
WHY microprocessors are the greatest •. ~
happen to electronic music since voltage c
and HOW to apply them.

FRIENDLY STORIES

ABOUT

COMPUTERS/SYNTHESIZERS

Ca design analysis)

BY: John S.Simonton,Jr.

Revised Jan.uary, 1980

@John S. Simonton, Jr. - Reprinted from Polyphony with permission

ALL RIGHTS RESERVED

Published by:

PAIA Electronics, Inc.
1020 W. Wilshire Blvd.
Oklahoma City, OK 73116

No portion of this book may be reproduced in an.y manner without
written permission from the publisher.

--- FRIENDLY STORIES ---

ABOUT

COMPUTERS/SYNTHESIZERS

CONTENTS

A TIME TRIP - READY:

WHAT THE COMPUTER DOES•.••...••........

EQUALLY TEMPERED DIGITAL TO ANALOG CONVERTER ..

COMPUTER MUSIC, WITHOUT THE COMPUTER •••••••.••••

IN PURSUIT OF THE WILD QuASH •.•.•.•.•..•..•.••••

THE POL YPHONIC SYNTHESIZER

MUS - 1 WITH THE NEW MmACLE INGREDIENT - STG •••..

PIN"K. TUNES

SEQUE 1. 0 •••.•.••.•.•......•.....................••.•.

ECHO•....•...•............•.......

CONTROLLING EXPONENTIAL SYSTEMS , ,

DIGITIZERS•..•......•.•..•..

POLY-SPLIT•.........................

OG-93: AN INTERPRETIVE ARPEGGIATION

PROGRAMMER & EDITOR

3

5

9

13

19

23

29

37

43

53

57

61

67

69

- 1

Fl 1ime 1rip- F1Ef11JY: _

I' m walking down a hall of oval cross section. Ahead and
behind me the walls are colored by flowing patterns of blue,
green, purple. As I pass, the sections of the walls closest to
me hurst into rapidly changing patterns of yellows and red.
Softly, softly I hear a melodicly changing pattern of notes and
chords. I notice these things no more than you noticed the
color of your walls when you woke up this morning.

A sign inlaid in the wall announces:

UNDERGRADUATE MUSIC LAB
and I stop. In my mind I form a picture of a section or the wall

I type:

by: Johns. Simonton, Jr.

:PLAY "TUBA", Kl, OUTL, OCTl
:PLAY "STRINGS", K2, OUTR, OCT5
:RUN

and now I get the tuba from the lower keyboard and left speaker
while the right speaks phasy strings in response to my touch on
the upper keyboard. Say, this is alright. I type:

:PLAY "DYNAMUTE", Kl, OUTL, OCT3
:RUN

sliding up and it does. I pass through the portal and picture but this time a message displays on the screen. The message
the door closing. is:

Before me is a group of cabinets that obviously is a
musical instrument. It' s dominant feature is two stacked
AGO keyboards. Above the keyboards, a panel with two
central vertical doors about 1 by 6 inches flanked on either
side by sections of grille cloth. To the right of the central
console is a high speed printer and to the left a second key
board, a typewritter keyboard, and above it a video terminal.
In the upper left han.d corner of the screen is written this
word:

READY:

open one of the narrow doors in the contral console and
insert a square cardboard jacket removed from a pocket in
my assignment binder.

Sitting down, I type:

: LOAD "MUSE"

There is a barely audible click from the central console
and after an instant' s delay a colon appears on the screen.
I type again:

:PLAY "TUBA", Kl, OUTL, OCTl

:RUN
and as I touch the lower AGO keyboard, fat juicy tuba notes
come plopping out to the left speaker. Nice.

ERR 10

Very cryptic. I remove a ring bound manual from a
drawer below the keyboards. "PAIA 14700/S - Systems
Manual" and I thumb through it until I find a section called
"error codes". Here 1 find this entry:

ERR 10 Undefined Instrument Name.

Well, rats. I could have sworn that a simple thing like
dynamute would have been in my instrument list. Too an.tique,
I suppose; but fortunately it' s a simple voice and I know it by
heart, I type:

:DEFFN "DYNAMUTE":SIGNAL OSC(PULSE lß),
FILT(BP, Q5ß, CC2), AMP (lßß): CNTRL ENVG
(Alji, Dß, Sß, R5jißß) (FILT, AMP), KBD (OSC)
;TRIG KBD(ENVG)
;PLAY "DYNAMUTE", Kl, OUTL, OCT3

:RUN

Now as I play, the old familiar "wahp-wahp' s" come from
the speaker. A little trite perhaps, but still musicly useful in
a piece that is to have an "old classic" sound to it. And just so
1 won•t have to enter this voice again:

3

4

:INSTSAVE "DYNAMUTE"

The central console clicks. Now, to the real work.
I type:

:SCORE "BASS!" C2/4, E2/4, G2/4, A2/4;
R; TF2, R; TC2, R; TG2, R; TF2, R;
C2/4, G2/4, F2/4, A2/8, C3/8, D#3/8,
E3/8, C3/8, A#2/8, G2/2; BRIDGE, F2/4,
F2/8, E2/8, F2/8, F#2/8, G2/4, D2/4,
G2/8, F2/8, E2/8, D2/8;

Immediately the old familiar walking bas s line '·' wahp' s"
its way into the room while I play string accompaniement on
the lower keyboard. After diddling around for a while I come
up with a melody line that I like OK and I type:

:SCORE "STR-LEAD", Kl
:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5
:PLAY "DYNAMUTE", "BASS!", OUTL, OCT3
:RUN

and play the lead that I liked. Now a moment to sit back and
listen again. I type:

:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5
:PLAY DYNAMUTE", "BASS!", OUTL, OCT3
:RUN

and everything that I played a moment ago is re-created. It
sounds good but there• s one note that' s off. I type:

:LIST "STR-LEAD"

and the machine replies:

STR-LEAD: C4/8, G3/8, A#3/8,A#3/8, C4/16,
D#4/16, E4/16, G4/16, A#4/16, A4/16, G4/16,
E4/16, C4/8, G3/8, A#3/8, A3/8, C4/16, D#4/16,
E4/16, G4/16, A#4/16, A4/16, G4/16, E4/16

I can see what• s wrong. That third octave A sharp in the
first measure should have been a third octave A natural. I
type:

:EDIT "STR-LEAD"

and the score is shown again but now there is a cursor at the
end of the line. Using Special keys on the keyboard I move the
cursor back until it' s under the error and then I press a key
labeled "delete". The sharp is now a natural and with a PLA Y
instruction I have the line repeated. Now it sounds right.

Out of habit, more than anything, I type:

:COMPRESS "STR-LEAD"

and wait while the machine scans this score and reduces the
memory space required by inserting "transpose and repeat"
instructions wherever possible.

Using SCORE, EDIT and PLAY instructions I lay down
another six tracks and then type:

and then:

:DEFFN "COMPl"
:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5
:PLAY "DYNAMUTE", "BASS!", OUTL, OCT3
:-----etc.

:COMPSAVE "COMPl"

a click. And just to double check:

:CLEAR
:COMPLOAD "COMPl"
:PLAYCOMP "COMPl"
:RUN

lt's not bad. There are only eight parts, of course, and
it did take me a little longer than the graduate students; but
they have modern Cyber-net activated instruments to use too.
Having to bang away at the keys takes time. Andin any case,
it's all my work. I didn1t use the HARMONY or CREATE
instructions once. Poor old Dr. Biggle will like that. Now,
before I shut it down:

:PRINT "COMPl"

and the high stacatto of the printer assures me that I will soon
have a hard copy of the score on tablature.

I type:
:CLEAR

and the machine answers:

READY:_

WHAT THE COMPUTER DOES

The computer in our system does not
itself generate any sound. lt is simply
acting as a performer/comooser assist
ing control system ror a rnore or less
normal synthesizer. Providing what
amounts to an extra set (or several sets)
of hands.

From a system standpoint, it fits
between the keyboard and synthesizer
like this:

We said above, "more or less normal"
synthesizer because there are three
special elements fiivolved in the synthe
sizer/ computer interface:

1) a digitally encoded AGO keyboard
(see "Computer music without the
computer'' and product summary)

2) a Digital to Analog Converter (see
"Equally Tempered Digital to
Analog Converter")

3) a multiple S/H circuit to allow
several simultaneous outputs from
the Digital to Analog converter.

The computer runs programs (either
supplied by PAIA or user written) that
receive data from the synthesizer key
board and issue instructions to the D/ A
and multiple S/H which in turn control
the synthesizer.

PROGRAMMING OVERVIEW
Just saying that the computer controls

the synthesizer is hardly a satisfactory
explanation of the system. Hardly satis
factory because it leaves out a

VERYIMPORTANTCONCEPT

which is that it is not really the computer
that is controlling the synthesizer, it1s
the programs. In a very real sense, the
computer is there only because it' s a way
to run the programs.

One of the programs (for example)
11 reads11 the synthesizer keyboard and
builds a table of what it finds there.

If the phrase "builds a table" is

unfamiliar to you, it simply means that
when the program finds that a given key is
down on the keyboard it records in a
special place (location or address) in
mernory which key it is. The next key
that it finds down, it records in the next
mernory location; and so on. When the
program has finished looking at the
entire keyboard the result is a list or
"table" of the keys that were down during
that scan. If you were holding down a
C chord for example, the table might look
like this:

c
E

„EMPn'"ENTRIES INDICAlE
„llATONLlf nlR.EE KEl'S
we.llE e.61111~ HEl..b DOWN
~UR.INA THE .Sl?AN.

That1 s not really all there is to this
program - there aresome subtleties
that would probably be confusing at this
point. We'll get to them later. For
right now, we•n just think of this pro
gram as a list-builder.

Also, so that 1 won•t have to keep
typing "tbe program that builds the list
of keys that are down on the keyboard",

call NOTEOUT, because it takes care
of outputting the notes.

Like LOOK, this one can be stated in
simple terms: it reads the first entry
from a table and causes the D/A to
convert that key data to a control volt
age which it then strobes into the first
S/H. lt then gets the second entry from
the table, converts it to a control volt
age and assigns it to the second S/H.
Gets the third entry, etc.

Also, like LOOK, there are subtleties
that we'll look at later but the important
point is that this routine works quickly.
A block of 32 Sample and Holds can
easily be refreshed and up-dated in
about 16 ms. - rnore than fast enough.

The table that is read by NOTEOUT
we will call the "note-table" or, simply
NTABLE.

LOOK builds KT ABLE and NOTEOUT
reads NTABLE. Maybe you•re wonder
ing why two tables - why not just one.

Wen:-;-e could do it that way - ü
we did, a simplified diagram of the
system should look like figure c.

You will recognize that we•re still
holding down that C chord. Now
suppose we let the E go. On the next
scan of the keyboard, LOOK up-dates
KTABLE to reflect the fact that the E
is no longer held down. KTABLE now
looks like this:

we'll agree among ourselves that we'll ---------------;
call this program by the name "LOOK". 1

c

From now on, when I say something like .-------. :
"we LOOK at the keyboard" you'll know PROGRAM i
that 1 mean we 11 execute11 (run) this f'IOTEOUT

G

program.
And, while we•re hanging labels on

things, we may also just as well name - ---- -- -- ---- - - --'
the list that LOOK generates "key-table", THlS MIGH~~~os~~E~D ~·.~uNrVe.OR{~d~s
or, since l'm a lazy typist, just KTABLE. T"' J

Got that? LOOK builds KTABLE. And when NOTEOUT reads this table
OK, next. and up-dates the S/H circuits, guess
There is another program that we'll what? The G has rnoved to the loca-

KBD
.------- ---- - ------ - - -CO/l'IPUT'ER-,

THE
PROG.R.AM

LOOK

KTI\BLE i

TH!.
PRO GRAM

NOTEOUT

1
1
1
1
1

1
1

~MPT'r'Nlo} l"\EMORV LOC./\TION.S :
INC>IC.ATE THAT NO OTf-IER. l(E. VS WE RE i

1 DOWN. 1
L------------------------------~

c

5

tion previously occupied by tbe E and
from the S/H that previously was
producing tbe control voltage for tbe G
we now have ••.•••..• notbing.

As if it weren 1t bad enough that the
VCO which was previously producing an
E is now playing a G (and we can hear
when it makes this change), we can1t do
any decay processing on thc E - the way
a natural instrument would - because it's
not there anymore,

Maybe this isn't too bad. A lot of
organs produce results very similar to
tbis - and ~ multiple output analog
keyboards do tbis exact same "guess
where the note1 s going to come out"
trick, still, it seems that there would
be a :inore pleasing way to do it.

There is.
Because we1re using two tables, we

can generate a !arge (very !arge) family
of programs that make decisions on how
to transfer the information from KTABLE
to NTABLE. This produces a machine
which diagramaticly might look like this:

How tbis new middle program makes
transfers from KTABLE to NTABLE
determines completely tbe 11personality11

of the instrument.

For instance, a better way to handle
the multiple -output problem would be
to have tbe "middle" program not
delete an entry from NTABLE simply
because it no langer appeared in
KTABLE, but rather to indicate that
while the note should still be played, tbe
key corresponding to it was no longer
being held down and decay processing
should begin, This is where the concept
of 11 fiags11 associated with each note
comes in and while it is slightly out of
scquence, we should examine this
important feature now.

The data tbat goes out to the synthe
sizer interface is a collection of 8
binary digits (bits - 11 111 or 11 0"). Like
this:

WORD
l

1 1 IPl~IPl~l~1~1

tigure ff)

6

\.

THE.SE 6 B~S SAY
WHIC.H NOTE

THESE. 2 BITS ARE
THE. FLAG.S

J

If we want to indicate to tbe syntbe
sizer tbat tbe note that the data repre
sents is one which currently corresponds
to a key that is being held down on the
keyboard, tben we set bit #7 (D6) to a
11 111 • If the data does not correspond to
a key that is currently down tben this bit
is a zero. As you can see, if you1re
already familiar with syntbesizers, this
flag bit corresponds to the "gate" signal
that you get out of most synthesizer kcy
boards.

As you will see when you review the
included 8780 information, both of these
higher order bits are buffered and brought
out to the front panel of the Equally Tem
pered Digital to Analog Converter.

This leaves us with a 11 left-over11

flag that can be used in a variety of ways.
It can, for instance, be used simply as
an independent gate signal allowing the
processor to select between one of two
patching arrangements that we 1ve set up.
Or, and I believe that this is the prefer
able use, it can be used as a GLIDE
SELECT bit that turns glissando on and
off - under computer control.

But, to get back to tbe real subject at
hand, tbe polyphonic output procedure
described above is not the only (or, in
my opinion, the most) interesting thing
tbat the "middle" program can do.

lt can examine the entries in KTABLE
and if tbey are lower than a given note
on tbe keyboard assign tbem to one
group of outputs and if they are higher
assign them to a second group of outputs.
Which has the effect of 11 Splitting" the
keyboard into two different voices - one
for low keys and a second for high keys.

The "middle11 program can take notes
from the keyboard and not only play them
immediately, but also store them in
anotber permanent table in the machinc 1s
memory for playback again later.

The 11 middle11 program can take notes
from the permanent table mentioned above,
assign them to outputs and simultaneously
assign current keyboard activity to otber
outputs - so that you can play along with
something that was previously "recordcd11 •

These same programs can allow
indcpendent recording and simultaneous
playbaok of multiple 11 tracks11 • Like a
multi-track recording studio only with
out the hassle of tape splicing, editing
and (worst of all) over-dubbing noise.

The 11 middle11 program can do tricks
like mak:ing a chord played on the key
board seem to be rising in pitch,
constantly, without ever actually going
beyond a pre-defined limit. lt' s not
magic, it involves forming a 11 staok" of
the notes and allowing the program to
increase the pitch of the notes in the
stack until they reach a pre-determined
limit at which time the note is 11 faded
out" and placed in the bottom of the staok.

The "middle" program can do lots of

different things. So many, that it's
going to be a while (possibly a long, long
while) before we know what they all are.

lf you' re looking for something that
will reach a 11 finished11 state beyond which
there is nothing further to do, this isn•t
the product for you.

SO MANY "DIFFERENT" PROGRAMS

One thing that you may notice in
the discussion above is that all of these
very different "resource allocation"
schemes have in common the fact that
they all use LOOK and NOTEOUT. We
could make these two routines a part of
each of the !arger programs if we
wished - there wouldn1t be any problems
with tbat - except that they are long-ish
and would take a while to 11 load' 1 into the
machine1s memory. Particularly if
you•re not using the computer 1s optional
cassette interface. I think there 1 s a
much better way.

We can write the LOOK and NOTEOUT
programs so that tbey1re what1s known as
11 subroutines11 •

Now ordinarily, computer programs
proceed sequentially through memory an
instruction at a time. Like this:

-figure. l g J
But a subroutine allows a block of pro
gramming to be stored out of sequence
in the machine so that when you 11 call" or
"jump to" a subroutine it's like this:

JUMPTO
1NST.~1NST.~SU8iDUTINE~lNST.~INST:'

~INST.~
Fisure (h)

The "return" causes the computer to go
back to the place that it was before the
subroutine was called and continue
executing the main program.

Maybe the "subroutine" concept
confuses you (though after such a terrific
e:>qJlanation it' s hard to imagine how). lf
it does, here1 s another way that you can
think of them:

SOFTWARE MODULES

You're certainly used to synthesizer
11hardware11 modules by now - all those
little processing elements (VCO•s, VCF1s
etc.) that we tie together with patch cords
to produce different sounds or effects.

Here we have their equivalent in
computer instructions - little modules
of programming that are patched togeth
er (not with wire, of cource, with more
programming) which, depending on how
they're tied together, produce different
effects.

LOOK and NOTEOUT are not the

only Software modules that are useful,
others illclude SAVE (tho "rocording"
modulo, SREPRO (tho 11 playback" mod
ulo), DELAY (a time dolay routine),
POLY (a useful polytonio resource
allooation algorythm), and others.

These various modules aro availablo
ill a number of different forms, Thcy' re
available just as program listings (which
can bo manually cntored into the computer
- very tedious but about as cheap as you
can get) or they're also available on
cassette tape that can be loaded into the
Computer using the optional cassette
interface.

First choice for a plaee to savc these
universally useful programs, though, is
Read Only Memory.

This is the most expensive alternative
(ROMs have to go for about $20/each -
onc would be fillcd by the programs
mentioned above) but it has the advantagc
of NOT HAVING TO LOAD THE
PROGRAMS AT ALL, Every time you
turn on the machille, they•re there,
waiting tobe used.

SOUNDS INTERESTING
WHAT 00 1 NEED TO GET STARTEO?

If you already have some PAIA
synthesis equipment, you're well on
the way, but you need to convert to the
new digital format. We've tried to
make that as easy and inexpensive as
possible by providillg a retro-fit kit to
digitally encode your present P AIA
keyboard, the EK-3 Keyboard Encoder
Kit mentioned in the POLYPHONY "Lab
Notes" reprint included ill this package.

This encoder is primarily designed
to fit 4700 series keyboards, but will
of course fit 2720 series equipment as
well. lt is one of our experimenter's
kit series and does not illclude step-by
step instructions. In fact, the EK-3
re-print that is part of this package ~
the instruction set •

If you want to start over with a new
keyboard, we have the 8782 Encoded
Keyboard - one of our full kits with
complete instructions.

lf you already have an organ and
would like to use that keyboard for
either synthesizer or synthesizer/com
puter interface, we have the EK-4
Organ Keyboard Encoder as described
in the accompanying package.

The advantage to this is that the
keyboard already in the organ may be
used for both synthesizer/computer
and organ - all at the same time. Even
if there are no "spare" contacts on the
keyboard.

BUT 1 OON'T HAVE A SYNTHESIZER~
Looking back over the text to this

point 1 notice an important point that has
not been prominently mentioned. This

system - because of the properties of
the D/ A - will work ~ with low-cost
LINEAR synthesizer modules. Synthcsis
modules whose characteristics are
cxponential cannot be used (though it is
an easy matter to substitute another D/ A
for ours).

It is diffieult to tel! someone what
the con:figuration of their synthesizer
should be. Particularly with modular
equipment like our current linc. The
modules that make up the systcm are so
much a function of the usc to which the
system is to be put.

Never the less, we have two systcms
configured as starting points. "Starting
points" because it has been our experience
that most people add and make changes to
their system as time goes on. Customizing
it to their application.

These two paekages are the 4700/C
(primarily a monotinic system) and the
4700/J (suitable for polyphonic work,
limited multi-track recording, etc.).
These arc both systems that we originally
put together to take to shows. Each for
its intended purpose, they have proven to
be rcliable and versatile; each capable
(by design) of turning someone from an
"I don•t.like synthesizers" person illto a
"I never realized they could do that"
person, Maximum usefulness and versa
tility within minimum 11 waste11 capacity.

The module complement of each of
these systems is itemized in the product
summary, but this would seem an
appropriate place to discuss the "philoso
phical" (if you will, just this once, excuse
so pretentious a term) implication of the
systems.

The 4700/C is a minimal, useable
system. lt has roughly the capabilities
of the "mini" this and that that you see
advertised, It' s made for people who
find synthesis interesting but aren•t
really sure that they' re going to get into
it in a big way. lt is (briefly) an ideal
place to start. And since all of our gear
is modular and available separately, it
is a system which will easily grow as your
interest grows.

The 4700/J is by the standards of the
industry a "good-sized" system. lt's
difficult to make comparisons, since some
of the modules (particularly those that are
the computer interface) aren't available
from other manufacturers; but, if these
modules were available and you purchased
them assembled through the normal dis
tribution chain the 1 /J would be on the
order of $2, 500 to $3, 500 worth of equip
ment. And, again, it' s not a dead-end
system, but one that can grow.

One final comment in this section is
in order, and it may seem strange for
someone who is, after all, trying to sell
you equipment:

DON'T OVER-BUY

There are two reasons for making a
statement like this - both imminently
practical; 1) our experience has been
that you will probably like the equipment
a lot and will be a customer for many
years, but if you don't (and aren't) you
don't have a bunch of money sunk in
something you're not going to use. Wo
won't have somcone wandering around bad
mouthing the gear.

2) Without committing to anything
in print, development goes on all the
time - to the practical synthesist, the
versatility of modular equipment makes
it desirable to have some of it around
(ask anyone seriously involved in eleet
ronic music synthesis). But, well, look
at any issue of POLYPHONY - development tt
goes on and you never can tel! what•s
just around the corner.

WHICH COMPUTER?
This one is almost as bad as which

synthesizer. For the same reasons -
the decisions are very personal and user
related. Also like the "whieh synthesizer?"
though, we have suggestions.

Our· first, and strongest, suggestion
is our own 8700 Computer/Controller.
High on the list of compelling reasons to
select this machine should be the fact that
it will have our fullest Software support
(all of the programs mentioned earlier
are available now), it is physically
designed to fit into a space that has been
kept free in our 4700 and 8700 series
keyboards and is a machille designed to
the PAIA ideal of "maximum impact for
minimum bucks".

The 8700 is based on a 6503 processor
(a fully software compatible version of the
increasingly popular 6502) and has features
as described in the product summary.
This processor was chosen over others
which were - at the time that the decision
was made - more popular for a variety
of reasons, but by far the biggest was
that it is an easy machine to use. Even.
ifyou're programming in machine
language (and don't kid yourself, the
day will probably come that you will
want to do something completely differ-
ent - something not available either from
us or from the independent user' s group
program exchange - and the only way to
do it will be to write the code yourself,
it' s easier than it looks).

But let' s suppose that you already
have a computer. If that computer
happens tobe something like a KIM-1,
you're in great shape. We will shortly
have a complete KIM-1 package showing
how to interface and ;llmost as complete
a selection of programs as for our own
machine (we like the KIM series stuff -
and since it, too, uses a 6502 .•....)

If you have a SWTP 6800 system,
the 8780 and 8782 instructions already
outlille using one of their MP-L's for

7

8

interfacing (sorry, no softwarc support
from us right now, but surcly thc uscr' s
group will come up with somc - Southwcst
has a really nice, popular systcm).

Coincidentally, there arc othcr
machincs that usc thc G502 proccssor
for which all of our softwarc is writtcn:
if you haven't heard of thcm yet, you will.

They arc:
Commodore' s PET (personal
elcctronic transactor) which
looks at this point like it will
sell in the $GOO. 00 rm1gc.
Ccrtainly you'rc all familiar
with Commodore - thcy' rc an
old-linc (if thero is such a thing)
calculator company.

ancl

Apple Computer Company's
APPLE II

We like the APPLE II machine a
lot and probably a single glancc at the
cnclosed literature will tell you why.
lt not only looks nice and can grow up
to be a VERY LARGE system, but it
has all the bells and whistles including
FULL-COLOR VIDEO GRAPHICS
capabilities (vectored, no less). I
own one (one of the very first, l'm
led to believe) and I can teil you - it' s
a very impressive system,

Equally Tempered Digital to Analog Converter
Many experts will tell you that in

order to interface a computer to an
electronic music synthesizer, you
must use exponential respons~ volt
age controlled elements (oscillators,
filters, amplifiers, etc.).

Here's why:
Computer control of synthesizers

requires a Digital to Analog converter
to change the numbers that the com
puter puts out into an analog control
voltage that the modules can use.

By far the most common type of
D/ A (so common that many seem to
think it' s the only kind) is known as
an "R/2R ladder". I don' t want to
get into the design details of this
circuit. If you are interested, there
is plenty of information available
from text-books, manufacturers
literature, etc. But we do need to
examine a functional aspect of this
circuit.

Any analog to digital converter
works by accepting at its input a
digital quantity (we will call this data)
and generating at its output an analog

By: Johns. Simonton, Jr.

voltage that is a unique representation
of that data. Most of the D/ A' s that
I' m familiar with accept the data as
binary digits - a bunch of 1' s and 0' s
that appear simultaneously on a group
of wires going into the converter.

In a R/2R ladder converter, a
unique weighting is assigned to each
bit in the data coming in. When the
time comes for a conversion tobe
made, the circuitry adds together the
weightings corresponding to the bits
in the data that are in an "on" state
(for our purposes, a 1; through not
always) and ignores the weighting
represented by the bits that are ''oft'' -
equivalent to adding in a zero.

If we assume that we are going to
be using exponential response oscil
lators, the R/2R ladder converter
works quite well. We can assign
weightings to the bits that are integral
multiples of 1/12 volt; the same incre
mental voltage change that keyboards
designed to operate exponential oscil
lators produce, and when we do we
come up with a series of weightings

which - progressing from the Least
Significant Bit (LSB) to the Most Sig
nificant Bit (MSB) - Looks like this:

LSB ISB

1/12 2/12 4112 8112 · · · · · -12112
' ' ' '

Figure 1

Where n is, of course, the number of
bits that the converter can accept as
data.

Let' s watch four bits "count" into
this type of converter and observe the
resulting output voltages.

DATA

0000

0001
0010
00 1 1

1 1 1 1

IEAIS

o+o+o+o
0+0+0+~12
o+o~+o
o+ 0+2f.t2+'\Li2

OUTPUT

Pf,2+~2+2h2+1!12=1~12
Table 1

9

If I had made the 11 word11 (collec
tion of 1' s and o• s going into the
convcrter) 6 or 8 bits long instead of
just 4, the resulting series of output
voltages would still increase 1/12 volt
for every unit increment of the data
and the only effect would be to increase
the range of the output voltage.

Unfortunately, while the dis
tinguishing feature of an exponential
oscillator is that equal incremental
voltage changes will cause it to
generate a series of equally tempered
pitches, this is not the case for linear
response oscillators. A linear oscil
lator requires constantly increasing
voltage increments to produce equally
tempered semi-tones.

While this increasing voltage
requirement doesn' t make the appli
cation of R/2R converters to linear
oscillators impossible, it certainly
makes it cumbersome.

Cumbersome because we have to
make the incremental change from the
converter small enough to guarantee
that there will be some pattern of 1' s
and o• s that definesacontrol voltage
reasonably close to what we' re really
after.

Very small voltage increments -
there are three things ilwrong" with this:

1) We're going to need a "bigger"
converter - one with greater resolution
and consequently greater word size.
Whereas 6 bits of data will provide a
little more than 5 octaves of control
voltage to an exponentail oscillator; the
same 5 octaves from a linear oscillator
will require 12 data bits. Now, if that
doesn•t offend you by its notable lack of
elegance, it's cost certainly should. A
12 bit D/ A is going to set you back about
$100. 00; then you•ve got to put it on a
pc board, add controls - front panel,
etc.

2) As if to add insult to injury,
there will be lots of combinations of bits
that represent the intervals between
adjacent semi-tones, but notice that
they are not equally tempered intervals
and therefore next to useless even for
micro-tonal tunings. We're paying out
our hard earned bucks for words that
we•re never going to use, but must have
to fill up the "cracks".

3) we•ve turned the determination
of what data to output from a relatively
simple matter of counting the keys and
using that as the data into a process
that at best is going to require a look
up table (where the machine says
"Aha - key number 12, that• s note
0001110010100001") or some such
similar computer calisthenics. Not
particularly complicated, perhaps, but
why bother with it if we don•t have to.

And that, friends, is the point of
all this. We don•t have to. For the
simple reasonfuät an R/2R ladder

10

converter is not the only kind that we
have to work with. There are other
kinds. One of the other kinds is called
a Multiplying D/ A (or just MD/ A, I
guess).

While the most important operation
al feature of the R/2R ladder convert
ers was that it added things to arrive
at the output, the dominant feature of
an MD/ A is that (you're ahead of me,
right?)

IT MULTIPLIES.
Far out.
If you' re up on your basic music

theory, a responsive chord (if you'll
pardon the expression) should be
struck here, The determination of
the frequency of the pitches in equally
tempered tunings is itself a multiplica
tion process. The frequency of each
semi-tone in the series is greater than
the frequency of the p:receding semi
tone by a factor of 21112- the infamous
11twelfth root of two" (21/12=1~1.059).
Intuitively, it would seem that this
type of D/ A would be more appropri
ate for our purposes.

In fact, this is truc. We assign
weightings to the bits (starting with
the LSB) according to this series:

LSB MSB

Figure 2

Where again, n is the number of bits
of data that the converter will accept.

Now, we count into this convert
er the same way that we did in the
R/2R Iadder type. Remember that
bits that are "ofi'' here are not
included in the total (only now this
is equivalent to multiplying by 1)
and that the product that results
from the condition of the data Will be
multiplied by some internal reference
voltage.

DATA

0000
0001
0010
0011

Table 2 •

OUTPUT

Vret
2~2Vrel
2~12Yrel
2~2Vrel

* Multiplying a base number raised
to various powers (exponents) is accom
plished by adding the exponents. That• s
how a slide rule works - remember
slide rules?

You may recognize this as an
equally tempered series (if not you'll
just have to take my word; it is). All
we have to do now is design a circuit
that does this.

Let' s do that.
Here's a simple unity gain buffer

amplifier:

83

Vout

Figure 3

You may not be used to seeing it in
this form because ordinarily the resis
tances that are shown would be replaced
with direct connections. But having the
resistances there doesn•t matter simply
because for any practical case, they are
going tobe much smaller than the equiv
alent resistance from either of the oper
ational amplifier' s inputs to ground. I
should mention here that for any linear
operational amplifier circuit the volt
ages at the inverting and non-inverting
unputs are equal (V i+ =V i- ; this is the
key to op-amp design, but that• s another
story). Of the circuit in figure 3 we can
say:

(aJ
V out ..,v rat.

An excellent beginning. Here' s another
circuit:

83

Figure 4

Adding R2 to the circuit has pro
duced a voltage divider at the + input
of the op-amp and because of this we
can say:

lbl V out= ~8;!8~ v ref.

Fantastic. Now we change the
circuit again so that it looks like this:

Figure 5

and instead of a voltage divider at the
+ input wc now have one at the - input.
This means that:

(C) (R3+R4j
V out= \..li47 V ref.

All together now:

Figure 6

And for this configuration:

(d)

G R2 '\ (R3±84\
Yout= lii+ll!) \: 84 j Vref.

Do the four equations from (a) - (d) look
familiar? No? Look back at Table 2.
Now do they look familiar? Still no?
Then let' s say:

R2
(e l ...,R,..,.l ..,..+""R2=-

R3+R4
R4

and then by making these substitutions
and putting the equations together:

lal Vout =Vref.

lbl V out= 21112. V ref.

lcl Vout=22;12·Vrel.

@

ldl Yout= 21112 · 22112 ·Vrel. = 23112vref.

Now you must certainly recognize them -
it' s the same series as the first four
entries in Table 2. Putting the resistors

R2 and R4 into the circuit and remov
ing them is simply a matter of putting
switches (either mechanical or elect
ronic) in scries with them and when we
do the whole circuit looks like this:

Voul

Figure 7

The switches Sl and S2 here are,
respectively, the Least Significant and
Most Significant data inputs to the
converter; and I will avoid the obvious .
comment about this being a 2 bit D/ A.

Oh, but there• s one thing that I
forgot to tell you:

(f) 21112 ;t _HL
Rl +R2

1/12
Why? Because 2 is a number
greater than 1 and the only way that the
ratio of a number to itself plus some
thing else can be greater than 1 is if
the something else is negative - which
in our case, it' s not (yes, there is
such a thing as negative resistance,
but the concept is not applicable here).

Happily, we have an alternative
to negative resistance and that is to
make:

(g] ___!!!_ = 2- l/12
Rl +R2

Making the exponent negative is equiva
lent to taking the reciprocal of the num
ber.

At this point l' m afraid that in the
interest of brevity I must make a
gi gantic leap and say that -- because
we' re using the reciprocal of the
weighting, we must also complement
the bit representing that weighting. In
th~ instruction manual for thi s module,
we will cover why. But there' s not
enough space to do it here. And, in
any case, any of you who really want to
can figure it out for yourselves, lt' s
easy, honest.

Expanding this D/ A out to handle
greater word lengths is simply a matter

of cascading several of these sections.
When we do this and replace the mechan
ical switches that we had earlier with
4066 type Quad Bi-lateral CMOS switches
we come up with a thing that looks like
the circuit shown in figure 8.

Notice that the complemented bits
that we require are indicated by the
overbar on like D'Q for instance. This
is read "not D011 and by custom indicates
that the low (0) state is considered to be
"on".

You are probably also wondering
about those R 's, ~·s, etc. The values
of these resistors are determined by
solving equations (a) through (d) and they
produce some strange values that need
tobe exact. 5%•ers won•t get it here.
In order to meet the necessary precision
and stability requirements, we've had '
"one of the nation's leading resistor
manufacturers" (at least that•s what
they say) make up some custom Cermet
resistor networks. They look about like
any 16 pin DIP IC (except that they're a
beautiful robin' s egg blue), but inside
are resistors instead of other stuff.
Once manufactured, they' re trimmed
by LASER to be exactly the right ratios
(Laser, yet - how about that!).

I really don't expect that to impress
you too much, but this should:

THERE ARE NO ADJUSTMENTS TO
THIS MODULE

You just put it together and it "plays"
(which is the computer people' s phrase
for works).

Do you realize that this gets rid of
all those trimmers from our old '-8
keyboard - it even gets rid of the zero
pot. I really like it.

But we•re really not through yet, we
need to completely dress the design by
adding input latches (so that the input
information can be stored), and some
kind of indicators so that we will know
what• s going on (LED' s - they wink,
they blink, they twinkle like stars in
the night; anybody can look at this thing
and know that it' s got something to do
with computers), This part of the cir
cuit is shown in figure 9.

The 4042' s are the latches and one
of their features is that they have both
Q and tr"(the complement of Q) outputs
since we needed some complemented
data bits, this is nice. Q9 - Q14 are
level converters. We need to have the
"on" resistance of the 4066 switches
in the converter circuitry working at
as high a supply voltage as possible in
order to achieve predictable low "on"
resistances and this means that they
operate from the +9v. synthesizer
supply rather than the +5v. logic
supply.

That• s the design. Let' s take a few
minutes to review what we've got here.

11

We've got a new synthesizer mod
ule that does at least one thing that
many people thought couldn•t be done;
a 6 bit Digital to Analog converter that
will provide slightly more than 5 octaves
of equally tempered control voltage to
linear response voltage controlled
synthesizer elements.

The front panel PITCH control
allows the module' s output to be chro
matically transposed over another octave,
so the total range of output voltage
available is a little more than 6 octaves
(compared to typicly 4 octaves for a
#4782 keyboard).

We have two trigger flags available,
either of which can be set or re-set
independently (very handy). As we will

S:ä
•2

<>
+

=i
~" ·2
N><

~~

12

see in a future issue, these flags can
also be used to select micro-tonal
intervals.

The status of the 8 bits of data
coming into the module is displeyed on
the front panel LED• s, six of which
indicate the note that the module is
producing and two of which indicate the
status of the trigger flags.

To make the module easy to inter
face to anyone' s computer (or simply
keyboard encoders - sec LAB NOTES)
we have an input terminal marked RDY
(not ready). When this terminal is
grounded, the latches that are provided
on the data lines are in a "pass" condi
tion and any changes of the data on the
data input lines will be reflected as

„ „
~

11 ~
:;;
z
~
öl

i5 z

changes in the module' s output voltage.
When the lmY line is taken to a high
logic state, the last data that appeared
on the input lines is stored in the
latches and further changes on the data
bus will not produce any change in the
output voltage (this is about like the
action of the SAMPLE inputs of clock
able sample and holds).

The road to applying the processing
and control power of the computer to
electronic music synthesis is not a
short onc - but it is certainly a trip
worth taking. The Equally Tempered
D/ A is only a first step.

As first steps go, though, this is
a good one - like walking in seven
league boots .

.....
6
> „

+ >
~ „~

v.;

f,~1~
~ ~g . -~

„ <>
+ 1

=

LAD NQTES
COMPUTER MUSIC, WITHOUT THE COMPUTER.

or: What to do 'til your processor arrives.

I realize that a lot of you will respond
to the introduction of the 8780 Equally
Tempered D/ A with a frustrated, "But,
I don•t HAVE a computer, 11

Here's a little surprise. You don•t
really need a computer to do some very
interesting and useful things with the
8780, You are going to need some
additional hardware, as we'll see in a
moment, but it' s not only inexpensive,
it's also equipment that you'll need for
processor interfacing later on anyway,
You1re not building something that will
be scrapped when your computer arrives,
justgettingaheadstart. Getting READY: ,
so to speak. -

Let• s shift our mental gears for a
minute, and instead of thinking of the
8780 as a computer peripheral, we'll
consider it in terms of being a digital
sample and hold.

Our analog S/H circuits are accept
able, but they will always drift because
they store information by charging a
capacitor. Even if we were able to
miraculously devise a capacitor with no
leakage, we still have to measure the
charge on the capacitor; and whatever
circuit we use to do that will itself
eventually drain away all the charge
(I think that a Mr. Heisenberg had some
thing to say about this, but 11 m not
certain). With a digital S/H, we don•t
have that problem, because we• re
storing the information as a pattern of
l's and o•s.

To use our new digital S/H we need
some way to provide it with the 1' s and
0' s it needs to decide what voltage to
produce, We need some way to 11 encode11

our AGO keyboards.
There are lots of ways to do this,

including the simple expedient shown
in figure 1.

This is frequently referred to as a
11brute force11 encoder. When a switch
closes, any diode connected to the switch
line forward biases, causing a 1 to appear
on the data line connected to it, The
diodes are there in the first place to
prevent 11 sneak" current paths back
through the matrix. This is an accept
able encoder as long as you assume that
only one key is going to be down at a
time. But, when two keys are pressed

+

By: John S. Simonton, Jr.

