

how to 'build
a working

digital
computer

t i I
!!I

r ~
"

,.

I I It
.+. r l

Edward A/casser
James P. Phillips
Allen M. Walk

HAYDEN BOOK COMPANY, INC., NEW YORK

Second Printing, 1968

Copyright © 1967, 1968
Hayden Book Company, Inc. All rights reserved. This book or any
parts thereof may not be reproduced in any form or in any language
without permission of the publisher. Library of Congress Catalog
Card Number 66-14495.

Printed in the United States of America

Preface

The new and exciting field of digital computers has expanded so much
in recent years that almost everyone is now affected by it. The need to
understand computers experienced by people of widely diversified vocational
and academic backgrounds has presented one of the most challenging jobs
of teaching ever to be tackled by authors, lecturers, and teachers alike.

As with any new and complicated subject, the first texts to be introduced
are usually effective at the college and postgraduate levels. This book, How
to Build a Working Digital Computer, is the result of an endeavor to present
to the non-engineer the basic facts concerning digital computers, their uses,
and how they work. It is specifically aimed at a reader with an interest or
need to understand this subject but with no formal training or education in
computer technology. How to Build a Working Digital Computer is equally
aimed at hobbyists, technicians, secondary school students, and college
students with no computer background.

In presenting the topic of basic computer technology, a. unique method
of "learning by doing" is employed. Since there is no effective substitute
to proving out theory in the laboratory, this book shows the reader how to
construct a working model 9f a digital computer, using simple inexpensive
components usually found around the house or in a neighborhood electrical
parts store. This computer is divided into basic units corresponding to the
actual working sections of a computer. The design and operating principles
of each computer section are explained in detail using examples and simple
experiments and the corresponding model computer unit is then constructed
and used to illustrate the theory discussed in the text.

In this manner, a complete working digital computer, able to add, subtract,
multiply and perform many other complicated functions at the reader's discre
tion, is constructed. The text then discusses the topic of programming and
several basic computer programs are developed for use with the model
computer. The reader may write his own programs, load them on his own
working computer, and run the programs, providing experience and proving
the principles expounded in the text.

With this text, hobbyists, students, technicians, and just ordinary people
will find a simplified, enjoyable, and effective approach towards learning and
really understanding the basic principles of modern digital computers.

We would like to acknowledge the work done by Scalor Publications in
helping to produce the art and tables used in the text.

June, 1967 THE AUTHORS

v

Table of Contents

Chapter 1. Introduction

The Digital Computer, 1 A Brief History of Numbers and
Calculators, 2 Computers in the 20th Century,S Organiza
tion of the Computer, 6 A Sample Computer Program, 8

1

Chapter 2. Communicating with the Computer 13

Number Systems, 13 The Binary Number System, 15 Encod
ing, 16 Decimal to Binary Conversion, 17 The Encoder, 18
Binary to Decimal Conversion, 21 The Decoder, 22
CONSTRUCTION DETAILs-Encoder, 23 Decoder, 31

Chapter 3. Computers and Logic 41

Symbols, 42 Truth Tables, 43 Logic Circuits, 45 Truth
Evaluator, 47 Experiments with Truth Tables, 48 Boolean
Algebra, 51 Minimizing Terms, 53 De Morgan's Theorem,
55 The UN Problem-An Experiment in Logic, 57
CONSTRUCTION DETAILs-Truth Evaluator, 59 Battery Holder,
62 UN Problem, 63

Chapter 4. Computer Arithmetic

Binary Arithmetic, 65 Basic Rules, 65 Adding Binary Num
bers, 67 Subtraction, 71 Complementary Numbers, 74
Multiplication and Division, 75 Arithmetic Unit, 75
CONSTRUCTION DETAILs-Arithmetic Unit, 81

65

Chapter 5. Storage Devices 87

Basic Concepts, 88 Computer Words, 88 The Core Mem
ory,89 The Drum Memory, 91
CONSTRUCTION DETAILS-Core Memory, 93 Drum Memory,
97

vii

viii How to Build a Working Digital Computer

Chapter 6. Computer Control

The Computer Units-A Review, 105 The Control Unit, 106
The Complete Instruction Repertoire, 108 Wiring the System,
109 Check-Out Procedures, 111 Operating Procedures, 113
CONSTRUCTION DETAILs-Control Panel, 114 Junction Box,
122 Common Tie-Point' Terminal Strips, 124

Chapter 7. Programming Our Computer

The Programming Process, 126 Using Octal Codes, 129
Devising a Simple Program, 132 Programming Multiplication,
133 Programming Division, 145 Readout, 155 Formulat
ing the Program for Transfer to Drum, 165

Appendices, 167

Index, 173

105

126

Chapter 1
INTRODUCTION

THE DIGITAL COMPUTER

The progress of man is directly related to the tools and imple
ments he uses in his work. The extremely. large and rapid strides being
made today in the development of our technology may be attributed
in part to the coming of age of the electronic, programmable, digital
computer. This is a "tool" that can be taught or programmed to solve a
variety of complex problems rapidly and with great accuracy. In this
text, we will detail the construction of a working model of a digital
computer and demonstrate the operation of this important machine
through discussion and experiment.

Modern computers can perform billions of basic arithmetic opera
tions such as addition or subtraction each second without error or
fatigue. They are able to manipulate extensive amounts of data at speeds
that operators of calculating machines cannot match. Accuracies achieved
are typically rated in terms of one part in a million. Such awesome capa
bilities have led to use of computers in countless areas. As of April,
1965, there were approximately 18,000 computer installations in this
country serving the government, science, schools, and industry.

The Internal Revenue Service has estimated that tax revenues
were increased by 52.5 million dollars in 1964 because computers
were used to process Federal income tax returns. Using computers to
make blood tests in laboratories enables technicians to perform tests
in two minutes that would ordinarily take two to three hours. A pub
lishing firm that now uses a computer to process book orders estimates
that it has reduced its order-processing time by 75 percent. The spec
tacular achievements of our various space programs can be directly
related to the computer control of different phases of each operation.
The highly satisfactory performances of the Ranger, Gemini, and
Mariner missions would not have been possible without computers.

The influence the digital computer is exerting on our society is
demonstrated every day on the front pages of our newspapers and. in
countless articles and columns relating new computer applications. The

. potential future applications of the digital computer will make this pres-
ent widespread use seem small. Before proceeding with our study of the
computer, it is well to understand the history of the computer's develop
ment and the relationships between this development and the culture
and technology of these times.

1

2 How to Build a Working Digital Computer

A BRIEF HISTORY OF .NUMBERS AND CALCULATORS

In earliest times, man most likely counted on his fingers. If he
wamed to indicate that he had killed two tigers, he would hold up two
fingers. His earliest counting methods were probably limited to totals
below five. In time, sticks and pebbles were used to extend the range of
counts, but the simplicity of the existing social organization kept such
usage at a very low level of sophistication. Number symbols and methods
of computation were unknown and not needed.

As the farmer and tradesman superseded the hunter, man's require
ments for counting and recording his counts for future use became more
complex. Simple tallying methods were replaced by systems in which
different symbols were used to represent different counts and these sym
bols were added and subtracted. The early Egyptians (circa 3400 B.C.)
devised such a number system using symbols called hieroglyphics. The
hieroglyphic symbols representing the numbers 1 through 10 are shown
in Fig. 1-1. It is interesting to note the relationship between these writ
ten symbols and counting tallied on the fingers on a hand.

The Romans developed a system of numbers, also illustrated in
Fig. 1-1, which should be familiar to you because of its use on clock
faces, as chapter numbers, and so on. Calculating with this number
system was slow and awkward since large numbers required many
symbols. For example, the number 9876 in Roman numerals is
MMMMMMMMMDCCCLXXVI (M = 1000, D = 500, C = 100,
L = 50, X = 10, V = 5, I = O.

The symbols of the numbering system that we use today, the deci
mal, are probably of Hindu-Arabic origin and are therefore referred to
as Arabic numerals. Figure 1-1 shows early Hindu and Arabic number
symbols for the period about the year 900 A.D. The most important
mathematical development attributed to the Hindus is the origin of the
concept of the zero, O.

EARLY EARLY EARLY EARLY
MODERN EGYPTIAN ROMAN HINDU ARABIC

/ / ::r: 2 /

.J- II 7L .z \"
3 II/ :zzr ~

,
f 1/1/ :zz '1/ C
S 11/ .:J[Y 0 /I

{, III :;zr S 7 /II

7 1111 7lT 7 V II/

J' II 1/ nIT < A 11/1

'1 III 7Z <: q III
III

/0 /l :r:

Fig. 1-1. Early number symbols.

Introduction 3

Fig. 1·2. An Egyptian sand calculator.

The development of various number symbols and counting systems
was matched by the introduction of counting and calculating aids other
than sticks or pebbles. For example, to perform calculations the
Egyptians developed a sand calculator consisting of columns of grooves
in the sand, as illustrated in Fig. 1-2. The right-hand groove repre
sented quantities from 0 to 9, depending upon the number of pebbles
contained in the groove. For example, if four pebbles were contained
in the groove, the number represented was 4. The next groove to the
left represented 10 times the number of pebbles in the groove. Thus,
if there were three pebbles in this groove and one in the right-hand
groove, the number 31 was represented. Each succeeding groove to the
left represented numbers 10 times that of the preceding groove. Hence,
the grooves represented the 1 's, 10's, 100's, and 1000's columns, re
spectively, and so on. This system of counting, the decimal system, is the
basic system we employ today.

The Egyptians were not alone in the development of simple calcula
tors. Around 600 B.C., the Chinese developed a calculator called an abacus
(Fig. 1-3). This device consists of a wooden frame strung with beads
on wire columns. Each column represents an order or place in the
decimal numbering system in the same way the grooves represented
decimal places in the sand calculator. The abacus is still used today and
skilled operators manipulate it at speeds comparable to those of a
mechanical or electric desk calculator.

Fig. 1-3. An abacus.

4 How to Build a Working Digital Computer

As civilization developed, calculating devices became more sophis
ticated and, correspondingly, demanded a higher degree of intelligence
and knowledge from their users. The design theory and potential
range of applications of some computing machines developed before
the 19th century were similar to that of present-day computers, but
the efficiency and speed of the machines was very low.

The first truly mechanical calculator, invented by Blaise Pascal,
a French philosopher and mathematician, around 1642, was an adding
machine that operated in the decimal numbering system (Fig. 1-4).

Fig. 1-4. Pascal's calculator.

It consisted, essentially, of a series of wheels which added and carried
10's. Shortly after Pascal's invention, another philosopher and mathe
matician, Gottfried von Leibnitz, developed a gear-operated calculator,
the stepped reckoner, which allowed for the carry operation between
orders or places (Fig. 1-5). In Pascal's machine, multiplication was
performed by repeated addition; in Leibnitz's machine, multiplication
could be performed directly. Both machines were operated manually.

Fig. 1·5. Von Leibnitz's stepped reckoner.

In the early 1800's, an English mathematician, Charles Babbage,
worked on an "engine," or calculator, that would solve complex mathe
matical problems automatically. However, the technology of his time was
not capable of producing the accurate parts required to make the calcu
latorwork.

Introduction 5

Around 1890 an American scientist working for the Census Bureau,
Herman Hollerith, devised a card containing punched holes that could be
read or interpreted by an electrical device (Fig. 1-6). Each hole punched
into the card represented a different piece of information. After the
cards were punched, the data contained on them were read by an

Fig. 1·6. A punched card.

o 0

o
00

o 0
o

o

electrical scanner which then ,was able to sort, count, and tabulate the
information. This punch card method is used extensively today in data
processing applications and was applied successfully to the tabulation
of data gathered during the Census of the United States in 1890.

COMPUTERS IN THE 20th CENTURY

After 1890, the development of various types of calculators and
data-processing machines proceeded rapidly. However, the machines
remained relatively crude as late as the 1920's. They were not capable
of performing the long sequences of operations required to solve complex
problems and were operated by fairly constant human control.

The first successful computer capable of performing these opera
tions was developed during the period between 1939 and 1944 by the
International Business Machines Corporation in cooperation with
Harvard University. It was known as the Automatic Sequence-Controlled
Computer or the Harvard Mark 1. It is believed that the development
of this machine was based upon the work done earlier by Charles
Babbage and was permitted by the advance of technology by the 1940's
which allowed the accuracy in fabrication not available in Babbage's
time.

This first, large-scale computer was essentially mechanical in nature
using gears, cams, and shaft rotations as the calculating devices, and,
therefore, it was relatively slow and bulky. Since then, the use of elec
tronic components has allowed the building of computers that are
much faster and less bulky. The first electronic computer was completed
in 1946 by the Moore School of Electrical Engineering in Philadelphia
and was called ENIAC (Electronic Numerical Integrator and Calcu
lator). The successful design and fabrication of ENIAC represented a
major accomplishment, as the technology of that time was such that it
was thought vacuum tubes in a large-scale computer would fail more
quickly than they could be found and replaced. Engineers were then
having difficulty keeping radar sets containing 100 tubes operating

6 How to Build a Working Digital Computer

properly. However, in spite of this, ENIAC did operate successfully with
approximately 18,000 tubes.

The next major step in the evolution of the digital computer was
the advent of the stored-program machine. The word program refers
to the series of operations that the computer is instructed to perform.
A stored-program machine is built with a facility for storage that allows
the insertion of a program at the option of the operator. In this way the
solutions to many different problems may be "programmed" and saved
for use at appropriate times. Thus, if a problem must be solved for which
a program already exists, the operator need only insert the existing
program into the computer to obtain the required solution. The idea
of the stored-program machine was introduced in 1945 by Dr. John von
Neumann. The first stored-program machine was built by a group headed
by M. V. Wilkes at Cambridge University in England.

Today's computers are capable of extremely high speeds and
accuracy and are used in applications ranging from payroll processing
to the guidance of spacecraft. As our technology advances, great strides
are being made to increase still further the capability of our computers in
terms of information storage capacity, accuracy, and speed. This increase
in speed and accuracy allows the computers to solve larger and more
complex problems at economical cost and within the most stringent time
requirements. Almost every day, major developments are applied toward
the creation of computers that can solve greater and more challenging
problems. Problems that would require lifetimes to be solved manually
are now being solved quickly and efficiently by modern computers.
The excitement of our times is certainly aided by the extension given
to our minds by computers.

ORGANIZATION OF THE COMPUTER

A digital computer is composed of five basic functional units, as
illustrated in Fig. 1-7, the input, storage, arithmetic, control, and output

ORDERS

CONTROL
PROGRAMMED INSTRUCTION

STORAGE
UNIT CALCULATED DATA UNIT

(FOR TEMPORARY -
STORAGE)

I ORDERS

ORDERS STORED DATA ! ALPHA- ORDERS ~ CALCU-
NUMERIC ENCODED LATED

~ INPUT DATA ARITHMETIC DATA OUTPUT
UNIT UNIT UNIT

DECODE~ ~
ANSWER

Fig. 1·7. A typical computer's functional diagram. The arrows indio
cate the direction in which information travels through the com
puter.

Introduction

Fig. 1·8. Input methods: (A) paper tape; (8) punched cards; (C)
magnetic tape.

7

units. They will be described briefly here and considered in detail in the
chapter in which the corresponding unit is constructed for our own com
puter model. The function of the computer is to accept alphabetical
numerical (alphanumeric) data, perform calculations and other process
ing of these data, and produce specific alphanumeric outputs.

The alphanumeric input data are usually prepared in the form of
coded, punched paper tape or cards (Fig. 1-8), or magnetic tape. This
information is then converted to electrical signals coded in the binary
format (or computer language) used by the computer. The computer
unit that receives the alphanumeric data and converts them into the
binary format, a process called encoding, is called the input unit. (This
unit is described completely in Chapter 2.) The input unit stores the
data until the computer is ready to perform as instructed.

Once the input data have entered the input unit, their paths through
the computer and the operations performed upon them are completely
determined by the stored program, which indicates the sequence of
operations required to perform the desired computations. The program
is stored in coded form in the computer's storage unit. Each operation
is read from this storage unit, in sequence, and used by a control unit to
issue instructions (orders) to the remaining units in the computer. These
instructions cause the computer to perform the programmed operation
read from the storage unit. Hence, a stored operation such as "ADD
x + y" will cause the control unit to generate instructions to the arith·
metic unit causing that unit to add the quantity x to the quantity y.

8 How to Build a Working Digital Computer

The storage unit usually consists of three storage areas: program
storage; permanent data storage; and scratch-pad storage. The first
area, program storage, is used to store the program for the particular
computer application. Programmed operations are stored in a particular
fixed sequence so that they may be read from storage automatically
in the proper order. The second area, permanent data storage, is used
to store various constants and other data required by the program for
solution of the problem. The third area, scratch-pad storage, is a tem
porary storage area used by the program to store intermediate results
developed during the course of the problem solution.

The various types of memory devices are described in Chapter 5
and a simulated magnetic drum and a core memory unit are designed
and constructed. The control unit for our computer is described and
constructed in Chapter 6.

The arithmetic unit performs all of the basic arithmetic operations,
such as addition, subtraction, multiplication, and division, under program
control. Complex mathematical techniques and methods such as the use
of calculus are implemented by reducing these techniques to sequences
of basic arithmetic operation. (The arithmetic theory of digital com
puters is discussed in Chapter 4, when the arithmetic unit for our
computer is constructed.) The output of the arithmetic unit is either
stored in scratch-pad storage or read out through the output unit.

The output unit is just the opposite of the input unit in that it
performs the function of converting the alphanumeric data from the
computer's internal format to that required by the outside environment.
Output data are fed to peripheral units such as magnetic tape recorders,
printers, typewriters, or card punches, depending on the use these
data are put to. (Our computer's output unit is discussed and con
structed in Chapter 2.)

A SAMPLE COMPUTER PROGRAM

Any computer is built specifically to perform a particular set of
operations. The list of these operations is called the computer's instruc
tion repertoire, as it lists the computer's capabilities in terms of the
operations it can perform. The instructions contained in the computer's
repertoire can be arranged (programmed) in many different sequences
to perform all sorts of complex calculations. To illustrate this process,
we shall assume that we have a computer that is capable of performing
the following instructions:

1. Add the contents stored at location A to those stored at loca
tion B.

2. Subtract the contents stored at location B from those stored
at location A.

Introduction 9

3. Read in data to the input unit.
4. Read out data to the output unit.
5. Store data in location A or in location B, whichever is indicated.

Let us arrange these instructions to develop a program that calcu-
lates the solution to the following problem:

T=x+y-z
where x, y, and z are any three numbers. For example, if x = 5, y = 3,
and z = 4, the solution to the problem is:

T=5+3-4
=4

For illustrative purposes we will use these three numbers in our sample
program.

First, we must read in and store our numerical inputs, 5 and 3:

1. Read in 5 to the input unit. (Instruction 3)
2. Store 5 in storage location A. (Instruction 5)
3. Read in 3 to the input unit. (Instruction 3)
4. Store 3 in location B. (Instruction 5)

Next, we must add 5 and 3 and store the result:

5. Add the contents of A, 5, to the contents of B, 3, for a total of
8. (Instruction 1)

6. Store 8 in location A. (Instruction 5) This process writes over
the number previously stored in A so that only the new num
ber remains.

Finally, we must subtract 4 from 8 and read the numerical answer out:

7. Read in 4 to the input unit. (Instruction 3)
8. Store 4 in location B. (Instruction 5)
9. Subtract the contents of location B, 4, from the contents of

location A, 8, for a remainder of 4 (T = 4). (Instruction 2)
10. Read out 4 to the output unit. (Instruction 4)

With this la-step program inserted in program storage, using x, y, and z
instead of set numbers, the computer will automatically calculate T
for any values of x, y, and z, within its capabilities.

A diagrammatic representation of the manner in which the data
used in this program move through the computer is shown in Figs. 1-9
through 1-14. When the computer is started, the first instruction in the
program is read from program storage. This causes the control unit
to order the input unit to read 5 (or x) into its own temporary storage
facility (Fig. 1-9). If the input data are in decimal form, the input
unit encodes these data into the binary form used by the computer.
(Encoding is covered in detail in Chapter 2.)

The program's second instruction causes the data, 5 (or x), to

10

INPUT
5 (x)
(DECIMAL)

How to Build a Working Digital Computer

'--;ORAGE U;-l

I CONTROL READ IN PROGRAM
UNIT I STORAGE

L ___
ENCODE I STORE

,-- --------1-
I
I DECIMAL TO 5 (x)(BINARY))

I
I

_J

-1
I

I BINARY STORE
ENCODER I I

L _________ INPUT UNI_T _______ J
Fig. 1·9. Read in x.

be transferred from the input unit to scratch-pad storage location A
(Fig. 1-10). Sometimes this transfer may be accomplished via the arith
metic unit for convenience.

Instructions 3 and 4 of the program cause the computer to perform
in the same manner as with 1 and 2, reading in and storing 3, or y,
in location B of scratch-pad storage.

The program's fifth instruction causes both the contents of A and B
to be transferred to the arithmetic unit where they are added and their
sum stored in the accumulator, a short-term storage element contained
in the arithmetic unit (Fig. 1-11). The sixth instruction causes the
sum to be transferred to scratch-pad storage location A (Fig. 1-12).

Instructions 7 and 8 of the program read in and store data, 4 (or z),
in location B in the same manner as instructions 1 and 2 or 3 and 4.

r-----,
I STORAGE UNIT I

CONTROL
UNIT

.. _.::.:ST.::.:;OR:::...E::...;5 (c::;X)~IN:..:.(:.:.:.A)_--;.I--I PROGRAM I
STORE IN (A) I STORAGE I

TRANSFER TO
STORAGE r--I---,

I I
I STORE I

I i
INPUT UNIT I L ___ --I

5 (x)

I I
~ SCRATCH I
--:---"" PAD I STORAGE I

L __ j __ --1

Fig. 1·10. Store x in A.

Introduction

NOTE:
A/S IS ABBREVIATION FOR ADDERISUBTRACTOR

ADD (Al+(Bl n- PROGRAM
STORAGE

CONTROL TRANSFER (A) TO AlS I
UNIT

TRANSFER (BlTO AlS I SCRATCH
PAD

I STORAGE

ADD I STORE A/S OUTPUT L - +- - -
5 (xl 3 (yl

LL-------------
I SU~~m~OR 8 (x+yl ACCUMULATOR

--,
I
I

I I
L ARITHMETIC UNIT ! --------------'

CONTROL
UNIT

Fig. 1·11. Add A to B.

STORE (ACCl IN (Al

STORE IN (Al

TRANSFER
TO STORAGE

r----....,
I STORAGE UNIT I
I PROGRAM
L STORAGE
I

I
I SCRATCH

PAD

I STORAGE

L __ --

I
I
I
I
I
~

r--- ----,
8(x+yl

I I
I ACCUMULATOR

I NOTE:

I
l ARITHMETIC UNIT I ______ --.J

Fig. 1·12. Store in A.

ACC IS ABBREVIATION FOR
ACCUMULATOR

11

Instruction 9 causes the contents of B to be subtracted from those of
A with the difference 4, T, being temporarily stored in the accumulator
(Fig. 1-13). Finally, the tenth and final instruction in the program
causes the computer to read out the solutior.. through the output unit
(Fig. 1-14). In this case we are assuming that output data are decoded
to decimal form.

12

8(x+y)

How to Build a Working Digital Computer

CONTROL
UNIT

SUBTRACT I

r -STORAGEiiNIT-1

I

SUBTRACT (AHB) rr-- PROGRAM
STORAGE

TRANSFER (A) TO AlS I
TRANSFER (B) TO AlS I SCRATCH

PAD

I STORAGE

STORE A/S OUTPUT L -, +-- -
4 (z)

I
I
I
I
I

-.J

LL-------------I 8 4 • 4
I ADDERI (X+y) -(Z)·(T)

I
SUBTRACTOR ACCUMULATOR

CONTROL
UNIT

Fig. 1·13. Subtract B from A.

r---;;:ORAGE UNIT -1
I, I

.. _......:.::RE:.::;AD.:.,:OU.:....T __ -+--1 PROGRAM I
I STORAGE

I I
TRANSFER IIL--___ D~EC:::::OO~E ____ L_-_::.:;_ - --'

TO OUTPUT
UNIT --i.2TORE

r--'-~ --"""1 r-. -------,
I 8 4·4 I I (x+yHZHTl OUTPUT BINARYTO

I ACCUMULATOR I I STORE T DECIMAL I
\ ,DECODER

L ____ J l ""'-~=-·4·(T)(BINARY) __ J
Fig. 1·14. Read out.

OECIMAL
OUTPUT

ANSWER

Chapter 2
COMMUNICATING

WITH THE COMPUTER

The only "language" that the computer uses is numerical. All
of the information fed into it must be converted to number form.
However, as indicated in Chapter 1, the digital computer does not
operate in the decimal number system. Any numerical data given to it
must be translated from our decimal language into the binary language
of the computer. All information taken from the computer must be
translated from the machine's language into our own. In a like manner,
alphabetic data must be converted to a, binary numerical code for use
in the computer. In this chapter, only numerical data will be considered.

OUf computer has two translating devices, the encoder and the
decoder. The encoder enables us to translate our problem data from
decimal numbers to binary numbers. The decoder enables us to under
stand the answers the computer obtains by translating its binary response
into decimal numbers. To understand how these units function, it is
necessary to examine the relationship between the decimal and binary
number systems.

NUMBER SYSTEMS

In the decimal number system, there are ten different numeral
symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. When standing alone, each
of these symbols represents a fixed number. In combination, however,
these symbols can represent any number in the system. They do so by
assuming different values when placed in different positions in a number.
For example, in the number 4444, the numeral symbol is the same but
it has four different values: 4000, 400, 40, and 4. In the decimal num
ber 255,252, two numeral symbols are used, but each has more than
one value (200,000,200, and 2; 50,000, 5,000, and 50).

Such a system, where the value of the numerical symbol is deter
mined by its position, uses positional notation. The significance of
positional notation in the decimal number system is shown in Fig. 2-1.
The first column to the left of the decimal point is the 10° or unit's
column. Any numeral that appears in this position is weighted by the
factor 1. The numeral 6 in this column is the equivalent of 6 Xl,
or 6 X 10°. In the second column to the left of the decimal point, the
101 column, a numeral is weighted by a factor of 10. Here, 6 would

13

14 How to Build a Working Digital Computer

DECIMAL
HUNDREDS TENS UNITS POINT TENTHS HUNDRETHS

COLUMN COLUMN
(102) (101)

COLUMN I
(10°) ...

COLUMN COLUMN
(10-1) (10-2)

° . 6

0-6110-60

o • 60'10 • 600

Fig. 2-1. Positional notation in the decimal number system.

attain a value of 6 X 10, or 6 X 101 • In the third column, the 102

column, 6 would attain a value of 6 X 100, or 6 X 102•

Each of the numeral symbols in the decimal system will change
its value in the same manner as its position changes in a number. Each
shift to the left increases a numeral's value by a factor of 10. Each
shift to the right decreases a numeral's value by the same factor. To
illustrate this further, we will break down several decimal numbers:

357.1 = 300 + 50 + 7 + 0.1
= 3 X 100 + 5 X 10 + 7 X 1 + 1 X 1/10
= 3 X 102 + 5 X 101 + 7 X 10° + 1 X 10-1

13402.01 = 10,000 + 3000 + 400 + 2 + .01
= 1 X 10,000 + 3 X 1000 + 4 X 100 + 2 X 1

+ 1 X 1/100
= 1 X 104 + 3 X 103 + 4 X 102 + 0 X 101

+ 2 X 100 + 0 X 10-1 + 1 X 10-2

Many practical number systems use positional notation. They
differ from the decimal system only in the number of numeral symbols
they use and the weighting factor related to each position. The octal
system, for example, uses 8 symbols: 0, 1,2, 3,4, 5, 6, and 7. Numeral
values in this system change by a factor of 8 as the numeral's position
changes. For example, the octal number 136 is the equivalent of the
decimal number 94:

136 = 1 X 82 + 3 X 81 + 6 X 8°
= 1 X 64 + 3 X 8 + 6 X 1 = 94

Because these systems and others use the same numeral symbols, it
is difficult at times to tell what system a number is written in. If some
one were to tell you that 136 really represented 94 you wouldn't believe
them unless there was some indication that 13 6 was an octal number
and 94 was a decimal number. For this reason, when numbers in dif
ferent systems are compared in this text they will be identified by a
key number. This key number indicates the number of numeral symbols

Communicating with the Computer 15

used in the system and is referred to as the system's base or radix. The
base for the decimal system is 10; the base for the octal system is 8.
Using this coding, for example, (IOOho and (l00)g represent, respec
tively:

and:
1 X 102 + 0 X 101 + 0 X 10°

1 X 82 + 0 X 81 + 0 X 8°

Also, (100)g = (64ho.
Any number in any positional notation system may be represented

by the following formula:

N = SnBn + ... + S3B3 + S2B2 + SIB! + SoBo + S_IB-l
+ S_2B-2 + ... + S_mB-m

where N is the number, Sn through S-m are the numeral symbols used in
the system, and B is the base of the system. The base, raised to a power,
represents the factor by which the numeral symbol is multiplied in each
position. In these number systems, the least significant numeral is the
rightmost digit and the most significant numeral is the leftmost digit.

THE BINARY NUMBER SYSTEM

Like the octal and decimal systems, the binary system uses posi
tional notation. Two symbols, only, are used, 0 and 1, so the value of
a numeral increases or decreases by a factor of 2 as it shifts to the left
or right. The base of the binary system is 2. The significance of posi
tional notation in the binary system is shown in Fig. 2-2. To illustrate
this further, we will break down several binary numbers.

(1l01)z = 1 X 23 + 1 X 22 + 0 X 21 + 1 X 20

=IX8+1x4+0X2+1Xl
= (l3ho

(10011)2 = 1 X 24 + 0 X 23 + 0 X 22 + 1 X 21 + 1 X 2°
=IXI6+0X8+0X4+1X2+1Xl
= (19ho

Fig. 2·2. Positional
notation in the binary
number system.

16 How to Build a Working Digital Computer

TABLE 2-1

BINARY DECIMAL BINARY DECIMAL

1 1 10001 17

10 2 10010 18

11 3 10011 19

100 4 10100 20

101 5

110 6 11110 30

111 7 110010 50

1000 8 1000110 70

1001 9 1011010 90

1010 10 1100100 100

1011 11

1100 12 1111101 125

1101 13 10010110 150

1110 14

1111 15 111110100 500

10000 16 1111101000 1000

Each numeral in a binary number is referred to as a bit (binary
digit). The binary number 100, which is (4 ho, is a three-bit number,
and 10100, or (20ho, is a five-bit number. Computers are rated by the
number of bits that can be stored in their memory sections. The capacity
for bit storage is directly related to the computer's precision and ability
to handle complex calculations. Larger· capacities enable the computer
to work with greater precision and more complex calculations.

As indicated in Table 2-1, which lists some binary numbers and
their decimal equivalents, binary numbers use more digits than decimal
numbers to express the same quantities. However, the advantages
this may give to decimal numbers are offset, in a computer, by the ease
with which arithmetic is performed in the binary system. This will be
covered in more detail in Chapter 4.

Because the decimal and binary number systems both use positional
notation, conversion from one system to the other is relatively simple.
It is done by translating the numeral values of one system into those
of the other.

ENCODING

The process of conversion from a generally known system to a
generally unknown system is called encoding. The unit in our computer

Communicating with the Computer 17

that performs this function accepts data in one form and transmits them
in another. Its output is the properly-coded equivalent of its input.

The simple alphabet codes you may have used in childhood involved
an encoding process. Converting such meaningful phrases as:

The ball was thrown from first to third.

into:
Ftg nmzz ime ftdaiz rday rudef fa ftudp.

used a conversion system in which a generally known arrangement
of letters was converted into a generally unknown arrangement of
letters. A relationship was established between both letter systems so
that any sentence could be converted and still be understandable when
decoded. (In this case, the known letters, a, b, c, ... , n, 0, p, ... , z
are the equivalent of the coded letters m, n, 0, ... , z, a, b, ... , 1,
respectively.)

Encoding in a computer follows the same kind of fixed relation
ship. Each known decimal number corresponds to a "coded" or binary
number.

DECIMAL TO BINARY CONVERSION

Decimal numbers can be converted to binary numbers by using the
general number equation for the binary number system: *

To do so, you would set N in the equation equal to the decimal number
and solve for all the terms. If you wish to work this out for any par
ticular decimal number, do so, but you will find that the process is
quite lengthy and time-consuming.

There is a short-hand method for decimal to binary conversion
that simplifies the exercise considerably. In it, the decimal number
to be converted is repeatedly divided by 2. The remainder of each
division, which can only be 1 or 0, will indicate a digit of the binary
number. The remainder of the first division is placed in the 2° column;
the remainder of the second is in the 21 column; etc. For example, to
convert (128) 10 into its binary equivalent, the following steps are
followed:

Division Remainder Position

2 \ 128 0 20

2 \...§±.. 0 21

2\.13.... 0 22

2\.12.... 0 23

':' Fractional portions are not included for simplicity.

18 How to Build a Working Digital Computer

Division Remainder Position

2\L 0 24
2\£ 0 25

2\.L 0 26

2\..L 1 27

Therefore, (l28ho = (lOOOOOOOh

Let us try this with a different number. For instance, (61 ho:
Division Remainder

2~ 1
2~ 0
2~ 1
2\1- 1
2\L 1
2\!.. 1

Therefore, (61ho = (111101h.

THE ENCODER

Position
20
21
22
23

24
25

The encoder for our computer will convert the decimal numbers
o through 9 into their binary equivalents. The construction details for
this unit are given at the end of this chapter. At this point we will
consider its design aspects.

The encoder unit receives a decimal input and produces an equiv
alent binary output. Switches will be used to represent and manipulate
the decimal input. To monitor its output and demonstrate its function,
the encoder will have a display that indicates what binary numbers are
being used. Lamps will be used to indicate this binary output. Since a
lamp has two states-on and off-and a binary number has two symbols
-0 and 1, we will indicate a 1 symbol by lighting the lamp and a 0
symbol by extinguishing it.

We know that the largest decimal number we will encode is 9
and that its binary equivalent is a 4-bit number, (l001). Four lamps
will therefore be sufficient for the binary output, one for each bit posi
tion. The lamps will be labeled according to their column heading:
23,22,2\ and 2°.

The switch connections used to encode decimal numbers are deter
mined by examination of a conversion chart, such as that shown in
Table 2-2. This reveals that there is some pattern to the manner in
which the four output lamps indicate D's or l's. In the 2° column
(rightmost column), the D's and 1 's alternate. For an even number
there is a 0, for an odd there is a 1. In the next column, the 21 column,
the D's and 1 's run down the column by twos. In the 22 column the D's
and 1 's run down the column by fours. In the 23 column, the first eight
rows have O's and it is only because we have limited our chart to ten

Communicating with the Computer 19

TABLE 2-2

DECIMAL NUMBER ~3 ~2 ~1 ~O

° (0 x 23) + (0 x 22) + (0 x 21) + (0 x 2°)

1 (0 x 23) + 2
(0 x 2) + (0 x 21) + (1 x 2°)

2 (0 x 23) + 2
(0 x 2) + (1 x 21) + (0 x 2°)

3 (0 x 2 3) + (0 x 22) + (1 x 21) + (1 x 2°)

4 (0 x 2 3) + (1 x 22) + (0 x 21) + (0 x 2°)

5 (0 x 23) + (1 x 22) + (0 x 21) + (1 x 2°)

6 (0 x 2 3) + (1 x 22) + (1 x 21) + (0 x 2°)

7 (0 x 23) + (1 x 22) + 1
(1 x 2) + (1 x 2°)

8 (1 x 2 3) + (0 x 22) + (0 x 21) + (0 x 2°)

9 (1 x 2 3) + (0 x 22 + (0 x 21) + (1 x 2°)

rows that the pattern is not apparent for this column. If we had extended
the chart to sixteen rows, we would have eight rows of 1 'So

A ten-position rotary switch is used in the encoder. This switch
is similar to the channel selector on a TV set where each channel
is a particular position on the switch. A rotary switch has two parts:
the arm and the contacts. Usually, one end of the arm is connected
to a single point on a common terminal and rotates about this point.
As it rotates, it contacts connection points that are positioned in a circle
around the common terminal. A schematic of a ten-position rotary
switch is shown in Fig. 2-3. You can see that the arm serves to connect
the contact terminals to the common terminal, one at a time.

