host systems will do the job, there 

are two that are most suitable - either a standard 6809 system 
(such as an SS-50 bus system, or a single-board computer such 
as the PT-69 from Peripheral Technology), or a Radio Shack 
Color Computer. In either case, the system should run either 
Flex, or preferably SK*DOS. SK*DOS for SS-50 and single
board 6809 systems is available from us; SK*DOS for the Color 
Computer is available from Computer Publishing Inc., 5900 
Cassandra Smith, Hixson TN 37343 (615-842-4600, or Telex 
5106006630). In general, an SS-50 or single-board system is 
preferable; the PT -69 is a particularly good buy if you do not yet 
have such a host system, as an assembled and tested board 
currently lists for $279; all you need is a power supply (easy to 
get), one or two disk drives and a terminal (which you probably 
already have for use with your 68K system) and the SK*DOS. 
The board and a matching SK*DOS are available from Periph
eral Technology, 1480 Terrell Mill Rd., Marietta GA 30067 
(404-984-0742). 

To go along with the 6809 system, you will need an editor 
and a 68000 cross-assembler. (Any 6809 Flex or SK*DOS 
software you purchase for your host system is also usable on 
your 68K system using the SK*DOS09 6809 simulator.) Some 
additional software which will make your configuration easier 
is supplied on your SK*DOS disk. A second-best host system 
is an IBM or compatible PC or XT computer, since we can also 
supply SK*DOS configuration source code on an MS-DOS 
configured disk. As before, you will need an editor (or word 
processing program) to prepare source code, and a 68000 cross
ass em bIer to assemble it; we can supply a 68000 cross-assembler 
for $50. In addition, you will need some communications soft-

ware to allow you to send object code out the serial port to your 
target system. 

How is SK*DOS Configuration Generally 
Done? 

Configuring SK*DOS to run on a new system can be simple 
or it can be complicated - it depends on many factors. In fact, 
the exact procedure depends on just how close that system is to 
existing systems on which SK*DOS already runs, what kind of 
host system (if any) you have, what kind of supporting hardware 
and software is available to you, and how knowledgeable (and/or 
foolhardy) you are. Since there are so many variables, we won't 
give you a specific procedure to follow. But most users will 
perform the configuration in ronghly the following order: 

a. If your target system does not have an adequate ROM (or 
if it has no ROM, or if its ROM is designed for some other 
purpose and is not suitable for booting SK*DOS), then you will 
have to prepare such a ROM for your system. Chapter 3 de
scribes how to do this. 

b. Next, you must write the BIOS, or Basic Input/Output 
System. This consists of console drivers so that SK*DOS can 
communicate with you via the keyboard and display, and disk 
drivers so SK*DOS can read and write on disks. This is de
scribed in Chapter 4. 

c. Next, you must transfer both the SK*DOS and the BIOS 
into your target system, preferably through the serial link. If all 
goes well, this will give you a running SK*DOS system. 

d. Next, you must write a FORMAT program so you can 
format new disks and write on them. If everything has worked 
so far, you can do this using an editor and 68K assembler running 
under SK*DOS on your target system. This is described in 
Chapters 5 and 6. 

e. Finally, you may add some of the frills described in 
Chapters 7 through 9. 

Things become much more complicated if you don't have a 
host system. In this case, it is essential that your target system 
have a fairly good ROM monitor program which has at least a 
single-line assembler and disassembler. To assemble your re
quired programs, you will have to combine the ROM's assem
bling abilities with your own pencil-and-paper record keeping 
to go through the following steps: 

a. A sector read routine must be written to allow you to read 
a single sector from a disk. You will need this routine to allow 
you to read parts of the supplied SK*DOS system disk. The 
sector read routine is then incorporated into a "super-boot" 
program which will allow you to load SK*DOS into memory 
from the system disk. This allows you to load SK*DOS into 
memory, but does not yet give you a run able version. 

b. Next, you must write the BIOS, or Basic Input/Output 
System. This consists of console drivers so that SK*DOS can 
communicate with you via the keyboard and display, and disk 
drivers so SK*DOS can read and write on disks. 

c. Next, you must load SK*DOS with the super-boot, and 
combine it with your BIOS to obtain a working copy ofSK*DOS 
in memory. 

d. Next, you must write a FORMAT program so you can 
format new disks and write on them. If everything has worked 
so far, you can do this using an editor and 68K assemblerrunning 
under SK*DOS on your target system. 

Although the ultimate aim may be to provide a lot of bells 
and whistles, the main idea of the above procedure is to start 



small and simple. Once you have SK*DOS up and running in a 
simple way, with just single-density and one-sided disks, then 
you can elaborate and extend it to double density, two sides, or 
even hard disks. But that time does not come until later. 

Once SK*DOS is up and running, you will be able to use its 
editor and assembler for future revisions to the system. From 
time to time, you may be supplied with update versions of the 

DOS; you will then reassemble your BIOS on your 68000 
system and append the BIOS object code to the furnished 
SK*DOS object code to form a loadable SK*DOS module. 

We will return to the configuration procedure in Chapter 3, 
after we look at some more specific details about SK*DOS, in 
Chapter 2. 



CHAPTER 2 - A SK*DOS OVERVIEW 

This section gives an overview of SK*DOS and some of its 
more important details. Before reading it, however, you should 
be familiar with the contents of the SK*DOS/68K User's Man
ual, since this manual will not repeat any of the information in 
that manual except if it is specifically needed to understand some 
specific point. 

What is a DOS? 
The Disk Operating System, or DOS for short, is a program 

which acts as a file manager for a disk. The DOS acts as a buffer 
between the disk hardware, and the software which uses that 
disk. Its primary function is to maintain a disk directory on each 
disk, fetch program or data files from the disk as needed, and 
store programs or data back on the disk. As a secondary function, 
the DOS usually also contains various subroutines, such as 
character input or output routines, for communicating with other 
I/O devices in a simple and consistent manner. 

What is SK*DOS? 
SK*DOS consists of four major parts: 
(1) The Command Processor System or CPS, which is the 

major interface to the user. When SK*DOS is active, the CPS 
monitors the keyboard and waits for user commands. At that 
time, you can load and execute programs from the disk and do 
certain other functions. In addition, the CPS has a number of 
subroutines which can be used by other programs to simplify 
input and output for the terminal. 

(2) The File Control System or FCS is the interface for 
programs running under SK*DOS. The FCS does the actual 
work of managing the contents of the disk. It has various routines 
which can be called by user programs for managing the disk 
contents. 

(3) Memory- and disk-resident commands provide addi
tional functions which work in conjunction with the CPS and 
FCS to provide an easy way of maintaining the disk. 

(4) The Basic Input-Output System or BIOS, which is the 
interface between SK*DOS and the hardware of your system. 
This manual primarily describes this BIOS and how to write one. 

Disk Format 
A typical disk, whether hard or floppy, is divided into n·acks; 

each track is then divided into sectors. The number of tracks and 
sectors on a disk depends on the type of disk and drive - a 5-1/4" 
floppy disk might have as few as 35 tracks with 10 sectors per 
track, or a Winchester hard disk might have as many as 1000 
tracks with 64 or more sectors per track. In addition, the disk 
drive might be able to use both sides of a disk, or a Winchester 
disk might have multiple disks spinning on the same spindle. As 
far as SK*DOS is concerned, the exact number of sides, tracks 
and sectors is unimportant as long as there are at most 256 tracks 
(numbered 0 through 255) per drive and 256 sectors (numbered 
o through 255) per track (but note that floppy disks, by conven
tion, have sectors numbered beginning with 1 and thus there is 

no sector 0 on any track of a floppy disk.) The exact positioning 
of those sectors and tracks is controlled by the BIOS and 
FORMAT programs, not by SK*DOS itself. 

[A short detour at this point, included more for completeness 
than because of an immediate need. We often differentiate 
between a 'logical address' and a 'physical address'. The phys
ical address is the actual address where the hardware looks to 
find a particular item; the logical address is the address where 
the software thinks that item is located. In most systems the 
logical and physical addresses are the same, but it is possible to 
make them different. In that case there has to be some sort of 
conversion table or map which converts the logical address into 
a physical address so the desired item can be found quickly. 
SK*DOS refers to locations on a disk by their track and sector 
numbers; this is the SK*DOS logical address. Usually the data 
will in fact be on that physical track and sector. But it is possible 
for the disk drivers to convert each logical track and sector 
number into a (different) physical track and sector number where 
the data is really located, and go to that track and sector instead. 
This is often done with Winchester hard disks. End of Detour.] 

Each sector in turn contains 256 bytes of data. Of these 256 
bytes, the first four are used for system information, and the 
remaining 252 bytes are usable for file data. SK*DOS thus has 
a present limit of about 16 megabytes of data per logical drive, 
computed as follows: 256 tracks x 256 sectors x 252 bytes/sec
tor = 16,515,072 bytes Although this is a limit on the size of a 
logical drive, it does not limit the size of a physical drive, since 
a larger physical drive could be treated as two or more logical 
drives. Since SK*DOS allows up to ten logical drives, 
SK*DOS's maximum present on-line storage capacity is about 
165 million bytes. Moreover, since drives can be reassigned with 
the DRIVE command, additional physical drives can be con
nected as well to provide a greater capacity. 

SK*DOS uses a linked-chain disk format. That is, the sec
tors used in files, as well as sectors which are in the so-called 
'free chain' m·e linked to each other much like the links in achain. 
Each sector contains a two-byte pointer which points to the next 
sector in that chain (unless it is 0, which indicates the end of that 
chain.) This pointer occupies the first two bytes of every sector. 
In addition, the sector also has a number, which occupies the 
third and fourth byte, and which counts the sectors within a file. 
Thus the sector format looks like this: 

Bytes 0 and 1 - pointer to next sector 
Bytes 2 and 3 - sector counter 
Bytes 4 through 255 - 252 bytes of data 
Some sectors have a slightly different format, and may omit 

the pointer and/or sector counter. All the tracks on a disk can be 
used for storing data and program files except for track O. Track 
o is special in that the sectors on this track have special uses as 
follows: 

Winchester Data Table (WINT AB) 
Sector 0 of track 0 of a hard drive contains data describing 

the partitioning of the disk and other physical parameters. This 
will be described later. 



The Super-Boot 
Sector 1 on track 0 of a floppy disk holds the super-boot 

program. This is a program which is loaded by the boot program 
(which is usually located in the boot ROM) and which in turn 
loads the rest of SK*DOS into memory. (This sector has a full 
256 bytes of data, as the first four bytes of the sector are used 
for regular data storage rather than being used as pointer and 
sector count bytes.) Sector 2 is often used as an extension of 
sector 1 if the super -boot is too long to fit into the first sector. 

The System Information Sector (SIS) 
Sector 3 is the System Information Sector or SIS. It contains 

the following information: 
Bytes 16-26 Disk name (and extension) 
Bytes 27-28 Disk number 
Bytes 29-30 Track and sector number of first free sector 
Bytes 31-32 Track and sector number oflast free sector 
Bytes 33-34 Number of free sectors 
Bytes 35-37 Month, day, and year of disk creation 
Byte 38 Number of logical tracks on the disk-l 
Byte 39 Number of logical sectors per track 

All other unused bytes of the SIS are 00. 
Sector 4 is generally empty, but is used by the COPY 

program to test whether the disk is write protected. 

The Directory 
The directory begins on sector 5 of track 0 and fills up the 

rest of the track. The first 16 bytes of each directory sector are 
empty, and the remaining 240 bytes hold directory entries. Since 
each directory entry requires 24 bytes, there is room for 10 
entries in each sector. For example, on a 5-1/4" double-density 
single sided disk, there are 18 sectors in track O. Hence there are 
14 sectors in the directory, numbered from 5 to 18, for a total of 
140 directory entries. The 14 sectors are linked (through the first 
two bytes in each sector), and the last sector has a pointer of 
00-00. When the directory is filled up, however, SK*DOS will 
take a sector from the free chain and add it to the directory, so 
that the directory can be expanded to make room for more entries 
(although this may greatly slow down the operation of the 
system if the added directory sector is on one of the inner tracks 
of the disk since the disk head will have to step in and out each 
time it accesses the directory.) 