\..._----~
DA-TA

Figure 1 - Brute Force Encoder

simultaneously, the diodes act like OR
gates and the data that comes out may
or may not (most probably not) represent
those keys. If, for example, we were
to press the first two keys down at the
same time, data lines Do and D1 would
both go high. Exactly the same situa
tion that we had defined in figure 1 as
being an indication that key 3 was down:

BU:MMER

A more popular approach (because
it works better) is to 11 scan11 the key- .
board a switch at a time to see if any
are closed. There are LSI chips that
do this with a single integrated circuit
package; but, while saving design time
is a great temptation, we•re not going
to use them. They' re too expensive,
and worse yet, not versatile enough to
do all the things that I have in mind.

So that you can follow the design
that I prefer, let me turn you on to a
new part:

13 14 15 12 1 5 2 4

v00 =Pin 16

v55 =Pin 8

Vee =Pin 1

16

15

14

13

12

11

10

Figura 2

This is called a 114051 8 channel
analog multiplexer/demultiplexer''. Or,
just 4051. Inside the package are 8
bilateral CMOS switches. While one
side of each of these switches is tied
to one of the pins Y 0 - Y 7, the other
side of all the switches are commoned
and connect to pin Z, In mechanical
terms, it looks like this:

---oYo
t---C,.-- o---o Y.
1-<,..-::--0---0 y'L

~--0)"3
~ ~-L..::;,;trj-~.~---oY4

c;Joo--e~ Ys
----o Y'"

---oY7
Figure 3 -

Mechanical Equivalent of 4051

One of the neater things about the
4051 is that each of those switches is
individually 11 addressable11 from the pins
marked AO - A2. If I put the binary
number 000 into the address pins, switch
s0 will 11 close11 • 001 causes switch 8i to
be activated, and so on to 111 which
addresses S7.

You will also notice a pin labeled E.
This is an enable pin that sort of says
11G011 to the rest of the circuitry in the
package, As long as this pin is held at
a high voltuge, all of the switches will
be "ofl", but when the E pin is ground
ed, the switch specified by the address
currently on the A pins will close.

13

......

"-.< „J
"'11

t~3 -rc..i
- St>'' Lloz.4

rl <?L

'Po

.START"

ti~ Q„ 'f!.K.
ISOIC. ,

~ ~~s-

+l R7
"170

il'
Yo

A~

A.":t:C.3

4os-1 f11i y~

'f.
A~

A. J:~le.
405"1 Y.

7
E: ,..

~ei!_\o~rJ
l'-1)"ll(

~
C>

1
z. „
4
f°
(,.

7

~.

Rows-l-\0••3iJ.\

C.,L ... _. •. VerL'a.o.(

+S' o I „ .i.. a..\! c.l..•r !„,,„ 1 c.c (X4 ~Ct. ... ~ ,n;;~
~7K~ J. T'Cs- ~, ~I'

-: ~-::·OS"
Ds- l>o -= 12.r c.,r 101<. ~

re 4 - Scanning Keyboard Encoder DAT"A Figu * ... Hi_+-
~

RWD

c.c=2.2 c.
lo.- \o-1.ac:h..

What a terrific part. We really
need to spend some time soon looking
at all of the potential applications for
this device. Not today, though. Today
we have too many other things to do.

You're already familiar with the
4024 CMOS seven stage divider, we•ve
used it before in other applications.
Now we're going to use it again in a
circuit that looks like figure 4.

This is our keyboard encoder. As
far as parts go, there' s not a lot to it.
But it does a lot, watch.

Gates Gl and G2 along with Rl and
Cl form an astable clock buffered by gate
G3 that feeds the seven bit Counter !Cl.
Notice that I can stop and start the clock
by raising or lowering, respectively, the
line labeled SCAN. If I1 m not using this
line, I can simply leave it disconnected
and the pull-down resistor R2 will keep
the clock running.

Notice that the three LSB' s from
the counter (DO - D2) are connected to
the address pins of IC2 while the next
three MSB1s connect to the address pins
on IC3 (we are going to temporarily
forget about the seventh bit). Assuming
that the counter starte counting at
000000, both IC2 and IC3' s z pins are

connected to their YO pins, If these two
YO lines are isolated from one another
another nothing happens; but, if they are
shorted together (by a switch at the point
at which they cross in the matrix, for
instance) then a current flows from the
Z pin of IC3 to the Z pin of IC2 through
R4 which is tied to the ground. The
resulting voltage rise across R4 appears
on the line labeled STROBE as a logical
1, which we can interpret as an indica
tor that a key is down,

When the clock cycles and the
counter advances to 000001, it has no

14

effect on IC3, but IC2' s Z pin is now
connected to it' s Yl pin. If those points
in the matrix are isolated - nothing; if
they' re connected, we get a 1 on the
strobe line. As you can see, each clock
cycle advances the counter, which will
have the effect of looking at each cross
point in the matrix, one at a time. A
STROBE results if the cross points are
connected,

At any instant in time, the six bit
number appearing on the data line is the
number of the key being examined - in
binary, and the status of the STROBE
line will tell us whether that key is up
or down.

lt will also be handy at times to
have a line that goes low when a down
key is found, so G4 is used as an inverter
to provide the complement of STROBE -
STROBE. (I'm tempted to say son-of
strobe, but actually NOT strobe.)

One subtle point about the 4051' s
that we overlooked above: the line from
the clock also connects to the E pin of
IC2. The effect of this is to allow a
STROBE to occur only during negative
half-cycles of the clock (immediately
after the counter changes state) like
this:

doc::."-. __JLJLJLJL\L

D"' _n_r-LI
v:t r-t__

D~ __r-
Sti-o~ n

Figure 5 - Encoder Timing

3'~„

which assumes that key 000010 is down.
This is done for timing considerations.

Also, getting back to the counter
again for a moment, we have a reset
available; and while I can•t think of a use
for it right now, one may come up later.
I bring it out on a line with a pull down
resistor, R3, and label the line RESET,
Raising this line to a 1 will reset the
counter. Also, that seventh bit that we
conveniently forgot, we can now bring
out on a line labeled START. In compu
ter application this line will serve as an
indication that a scan is just starting or
ending.

So, that• s our all-purpose, super
gee-whiz keyboard encoder. In all of
the drawings, l've shown it operating
from a 5 volt supply because in computer
applications we' re going to be tapping
power from the processor; but we' re
using CMOS logic here and the big reason
is that it likes all different kinds of
supply voltages - anywhere from 3 to 15
volts. If we retro-fit this stuff into a
4782 Road Keyboard (which as you might
expect, I highly recommend) we can
easily use the +9v, part of the supply
that• s already there to power both the
encoder and the D/ A.

The encoder can handle up to 64
switches (the number of cross-points
in the matrix) and it will obviously work
with a 5 octave keyboard. We really
want to concentrate on a 37 note unit,
though, since this is our standard.

No matter whose keyboards we are
going to use, we are probably going to
have to make some changes in the switch
busses first. l'll show you on one of ours.
If yours is different, l' m sure you can
figure out something.

PAIA keyboards (and most others, too)

have two busscs: onc of which boils down
to a single switch that is closed as long
as any key is down. With analog S/II' s,
this is a signal to the circuitry to do its
stuff. We don't need this anymore.

The secondbuss is really 37 switches,
with one side of each switch tied to a
common connection. We could represent
it like this:

Figure 6 - An Unmodified KBD

The switch contacts that are not common
ed would ordinarily go to the voltage
divider board in an analog system.

We need to break these switches
down into groups of 8 (giving us 4 such
groups with a group of 5 keys left over)
by cutting small sections (about 1/8
inch or so) out of the buss rod that runs
the length of the keyboard. When you

do this, don't forgct that you have thc
keyboard upsidc down. Be sure that
thc first cut is between the first G and
Gll on the keyboard. Iran into structural
problems after cutting the buss rod: one
section of it was supported at only a sin
gle point. An easy fix for this problem
was to slip short sections of clear tubing
(spagetti) over the adjacent ends of the
cuts, providing both insulation of the
buss section and mechanical rigidity.
When you•re finished, what you have
could be represented by figure 7.

Now we buss together the individual
key switches from each group by con
necting together all of the first keys in
each group, all the second keys in each
group, etc. Notice that again to prevent
sneak current paths which could generate
"phantom" keys if multiple switches
were closed, we' ve added a diode in
series with each key. When we' re
done, we have what• s shown in figure 8.

If we now redraw what we•ve got
and superimpose it on the matrix, we
have what• s shown in figure 9.

You probably noticed that the first
key does not begin at note 000000, but
rather picks up from row 2 of the
Im trix; equivalent to making it key

number 010000 from the encoder' s
standpoint, and transposing the key
board 16 semi-tones up-scale from the
D/A's point ofview.

IT DOESN'T MATTER WHERE THE
FffiST KEY STARTS.

0

~ ~ l>o D! E. F.. f::' G.,

~ A:, II: ~. ~ ~"" p, q

F, ~ F." ~·- ~ & ~
~„ P."" ~ :tr i=. f\. F"i" Go z.

~!- ~ Br.„ a. t?.s

7

Figure 9 - The Keyboard As Matrixed

Figure 8 - The Modification Complete

15

Betweell the pitch knobs Oll our
oscillators and the one on the D/ A, we
will be able to "put" the oscillator in
any pitch range we want anyway.

There are a couple of good reasons
for startillg with key number 010000;
First, I have a few computer things in
mind for keys 000000 through 000111,
and I want to hold them in reserve.
Also, olle of the things that our com
puter is evelltually going to do for us
is take care of transpositions into a
llew key signature, which will simply
be a matter of adding to, or subtract
ing from, the llote data the llUmber of
semi-tones by which we want to trans
pose. If my first key is 000000, l'm
going to have a hard time transposing
it down scale.

Now that I have the keyboard
connected to the ellcoder, l'm ready
to start doing things. Like replacing
my old analog S/H with this shiny llew
digital model. There are lots of ways
that I can do this. Olle is shown in
figure 10.

Assuming that llO keys are down,
the ellcoder' s STROBE lille is at a 0
and STROBE is at a 1, making the
RDY Oll the D/A high. The 8780's
input latches are in a holding state
and the activity on the data lines D0-
D6 is invisible to the converter. This
is fortunate, since the data lines are
"counting'' as the encoder colltinually
looks at the keyboard.

Now, we push down a key. For
the purpose of illustration let' s say
that it's the first key, number 010000.
Whell the data lines llext reach the state
010000, the ellcoder finds that the key is
down, and because of that, the STROBE
line goes high stopping the ellcoder clock,
and the STROBE line goes low which
takes the D/ A1 s i'ffiY line to a O putting
the D/ A• s latches in a pass state.
The llew llote data (010000) is strobed
into the collverter and a control vol
tage represellting that key appears
at the colltrol voltage output of the
D/ A. The STROBE line from the
encoder also conllects to the D6 input
of the D/ A, which appears at the D/ A
output panel as the first trigger flag
(Fl), so we have a trigger showing
that a key is down. And this trigger
is used the same way we would a
trigger from the analog system.

As lang as the key is down, the
system is going to sit in this con
figuratioll. But, when I release the
key, new things happen. Almost
simultaneously STROBE goes low
which removes the trigger flag D6 (indi
cating that the key is now up) and allows
the clock to start again (searching for
the llext key down). Simultaneously,
STROBE goes high forcing the RDY line
on the D/ A high which puts the latched
in a holding colldition - and what they' re

16

-!:>CAA.J

~
1'i.
~
Qs.

EllCoDER.

\<.EY~D

holding is data Oll the last key that was
down.

This is behaving exactly like the
old analog system that we had, except,
as I already mentioned, it doesn• t
drift. AND it gets rid of that annoy
ing "in betweell" note that we had with
the old keyboard if two notes were
pressed at the same time (since the
clock stops, the encoder can "see"
only olle down key at a time). AND,
it doesn' t have 37 adjustments to
tune it; now there are llOlle.

Let me show you something that
this keyboard can do that our others
can•t.

Suppose that we remove the wire
connection between the encoder' s
STROBE output and SCAN illput. You
will remember that this was the thing
that caused the clock to stop when a
key was found down. If we replace
the wire with a capacitor, say about
. 22 mfd. or so, we have generated
a little time delay in this loop. The
clock will stop when a key is found
down, but only temporarily - until
the capacitor discharges - then it is
going to go looking for the next key
down. If, in the process of search
ing, the encoder fi.nds another key
down, it will strobe it into the latch
es, hold for the time delay, and then
go searching again. With this
arrangement, if two keys are held
down, the output of the D/ A will
alternate between the two, and what
we will hear is a trilling between
these two notes. If three keys are
held down, each note will be heard
in turn and while this is not poly
tonic by any stretch of the imagin-

RDY 'D7 ~~J "Fi Tr:,,c„.$ t\:. t>c.
vs
D<(
Ds
~ UtJ. (!.,V.

CIW-.
v.
J>o

D/A

Figure 10 - A Digital Keyboard

atioll, it can certainly sound that way.
Can you imagine what the effect

of pushillg down a large llUmber of
keys will be? I call it the "orgasma
tronic glide" but everyone here thinks
that• s a terrible name.

Anyway, the arPeggiation
gimmick is slick and if you wish it
can be left in place and bypassed
with a switch when not used as
shown in figure 11.

Figure 11 -
The "arpeggiation" Modification

Here' s another one.
You may have lloticed that there is

an input to the encoder that I hadn•t
mentioned; the one labeled (innocuously)
RND. This line is normally held high
by R5, but whell pulled low moment
arily it causes G5 and G6 to both
change state which in turn activates
the strobe line - even though there are
no keys down.

The effect of this is that whenever
we activate this line, whatever number
happens to be on the data buss at that
instant will be strobed into the D/ A.
Since the encoder clock is working very
fast, there is no way to know in advance
what the number on the data lines will
be. As you•ve probably guessed, RND
stands for RANDOM, since that is the
effect of this input. lt causes a random
note to be strobed into the D/ A.

If it occurs to you that there is a
lot of activity around G5 and G6, what
with R5, R6, C3 and C4 and the funny
little jumper marked (*) being there,
you•re right, This circuit not only
buffers the RND input line, it is also
a slow clock. If we hold the RND down
for more than just an instant, square
waves begin appearing at the output of
G6. And, naturally, for each cycle of
the output of G6 a new random note is
strobed into the D/ A. With the values
shown, the tempo of this clock is
several cycles per second. That• s a
bunch, and that1s where the (*) marked
jumper in series with R5 comes in. By
replacing this jumper with a pot (ahout
500K is a good value) we•ve picked up
a control of the tempo of this circuit.

By adjusting this new tempo control
we can effect not only the rate at which
random notes are thrown out, but also
the character of the notes (whether they
appear to be really random, or run
upscale, or downscale, or whatever).

To understand why the character
of the notes is effected, imagine for
a moment that the tempo of the RANDOM
clock is exactly 1/ 64 that of the
scanning clock. Under these conditions,
the RANDOM clock is going to pull one
note from the encoder for each complete
encoder scan. Since 64 notes constitutes
an entire scan, the RANDOM note that
we pull will not be random at all. lt
will be the same note each time.

Suppose, now, that the RANDOM

clock is running at exactly 1/65 the
tempo of the scan clock. Now each time
the RANDOM clock says 11 sample11 , the
scanner will have gone through a complet
cycle plus one note. Each succeeding
sample will pull a note that is one semi
tone higher in pitch than the previous
sample, and we will hear an ascending
series of semi-tones that increments
by one semi-tone for each event.

If the RANDOM clock is running at
1/63 the frequency of the scan clock we
will have a similar situation except that
the note pulled each time will be one
semi-tone lower in pitch than the pre
ceeding semi-tone.

Actually, for any practical situation,
the RANDOM clock is going to be running
several hundred or thousand times
slower than the scanning clock; but the
principle still applies. Small changes
in the RANDOM clock rate will produce
wide variations in the character and
organization of the notes that are
"randomly" pulled from the encoder.

Out of space and out of time,
again. And so much left to do. It
will have to wait for next time.

Speaking of next time - here are
some things that we•re going to do:

We•re going to look at a memory
add-on for the encoder, D/ A combin
ation that will allow you to do some
terrific digital sequencer things.
We•re also going to look at an expan
sion system that will convert what
we•ve done so far into a polytonic
(phonic) keyboard. Also we•ll have
a story on a touch keyboard - the
easy way, and will look at ways that
this kind of thing can be tied into our
encoder, D/A set-up.

And, I think, our computer will
be ready. We've put a ~ of time
into configuring it for maximum
usefulness either as a i;!tand-alone

micro-processor trainer or for use
with the music stuff. I believe that
the time has been well spent. When
you see all of the things that this
system will do for you it' s going to:

BLOW YOU AWAY

No kidding.

POST SCRIPTS

NOTE:
The P AIA Experimenter' s Kit

series is not intended for the novice
builder. They are intended to provide
the experimenter with a place to start
on what will hopefully be a series of
interesting and enlightening proj ects
at the very lowest possible cost.

Because of this, parts that are
considered to be either optional or
easily obtainahle from other sources
(your "junk box'' for instance) are not
fncluded. Also, circuit boards in this
series are not normally printed with
parts placement designations and
assembly instructions are minimal,
with most of the narrative type textual
material concentrating on 11how it
works" and "how to make it do other
things. 11 If you feel that this approach
does not serve your purposes you
should return this item immediately
for a refund.

Parts placement for the EK-3
circuit board is shown below.

Note tnat witn tne except1on or tne
RNi5 input, all input and output lines
come together at the 14 pin DIP
configuration between IC4 and IC 5 on
the circuit board. A DIP socket and
connector may be used here if desired
for easy connection and disconnection
(a nice touch, but not highly recom
mended),

17

Below is an enlarged version of this
I/O cluster which may be cut out and
placed in the vicinity of the EK-3 for
easy reference.

SPARE-e
SCAN

ffiOBE
STROBE

RESET-
GROUND

+

-START
-os
-04
-03
-02
-01
-oo
PIN 1

The 11 standard11 connectors that we
will be using for the complete kit
version of these devices will be 25 pin
11DB2511 type sockets and plugs. If you
decide to use these connectors, we

!?:> 8780
DIA

18

recommend that they be wired S.B listed
below:

PIN# 8780 D/A EK-3 encoder

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(plug) (socket)
Do Do
D1 D1
D2 D2
D3 D3
D4 D4
D5 D5
Ds STROBE
D7 START
RDY STROBE
N/C SäAN
N/C RESET
N/C N/C
N/C N/C
+ supply +supply

<7> <7>

>--------"Do
>---------0,

>--------·~
>-------~
>------u..
"">-------------sTRoßE
>----------+-~•AA.T
>-------t--STAEIE
>-~t-------+-~
>--i.-------+-RE'ö.E.'T"

Some forethought has gone'into the
configUration of these connect~rs with
additional scheduled elements of the
series in mind.

For example, if this scheme is
followed, the arpeggiation ·gimmick
described in the text would be added
as shown in the figure below.

The three position switch can then
select a mode of operation in which the
clock stops when a down key is found
(up position); a mode in which the
clock does not stop when a down key
is found, and this mode will be .used
in polytonic retro-fits (middle position);
and the arpeggiation mode in which the
clock stops momentarily for down keys
(bottom position). As is indicated, a
control of the arpeggiation rate (within
llmits) may be added with the 1 meg
potentiometer shown.

LAD NQTES

IN PURSUIT OF THE WILD QuASH

Now that we have a way to interface
our synthesizers to computers - the
8780 D/ A - we can begin thinking of
ways to independently control large
numbers of musical elements simultan
eously. Lots of VCO s, lots of VCFs.

The first time that you think of this
your reaction may be something like:

WOW! - ALL THOSE D/ As.

Multiple D/ As (one for each control
"channel") would be a possible way to
go. An expensive way - at $35. 00 each,
controlling just 4 VCOs means almost
$i5o worth of just D/ As.

There' s a much cheaper way.
You may find this a little circuitous,

after working so hard at our digital inter
face, but we•re going back to analog
Sample and Hold circuits.

Now wait, don't panic. These S/H's
are nothing like the ones that we•re
accustomed to. They don•t have to hold
a voltage steady for a long period of
time - only a few milli-seconds. Long
before even that short time has passed
we will have used the computer to come
back and re-write the correct voltage
into the circuit. Computer re-freshed
S/Hs.

Magie!

When you•re designing a S/H tobe
good for only a fractional part of a
second it gets really easy. Like this:

.Pi9ure (a)

l'm sure that we•ve all seen this
kind of thing before. It's an op-amp
used as a unity gain voltage follower.

When it comes time to take a
sample, the switch closes causing the
capacitor to charge up to the input
voltage. The output of the voltage
follower "follows" this voltage (what
else?), and when the switch opens again,
the capacitor "remembers" the voltage.

One of the characteristics of this
circuit is that the "+" input represents

by John S. Simonton, Jr.

a very high input impedance to any load
that it sees. A re1atively small capa
citor can accurately hold a voltage for
almost a second.

Now, we're not going to use a
mechanical switch here. Last time,
we looked at the 405i multiplexer and
decided that we would be using it a lot.
And we are, just not this time.

This time, we• re going to use a
very close relative of the 405i - the
4052 (I defy you to get any closer than
that). The 4052 looks like this:

Yoa.
:i!a.

13 Y, a..
YLa..

'E 6 y .5 4.

A1 9
Yob l'\o 10
Yrb

~b Y2.b
Y3 b

and whereas the 4051 was an electronic
equivalent of a Single Pole Eight Throw
switch, the 4052 is like a Double Pole

-h-orncYA Z!d.

'E
Ai

Ao

Yt 4052.

-fi9ure {c)

THE NEWBORM Q.u ASH

Four Throw one.
Which pairs of switches are to

close is specified by'the two address
lines (A0 & Ai). The s~tches
actually close when the E pin goes to
ground.

Using i/2 of one of these devices
we can come up with a Quad Addressable
Sample and Hold (QuASH?) that
looks like figure C, and it works about
the way that it looks. An address applied
to the Ao and Ai pins sets up one of the
four switches and when the E pin is taken
to ground that switch closes connecting
the output of the D/ A to the selected
S/H. Simple.

That takes care of our control
voltage output - but there are still
other things to think about. For
instance, we need a trigger flag (gate
signal) to go along with each of the
control voltages to take care of things
like triggering envelope generators. *(i)

An easy way to handle this is to
use the other i/2 of the 4052 to route
one of the two trigger flags availahle
from the D/ A to an output corresponding
to the control voltage output. And since
we•re time sharing the D/A we also need
\)ome way to hold the status of that flag
during the times that other control

T

I

19

channels are being addressed, Do
Iatches come to ntind? Forget them - in
this application they' re going to be far
too expensive and complex by the time
we get them to act the way we want.

Instead, we'll use a small capacitor
and a CMOS inverter lilrn this:

GATE1

GATE2

GATE3

GATE'+

This is a little S/H in its own right - but
it doesn•t hold an analog voltage, only a
11 1i1 { output high) or 11 011 {output low).

Oh, yes - since we are buffering the
condition ofthe capacitor with an inverter,
we need to also invert the trigger Une
going into the 4052 so that everything
comes out right. That• s why that other
inverter goes between the trigger flag
line from the D/ A <F1) and the Z pin of
the 4052.

But, there are two trigger flags
available from the D/ A - and here we a
are only using one of them. Waste, ugh.

Let' s do something neat with the
left over flag, something really sexy.
Let•s use it to:

SELECT GLIDE
(tah-dab)

You may think that because we•re
time sharing the D/ A we•ve elintinated
the possibility of doing things like this,
but we haven't. In a functioning system
the S/H' s are being up-dated so fast that
we can in fact generate glide the same
way that we did in our old pure analog
system, simply by placing a variable
resistor in front of the holding capacitor.
We 1ll use a regular 4066 Quad Bilateral

Switch to turn the glide off by shorting
out the resistor (so that the glide is on
when the switch is off), and to latch the
status of this glide bit we•ll use the
same capacitor/inverter trick that we
used on the other flag. One section of
this circuitry looks like figure e.

For programming reasons, it will
be handy to have the glide select bit
{which is now flag 2) be a "1" when the
glide is enabled and that requires a
second inversion - between the trigger
output of the D/ A and the Z pin of this
new 4052.

And now here we are with 1/2 of a
4052 left over.

Don•t you believe it.
Since we will frequently have more

than a single synthesizer module con
trolled from one of our control voltage
outputs (two VCO's or a VCO and VCF
would be two typical cases), it will be
handy to have a modulation input
associated with each control channel so
that all modules driven from that chan
nel will experience the modulation at
the same time.

Another thing that ties into this is
that our D/a is an exponential converter
of sorts and so for the first time gives
us the opportunity to do equally temperect
vibrato (for example) with our linear
oscillators.

We'll use the left over section of
4052 to multiplex a modulation voltage
back into the D/ A in the same way that
we multiplexed the control voltage out.
Like this:

To DIA
V re:f

.Pi9ure Cf)
:c

C.lide ra.te

from Y0a..
on first 4052.

Because the modulation voltage
corresponding to a given control channel
is applied to the D/ A only when that
channel is re-freshed, you may thinkyou
will be able to hear the modulating
influence as a series of steps. But you
don•t for the same reason that the glide
doesn•t appear to be a series of steps.
Everything is just happening too fast.

One last detail and we•re done with
the design of this circuit.

Addressing (selecting) one S/H out
of the four on this card is of course
handled by the address pins of the 4052' s,
But, many systems will not stop at just
4 outputs; some folks, l'm sure, will
want to take the system to the limit
(in practical terms about 32 outputs) -
which implies that more than one of these
cards may (and probably will) be used
in a system. We need a way to be able
to select not only one of the four outputs
on this card, but also a means of
sel~g one card from many,

Here•s the address decoding scheme
we•ll be using:

e.s o--------~

AAl}To 4-052's .._ ___ o Ao, A1

.Pigure (9)

The 4042 Quad Latch is an old friend -
here we' re using it to latch the computer• s
4 least significant address bits at the
same time that data isputouttothe D/A
(the RDY line on this card is connected
the same as the corresponding line on
the D/A).

We want to latch these address lines
because the WRITE cycle of any computer
we come up with is going to be much
shorter than the time required for
settling of the D/ A and S/Hs. Latching
the address lines allows us to output

>-'----cv 1

fla.g2
D/A

y'OQ.t------- "- T "";z._S/H fllpll.C.itor

T~ Yi+ tf066 -=-

20

Tu11. :t lf052..
(IC-2.)

.f igure C:e)

- '"La.tcltinq"

}
C.~Pa.C.i+or

..____ i"o other
,_____ .9!lde .$e.lcd"

------- c.1rc.1.u+s

data and then wait (or do something else)
while these analog circuits get to where
they•re supposed tobe, *(2)

Notice that the Q0 and Q1 outputs
of the latch - corresponding to the two
least significant address bits - go
directly to the 40521s where they serve
to select one of the four outputs.

~ce also that Q2 an'!.!!:s comple
ment Q2 as well as Q3 and Q3 from the
4042 come out to pads on the circuit
board. By jumpering these outputs to
the inputs of the NOR gate Gl we can
determine which group of addresses
the card we're working with represents.

For exa~e, i~ connect the in
puts of G1 to Q2 and Q3 then this block
of four S/H' s occupies the addresses
OOXX In binary where XX represents
the bits that select one of the four S/H •
Address 0000 corresponds to the first
S/H, 00-01 to the second, and so on. By

connecting the inputs of G 1 to Q2 and
Q3, the S/H' s occupy the address OlXX.
The first S/H is 0100, the second 0101,
and like that, This scheme allows us to
easilyuse up to four of these expanders
(16 outputs) in a system without needing
to do anything but set the jumpers
properly,

You will notice that there is another
line coming out of this decoding circuit
which is labeled 11 B8'1• This is not my
opinion of this whole mess, it's a means
by which we may expand the system
beyond even four .expander modules -
BS stands for "Bank Select'' and as long
as this line is held at a logical "1" level
the system operates as described to this
point.

But, when the BS line is pulled low
one input of the NAND gate G2 is not
fulfilled resulting in its output being high
which in turn holds the 40521 s enabling

input (E) high - which means that none
of the switches in the multiplexer will
close (even if addressed otherwise) and
none of the S/H1s will be selected,

External decoding circuitry is
required to drive the BS input, naturally,
but we would begin to need external
circuitry at about this point anyway to
buffer address lines, The decoding
required here will be covered in the
instruction manual for this kit.

When we tie all of these bits and
pieces together, we come up with a thing
that looks like figure H, our complete
QuASH. And in the interest of saving
space and time, we will from this point
forward represent it with the symbol
shown (at least wrtil we can come up
with something more abbreviated). The
knobs in the output "boxes", by the way,
represent the glide rate controls a.i;;soc
iated with each output obllllDel,

geetex1 BS 1>----------------.
;---- --cf-IÄNNEL" _1 ___ -----~
1 1

ihmCVA RDY

from
Computer

----------- ---.
1
1
1

{

A.l

Ao

i 1
1 Ce C.V'.

.001 l'

1 our

: (g~GATE
1 OUT
1

l(Ml

1 MOD LATION
IN

0
0
0
0

~ ... E Y,.i-----'_ --=i~~=~=====~-~~===~-~~·
f'"f1:~1f ••-r::»-+-r.:-J;~_ 1 -- ,~ CHANNE.L 2. ~gA~E

,....... ___ , (So.n1e. a.s C.ho.nne 1 1) ~MO D.

THE GluASH
.SYMBOL

I! = C..V. OUT
G = 7/Wl. (CIATE~ our
M < MODULA'l'ION(IN} to DIA

v~f

L-------------- ----- _ J

1-----i·----- ------------ - -1

pc..v
CHANNEL'.3 rGATE

1
______ __,\L ____________________ j'---<MOD.

,------- -- --------- -- --, .__ _______ __., ~ C.11.

~------__.' CHANNEL't ~QATE
:--< MOD.

1 1
L--- - - - - - - --- - -------J Fi9ure {h)

A FULLV MATURED GuA.SH fr f'r>L'iST'(/CfNf. CAPACITOR

NOTES:

*(1) Those of you who have been
thinking about this stuff for a while will,
of course, recognize the imminent
demise of the ADSR. Providing Attack,
Decay, Sustain and Release parameters
is one of the easier tasks to turn over
to the computer entirely, On the other

hand, l've played with this some and can
testify that varying the position of a knob
is handier - in this case - than changing
parameters in the memory of the machine.
Some Hardware ADSRs mixed with some

*(2) This off-hand statement is not
meant to imply a wait in human terms
(major fractions of a second), but rather
a wait in machine terms - micro-seconds.
You don•t have to wait for a GLIDE to

Software ADSRs seems a good compromise. finish (for instance) before doing some
thing else,

21

IMPLEMENTING A COVEY OF Q.tAASH

DATA

BS
,._.-+--+--+--+---iRi»>

If we' re going to usc morc than one ::::;:::

f ~~i~~~~:~:~~:~~g;:E." 11 .. ·•· + :.
sclects thc D/A which really should
co1Tc'spond to a block of addrcsscs
reprcscnting a particular statc of thc
Most Significant Addrcss lines of the
computcr), the control voltagc output of
the D/ A, a modulation input line to the
D/A's Vrcf (the \viper of thc "tune" pot),
ancl thc two trigger flags from the D/ A.

Tlrny all go togethcr likc this:

22

:::::::: A3

::=::::r=:::::::::::::::::::::;::::::)/{://;'.:\:·. 0 Qu ASH
C.'/. 01 XX

--+---+----if 1
--+-----IF .2

MOO.

Ag-AoRDY C.V. F.! F2 MOD.

TO OTHERS

0

0

0

0

0

0

0

LOTS OF
OUTPUTS

Fi9ure J

We've come a long way over the last
year in terms of developing a series of
digitally interfaced modules that will
allow computer control of music syn
thesizers. I suppose that the time has
come to look at tieing them all together,
with the computer, and begin doing
interesting things.

I bad wanted to start with "the ulti
mate sequencer programs" but am not
completely happy with them yet. They
still need a little polishing.

Instead, we'll start with what sbould
be another popular system:

THE POLYPHONIC SYNTHESIZER
Which is a much simpler job than the
ultimate sequencer.

I would like to go through the system
showing specific ways to do things for
a variety of manufacturers equipment
but that just isn 't practical. Instead,
we'll look at a completely PAIA based
system and assume that if you are
using different equipment you are
familiar enough with it to make what
ever changes are necessary.

Oh, one more thing before we begin,

be sure that you understand that there
are a wide variety of ways to do poly-_
phonic synthesizers. This is only one
of them. 1 hope that the algorhythm
used here works for you. It's one of
maey, some with sort of special quirks
that make them useful in certain
situations but difficult to work with
generally - This seems to be good
general purpose way. Ready? W e
have lots to do and little space and time;
here we go.

THE HARDWARE

Most of the hardware that we'll be
using has been described here over the
last year (or so). For the controller
portion of this system we'll need:

1) AN ENCODED KEYBOARD
8782 or EK-3 retro-fitted
equivalent

2) A COMPUTER
An8700 in it's minimum confi
guration will run the programs
tliat we '11 list. A cassette inter
face system is useful to the point
of being almost mandatory. We'll
show some new panels and stuff
to make it all pretty.

figure 1. computer/synthesizer
sub-module placement.

By

Johns. Simonton, Jr.

3) DIGITAL/ANALOG CONVERTER
AND SAMPLE AND HOLDS
the 8780/8781 system.

And, of course, we'll also need
as much synthesizer as we think is
necessary.

With all of the items listed, various
wiring schedules have been mentioned
for doing various non-computer things.
W e now need to establish some standaids
for this new use, a computer based
polyphonic system.

If we choose wisely, we should
come up with a standard that has plenty
of room for future growth. Some con
sideration has gone into the system
which follows and I believe that it will
serve our needs for some time to come.

Maey of you will already have much
of this wiring done, as much of it is
simply an extension of what we've done
~ Check carefully to be sure
your wiring is to this new standard.

THE KEYBOARD

Let's go ahead and configure this
system from the beginning so that the
computer fits in the synthesizer cases
that we1ve been using. All of the parts
will fit in the case like this:

PAIA 8700 COMPUTER, POWER_SUPPLY AND KEYBOARD ENCODER
RETRO-FIT TO 4700 OR 8700 SERIES KEYBOARD,

23

24

ENCODER BOARD

ROW
0 7
00 0

~
TO KEYBOARD

BUSSES

COLUMN

~
TO DIODES/ SWITCHES

3...,..lt-"-ttf"""'"l:l:t-~it""""i:li"'"""ttt-""""1"1"""1:1:t-

4~~~-'-4i9-'~l--'-E9-"-ttlr"-tit"""-ifr"

5-'l~~~~'-"1!-L@-A..(:1~~"'49-J'

6-lliµ..-'9-"'"'9--d41li-L'9-~,__-+-+-

7_,1---t--+-_.,t---+--+--+--+-
FIG.2

At tbis stage you may have more
dis-assembly to do than assembly.
Particularly, the old control panel of
the keyboard is removed to make room
for the computer and any unregulated
supply tha.t was powering your keyboard
encoder is replaced with a PS-87
wbich supplies all digital power for the
entire system. This is going to give
you a few parts for your "bench stock",
the old power supply components and
a couple of pusb.-buttons, but some of
the parts we will be re-using. Don't
throw anything away.

KEYBOARD
TO ENCODER CONNECTIONS
Maximum useability of the system

would seem at first to depend on where
the AGO keyboard switches appear in the
key ma.trix. We want them in the middle
so tha.t we have as much room to trans
pose down In pitch as we do for up-scale
transpositions. Some 8782 instructions
had the keyboard placed 8 switch posi
tions below where it should be for tbis
ideal. The "column" connections are
flne, but the "row" connections on these
keyboards will need tobe "slid up one"
so that they conform to the configuration
as shown in figure 2.

This will place the keyboard more
or less in the middle of the matrix as
shown in figure 3. This is really a fine
point, and the system will work OK in
most applications almost no matter
where in the matrix the keys are, but
go ahead and change now so that you
won't be limited In the future.

ENCODER MODIFICATIONS

W e don 1t need any of the "trick"
thlngs that we used when we didn1t
have a computer (the orgasmatronic
glide circuit, etc.) , just the bare
bones encoder. You may remove all
push-buttons slide switches, pots
etc.; most of these will come out when
you remove the old front panel.

ENCODER TO COMPUTER

If your system previously bad a

KEYBOARD
ENCODER

1/0 CLUSTER
(WIRE OIRECT)

001

01
02

03

04
05

START

FIG.3: 'The Keyboard as Matri xed

OIPHEAOER
TO

8700 J4

FIG.4

TO
DATA BUS

Jl

TO ABO
EXPANSION AB 1

J7 AB2

AB3

DIP HEADERS

Dl\•25
FEMALE

TO 8780/ 8781
1 1

'-1-t--t--+-~l----t--<2

~-+--+-+-+----''--< 3
.._,-+-+--+--~C4

"-'f-+-+-~< 5
'--+-+--->-< 6

""--1"--+-<7
8

~-------'--<9

• '-1--------.....-<14
~--------+-<15

~----------''-<16

~---------....... -<17
.-----------....... -c:18
.------------''-<19

FIG.5: COMPUTER TO 8780/8781

DB-25 female connector tied to the
output of the encoder, desolder it
(carefully - whistllng may make the
job seem easier). In place of the
DB-25 connector, we now need to
termlnate the output of the encoder In
a DIP header that will mate with the
INPUT PORT #1 (J4) connector on the
rear edge of the 8700 computer board.

These connections should be made
as in fjgure 4.

These connections should also be

made carefully and the DIP header
pins weil heat-sinked to prevent melt
ing the plastic header. NOTE that
while maey of the non-computer app
lications used the STROBE line to
trigger the D/ A, here we :lgnore tbis
line and lnstead use the STROBE as the
seventh data bit (D6) of the interface.

Similar1y, the encoder•s START
line becomes the 8th data bit (D7).

Also, you will notice that power to

the encoder is picked up through this
connection from the 8700 itself.

COMPUTER TO SYNTHESIZER HEAD

So that our resulting system can
be easily broken down into two separate
units (computer/keyboard and synthe
sizer head), this is the place to use
the DB-25 connector that was salvaged
from the old keyboard front panel.

Connections should be made between
the female DB-25 connector and a pair
of DIP headers like those in figure 5.

NOTE that the first header (P2)
provides data lines and the CASS select
signal (our 8780/8781 shares this out
put structure) while the second connec
tor (P3) provides the address lines
required by the QuASH.

8780/8781 WIR.ING

The male DB-25 connector that
terminates the cable to the 8781 is
wired in wha.t is essentially an expanded
version of our previous standard so that
here you are faced more with adding
wires than re-arranging them.

Connect these elements together
as in figure 6.

J2-

8780 J l
FRON
CO

T PANEL
NNECTIONS J3

IZER SYNTHES
POWER B US

WIPER,
R34

V
+5~

t-_l_ ..-1

-=- \
ROY ~/!
07~

060-

050-
0

040 eo
CO 03"

02 0-

01"
Oo~

1-i--,
-9v-

1 +9~ ri.

t+o>--L>---

-9 Cl
-- -

Tbis wiring schedule is examined
in detail in the 8781 QuASH assembly
manual. An important thing to notice
here is the way the grounds are handled.
Note that the ? (ground) pin on
the rear of the 8780 board serves as
the central ground for both analog
(synthesizer) and digital power distri
bution. This grounding scheme is
important to prevent ground loop
problems and should be followed exactly.
This entire 8780/8781 assembly should
be mounted in the synthesizer head
cabinet.

