v o P :
ms 4 ¥

.""f.'s‘;
»‘“c‘
.

) NTHE§IZE

"l Vs
WHY microprocessors are the greates g

happen to electronic music since vnltag o ﬁd |
and HOW to applv,them B agp,

FRIENDLY STORIES
ABOUT

COMPUTERS/SYNTHESIZERS

(adesign analysis)

BY: John S.Simonton, Jr.

Revised January, 1980

©John S. Simonton, Jr, - Reprinted from Polyphony with permission

ALL RIGHTS RESERVED

Published by:

PAIA Electronics, Inc.
1020 W, Wilshire Blvd.
Oklahoma City, OK 73116

No portion of this book may be reproduced in any manner without
written permission from the publisher.

FRIENDLY STORIES
ABOUT

COMPUTERS/SYNTHESIZERS

CONTENTS

ATIME TRIP - READY: itiitiirienennnnencnnennnnas 3
WHAT THE COMPUTER DOESciiiteiirirernennnenns 5

EQUALLY TEMPERED DIGITAL TO ANALOG CONVERTER .. 9

COMPUTER MUSIC, WITHOUT THE COMPUTER 13
IN' PURSUIT OF THE WILD QUASH =cccvveeeecnnss 19
THE POLYPHONIC SYNTHESIZER =cce00ccesesccns 23
MUS - 1 WITH THE NEW MIRACLE INGREDIENT - STG 29
PINK TUNES .. iiiiiittirteeennenncnnssoncnnssncananns 37
SEQUE 1.0 ...iiuuitiiiennenneniennnensennsnnseansnnnnnns 43
ECHO . .iiiiiiiiiiiiiiietiinisiieanesnsanassnssnsnnnes 53
CONTROLLING EXPONENTIAL SYSTEMS ,................ 57
DIGITIZERS iiiitttiitiiietiiinaneionnassnsennnenns 61
POLY-SPLIT ... iiiiiittnnttaneenneennennnnneennaeenns 67

OG-93: AN INTERPRETIVE ARPEGGIATION :
PROGRAMMER & EDITORoccveruvrnenenannnn. 69

me Frip-

RerDY:

by: John S, Simonton, Jr,

Ahead and
behind me the walls are colored by flowing patterns of blue,

I' m walking down a hall of oval cross section.

green, purple. As I pass, the sections of the walls closest to
me burst into rapidly changing patterns of yellows and red.
Softly, softly I hear a melodicly changing pattern of notes and
chords. I notice these things no more than you noticed the
color of your walls when you woke up this morning.

A sign inlaid in the wall announces:
UNDERGRADUATE MUSIC LAB
and I stop. In my mind I form a picture of a section ot the wall

sliding up and it does. I pass through the portal and picture
the door closing.

Before me is a group of cabinets that obviously is a
musical instrument. It's dominant feature is two stacked
AGO keyboards. Above the keyboards, a panel with two
central vertical doors about 1 by 6 inches flanked on either
side by sections of grille cloth. To the right of the central
console is a high speed printer and to the left a second key-
board, a typewritter keyboard, and above it a video terminal.
In the upper left hand corner of the screen is written this

word:
READY:_

I open one of the narrow doors in the contral console and
insert a square cardboard jacket removed from a pocket in
my assignment binder.

Sitting down, I type:
:LOAD "MUSE"

There is a barely audible click from the central console
and after an instant' s delay a colon appears on the screen.
I type again:
:PLAY "TUBA", K1, OUTL, OCT1
:RUN
and as I touch the lower AGO keyboard, fat juicy tuba notes
come plopping out to the left speaker. Nice.

I type:
:PLAY "TUBA", K1, OUTL, OCT1
:PLAY "STRINGS", K2, OUTR, OCT5
:RUN

and now I get the tuba from the lower keyboard and left speaker
while the right speaks phasy strings in response to my touch on
the upper keyboard. Say, this is alright. I type:

:PLAY "DYNAMUTE", K1, OUTL, OCT3
:RUN

but this time a message displays on the screen.
is:

The message

ERR 10

Very cryptic. I remove a ring bound manual from a
drawer below the keyboards. '"PAIA 14700/S - Systems
Manual'" and I thumb through it until I find a section called
"error codes'". Here I find this entry:

ERR 10 Undefined Instrument Name.

Well, rats. T could have sworn that a simple thing like
dynamute would have been in my instrument list. Too antique,
I suppose; but fortunately it's a simple voice and I know it by
heart, I type:

:DEFFN "DYNAMUTE'":SIGNAL OSC(PULSE 115),
FILT(BP, Q56¢, CC2), AMP (1f6): CNTRL ENVG
(Alg, D@, S#, R54@f) (FILT, AMP), KBD (OSC)
;TRIG KBD(ENVG)

;PLAY "DYNAMUTE", K1, OUTL, OCT3

:RUN

Now as I play, the old familiar "wahp-wahp's'' come from
the speaker. A little trite perhaps, but still musicly useful in
a piece that is to have an '"old classic" sound to it. And just so
I won't have to enter this voice again:

3

:INSTSAVE "DYNAMUTE"