Note several items: if the disk is double-sided, then the 
directory will also continue on track 0 of side B. The super-boot 
must be capable of reading both sides of a disk to properly boot 
SK*DOS. In some cases, disks may also be partially or entirely 
single-density (if they have been prepared for use with a 6809 
SK*DOS or Flex system). 

The 24 bytes in each directory entry are used as follows: 
Bytes 0-10 File name (8 bytes) and extension (3 bytes) 
Byte 11 File protection status (see PROTECT 

Byte 12 
Bytes 13-14 
Bytes 15-16 
Bytes 17-18 
Byte 19 
Byte 20 
Bytes 21-23 

command) 
Reserved for future use 
Track and sector number of first sector 
Track and sector number of last sector 
Number of sectors 
Random file indicator (non-zero = random) 
Time or sequence number 
Month, day, and year of file creation 

The 24 bytes of each directory entry match bytes 4 through 
30 of the corresponding FCB (except for a few empty bytes in 
an FCB) and are explained further in the User's Manual (see 
especially Chapter 13 of the User's Manual for a discussion of 
subdirectories.) 

Note also that the track and sector numbers listed in both the 
directory as well as the SIS are logical track and sector numbers, 
and may not necessarily be the same as the physical track and 
sector numbers, although in most instances they will be. When 
a disk is initially formatted, the entire directory is filled with 
zeroes. Whenever SK*DOS encounters a directory entry which 
begins with 0, it assumes that the remainder of the directory is 
still empty and has never been used, and thus stops reading. 
When a directory entry is deleted, however, the first character 
of the file name is replaced by $FF. When SK*DOS encounters 
a directory entry beginning with $FF, it skips that entry and goes 
to the next. 

SK*DOS Memory Map 
Depending on where RAM is located in your 68K system, 

SK*DOS may have to be positioned at different addresses. In 
99.9% of the cases, however, 68K systems will have RAM 
beginning at address 0 and extending upward in a contiguous 
block; in that case, SK*DOS will begin at location $1000. The 
restofthis manual will assume that this is the case. If your system 
does not fall into this category, contact us for a custom version 
of SK*DOS which is ORG'ed at a different address. 

The system memory map will then look like the following: 
$0000 to OOBF Exception vectors 
$OOCO to 09FF Reserved for use by the ROM monitor, or 

$OAoo to OBFF 
$OCOO to ODFF 
$OEOO to OFFF 
$1000 to llFF 
$1200 to OFFINI 

by other system-specific programs 
Reserved for booting 
User stack 
SK*DOS stack 
SK*DOS-to-BIOS vectors 
SK*DOS program, including the BIOS 

you supply 
OFFINI to OFFSET Temporary programs which may be 

called by the SK*DOS user 
OFFSET to MEMEND Available user memory 
MEMEND to end of memory temporary programs which 

may be called by the SK*DOS user 
Somewhere below $FFFFCooO I/O equipment 
Very top of memory space ROM system monitor such as 

HUMBUG or a boot ROM. 
Initially, first versions of SK*DOS will have OFFINI set to 

approximately $6000 to $8000; later versions will use a higher 
address as the DOS itself, as well as later versions of the BIOS, 
will become larger. 

As the above table shows, the BIOS does not have a specific 
address - the only requirement is that it lie between the top of 
SK*DOS and the value of OFFINL But both of these limits are 
actually moving targets. 

As supplied on the SK*DOS distribution disk, 
SK*DOS.COR contains the core of SK*DOS, but without any 
BIOS at all. Since it has no BIOS, OFFINI points not to the top 
of the BIOS, but to the top of SK*DOS itself. This tells you 
where to ORG the BIOS when you write it. Once the BIOS is 
appended to SK*DOS.COR, then it is up to you to change 
OFFINI so it points above the BIOS. rather than just to the top 
ofSK*DOS.COR. In thatcontext, the initial OFFINI will change 



whenever we send you an updated version of SK*DOS, so that 
you may have to set a new ORG on your BIOS and reassemble 
it to fit the latest SK*DOS version (unless you left some space 
between the top of SK*DOS and the beginning of SK*DOS in 
your prior version.) Likewise, the new value of OFFINI will 
change each time you reassemble your BIOS or make any other 
changes to it. Although this seems to complicate the entire 
picture, it has the advantage of leaving almost unlimited room 
for expansion of both SK*DOS and your BIOS. 

Although SK*DOS may change with revisions, the first 512 
bytes have been set aside for linkage to and from the boot 
program, BIOS, and optional drivers for other routines. The 
following paragraphs describe this area, with the assumption that 
we are discussing an SK*DOS which is ORG'ed at $1000. 

Startup Area 
The so-called 'startup area' contains those locations which 

are referenced when the system is first booted or restarted. (As 
mentioned earlier, SK*DOS usually starts at location $1000, and 
the following discussion assumes that. If your version has been 
specially ordered for a different address range - because you 
have no RAM at $1000, for example - then you will have to 
modify the addresses listed below to suit your configuration.) 

$1000 Cold-start entry 

$1006 Warm-stal·t entry 
These two entry points are JMP instructions which transfer 

control to the cold- start and warm-start locations of SK*DOS, 
respectively. These are generally not used, as applications pro
grams use traps to re-enter SK*DOS, but the boot program as 
well as a monitor ROM (such as HUMBUG) may use these to 
enter SK*DOS from higher level programs. 

$lOOC Get startup date 
This location contains a 6-byte JMP which points to the 

routine within SK*DOS which asks for the date upon bootup. 
This JMP is in turn called upon booting. If your system has a 
calendar IC which can provide the date automatically, you may 
provide a routine (perhaps as a part of the BIOS) which sets the 
date automatically rather than asking for it. In that case, the BIOS 
would substitute a JMP to its own date routine at $100C. 

$1012 Time entry point 
This location contains a set of three RTS instructions (a total 

of six bytes) which are called each time SK*DOS opens a file 
for writing or updating. If your system contains a clock IC, then 
you may substitute a JMP to a subroutine which gets the current 
time from the clock and returns it in D5 (this routine must 
preserve all registers!) In order to squeeze the time into one byte, 
it is encoded with a resolution of six minutes, where 

$00 = no time (invalid time) 
$01 = 12:06 - 12:11 (a.m.) 
$02 = 12:12 - 12:17 (a.m.) 
$03 = 12:18 - 12:23 (a.m.) 

$EF = 23:54 - 23:59 (p.m.) 
$FO = 12:00 - 12:05 (a.m.) 

Note the distinction between $00 (invalid or no time) and 
$FO, which is the 6 minutes beginning at midnight. 

$1018 OFFINI (four bytes) 

This location contains the initial value of OFFINI in 
SK*DOS.COR, and the modified value after you append your 
BIOS. 

$lOlC MEMINI (four bytes) 
When SK*DOS is booted, it does a memory test to deter

mine how much memory the target system contains, and then 
stores the highest valid memory address in MEMEND. 
MEMINI is used to define the top limit of that memory test. It 
is especially important in those systems which do not properly 
implementDTACK for nonexistent memory, since in such cases 
the system may hang up if SK*DOS tests a location above the 
actual end of memory. 

Secondary Driver Area 
This section comprises an area for linking to secondary disk 

drivers, RAM disks, or disk caches. These locations are for 
secondary disk drivers, and are explained in the User Manual; 
they are normally filled with RTS instructions, and need not be 
changed if you do not use such drivers. 

Trap Flag Area 
This area contains information involving the 68000' s excep

tion vector (trap) processing. 

$lOCO TRPFLG 
This byte, if non-zero, causes SK*DOS to place all of its 

own exception vectors into lower RAM; if zero, then SK*DOS 
places only the 'line 1010' vector, which is used to implement 
$Axxx instructions which call SK*DOS. This byte is also ex
plained in the User Manual. 

$10C4-l0C7 LATRAP 
This location normally contains the address $00000028, 

which is the address of the 680xO processor's "line 1010 emu
lator" trap vector (which is used to steer all $Axxx traps to 
SK*DOS). Most 680xO systems have a ROM at address $0000 
when they tirst are started, but remove this ROM and substitute 
a RAM a specified number of clock cycles later. In this case, 
SK*DOS will place the appropriate vector into location $0028 
during its initialization process, and so the typical user will not 
have to concern himself with LATRAP (or BETRAP, follow
ing). 

In some cases, however, the ROM stays permanently 
mapped, in which case SK*DOS cannot place this (and the 
BETRAP) vector into the appropriate exception vector location. 
In this case, the user will have to do three things: (1) place a 
JMP.L $0 instruction somewhere in free RAM, (2) burn this 
instruction's address into location $0028 of the ROM so a 'line 
1010' trap will steer the processor to the JMP, and (3) put a 
vector pointing to the address field of the JMP instruction into 
the LATRAPbytes in SK*DOS, thereby telling SK*DOS where 
to put its own vector; the latter would be done in BIOS in the 
same way as setting MEMEND or OFFINI. 

$10C8-l0CB BETRAP 
BETRAP is very similar to LATRAP, discussed above, 

except that it normally contains $00000008, the address of the 
bus error exception vector. It is used in the same way, and need 
only be changed by the user if the system's exception vectors 
are permanently stored in ROM. 



Primary Disk Driver Area 
Most of this disk driver area will always be used by your 

BIOS. In each case, the drivers should assume that A4 points to 
a valid file control block containing the required logical drive, 
track, or sectornumber. The addresses listed below are normally 
filled with RTS instructions. Any bytes not used can be left as 
IS. 

$1100 DICOLD Disk driver cold start 
Your BIOS will place a JMP instruction at DICOLD which 

will send SK*DOS to do a cold-start initialization of your disk 
drivers. 

$1106 DIW ARM Disk drivel' warm start 
The six bytes beginning at DIW ARM will be replaced by a 

JMP to your BIOS warm start initialization routine. 

$110C DIREAD Disk read vector 
As before, your BIOS will place a JMP here to go the 

primary disk read routine. 

$1112 DIWRIT Disk Write vector 
As before, your BIOS will place a JMP here to go to the 

primary disk write routine. 

$1118 DICHEK Disk check vector 
Your BIOS will place a JMP here to go to the disk check 

routine. 

$111E DIMOFF Disk motor off vector 
In those systems which require a programmed shutoff of the 

disk drive motor, this will be replaced by a JMP to the disk motor 
off routine. 

$1124 DIREST Disk restore vector 
Your BIOS may place here a JMP to the disk restore routine. 

This vector would normally be used only by the FORMAT 
program. 

$112A DISEEK Disk seek vector 
DISEEK is similar to DIREST but points to the disk seek 

routine. 

$1130 STPRAT Drive step rate 
Ten bytes which define step rates for up to ten floppy drives. 

(Actually, our suggested disk drivers only use the first byte to 
assign the same step rate to all floppy drives.) 

$113A VERFLG disk verify flag 
A non-zero number indicates that disk sectors should be 

verified after being written. This is a global flag for all drives, 
although it may well apply only to floppy drives in some 
systems. 

$113C DRUSED Drive used table 
Ten bytes which describe what disk drives are in use, what 

type they are, and which also relates the logical and physical 
drive numbers (see the DRIVE command in the User's manual). 
Each of the ten bytes corresponds to one of the ten logical drives 
(0 through 9). The format of each table entry is as follows: 

$00 = drive does not exist 
Left nybble: 

1 = floppy drive controller 
2 = hard drive controller 
4 = other controller 

8 = RAM disk 
Right nybble: 

The physical drive number on the corresponding 
controller. 

For example, an entry of $12 means drive 2 (the third drive) 
on the floppy controller. 

$l200 WINT AB Winchester/hard disk data table 
WINT AB is a 128-byte long table containing data regarding 

hard disks, their partitions, and other physical data. The first 64 
bytes are for hard drive A, the second 64 are for hard drive B. 
Each group is then subdivided into four 16-byte segments, one 
for each possible partition on the disk. Each of these 16-byte 
segments is laid out as follows: 

Byte 0: $FF if empty, else $20 through $27. $20 is partition 
o on drive A, $27 is partition 3 on drive B. 