FINAL ASSEMBLY
Finally, make arrangements for

physically mounting the computer in
the keyboard case by first mounting
the computer to a suitable front panel
as shown. (See figure 7)*

And don 1t forget to provide a socket
a.t the 8700's expansion connector (J7)
or to mate P3 with this socket before
assembling the computer/front panel.
If the cassette interface is being used,
terminate the input and output lines
in miniature phone jacks as shown in
figure 8.

Plug all the connectors together and
you should be ready to load a program.

/

J9

TO TAPE
INPUT

FROM TAPE
'------o--u OUTPUT

FIG.8: CASSETTE CONNECTIONS

THEPROGRAM

The polyphonic program that we'll
be using is called simply:

POLY 1.0

This program supports up to 8 output
channels the way that it is written and
can be easily modified to provide for
more.

POLY 1. O allocates synthesizer
resources to keyboard requirements
using this algorhthm:

1) Output all notes appearing in the
output buffer area (NTABLE) after
adding the corresponding transposing
figure from TTABLE. Go to 2.
2) Wait for keyboard scan to start
and place a list of all keys currently
being held down in the input buffer
area (KTABLE), When buffer full
or scan complete go to 3.

MOLE X
EOGE CONNECTOR

1
1
1 o+5

1
o-L

-
l 085

olffi" 1

1
OF2

Ofl
1

OA3 1
OA2 ;;

1
eo

OAl
1

1 OAO

OM
1

oojA

~ 0+9
1

1
OGNO

1 0-9

1
!

!'V 15 CONOUCTOR D' CABLE

r- t.- '"".i -: : -l :-:1 : -:

~·
- r- r-, 1 1

1 - "' ..,,, "' co .,. :!! :!!: !!: i!! ~ :!! 1 oe-25 co~~ACTOR

1 1 (MAL~)
'1 0 - N M ... "' '° ,~ _jli+"' M N - 0 1
-~~~-~~~~~~]--~~~~~

FIG.6

25

OPTIONAL

3) Clear the trigger flags (D6) of all
notes in NTABLE (the output buffer).
4) Compare each entry in the in-
put buffer (KTABLE) to each entry
in the output buffer (NTABLE). If
they are the same, set the trigger
bit of the NTABLE entry and elim
inate (zero) the entry from KTABLE.
If all available outputs are used, or
if all keys down find a horne go to 1.
5) Place the rernaining input buffer
entries in output buffer locations
which do not currently correspond
to a down key (those in which D6
is cleared). When all input data
has been placed or all channels
available have been used go to 1.

There are a number of subtle irnpli„
cations here and unfortunately not
enough space to cover thern all.

A couple of really important ones
are that if we think of "new" notes as
ones corresponding to keys that were
just pressed, this rnethod tries to place
those new notes in output channels
which at some point in the past were
already producing those notes.

This prevents a string of identical

26

HARIJNARE SEQUENCE

H----4-40X 1

(!"'!ll----4-40 NUT

~----4 F~AT WASHER

THE 8700 COMPUTER, CASSETTE RECORDER INPUT &
OUTPUT JACKS AND EIA CONNECTOR TO SYNTHESIZER
HEAD ALL MOUNT ON NEW FRONT PANEL,

A HARDWARE KIT 1S AVAILABLE - SEE END OF
FIG. 7 ARTICLE

eighth notes (for example) frorn being
assigned to different outputs each time
they're used. Notes, once assigned,
tend to. stay assigned regardless of
other kcyboard activity - they don't
move around in a totally unpredictable
fashion as with some analog multi-note
keyboards,

lt also means that once the number
of output channels available is "used
up" by down keys that need tobe
placed, all other keys that are down are
simply ignored (this is exactly what you
want).

One important aspect of the above
is that the program must "know" how
many output channels are available to
it, otherwise there is the possibility
that notes may be assigned to non
existant channels (ones that have no
corresponding hardware, not too bad
in itself) and further (the really bad
part) future activations of the note will
be assigned ~ to these non-exist
ant outputs - producing "dead" synthe
sizer keys that seem not to be doing
anything.

Memory location $OOEA contains
the number of synthesizer chamiels
available, more on this shortly.

THE PROGRAM

Shown on the next page is a dis
as sembled listing of POLY 1. o.

Because, again, of space limitation
we cannot re-print a fully documented
version of POLY 1. o. lt is supplied
with the assernbly and using manuals
for the 8781 QuASH.

POLY 1. 0 is also available in
8700 compatible cassette-tape form
for $4. oo.

LOADING AND INITIALIZING POLY 1. 0

If you have a cassette interface on
your 8700 and the POLY 1. 0 tape,
loading is simply a matter of connecting
your tape recorder to the cassette input
connectors on the 8700 and loading the
tape using the following entry sequence:

o-o-o-o-o-o-F-F-0-0-1-1-T APE

If you don't have the CS-87 option,
you must enter the code manually from
the 8700 keyboard.

The cassette version of tbis program
loads all of page zero of memory (its
total requirement) and in the process
initializes a couple of things that you
will need to care for manually if the
cassette is not available. When enter
ing manually, be sure to set the number
of outputs to correspond to the number
you have available. For example,
assuming that you have a system with
a single QuASH, the number of channels
available should be set to 4 using the
followlng computer keyboard Requence:

RESET-0-0-E-A-DISP
0-4-ENTER

The tape version initializes the number
of outputs at the most likely number of
4. Jf you want to use less channels
(because of lack of modules, say) or
·have a system with more, do it as was
shown above.

When entering the program manually,
make sure the decimal mode flag in the
status register is cleared by using this
sequence:

RESET-o-o-F-F-DISP
0-0-ENTER

This is automatically taken care of
when the tape version is loaded.

USING POLY 1. 0

With everything connected, loaded
and initialized, we're ready to begin
making music. Go to the beginning of
the program and begin running it.

RESET-0-0-0-6-RUN

If everything is working properly,
we will see the 8700 displays counting
quicldy, incrementing by one for each
scan of the keyboard. All of the QuASH
outputs should be at a very low output
voltage (the program initializes them as
zero) and the trigger flags for each
channel should be cleared.

As we press synthesizer keys,
QuASH channels should "come alive"
and produce control voltages correspond
ing to the keys that POLY 1.0 has assigned
,to them. The trigger flags should be
set if the key corresponding to the
channel is currently down and clear
when the key is released.

TWO MORE FEATURES OF POLY 1. 0

While POLY is running, touching
any of the keys from 0-3 on the 8700
keyboard (the first row of keys) causes
the system to clear all QuASH channels
to zero and wait for new data tobe
assigned. You111 figure out what this
is good for as you become familiar
with the system.

Maybe more importantly, touching
any of the keys 4-7 (the second row

POLY 1.0
By John S. Simonton, Jr.

© 1978 by PAIA Electronics, Inc.
All rights reserved.

06- A9 00 LDA #$00 G9- A6 E9 LDX $E9
08- A2 18 LDX #$18 6t:l·- B4 CF LDV $CF,X
0A- 95 CF STA $CF,X GD- F0 1D BEQ $088C
0C·· CA L)D: GF·- P.2 09 LDX #$09
01)- D0 FB BNE ~80A 71- CA DEX
0f- A2 08 LDX #$08 ?2- F0 F1 BEQ $0865
11- B5 D7 LDA $D7,X ?4- 98 Wf1
H- 18 CLC 75- 55 D7 EOR $07, X
14-· 75 DF ADC $Df,X 77- 0A ASL
16- 8D 00 09 STA $0900 7f;·· 0A ASL
19- 9D F7 09 STA $0::)F/, X 79- 00 F6 BNE $08?1
1C- A0 04 Ll)'r' #$04 7B·- 98 TVA
1E- 88 DE'r' 7C- 15 D? ORfi $D?.X
lF- 00 FD BNE $081E 7[- 95 07 srn $1)?,X
21·· CA DEX 80- CG EB DEC $EB
22·· 00 ED Bt~E $0811 82„ F0 31 BEQ $0885
24- A·; .:!. 08 LDX #$0ü 84- A6 E9 LDX $C9
26- A9 00 LDii #$00 ü6·- A9 00 LDfl #$0tl
2ü- 95 CF STA $CF, X Bü·- 95 CF srn $CF,X
2n- CA DEX üA- F0 D9 CEQ $0865
2D- D0 F8 8NE $0828 iiC·- fi9 01) LDfi #$00
2D·- A2 08 LDX #$0ü 8[- A2 09 LDX #$09
2F- 2C 1€1 08 BIT $0810 90·· CA l)D(
:32- 30 FD BMI $082F 91-- F0 22 BEG! $0ü85
:54- 2C 10 08 BIT $0810 9J-~ [:4 CF LDV $CF„ X
J7- 10 0F 8MI $0848 95-· rn F9 BEG! $0890
:,$9„ 50 F9 BVC $0834 97·- <"•C" ;„J CF srn $CF,X
18· AD 10 €18 LC•H $0810 99- e··· 1.:!. 139 LDX #$09
.~E- 95 CF srn $CF .. i·(98- CA DEX
4()- CD lÜ 08 CMP $081~) ~1C- rn 1? BEQ $0885
41- Hi FC DEG! $0840 9(- fl9 4iJ LDf1 #$40
45- Cli [)[:~ 110- 35 D? titiD $1)?, ~-(

4f.i·- D0 t::C BNE $0834 n2-~ [)0 F? 8Nt $(1ü98
4:?,·- E6 E:J INC $E:C: fl'I·· A9 :30 LDf: #$t:ü
41'1- 115 E:J LDil $Eü 116· ·:;;:-

,,;.J D? AN!) ~w?„ ;:.;
4C- 8{) 20 08 STA $0820 fl8··· 95 D? STH $[:i~-;.J >~

41- [ff NOP lifi- 98 TWI
50-- Eli NOF' nB-- 15 D7 ORfl $[)? .. >~

·51- Efl NOP IW-- 95 D? STfi $L)7, ::<
5:e:· f:5 CA LC<li $EA tiF·· C6 t:B [JEC $[(:
54·· 85 [!3 srn $[8 81„ F0 02 BW $0::385
56-- A2 08 LDX #$0::3 8}·· 1)0 !)? BNE $0ü8C
5ü- A9 BF Ll)fi #$8F B5·- 2i3 00 ff JSI<: $ff00
5ti- 15 D? fl~j[< $1)?, :..; Dü-- C9 04 CMP #$04
'5C· 9'5 D? srn $Ci·?_.>{ Dfi- 80 03 DCS $0:38F
5E·- cn DE~(8C-· 4C 06 fl:J .JMP :$\X106
5F·- 1)0 17 BNE $0858 or·- C9 0ü CMP #$08
61·· A9 09 Ll)fl #$0::) Ci·- 80 0"' ·.J BGS $0:::c8
G3-- 85 Eo _„ STfl $E9 r···'·· ~,,; 119 2E LOn #$2E
G5- C6 (9 DEC $ES: CS· 4C 0:0 0(1 JMP :$01'J~38
Gr· F0 ;;:.;; BEG! $088C C8„ 4C üF 00 JMP $0ttüf

on the 8700) provides a tuning function You may want to use multiple VCO's
and causes all QuASH channels to pro- mixed into a single voicing circuit,
duce the same note with the trigger (See figure 9), or what amounts to a
flags set, allowing all oscillators to be complete synthesizer for each con-
set to the same pitch. The note pro- trol channel or anything in between,
duced corresponds to the 2nd C on a (See figure 10).
standard configuration 3 octave key- A word of ad.vice: in your beginning
board. THE CHANNELS MUST BE stages of learning to use this system,
C LEARED AFTER TUNlNG by touching you should try to stick to configuration
the first row of 8700 keys. in which all of the channels are produc-

ing the same "type" of sound - as close
THE SYNTHESIZER to identical as possible. As your skills

progress and you develope a feel for
There are an almost unlimited number how POLY 1. O is going to massage data

of ways to use the multiple control you can work up to using some output
voltage produced by the QuASH and channels to set VCO pitches while
POLY 1.0. 27

others control filter parameters (just
an example - the number of posslble
combinations is extraordinarily large),

POLY 2. 0 is under developement
and features the use of some QuASH
channels as software controlled envel
ope generators, reducing the need for
lots of these hardware modules.

POLY 3, O provides for computer
storage of sequences of chordes or
notes.

ONLY POLY 1.0 IS AVAILABLE
NOW. The others are still a couple
of months away, 1 mention them only
because 1 want to make sure that we
all understand that the nature of this
new musical tool is a function of the
program that is running and not so
much of the hardware that it uses,

c
CHANNEL

A
G

c
CHAN

B

:r G

"' -<t'
::>
0 c
CHAN

c
G

c
CHAN

D
G

28

CHANNEL C
A

c
CHAN

B :r G NC
"' "<t' c ::>
OC'rN

G NC

C~N
c

ADSR
G NC

FIG.9

ADSR

"' OUT
w

ADSR
X

~

ADSR

ADSR

FIG.10

LAD NO T~S ; Mus , by John s. Si~owo, i'·
w~h the new miracle in;redient - st;

With the exception of the bare-bones The QuAsh drivers (called NOTE)- change from one value to the next and
Usting of POLY l. o that ran in the last same thing- we're going to need them for if appropriate settling time is not allow-
issue, we haven't looked at any software- almest everything we do. Why bother to ed between writes to the QuAsh channels
mainly because there was little to examine. load them? we will be able to hear the changes as a

But MUS l was just recently finalized, In addition to these two routines, MUS 1 slight 11 buzz11 in each of the channels.
so that situation is beginning to change. also contains: The Solution here is to output the data

MUS 1, for the benefit of those of you INIT: an initialization routine that takes first to a 11 dummy channel" that is
who haven't been waiting for it for the care of setting various variables and buf- occupied solely by the D/ A, with no
last six months, is what many would call fer areas to a known, acceptable state corresponding QuAsh, followed immedi-
"system firmware"- and since that has (as opposed to the random numbers they ately by a write of the identical infor-
the sort of technical ring to it that tends will contain when power is first applied.) mation to an output which does corres-
to make things interesting, we'll call it POLY: essentially the polyphonic (1 pond to a QuAsh channel. The first
that, too. still prefer polytonic) allocation algo- write allows the D/A to settle while the

In almost any computer application rhythm from POLYl. O, except refined second strobes the settled output into
there are some programs which, for one somewhat to take less memory space. the appropiate QuAsh channel.
reason or another, are best handled as TRGN: The new miracle ingredient- And here we come face to face with
firmware- a name that these days means Software Transient Generators (STG). the next problem; the QuAsh really need
not software (which must be loaded from A routine that will serve as a software some settling time since they are at
some storage media external to the com- substitute for ADSRs. their heart nothing more than an RC
puter) and not hardware (a permanently OPTN: A very simple option selecting circuit.
wired collection of gates, etc. which program that allows the remaining firm- As Iong as we are thinking in terms
cause a specific, set sequence of actions ware of MUS l tobe tied together into a of small systems(8 output channels ar:
to take place) but something betwixt and 16 voice polyhonic synthesizer with or less) this is not a big problem since it
between; most usually, software that is without software transient generators- can be dealt with simply by delaying af-
contained in a PROM somewhere. without having to lead ~ additional ter writing to one QuAsh but before set-

The most obvious firmware is a mon- software (though several parameters will ting up the next. 1f the delay is not long
itor program such as PIEBUG. Since need tobe initiallized manually), enouglj., we will hear changes from one
this program is the thing that allows for All of this is pretty straight-ahead value to the next not as an instantaneous
the entry of data and instructions into code that should be understandable from change, but rather as a series of steps
the memory of the Computer in the first the documented Usting that appears at from the initial value to the final one:
place (as well as usually providing what- the end of this article- you may need to Ll= lc
ever de-bugging and editing features the refer back to previous articles in this J
designer thought were important and/or series for background information; "In vt l v!
had room for), it is at least inconvenient Pursuit of the Wild QuAsh " (reference _J
to have to load it every time it is needed. Polyphony, July '77) and "What the Com-
Much better to have it in a dedicated puter Does" (reference Polyphony 4/76)
PROM where it is always available for would be particularly useful ones.

T->
We want this

T-+

immediate use. Two exceptions,. NOTE and TRGN,
The fi.rmware of MUS 1 is roughN an- need some additional explanation - they figure a

But if the QuASH
settling delay is not
long enough, will
get this.

alogous. These are universally useful introduce some new ideas.
routines that, with rare exceptions, will In an embryonic form, NOTE was a
be used with everything we do musically. part of POLY l. O. lt is the responsibil-
lt's a waste of ti.Ire and resources to have ity of this routine to take individual en-
to load them to RAM from tape (or worse tries from the output buffer area (NTBL),
yet, manually) every time they're needed. add to it the corresponding entry from
A PROM is their happiest home. In our the Transpose buffer area (TTBL)and
8700 Computer/Controller, MUS 1 is a output the results to the QuAsh channels.
l 702A PROM that occupies the address Seme aspects of the significance of the
range $DOO-$DFF (IC-17). addition that takes place will be seen

Examples? OK, the keyboard read- when we look at TRGN- for now, it will
ing routine (LOOK). lt isn' t particularly suffice to say that this will be an extra-
long or complicated (a little over 30 ordinarily handy convention in a number
bytes) but we're going to need lt every of cases.
time we turn on the system- even if it A more important function of NOTE
isn't used to read the keyboard, it's the is to make sure that what comes out of
thing that our protocols tlictate will be the QuAsh channels has no annoying
the tempo-determining element in the glitches that may be artifacts of the D/ A
system (based on the clock rate of the and multiplexing process. In an earlier
encoder). At some future date the oc- story, we looked at one of the annoyances
casion may arise when we can examine - the fact that our 8780 D/A, though
this in detail. Today, it's not the point. quick, takes a flhlte amount of time to

In larger systems, this constant delay
approach is not a practical solution be
cause there is not enough time during al
temate "dummy" scans of the keyboard
(the time which our conventions allow for
processing, output driving, allocations,
etc.) to allow .!!:!! of the output channels
the luxury of a delay. The time comes
for the keyboard tobe read again (or
other things to happen) and the processor
is still busy waiting for all of those QuAsh
to get to the right value.

The key to the Solution of this problem
is to notice that there is really only one
set of circumstances under which the
long QuAsh-settling delay is required,
and that's when the output of one of these
channels must change from one value to
another (which happens only a small per
centage of the time) and then, only when
the glide of the channel is turned off. (if

29

30

the glide is on, its integrating action will
smooth out the steps; and, in fact, a
short write time is preferable here since
it will serve to increase the time required
for the glide.)

The actual solution is what 1 feel we
should call "DYNAMIC QuAsh DRIVERS"
-a small block of programming, more or
less in the middle of NOTE.

This part of tre program first checks
to see if the glide control bit (the most
signüicant bit of the data just written to
D/ A and S/Hs) was turned on or not. If
we are in "glide mode," no delay is re
quired so the program immediately goes
to see if there are any channels left to
write; if there are, it services them.

lf the glide is not on, we have a cand
idate for dynamic operation so the dynam
ic mode switch is checked (more later)
and if this option is selected the current
data is compared to the data that was
previously written to this channel (requires
a new table that we1 ve generated called
"LAST") and if they' re different (a
change), the program goes into the delay
that allows the output of the QuAsh to
instantaneously (apparently) step from
its previous value to the next one. The
lilew value is saved in LAST (for use
next time) and if there are more channels
to do- it does them.

SOFTWARE TRANSIENT GENERATORS

Here we begin, for the first time, to
replace some of the elements that consti
tute traditional synthesizer hardware with
software that performs the same function
(hopefully as well, or better) with less
costly hardware. STGs are a good
place to start because they're not super
difficult to implement.

Just like their hardware equivalents,
STGs respond to a note which has just
been triggered (pressed on the key
board) by producing a voltage that rises
at a controlled Attack rate. After reach
ing some peak value, the voltage then
drops at a Decay rate until it reaches
a pre-set Sustain level where it stays
as long as the note remains triggered.
When the key is released, the voltage
drops to its lowest level at the Release
rate. ~~~

Computing the number which repre
sents the current value of the transient is
only slightly more complicated than
adding, subtracting and comparing.

Unlike an ADSR, an STG has no
knobs to set, in their place you enter
numbers setting Attack rate, etc. into
the computer.

Perhaps the biggest problem having to
do with STGs is deciding where they should
come out. Oh, the QuAsh channels, ob
vio1Bly; but which ones? Of the numerous

possibilities, we've selected the conven
tion of having pitch setting voltages (those
that correspond to notes) and transient
voltages come from alternateQuAsh chan
nels, primarily because this will work
nicely with some stuff under development
(or consideration, at least), without mak
ing obsolete all of the hardware that we've
accumulated up to now.

This implies two distinct modes of
operation; the first in which the STGs
are not asserted and POLY assigns notes
to sequential QuAsh channels; and, the
second mode (STGs on), in which notes
are assigned by POLY* to the odd
number QuAsh channels (first, third,
etc.) while transients are produced at
the even number outputs (second, fourth,
etc.).

The note produced at the first QuAsh
output has a corresponding transient hap
pening at the second output, and so on.
Just as if the trigger from the first chan
nel were patched to the input of an ADSR
whose output was somehow tied to the
output of the second QuAsh channel.

This would seem a good place to men
tion (in case it's not already obvious)
that in this implementation all of the STGs
produce the same kind of transient, and
for the kinds of things that we're doing
now, this is how it should be. lt may also
be worth mentioning that while the trans
ients are all the same, they are totally
independent where following the triggered
and released states of their resiective
note channels is concerned.

There are also some internal details
which muddy the STG waters. For instance,
a key that is currently down may require
a transient function that is either in the
Attack cycle (increasing) or Decay/Sus
tain cycle (decreasing or holding) depend
ing on its past history (had it already
peaked ?). Somewhere we need to save
information on which cycle the transient
is actually in.

Another, somewhat interrelated, prob
lem concerns the smoothing of the trans
ient waveform. Under most conditions,
the glide of the QuAsh channels that are
being used as transient outputs should
be turned on so that a smoothly increas
ing or decreasing function is produced.
But, the glide can't always be on because
that would limit the ma.ximum attack rate.

Without having the space to cover it
entirely, 1 can only state that the solution
to both of these difficulties lies in the use
of the Transpose table and remembering
that the data stored in TTBL entries is
added to the output parameter in NTBL
(where we're storing the actual current

* Note that POLY checks to seeif the
STGs are turned on as it assigns notes
to outputs.

value of the transient) before the output
operation takes place. Note also tliat
while the data in NTBL is manipulated
extensively by POLY and TRGN (as they
calculate, allocate, - regurgitate ?) TTBL
is untouched by computer hands, and this
makes it an ideal place to save control
type functions. Not only transpositions,
but a place that glide and trigger bits and
such can be permanently set.

These locations are so handy for this
application that in TRGN they have been
re-named CWRD (Control-Words, •. but
do not be confused, this is still our old
friend TTBL and has no relationship at
all to the System Control Word-CTRL)
and it is here that we keep track of the
A/D/S state of each of the transient
channels.

Also, to help me keep things straight
in my own mind, the NTBL bytes that
are used to store the current value of
the transient have been re-named PARM
(parameter); but, agr.dn, this is the same
physical area as NTBL.

NOW, HOW DO WE USE ALL THIS?

Perhaps the best way to begin an essay
on how to use MUS 1 is to state one of the
functions that it was devised to perform

As you are no doubt beginning to real
ize, we've carefully developed a system
that will have applications far beyond what
we've discussed to this point. lt's complei:;
and while the complexity implies unmatched
versatility, it undeniably has its intimida
ting aspects.

At one level of use, MUS 1 should re
duce this intimidation by giving the user
an Instrument with a specific (though with
in certain limits alterable) personality the
instant that it's turned on, without having
to hassle around with loading any additional
programs (success) or variables (well, ..)

Also, these program modules should
be written so that they easily interface
with future expansions of the system, ei
ther hardware or software, so that, when
needed, they can be accessed by programs
offering distinctly different personalities
(success here maybe- only tiim will really
tel!).

While we've reduced the intimidation,
we've not eliminated it entirely because
even when using MUS 1 as a stand-alone
personality there are some variables
which must be initialized before you begin
to play- some Information that the system
must have in order to operate properly.
This data could be part of the PROM, but
not without significantly compromising
v ersatility.

For instance, we•ve mentioned in passing
a couple of times the System Control Word
CTRL. This is a single word in the com-

puter's RAM memory at location $0E8.
lt is most helpful to visualize CTRL

as a collection of eight "switches", each
bit representing one switch. To MUS 1,
only two of these switches have any sig
nifi.cance- D7, which turns the STGs on
and off, and D6, which enables or disableE
the dynamic mode option. The rest are
reserved.

Every time you power up the system,
CTRL must be set so that the desired op
tions are selected- there is no default
setting that is part of MUS 1. lf you want
dynamic mode (which you should, for now)
then bit 7 should be turned on. lf you want
STGs, bit 8 must be set.

The 4 possible combinations of these
2 bits then have the following significance:

~
00000000
01000000
10000000
11000000

hex
$00
$40
$80
$CO

action
STGs off; dynamic mode off
STGs off; dynamic mode on
STGs on; dynamic mode off
STGs on; dynamic mode on

CTRL is not the only variable which must
be initialized manually. There's also:

EXTERNALL ',' INITIAL I ZE[) VAR 1 A8LES

LOC. LABEL USE

0E8 CTRL SYSTEM CONTROL WORD
D7 SET TURNS ON
TRANSIENT GENERATORS
()6 SETS D'T'NRMIC MODE

OE9 ODLY SETS OUTPUT DELA'T';
IN DYNAMIC MODE $20
RECOMMENDED

0EA OUTS NUMBER OF HARDelARE
SUPPORTED CONTROL
CHANNELS Al/AILABLE

-- AND TRANSIENT PARAMETERS

08A
088
08C
08D
08E

ATCK
DC"'
SUST
RELS
PEAK

ATTACK RATE
DECA"' RATE
SUSTA I t-1 LEVEL
RELEASE RATE
PEAK l/ALUE -SEE TEXT

RATES: $0i <SLOW)
$3f <FAST)

LEVEL: $0i <MINIMUM)
$3F <MAXIMUM>

Most of these are easily understood or
have been examined in the past, so we

transient generators are turned on, we
also need to enter the attack, delay, sus
tain and release parameters that we want
produced. These four entries should need
little explanation other than the examples
which follow shortl.y; their range is from
$Ol-$3F, with $01 representing the low
est rate or level and $3F the highest.

PEAK- this fifth transient parameter
needs a little extra attention. PEAK has
only one use; it determines whether the
transient produced is going to be percus
sive (quiekest possible attack and full
ADSR segments) or non-percussive. In
the non-percussive mode, the glide is
on for Jill.. segments of the transient and
the Decay and Sustain states of the trans
ient are eliminated entirely.

In fact, there is only one bit in the
word PEAK that is changed to select one
of these two options- the most significant
bit. The remaining seven bits should (for
now- until you have a real feel for what's
happening) be set to $3F (OOllllll in binaryl
If the most significant bit of this word is
cleared, you're in percussive mode. If
the bit is set (so that PEAK contains $BF
- lOllllll in binary) you are in non-percus
sive mode.

The differences between the two are
great. Assume for a moment that we have
set the ADSR parameters at $3F /$04/$20
/$01 respectively (fastest attack/moder
ated decay/medium sustain/slowest re
lease) and that we are only going to change
the PEAK parameter. If PEAK contains
$3F(percussive mode), a 'scope display
of the transient will lock something like
this:

vt
won •t go into any great detail. A few points
are worth mentioning, however. key down key release

ODLY- this is a number that repre
sents the delay that the QuAsh drivers
will use, when required. For normal
use, a value in the range of $20-$30 is
most appropriate.

OUTS- this variable tells the POLY
subroutine how many output channels it
has to work with, so that notes don't get
lost; we talked about this last time. Now
we need to notice that when the STGs are
asserted we should think of the quAsh
channel that is producing the transient
as simply an extension of the channel pro
ducing the note. In other words, the two
QuAsh channels constitute a single "hard
ware supported" channel. A single QuAsh
represents two such channels.

ATCK/DCY/SUST /RELS- When the

r~
figure b

Setting PEAK to $BF (non-percussive)
produces this result:

key release

figure c
r~

Because the glide is now on during the en
tire attack cycle and the Decay and Sus
tain portion of the transients are elim
inated. Straightforward stuff, really.

We need to cover an example of sys
tem set-up before we wind up, but first
must notice that the effect of having the
PEAK parameter are far more far-reach
ing than we've been able to cover in detail.
A quick example:

ADSR parameters set to $10/$04/$20
/$01 and PEAK containing $3F will pro
duce this kind of transient:

key down

figure d r~

which, when heard, starts out with a
non-percussive kind of "swell" with a
percussive "pip" added at the last in
stant before the transition to the Decay
and Sustain cycles. This would seem to
be a unique and useful transient that isn't
produced by traditional ADSRs.

Along the same lines, the TSGs can
be considered to be "better'' than our

hardware ADSRs in that they ~

finish the Attack cycle before transition
ing to the Release state. lf a key is re
leased before its transient has gone all
the way to PEAK, the transient immedi
ately switches to the release state. This
is frequently called "muting' and it offers
the possibility of effective control of es
pression directly from the AGO keyboard.

A SUMMARY. OF SORTS
So, we've gotten our hands on a MUS l

PROM and are ready to start doing things.
What has tobe done first? Really very
little. --

First, the System Control Word, Out
put Delay and number of hardware chan
nels available must be set. For example:

keystrokes
O-E-8-DISP

explanation
sets monitor pointer
to $ES-CTRL

C-0-ENT sets $E8-asserts STGs
dynamic mode

3-0-ENT
0-2-ENT

sets ODLY value
sets output channels
at 2

these entries define the personality cf the
instrument as a 2 voice polyphonic synthe
sizer (notes from channels A & C) with
software transient generators (which ap
pear at QuAsh channels B & D) .

31

32

Next, we must set the transient par
ameters to the desired values:

keystrokes
0-B-A-DISP

3-F-ENT

explanation
sets monitor pointcr
to $BA-ATCK
s ets shortes t attack

MIX OUT

o-4-ENT sets moderate decay
2-0-ENT sets moderate sustain figure e
0-1-ENT sets slowest release

Oh, yes- I almost forgot. OPTN, like
POLY 1. 0, uses the 8700 keyboard to con
trol two important functions. Whlle OPTN
is running, touching key 0 of the control
keyboard will cause the entire system to
be re-initialized. Not the entries that we
made manually- those remain unchanged,
but all the notes and transients go immed
iately to zero level.

3-F-ENT percussive mode
and you may recognize these parameters
as being those that we examined in the
illustration earlier.

Finally, we simply begin running the
program:

keystrokes
D-0-0-DISP

explanation

Similarly, touching key ill produces
RUN

sets monitor pointer
to beginning of OPTN
presto- the program
runs

A typical patching configuration that
would be consistent with these entries
would look something like this:

a tuning function that makes the synthe
sizer respond as if all the channels were
seeing the second C-;;;; a three octave
keyboard held down. The transients go,
the notes play, etc. After tuning, be sure

~000-
0D03-
0D06-
0D09-
0D0C-
0D0E -
001.:1.-
001.4-
0D:l.6-
0D:l.E:-
00:l.A-
0D:l.C-
0C.tl.F-

20
20
20
20
A5
E:D
20
C9
30
D0
A0
20
F0

2:1. 0D
71. 0D
C3 0D
28 0D
BF
20 08
00 0F
01.
EE:
E9
5C
52 0D
E2

. :t: +·+' ;t::t. :+· * :t; .f: * :t: :f, :i: :t: :t: :f: :+: * :+: :f: :t::t: :t: :f: :t: :t: :i·::f; :t::t: :t: :+:

* *
·~ MU:'.J .+•

•i: 1

::+. E::'T' .J(JHt·J SlMC.lt·nUt·~ +·
: •+•O::C 1.9?:c: F'HIA ELECTRONIC'.c'., HK:+•
:* ALL RIGHTS RESERVED *
·* *
: :t:

: :t: S'T'NTl-IES l ZE~: '.::;UBF.:1)UT 1 NES .+:

:* ++ AND ++
:ot• t1UL TI PLE CIPT I or• PCJL','F'HON l C •t•
: * ALLOCAT I Ol·l PF~OGRAt1 ~·H TH *
: * '.';.OFHJARE TRRr•SIHff *
: •+• GENEF.:fH 1 ON •+•
;:+:

,********************************
OPTt·l

: P•JL '.'PHOtH C S','tHHES I ZEF: / OPTI ON
SELECTIOt·l

=********************************

INIT . DL €1D2:l.
POLY . DL 0C•7:l.
TRGN . DL 0DC3
NOTE . DL 0D2B
DECD . DL 0F00
FILL . DL 0D52
DISP . DL 0820
CLCK . DL 00BF

:OPTION TIES MUS:!. FIRMWARE
:TOGETHEF: INTO A POL'T'PHC!tHC S'T'tHH
: WITH OR WITHOLIT TRANSIENT GENER
: TI ot~; W/l•lO DYNAM I C IJUASH DRIVERS

:ALSO USES PIE8UG DECODE AND
: ASSIGNS KE',' #0 AS S','STEt1 CLEAR
:AND lt:l. AS TUNE - EQUIVALENT TO
: ALL CHANNELS 21m "c" ON fc~BD DOW~

OPTN .JSF~ ItHT :ZERO ALL BLIFFS
LOOP JSR POL'T' :ALLOCATE CHANS

JSR TF:GN : NE•l TRANSIEtHS
JSR NOTE : OUTPUT-F.:EAD ftGO
U>A ·~CLCK :GET CLOCK VALUE
STA [:•ISP : F.:AZZ-MA-TAZZ
JSF.: DECD :CHECK COMMANDS
Ct1P 01. : ~:::1? :1? >:!.?
8MI OPHl :0; CLEAF.: ALL
BNE LOOP ::>:!.; KEEP ON
LD1T1 5C ::!..• TUN!': 2ND c
JSR FILL : KE'r'S ALL C"JWN
BEQ LOOF' : 8F.:AtKH ALi·JA'T'S

ItHT
INITIAL!ZATIOt• ROUTINE

:********************************

CTRL . DL 0€1EE:
TBEG . DL 00BF

0D2:l.-
0D23-
0D25-
0D26-
0D28-
.E!D29-

ß[:•2E:
l1C•2[:•
f1C12F
üDJ:(.1-
m:·::;2-
f1D35-

~3D:::::-

üD::::~A-
[1C•3:C-
[1D3:E-
OC-4(1-
üD42-
0D44-
0D46-
0D47-
"1[:049-

A9 00
A2 28
D8
95 BF
CA
D0 FB

A2 :10
85 CF
1.8
7!:i BF
::;[:• üü
9D EF

J:~j (1F

~::19 80
24 E:C:
5~Z1 134
D5 R9
F0 05
A4 E9
::;:::;;
[.H::.'I FD
95 A9

~39

~39

to re-initialize the system by touching
control key # 0.

I prefaced one of the earlier paragraphs
with "at one level of use. " In all of the
preceding words, that's all that we've
examined- one level of use (the simplest
and most obvious level, at that.) . I've
also referred in the past to "software
modules" which can be strung together
in different ways (just as can hardware
modules) to produce different effects and
personalities. MUS 1 is the first set of
these modules.

With more regret than you can imagine,
I haven't the space here to go into all of
the implications of this (even if I knew
them all, which l'm sure I don't).

Providing you're more than just cas -
ually interested, you should spend some
time trying to understand how MUS 1 works
internally (there are numerous different
entry points to the routines that we haven 't
covered - for instance). I believe that the
time investment will be wisely made.

:INIT CLEARS INPUT BUFFER (KTBL)
: OUTPUT BUFFER (tHBL) ANO TRANS-
: POSE 8UFFER/CONTROL •JORDS (TTBL)
: HEXADECit1AL MO[>E IS SELECTED

:ENTER AT INT0 TO FILL TABLES
: WITH CHAF.:ACTER FROM ACCUMULATOR

INIT LDA 00 :PREPARE TO ZERO
INT0 LDX 28 :SET POINT/COUNT

CLD :SET HEX MODE
INT:l. STA >1<TBEG, X :ZERO BUFFER

DEX :ROINT TO NEXT
BNE INT:l. : SOt1E LEFT -LOOP

NOTEOUT/LOOK
::l.6 CHANNl;:L QUASH DRIVERS AND AGO

KEYBOARD READING ROUTINE

:********************************

CTRL DL 00EE:
ODLY DL 00E9
KT8L DL 00DF
NTBL DL 00CF
TTBL DL 00BF :ALSO CLCK
LAST DL 00A9
:':/H DL f1:;.EF
l:• . ..-'H DL (19(10

KE:C• [:•L ü8l.ü

*** t-.ICITEOUT ***
UT't·JAM 1 c OUASH DI':'. I \·'E~'.S

. CiET:O: NOTES TO BE PLA'T'ED FFWM THE
:OUTPUT E:UFFER (NTBL) AND ADDS
: TRAt·lSPOS ING './AL.UE FF.:OM TRANSPOSE
. E:UFFEF.: (TTBL>. OUTPUTS RESUL T

t·K!TE LD:": 1.0 :SET POINTER
NOü LC•A *tHE:L, ,·'· :GET NOTE

C:LC :PREPAF.:E AN['
A[:•C •t•TTBL.. ~< : ADC• TF.:ANSF'OSE
s:TA [:•/A :LET [),.-·'A SETTLE
STA S/H ::~: : 1•F:ITE TO S/H

. t<Ol·J THE [>','NAM I C PAF.:T; I F GL IDE
· 1 5 ON .. C'ELA',' I S SKI PPE[:•. I F NOTE
· E; SAME AS L.A~'.T PLA'.'ED <IGNOF.:ING
:COtHF.:üL BITS [>6 .!:O, D;>;. [>ELAY IS
: 5K I PPE[). I F NOT IN [NNAM 1 C MODE
: Arm NO GL IDE, [>ELA'T' AL•JA','S TAKEN

8t'1I N02 :GLIDE? NO DELAY
O~:A 8C1 · IGNOF:E FLAGS
BIT :+:CTF.~L : D"r"NAMIC MODE ~,

B'v'C [)LA'T1 NO .• JMP TO DELAY
CMP *LAST.•~< COMPARE TO LAST
BEC:! N02 SAME:SKIF' DELA','

DLA'T' L[:o',' =t:ODL'T1 GET [>ELA'T' VALUE
NO:l. DE 1T 1 C>ECF.:EMENT DELA'T'

E:NE NO:l. LOOP TIL DONE
t·~O~:.:: 5TA ·~LAST.·:,, FOR NE~n TIME

OD4E:--
0{)4C-

0D4E
~lD50-
0D52-
t:1l•54-
0[:057-
(1059-
0D5C-
0D5E-
0D5F-
0D61.-
0D62-
0D64-
0D67-
0D69-
0D6A-
0C•6C-
0D6D-
0D6F -

0D7:!.-
0D73-
0D7S-
0D77-
0D79-
0D7B-
0D7D-
0D7F-
0D8:1.-
0D82-
0D84-
0D87-
0D89-
0[>8B-
0D8D-
0D8F -
0D9:1.-
0D94-
0D96-
0D98-
(1D9A-
0D9C-
0D9E-
0D9F-
0DA0-

0DA2-
0DA4-
0DA6-
0DA8-
0DAA-
0[>AC-
0DAD-
0DAF -
0[)82-
0DB4-
üDB6-
0DB8-
0DBA-
0DBC-
0DBE
Q[)6F-
0t:•C0-
0DC2-

CA
D0 DF

E6 BF
AC1 00
A2 08
RD :1.0
3:0 FB

DEt-:
BNE N00

:POINT TO NEXT
:SOME LEFT -LOOP

: LOOK 1.oJAITS FOF~ THE BEG INNING OF
: AN "ACTI VE" ~:CAN-E•EG INS PUTT HlG
: THE NUMBERS OF KEYS DOwt; IN SE
:IWENTIAL IN-BLIFF WlRDS. fJHEN
: SCAN [>OUE REMAHHt·m IN-BUFF IS
:ZERO··"[).