Fig. 2·3. A ten-posi
tion rotary switch.

From the conversion chart we know that the 2° lamp will light
for every odd decimal number. Therefore, electricity is routed from
the power source to the lamp when the switch is in a position to encode
an odd number. This wiring is shown in Fig. 2-4. At positions 1, 3, 5, 7,
and 9, the lamp will light because B+ is connected from one of the
contact terminals through the arms to the common terminal and the

20 How to Build a Working Digital Computer

B+

Fig. 2-4. A rotary switch
wired to light 20 with every
odd number.

lamp. To form a complete circuit, the other side of the lamp is con
nected directly to the power source return.

The 21 lamp wi11light only when the decimal numbers 2, 3, 6, or
7 are encoded. The rotary switch connections for this lamp are shown
in Fig. 2-5A.

The 22 lamp wi11light only when the decimal numbers 4, 5, 6, or
7 are encoded. The 23 lamp lights only when the decimal numbers 8 or 9
are encoded. The rotary switch connections for these lamps are shown
in Fig. 2-5B and C, respectively.

~:-------~B-
'0 li' d

B::..;.+_t--,

8
1:o: 'r ~ ~ j

(A) ROTARY SWITCH SCHEMATIC, ENCODE 21

90 It d
80 \l 02 L---~B-

::..,;B+ __:.70 03

(B) ROTARY SWITCH SCHEMATIC,ENCODE 22

'cr
d

B+
0 2 U L---~B-

70 03

SO
0 04

5

(e) ROTARY SWITCH SCHEMATIC,ENCODE 23

Fig. 2·5. The rotary switch
wiring to lamp (A) 21; (8)
22; (C) 23.

Communicating with the Computer 21

To encode the decimal numbers 0 through 9, therefore, four ten
position rotary switches are needed. However, since this means that
we must run each switch to the same position to encode a number,
the construction is a bit cumbersome. Therefore, the switches are
ganged; i.e., they are combined so that the arm is common to all four
switches.

Our encoder will encode two decimal numbers simultaneously.
Therefore, it will use two ganged rotary switches and two output dis
plays. The wiring diagrams and a picture of the finished unit are
included in the construction details at the end of this chapter.

BINARY TO DECIMAL CONVERSION

In the computer, decoding is necessary because the response is in
binary form and must be converted to decimal form to be understood
by the user. The unit that performs this function in our computer is
the decoder, or output unit.

Arithmetically, converting binary numbers to decimal numbers is
not too difficult. The process is one of simple addition:

(1l01l)z = 1 X 24 + 1 X 23 + 0 X 22 + 1 X 21 + 1 X 20

=lX16+1X8+0X4+1X2+1X1
= 16+ 8 +2 + 1
= (27ho

(l0101)z = 1 X 24 + 0 X 23 + 1 X 22 + 0 X 21 + 1 X 20

=lX16+0X8+1X4+OX2+1X1
=16+4+1
= (21ho

If we limit our consideration to numbers under (10) 10, a simple
decoder may be designed in a manner similar to that of the encoder.
However, since our computer will be capable of producing numerical
outputs exceeding (10) 10, but less than (100) 10, it will be necessary to
decode a maximum of a 7 -bit number into a 2-digit decimal number.
One method of performing this conversion consists of converting the
7 -bit binary number into two 4-bit binary numbers such that each 4-bit
binary number represents a decimal digit. For example, the 7-bit num
ber (0101011)2 or (43)10, may be converted to the following 4-bit
numbers.

0100 and 0011 (or (4ho and (3ho)

This conversion is usually performed by a programmed sequence of
operations and is discussed in Chapter 7. The 4-bit numbers each
represent a decimal digit and are called binary-coded decimal numbers.
These numbers may readily be converted to decimal numbers by a
decoder.

22 How to Build a Working Digital Computer

TABLE 2-3

BINARY SYMBOLS

23 22 21 20 DECIMAL SYMBOLS

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

THE DECODER

The decoder for our computer will convert the binary numbers
0000 through 1001 to their decimal equivalents. As in the encoder,
switches will be used to manipulate and represent the unit's binary
input and lamps will be used to display the decimal output. Table 2-3
indicates the binary-to-decimal conversions possible in our computer.

Because our computer output will consist of a maximum of two
binary-coded decimal digits it will be necessary to have two conversion
units and two output displays; one for each four-bit binary output.
The two units are composed of four double-throw multipole switches.
Each switch represents a digit in a four-bit binary number. When the
switch is thrown to the left it represents a 0, when it is thrown to the
right it represents a 1. The switches are connected to ten lamps repre
senting the ten decimal numbers a through 9. The binary numbers
"written" by the switches will light the bulb representing their equivalent
decimal number.

The wiring diagrams and a picture of the finished decoder unit are
included in the construction details at the end of this chapter.

Communicating with the Computer

CONSTRUCTION DETAILS-ENCODER

COMPONENTS: Chassis, rotary switches, display circuit

MATERIALS

Chassis:
2
6

12

5 X 8 X YII in. composition boards
% in. dowels, 2Y11 in. long (height of spool + ~ in.)
1h in. wood screws (no. 4)

Rotary switches (2):
2 thread spools, empty (l1h in. diameter, I'M! in. height)
2 ~ in. dowels, 3Y11 in. long (height of spool + 1 ~ in.)
2 1 in. wood screws (no. 4)

5 ft. uninsulated hook-up wire (20 gage)
Adhesive tape, 2 in. wide

Display circuit:
8 #48 or 41 lamps (2 v, .06 a)

16 paper clips (large)
2 7 X 1h in. tin strips (from can or sheet)

5 ft. insulated hook-up wire (20 gage)
1 ft. uninsulated hook-up wire (20 gage)

4 1h in. machine screws (6-32)
2 1 in. machine screws (6-32)

12 nuts (6-32)

SPECIAL TOOLS:

Tin snips
Drill (1116,3/32, YII,~, %)
Razor blade
Steel-edged ruler or straightedge
Round file

Chassis Construction

23

One of the 5 X 8 in. boards will hold the lamp display and switch
controls. The other will hold the two rotary switches in position underneath
the top panel. The dimensions for this unit are controlled by the size of the
spools used for the rotary switches. If the recommended spool (l1h in.
diameter, I'M! in. height) is not available, the placement and length of the
supporting dowels wilI have to be altered to accommodate the larger or
smaller spool size.

1. Select your top panel and mark and start the drill holes indicated in
Fig. A-I.

2. Drill the %-in. and lis-in. holes in the top panel. (The %-in. holes will
hold the lamps for the encoder display. The lis-in.· holes will hold
machine screws for circuit and terminal connections.)

3. Clamp the top panel over the second 5 X 8-in. board, lining up the sides,
and drill the 3/32-in. and Y<I-in. holes, making sure that the drill passes

24 How to Build a Working Digital Computer

COMPOSITION BOARD: 5" X 8"

~--------------__ ~ ________ ~L-__ ~~

SIZE CODE

+ ~~ DIA

x 3'32 DIA

o I,~' DIA

* 3t8 DIA

Fig. A-I.

cleanly through both boards. (The 3/32-in. holes will hold the wood
screws securing the dowel supports. The 1.4 -in. holes will secure the
axes of the rotary switches.)

4. With a round file, open up the 1.4 -in, holes in both boards so that
a 1.4 -in. dowel will turn freely in them, Smooth off all rough edges
around drilled holes.

Rotary Switch Construction

The construction details for both switches are the same.
1. Notch the spools as shown in Fig. A-2(a).
2. Drill a 1/ 16-in. hole through the diameter of the spool at the head and

base, starting at the foot of each notch (Fig, A-2(a».
3. On the head of the spool, drill a 1/ 16-in. hole opposite the notch into

the head so that the drill comes out close to the hole drilled through
the spool's diameter (Fig, A-2(b and c». Drill a second hole down into
the head 1;4 in. away.

4. Cut a 3 Ys -in. length of 1.4 -in, doweling and insert it through the spool's
center hole. Allow at least Y2 in. to protrude from the base (Fig. A-2(d».
(If the dowel does not fit snugly in the spool, wrap tin foil around it for
a tight fit. It may help to file the inside of the spool's center hole to
remove any burrs created by the drill, It is important that the dowel
does not move independently of the spooL If desired, secure it with wood
cement or wedges,)

5. When the dowel is secured properly, drill a 1/ 16-in. hole through the
doweling at the bottom of the spool, using the hole drilled through the
base of the spool in Step 2 as a guide.

6. Insert one end of the uninsulated wire into the hole opposite the notch
on the spool's bottom and push it through so that it protrudes slightly
from the other side.

7. Without cutting the wire, wind it around the spool body, making sure
there are no separations between windings, After every three turns,
pull the wire taut to make the windings as tight as possible, See

Fig. A·2.

Communicating with the Computer

I' 4

END OF WIRE
SECURED
UNDER HEAD

HEAD

BODY

IA)

UNINSULATED
..........--- WIRE

START
WINDING

HERE

I D) FINISHED SIDE VIEW

DR I LL 1'16 AT
THESE PO!NTS

SIDE VIEW

25

liti
IC)

Fig. A-2(d). Before the spool body is completely covered by unin
sulated wire, drill a 1116-in. hole through the doweling at the top of
the spool, using the hole drilled in Step 2 through the head of the spool
as a guide.

S. When you have covered the spool body to the hole drilled in Step 7,
cut the wire, leaving approximately 3 in. to the end.

9. Insert the end of the wire into the top diameter hole at the notched side
and push it through. Pull the wire so that all the windings are taut
against the spool body. Then, insert the end of the wire into the 1116-in.
hole under the head of the spool and push it through so that it comes out
on top of the spool.

10. Insert the end of the wire into the second hole in the spool's head and
push it through until a 14 -in. loop is left on the top of the spool. See
Fig. A-2(d). Secure the end of the wire by bending it under the head of
the spool. Cut off any excess wire protruding beyond the head. Trim off
the wire protruding at the bottom of the spool.

11. Bend the 14-in. loop outward as in Fig. A-2(d).
12. Construct a second rotary switch.

Chassis Supports

1. Cut 6 2Vs-in. lengths from the ¥S-in. doweling. (If your spools are
not the recommended size, these supports should be 14 in. longer than
the height of the spool.)

2. Start a drill hole in the centers of the ends of each support. Drill
approximately 14 in. into each end with the 3/32-in. drill.

26 How to Build a Working Digital Computer

~/8'
-I I-

TOP I~ SUPPORT

~ /

DRill
x 3/32'

Fig. A·a.

A 0
2°

0

TB4 TB3 TB2 0 0 0
0 0 0 0

21 22 23

0 00 0
TBI

Fig. A-4,

3. MarK off four of these supports as shown in Fig. A-3.

ADHESIVE
TAPE

UNDERSIDE OF
TOP PANEL

4. Drill through the diameter of these four supports, where marked, with
a 3/32-in. drill.

5. Secure the six supports to the bottom of the chassis with 1h -in. wood
screws. The four supports drilled in Step 4 should be placed next to the
y<\-in. holes. The spacer should be at the top.

Display Lamp Construction

1. The eight display lamps will be placed in the % -in. holes in the top
panel so that their glass envelopes protrude approximately Ys in. to
Y<\ in. above the board. Test each hole with a bulb, and file it as needed
to fit the bulb properly.

2. Label the holes on the underside of the panel as indicated in Fig. A-4.
This can be done by placing strips of adhesive tape on the board and
printing the proper labels on the tape.

3. For each bulb, construct a base terminal connector as follows. Straighten
out a paper clip as shown in Fig. A-5(a) and cut it as indicated. Secure
the paper clip around the screw base of the lamp as in Fig. A-5(b) and
crimp it as in Fig. A·5(c) to hold the bulb firmly. With your long-nose
pliers, turn down the cut ends of the paper clip as shown in Fig. A-5(d).
When connecting a lead to the bulb, place the stripped end of the lead
in the angle formed by the clip ends and bend them until the wire is
pinched between them (Fig. A-5(e)). This type of base connection will
be used in all lamp displays on all units of the computer.

CUT

fj=' =='\ ~rori::
(A) (B)

(C)

(0)

Fig. A·5.

Communicating with the Computer 27

000
TB2 T83 TB4

o 000 o
o 000 o

Fig. A·6. (B)

4. Place the eight lamps, with the base terminal connectors attached, in the
% -in. holes on the panel top so that their glass envelopes protrude
approximately lis in. to 1,4 in. above the panel.

5. Position the lamps so that the base connectors point towards the 1,4 -in.
holes at the foot of the panel.

6. Cut -two 7-in. strips of tin, Vz in. wide. Buff both sides of each strip.
7. Shape each strip as indicated in Fig. A-6(a). When attached to the top

panel, these strips should contact only the terminal on the bottom of the
lamp. They should not touch the threaded section of the base or the
base terminal connector.

8. Fit each tin strip onto the board, running them beneath the lamps, as
shown in Fig. A-6(a).

9. Drill through the center of each strip between the 21 and 22 lamps,
using the VB -in. holes on the panel as a guide.

10. Insert I-in. machine screws through these holes in the top panel and
strips and secure the strips to the lamp bottom terminal with two nuts
(Fig. A-6(a)).

11. Screw Vz -in. machine screws into the 3 VB -in. holes at the top of the
panel (TB2, TB3, and TB4). Secure these screws with nuts beneath the
panel. Connect insulated leads from TB3 to the I-in. screw securing the
A strip and from TB4 to the I-in. screw securing the B strip.

12. Cut 8 20-in. lengths of insulated wire. Strip 1,4 in. of insulation from
each end of each wire.

13. Label the wires by attaching small pieces of adhesive tape to each
end of each wire. Mark the labels with the lamp designations given
in Fig. A-4 (A2°, B2°, etc.).

14. Attach the wires to the paper-clip lamp connectors. Lead the wires from
the A strip to the left and the wires from the B strip to the right.

Tape Preparation

1. Wrap a blank piece of paper around the body of one of the wired
spools. Mark off the height of the body and its circumference.

28 How to Build a Working Digital Computer

2. Using the paper with the body dimensions marked on it, divide the
height into four equal levels and the circumference into ten equal
levels. See Fig. A-7(a).

23456789

1; 1111111111
II "'!~"' : ~ SPOOL

1-----CIRCUMFERENCE------I1

2°
21
22

o I
(A)

2345678

23 I-+--+--t-~

Fig. A·7.

3. Mark the ruled paper in the fashion shown in Fig. A-7(b). This is the
template pattern for the adhesive-tape insulation that will cover the
uninsulated wires wrapped around the spool.

4. Place a length of 2-in. wide adhesive tape that is slightly longer than
the circumference of the spool on a metal surface, sticky side down,
and cover it with a second layer of 2-in. tape.

5. Lay the paper template on top of the tape layers and cut out the
template and tape with a sharp razor and steel-edged ruler along the
heavy lines indicated in Fig. A-7(b).

6. Peel both layers of tape from the metal surface as one unit. Be careful
that the tape does not tear at the narrow points.

7. Repeat these steps to make a double-layered covering for the second
rotary switch.

Placing Tape on Spool Body

Care must be taken when selecting where the tape is to be placed on
the spool body. This depends on which spool is to be used for which input
(A or B). Input A will be on the left side of the chassis. The design for A
is such that 0 is at 12 o'clock and the numbers run clockwise to 9. The
switch contact point, however, is between 7 and 8 o'clock.

12 12

ge)<~l
LOOP 76 6 5

INPUT A INPUT 8
(A) (8) Fig.A-S.

Communicating with the Computer 29

1. Insert the spool shafts in the 1;4-in. holes drilled in the bottom board
so that the spool bottom is flush with the board. Place the top panel
so that the top shafts of the spools run through the 1;4 -in. holes and
the panel rests on the dowel supports.

2. Rotate the spool to be used as the A input (on the left) so that the wire
loop on the top is positioned at about 8 o'clock. Rotate spool B so
that the loop is positioned at 5 o'clock. See Fig. A-8(a).

3. On spool A, mark the area between 7 and 8 o'clock "0." On spool B,
mark the area between 4 and 5 o'clock "0."

4. Remove both spools and attach the tapes to them. Position the 0 part
of the tape where you marked O. The 2° row; which alternates tape and
no tape, is to be at the top of each spool. See Fig. A-8(b).

Switch Connections

1. Place the rotary switches on the bottom board. File off any spool shaft
that protrudes below the board.

2. Position the panel top over the switches, with shafts in the proper
place, and fasten the top to the chassis supports with lh -in wood screws.

3. Straighten 8 large paper clips and cut each one so that it is approximately
3 in. long.

4. Run the paper clips through the holes drilled in the dowels next to the
switches. Position the dowels so that the clips appear as in Fig. A-9.

5. Bend the clips for contact on the switch surface as shown in Fig. A-9.
Each clip should make contact with the switch approximately in the
center of a horizontal row on the patterned insulation. The contacts
should be aligned vertically as well as horizontally.

6. Tighten and secure the switch contacts by binding the clip ends around
the dowels.

7. Connect the wires from the lamp displays to the switches by attaching
the stripped ends to the ends of the paper clips.

8. Cut two 6-in. insulated leads. Strip 1;4 in. of the insulation from both
ends of each and coil each wire.

9. Attach one end of one wire to the loop on top of spool A. Attach one
end of the other wire to the loop on top of spool B. (See Fig. A-lO.)

10. Put a 112 -in. machine screw through the drill hole for TB 1 and attach
the free ends of the coiled wire to it with a nut.

11. Run a 4-inch insulated lead between TBI and TB2.

Fig. A-9.

Fig. A-IO.

30 How to Build a Working Digital Computer

ill
" l!l ~ IT] rn rn

ITl rn
[§Jm[!]

INPUT A ..
Fig. A-12.

Knobs and Labels

1. Position switches A and B so that the contacts rest on o. With the
switches held in this position, drill a 3/ 32-in. hole through each dowel
protruding above the top panel. Drill each hole toward the top of the
panel so that a I-in. wood screw screwed into the hole will point to the
top of the panel. See Fig. A-Ii.

Fig. A-13.

Communicating with the Computer 31

2. Put a I-in. wood screw through the holes drilled in Step 1.
3. Label the top panel as shown in Fig. A-I2.
4. To prevent the switch pick-up from fouling, put mechanical stops

between 0 and 9 of each switch. These can be I-in. brads nailed into
the top of the chassis. Do not drive the nails in too far.

Encoder Checkout Procedure
1. Connect a Ph-volt flashlight battery between the RTN and A terminals.
2. Set switch A to each position and check lamps to see that they light as

indicated below (0 = off, 1 = on),
Switch Position

o
1
2
3
4
5
6
7
8
9

23

o
o
o
o
o
o
o
o
1
I

Lamps
22 21
o 0
o 0
o 1
o 1
I 0
I 0
I 1
1 I
o 0
o 0

2°
o
1
o
1
o
1
o
I
o
1

3. Repeat Steps I and 2 for switch B, connecting the battery between the
RTN and B terminals.

CONSTRUCTION DETAILS-DECODER

COMPONENTS: Switch chassis, switches, display chassis, display circuit

MATERIALS

Switch chassis and switches:
1 15 X 15 X VB in. composition board
1 15 X 4 X V<! in. composition board
4 5 X 1-2 X VB in. composition board
4 3 X 1-2 X VB in. composition board

20 ft. insulated hook-up wire (20 gage)
12 DPDT switches
2 SPDT switches

32 1-2-in. wood screws (no. 4)
2 1-2-in. machine screws (6-32)
8 %-in. machine screws (6-32)

12 nuts (6-32)

Display chassis and circuit:
1 4% X 10 X VB in. composition board
1 3 X 10 X V<! in. composition board

20 #48 or 41 lamps (2 v, .06 a)
20 paper clips

32 How to Build a Working Digital Computer

Fig. B-1.

4 1/2 in. machine screws (6-32)
4 1 in. machine screws (6-32)

10 nuts (6-32)
6 ~ in. wood screws (no. 4)

50 1 in. wire brads (approx. count)
2 9~ X % in. tin strips

25 ft. insulated hook-up wire (20 gage)
2 in. uninsulated hook-up wire (20 gage)

SPECIAL TOOLS:

Tin snips
Drill (1 / 16, 3/ 32, lh, ¥s)
Pencil and paper
Ruler or straightedge

Switch Chassis Construction

This panel will hold an array of single-pole, double-throw (SPDT) and
double-pole, double-throw (DPDT) switches. The unit is designed for knife
switches mounted on a bakelite base. Manufactured switches are used to
insure switch reliability and durability, which are difficult to maintain with

Fig. B·2.

Communicating with the Computer

COMMON
TERMINALS,::::::....:~--=:~;;;;;;;."
NO.3

SECURING
HOLE

33

SECURING
HOLE

TERMINALS
NO. 2

simple, home-made switches. The double-pole, double-throw model of this
switch is shown in Fig. B-2. *

1. The switches are arranged on the panel as shown in Fig. B-3. Mark the
15 X 15 X Vs-in. panel on its top (smooth side) as shown in Fig. B-3.
Then, using the figure as a guide, position a DPDT or SPDT switch
where indicated and mark the position of the switch-securing holes
with a sharp pencil.

Fig. B·3.

2. Start a drill hole at each pencil mark, then drill through the panel with
a 3/32-in. drill at each point.

3. Start drill holes at all other points indicated in Fig. B-3 and drill through
the panel with the designated drill.

4. Mark the 15 X 4 X V<I-in. board as in Fig. B-4 and cut along the
diagonal line. These angle supports will support the switch panel.

5. Placing the wide ends of the supports at the top of the panel, drill
1/ 16-in. holes along the top edge of each support, using the holes
drilled at the panel side edges in Step 3 as guides.

6. Secure the angle supports to the panel with lh -in. wood screws.
7. Attach all switches, using lh-in. wood screws.

* If you wish to build your switches, a workable switch design is detailed in the
Appendix. Of course, when you substitute home·made switches far manufac
tured, the units will have to be redesigned.

34 How to Build a Working Digital Computer

r i
h~ ________________ ~j

10-1 -------15·----------t~
Fig. B·4.

8. Mark for drill holes alongside each switch terminal of each switch.
Drill these holes through the panel with the Vs-in. bit.

9. As different sets of switches are to be thrown simultaneously, their
handles must be joined. Connect the switch indicated in Fig. B-5(a)
in the manner detailed in Fig. B-5(b), using the In -in. strips of compo
sition board and % -in. machine screws and nuts.

10. Using 1/2 -in. machine screws, insert in two lis -in. holes at upper left
side of panel. Secure with two nuts.

Panel Wiring

1. Turn the switch panel over and label the underside as shown in Fig.
B-6. These labels will guide you when wiring the switches together.

2. The wiring list for the panel is shown in Chart A. The leads designated
"harness" will be made and connected when the display panel is con-

(A)