Byte 1: The WD steprate code, probably 0 for buffered seek 
Byte 2: Sectors per track on hard disk, probably $20 
Byte 3: Number of heads, probably 2 or 4 
Bytes 4-5: Number of sectors per cylinder = byte 2 times 

byte 3 
Bytes 6-7: Number of hard disk cylinders in this partition 
Bytes 8-9: First cylinder number in this partition; must be 0 

for partition 0 on either drive. For example, if partition 0 has 100 
cylinders, then partition 1 starts on cylinder 100. 

Byte 10: last logical track number of partition (1 - $FF) 
Byte 11: last logical sector number of partition (1 - $FF) 
Bytes 12-13: Cylinder number to park on 
Byte 14: Cylinder to start precompensation on, (divided by 

4 for the WD-I002-HDO hard disk controller). 
Byte 15: empty, for future use. 
The 64 bytes for each drive are also written into track 0 sector 

o of the corresponding drive, except that for the first byte only 
the last 2 bits of the partition code are written. For example, 
codes 21 or 25 are written as just 01. This is so the hard drives 
can be physically switched if need be. 

The data is put into WINT AB in one of two ways -
HDFORMAT does it after formatting, and cold-start does it 
upon booting. Hence WINT AB should generally be an accurate 
picture of hard disk data. If there is data in WINTAB, then 
DRIVE will print out a summary. WINTAB is used primarily 
by the disk drivers to identify partitions, and to do the conversion 
between logical track/sector and physical track/sector. It is also 
used by PARK to decide where to park the heads when asked. 

Unlike floppies which have no sector 0, the hard disk drivers 
allow sector 0 on each track so as to provide the maximum disk 
capacity. Track 0 sector 0 is special in thatit contains WINT AB, 
and is protected in that the disk write routine in SK*DOS cannot 
write this sector. 

Console Driver Vector Area 
The following vectors are used to interface the console 

drivers of BIOS to SK*DOS. In each case, SK*DOS.COR 
contains three RTS instructions for each vector; you may leave 
these if a particular vector is not used, or replace them with a 
JMP to a routine in the BIOS if used. 

$1180 SINITV Serial port initialization 
This points to a routine which initializes the serial port. In 

most cases, the port will actually already be initialized by the 
boot ROM, so this may not be used. 



$1186 ST ATVE Keyboard status vector (via typeahead, 
if any) 

$l1D4 ST ATVI Keyboard status vector (1 char only) 
These routines should determine whether a character is 

waiting in the keyboard, and return a zero condition if not. 
Typeahead will be discussed later. 

$118C OUTCRY Output a character to terminal 
This routine should output a character from D5 to the 

terminal. 

$1192 INCHV Keyboard input with echo 
This routine should input a character from the keyboard into 

DS, clearing the parity bit to 0 and echoing it to the terminal. 

$1198 KINPUV Keyboard input without echo (with 
typeahead, if any) $l1DA KINPVl Keyboard input with· 
out echo (1 char only) 

These routines should input an 8-bit character from the 
keyboard into DS without echoing to the screen. Typeahead 
operation is discussed later. 

$119E OCNTRL Output channel control 
This routine should output a control character from DS to 

the BIOS for controlling the output channel. 

$l1A4 ICNTRL Input channel control 
This routine should output a control character from DS to 

the BIOS for controlling the input channel. 

$l1AA MONITR Re-enter monitor ROM 
This routine should re-enter the system (monitor) ROM 

without doing a major reset. In particular, this entry point should 
not reestablish the monitor exception vectors. 

$l1BO MRESET Monitor reset 
This JMP should return to the monitor ROM and do a 

complete reset, including resetting all of the monitor's own 
exception vectors. 

$l1EO KILL VI Flush typeahead buffer 
This routine should empty the keyboard typeahead buffer of 

all characters and clear all keyboard input flags. 

Getting to the above variables 
For the sake of simplicity, all of the above variables are listed 

with their actual addresses in those systems where SK*DOS 
begins at $1000. When you write your BIOS, you will know 
where SK*DOS is ORG'ed, and so you can refer to them 
directly. They should not, however, be referred to by their 
absolute addresses in normal application programs, since 
SK*DOS may be ORG'ed elsewhere on some systems. The 
starting address of SK*DOS is, however, at location DOSORG, 
which is located at 838(A6). Thus, for example, MRESET can 
be obtained with 

DOSORG EQU 838 
DC VPOINT Get A6 pointer 
MOVE.L DOSORG(A6) ,AS 

AS now points to the beginning ofSK*DOS, and the address 
ofMRESET is now $1B0(A5). 

SK*DOS I/O Philosophy 
The precise details of how the BIOS interfaces with this area 

of SK*DOS will become apparent later in the manual, and may 
be observed in the BIOS source code on the accompanying disk. 
This section will simply describe the philosophy behind the I/O 
organization of SK*DOS. 

As indicated above, there are two sets of disk I/O vectors -
the primary and the secondary set. Although the primary set is 
the main one, most often used for two to four floppy drives, 
SK*DOS accesses the secondary vectors first. The intent is that 
the secondary vectors be used for a RAM disk, a disk cache, or 
for secondary drives. The corresponding routines should simply 
look at the drive number (which is in the drive number byte of 
the FCB pointed to by A4 on entry), and perform an immediate 
RTS if some other drive is being referenced. If this occurs, or if 
the secondary vectors are still RTS instructions, which is what 
normally fills these vectors, then SK*DOS goes to the primary 
vectors which send it to the BIOS to go to the primary drives. 
Any errors, including invalid drive numbers, are then detected 
by the primary drivers. 

The secondary driver vectors are initially ten RTS instruc
tions. If you install secondary drivers, you should replace the 
first three available RTS instructions of each set with a corre
sponding JSR to the driver; the driver should then do one of three 
things: 

a. RTS immediately if the wrong drive number is specified, 
or 

b. If the correct drive is specified, and no error occurs, pull 
two return addresses off the stack and then RTS back to the 
calling program with a zero condition, or 

c. If the correct drive is specified for the secondary driver 
but an error occurs, then pull two return addresses off the stack 
and RTS back to the calling program, but with a non-zero 
condition, and with the error number both in the error byte of 
the FCB and also in the ERRTYP byte. 

Since the secondary vector area starts out as ten RTS instruc
tions, for a total of 20 bytes, there is room for up to three sets of 
JSR instructions in each, with the last JSR still followed by one 
RTS. Hence there can be up to three sets of secondary drivers; 
if all three do an immediate RTS because their drive number has 
not been specified, then the last RTS will send control back to 
SK*DOS, and then to the primary drivers. 

In all above cases, all registers must be preserved. On entry, 
A4 always points to the FCB which requires the disk operation. 

The DIRE AD and DIWRIT calls to the primary disk drivers 
are substantially different from the corresponding calls in 6809 
SK*DOS. In the 6809 version, the disk read and write routines 
in the BIOS were very elementary, as SK*DOS itself took care 
of retries in case of error, counted the number of retries, reported 
errors, and handled verification on writing. In SK*DOS/68K, it 
is assumed that the drivers will handle all this. This is a more 
valid approach, since it is obvious that retries, for example, 
should be handled totally differently in floppy and hard disk 
controllers. 



CHAPTER 3 - HUMBUG AND BOOT ROMS 

Any 68K system needs a system ROM which will properly 
initialize the system when it is first turned on. In addition, when 
first installing SK*DOS on such a system, it helps if this system 
ROM also contains some additional debugging functions which 
can be used to install SK*DOS. 

If your system already has such a ROM, then skip this 
chapter and go on to Chapter 4. If not, then this chapter describes 
two such system ROMs which you can use - a fairly complete 
ROM monitor called HUMBUG (R) which can be used when 
debugging SK*DOS, and a very simple 'boot ROM' which can 
be used once SK*DOS is properly installed and working. 

NOTE: Although the code for HUMBUG is provided as part 
of this Configuration Manual, it is not part of SK*DOS. It is 
provided for your use only, strictly as an aid in properly bringing 
up SK*DOS on your system. If you are licensing SK*DOS for 
installation on a number of systems, please be aware that your 
license does not include HUMBUG. You may include the 
'boot ROM' as part of each SK*DOS you produce under your 
licensing terms, but that license does not include HUMBUG, 
which is a separate product and must be licensed separately, if 
desired. 

These two system ROMs are described in the rest of tllis 
chapter. 

HUMBUG 
The HUMBUG. TXT file on your disk contains the code for 

HUMBUG; you must customize it for your system, and then 
assemble it into an object code module. 

The version of HUMBUG included was designed for a 
27128 EPROM which is ORG'd at $FFFFCOOO. Itis not position 
independent, and hence must be reassembled for different mem
ory locations or ROM sizes. 

The code for HUMBUG consists of five parts: 
1. A data area containing several variables needed by 

HUMBUG. Chief among these are 
PORADM - the address of the UART or other device used 

for I/O Witll the main control terminal 
PORADP - tlle address of the UART or other device used 

for I/O witll the printer 
DVECTR - a JMP instruction which points to an auxiliary, 

user -provided character output routine. 
2. 192 bytes of data (48 long words) which contain tlle 48 

exception vectors for the 68K processor. These vectors will all 
be copied into the lower part of RAM once HUMBUG is run. 

3. A jump table of entry points into some of the more useful 
routines of SK*DOS, useful for any programs you might write. 
This table, beginning at $FFFFCOCO, is a series IMP instruc
tions (to be accessed by JSR instructions) for the following: 
$FFFFCOCO Cold-start; total restart of HUMBUG. 
$FFFFCOC6 Warm-start 
$FFFFCOCC INEEE input keyboard character into 

D5.B, obey control-S options 
$FFFFCOD2 INCH7 input 7-bitkeyboard character, 

with bit 7 = 0 
$FFFFCOD8 INCH8 input 8-bit keyboard character 

$FFFFCODE 

$FFFFCOE4 
$FFFFCOEA 
$FFFFCOFO 

$FFFFCOC6 

$FFFFCOFC 

OUTEEE output screen/terminaVprinter 
character from D4.B, obey 
control-S options 

OUTCHM output screen/terminal character 
OUTCHP output printer character 
PSTRNG display the string pointed to by 

A4, up to an $04 delimiter 
OUT4HS display a 4-digit hex number 

contained in D4, followed by a 
space 

OUT8HS display an 8-digit hex number 
contained in D4, followed by a 
space 

4. The main code for HUMBUG. 
5. The actual I/O routines which you will have to write to 

adapt HUMBUG to run on your system. These are described in 
the following paragraphs. 

Your I/O routines will consist of the following parts; see the 
source code in the HUMBUG.TXT file for examples. 

a. MEMRD and PARON. These routines are only needed 
for those systems which provide parity checking for memory; 
otherwise simply keep the two RTS instructions as shown. 

In a properly designed parity checking memory, the parity 
circuitry will generally be disabled whenever a reset is per
formed. To properly initialize parity circuits the first time the 
computer is turned on, you must first read each location of 
memory and then rewrite the original number back in. This 
makes sure to write back the correct parity bit. Then you must 
actually tum on the memory parity circuit. This requires two 
separate routines - MEMRD to read all of memory and write 
each location back, and PARON to enable the parity circuits. 
HUMBUG calls MEMRD and PARON, in that order, whenfrrst 
started, and PARON only after each succeeding cold start (reset). 
If a memory error is detected during MEMRD, you may use the 
PSTRNG and OUT8HS routines to print an error message. 

These two routines may have to change some of the excep
tion vectors. For example, MEMRD may have to modify the bus 
error exception vector if it might test nonexistent memory. 
Depending on what kind of an interrupt your memory parity 
circuits generate, you will also wish to change that vector as well. 
Finally, SK*DOS itself should print out an appropriate error 
message in case of a parity error; the easiest way to achieve this 
is to change the appropriate message in the ERRCODES.SYS 
me after SK*DOS is up and running. 

b. INIPOR is a routine which initializes the console and 
printer terminal ports. The routine shown is for a DUART 
located at address $EOOlO, but obviously you may have to make 
major changes in this routine. 