LOOK I NC *TTE:L
L[>'T' 00

FILL LDX 0~:

08 LK2 LDA KBD

AD :1.0 08 LKJ;
30 0F

BMI LK2
LDA KBD
E:MI t:•ONE
ROL

ItKREMEtH CLOCK
:PREPARE FOR CLR
: SET UP POHHER
: WAIT FOR
:"ACTIVE" SCAN
:GET l<EY
:END SCAN? -CLR
:STROBE TO D?
:D7=0,NO STROBE
:RESTORE DATA
:TO IN BUFFER
:NOW WAIT FOR

2A
:1.0. F8
6A
9S DF

BPL LK3
ROR

CD :10 08 LK4
F0 FB

STA *KTBL.. X
CMP KBD
BEO LK4 : NEXT K:EY

CA LK0 ['E~: :PNT TO NEXT BUF
:SOME LEFT -LOOP
:LEAVE

D0 ED BNE LK3
60 RTt; RTS
94 DF
30 F8

AS EA
85 EB
A2 :1.0
BS CF
F0 27
29 ?F
09 40
A0 09
88
F0 :1.2
D9 DF 00
D0 F8
95 CF
C6 EB
F0 3J:
A9 ~30

99 DF 00
F0 04
29 BF
95 CF
24 E8
:1.0 0:1.
CA
CA
D0 D5

A2 :1.0
A0 09
A9 40
J:5 CF
D0 OE
se
F0 :13
89 C>F 00
F0 F8
95 CF
C6 EB
F0 08
24 E8
:10 0:1.
CA
CA
D0 E4
60

DONE ST'T' *KTBL .. X
BMI LK0

POLY

:ZERO IN-BUFFER
:BRANCH ALWAYS

A LIMITED RESOURCE ALLOCATION
ALGORHYTHM

:********************************
OUTT . DL 00EB
OUTS . DL 00EA
CTRL . DL 00E8
KTBL . DL 00DF
NTBL . DL 00CF

:POLY-FIRST HALF OF ALGORHYTHM
:IN THIS BLOCK DE-RCTIVRTED CHANS
:ARE REACTIVATED IF THE DATA THEY
:CONTRIN APPERRS IN THE IN BUFFER

: D7 IN CTRL SET - ALTERNATE MODE
: D7 " CLR - SEQUENTIRL MODE

POL~· LDA *OUTS
STA >t<OUTT
LDX :1.0

POL0 LDA +NTBL, ~:
BEQ NWKY
AND 7F
ORA 40
LDY 09

LP0 DEY
BEQ NEXT
CMP KTBL,Y
BNE LP0
STA =t:NTBL~ :=<
DEC >t<OUTT
BEO OUT
LDA 00
STA KTE:L. '."
BEO LP1

NE)<T AND 0BF
STA *NTBL~ ~<

LP1 8 IT *CTF:L
BPL SKP1
[)E::<

Sk.F'1. DE>=:
8NE F'OL~21

: NEl.oJKE'T' - SECOND
: AF~E ASS I Gt·lED TO
:LOCATIONS WHICH
: ACT 1 VATE[:•

NfJK~' L[>X 10
LD 1T1 09

NK:I. U>A 40
AND >1<NTBL..· ~:

BNE t<K3

:# OF OUT CHANS
:USE AS COUNTER
:PREPARE PNT,.'CNT
:GET NOTE
: 0-0LD KEYS [>ONE
:CLEAR D?
:SET D6
:PREPARE PNT/CNT
:POINT NEXT KEY
:DONE -NEXT NOTE
:SAME AS KEY?
:NO -NEXT KEY
:SAVE NOTE 06=1.
: Ot;E LESS OUTF'UT
:NONE LEFT-LEAVE
: OF; Pf':EPAPE At-W
: ELIMitlATE KE'."
: .i, 8F;ANCH AU~A',O;o:

:CLEAR TRlG (D6:>
.& RESTORE NOTE
. AL TERNTE MODE'C.•
: Nü -DEC. ONC.E
: 'T'ES-OEC. T\,J ICE
:POINT NEXT NOTE
: 50ME LE:.FT --LOOP

HALF. f<EYS DOi.JN
OUTPUT BUFFER
AF:E STILL [>E-

: tHABLE Ptfl ,.·'UH
:KTABLE PNT/CNT
: F'F:EPARE MASf•::
NOTE TRI GGEF:EDC.·

: 'T'ES -GO TO NEXT
DE'r'
BEQ

: POINT NE)-:;T f':E','
OUT NONE LEFT-·LEA'./E

NK3

5KP2

OUT

LDA
BEQ
STA
DEC
BEO
BIT
BPL
DE:":
DE~·:

BNE
F'.TS

KTE:L, V : KE'" NEEDS HOl1E?
NK2 :MJ -GET NEXT
*NTBL~ >:: : 1T'ES-PUT IN t·~OTE

*OUTT
OUT
••CTRL
SKP2

NK1

:ONE LESS OUTPUT
NONE LEFT-LEA\"E

: AL TEF:NATE MODE",''
:NO -DEC ONCE

','ES-DEC nn CE
: POINT NE~<T t-.IOTE
·SOl1E LEFT -LOOP
: F:ETUF:N

0DC3-
0DC5-
0DC7-

0L:•C9-
üDCB-
(1DCD
(1[:•CE -
0DCF
~3DD1.-

0[.•(:oJ:-

(1[)to5-
(1[:•[•6-

CIDD8-
0[:•[:•A-
0DC1C
'1DC•E-·

0DE0-
(1[:•E2-
(1DE4-
0DE6-
0[.„E8-
0Df:A-

0DEC-
0DED
ODEF
ODF:l
t1DFJ:-
0DF5-

0DF7-
0[>F 9-
e:1C>FE1-
0DFC
(1[:.FD

.Q!;>fF-

AS E8
:1.0 38
A2 1.0

A0 4€1
85 CF
2R
2A
85 CE
9ü :19
:1(1 0B

18
65 BA
C9 BF
9(1 :18
A5 BE
00 :17'

A0 C0
E5 BE:
C5 BC
1(1 0F
A5 BC
:10 (18

3:8
t39 E:(1

E5 BD
3(1 04
A0 00
A9 80

94 BE
95 CE
CA
C.A
DIZ1 CA
60

TRGN
: TRANSIENT GENEF:ATOR PROGRAM

: ******************:-1-::f:;f;:f::t::+::+::+::f.

CTF.:L
ATCK
DCY
SUST
PLS
PEAK
tHBL
PARM
TTBL
CWRD

. DL. f10E8

. DL (108A
[>L (10BB

. DL 00BC
DL 0(1BD

. DL 00BE
DL 00CF

. DL 00CE

. DL 008F

. DL 00BE

NTBL 00D0-00DF
TTBL 00C0-00CF

TRGN LDA >1<CTRL
BPL F:TN:I.
LDX :1.0

:DO TRANSIENTS?
:NO -PETURN
: tHABLE PNT/CNT

A,·'[>,.'S/R DETERMINATION
:ROUTINE PREPARES Y TO USE AS
:CONTROL WORD, GETS NOTE AND
: SHIFTS TF:IG. TO CARR',0, GETS
: CURF:EtH STATE <CS) PARAMETER.
: I F NOTE TRI G. NOT SET STATE I S
:RELEAS~ IF C.5 PARA IS POSI
TIVE STATE:. 15 DECAY/SUSTAIN
cn·HERWISE, STAlE IS ATTACK

AC•"·F: LD',' 40 . PREPARE CWRD
U>A :HHBL, :•: : GET NOTE FIND
ROL :ROTATE TRIGGER
F:OL : TO CAF:F:',' BIT
LDA :t:PAFö~M .. ~< : GET CS PARA.
BCC RELS :NO TRIG? -RLS
E:F'L DS : CS:>0? -DECA'T'/S

ATTACK ROUT!t<E
. AD[>S ATTACK PAPAMETEF: TO es PAF.:A
: mm IF GPEATEF: THAN PEAK
: SUBSTITUTES oC:F AN[:> SETS CONTROL
: ~·JüR[> TO $40 (D6 SET - NO GL IDE).
: NOTE THAT CS PARA ~H LL BE >0
: ~~HEN NE)O' CHECKED.

ATTK CLC
ADC :t:ATCI<
C11P OBF
8CC NEXT
LDA *PEAK
Bt;E NE)'.T

: PREPA~:E
:ADD ATTACK PARA
: >PEAK
: NO -PLACE PARA.
: ','ES-PEAK VALUE
:BRANCH ALWAYS

DECR',' Ar-m SUSTA rr; ROUTINE
: NOTE THAT CAPRY I S SET. DECAY
: PA~:AMETER 1 S SUBTF;ACTED FF:OM
: CUF:RENT STATE PARAMETER. IF
:PESULT IS LESS THAN SUSTAIN
: PAF;RMETER THEN SUST. PARA.
: BECOl1ES CURRENT STATE PARA.
: [>E: & D? OF CONTROL •JORD SET

[>S LD~' OC0
SBC *DC~'
CMP >1<SUST
BPL NEXT
U>A *SUST
BF'L NEXT

: PREPAF:E CWRD
:SUBTRACT DCY
::>SUSTAIN?
:PLACE PARA
:CS PARA=SUST
:PLACE PARA

RELEASE ROUT !NE
:MAKES SURE THAT CURRENT STATE
:GLIDE BIT IS SET <NOTE-MAKES
: CS NEGAT I 'IE). SUBTRRCTS RELEASE
: PARA. FROM CURRENT STATE. I F
:RESULT >O, MAKES es & CWRD =80

RELS SEC
ORA 80
SBC >t=F~LS

BMI NEXT
LDY 00
U>A 80

NEXT

:PREPARE
: SET CS GLI DE
:SUBTRACT RLS
:CS<0 -PLACE CS
:CS)-0 -DONE MAKE
.CS=80;CWRD=0

PLACES es PARA AND CWRD IN
:PROPER CONTROL CHANNEL OUTPUTS
: [>ECREMENTS POINTER <TWICE) AND
:IF NOT YET DONE LOOPS FOR MORE

NEXT STY *CWF:D, X
STA *PARM .. X
[)E;><;
l>EX
BNE ADSR

PTN:I. PTS

PLACE CONTROL
PLACE CS PARA
DEC~:EMENT f'O I NT
AND AGAIN
SOME LEFT -LOOP
RETURN

33

AFTERTHOUGHTS

lt has been pointed out that some
perhaps pertinent details have been
omi tted from the preceeding explana
tion of MUS 1.

The most prominent example is
"why would you ever want to not have
dynamic mode". The most probable
reason is for special effects.

In general, the difference between
special effects and noise is imagi nation.
Contemporary musical lore is full of
instances where a special effect resulted
from an unsuccessful attempt to do some
thing entirely different. Phil Spector• s
original "flanging'' effect, so popular
today, was supposed to be voice
doubling, but didn' t work.

In this same manner, there will be
those who will be able to use the "step
glissando" that results from too short a
QuASH settling delay as a valid musical
device,

Also, the dynamic mode :requires an
additional 16 byte tahle area that might
easily be put to better use in some pro
grams.

This same philosophy of maximizing
versatility is responsible for the QuASH
settling delay being an externally initial
ized variable. For the purpose of effect,
there may be times when you want a
short delay.

In addition to this, we have seen
systems which were marginal in their
power supply complement which would
have a discernible pitch "blip" when keys
were pressed with long delays (in the
$30 - $40 range) - caused by the relative
ly heavy charging current producing a
momentary dip in supply voltage. In these
systems, a short term solution has been to
decrease the QuASH driver delay to some
thing on the order of $10, The long term
solution is more power.

SEVERAL POINTS RELATIVE TO THE
OPERATION OF THE STGs SHOULD BE
MENTIONED,

Assume that we have set the STG
parameters as follows:

ATCK - 08
DCY 04
SUST 20
RELS 04
PEAK - 3F

or in our more or less standard notation,
$08/$04/$20/$04/$3F,

If we were able to disahle glide entire
ly, and then scope'd the transient we•d see
this:

figure (a)

1
V

T
as the STG program counted up to the peak
and then down to the sustain level before
counting down to the base level when the
key was released.

If we then enabled the glide and set
them to a slightly advanced position and
examined the same output we would find
that thls change had taken place.

figure (b)

t
V

T

QuASH GLIDE CONTROLS, The setting
of the QuASH glide pots have an effect on

The integrating action of the glide
circuitry has smoothed the steps of the
Attack, Decay and Release, with the ex
ception of the last Attack step where (as
we have already stated) the glide is off
under all percussive circumstances. In
this specific case, the last glide-less
increment will be hardly noticeable.

If, on the other hand, the glide is
set to a long value (fully advanced, for
instance) an examination of the waveform
will show this:

the transients produced. In most cases,
these controls will need to be advanced only
slightly from their fully counterclockwise
"off11 position.

The most noticeahle effect of different
settings of the glides will be observed when
the STGs are set to the percussive mode by
PEAK.

When the most significant bit of PEAK
is cleared, it will effect only on the last
increment of the attack cycle. For all
increments other than the last, the glide
will be set. A detailed example will best
illustrate this.

34

figure (c)

i
V

T

The heavy glide has slowed the waveform
to the point that when the glide-less final
increment comes it takes a much greater
step (one that is completely noticeahle,
and unique). The heavy glide also has
the effect of slowing the decay and re
lease rates as shown.

lt would also be appropriate to men
tion at this point that the instantaneous
steps produced by the STG/QuASH com
bination is much faster than the maxi
mum attack rate available from a 4740,
or in fact from most ADSRs. Whereas
a typical ADSR may have a minimum
attack time of more or less 5 millisec
onds, the QuASH in dynamic mode can
step in a fraetion of a millisecond.

This means that if there are any
tendencies on the part of the VCA being
used to have interaction between control
and signal channels it will be aggravated
when using STGs. We may hear "pops"
and "thumps" that were not obj ectionable
before, Probahly the best solution here
is to limit the response of the control
voltage inputs of the VCA. In a 4710
Balanced Modulator, this means the
addition of a small capacitor. Like this:

Optional
O. 01 typical

1 ' 1 1

Cl r----1 ,-----j
.TIOll (ö) t·2 Rl 1 R4 1

MODULA~ l-"J'4\/7K\r-1i,___~v'v'"'\K, __ -.;

R
J2

J3

figure (d)

Another point to be considered is the
fact that the output voltage from a QuASH
channel doesn•t go to zero - there may be
some leakage from the VCA when it is
supposed to be off. The easiest fix here
is to re-adjust the Modulation rejection
control of the VCA being used. In the
4710 this is R25. Be aware that this
also limits somewhat the useahle range
of the D / A' s TUNE control since wide
variations in the setting of this control
will affect the leakage from the VCA.
Tuning changes on the order of 1/ 4
octave should not present any particular
difficulties.

There is a point dealing with this
which may not be immediately exploit
able by many, but which should be men
tioned in any case; the action of the
trigger outputs of the QuASH channels
which are being used as STG channels.

The trigger outputs QuASH chan
nels which are being used to produce
pitch setting voltages behave in the
normal manner. When the AGO key

corresponding to that QuASH channel is
being held down, the trtgger is at a high
state. When the key is released, the
trigger goes low. A standard "gate"
type response.

In a similar manner, the triggere
of transient channels also go high as
soon as the AGO key to which they
correspond is pressed; but unlike the
normal trigger, this level re:ina.ins high
until the software has completed the
last increment of the Release cycle. In
futu.re hardware this will drive a "noise
gate", a simple semi-conductor switch
which completely quiets a channel that
is inactive.

pitch channel

STG challnel

pitch channel

STG channel

key key
down up

.....----llo1J----L
In

L

35

36

LAD NC1!S: PINK TUNES
By: John S. Sirnonton, Jr.

As we begin this month's journey
into the bizarre I should warn you that
l'm operating in a somewhat altered
state of consciousness.

Oh, not from chemicals or nature' s
own, none of that. There' s just some
very nice color graphics going on the
Apple II and the background music is a
slightly oriental feeling 4 part harmony
being composed by a P4700/J. It1s really
a most unique environment.

Wait. Composed by the synthesizer?
Surely not, surely just something pre
recorded and played back.

Well,"'l suppose that I wouldn't
attack someone who asserted that I
composed the piece. l'd be flattered,
but it wouldn't be entirely correct. I
knew before the tune started what sort
of texture (for lack of a better term)
it would have. But 1 have no idea what
exactly is coming next.

And that, in case you hadn't
already guessed, is what we want to
talk about this time. Computer pro
grams that compose music.

Let• s start at a very elementary
level. Probahly you•ve seen or
connected synthesizer patches that look
something like this:

NOISE Ol1T

CLOCK-.......... --1

lt' s a relatively common configuration
in which, at regular intervals, the
instantaneous value of the noise source
is captured by the S/H and the resulting
voltage used to set the pitch of the VCO.
The ADSR a.nd VCA give us some knobs
to twiddle and control dynamics, but
otherwise are just window dressing,

If you•ve done one of these, you
know that the results are interesting,
but certainly not a musical composition
in the traditional sense. As a compos
ing device, it' s hard to know what the
biggest fault is here, but certainly it
must be the fact that there are no
guarantees that the series of pitches
produced are going tobe equally
tempered intervals (or any known
tempering for that matter). In fact,

you can almost guarantee that they
won•t be; the control voltages applied
to the oscillator are completely random.

And therein lies the tale.
I don't believe that anyone is able

at this point in human development to
concisely expla.in what makes music
11 musical11 , but rnost folks that have
thought about it seem to feel that "good"
music (ugh, all the subj ective terms)
combines both order and disorder.
Establish a pattern in the listener's
mind ... then surprise him; pleasantly,
preferably.

Like the "noise music" example
above, a.ny compositional program that
we come up with today is in some way
going to rely on a SI'OCHAfil'IC (big
word for random) process. If it didn1t,
we wouldn't be writing the program that
wrote the music; we1d be writing the
music.

Our task then, is to bring order
from disorder (in a very real sense,
nothing less than reversing entropy) -
but not completely. lt isn1t easy, but in
an elementary form not as difficult as it
may sound either because we now have
at our disposal that wonder of wonders
(which many right-thinking people say
is Maxwell's Demon personified):

THE COMPUTER

By simply programming the com
puter to randomly select only pitches
that are part of the equally tempered
sequence, we•ve made a start, but in all
honest:y not much of one; still there is
too much disorder. Low pitches follow
ed as likely as not by very high ones, no
identüiahle key signature. lt' s still
"noise music".

The quiekest way to begin bringing
the kind of order that we're looking for
is to write a program that uses a ra.n
dom number not as the note, but as a
"pointer" which is used to select one of
a number of acceptable "candidate" notes
from a previously entered table. We1re
using our intellect to select ahead of
time only those notes which we know will
harmonize with the rest of the notes
which the computer is allowed to select.
l've written a few of these kinds of
programs. They1 re a little better than
purely random notes, but not much.
Still too much disorder.

There are a lot of tricks to bring

rigorous order, like making random
substitutions of candidate notes into
previously entered melody lines. This
kind of thing produces terrifl'ic results,
but it' s not the computer doing most of
the composition - you are.

Now comes the April issue of
Scientific American and there, in
Martin Gardner' s consistently enlight
ening Mathematical Games column, is a
piece on,computer music. Well, not just
computer music - as is usual, Mr.
GardneI' s mind ranges far and the
column covers visual art and computer
generated "landscapes" and fractal
curves and the place of pink noise in
"the meaning of it all". Very heavy.
And buried in amongst it all is an
algorithm conceived by Richard Voss
(of IBM) for turning "white" random
numbers "pink''.

Don' t let this "white" and "pink"
business throw you. You' re used to
white noise and the pink noise that
results when you filter it. We can
think of the Voss algorithm as a filter
for random numbers.

The realization of the Voss algo
rithm which is used in PINK TUNES
(the program Usting at the end of this
column) can be likened to rolling a set
of 5, four sided dice whose faces bear
the numbers 0 - 3, We get the random
number that we• 11 use as the pointer to
the list of candidate notes by adding
together the numbers on the exposed
face of each die (I know, a 4 sided die
won' t have an upper face, that• s not
the point).

If we consistently rolled all 5
dice, we would still produce too random
a number; even through, as any crap
shooter can tell you , the probability is
that the total of the faces will be some
where in the middle of the range of
possible numbers - just as a pair of
six sided die "like" to come up 7.

The trick is not to roll all 5 dice
every time, but rather to come up with
a scheme that most frequently rolls one
or two a.nd infrequently rolls all 5.
Since the random number that is pro
duced is always a total of the 5 dice,
this produces a series of numbers that
most frequently vary only slightly from
one another while stnl permitting
periodic !arge changes.

37

Voss's scheme (and ours) is to
maintain a 5 bit "pinking counter'' (our
term) which is incremented each time
we get ready to generate a new pink
number. The new value of the pinking
counter is compared to the old and only
those "die" which correspond to bits in
the counter which have changed are
rolled.

The rest of the program is "over
head". As I mentioned in the beginning,
PINK TUNES actually generates a 4 part
harmony (provided that we supply it
with harmonizing notes in the candidate
list) and the program must keep track
of how long each of the notes in the 4
parts is to play and allow for the up
dating of the candidate !ist and recog
nize a limited number of commands
from the computer' s keyboard.

The fully documented Usting is
the.tiest place to go to see how it all
works (it' s in your best interests to
understand it as fully as possible) and
specific details and asides are covered
in the boxes,

After entering the program and
its data base (note part of the program
is on page zero, part is on page one and
the data base and working registers are
on page zero), first save a copy on tape.
If something go;;sm.azy, you don't want
to have to enter it all again.

Set up the synthesizer and start
running the program starting at the
hard start location of $0003. The data
that you loaded is for the pentatonic
scale composition that I mentioned in
the opening paragraph and you should
immediately hear the synthesizer pro
ducing the composition. lt should go
witQ.out saying that you will undoubtedly
have to call the tuning function (control
key il'l) and tune the oscillators before
it makes music.

You have the ability to change the
candidate note list while the program is
running simply by pressing keys on the
keyboard, but bear in mind that the
candidate list is 16 notes deep. As you
enter a new note, the one that was
entered "16 notes ago" disappears from
the list. If any of the 16 notes are
inharmonious, the program will periodicly
produce discordant sequences.

With PINK TUNES running, three
of the computer• s control keys have
meaning:

Key O "scrambles" the random
number generator to produce a new tune.
This is really only useful if you are in
the cyclic mode (see box).

Holding key 1 provides a tuning
function by causing all 4 outputs to
produce a triggered middle C.

38

Touching key #2 initiates a muted
shut-down of the synthesizer and brauch
back to the monitor, allowing changes in
the memory locations described in the
boxes.

After making changes using the
monitor, always start the program
running again from the soft start location
$000B.

The program runs very nicely,
but is experimental and not intended as
a finished product. Skillful polishing
should reduce its length by at least 15 -
20% and it would be nice to make changes
in timing, etc. 'on the fly" without
having to shut down the synthesizer.

At the same time that the program
is primarily "just for fun", don't dis
miss it as trivial. It definitely produces
4 part harmonies and even those that are
not directly useable in a composition can

NOTE DURATIONS

Each of the 4 output channels
has associated.with it its own dura
tion timer and two variables in the
computer• s memory which determine
what characteristics the time values
of the notes produced by that channel
will have. In the interest of conven
ience, we'll name these two variables
MASK and TIME; or, simply M and T.

We need to think of each of these
variables as being composed of a high
half-byte (hhb) and a low half-byte (lhb).
The hex number $F3 (an arbitrary
example) has an hhb of $Fand an lhb
of $3. This is necessary because the
half-bytes determine two separate
parameters.

The lower half-bytes of MASK
and TIME (M1 and Tl respectively)
interact to determine what time values
are possible from a given channel. A

channel can be restricted so that it
produces only 1/16 notes or 1/16 and
1/8 notes or a wide variety of other
possibilities as summarized in the
table below:

MI
0 1 2 3

1 J IJ JJ rn
Tl 2 1 J~ Jd 11i

3 .,j ~ d ~o liI
4 d do d dco

KEY: lo~n ln;;x;>.

J = slxteenth note duration 0 = wholc note

J = cighth note duration

duration

Q'ö "' two whole note

~ = quartcr note aurauon oO'O - thrcc wholc note

d = half note duration

Note that this is a partial table intend
ed only to demonstrate the pattem.

serve as inspirational lubrication to the
gears of creativity. If you' re involved
in producing commercial jingles, this
is a terriffic tool.

As you play with the program you
will begin to get a feel for how various
probabilities affect the composition and
you•re sure to leam some things about
composition that you never knew before.

Finally, a vecy special thanks to
Bob Yannes who sent me a listing of
a similar program (PINK FREUD)
which generates 4 part canons on a
P4700/J. I haven•t reviewed this
program thoroughly yet, but knowing
Bob it' s sure to be neat. l' m sure
that he wouldn't mind my sharing copied
of the listing with anyone who sends a
SASE.

1Til next time, my best to all.

Other combinations of Ml and Tl
produce other possible time values.
Some combinations not listed will
produce undesirable results,

The high-half-bytes of MASK
and TIME (Mh and Th) interact to
determine the probability that the
note being produced by that channel
will be dotted (its duration extended
by half of its actual value),

In actual practice, it is most
convenient toset Mh to $Fand reg
ulate the probability using only Th.
The influence of Th on the probabi
lities of a dotted note is illustrated
below:

Th Probability of dotted note

$8 one in two
$4 one in four
$2 one in eight
$1 one in sixteen
$0 zero

EXAMPLE: A channel which
has MASK and TIME values of $F3
and $11 respectively will be capable
of producing 1/16, 1/8, 1/4 and 1/2
notes with a one in sixteen probability
of the note being dotted. A channel
with M and T of $FO and $01 will pro
duce nothing but 1/16 notes, none of
which will be dotted.

The page zero addresses of the
MASK and TIME parameters for the
four output channels are given below:

CHANNEL
A B C D

MASK [$8F T $SE T $8D T $8C J
TIME!-'. [$,-8B--tT-$:-8_A_Tl---8_9_T+--8-8-IJ

TEMPO

By us:lng the MUS-1 subroutine
LOOK to gather data from the AGO
keyboard, PINK TUNES follows our

GLIDE AND TRANSPOSE

PINK uses the MUS-1 QuASH
drivers (NOTE) and therefore allows
for both independent pitch transpositions
of any and/ or all 4 channels as well as
provid:lng a means of enabl:lng or dis
abl:lng glides.

Though not strictly true, it is
most convenient to think of these
variables as be:lng divided into high
half-byte and low half-byte with the
hhb controll:lng glide ($8 turns the
glide on, $ 0 turns it off) and the lhb
determin:lng transposition. For
example, a channel which has this
transpos:lng variable set to $SC will
have its glide turned on and be playing
notes an octave higher than the actual
note selected by PINK.

Here are the transposing
variable addresses:

CHANNEL
A B C D

TRANSPoSEJ $CF 1 $CE 1 $CD 1 $CBI

THE SYNTHESIZER

The module complement of a
P4700/J is not !arge enough to do a
true 4 voice, 4 part composition;
since this package has only 3 oscil
lators. Even lack:lng a true 4th voice,
however the 4th harmony part can still
be put to good use,

standard protocol of us:lng the key
board encoder clock rate as the
system master clock. Analog control
of tempo may be provided by varying
this clock rate as has been mentioned
in previous columns.

CYCLE CONTROL

The variable at zero page loca
tion $D3 controls the number of notes
which will be played before the cycle
repeats. Changing the contents of
this location to $20 (for instance) will
cause 4 bars of eighth notes to be
played before the tune repeats. $40
would produce 8 bars of eighth notes.

Setting the contents of the loca
tion to $00 amounts to enabling a "free
run" mode in which the patterns do not
repeat (in practical terms) ..

If you want to get really fancy,
you can change program location $188
from its current val ue of 85 (STA to
the zero page) to EA (a NOP) and the
result will be that on successive cycles
the time values of notes will not
change but the actual notes played will,
produc:lng a strong rhythmic tie from
cycle to cycle. Jt also doesn1t always
work, sometimes a repeating loop will
be entered anyway. Other times the
duration of a tune will be 2 or more
times as long as the actual cycle time.

To change a cyclic tune, touch
control key o.

Here is the most universal of
the patches used dur:lng the develop
ment of PINK TUNES:

PINK also has a variable at zero
page location $A9 wllich gives gross
digital control of tempo. The recom
mended range of values for this
variable are from $FF (far too fast)
to $FO (insanely slow).

DE-PINKING

To get some feel for the effect
that the Voss pink-:lng algorithm has
on the composition, you may want to
change it slightly. There are a couple
of easy ways that this can be done. By
chang:lng the current instruction at
program location $11C from $45
(Exclusive-OR-on the zero page) to
$EA (a NOP), you slightly de-pink
the note selector, mak:lng it somewhat
more random. You may have to lis
ten a while before you notice the dif
ference, but there is one.

To completely eliminate the Voss
algorithm make these substitutions
beginning at location $118; A9 FF
EA EA EA EA. This Change is
equivalent to rolling all 5 of our
alleged 4 sided dice each time a new
note is selected and will produce
changes that even a tone deaf
aborigine would recognize.

Note that the 4th harmony part
(from channel D of the QuASH) is
used to set the center frequency of
the VCF.

M IX'ER :-- OUT

In use, it is handy to think of
channel A as a lead voice, channel :B
counter-point and channel C hass line.
Us:lng this concept, the channel C
oscillator would ordinarily be tuned
an octave below channels A and B.

39

40

THE CANDD>ATE NOTES

Selection of the candidate notes
that you give PINK TUNES and the
order in which they're entered play
a big part in the feel of the final com
position. As an obvious example,
the pseudo-pentatonic scale resulting
from entering only accidentals (sharps
and fiats) tends to produce oriental
sounding compositions.

The selection of notes is
"pinked'' on a compositional (ra.ther
than a per-channel) basis, which
means that the 4 notes being played
at aey one time tend to cluster
around a relatively short series of
entries in the candidate table. The
significance of tbis is tb.at it allows
statistical control of changes in key
signature. For example, entering
the candidate sequence Cl, El, Gl,
C2, E2, G2, C3, G2, A2. F29 D2.

LOftOING TIE PROGRftl1

NOTE THAT PINK TI.tlES WISISTS Cf
~ IRJOR SECTI!»fS: TIE l'IAIN PROORffrl
ON Pf« 0 Cf IEIOlY, Sl.llROUTIIES ON
Pf« 1, ANP [lflTR BASE ON PfG: 0.

BEFfft ENTERING fljY ~ING.

IR<E SI.RE THAT TIE l«WlTOR STfO< Al{!

USER'S STfU fllE BOTH SET TO $FF
<SO THAT TIE STf(;K OO::S NOT OVER--llRITE
~ING ON PfG: 1) fN) TlfiT THE
STRTUS REGISTER IS SET TO $00 <TO
INSIH: TlflT TIE CPU IS WORKING IN THE
IEXff1ECilfL IUJE) USING THESE ENTRY
SEQIECES:

OED-DISP-FF-ENT (SETS l10NITOR STACK>
eFE-OISP-FF-ENT-00-ENT <USER STftK

ffl> STRTUS REGISTER>

RLL Cf TIE FO..LOWING PRCG9f!ING,
DATR BflSE, IN> IN!Tlrt.IZATION Cf ll.IS-1
IEED BE D<»E CN.. Y Dia. TIEY MILL
Sll!SEIUNTL Y L(ff) TO TIE raf'UTER'S
IEllRY FR<»I TIE lllSTER TAPE THAT YOU
WIU GENERflTE AT TIE Eli> Cf TIE
L(ff)INJ PROCESS.

INITIRLIZE THE 11.15-1 VARiff!l.ES
CTRL <S0E8l ANP ODLY (S0E9i

0E8-0 I SP-90-ENT-20-ENT

ENTEF THE OATA BASE LISTED BEU:IW
BEGllflll«l AT LOCATIOO $088 USllKl THIS
ENTRY SEQl..El(:E ·

088-0 iSP-02-ENT-04-ENT -01-ENT <ET Cl

DATA BASE

088:02 04 01 01 F2 F0 n n
5A SC> 5F 62 64 62 5F SC>
5A 58 56 53 51 53 56 58
00 00 00 00 00 00 00 00
FA

·-*********-**************
NEXT LCRI TIE lflIN PROGRft1·

000-0 ISl'-4C:-ENT-C.0-ENT -FF-ENT <ETC>

0818 :----*******-
~ :• * 011-
0838 :• PINK TlJES 013-
llll40 :• 015-
8858 :• A W1POSING PROGRAll * 017-
llll68 :• FOR FOJR PART HARHOOIES * 019-
8870 :• * 0080 :• BY JCffi S SllOITC»l, JR * 018-
8090 :•<C> 1978 PRIA ELECTRONICS, llC • 010-
0180 :-•***--**-*-*** 01F-
0308 021-
8310 022-
0320 : FIRST ATTEll> TO to.JCJ<EEPJNG-- 023-
8360

000- 4C C0 FF 0378 BEG Jlt> BRH< : BREft: YECTOR
003- 20 21 0D . 0:l80. STffl JSR INIT :SET ll' SYNTH
006- fl) 10 08 0390 LDA KID : IN!Tlrt.IZE ~ 025-
009- 85 D0 0400 STA *Nllt>+ei : IUIBER GEIERATC* 027-
008- 20 71 01 0418 WP JSR SET : INIT PINK TllES 029-00E- 29 28 00 0420 LP0 JSR rllTE : PLRY NOTES REFI> RGO 028-

84l0 020-
0448 :CHECK FOR fl)l)IITl!»fS TO Cfff)JDftTE 030-
8450 :NOTE TABU 032-

A5 E7
F0 02
C5 EC
85 EC
F0 0A

A2 10
84 8F
95 8F
98
CA
D0 F8

A5 BF
00 1A
A5 A9
85 BF
20 5l91
A5A8
80 28 08

Al, Fl, Dl, Fl, Al wlll produce a
co:mposition that periodicly changes
from the key of C to D minor.

lt is important to remember
that the candidate table wll1 always
contafn 16 notes and in order to
produce consistant harmonies, all
16 notes must be ha.rmonious. Also
remember that notes at the ends of
the table (oldest and newest entries)
have a lower probability of being
played than the notes in the middle.

IN> TIE Sl.llROUTllES:

100-0ISP-8A-ENT-48-ENT-R5-ENT <ETC>

BEFCft: TRYING TO RUI TIE ~
SAVE IT 00 TAPE FRCfl tOCAT !ON S0 TO
S1R0:

0-8-0-0-0-1-A-0-0-1-D-D-TRPE

BEGIN RUNN!NG THE PROORff1 FRCfl
THE 'lffD STfflT' LOCATION U:

003-RUI

AFT~ A SID!T <3 SEC(N)S OR 50)
OELAY, TIE PROORAl1 WIU BEGIN PRO
DUCING TIE OO'l'OSITICW.