COIIIION

~
6ARS

~~~F~-~--'~~F--(--~-)--~l ~~F-(~-i--,-~~--~--~ 3/4"MACHINE ~JJ.J b _ t,,; ----==----- SCREWS 

(6) Fig. B·S. 



Communicating with the Computer 35 

1 3 1 3 

1 r .... --,2 01 ~I._""S_-I ] ~I AS2 B I~ -
L-o'-' 02 

Fig. B·6. 

nected to the switch panel. Following Chart A, use 20 gage insulated 
hook-up wire to connect the designated terminals. Do this by running 
uncut wire from terminal to terminal to the determine the needed 
length; cutting the wire % in. longer than this length; stripping If<I in. 
insulation from each end of the cut wire; and connecting wire ends to 
the proper terminal. As some terminals have more than one connection, 
do not secure wires until all connections have been made. 

CHART A 

101 Switches 100 Switches 
From To From To 
TB1 Sl-3 TB1 S5-3 
Sl-2 S2-A3 S5-2 S6-A3 
S2-A2 S3-A3 S6-A2 S7-A3 
S3-A2 S4-A3 S7-A2 S8-A3 
S4-A2 Harness (0) S8-A2 Harness (0) 
Sl-l S2-B3 S5-1 S6-B3 
S2-B2 S3-C3 S6-B2 S7-C3 
S3-C2 S4-E3 S7-C2 S8-E3 
S4-E2 Harness (8) S8-E2 Harness (8) 
S2-A1 S3-B3 S6-A1 S7-B3 
S3-B2 S4-C3 S7-B2 S8-C3 
S4-C2 Harness (4) S8-C2 Harness (4) 
S3-A1 S4-B3 S7-A1 S8-B3 
S4-B2 Harness (2) S8-B2 Harness (2) 
S3-B1 S4-D3 S7-B1 S8-D3 
S4-D2 Harness (6) S8-D2 Harness (6) 
S4-A1 Harness (1) S8-A1 Harness (1) 
S4-B1 Harness (3) S8-B1 Harness (3) 
S4-C1 Harness (5) S8-C1 Harness (5) 
S4-D1 Harness (7) S8-D1 Harness (7) 
S4-£1 Harness (9) S8-£1 Harness (9) 
TB2 Harness (B-) 



36 How to Build a Working Digital Computer 

1 
x 

x t, 
0--2"4'--oj 

1 8 
-oj 1--3'8 3'8' ~ -oj 1--3'8' 1 <- DRILL SIZE: 

+ *T * *+* * * *+* * * + x 3'32' 

'1 
1"2' + lIS' 

+ *1* *+* * * *+* * * + * ~8' 
-1"4-+-1'41 I-%~ 

x ,. 10" ., 
(AJ 

f r I' - -1 

3' CU1 ~lONG 1\11S UNE 

L If. 
j, , 10' ., 

(BJ 

Fig, 8-7, 

Display Chassis Construction 

1. Mark the 4% X 10 X Va-in. board as indicated in Fig. B-7(a) and 
start a drill hole at each indicated point. This is the top panel of the 
display chassis. 

2. Drill holes through the chassis at each point with the indicated bit size. 
3. File each % -in. hole so that the bulb of a lamp will protrude approx

imately Va in. above the panel when the lamp is fitted into the hole. 
4. Mark the 3 X 10 X %-in. board as shown in Fig. B-7(b) and cut along 

the diagonal line to form two angle supports. 
5. Placing the support pieces as shown in Fig. B-7(c), drill 6 3/32-in. 

holes into the supports, using the 3/32-in. holes in the top panel as a 
guide. 



Communicating with the Computer 37 

Fig. B·8. 

IRE LENGTHS,SCALE IS FOR W 
8" TO 
ILLUS 
ON EA 
CONNE 

NOTE. 
SEPARATION 
OF WIRES 
ONLY FOR 
CLARIFICATI 

EACH I" IN THIS 
TRATION. ADD 1·112' 
CH END OF WIRE FOR 
CTlONS. 

. 
. 

ON 

"EB~ ~3 2, 

~~ 10' :: 

109 a. 

HJ' 
3 2· 

10' 4~ 
1 6" 

·9 a" 

10' 10' 

.. 0 o ., 

~ ~ 
I • 

2 ~ ... 3 ~ ., ... 4 
... 5 5 ., 
.. 6 6 ., 
.. 1 : : .. 8 
1:<9 9 • 

~ 

. 
. 

. 

6. Secure the top panel to the supports with ~ -in. wood screws. 

Wire Harness and Display Circuit Construction 

T82 

1. To streamline the connections between the display lamps and switches, 
the wire runs will be ganged in harnesses. The harnesses are to be 
laid out on patterns and transferred to the unit when finished, as 
detailed below. They should be carefully constructed and tied securely 
at all indicated points to minimize adjustments when they are moved 
from pattern to chassis. 

Figure B·8 is a representation of the harness pattern, drawn to 
scale. Reproduce this pattern on a large sheet of paper at actual size, 
following the dimensions indicated in Fig. B-8. 

2. Place the pattern on a wooden bench or work area into which nails 
may be driven. Drive a I-in. brad into each point indicated by a dot 
on the pattern, so that the brad is secure and at least % inches of it 
protrude from the pattern. 

3. Both harnesses are identical except for length. Figure B-9 illustrates 
the shortest harness. Following Chart B, measure and cut the indicated 
lengths of 20 gage, insulated hook-up wire. Strip % inch of insulation 
from each end of each wire and label each wire at each end with the 
lamp number (0-0, 0-1, 0-2, etc., for 10° lamps; 1·0, 1-1, 1-2, etc., for 
101 lamps). 



38 How to Build a Working Digital Computer 

Fig. B·9. 

4. When all lengths are cut and labeled, construct wire harnesses as follows: 
(a) Start each harness with the wire connecting the lamp furthest from 

the switch chassis (the 0 and 1 lamps) and complete each harness 
with the lamps nearest the switch chassis (the 8 and 9 lamps). 

(b) Place the proper wire in position, running it through the brads 
opposite the lamp hole, and bending it so that it will run through 
the brads at the bottom of the chassis. Run the wire as shown in the 
harness diagram until it is opposite its proper switch terminal. Place 
each wire for each harness on the pattern in this fashion. At the 

CHART B 
100 101 

Wire Length Connect To Wire Length Connect To 

0-0 27 S8-A2 1-0 25 S4-A2 
0-1 29 S8-Al 1-1 29 S4-Al 
0-2 27 S8-B2 1-2 25 S4-B2 
0-3 29 S8-Bl 1-3 29 S4-Bl 
0-4 28 S8-C2 1-4 26 S4-C2 
0-5 30 S8-Cl 1-5 30 S4-Cl 
0-6 28 S8-02 1-6 26 S4-02 
0-7 30 S8-01 1-7 30 S4-01 
0-8 29 S8-E2 1-8 27 S4-E2 
0-9 31 S8-El 1-9 31 S4-El 

B- 25 TB2 



Communicating with the Computer 39 

Fig. 8-10. 

point where each wire joins the others in the harness, secure it to 
the previously positioned wires with thin, short strips of adhesive 
tape. Also, tape the completed harness every few inches to hold the 
wires firmly in the position in which they were laid out. 

(c) The finished harnesses should appear as in Fig. B-9. At the end 
where the wire contacts the lamp, bend the stripped portion at an 
angle of 90° so that it lies parallel to the main branch of the harness. 

5. Construct 20 base terminal connectors with paper clips for the 20 lamps 
as was done for the lamps on the encoder panel. Test each bulb to see 
that it works. 

6. Place each lamp in position on the top panel with the connectors pointed 
in the directions indicated in Fig. B-lO. 

7. Cut 2 9lh-in. tin strips, each % in. wide. 
8. Secure these strips to the underside of the panel as shown in Fig. B-lI. 

Fig. 8-11_ 



40 How to Build a Working Digital Computer 

Use the Vs-in. holes in the panel as a guide for drilling holes through 
the strips. Secure each strip at both ends with nuts and 1h -in. machine 
screws and at each interior point with a nut and I-in. machine screw. 
Be certain that the strips are in contact with the bottom of each lamp 
and no other lamp part. Connect both strips with a short piece of 
uninsulated wire. 

9. Lay the harnesses in position alongside the rows of lamps. Connect 
each wire to its proper bulb, securing the wire firmly by squeezing 
the terminal connector wires tightly together. Connect B - to tin strip screw. 

10. When all bulbs are connected, place the harnesses in the proper posi
tions on the underside of the switch panel and connect the wire ends 
to the proper terminals, following Chart B as a guide. 

11. Label the switch panel as shown in Fig. B-5(a) and the lamp display 
panel as shown in Fig. B-7(c). 

Decoder Checkout Procedure 

1. Connect a I1h -volt flashlight battery between the RTN and ANS ter
minals. 

2. Set all 101 and 10° switches to O. Check that the 0 lamps for the 101 

and 10° digits are lighted. 
3. In order, set each switch (101 and 10°) to each of the positions listed 

in the left-hand columns below and check to see that the indicated 
lamps light. 

Decimal 
Switch Position Representation 

23 22 21 2° 
0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 
1 0 0 0 8 
1 0 0 1 9 



Chapter 3 
COMPUTERS AND LOGIC 

Although highly complex in appearance, the circuitry of the digital 
computer is composed of a handful of basic switching circuits that are 
repeated thousands of times. These circuits control the movement of 
electrical signals representing the bits (binary digits) used in computer 
operations. When designing computers or establishing a computer's 
problem-solving abilities it is necessary to determine the manner in 
which these circuits are to be interconnected. Also, it must be deter
mined what circuit combinations are appropriate for each type of 
problem. 

Such design and problem-solving relationships can easily be worked 
out by analyzing the circuits in terms of symbolic logic. These terms 
may not be familiar to you, but you use the theory behind them every 
day. Let us examine the basic terms of logic in light of our everyday 
experience and then prescribe some basic rules for their application. 

First, let us consider a statement. From our studies of English 
we are all familiar with the definition of this term: a statement is an 
assertion. The previous sentence contains two statements separated by a 
colon. It is important to note that the fundamental property of any 
statement is that it is either true or false but never both true and false. 

The next definition to consider is that of a compound statement. 
Again from our English studies, we know that a compound statement 
consists of two or more simple statements connected by conjunctions 
such as and and or. Compound statements also possess the property 
that they are either true or false. However, evaluating the truth of a 
compound statement is an exacting science and is the heart of the study 
of logic. 

The study of compound statements can be divided into two facets: 

1. In how many different ways can statements be compounded. 
2. How do we determine the truth value of a compound knowing 

the truth value of its component simple statements? 

In the study of logic, there are two basic conjunctions frequently 
used to compound statements: AND and OR. To illustrate the use of 
these conjunctions, let us make the following simple statements: 

(a) It is raining. 
(b) We are getting wet. 

41 



42 How to Build a Working Digital Computer 

If we wish to make a compound statement asserting that both simple 
statements are true, we use AND. 

It is raining AND we are getting wet. 

This statement is only true if both simple statements are true. On the 
other hand, we may make a weaker assertion using the conjunction OR. 

It is raining OR we are getting wet. 

In this case, it is only necessary for a minimum of one of the simple 
statements to be true in order for the compound to be true. Hence, we 
can summarize the rules for evaluating compound statements as follows: 

AND Rule 

A compound joined by the conjunction AND is true only if all of its 
component simple statements are true. In all other cases, the compound 
is false. 

OR Rule 

A compound joined by the conjunction OR is true only if one or 
more of its component simple statements is true. It is false only if all 
of its component simple statements are false. 

A third logical modifier is used to indicate a negative. This modi
fier is NOT. For example: 

It is NOT raining. 

The rules governing truth and falsity of statements using this modifier 
are obvious. 

SYMBOLS 

In order to work with and evaluate compound statements, it is 
convenient to establish a set of shorthand symbols to represent the 
various statements and conjunctions. Let us use lowercase letters to 
indicate statements, for example: 

Let a = It is raining. 
Let b = Weare getting wet. 

Also let us use the symbols + and, to indicate OR and AND as follows: 

Let OR = + 
Let AND =. 

Finally, let us use a bar over the statement to indicate NOT as follows: 



Computers and Logic 43 

Let ""if = It is not raining. 
Let Ii = Weare not getting wet. 

To further illustrate the symbols just established, consider the following 
list of symbolic statements and their English counterparts: 

SYMBOLIC STATEMENT 

1. a·b 

2. a + b 

3. (a· b) + (a . b) 

- -
4. a· (b t- b) 

- -
5. (a + a) • b 

ENGLISH EQUIVALENT 

1. It is raining and we are getting wet. 

2. Either it is raining 2!: we are getting 
wet (or both). 

3. Either it is raining and we are getting 
wet, Q! it is not raining and we are 
not getting wet. 

4. It is not raining and either we are 
getting wet Q! we are not getting wet. 

5. Either it is raining Q! it is not rain
ing, and we are not .getting wet. 

6. Either it is raining and either we are 
getting wet Q! we are not getting wet, 
Q! we are getting wet and either it is 
raining or it is not raining. 

Examining these statements, especially 5 and 6, we can notice 
some redundancy. For example, in statement 6, look at the terms 
(a + a) and (b + b). Since there are only two possible conditions 
(either it's raining or it's not raining, and either we are getting wet or 
we are not getting wet), these sets of terms are meaningless. Mter all, 
the terms (a + a) (either it is raining or it is not raining) must be true 
and goes without saying since there are no more possible conditions. 
This being the case, statement 6 in the list could just as meaningfully 
reduce to the statement (a + b), either it is raining or we are getting 

. wet. Reducing logic terms in this fashion is called minimization and 
plays a prominent role in the efficient design of digital computers. 
Minimization will be discussed later. 

TRUTH TABLES 

Sometimes it is convenient to draw up a table that lists the truth 
or falsity of a logic statement (simple or compound) for every possible 
condition or combination of conditions for that statement. As an 
example, let us consider the compound statement (a . b). There are 
four possible conditions for this statement since each simple statement 



44 How to Build a Working Digital Computer 

can assume one of two conditions, true or false. If we tabulate these 
conditions and then tabulate the truth value of the compound for each 
set of conditions we have: 

a 

T 

T 

F 

F 

b 

T 

F 

T 

F 

a·b 

T 

F 

F 

F 

where T indicates true and F indicates false. This table is called a truth 
table since it indicates the truth value of the compound for every possible 
variation of individual truth values of the component simple statements. 
An important theorem concerning truth tables is that statements having 
identical truth tables are equal. 

A sample of a truth table for a higher-order compound statement 
is provided below: 

a b c d a • b • (c + d) 

T T T T T 

T T T F T 

T T F T F 

T F T T F 

F T T T F 

T T F F T 

T F F T F 

F F T T F 

T F T F F 

F T F T F 

F T T F F 

T F F F F 

F T F F F 

F F T F F 

F F F T F 

F F F F F 



Computers and Logic 45 

LOGIC CIRCUITS 

The question, now that the basic rules of logic have been defined, is 
"How can they be used?" We could, of course, use them as part of a 
simple mental exercise to test our powers of reasoning or we could 
build machines to solve problems for us logically. If we wish to build 
machines of this sort, however, we must learn to build devices that can 
evaluate the truth of compound statements. Devices of this sort are 
called logic circuits because they are electrical devices that simulate the 
basic rules of logic we have learned. 

The first rule discussed was the AND rule, which stated that a 
compound statement is true only if all of its component simple state
ments are true. The compound a . b . c (a AND b AND c) is true only 
if a is true and b is true and c is true. Therefore, we would like a device 
that provides a true indication only when all of the simple statements 
are individually true. The circuit illustrated in Fig. 3-1 is such a device. 

In this circuit, the lamp lights only if switches A, B, and C are all 
closed. Switch A is closed when simple statement a is true; switch B is 
closed when simple statement b is true; and switch C is closed when 
simple statement c is true. Hence, the lamp lights only when the com
pound statement (a . b . c) is true. 

,,+L o~~~ -T~ _________________ ~ ____ ~ 
SCHEMATIC DIAGRAM 

LAMP 

SFU'U~ 
BATTERY 

~ 

WIRING DIAGRAM 

Fig. 3-1. An AND circuit. 

The second rule discussed, the OR rule, asserted that a compound 
statement is true if one or more of its component simple statements is 
true. The compound a + b + c (a OR b OR c) is true if either a is 
true or b is true or c is true, or any combination of the three simple 
statements is true. Therefore, we would like a device that provides a 
true indication only when one or more of the simple statements is 
individually true. The circuit illustrated in Fig. 3-2 is such a device. 



46 How to Build a Working Digital Computer 

05-1 
5-A 

+--1 -~:~ 
SCHEMATIC DIAGRAM 

5WITCHA Fig. 3·2. An OR circuit. 

LAMP 

WIRLNG DIAGRAM 

In this circuit, the lamp lights only if any single switch or com
bination of switches A, B, or C is closed. As before, switch A is closed 
when simple statement a is true; switch B is closed when simple state
ment b is true; and switch C is closed when simple statement c is true. 
Hence the lamp lights only when the compound statement (a + b + c) 
is true. 

The third rule discussed was the NOT rule, in which the statement a (NOT a) is true only if the statement a is not true. Figure 3-3 illus
trates a circuit that mechanizes the NOT rule. In this circuit, the switch 
is placed in the a position when the statement a is not true thereby 

~ 05-1 
5~A _ (()) 

r-----------~ ~ 

.:t.l E1 a 
1 

SCHEMATIC DIAGRAM 

LAMP 
Fig. 3·3. A NOT circuit. 

+ 



Computers and Logic 47 

Fig. 3·4. 

B+ 

Fig. 3·5. B-

(li·c)+(li·b )+(ti·C)+(o·b·c) 

8+ 
b C 

B-

Fig. 3·6. 

lighting the lamp. When the statement a is true, the switch is placed 
in the a position, causing the lamp to go out. In this case, the statement a 
is not true. It is important to note that in logic, as in English, a double 
negative results in a positive. Therefore, if the statement a is not true, 
the statement a is true. When using the NOT circuit in conjunction 
with the AND and OR circuits let us use the convention that the NOT 
switches will be shown normally closed, while all other switches will 
be shown normally open. 

Now let us examine the use of logic circuits to instrument various 
compound statements. These circuits are shown in the indicated figures. 

COMPOUND STATEMENT 

a • (b + c) 
- -

(a + b) • c 
- -

(a. c)+ (a. b)-t-(b. c)+ (a. b. c) 

TRUTH EVALUATOR 

FIGURE 

3-4 

3-5 

3-6 

Our study of truth tables and their significance in logic can be 
aided considerably by the use of a simple mechanism that will illustrate 
and evaluate the truth values of compound statements. Although this 
truth evaluator must be capable of simulating any combination of logical 
conjunctions, we will limit the number of simple statements to three. 
Refer to the construction details at the rear of this chapter and con
struct the truth evaluator. It will be used in the following experiments. 



48 How to Build a Working Digital Computer 

EXPERIMENTS WITH TRUTH TABLES 

1. Set up the evaluator as illustrated in Fig. 3-7 for a . b . c and 
check all eight conditions of this statement against Truth Table A. 

2. Set up the evaluator as illustrated in Fig. 3-8 for a + b + c and 
check all eight conditions of this statement against Truth Table B. 

3. Set up the evaluator as indicated in Fig. 3-9 for (a + b) . c and 
check all eight conditions of this statement against Truth Table C. 

4. Set up the evaluator as illustrated in Fig. 3-10 for (a . b) + c 
and check all eight conditions of this statement against Truth Table D. 

a 

T 

T 

T 

F 

T 

F 

F 

F 

POSITIVE LEAO BATTERY (+) SWITCH A (I) 
SWITCH A (2) SWITCH B (I) 
SWITCH B (2) SWITCH C (I) 
SWITCH C (2) LAMP (I) 

WIRING DIAGRAM 

SCHEMATIC DIAGRAM 

Fig. 3·7. The evaluator 
set-up for a . b • c. 

TRUTH TABLE A. (a· b· c) 

b c 

T T 

T F 

F T 

T T 

F F 

F T 

T F 

F F 

a·b.c 

T 

F 

F 

F 

F 

F 

F 

F 



a 

T 

T 

T 

F 

T 

F 

F 

F 

a 

T 

T 

T 

F 

T 

F 

F 

F 

a 

T 

T 

T 

F 

T 

F 

F 

F 

Computers and Logic 

TRUTH TABLE B. (a + b + c) 

b c 

T T 

T F 

F T 

T T 

F F 

F T 

T F 

F F 

TRUTH TABLE C. (a + b) • c 

b c 

T T 

T F 

F T 

T T 

F F 

F T 

T F 

F F 

TRUTH TABLE D. (a • b) + ~ 

b c 

T T 

T F 

F T 

T T 

F F 

F T 

T F 

F F 

49 

a+b+c 

T 

T 

T 

T 

T 

T 

T 

F 

(a+b). c 

T 

F 

T 

T 

F 

F 

F 

F 

(a. b)+c 
.--

T 

T 

F 

F 

T 

F 

T 

T 



50 

l!OE) 

How to Build a Working Digital Computer 

WIRE FROM TO 
POSITIVE LEAD BATTERY (+) SWITCH A (I) 

SWITCH A (I) SWITCH B (I) 
SWITCH A (2) SWITCH B (2) 
SWITCH B (I) SWITCH C (I) 
SWITCH B (2) SWITCH C (2) 
SWITCH C (2) LAMP (I) 

WIRING DIAGRAM 

SCHEMATIC DIAGRAM Fig.3·8. The evaluator 
set-up for a + b + c. 

POSITIVE LEAD 

+ CD 

WIRE FROM TO 
POSITIVE LEAD BATTERY 1+) SWITCH A (I) 

I SWI,.CH A (I) SWITCH B (I) 
2 SWITCH A (2) SWITCH B (2) 
3 SWITCH B (2) SWITCH C (I) 

4 SWITCH C (2) LAMP (I) 

WIRING DIAGRAM 
OS-) 

S-A SoC 
)~2 

:LE)C:~ 
Fig. 3·9. The evaluator 
set-up for (a + b) • c. SCHEMATIC DIAGRAM 



Fig. 3·10. The evalu
ator set up for (a . 
b) + c. 

Computers and Logic 51 

WIRE fROM TO 
POSITIVE LEAD BATTERY (t) SWITCH A (I) 

SWITCH A (I) SWITCH C (I) 

SWITCH A (2) SWITCH B (I) 
SWITCH B (2) SWITCH C (2) 
SWITCH B (2) LAMP (I) 

WIRING DIAGRAM 

NOTE: SWITCH C IS CLOSED FOR 5 A 5 B 
cANDOPENFORC I ~-

JiEI r 0 SoC *SEE NOTE--o:=----....r-"1'---, 

- _ I 0 ~2=---__ --, 

OS-I 

SCHEMATIC DIAGRAM 

BOOLEAN ALGEBRA 

As demonstrated, the circuit combinations used in computers can 
be represented and analyzed in terms of symbolic logic. The different 
configurations we used with the truth evaluator experiments are good 
examples of the manner in which logic circuits combine. Such circuit 
combinations in computers, however, are much more complicated, 
although the basic circuit elements remain the same. Planning these 
circuit combinations with logic statements is an adequate method, but 
it is not entirely satisfactory. This is so because, in many cases, the 
combinations of logic circuits can be simplified, thereby eliminating 
unnecessary components and reducing expense and construction time. 
This simplification is carried out by the use of a form of algebra called 
Boolean algebra, which is named after its inventor, George Boole. By 
applying the rules of Boolean algebra to logic statements, we can simplify 
the statements by minimizing terms. 

Boolean algebra uses the same logical conjunctions that we have 
already described: AND, OR, and NOT. However, instead of using 
T and F to indicate whether a statement is true or false, the binary 
numerals 1 and 0 are used. Using this convention, the following rules 
can be derived from the basic AND, OR, and NOT rules given at the 
beginning of this chapter. 



52 How to Build a Working Digital Computer 

AND OR NOT 

1 . 1 = 1 1 + 1 = 1 1=0 

1 • 0 = 0 1 + 0 = 1 0=1 

O. 1 = 0 0+1 = 1 I = 1 

O. 0 = 0 0+0 = 0 0=0 

Further expansion using 1 and 0 in place of T and F results in these 
additional rules: 

AND OR NOT 

A.O=O A+O=A A=A 

A· 1 = A A + 1 = 1 

A.A=A A+A=l 

A.A=o A+A=A 

In regard to the algebraic manipulation of terms, Boolean algebra 
is very similar to regular algebra. For example the following statements 
represent rules for simple AND and OR statements. 

A+B=B+A 

A·B=B·A 

(A+B)+C=A+(B+C) 

(A, B) . C = A . (B, C) 

The relative positions of the terms are of no significance in AND or OR 
statements (commutative and associative laws). Also (distributive law) : 

A . B + A . C = A . (B + C) 

(A+B) . (A+C) =A+B· C 

These equations can easily be proved by constructing truth tables 
for each side of the equation and comparing your results. If both state
ments in each equation produce the same truth table, they are equal. 
The required truth tables are: 

a b c a.b+a·c a . (b + c) 

1 1 

0 1 1 

1 0 1 1 1 

o 0 0 

1 0 0 0 0 

o 0 0 0 

o 0 0 0 

o 0 0 0 0 



a 

1 

o 
1 

o 
o 
o 

b 

o 

o 
o 

o 

Computers and Logic 

c 

1 

o 

o 

o 
o 

a + b· c 

1 

1 

o 
o 
o 

(a+b).(a+c) 

1 

1 

1 

1 

o 
o 
o 

53 

From this discussion, we can see that it is possible to reduce the number 
of terms and conjunctions in a Boolean equation (statement) by applying 
the basic rules, factoring, rearranging, etc., while still maintaining 
equality. This leads us to our next topic, minimizing terms. 

MINIMIZING TERMS 

In our study of Boolean algebra, we saw how two equal statements 
or equations might have different numbers of terms and conjunctions. 
The process of determining the smallest equal logical statement, given 
an original statement, is called minimization. To illustrate the effect of 
the minimization process, consider the statement a + (a . b). This 
statement can be instrumented by a logic circuit such as that shown in 
Fig. 3-11. Note that this logic circuit contains three switch poles. How-

ot(a·b) 
• 

Fig. 3·11. The logic circuit 
for a + (a . b). 

ever, by applying some of the rules of Boolean algebra we can reduce 
the number of terms as follows: 

OPERATION 

a· ~ + (1. b)] 

a· (1) 

a 

BOOLEAN RULE 

a. 1 = a 

a· 1 = a 

Therefore, a + (a . b) equals a. The circuit configuration for this state
ment, Fig. 3-12, needs only one switch pole. Hence, by the process 



54 How to Build a Working Digital Computer 

_ _________ o~~ __________ .O 
Fig. 3·12. The logic circuit for a. + .) ~ • 

of minimization, the circuit complexity has been reduced by two-thirds. 
As a further example, take the statement: 

a . b . c + a • b . c + c . (a . b + a . 7J) + c· (a . Ii + a . b + a· b) 

The circuit for this statement in its present form is illustrated in Fig. 3-13. 

Fig. 3·13. The logic circuit 
of a .1). c + a • b • c + 
c • (a • b + Ii . b) + c· 
(a • b + a . b + "Ii . b). 

+ ~. b • 
'------<)~ 

~~ 
I L 
o 1 b 
I I 
Iii Ib 
1 I 
10 Iii 
I I 
I 1-
10 Ib 
I I 
Iii I b 

This circuit requires 18 switch poles. Now, apply the rules of Boolean 
algebra to minimize terms: 

1. Factor a • c from the first two terms: 
a • c . (b + b) = a • c 

since (~ + b) must equal 1. 
2. Factor b from the third term: 

c • b. (a + a) = c • b 
3. Factor c • b from the last term: 

-;.b. (a+a) +cab=c. b+abc 
4. Now, the statement is: 

a· c+c· b+~.b+ab-; 
5. Factor b from the second and third terms: 

a· c + Ii. (c +c) +abc a· c + b + abc 
6. Since the b term in the last term is meaningless, because of b in the 

middle term (i.e., if b = 0, the statement is 1 due to the Ii term, and if b 
is 1 the statement is a • c + a . C), the b term can be dropped and the 
minimized statement becomes: __ _ 

Fig. 3·14. The logic circuit 
for a . c + b + a + Co 

a·c+b+a.c 

+ ~I c -_---<) I~""-------__ O I~--_'" 

I I 
I .. ii I 
I I 

_10 Ie 
-v 



Computers and Logic 55 

The minimized statement, a . c + b + a . C, is equal to the original 
statement as illustrated by their truth tables, which follow. This state
ment may be instrumented using the circuit of Fig. 3-14. Notice that 
now only 5 switch poles are required instead of the original 18. 

- - - -
- - - - - - - - - a.b. c+a.b.c+c.(a.b+a.b)+ 

abc a·b.c a.b.c c.(a.b+a.b) c(a.b+a.b+a.b) c(a. £+a. btii.b) 

111 0 1 0 0 1 

1 1 0 0 0 0 0 0 

101 1 0 1 0 1 

011 0 0 0 0 0 

1 0 0 0 0 0 1 1 

001 0 0 1 0 1 

010 0 0 0 1 1 

000 0 0 0 1 1 

a blc 
- - - - - -

a·c b a·c a. c+b+a.c 

1 1 1 1 0 0 1 

110 0 0 0 0 

1 0 1 1 1 0 1 

o 1 1 0 0 0 0 

100 0 1 0 1 

001 0 1 0 1 

o 1 0 0 0 1 1 

000 0 1 1 1 

DE MORGAN'S THEOREM 

A very valuable tool in the study and application of logic and 
Boolean algebra is De Morgan's theorem. This theorem says that the 
statement "NOT: a-or-b-or-c" is equivalent to the statement "not-a and 
not-b and not-c," or, in Boolean algebra: 

(a+b+c)=a·b·c 

This theorem provides a relationship between the AND and OR con
nectives and thereby allows interchanging connectives for convenience. 
A further reason for the importance of this theorem is its widespread 
use in transistorized logic circuits. Many circuit designs that use tran
sistors employ basic circuit units that instrument the logic a-:7.i or a + b; 



56 How to Build a Working Digital Computer 

LAMP * 

* NOTE: IN THIS CASE, WHEN LAMP LIGHTS, INDICATES A ZERO;WHEN LAMP STAYS OUT, INDICATES A ONE 

WIRE FROM TO 
POSITIVE LEAD BATTERY 1+) SWITCH A (II 

I SWITCH A (I) SWITCH B (I) 
2 SWITCH A (2) SWITCH B (2) 
3 SWITCH B (2) LAMP (I) 

WIRING DIAGRAM 
DS-I 

:t~_C~:~~-; ~: _J_'~---J2 
SCHEMATIC 

Fig. 3·15. The evaluator set-up for a + b_ 

i.e., NAND (not-and), or NOR (not-or). With this logic, to instrument 
the statement a . b, you may use aJ~"oR circuit (a + b) since by 
De Morgan's theorem, a + b equals a . b. 

To prove the equivalence of the two parts of De Morgan's theorem, 
set up the truth evaluator in Figs. 3-15 and 3-16 to determine that both 
statements have the following truth table: 

Fig. 3·16. The evaluator 
set-u p for a . b. 

CD 

*NOTE: SWITCHES MUST NORMALLY BE CLOSED FOR THIS SET-UP. WHEN a
IS TRUE, SWITCH A IS OPENED AND VICE VERSA 

WIRE FROM TO 
POSITIVE LEAD BATTERY 1+) SWITCH A ()) 

I SWITCH A (2) SWITCH B(I) 
2 SWITCH B (2) LAMP (I) 

WIRING DIAGRAM 
1 S-A I S-B 2 

.-------~~o-,_~~~----~~ 

:4= 
SCHEMATIC DIAGRAM 



Computers and Logic 57 

a b a+b a.b 

1 1 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 1 

THE UN PROBLEM-AN EXPERIMENT IN LOGIC 

This problem consists of devising a means for instantaneously 
registering the results of a secret vote taken in an organization built 
along the lines of the United Nations Security Council. The organization 
consists of five members, each of whom may vote yes or no inde
pendently. In addition, two of the five members have a veto power; i.e., 
if either or both of these members exercise their veto the result is no, 
regardless of the votes of the other members. 

Each member of the organization has a switch assigned to him 
which he must close for a yes vote or open for a no vote. If the members 
are designated A, B, C, D, and E, the following statements may be 
defined: 

Statement 
a 
b 
c 
d 
e 

Meaning 
Member A votes yes 
Member B votes yes 
Member C votes yes 
Member D votes yes 
Member E votes yes 

Finally, let us assign the previously mentioned veto power to members 
AandB. 

The problem has thus been completely defined. The first step in the 
logical design of this device is to write the logical statement of the 
problem which, in this case, is the compound statement corresponding to 
a yes vote. From the logic of the problem: 

a· b· (c+d+e) = YES 

Both a and b must be true to satisfy the veto condition, and at least one 
of statements c, d, or e must be true to provide a majority. 

SWITCH C LAMP 

Fig. 3·17. 



58 How to Build a Working Digital Computer 

The logic circuit which instruments this logical statement so that a 
lamp lights to indicate a YES result is illustrated in Fig. 3-17. Refer to 
the construction details at the rear of this chapter and build the voting 
machine. 



Computers and Logic 59 

CONSTRUCTION DETAILS-TRUTH EVALUATOR 

COMPONENTS: Panel, switches, battery holder 

Fig. C·l. 

MATERIALS 

1 8 X 10 X VB in. composition board 
1 battery holder (construction details follow) 
3 1;2 in. machine screws (6-32) 
3 nuts (6-32) 
7 Y2 in. wood screws (no. 4) 

9 ft. insulated hook-up wire (20gage) 
39 paper clips 

1 #48 or 41 lamp (2 v, .06 a) 

SPECIAL TOOLS: 

Drill (VB, 3/32) 

Truth Evaluator Construction 

1. Mark the 8 X 10 X VB-in. composition board as in Fig. C-2. 
2. Start drill holes at each point and drill as indicated. (The Vs-in. holes 

will hold machine screws for switch and terminal connections.) 

Fig.C·2. 

I" + Va 

8" 

Fig.C·3. 



60 How to Build a Working Digital Computer 

3. Each SPST switch is made from 2 paper clips. Bend 3 paper clips as in 
Fig. C-3(a). Bend 3 other paper clips as in Fig. C-3(b). 

4. Cut each paper clip for each configuration as shown in Fig. C-3. The 
Y2 -in. section will be crimped around a wood screw to secure the switch 
parts on the panel in an upright position. 

5. The quick-disconnect terminals are also made with paper clips. Their 
configuration and use are shown in Fig. C-4. Construct 8 of these 
terminals. 

~. <\ 
(A' "- 18' 

(C) Fig. C-4. 

6. Install 6 quick-disconnect terminals and 3 SPST switches on the panel 
top as shown in Fig. C-5. Use Y2-in. wood screws. Note that each arm 
or contact of the SPST switches has a quick-disconnect terminal attached 
to it. Put the switch arms in the first vertical row on the left side of the 
panel (as illustrated) with the arms pointing toward the right side of 
the panel. Place the contacts so that the open loop is towards the top 
of the panel. As each quick-disconnect terminal and switch contact 
or arm is secured in place, crimp the arm or contact around the screw 
to hold it upright on the board. 

7. When the switches are in place, cut each arm so that it extends past 
the contact about Va in. 

S. Cut each contact so that it is about Y2 in. long on the open loop. 
9. Bend the switch arms to the outside of the contact so that there is 

enough tension to spring the arm away from the contact when it is not 
locked in place. The make or break motion is similar to the opening 
or closing of a safety pin. 

10. Cut three 7-in. lengths of insulated wire and strip Yz in. of insulation 
from each end of each length. 

QUICK DISCONNECT SPST 

Fig. C-5. 



Computers and Logic 

WIREA--_..JI 

Fig.C·S. 

61 

WIRE C 

~ __ LAMP 8-
TERMINAL 

11. As in Fig. C-6, place ~ -in. machine screws in holes A, B, and C 
and attach nuts. Do not tighten the nuts. 

12. Attach one 7-in. wire and a quick-disconnect terminal to the screw 
in hole A and attach wires to B and between B and C, as indicated in 
Fig. C-6. 

13. Construct a lamp socket by wrapping a paper clip around the base of· 
the lamp, as illustrated in Fig. C-7(a). 

8UL8~ 
PAPER 
CUP 

(A) (8) Fig.C·7. 

14. Attach the socket constructed in Step 13 and a quick-disconnect 
terminal to point D (Fig. C-7(b)) with a ~-in. wood screw. Caution: 
The socket should be positioned directly over the machine-screw head 
acting as the B- terminal. The socket, however, should never touch this 
terminal, but it must be close enough to it so that the base of a bulb 
screwed into the socket will contact the terminal. 

15. Label the switches and terminals as shown in Fig. C-S. 

Fig.C·S. 

PAPERCL~_ ~ 
INSULATED~ WRAP WIRE TIGHTLY 

STRIPPED WIRE AROUND CUP HERE Fig. e·g. 



62 How to Build a Working Digital Computer 

16. Cut 6 9-in. lengths of insulated hook-up wire and 6 5-in. lengths. Strip 
% in. of insulation from each end of each wire. 

17. Attach each end of each wire to a paper clip as shown in Fig. C-9. 
Use these wires to make the various connections in the experiments 