The first part of INIPOR initializes the printer port, which 
in our case is simply the second half of the DU ART. In this case, 
it is initialized at 9600 baud, 8 bits, 1 stop bit and no parity. The 
second part of INIPOR initializes the main terminal port, which 
is the first half of the same DUART. In this case, however, the 
program detennines the baud rate of the tenninal and sets the 



DUART baud rate accordingly. This requires that the user type 
in a CR (carriage return or $OD character) immediately after 
turning on the computer. This is done as follows: 

The DUART is initially configured for 2400 baud, but 
suppose that the user's terminal actually works at 600 baud. 
Then the following two wavefonns show the $OD that the UART 
expects to get, and the 600-baud $OD that it actually gets (A is 
the start bit, B is the stop bit, and X is the parity bit which is 
removed by the routine and replaced by 0): 

AIOIIOOOXB 

CR at 2400 baud 

AO 0 0 1 1 1 1 X B 

I 1 ,---1----, CR at 600 baud 

Keeping in mind that the X parity bit is replaced by a 0 in 
the input routine, the DUART interprets a 600-baud CR as a 
binary pattern of 01111000 or $78, instead of its correct $OD. 
The lookup table at BAUT AB is then used to convert the $78 
actually received into the appropriate code ($55 in the case of 
the DUART) to set the port to 600 baud. 

c. INCHEK is the routine which checks for a character 
coming from the keyboard, without actually getting that charac
ter. It returns a 'zero' condition if no character is present. 

d. INCH8 waits for a character, and then returns it in D5. 
e. OUTCHP outputs a character from D4 to the printer. 
f. OUTCHM outputs a character from D4 to the main 

terminal. 
g. FLBOOT is the boot routine which reads sector 1 of track 

o of the disk into memory at location $0800, and then jumps to 
it. In case of an error, it prints an error message and returns to 
the warm-start reentry of HUMBUG. 

h. RETDOS is a routine which returns to SK*DOS when the 
RD command is typed in HUMBUG. It simply checks that there 
. is a IMP instruction at cold-start, and then goes to the warm-start 
entry point. This routine is provided here just in case it is 
necessary to ORG SK*DOS at some unusual address in your 
target system. 

Note that neither the console routines nor the disk routines 
use interrupts in any way. Although ultimately it may be desired 
to implement a type-ahead buffer or other interrupt-driven I/O, 
the ROM monitor is not the place to do it since (a) speed is not 
needed here, and (b) debugging a ROM is difficult enough 
without introducing added complexities. 

HUMBUG Commands 
Once HUMBUG is operating, it responds to two-letter com

mands from the keyboard. For example, the HE command prints 
a 'help' message which gives a short listing of available com
mands. 

Many of the HUMBUG commands, such as memory dump 
commands, require a starting and ending address for proper 
operation. These commands prompt for this pair of addresses 
with a FROM ... TO ... You may enter addresses in free form, 
and need not enter initial zeroes. For example, address 
$00000123 could be entered as 00000123, or 0123, or just 123. 
(Each number entered into HUMBUG should be followed by a 

space to indicate that it is finished.) The pair of addresses entered 
by the user is called the "FT" pair, and is stored for possible reuse 
later. 

Any valid hex address is acceptable as a response to the 
FROM ... TO ... prompt. If a CR is entered instead of the FROM 
address, then the current command will use the last FT pair 
previously entered. Any other character (except a space) will 
cancel the execution of the command and return to HUMBUG 
command entry mode. 

To use HUMBUG, simply turn on the computer and press 
CR once or twice until the initial signon appears. Then use one 
of the two-character commands below: 

AD -Formatted ASCII dump. The specified area of memory 
is dumped to the output device, sixteen bytes to a line. Each line 
is identified with its starting address. ASCII codes of7E, 7F, and 
00-IF are printed as a period, and the most significant bit (parity 
bit) is ignored. 

AI - ASCII Input. The AI command allows the direct input 
of ASCII data from the keyboard into any area of memory. All 
text following the AI is inserted into the memory area defined 
by the FT pair. If the memory area set aside is too small to hold 
all the text entered, or if the text is not properly stored (due to 
nonexistent or defective memory), either you will get a BUS 
ERROR error message, or your screen will start outputting the 
word ERROR immediately after the last possible character has 
been stored. The only way to get out of the AI mode is by the 
control-S/CR combination, or by pushing RESET. When this is 
done, the FT pair will be changed to reflect the amount of 
memory actually filled by the AI, so that a following AO or HD 
command would output exactly the same data as entered by AI. 

AO - ASCII Output. Following this command, the contents 
of the memory area defined by the FT pair is outputto the screen. 
This is normally used to output ASCII text. The AI-AO combi
nation is primarily intended for testing. 

BP - Print Breakpoints. HUMBUG allows up to four break
points to be set at the same time. The BP command prints out 
the addresses of the current breakpoints, and the operation codes 
of the instructions at those breakpoints, so that the user does not 
forget their locations. 

BR - Breakpoint set/reset. The four possible breakpoints are 
numbered 1 through 4, and can be individually set or reset. 
When the system is first turned on, all breakpoints are erased; 
subsequent RESETs do not erase the current breakpoints. The 
typical BR command has the following form: 

BR NUMBER: n ADDRESS: addr 

where the computer's responses are underlined. n is the number 
of the breakpoint you wish to set or reset; addris the new address 
of that breakpoint. Entering a new address, or hitting CR or any 
invalid entry for addr, will cancel the old breakpoint number n. 

CO - Continue. After a breakpoint is encountered in a 
program, or after a single-step execution, the program being 
tested may be continued with the CO command. After a break
point, the breakpoint should be removed with the BR command 
before hitting CO; otherwise the break will be executed again 
and the program will not go on. 

CS - Checksum. This command prints a 16-bit checksum of 
the memory area defined by the FT pair. This is primarily 
intended to check whether a program or data has been properly 
loaded, or whether it has been changed. 

FD - Floppy disk boot for 5" disk systems. 



FI -Find. PI will print out all addresses in the area of memory 
defined by the FT pair which contain a specified one-through 
five-byte constant. The typical command sequence is 

FI HOW MANY BYTES? n FIND WHAT? dd 
FROM addr TO addr 

where computer responses are underlined. n is the number of 
bytes to be found, dd are 2 through 10 hex digits representing 
the 1 through 5 bytes to be found, and addr are the two FT 
addresses specifying the address range to be searched. 

FM - Fill memory. This command allows a specified area of 
memory, defined by the FT pair, to be filled with a specified 
byte. 

HA - Hex and ASCII dump. Combination of the HD and AD 
commands, which prints ti1e contents of memory in bOtil hex and 
ASCII. This command requires a terminal widtil of more than 
64 characters; in narrower displays, the HD and AD commands 
must be used instead. 

HD - Hex Dump. Prints a hexadecimal dump of the area of 
memory defined by the FT pair. Sixteen bytes are printed per 
line, with each line preceded by the address. 

HE - Help. Prints a listing of all HUMBUG commands. 
JS - Jump to System program. This command jumps to the 

address specified after the JS, with tile CPU in system (supervi
sor) state. 

JU - Jump to User program. This command is similar to JS, 
but enters the program with the CPU in user state. 

LO - Load Sl - S9 Motorola binary format from main 
keyboard. 

MC - Memory compare. This command compares two 
specified memory areas byte-by-byte, and prints out memory 
contents for each byte which is different in tile two areas. 
Prompts ask for tile FT pair for the first area, and for the starting 
area of the second. 

ME - Memory examine and change. This command allows 
you to examine the contents of memory on a byte-by-byte basis, 
and enter new data if desired. When you type in ME, followed 
by tile address to be examined, HUMBUG will display the 
current contents of that address and wait. You may now type in 
one of the following: 

a new byte of data a space to go to tile next byte 
an up arrow to go back to tile previous byte 
anything else to quit 
MO - Move memory. This command allows the contents of 

tile memory area specified by the FT pair to be moved to another 
memory area. Memory data can be moved to higher or lower 
addresses, and the new area can overlap the original area. 
Moving is done in the correct way so tilat no data is lost even on 
overlaps. 

MS - Memory Store. This command is similar to ME, but 
stores data without first reading it out, and without verifying tilat 
it was properly stored. 

MT - Memory Test. Does a simple memory test on the 
memory area defined by the FT pair. If memory is OK, it prints 
a plus sign and returns to HUMBUG. If memory is bad, it prints 
tile address of tile bad location, a hex number representing the 
bad bit, and the actual contents of that location at tile time it failed 
tile test. (This is a non-destructive test of memory since the 
pre~ious contents of each location are restored. If, however, a 
memory test is done of I/O locations, it is possible tilat false I/O 
operation may occur, or that I/O devices may not be properly 
initialized.) 

RC - Register Change. Allows you to modify tile contents 
of the CPU registers displayed by the RE (Register Examine) 
command. When you type RC, HUMBUG will respond with 
REG:, which you should answer witil the code for the register 
to be changed. HUMBUG then enters the ME mode at the 
location where tilat register is stored. You may tilen examine or 
change the register contents, as desired. Note, however, tilat 
register A 7 cannot be directly changed. Instead, you must 
change either US (user stack) or SS (system stack). 

RD - Return to SK*DOS. This command returns to your 
DOS. Caution - do not use the RD command unless SK*DOS 
has already been booted and run. 

RE - Register Examine displays the current CPU registers. 
The Data and Address registers are displayed first, with the 
remaining registers below. An RE printout is automatically 
performed following a single-step or upon encounter.ing any 
breakpoint. Note that tile display for A 7 depends on wlncll stute 
is currently reflected in the status register; changing the current 
state will also generally change the A7 display. 

SS - single-step. Perform the next instruction of tile program 
being tested. SS uses the register contents printed by tile RE 
command; hence the SS command cannot be used to start 
single-stepping until after a prior breakpoint or single-step .has 
been performed. When an SS is performed, HUMBUG prmts 
out several lines: the first line prints out tile address of the 
instruction to be performed, while the other lines print out the 
RE dump after tile instruction has been performed. 

ST - Start single-stepping. Since SS cannot be performed 
until after a breakpoint or previous single step, tile special ST 
command is included to perform an initial single-step if the 
breakpoint is not used. ST prompts for tile address of the first 
instruction to be single-stepped, and tilen executes it in exactly 
tile same way as the SS instruction. 

WD - Winchester Disk boot. Obviously only useful for 
systems which contain a hard disk, this command is used ~or 
booting directiy from it. Note that you may have to customize 
this routine to fit the particular hardware installed in your system. 
The WD command also initializes tile DRUSED table so that the 
hard disk becomes drive 0 and a floppy drive becomes drive 1; 
you may wish to change tilis convention. 

!! - Monitor reset command. HUMBUG does not normally 
erase breakpoints except at the first power up; other resets omit 
tilis step. The !! command does a complete reset, exactly the 
same as at power up. In generul, tilis is a command which will 
not be commonly used, and hence has been assigned a non
standard command code. 

HUMBUG 110 Control 
A serial port is normally used for all monitor input and 

output. 
In addition, HUMBUG can provide an output to a second 

serial (printer) port or to a user-written output routine in RAM 
or EPROM. 

Any time til at the monitor is looking for commands, or any 
time til at INEEE or OUTEEE are called, HUMBUG checks the 
control port for a control-S break character arriving from the 
keyboard. When a control-S is detected, HUMBUG rings the 
bell (control-G) and halts all current 1/0. 

When I/O is halted, HUMBUG waits for one more character 
which is used for controlling monitor ports. This control char
acter can be one of the following: 



Carriage Return (CR) - this cancels the current program and 
forces a return to the monitor. 

C - turns the main (control) port on or off. 
P - turns the printer port on or off. 
X - does the same for a user-written port routine. 
W - turns the wait (pause) mode on and off. When the wait 

mode is on, output will stop every 15 lines to allow it to be read 
on a CRT terminal. 