THE 'SOFT STfflT' LOCATION 15 S0l!8

0478
0488 lfl!N LDfl *Klll.+118 :fff/ KEV5 l)(Mf?
0490 BEQ 0011 :NO-CIECK FOR TllE oor·
8580 Cll' •TEIF :YES-A NEW KEY?
8518 OOT1 STA * TElt> : SAYE FOR IEXT TllE
!1520 BEQ OUT : BRIM:H IF SllE KEY
8530
0540 LDX 10 : I F NEW KEY SHIFT
0550 LP3 LDY •ra.f,)(:rt.L 16 CAll>IDATES
0568 STA *fQF,)(:~ BY ONE
9578 TYR
8589 DfX
9590 lllE LPl : l«lT DONE-L!n'
9600
0610 :IOI CIECK FOR CLOCK TllE OOT
0620
0630 OOT LOA •CLCK : GET lllSTER CLOCK
0640 lllE TEST :ffl> IF TllEf> OOT
0658 LDfl •Tl'IPO :SET TO TEl'fO VflLI.(
0660 STA *CLCK : CfU Sle FOR IEW
0670 JSR fl.OC : NOTES (IF l&DED >
0688 LDfl *LNTH : GET CYCLE STATUS
0698 STA DISP : SIDI IT ff[> IF ZERO

035- f~ oc ~{~lj ölW lbi • 1_. ~r'lü:. l S (.Ltf'lPU:. 1 t 12fi·- 29 lE 133.50 HNI) 02 :MAKE RANGE 0 TO 3
0:,7- C6 A8 0710 C•EC *LHTH : lF NOT IJONE, DCF:MNT 12(- 95 9F i]~.t.::ll STA .tRAli{l, ;,, _ SAVE \JALUE FOR NE.:~
039- L>0 08 0720 BNE TEST . ! F NOT ZERO NOWLEAVE fä- r:~ ::: ;J~_;~· 0 PLA RtCOVER : UT AL
0}8- 20 71 01 0710 JSR SET . IF ZERO, RE!Nl1 12F- t::: 1j'j:~ti CLC FREF'ARE AW ITT ION
0:lE- 20 53 01 073:2 JSF: flLOC : GET FIRST NOTES HND LO- 75 :1~ 0590 NW'' ADC •RAND,;.: 110!' "lftlUE üF [!JE " il41- Fü C:B €1715 BEQ Lf'0 : BRANCH fll.WftYS TO F'Lft\' 132- Cft 0600 DEX :rOlNT TCr UEXT
043- 20 00 0F 6740 TEST JSR DECD : GET A COl'IMAND 12;- W C:D 0610 BNE NW1 : LOOf· IF NOT DONE
046- 00 oc 0750 BNE TST2 . NOT ZERO, IUT TEST 115- AA 0620 TAX clSE TOTAL fi;: POHITEF:
048- fl2 03 ~755 LDX 03 : Cm!ANV 0, NEW TIH E6- 65 90 06]-0 L[lft •NBUF, ;; . GET CftNDIC>HTE

0757 SET POINTER/CCUITER 138- F0 fü 0640 BEQ L\IJRft :ZERO, Dü NOT CtftNGE
04A- 20 00 01 0760 TST1 JSR RNDM :GET RfKlll'I l-UIBER D't- 99 BF 00 0650 STA NTB7, ·,· . F'LftC:E IN TEMP BUFFER
040- 95 CF 0762 STA •NTl'lf,X : NEW IN!TI f1L RANDOl'l ED- ft5 A5 0660 DURA LDA •NO!S+01 : A CHEAf' RAN001 NO.
04F- CA 0764 DEX :POINT TO NEXT HF- 18 0670 (;L(; :PREPftli'.E
050- DBFS 0766 BIE TST1 : NOT DM - LOOP 140- :i'9 88 00 0680 fff) l1ASI(, \' _ Mf6K Dl.iRATI ON VAL
052- F0 B7 0770 BEQ LOOP : BRftM:H ALWAVS 143- 79 87 00 069d fl>C TIHE. Y :ADD M!Nil11Jt1 VAL
054- C9 01 0700 TST2 Cl1f' 01 : CM1ftNI) 1, TUNEilfl 146- 29 0f 0700 AND 0F : AND i'lftSK RESLIL T
056- 00 0C 8790 EINE TST4 :NOT 1, TEST NEXT 148- AA 0710 TAX _ USE AS COLINTER AND
058- A2 04 0800 LDX 04 : 4 OOTPUT BLfFERS 149- A9 01 0720 LDfl 01 : DO DlRATI ONS AS
05A- A9 5C 0810 LDA 5C :PUT "IDOLE C IN fLL 14B- 2A 0738 NT2 ROL :PWERS OF 2. CARRY
00(;- 9D DB 00 0820 TST3 STA NT0B, X : OOTPUT BLfFERS 14C- CA 0740 DEX : SET !JOTS NOTE
05F- Cft 0830 DEX 140- 00 FC 07:ie BNE NT2 :OOT OONE - LOOP
060- D0 FA 0840 BtE TST3 :OOT OCM:-LOOP 14f- 99 C3 00 0760 STA NTBB,Y :PUT RESll. T IN l«JTES
062- F0 ff! 085e BEQ LP8 : BRfKH fl.lfl'IS 152- 60 A770 RTS :TIIER fN) RETLRN
064- C9 02 0868 TST4 CIP 02 :COltlfH) 2, STff> 0780
066- D8 fl6 0878 BIE LP0 : l«l COltlfH) - LW 0790 :fLLOCATIOO 8151
068- 20 71 81 9880 JSR SET :CfU TO ZERO OOT-BLFFS 0791
068- 20 28.00 0890 JSR NOTE : TIEN llUTE S'r'NTIESIZER 0792 : SEES IF IEW NOTES ~ IEED fH) IF
86E- 00 9900 BRK :fH) RETl.RN TO PIEBOO 8793 : SO GETS TIEll. fLSO CLEARS TRIGGER

s~•s 8794 : (f lllTE OOTPUT CH:E IT 15 PLAYED.
8809

0228 RfKOI lllllER GEIERAT~ .153- A2 04 0810 fl.OC LDX 04 : 00 4 lllTE ClfNELS
0238 155- D6 C3 0820 LP6 llEC >INTBB, X : llECREIENT l«ITE Tll'ER
8231 :ESSENTlfl.LY A 22 BIT LOOG SHIFT 157- D8 07 0839 BIE LP5 :fH) IF TllE OOT
0232 : REGISTER WITH EX~ TAPS AT 159- SA 0848 TXft : TRfljSfER X REG. TO
0233 : STIGS 22 fN) 21 FED BACK TO 15A- A8 0850 TAY :TO Y
0234 :Ilf'UT_ 158- 20 16 81 0868 JSR IEW : Alf) GET NEW lllTE
Q235 15E- 98 0870 TYA :fHl DlliflTIOO fH)

100- SA 0248 Rllll1 TXA :SAYE X 15F- AA 9880 TAX :RESTORE X
101- 48 0250 Plfl 168- CA 0890 LP5 llEX : llECREl'ENT ro..M'ER
102- A5 A5 0268 LDA *HOI5+01 :LAST BYTE SIR 161- 00 F2 9900 BIE LP6 : IF lllT OONE - LW
104- 8A 0278 ASI. :fl.IGN BITS 22 & 163- A2 04 0928 LOX 94 : IDllN. FCJ.R ClfHELS
105- 45 A5 0280 E~ *HOI5+81 : 21 fH) DO EX-~ 165- B5 BF 0939 fl.1 LDfl *11187, X : GET NOTE FROll TEii'
197- 8A 0299 ASI. :TIEll SHIFT RE- 167- 95 DB 8940 STR *NleB, X : BUFFER. SAYE IN OOT
108- 0R 0300 ASL : Sll. T TO CflRRY 169- 29 3F 8950 All) 3F :Blf'FER. CLEftR FLAG
109- 8A 0310 ASL 168- 95 BF 0960 STA >INTB7, X : PUT BACK IN TElf'.
18A- A293 8329 LOX 93 : SET lF PNT ICNT 16D- CA 0978 llEX :POINT TO IEXT
10C- 36 A4 0339 LP1 RCl. *HOIS, X :fN) SHIFT 3 BYTE 16E- D0 F5 0980 BhE fU :l«JT OONE - LOOP
18E- CA 0348 llEX : SHIFT REGISTER 170-- 60 p RTS :DONE, RETURN
18F- 00 FB 03511 BIE LP1 :BY CIE BIT LEFT 1880
111- 68 0360 PLA : lffN OONE RE- 1010 SET
112- IV! 0370 TAX : STORE X REG. 1811
113- A5 A7 0380 LDA *HOl5t93 :All) LEAYE WITH 1012 : PREPfe:S l(JOlj STll!TING POINT F~
115- 68 1'1390 RTS :WITH II)_ IN flCC_ 1813 :CVCLI(; TlJES.

9408 1014
0419 IEll NOTE 1029
0411 171- A9 00 1030 SET LDfl 00 : TO ZERO THIOOS WITH
9412 : TAKES CARE OF PICKING PIN< lllTE 173- A0 01 1048 LOY 81 : PRESET FOR NOTE CNTRS
0413 : FROI CfN>IDATE l«lTE Tflll.E fH) 175- A2 04 1050 LDX 04 : 00 4 Clffff:LS
0414 : Cfl.Cll.ftTES fH) LfDATES lllTE Til'ERS 177- 95 DB 1060 LP10 STA *NT0B, X : ZERO OOT-BLfFERS
9415 :lllTE Tlf!T Y POINTS TO ClfffEL FOR 179- 95 A0 1070 STR *ROOß, X : ZERO 4 D ICE
0416 :LfDATE 17B- 94 C3 1080 STY *NTBB, X : PRESET lllTE TJHERS
0429 17[)- 48 1090 PHA : SftVE THE ZERO 116- A2 05 0430 NWNT LOX 05 : SET lF PNT ICNT 17E- 85 CF 1100 LDA *NTtf'.X SET UP ~'S SIR 118- A5EA 9440 LDft *OIJTS : GET c:cfY PINKIOO 180-- 95 A4 1110 STR *lllJS, X : fH) C\ICL.E COUNTER 11A- C6 EA 0450 DEC *OOTS : CWITER, llEC ORIGIIR 182- 68 1120 PLA :RECO't'ER ZERO 11C- 45 EA 0470 E~ •OOTS : PATTERN CF ClfNlED 183- CA 113:~ DEX :POINT TO NEXT 11E- 85 EB 0490 STA *OOTT : BITS - SftVE ClfNlES 184- 00 F1 1140 EINE LP10 :1()1 DONE - LOOP 120- A9 00 0500 LDfl 00 :PREPARE TO SlJ1 DICE 186- 85 A0 1150 STA *R000 : ZERO 5TH DIE 122- 46 EB 0510 t.W1 LSR *OOTT : CHECK Feft ClffG:[) 188- 85 EA 1160 STR >t<O.JTS : ZERO PINKING COUNTER 124- 90 0A 0520 BCC t6l2 : BIT - IF ClffG:(l, 18A- 60 1178 RTS :fN.l RET(Rj 126- 48 0530 Plfl : SftVE ~T TOTfL 1180 127- 2ll 00 81 0540 JSR 00 :GET RfN01 tilllER 11!l0 EHV EN

41

42

„
SEQUE 1.0

UNIVERSAL IONOTONIC SEQUENCER

Now we're going to start a
long discussion of sequencers.

lt's going to be long
because there is no single kind
of sequencer that's best in every
situation. Some will do better
on stage and others will be more
at home in a studio setting.
Polyphonie sequencers should at
times be structured for storing
and reproducing chord sequences
while at other times each channel
should be treated as a separate
voice. The only really workable
solution is to come up with an
entire "family" of sequencers.

The common limitation of all
programming devices currently
available is that none of them
can offer this kind of
versatility. But, this is an
area where the system that we've
developed, with its ability to
accept a wide variety of
personality endowing programs,
will really come into its own.
lf we need a studio sequencer
(with click track synchronization
and full score editing features,
etc.) we can load that program;
when a chord sequencer is
required, that software can be
loaded.

With few exceptions, these
programs will all be "complete"
in that once they are running,
the system loses any "computer
personality" that it may have
had. All of the features that
the program off ers will be
available with one or two touches
of the "command" (computer)
keyboard. You can forget that the
computer's there because its
control keys are dedicated
exclusively to functions assigned
them by the program. "This key
makes it play - this key makes it
play faster." Easy.

To illustrate these points,
we'll begin with a program called
SEQUE 1.0, a monotonic sequencer

REAL TIME MODES
written to run on a PAlA P-4700/C
or its equivalent. lt can also be
easily patched to run on a
P-4700/J as outlined in the box.

SEQUE 1.0 is an acceptable
"general purpose" sequencer
(acceptable from the standpoint
of our new perspective - in terms
of the alternatives that are
available it is the most
sophisticated sequencer ever
produced). lt has some features
tailored for live performance and
others that are primarily for
studio use. The program listing
and some additional notes appear
in following pages.

COMMAND KEYS

When SEQUE 1.0
command keys

. © 1979 PAIA Electronics, Inc.

seem a little on the cryptic
side. Let's look at function and
begin by pointing out some of the
ways that SEQUE 1.0 is different
from what you're accustomed to.

PROGRAMMlNG A SEQUENCE

The first way that it's
different is that you don't
program it with knobs, you simply
enter the note sequence from the
AGO keyboard. More specifically
the first operating mode that
we'll examine is a completely
"real time" performance mode. You
simply touch the "PROGRAM SCORE"
key and start playing. Except for
the fact that we will be able to
do much magic, the result is the
same as if there were a tape
recorder somewhere recording what
you're playing. Whatever tempo
you play in, including subtle
timing nuances, are faithfully
captured by SEQUE 1.0 and stored
in the Computer memory. When you
reach the point at which you want
the sequence to repeat, touch
REPEAT PLAY and it all comes
back.

PLAYING THE SEQUENCE

Since this is a real time
mode, the timing of punching up
REPEAT PLAY is important. If you
were storing a repeating bass
line, for example, you would play
the single figure that
characterizes the bass line and
then, at the exact point (and on
the beat) where the first note of
the figure was to be repeated,
touch REPEAT.

There -are other sequencers
beginning to appear that operate
this way, and if real music was
played with droning bass lines
that repeat unchanged, endlessly,

43

they would be perfectly adequate.
And the music would be perfectly
boring.

Not that real music doesn't
frequently have the
characteristic of a repeating
bass figure, it does, but it's
also made to sound different by
transposing the figure into
different keys to follow key
changes in the composition.
While this fact seems to have
been largely ignored by sequencer
manufacturers, we don't have to
settle for that.

TRANSPOSING

SEQUE 1.0 has a variety of
provisions for transposing the
programmed sequence. The
simplest of these is that while
in playback mode it can accept
information on key changes
directly from the AGO keyboard.
A little explanation.

Since we obviously want to
be able to transpose both up and
down in pitch, we need to decide
that some arbitrary key
represents no transposition (play
the sequence as programmed).
SEQUE 1.0 assumes that the 2nd C
on the keyboard is the "O
transpose" key. keys up-scale
and down-scale from this one,
then, represent transpositions up
and down scale respectively.
press the_ C# above the 2nd C ,
and the entire sequence plays
with each note a semi-tone higher
than was originally programmed.
Press the F below the 2nd C and
then each note plays a fifth
lower.

As an example of this,
suppose that we were going to
want to play a walking bass line
as shown in figure 2.

Because of the things we've
talked about already, it should·
be relatively obvious that we
only need to really "play" this
much of the entire bass line:

t
Repeat

(NOTE: Do not hit this note!
Hit repeat at exactly the time
you would have played it.)

Figure 3

because from then on it simply
repeats, transposed into

44

Figure 2

.. II

Figure 4

different keys. As the riff from
figure 3 plays, we can extend it
out to the entire hass line
simply by pressing keys on the
AGO keyboard to perform the
appropriate transpositions at the
proper time. Like that shown in
figure 4. Pretty exciting. And
we really haven't even started
yet.

THE TRANSPOSE SEQUENCE

While being able to
transp9se the programmed sequence
with real time keyboard entries
will be plenty useful again and
again, there are also going to be
times when it will be at best a
pain in the neck. You'll be busy
doing other things. For these
times, SEQUE 1.0 offers another
feature, the ability to save a
programmed sequence of
transpositions.

Programming the T-sequence
(as we'll call it) is just as
simple as programming the melody
sequence (M-sequence), you simply
touch the PROGRAM TRANS pad and
enter the sequence from the AGO
keyboard. The major difference
from a programming standpoint is
that the T-sequence is a sequence
of events, which is to say that
it is not sensitive to the tempo
in which you enter the
information. We'll talk more
about EVENT sequences later.

When the PROGRAM TRANS pad
is first touched, it wipes out
any previously programmed
T-sequence and starts a new one.
Each subsequent AGO keyboard
entry then represents a key
change that the M-sequence will
go through at the point at which
it repeats.

During the programming of a
T-sequence, the displays count to
show where we are in the
sequence, and the note
corresponding to the

transposi tion will play while th·~

key is held down. When the key is
released, the note stops
completely, so that there is no
possibility of confusing this
programming mode with others.

On playback, the M-sequence
will be played · completely
through, transposed to the key
signature corresponding to the
first T-sequence entry; then
completely through transposed by
the second T-sequence entry, then
the third, etc. When the end of
the T-sequence is reached, the
whole thing starts over again
with the first note and the first
T-sequence entry. To go back to
our walking hass line for a
moment, the T-sequence would
program like this:

ad lib.

Q

Figure 5

In the terms which we will
find most useful, enabling the
automatic transpose is an OPTION
which may be selected along with
one or more of the major
operating MODES. If we want to
assert the T-sequence option
during playback we do so by
touching the T-seq. OPTION key.
To stop the T-sequence and revert
to the manual entry of
transpositions, simply touch the
OPTION CANCEL pad.

It is important to note that
canceling the T-seq. option
simply keeps the system from
invoking the T-sequence, and does
not in any way alter the sequence
as stored. You can turn the
option on and off as many times
during a set as desired.

And still there's more.

SINGLE PLAY

There will be times when we
don't want the sequence to repeat
endlessly, but simply to play one
time through and stop. A SINGLE
PLAY MODE.

An important diff erence
between the two modes is that
whereas REPEAT begins playing the
sequence as soon as it is
touched, SINGLE PLAY waits for an
AGO key to be pressed and then
plays.

The T-sequence option may
also be asserted in the SINGLE
PLAY MODE, but it has been my
experience that it's not
tremendously useful. Much more
useful is to have the T-seq.
option cancelled (which selects
the AGO keyboard as the
transposition source), so that
pressing an AGO key not only
starts the sequence playing, but
causes it to play in the key
selected.

Releasing the key which
initiated the sequence will not
cause it to stop (once started it
always plays to the end), but
pressing a different key in the
middle of the sequence will
immediately transpose it to a new
key signature.

TEMPO KEYS

The function of the TEMPO UP
and TEMPO DOWN keys is just what
you would expect. Touch TEMPO UP
and the tempo of the sequence
being played doubles. Touch it
again and the tempo doubles
again. Touch TEMPO DOWN and the
tempo rate is divided in half.

If not over-used, these two
keys will increase and decrease
tempo while still keeping
relative timing of notes
unchanged; however, raising the
tempo too high will cause some
timing information to be lost and
will cause the notes to be
"jammed 11 together so that
synchopation will change. Beware
and be aware that this fact has
special effects implications
there may be times when you want
to do just this.

TAPE SAVES AND LOADS

The TAPE pads control a
couple of operating modes which
should also be useful. TAPE SAVE
causes the M-sequence and
T-sequence information currently
in the computer's memory to be
dumped to magnetic tape. when you
come up with a "keeper" start

your recorder going (recording)
and touch TAPE SAVE. After a
short leader and synchronizing
tone is generated, the displays
will start to count and within a
few seconds your complete
composition will be stored as
data on the tape Ca hint - always
save things twice) _

Loading a composition that
was previously saved on tape
consists of playing the tape and
touching the TAPE LOAD command
pad. As with the saving
operation, the displays count as
the data transfers from tape to
memory. If, after loading a tape,
you punch up PLAY MODE and
nothing happens, it means that
the load was unsuccessful. Try
again with the second copy (and
review the "tape selection"
section of PAIA's CS-87 POT SHOT
manual).

NORMAL MODE

NORMAL is simultaneously the
most straightforward and
ubiquitous of all the operating
modes. NORMAL is nothing more
than a normal monotonic
synthesizer function, the
important point is that asserting
this mode of operation does not
alter previously ~rogrammed M or
T sequences. ~t simply ignores
them as long as this mode is
selected. at any time you can
punch-up SINGLE or REPEAT PLAY
and do that magic and with a
touch of the NORMAL pad be back
to plain synthesizer.

SUBTLETIES AND TRICKS

lt seems to me that a
sequencer for use on stage should
have two major design goals: it
should be easy to program and
operate (which SEQUE 1.0
certainly is) and it should
enable the user to do a better
job of the thing he's there to do
- put on a show. As theatrical a
show as possible. SEQUE 1.0 has
several of these "show" features.

The ability to shift back
and forth between the various
modes of operation (and
specifically the availability of
the NORMAL mode which doesn't
mess up programmed sequences) is
definitely one of these.

Others are less obvious, for
example:

When you have the T-sequence
option selected (so that
transpositions come from their
programmed sequence) and you go
directly from the PROGRAM SCORE.

mode to REPEAT PLAY.without first
asserting another operating mode,
the first entry of the T-sequence
will be skipped and the melody
sequence will begin playing
immediately transposed by the
second entry in the Transpose
Sequence.

Why?
Because, when you entered

the characteristic sequence it
was equivalent to its being
played the first time through
(which would have been done using:.
the first T-sequence entry).
When you hit REPEAT PLAY and the
computer takes over, it is in
effect playing the sequence the
second time - which should be
done in the key of the second
T-sequence entry.

The major application here
is to allow you to enter (during
set-up and tuning) a T-sequence
for the number that you are going
to be doing and then enter the
actual sequenced figure
extemporaneously. We all know how
great it is when the magic is
working and everybody's really
cooking. This feature allows
your automation equipment to tap
into that energy and the
innovation that frequently
results from it.

If for some reason you don't
want to skip the first T-sequence
entry, you simply terminate the
PROGRAM SCORE mode with a command
other than REPEAT PLAY (NORMAL,
for instance; or SINGLE PLAY),
then punch into REPEAT PLAY.
Remember always, though, that the
termination of PROGRAM SCORE mode
must be done "in tempo" 1f the
timing of the playback is to be
correct.

Here's another special
application:

In most cases, the
M-sequence is reserved for the
melody, but the UP TEMPO command
allows ·you to enter some short
riff (live, yet) then speed the
sequence up to the point that it
has the effect of being a "voice"
of its own. By then punching
into SINGLE PLAY mode, the
sequence can then be used as you
would a single note, which you
"play" by transposing it.
Naturally, the T-seq. option
should be cancelled for this.

And another:
REPEAT PLAY mode always

starts the M and T sequence from
the beginning, making it any easy
n;iatter to use the first few bars
of the sequence again and again,
for introductions, bridges, and
special effects.

. '

45

Now we turn our attention to
the studio-oriented options
offered by this "universal"
monotonic sequencer program.

Some of the distinctions
between stage and studio use are
somewhat arbitrary.

For example:

EVENT PROGRAM

The real-time SCORE melody
programming mode that we examined
in the first section of this
piece can obviously be used in a
recording studio as well as it
can on stage, providing that
you're interested in recording
only those things that are within
the limits of your physical
abilities. But the real promise
of a small studio (or a big one,
for that matter) is that it
allows us to produce music that
we don't have the chops to do in
real time. After all, not
everyone has the hours per day
that it takes to gain physical
mastery of a keyboard - but that
doesn't mean that we don't have
valid musical ideas, only that we
need a little help in expressing
them.

If a recording studio is a
single thing, it's a time machine
that allows days or weeks of work
to be compressed into a few
minutes of music. One of the
programming modes that we have
available (EVENT) is specifically
designed to operate in this type
of time-compression environment.
In this mode we enter the music
not so much as a melody, but as a
series of notes and rests. A
series of events which, when
reproduced by the computer, turn
out tobe a melody (maybe).

There is of course nothing
new about this mode of operation,
this is the way sequencers have
always worked. About the only new
part is that instead of entering
the events as positions of a knob
or a series of numbers, we have
an AGO keyboard on which to
program.

Touching the command

46

keyboard's PROGRAM EVENT pad puts
us in this programming mode. (See
Figure 1.) Melody lines are
entered much as they were with
the SCORE mode, except that the
computer is no longer watching
for how long we hold a key down

STUDIO IODES

or how rapidly the notes are
played. It is now only interested
in whether a key is up or down.

One of the major
implications of this is that
notes in the melody are "jammed"
together in time, and on playback
will come out exactly equally
spaced, one note per beat. While
this is OK in some cases, as a
general rule it is unacceptable;
because it is unacceptable, we
have a REST pad on the command
keyboard. The REST pad provides
for syncopation. It is a means of
"extending" an event so that it
takes more than a single beat.

If you're familiar with the
operation of the rest key on
something like PAIA's
Programmable Drum Set, you
already have a good idea what's
going on, but there still are
some surprises here.

Your first thought may be
that when you press and release a
key on the AGO keyboard, that
constitutes an event. Actually,
it's two events as far as SEQUE
1.0 is concerned - the first when
the key was pressed and the next
when it was released. It's
important to keep in mind that
the REST pad can extend either of
these events. ~~~

For example, this simple
phrase:

~~1 jJJj J
Figure 6

would be entered from the
keyboard by pressing F and
releasing, press A and release,
press C, release, press D,
release, press F and while
holding the F key down, hit the
REST block on the keypad, release
the F key, tap the REST block,
play A, touch the rest block
before letting up the A key,
release the key, and hit the rest
block once more. The measure is
now completely entered, and may
be played by using the REPEAT or
SINGLE keys as described last
time. Note particularly that on
the fifth note (the second F)
where we wanted to extend the
note to a full beat, the REST pad
had to be touched twice; once to
extend the "key down" event and
again to extend the "key up"
event.

At first, having to enter
two RESTs when we actually want
to extend a note f or a single
beat may seem a pain in the neck
(undeniably, it is) but the
slight inconvenience buys us a
number of things. For example,
the ability to slur notes.

In the above example, the D
could have been slurred into the
F by first touching the REST p:id
before releasing the D key. This
will lengthen the note to occupy
the time normally used when the
key is released. Then press the F
key before releasing the D. This
will cause the D to be entered in
the next time slot without any
articulation (triggering). Now,
while holding the F key, touch
the REST pad to lengthen it to a
quarter note as covered earlier.
After releasing the key, enter
the additional REST required and
proceed as usual.

Having each REST pad
activation correspond to a "half"
event (kind of) also allows us to
produce dotted notes as the
exceptions that they are rather
than having to make specific
tempo provisions for them which
must be carried over to all notes
in the sequence.

It is also possible to
generate articulation changes
whenever a note is extended
beyond a basic "dual" event. If',
f'or example, you are generating a
series of' notes where each note
uses a key depression plus a REST
and a key release plus a REST
(f'our events), theses notes can
be performed in three different
manners. If entered as listed
above, the note has equal time
allotted for note perf'ormance and
release. For a staccato style,
the note could be entered with a
key depression, release, and then
two RESTs. For legato styles, the
two RESTs could be entered while
the key is held down, yielding
three "on" events and one "of'f"
event. Each of the above would
occupy the same execution time
during playback, but would
reflect the different
articulation styles.

Once the melody is in the
computer's memory, it makes no
difference whether it got there
with SCORE or EVENT programming
modes as far as the playback and
options are concerned. All of

these features (real time or
programmed transpositions, single
or repeat play, tempo up and
down, and tape saves or loads,
etc.) work the same.

CLICK TRACK SYNCH

Even more powerful in the
studio than the EVENT programming
mode are the features added by
two other command pads; CLIK and
(in the option box) SYNC. These
provide a means of synchronizing
multiple tracks of sequencer
operation.

Once you start using a
sequencer for recording, you
begin to find more and more
places where it can be used to
relieve a lot of tedium. The
problem in the past has been that
it is, for all practical
purposes, impossible to manually
synchronize a sequencer to a
track that's already on tape.
Even slight differences in tempo
soon build up to an intolerable
variation in when a note is
supposed to happen and when it
actually does happen. Maybe there
are people who could manually
twiddle a tempo knob and keep
things locked together, but
that's a hassle.

Most of us are familiar with
the classical "click track"
approach in which a
metronome-like "tick" is recorded
on one track of a tape so live
musicians can easily maintain the
tempo of the original work in
over-dubs. Our CLIK and SYNC
command pads are simply this old
concept extended into the realm
of automation.

Touching the CLIK pad causes
SEQUE 1.0 to begin producing a
very rapid series of "clicks"
that are machine readable and
represent a standard clock rate
which the SYNC option can read
and synchronize to. The click
appears at the normal cassette
output jack (where programs,
etc., that are to be saved to
tape come from) and when using
this option, this output is tied
to one of the channels of the
tape recorder on which you're
recording your audio tracks.

To use the click track
option, the tape that you will be
recording and mixing your audio
onto must always be prepared
first; you can't record a lead
part and then come back and lay
down the click, it won't work
like that. Before doing anything
else, connect the 8700's cassette
output to the input of one track

of your recorder, start the tape
rolling in record mode, and after
allowing a comfortable quiet
leader, punch the CLIK pad. Allow
the tape to run much langer than
you think you'll ever need for
what you're going to be
recording, one thing you don't
want to do is run out of click in
the middle of things.

Synchronizing to the click
track is simply a matter of
connecting the output of the tape
channel that contains the click
to the normal cassette input jack
of the computer, but note that
some Juggling of the record and
playback levels of this channel
may be necessary for the computer
to properly write and read the
channel. In many cases, unless
your recorder is capable of
providing very high outputs
(similar to the earphone levels
from the cassette recorders which
the computer was designed to work
with), you may need to use a
small external amp to provide the
extra gain and current drive
required. If your SYNC fails to
respond, try using the earphone
jack signal usually provided on
multi-track recorders. If this
doesn't provide enough power, try
using a small portale practice
amp (such as a Pygmy or Pignose)
whose earphone output should
adequately drive the cassette
input jack of the computer.

Assuming that you have some
rhythm sequence (ordinarily the
first laid down) in the computer
memory and that you're getting
ready to record it as audio,
proceed by first punching into
the T-SEQ option (if you plan to
use it) then touch the SYNC
control pad. Roll the tape with
the click track channel set to
playback and the audio going to
one of the other tracks which is
naturally in record mode. Before
the quiet leader ends, touch the
REPT/PLAY command pad and hold
it. When the click track starts,
so will the sequence. When enough
of the track is laid down,
terminate the play mode by
touching the NORMAL pad.

lt is necessary to select
the SYNC OPTION last in the above
sequence of events because once
this option is asserted, a click
track must be coming in on the
cassette port for the computer to
recognize any further commands.
If you find yourself with a
"dead" computer caused by CLIK
being selected with no click
track present, you can either run
a tape which has a click track or

reset the computer and run the
program again.

In situations where the
sequence is not to be played from
the first down-beat, the SYNC
OPTION should be enabled before
rolling the tape and REPT/PLAY
punched in when the time comes
for the sequence to start.

A little constructive play
will go a long way toward
familiarizing you with the
capabilities of this powerful
option. Here are some we haven't
mentioned yet:

You have probably already
noticed the somewhat cryptic METR
designations that appear in both
the OPTION and TEMPO control
boxes. And probably you've
figured out that it means
metronome (a handy thing in any
studio). But this is kind of a
super metronome because not only
does it ha:ve a "pendulum" (which
shows in the computer's twin
displays) and an audible click
(which you hear from the beeper)
but it also provides an
electrical output in the form of
a short positive going pulse that
appears as D7 of the D/A output
channel (which in turn shows up
on the Flag 2 pin jack of the
D/A's front panel). This pulse is
enormously useful in
synchronizing external devices (a
Programmable Drum Set, for
example).

Since both the SYNC and METR
options may be asserted at the
same time, the external device
can be synched to a pre-recorded
audio track.

The METR pad in the TEMPO
control box is obviously the
tempo control for the metronome.
Like the other tempo controls
that we looked at last time, this
one works in octaves. Each time
the pad is touched the metronome
tempo doubles until the maximum
rate is reached, then the next
touch causes the tempo to "fold
back" to the minimum rate.

lt may be somewhat out of
sequence (?) to mention here that
the tempo of the metronome is the
tempo at which sequences stored
in EVENT mode will play back,
though of course, the TEMPO UP
and DOWN command pads will also
alter the tempo of the sequence
once saved, as outlined last
time.

Another point When
electrically synchronizing things
to the click track, the METR
TEMPO can still be varied to
accomodate different timings, and
since it operates by octaves the

47

integrity of the timing will be
preserved.

And a hint - the metronome
"beep" can also be recorded on
tape to provide a "human
readable" click track (though it
must be saved on a different
track than the CLIK).

The only other command pads
that we've added are STOP/STEP (a
means of stopping the sequence
without "forgetting" where we
were as well as single stepping
through the sequence) and CONT
(continue) which allows us to
pick up from the point where we
STOPped. This feature can provide
easy introductions to songs.
STOP/STEP through the piece until
you reach the REST just prior to
the point where the introduction
should start. When the CONTINUE
pa4 is touched, the introduction
will play, leading into the
repeating sequence.

SEQUE 1.0
COMMAND SUMMARY

48

SCORE

EVENT

PRO GRAM
- Saves melody sequence

in real time.

Saves melody sequence
as regularly spaced
events.

TRANSPOSE- Saves transpose
sequence as events.

PLAY
REPEAT - Plays sequence from be-

ginning, cycles until
stopped.

SINGLE - W aits for key on AGO
then plays sequence from
the beginning. Stops at
end of melody.

STOP/STEP - Allows stops or pauses
during playback.

CONTINUE - starts melody playback
from where you are in
memory.

SAVE

LOAD

TAPE
- Dumps current Melody

and T ranspose sequences
to mag. tape.

- Loads M & T sequences
from tape.

TABLE

OPTIONS
- Selects transpose sequence

table as source of trans
positions (otherwise AGO
is source).

METRDNDME-Initiates visual metro
nome display and a
"beep".

SYNC. - Shuts down internal
timing and accepts pre
recorded click-track
for timing information.

CANCEL - Turns all selected
options off.

TEMPO
UP - Doubles tempo of melody

DOWN

sequence.

- Halves tempo of melody
sequence.

METRONOME - Doubles speed of metro
nome display and 11 beep"

MISC
NORMAL - The "normal synthesizer"

mode. Does not alter
stored sequences.

LOADING SEOUE 1.0
LOADING FROM TAPE

Because part of the SEQUE 1. 0 program is held on the
same page that the 6502 processor uses as a stack register,
some very slight preparation is required before the SEQUE
1. O tape can be loaded. Specificly the stack pointer which is
used by the PIEBUG monitor program and the stack pointer
associated with the applications program must be set to
assure that the stack will not over-write the program. And,
as long as we are setting the stack pointer, the status
register may as well be set to a known state.

These objectives may be met by these keyboard
manipulations:

0-0-E-D-DISP-F-F-ENT this sets the monitor stack

O-O-F-E-DISP-F-F-ENT-0-0-ENT this sets the user stack
and status register.

On the tape supplied, SEQUE 1. 0 is saved with the
identifier 01; and should be loaded to memory from location
$0000 to $0280 using this entry sequence:

0-0-0-0-0-2-8-0-0-1-l-1-TAPE

The program is saved in triplicate so if the first copy
won' t load for some reason you can always try for the next.
All copies have the same identifier 01. If you experience
continued difficulties in loading, refer to the POT-SHOT
cassette Interface manual.

HAND LOADING

If you are absolutely unable to load the program from
this cassette, return it for a replacement. Since transit time
back and forth may present unbearable delays, you may
consider hand-loading the program and dumping your own
tape (which goes a long way toward eliminating any problems
caused by differences in tape recorders). To assist you
should this solution become desirable, a hexadecimal dump
of SEQUE 1. O is provided below. NOTE that even ifyou
hand load the program, the stack and status register setting
manipulations outlined above should be performed before
you start loading the program. ---

With the stack pointers and status register set, the
program may be hand loaded as outlines in the various 8700
manuals:

First the programming on page 0:
0-0-0-DISP-A-9-ENT-O-O-ENT-8-5-ENT- (etc.)

Then page 1:

1-0-0-DISP-8-5-ENT~l-O-ENT-8-5-ENT- (etc.)

And finally page 2:

2-0-0-DISP-8-D-ENT-0-6-ENT-1-2-ENT- (etc.)

Note that none of these blocks go all the way to the end of
the page.

When done loading, immediately save the program to
tape from $0000 to $0280. Do this before running the pro
gram to avoid the unpleasant experience of having some
incorrectly copied code wipe out the program. Next verify the
program by stepping through it and comparing memory con
tents to the hex dump. Finally, when you' re sure that it' s
enteredcorrectlyandhavea copyontapejustincase, run it.

RUNNING THE PROGRAM

Location 0 is both the hard start and the soft start loca
tion for this program.

0-0-0-0-RUN.
If the program crashes (as perhaps when SYNC is selected

with no synchronizingtapeinput) it may be re-started from
this same location without losing any melody or transposing
sequences that had been saved to that point. Re-starting from
this location will cancel any options which may have J:ieen select
ed and will cause SEQUE 1. o to come up in its NORMAL mode.

RUNNING SEQUE 1. OON A P-4700/J

SEQUE 1. 0 may easily be modified to run on a polyphonic
system (though it will still be a monotonic sequencer) simply
by changing the address of the output port which appears at
SEQUE 1. O locations $14B & $14C. Changingthis address to
$09FF will cause the output to appear at QuASH channel#t.
This may be accomplished as follows:

1-41B-DISP-F-F-ENT-0-9-ENT

If you make this change, you should also save the altered
program to tape.

A fully documented assembler listing of SEQUE 1. O starts
on the following page.

SEOUE 1.0 HEXADECIMAL DUMP
----PAGE 0 ----

111!8- A9 88 85 E2 A9 ec eo 78
888- 11 4C i8 ii 119 85 85 E6
81.&- 80 28 88 AS EC 00 84 AS
818- EB 29 3F 85 EB 68 119 llA
828- 85 E6 85 E8 85 E7 A9 99
828- 85 E2 A6 E7 8E 28 98 AS
138- EC F8 86 C5 E8 F8 85 E6
838- E7 90 ce 02 85 EB 68 28
848- 84 11 E6 E5 68 l8 28 i.;
848- 11 fl) i4 ii C5 E3 00 82
8:19- E6 E9 24 E2 38 llA AS EC
~ F8 82 85 E4 AS E4 85 E6
86&- E6 E5 68 ~ 84 AS EC 00
868-- 00 28 46 i8 AS EA DB 811
878- A9 88 85 E5 A6 E8 80 81
878- 83 85 EB 68 A9 7E DB 82
888- A9 lE 4C 88 12 iS R5 E5
888- 65 Ei 85 E5 AS E3 eo 78

89&- ii 68 119 BE R9 FF 85 E5
898- 28 86 11 8E 28 88 R9 118
llA&- 85 E6 68 119 82 85 E5 28
llAB- 84 11 AS E5 00 85 iS 65
088- Ei 85 E5 68 85 E9 AS E2
8118- 09 88 DB BE AS E2 09 48
8C&- DB 98 AS E2 09 81 DB 82
BC8- R9 118 85 E2 4C 0F 12 18
eo&- 29 25 1E 68 4C 54 12 4C
808- 29 12 4C 33 12 FF FF 00
BE&- 00 84 00 88 118 00 88 00
BE8- 00 88 00 00 118 FF FF FF

---PAGE 1 ----
188- 85 10 85 85 C2 BC 84 C8
1es- CF l>4 80 7C DA D7 ec ec
11&- 45 92 6J 46 lF Al 1E 46
11S- AS E2 4S llA 10 22 C6 DF
i20- i0 iE A6 Ei CA 86 DF A9
128- 88 ffl iS 65 E0 85 E0 10

138- 8C AS EB 09 88 85 EB i8
1l8- 29 25 iE A2 88 8E 29 88
14&- AS E6 F8 0J 18 69 A4 iS
148- 65 EB eo 48 98 68 6R 90
i58- 06 28 49 iE 4C 6D i1 2C
158- 10 88 18 FB fl) i0 88 38
168- FB 2C 18 88 J0 85 50 F9
168- fl) i0 98 85 EC 28 118 1F
i70- ee 06 89 00 ii eo 78 11
178- A9 00 28 0J 00 fl) 78 11
i8&- 85 EJ DB 94 B0 09 eo 81
188- 0J 85 ES 85 E6 85 EB A5
190- E5 A6 E8 9() 118 0J 20 B
198- 10 29 7F DD 01 0J F0 08
1A0- E8 ES S6 ES 9D 01 0J A9
1AS- 00 85 E5 60 80 08 85 E4
180- SS E9 85 EA 85 ES A5 ES
188- A4 E9 A6 EA DO 02 0J 90
1C0- 1S A9 00 8S ES ES ES 86
1C8- EA E4 E8 D0 09 C8 C4 E7

100- B0 DE S4 E9 D0 OC eo 0J
11>8- 0J 85 E8 89 C8 02 85 E6
1E0- 60 FF 00 FF 0J C0 82 C8
iE8- 82 FF FF FF FF FF FF FF

---PAGE 2 ----

200- 8D 06 12 A2 00 18 7E 02
298- 0J ES ES E4 ES D0 F6 A5
210- EJ 8D 78 11 68 A2 07 BI>
21S- Ei 11 95 F0 CR D0 FS 68
220- 20 1S i2 A5 ES 8D 00 0J
228- AS E7 8D 81 0J A9 DO 28
2J0- 46 12 60 28 15 12 A9 11
2l8- 20 46 12 AD 118 0J 85 ES
240- AD 81 0J 85 E7 68 28 AA
248- 1E fl) 0F 11 8D 78 11 18
250- 20 22 1F 68 85 DF 66 Ei
258- 90 02 66 Ei DB Bi FF FF

49

0010 : ******************************** 102f- A5 EC 0830 LDA *KBUF :GET TtE NOTE

0020 :+ * 1031- F0 06 0840 BEQ TL2 : ZERO- NO KEY, SAl/E

0030 :+ SEQl..e 1. 0 * 1033- CS EB 0850 CloP «PStF : KEI' SAl1E AS LAST?