involving the truth evaluator by clipping the wires to the appropriate 
quick-disconnect terminals. Always make certain that the connections 
are solid before proceeding with the experiment. 

CONSTRUCTION DETAILS-BATTERY HOLDER 

COMPONENTS: Chassis, batteries 

MATERIALS 

1 4 X 5 X lh in. block of wood 
8 llh in. wire brads 
2 llh volt flashlight batteries 
2 1 in. machine screws (6-32) 
8 nuts (6-32) 

1 ft. insulated wire (20 gage) 
Adhesive tape 

Chassis Construction 

1. Place the batteries side by side, facing them in opposite directions. Tape 
them together. 

2. Put the batteries in the center of the 4 X 5 X lh -in. block and secure 
them on both sides with brads driven into the block. See Fig. C-lO. 

----="".. ____ TAPE 

BRADS 

Fig. C·IO. 

3. Drive brads into the block at both ends of each battery, making sure 
that contact is made between each battery terminal and the brad in 
front of it. See Fig. C-lO. 

4. At one end of the block, jump a short length of insulated wire, stripped 
at its ends, between the two brads. 

5. At the other end of the block, connect a single wire to each brad. 
6. Drill two 31 32-in. holes at the front edge of the wood block, immediately 

in front of the brads that have single wires connected to them. See 
Fig. C-l1. 

7. On the bottom of the block, enlarge the holes drilled in Step 6 so that 



Computers and Logic 

,<" A 

cr- -

cf-o P 
I 

(x- -'" ,.,-
Fig. ColI. ) TOP VIEW \ 

BLOCK--_~ 

Fig. C-12. 

-

63 

DRILL 3/32" 
HOLES 

they will accommodate the nuts for a I-in. machine screw. See Fig. C-I2. 
8. Place three nuts on each of the I-in. machine screws. Advance each 

nut so that the last one screwed on is approximately V2 inch from the 
end of the screw. 

9. Insert the screws into the drilled holes from the top of the block. Secure 
them with a fourth nut on the bottom. As in Fig: C-12, tighten the 
bottom nut and the top nut nearest the block to make the screw rigid. 

10. Attach the free end of the wire connected in Step 5 from the brad to the 
screw, placing it between the nuts marked 2 and 3 in Fig. C-12. Do this 
with both of the free wires. Tighten nut 2 down onto nut 3. 

12. Use additional tape to ensure that the brads continually make contact 
with the battery terminals. 

13. To use the batteries to power computer units, connect the power leads to 
the screw between nuts I and 2 and tighten nut I down onto nut 2. 

CONSTRUCTION DETAILS-UN PROBLEM 

COMPONENTS: Panel, switches, battery holder 

MATERIALS 

1 8 X 10 X Va in. composition board 
12 lh in. machine screws (6-32) 
12 nuts (6-32) 

5 ft. insulated hook-up wire (20 gage) 
10 paper clips 

1 battery holder (see truth evaluator construction details) 
1 #48 or 41 lamp (2 v, .06 a) 

UN Problem Construction 

1. Mark the 8 X IO-in. board as shown in Fig. D-l. 
2. Start drill holes and drill through the board with indicated bit size. 



64 

I + 
, + 

8" + + 

1 
2 I 

+ 
+ 

,. 

How to Build a Working Digital Computer 

+ 
+ 

II" 

Fig. 0·1. 

., 
I" + ~8 

Fig. 0·2. 

3. Make 5 SPST paper-clip switches. Refer to the truth evaluator con
struction procedures for construction details. 

4. Install the SPST switches at points A through E using liz -in. machine 
screws and nuts. 

5. Make a bulb socket following the details given in the truth evaluator 
construction details. 

6. Install a machine screw at point 2 and secure it with a nut. 
7. Attach the socket constructed in Step 5 to a machine screw at point 1 

(Fig. D-2). The socket should be positioned directly over the machine
screw head at point 2. The socket, however, should not touch the 
machine screw. Place it so that the base of the bulb it holds will main
tain contact with the machine screw. 

S. Wire the board as shown in Fig. D-2 with insulated hook-up wire. 
9. Label the panel as shown in Fig. D-2. 



Chapter 4 
COMPUTER ARITHMETIC 

The computer performs all of its arithmetic operations in its arith
metic unit. This unit is the central or focal point of the computer, for all 
calculations and processing are carried out in it. The arithmetic unit of 
a computer generally consists of several storage devices called registers, 
plus circuits that perform addition and subtraction. The basic register 
in the arithmetic unit is called the accumulator since the results of almost 
all computer operations "accumulate" in this register. The number and 
size of the registers and other circuits in the arithmetic unit are depen
dent on the complexity and versatility of the overall computer and its 
primary function. In this chapter, computer arithmetic will be discussed 
and a basic arithmetic unit described and constructed for use in our 
computer. 

BINARY ARITHMETIC 

In Chapter 2, we learned about the binary number system, which 
is the system used by computers. The relationship between binary and 
decimal numbers (and vice versa) was discussed and units that per
formed decimal-to-binary and binary-to-decimal number conversions 
were constructed. These units allow raw rata to be inserted into our 
computer in decimal numbers and processed data to be returned in 
decimal numbers. However, internally, the computer performs all of its 
operations using binary numbers. In the following paragraphs, the basic 
rules of binary addition and subtraction will be described. Then, using 
these rules, we will construct an arithmetic unit capable of performing 
operations of addition and subtraction automatically. The arithmetic 
operations of multiplication and division (which we will be able to do 
on our computer) will be accomplished by performing multiple addi
tions or subtractions in sequence under control of a stored program. 
These operations are discussed in Chapter 7. 

BASIC RULES 

As with any numbering system, there are a certain number of 
simple, basic rules in the binary system on which the more complicated 
arithmetic operations rest. These rules are the basic rules of single
column addition, subtraction, multiplication, and division. Since the 

65 



66 How to Build a Working Digital Computer 

binary system contains only two numerals, the rules for this system are 
both simple and few. These rules are contained in the following tables. 

ADDEND 

o 
o 

MINUEND 

0 

0 

1 

1 

+ 

+ 

+ 

+ 

TABLE 4-1. BINARY RULES OF ADDITION 

AUGEND SUM CARRY TO NEXT COLUMN 

o 
1 

o 
1 

o 
1 

o 

TABLE 4-2. BINARY RULES OF SUBTRACTION 

SUBTRAHEND DIFFERENCE 

0 0 

0 

0 

o 
o 
o 
1 

BORROW FROM 
NEXT COLUMN 

0 

1 

0 

0 

TABLE 4-3. BINARY RULES OF MULTIPLICATION 

MULTIPLICAND MULTIPLIER PRODUCT 

o 
o 
1 

x 

x 

x 

x 

o 

o 
1 

TABLE 4-4. BINARY RULES OF DIVISION 

DIVIDEND 

o 
o 
1 

DIVISOR 

o 

o 

o 
o 
o 

QUOTIENT 

Undefined 

o 
Undefined 

1 

These basic rules define the binary arithmetic functions for single
column operations. However, since we hardly require the assistance of 



Computer Arithmetic 67 

a computer for numbers of single-column magnitude, let us proceed to 
discuss and analyze the arithmetic functions as applied to higher-order 
numbers. This chapter concerns itself with this analysis and with reducing 
our findings to a series of logical statements that can be readily con
verted, using basic logic circuits (see Chapter 3), into a device to be 
used in our computer as the arithmetic unit. 

ADDING BINARY NUMBERS 

The addition of higher-order binary numbers using the basic rules 
tabulated earlier can best be illustrated by an example, as follows: 

Decimal Binary 
1 1 1 Carry 

n nn 
210 0 1 1 0 1 0 0 1 0 Augend 

+135 +0 1 0 0 0 0 1 1 Addend 

345 1 0 0 1 0 0 1 Sum 

The process of addition illustrated in the foregoing examples con
sists of adding each column in sequence starting from the least-significant 
column (right-hand) and working towards the most-significant column. 
Note that, in accordance with our rules for addition, when the addend 
and augend are both 1, a 1 is carried to the next column. The algebra 
of addition for a single column of binary numbers is expressed as follows: 

Sum = Augend + Addend + Carry (from the previous column) 

We can now analyze this process logically by means of a truth table 
(Table 4-5) which uses binary 1 to represent True and binary 0 to 
represent False. 

TABLE 4-5. ADDITION TRUTH TABLE 

CARRY 
AUGEND ADDEND (Previous column) SUM CARRY 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

1 0 0 1 0 

0 1 1 0 1 

1 1 0 0 1 

1 0 1 0 1 

1 1 1 1 1 



68 How to Build a Working Digital Computer 

From this table we can gather the compound statements for Sum = 1 
and Carry = 1 and write the following statements, which cover the addi
tion of a single column of binary numbers: 

S = (Au' Ad . Cpe ) + (Au' Ad . Cpe) + (Au' Ad . Cpe ) 

+ (Au' Ad . Cpe ) (1) 

C = (Au' Ad . Cpe) + (Au' Ad . Cpe ) + (Au' Ad . Cpe ) 

+ (Au' Ad . Cpe ) (2) 

where: S = Sum 
Au = Augend 
Ad = Addend 
Cpe = Carry (previous column) 
C = Carry 

At this point, let us refresh our understanding of Boolean algebra 
by referring back to Chapter 3. Using the basic rules of Boolean algebra 
and logic, we can rewrite statements (1) and (2) so that they contain 
fewer component simple statements, thereby reducing the number of 
switches necessary for their instrumentation. For the summation state
ment: 

1. Process: Group the terms containing Cpe and factor Cpe. 
Result: S = Cpe • [(Au • Ad) + (Au • Ad)] 

+ (Au • Ad • Cpe) + (Au • Ad • Cpe) 

2. Process: Group the terms containing Cpe and factor Cpe. 
Result: S = Cpe • [(Au • Ad) + (Au" Ad)] 

+ Cpe • [(Au' Ad) + (Au' Ad)] (3) 

By counting terms it can be seen that the number of statements com
prising the summation statement has been reduced from 12 to 10. 

Now let us minimize the logical statement for "carry" (2). 

1. Process: Group the terms containing (Au' Ad) and factor (Au' Ad). 
Result: (Cpe • Au . Ad) + (Cpe . Au . Ad) + (Au' Ad) (Cpe + Cpe ) 

2. Process: Since (Cpe + Cpe ) = 1. 
Result: (Cpe • Au . Ad) + (Cpe • Au • Ad) + (Au' Ad) 

3. Process: Group the terms containing Cpe and factor Cpe. 
Result: Cpe [(Au' Ad) + (Au' Ad)] + (Au' Ad) (4) 

In this case, we have reduced the number of terms from 12 to 7. 
At this point, logical statements have been derived for Sand C 

that, together, cover the entire process of addition for a single column 
of binary numbers. However, prior to mechanization 0.1 these statements 
to form an adder, we must also derive the statement C since this state
ment is used for summation. To derive C, we again refer to the truth 
table for~ddition and gather the compound statements corresponding to 
C=O(C=l). 



Computer Arithmetic 69 

C = (Au· Ad . Cpc) + (Au· Ad . Cpc) + (Au· Ad . Cpc) 
+ (Au· Ad . Cpc) (5) 

The "not-carry" statement, (5), is minimized by the following process: 

1. Process: Group the terms containing Cpc and factor Cpc. 
Result: (Cpc . Au . Ad) + Cpc [(Au· Ad) + (Au· Ad) + {Au· Ad)] 

2. Process: In the Cpc term, factor Au. 
Result: (Cpc . Au • Ad) + Cpc [Au (Ad + Ad) + (Au . Ad)] 

3. Process: Since Ad + Ad = 1. 
Result: (Cpc . Au . Ad) + Cpc [Au + (Au· &)] 

4. Process: Referring to Cpc terms, if Au = 1, term in brackets equals Ad; 
if Au = 0, then (Au + (Au· Ad)] = Au:. 
Result: (Cpc . Au . Ad) + Cpc [(Au + Ad)] (6) 

Since statements (4), (5), and (6) apply to the addition of a single 
column, it is necessary to use a complete set of these three statements 
for each column of the numbers to be added. 

For example, if we have a four-column number (i.e., 0101), we 
must mechanize each set of three statements (S, C, C) four times. For 
example: 

So 
Sl 
S2 
Sa 

Co 
C1 
C2 
Ca 

First column (least significant) 
Second column 
Third column 
Fourth column 

The answer to an addition problem involving two four-digit numbers 
thus consists of four individual summations, So through Sa, arranged in 
the following order: 

The circuit used to mechanize each set of three statements corre
sponding to a single column is called a stage. In the above case, four 
stages are required to mechanize the number completely. The design 
of each stage is identical since it must mechanize the same logical state
ments. However, it is possible to simplify the mechanization of the first 
stage since there are no Cpc statements involved. The general statements 
for a stage are: 

S = Cpc....:. [(Au· Ad) + (Au· Ad)] 
+ Cpc . [(Au· Ad) + (Au· ~)] 

C = (Au· Ad) -t: Cpe • [(Ad· Au) + (Ad· Au)] 
C= (Cpe · Au· Ad) +Epe (Au+~) 

If we substitute a 0 for Cpe in every case: 

S = (Au· Ad) + (Au· Ad) (Cpe = 0; therefore Cpe = 1) 
C = (Au· Ad) 
C= Au+~ 



70 How to Build a Working Digital Computer 

Note: We previously defined binary 1 as being the equivalent of True and binary 
o as being equivalent to False. Therefore 0 . N = 0 and 1 . N = N. 

Prove the statement derived for C by using the statement C and 
De Morgan's Theorem. 

To summarize: 
First Stage 
S= (Au' Ad) + (Au' Ad) 
C= (Au' Ad) 
C=Au+Ad 
Remaining Stages 
S = Cpc . [(Au' Ad) + (Au· Ad)] + Cpc . [(Au· Ad) + (Au' Ad)] 
C= (Au' Ad) + Cpc . [(Ad' Au) + (Ad' Au)] 
C = (Cpc . Au . Ad) + Cpc . [Au + Ad] 

STAGE 20 Au 
Bt A 

Au 

I : 3 2 AB 3 

~~ • TO NEXT 
I C 3 P;;; I C 3 STAGE 

2 A.; D 3 C TO NEXT 
STAGE 

D 3 

STAGES 21 -2 3 
S2" 

STAGE 2"-1 2 B-

STAGE 2"-1 
C2"-1 

2"fcJ 3 

D 3 

2"Au 2"Ad 
Cz"* B+ I~ TO NEXT 

2"Au 
STAGE 

F 3 * SEE Sz' LAMP 2" Au ADDITION FOR 
G 3 STAGE 23 ONLY 

2"Au 2" Ad -** Cz" TONEXT 
H 3 STAGE 

STAGE 2"-1 
C21>-1 2" Au 

I 3 2"Ad ** DELETE C2ii 
CIRCUIT IN STAGE l' 

I 

ADDITION TO STAGE 23 FOR CARRY 
C2, 

I «»2524 
B-

Fig. 4-1. The circuits of a four-column binary adder. 



Computer Arithmetic 71 

There is one remaining consideration; the possibility of an (n + 1)
digit sum resulting from the addition of two n-digit numbers. However, 
in this case, the (n + 1) digit is merely the carry from the nth column. 
Keeping this in mind, let us refer back to Chapter 3 for the discussion of 
basic circuits and then compare the circuits illustrated in Fig. 4-1 for a 
four-column binary adder with the statements summarized above. These 
circuits implement the statements for addition and hence provide an 
automatic means for adding any two four-digit numbers accurately and 
instantaneously. 

At this point, it is not necessary to build this adder since a com
plete arithmetic unit will be devised and constructed, using these state
ments, later in the chapter. However, at this point, we can appreciate 
a basic advantage of the computer as a practical device. Note that the 
design of the adder just discussed prevents it from making an error 
(unless a malfunction develops). Over and over again, this adder will 
unerringly calculate the sum of two four-digit numbers at great speed 
without feeling fatigue and without losing efficiency. Even at the rela
tively slow speed of our adder due to the use of mechanical switching, 
the calculations are performed many times faster than the best human 
calculator. If we consider the electronic switching speeds of modern com
puters, which are of the order of billionths of a second, the magnitude 
of the computer's capability becomes apparent. 

SUBTRACTION 

The process of subtraction can be illustrated by the following 
example: 

Decimal 
210 -Minuend

-135 -Subtrahend_ 

11 -Borrow --.. 
075 

Binary 
o 1 1 0 1 0 0 1 0 
o 1 000 0 1 1 1 

UUULJ 
1 1 1 1 Borrow 

o 0 1 0 0 101 1 

The borrow term is thought of and used in several different ways, each 
equally valid. Some people speak of borrowing a 1 from the minuend 
digit of the next most significant column by adding 10 (in the case of 
decimal numbers) to the minuend digit of the column being processed 
and subtracting 1 from the minuend digit of column borrowed from. 
For our purposes, however, we will adapt the method consisting of 
borrowing 10 from the next most significant column by adding 10 to the 
minuend digit of the column being processed and adding 1 to the subtra
hend digit of the column borrowed from. 

As in addition, the process of subtraction consists of subtracting 
each column in sequence, starting from the least significant column 
(right-hand) and working towards the most significant column. The 



72 How to Build a Working Digital Computer 

algebra of subtraction for a single column of binary numbers is expressed 
as follows: 

Difference = Minuend - [Subtrahend + Borrow (previous column)] 
D M [S + Bpc] 

We can logically analyze this process as before, using a truth table (Table 
4-6), 

TABLE 4-6. SUBTRACTION TRUTH TABLE 

MINUEND SUBTRAHEND BORROW (pc) DIFFERENCE BORROW 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

1 0 0 1 0 

0 1 1 0 1 

1 1 0 0 0 

1 0 1 0 0 

1 1 1 1 1 

From this truth table we can write the following logical statements 
covering the subtraction of a single column of binary numbers: 

D = (M . S . Bpc) + (M . S· Bpc) + (M . S . Bpc) 
+ eM . S . Bpc) (7) 

B = (M ' S ' Bpc) + (M . S . Bpc) + (M . S ' Bpc) 
+ (M" S ' Bpc) (8) 

B = (M ~S '~pcl + (M . S' Bpc) + (M ' S' Bpc) 
+ (M . S ' Bpc) (9) 

Using the same methods employed earlier for addition, statements 
(7), (8), and (9) may be reduced to their minimum form. 

D=BpL [(M' S)± (M' S)] 
+Bpc' [(M' S) + (M' S)] (10) 

B = (Bpc . M . S) + Bpc . (M + S) 

B = (Bpc • M . S) + Bpc . (M + S) 

(11) 

(12) 

These are the general statements used in the design of the stages of a 
subtractor, However, as for addition, the first stage may be simplified 



Computer Arithmetic 73 

since there can be no borrow (from a previous column). Therefore, 
setting Bpc equal to 0, the first stage statements are: 

D = (M . S) + (M . S) 
B =M· S_ 
B=M+S 

Should the subtrahend exceed the minuend, the last stage of the sub
tractor will generate a borrow. This borrow must be displayed as a 
negative sign since it will occur only when the difference is a negative 
number, in which case, the number: 

DJ),,-l ... D1Do 

is in complemented form. Complementary numbers are discussed in the 

STAGE 20 M 5 I~o 
B+-------:<I~ B-

2 B 3 I B 3 

FROM 
PREVIOUS 
STAGE 

M ~ S B2" ..... -::<,-,..-o,,...--,() ;;"'-0 • TO NEXT 
3 I C 3 STAGE 

2 0 3 

ii;o TO NEXT 
STAGE 

STAGES 2'-23 ~ 2ns 02° 

{

B20-, I A _ 3 I AI"o3,...---!...J"-'-'- B-
20M 2nS 

2 B_ 3 2 B 3 
B20-1 20M 2°5 

COM 3 ~oS3 
o 0 3 

t-1--::-C'~2°:-M"o;_--~-___1"'"B;;...20-*-+ TO NEXT 
E STAGE 

20M 

20 M 

G 3 2 
20 M 

2°5 

* SEE 0,' lAMP 
ADDITION FOR STAGE 23 
ONLY 

iG" * * TO NEXT 
STAGE 

* * DELETE B2n CIRCUIT 
2° 5 IN STAGE 23 

~----~2O-~H~3-~ 

ADDITION TO STAGE 23 FOR BORROW O2, 

FROM _B..;..2· __________ --.:...1 QL B-
STAGE 2-3 

Fig. 4·2. The circuits of a binary subtractor. 



74 How to Build a Working Digital Computer 

next section. For the present let us confine our study to those cases that 
produce positive differences and limit our study of negative differences 
to recognizing the sign in the (n + 1) tit digit. 

Figure 4-2 illustrates the circuit required to instrument the state
ments for subtraction. The subtractor illustrated will subtract any two 
four-digit numbers and display the difference (in complemented form 
for negative differences). Again, it is not necessary to build the sub
tractor since our arithmetic unit will be capable of both addition and 
subtraction and will be based on the logical statements derived in this 
chapter. 

COMPLEMENTARY NUMBERS 

Complementary numbers are those numbers that, when added to 
the number being complemented, result in zero (neglecting the (n + 1)t1t 
digit). For example, in the decimal numbering system, the complement 
of 3579 is 6421: 

3579 
+6421 
10000 

In the binary numbering system, the complement of 0101 is 1011: 

0101 
+1011 
10000 

In this manner, one can consider the complement as being the equivalent 
negative number: 

0101 
+1011 
10000 

5 
+ (-5) 

o 
To obtain a complemented number, subtract the number to be 

complemented from 2N , where N is the number of digits in the number. 
For example, if we wish to obtain the complement of 0110, the number 
of digits is 4 and, hence, 24 equals (l0000h- Subtracting 0110 from 
10000: 

10000 
- 0110 

1010 

Therefore, 1010 is the complement of 0110 «0110h = (6ho and 
(l010h = (-6ho). The following additional examples illustrate the 
process for complementing a number, x. 

2N 
- (x) 

(-x) 

10000 
0001 
1111 

10000 
1001 
0111 

10000 
0111 
1001 

10000 
0100 
1100 



Computer Arithmetic 75 

A "short-cut" method of obtaining a complement of a number is 
as follows: 

1. Reverse all digits in the number to be complemented; i.e., all 
O's become l's and all l's become O's. For example, 0111 be
comes 1000. 

2. Add a 1 to the least significant digit of the reversed number: 
1000 + 1 = 1001. 
The result is the complement number. 

To illustrate the equivalence of this method, the examples below 
are the same numbers complemented by the method in the earlier 
examples: 

x 
Reverse 
Add 1 
(-x) 

0001 
1110 

+ 1 
1111 

1001 
0110 

+ 1 
0111 

0111 
1000 

+ 1 
1001 

0100 
1011 

+ 1 
1100 

In many digital computers, complementary numbers are used to 
represent negative numbers. If three-digit numbers are required to 
solve the problems for which a computer is designed, a fourth digit is 
added to be used as a sign digit. For example, if the magnitude of a 
number is 3 (011) the number is represented as 0011 with the 0 in the 
most significant column representing a positive sign. The number -3 is 
then represented by the complement 110 1 with the 1 in the most 
significant column representing the negative sign. 

The significance of this method will become clearer after the arithmetic 
unit is constructed and various mathematical operations involving nega
tive numbers are performed on it. 

MULTIPLICATION AND DIVISION 

Multiplication and division of binary numbers are performed by a 
programmed series of additions and/or subtractions. Since we perform 
multiplication and division as programming exercises in Chapter 7, these 
processes are not discussed here. 

ARITHMETIC UNIT 

Now that we have discussed and analyzed the logic of binary 
arithmetic, it is necessary to design the unit that performs the actual 
computation, the arithmetic unit. First, of course, let's state what our 
arithmetic unit must be capable of doing. 

The arithmetic unit must be capable of performing addition or 
subtraction of two numbers stored within its own registers and of storing 



76 How to Build a Working Digital Computer 

the result in its own registers. Inputs to the arithmetic unit will be 4-bit 
numbers. 

are: 
The basic functional units required for an arithmetic unit usually 

Add/Subtract Circuit 
Accumulator 
X-Register 
Extension Register 

In addition, we require a display for indicating the contents of the 
accumulator and extension register. Figure 4-3 illustrates the resulting 
functional configuration of the arithmetic unit. 

r-
I 
I 
I ADO 
I 
I SUB 

I 
I 
L __ 

ACCUMULATOR 
DISPLAY 

EXTENSION 
REGISTER 
DISPLAY 

- - - INDICATES VIA OPERATOR 

Fig. 4·3. A block diagram of the arithmetic unit. 

The accumulator is the basic register of the computer and consists 
of four stages (one stage for each digit of the 4-digit number) plus a 
sign or carry stage for a total of five stages. In addition, an extension 
register of four additional stages is provided to allow for larger numbers 
obtained when performing multiplication. The contents of all nine 
register stages will be displayed automatically when a DISPLAY signal 
is fed to the registers. In addition to accumulating the results of computer 
operations, the accumulator is used to store the augend or the minuend 
prior to an addition or subtraction operation, respectively. 

A second register, called the X-register, is also provided in the 
arithmetic unit. This register is used basically to store the addend or sub
trahend just prior to an addition or subtraction operation, respectively. 
Data may be transferred from the accumulator to the X-register, if 
required. The X-register is a four-stage register. 

The add/subtract circuit is capable of adding the 4-digit numbers 
in the accumulator and X-register together and displaying the result on 



Computer Arithmetic 77 

the accumulator display. The result is then entered back into the 
accumulator. The add/subtract circuit can also subtract the contents of 
the X-register from the contents of the accumulator and display the 
difference on the accumulator display. In this case, also, the result is 
entered into the accumulator. With this general outline of the arithmetic 
unit, let us proceed with the logical analysis required for the design. 

Earlier in this chapter, equations were derived for addition and 
su btraction. 
These equations are: 

For addition: 
1st stage-

2nd through 4th stages-

5th stage-

For subtraction: 
1st stage-

2nd through 4th stages-

5th stage-

s= (Au' Ad) + (Au' Ad) 
C=Au ' Ad 
C=Au+Ad 

S=Cpc ' [(Au' Ad) + (Au' Ad)] 
+ Cpc . [(Au' Ad) + (Au' Ad)] 

C= (Au· Ad) + Cpe . [(Ad' Au) + (Ad' Au)] 
C= (Cpe . Au . Ad) + Cpe . [Au + Ad] 

S=Cpc 

D = (M . S) + (M . S) 
B=M. S 
B=M+S 

D=BpL [(M . S)_+ (M~ S)] 
-LBpc :.JM . S) + (M :...§)] 

B = (Bpc . M . S) + Bpe . (M + S) 
B = (Bpc . M . S) + Bpc . (M + S) 

D=Bpc 

If we examine the above equations for addition and subtraction for 
the first stage, and we let A = Au = M and X = Ad = S (i.e., we let the 
statement for the augend in addition equal the statement for the minuend 
in subtraction, thereby allowing the augend and the minuend to be stored 
on the same set of switches with a separate device being used to dis
tinguish between addition and subtraction), we can see the following 
similarities: 

S = (A . X) + (A . X) 
D = (A . X) + (A . X) 

Thus, for the first stage, we see that addition and subtraction produce 
the same results if the augend is set equal to the minuend and the 
addend is set equal to the subtrahend. The following examples illustrate 
this point: 



78 How to Build a Working Digital Computer 

1 1 1 1 
+ 0 0 + 1 1 

1 1 0* 0 

0 0 0 0 
+ 1 1 + 0 0 

1 1* 0 0 

If we set S = D = T, for the first stage: 

T = (A . X) + (A . X) 

is the required equation for both addition and subtraction. 
The carry and borrow equations for the first stage are: 

C=A+X 
B=A+X 

Since there are no similarities here, it is necessary to write these equa
tions in complete form, setting C = B and adding the statements ADD 
and SUB: 

C=ADD· (A· X) + SUB . (A· X) 
C = ADD . (A + X) + SUB· (A + X) 

Thus, the first stage equations can be mechanized by the circuit illus
trated in Fig. 4-4. Notice that wafer D has been added to the display 
switch so that the content of switch A (accumulator) can be displayed 
on order from the control unit. This switch wafer allows the value of A 

DISPLAY 
DlSPL _AY ...... ....;lco.SWI"TCH 
BUS 

B+-0 
2 D 3 

I "V>..----I""'-- B-
2 ~, 3 

ADD/SUB I 
L __ -, , 

L..-__ -j __________ --, I ' 

A~ I 3 : 

I 3B~B: 
........,"'""""-TI-_~x ~ SUB: ' 

2 3 I I I , 
ii I I 3 ~TONEXT 

.....",3O--;;C-O'2,......----'-<>+-+B-<>----<2 C 3 STAGE 
X , 

3 0 2 
I 

ADD/SUB 
0.,...----.. SWITCH 

3 E 2 

Fig. 4·4. The first stage of the arithmetic unit. 

* Neglecting borrow or carry. 



Computer Arithmetic 79 

from wafer A of the A switch to be displayed through wafer A of the 
display switch on the 2° lamp when the DISPLAY order arrives from the 
control unit. 

Examining the second through fourth stages in the same manner, 
one sees for the sum and difference: 

T = Cpc • [(A· X) + (A . X)] + Cpc • [(A· X) + (A . X)] 

For the carry and borrow: 

C = ADD . [(A· X) + CllC • [(A· X) + (A . X)]] + 
SUB· [(A· X) + CllC ' [(A· X) + (A . X)]] 

C = ADD· [(A· X) + Cpc • [(A· X) + (A . X)]] + 
SUB· [(A· X) + CllC • [(A· X) + (A· X)]] 

These equations can be instrumented in the same manner as before, 
using the circuit of Fig. 4-5. Notice that the display signal is again 
passed to the next stage through the same wafer as C. In the fourth 
stage, however, it is not necessary to mechanize the C term. The C term 

DISPLAY 
I SWITCH L2" 

I 
I 2 B-

2 EFG 
ADD/SUB: 

Cpc 

I 
I 

Cpc ii X DISPLAY II 
~B3 BUS 

~ I 2 !r.-X 0:;-..-,.,::.<1 )4-"'<~ TO NEXT 
B+ 3 C ~ C ADD2 C~E 2 HIJ* 3 STAGE 

Cpc X 

B+ 

o 3 SUB 
X 

2 C 
X 

3 E 2 2 E 3 
A ~ 
E cr--? E 3 

A x 

* SEE FIGURE 4-6 FOR 
WIRING TO WAFER J 

3 C F·~--~ I 

L......,,o--;;-A-o.:---:,(5"--;;-C>=--<_-<l1 ~1~3>--=,~ TO NEXT 
- 3 H 2 2 2 FG 2 K L 3 STAGE 
Cpc ii 
~2 ~~~ 
~I SWITCH 

B+~I 213 
Cpc A X NOTE: IN 4TH STAGE,OUIT 

3 _ F ~ ~_ "":-J 0,3:-----1 
A X 

C CIRCUIT COMPLETELY 

3 F 2 J 

Fig. 4·5. The second through fourth stages of the arithmetic unit. 



80 How to Build a Working Digital Computer 

from the fourth stage is fed to the fifth stage as illustrated in Fig. 4-6. 
Now, the add/subtract portion of our arithmetic unit is complete 

along with the X-register and four stages of the accumulator. Since 
it is necessary also to store a 24 bit due to an addition or subtraction, 
the fifth stage of the arithmetic unit must be equipped with a switch as 
illustrated in Fig. 4-6. 

DISPLAY A 
BUS ~DISPLAY ----ro 2 I SWITCH 

I 0L24
B
_ 

Cpc 2 I 3 ~ 
o J .=..-------
ADD/SUB 

Fig. 4·6. The fifth stage of the arithmetic unit. 

Now, the add/subtract and display switches on our arithmetic unit 
must be operated manually. When the control unit provides a visual indi
cation to add or subtract, the operator must throw the display switch to 
the ADD/SUB position and then the ADD-SUB switch to the appro· 
priate position. At all other times, the switch must be kept in the 
DISPLAY position. 

At tliis point we have accounted for the add/subtract circuit, 
accumulator, accumulator display, and X-register of our arithmetic 
unit. It is necessary now to construct an extension register whose func
tion is to handle the least-significant portion of numbers greater than 
four bits. This condition will arise due to the multiplication of two 4-bit 
numbers. The extension register and display need only comprise four 
independent switches wired to a lamp display as indicated in Fig. 4-7. 

Wire and construct the arithmetic unit in accordance with the 
instructions contained at the end of this chapter. 

Remember that this unit now requires the following rules of inter
connection and operation in our overall computer scheme: 

1. Upon visual instruction (to be provided by the control unit) 
the operator must throw the add/subtract and display switches 
to their appropriate position. Unless indicated otherwise by the 

B- Fig. 4·7. The extension register. 



Computer Arithmetic 81 

control panel, the display switch is normally left in the DIS
PLA Y position. 

2. A display (ACC) wire from the control unit must be connected 
to a display input bus in the arithmetic unit and must provide 
B+ whenever it is required to display the accumulator's con
tents. 

3. Entry of data to the extension register is a manual operation 
to be directed visually by the control unit. 

CONSTRUCTION DETAILS-ARITHMETIC UNIT 

Fig. E-l. 

COMPONENTS: Chassis, switches, display circuit 

MATERIALS 

3 ft. X 2 ft. X 1/8 in. composition board 
2 112 X 11 X 1/8 in. composition board 
4 1h. X 9 X 1/ 8 in. composition board 
6 1h. X 7 X VB in. composition board 
6 1h. X 5 X VB in. composition board 
2 1h. X 3 X 1/ 8 in. composition board 
14ft. X 1 in. X 4 in. pine strip 
16ft. X 1 in. X 1 in. pine strip 

39 DPDT switches 
5 SPST switches 
9 #48 or 41 lamps (2 v, .06 a) 

150 ft. insulated hook-up wire (20 gage) 
144 1h. in . wood screws (no. 4) 
23 ~ in. machine screws (6-32) 
29 nuts (6-32) 

1 tin strip (large juice can or sheet) 



82 How to Build a Working Digital Computer 

SPECIAL TOOLS: 

Tin snips 
Drill (1116, 3/32, Ys, %) 

Chassis Construction 

I, Mark the smooth side of the 3 X 2-ft. composition board with rules 
as shown in Fig. E-2. 

2, Cut the 4-ft. I X 4-in. pine into two 24 -inch lengths. Rip each 
length as shown in Fig. E-3 to obtain four angle supports. Leave two 
of these lengths at 24 inches and cut one of the others down to 22 
inches. Discard the fourth length. 

Fig. E-3, 

J 36'·---------011 

1- 2' 
-012"1-- -I I' 

I!?' 11+-4' ___ 4'-0j4-- 4'--010-- 4' 6'--4' __ 4' __ 4'-1 If 
2' I 

2' I 1'---. 
2' il~1 ~ ~ DPj DPj I ~I I~I I~I I~I 
2' DPj .Q!'J D~ DPJ I 

2' DPj DPj DPj I DPUDP DPUDPl DPUDPll1llj 

24' 
2' ...QfJ ~ I 

I' 
2" DPj DPj DPJ DP J : IDPUDPUDPUDPl 
2" ~ .Q!'J DiJ DPJ I 

2' DPj D~ D~ DP J I 

2" DPj DPj I 

3' I--ill ...QfJ I 

NOTE: SP' SINGLE-POLE DOUBLE-THROW SWITCH POSITION 
Dp· DOUBLE-POLE DOUBLE-THROW SWITCH POSITION 

Fig, E·2, 

r~ 1~ 4" _---.-£CU~TJA~LOI!':NGlTD!H~\S.!:!lI~NE~--------

lt~--------------------------------~ I, 24" ,I 
USE I X4 PINE NOTE: DO THIS FOR TWO 24" PIECES. 

3, Mark the edges and center of the 3 X 2-ft. board as shown in Fig. E-4. 
Drill 3/32-in. holes at each point marked. 

4, Following Fig. E-5, clamp the angle supports to the panel and use the 
panel holes drilled in Step 3 as guides to drill holes into the support edges. 

5, Attach the side and center supports t~ the panel with Vz -in. wood screws. 
6, Attach the two 34-in. I X I-in. strips to the front and rear of the 

bottom panel using Vz-in. wood screws. 
7, On the panel face, use a DPDT or SPDT switch, whichever is necessary, 

as a guide to mark the location of switch-securing holes at each switch 
location. Be certain each switch will be positioned as indicated in 
Fig. E-9. 

8, Start a drill hole at each mark made in Step 7 and drill through the 
panel with a 3/32-in. drill. 

9, At each lamp position indicated in Fig. E-2 start a drill hole and drill 
through the panel with a % -in. drill. 



Fig. E-4. 

34' FRONT 
SUPPORT -_h"'/ 

DISTANCE 
MEASURED 

Computer Arithmetic 

DRILL 3hz 
3'-' 

3IJ .,tt1"-.. 111 
18T x 

I' 

Fig. E·5. 

%' MACHINE 
SCREW 

LlP:-::::::~~==~~==~;::==;::~::::~;t--
PANEL LIP 

MACHINE 
SCREW 

SlDE~ ANGLE 
SUPPORT 

a' STRIP 

(Al 

fum. 
l~ If SIGN~PANEL 

4" STRIP LAM~ _SCREW 
(8l 

83 

Fig. E·6. 

10. Test each of the holes drilled in Step 9 to see that the envelope of a 
lamp will protrude approximately Vs inch above the panel face when 
the lamp is placed in the hole. File or sand each hole for a snug bulb fit. 

11. Attach all switches with Y:z ·in. wood screws. 
12. Mark each switch next to each of its terminals. Start a drill hole and 

drill through the panel at each of these points with a VB -in. drill. 



84 How to Build a Working Digital Computer 

Power Terminal Strip 

1. Drill three Va-in. holes in the lower-right corner of the panel as indicated 
in Fig. E-9. 