Any other character is ignored. 
The C, P, and X characters toggle their corresponding ports; 

if a port is on then it goes off, if it is off then it goes on. Since 
these characters are not echoed or returned to calling programs, 
ports can be turned on and off in the middle of input or output. 

STATUS is a byte in the monitor scratchpad which indicates 
which output devices are currently active. The bit assignment in 
STATUS is as follows: 

Bit 7 Bit6 BitS Bit4 Bit3 Bit 2 Bit 1 BitO 

PortP PortC Port X Wait 

The control-S / CR combination allows many stuck pro
grams to be aborted without reaching for the RESET button. 

HUMBUG provides facilities for a user port called Port X, 
which is toggled on and off using the combination of control-S 
followed by X. 

When port X is selected, HUMBUG does an indirectJSR to 
a user written routine via location DVECTR in the scratchpad 
RAM. This location is initialized to point to an RTS during 
restart of the monitor. 

To access a user-written routine via port X, a vector must be 
placed into DVECTR to point to this routine. Output may then 
be started and stopped with the control-S / X combination. (port 
X will also be disabled automatically when a user program 
returns to HUMBUG via either the cold-start or warm-start 
re-entry points.) 

Although only one vector can be placed in DVECTR at a 
time, if two routines need be driven at the same time, this vector 
can point to another program which in turn steers output to the 
two routines. 

BOOT ROM 
The BOOTROM.TXT file on your disk contains the code 

for a boot ROM which may be used to boot SK*DOS in a system 
which does not have another ROM. This code is essentially the 
boot portion of HUMBUG, without all of the extra debugging 
tools. You must customize it for your system, and then assemble 
it into an object code module; customization is similar to that for 
HUMBUG. 

As written, the boot ROM code provides for a boot-up menu 
which gives you the choice of booting from either a floppy disk 
or a hard disk. It also provides facilities for a disk boot for an 
alternate operating system, and for parking the head on a hard 
disk. You may wish to delete portions of this code. 

If you are licensing SK*DOS for resale, this boot ROM is 
part of your SK*DOS package, and you may distribute it as a 
part of each licensed SK*DOS package you sell. Please do not 
accidentally release the HUMBUG program. 



CHAPTER 4 - BIOS 

The BIOS, or Basic Input/Output System, is the main inter
face between SK*DOS and the hardware of the target computer. 
It contains the programs which directly interface to the terminal 
(keyboard and screen), and to the disk drive, as well as a few 
other, smallerroutines. 

Chapter 2 has already explained the entry points into the 
BIOS, and how the BIOS is tied into the main body of SK*DOS. 
This chapter will therefore cover only implementation details of 
the BIOS itself. 

The BIOS will normally be ORG'ed just above the top of 
the core portion of SK*DOS. If you are unsure where SK*DOS 
ends, set the ORG at a high address, such as $COOO. Once the 
system is running, you may then use LOCATE to determine the 
top address of SK*DOS .COR, and reassemble with a new ORG. 

The BIOS code on your configuration disk is divided into 
the following major portions: 

PART I-A. Driver Select 
The sample BIOS contains both floppy and hard disk driv

ers, and this part selects the appropriate drivers. SK*DOS enters 
this code with A4 pointing to a file control block. Location 
FCBDRV of that FCB contains the logical drive number, while 
FCBPHY contains the physical drive number (which SK*DOS 
gets from the DRUSED table). This partof the code simply looks 
at FCBPHY to determine whether the left nybble is a 1 (floppy) 
or 2 (hard) disk code, and steers the machine to the appropriate 
drivers. 

PART I~B. Floppy Disk Drivers 
This section consists of the following: 
a. The Read entry point. This is essentially equivalent to the 

SREAD function of SK*DOS. It receives as argument the 
address, in A4, of a file control block which contains the drive, 
track, and sector numbers of a sector to be read into the FCB.1t 
selects the drive, seeks to the track, and reads. If an error occurs, 
then it does a restore to track 0 and tries again, up to a total of 
four times. 

b. Write entry point, quite similar to the read routine except 
for the addition of a disk verify if the VERFLG is nonzero. 

c. Error processing routine which converts FDC error num
bers into SK*DOS error numbers. 

d. The DDRIVE routine which selects the specified drive, 
sends the drive number, side, and density bits to DLATCH, and 
turns on the motor. 

e. One-second time delay to give the motor time to come up 
to speed. 

f. A disk restore routine which restores the selected drive's 
head to track O. 

g. AWAIT routine which waits 30 microseconds or more. 
This is needed since the FDC requires a delay after any command 
is sent to its command register. 

h. WNBUSY waits for the BUSY bit in the FDC's status 
register to go off after a command is finished executing. 

i. SIDENS is a routine which analyzes the current drive, 
track, and sector to determine which side or density to use, and 
then places the appropriate bits into D6 in preparation for their 
being placed into DLATCH. 

j. DSEEK which sends the commands to the FDC to seek to 
the specified track. 

k. DREAD which is the actual disk read routine. In order to 
save time, and allow both single- and double-density operation 
under programmed I/O control, A4 and A6 point to the data and 
status registers of the FDC and address-register indirect address
ing is used. As written, this routine does not count bytes, nor 
does it do a timeout. If a disk is not inserted into the specified 
drive, this routine just waits. We decided to use this approach 
for two reasons - to save time in the loop and guarantee that 
programmed I/O could handle double-density operation, and 
also to avoid problems when some programs abort if a disk is 
not present. In this way, the system simply waits if a disk is not 
present, which gives the user the time to insert a disk and 
continue normally. 

1. DWRITE, similar to DREAD, which does an actual write. 
m. DVERIF, which is used to verify that a sector just written 

is readable. Note that DVERIF does not actually check that the 
data on the disk matches the data written, only that it can be read. 
Although you can obviously change this, we decided to save the 
time that would otherwise be necessary to individually check 
every byte of data. 

n. CHKRDY checks whether the specified drive is ready or 
not. Actually, since most 5-1/4" drives do not have a ready line, 
this routine simply checks for a valid drive number. CHKRDY 
tests the drive entry in the DRUSED table to determine whether 
that drive exists. If this entry is not valid, then it is assumed that 
this drive does not exist and the routine generates a not ready 
error. 

PART I-C. Hard Disk Drivers. 
The hard disk drivers are totally separate from the floppy 

drivers, and consist of the following: 
a. HARDRD actually reads a disk sector from the disk. 
b. HARDWR writes a sector to the hard disk. 
c. CHBUSY waits if the disk drive is busy, but aborts with 

an error message if it takes more than about 5 seconds. 
d. An error processing routine to handle hard disk errors and 

convert them into SK*DOS error numbers. 
e. LPCONV is a routine which converts a logical track and 

sector number into a physical track, head, and sector number, 
and stores them in the disk controller registers. This routine uses 
data from the WINT AB table to determine the actual organiza
tion of the disk. 

PART I-D. Hard Disk Initialization 
This part is called upon cold-start of SK*DOS. Aside from 

initializing some of the hardware, its main purpose is to read the 
WINT AB data from track 0 sector 0 of either or both hard disks, 
and store in WINTAB. It is essential to make sure to test for the 



existence of a hard disk, and not get hung up if no hard disk 
exists. 

PART 2. Console Drivers 
This section contains the code for initializing and using the 

main serial port through which SK*DOS is controlled. It also 
happens to contain the code to return to the monitor in response 
to the MON and RESET commands. It consists of the following: 

a. SERINI is a routine called at cold and warm start whose 
purpose is to initialize the console port. In HUMBUG or our boot 
ROM, as in most instances, initialization is handled by the 
startup ROM, and so the SERINI shown only contains an RTS 
instruction. 

b. STAT and STATM check whether a character is waiting 
in the keyboard input. The sample code shown samples the 
keyboard ready bit of the DUART and returns a zero condition 
if no character is waiting in the keyboard buffer. It also defaults 
to the same routine for both STAT and ST ATM; a fuller descrip
tion of typeahead follows later in this chapter. 

c. OUTEEE outputs the character in D5 to the screen. Note 
that this routine also calls MOFAST to slowly turn off the disk 
motor. 

d. INEEE uses KINPUM to get a character and then OUT
EEE to echo it if the INECHO flag is on. 

e. KINPUT and KINPUM actually load a character from the 
keyboard, and strip the parity bit. Note that the routine shown 
also calls MOSLOW to slowly turn off the motor. Note that both 
entries use the same routine in the sample code; a fuller descrip
tion of typeahead follows later in this chapter. 

f. MONIEX and RESETX return to the boot ROM in re
sponse to the MON and RESET commands. 

g. KILLTA flushes the typeahead buffer, if any. A fuller 
description of typeahead follows later in this chapter. 

PART 3. Get Date Routine 
GETDAT is used only if the system has a clock-calendar 

IC. It is called when SK*DOS is being booted, and reads the date 
from the clock rather than asking for it from the keyboard. Do 
nothing if no clock IC is present. 

PART 4. Get Time Routine 
This part is used only if the system has a clock-calendar 

IC, and consists of two subparts. INTIME is called each time 
SK*DOS opens a file for writing or updating, reads the time 
from the clock IC, packs it into D5 as a single byte, and then 
returns. GETDT is called by the GETDNT function, and returns 
the date in D5 and time in D6. Incidentally, note that the clock 
itself is set with the TIME command. 

PART 5. OFFSET Calculation. 
DRVEND is an EQUate which is set to the end of the 

drivers, and which is then placed into OFFINI to signal the top 
of BIOS to SK*DOS. 

PART 6. Vectors which connect SK*DOS 
with the BIOS 

ORG statements and JMP instructions are overlaid over 
SK*DOS vectors to steer SK*DOS to the appropriate routines 
in the BIOS. An END $1000 statement then appends a transfer 

address to the BIOS, so that when it is finally APPENDed to 
SK*DOS the boot routine will know where SK*DOS begins. 

Note that three of the vectors - those for STATV1, KINPV1, 
and KILL VI - are commented out in the sample driver. Since 
the sample driver does not use interrupt-driven keyboard I/O and 
a typeahead buffer, these three entry points are not needed. In 
the SK*DOS code itself (not shown), the STAT and KINPUT 
vectors are actually JMP instructions which steer the program to 
STATVE and KINPUV instead, while the KILLVI vector is 
normally an RTS instruction. Thus commenting-out the last 
three vectors simply disables the typeahead flushing, and de
faults the other two functions to their primary routines. 

PART 7. Miscellaneous 
Finally, part 7 has miscellaneous functions which might 

pertain to a particular system. In the sample BIOS, for example, 
a different set of default floppy drive steprate codes is overlaid 
over the STPRAT table to compensate for the fact that the WD 
1772 disk controller used has different codes from those used 
for other Western Digital disk controllers. 

The sample BIOS has two features which are not absolutely 
essential, but which are very useful. First, it can read and write 
both single- and double-density disks. Although single-density 
is not expected to be common, it is present so that 68K SK*DOS 
will be able to read 6809 SK*DOS disks. Second, it can also 
double-step; that is, it can skip alternate tracks so that a 40-track 
5-1/4" disk can be read on an 80-track drive. (It can also write 
such disks, but because of the narrower track width, a 40-track 
drive will often not be able to read a disk written on an 80 track 
drive.) 

The selection of density and stepping is entirely automatic. 
The BIOS disk routines maintain two tables, one entitled 
DOT ABL for track 0, and the other entitled DST ABL for the 
remaining tracks. Each of these tables contains four bytes, one 
for each of four drives. The rightmost two bits are used to select 
the density and stepping for tllat drive. Each time tllat the read 
routine gets an RNF (record not found) error from the FDC, it 
increments the drive entry in one of these tables and tries again. 
After four tries it will therefore try all four combinations of 
density and stepping in an effort to read the sector. 

Note also that the sample BIOS disk routines do not count 
the bytes as they read or write a sector. Instead, they use the 
BUSY bitin the status register to determine when to stop reading 
or writing. This is an important feature, as it allows the BIOS to 
read sectors which are longer or shorter than 256 bytes. For 
example, the TOMSDOS and FROMSDOS utilities require the 
ability to read and write 512-byte sectors; this would not be 
possible if the BIOS counted bytes. Likewise, future enhance
ments to SK*DOS may include the ability to read and write 
longer sectors. 