0040 :* * 1035- F0 05 0860 BEQ TRTN : l'ES - LEAYE

0050 : * MONOTONIC SEQl..eNCER PROGRAl1S * 1037- E6 E7 0870 INC +TEND :POINT TO NEXT LOCATION

0060 * * 1039- 90 C0 02 0880 TL2 STA TTBL, X : SAl/E TRANSPOSE

0070 :+ B'1' * 103C- 85 EB 0890 TRTN STA *PBLf : All) OUTPUT AS NOTE

0080 :* JOltl S. SIMONTON, JR. * 103E- 60 0990 RTS : TIEN RETl.ej

0090 :+ * 0910
:PROORAl'I SCORE l'IOOE - USES REll.-TIME CLOCK 0100 :+(C) 1978 PAIA ELECTRONICS, INC+ 0920

0110 :* fl.L RIGHTS RESERIJED * 0930
0120 :+ * 103F- 20 84 11 0940 l'ISAI/ JSR 1151/1 : Cfl.L SAl/E l'KXlll.E
0130 : ******************************** 1042- E6 E5 0950 INC •CNTR : INCREMENT TIE TEll'O

0140 1044- 60 0960 RTS : CCl.MER All) RETl.ej

0150 : DEFINE AOORESSES OF LABELS 0970
0160 0980 :CONTIN.JE PLAY l'OOE - DOES NOT RESET
0170 BEEP . DL 1F22 0990 : 1'1-SEQlENCE OR T-SEQlENCE POINTERS
0180 DECD . DL 1F00 1000
0190 CASS . DL 1EAA 1045- 3S 1010 CNTU SEC :SKIP IN!Tlfl.IZATION
0200 DBIT . DL 1E49 1020
0210 SBIT . DL 1E25 1030 : REPEAT PLAY l'IOOE - llEN FIRST ENTERED
0220 OUTP DL 0840 1048 :M-SEQ All) T-SEQ POINTERS ARE SET TO ZERO
0230 DSP . DL 0820 1959 : B'1' TIE PLAY l'KXlll.E <PLA1)
0240 KBD . DL 0810 1868
0250 1046- 20 AC 11 1070 RPLA JSR PLA1 : Cfl.L PLAY l'U)l.LE
0260 MTB3 . DL 0303 1049- AD 14 11 1080 LDA STBl. +14 : WAS TIE PREl/IOUS l'OOE
0270 MTB2 . DL 0302 104C- C5 E3 1890 Cl'IP *LSTL : l1SAI/ CPROG. SCIH:>?
0280 MTB1 . DL 0301 104E- D0 02 1100 BIE RPl.1 : NO-SKIP INCREl'IENT
0290 MTBL DL 0300 1058- E6 E9 1110 INC •TPNT : INC. T-SEQ POINTER
0300 TTBL . DL 02C0 1052- 24 E2 1120 RPl.1 BIT •STUS : T -SEQ ASSERTED ?
0310 1054- 30 0A 1130 8111 ROUT :OPTION ON - LEAYE
0320 SUFF . DL 00F0 1056- A5 EC 1140 LDA *l<Blf" : OPTION OFF- GET NOTE
0330 KBUF . DL 00EC 1058- F0 02 1150 BEQ Cl.OK : All) I F NO NOTE, BRANCH
0340 PBUF . DL 00EB 105A- 85 E4 1160 STA +TTRN : SAl/E NOTE FOR NEXT TIME
0350 MPNT . DL 00EA 105C- A5 E4 1170 Cl.OK LDA •TTRN : GET LAST ACTIYE NOTE
0360 TPNT . DL 00E9 10SE- 85 E6 1180 STA •TRNS : USE AS TRANSPOSE
0370 MEI«> DL 00E8 1060- E6 E5 1190 ROUT 1 NC *CNTR : INCREl'ENT TEll'O CCl.MER
0380 TEND . DL 00E7 1062- 60 1200 RTS : fN) RETl.ej
0390 TRNS . DL 00E6 1210
0400 CNTR . DL 00E5 1220 : SINGLE PLAY l'OOE - lolUTS FOR AGO KEY
0410 TTRN . DL 00E4 1230 : TIEN PLAYS SEQlENCE ONCE Tfm.IGH
0420 LSTL . DL 00E3 1240 : TRANSPOSED TO INDICATED KEI'
0430 STUS . DL 00E2 1250
0440 TPO . DL 00E1 1063- 90 04 1260 5 ING BCC SNG1 :FIRST PASS, BRANCH
0450 l'IETF . DL 00E0 1065- A5 EC 1270 LDA •KBUF : AGO KEI' DCNI ?
0460 MTRC DL 00DF 1067- D0 00 1280 BIE RPLA : l'ES - PLAY SEQlENCE
0470 DLtll/ . DL 0003 1069- 20 46 10 1290 SNG1 JSR RPLA : NO - 'PLAI'" TIEN RETl.ej
0480 106C- A5 ER Ü00 LDA *loPNT :1'1-SEQ POINTER) 0 ?
0490 106E- D0 0B 1310 BIE SRTN :l'ES - RETU!N
0500 1070- A9 00 1320 LDA 00 : NO - PREPARE
8510 OR 1000 1072- 85 E5 1330 STA •CNTR : ZERO TEloPO COlllTER
0528 1074- A6 ES 1340 LDX •IEI«> :POINT TO LAST NOTE

1000- A9 00 0530 STAR LDA 00 : START I RESTART 1076- BD 01 03 1350 LDA l'ITB1, X : CF 11-SEQ All) GET IT
1882- 85 E2 0540 STA •STUS : CANCEL OPTIONS 1079- 85 EB 1360 STR *"81.J' : PLACE IN PLAY BlFFER
1004- A9 0C 0550 LDA 0C : NRllL COll'lflll) Llt-1< 1078- 60 1370 SRTN RTS : TIEN RETU<N
1006- 81> 78 11 0560 STA ACTN+01 : PLACE Clll1fM> LINK 1380
1909- 4C 18 11 0570 Jl'IP COl1 :JLK' TO CCl1MON 1390 :UP TEll'O All) DCNI TEll'O - CCl1MON PORTION

0580 1400 : OF BOTH PROGRRllS ON PAGE 2
0590 : NORIR. OPERATING l100E - DOES NOT ALTER 1410
0600 : T-SEQlENCE OR 11-SEQUENCE 107C- A9 7E 1420 UTl'IP LDA 7E : TIE OP-COOE FOR ROR
0610 107E- D0 02 1430 BIE UID : BRANCH fl.lolll'S

100C- B0 05 0628 liM. BCS r.Rl11 : FIRST PASS TftWUGH 1080- A9 3E 1440 DTl'IP LDA 3E : TIE OP-COOE FOR ROI..
100E- 85 E6 8630 STR •TRNS : ZERO TRANSPOSE 1082- 4C 00 12 1450 UID Jll> TCOl1 : Jlll' FOR TIE REST
1010- 8D 20 08 0640 STA DSP : All) DISPLAYS 1460
1013- A5 EC 8650 r.Rl11 LDA +KBlF : CIECK FOR NOTES 1470 : REST ltOOE - . EXTElt)S NOTES OR UN-NOTES
1015- D0 04 0660 NRll2 BNE STOR : ZERO- NO NEW KEI' 1480 : llEN IN PROGRAl'I EYENT l'OOE
1017- A5 EB 8670 LDA *"81.J' : SO GET OLD KEI' 1490
1019- 29 3F 0680 All) 3F : CLEAR BOTH FLAGS 1985- 18 1500 REST CLC : PREPARE FOR fl>DITTION
1018- 85 ES 0690 STOR STA *"81.J' : SAl'E AGAIN 1086- A5 E5 1510 LDA *CNTR : GET TEll'O COUNTER
1010- 60 0700 RTS : All) RETIJiN 1088- 65 E1 1520 AOC •TPO :fl>D TEll'O Yfl.lE

0710 108A- 85 E5 1530 STA *CNTR : PUT COUNTER BACK
0720 : PROGRAl'I TRANSPOSE l'OOE - NOTE PLAYED 108C- A5 E3 1540 LDA *LSTL : All) RETU!N TO
0739 : IS 'KILLED' llEN KEY IS RELEASED 10BE- 81> 7B 11 1550 STA ACTN+01 : PREl/IOUS OPERATil«l
0740 1091- 60 1560 RTS :l'OOE

101E- B0 8A 8750 TLOO BCS TL1 :FIRST PASS. INITifl.IZE 1570
1020- 85 E6 0760 STA •TRNS :ZERO TRANSPOSE FI~ 1580 : STOP ISTEP l'OOE - STOPS PLAY WI Tl«lUT
1022- 85 EB 0770 STA >tPflF : ZERO OOTPUT lllTE 1590 : CIR«lll«l POINTERS. SllO.E STEPS TIROWH
1024- 85 E7 0780 STA •TEN> : ZERO Tfll.E 00 POINTER 1600 :SEQUENCE
1026- A9 88 0790 LDfl 90 : TlllN T-SEQUE OPTION 1610
1028- 85 E2 88011 STA •STUS :ON 1892- B08E 1620 STEP BCS STP1 : NOT FIRST PASS-BRANCH
102fl- A6 E7 8818 TL1 LDX •TOO : IET TRffQ>OSE POINTER 1894- A9 FF 1630 LDA 8FF : SET TEloPO COUNTER AT
102C- 8E 28 08 11828 STX DSP :SIOi IT 19%- 85 E5 1640 STA *CNTR : "TIMED OOT' Yfl.lE

50

1898- 28 86 11 1658 JSR CCWT : CfU PART CF PUIY ID>ll.E 1127- 119 88 2988 LDfl 88 : TO DETERlllNE fl. TERNATE DISPLAY

1998- 8E 28 88 1~ STX DSP : DISPLAY lt-SEQ POINTER 1129- All 2998 TAX : CYClE AN> "f'EN)l.l.lll" LEFT

189E- f!9 88 1670 LDll 88 : RE TRll6'05E Vll.lE 112fl- 10 38110 a.c :PREPARE FtR AOOITIION

18118- 85 E6 i680 STR •TRNS : El:Ul. TO ZERO i128- 65 EB 3818 fl)C *IETF : AOO FLIP-FLOP Vll.lE

111R2- 68 1690 STP1 RTS :fH) RETUm 1121>- 85 Eil 38211 STR *IETF : SRYE NEW Yfl.UE

1780 i12F- 180C 3838 BPL 11ETi :fl.TERNRTE? - DISPLP.Y

1719 : PROORRl'I EYENT t100E - SRI/ES "-SEQIEll:E 1131- A5 EB 3848 LOA •PIU' : OTIERWISE. GET OUTPUT

1729 : BUT SUBSTITUTES EYENT CLOCK FtR REfl. - Tl 1'E 1133- 99 88 3850 CJIR ee :SET 07

1730 :CLOCK 1135- 85EB 3868 STR *PBlF :SAYE IN PLAY BlfFER

i749
i1l7- i8 3070 CLC : PREPRRE IN>

111113- 98 82 1750 ESAY BCS ES1 : FIRST PASS, INITifl.12E 1i38- 28 25 1E 3980 JSR SBIT :CIU BEEP

10A5- 85 ES 1760 STA •CNTR : TEl'IPO COUNTER AS ZERO i138- R2 88 3090 LDX 08 : "PENDlLl.111" RI GHT

:t8A7- 28 84 11 1778 E51 JSR "51/i : Cfl.L SRYE IO)lU 1i3D- 8E 28 88 3i00 l'ET1 STX DSP : SIOI PENDlLl.11

illRR- R5 E5 1788 LDA •CNTR : GET T~ COUNTER 1148- R5 E6 l118 C°"9 LDA HRNS : IS TIERE A TRlllSPOSE ?

10RC- De 05 1791! BNE EOUT : t«l ENTRY-RETUIN 1142- Fll 83 31211 BEG COl11 :t«l - BRRNCH

1BAE- 18 18110 CLC :PREPARE 1144- i8 3130 TRAN CLC : YES - PREPARE

10RF- 65 Ei 1818 fl>C •TPO : AOO ~ Yfl.UE i145- 69 A4 3149 AOC 0A4 : Cfl.Cll.ATE TRRNSPOSE Vll.UE

18111- 85 ES 1828 STR *CNTR : SAYE AS TE~ COUNTER 1147- 18 31511 C()11 CLC : ~ PREPRRATION

1883- 60 1830 EOUT RTS : TIEN RETlllN 1148- 65 EB 3i60 ROC *"8ll' : Cfl.Cll.RTE t«JTE

1848 1i4R- 8D 411 88 l170 COUT STA OUTP :Pl.AY t«JTE

i850 :OPTION IEMJ - RETlMINS TO PREVIOUS ii4D- 68 3i88 PLR : GET STUS <OPTION COOES >

1860 : OPERRTil«l MDE fl'TER TURNll«l ON OR 1i4E- 6R 3190 RIR :SOC OPTION ON ?

i870 :CIKELLll«i OPTIONS 114F- 90 06 3200 8CC KRED :t«l - SKIP

i880 1151- 211 49 1E 32111 JSR D8IT : Wfl!T Fef;? CLIK

1884- 85 E9 1890 TBL" STR •TPNT :T-SEQ POINTER TO BEa 1i54- 4C 60 11 32211 J~ CTRL :SKIP REROll«l RGO

i886- R5 E2 i900 LDA •STUS : ASSERT T-SEQ OPT 1 ON 1i57- 2C 19 08 3230 KRED BIT KBD : WRIT FCf1 Dlll1Y 5CRN

18118- 119 88 i910 (JIR 811 115R- ill FB 3249 BPL KRED :LOOP LMIL STARTED

188A- DB IE 1920 BNE 11C()1 : BRRNCH ASLWRYS 115C- RO i0 88 32511 KR2 LDA KBD : lflIT FCf1 5CRN TO START
18BC- R5 E2 1930 l'ET LDA •STUS : TURN IETROIO'E ON 115F- 30 FB 32QI 8111 KR2 :LOOP IMTIL STARTED

1EE- 119 48 1949 (JIR 49 1161- 2C 111 88 32711 KR3 BIT K8D :CIECK FCf1 KEYS DCllll

1.0C0- DB 88 1958 BNE l1C()1 : BRRNCH fUIAYS 1164- 38 05 3289 8111 KRTN :IMN SCAN DONE, RETURN
10C2- R5E2 1960 SYN: LDA •STUS : TURN ON S'IN: TO 1166~ 511 F~· 32911 BYC KR3 : CIR!ENT KEY lllT DOWN. LOOP

10C4- 119 Bi i970 (JIR Bi : CLICK TRfa< OPTION 1168- RO 19 88 3388 LDfl K8D : KEY DOWN. GET IT
10C6- DB 82 19911 BNE l1C()1 : BRRNCH fl.WRYS 1168- 85 EC 33i9 KRTN STR *l(Blf : SAYE RESlL T
i0C8- 119 88 i990 CICL LOA 88 : PREPARE AN> 116D- 211 80 1F 3320 CTRL JSR OECD : GET COltlfN)

illCA- 85 E2 2B l1C()1 STA •STUS : CAN:EL fl.L OPTIONS 1170- 8806 33311 BCS DO : OLD COllRI) - DO IT
10CC- 4C 9F 12 281.ll Jll' TCll1 : JUl1P FCf1 TIE REST 1172- 89 80 i1 3348 LDA STBL, Y : NEW COltlfN) - GET LINK

28211 1175- 81) 78 11 33511 STA RCTN+9i : PI.ACE LINK
2838 :CLICK MDE - SENOS CLICK TRll:K TO TAPE ii78- A9 80 3360 DO LDA 80 : THIS WILL IE HflN)Y

2848 : AGO KEYBOARD 5CRN RATE IS TIIER 117A- 28 83 80 3370 ,.;TN JSR DtJ1Y : Cfl.L OPERATil«i t100E
211!!0 : 117D- AD 78 1i 3388 LDA OCTN+Bi : SAYE Cl.llRENT COllftl)

10CF- 18 28611 Q.IK CLC : PllEPfllE TO SErt> •e• 11811- 85 E3 3390 STA *LSTL : LINK FOR LRTER
18D0- 28 25 1E 21170 JSR SBIT :SENO IT 1i82- DB 94 3488 BNE COit : AN> LOOP fl.lllYS
ill03- 68 2899 RTS : RETURN Fef;? KEYBINO DELAY 3418

21190 3428 :SAYE lllDll.E - TAKES CARE CF fl.TERNRTELY
21811 : llETROIJl'E TElf'O CHANlE - PROGRAlt ON PAGE 2 3430 : STRCKll«l Dt.llATIONS AN> l«lTES IN 11-SBIEl:E
21i0 34411 : USES llllT WILL IE "END CF SEllENCE"

111>4- 4C 54 12 2128 TCHG Jll' TCH : JUl1P TO PROORAll 34511 : lrt>ICATCf1 IN PUIY IO>ES AS POINTER
21lll 3468 :
21411 :DUl1P ll&T-SEQ TO TAPE - PROGRAlt ON PAGE 2 1184- 88 119 3470 "5Y1 BCS "51 : FIRST PASS?
~ : 1186- 81) Bi 83 3480 STA llTBL fil1 : YES-2ERO PROGllAll lllTE

i81>7- 4C 28 12 2160 OTAP J~ TOUT : JUl1P TO PROORAll 1189- 85 E8 3490 STR *llEN> :ZERO "-SEQ POINTER
21711 1188- 85 E6 35118 STR •TRNS : ZERO TRANSPOSE
2188 : LOAD ll&T-SEQ FROll TAPE - PROORAll ON PAGE 2 1180- 85EB lS18 5TR *"81.F : ZERO OUTPUT lllTE
2190 11BF- 115 E5 35211 "51 LDA *CNTR : GET Til1E Slt«:E LAST lllTE

180A- 4C 33 12 2288 ITAP Jll' TIN : JUl1P TO PROORAll i191- A6 E8 3538 LDX *llEN> :AN> lt-SEQ END POINTER
22111 1193- 90 88 83 35411 STA llTBLX : SRYE TIE Til'E
28 11!16- 28 13 111 35511 JSR IRl1. : IN CASE l«l KEYS DCllll
2298 :COl1fN) LIN<S - LOW BYTE CF RODRESS CF SlllS 1199- 29 7F 3:560 fN) 7F : CLEff! D7 IN OUTPUT lllTE
23M 1198- 00 Bi 83 3570 CllP llTBL X : SAllE AS LAST l«lTE?

11118- 85 85 85 85 C2 BC 84 C8 119E- F0 8B 35811 IEQ OUT :YES, LEAYE
1180- CF D4 80 7C DA D7 ec ec 11A9- ES 35911 INX : NO. SAYE BY INCREIENTil«i
1118- 45 92 63 46 3F A3 1E 46 11A1- E8 3688 INX : "-SEQ POINTER TWICE

2798 11R2- 86 ES 3618 STX *llEN> : AND SAYil«i AS END
281111 . Cf;? 1i18 11A4- 90 Bi 93 36211 STA llTBLX : nEN SAYE lllTE
2819 i1A7- A9 80 3638 LDA 88 :RND ZERO Til'E Slt«:E
2829 : COtlllN PROORAll - DOES IETRONOl1E 1MN ON 11A9- 85 E5 3648 STA *CNTR :LAST l«lTE
2838 : RODS PLAY AN> TRIWSPOSE BlFFERS TO GET 11flB- 68 3658 OUT RTS :RND RETURN
2849 : OUTPUT llJTE, PLRYS t«JTE, REROS COllftl) 3668
28:!8 : KEYBCWIRD AN> JUl1PS TO SELECTED IOlE 3670 : PLRY ~ - lflftlES lt-SEQ AN> T-SEQ
28611 : SlllSTITUTES CLICK SYN::H FM KEYBOARD 3688 :POINTERS AS WELL AS TEll'O CLOCK.
2870 : TI"lt«l LOOP IHN SYN: OPTICll 15 ASSERTED 3690 :DETERlllNES IHN lllTES ARE TO IE PLAYED
2888 3700

1118- R5 E2 2890 COit LDfl *5TUS : CIECK OPTIONS iiOC- 89 88 3718 PI.Ai BCS CONT : FIRST PASS ?
111R- 48 2908 Piil :SAYE R COPY 111E- 85 E4 37211 STA •TTRH : YES-ZERO TEii'. TRllfiPOSE
iiiB- BA 2918 RSL : l1ERONOl1E ON ? 1188- 85 E9 3730 LPi STA •TPKT : ZERO T-SEQ POINTER
i11C- 19 22 2928 BPL C()10 :l«l - llRANCH 1182- 85 ER 37411 LP2 STA >lll'NT : AND 11--SEQ POINTER
111E- C6 DF 2930 DEC *llTRC : DECREl'IENT IETRONOl1E COUNTER i184- 85 ES 37511 STA *CNTR : AN> a.OCK <TElf'O CCWTER>
1120- 19 1E 2948 BPL COll8 : lllT <II YET, BRANCH i186- 115 ES 3768 CCWT LOA *CNTR :GET a.OCK
i122- A6 Ei 2951 LDX •TPO : Tll'E lJ>, GET TE~ Yfl.UE i188- A4 E9 3770 LDY •TPNT :GET T-SEQ POINTER
1124- CA 29611 DEX : DECREllENT ONCE 11.llA- A6 ER 3788 LDX *fl'NT : GET lt-SEQ POINTER
1125- 86 DF 2970 STX *llTRC : TIEN SAYE AS COIMTER 11BC- 00 82 03 3790 CllP lfTB2, X :TllE lP?

51
„

111lf- 98 15 3889
11C1- A9 00 3818
11C3- 85 E5 3828
1~ ES 3838
11C6- EB 3840
11C7- 86 EA 3858
11C9- E4 ES 3868
11C8- D8 119 3870
11CD- C8 3889
11CE- C4 E7 3899
1100- B8 DE 39118
1102- 84 E9 3918
11D4- D8 DC 3928
1106- BD 83 83 3938
111>9- 85EB l948
111)8- B9 C8 82 ~
11DE- 85 E6 3968
11E8- 68 3978

3988
3998
48118
4818
48:!8
4838
4848
4858
4868
4870
4988

12911- 80 86 12 4898
1283- A2 00 4100
1285- 1S 4118
1286- 7E 82 83 4128
1289- EB 4138
12811- ES 4148
1288- E4 ES 41:58
12eO- D8 F6 4168
12BF- A5 E3 4178
1211- 80 78 11 4100
1214- 68 4198

4288
4219
4228

1215- A2 97 4238
1217- BD E1 11 4248
121A- 9S F8 4258
121C- CA 4268
121D- 00 FB 4278
121F- 68 4288

4298
4300
4318

1228- 28 15 12 4328
122l- A5 E8 4338
1225- 80 00 83 4348
1228- 115 E7 4359
12211- 80 81 83 4368
1221>- A9 00 4370
122F- 28 46 12 4389
1232- 68 4398

4489
4410
4428

1233- 28 15 12 4438
1236- A9 11 4448
1238- 28 46 12 4458
1238- N> 00 03 4468
123E- 85 ES 4470
1248- fK) 81 03 4488
1243- 85 E7 4498
1245- 68 4588

4518
4528
4538

1246- 28 AA 1E 4548
124!r- fK> BF 11 4558
124C- 80 78 11 4568
124F- 18 4578
1258- 28 22 1F 4589
1253- 68 4598

4688
4618

52

BCC PU :NO. BRAND!
LOA 118 : YES. PREP. CCK.NTER, ETC.
STA •CNTR : FOR !EXT ACCllU.ATICll
INX : INCREIENT 11-SEQ POINTER
INX :TWICE
STX *lf'NT : fH) SAYE NEW POINTER
CPX *1'IEN) : EN> CF lt-SEQ?
BIE Pli :NO - BRANCH
INY :YES, INC T-SEQ POINTER
CPY •TEii> :Eli> CF T-SEQ ?

BCS LP1 :YES-START T&l1-SEQ AGAIN
STY •TPNT :NO-SAYE T-SEQ POINTER
BIE LP2 : BRANCH-START lt-SEQ AGAIN

Pli LOA llTB3, X :GET TIE NOTE
STA *Pll.I' : SAYE IN PLAY BUFFER
LOA na.,y : GET TRR90SE
STA •TRNS : TO TRR90SE BUFFER
RTS :RETl.llN

: TAPE TRfWSFER PARAl'ETER TASLE
:
TAPE . HS FF8BFF83CB82Cl!82

. OR 12118

: COlltON PORTION OF TEl1PO l.J> & DCMI -
:ROTATES RIGHT OR LEFT TIE DWITIONS
:SAYED WITH lt-SEQIENCE

TCOl1 STA PLAC : PLACE ROR OR Rt:l. OP COOE
LDX 00 : ZERO A COLIITER/POINTER

TLP CLC :PREPARE
PLAC ROR IITB2, X : ROTATE SAYED TEll'O

INX : I NCREIENT POINTER TWI CE
INX :TO POINT TO !EXT
CPX •IEll> : 00 OF 11-SEQ ?
BIE TLP : NO - LOOP FOR IUIE

TC!ti LOA *LSTL : OONE, GET L IN< fH)

STA ACTN+01 : SET l.J> FOR PREVIOUS l100E
RTS : THEN RETlRN

: SET l.J> PROCEDlRE FOR TAPE TRANSFER

STTP LOX 97 : TRfWSFER 7 BYTES
STP LOA TAPE, X : GET PARAIETER FROll TABLE

STA *81.f"F, X :PLACE IN POT-SHOT BUFFER
DEX :POINT TO NEXT, ~?
BIE STP :YES - LOOP
RTS :NO - RETlRN

: DIW lt-SEQ fH) T-SEQ TO TAPE

TOUT JSR STTP : SET l.J> FOR TRANSFER
LOA •IEll> : SAYE M-SEQ END WITH
STA llTBL : H&T-SEQLENCE
LOA •TEii> : ALSO T-SEQLENCE END
STA)IT81
LOA 800 : SET l.J> FOR DIW
JSR OOTP :fH) 00 IT
RTS : TIEN RETlRN

: LCR> lt-SEQ fH) T -SEQ FROll TAPE

TIN JSR STTP : SET l.J> FOR TRANSFER
LOA 11 : SET l.J> FOR LCR>
JSR OOTP :fH) 00 IT
LOA IITBL : PLACE lt-SEQlENCE Eli>
STA *'1END
LOA llTB1 :fH) T-SEQl.ENCE END
STA •TEii>
RTS : TIEN RETlRN

: PERFORl1 TAPE TRANSFER

OOTP JSR CASS :CALL POT-SHOT
LOA STBL+eF :SET l.J> TO RETl.el
STA ACTN+81 : IN NORtR. 1100E
CLC :PREPFM
JSR BEEP : SIGlft. OONE
RTS :fH) RETlRN

: CIR«lE l1ETRCNll'E TEll'O

1254-
1256-
1258-
12511-
125C-

85 DF
66 Ei
98 82
66 E1
0081

4628
4638 TCH STA *llTRC
4648 ROR •TPO
4650 BCC TCHR
4668 ROR •TPO
4678 TCHR BIE TCl11
4688
4698 Eli> . EN
4711B.

: ZERO IETROIOIE CLOCK
: Hfl.. VE TEll'O Vfl.1.1:
: IF NOT ZERO, LEAVE
: ZERO, RE NOT ZERO
: GO SET l.J> PREVIOUS IG>E

ECHO ... ECHO ECHO „

A couple of issues ago, I
said that we were going to look
at a D/A that would allow those
of you with exponential response
synthesis equipment to begin
playing with the computer
software we have been discussing
here. Then SEQUE ran langer than
I thought it would, and we ran
into logistics problems and
In any case, it's not ready yet.
Next time for sure.

Meantime, l've got some
quickie code that I tbink you'll
like, It's a program we call
ECHO. 1 1 11 bet you tbink that
ECHO echoes. lt does.

lt works in conjunction witb
an allocation algorithm (POLY
from MUS 1 in tbis case, though
something like Bob Yannes' SHAZAM
could also be patched in to use
tbis) and "follows" wbatever data
is being produced from QuASH
channel U1, delaying it for a
controllable period of time
before playing it from a second
cbannel, delaying again before
playing an a tbird channel, and
so an.

A convenient conceptual
handle tbat may belp you
understand tbe "bow-it-works" of
ECHO might be a clock face. With
only a second band.

The numbers around tbe clock
face represent memory locations
and tbe second hand represents a
pointer to tbese memory locations
whicb, as it sweeps past eacb
number, writes whatever note
happens to be coming out of QuASH
channel #1. Tbis is really a
funny clock, tbougb, because in
addition to tbe single second
band it has many minute bands
tbat rotate at tbe same rate as
tbe second band. If tbe second
hand is a "writing pointer",
tbese funny minute bands are
"reading pointers". Witbin some
restrictions tbat we'll discuss

sbortly, we can have as many
reading pointers as we like; tbe
important feature is tbat eacb of
tbese fast minute bands
correspond to an additional QuASH
cbannel.

Now as tbe clock runs, the
writing pointer scans merrily
tbrougb memory, writing the note
tbat's in cbannel #1. In step
bebind it are tbe reading
pointers, and. as tbey point to
successive memory locations tbey
read tbem and,place the result in
the QuASH channel to whicb tbey
correspond. Presto; ecbo :- · ·

In computerese, this kind of
procedure is called a queue.

ECHO bas a variety of
software control features, and
since I don't really know wbich
of them are more important, we'll
just plunge into tbe middle.

While ECHO always pulls tbe
note tbat it's going to ecbo from
channel #1, tbe first channel
that tbe ecbo effect appears an
doesn't have to be cbannel #2.
Why? So tbat some cbannels can be
set aside for polypbonic work
wbile otbers are producing tbe
ecbo.

Here's how. One piece of
data tbat every polypbonic
allocation subroutine must have
is the number of output cbannels
available for its use. POLY
established the precedential name
OUTS for tbis datum and set its
location in a Paia 8700 as $EA.

Previously, we've always set
this variable· to represent the
number of QuASH cbannels tbat
were bardware supported. In a
system wbicb bad a single QuASH,
OUTS was set to contain $04 so
tbat all available outputs were
used for polyphonic allocation.

But OUTS may be set equal
(may I please start saying
"equal" instead of "contains"?
It's not strictly true, but mucb

less cumbersome.) to a number
less tban tbe number of hardware
supported cbannels and tbe result
will be to reserve some channels.
In a system witb two QuASH (for
example) OUTS could be set equal
to $05 and tbe result would be
that tbe upper 3 channels (6 - 8)
will not have keyboard
activations directly assigned to
tbem. POLY (or whatever) doesn't
know tbey're tbere.

So we can use tbem for other
tbings. Like echo channels.

ECHO, in its turn, must know
bow many cbannels it bas to work
witb. The location labeled ECCO
($BB) serves this function, and.
in most cases will be set equal
to the number of remaining
channels.

To give a final example; if
we make OUTS equal to $03 and
ECCO equal to $05, we've produced
a system which has 3 polyphonic
channels (the first three) with
channels 4 through 8 echoing, in
sequence, the notes that appear
an polyphonic channel #1.

I would be less than candid
if I didn't forewarn you that
successful use of a system which
combines both polyphonic and echo
channels requires a thorough
understanding of the allocation
algorithm being used as well as a
certain manual and mental
dexterity. It's best to start
playing with a configuration
which has only one channel
available to POLY and the
remainder used as echo channels.
With practice, you can progress
from there.

DELAY CONTROLS
As you certainly know by

now, all timing in our system
references back to tbe scan rate
of the keyboard, and ECHO has
associated with it a variable

53

labeled EDLY ($BC) which
regulates how fast (in terms of
keyboard scans) the hands in our
clock analogy (the reading and
writing pointers) advance from
one memory location to the next,
which in turn contributes to how
long the echo delay is.

If we set EDLY equal to $01,
the echoing routine is invoked
after every keyboard scan (which
is variable, but typically will
be every 10 to 50 milliseconds).
Making EDLY equal to $02 means
that the routine is used on
alternate scans which, if
everything else is equal, will
produce an echo delay twice as
long.

Notice that this affects
only the ECHO and does nothing to
alter POLY's allocating channels
after every keyboard scan. This
is important because when
changing the value of EDLY you
should be aware that if you skip
more than about 8 scans before
invoking ECHO, it may miss some
keyboard activity in a fast riff.
The notes will still play through
the polyphonic channels, but
won't be echoed.

A second variable also
interacts with EDLY to detirmine
the echo delay. OFST ($BD)
controls the offset between the
pointers into the echo queue.
Going back to the clock
metaphore, it detirmines how "far
apart" the hands on the clock
are. The farther apart they are
(the bigger the number in OFST),
the greater will be the echo
delay.

Like EDLY, there are some
caveats that go with OFST. The
echo buffer (queue) area of
memory is 6~ bytes on page 1. You
don 1 t want. '"~ anme •m wi.th too
many pointers {controlled by
ECCO, remember) that are too far
apart or they will represent a
memory area larger than that set
aside. The result of that is far
from disastrous, but it will
cause things like the high order
channels echoing müch sooner than
you expected, as the reading
pointers for those channels "wrap
around" past the writing pointer.
But, as we've decided here in the
past, the difference between
noise and a neat effect is orten
nothing more than a creative
mind.

Control of the time delay
involved in the echo is important
for reasons that you might not
first think about, because like
any device (or now software) that
messes with the subjective flow

54

of time, echo offers a variety of
totally different effects
depending on how long a time we
are talking about.

For example, if the delay is
very short, as when both EDLY and
OFST are set to $01 1 the effect
will not even be percieved as an
echo, but rather as a
"thickening" of the voice (voice
doubling, actually). It's a lot
like phasing or flanging, except
that with those techniques the
predominant effect is frequently
that the subjective flow of time
is cyclicly changing.

Longer delays (EDLY = $01
and OFST = $08) produce the types
of effects which give ECHO its
name. Echoplex type echoing.
There is a major difference,
though, in that with conventional
echo devices you can only echo in
a voice that is essentially the
same as the starting voice. Here,
the echoes can be anything, and
there's no way to appreciate the
power that. this implies without
working with it.

When the delays get very
long (EDLY = $02 and OFST = $10)
you find yourself playing with an
instrument that allows you to
play rounds with yourself. Also,
of course, in different voices.

Because the character of the
instrument is so greatly
influenced by delay times, and
because the different characters
can so frequently be used in the
same musical performance, we've
added a means of quickly
switching from one set of
operating parameters to another.
Four of these presets are
provided by pads 0-3 on the
command keyboard. Touching one of

-these pads causes ECHO to get the
requested set of parameters from
a table that lives in memory $9A

$A9 and place them in the
locations referenced by the rest
of the program. The pre-sets that
are in place in the listing which
follows are:

COMMAND POLY ECHO TIME DELAY
KEY CHANS CHANS (KBD SCNS)

0 7 1
1 7 8
2 3 16
3 3 32

Notice a couple of things
here. First, if you're using a
system with only a single QuASH
(a P4700/J or its equivalent) it
doesn't matter that there are
more echo channels than there are
hardware channels; the last four

iterations simply won't have the
hardware to voice them. Secondly,
observe that when we got to
longer delays we cut back on the
number of echo channels so as to
circumvent the "too many channels
too far apart" problem that we
looked at earlier.

You can substitute your own
presets for those shown simply by
altering or replacing the values
shown. Here is a map of locations
that will make that a little
easier:

PRESET #
0 1 2 3

OUTS $9A $9E $A2 $A6
ECCO $9B $9F $A3 $A7
EDLY $9C $AO $A4 $AB
OFST $9D $A1 $A5 $A9

With some experimentation
you will find echo presets which
seem to complement each other
particularly well. You will
inevitably get to where you use a
specific set of presets for each
particular song, not only
changing presets throughout the
song but within a riff or phrase.
This can create some neat effects
such as having an initially long
delay set and, in the middle of
the echo chain, hit a faster
preset to initiate a burst of
echoes. Or, have one preset for
the "voice doubling" character
istics we discussed. Then you can
switch between echoes for special
effects and doubling for use on
bass lines or solos.

Actually, there is a lot of
power hidden in this program that
can be liberated with innovative
patching, voicing, and mixing.
How about having a chain of
voices which are all related but
slightly different, such as
having higher Q on the filters as
the echo is passed on. Or
changing envelope times so the
first echoes have sharp attacks
and delays and later voices have
increasingly softer envelopes.
Here's a good one- progressively
detune each voice so you get a
spiraling echo, or the echoes
sequence upscale (or downscale).
Completely different voices can
be used, and this technique
really works well on the long
delays for doing rounds.

Just playing with the mixing
or panning of the normal echo
voices can entertain you for
hours. Have the echoes pan across
the stereo field, or bounce back
and forth. Or have the echoes
begin to fade out, but set the
last or next to last voice at a

higher level.
You can also use a multi- voice setup with only a few of the

outputs dri ving voices. Set up the computer to provide (for
example) one poly voice and seven echo voices, but only use
channels 1, 4, 5, and 8 to drive oscillators. Work with various
combina tions here; each is a completely different rhythm and could
easily provide a rhythmic basis for a whole piece.

Well, by now you are probably ready to dig into the program,
so here is the listing.

00&-
003-
005-
.096-
808-
00A-
00()-

80E
.w.e-

913-
015-
017-
018-
019-
018-

01D-
01F-
021-
023-
025-
027-
028-
02A-
02C-

02E-
030-
033-
035-

LOADING THE PROGRAM
As with other programs that we 1ve examined in the past,

ECHO may be band-loaded using the 8700 computer' s monitor,
but first set the moni tor stack pointer:

0-E-D-DISP-F-F-ENT
and the user' s stack pointer and status register:

O-F-E-DISP-F-F-ENT-0-0-ENT
and then load the program:

0-0-0-DISP-2-0-ENT-2-1-ENT-8-D-ENT- (etc.)

and don't rgß~'.:t ~~is2 ~at~0ba4~ ig~or~~ti~~: 07
090- DO 05 AO 5C 20 52 OD 4C
098- 10 10 01 07 01 01 01 07
OAO- 01 08 01 03 02 08 01 03
OA8- 02 10
OB8- FF FF 01 03 02 04
OE8- 40 20 01

After loading (and before running) the program and data
should be dumped to tape (from location $000 to $0EC) using
this sequence:

0-0-0-0-0-0-E-C-0-1-D-D-TAPE
When this tape is loaded in the future, i t should be

loaded from $000 to $0EC so that the presets will be loaded
along wi th the pro gram.