2. Place % -in. machine screws in the holes drilled in Step 1 and attach 
3 nuts to each screw from the bottom of the panel. 

Display Circuit 

1. Construct base terminal connectors for the 9 lamps as detailed in the 
construction procedures for the encoder. Test each lamp. 

2. Cut tin strips for the lamp bases, each % in. wide: one 4-in. strip; 
four 8-in. strips. The 4-in. strip is for the sign lamp, the 8-in. strips 
are for pairs of the remaining 8 lamps. 

3. Buff the tin strips so they have good surface continuity. 
4. Set the lamps in their holes with the terminal connectors pointed 

towards the foot of the panel. Measure the distance from the panel to 
the lamp contact. 

5. Referring to Fig. E-6, bend each tin strip as shown. 
6. Drill a lh-in. hole in the center of each 8-in. strip. 
7. Drill a 3/ 32-in. hole at each end of each 8-in. strip. 
S. Place the 8-in. strips in position, one by one, drilling holes in the panel 

using the center and end holes as guides. 
9. Secure the 8-in. strips in the center with % -in. machine screws and two 

nuts. Secure them at the ends with ~ -in. wood screws. Tighten the 
% -in. machine screw to ensure good contact between the strip and the 
lamp. 

10. Secure the 4-in. strip as indicated in Fig. E-6(b), following the procedure 
detailed above. 

11. Figure E-7 shows the final placement of the strips and the RTN 
wiring. Wire together the securing nuts of each tin strip as shown in 
this figure. 

Wiring 

1. Turn the panel over and mark the switches on the underside as shown in 
Fig. E-8. 

2. Following the wiring lists given in Appendix B, connect the switch ter
minals and lamps, following the procedure outlined in the wiring section 
of the decoder construction details. Check your wiring after every few 
connections. When connecting wires to the lamps, crimp the lamp con
nectors around the wire. 

BOTTOM VIEW OF PANEL Fig. E-7. 



Fig. E·8. 

Computer Arithmetic 

2 2 2 2 I, I' r' r, 
:59: :56: :57: :56: 
LJ L~ LJ LJ 

I I 510 I I 
jr--,,-,r--,r--., .... -,,-., ... -.,I 
;., BC DE FG Hi ~k LM N 
I II II II II II II I 

2L-..J L._J L._..J L_.J L._.JL_JI.._..J2 

DI5P 
RTN. Bt 
a a a 

f-A-~ 
U~BJ 
r-C-, 
I I 
L-D-~ 

r-A-, 
I 515 I 
L--·8.J 
r- c-, 
I I 
... -D-~ 
r- E-' 
L_ F-J 

l-A-~ 
L_5_4BJ 
r-C-, 
L_D_J 
r-E-' 
I I 
L-F-~ 
r- G-' 
I I 
L - H- ~ 

r- A-.., 
UI~BJ 
r- c-, 
I I 
L-D-~ 
~- E-j 
L-F_-' r- G-; 
L_ H-~ 

'-1-' 
I I 
L_J_-' 

l-A-~ 
L~~BJ 
r-C- , 
I I 
L_D_J 
i-E-l 
L-F-~ 
r- G-' 
I I 

L-H- ~ 

r- A-, 
U~~ 
r-C-, 
I I 
L-D-~ 

~Ti L_F_...J 
~-G -~ 
L-H--' 
r-r-' 
I I L_J_...1 

2 
r5~ 
L...J 
I 

85 

3. Using Vz-in. strips and %-in. machine screws and nuts, attach the com
mon switch bars to the switch handles. Chart A shows which switches 
are to be connected in this fashion. 

4. Connect the B+, Display, and RTN to the junction box. 
5. Label the unit as shown in Fig. E-9. 

Arithmetic Unit Checkout Procedure~' 

1. Connect one 11h -volt flashlight battery between the B+ and RTN ter
minals. Connect a second 11/2 -volt flashlight battery between Display 
and RTN. 

2. Set all switches to 0 and set the Function Selector to Display. 
3. In order, set the 24 (Sign), 23 , 22, 21, and 20 switches of the Accumulator 

and the 2- 1, 2-2, 2-3 , and 2-4 switches of the Extension Register to 1. 
Note that each associated lamp is lighted. 

4. Set the Function Selector at Add/ Sub. All lamps should remain lighted 
except the 24 (Sign) lamp. 

5. Set the Add/ Sub switch at Sub. 
6. In order, set the 2°, 21, 22, and 23 switches of the X-Register at 1. Note 

that the lamp corresponding to each switch goes out when the switch 
is set to 1. 

7. In order, set the 23 , 22, 21, and 2° switches of the Accumulator at O. 
Note that the lamp corresponding to each switch goes on when the 
switch is set to 0, but goes out when the next switch is set to O. Note 
that the Sign lamp is on. 

S. In order, set the 23 , 22, 21, and 20 switches of the X-Register to O. Note 
that the lamp corresponding to each switch lights when the switch is 

'" Note: This checkout procedure represents a reasonable check of the arithmetic 
unit. However, it does not cover all possibilities for adding and subtracting binary 
numbers. A complete check would consist of the addition of (overy possible com
bination of 4-bit binary numbers and the subtraction of all such combinations. 
This type of check is left to the reader should he wish to follow it out. 



86 

24 

D~ 
SIGN 

How to Build a Working Digital Computer 

LAMP 

0 0 0 0 0 0 0 0 

I 130 I 110 I 11 0 I 100 1-1 1-1 1-3 2-4 

0 ~ ~ [5D 81 ~I ~I ~I S6 S7 S8 S9 

D D D D 
'0 '0 0 0 

=--EXTENSION REGISTER--= 

0 D D D ADD~~::DDD, 'DDD D D L-FUNCTION SELECTOR------1 
ACCUMULATOR 

SII 

~ l'sI3,1 1 'SI4, 1 ~ ADDODDD 

D D D D 
SUB' , , , 

LADD/SUB SWITCH---1 

D D D D 
D D 
D D DISPLAY 

r-b-· 
X-REGISTER ~~-RtNJ Fig. E·g. 

set to 0 and remains lighted when switching the next switch. Note that 
after switch 2° is set, all lamps are extinguished. 

9. Set the Add/Sub switch to Add. 
10. In order, set the 2°, 21, 22, and 23 switches of the X-Register to 1. 

Note that the lamp corresponding to each switch is lighted. 
11. In order, set the 2°, 21, 22, and 23 switches of the Accumulator to 1. 

Note that after 20 is set, only the 24 lamp is lighted. After 21 is set, the 
21 and 24 lamps are lighted. After 22 is set, the 21, 22 , and 24 lamps are 
lighted. After 23 is set, all lamps are lighted except 21. 

12. In order, set the 23 , 22 , 21, and 2° switches of the X-Register to O. 
Note that after 23 is set, the 24, 22 , and 21 lamps are lighted. After 
22 is set, the 24 and 21 lamps are lighted. After 21 is set, only the 24 
lamp is lighted. After 2° is set, all lamps are lighted except 24. 



Chapter 5 
STORAGE DEVICES 

One of the reasons why computers are called "electronic brains" 
is their ability to store and "remember" instructions and data. Because 
it has a memory, the computer is released from the common calculating 
machine's dependence on human, external, step-by-step control. Once 
it has received its instructions and the proper data, the computer can 
work without interruption and take advantage of the high computational 
speeds that have made it such an invaluable tool. 

Memory units take several forms, according to their function, and 
are found in all parts of the computer. Some are used continuously and 
others are referred to only at specific moments during a calculation. 
Because they receive and hold information, these memory units are also 
called storage devices. A computer's computational ability is related 
directly to the amount of information it can store, its storage capacity, 
and the speed with which it can obtain information from these storage 
devices. 

There are four types of storage employed in present-day com
puters: the register store, the internal memory, the auxiliary internal 
memory, and the external memory. The frequency of use of these units 
is dependent on the ease with which data can be recovered from them. 

Register stores are used continuously during computer operation. 
Partial answers, digits being operated on, and actual calculations are 
registered in these devices. Essentially, they are two-position switches 
that store 1 in one position and 0 in the other. The double-throw 
switches used in our arithmetic unit represent this type of storage 
device. Because information passes quickly through them they are con
sidered to be short-term storage units. 

The internal memory is the major storehouse in the computer. 
It holds all of the information supplied by the programmer: both the 
instructions to be followed, in sequence, and the data to be used. The 
auxiliary memory store, also internal, is used to back up the internal 
memory in the event that its storage capacity is not great enough for the 
program and data being inserted. The magnetic drum form of this unit 
is not as rapid a transmitter of material as the magnetic core form. 
Although the speed differential is in millionths of a second, which may be 
insignificant to us, this is quite meaningful in most computer operations. 

The external memory store is physically outside the computer and 
serves as a library of programs and less often-used data, or as a second 
auxiliary memory. Such storage devices as punched cards, perforated 

87 



88 How to Build a Working Digital Computer 

tape, magnetic tape, and magnetic disks are used in external memory 
units. 

Our primary consideration in this chapter will be the internal 
memory stores-the magnetic drum memory and the core memory
as these are the two most common types of memory store used in com
puters today and are used in our computer. 

BASIC CONCEPTS 

The storage capacity sets a limit on the range of computer calcu
lations and the number of digits a computer can handle. This fixes the 
number of bits the computer can process at any given moment. In each 
computer this fixed number of bits is called the computer's word length. 
(Computer word length can be variable, but for most computers it is 
fixed.) For example, in a computer that uses 7-bit words, the number 
(25ho would appear as (001l001h, the number (9ho would appear 
as (0001001)z, or the number (2ho would appear as (OOOOOlOh 

When a computer is designed, its word length is set by determining 
the largest number the computer will handle to achieve the required 
accuracy. For example, if the computer must handle integers of the order 
of magnitude 104 (10,000), the number of bits required is 14 (104 ::::: 213 ) 

plus a bit to indicate sign (+ or -) for a total of 15 bits. 
In some cases, the requirements for instruction word lengths 

differ from those for data words (instruction words are described in the 
following paragraphs). The instruction word length is determined by 
the number of different instructions and addresses required by the design 
as well as the overall design criteria. If, for example, there are 32 different 
instructions (25 ) and 9,000 possible addresses (approximately 213 ), the 
instruction word requires a minimum of 20 bits. The instruction word 
may be less than the data word length; or it may be set equal to the 
data word length, if possible, for convenience and ease of design. 

COMPUTER WORDS 

Basically, the computer uses two different word types. The first 
type, a straight numerical or data word, is a binary number. The second 
type is an instruction word. 

The instruction word is that part of a program that causes the com
puter to perform a particular operation. It has two parts: the order and 
the address. In Chapter 1 we learned that a computer has an instruction 
repertoire that consists of such orders as Add, Subtract, etc. Each order 
is represented in the instruction word by a binary code that the computer 
is designed to recognize. Each order usually is directed to data stored 
in a computer memory section. The data are designated by a numerical 



Storage Devices 89 

code indicating their location in the memory section. This code is called 
an address. 

The complete instruction word, therefore, breaks down as follows: 
Order 

Add A to 
Subtract A from 
Store A in 

Address 
B 
B 
B 

Let us assign a word length of 16 bits to a computer with a 20 order 
instruction repertoire and a 1500 word memory capacity. The instruc
tion word would have the format illustrated below: 

21521421321221121029282726252423222120 --------Order Address 

The five most-significant bits contain the order code and the remaining 
bits contain the address code. 

Every storage .device capable of storing a word is assigned an 
address. Hence, if we have 1500 storage devices, the address code will 
range from 00000000001 to 10111011100. Therefore, if the order 
"Add A to" is represented by the code 01010, the instruction word 

0101000110110010 

means "add the contents of A to the contents of address 434." A series 
of instruction words may be written to perform any operation by keeping 
track of the addresses in which the pertinent data are stored. 

THE CORE MEMORY 

The core memory unit is composed of many small magnetic cores. 
Each core is a doughnut-shaped ring whose magnetic characteristics 
are used to store bits. Hundreds of thousands of these cores are used 
in the average computer core memory. 

Bits are stored in a core by changing its magnetic state. The 
magnetic state of the core is affected by magnetic lines of force or flux 
in the core material. This flux polarizes the molecules in the material 
and determines the direction of magnetization in the core. The direction 
of magnetization can be reversed. 

In the magnetic core this is accomplished by wires coiled around 
the core-the input and sense windings. Electrical current passing 
through the input coil will generate a magnetic field that affects the flux 
in the core. If the generated field is strong enough it will reverse the 
direction of magnetization in the core. By assigning one magnetic state 
the value of 1 and the other the value of 0 (Fig. 5-1), these cores can 
be used as register stores and, in combination, internal memories. The 
sense winding, when energized, will sense the state of the core and pass 



90 

~ 
~ 

STATE-O 
FLUX-CLOCKWISE 

How to Build a Working Digital Computer 

~ 
~ 

STATE-I 
FLUX-COUNTERCLOCKWISE 

INPUT ~ SENSE 
WINDING ~ WINDING 

Fig. 5-1. Magnetic cores are used as 
memory stores. 

Fig. 5-2. The core is read into and 
out of on sense windings. 

on an electrical pulse indicating what it is. In this fashion the core can 
be read into on the input winding and read out of on the sense winding 
(Fig. 5-2). 

Combinations of cores can store computer words. One computer 
word in memory is wired as in Fig. 5-3. A signal that is strong enough 
is introduced on the word line. If a core is in the 0 state the input signal 
will have no effect. If, however, it is in the 1 state, the input signal causes 
it to change to the 0 state. The resultant change in flux imparts a signal 
to the sense line that is amplified and interpreted as a binary 1. When 
no change occurs, the sense winding develops no signal and the core's 
state is read as a binary o. 

WORD 
LINE 

~----~-----'vr-----------~ 

DIGIT SENSE LINES 

Fig. 5-3. One computer word in memory. 

The core memory capable of storing many complete computer 
words is a series of planes stacked one above the other, as in Fig. 5-4. 
Each plane has an assembly of cores that equals the number of words 
in a stack of planes. The number of planes in a stack is generally equiv
alent to the number of bits in a word. Each plane is wired in such a way 
that only one core is addressed at any particular time. The entire stack 
is wired so that the same core location in each plane is addressed at any 
particular time. In this fashion, one computer word can be read in or 
out at one time. 

The core memory of our computer has a capacity of five 4-bit 
words. It will use, therefore, the equivalent of 20 magnetic cores in 
four planes of five cores. As we are eliminating the automatic feature 
of the computer, memory switches will be used instead of magnetic cores. 
This memory unit will store 20 bits (5 X 4 bits). Thus, each core may 
be loaded with any 4-bit word from 0000 to 1111. The contents of a 
single address will be displayed upon order. Construction details are 
given at the end of the chapter. 



Storage Devices 

Fig. 5·4. A core memory capable 
of storing many words. 

THE DRUM MEMORY 

91 

The drum memory is another storage device that alters the mag
netic state of a medium to record binary 1 's and O's. In this case, the 
magnetized medium is a block of parallel strips or tracks that ring the 
circumference of a cylinder or drum (Fig. 5-5). A magnetic head 
similar to that used on a tape recorder reads data into the track as current 
switches back and forth through its windings (Fig. 5-6). Each current 
reversal alters the magnetic state of the head and the portion of the track 
immediately beneath it. The direction of current passing through the 
head coils affect the direction of magnetic flux. 

When the magnetized portions of recorded track pass below 
another magnetic head, the read head, the magnetic lines of flux create 
a current in the head's windings. The direction of flow of the induced 
current indicates whether a 0 or 1 is recorded on that portion of the 
track. 

Each portion of the track that contains a bit is called a cell. All of 
the cells in a line parallel to the memory drum's axis constitute a slot or 

Fig. 5·5. A memory drum. 



92 How to Build a Working Digital Computer 

SLOT 

Fig. 5·6. A magnetic head "reads" or "writes on" the drum track. 

sector. Often a slot will contain one computer word, so the number of 
cells in it is equal to the number of bits in a word for that computer. 

The drum storage capacity depends on its size and speed of rota
tion. Drum sizes vary from 15 to 400 tracks with a rotational speed 
of from 120 rpm to 75,000 rpm.' The number of bits per track inch 
varies from 200 to 300 bits per inch. In these ranges, capacities run 
from 25,000 to 15,000,000 bits. 

The magnetic drum used in our computer has 29 tracks and will 
store 65 computer words. Its rotational speed is controlled by the 
computer operator. This drum reads out in parallel; i.e., the bits com
prising a computer word in each slot will read out simultaneously. Con
struction details for this unit follow those for the core memory at the 
end of this chapter. 



Storage Devices 

CONSTRUCTION DETAILS-CORE MEMORY 

Fig. F·1. 

COMPONENTS ; Chassis, switches (paper clip) , display circuit 

MATERIALS 

Chassis: 
1 
3 
6 

8 X 6 X lh in. composition board 
% X Y2 X 112 in. supports (scrap wood) 
Y2 in. wood screws (no. 4) 

Display Circuit (including paper·clip, SPST switches); 
44 paper clips 
42 Y2 in. machine screws (6·32, roundhead) 
42 nuts (6·32) 

4 #48 or 41 lamps (2 v, .06 a) 
61,4 X Y2 in. tin strip (can or sheet) 
3Y2 ft. uninsulated hookup wire (20 gage) 
6 ft. insulated hookup wire (20 gage) 
Adhesive tape 

SPECIAL TOOLS; 

Tin snips 
Drill (3/16, Ytl , 3/32) 

93 



94 How to Build a Working Digital Computer 

r 
4' 

1 

I' 
TI, 

..L* * 
3/4"+3t4~ 

+ + 
+ • 
+ + 

" . • 
" • + 

+ + 

• • 
••• 
1!f~ • 
-*- 112' 
lIlt • 

DRILL SIZE 

x 3/32" 
+ 1/8" 

6' 'I 
" 

I 
" 

* * + + 

--t1/21": 
+ + + )()()()(T 
+ • 

1~4 
+ • )(xxxJ.. 8' 
+ 

. "11 + 3/16 --1 J<-
)()()()( 

+ 

+ 10-1'1 
)()()()( 

+ 
• 33/4" 

• • -*-""~" 1 + + 3/4 ,," 
T 

* 3/8" Fig, F·2. 

Chassis Construction 

1. Mark and start drill holes indicated in Fig. F-2 on the 8 X 61h X ~ in. 
board. 

2. Drill holes through the board, following the key in Fig. F-2. The %-in. 
holes will hold the display lamps. The ~ -in. holes will hold machine 
screws that secure paper-clip SPST switches. The 3/32-in. holes will 
hold the wood screws securing the chassis to its supports and the 
contact wires for each row of switches. 

3. Test each %-in. hole with a lamp bulb and file, if necessary, to fit bulb 
snugly with approximately ~ in. to V<I in. of the glass envelope pro
truding above the surface of the panel. 

4. Attach the three chassis supports, holding them in position and drilling 
through the 3/32 in. holes in the panel. Secure the supports with the 
¥2 -in. wood screws. 

Switches 

1. These switches were first built for the truth evaluator (Chapter 3). Bend 
20 paper clips as in C-3(a). Bend the 20 other paper clips as in Fig. 
C-3(b). . 

2. Cut each paper clip for each configuration as indicated in Fig. C-3. 
The ¥2 -in. section will be crimped around a machine screw to secure 
the switch parts on the panel in an upright position. 

3. Secure the switch parts to the panel top with lh -in. machine screws. 
Put the switch arms in the first vertical row on the left side of the 
panel (lamp holes to the right) with the arms pointing toward the lamp 
holes. Place the contacts so that the open loop is towards the top of the 
panel. Alternate between arms and contacts as you move to the right. 
As each switch part is secured with a ¥2 -in. machine screw, crimp the 
paper clip around the screw and tighten it. 



Storage Devices 95 

o ~~ __ ~~~~~ ______ ___ 

o ......... -=-......... ~_~;...-.-..::~~ __ ~ o __ ~~-=-__ ~_~~ ____ __ 
o ~~~~ __ ~ __ ~ ________ -

Fig. F·3. 

4. When switches are in place, cut each arm so that it extends past the 
contact about Va in. 

S. Cut each contact so that it is about 1h in. long on the open loop. 
6. Bend the switch arms to the outside of the contact (toward the top 

of the panel) so that there is enough tension to spring the arm away 
from contact when it is not locked in place. The make or break motion 
is similar to the opening or closing of a safety pin. 

Switch Wiring 

1. When all switches are secure, turn board upside down with lamp holes 
to the right. Connect each horizontal row of five contact screws with an 
8-in. length of uninsulated wire, as in Fig. F-3. Loop the wire around 
each contact screw and secure the loop with a nut, terminating the 
run at the lamp hole opposite that row. 

2. Cut the insulated wire into the following lengths: five 4-in. lengths, 
five 31h -in. lengths, five 3-in. lengths, and five 21h -in. lengths. Strip 
Y<I in. of insulation from one end of each wire and 1h in. from the 
other end. 

3. With the board upside down, attach the 21h -in. lengths to each arm 
screw on the bottom horizontal row as in (A) of Fig. F-4. The end with 
Y<I in. of insulation stripped from it is connected to the screw. Secure 
this end with a nut. Thread the other end of each lead through the 
bottom-most 3/32-in. hole, as shown in the figure. 

4. Repeat Step 3 for the 3-in., 3V2-in., and 4-in. leads, as shown in (B), 
(C), and (D), respectively, of Fig. F-4. Part (E) of the figure indicates 
how each vertical row of arm screws should look with all wires in place. 

S. Turn the board right side up. Pull the arm contact wires up through 
the 3/32-in. holes so that they are taut. Trim each set of four wires 
evenly so they extend approximately 1h in. above the panel. 

o B+ 
o RTN 

2lti 
0 

3" 

31/; 
0 
0 

4" 
00 00 0 

Fig. F·4. (A) (B) (e) (0) (E) 



96 How to Build a Working Digital Computer 

UNlNWLAm~~"H"NE TAPE 
WIRE 

~r~ Fig. F·5. 

=at »)) 

Fig. F·6. 

6. Take four short pieces of uninsulated wire and loop one around each 
set of four wires to secure them in place (Fig. F-5). 

7. Position the loose ends of wire approximately Va in. apart and bind 
them with a thin strip of adhesive tape, as in Fig. F-5. 

8. Strip 1 Vz in. of insulation from a lO-in. length of insulated wire. Strip 
V<I in. of insulation from the other end of this wire. 

9. Wrap Vz in. of exposed wire around one side of the curved end of a 
paper clip, as shown in Fig. F-6. Wrap the remaining exposed wire 
around the entire end of the clip and secure it in place with adhesive 
tape. 

10. Fasten the other end of this wire to the panel with a Vz-in. machine 
screw in the Va in. hole at the top of the panel, to the right of the lamp 
holes. Secure this screw underneath the panel with a nut. Label this 
terminal B+. 

Lamp Display 

1. Fit each lamp with a paper clip base connection. (See Encoder Con
struction Details for procedure.) Check each bulb to see that it works 
properly. 

2. Fit bulbs into % -in. holes with connector facing the switches. 
3. Connect the uninsulated leads from the contact screws to the lamp at 

the end of each horizontal row of switches. Crimp each lead securely 
in the bend of the paper clip. 

4. Bend the 6V<1 X Vz in. tin strip as shown in Fig. F-7 to secure it to the 
panel's edge. Drill through the other end using the Va -in. hole in the 
panel as a guide. 

5. Secure the tin strip to the panel with a Vz-in. machine screw, making 

23 22 21 2° 
0 0 0 0 00 

RTN S+ 

Fig. F·7. 

WORD 0 0 0 0 

I 0 
o 0 00 

0 0 0 

WORD 0 0 0 0 

2 0 0 0 0 

WORD 0 0 0 0 

3 
0000 

0 0 0 0 

WORD 0 0 0 0 

4 0 0 0 0 

WORD 0 (i) 0 0 

5 
00 00 

0 0 0 0 
Fig. F·8. 



Storage Devices 97 

Fig. F·9. 

sure that the lamp contacts are firm. Place a nut on each screw under
neath the panel. Label the terminal on the right side RTN. 

6. Label the panel top as shown in Fig. F-8. 

Core Memory Operation 

1. Close switch for aI, open for a O. 
2. To read memory, use clip lead and simultaneously connect all four 

exposed wires for address desired. See Fig. F-9. 

Core Memory Checkout Procedure 

1. Connect a )I/2-volt flashlight battery between the B+ and RTN ter-
minals. 

2. Close all toggle switches. 
3. Connect the switch for word 1 and check to see that each lamp lights. 
4. Open the 23 toggle of word 1 and note that the 23 lamp is out. 
5. Open the 22 toggle of word 1 and note that the 22 lamp is out. 
6. Open the 21 toggle of word 1 and note that the 21 lamp is out. 
7. Open the 20 toggle of word 1 and note that the 2° lamp is out. 
8. Repeat Steps 3 through 7 for words 2 through 5. 

CONSTRUCTION DETAILS-DRUM MEMORY 

Fig. G·!. 



98 How to Build a Working Digital Computer 

COMPONENTS: Sub-base and supports, drum, paper-clip contacts, base, display 

MATERIALS 

Sub-base, supports, drum: 
1 tin can (large juice size) 
2 4 X 3 X lA in. composition board 
1 5 X 12 X lA in. composition board 
2 2 X IIh X Vs in. composition board 
2 * X * X 9 wood blocks 
1 12 in. dowel (o/s in. diameter) 
8 Ih in. wood screws (no. 4) 
2 Ih in. molly bolts 

Paper-clip contacts: 
28 paper clips 

2 1 X 3 X lA in. wood blocks 
1 9 X Ih X 1/s in. composition board 
1 9 X * X 1/8 in. composition board 
8 Ih in. wood screws (no. 4) 

10 it. insulated hook-up wire (20 gage) 
adhesive tape (Ih in. wide) 
wood glue 

Base and display: 
1 6 X 12 X 1/s in. composition board 
1 21h X IIh X 1/s in. composition board 
4 wood supports for lamp chassis (* X * X *) 
1 tin strip (4 X * in.) 

28 Ih in. machine screws (6-32) 
56 nuts (6-32) 

6 Ih in. wood screws (no. 4) 
2 #48 or 41 lamps (2 v, .06 a) 

SPECIAL TOOLS: 

Tin snips 
Drill (1/16,3/32, lis, lA, o/s) 
Emery cloth or sandpaper 

Sub-base and Side Support Construction 

1. Drill % -in. holes through each side support as indicated in Fig. G-3. 
The 4 X 3 X 1/<1 -in. composition boards are the side supports. 

T 
3 

1 
1.. 

viDE SUPPORTS 

II 
214 SUSTSE 

--1'2" WOOD SCREWS 
COUNTER 
SUNK 

I 
1'cOUNTER SUN 

Fig. G-2. 



Storage Devices 99 

2. Notch the side supports as shown in Fig. G-3. 
3. Clamp one support to the left side of the 5 X 12 X 1i4-in. sub-base and 

drill through from the bottom of the sub-base up into the side support 
with a lis -in. drill liz in. in from the top and bottom edges of the sub
base. Countersink the drilled holes. Secure the support to the sub-base 
with Yz -in. wood screws. See Fig. G-2. 

4. Measure the length of the can to be used as the drum memory. Add 2 
inches to this figure. The length obtained is the distance the second 
support should be from the first. 

S. Clamp the second support at the proper distance from the first, as 
determined in Step 3. Drill through the sub-base into the support, as in 
Step 2, countersink the drilled holes, and secure the support to the 
sub-base with Yz -in. wood screws. 

6. Stand the sub-base on the % X % X 9-in. wood blocks with the 9-in. 
length under both side supports, one to the r~ar of the sub-base, the 
other to the front. 

7. Drill through the sub-base into the wood blocks from the top about 
Y<I in. inside the side supports. Countersink the drilled holes. 

8. Attach the sub-base to the wood blocks with four Yz -in. wood screws. 

Memory Drum Construction 

1. Remove the paper label, if any, from the can to be used as the drum. 
Clean off any glue. If the can is painted, use sandpaper or emery cloth 
to remove all paint from the surface. 

2. Puncture or drill a ¥s -in. hole in the center of each end of the drum. 
Note: It is important that these holes be exactly in the center, for, as 
the drum revolves, a constant pressure must be exerted on the read 
heads. Otherwise, it will be most difficult to adjust the head tension 
properly. To find the centers of the ends, do the following: 
(a) Notch the edge of the can slightly and sharply. 
(b) Stretch a length of cord across the diameter of the can, holding 

one end of the cord in the notch made in Step (a). 
(c) Using the notch as a pivot, swing the string back and forth over 

the opposite edge of the can and determine at which point on the 
can the string is longest. Notch the edge of the can at that point. 

(d) Using a straightedge, score a line across the can's end from one 
notch to the other. 

RADIUS! j-
OF DRU~ 1--1/4' 

T '~ T. 
3" DRILL ~4 HOLE 2 ~4 

1 1 

NOTCH OUT @.DOWEL 

<D <D 

MOLLY BOLT 

1---4"--1 (A) (B) 

Fig. G-3. Fig. G-4. 



100 How to Build a Working Digital Computer 

MARK 

~ Jlb 
MARK MARK 

Fig. G·5. Fig. G·6. 

(e) The center of the can is at the center of the line scored in Step (d). 
Use an awl and dimple the center point before drilling. 

3. Drill a %-in. hole through the center of each of the two 2 X I1h X Vs
in. pieces of composition board. Drill the ends of these boards as shown 
in Fig. G-4(a). 

4. Place the boards drilled in Step 3 on each end of the drum so that 
their ~/S-in. holes are over the drum centerholes. Using the two other 
holes in the boards as guides, drill through the ends of the drum. 

5. Attach the boards drilled in Steps 3 and 4 to each end of the drum with 
molly bolts (Fig. G-4(b». 

6. Run the 12-in. dowel (%-in. diameter) through the drum so that the 
projecting ends are of equal length. Use white glue to secure the dowel 
to the pieces at each end of the drum. 

7. Lay the projecting dowel ends on the side supports and mark the 
dowels as in Fig. G-S. 

8. With sandpaper, trim the dowels between the marks made in Step 7 
until they fit in the hole drilled in the supports. 

9. With the drum in place, mark the sub-base where the ends of the drum 
are, as in Fig. G-6. 

10. Remove the drum from the supports. 

Drum Contacts Construction 

1. Straighten out 29 paper clips and cut each one so that it is approximately 
41h in. long. 

2. Bend each clip to the configuration shown in Fig. G-7. 
3. On the front edge of the sub-base drill a row of 29 1/16-in. holes to 

the dimensions indicated in Fig. G-8, centered within the drum end 
marks. 

4. Mark and drill 29 11 16-in. holes on the 9 X ~ X lis-in. and the 
9 X 1h X Va-in. composition boards. These holes should line up, from 
end to end, with those drilled in the sub-base in Step 3. 

n DRUM END MARKS 

II'>--A 1 " SIDE 
'(~2'y SUPPORT 

I· 2 "4· ·1 

Fig. G·7. . ··············J.·m•····•• .. 

3"J Fig. G·B. I 9" 



Storage Devices 

SIDE SUPPORTS 

112" 
L I" SUB-BASE 

(\)~ 

Fig. G·g. 
WOOD BLOCKS 
(SEE STEP 5) 

101 

1/2" 

~(\) 
-rr Q 

1-'------' 

5. Mark and drill the 1 X 3 X li4-in. wood blocks as shown in Fig. G-9. 
Place these blocks inside each support, with their front ends extending 
% in. beyond the front of the base. Using the drill holes in the blocks 
as guides, drill 1/16-in. holes in the base and secure the blocks with 
1;2-in. wood screws. 

6. Insert the paper clips in the holes in the 9 X % -in. strip drilled in 
Step 4. See Fig. G-lO(a). 

7. Along the top of the clips, place two strips of 1;2 -in. adhesive tape, 
sticky side to sticky side, with the clips in between. See Fig. G-lO(b). 

8. Cut 29 4-in. lengths of hook-up wire. Strip % in. of insulation from 
one end of each wire and 1;2 in. of insulation from the other end of 
each wire. 

9. Wrap the ends with % in. of insulation stripped from them tightly 
around the I-in. end of each clip. See Fig. G-II(a). 

10. Insert the clip end with the wire on it in the hole on the edge of the 
sub-base as in Fig. G-ll(b). Smear a little white glue on the wire 
when it is almost completely inserted to ensure a good fit. Caution: 
Be sure the glue is only at the front. Do not smear the entire end. If 
glue gets between the wire and paper clip, there will be no electrical 
contact. 

11. Feed each wire, in order, through the corresponding hole in the 9 X 112_ 
in. strip. Attach the strip to the sub-base by drilling 11 I6-in. holes 

I" 18 

(A) 

Fig. G·lO. (B) 



102 

MOLLY 
BOLT 

SIDE 
SUPPORT 

WOOD 
BLOCKS 

How to Build a Working Digital Computer 

GLUE HERE 
(SEE CAUTION, STEP 10) 

(A) 

AXLE SUPPORT 

WIRE AND PAPER 
CLIP IN SUB BASE 

(B) Fig. G-l1. 

DRUM 
~-----;;'(TIIN CAN) 

AXLE 
(WOOD 

DOWELING) 

SlOE 
'-:"-.::--- SUPPORT 

BASE ------..:::,..,0. 

~W,\_------ SIDE SUPPORT (CUT -AWAY) 
PAPER CLIP 

93/4 IN STRIP ALLOWS YOU TO PUT 
TENSION ON PAPER CLIPS 

TENSION 

Fh===~~;~~-----: SUPPORT BLOCK THIS STRIP PREVENTS CLIPS 
I------FROM COMING OUT 

L-.J.... ___ ---'l>O~=-=--:-c:.... WIRE LEAD 

A-A Fig. G-12. 



Fig, G,13, 

Storage Devices 

I' 'T-- 8 1/4' 
12" 

x r ~3'r 
3/8 41/4' 

6" ~ L !t 10-3/8' X 314'!..oi 
3/S1:;!: + ++++ +++"'!:.+++ +++ ++ ++++++ ++ ++ 

SIZE CODE ~. 
x ~II; OIA TERMINAL MOUNTS 

+ 3/3201A 

'I 

103 

SUB-BASE 
~ MOUNTS 
112' 
T 

through the strip and base at each end. Attach the strip to the sub
base with ;-2 -in. wood screws. This strip prevents the clips from pulling 
out of the base. . 

Establishing Contact Tension 

1. Replace the drum on the supports. 
2. Push the 9 X % -in. strip against the clips and line up each contact 

point as best as possible. See Fig. G-12. 
3. Slide the strip toward the drum along the supporting block until suffi

cient tension is obtained on all contacts against the drum. Secure the 
strip to the supporting blocks with ;-2 -in. wood screws. 

Base and Lamp Display Construction 

1. The 7 X 12 X VB composition board is the base for this unit. Mark 
and drill it as indicated in Fig. G-13. 

2. Place ;-2-in. machine screws from the bottom in each of the 3/32-in. 
holes driUed in the base in Step 1 and place two nuts on each screw. 
Do not tighten the nuts. 

3. Place the sub-base on the base with the row of terminal screws in the 
front. Using the 4 holes drilled at the sides of the base as guides, drill 
4 holes into the sub-base. Secure the base to the sub-base with ;-2 -in. 
wood screws. 

(AI 

x 

Fig. G,14. 

SIZE CODE 
x 3/32 OIA 

* 3/ioiA 

+ 1/8"OIA 

/SIDE SUPPORT 

I 

(81 

x 

SUB-BASE 
(fOP RIGHT 
SIDE) 



104 How to Build a Working Digital Computer 

LAMPS GO ON 
ALTERNATELY 

~...:N,."-V"1iu:r-~~~€F.~-TO INDICATE 
000 OR EVEN 
INSTRUCTION 

Fig. G·15. 

4. Connect the wires from the paper clips to the corresponding terminal 
screws by tightening the wire under the bottom nut. Note that the ter