Interrupt-driven 110 and keyboard 
typeahead 

Although the sample BIOS shown uses strictly programmed 
I/O, many people find interrupt-driven I/O to be preferable. 
Although most SK*DOSj68K implementations do not use inter
rupt-driven I/O, provisions do exist for providing this option. 
This section describes this in greater detail. Note that this is 
strictly optional; if you do not wish to provide it, then you need 
do nothing. 



Interrupt operation of an input port makes it possible to 
maintain a type-ahead buffer which stores keyboard characters 
that are input until they are needed by SK*DOS. While such 
operation makes using a DOS somewhat smoother, it does 
complicate matters. 

Quite aside from the difficulties associated with interrupts, 
a keyboard typeahead buffer requires special handling in three 
special situations. 

First, at the end of every line it outputs, SK*DOS checks to 
see whether a character is waiting in the keyboard. If so, then 
SK*DOS inputs it to see whether it is an ESCape, which is 
commonly used to pause or abort a program. The problem with 
this is that this empties out the typeahead buffer of characters 
intentionally entered by the user. Thus there must be some way 
for SK*DOS (or a user program such as Basic) to check for and 
accept a keyboard character without actually removing it from 
the queue. 

Second, under some conditions, special characters (such as 
a break or escape character, or perhaps a control-C, must be 
recognized by software and acted on before other characters 
perhaps still waiting in the buffer. Thus there must be some way 
for SK*DOS (or a user program such as Basic) to look at the 
very last character entered, omitting anything entered pre
viously. 

Third, it is sometimes necessary to flush the typeahead 
buffer to make sure that it is empty of any strays. This is 
especially important when a program is asking for a Yes or No 
answer before doing some potentially destructive action. Any 
stray Y waiting in the buffer might cause the action to go ahead 
when you really want to stop it. 

We therefore added three extra entry points in the BIOS to 
handle these special cases. First, there is the special routine 
KILL T A, which simply erases the typeahead buffer when called. 

Then there are two different status routines, and two differ
ent keyboard input routines. One set of routines (STAT and 
KINPUT) work only on the last character entered, while the 
other set of routines (STATM and KINPUM) work via the 
typeahead buffer. If characters are being rapidly entered from 
the keyboard, they are stored in the typeahead buffer and input, 
in their correct sequence by the latter set of routines. The former 
set, on the other hand, allow checking for and inputting just the 
last character. In this way, the last character entered is "brought 
to the head of the line" so it can be checked for control-C or other 
break characters. 

Since the typeahead code is very hardware-dependent, we 
will provide a general outline below which will have to be 
heavily customized for your particular situation. 

First, there is the typeahead buffer and its pointers: 

KBBUFF DS.B 64 TYPEAHEAD BUFFER 
KBIPTR DS.W 1 PTS TO NEXT CHAR IN 
KBOPTR DS.W 1 PTS TO NEXT CHAR OUT 

In this case, we used a 64-character buffer which was placed 
at the end of the BIOS, plus two pointers: KBIPTR points to the 
location in the buffer where to put the next character, while 
KBOPTR points to the next character to be taken out. Both of 
tl1ese are word variables, as they are used as offsets modulo 64. 

In addition, there is also a I-character buffer and its flag for 
just the very last character: 

INQCHR EQU $FFOC9F 
INQFLG EQU $FFOC9E 

In this particular implementation, these also happened to be 
used by the HUMBUG monitor, and so EQUates were used in 
the BIOS. INQCHR holds the last character received from the 
keyboard, while INQFLG is a flag which is set to I whenever a 
character is put in, and to 0 when the character is read out. 

The above locations are initialized by the code 

KILLTA CLR.W KBIPTR 
TYPEAHEAD BUFFER EMPTY 

CLR.W KBOPTR 
CLR.B INQFLG LAST CHAR EMPTY 
RTS 

This routine is called by SERINI, but it is also a self-con
tained routine which is callable from SK*DOS (by the FLUSHT 
DOS call), and the KILLTA entry point is shown in the BIOS 
code on your configuration disk. 

The BIOS now contains an interrupt service routine which 
is called each time the hardware detects a pressed key on the 
keyboard. Assuming that the character is in D5, the following 
code places it into the buffer: 

KBSAVE MOVE.B D5,INQCHR SAVE THE CHAR 
MOVE.W KBOPTR(PC),D7 OUTPUT PTR 
SUB.W KBIPTR(PC),D7 SUBTRACT 

INPUT PTR 
AND.W #$3F,D7 
CMP.W #1,D7 
BEQ.S KBFULL 

MOD 64 
FULL? 
YES MEANS 
BUFFER FULL 

MOVE.W KBIPTR(PC),D7 WHERE TO PUT 
LEA KBBUFF(PC),A5 BUFFER 
MOVE.B D5,O(A5,D7.W) PUT CHAR 

ADD.W #1,D7 
AND.W #$3F,D7 
LEA KBIPTR(PC),A5 
MOVE. W D7, (A5) 

INTO IT 
BUMP POINTER 
MOD 64 

KBSETF MOVE.B #l,INQFLG 
RTS 

RESTORE PTR 
SET THE FLAG 

* IF BUFFER IS FULL, CHECK INDIVIDUAL 
* CHAR FLAG TOO. IF SET, THEN THERE'S 
* CHARACTER OVERFLOW SO BEEP 
KBFULL TST.B INQFLG CHECK IND FLAG 

* 
BEQ.S KBSETF PROBABLY IS OK 

Some code to beep the terminal 
RTS 

The above procedure places the incoming character into 
both the 64-character type-ahead buffer and the I-character "last 
character" buffer. If both are already full, however, it still places 
the character into the last-character buffer but also beeps the 
terminal to signify character overflow. 

The BIOS now contains two different keyboard status rou
tines: STATM checks whether the typeahead buffer has a char
acter: 

STATM MOVEM.L D7-D7,-(A7) CHECK KBD 
MOVE.W KBOPTR,D7 

CMP.W KBIPTR,D7 TYPEAHEAD EMPTY? 
MOVEM.L (A7)+,D7-D7 
RTS AND RETURN 

This routine returns BNE status if tl1ere is a character, or 
BEQ if there is not. 



STAT, on the other hand, checks only whether there is a 
last-character: 

STAT TST.B INQFLG 
RTS 

CHECK KEYBOARD 
AND RETURN 

There are also two different character input routines. The 
main routine KINPUM takes its characters from the 64-character 
typeahead buffer: 

KINPUM MOVEM.L D6/A6,-(A7} PUSH 
KBITYD MOVE.W KBOPTR(PC},D6 GET OUTPUT 

POINTER 
CMP.W KBIPTR(PC},D6 CHECK 

AGAINST INPUT 
BEQ.S KBITYD 
LEA KBBUFF(PC},A6 

EMPTY IF SAME 
ELSE POINT TO 
BUFFER 

MOVE.B O(A6,D6.W},DS 
ADD.W #l,D6 

GET NXT BYTE 
BUMP POINTER 
MOD 64 AND.W #$003F,D6 

LEA KBOPTR(PC},A6 
MOVE.W D6, (A6) 
MOVEM.L (A7}+,D6/A6 
CLR.B INQFLG 
RTS 

RESTORE IT 

CLEAR FLAG 
AND RETURN 

If there is no character in the buffer (signified by KBIPTR 
and KBOPTR being the same), then this routine waits for it. It 
then updates KBOPTR to indicate that the character has been 
taken, and also clears INQFLG to signify that the last-character 
buffer is also empty. 

The second character input routine KINPUT checks only the 
last-character buffer: 

KINPUT TST.B INQFLG CHECK KEYBOARD 
BEQ.S KINPUT WAIT IF NOTHING 
MOVE.B INQCHR,DS THEN GET CHAR 
CLR.B INQFLG CLEAR FLAG 
RTS AND RETURN 

One other item which must be taken care of is to provide 
code which will enable and disable the interrupt-driven key
board routines as the user moves between HUMBUG and 
SK*DOS. The BIOS has the following storage location which 
is used to hold the appropriate interrupt vector address; the 
sample program saves the levelS intermpt vector from location 
$0074: 

LSADDR DS.L 1 REMEMBER HUMBUG LVLS ADDR 

When the user goes from HUMBUG to SK*DOS, either 
upon booting or with the RD command, SK*DOS calls SERINI 

to initialize I/O ports. We then place the following code into 
SERINI: 

MOVE.L $0074,A6 OLD LVL 5 PTR 
MOVE.L A6,LSADDR SAVE IT 
LEA KBISS,A6 POINT TO OUR 

INTERRUPT ROUTINE 
MOVE.L A6,$0074 

This code saves the existing HUMBUG level S interrupt 
vector into LSADDR, and replaces it with a pointer to the 
SK*DOS interrupt routine, called KBISS in our example. 

Going the other way, both the MONITX and RESETX 
routines in the Bios now need the following code to restore the 
HUMBUG levelS vector upon exit from SK*DOS: 

MOVE.L LSADDR,A6 
MOVE.L A6,$0074 RESTORE 

HUMBUG VECTOR 

It is essential to integrate the SK*DOS interrupt processing 
with that of your monitor, whether it be HUMBUG or something 
else. When SK*DOS returns to HUMBUG (with either the 
MON or RESET command), or returns back to SK*DOS (with 
RD), the transition has to be smooth so that the user does not 
lose control. In the sample implementation, we partially solved 
the problem by using the same locations for the one-character 
buffer INQCHR and its flag INQFLG. SK*DOS uses its own 
interrupt service subroutine (ISS), and HUMBUG uses its own 
as well. 

By sharing the same locations, however, each program can 
use a character obtained by the other's ISS. This is very import
ant, because there is another way in which the user could drop 
back from SK*DOS into HUMBUG: by using the TRACE*** 
command. While debugging an application program, he might 
be constantly moving back and forth between the two, giving 
commands to HUMBUG and suddenly executing a part of an 
application program which uses an SK*DOS input routine, then 
immediately returning to HUMBUG. Aside from modifying 
HUMBUG so it switches back and forth between two sets of 
interrupt vectors, using the same set of locations for INQCHR 
and INQFLG is the next easiest solution. 

When SK*DOS executes the TRACE*** command, it sets 
an internal flag which disables KINPUM and STATM, and 
makes it use KINPUT and STAT instead. In other words, from 
that time until the system is rebooted, the typeahead buffer is 
disabled. This prevents characters from accumulating in the 
typeahead buffer while HUMBUG is being used to debug a 
program; if this weren't done, then all of these HUMBUG 
commands would suddenly reappear on the SK*DOS command 
line the next time HUMBUG returned to SK*DOS. 



CHAPTER5-THESUPERBOOTPROGRAM 

The suggested process for booting SK*DOS from a floppy 
disk is as follows: 

1. The boot program (either resident in the monitor ROM or 
typed in from the keyboard) is used to load the super-boot 
program into memory. This boot program is very simple because 
the super-boot is always in the same place on the disk - track 0 
sector 1. 

2. The super-boot program then in turn loads SK*DOS into 
memory. The super-boot can be quite a bit more complicated 
because (a) it has to find SK*DOS on the disk, and (b) the rest 
of the disk might be single- or double-density or single-or 
double-sided. (For an explanation ofthe way SK*DOS is stored 
on the disk, see the description of the binary file format in 
Chapter 13 of the User's Manual.) 

[A short detour: Instead of using a two-step booting process 
as described here, it is possible to boot in one step, similar to the 
hard disk procedure, by having the boot ROM search the disk 
directory for the SK*DOS.SYS file, read it from disk into 
memory, and directly jump into it. This makes the boot ROM 
routine more complex, but avoids the problems of the super
boot. The disadvantage is that the one-step procedure can only 
be used with SK*DOS.SYS, whereas the two-step process is 
more general; it can be used to boot other operating systems, or 
perhaps even bypass an operating system and boot directly into 
an application program. It does not even require tile same disk 
format. End of Detour.] 