28 21 00
A2 FF
9A
A9 00
A2 3F
9() 00 02
CA
10 FA
28 71 00

A0 eF
A6 Eli
88
CA
D0 FC
04 EB

A6 BE
C6 EC
D0 09
A5 BC
85 EC
CA
10 02
A2 3F
06 BE

A5 OF
9() 00 02
A5 88
85 BA

0010 : **********************+*********
0020 :•
0030 :• ECHO 0. 31 •

*
*

0&10 :•
POLYPHONIC VOICE lllJEUING

:• *
0050 :•
0060
0070
0080
0090
0100
0110

. ~ .
:* 'JCHl Sll'IJNTON •

:• *
:O(C) 1979 PAIR ELECTRONICS, INC•
'* fl.L RIGHTS RESERYED

0128 :• •
0130
0140
0490
0500
0510
0528
0530
0540
0550
0560
0570
0580
0590
0600
0630
0640
0650
8660
0670
0680
0690
0700
0710
0720
0730
0740
0759
0760
0770
0780
0790
8800
0810
0820
0830
0840
0050
0860
0870
0880
0890
0900
0910
0320
0930
0940

: ********************************

: INIT!fl.IZE S'ISTEM, CLEAR OUTPUT BlHERS fffl ECHO BlfFER

STAR JSR INIT
LDX eFF
TXS

EBZR LDA 00
LDX 3F

ILP STA EBlF, X
DEX
BPl ILP

ECHO JSR POLY

: CALL MUS1 INITlfl.IZATION
: PREPARE TO SET STACK POlllTER
: SET STACK TO TOP OF PAGE
: PREPARE TO ZERO ClJT ECHO BIFFER
: POillTER TO END OF ECHO BUFFER
: ZERO ECHO SUFFER LOC:ATION
:POINT TO NEXT LOCATION
:NGT DONE \'ET, LOOP
:Cfl.L MUS1 POL'IPHONIC ALLOCATION

:DETERl11NE AOORESS OF TIE FIRST CHFHlEL A\IAILFBLE
: FC:R ECHO U5E

LDY eF
LDX •OUTS

LP0 DEY
DEX
BIE LP0
STV .cllTT

:OFFSET TO FIRST OUT-BUF LOCATION
: lfJMBER OF POL YPHONIC CHANNELS
:POINT TO NEXT OUTPUT CH/HEL
: ONE LESS POLY ClflNNEL
:fl.L POLY Ctfl6 NOT USED, LOOP
:SAYE FIRST ECHO POINTER FC:R LATER

:Al>YfflCE ECHO Bll'FER POINTER AN0 Al>JUST IF NECESSARY

LDX *EPNT
DEC •CNTR
BNE GETN
LDA •EDLY
STA •CNTR
DEX
8PL GETN
LDX 3F

GETN STX •EPNT

:GET CURRENT ECHO BUFFER POINTER
: DECREl'IENT TIMER
: Til'E NOT UP, BRANCH
:TIME UP, RE-INIT Tll'IER Vfl.UE
:RE-INITIALIZE TINER
:POINT TO NEXT
:BRANCH IF STILL MITHIN BUFFER AREA
:OTIERWISE, RE-INIT POINTER
: 5AYE NEW POINTER

:PUT ClMll!ENT CHANNEL 1 NOTE IN ECHO BUFFER AND
: PREPARE ECHO CtflNNEL COUNTER

LDA >IC!fl1
STA EBlf, X
LOA *ECCO
STA *TEl'IP

: GET CHANNEL 1 NOTE
: 5AYE IN ECHO BUFFER
: GET NLttBER OF ECHO CHANNELS
: SAVE AS CCWTER

:CAL.ClLATE SUCCESSIVE ECHO BUFFER LOCATIONS AND

037- 8A
038- 18
039- 65 BD
038- C9 40
03D- 90 03
03F- 38
040- E9 40
~42- AA

043- BD 00 02
046- 99 00 00
049- 88
04A- C6 BA
04C- D0 E9

04E- 20 28 0D
051- A4 EB
053- A6 88
055- A9 00
057- 99 00 00
05A- 88
058- CA
05C- 00 F9

05E- 20 00 0F
061- C9 04
063- 10 18

065- 8C 20 08
068- A9 FF
06A- 18
068- 69 04
06D- 88
06E- 10 FR
070- AA
071- Fl0 03
073- 85 9A
075- 99 BA 00
078- CA
079- 88
07A- 10 F7
07C- 85 EA
07E- 30 90

080- F0 7E
082- C9 06
084- 30 80
086- D0 06
088- 20 21 01)

088- 4C C0 FF
08E- C9 07
090- D0 05
092- Fl0 5C
094- 20 52 00
097- 4C 10 10

0950 : AOJUST AS NECESSARY
0960
0970 LP1 TXA
0980 CLC

: ECHO BUFFER POINTER TO ACCUMULATOR
: PREPARE FOR ADDITTION

0990
1000
1010
1020
1030

ADC •OFST
CMP 40
BCC SAVE
SEC
SBC 40

1040 SAVE TAX
1050

:CALClLATE NEXT LOCATION
: STILL WITHIN ECHO BUFFER?
: YES, BRANCH TO CONTI NUE
: NO, SET CARRY FOR SUBTRACTION
: ANO AOJUST POillTER
PUT POINTER IN PLACE

1060
1070
1080
1090
1100
1110
1120
1130

: THEN PULL NOT ES FROM ROTATED ECHO BUFFER LOCATI DNS
: AND PLACE IN ECHO CHANIELS OF OUTPUT BUFFER (NTBU

1140

LDA EBUF, X
STA NTBL, Y
DEY
DEC •TEMP
BNE LP1

: GET NOTE FROM ECHO BUFFER
: PLACE TO OUTPUT CHAHL
: POINT TO NEXT OUTPUT CHANNEL
: ONE LESS ECHO CHIHEL
: BUT SONE LEFT, LOOP

1150 : NOTES ARE PLAl'ED BY Cfl.Llt-«l THE lllJASH DRIYER <NOTE).
1160 : FI NALL Y, ECHO OUTPUT CHAlffLS ARE CLEAREO SO AS NOT
1170 : TO COlfUSE POLY 1-t!EN CALLED
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
~590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

LP2

JSR NOTE
LOY •OUTT
LDX •ECCO
LDA 00
STA NTBL Y
DEY
DEX
BNE LP2

: CALL MIJS1 QUASH DRIVERS, ETC.
: GET FIRST ECHO CtflNNEL POINTER
: GET 1 OF ECHO ClflNNELS
: PREPARE TO ZERO
: ZERO ECHO ClJTPUT CHANIEL
PO !NT TO NEXT OUTPUT

: ONE LESS ECHO CHAlffL
:SOME LEFT, LOOP

:READ COMMANOS. 0-3; PRESETS, 4-iNITIALIZE S'ISTEH
: 5-CLEAR ECHO, 6-BREAK, 7-TUNE

JSR DECD
CMP 04
BPL NEXT

: READ COMt"lfK> KE'IBOARD
: IS COMMAND A PRE-SET?
: NO, BRANCH FOR NEXT TEST

: THE Clllt1AND IS TO CALL UP A PRE-SET. fflER Cfl.LCLATll«l
: TIE BASE Al>DRESS OF THE PRE-SETS Cfl.LED FC:R, TIE PRESET
: Vfl.UES ARE TRANSFERED TO THEIR RESPECTIYE LOC:ATIONS
: AS ACTI VE PARAMETERS. NOTE THAT THE NUl'IBER OF
:CHANNELS ALLOCATED TO POLY USAGE <OUTS - S00EA) IS IN
:NON-CONTIGUOUS LOCATION AND l'tUST BE HANDlED SEPARATELY
: NOTE THAT THE CONTIGUOUS LOCATION •TEl1P IS USED AS A
: DlNIY YARIABLE AT THIS POlllT

LP3

LP4

STY DISP
LOA eFF
CLC
fl)C 04
DEY
BPL LP3
TAX
LDY 03
LDA •PRST,X
STA TEtf', Y
DEX
DEY
8PL LP4
STA •OUTS
8111 ECHO

NEXT BEQ STAR
Cl1P 06
Biii EBZR
8NE NXT0
JSR INIT
JMP BRAK

NXT0 CMP 07
BNE BRDG
LDY 5C
JSR FILL

BRDG JMP ECHO

: SHOW PRESET
: ONE LESS Tfftl PRESETS BASE fl>ORESS
: PREPARE FOR Cfl.ClA..ATION
: THERE ARE 4 PRESET VARIABLES
: PO !NT TO NEXT PRESET BASE
: IF NOT THIS PRESET, LOOP
: PUT POINTER Cfl.ClA..ATED TO X
:4 PRESETS, WILL CCWT TO -1
: GET PRE-SET DATA
: AND PLAGE AS ACTIYE PARAIETER
:POINT TO NEXT PRESET DATA
:AND NEXT ACTIYE PARAIETER
: 1 F NDT 'IET DCJNE, LOOP
: SAYE THE 1111/ERICK PARAIETER
: BRfKH fl.WA'IS

: CotttfN) IS FC:R CLEAR, BRANCH
: 15 COl1fH) 5 <CLEAR ECHO) tR 6 <BRIO?
: COl11llll) 1 S CLEAR ECHO, BRANCH
:COl'tlAND IS l()T BRK, BRIKH
: SHUT DOWN SYNTIESIZER
: Alll RETURN TO l'IJNITC:R
: IS COl't1AN() Tl.NE?
: A BRANCH TOO FAR
: PREPARE TO TU!E TO MIOOLE C
: SEE l'IUS 1. 0 OOC!KNTATI ON
: PLA'I ON ANl ON AND ON

:SET-UP YARIABLES FOR l'IUS1
. OR 108A : INITIAL PRE-SET
. HS 01030204
. OR 10E8 : S'ISTEM CONTROL AND QUASH DELAY
. HS 402001 : AND OUTS

: AND PRESETS
. OR 109A
. HS 01070101
. HS 01070108
. HS 01030208
. HS 01030210

END . EN----------------

55

NCTES

56

CONTROLUNC EXPONENTIAL

The two
questions I
computer
systems we've
here are:

most common
hear about the
based synthesizer

been developing

1) How do I use it with my
exponential synthesis gear?

SYSTEMS

For linear response figure 2. The transistors shown
equipment, the D/A must produce are each a current source and the
an output that has an exponential values of the resistors in the
character- as the control voltage matrix that their emitters are
increases, the incremental change tied to are such that if the
in voltage must also increase. source associated with DO is

Since exponential response pumping some current (i), the one
equipment has analog circuitry that corresponds to D1 will pump

and built into the front end of each twice that (2i). Similarly, the
Control l.• nput whi· eh "bends" the source that goes along with data

2) How do I use it with my linear control signal into an bit D2 produces twice what the
Razmataz RMT-80 computer? exponential curve, a D/A that is previous one did (4i), and so on.

The answer to the second to be used with this equipment In response to a bit being
question is going to have to wait must produce a linear output set, the current produced by the
just a bit longer (though I voltage function. That is, the source associated with that bit
expect to have a surprising incremental change in output is switched so that instead of
answer soon). voltage must be constant. See -ippearing at pin 2 of the IC it

The answer to the first figure 1. appears at pin 4 (!out). At any
question is what we're going to One of the nicer things given instant, this output
focus on this time by looking at about this linear D/A is that current will be the sum of the
a Digital to Analog converter it's common, the kind that most currents corresponding to each
that is designed to be compatible applications require. Since it is input bit which has been set.
with almost every synthesizer in common, we have a large number of To turn this chip into a
the world with the exception of parts to choose from. From that "system" that accepts data at the
the linear holdouts- Paia, Yamaha large number we've selected a input and controls a synthesizer
CS series, Unicord, some EML; you "5008" type which is made by a at the output, we need to add
know who they are. For them, you number of manufacturers. When such niceties as latches to hold
use the stuff we've already Signetics makes it and houses it the data that the computer sent
covered. in a 16 pin plastic package it out, an I/V (current to voltage)

By way of a very short becomes an NE5008N. converter to change the 5008's
review, the differences between Inside, this chip is current output to a voltage that
D/As that are to be used with relatively simple. lt looks like our synthesizers will like, and
linear response elements and ~:::=::~-1::::::::::::::::::::::::::::::::::::==
those that are to work with Moog,
Arp, or any other exponential
system are not great from a basic
conceptual standpoint. A binary
number is fed in one end, and a
DC control voltage comes out the
other. But, they do differ
greatly in the character of the
voltage that comes out.

BLOCK DIAGRAM

v~H

·-·~1

o, o, 'a:,

1

,--+...-f--f-<r-~-+....--tt-tt---.+''-<;- 1 0UT 1

2-_ 10Ul 1

57

other bells and whistles as
available.

When we do all this, the
design looks like figure 3, It's
pretty straight - forward. We've
used 4042's to latch the data
coming in and the RU line is the
strebe on these latches which,
when low, allows the data present
at their inputs to appear at the
outputs. When 1iD is high,
whatever data was present at the
latch inputs when the line went
high will be held at the outputs.
Notice that the two most
significant data bits follow our
previous protocols in that they
come out simply as flags rather
than being presented to the
converter circuitry. But notice
also the jumper JP1 which, as
we'll see later, can be used to
double the range cf the DIA
(although at what might be an
unacceptably high cost).

We've used a 4136 quad
op-amp to provide all of the
analog support that the 5008
needs; one stage serves as a
buffer between the calibration
trimmer and the 5008's Vref input
(IC1a), another comprises a
current to voltage converter
(IC1b), and a third is an
inverting summing amplifier that
allows a modulation input (IC1c).

With the exception of the
standard "be tidy" caveats,
there's nothing very critical
about this DIA system and you can
build it using whatever
construction techniques appeal to
you, but the board which is
available from Paia has enough
interesting features that it's
worth taking a special lock at
it. Check out figure 4.

I suppose the most
interesting thing is the way the
input, output, and control lines
are configured. Notice that the
connections to the computer all
appear on two 14 pin dip outlines
(J1 and J2), while connections to
the synthesizer (including some
computer address lines that QuASH
in an expanded system will need;
see "In Pursuit Of The Wild
QuASH", Polyphony July '77, page
19) come out to the 15 pin
Molex-type edge connector (J3).

We've already examined in
general terms how this type cf
DIA connects at the computer side
(see "The Polyphonie Synthe
sizer", Polyphony February '78,
page 28). If the computer you're
using is a Paia 8700 (which is
not a bad idea since it has some
useful music software to support

58

11'1
::>
11111_
..;{""'

!i
Cl

Rii
1cm1

D7

D

030-----i
02'<"-------<
D 10-------i

it), these connections couldn't
be simpler - there is a one to
one correspondence between J1 and
J2 and the connectors they mate
with on the computer. Standard
pre-terminated jumpers are used
to connect the two. No soldering.

The wiring to the
"synthesizer" side is also
arranged to acknowledge the fact
that almest everyone will want to
expand to a multi-channel system
sooner er later (it's actually

+Y

13

Cl l.05
1 50K

22KMODCAL

4

ICIUll----.<+V
IC31131 ...L

=------<-=--=- 1gra1+---<-v
DfA

M
::io
~c
-·> ::IVI

+s :; :c
.Dllil

rh "'rh ~5i
::i ...
"

BS
A3
A2
Al
AO

what the computer stuff is best
atl), so the Molex wiring is the
same as that found on QuASH
modules.

All cf this means that from
an inter-wiring standpoint, a
fully expanded system is
exceptionally easy to implement.
Figure 5 shows you how.

Calibration cf the 8785 DIA
consists cf adjusting the DIA CAL
trimmer (R1) so that octave
changes in the input data produce

octave changes in the module
being controlled; this can easily
be done by ear. The MOD CAL
trimmer (R2) should be set so
that a one volt (or whatever
represents one octave in your
system) change at the modulation
input produces a one octave
change in the controlled element.

Before we wrap this column
up, there are some little detail
things that really need to be
mentioned.

Going back to the schematic
for a minute, observe that there
are two "programming" jumpers
(JP1 and JP2) indicated on the
circuit board.

As we've mentioned again and
again, the Paia protocols use the
least significant 6 bits of an 8
bit word to specify an analog
parameter while the two most
significant bits are flags (D6 is
used as a gate, and D7 is a
general purpose control bit which
QuASH recognize as a portamento
control bit). Since the 5008 is
an eight bit converter, obviously
some bits will not be used. I
decided to permanently not use
the least significant bit (LSB)
of the converter (pin 12) by
grounding it. The only effect of
this is to slide all the lines of
the controller "up one" as far as
the 5008 is concerned, and it has
no electrical effect that we need
to worry about.

The other unused 5008 bit is
then it's MSB (most significant
bit - D7, pin 5) and if the
jumper JP1 is not in place, this
bit is in fact not used. But, if
you are one of those people for
whom nothing is ever enough, you
have the option of installing the
jumper. This means that the MSB
of the 5008 is tied to data bit
D6, effectively doubling the
range of the DIA from 64 notes
(over 5 octaves) to 128 notes
(almest 11 octaves).

The cost of this "simple"
modification is much greater than
just a piece of wire, though,
because if the option is selected
the system is no longer
compatible with our existing
software (which might be just
fine for your purposes). Maybe
worse than that, it's no longer
compatible with QuASHes either.
But if you need it, it's there.

A second jumper (JP2) is
meant to be used in systems with
4 or more QuASH and causes the
fifth address bit from the
computer to serve as the Bank
Select (BS) line (see "In Pursuit
Of The Wild QuASH" referenced

earlier).
Something else to worry

about is grounding. At some point
in the system, digital power
ground (recognized as a chassis
ground symbol) and analog power
ground (recognized as an earth
ground symbol) must be tied
together. However, they must have
a common connection at only one
point. Otherwise you run the risk
of ground loop problems. I
recommend that these two grounds
be tied together at the Molex
connector of the DIA, as shown in
figure 5.

Finally, Moog "S" triggers
must be pulled to ground rather
than accepting the high logic
level that our trigger outputs
provide. The simple circuit in
figure 6 takes care of this using
almost any NPN transistor you
happen to have laying around.

Synthesizers that have both
"gate" and "trigger" inputs can
use the scheme shown in figure 7
to derive both of these signals
from the single gate that our DIA
produces. tl

~{EXPANSIONU
DATA
BUS

71 j'-,

-~~ ,--,
"V"

8785
~

~

:::
~

L., L......J

11

~ r-i ~

"<>" +s m
15

~ ~ 111!
~ F2

~ -0 FI :::
~ A3

~ A2
Al

NJ
~ ~ M

-V -V -0 DIA

~

~ lFro~og

-~ f 1 synthesiHr)

L......J 1...- L......J

4 QuASH
(16 Chcwtnelsl

==================5~===================
A complete kit for the Linear DIA including printed circuit board,
sockets, headers and edge connector is available from Paia Electronics,
Box 14359, Oklahoma City, OK 73113. Order #8785 Linear DIA. $22.95 ppd.

b

to Moog

FromD/A ~"s"trigger
Flor OuASH lOK ')._
Trigger '\.,. Any NPN

_ transistor

MOOG"S" TRIGGER ADAPTER. "GATE" & "TRIGGER" ADAPTER.

59

60

Dll:imZEFIS

There are plenty of times when a switch is a great
way to control things- like when you want to turn
something on and off, or select a preset. But when
you're just playing around looking for the right sound,
there's nothing quite like a knob. Unless it's a
joystick.

Knob or joystick, either one- we need some way to
digitize it's position so a computer can read, save and
manipulate the data various ways. And preferably it
should be a cheap and simple way.

We need something we'll call a digitizer. It's an
analog-to-digital converter, really; the only reason I
don't think we should call it an ADC is that we reserve
that term for something more elaborate than what we are
getting into. This is really simple.

In every electronic scheme that I know of to
convert an analog parameter to a digital one there is a
thing called a comparator. See figure 1. The thing it
compares are the voltages at its "+" and "-" inputs. If
the voltage at the "+" input is greater, the output is
at a high voltage. If the "-" input is greater, the
output is driven to a low voltage.

The elaborate ADC's use the comparator as only a
small part of a larger circuit that will probably look
something like figure 2. When it's time to quantize the
voltage to be measured, the counter is reset and its
digital output goes to zero. Because of this, the DIA
puts out a low voltage (in this scheme you must first
have a digital to analog conversion before you can have
the reverse). The output of the D/A will probably be
lower than the voltage that is being measured, so the
output of the comparator is high and allows pulses to
pass from the clock through the NAND gate to the
counter. The counter counts up and, as it does, the

2

A COMPARATOR

RESET

A CLASSIC

output of the D/A increases. When the output of the D/A
exceeds the voltage to be measured, the comparators
output goes low and clock pulses can no longer pass
through the gate to the counter. At that point, the
counter's output is a digital representation of the
analog voltage being measured.

There are a number of variations on this design
that have to do with the way the counter works, and in
a computer based system it is common to replace both
the clock and counter with software. Unfortunately, the
common features of all these variations are modest
complexity and/or relatively slow conversion rate.

Now, for a really simple digitizer, take a look at
figure 3. Since the resistors in the divider that
detirmines the reference voltage (Vr) are equal, the
digital output is a 1 (high) if the voltage is greater
than 1/2 the supply voltage and 0 if the input is less
then Vs/2. I know what you're thinking, and you're
right. A one bit digitizer isn't exactly an improvement
over a switch in most cases.

OK, let's add another stage. Only on this one,
let's make the reference voltage a function of the
output state of the first stage. Schematically, this is
represented in figure 4.

In order to easily see how this circuit works, you
have to assume that Vr1 (the voltage at the junction of
the two R1's) is constant at Vs/2. In fact, this
voltage will change as the comparator output 01 changes

CONVERSION
IN

PROGRESS •

3

·l
VIN!t>D

VR -

R

~ A ONE BIT
DIGITIZER

61

62

and alternately sinks or sources current through the
two resistors, R2. But as long as the value R1 is kept
much lower than the value R2 (the lower the better, at
least 1/10), the change in Vr1 will not be too
significant.

Imagine that a voltage which is increasing from
ground to supply is applied to the input of the
digitizer. When at ground, the voltage is less than
Vs/2, so D1 is low (ground). The two R2's now forma
voltage divider at the junction of which is a voltage
equal to 1/2 of Vs/2, or 1/4 of the supply voltage
(Vs/4). This voltage (Vs/4) is the reference voltage
for the new stage. Since we said that our input voltage
was initially at ground (which is less than Vs/4), the
output of the new stage is also low. In binary, the
output of the two stages is 00. An equivalent circuit
would look like figure 5.

Now we increase the input voltage and, as it
exceeds Vs/4, the output of the new stage changes from
low to high. That's all that happens; the binary output
of the two stages is now 01.

We continue to increase the input voltage and, as
it exceeds Vs/2, the output of the first stage goes
high. But, that's not all, because with the output high
(at Vs), an equivalent circuit of the voltage divider
that forma the reference for the new stage looks like
figure 6. Since the input voltage is less than 3/4 of
the supply voltage, the new stage changes state back to
low and all is once again stable with a binary output
of 10.

Increasing the input voltage further will exceed
3Vs/4. The new stage again changes to a high state and
the binary output of the two stages reads 11.

Additional stages can be added in much the same
way we just added the second stage. Each new stage
becomes the least significant bit of the digitizer and
its reference voltage is a weighted sum of the outputs
of the more significant stages. Using 5% resistors, the
scheme can be carried to 5 bits. 1%'ers would probably
take us up to 6 bit resolution; 7 or 8 bit resolution
should be realizable by going to active summing amps
instead of the passive summing we've used. But, then
you're back to complicated again.

Instead, we'll stop at an easily obtainable 4 bits
with the design shown in figure 7. Since the MC3302P is
a quad comparator, only one IC is used in this circuit.
Like I said, it's simple. Resistors R5, R12, R19, and
R27 have been added to give just the slightest
hysteresis (positive feedback) to each stage to help
overcome any uncertainty at input voltages that
correspond exactly to 'change of state' points. When
powered from a computer's 5 volt supply, the range of
input voltages is also 0 to 5 volts and the pot to be
digitized is hung across the supply as laboriously

4
5

Rl R·2

39 K

7
A FOUA BIT
DIGITIZER

6

+v

03

Rll
2.2K

02

R18
2.2K

01

+V

R26
2.2K

00

depicted in the formidable technical drawing of figure
8. At this point, we may as well establish the standard
that the pot should be wired so clockwise rotation of
the control causes the output of the digitizer to go
from $0 to $F (see test program).

I believe that the most useful configuration for
this circuitry is actually two digitizers .on a single
board, with each half providing half of an 8 bit word.
'The configuration shown in figure 9 is Paia's EK-7 and
is made to plug directly into input port #2 of a Paia
8700 computer. It can also be connected to any 8 bit
input port of any computer.

(
t-~5 TO.

GITIZER
INPUT

B

l
TO COMPUTE

INPUT PORT

säftwara cansidariltian g

The nicest thing about the digitizer is that it is
easy to program for. There are no clocks to worry about
and no elaborate software overhead (in fact, none at
all). You just read the port to which the digitizer is
connected to find the state of the knobs.

A good first example is the short program written
for an 8700 to test the unit's operation shown in
Listing 1. This program reads the output of the
digitizer and shows the result in the 8700's displays.
When the value of either of the digitizer outputs
changes, the beeper sounds. As the knobs are rotated,
the displays should show that the output increases or
decreases sequentially without skipping any of the
hexadecimal numerals $0 $F and that there is no
interaction between the two digitizer sections.

r
0010 : TEST FOR 4 BIT DIGITIZER "" 0020 : DIGITIZER INPUTS TO PORT 12
0030
0040 A> SHOW OUTPUT OF DIGITIZER
0050 B) BEEP lol-IEN \/ALUE CHANGES
0130

1000- AD 08 08 0140 STAR LDA INPT :GET DIGIT
1003- CS 20 0160 CMP *TElf' : SAl'E AS LAST?
1005- F0 04 0170 BEQ LP1 : \IES-BRANCH
1007- 18 0180 CLC :PREPARE
1008- 20 22 0F 0190 JSR BEEP :AND BEEP
1008- 85 20 0200 LP1 STA *TEMP : SA\IE \/AUJE
1000- 8D 20 08 0210 STA DISP : SH()! \IALUE
1010- 4C 00 10 0220 Jl'1P STAR :ANO 50 ON

0230
0240

'-
0250 EM> . EN list1 -""

The fact that there are two digitizer sections on
the EK-7, one contributing the upper half-byte and the
other the lower half-byte is going to be of great
significance in some future software and hardware that
we'll be doing.

For now, we'll use the PINK TUNES software
(Polyphony July/August 78, pp. 22-26) as an example.
When you review PINK TUNES, you'll notice that the
statistical properties of the note durations (half
notes, quarter notes, dotted notes, etc.) are
controlled by the upper half-byte (UHB) and lower half
byte (LHB) of memory locations we call MASK and TIME.
We don't have the space here to duplicate the detailed
explanation of how these variables interact which
appeared in Polyphony, and is reprinted in "Friendly
Stories About Computers/Synthesizers"; but briefly,
both UHBs interact to determine the probability of a
uotted note. The LHB of TIME sets the minimum note
duration that will occur, while the MASK's LHB controls
the range of possible note durations.

These dual half-byte control words are just right
for use with a dual half-byte digitizer. From a
programming standpoint, all we have to do is read the
memory location where the knobs are ($808 on an 8700)

1

t
2
1

1866-
186&-
1868-
lliE-

186F-
1871-
1873-
18~
1876--
1877-
18711-
1818-
i8{1)-

187F-
1881-
1883-

r

tt 87
28 7111
28 29 1D
88

i;,1.:
118 911
E9 83
88
III
fl) 8818
28
18 86
ll!IFll
85 A9
tt 88
95 88
18 87

8lli8 -88!l8 . II! 1866

IOlllS Fll! PINC lllf5

8188
11118
8128
8138
11148
u
11168
11178
11188
11198
9288
11218
8228
8238
8248

: IEFll!E IE BEGIN. tllTE TlflT 1lE FtllllllNl SECTllll REPLm PWr IF 1lE
:El(ISTllll Plf« lllf5 PROOR1. PRlllRILY, IE ClfHI 1lE llRIHll DESTllflTllll
:Fll! TIE 11E Rf LOCfffllll $866 SO TlflT TIE IRID! !S TO TIE TESTS lfi!CH
:Flll!ll RATIER TlfW &tK TO TIE STIRT IF TIE Plmlll RS IT 1115 ll!JG!lfll.Y.

llE TST5
JSR SET
JSR tllTE
BRK

:RATIER TlfW TO lP8 RS ll!JGilfll.Y ~ITTEN

: RS IE JOIN ~ 1'R1XR11. TEST lfl'lE llREA>Y IEEN Im: TO SEE IF WlfH)
:FROl l(E'r'IQl!I) 1115 Fll! stRffllE. T\IE. IR STii'. IOl IE lllO TESTS Fll!
:CllHI 1ElfO II! TJI(fN) lllSK Pfl9ElERS

ll2S8 TST5 Clf IK:
m llS lP8
0278 Slt83
9288 Plf'
9298 TAX
8388 LOA DGIT
8318 Pl.P
0328 11'1. TST6
0338 (Rfl 11'8
8348 STii • Tll'O
11358 llE lP8
8368 TST6 STii •TIIE. K
8378 11'1. lP8
8388
8l98 . EN

: IS lllRE A C(lftH) AT fll?
:tf1 JUST 00 flEff) IN> ~ TO KEEP !W TROCKIN'
:IQIR.IZE C(lftH) Fll! POINTER USE (Cfm' 1115 lllflU
:SIM: TIE + 11! - STATUS 1F TIE Sl!TR!tTl!W FIR LATER
:IN> 1lfflSFER TIE llESll.T TO POINTER. tllY USE
:!IT TIE DIGITIZER OOTPUT
:IOI RroMR TIE + IR - STATIIS IF TlllT ~!III
: IF TIE POINTER IS =)9 llRIHll TO Clll«I lllSK IR TllE
:1Ill'O Clß«. SET flL lHl BITS TO 1'5 WITH THIS lllSK
: TlEM SIM: llESl1. T AS 1IlfO Clll«I
:IN> ~ lllflYS TO COOIN.E
:CIRIE TIIE II! lllSK PfRtE1ERS
:IRID! lllllYS TO KEEP III

and put the result in the memory location where PINK
TUNES is going to look for the variable that we're
changing.

Now, there's a minor difficulty as we have 8 bytes
worth of variables (MASK and TIME for each of 4
channels) to set with only two knobs. At some point in
the future we 1 11 look at hardware ways to multiplex our
digitizer so it can be fed by multiple addressable pots
(something like QuASHes in reverse), but for now we're
going to actually multiplex the knobs - with software.

Depending on which command pad is being touched, a
knob may be controlling minimum note duration on
channel A, or the range of durations on channel C, or
any of the other possibilities. The program shown in
Listing 2 can be added to PINK TUNES to make all this
happen. With the software running, the first 12 pads of

63

the 8700's command keyboard take on the
responsibilities depicted in figure 10.

The first three keys on the computer serve the
same function they did in the un-altered PINK TUNES,
but from there on it's all new. When TEMPO is touched,
the knob corresponding to the LHB of the digitizer
provides a coarse control of tempo; the other control
h?.s no effect. Touching one of the pads $4 - $8 causes
the selected parameter for the selected channel to be
~ead from the pots. By the way, thinking of the pots as
being labeled as shown in figure 11 will help you keep
their functions straight in your mind (particularly if
you remember that TEMPO is a duration function).

Yep, the knobs are definitely a plus for PINK
TUNES. You can rea11y try things out fast without
having to shut everything down and scratch your head
each time you want to change a channel from quarter to
half notes, and so on. Also, the first program is a
good example of how to program the knobs when you're
setting variables that are organized as 4 bits each;
two to the byte.

But there are other ways that the knobs can be
programmed. For example, some parameters simply require
more resolution than the 16 quantizing levels that 4
bits provide. An obvious answer is to think of the two
knobs as both controlling one value, in which case the
UHB knob can be thought of as a coarse range control
while the LHB knob is fine tuning (our first test
program can be thought of as acting this way). We'll
look at another way that resolution can be extended in
a moment.

In some cases the 16 quantizing levels provided by
a single digitizer "channel" is sufficient resolution,
but the resulting parameter must have a greater range
than 4 bits allow. A brute force method of dealing with
this is to use the output of the digitizer as a pointer
to a table of parameter values like the code in L.isting
3. This program reads a value from the table based on

CHAN
D

CHAN
D

RANGE
CHAN

c
CHAN

ll

MINIMUM
CHAN

c
CHAN

B

PROBABI LI T Y DURATION

CHAN
A

CHAN
A

00 '11

64

DIGITIZER

the setting of the LHB knob and shows it in
displays. In this case the table is an approx1mat1on
1/4 cycle of a sine wave, but it could be anyth1ng.

1
the
of

In some cases the digitizer's output can be used
in some way to calculate the parameter value.

One of the difficulties with Software multiplexing
of the knobs is that unless you're one of those people
blessed with eidetic memory you have little way to know
what the position of the knob was the last time you set
it. In some cases this isn't important, but in others
(when you want to smoothly change a parameter from what
it is to what you want it to be) it can cause problems.
You punch in to change a value and the value
immediately jumps to correspond to the current setting
of the control. Glitch-ville.

A solution is to use the knob not to set the
parameter, but to change it. That may not sound like a
big difference, but it is. Using the knob to change the
parameter means that when a function is punched in, the
current setting of the knob is not important. As the
knob is turned, though, the change in its position
produces a corresponding change in the parameter. Try
running the software in Listing 4.

With the code operating, any changes in the
setting of the LHB knob are ignored completely until
the parameter change is called for by touching the "0"
command pad. Then, as the knob is rotated clockwise,
the parameter (as shown in the displays) increases.
Unlike the other code that we've examined, when the end
of control rotation is reached, you can release the
command pad, turn the knob fully counterclockwise,
tauch the pad again and continue increasing the
parameter. This technique not only provides smooth
control over a value without having to know its current
state, it also extends the range of values that can be
set with the knob.

The things that we've covered here are not all the
possibilities, but hopefully they will get you started
in adding variables to your software. It's really hard
to beat a knob.

The following are available from Paia Electronics,
Inc., 1020 W. Wilshire, Oklahoma City, OK 73116:
** EK-7 Dual Digitizer kit, with PC board and all parts
(including pots, knobs, and sockets); $14.95 + $1
postage and handling.
** "Friendly Stories About Computers/Synthesizers", a
compendium of past Lab Notes from Polyphony; $5.00 ppd.l

r 'L
0818 Tfll.E LOOHP DBll
8829

: TIE DIGITIZER 15 READ .fN) TlE utl 15 lf!5KED lff NIT!1 fW 'fN>'. 8038 TIE
8848 :~T IS l't/l:ED IN TIE X REGISTER F!I IJSE AS A POINTER TO TIE TfllE !F
8845 :\'lllES lfl!Cff occtf!ES TIE !Elft' IllEDIRIB.Y fW.l»lll«l TIE PR!Olffl.
8858 TlE \'lllE ~ll«l TO TlE 00! P.OSITllll 15 mOED IN> Slotl IN

ll8fiß :TIE DISPl.fflS.
9979

188&- II) 99 18 0000 STii! LDA DGIT : READ TlE DIGITIZER
1983- 29 lf ll89ll fN) lf : 'fN)' WITH lflSK <0091lill1> TO IB:E lHl 2ERO
1085- ffi 8199 TAX : TIEN PUT TO X REGISTER TO IJSE 115 POINIER
1006- 85 fE 8119 LDA •TfllL X IIT TlE PfliflETER 'lfllE F!I THIS JOD! SETill«l
1800- II) 29 18 812ll STA DISP : SIOj TlE PfelETER l'fllE
1881- 4C 99 18 8138 J1I' STii! : T1EH LOCI' F!I Im:

11140
01Sil TfK . HS 08ill24ft62788EA284C$4illCf4FffE
8168 :
8179 . EN

"" lisf 3
r list 4

0010 DEI. TA TllE DBll
0020
0030 :lflER A Sl«RT DEl.JlY lllERATtD BI' CIUil«l TlE llJS 1. 0 SlllR!lJTllE L!Xl,
0040 :IE REll) TlE CMfN) ~ BI' CIUll«l TlE 1om11 SlllRWTIIE DEIXOC
00Sil : CH REmIOO 00! THIS SlllRllJTIIE TIE lm.llUIT!R fN) Y RE615TER COOAIN
0068 : TlE lllllER lf TIE L!IEST KE'I TlflT WAS PRESSED <US F!R lll KE'/). TlE
0079 :CIWI Fl.00 15 ClE!m BI' DEcoct IF TIE KEY WAS TIXOO THIS SCfll llJT lllT
0000 : TlE LAST, 1. E. IF TlE KE'I WAS JUST TIXOO
0090

1800- 29 4E 1D 8100 DL TA JSR L<D: : TIE Cff'OCITII{ ~ REWIRES A DELAY !ETlEEN SCfll5
1003- 29 00 !f 0110 JSR DECD : READ TIE CMfN) mrufa)

1006- 00 F8 812ll lllf DLTA : IF ZERO KE'I lllT TIJ.00, LOCI'
1000- II) 00 18 8138 LDA 0011 :CllNI CMfN) ASSERTtD, SO IIT TIE DIGITl2ER OOTPUT

8148
01Sil :lü TlE lrolllRT!R lflS TlE DIGITI2ED Klßl POSITICH. IE'RE REIUY !H.Y
8168 :IlllERESTED IN TIE Ull, SO IE lffE TIE lHl ZERO MITH fW 'fN>'. IF TIE
0179 :a:Mlf) WAS JUST ASSERTED, IE SKIP TIE CflCllRTilll lf CllNl IN SETIIl«l
0180 :fN> Sllf'LY SAYE TIE CllRENT SETI!lll AS TlE STll!TIOO l'fllE
8190

!Bill- 29 lf 0290 fH) lf : 'fN)' MITH lflSK TO IB:E lHl ZERO
1011>- 90 17 0210 occ DffX0 : IF CMfN) JUST ASSERTtD, SKIP CflCllRTINl C1RG
1011f- 48 8228 Plfl : SAYE 00! POSITllll III TIE STfll< F!I IJSE LATER
1811t- 38 9230 SEC : P!!El'fllE F!R SlllTRA:Tllll TO Fllll»I

0248
02Sil : IT'5 TIIE TO SEE IDI TlE 00! lflS CllHID. ClllREllT SETIIl«l 15 SlllTRA:lED
0260 :Frot P!IEYICIJS SETill«l fN) TIE DIFFEROCf <lfll BE+ CR-) IS Jl)DED TO TlE
0279 :ClllREllT 'lfllE !F TIE Pfl1ffETER. TESTS fRf lfflE TO SEE TllH IE'RE WITHIN
0290 TIE fl!BITRff!ll R!la SBlt-$3F fHl IF lllT lf R!la TIE Ll"IT IS Slll511TUTED
0290 :F!I TlE ctOOT Pffl!IETER
0300

1011- E5 80 0310 SllC •TElf :TE!f IS TIE POSITllll lf TlE 00! TlE LAST TIIE TIRtWl
1813- 18 9329 a.c :lü P!!El'fllE F!I Jl)OITllll
1914- 65 81 0330 fl)Cof'ffll :Jl)O TIE OJFftREl(E !ETlEEN lü fH) LAST TIIE TO 'lfllE
1016- 19 02 8348 lfl. Dlro. : IF llEATER Tlfff ZERO, SKIP TIE tEXT INS!ROCTilll
1918- R9 00 8358 lDA 99 : IF IE'RE IERE. IE'RE l.NlER-Rffa. lß(E PfliflETER ZERO
19111- C9 3F 0368 Dlro. Clf 3F :IRE IE llEflTER Tlfff TlE IR(11.LCNlltE F!I PfmE1ER?
181C- 90 02 8379 occ Dl«1 :Nl1 SO lll!Nll TO SKIP tEXT INSTROCTilll
181E- R9 3F 9300 LDA 3F : IMR-RIHI, IB:E PfRIETER Eaß. TO IR(Ll"IT
1021t- 85 81 8390 Dl«1 STA of'ffll :SAYE TlE tEN 'lfllE lf TlE Pfl!flfTER
1022- II) 2918 0400 STA DISP :fHl SIOI IT IN TIE DISl'UlYS

&119
&128 :lü IE IIT RDll\' F!I TlE tEXT PASS BI' Sll'lll«l TlE ClllREllT OOI POSITllll
&130

1025- 68 &140 PLA :Plll TIE DIGITl2ER OOTPUT Frot TIE STfll<
11126- 85 99 &158 DffX0 STA * TElf :fHl SfflE IT TO DETERIHIE C!fHl IN SETIIOO tEXT TIIE
1021t- 4C 99 18 &168 J1I' DLTA : T1EH JIW TO STll!T TO COOINlE

&179
&180 .EN

65

66

POLY-SPLIT

Many times we've talked about how the personality of our
computer based equipment is a function of the Operating system
software that we happen to be running at the moment. Let's
play some head games with the gear and feed it some code that
will give it a split personality.

POLY-SPLIT does just that; it gives us two complete
polyphonic synthesizer systems under the control of one
keyboard. Play a chord or note on the lower keys and they are
always assigned to a lower group of outputs. Play on higher
keys and the result is assigned to another group.

Before we get into the listing of this program and its
operation and use, we need to keep one fact clearly in mind;
POLY-SPLIT is simply an extension of the polyphonic
personality offered in MUS 1.0. All of the options offered by
that code (STGs, dynamic output refresh, etc.) are provided by
this one also. Since many of MUS l.O's subroutines are used by
POLY-SPLIT you must have this PROM or its equivalent
available, and the variables that you manually initialize for
MUS 1.0 (see LAB NOTES: MUS 1.0, April/ May 1978 Polyphony)
must be set for POLY-SPLIT also.