minals are slightly spread out. Therefore, start at one end first and 
work across. 

5. The lamp display for this unit is on the side of the drum sub-base. It is 
constructed as follows: 
(a) Mark and drill the right end of the sub-base as shown in Fig. G-14(a). 

File the % -in. holes to accommodate the lamps. 
(b) Attach paper-clip, base terminal connections to the lamp bases, 

as was done for the encoder lamps and those in other units. 
(c) Cut a 4-in. long, %-in. wide tin strip. Bore a Ys-in. hole at one end. 
(d) Place the lamps in their holes and attach the tin strip as in Fig. 

G·14(b). 
(e) Fasten supports (small wooden blocks) to the corners of the sub-base 

with ~-in. wood screws as shown in Fig. G-IS, and wire the lamps 
as shown. 

6. Label the unit as shown in Fig. G-12. 

Final Operations 

1. Using graph paper, layout your program as indicated in Chapter 7. 
2. Wrap three 2-in. pieces of adhesive around the can and next to each 

other. Place the program layout on top of the adhesive. 
3. Using a single·edge razor blade or X·acto knife, cut out each square 

marked with an X. 



Chapter 6 
COMPUTER CONTROL 

We have constructed all of the necessary calculating units but we 
do not yet have a functioning computer"In this chapter we will examine 
and build the unit that unifies all of the computer elements that we have, 
the control. Externally, the programmer directs the computer's sequence 
of operations. The internal control, however, must come from the com
puter itself. 

This internal computer regulation is executed by countless control 
circuits that decode program instructions and generate electrical signals 
telling the various computer sections what to do. These circuits function 
as a central command post that prevents the computer from operating 
in a haphazard fashion. Although the control circuits may be spread 
throughout the computer, they can be understood more easily by treating 
them as an isolated section. The control unit for our computer will be 
isolated, too, to emphasize its operation. 

THE COMPUTER UNITS-A REVIEW 

A review of the function of the various completed computer units 
will help us develop an understanding of the operations the control unit 
directs. In the operating computer these units will act only upon com
mand of the control unit. 

The Input Unit. The input unit reads data into the computer. Using 
two lO-position rotary switches, it accepts two 1-digit decimal numbers, 
encodes each from decimal to binary, and provides an intermediate, 
buffer storage of the encoded bits in its display (the input buffer display) . 

The Arithmetic Unit. Using mechanical switches as register stores, 
our arithmetic unit adds or subtracts two 4-bit binary numbers and 
stores the results in its own register. This unit is composed of four basic 
functional units: the add/subtract circuit, the accumulator, the X-reg
ister, and the extension register. Data in the arithmetic unit's accumulator 
can be transferred to the X-register or displayed for the benefit of the 
computer operator. 

The Storage Unit. Our computer uses two storage units: the core 
memory and the drum memory. The core memory, a temporary storage 
unit, stores five 4-bit words and is capable of receiving or releasing 
data. As the drum memory stores the computer program, the control 
unit is given direct access to it. The drum holds 26-bit instruction words. 

105 



106 How to Build a Working Digital Computer 

The Output Unit. In our computer we are assuming that a program 
automatically converts binary numbers to binary-coded decimal num
bers. Therefore, the output unit functions as a BCD-to-decimal decoder 
and displays the answers to the computer's calculations. 

THE CONTROL UNIT 

The control unit examines the program instructions and relays 
them to the proper units at the proper time. In our computer the chain 
of command will be altered somewhat because the operator works the 
computer manually. For this reason, the control unit will display its 
commands to the operator rather than send them directly to the unit 
involved. The operator will function as the link between control and the 
input, arithmetic, storage, and output units. 

We have reviewed the functions of the various units to see the range 
of operations the control unit directs. The various instructions the control 
uses to initiate these operations are referred to as its instruction reper
toire. Our control unit's instruction repertoire is set up in relation to 
each unit as follows. 

The Input Unit. The input unit requires an instruction to read in 
data. Therefore, our first order in the instruction repertoire will be 
"Read in from the input buffer display (ffiD) to accumulator." To 
simplify the writing out of instructions we will use code names for each 
one. For "Read in from IBD to accumulator" we will write RIN, a 
shortened form of read in. 

There are two possible inputs in this unit, A and B, each at a 
different location, or address. Therefore, two addresses are required 
along with the RIN instruction, Address A and Address B. 

The Arithmetic Unit. The arithmetic unit obviously needs the 
instructions Add and Subtract, the shorthand codes for which will be 
ADD and SUB, respectively. The ADD instruction will cause the con
tents of the accumulator to be added to the contents of the X-register. 
The sum obtained will be indicated automatically on the accumulator 
display. The SUB order will cause the contents of the X-register to be 
subtracted from the contents of the accumulator. The difference ob
tained will be indicated automatically on the accumulator display. 

Besides these two arithmetic instructions, other instructions are 
necessary to manipulate data within the arithmetic unit. Instructions that 
will allow us to multiply or divide easily by powers of 2 and use the 
extension register are needed: "shift right" and "shift left." The notation 
for these instructions will be SHR (shift right) and SHL (shift left). 
When these instructions occur in the program, a signal must be sent 
to the arithmetic unit so that the accumulator contents are displayed 
to the operator. This "display accumulator contents" instruction will be 
written as DISPLAY (ACC). The operator must also be given an 
indication of the number of places to shift, so four addresses are 



Computer Control 107 

required along with the SHR or SHL: "1 place," "2 places," "3 places," 
and "4 places." 

The instructions for the arithmetic unit are numerous because 
of the many operations performed in arithmetic calculations. An instruc
tion is needed to indicate that the contents of the accumulator should be 
transferred to the X-register. This order, "transfer accumulator contents 
to X-register," or TRA, will also require the DISPLAY (ACC) address 
so that the accumulator's contents will be displayed to the operator. 

Thus far we have defined the need for the following instructions 
and addresses: 

Unit Instruction Address 

Input {RIN 
Address A 
Address B 

ADD 
SUB 
SHR 1 place 

Arithmetic SHL 2 places 
3 places 
4 places 

TRA 
DISPLAY (ACC) 

The Output Unit. In the output unit it is necessary to have an 
instruction for data to be read out from the accumulator to output 
display. The order, "read out accumulator to output" or RUT, also 
requires the DISPLAY (ACC) address so the operator is shown the 
accumulator contents. Since the RUT operation requires setting a BCD 
word into two output unit registers, two addresses are required with the 
instruction: 100 and 101. Finally, the output unit is designed to display 
results only upon receipt of an answer command, "display answer" 
or ANS. 

The Storage Units. No instructions are associated with the drum 
unit as it is the source of the computer program and originates the 
information that the control unit uses. There are special program steps 
that affect the drum unit which will be considered later in this chapter. 

Instructions for the core memory are needed to read data in and 
out. To read data into the core memory, which can store five 4-bit 
words, we will use a store order, STO, with five addresses. As this 
instruction requires transfer of the word indicated on the accumulator 
display to the core address indicated by control, the DISPLAY (ACC) 
address is also required. 

To read data out of the core memory to the accumulator, the RIN 
instruction is used with an Address C and the five core addresses. This 
instruction will command the operator to determine the contents of the 
indicated memory core and read them into the accumulator. 

Program Instructions. The fundamentals of programming for our 



108 How to Build a Working Digital Computer 

computer are developed in the next chapter. However, it is necessary 
to consider two program aspects here as they directly affect the instruc
tion repertoire of our control unit. 

Often during a program, it is necessary to make a decision based 
on the results of a certain computation or operation. The decision made 
will determine whether the program continues along its regular sequence 
of steps or "jumps" to a new subprogram or routine. The instruction 
required to call for this decision is called "conditional jump" or COJ. 
When a COJ instruction occurs, the operator checks the most-significant 
bit (MSB) in the accumulator. If the MSB is 0 the operator continues 
to the next instruction. If the MSB is 1, the operator follows an alternate 
program of instructions. 

It is also necessary to jump sometimes from one place in a program 
to another to avoid the repetition of subroutines. A "jump" instruction, 
JUP, is used in this case. 

THE COMPLETE INSTRUCTION REPERTOIRE 

The complete list of instructions and addresses used by the control 
unit is given in Table 6-1. As shown, there are 10 orders and 16 ad
dresses. Therefore, our computer word will require 26 bits as a minimum. 

TABLE 6-1. THE INSTRUCTION REPERTOIRE 

ORDERS ADDRESSES 

RIN Address A 

ADD Address B 

SUB Address C 

SHR Core 1 

SHL Core 2 

TRA Core 3 

RUT Core 4 

STO Core 5 

COJ 1 

JUP 2 

3 

4 

DISPLAY (ACC) 

100 

101 

ANS 



Computer Control 

227 z26 z25224 223 z22 221 220 219 218 217 216 215 214 213 212211 210 29 28 27 26 25 24 23 22 21 20 

/-.-OROER .. I.. ADDRESS ... ITlMING 

Fig. 6·1. The instruction word format. 

109 

The format for our word is shown in Fig. 6-1. Bits 22 through 217 are 
used for addressing and bits 2 18 through 227 are used for instructions. 
Bits 2° and 21 are used for power and timing, as discussed in the chapter 
on storage units. 

The coding for the orders and addresses is shown in Tables 
6-2 and 6-3. 

The control unit in our computer is a panel of coded lamps that 
displays instructions and addresses. The unit commands the operator 
by interpreting program signals in terms of computer operations and 
lighting the coded lamps to guide the operator in his manipulation of 
the computer units. The construction procedures for this unit are given 
at the end of the chapter. 

The mechanical manipulation of the operational procedures indi
cated by the control unit will be detailed at the end of the chapter after 
the unit is completed and the computer parts are wired together. Figure 
6-2 shows what the completed computer should look like. 

WIRING THE SYSTEM 

The various units of the computer should be arranged on a table or 
workspace. See Fig. 6-2. All intraunit wiring should be completed and 

TABLE 6-2. THE ORDER CODE 

ORDER 227 226 225 224 223 222 221 220 2 19 218 

ADD 1 0 0 0 0 0 0 0 0 0 

SUB 0 1 0 0 0 0 0 0 0 0 

STO 0 0 1 0 0 0 0 0 0 0 

SHR 0 0 0 1 0 0 0 0 0 0 

SHL 0 0 0 0 1 0 0 0 0 0 

TRA 0 0 0 0 0 1 0 0 0 0 

JUP 0 0 0 0 0 0 1 0 0 0 

COJ 0 0 0 0 0 0 0 1 0 0 

RIN 0 0 0 0 0 0 0 0 1 0 

RUT 0 0 0 0 0 0 0 0 0 1 



110 

Core 1 

Core 2 

Core 3 

Core 4 

Core 5 

1 

2 

3 

4 

How to Build a Working Digital Computer 

TABLE 6-3. THE ADDRESS CODE 

100 0 0 0 0 000 0 0 0 000 

0100000000000000 

001 0 000 0 0 0 0 0 000 0 

000 1 000 000 000 000 

o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 

00000 1 0 0 0 000 000 0 

o 0 0 0 0 0 000000000 

0000000100000000 

000 0 0 000 1 0 0 0 0 000 

Address A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Address BOO 0 0 0 0 0 0 0 0 0 0 0 0 0 

Address COO 0 0 0 0 0 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0000000000000 o 0 

ANS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

D1SPLAY(ACC) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 

checked out in accordance with the instructions for the individual units. 
Once this is done, the power supply switch on the junction box is opened 
and the following power wiring is accomplished. 

TABLE 6-4 

FROM TO 

UNIT TERMINAL UNIT TERMINAL 

Junction Box B+ Bus Arithmetic Unit B+ 

Junction Box B+ Bus Drum Memory B+ 

Junction Box B+ Bus Core Memory B+ 

Junction Box RTN Input Unit (Encoder) RTN 

Junction Box RTN Arithmetic Unit RTN 

Junction Box RTN Drum Memory RTN 

Junction Box RTN Core Memory RTN 

Junction Box RTN Output Unit RTN 
(Decoder) 

Junction Box RTN Control Unit RTN 



Computer Control 111 

ARITHMETIC UNIT 

c:J DECODER 
DISPLAY 

DRUM D 
I JUNCTION BOX I 

CONTROL PANEL 

Fig. 6·2. The completed computer. 

DECODER 
SWITCHES 

After the power wiring is installed, the following signal wiring should 
be installed. 

TABLE 6-5 

FROM TO 

UNIT TERMINAL UNIT TERMINAL 

Junction Box DISP Drum Memory DISP (22) 

Junction Box DISP Arithmetic Unit DISP 

Junction Box INPA Drum Memory INPA (2 8) 

Junction Box INPA Input Unit (Encoder) A 

Junction Box INP B Drum Memory INPB (2 9) 

Junction Box INP B Input Unit B 

Junction Box ANS Drum Memory ANS (2 3) 

Junction Box ANS Output Unit ANS 
(Decoder) 

After completing this wiring, wire the drum memory and control units, 
starting at the left side of the drum with the terminal marked ADD. 
Wire all 26 order and address terminals. 

CHECK-OUT PROCEDURES 

Periodically, and prior to operating the computer, each unit should 
be tested individually according to the instructions presented for testing 
in the various chapters of this book. In addition, the control panel 
should be checked by using a test lead connected at one end to the B+ 
terminal of the drum. The test lead should then be touched to each 
read head, 22 through 227, in turn and the following results obtained: 



112 

READ HEAD 

How to Build a Working Digital Computer 

TABLE 6-6 

NORMAL INDICATION 

Accumulator display indicates contents of accumu
lator 

ANS lamp lights and output unit register contents 
are dis played. 

100 lamp lights 

101 lamp lights 

Input C lamp lights 

IBD indicates Input B switch setting, Input B lamp 
lights 

IBD indicates Input A switch setting, Input A lamp 
lights 

4 lamp lights 

3 lamp lights 

2 lamp lights 

1 lamp lights 

Core 5 lamp lights 

Core 4 lamp lights 

Core 3 lamp lights 

Core 2 lamp lights 

Core 1 lamp lights 

RUT lamp lights 

RIN lamp lights 

COJ lamp lights 

JUP lamp lights 

TRA lamp lights 

SHL lamp lights 

SHR lamp lights 

STO lamp lights 

SUB lamp lights 

ADD lamp lights 

If this test is successfully completed a program may be loaded 
(see Chapter 7) and operation may begin. 



Computer Control 113 

OPERATING PROCEDURES 

To operate the computer, the operator must become familiar with 
the manual operations he must perform under direction of program 
control. Remember, our computer does not have active components and 
hence the human operator simulates many normally automatic functions. 
It is suggested that a chart be made of the required operator's procedures 
as prescribed in Table 6-7 and displayed conveniently near the computer 
for ready reference. 

The operator, after loading a program, sets the drum to its 0 posi
tion and closes the power switch on the Junction Box. The operator then 
advances the drum, one slot at a time, performing the required opera
tions as indicated by the control panel and the following table. 

TABLE 6-7 

LAMP OPERATION 

ADD Place the DISPLAY switch in the ADD-SUBTRACT poSi-
tion and the ADD-SUBTRACT switch in the ADD position. 
Register answer as displayed on accumulator display 
into the accumulator. Set the DISPLAY switch back to 
the DISPLAY poSition. Set X-register to zero. 

SUB Place the DISPLAY switch in the ADD-SUBTRACT posi-
tion and the ADD-SUBTRACT switch in the SUBTRACT 
position. Register answer as displayed on the accumu-
lator display into the accumulator. Set the DISPLAY 
switch back to the DISPLAY position. Set X-register to 
zero. 

STO Transfer the word on the accumulator display to the core 
address indicated. 

SHR Note the word on the accumulator display; reset the ac-
cumulator switches (including Extension register) so 
that the display word is shifted the indicated number of 
digits to the right. For example, if the displayed word 
is 00101 0000 and the core 2 lamp is lighted, the word is 
shifted two places to the right as follows: 00001 0100. 

SHL Same as SHR except shift to the left. 

TRA Transfer the contents of the accumulator as displayed to 
the X-register by setting the X-register switches. 

JUP Note whether the 1, 2, 3, or 4 lamp is lighted. If the 1, 
2, or 3 lamp is lighted, rotate the drum forward until 
the same lamp and JUP lamp light again. If the 4 lamp is 
lighted, rotate the drum backwards until the 4 lamp and 
JUP lamp light again. Perform the indicated order. 

COJ Same as for JUP, but perform only when accumulator 
sign or 24 bit lamp indicates 1. Otherwise, proceed to 
next instruction. 



114 

LAMP 

RIN 

RUT 

How to Build a Working Digital Computer 

TABLE 6-7 (Cont.) 

OPERATION 

If IBD display lights, set the accumulator switches to 
reflect the contents of the IBD. If a core address lights, 
throw display switch for that core address and then set 
the contents of the core display in the accumulator. 

Transfer the displayed accumulator contents into the in
dicated output buffer register 100, or 101 or read 
the computer output if the ANS lamp lights. 

CONSTRUCTION DETAILS-CONTROL PANEL 

COMPONENTS: Chassis (panel and support), display circuit, terminal board 

MATERIALS 

Chassis: 
1 
1 
4 

12 X 8\12 X 1/8 in. composition board 
5 X 8\12 X 14 in. composition board 
\12 in. wood screws (no. 4) 

Fig. H·l. 



Computer Control 

Display circuit: 
26 #48 or 41 lamps (2 v, .06 a) 

7 tin strips, dimensions in construction details (can or sheet) 
23 ft. insulated hook-up wire (20 gage) 
1 ft. uninsulated hook-up wire (20 gage) 

8 ~ in. machine screws (6-32) 
14 1 in. machine screws (6-32) 
30 nuts (6-32) 

1 sheet of 8~ X 11 in. blank paper 
Adhesive tape 

4 dozen 1 in. brads 

Terminal board: 
1 12 X 2~ X 14 in. composition board 

27 ~ in. machine screws 
54 nuts (6-32) 
4 ~ in. wood screws (no. 4) 

SPECIAL TOOLS: 

Drill (%, Ys, 3/16, and 3/32) 

Chassis Construction 

115 

1. Mark the 12 X 8~ X l/s in. board as shown in Fig. H-2 and start drill 
holes. 

2. Drill all holes through the panel, following Fig. H-2 as a guide for 
proper drill size. Smooth rough areas with sandpaper. 

3. Rule the 5 X 8~ X J,4 in. board as shown in Fig. H-3 and saw through 
board along ruled line. The resulting tapered pieces are the supports 
for the control board panel. 

4. Assemble the chassis by fastening the panel to its supports as follows: 

Fig. H-2. 

SIZE CODE 
+ I/a' OIA 



116 How to Build a Working Digital Computer 

10-1' ------8 V2' 'I 

T 
IYi' 
.11-_ 

--- T 
IY;' 

Fig. H·3. 

(a) Start four drill holes on the chassis panel, one in each corner, ap
proximately Va in, from the outside edge and 2 in. from the top or 
bottom edge, 

(b) Hold the panel and supports together as shown in Fig, H-4 with 
the longest row of holes in the panel at the top, Drill 3/32-in. holes 
through the panel and support at the points where the drill holes of 
Step 4(a) were started, 

(c) Fasten the panel and supports together with ~ -in, wood screws. 

Display Circuit Construction 

A. WIRING 

1. Turn the control panel over (supports up) and place it on top of a 
sheet of 81/2 X 11 in, paper. Line up the edges of the sheet with the 
top and bottom edges of the panel. 

2. With a pencil, trace the circumference of each % -in. hole so that 
a circle is made on the paper underneath. When each hole is marked 
you will have a pattern that represents the position of the lamps on the 
panel. 

3. Remove the control panel and place the pattern on a flat working 
surface that you can drive nails into. This pattern is the same type of 
harness wiring guide that was used when harnesses were made for the 
Decoder, 

4. Along the top edge of the pattern, mark off % -in. segments starting 

Fig. H·4. 



Computer Control 

REAR OF CONTROL PANEL 

\ 
I 2 3 4 5 6 1 8 9 10 II 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 
+++++++++++++++++++++++++++ 

8910111925 18 5 6 1 

660660 9 
362 I cOJ SU8 

9666 
RIN C 

JUIIP 23 26 22 

9 9 9 
SHR ADD SHL 

11 24 21 

600 
2 3 4 

666 
ANS 10° 10 I RUT SIO TRA 

12 13 14 15 16 

66666 
5 4 3 2 I 

NOTE: 0 INDICATES POINTS FOR BRADS 
TO BE DRIVEN AS HARNESS GUIDES. 

~ 
UNDERSIDE OF 
CONTROL PANEL 

117 

Fig. H-5. 

% in. in from the side, as in Fig. H-5. You should have 26 such marks 
when finished. Number each mark, starting at the left with number 1. 
These marks represent the terminal connections for each lamp. Label 
and number each lamp hole as indicated in Fig. H-5. 

5. Drive I-in. brads into each mark at the top of the pattern. Place brads, 
also, at the circled points indicated in Fig. H-5. They should be driven 
in only as far as is necessary to hold them securely. 

6. The five wiring harnesses to be constructed on this pattern will run 
between the lamp bases and terminal connections. Each harness, as 
described in the following steps, should be laid out in the same fashion 
as those made for the Decoder. Run wires through the guides. Use 
adhesive tape strips at tie points, run longest wires first, etc. 

Cut insulated wire to the lengths indicated in Chart A. Strip ~ in. 
of insulation from each end of each wire and tag wires at each end with 
identifying number indicated in the chart. 

7. Harness 1: Connect terminals 2, 3, and 4 with holes 2, 3, and 4 
as indicated in Fig. H-6. (On all figures representing harnesses, X's 
indicate wire guide-nails and diagonal lines indicate tie points.) 

8. Harness 2: Connect terminals 5, 6, and 7 to their correspoding holes 
as shown in Fig. H-7. 

9. Harness 3: Connect terminals 8, 9, 10, 11, and 20 to their corresponding 
holes as shown in Fig. H-8. 

10. Harness 4: Connect terminals 12, 13, 14, 15, and 16 to their correspond
ing holes as shown in Fig. H -9. 

11. Harness 5: Connect terminals 17, 18, 19, 21, 22, 23, 24, 25, and 26 
to their corresponding holes as shown in Fig. H-lO. 



118 How to Build a Working Digital Computer 

2 3 4 

Fig. H·7. 

12 13 14 15 16 

Fig. H·6. 

891011 20 

Fig. H·B. 

17 18 19 21 22 23 24 25 26 

Fig. H·9. 

Fig. H·ID. 

B. LAMPS AND LAMP CONNECTIONS 

1. Prepare paper clips for lamp bases as was done for the Encoder lamps 
and secure them to the 25 control panel lamps. 

2. Test each lamp hole to be sure that each lamp protrudes approximately 
Va in. to Y<I in. above the panel face when inserted from the underside 
of the panel. Adjust lamps to proper height by filing holes. 

3. Cut 1h -in. wide tin strips in the following number and lengths: one 7-in. 



Computer Control 119 

CHART A 

Length Order of Length Order of 
Terminal (in.) Use Terminal (in.) Use 

2 7 1 15 7th 16 
3 8 2 16 8th 17 
4 9 3 17 18 18 
5 7 7 18 11th 19 
6 9th 5 19 14 20 
7 9lh 6 20 5 11 
8 4% 8 21 13 21 
9 41;4 9 22 12 22 

10 3lh 10 23 14 23 
11 3Vs 12 24 14 24 
12 l1lh 13 25 101;4 25 
13 10% 14 26 11 26 
14 9 15 

CHART B 
Strip 

Lamps Type Designation 

8, 9, 10, 11, 19 1 A 
25, 18,5,6, 7 3 B 

20 5 C 
23,26,22 2 D 
2,3,4,17 1 E 

24,21 4 F 
12, 13, 14, 15, 16 1 G 

strip; four 6-in. strips; one 5-in. strip; one 3-in. strip. 
4. Punch and drill each strip as shown in Fig. H-11. Use a 3/16-in. drill. 

Drill three strips as Type t. 
5. Insert the lamps in the holes and attach the tin strips to the lamp tips 

using 1 in. machine screws and nuts. Chart B indicates which strip type 
to use with each set of lamps. Figure H-12(a) details the manner in 
which the strips are attached. 

6. Depress ends of strips A, D, E, and G to panel and drill through panel 
with a Vs-in. bit, using end holes in strip as a guide. Angle the strip 
so that it does not contact the lamp (see Fig. H-12(b». Secure both 
ends of strips D and G with Y2 -in. machine screws and nuts. Secure 
the left end of strip A with I-in. machine screws and the left end of 
strip E with lh -in. machine screws and right ends of same strips with 
I-in. machine screws. 

7. Connect adjoining ends of strips A and B with same machine screw. 
Drill through panel and secure right end of strip B with a I-in. machine 
screw. 

S. Connect adjoining ends of strips E and F with same machine screws. 
Depress right end of strip F, drill through panel, and secure with lh-in. 
machine screw. 



120 

It 
TYPE 4 

h 

1. 

How to Build a Working Digital Computer 

." o 

4" 

2'~1 
., 

3" II 

'1 

Fig. H·ll. 

nlP:orO:E~n ~n" 

PANEL/ LAMP PANEL' LAMP 

Fig. H·12. (AI (8 I 

I t.-�----------12·---------~11 

I ~Xll" 
~ L+++++++++++++++++++++++++++ 

L ~I"-l -l 1.-3/8 

x 

x 

U SIZE CODE \ 
+ 1/" IA 

38• 0 8ACK 80ARD 
x ~32 DIA 

l 
Fig. H·13. 

9. With 3 short lengths of uninsulated wire, connect the machine screws 
securing strips A and C, C and D, D and F, and F and G. Secure these 
connections with a second nut. 

Terminal Board Construction and Harness Installation 

1. Starting 1 in. in from the end on the 12 X 2~ in. board, mark off 26 
points, % in. apart, along the center of the board, as shown in Fig. H·13. 

2. Start a drill hole at each point and then drill through the board with 
the lis ·in. bit. 

3. At each corner of the board, lis in. from the edge and ;4 in. from the 
top or bottom, start a drill hole and drill through with the 3/32·in. bit. 

4. Insert a ~-in. machine screw in each Ys-in. hole. Position the screw 
with two nuts, as indicated in Fig. H-14. 

5. Lay the harnesses out on the underside of the panel, one by one. For 



Computer Control 121 

NUT NO. I 

NUT NO.2 

1 
BACK BOARD 

\ 
REAR Fig. H-14. 

/ 
WIDTH OF NUT" 

each harness, connect the stripped ends to the lamp bases and crimp 
for a secure connection. 

6. Attach the free ends of the harness wires to the screws on the terminal 
board at the back of the board. The wires should run in numerical 
order from left to right. Secure each connection by tightening the nut. 
There will be no wire for terminal 1 at the far left. 

7. Secure the terminal board to the back of the control panel supports by 
placing it ~ in. below the top of the board and drilling through the 
holes on its ,edge into the supports. Fasten the board to the supports 
with ~ -in. wood screws. 

8. Attach a short, uninsulated wire to terminal 1 and the screw holding 
the left end of strip A. 

9. Label the panel and terminal board as shown in Fig. H-1S. 

0000 0 00000 
A B C RIN SUB COJ I 203 4 

JUMP 

0 0 0 
SHL ADD SHR 

0 0 0 000 
TRA STO RUT 10' 10' ANS 

00000 
I 2 3 4 5 

RA RRCJTSSSSA 
TNOI CCCCCUIOURHHTUD 
N SIO 10 C B A 432 15432 I TN J PAL ROB 0 
00000000000000000000000000 
I 234567891O"~~~~ffirrffi~~~~~~~~ 

Fig. H-15. 



122 How to Bu ild a Working Digital Computer 

CONSTRUCTION DETAILS-JUNCTION BOX 

Fig. I-I. 

MATERIALS 

1 4 X 6 X Y2 in. block of wood 
2 2 X 4 X VB in. composition boards 
2 2 X 5Y2 X VB in. composition boards 

6 volt battery 
1 paper clip 

24 Y2 in. wood screws (no. 4) 
8 Y2 in. machine screws (6-32) 
8 nuts (6-32) 

2 ft. insulated hook-up wire (20 gage) 
1 ft. insulated wire (18 gage) 

Construction 

1. Attach battery to block of wood using uninsulated wire and wood 
screws. See Fig. 1-2. 

2. Assemble the 4 pieces of composition board to the block of wood as 
shown in Fig. 1-3. After drilling screw holes, attach the board with 
Y2 -in. wood screws. 

3. Construct two 2-in. long common tie-point terminal strips (see con
struction details below). Mount them on the front side of . the junction 
box as in Fig. 1-3(a) with V2 -in. machine screws and nuts. 

4. Construct a single-pole switch with the paper clip and two wood screws 
and attach at side of terminals as shown in Fig. 1-3. 



CONNECT TO 
TOP OF SWITCH 
TERMINAL 

(A) 

(8) 

Computer Control 

UN INSULA TED 
WIRE 

CONNECT 
TO 

BOTTOM 
TERMINAL 

Fig. 1-2. 

Fig. 1-3. 

WOOD 
SCREWS 

123 



124 How to Build a Working Digital Computer 

10 01 10 01 
OISP ANS 

RIGHT SIDE 
(A) 

10 01 D 
INP A INP 8 

LEFT SIDE 
(8) Fig. 1-4. 

5. Connect the negative battery terminal to one strip as shown in Fig. 1-3 
with insulated hook-up wire. Connect the positive battery terminal to 
one side of switch. Connect other side of switch to remaining common 
tie-point terminal strips. 

6. Label the strip connected to switch B+ BUS and the other RTN BUS. 
When wiring into the computer system, use separate wood screws for 
each connection whenever possible. 

7. Construct four I-in. long common tie-point terminal strips and mount 
two on each side of the junction box with ~ -in. machine screws and 
nuts (Fig. 1-4). 

8. Insert two lh-in. wood screws in each terminal strip mounted in Step 7. 
Do not screw them down tight. 

9. Label the four terminal strips mounted 'in Step 7 as follows: DISP, 
ANS, INP A, INP B. 

CONSTRUCTION DETAILS-COMMON TIE POINT 
TERMINAL STRIPS 

MATERIALS 

MESH 

Construction board (I-in. wide, ~-in. thick, length to suit application) 
Fine wire mesh or aluminum foil 
lh-in. wood screws 

•• 11 
I-- I' -0·.1_-- 2" 

Fig. 1·5. 



Computer Control 125 

Construction 

1. Cut I-in. construction board to desired length. 
2. Cut wire mesh to same size as construction board cut in Step 1. 
3. Attach the wire mesh to the board as illustrated in Fig. J-5 using ~-in. 

wood screws approximately every inch along the edges. 
4. To connect wire to the mesh, place the stripped end over the mesh 

or aluminum foil and secure it with a wood screw or thumb tack. Make 
sure that the wire is in firm contact with the mesh or aluminum foil. 



Chapter 7 
PROGRAMMING OUR COMPUTER 

Up to now we have concerned ourselves with the problem of 
devising and constructing a machine with a certain "built-in capability" 
to perform such basic operations as addition, subtraction, shifting, etc. 
The subject of this chapter is how the computer is directed so that it 
uses its built-in capabilities to solve the problem or problems at hand. 
This subject is known as programming. 

To make a computer solve a problem, the method by which the 
computer is to solve this problem must be defined and related, in step
by-step sequence, to the instructions available in the computer's instruc
tion repertoire. This repertoire was discussed in Chapter 6. 

THE PROGRAMMING PROCESS 

The process of creating a program for a particular computer 
resolves itself into the following basic steps: 

1. Define the problem and what data are available for its solution; 
define the form of the solution. 

2. Outline the method of solution in graphic form using a "flow 
chart." 

3. Write the entire program, step by step, using the instructions 
available in the instruction repertoire and the appropriate 
address codes. 

4. Try the program on the computer, using enough different sets of 
raw input data to provide confidence in the general applicability 
of the program. 

Defining the problem is a very important step in devising a pro
gram, since an efficient program can only be written if it is properly 
organized at the start. The problem definition phase may result in 
several subproblem definitions. In this case, several smaller programs, 
called routines or subroutines, may be devised along with an overall 
"executive" routine that directs the use of the subroutines. A typical 
program consisting of an executive routine plus several subroutines is 
indicated in Fig. 7-1. This diagram is called a flow chart, since it indi
cates the "flow" of the program. 

Once the overall configuration of the program is defined by flow 
chart, each subroutine is outlined using detailed flow charts. A typical 

126 



Programming Our Computer 

IS THIS A 
SALARIED EMPLOYEE 

TIME CHART? 

...--_......:.:.NO::........( IS EMPLOYEE MEMBER 
OF PENSION PLAN? 

END 

Fig. 7·1. A typical overall flow chart . 

.....-_--'N;.:..O -I DO TOTAL HOURS 
EXCEED 37.5? 

SET TOTAL PAY 
EQUAL TO BASIC PAY 

Fig. 7-2. A typical detailed flow chart. 

127 



128 How to Build a Working Digital Computer 

SYMBOL MEANING 

( ) START OR END OF A ROUTINE 

o OR ( ) INDICATES A DECISION REQUIRED 

I I AN OPERATION 

< > A SUBROUTINE 

0 A CONNECTION POINT 

Fig. 7-3. Flow chart symbols. 

detailed flow chart is illustrated in Fig. 7-2. This chart shows both the 
sequence and logic of the routine. 

At this point, you may have noticed that boxes and symbols of 
different shapes are used on the flow charts. There are several standards 
currently in use in the computer industry for such symbols. We will 
use those shown in Fig. 7-3. 

TABLE 7-1. TYPICAL PROGRAM CODING SHEET 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

00 RIN 04 210 Hours worked Monday 

01 RIN 04 211 Hours worked Tuesday 

02 RIN 04 212 Hours worked Wednesday 

03 RIN 04 213 Hours worked Thursday 

04 RIN 04 214 Hours worked Friday 

05 ADD 01 300 Total hours 

06 TRA 02 100 37.5 to X-register 

07 SUB 11 300 Total -37.5 

10 COJ 21 015 <37.5 jump to 015 

11 MUL 43 300 Overtime Pay 

12 TRA 02 100 Basic pay to X-register 

13 ADD 01 300 Total pay 

14 JUP 30 016 Jump to tax deductions 



Programming Our Computer 129 

After the detailed flow chart is prepared, the program is coded, 
using the appropriate instructions, addresses, and codes. Table 7-1 illus
trates a typical program coding sheet. 

USING OCTAL CODES 

Because of the number of digits required to specify a complete 
instruction word (28), a shorter code is used when programming. This 
code uses octal (base 8) numbers, instead of binary numbers. It is a 
simple substitution of a symbol used in the octal system for a set of 
three consecutive binary digits. Use of the octal code cuts the space 
required for writing instruction words to one-third. The table below 
shows the correspondence of octal and binary numbers. 

Octal Binary 
gn 22 21 20 