The super-boot is placed on tile disk by the FORMAT 
program; hence it is really part of FORMAT, and you can 
examine it at the end of the FORMAT source code on the 
Configuration Disk. This chapter discusses it separately, how
ever, simply because it really is a different program, and it is 
easier to describe it apart from FORMAT. 

The super-boot should be written in position-independent 
code, even though at first glance til is does not seem necessary. 
Although you know where tile boot will place it (or can force it 
to load at a fixed location if you write your own boot ROM), 
nevertheless the super-boot is assembled as part of FORMAT. 
Hence it is assembled at a different location from tllat at which 
it will ultimately load. Position-independent code solves that 
difficulty, although it sometimes makes the program longer. The 
super-boot attempts to save space by using two address registers 
as pointers, one to the beginning of the super-boot, the other to 
DLATCH. 

Disk space is a problem with the super-boot. In order to stay 
compatible with the format established for 6809 SK*DOS, only 
sectors 1 and 2 of track 0 are available for the super-boot, and 
the boot ROM normally only loads sector 1. If the super-boot 
does not fit entirely in sector 1 (which it usually doesn't), then 
tile part in sector 1 must itself load the second sector into 
memory. Hence the sector-read routine must lie entirely within 
the first sector. In writing such a super-boot program, you must 
make absolutely certain that all the routines needed to load the 
second sector (including any routines needed to handle errors) 
are entirely contained within the first sector. The end of these 

essential routines is indicated with a comment in the listing. If 
this is not possible for a particular system, then the boot ROM 
must be extended to load all of SK*DOS directly. 

In order to avoid having to search the disk directory to find 
SK*DOS, the super-boot program usually has ilie logical track 
and sector address placed into bytes Sand 6 by the LINK 
program. This is done in the variable FIRSTS in the sample 
program. Note that the program initializes tllis to 0000, but goes 
to an ERROR routine if it is still 00 00 at ilie time of execution. 
SK*DOS can never be located at track 00 sector 00, and so a 
value of 00 00 indicates that the LINK program was never 
executed. 

It is assumed that the super-boot is executed directly after 
being loaded by the boot; hence, the drive motor is on and the 
correct drive has been selected. Hence the super-boot can omit 
these steps. 

SK*DOS/68K is somewhat different from 6809 SK*DOS 
in the matter of disk density. On 6809 systems, track 0 was 
always single-density, even if the rest of the disk might be 
double-density. Hence the super-boot usually had to read both 
single- and double-density sectors. But SK*DOS/68K is now a 
few years later, and it is safe to assume that designers using an 
advanced processor like the 680xO will not limit their disk 
controllers to single-density. Hence SK*DOS/68K assumes that 
most disks, and definitely the boot disk, will be double-density 
throughout. (For compatibility, however, the BIOS disk routines 
can read both single and double density). 

Nevertheless, just in case you need to change that conven
tion, this super-boot program uses two locations which must be 
preset by the FORMAT program when it places the super-boot 
on the disk: 

DIDENS indicates the disk density, and should be 0 for 
single density, non- zero for double density. 

SECSID indicates tile number of sectors per side of each 
track after track O. The default for single density is 10 (or $OA), 
and 18 (or $12) if the disk has been formatted in double density. 

Like the BIOS, the super-boot also has provisions for dou
ble-stepping. Hence it can boot a 40-track disk on an 80-track 
floppy drive. 

While writing and testing the super-boot program, you may 
wish to remove the JMP (AS) instruction (three lines after 
DONE) and substitute a return to your monitor. This is the 
instruction which would normally jump to the beginning of 
SK*DOS; during the beginning stages your SK*DOS, though 
loaded into memory, may still not be ready to be run and so it 
might be dangerous to jump directly to it. 

IMPORTANT NOTE: It is essential that FIRSTS, the two 
bytes which tell the super-boot where to find SK*DOS, be in 
location 0005 and nowhere else. The reason is that LINK, the 
program which is used to put this track - sector information into 
the super-boot, is written for location 0005. It will put the 
location of SK*DOS into byte S of track 0 sector 1, the first 
sector of the super-boot program on the disk. 



CHAPTER6·THEFORMATPROGRAM 

Once you have SK*DOS up and running, the next step is to 
be able to format more SK*DOS floppy disks and make backups 
or copies of your disk. 

We provide the source code for two format programs: FOR
MAT is for floppy disk formatting, and HDFORMAT is for 
formatting the hard disk. This chapter discusses FORMAT; we 
leave the HDFORMAT for you to work on, since it will depend 
so much on the hard disk hardware you choose to use. 

Formatting a brand new disk writes data into every sector of 
every track of the disk, numbers each sector so the FDC can find 
it later, and initializes the disk so that the directory is empty, the 
System Information Sector contains the correct information, 
sector 1 (and possibly sector 2) of track 0 contains the super -boot 
program, and the rest of the disk is one long chain of free space. 

The sample FORMAT program is well documented, and not 
much explanation is required. It is partially table driven. The two 
tables, SDTABL for single density and DDTABL for double 
density, specify how each track will be initialized. For example, 

SDTABL FeB 10,10 

specifies the number of sectors per side on track 0 (10) and the 
number of sectors per side on the remaining tracks (also 10). The 
next entry, 

FeB 12,$FF 

specifies that the track entry will contain 12 bytes of $FF and so 
on. The last entry, 

FeB 1,4,7,10,3, ..... 

is the sector interleave table which specifies the physical layout 
of the sectors on each track; in this example, the very first 
physical sector is logical sector 1, followed by logical sector 4, 
then 7, and so on. (Interleaving is used so that logically consec
utive sectors are somewhat separated on the track so that the 
computer is given some time between reading or writing con
secutive sectors for other calculations.) 

Note that the FORMAT program contains the code for the 
super-boot program discussed earlier. 

As discussed in the User Manual, SK*DOS really does not 
care how many tracks or sectors a disk has, as long as there is a 
maximum of 256 tracks and 256 sectors per track. For floppy 
disks, however, we have standardized on the following numbers 
of sectors per track: 
Disk size Single density Double density 

3-1/2" 10 18 
5-1/4" 10 18 

8" 15 26 
Moreover, sectors are correctly numbered on both sides (that 

is, sector 11, which is on side B of a single-density double-sided 
disk, is numbered $OB, even though it may be the first sector on 
the second side. This is not universal among all computers, some 
of which may number it $01 because it is the first sector on that 
side.) 

Either way, the disk drivers must know which side to access 
for a particular sector. This is done by looking at the sector 
number - numbers above 10 on single density 5-1/4" disks, for 
example, automatically mean side B. 



CHAPTER 7 - DEVICE DRIVERS 

This Chapter augments the information on I/O drivers given 
in Chapter 140fthe Users' Manual; please read that chapter first. 

Device drivers are installed by the DEVICE program, and 
are not meant to be directly executed by themselves. Hence they 
carry a DVR extension rather tllan a .COM extension (and will 
probably need to be renamed after assembly.) 

Since the driver is very tightly tied into the device selection 
logic of SK*DOS, it must be written in a particular way. We 
therefore supply several sample drivers; in writing a new driver, 
you should start with one of the existing drivers and modify it, 
rather than try to start anew. This Chapter describes the organi
zation of the ADM-3A driver. 

The driver program is divided into a header portion, and then 
13 parts as follows: 

The Header 
This is simply the beginning of the program with some 

comments. Since the driver does not make use of normal 
SK*DOS entry points, it does not need to use the SKEQU ATE 
library file; on the other hand, it may need a few special equates. 
For example, the sample ADM-3A Driver contains the equate 
DTBAUD EQU 51, meaning that the baud rate byte for each 
particular device is byte 51 of the corresponding device's entry 
in the device descriptor entry. 

As noted in Chapter 11 of the Users' Manual, the device 
descriptor table DEVT AB starts at 3278(A6), or byte 3278 of 
the user data area pointed to by A6. The baud rate entry in the 
table is given as BAUDRT at 3329+80*DN(A6). For device 0 
(which begins the descriptor table), this address is just3329(A6), 
which works out to be byte 3329-3278 or byte 51 of that entry. 
Each succeeding device entry begins 80 bytes later, and in each 
case the baud rate byte is byte 51 of the corresponding entry. 
Hence the EQU statement in the device driver points to byte 51. 

Part 1 - the Beginning 
Part I of the driver contains only six bytes. The first two are 

a BRA instruction which is never executed, while the second 
two bytes are the version number. This code is only needed by 
the VERSION command, which can be used to check the version 
number ofthe driver. The BRA is there because VERSION looks 
for it. 

The last two bytes contain hex $4452, the ASCII code for 
DR. The DEVICE driver looks for a DR in these two bytes to 
make sure it is installing a valid device driver. 

Part 2 - Length Specification 
The DEVICE installation program must know the length of 

a driver to determine whether it can be loaded on top of an old 
driver (if the new one is the same size or smaller), or whether it 
must be loaded in a new location (if it is longer). The LENGTH 
DC.L THEEND line puts in a byte which indicates the driver 
length from the very beginning (namely an ORG of $0(00) to 
THEEND, an equate at the very end. 

Part 3 - Entry point pointers 
Eight four-byte pointers which indicate ilie entry points, 

relative to the beginning of tlle driver. The DEVICE program 
will add to these vectors the actual load address, and then put 
these eight vectors into the driver descriptor table. 

Part 4. The actual ORG 
All of the preceding data is used by the DEVICE program, 

but not actually loaded into memory with the driver. Hence the 
actual driver code is preceded by an ORG $0000 statement 
which redefines a new origin for the actual driver. 

Part 5 - Device driver data area 
This part of the driver is a data area which holds information 

used by DEVICE or used by the driver itself. It consists of the 
following: 

13 bytes which contain the name of the driver. This is used 
only by DEVICE when it prints out the device assignments. 
These bytes are set as part of the driver during assembly. 

1 byte which holds the device number. This tells the driver 
what device number it is assigned to so itcan return that number 
if asked by a user program. This byte is initialized by the 
DEVICE program when it loads the driver. 

4 bytes which hold the address of the corresponding device 
descriptor entry in DEVT AB. These bytes are initialized by the 
DEVICE program when it loads the driver. 

1 byte which, for serial device drivers, holds the baud rate 
actually used. This may be different from the baud rate set in the 
device descriptor if a default value was used because the device 
descriptor baud rate was not set or was set incorrectly. This byte 
is set by the driver during initialization. 

1 spare byte, required to align the next part of the code on 
an even boundary. More bytes may be added here if necessary. 

Part 6 - Initialization 
The next part of the code is called by DEVICE after it loads 

the driver, and is supposed to initialize the driver and its hard
ware. In the sample ADM-3A driver it also reads the desired 
baud rate from the device descriptor table and sets the hardware 
to match. 

Part 7 - Input port status check 
This routine is to check tlle input port, if any. If the port has 

no character ready (or if it is a purely output port) it is to return 
a zero condition. If a character is ready, then it should return 
nonzero and also return the number of characters in D5. The 
latter number is not used by SK*DOS at this time, but may be 
used in future versions with interrupt-driven drivers. 

Part 8 - Input a character with echo 
This routine is to input a character and also echo it to the 

output on the same device, if any. All 8 bits are input. 



Part 9 . Input a character without echo 
This routine is to input a character without echoing to the 

output port. All 8 bits are input. 

Part 10 . ICNTRL input channel control 
This routine implements ICNTRL for this device, except for 

ICNTRL functions 0000, 0001, and FFFx, which are handled 
internally by SK*DOS. In the sample ADM-3A driver, only 
four functions are implemented: 

$0002 returns the raw 8-bit character (same as input without 
echo) $0003 enables function keys on the keyboard $0004 
disables functions keys $0005 returns a special (decoded) char
acter. 

The sample ADM-3A driver treats the special characters as 
follows: When called with function 0005, the driver waits for a 
character from the keyboard. If the character is not an escape, or 
if it is an escape that is not immediately followed by another 
character, then it returns the character in D5 as usual, with the 
left-most 24 bits 0 D5 cleared. 