In addition to OUTS, CTRL, etc. which MUS 1.0 used there
is a new variable which is unique to POLY-SPLIT; OUT2 ($BF).
This is the variable that tells the program how many channels
are to be set aside for use exclusively by AGO keys below the
split point. Notice specifically that if MUS l.O's STG option
is selected, the number entered into this variable must
include those channels which will be producing envelope
transients, (i.e. The number entered for OUT2 will always be
an even number when STGs are being used.)

For example, if you have hardware (QuASH, etc,) for eight
channels, this number is entered into the normal MUS 1.0
location for it; OUTS ($EA). If you want to split these into·
three channels for low keys and five for high keys, you would
set OUT2 ($BF) to contain 03.

The program appears at the end of this column and is
loaded starting at location $000 in the same way that we've
loaded programs in the past. If you're the careful sort, you
will also save the program on tape as soon as it's loaded so
that if there's a problem it won't wipe out all of your work.

When the program has been loaded, preset the MUS 1.0
variables according to your preferences and application, and
set the low channels variable (OUT2) as discussed above.

Run the program from location $000. With POLY-SPLIT
running, keys 0 and 1 on the command keyboard retain the
functions that they had under MUS 1.0. Key 0 clears and mutes
the system; key 1 causes all of the channels to produce a note
corresponding to middle C on the AGO keyboard.

A use for command key 2 has now been added; it provides a
means of changing the split point while you're playing. Touch
this pad and, as long as it's held down, any key on the AGO
keyboard that you press will become the new split point. Now
while playing, any key below the split point will be assigned
to the channels that you've set aside for them, while keys
greater or equal to the split point will be assigned to the
remaining channels.

10011-
1002-
1004-
1006-
1008-
1011A-
101l8-
100D-
1010-
1013-
1016-
1018-
101A-
101C-
101E-
1021-
1023-
1025-
1027-
1029-
1026-
102()-

:-·---0010
0020
0030
8049
0050
0060
0070
0080
0090
0100 :•

:• •
:• POLY-SPLIT *
:• •
:• A PROGRM FOR POL YPHCllIC • :• SPLIT KEY800IID •
:• •
:• BY
:• JO!tl Sil'IOOTOO •

0110 : • <C> 1979 - PAIA ELECTROOICS *
0120 :•
0130 : ************ 1 1 1 1 1 1 1 1 1 1 • •********
0010 KTBI. • OL 00E0
0028 NTBL . OL 0008
0030 HKEY . Dl 00A2
0040 SPl T . Dl 00111
0050 ruT2 . OL 00EC
0860 oun . DL 00EB
0070 MS . Dl 00EA
0080 TRr.N . Dl OOC3
0090 !NI T . Dl 0021
0100 NOTE . Dl 0028
0110 POLY . Dl 0071
0128 DECO . OL 0F00
0130
0140 :FIRST, SYSTEM THINGS ARE DISPOSED OF. TIE SYSTEl1 IS
0150 : INITifl.IZED USING 111.JS 1. 0'S 'INIT" ROOTINE. TIEN THE
0160 : QlJASH CHANIELS ARE REFRESHED ANO TIE ffiO KE'IBOORD
0170 :SCAlfED ~ USING ROOTINES FRllf'I MUS 1 9
0180 : Fltfll.LY, THE PIEBUG ROOTINE 'DECOOE' IS USED TO READ TIE
0199 : COl'l'Rll KEYBOARD AN> ANY COl'lfH)5 ARE EXECUTED.
0280 :0-Sl'STEl1 CLEAR fW RE-INITi 1-TlM ALL ClfflNELS;
0219 :2-SET SPLIT POINT, ANY AGO KEY PRESSED BECmES SPLIT
9220
0239 . OR 1009
0240

A5 E8 0250 STAR LDR *OUTT : GET THE 1 OF RESER\IED LON CtflNS
85 EC 0260 STA .OUT2 : SAYE PERl'IANENTL Y
A2 97 0270 POSP LDX 97 : SET UP A POINTER/CllJNTER
A9 911 0280 SLP9 LDR 911 : ANO GET READY TO ZERO STUFF
95 A2 0290 STA *HKEY, X : ZERO THE TEl1PORARY BUFFER
CA 0300 DEX :AND POINT TO THE NEXT
10 F9 0310 BPL SLP9 : IF SOl'IE ARE LEFT, LOOP
20 21 0D 0320 JSR INIT : 111.JS 1. 0 - INTIFLIZE SYSTEl1
29 28 0D 0330 SLP6 JSR l«lTE : i'JJS 1. 0 - REFRESH AND READ POO KBD
20 09 0F 0340 JSR DECO :PIEBlXl - REFC> COl11AND KEYBOARD
F9 EC 0350 8EQ POSP : IF Cllf'll!Atl) = 9, BRAll:H TO RE-INIT
C9 01 0360 CMP 91 : 15 COl1lfttl) = 1?
D0 97 0370 BNE NTST : l«J, BRANCH TO rEXT TEST
A9 2E 0380 LDA 2E : WILL BECOME 11100LE C
20 23 0D 0390 JSR INIT+02 : USE PART OF MUS 1 9 INITIALIZE
F0 ED 0409 BEQ SLP6 : BRIKH fl.lllYS
C9 02 0410 NTST Cl1P 02 : 15 COl1llAND = 2? ----...._"
D0 08 0420 BNE SPLI : NO, BRANCH TO POL Y-SPLIT PROGRAl't
A5 E7 0430 LDA *KTBL +97 : GET THE LOWEST KEY DWli
F9 E5 0440 BEQ SLP6 : IF NONE ARE DOWN, LOOP
85 R1 0450 STA •SPLT :SAYE TIE KEY AS THE SPLIT POINT
00 Ei 0460 illE SLP6 : BRffDI 11..lll\'IS

67

1280 *********************************
1290 :~ UOTE5:

0470 1:0ü *
0480 : NOW THE SPLIT PROGRAM. AT THIS POHff A LIST OF THE 1310 * DUMP PROGRAM FROM 0000-0090 *
0490 : AGO KEYS WHICH THE MUS 1. 0 SUBROUTINE "LOOK" FOUND TO E20 *
0500 : BE PRESSED HAS BEEN COMP 1 LE[l AND SAVED IN THE INPUT BllFl'E:R rno * SFT THt='C::~ 1 ül'ATH'i,Jb ·

0510 : AREfl "KTBL ". WE BEG IN BY REMOV ING FROM THE ! NPUT BUFFER 1340 * *
0520 : ALL THOSE KE'rS WHICH ARE ABOVE TfE SPLIT POINT AND 1350 * $0E8 CTRL $40 [>'rNAMIC •
0530 : TRANSFERING TfEM TO THE TEMPORARY BUFFER AREA "HKEY". 1360 • $0E9 ODLY $20 DEUW •
0540 1370 * $0EA OUTS $XX TOT CHANS •

102F- A0 07 0550 SPLI LD'r 07 : SET UP POINTER TO HIGH BlffER 1380 • t0EB Ol lTT :t~~ J OLi C'J..JA)J~ ~·

1031- A2 07 0560 LDX 0? : AND ONE TO 1 NPUT SUFF ER B90 *
1033- 85 EO 0570 SLP0 LDA •KTBL, X :GET THE KEY 1400 • COLD START - $'1000
1035- F0 0F 0580 BEQ SNX1 : IF ZERO, GO TO NEXT 1410 * WARM START - $0004
1037- C5 Ai 0590 Cl1P *SPLT : GREATER THAN SPLIT POHff? 1420 *
1039- 90 08 0600 BCC SNX0 : IF NOT GREATER, BRANCH 1430 *
1038- 99 A2 00 0610 STA HKEY, Y : GREATER, SAVE IN HIGH BUFFER 1440 * NOTE THE FOLLOWING THINGS: *
103E- 88 0620 DEY : POINT TO HEXT HIGH KEY BUFFER 1450 * •
103F- A9 00 0630 LDA 00 : PREPARE AND 1460 * 1l THE PROGRAM 1 S RELOCATA8LE; *
1041- 95 E0 0640 STA •KTBL, X : ZERO THIS KE'r 1470 • IT MAY BE LOADED AND RUl·I JN.•
1043- CA 0650 SNX0 DEX :POINT TO HEXT KEY 1480 * ANY NOIHONFLICTING 11El1RORY*
1044- 10 ED 0660 BPL SLP0 : IF SOME LEFT, LOOP 1490 • SPACE *

0670 1500 • *
0680 : NEXT THE NUMb'ER OF CHANNELS AVAILABLE FOR LOW KEY USE 1510 * 2) CillLING POLY TWICE 15 NOT •
0690 : 15 TRANSFERRED TO THE TEMPORARY COUNTER "OUTT" AND THE 1520 * EXTRA EFFICIENT. TIME RE- *
0700 :MUS 1. 0 ALLOCATIOll PROGRAM POLY 15 CALLED TO ASSIGN LOW 1530 * QUIREMENTS DICTATE MEDIUM *
0710 : KEYS TO LOW CHANNELS. 1540 * TEMPO KNOB SETTING - ABOUT *
0720 1550 • 10 MSISCAN

1046- A5 EC 0730 SNX1 LDA •OUT2 :GET THE NUMBER OF LOW CHANS AVAILABLE 1560 • *
1048- 85 EB 0740 STA •OUTT : AND PUT IT IN THE TEMPORARY COUNTER 1570 * 3) AS SOON AS THE PROGRAM 15 *
104A- 20 75 0D 0750 JSR POL'r+04 :ANO CALL THE MAIN PORTION OF POLY 1580 RUNNJNG, TOUCH COMMAND PAD *

0760 1590 2 AND THE KEY WHICH 15 TO *
0770 : NOW THAT THE LOW KE'IS HAVE BErn ALLOCATED TO LOW CHANNELS, 1600 BE THE SPLIT POINT. THEN 1 *
0780 :THE HIGH KEYS ARE TAKEN FROM "HKE~"' AND PLACED BACK IN THE 1610 TO TUNE AND FINALL Y 0
0790 : INPUT BUFFER (KEYS ALREAD'r ALLOCATED ARE REMOVED FROM THE 1620 BEFORE PLAVING

0800 : INPUT BUFFER). SIMULTANEOUSL'I THE LOW CHANNELS ARE MOVED 1630 * *
0810 : TO HKE'I ANO ALL LOW CHANNELS IN THE OUTPUT BUFFER 1640 *********************************
0820 :ARE MfiRKED AS "IN USE" 50 THAT THE'r WILL BE IGNORED 1650 POLY-SPLIT 8. 8

0830 WHEN HIGH KEYS ARE ALLOCATED.
0840

1040- A4 EC 0850 LDY •OUT2 : A COUNTER TO M'WE ONL Y THE LOW CHANNELS
104F- A2 07 0860 L[>i< 07 : ANü fi POHITER/COUNTER
1051- 85 A2 0870 SLP1 LDA •HKEY, X : GET THE HIGH KEY FROM TEMP BUFFER
1053- 95 E0 0880 STA •KTBL, X : PUT IT IN THE ltlPUT BLIFFER
1055- 88 0890 DEY : ONE LESS LOW CHANNEL TO DO
1056- 30 08 0900 BMI SNX2 : ALL LOW CHANNELS DONE, BRANCH
1058- 85 08 0910 LDA •NTBLX : GET THE LOW NOTE
105A- 95 A2 0920 STA •HKEY, X : PUT IT IN TEMPORARY BUFFER
105C- 09 40 0930 ORA 40 : THEN SET THE TRIGGER TO Mf!RK NOTE
105E- 95 DS 0940 STA •tHBLX : ANO REPLACE THE NOTE
1060- CA 0950 SNX2 DEX : ONE LESS C~NNEL, PO !NT TO NEXT
1061- 10 EE 0960 BPL SLP1 : JF SOl'IE LEFT, LOOP

0970
0980 : NOW POLY 15 CALLED AGA IN, THIS TIME TO ALLOCATE HIGH CHANNELS
0990

1063- 38 1000 SEC : PREPARE FOR SUBTRACTI ON
1064- A9 10 1010 LDA 10 : 16 CHflNNELS SUPPORTED BY MUS1
1066- ES EC 1020 SBC *OUT2 · LESS THE LOW RE~.ERl/ED CHANNELS
1068- AA 1030 TAX : RESUL T 15 POINTER
1069- 38 1040 SEC : AMJTHER SUBTRACTION - PREPARE
106A- A5 EA 1050 LOA •OUTS : TOTAL HARDWARE CHANNELS
106C- E5 EC 1060 SBC •OIJT2 : LESS LOW RESERl/EO CHANNELS
106E- 85 EB 1070 STA *OOTT : 8ECOl'IES CHANNELS LEFT TO ALLOCATE
1070- 20 77 0D 1080 JSR POLY+06 :CfU MAJOR PORTION OF PCX.Y

1090
1100 : FINALLY, TfE REAL STATE OF THE LOW CHANNELS 15 RESTORED
1110 :TO THE OUTPUT BUFFER. SIMULTANEOUSLY THE TEMPORARY BUFFER
1120 : 15 ZERO'O FOR TfE NEXT PftSS.
1130

1073- A4 EC 1140 LDY *ÜUT2 : NUl'IBER OF LOW CHANNELS FOR COUNTER
1075- A2 07 1150 LDX 07 : POINTER/COUNTER
1077- 88 1160 SLP2 DEY : ONE LESS LOW CHANNEL
1078- 30 04 1170- BMI SNX3 :AND IF ALL DotE. SKIP NEXT TRANSFER
107A- 85 A2 1180 LOA •HKEY,X : GET THE REAL CHANNEL STATE
107C- 95 DS 1190 STA •NT8L, X : PLACE IN OUTPUT BUFFER
107E- A9 00 1200 SNlG LOA 00 : NOW GET READY AND
1080- 95 A2 1210 STA *HKEV. X : ZERO THIS TEMPORARY BUFFER LOCATION
1082- CA 1220 DEX : ctlE LESS TEMI' BUFFER LOCATION
1083- 10 F2 1230 8PL 5LP2 : IF SOME REMAIN, LOOP
1085-- 30 89 1240 8111 5LP6 : BRANCH ALWAYS TO CONTINUE

1250
1260 END . EN

68

DG93: AN INTERPRETIVE
ARPEGGIATION

PROGRAMMER & EDITOR

One of the major advantages that
our hybrid computer/synthesizer system
offers is the ability to realize a class
of new tricks which for lack of a better
term we'll call 11 keyboard effects". I
have irl mind new sounds which arise not
so much from the timbre of each note,
but from the timing and sequence in
which the keys played are converted to
notes and how they're allocated to
available output channels.

Using this definition, I suppose
that POLY-SPLIT frorn last time would
qualify as a keyboard effect because it
affects the way that keys held down are
allocated to note-producing output
channels. But, ECHO (January-March 1979
Polyphony, page 29) is rnore specificly
what I feel the terrn should mean because
with that program new effects (and at
short delay settings, new tirnbres) arise
that would be extrernely difficult to
accomplish without some means of
juggling key activations and how they're
assigned to outputs.

Another good example would be the
ORGASMATRONIC GLIDE arpeggiation trick
that the keyboard encoder and D/A did by
themselves (rernernber?). Hold down a
bunch of keys and the encoder, while
scanning, stopped momentarily when it
reached one of the down keys and played
the note brief ly before continuing the
scan. When another key was found down,
it stopped again to play that one, and
so on. Altogether an alright thing that
allowed arpeggiations to be played much
rnore rapidly than they could be without
electronic assistance.

When we installed the cornputer in
the loop, we lost Orgasmatronic Glide
(OG), which maybe was not such a huge
sacrif ice when considering the power
that was gained in the process; but
still, I know several folks who mourned
the loss because it was an effect that
they were using to good purpose in their
music.

Here's a terrific replacement. This
new program does the same thing that the
old OG did, hold down a bunch of keys
and it plays them in sequence, but it
also gives control that wasn't possible
with the old "state machine" version.
For instance, it can arpeggiate
down-scale as well as up. And it plays
staccato or legato. lt also allows
tauch pad control of glide and similar
control of the tempo of the
arpeggiation.

Great. ßut not the greatest part,
we'll iet to that soon.

•1000U.L
1000- 20 21 11)

1003- 20 2B 1D
1006- 20 00 1F
11m- 110 03
1008- 20 00 11
100E- A0 0f
1010- 20 16 10
1013- 4C 03 10

1016- 24 E7
1018- 50 1E
101A- C6 72
101C- 38 05
101E- 24 74
1928- 50 46
1022- 60

1823- A6 73
1825- 24 74
1927- 19 95
1B2r- Cl!
192A- 38 07
102C- 19 26
102E- ES
192F- EO 88
1031- oe 21

0010:--
0029 :•
0030 :* ~TROOIC II.IDE *
0040 :•
0050 :• ARPEGIAT!Cll l'ROORffl'ER All) *
0069 : • EDITOR
8079 :• BY *
0089 : • J(Hl S. Sltofl'CJl, JR •
0090 :• •
0100 : o(C) 1979 l'AIA ELECTROOICS, INC•
0110 :•
0120 :--****** __ _
0138
0140
0540
0550
0560
0570
0580
0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
8758
0760
0770
0780
0790
0880
0810
0820
8830
0840
0859
0869
0870
0880
0890
0980
0910
0920
0938
0949
0959
0968
0978
0980
9990
1006
1810
1029
1938

: THIS IS HE l'IAIN PROGRfft LCO'. START BY INITifUZil«l HE SYNTHESIZER
:fHI CIUll«l HE llUlSH DR!'<ERS Afl) AGO KBD READING RIJJTIIES FRCtl KJS1
:CIECK TO SEE IF A COlftH) KEY lffi BEEN Tru:IED; Alt) IF SO, Jln' TO
:~TllE TO DETERtlIIE THE COltlFW Alt) EXECUTE IT. DETERl'lllE TIE
:POINTER FOR THE OUTPUT CIRfEL Afl) JLl'IP TO Sll!ROOTllE FOR ORG. GI.IDE
: PROCESS!Ml. eil RE~, LCO'.

JSR INIT
LCO' JSR NOTE

JSR DECD
BCS IERE
JSR CtW

IERE LDY 0f
JSR STAR
JMP LOOP

:KJS1 SYNTH INIT RIJJTllE
:llUlSH DRIYERS Afl) REfl) AGO
: P IEBOO REfl) COltlFW KBD
: IF NO IEW KEY TCXK:IED, SKIP IEXT
: CALL wtlflll) DECOOER
:POINTER TO ORG. GI.IDE OUTPUT CffilffL
:CIU ORG. GI.IDE PROORff1
: LOOP TO CClfflll.IE

:FIRST TIE TIMER IS TESTED AM> IF NOT TIME FOR TIE NEXT !{)TE TO BE
:PROCESSED THE STFa:ATO CONTROL BIT 15 CIECKED ANI) IF CLEAR
: <STACCATOl BRfKH 15 TAKEN TO DE-TRIGGER NOTE IN OOTPUT
: BlffER. IF LEGATO ltQDE, EXIT IS lltEDIATE

STAR BIT *KTBL+07 :ARE TIERE Pm AGO KEYS OOolN?
BYC 51NT :NO KEYS, BRfKH TO RE-INIT ~. POINTER
DEC *TlllR : OTIERWISE. DECREIENT TIE Til'ER
BIU ~ : IF E't'ENT TIIE, BRfKH
BIT •SCTL :OTIERWISE CIECK FOR STACCATO fHI IF TRl.E
BYC Cl.RN :BRANCH TO CLEAR TRIGGER FR!»! CXJTPUT NOTE
RT5 : OTIERWISE, RETlRN MITIWT CLEARll«l TRIGGER

: IF IT'5 TllE F()! A NOTE TO BE PROCESSED, TIE POINTER TO TIE IrflJT
:BlfFER 15 ro\IANCED <EITIER FIRffD ()! llOO<lß1D) fHI IF TIBE IS NO
:lfJRE BLfFER LEFT IE DRIP TilnGI TO fl)Yffa TIE f'OINTER TO TIE SEllLElt:E
:BlfFER TO GET TIE IEXT SET tf' Ci.IDE PARMTERS. IF 1E ARE NOT YET
: TO TIE 00 tf' TIE IN BlffER, IE BRfHli OOT TO RESET TIE TllER, ETC.

~ LDX *ffiTR
BIT oSCTL
BPl OOfj

DEX
8"1 srov
BP!. ST!"

DIUI INX
CPX 88
BIEST!"

: GET f'OINTER TO lrflJT BlfFER
:CIRRENTLY ARPEGGIATll«l lf?
: MJ, BRfHli TO 00 OOfl
: TO GO lf'-SCR.E. DECREIENT f'OINTER
: IF f'OINTER IOI <O, BRfHli
: STILL IN RfMlE, BRfHli fUflYS
: DIUl-SCR.E. lr«:REIENT POINTER
: OOT tf' RAt«lE?
: STILL IN RfMlE, BRfHli

: IF IE GET IBE <S«>V> IT IElffi TlfIT IE lfflE PlAYED fl.L CF TIE KEYS
:i\f\1 IDE OOill !ff) lfNE REIOe 'llE 00 II' 'llE 111'\JT BIJ'fER
JOl lT'S lllE 10 GE'! 'llE lE(t Ell'fll'i FRIM 'llE WllRll.. SEllEM::E.
:\E lSI 10 SEE 1F \E ME A1 TIE Eli) 11' TIE SEllll«:E All) lF SO 'llE
:f'OINTER 15 RE-INITlfUZED. OTIERIUSE, TIE C(ltRI) 15 FETCIED Afl) IF

69

Enter the program as outlined at
the end of the column and start it
running, then press down a group of
keys. If you've done everything
correctly, you should hear a relatively
slow down-scale arpeggiation of the
notes that you're holding down. When
the lowest note has played, the sequence
should start again from the highest.

Now let's play with the control
some. Here's what the keys mean with
OG93 running:

Touching the DIR:UP pad will cause
the arpeggiation to change direction
from down-scale to up. GLID:ON turns
the glide for the arpeggiation channel
on and (you guessed it) GLID:OFF turns
it off.

The LEGATO ARTICULATION pad causes
the trigger signal to remain high as
long as any keys are down so that there
will be no re-articulation as one note
finishes playing and the next begins.
STACCATO ARTICULATION triggers the note
the first instant that it plays then
releases the trigger.

The TEMPO keys cause the rate of
arpeggiation to change from slow (7) to
fast (O) over a range from so slow that
almost anyone could play the run
manually to a rate that's so fast that
the sequence begins to take on the
texture of a chord (which should give
you a clue to one interesting
application of OG93 in a piece of
music).

If you were an Orgamatronic Glide
fan in the first place, we could
probably stop here and you'd be
completely happy - the program is a lot
better than the old manual version.
We'd also be stopping before we really
got started, because by far the most
interesting feature of OG93 is that it's
an interpreter that allows us to program
a series of arpeggiations and an editor
that makes the entry and manipulation of
those programs easier.

70 ~

1833- 116 76
1835- CA
1836- 18 82
1839- A2 87
19311- 86 76
mc- es 77
183E- F8 FS

18411- 85 74
1842- 89 C8 88
1845- 211
1846- 86 74
1848- 611
1849- 99 C8 88

184C- R2 87
184E- 24 74
1858- 38 82
1852- R2 88

1854- 86 73
1856- 119 1F
1858- 2S 74
185R- 85 72

183C- B5 E8
185E- 00 eo
1868- 24 E7
1062- 78 BF
1864- 119 81
1866- 85 72
1068- 89 00 88
1868- 29 BF
1060- 99 00 88
1878- 68

1871 88
1872 81
1073 88
1874 C4
1875 87
1876 87

1188- 116 75
1182- 85 77
1184- ce 10
1186- F8 8F
1188- 91l 1F

1848
1858
1868
1878
1898
1898
1188
1118
1128
1138
1148
11511
11QI
1178
1180
11911
1288
1218
1228
1238
1248
12511
1268
1278
1288
1298
1388
1310
1328
1339
1Jol8
1358
1168
1378
1388
1398
1488
1418
14211
1438
1448
1458
1468
1478
1488
1498
1588
1518
1528
1538
1548
1558
1568
1570
1588
1590
1688
1610
1620
1639
1648
1658
1668
1678
1680
16911
17110
1710
1728
1740
1750
1778
1790
1880
1818
1828
1838
1840
1858
1868
1878
1888
18!l8
1!l80

: ZERO IT IElllS TlfIT IT IS TIE 00 CF TIE SEllEll:E fN) TIE POINTER
: 15 fLSO REINITlfl.IZED

5ll)Y LDX *5PNT
DEX
BPl GSEQ

SINT LDX 87
GSEQ 5Tl(*5PNT

LOA <SEG.X
BEii SINT

: GET COORll. SEQl.ENCE POINTER
: POINT TO l€XT SEae«:E ENTRY
: IF lllT TO Eli), llRIKH
:RE-INIT SECll.ENCE POINTER
: SllYE SEQl.ENCE POINTER
: GET COlfH) FROll COORll. SB!.
: ZERO 005 TIE SECll.ENCE. SRffOI

:A IEN COlfH) FIUI TIE SEQIEla. FIRST USE IT TO SET IR a.EllR TIE
: Tlf: Cl.IDE COORll. BIT FIUI Tlf: TRMSP05E 111.FFER. IN Tlf: PROCESS.
:Tlf: IEN COlfH) IS SlllFTED OIE BIT TO TIE l.EFT; llllCll llLTIPLIES
:TIE TEll'O VRRlfllE BY 2 fN) SlllFTS TIE ll'llllltf fN) LEGfl/STID: BITS
: INTO IDE EASILY TESTED POSITIONS.

11.ID STß '5CTl.
LOA TTILY
Rll.
flSl. '5CTl.
RIR
STß TllLY

:SAYE SEQl.ENCE ENTRY IN COfTRll. BlJ'FER
: GET Tlf: Cll!RENT TRANSOSE BlJ'FER ENTRY
:ROTATE GI.IDE BIT TO CARRY
:ROTATE COfTRll. IUD GI.IDE TO alRRY
: ROTATE CARRY TO GI.IDE BIT
: TIEN RETIRN TO TRMSP05E BlJ'FER

: THIS LITTLE ROOTllE OETERllllES lfEllER SCIW IS II' IR ~ fN)
: INITlfl.IZES TIE POINTER TO TIE PRll'ER Yfl.lE
: SKYP-SET KEY POINTER

SKYP LDX 87
BIT '5CTl.
11111 snn
LDX 80

:PREPARE FIR ARP. II' INITlfl. POINTER
: CIECK COlfWI) BlfFER - ARP. IP?
: YES. BRffDt
:l«I. ARP. ~ INTlfl. POINTER

:1111 TIE ROOTllE TO RESET TIE TllER. sna: fl.L KEY POINTER IRllPILATIONS
:Wllll II' RT THIS POINT, Tlf: FIRST INSTROCTION IS TO SAYE THIS POINTER
:Tlf: TllER Yfl.IE IS OORACTED FROll TIE COfTRll. IUD SCTL
:STiii-SET TllER

ST!" STX *""TR
LOA 1F
fN) *5CTL
STß •Tll'R

: SAYE IN'IJT BlfFER POINTER
: PREPARE 1tASK fN)

: GET TIE TllER <TEll'O> Yfl.IE
:fN) SllYE IN Tlf: TllER VRRlfllE

:1111 IE GET TIE Cll!RENT lllTE CF INTEREST FROll TIE IN'IJT BLfFER
:III) IF TIE KEY IS NlT Dllfi. A CIEtK IS IR>E TO SEE IF flN KEYS
:ARE D<llf. IF IOE ARE. TIE TllER 15 TRICl<ED INTO nnlr«l OOT Tlf:
:1€XT TllE TIRlOI llllCH MILL TIEN RESlLT IN Tlf: IHl.E COlfH)
: SEllEll:E FCUlllll«l SYSTElt BEll«l RESET

LOA *KTILX :GET TIE Cll!RENT KEY FIUI llFUT BLfFER
BIE BOOT : IF ZERO. Nl KEY - BRffDt
BIT >tKTBl.+87 :ARE flN KEYS DOii?
81/S fl>YA : YES. BRffDt
LOA 81 : 1«1. PREPARE TO lll<E TllER Rlll OOT
STA *Tll'R :!EXT PASS TIRlOI

Cl.RN LOA NTBI., Y : GET TIE et.mNT WTPUT lllTE
fN) B8F : CLERR TIE TRIOOER FL~

BOOT STß NTBl.,Y :fN) REPUl:E IN OOTPUT BLfFER
RTS :RETIRN

:1111 SM TEll'CRRRY LOCATIONS fN) MIR INITlfl. STATES

TEii' . HS 80
Tll'R . HS 91
PNTR. HS 88
SCTL. HS C4
PPNT. HS 97
SPNT. HS 07
CSEQ . HS 080808088800E404

. DR 11lE8
STll' . HS 402004

. DR 1188
: THIS IS TIE wtRI) KEY DECOOll«l fN) SBllEr«:E EDITll«l SlllROOTllE
: 1 CF CMfH> KEY 15 IN Y REGISTER

CINl LDX *PPNT
LOA *CSEQ. X
CPY 10
BEQ CLR
BCC CNXT

: GET TIE EDITIR!r POINTER TO CMfH> SEQ
:GET Tlf: ctl'l1flll) POJNTED TO CIN ACC, DON'T FIRGET>
: 15 KEY 10 - CLERR COlfH) SElllEl«:E
: YES. SRffOI
:l«I. IT'S LESS Tim 'F', BRffDt

: TIE KEY rs 11 DR lllEflTER. OORa TIE ctJftH) POINTED TO lllTH
: TEll'CRRRY STORAGE LOCATION TEii'. NJTE TlflT THlS CfW BE USED TO
:EXCIR«lE 00 IR IDE COlfH)S IN Tlf: SElllE«:E

Each prograrn step contains ail of
the information that we controlled
earlier (glide on and off, up-scale or
down, staccato or legato, and one of 8
tempos) and when the µrogram is run,
each step will bPe taken ;n turn ~nd an
arpeggiation of rh0 k"Y" held down
performed using ~he status of the
parameters specifieC· Jy that step. At
the end of the program it jumps back to
its beginning and the sequence of
arpeggiations repeats.

Each step of the program is
11written11 in exactly the same way that
we set the parameters earlier; in fact,
as you'll soon realize, you were in
effect writing the first step then. The
key to forming these steps into programs
is the PNTR : BACK/ADV block of pads on
the connnand keyboard. The pointer
(PNTR) refers to the program step that
you're writing.

One quick example should get the
idea across. We'll write a program that
sweeps up the keyboard at a moderate
tempo, re-articulating each note,
followed by a quick legato run
down-scale. Program the first step by
touching these keys - TEMP0:4, DIR:UP,
GLID:OFF, ART:STAC. That takes care of
the up part.

Now for the down part, begin by
touching PNTR:ADV so the connnands that
we enter next are 11 pointed11 at the
second program step (which is step #1 as
shown in the displays, the first step is
#0) and tauch TEMP0:2, DIR:DOWN,
GLID:OFF, ART:STAC. Now hold down a big
chord structure to hear the full effect
of this dual arpeggiation.

Editing an existing program is
simply a matter of pointing to the
prograrn step that you want to change and
entering the changed parameter. To
change the first step (#0) in the
exarnple above to a slower ternpo, for
exarnple, touch PNTR:BACK so the display
shows 00 and then touch TEMP0:7 (or
whatever).

OG93 can handle programs up to 8
arpeggiations deep and, when you begin
stacking that many steps, it's easy to
get lost. The EDIT:EXCH key helps here
by allowing us to remove the step
pointed to from the program and
replacing it with an instruction for
repeat. By backspacing the pointer to
step #1 and touching the EDIT:EXCH pad,
we cut the program to just the first
step, EDIT:EXCH again and the original
pJ..:ogram step is back in place, so that
the entire prograrn runs again. By
stepping through the program and causing
it to repeat after the 2nd, 3rd, etc.
steps, it's fairly easy to locate where
in the program a specif ic sound is
coming from and then make changes there.

As you may surmise from the narne,
the EDIT:EXCH key causes the program
step pointed to to be exchanged with a
memory buf f er location which is
initialized to contain the interpreter's
repeat code (00). This implies that this
key can also be used to exchange two
piogram steps by pointing first to one
and touching EDIT:EXCH and then to the
next and again EDIT:EXCH. In fact, this
is the case; with one exception. The
first step of the program may not be the
repeat code 00. If it is, the
interpreter will lock up as it reads the
first step, finds that it 1 s a repeat, so
it reads the first step, and so on.
OG93 protects again·sc this by checking

Ul!A-
110C-
110E-
1110-
1112-
1114-
1116-

1117-
1119-
111B-
111C-
111E-
11.."1-
1123-
1125-
11.."6-
1128-

1129-
1128-
112D-
112F-
1130-
1132-

U34-
1135-
1136-
1138-
WA-
1131>-

113E-
113F-
1141-
1143-

1145-
1147-
1149-
114A-
114C-
114E-
114F-
1151-

1153-
1154-
1155-
1157-
1159-

115B-
115C-
1151)
U5E-
1115&-
1162-

A4 71
00 04
E0 07
F0 28
94 77
S5 71
60

R2 07
86 75
CA
A9 00
80 20 18
S5 71
95 77
CA
10 FB
60

C0 0E
90 18
F0 llF
CR
30 08
86 75

SA
38
E9 08
49 FF
80 20 18
60

ES
E0 08
FO Ffl
00 ED

C0 08
B0 0R
C8
29 F8
95 77
98
15 77
00 1A

2A
08
C9 09
F0 12
90 10

28
2A
es
ce ee
Fe es
90 06

1910
1920
1930
1940
1950
1960
1970
1980
1998
2000
2010
2028
2030
2040
2050
2069
2070
2080
2090
2109
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2268
2270
2280
2299
2300
2310
2320
2330
2348
2350
2368
2378
2380
2390
2488
2410
2420
2430
2440
2458
2468
2470
2488
2490
2500
2518
2528
2530
2548
2550
2568
2570
2588
2590
2680
2610
2628
2638
2648
2650
2668
2670
2680
2690
2700
2710
2720
2730
2740

LDY *TEl'I'
BIE ELP0
CPX 07
BEQ RTN

ELP9 STY *CSEQ, X
STA *TElf'
RTS

: GET TIE COltRI> IN TtE TEl'l'ORARY BlfFER
: IS TIE COltRI> FRm TElf' A 8? NJ.. BRfKH
: POINTIP«l TO FIRST COltRI>?
: '/ES, BRAll:H. oan ~ITE ZERO AS FIRST COltRI>
:PUT ClnRI> IN TIE SEQl(l«:E SLOT POINTED TO
:FH> TIEN SIM: CU> COltRI> IN TIE TElf> LOCATICll
: TIEN RETlRN

:TIE KEY IS '10', ClERR TIE COltRI> SEllW«:E. l«JTE THlT llE FIRST
: ENTRY IN TIE SElllEl«:E IS l«lT ClffflE)).

CLR LDX 07
STX *PPNT
DEX
LOA 09
STA DISP
STA *TEl'I'

CLLP STA *CSEQ, X
DEX
BPL CLLP
RTS

: SET POINT TO FIRST SElll.El«:E ENTRY
:FH> SIM: IT
: DECREl'ENT TIE POINTER<SKIP FIRST ENTRY>
: FH> GET REfl>Y
: ZERO TIE DISPLAYEI) EDJT(~ POINTER
:FH> TIE EXCllNlE RE61STER
: ZERO TIE SElll.El«:E ENTRY
:FH> POINT TO IEXT ENTRY
:SM LEFT, LOCP
:RETl.RN

:~ IE TEST F!R 'E' !R 'F', 8la<SPOCE !R flWfH:E TIE EDIT!R'S
: EDITOO'S POINTER TO TIE COltRI> SElll.El«:E. l«JTE THlT llCREIENTlt«l TIE
: POINTER PROOOCES A 8la<SPOCE.

CIID CPY 0E
BCC STlf>
BEQ M:K
DEX

: IS KEY 'E' !R 'F'?
:hEITlf:R fH) LESS T1fll 'E', BRfKH FOO IEXT TEST
: IT 'S 'E'. BRfKH TO 8la<SPOCE
: IT'S 'F", flWfH:E TIE POINTER

8"1 RTN
COOT STX *"""1

:FH> IF OOT CF RfHlE.. BRfKH TO LEA't'E lltEDIATaY
: SIM: IEW POINTER

: IN THIS SECTICll TIE POINTER <llllCH IS 07 F!R TIE START CF TIE SElll«:E
:FH> 00 AT TIE Eli>> IS COOYERTED TO AN lt«:REASING IUllER FROl1 11-7 F!R
: DISPLAY Na'OS5

Th'A
SEC
sec es
E!R 0FF
STA DISP

RTN RTS

:POINTER TO TIE fUIJ1. F!R R Cfl.CllRTICll
:PREPARE AR A 51..BTRIVICll
: OO'SD COll'lEIENT
: COll'lEIENT Cf' TlllT
: SIGI l/fl.l!: IN TIE DISl'LRYS
:RETl.RN

: 8la<SPOCE POINTER fH) ltlkE SlRE IT IS STILL IN RfHlE.. TIEN BRfKH

M:K INX
CPX 08
BEQ RTN
8tE COOT

: 81a<SPOCE TIE POINTER
: OOT CF Rffa?
:YES.. BRfKH TO LEIM: lltEDIRTELY
: l«J, 9RfN:H fUllY5 TO SIM: POINTER. ETC.

: IF TIE KEY IS llE CF TIE TEll'OS.. fl)[) 1 (8 TEll'O l«lT IUCIE)) FH>
:FIT IT INTO TIE CIMR(L SElllEl:E ENTRY POINTED TO

STii' CPY 08
ecs SW>
!NY
fH> BF0
STA >ICSEQ, X
T'/11
~ >ICSEQ,X
lllE SAYA

: TEll'O ICEY?
:NJ.. 9RfN:H
:YES.. fl)[) 1 TO KEY 1
: lllSK PRESEHT TEll'O IN CCllfH) TO 2ERO
: SAYE CIMR(L FlRl5 IN CSEQ '!Elfaffll Y
:BRlt«l 161 TEll'O TO fU
:C!l'BlhE WITH CU CIMR(L FlRl5
: BRfKH fUIAYS

:~ A SERIES CF TESTS lll!CH RESll.T IN TIE CMRY BIT llElt«l SET !R
: CLE~ A SERIES CF ROTATES BRll«lS TIE CMRY TO TIE APPRll'RIRTE BIT
: IN TIE CCllfH) IUO

5W) RU.
Plf'
CPY 09
llEQ ROT1
BCC ROT1

: ROTATE TIE (l.IDE CCllfH) BIT TO CMRY
: FH> SIM: TIE CMRY Cl! TIE ST!a
: 15 KEY (l.IDE Cl! !R llFF?
: 9-Gl.IDE Cll. BRfKH
: 8-a.IOE llFF, BRfKH

: TIE KEV lllS hEITIER (l.IDE Cl! IO! CFF, TEST AR DIRECTICll IP Cl! OIOlf

SIO> PLP
RU.
Plf'
CPY 8B
BEQ ROT2
BCC ROT2

:GET TIE CU> (l.IOE 9IT FROl1 TIE STB:K
: ROTATE D IRECTUll BIT TO CMRY
: SIM: IT Cl! STIDC
: IS KEY IP !R Dali?
; B-u>. BRfllCH
: R-D<lfl. BRfKH

: TIE KEY lflS TO BE C !R D <STOCCATO !R LEGATO>

71

John Simonton designs unusual electronic things
and writes about them. He' s one of the most
fortunate people you could ever meet. He does
the things he loves - and gets paid for it.

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