0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 1 1 0 
7 1 1 1 

To convert from binary to octal, the binary word is separated into 
groups of three consecutive digits, starting at the right. Each discrete 
group of three digits is then compared with the corresponding octal 
symbol. For example, the code for SHR is 0001000000. To convert to 
octal, the binary word is separated as follows: 

xxO 001 000 000 

Then, for each group of three digits, the corresponding octal symbol is 
selected. Therefore: 

o 1 o o 
This short-cut method of writing out long binary words is possible 
because 23 is equal to 81• 

Table 7-2 provides the octal codes for the various instructions and 
addresses used in our computer. Refer to Chapter 6 for details of the 
instruction repertoire and the corresponding binary codes. The "Re
marks" column of the table uses the following shorthand conventions: 

( ) = contents of 
--_, = automatic routing of data 

M • = manual routing of data 



130 How to Build a Working Digital Computer 

TABLE 7-2. COMPUTER INSTRUCTIONS 

OPERATION OCTAL ADDRESS 
CODE CODE CODES REMARKS 

ADD 1000 000000 (Aee) + (xl - Aee Display 

(Ace Display) ~ Acc 
M (x) _ zero 

ADD lamp on 

SUB 0400 000000 (Aee) - (x) - Acc Display 

(Ace Display) ~ Aec 

(x) ~ zero 

SUB lamp on 

STO 0200 (Ace) - Acc Display 

(Ace Display) ..M. CORE 
ADDRESS 

.1 

STO (store) lamp on 

400004 Core address 1 lamp on 

200004 Core address 2 lamp on 

100004 Core address 3 lamp on 

040004 Core address 4 lamp on 

020004 Core address 5 lamp on 

SHR 0100 (Aee) - Aee Display 
-1 M 

400004 (Acc Display) 2 - Aec 
(Shift one plaee) 

SHR (shift right) lamp on 

200004 Shift two plaees 

100004 Shift three places 

040004 Shift four places 

SHL 0040 (Aee) - Acc Display 
. 1 M 

(Aee Display) 2 - Acc 

SHL (shift left) lamp on 

400004 Shift one place 

200004 Shift two places 

100004 Shift three places 

040004 Shift four places 



Programming Our Computer 131 

TABLE 7-2. COMPUTER INSTRUCTIONS (Cont.) 

OPERATION OCTAL ADDRESS 
CODE CODE CODES REMARKS 

TRA 0020 000004 (Acc) - Acc Display 

(Acc Display} ~ x 

TRA (transfer) lamp on 

JUP 0010 JUP (jump) lamp lights 

To identify jump sequence 
the following addresses 
are used: 

010000 Jump to 1 

004000 Jump to 2 

002000 Jump to 3 

001000 Jump to 4 (opposite 
direction) 

COJ 0004 COJ (conditional jump) 
lamp lights 

To identify jump sequence 
the following addresses 
are used: 

010000 Jump to 1 

004000 Jump to 2 

002000 Jump to 3 

001000 Jump to 4 (opposite 
direction) 

RIN 0002 000400 RIN (read in) lamp lights 

INPUT A displayed on IBD 
M 

(IBD) - Acc 

000200 Same as above, but 
INPUT B 

000100 Input C lamp lights 
Core-Core display by 
throwing (address) dis-
play switch manually 
corresponding to lighted 
address lamp 

~Acc (Core Display) 

400100 Core address 1 

200100 Core address 2 

100100 Core address 3 

040100 Core address 4 

020100 Core address 5 



132 How to Build a Working Digital Computer 

TABLE 7-2. COMPUTER INSTRUCTIONS (Cont.) 

OPERATION OCTAL ADDRESS 
CODE CODE CODES REMARKS _.- . .-

RUT 0001 000004 RUT (read out) lamp lights 

(Acc) - Acc Display 

000044 101 lamp lights 

(Acc Display) ~ 101 ORD 

000024 100 lamp lights 

(Acc Display) ~ 100 ORD 

000014 ANS lamp lights; output dis-
play matrix is energized 

DEVISING A SIMPLE PROGRAM 

At this point, we are ready to try our first program. A simple 
program is best to start with, so let us devise a program for subtracting 
decimal input B from decimal input A. The result of the subtraction 
must be displayed in decimal form. 

We recall now that the input unit automatically converts decimal 

START 
CORE I • 0000 

3' 0001 

LOAD CORE 
5· 0000 
2' 0000 MEMORY 
4· 0000 

READ A AND B 
INTO AU 

SUB 

IS DIFFERENCE 
NEG 

COMPLEMENT 

RUT COMP-IOo 

RUT 101'1 

ANS 

Fig. 7-4. Subtraction routine flow chart. 



Programming Our Computer 133 

data to binary and that the output unit automatically converts binary
coded decimal data to decimal. However, since we are limiting ourselves 
to numbers less than 10, the binary numbers in the computer will be 
identical to BCD numbers and may be read directly into the output unit. 

The first step, now that the problem has been defined, is to out
line the program using a flow chart. The flow chart for the subtract 
program is illustrated in Fig. 7-4. Initially, the core memory is loaded 
with all zero's except for one location where 0001 is set for use in 
reading out the sign digit when the result of the subtraction is negative. 
After the core memory is loaded, input B is placed in the X-register 
and input A in the accumulator. The difference, A - B, is obtained by 
the SUB instruction. If the difference is positive, it is read out as 10°, 
since this difference must be less than 10 and therefore already in BCD 
form. A a is then extracted from core memory and read out (101 = 0) 
to indicate a positive number. 

If the difference is negative, it is complemented to obtain its abso
lute value. The complement is obtained by subtracting the difference 
from 24. This absolute value is read out as the magnitude of the differ
ence (10° digit). The stored sign digit, 1, is then extracted from core 
address 3 and read out as 101, indicating a negative number. 

Now, with the logic outlined, the actual program coding may be 
performed. Table 7-3 lists the coding for the entire subtract program. 

PROGRAMMING MULTIPLICATION 

Programming the multiplication process is a more complicated 
procedure than programming subtraction. Because of this, it is neces
sary to refamiliarize ourselves completely with the process of multipli
cation before we do any actual programming. Let us examine the basic 
problems encountered when paper-and-pencil multiplication is per
formed. For example, the problem 24 X 13: 

24 
X13 

72 
24 
312 

multiplicand 
multiplier 
partial product 
partial product 
product 

In this operation, we take the least significant numeral of the multi
plier and mentally add the multiplicand to itself the number of times 
indicated by the multiplier numeral. The sum in this case, 72, is set 
down just below the multiplier in the proper position. We then take the 
next significant numeral of the multiplier and mentally add the multi
plicand to itself the number of times indicated by this multiplier numeral. 
The sum in this case, 24, is set down below the previous sum but is 
shifted to the left by one column. Then both sums are added to obtain 



134 How to Build a Working Digital Computer 

TABLE 7-3. SUBTRACT ROUTINE CODING 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

1 RIN 0002 400000 Load core address 1 = 0000 

2 RIN 0002 101000 Load core address 3 = 0001 

3 RIN 0002 020000 Load core address 5 = 0000 

4 RIN 0002 200000 Load core address 2 = 0000 

5 RIN 0002 040000 Load core address 4 = 0000 

6 RIN (B) 0002 000200 Read B into accumulator 

7 TRA 0020 000004 Transfer B into X-register 

8 RIN (A) 0002 000400 Read A into accumulator 

9 SUB 0400 000000 A - B = difference 

10 COJ 0004 010004 If difference negative, jump 
to 15 

11 RUT (100) 0001 000024 Difference = 100 output 

12 RIN (C) 0002 400100 Read core 1 = 0000 into 
accumulator 

13 RUT (101 ) 0001 000044 Sign = 0 (pos) (101 ) output 

14 ANS 0000 000010 Positive difference 

15 TRA 0024 010004 Negative difference to 
X-register 

16 RIN (C) 0002 400100 Read core 1 = 0000 into 
accumulator 

17 SUB 0400 000000 Complement negative 
difference 

18 RUT (100) 0001 000024 Complement = magnitude 
of negative difference 
= 100 output 

19 RIN (C) 0002 100100 Read core 3 = 0001 into 
accumulator 

20 RUT (101 ) 0001 000044 Sign (101 ) digit = 1 for 
negative sign 

21 ANS 0000 000010 Negative difference 

the final answer, 312. Note that multiplication, when broken down to 
its basic steps is actually an addition process. 

Let us now examine multiplication in the binary system. Let us 
multiply 1011 and 1010. 



Programming Our Computer 135 

1011 multiplicand 
1010 multiplier 
0000 partial product Po 

1011 partial product PI 
10110 

0000 partial product P2 

010110 
1011 partial product P 3 

01101110 
01101110 product 

This operation is exactly the same as in the decimal system with one 
small difference. Since the binary system has only two symbols, 0 and 1, 
the partial products can be equal to either all zeros or to the multiplicand. 

With the above examples in mind, let us attempt to write down, 
in sequence, all the basic operations which go into the performance 
of a multiplication. To make this list of operations easier to work with, 
let us make the following algebraic definitions of terms: 

1. The digits of the multiplicand are D3, D2, Dl, and DO with DO 
the least significant. The full multiplicand is referred to as D. 

2. The digits of the multiplier are R3, R2, Rl, and RO with RO 
the least significant. The full multiplier is referred to as R. 

3. The partial products are Po, Ph P2 , Pa with Po being that partial 
product formed when multiplying the multiplier digit R 0 with 
the multiplicand. 

4. POI is the sum of partial products Po and PI when PI is properly 
shifted to the left. P 0123 is the end product. 

Now, in mUltiplying binary numbers, we notice that the partial 
products are either zero or equal to the multiplicand. Hence, it is 
merely necessary to examine the appropriate multiplier digit in order 
to determine partial product. Therefore, to start our multiplication, 
the first step is to examine the least significant digit (or bit) of the 
multiplier. If the bit is a 0, the partial product is 0; if the bit is a 1, 
the partial product is equal to the multiplicand. The flow chart of 
Fig. 7-5 indicates this procedure. 

The next set of steps consists of examining the next bit to the left 
in the multiplier. If this bit is a zero, the partial product PI equals 
zero. If this bit is a 1, PI equals D. The sum of the partial products, 
POI, is then obtained by adding Po and Pl. 

This process continues as illustrated in Fig. 7-5 until the most 
significant bit of the multiplier is processed. At the end of this process, 
the sum of the partial products, P0123, is formed as the end product. 

Now, let us apply our computer's instruction repertoire to the 
solution just described by Fig. 7-5. The first general step is to examine 



136 How to Build a Working Digital Computer 

LEGEND <> -EXAMINE 

(>!- -IF QUANTITY IS I 

~ -IF QUANTITY IS 0 

Fig. 7·5. Multiplication routine flow chart. 

RO, that is, determine if the least significant bit (LSB) of the multiplier 
is a 1 or a O. This requires a decision on the part of the computer 
based on the value of the LSB. The instruction in our computer's reper
toire covering this is COJ. However, COJ only examines the digit in 
the most significant stage of the accumulator. Therefore, the multiplier 
must be shifted to the left until the LSB is in the most significant stage 
of the accumulator. The instructions required to examine the multiplier 
bit form a subroutine, which we will refer to as the R n subroutine. 
This subroutine comprises the following: 

Read multiplier into accumulator (RIN) 
Shift accumulator to left (SHL) 
Observe MS place in accumulator, if a 1, jump to x (COJ) 

Let us now examine the case when the condition is not satisfied, 
that is, the LSB of the multiplier is O. The problem now is to form 
the first partial product based on the LSB being O. We know from the 
previous discussion that this partial product is 0000. Since there is 
no way of insuring that 0000 is anywhere in the computer storage with
out actually having put this value someplace, we must load this particular 
constant in memory before we start. Assuming that this was done and 
that 0000 was loaded in core memory 3, then we can proceed as follows: 

Read in from core 3 the value 0000 (RIN) 
Shift to right once (SHR) 



Programming Our Computer 137 

Store data in accumulator in core 4 (STO) 
Jump to instruction x (JUP) 

The first instruction reads in the partial product from core 3. 
The second instruction shifts the partial product once to the right, 

causing the LSB of the partial product to be in the most-significant place 
of the extension register. This shift is not significant here, since the 
partial product is all zeros. However, adding it here allows this series 
of instructions to be used in the more general case, which will be 
described shortly. Remember when, with pencil and paper, the partial 
products were put down in particular locations, each being offset from 
the previous one by one place to the left. 

The third instruction stores the accumulator data into core mem
ory address 4, which we will use as a temporary storage space for the 
partial product. 

The fourth instruction is necessary to jump over those instructions 
that concern the operation when the initial condition is satisfied. This 
entire set of instructions will be referred to as the Rn = 0 subroutine. 

Now let us examine the case when the condition is satisfied. We 
assume that as part of the input portion of the program, the multiplier 
was read into core location 2 and the multiplicand was read into core 
location 1. We know from the previous discussion that the multiplicand, 
as it stands, becomes the first partial product. Therefore, we must 
instruct the computer to relocate the multiplicand in the location 
reserved for the partial product and we proceed as follows: 

Read in partial product from core 4 (RIN) 
Transfer to X-register (TRA) 
Read in multiplicand from core 1 (RIN) 
Add multiplicand and partial product (ADD) 
Shift accumulator one place to right (SHR) 
Store remaining accumulator data in core 4 (STO) 

The first instruction enters the partial product into the accumulator 
and the next instruction transfers the partial product to the X-register. 

The third instruction reads in the multiplicand from core 1. This is 
necessary, even though there is no partial product at this time, since now 
a subroutine is established that is usable whether or not there is a 
partial product. The fourth instruction adds the multiplicand and the 
partial product. The fifth instruction shifts the new partial product 
one place into the extension register. The need for this is the same as 
previously mentioned. The last instruction stores the three most-sig
nificant bits in core location 4 for use later on. This subroutine will be 
referred to as the Rn = 1 subroutine. 

Now we have developed the three subroutines necessary to program 
completely for multiplication, except for instructions regarding input 
and output (see Table 7-4). 

At this point, the program is still not complete. While the basic 
program is available, modifications must be made to account for shifting 



138 How to Build a Working Digital Computer 

TABLE 7-4. MULTIPLICATION ROUTINE-PRELIMINARY 
INSTRUCTION LISTING 

FUNCTION INSTRUCTION STEP DATA FLOW 

RIN 1 Read in multiplier 

Examine RO SHL 2 Shift left 4 times (RO in MS 
place) 

COJ 3 If MSB = 1, Jump to 8 

RIN 4 Read in core 3 (0000) 

If 0 

~ ~ ~ Po = 0 

JUP 7 Jump to 14 

M ~ W!P~, ~ Ifl RIN Read in core 1 (multiplicand) 

P = D /AD"n/ /, /,6/ -1\'.££'06 //-vI'~/C 0 
SHR 12 Shift once to right 

STO 13 Store in core 4 

RIN 14 Read in core 2 

Examine Rl SHL 15 Shift left 3 times (R1 in MS 
place) 

COJ 16 If MSB = 1, Jump to 21 

~ 
17 Read in core 4 

If 0 SHR 18 Shift once to right 
-1 //yfj{/// /1// ~~y~~¥,y/ PI = (PO)2 

JUP 20 ,lump to 27 

SHR) 

RIN 21 Read in core 4 

Ifl TRA 22 Transfer to X-register 

- 1 RIN 23 Read in core 1 (multiplicand) PI = (P 0)+(D)2 
ADD Add Acc + X-reg ~Acc 24 

SHR 25 Shift once to right 

STO 26 Store in core 4 

RIN 27 Read in core 2 

Examine R2 SHL 28 Shift left 2 times (R2 in MS 
place) 

COJ 29 If MSB = 1, Jump to 34 

RIN 30 Read in core 4 (0000) 

!f0 SHR 31 Shift once to right 

P 2 = (P1)2 
-1 

~ '" '\ i'-~~ '\ ~~~~~~~~ 
JUP 33 Jump to 14 



Programming Our Computer 

TABLE 7-4. MULTIPLICATION ROUTINE-PRELIMINARY 
INSTRUCTION LISTING (Cont.) 

FUNCTION INSTRUCTION STEP DATA FLOW 

SHR> 
RIN 34 Read in core 4 

TRA 35 Transfer to X-register 
Ifl 

- 1 RIN 36 Read in core 1 
P 2=(Pl )+(D)2 

ADD 37 M 
Add Acc + X-reg - Acc 

SHR 38 Shift once to right 

STO 39 Store in core 4 

RIN 40 Read in core 2 

Examine R3 SHL 41 Shift left once (R3 in MS 
place) 

COJ 42 If MSB = 1, Jump to 47 

~ 
43 Read in core 4 

If 0 SHR 44 Shift once to right 
-1 

~""'\ ~" ~F..~'h..~e...~ P 3 = (P 2) 2 

JUP 46 Jump to 53 

SHR) 

RIN 47 Read in core 4 

If 1 TRA 48 Transfer to X-register 

P 3 = (P 2)+(0)2 1 RIN 49 Read in core 1 
M 

ADD 50 Add Acc + X-reg -Acc 

SHR 51 Shift once to right 

STO 52 Store in core 4 

Output 53 
Routine + 

N 

139 

data in the extension register. Notice that when we examine the mUltiplier 
bit by shifting left we also shift data from the extension register into 
the accumulator. Then we insert new data into the accumulator and 
effectively lose those data that we originally shifted from the extension 
register. Therefore, we must add an additional SHR instruction to 
replace the data in the extension register prior to inserting new data 
into the accumulator. This instruction must be added after the COJ 
instructions in each of the following subprograms. For Rn = 0: 

SHR-Shift right a number of places to replace extension data 
RIN-Read in from core 3 
SHR-Shift right once 
STO-Store in core 4 
JUP-Jump to required step 



140 How to Build a Working Digital Computer 

For R" = 1: 
SHR-Shift right a number of places to replace extension data 
RIN-Read in from core 4 
TRA-Transfer to X-register 
RIN-Read in from core 1 
ADD-Add multiplicand and partial product 
SHR-Shift right once 
STO-Store in core 4 

Now, it is necessary to delete and combine steps to shorten the 
program because each unnecessary step takes time and memory space, 
which are the key limiting parameters of a computer. Note that at the 
end of the Rn = 0 routine a JUP exists and the two preceding steps are 
SHR and STO. At the end of the Rn = 1 routine an identical SHR and 
STO exist. By deleting SHR and STO in the Rn = 0 routine and 
jumping to the SHR and STO in the Rn = 1 routine, two instructions 
can be saved for each examination. Three steps may be saved in the 
examine RO routine by deleting RIN from core 4, TRA, and ADD. This 
can be done since there is no partial product in core 4 at the start of 
the program. 

At this point, with the basic program completed, since the accumu
lator and extension register are both full and we have generated partial 
produ~ts four times, the final product is in the accumulator and the 
extension register. The most significant bits (MSB) are in the accumu
lator and the least significant bits (LSB) are in the extension register. 
It is necessary to read out the answer. First we must store: 

Shift word in extension register to left 
Store in core 5 

Since the answer is in binary and the output unit uses BCD code, 
it is necessary to perform a separate readout routine described later 
in this chapter to convert binary to binary-coded decimal for readout. 
The addresses for the MSH and LSH (most significant half and least 
significant half) are, respectively, A and B. When the RUT order for 
the MSH is displayed, transfer the accumulator data to the A input on 
the encoder, and the LSH to the B input, then begin the readout routine. 

Before writing down the entire program we must now determine 
the input portion of the program based on what is required in the 
multiplication portion of the program. 

Recall the following requirements on our core memory: 

1. Partial product in core 4 
2. MS part of final product answer in core 4 
3. LS part of final product in core 5 
4. Multiplier in core 2 
5. At start core 3 loaded with 0000 
6. Multiplicand in core 1 



Programming Our Computer 141 

The object of the input portion of the program is to ensure that 
all quantities required in the program are available. Therefore, we 
specify the following: 

Read in multiplicand 
Store multiplicand in core 1 
Read in multiplier 
Store multiplier in core 2 

The preload data for the multiply program are as follows: 

Core No. Data 
1 0000 
2 0000 
3 0000 
4 0000 
5 0000 

Table 7-6 is a check-out routine of the program in Table 7-5. Use 
it to check your program after it has been cut and mounted. 

TABLE 7-5. MULTIPLY PROGRAM 

INSTRUCTION 
Il. WORD fiI MNEM-
E-t ONIC ORDER ADDRESS REMARKS Ul 

1 RIN 0002 400000 0000 ~ core 1 

2 RIN 0002 100000 0000 ~ core 3 
Load 

3 RIN 0002 020000 0000 !:!.. core 5 Instruc-

4 RIN 0002 200000 0000 ~ core 2 
tions 

5 RIN 0002 040000 0000 ~ core 4 

6 RIN 0002 000400 IBD-A .M... Acc 

} 7 STO 0200 400004 Ace !:!.. core 1 

8 RIN 0002 000200 IBD-B ~ Acc 
Input 

9 STO 0200 200004 Acc ~ core 2 
Examine--

10 SHL 0040 040004 24Acc ~Acc R O 

11 COJ 0004 010004 If MSB = 1, Jump to 14 

12 RIN 0002 100104 Core 3 ~Acc } RO=O 2! 
0 ..., 

13 JUP 0010 004000 Jump to 16 P()=O 
Ul.-< 
'0' 

Core 1 ~ Acc } RO=~ 
>="'-

14 RIN 0006 410104 ole, 
>=Il. 

2- 1 Acc ~ Acc ''"~ 
15 SHR 0100 400004 PO=D '0 

Acc ~ core 4 
~--

16 STO 0210 044004 0:: 

17 RIN 0002 200104 Core 2 ~ Acc }E~m' 18 SHL 0040 100004 23 Acc ~ Acc Rl 

19 COJ 0004 002004 If MSB = 1, Jump to 23 



142 How to Build a Working Digital Computer 

TABLE 7-5. MULTIPLY PROGRAM (Cont.) 

INSTRUCTION 
p.. WORD fi1 MNEM-
E-< 

ONIC ORDER ADDRESS REMARKS rn 

20 SHR 0100 100004 2- 3 Acc ~Acc 

21 Core 4 .J'!.. Acc }R1OO RIN 0002 040104 P 1 =(Po)2- 1 

22 JUP 0010 010000 Jump to 28 

23 SHR 0104 102004 2- 3 Acc~ Acc 

24 RIN 0002 040104 Core 4 ~Acc 
TRA 000004 

M . 
R 1=1 25 0020 Acc - X-register 

-1 -
26 RIN 0002 400104 Core 1 ~ Acc 

P 1 =(PO)2 +D 

M 
27 ADD 1000 000000 Acc+X-reg - Acc, 

X-register ...M.. 0 

28 SHR 0110 410004 2 -1 Acc J'!.. Acc 
} Store (P1)2- 1 

29 STO 0200 040004 Acc~core 4 

30 RIN 0002 200104 Core 2~Acc 
31 SHL 0040 200004 22 Acc~Acc } Ex=in, 

R2 

32 COJ 0004 004004 If MSB= 1 Jump to 36 

33 SHR 0100 200004 2-2 'Acc~Acc 

34 RIN 0002 040104 Core 4~Acc }R2OO 
P 2=(P1)2- 1 

35 JUP 0010 002000 Jump to 41 

36 SHR 0104 204004 2-2 Acc~ Acc 

37 RIN 0002 040104 Core 4~Acc 
M 

R 2=1 38 TRA 0020 000004 Acc - X-register 
-1 -

39 RIN 0002 400104 Core 1~Acc P 2=(P1 )2 +D 

40 ADD 1000 000000 Acc + X-reg..J'!!.. Acc, 
X-register...M- 0 

41 SHR 0110 402004 2- 1 Acc ~Acc 
} Store (P2)2-1 

42 STO 0200 040004 Acc ~core 4 

43 RIN 0002 200104 Core 2 ..J'!!.. Acc 

44 SHL 0040 400004 21 Acc~ Acc }EX="" R3 
45 COJ 0004 010004 If MSB = 1, Jump to 49 

46 SHR 0100 400004 2-1 Acc~ Acc 

47 RIN 0002 040104 Core 4~Acc }R300 -1 

48 JUP 0010 004000 Jump to 54 
P 3=(P2)2 



Programming Our Computer 143 

TABLE 7-5. MULTIPLY PROGRAM (Cont.) 

INSTRUCTION 
P, 

WORD fiI MNEM-t-< 
U) ONIC ORDER ADDRESS REMARKS 

49 SHR 0104 410004 2- 1 Acc .2::!.... Acc 

50 RIN 0002 040104 Core 4.....!':!..- Acc 
M 

R 3=1 51 TRA 0020 000004 Acc - X-register 

52 RIN 0002 400104 Core 1 ...M- Acc 
P 3=(P2)2- 1+D 

53 ADD 1000 000000 Acc + X-reg ~ Acc, 
X-register ..M.- 0 

54 SHR 0110 404000 2- 1 Acc ~ Acc } Store 

55 STO 0200 040004 Acc ~ core 4 
(P 3)2- 1 

56 RUT 0001 000404 Acc = MSH of Answer 

57 SHL 0040 040004 24 Acc ~ Acc 

Acc ~ core 5 
+' 

58 STO 0200 020004 =' a 
"0 

(GO ;nw ) 
oj 
Q) 

59 RUT 0001 000204 Acc = LSH of Answer read out ~ 

program 

TABLE 7-6. MULTIPLY CHECKOUT 

15 x 15 = 225 

1111 xliII = 11100001 

CONTENTS AFTER COMPLETION 
p, 

~ OF FUNCTION 
fiI 
t-< H 

Ace Corel 2 3 U) FUNCTION U) Ext X-Reg 4 5 

6 RIN A Read in A 0 1111 0000 0000 0000 0000 0000 0000 0000 

7 STO 1 Store in 1 

j ~ 1111 I 8 RIN B Read in B 1111 

9 STO 2 Store in 2 ~ 1111 

10 SHL 4 Shift left 4x 1 0000 

11 COJ 14 If neg jump to 14 

I 
t 

12 RIN 3 Read in 3 



144 

p.. 
r.< 
E-t 

How to Build a Working Digital Computer 

TABLE 7-6. MULTIPLY CHECKOUT (Cont.) 

CONTENTS AFTER COMPLETION 

6 OF FUNCTION 

3 r Ul FUNCTION ..... Ace Ext X-Reg Core 1 2 4 Ul 

13 JUP16 Jump to 16 

• 14 RIN 1 Read in 1 0 1111 

15 SHR 1 Shift right Ix 

j 
0111 1000 

16 STO 4 Store in 4 

• j 0111 

17 RIN 2 Read in 2 1111 

18 SHL 3 Shift left 3x 1 1100 0000 

19 COJ 23 If neg jump to 23 

j 
20 SHR 3 Shift right 3x 

21 RIN 4 Read in 4 

22 JUP 28 Jump to 28 

23 SHR 3 Shift right 3x 0 0111 1000 

24 RIN 4 Read in 4 

j 
0111 

I 25 TRA Trans to X-reg 0111 

26 RIN 1 Read in 1 1111 

• 27 ADD Add 1 0110 0000 

28 SHR 1 Shift right 1 x 0 1011 0100 

j 29 STO 4 Store in 4 j t j 1011 

30 RIN 2 Read in 2 1111 ! 31 SHL 2 Shift left 2x 1 1101 0000 

32 COJ 36 If neg jump to 36 1 1101 0000 0000 1111 1111 0000 1011 

33 SHR 2 Shift right 2x 

1 
34 RIN 4 Read in 4 

35 JUP 41 Jump to 41 

36 SHR 2 Shift right 2x 0 0111 0100 

37 RIN 4 Read in 4 

j 
1011 

1 
38 TRA Trans to X-reg 1011 

39 RIN 1 Read in 1 1111 t 
40 ADD Add 1 1010 0000 

41 SHR 1 Shift right Ix 0 1101 0010 

42 STO 4 Store in 4 j + ~ 
1101 

43 RIN 2 Read in 2 1111 

44 SHL 1 Shift left 1 x 1 1110 0100 

45 COJ 49 If neg jump to 49 

I 46 SHR 1 Shift right 1 x 

5 

0000 



Il< 
fiI 
Eo! 
til 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

Programming Our Computer 145 

TABLE 7-6. MULTI PLY CHECKOUT (Cont.) 

CONTENTS AFTER COMPLETION 
Z OF FUNCTION 
0 

FUNCTION .... Ace Ext X-Reg Core 1 2 3 4 5 til 

RIN 4 Read in 4 

~ JUP54 Jump to 54 

SHR 1 Shift right 1 x 0 1111 0010 

RIN 4 Read in 4 

1 
1101 

I TRA Trans to X-reg 1101 

RIN 1 Read in 1 1111 + ADD Add 1 1100 0000 

SHR 1 Shift right Ix 0 1110 0001 

STO 4 Store in 4 ! ~ 1110 

RUT Read out MSH 1110 

SHL 4 Shift left 4x 0 0001 0000 

SjI'O 5 Store in 5 ~ t ~ j 0001 

RUT Read out LSH 0001 

PROGRAMMING DIVISION 

Before devising a divide program, let's examine the basic problems 
encountered when we divide using paper and pencil. Let's divide 52 by 4: 

13-Quotient 
Divisor -4y52-Dividend 

4 
12 
12 
o 

In this operation we "guess" at a number which, when multiplied by 
the divisor, will give us a product less than the dividend. If the product 
is less, then we subtract this from the dividend. The remainder from the 
subtraction, if less than the divisor, is then treated as a new dividend 
and the process is repeated. However, if the remainder is greater than 
the divisor, then we increase the number initially "guessed at" and 
repeat the process. If the product is more than the dividend, then we 
decrease the guessed at number and repeat the process. 

+ 



146 How to Build a Working Digital Computer 

Using binary numbers, divide 0011 into 1001: 

0011 
0011v'1001 

o 
10 
00 
100 
011 
0011 
0011 
000 

This method is the same as with decimal numbers. However, the 
guessing is simplified since there are only two symbols. 

Figure 7-6 is a flow chart of the division program. The following 
conventions are used: 

1. The digits of the dividend are DS, D2, Dl, and DO. 
2. D refers to the entire dividend. 
3. The digits of the divisor are RS, R2, Rl, and RO. 
4. R refers to the entire divisor. 
5. The digits of the quotient are QS, Q2, Ql, and QO. 
6. The partial remainders are Po, Ph P2, Ps, P 4, and Pij. 

To develop the specific flow we must examine each function in the 
general flow and, recalling the characteristics of the computer, specify 
the particular instructions required. 

The first general step is to determine if the MSB of the quotient 
is 0 or 1. If 1, jump to the specified instruction. If 0, continue with the 
next step. This requires a decision by the computer based on the divisor 
and the MSB of the dividend. The instruction covering the decision is 
COJ. COJ operates when the digit in the MS place of the accumulator 
display is a 1. Therefore, the dividend and divisor must be operated 
on to give the information we need. This can be accomplished by sub
tracting the divisor from the most significant digit of the dividend. We 
can now specify the examination routine. 

Read in divisor 
Transfer to X-register 
Read in dividend 
Shift dividend until MSB is in LS place of ACC 
Subtract 
Observe MS place in accumulator display, if a 1 jump to x(Qs = 0) 

The first three instructions are, respectively, RIN, TRA, and 
RIN. These read in the divisor and dividend and set up these quantities 
for an arithmetic operation. It is assumed here that the dividend and 



Programming Our Computer 147 

Fig. 7-6 

divisor had previously been read into memory as part of the input 
routine. The fourth step shifts the MSB of the dividend until the bit 
is in the least significant place of the accumulator. For instance, divide 
10 10 by 0101: 0101 (divisor) is in the X-register and 10 10 (dividend) 
is in the accumulator. Shifting the dividend as specified sets 0001 into 
the accumulator; i.e., we have 0001010, where 0001 is in the accumu
lator and 010 is in the extension register. 

The fifth instruction, SUB, is subtraction, and the sixth is the 
conditional jump, COJ. If, as a result of subtraction, a 1 is in the 
MS place of the accumulator display, then the condition is satisfied 
and the jump is made to the particular step further in the program. 
Under this condition, Q3 is a 0 and can be set into memory. The portion 
of the program detailing this is given later on. When a 0 occurs in the 
MS place, the program continues to the Qn = 1 routine. 

In the Qn = 1 routine, two things should be considered: (1) In the 
paper and pencil method, a "new" dividend is developed by "bringing 



148 How to Build a Working Digital Computer 

down" part of the original dividend and tacking it on to the remainder. 
(2) A 1 must be stored in the proper location each time Qn = 1. 

We will now develop a generalized program for any Qn = 1 and 
then modify each set for Q3 = 1, Q2 = 1, Ql = 1, and QO = 1. The 
generalized Qn = 1 program takes the following form. It comprises two 
portions, generation of the new dividend and generation of the new 
partial quotient Qn. 

New Dividend 
STO-Store remainder in accumulator in core 4 
RIN-Read in dividend from core 1 
SHR-Shift dividend to right x times 
RIN-Read in remainder from core 4 
SHL-Shift left x times 
STO-Store new dividend in core 1 

New Partial Quotient 
RIN-Read 0001 from core 5 
SHL-Shift 0001 left x times 
TRA-Transfer to X-register 
RIN-Read in old partial quotient from core 3 
ADD-Add 
STO-Store new partial quotient in core 3 
JUP-Jump to next examination routine 

The first step, STO, stores the remainder from the previous sub
traction order in core memory location 4. The next four steps, RIN, 
SHR, RIN, SHL, bring in the dividend, shift the lesser significant 
digits into the extension register, bring in the remainder, and then 
shift those lesser significant digits of the dividend out of the extension 
register. This effectively "brings down" the original dividend and tacks 
it onto the remainder. The value of x varies for each Qn = 1 routine. 
For n = 3, x = 3; for n = 2, x = 2; therefore, x = n. The next order, 
STO, replaces the original dividend in core 1. 

The next seven orders generate the partial quotient. The first 
order, RIN, brings 0001 in from core 5. This number is a pre-load 
requirement and must be loaded into the drum at the start of the 
program. The second order, SHL, shifts the 0001 to the proper loca
tion, x in this case being equal to n. The next three instructions, TRA, 
RIN, and ADD, combine the previous partial quotient with the new 
partial quotient. The next step, STO, stores the new quotient in core 3 
and the following step, JUP, directs the program to the next examine 
routine. 

In the Qn = 0 routine, no action is required. Therefore, this routine 
does not exist and the COJ instruction of the examine routine specifies 
a jump to the examine routine. 

Before calling the basic program final, it is necessary to see if it 
can be shortened. Examine the first time through the routine when the 
result of the examination is positive. Under this condition we note the 
following three possible conditions: 



Programming Our Computer 149 

1. D3 = 1 and R = 1 
2. D3 = 1 and R = 0 
3. D3 = 0 and R = 0 

The last two conditions indicate division by zero, which is an 
invalid operation. Therefore, the only valid condition is the first one, 
which is division by 1. This, of course, yields the dividend as the 
quotient. We then can substitute the Q3 = 1 routine for the generalized 
Qn = 1 routine, which will involve the following orders: 

RIN-Read in dividend from core 1 
RUT-Read out answer 

In the Qn = 1 routine where n = 2, we note that the Q3 digit is 
o by virtue of the preceding discussion. Therefore, there is no need 
to add the old quotient to the new and we can rewrite the "generate 
new quotient" portion as follows: 

RIN-Read in 0001 from core 5 
SHL-Shift left twice 
STO-Store partial quotient in core 3 

The Q1 = 1 routine remains as in the generalized Qn = 1 routine. 
However, in the QO = 1 routine we consider the following: 

1. There is no need to store the remainder, except of course if 
you wish to continue the program to obtain fractions in the 
end quotient. 

2. There is nothing left of the dividend to "bring down." 
3. The prestored data 0001 is in the proper position before adding 

to the old quotient. 

The program can be revised as follows: 
RIN-Read in 000 1 
TRA-Transfer to X-register 
RIN-Read in "old" quotient from core 3 
ADD-Add 
STO-Store "new" quotient in core 3 

Now we have developed the subroutines necessary to program 
completely for division, except for input and output. Table 7-7 con
tains the full list of the previously discussed instructions. 

The input instructions for the divide program consist of reading in 
the divisor and dividend. The divisor is stored in core 2 and the 
dividend in core 1. The following sequence is suggested: 

Read in divisor 
Store in core 2 
Transfer to X-register 
Read in dividend 
Store in core 1 

With these five instructions we disregard the first three instructions 
in the basic program to shorten the program as much as possible. 



150 

FUNCTION 

Examine n 3 

n 3 = 1 

n 3 = 0 

Examine n 2 

n 2 = 1 

Generate 
new 
dividend 

n 2 = 1 
Generate 
partial 
quotient 

n 2 = 0 

Examine n 1 

n 1 = 1 

Generate 
new 
dividend 

How to Build a Working Digital Computer 

TABLE 7-7. BASIC DIVISION ROUTINE 

INSTRUCTION STEP nATA FLOW 

RIN 1 Read in divisor 

TRA 2 Transfer to X-register 

RIN 3 Read in dividend 

SHR 4 Shift right 3 times 

SUB 5 Subtract 

COJ 6 If MSB = 1, jump to 9 

RIN 7 Read in dividend 

RUT 8 Read out answer 

RIN 9 Read in divisor 

TRA 10 Transfer to X-register 

RIN 11 Read in dividend 

SHR 12 Shift right twice 