But if the escape is immediately followed by another char
acter, then the driver looks up the combination of two characters 
in a conversion table. If the two- character combination is in the 
table, then the driver returns the two characters in D6, and also 
returns a code in D5 which indicates the combination received. 
For example, in the ADM-3A the combination of escape (hex 
$IB) and $35 indicates function key F5. The driver will then 
return 00000105 in D5 and OOOOlB35 in D6. The fonner (note 
that bit 8 is set) indicates F5, while the latter gives the actual 
combination of codes received. 

If the combination is not in the table, then the driver returns 
the error code $OOOOOIFF. 

Part 11 . Output device status 
This routine returns a zero if the output device is not ready 

to output (or if the device is an input-only device); otherwise it 
returns a nonzero condition. 

Part 12 . Output a character 
This routine actually outputs a character to the output port 

when ready. 

Part 13 . OCNTRL output channel control 
This routine implements output channel control. As for 

ICNTRL, codes 0000, 0001, and FFFx are handled internally by 
SK*DOS, so only the others need be implemented. The sample 
ADM-3A driver shows how a number of various codes are 
implemented using an output character conversion table. The 
sample driver uses a technique which may not work for all cases, 
and may have to be changed for some applications. Basically, 
the character table consists of pairs of words: the first word (such 
as $00(0) is the OCNTRL code being implemented, while the 
second word (such as $OOlA) shows the character actually sent 
to the device (in this case $lA orcontrol-Z). If the second word 
is larger than $OOFF, then the nlllnber is interpreted as a pointer 
to a more complicated program which handles the command. 

Note that this depends on (a) the terminal needing only 
single-character codes, and (b) the driver being large enough that 
all pointers are more than $FF. If this were not true, then a 
slightly different approach to table lookup would be needed. 

Part 14 . The End 
Finally, tile THEEND instruction provides a label which is 

used in defining the lengtll of tile driver. Note tllat there is no 
transfer address (i.e., no label after the END command). This 
precludes the possibility of someone accidentally trying to exe
cute the driver by giving its name as a command. 



CHAPTER 8 - ADDING DATE AND TIME 

A clock/calendar IC is a very useful adjunct to a computer 
system, and SK*DOS can make quite good use of one. This 
Chapter discusses three programs which deal with it. 

In addition to a program to read out and set the clock, 
SK*DOS/68K has built- in hooks to use a clock/calendar IC for 
two functions: 

1. To automatically enter the date when booting, so it is no 
longer necessary to type the date in, and 

2. To substitute the time instead of a sequence number for 
each file in the directory. 

Reading out and setting the clock is done with a program 
called TIME; your Configuration Disk contains the source file 
TIME.TXT which shows how TIME was implemented for the 
PTA 68K computer from Peripheral Technology Associates, 
which uses the Motorola MC146818 clock/calendar IC. (Inci
dentally, the TIME command displays the current time and date, 
while TIME S allows you to set the clock.) 

The programs needed to read the date during booting, and 
to add the time to directory file entries, can be implemented in 
one of two ways - they can be integrated directly into the BIOS, 
or else can be added on later. 

The sample BIOS on your Configuration Disk shows how 
to integrate these routines into the BIOS. As in TIME.TXT, these 
are written for the MC146818 Motorola clock. 

The other approach, that of adding on these programs later, 
is illustrated in the filesDATEADD.TXT and TIMEADD.TXT. 
These files (also for the Motorola MC146818) are intended to 
be assembled and then APPENDed to the main SK*DOS.SYS. 

When adding these routines to BIOS, you need not worry 
about where to place them. But when adding them later, you 
need to take care. As shown, the DA TEADD routine fits into 
some dead space in SK*DOS at $lFOO-20CS. This area is part 
of an internal FCB used only for input redirection, and would 
normally not be used while the system is being booted. After 
booting, the DATE ADD routine is no longer needed and so can 
be overlaid. 

TIME ADD is needed continuously once SK*DOS is run
ning, and so has to be placed into free memory. As the comments 
in TIMEADD.TXT show, you should do a LOCATE on 
SK*DOS.SYS to find the top memory address, then ORG 
TIME ADD just above that, and finally make sure to change 
OFFINI to point - to an even location - above the TIMEADD 
routine so as to protect it from user programs. The method of 
doing this is shown in the source code file TIMEADD.TXT. 



CHAPTER 9 - OTHER MATERIAL 

This section describes other material which you should 
know, and yet which doesn't seem to fit into any of the other 
chapters. 

Sending Binary Data Over a Serial Line 
The recommended method of implementing SK*DOS on a 

new target system is to use a host system for editing and 
assembly, and then to transfer binary code from the host to the 
target computer over a serial link. The most convenient way is 
to set up a connection somewhat like this: 

CRT 
terminal 

or Host Target 
keyboard/ computer computer 

video 
adapter 

In tlus configuration, the host can output binary data directly 
to the target computer. Furthermore, by using a communications 
program, the host can act as an intennediary to allow the CRT 
terminal to 'talk' to the target computer. Butifthe host computer 
uses a serial CRT terminal, then this arrangement requires that 
the host have two serial ports. An alternate method is to provide 
some switching as follows: 

CRT 
terminal 

Host 
computer 

Target 
computer 

In the preceding diagram, a 3P3T switch is wired so that the 
three positions do the following: 

Position 1. CRT tenninal is connected to the host Position 
2. CRT tenninal sends to host, host sends to target, target sends 
to CRT terminal Position 3. CRT tenninal is connected to the 
target 

Position 2 is useful for downloading from the host to the 
target, as the CRT tenninal can send the download command to 
tlle host, the host's binary output goes to the target, and the CRT 
terminal monitors the output of the target computer to see that 
all is well and no errors are generated. 

There are two more-or-less-standard formats among soft
ware developers for sending binary data from one place to 
another - the Motorola format (which we call the SI-S9 fonnat) 
and the Intel hexadecimal standard. The Motorola format is 
generally used by 68000 cross-assemblers for their binary out
put, and is also accepted by the La command of HUMBUG. A 
typical line of SI-S code (usually preceded and followed by 
carriage return and line feed) might be as follows: 

S106100089ABCDE8 
The meaning of this line is as follows: 

SI Binary data follows with 2-byte address 
06 6 pairs of digits follow, representing 6 bytes 
1000 2-byte address where to load following data 
89ABCD 3 bytes of data to load starting at 1000 
E8 1 's complement checksum of each byte, not 

including the S 1 or tlle checksum itself 
The count (06 in the above example) can range from 00 to 

FF, but is usually $13, representing $10 bytes, a 2-byte address, 
and a I-byte checksum. 

The S 1 code at the beginning of the line is a marker which 
indicates that data follows. There are seven such markers: 
SO File name header (ignored by HUMBUG) 
SI 2-byte load address is used 
S2 3-byte load address is used 
S3 4-byte load address is used 
S7, S8, or S9 signify end of data 

The S7, S8, and S9 codes often are followed by a transfer 
address, but HUMBUG's La command ignores the transfer 
address and simply uses these codes as an end of file marker. 

Since most 68000 cross-assemblers output an SI-S9 file 
directly, such a file can be downloaded into HUMBUG by 
simply listing such a file and sending its output to the target 
computer's serial input. 

There are two other auxiliary files on the Configuration 
Disk, however, which convert the SI-S9 fonnat into two other 
formats which might be of use. 

SEND is a 6809 program which runs under 6809 SK*DOS 
(or Flex). Its job is to take a SI-S9 - fonnatted binary file and 
output it to the terminal port in a slightly modified way. It was 
originally developed for use with the ESB-I 68008 computer 
from Emerald Computers. We needed a way to download binary 
data into this system through its serial port. Although the ESB-I 
accepts SI-S binary data directly, it does so through a second 
serial port at 300 baud, and we decided we needed a faster way. 
The main port, which can run at 9600 baud, does not accept 
S I-S9 formatted data, but does accept data (presumably from a 
keyboard) in the format 

MS aaaa dd dd dd dd ••• 

That is, the letters MS, followed by a load address, followed 
by a string of bytes separated by spaces, ending with a carriage 
return. So we simply wrote SEND, which outputs in exactly this 
format, but with a long delay after each carriage return to allow 
the ESB-I ROM to print its prompt. When using SEND, the 
ESB-I's ROM monitor receives the data as if it came from the 
keyboard. 



It's unlikely that you will use SEND exactly as provided, 
but it is quite possible that you may find it useful if your 68K 
system does not support a SI-S9 input mode, yet does allow 
some other way of setting memory. Relatively simple modifica
tion of the program should be all that is needed. 

SENDPROM is a variation of SEND which outputs in Intel 
binary format. This version was developed for sending binary 
data from a 6809 SK*DOS system to the Heath/Zenith EPROM 
programmer. 

Appending Drivers to SK*DOS 
Once you have BIOS written, you should save it in a binary 

file and append it to SK*DOS.COR. The resulting file should 
then be renamed to SK*DOS.SYS and LINKed so that it will be 
used for booting. 

Assume that you have BIOS saved in a file called 
BIOS.BIN. (There are several ways to get it into this kind of a 
binary file - either assembling it with a resident assembler, or 
else downloading it into memory from the host computer and 
then using SA VE.) DIDRIV.BIN should contain a transfer ad
dress of $1000. 

Making sure that there is no SK*DOS.SYS on the disk we 
type 

APPEND SK*DOS.COR BIOS.BIN SK*DOS.SYS 

(you may want to add 1. in front of file names to use a different 
drive) to append the two programs together into a single file 
called SK*DOS.SYS (note that BIOS had a transfer address of 
$1000, so the resulting file will also. 

Next, use 

LINK SK*DOS.SYS 

to link it into the super-boot program. The result is a bootable 
disk. 

Memory Usage by SK*DOS 
Although the actual SK*DOS Level I code occupies only 

addresses from $1000 and up, and the cold-start address is 
$1000, some additional memory is used during booting and by 
the stack. 

The boot ROM will load the super-boot into lower memory, 
(address $0800 in the sample ROM programs). 

SK*DOS maintains two stacks - one just below $1000 for 
its own use, and another just below $OEOO for application 
programs and disk-resident utilities. The DOS stack will never 
extend down past $OEOO, while the utility/application program 
stack will generally not go down below $0800. Hence the 
super-boot will usually stay safe and can be used to reboot the 
disk (if your system ROM has a command to jump to it.) Note, 
however, that the super-boot will only boot the disk it was loaded 
from, as it contains the starting track and sector of SK*DOS on 
that disk, and another boot disk is likely to have SK*DOS in a 
different place on the disk. 

Upper/Lower Case File Names 
Commands and file names entered in SK*DOS may be 

entered in either upper or lower case, but are automatically 
converted to upper case. There are times, however, when it is 
desired to use lower case file names or extensions (such as when 
using C compilers). SK*DOS does allow that. 

SK*DOS contains a location called FNCASE which is used 
by the GETNAM routine as follows: Each character submitted 
for a file name is checked against the value of FNCASE; if it is 
larger than FNCASE, then it is converted to upper case by 
subtracting $20. FNCASE is initially set to $60, so that all lower 
case letters (whose ASCII codes begin at $61) are converted to 
upper case. If you change FNCASE to $7F, then lower case 
letters will be used without change. 



NOTE 

As you probably know, software and documentation are 
subject to constant change. The fifth revision of a program or 
manual is seldom the same as the first. 

Even though we have revised this manual several times since 
its first printing, it is quite possible, even likely, that it still has 
omissions and errors. Even more likely, it probably has fuzzy 
areas which seem perfectly logical to those of us in the know, 
but which are totally incomprehensible to someone not already 
familiar with SK*DOS. 

Name: 

Street Address: 

City, State, ZIP: 

Here are errors I found: 

Here are areas I think you should cover better: 

Here are things you forgot: 

This is what I think of SK*DOS: 

We are anxious to clear up any such problems, and invite 
your help. If you do spot any such omissions, errors, inconsis
tencies, or just plain fuzzy thinking in this manual, please let us 
know and we will try to correct them. 

The best way is by returning this sheet as soon as you have 
had a chance to read and use this manual. 

Thank you for your help. 