SUB 13 Subtract 

COJ 14 If MSB = 1, jump to 24 

STO 15 Store remainder in core 4 

RIN 16 Read in dividend 

SHR 17 Shift right twice 

RIN 18 Read in remainder from core 4 

SHL 19 Shift left twice 

STO 20 Store "new" dividend in core 1 

RIN 21 Read in 0001 from core 5 

SHL 22 Shift left twice 

STO 23 Store Partial Quotient in core 3 

RIN 24 Read in divisor 

TRA 25 Transfer to X-register 

RIN 26 Read in dividend 

SHR 27 Shift right once 

SUB 28 Subtract 

COJ 29 If MSB = 1, jump to 42 

STO 30 Store remainder in core 4 

RIN 31 Read in "dividend" from core 1 

SHR 32 Shift right once 

RIN 33 Read in remainder from core 4 

SHL 34 Shift left once 

STO 35 Store new "dividend" in core 1 



Programming Our Computer 

TABLE 7-7. BASIC DIVISION ROUTINE (Cont.) 

151 

FUNCTION I INSTRUCTION I STEP I DATA FLOW 

RIN 36 Read in 0001 from core 5 

D1 = 1 SHL 37 Shift left once 

Generate 
TRA 38 Transfer to X-register 

partial RIN 39 Read in partial quotient from 
quotient core 3 

ADD 40 Add 

STO 41 Store new partial quotient in 
core 3 

RIN 42 Read in divisor 

D1 = 0 
TRA 43 Transfer to X-register 

Examine DO 
RIN 44 Read in "dividend" from core 1 

SUB 45 Subtract 

COJ 46 If MSB = 1, jump to 52 
(output routine) 

RIN 47 Read in 0001 from core 5 

DO = 1 TRA 48 Transfer to X-register 

Generate RIN 49 Read in partial quotient from 

end 
core 3 

quotient ADD 50 Add 

STO 51 Store end quotient in core 3 

The output instructions consist of reading out the answer. The 
single instruction, "Read out accumulator," is the only one required. 
This instruction takes the form RUT and the address code would corre
spond to ANS. Also, as part of the output, the COJ instruction in 
step 46 of the basic program causes a jump to step 52, "Read in from 
core 3." Note the last step in the basic routine, "Store in core 3," 
becomes unnecessary. 

The loading for the complete divide program shown in Table 7-8 is: 

Core 1- 0000 
2- 0000 
3- 0000 
4- 0000 
5- 0001 

Table 7-8 lists the entire division program including load data, 
input/output, and the basic routine. Table 7-9 is a checkout for the 
divide routine. Use it to verify the program ~fter it is cut and mounted 
on the drum. 



152 How to Build a Working Digital Computer 

TABLE 7-8. DIVIDE PROGRAM 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

1 RIN 0002 400000 Core 1 .M. 0000 

2 RIN 0002 100000 Core 3 ~ 0000 

3 RIN 0002 021000 Core 5 ~ 0001 

4 RIN 0002 200000 Core 2 .M. 0000 

5 RIN 0002 040000 Core 4 ..lY!.. 0000 

6 RIN 0002 000404 IBD-A ..lY!.. Ace (Divisor) 

7 STO 0200 200004 Ace 1Y!..... core 2 

8 TRA 0020 000004 Ace ~ X-register 

9 RIN 0002 000204 IBD-B ..lY!.. Ace (Dividend) 

10 STO 0200 400004 Ace ~ core 1 

11 SHR 0100 100004 -3 M 
2 Ace - Ace 

12 SUB 0400 000000 Ace - X-register ~ Ace, 
X-register ..lY!.. 0 

13 COJ 0004 010004 If 24 is 1, jump to indicated 
instruction 

14 RIN 0002 400104 Core 1 .M.. Ace 

15 RUT 0001 000034 
M 

Ace _ 10°, Read Answer 

16 RIN 0006 210104 Core 2 --M.... Ace 

17 TRA 0020 000004 Ace ~ X-register 

18 RIN 0002 400104 Core l~Acc 
19 SHR 0100 200004 2-2 Acc~Acc 
20 SUB 0400 000000 Ace - X-register ~ Ace, 

X - register .JI:!.- 0 

21 COJ 0004 004004 

22 STO 0200 040004 Ace ~ core 4 

23 RIN 0002 400104 Core 1 ~ Ace 

24 SHR 0100 200004 2-2 Ace .JI:!.- Ace 

25 RIN 0002 040104 Core 4 .1':!... Ace 

26 SHL 0040 200004 22 Ace ~ Acc 

27 STO 0200 400004 Acc ~ core 1 

28 RIN 0002 020104 Core 5 ~ Acc 
"2 

Ace !::!.. Acc 29 SHL 0040 200004 2 

30 STO 0200 100004 Acc ~ core 3 



Programming Our Computer 153 

TABLE 7-8. DIVIDE PROGRAM (Cont.) 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

31 RIN 0006 204104 Core 2 ~ Ace 

32 TRA 0020 000004 Ace ~ X-register 

33 RIN 0002 400104 Core 1 ~ Ace 

34 SHR 0100 400004 2- 1 Ace ~ Ace 

35 SUB 0400 000000 Ace - X-register ~ Ace, 
X-register ..M.. 0 

36 COJ 0004 002004 

37 STO 0200 040004 Ace ~ core 4 

38 RIN 0002 400104 Core 1 ~ Ace 

39 SHR 0100 400004 2- 1 Ace ..M. Ace 

40 RIN 0002 040104 Core 4 ~ Ace 

41 SHL 0040 400004 21 Ace ..M. Ace 

42 STO 0200 400004 Ace ~ core 1 

43 RIN 0002 020104 Core 5 ~ Ace 

44 SHL 0040 400004 21 Ace ~ Ace 

45 TRA 0020 000004 Ace ~ X-register 

46 RIN 0002 100104 Core 3 ~ Ace 

47 ADD 1000 000000 Ace + X-register ..M. Ace, 
X-register ..M.. 0 

48 STO 0200 100004 Ace ~ core 3 

49 RIN 0006 202104 Core 2 ~ Ace 

50 TRA 0020 000004 Ace ~ X-register 

51 RIN 0002 400104 Core 1 ..M. Ace 

52 SUB 0400 000000 Ace - X-register 

53 COJ 0004 010004 

54 RIN 0002 020104 Core 5 ~Acc 

55 TRA 0020 000004 Ace ~ X-register 

56 RIN 0002 100104 Core 3 ~Acc 
57 ADD 1000 000000 A + X-register ~ Ace, 

X-register ~ 0 

58 STO 0200 100004 Acc~ core 3 

59 RIN 0006 110104 Core 3 ~ Ace 

60 RUT 0001 000034 Ace ~ 10°, Read Answer 



154 How to Build a Working Digital Computer 

TABLE 7-9. DIVIDE PROGRAM CHECKOUT 

DIVIDE PROGRAM CHECKOUT 
PROCEDURE DIVIDE 12 BY 3 

B = 12 = 1100 
A = 3 = 0011 

CONTENTS AFTER COMPLETION 
Il. Z OF FUNCTION f;t1 

9 E-< FUNCTION Ace Ext X-Reg Core 1 2 3 4 Ul Ul 

START 0000 0000 0000 0000 0000 0000 0000 

6 RIN A a 0011 t 
7 STO 2 j 0011 

8 TRA 0011 

9 RIN B 1100 I 10 STO 1 t 1100 

11 SHR 3 0001 1000 

12 SUB 1 1110 0000 

13 COJ 16 

j 14 RIN 1 

15 RUT ANS 

16 RIN 2 a 0011 

17 TRA 0011 

18 RIN 1 1100 j 19 SHR 2 0011 0010 

20 SUB 0000 

I 
0000 

21 COJ 31 j 22 STO 4 0000 

23 RIN 1 1100 

24 SHR 2 0011 0000 

25 RIN 4 0000 0000 

26 SHL 2 0000 0000 

27 STO 1 t j 0000 

28 RIN 5 0001 I 29 SHL 2 0100 0000 

30 STO 3 + + 0100 

31 RIN 2 a 0011 0000 0000 0000 0011 0100 0000 

32 TRA 

j t 
0011 

33 RIN 1 0000 

t 34 SHR 1 0000 0000 

5 

0001 

0001 



Programming Our Computer 155 

TABLE 7-9. DIVIDE PROGRAM CHECKOUT (Cont.) 

CONTENTS AFTER COMPLETION 
p.. OF FUNCTION 
r:tI Z 

C!l E-< FUNCTION ..... Ace Ext X-Reg Corel 2 3 4 5 00 00 

35 SUB 1 1101 0000 

36 COJ 49 

37 STO 4 

38 RIN 1 

39 SHR 1 

40 RIN 4 

41 SHL 1 

42 STO 1 

43 RIN 5 

44 SHL 1 

45 TRA 

46 RIN 3 

47 ADD 

48 STO 3 

49 RIN 2 0 0011 

50 TRA t 0011 

51 RIN 1 0000 t 
52 SUB 1 1101 0000 

53 COJ 59 

54 RIN 5 

55 TRA 

56 RIN 3 

57 ADD 

58 STO 3 

59 RIN 3 0 0100 

ANswlR IS oloo = 14 60 RUTANS 0100 

READOUT 

Before devising a readout program to convert binary data to BCD 
for use by the output unit, let's examine the basic problems encountered 
when we attempt to convert a binary number into a binary-coded 
decimal number. First, let's re-examine what a binary-coded decimal 
number is. 

The symbols 0 through 9 represent all the decimal numbers. A 
combination of anyone or more of these ten symbols in positional 
notation will represent a particular numerical value. This numerical 
value also can be represented using the binary number system symbols 



156 How to Build a Working Digital Computer 

o and 1. However, if we take each individual decimal symbol and 
represent it with four binary symbols, we have converted each decimal 
symbol to its binary-coded decimal (BCD) equivalent. 

For example, the number 528 is represented by 0101 0010 1000 in 
the BCD system. Note the four binary symbols on the left are equal 
to 5 in the binary notation, the four middle binary symbols are equal 
to 2, and the four binary symbols on the right are equal to 8. Some 
representative examples of binary coded numbers, with their decimal 
and binary equivalents, follow: 

TABLE 7-10 

DECIMAL NUMBER BCD NUMBER BINARY NUMBER 

6 0000 0000 0110 000000000110 

29 0000 0010 1001 000000011101 

57 0000 0101 0111 000000111001 

84 0000 1000 0100 000001010100 

114 0001 0001 0100 000001110010 

143 0001 01000011 000010001111 

175 0001 0111 0101 000010101111 

199 0001 1001 1001 000011000111 

212 0010 0001 0010 000011010100 

246 0010 01000110 000011110110 

287 0010 1000 0111 000100011111 

Note the binary number in the right-hand column of Table 7-10. 
There is a significant difference in notation between BCD and pure 
binary. 

Before writing the program, let's examine the limitations of our 
computer and set up some rules to make the development of the program 
a little less difficult. The limitations of the computer are: 

1. Input to the computer is limited to numbers less than or equal 
to 9. Therefore, in a multiply program the highest number 
would be 81; arrived at by multiplying 9 X 9. 

2. Maximum number of bits in a word to be read out is 8. 
(Note: 81 requires only 7 bits; therefore the eighth bit (MSB) 
is always 0.) 

3. Maximum number of instructions on the drum is 65. 
4. Maximum number of core locations is 5. 
5. Instruction repertoire. 

With paper and pencil we could proceed as follows: 

1. Put the binary number down in a single column. 
2. Assign the proper decimal weight to each 1. 



Programming Our Computer 157 

3. Add the total. 
4. Put the total down across the page. 
5. Place the binary equivalent below each of the decimal symbols. 

0 0 
1 64 
0 0 
0 0 6 9 
0 0 0110 1001 
1 4 
0 0 
1 1 

69 

The paper and pencil method does not seem to lend itself to pro
gramming simply because there is a requirement to convert the binary 
number to the decimal number, and then convert each decimal number 
to a BCD number. This is not logical since we wish to obtain the 
decimal number in the first place. What is required is a direct conversion 
from binary to BCD without obtaining the decimal number. 

Consider the flow chart in Fig. 7-7. In this method we determine 
whether the number is greater than a particular multiple of 10, and if 
not, we continue to examine until we have established between what two 
multiples of 10 our number lies. 

The binary to BCD program is a loop-type program that is repeated 
until the answer is obtained. The program successively subtracts multi
ples of 10 from the number. The number is read into core memory 
locations 4 and 5. The program is started by subtracting 80 from 

l + N-80'R _ I 
1 + N-70'R _ 1 

1 + N-60'R _ 1 

1 + N-50'R _ 1 

I + N-40'R _ I 
I + N-30'R _ I 

1 + N-20'R _ 1 

1 N-IO'R + , -I 
." I 

l 10O'f(R} 
1 10 1 ·f (Nl Fig. 7·7 



158 How to Build a Working Digital Computer 

the number and then examining the sign of the remainder. The remaining 
three core memory locations must be loaded with the following data: 

Core 1 1000 
2 0101 
3 0000 

Core 1 is equivalent to 8 in binary notation. As the program continues, 
the core data are reduced by 1 each time through the loop. 

Core 2 contains the MSH of 80 and as the program continues core 
2 is updated to contain the MSH of the number being subtracted. 
Core 3 contains the LSH of 80 and is also updated to contain the LSH 
of the number being subtracted. The flow chart for this program is 
shown in Fig. 7-8. 

UPDATE 
CORES 1,2, & 3 

(UPDATE ROUTINE) 

R-2,HI 
(SUBTRACT ROUTINE) 

0,+ 

Fig. 7·8 

DETERMINE 
10 1 & 10° 

(READOUT ROUTINE) 

The first action would be to subtract 80 from the number in mem
ory. Since this number is in two core locations, it is not a straightforward 
subtraction. We must subtract the LSH of 80 from the LSH of the 
number, examine for a carry and then subtract the MSH of 80 from 
the MSH of the number. With paper and pencil we accomplish this 
as follows: let the number in memory be 0100/0101 with 0100 in 
core 4 and 0101 in core 5. Since the binary equivalent of 80 is 
0101 0000, then core 2 is 0101 and core 3 is 0000. Proceed as follows: 

Subtract: 

0101 core 5 
0000 core 3 
0101 ans. in accumulator 

0100 
0101 

1.1111 

core 4 
core 2 
ans. is negative, indicating the number 

is less than 80 

Therefore write the program: 
1-Read in from core 3 



Programming Our Computer 

2-Transfer to X-register 
3-Read in from core 5 
4--Subtract 
5-Shift ans. right 4 times 
6-Transfer 
7-Read in from core 2 
8-Add 
9-Transfer 

lO-Read in from core 4 
ll--Subtract 
12-1£ MSB is a 1, jump to X 
13-Read in core 1 
14-Read out as 101 

15-Shift left 4x 
16-Read out as 100 

159 

The first four steps set up for subtracting the LSH of 80 from 
the LSH of the number. The fifth through ninth instructions take into 
account any carry from the previous subtraction and set up for sub
traction the MSH of 80 from the MSH of the number. In the preceding 
example there was no carry. However, in subsequent subtractions, a 
carry will be indicated by a 1 in the 24 place of the accumulator display. 
Therefore, by shifting the accumulator four times to the right, this 
1 is moved to the LSB of the accumlator, giving 0001 in the accumula
tor. This 0001 is added to the MSH of the current mUltiple of 10, 
which is then subtracted from the MSH of the number. When there is 
no carry, the accumulator, after being shifted, would contain 0000. 

The tenth and eleventh instructions subtract the MSH of the 
number. If the answer is negative, then instruction 12 directs the pro
gram for the case when the number is less than 80. If the answer is 
positive, then the number is greater than 80 and we can read out the 
101 and 10° results via instructions 13, 14, 15, and 16. 

If the number is less than 80, the contents of cores 2 and 3 must 
be changed and the same subtraction process repeated. The binary 
equivalent of 70 is 0100 0110 and to set these numbers into core 
memory one need only subtract 10 from 80. 

The readout routine is quite simple when we have core 1 data. 
Core 1 is loaded initially with 1000 and continually updated to equal 
the tens digit of the number we are subtracting from the number in 
cores 4 and 5. Therefore if a number proves to be greater than the 
number being subtracted, core 1 is read out as the 101 BCD number. 

Obtaining 10° requires shifting the contents of the extension 
register into the accumulator and reading this out as the 10° BCD 
number. 

The update routine advances the values of core 1, core 2, and core 
3, so the program may have the loop format. See Table 7-11 for the 
required data in cores 1, 2, and 3 for each loop of the program. 



160 How to Build a Working Digital Computer 

TABLE 7-11 

LOOP SUBTRACT CORE 1 CORE 2 CORE 3 

1 80 1000 0101 0000 

2 70 0111 0100 0110 

3 60 0110 0011 1100 

4 50 0101 0011 0010 

5 40 0100 0010 1000 

6 30 0011 0001 1110 

7 20 0010 0001 0100 

8 10 0001 0000 1010 

9 a 0000 0000 0000 

The most simple to update is core 1, since this requires a subtrac
tion of 0001 each time through the loop. However, the lack of a 0001 
any place in core memory complicates the routine. The only way to 
get a 1 is to read in any number, shift left, and examine for a 1 in the 
24 place. If a 1 is present, shift right 4 places. If not, repeat the left 
shift and examination. Therefore, we program as follows: 

I-Read in core 1 
2-Shift left one place 
3-If MSB is a 1, jump to 5 
4-Jumpto 2 
5-Shift right four places 
6-Transfer to X-register 
7-Read in core 1 
8-Subtract 
9-Store in core 1 

The updating of core 2 and core 3 is a special program of multipli-
cation. Core 1 is multiplied by ten (1010) as follows: 

I-Read in core 1 
2-Shift right two places 
3-Transfer to X-register 
4-Read in core 1 
5-Add 
6-Shift right one place 
7-Store accumulator in core 2 
8-Shift left four places 
9-Store accumulator in core 3 

Core 1 is read in and shifted right. Therefore, the 20 and 21 bits 
of the word are in the extension register and the 22 bit is in the LS 
position of the accumulator. This is set into the X-register and core 1 
is reread into the accumulator. An addition is made and a single 
shift right. After this the MSH of the product is in the accumulator 



Programming Our Computer 161 

TABLE 7-12. READOUT PROGRAM 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

1 RIN 0002 410000 Core 1 ....M.... 1000 

2 RIN 0002 100000 Core 3 ~OOOO 
3 RIN 0002 020000 Core 5 ~OOOO 
4 RIN 0002 205000 Core 2 ~0101 
5 RIN 0002 040000 Core 4 ~OOOO 
6 RIN 0002 000404 

M 
IBR-A _Acc (MSH-Acc) 

7 STO 0200 040004 
M 

Acc - core 4, Acc -Acc 

8 RIN 0002 000204 
M 

IBR-B -Acc (LSH-Acc) 

9 STO 0200 020004 
M 

Acc_ .core 5, Acc-Acc 

10 RIN 0002 100104 Core 3~Acc 
11 TRA 0030 002004 Acc ~ X-register 

12 RIN 0002 020104 Core 5 ~Acc 
13 SUB 0400 000000 Acc - X-register~Acc, 

X-register.2:!- 0 

14 SHR 0100 040004 2- 4 Acc ~Acc 
15 TRA 0020 000004 Acc ~ X-register 

16 RIN 0002 200104 Core 2~Acc 
17 ADD 1000 000000 Acc + X-register-Acc, 

X-register~ 0 

18 TRA 0020 000004 Acc ~ X-register 

19 RIN 0002 040104 Core 4 ~Acc 

20 SUB 0400 000000 Acc - X-register -Acc, 
X-register.2:!- 0 

21 COJ 0004 010004 If Acc 24 = 1, jump as 
instructed 

22 RIN 0002 400104 Core 1 ~Acc 
23 RUT 0001 000044 Acc~ OBR-10 1 

24 SHL 0040 040004 24 Acc~Acc 
-

25 RUT 0001 000034 Acc ~ OBR-10o 

26 RIN 0006 410104 Core 1-..M... Acc 

27 SHL 0050 401004 } {"AOO_AcO 
28 COJ 0004 004004 tUb If 24 = 1, jump out 

oop 
29 JUP 0010 001000 Return to start of 

sub loop 

30 SHR 0104 044004 2- 4 Acc ~ Acc 



162 How to Build a Working Digital Computer 

TABLE 7-12. READOUT PROGRAM (Cont.) 

INSTRUCTION 
WORD 

STEP MNEMONIC ORDER ADDRESS REMARKS 

31 TRA 0020 000004 Ace -M. X-register 

32 RIN 0002 400104 Core 1...!!.. Ace 

33 SUB 0400 000000 Ace - X -register..!:!... Ace, 
X-register ..l'!!.... 0 

34 STO 0200 400004 Ace ~ core 1 

35 SHR 0100 200004 2-2 Ace ~Acc 

36 TRA 0020 000004 Ace ~ X-register 

37 RIN 0002 400104 Core 1 ~ Ace 

38 ADD 1000 000000 Ace + X-register ..!:!...Acc, 
X-register-M. 0 

39 SHR 0100 400000 2- 1 Acc~ Ace 

40 STO 0200 200004 Acc~ core 2 

41 SHL 0040 040004 24 Acc~Acc 
42 STO 0200 100004 Ace - core 3 

43 JUP 0010 002000 Return to start of loop 

TABLE 7-13. READOUT PROGRAM CHECKOUT 

CONTENTS AFTER COMPLETION 
Po. 

~ 
OF FUNCTION 

fil 
E-< FUNCTION ...... Ace Ext X-Reg Core 1 2 3 4 5 rn rn 

10 RIN 3 0 0000 0000 0000 1000 0101 0000 0100 1101 

11 TRA 
+ j 

0000 

12 RIN 5 1101 

j 13 SUB 1101 

14 SHR 4 0000 1101 

15 TRA 0000 

16 RIN 2 0101 j 17 ADD 0101 

18 TRA 0101 

19 RIN 4 0100 t 
20 SUB 1 1111 00,0 

21 COJ 26 I I 



Programming Our Computer 163 

TABLE 7-13. READOUT PROGRAM CHECKOUT (Cont.) 

CONTENTS AFTER COMPLETION 
p.. 

~ 
OF FUNCTION 

r.< 
E-< FUNCTION ...... Ace Ext X-Reg Corel 2 3 4 5 (f.l (f.l 

-
22 RIN 1 

23 RUT 101 

24 SHL 4 

25 RUT 100 

26 RIN 1 0 1000 

27 SHL 1 1 0001 1010 

28 COJ 30 

29 JUP 27 

30 SHR 4 a 0001 0001 

31 TRA 

I 
0001 

32 RIN 1 1000 
+ 33 SUB 0111 0000 

34 STO 1 ~ j 0111 

35 SHR 2 0001 1100 

t 36 TRA 
+ 

0001 

37 RIN 1 0 0111 1100 0001 0111 0101 0000 0100 1101 

38 ADD 1000 
+ 

0000 j I 39 SHR 1 0100 0110 

40 STO 2 
+ + 

0100 

41 SHL 4 0110 0000 

42 STO 3 

j 
0110 

43 JUP 11 

11 TRA 0110 

12 RIN 5 1101 
+ 13 SUB 0111 0000 

14 SHR 4 0000 0111 

+ 15 TRA 0000 

16 RIN 2 0100 j 17 ADD 0100 

18 TRA 0100 

19 RIN 4 0100 t 
20 SUB 0000 0000 



164 How to Build a Working Digital Computer 

TABLE 7-13. READOUT PROGRAM CHECKOUT (Cont.) 

CONTENTS AFTER COMPLETION 
Il. 

~ 
OF FUNCTION 

fil 
E-t FUNCTION ..... Ace Ext X-Reg Corel 2 3 Ul Ul 

2i COJ . ·26 
t I 22 RIN 1 0111 

23 RUTMSH101 0111 

24 SHL 4 0111 0000 

25 RUT LSH 100 0111 • 
... "" .." <I') 

~I 
z 

"''''' 0= -->< 
~ 
~z ~- "'''' '" "''''' I;:; "':> >- :c :c= 0_ "'''' ... on -'" "' ... "'''' "'- • z "':> <<I') <1')<1') <1')>- '-'= =.." .." ... ...... < ... <0 0< 0"" 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
11 
18 
19. 
20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 
40 
41 
42 
43 
44 
45 
46 
41 
48 
49 

4 

50 Fig. 7·9 

5 



Programming Our Computer 165 

and the LSH is in the extension register. The last three instructions 
read this data into core 2 and core 3. 

Now the program may be written in its entirety as shown in 
Table 7-12. 

Table 7-13 is a check-out chart for the readout routine. The number 
77 is loaded into cores 4 and 5 in binary fonn (0100 and 1101). 
Use this chart to check out your routine, since it gives step by step 
results as you step through the program. 

FORMULATING THE PROGRAM FOR TRANSFER TO DRUM 

Select an 11 X 14 in. piece of graph paper with five squares per 
inch and layout as shown in Fig. 7-9. Using the octal address in the 
listed program, score an x in the proper square. 

When complete, cut each square and wrap the form around the 
drum (see Chapter 5). 





APPENDIX-BUILD YOUR OWN SWITCHES 

The multipole switches required in the computer consists of single-throw 
and double-throw. 

The multi pole, single-throw switch, Fig. A, is used to open and close 
a number of circuit lines simultaneously. The term single-throw indicates 
that only one terminal can be connected to each contact arm when the 
switch is in the closed position. Each pole of the switch has an alphabetical 
designation; i.e., A, B, C, etc. The terminal connected to the contact arm is 
numerically designated as terminal 1. The other terminal is designated 
as terminal 2. 

1./ 2 
I~lo--

~2 
B10---

,: 
• , I 
: I ij..,o- 2 

N-I ~iO---
1·)# 2 ----oz 0---

S-
WHERE N • THE NUMBER OF CIRCUIT 
LINES AND POLES. 

NOTE: SWITCHES ARE SHOWN IN THE OPEN 
POSITION 

Fig. A. 

Construction of the single-throw, multipole switch requires the following 
material: 

Wood screws 

ARM 
DOWEL 

BASE -------~" 

'<&':._~ __ -NUT 

PAPER CLIP 
CONTACTS 

ARM HOLE 

~PAPERCLIP 
LOOSE~ 
COILED TERMINAL I TERMINAL 2 
WIRE 

167 

CLOSED 
POSITION 

OPEN 
POSITION 

Fig. B. 



168 How to Build a Working Digital Computer 

CIRCUIT 
LINE 

I 

N-I 

wo 
----""""A I 

0>:-2---

----~ B I 
: 0>----

! 
! 
i 2 

______ ~3~~0-----
y I I ! O2::----

---V 
Z J---
S-

N • THE NUMBER OF CIRCUIT LINES AND POLES 

NOTE: SWITCHES ARE SHOWN IN THE 2 POSITION 

Fig.C. 

1,4 -in. round doweling 
Paper clips 
Assorted hardware 
Insulated hook-up wire. 

TERMINAL 2 

Fig. D. 

Refer to Fig. B and build your switch. Note the following: 

BASE 

PAPER CUP 

TERMINAL I 

1. The arm dowel must rotate, therefore use small wood screws with a 
smooth shaft below the head and make your holes in the posts slightly 
larger than the wood screw diameter. 

2. Make the armholes in the base equal in length to the distance between 
the center of the arm dowel and the free end of the paper clip. 
The multipole, double-throw switch, Fig. C, is used to connect a single 

terminal to either of two other terminals. The term double-throw indicates 
that either one of two terminals can be connected to each contact arm. Each 
pole of the switch has an alphabetical designation; i.e., A, B, C, etc. The 
terminal connected to the contact arm is numerically designated as terminal 1, 
the other terminals are designated 2 and 3. To be consistent throughout 
construction of your computer, always designate that terminal to the left 
or top as terminal 2, and the terminal to the right or bottom as terminal 3. 
If this is kept in mind, then wiring and interpretation of schematics will be 
simplified. Also, when wiring double-throw switches to select 0 or 1 in the 
computer units, designate terminal 2 as the 0 position and terminal 3 as the 
1 position. 

Construction of the multipole, double-throw switch is similar to the 
single-throw construction, except the switch now must be swung to either 
side of the posts. Refer to Fig. D and build your switches. 



ARITHMETIC UNIT WIRING LIST 

81-1 to Oisp 84A-l to 814A-l 
81-2 to 810J-l -2 to 814A-2 

-3 to 840-3 
B-1 to 814B-2 

-2 to 814B-l 
82A-l to 812A-l -3 to 84F-3 

-2 to 812A-2 C-l to 814C-l 
-3 to 820-3 -2 to 814F-l 

B-1 to 812B-2 -3 to B+ 
-2 to 812B-l 0-1 to 814C-2 
-3 to 810L-3 -2 to 8140-1 

C-l to 812C-l -3 to 84A-3 84E-3 
-2 to 812F-l E-l to 814E-l 
-3 to B+ -2 to 814E-2 

0-1 to 812C-2 -3 to 840-3 810B-3 -2 to 6120-1 F-l to 814J-l 
-3 to 62A-3 62E-3 -2 to 814J-2 

E-l to 612E-l -3 to 64B-3 64G-3 
-2 to 612E-2 G-l to 614H-2 
-3 to 820-3, 6101-3 -2 to 614H-l 

F-l NC -3 to 64F-3 610C-3 
-2 NC H-l to 6141-2 
-3 NC -2 to 614G-2 

-3 to B+ 

to 613A-l 65A-l to 615A-2 63A-l 
-2 to 615A-l -2 to 613A-2 
-3 to 65B-3 -3 to 630-3 

B-1 to 615B-3 B-1 to 613B-2 
-2 to 615C-3 -2 to 613B-1 
-3 to 65A-3 65C-3 -3 to 63F-3 

C-l to 615E-2 C-l to S13C-l 
-2 to S150-2 -2 to SI3F-l 
-3 to S5B-3 8150-3 -3 to B+ 

0-1 to S13C-2 
-1 -2 to 8130-1 66-1 to L2 

-3 to 83A-3 83E-3 -2 to B+ 
E-1 to 813E-1 

-2 to 813E-2 
-3 to 830-3 610H-3 67-1 to L2- 2 

F-l to 813J-l -2 to B+ 
-2 to 813J-2 
-3 to 83B-3 63G-3 

G-l to 613H-2 68-1 to L2- 3 
-2 to S13H-l -2 to B+ 
-3 to 610K-3 

H-l to 6131-2 
-2 to 613G-2 69-1 to L2-4 
-3 to B+ -2 to B+ 

169 



170 How to Build a Working Digital Computer 

810A-1 to 815A-2 811G-1 to 813H-3 
-2 to S15A-3 -2 to S13J-3 
-3 to L20 -3 to 810L-2 

B-1 to OISP 
-2 to 811A-3 
-3 to 84E-3 

C-1 NC 812A-1 to 82A-1 810G-1 
-2 to SllB-3 -2 to 82A-2 
-3 to 84G-3 -3 to 812B-3 

0-1 to OISP B-1 to 82B-2 
-2 to B+ -2 to 82B-1 
-3 to 815E-3 -3 to 812A-3 810G-2 

E-1 to 814A-1 C-1 to 82C-1 
-2 to 814B-3 -2 to 820-1 
-3 to L21 -3 to 8120-3 

F-1 to 813A-1 0-1 to 820-2 
-2 to 813B-3 -2 NC 
-3 to L22 -3 to 812C-3 811E-1 

E-1 to 82E-1 
810G-1 to 812A-1 -2 to 82E-2 

-2 to 812B-3 -3 to 812F-3 
-3 to L23 F-1 to 82C-2 

-2 NC 
810H-1 to OISP -3 to 812E-3 811E-2 

-2 to 811C-3 
-3 to 83E-3 

1-1 to OISP 
-2 to 8110-3 813A-1 to 83A-1 810F-1 
-3 to 82E-3 -2 to 83A-2 

J -1 to 81-2· -3 to 813B-3 
-2 to 811E-3 B-1 to 83B-2 
-3 to L24 -2 to 83B-1 

K-1 NC -3 to 813A-3 S10F-2 
-2 to 811F-3 C-1 to 83C-1 
-3 to 83G-3 -2 to 830-1 

L-1 NC -3 -to 8130-3 
-2 to 811G-3 0-1 to 830-2 
-3 to 82B-3 -2 NC 

-3 to 813C-3 8110-1 
SllA-l to S15B-1 E-1 to 83E-1 

-2 to S15C-1 -2 to 83E-2 
-3 to S10B-2 -3 to 813.F-3 

B-1 to 8150-2 F-1 to S3C-2 
-2 to S15E-2 -2 NC 
-3 to S10C-2 -3 to S13E-3 S11O-2 

C-1 to S140-3 G-l NC 
-2 to S14F-3 -2 to S3H-2 
-3 to S10H-2 -3 to S13H-3 

0-1 to S130-3 H-1 to S3G-2 
-2 to S13F-3 -2 to S3G-1 
-3 to 8101-2 -3 to S13G-3, SllG-1 

E-1 to S120-3 1-1 NC 
-2 to 812F-3 -2 toS3H-1 
-3 to S10J-2 -3 to S13J-3 

F-1 to S14H-3 J -1 to S3F-1 
-2 to S14J-3 -2 to S3F-2 
-3 to S10K-2 -3 to S131-3 SllG-2 



Appendices 171 

SI4A-l to S4A-l SI0E-l S141-1 NC 
-2 to S4A-2 -2 to S4H-l 
-3 to S14B-3 -3 to S14J-3 

B-1 to S4B-2 J -1 to S4F-l 
-2 to S4B-l -2 to S4F-2 
-3 to S14A-3 S10E-2 -3 to S141-3 Sl1F-2 

C-l to S4C-l 
-2 to S4D-l 
-3 to S140-3 

0-1 to S40-2 SI5A-l to S5A-2 
-2 NC -2 to S5A-l SI0A-l 
-3 to S14C-3 Sl1C-l -3 to S10A-2 

E-l to S4E-l B-1 to Sl1A-l 
-2 to S4E-2 -2 NC 
-3 to S14F-3 -3 to S5B-l 

F-l to S4C-2 C-l to Sl1A-2 
-2 NC -2 NC 
-3 to S14E-3 Sl1C-2 -3 to S5B-2 

G-l NC 0-1 NC 
-2 to S4H-2 -2 to S5C -2 Sl1B-l 
-3 to S14H-3 -3 to S5C-3 S15E-3 

H-l to S4G-2 E-l NC 
-2 to S4G-l -2 to S5C-l Sl1B-2 
-3 to S14G-3, Sl1F-l -3 to S150-3 S100-3 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



Index 

Abacus, 3 
Accumulator, 65, 76 
Add instruction, 106 
Add/subtract circuit, 76 
Addition, binary, 67 
Addition equations, 77 
Address, 88 
AND,41 
AND circuit, 45 
AND rule, 42 
Arabic number system, 2 
Arithmetic, binary, 65 
Arithmetic, computer, 65 
Arithmetic unit, 8, 75, 105 

chassis construction, 82 
checkout procedure, 85 
construction details, 81 
display circuit construction 

equations, 84 
first stage, 78 
second through fourth stages, 79 
wiring, 84 

Associative law, 52 
Automatic Sequence-Controlled 

Computer, 5 
Auxiliary internal memory, 87 

Babbage, Charles, 4 
Base, 15 
Battery holder construction details, 62 
Binary: 

addition, 67 
arithmetic, 65 
division, 75, 146 
multiplication, 75, 134 
number system, 15 
subtraction, 71 

Binary-coded decimal numbers, 21 
Binary-to-BCD conversion, 155 

paper and pencil method, 157 
routine flow chart, 157 

Binary-to-decimal conversion, 21 
Binary-to-octal conversion, 129 
Bit, 16 
Boole, George, 51 
Boolean algebra, 51, 52 

173 

Cell,91 
Checkout procedures: 

arithmetic unit, 85 
core memory, 97 
decoder, 40 
encoder, 31 
system, 111 

Coding sheet, program, 129 
Common tie point terminal strips, 

construction details, 124 
Commutative law, 52 
Complementary numbers, 74 
Compound statement, 41 
Computer: 

arithmetic, 65 
control, 105 
program, sample, 8 
units, 105 
words, 88 

Conditional jump (COl) instruction, 
108 

Construction details: 
arithmetic unit, 81 
battery holder, 62 
common tie point terminal strips, 

124 
control panel, 114 
core memory, 93 
decoder, 31 
drum memory, 97 
encoder, 23 
junction box, 122 
switches, 166 
truth evaluator, 59 
UN problem, 63 

Control panel: 
chassis construction, 115 
construction details, 114 
circuit construction, 189 
harness installation, 120 
terminal board construction, 120 

Control unit, see also Control Panel, 
7,105,106 

Conversion, 16 
binary to BCD, 155 
binary to decimal, 21 



174 How to Build a Working Digital Computer 

binary to octal, 129 
decimal to binary, 17 

Core memory, 89 
chassis construction, 94 
checkout procedure, 97 
construction details, 93 
operation, 97 

Core planes, 90 

Data word, 88 
Decimal number system, 3, 13 
Decimal to binary conversion, 17 
Decoder, 13,22 

checkout procedure, 40 
construction details, 31 
display chassis construction, 36 
panel wiring, 34 
switch chassis construction, 32 
wire harness and display circuit 

construction, 37 
Decoding, 21 
De Morgan's theorem, 55 
Display accumulator contents (DIS) 

instruction, 106 
Display answer (ANS) instruction, 

107 
Distributive law, 52 
Division: 

binary, 75, 146 
paper and pencil method, 145 
program, 145 
program flow chart, 146 
routine, 145 

Drum memory, 91 
base and lamp display construction, 

103 
bits per track inch, 92 
construction details, 97 
drum construction, 99 
drum contacts construction, 100 
final construction operations, 104 
rotational speed, 92 
size, 92 
storage capacity, 92 
sub-base and side support 

construction, 98 

Egyptian number system, 2 
Electronic Numerical Integrator and 

Calculator (ENIAC), 5 
Encoder: 13, 18 

chassis construction, 23 
chassis supports construction, 25 
checkout procedure, 31 
construction details, 23 
display lamp construction, 26 

knobs and labels, 30 
rotary switch construction, 24 
switch connections, 29 
tape preparation, 27 

Encoding, 7, 16 
ENIAC,5 
Equations: 

addition, 77 
Arithmetic unit, 78, 79 
subtraction, 77 

Examination routine, 146 
Executive routine, 126 
Extension register, 76 
External memory, 87 

Flow chart, 126 
symbols, 128 

Flux, magnetic, 89 

Harvard Mark I, 5 
Hieroglyphics, 2 
Hindu number system, 2 
History of numbers, 2 
Hollerith, Herman,S 

Input unit, see also Encoder, 7, 105 
Instruction repertoire, 8, 106, 108, 129 
Instruction word, 88 
Internal memory, 87 

Jump (JUP) instruction, 108 
Junction box construction details, 122 

Leibnitz, Gottfried von, 4 
Logic,41 

circuits, 45 
symbols, 42 

Magnetic head, 91 
Memory: 

concepts, 88 
core, 89 
drum,91 
units, 87 

Minimization, 43, 53 
Multiplication: 

binary, 75, 134 
paper and pencil method, 13 3 
program, 133 
routine, 141 
routine checkout, 141 

NAND,56 
Neumann, Dr. John von, 6 
NOR,56 
NOT,42 



Number systems: 
Arabic, 2 
binary, 2 
decimal, 3, 13 
Egyptian, 2 
Hindu, 2 
octal, 14 
Roman, 2 

Octal: 
codes, 129 
numbers, 14, 129 

Operating procedures, system, 113 
OR,41 

circuit, 49 
rule, 42 

Order, 88 
Organization, 6 
Output unit, 8, 106 

Pascal, Blaise, 4 
Permanent data storage, 8 
Positional notation, 13 
Program: 

coding sheet, 129 
conventions (symbols), 128 
form, 165 
simple experiment, 132 
storage, 8 

Programming, 126 
division, 145 
multiplication, 133 
process, 126 

Punch card, 5 

Qn = 1 routine, 147 

Rn subroutine, 136 
Rn = 0 subroutine, 136 
Rn = 1 subroutine, 137 

Radix, 15 
Read head, 91 
Read in (RIN) instruction, 106 
Readout: 

accumulator to output (RUT) 
instruction, 107 

program, 165 
program check, 165 
routine, 165 

Index 

Registers, 65, 87 
Roman number system, 2 
Rotary switch, 19 
Rules of binary arithmetic, 65 

Sand calculator, 3 
Scratch-pad storage, 8 
Shift left (SHL) instruction, 106 
Shift right (SHR) instruction, 106 
Sign digit, 75 

175 

Simple program (experiment), 132 
Stage, 69 
Statement, 4 
Stepped reckoner, 4 
Storage: 

capacity, 87 
devices, 87 
unit~ 7,105 

Store (STO) instruction, 107 
Stored-program machine, 6 
Subtraction: 

binary, 71 
equations, 77 
(SUB) instruction, 106 

Switch construction, 166 
Symbolic logic, 41 
Symbols: 

flow chart, 128 
logic,42 

Transfer accumulator contents to 
X-register (TRA) instruction, 
107 

Truth evaluator, 47 
construction details, 59 

. .Truth table, 43 
experiments, 48 

UN problem (experiment), 57 
construction details, 63 

Wilks, M. V., 6 
Wiring, system, 109 
Word: 

computer, 88 
length,88 

X-register, 76 



$3.75 

-
HOW TO BUILD A WORKING DIGITAL COMPUTER 
Edward Alcosser, James P. Phillips, Allen M_ Wolk 
This projects book develops an understanding of digital computer theory and 
usage through text and experimentation. It shows the reader how to construct 
a working model of a digital computer, using simple, inexpensive components. 
Computer logic, arithmetic operations, and programming are discussed in 
easy-to-understand terms and then used in the computer units built by the 
reader. Finally, the six basic units (encoder, arithmetic unit, control panel, 
drum memory, core memory, and decoder) are combined to form a manually
operated digital computer that will demonstrate and perform fundamental 
computer operations such as addition, subtraction, division, and multiplication. 

The finished computer will operate with a program of 26-bit instruction 
words and has a ten-instruction repertoire. The reader may write his own 
programs, load them on his own working computer, and run the programs, 
providing experience and proving the principles developed in the text. By 
doing so, he will gain a thorough understanding of the internal construction 
and operation of a modern, high-speed digital computer. 

Other Books of Interest 
103 SIMPLE TRANSISTOR PROJECTS Tom Kneitel 
These fascinating experiments with transistor and semiconductor circuits 
are presented with a description of the purpose of the circuit, a schematic 
diagam, and a complete parts list. Of interest to young and old, the book 
includes such devices as light-controlled relays, geiger counters, an elec
tronic organ, and a fire alarm. 
#0313, paper, 128 pages, illustrated 

HOW TO BUILD ELECTRONIC EQUIPMENT J. Richard Johnson 
This easy-to-use guidebook outlines all the techniques needed to get started 
in the hobby of building electronic equipment. With it, the reader can create 
equipment from an idea or get h,elpful advice for building from a kit. Full 
explanations fire given 'on the best ways to organize projects and to use 
tools properly. .' 

\ . 
#0699, paper,'288 pages, Illustrated 

HAYQEN BOOK COMPANY, INC., NEW YORK 


	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	Back