The central console clicks, Now, to the real work.
T type: :SCORE "BASS1" C2/4, E2/4, G2/4, A2/4;
R; TF2, R; TC2, R; TG2, R; TF2, R;
C2/4, G2/4, F2/4, A2/8, C3/8, D#3/8,
E3/8, C3/8, A#2/8, G2/2; BRIDGE, F2/4,
F2/8, E2/8, ¥F2/8, F#2/8, G2/4, D2/4,
G2/8, F2/8, E2/8, D2/8;

Immediately the old familiar walking bass line ""wahp's"
its way into the room while I play string accompaniement on
the lower keyboard. After diddling around for a while I come
up with a melody line that I like OK and I type:

:SCORE "STR-LEAD", K1

:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5
:PLAY "DYNAMUTE", "BASS1", OUTL, OCT3
:RUN

and play the lead that I liked. Now a moment to sit back and
listen again. I type:
:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5

:PLAY DYNAMUTE'", "BASS1", OUTL, OCT3
:RUN

and everything that I played a moment ago is re-created. It
sounds good but there's one note that's off. I type:

:LIST "STR-LEAD"

and the machine replies:

STR-LEAD: C4/8, G3/8, A#3/8,A#3/8, C4/16,
D#4/16, E4/16, G4/16, A#4/16, A4/16, G4/16,
E4/16, C4/8, G3/8, A#3/8, A3/8, C4/16, D#4/186,
E4/16, G4/16, A#4/16, A4/16, G4/16, E4/16
I can see what's wrong. That third octave A sharp in the
first measure should have been a third octave A natural. I
type:
:EDIT "STR-LEAD"
and the score is shown again but now there is a cursor at the
end of the line. Using special keys on the keyboard I move the
cursor back until it's under the error and then I press a key
labeled ""delete'". The sharp is now a natural and with a PLAY
instruction I have the line repeated. Now it sounds right.

Out of habit, more than anything, I type:
:COMPRESS "STR-LEAD"

and wait while the machine scans this score and reduces the
memory space required by inserting '"transpose and repeat!"
instructions wherever possible.

Using SCORE, EDIT and PLAY instructions I lay down
another six tracks and then type:

:DEFFN "COMP1"
:PLAY "STRINGS", "STR-LEAD", OUTR, OCT5

:PLAY "DYNAMUTE", "BASS1", OUTL, OCT3
"

and then:

:COMPSAVE "COMP1"

a click. And just to double check:

:CLEAR

:COMPLOAD "COMP1"
:PLAYCOMP "COMP1"
:RUN

It's not bad. There are only eight parts, of course, and
it did take me a little longer than the graduate students; but
they have modern Cyber-net activated instruments to use too.
Having to bang away at the keys takes time. And in any case,
it's all my work. I didn't use the HARMONY or CREATE
instructions once. Poor old Dr. Biggle will like that. Now,
before I shut it down:

:PRINT "COMP1"

and the high stacatto of the printer assures me that I will soon
have a hard copy of the score on tablature.

’

I :
type :CLEAR

and the machine answers:

READY:_

WHAT THE COMPUTER DOES

The computer in our system does not
itself generate any sound., It is simply
acting as a performer/composer assist-
ing control system 1or a more or less
normal synthesizer, Providing what
amounts to an extra set (or several sets)
of hands.

From a system standpoint, it fits
between the keyboard and synthesizer
like this:

e >

COMPUTER
INTERFACE
B ER R

CONTROL VOLTAGES AND
TRICGER FLAGS TO

MULTIPLE-DUTPUT
SYNTHESIZER

figure (o)

We said above, "more or less normal"
synthesizer because there are three
special elements involved in the synthe-
sizer/computer interface:

1) a digitally encoded AGO keyboard
(see "Computer music without the
computer'" and product summary)

2) a Digital to Analog Converter (see
"Equally Tempered Digital to
Analog Converter'')

3) a multiple S/H circuit to allow
several simultaneous outputs from
the Digital to Analog converter,

The computer runs programs (either

supplied by PAIA or user written) that
receive data from the synthesizer key-
board and issue instructions to the D/A
and multiple S/H which in turn control
the synthesizer,

PROGRAMMING OVERVIEW

Just saying that the computer controls
the synthesizer is hardly a satisfactory
explanation of the system, Hardly satis-
factory because it leaves out a

VERY IMPORTANT CONCEPT

which is that it is not really the computer
that is controlling the synthesizer, it's
the programs. In a very real sense, the
computer is there only because it's a way
to run the programs.

One of the programs (for example)
"reads" the synthesizer keyboard and
builds a table of what it finds there,

If the phrase "builds a table" is

unfamiliar to you, it simply means that
when the program finds that agiven key is
down on the keyboard it records in a
special place (location or address) in
memory which key it is, The next key
that it finds down, it records in the next
memory location; and so on, When the
program has finished looking at the
entire keyboard the result is a list or
"table" of the keys that were down during
that scan, If you were holding down a

C chord for example, the table might look
like this:

C
| E |
G|

%mm"cmaws INDICATE
THAT ONLY THREE KEYS
WERE BEING HELD DOWN

DURING THE SCAN.

figure (6

That's not really all there is to this
program - there are some subtleties
that would probably be confusing at this
point, We'll get to them later., For
right now, we'll just think of this pro-
gram as a list-builder,

Also, so that I won't have to keep
typing ''the program that builds the list
of keys that are down on the keyboard'",
we'll agree among ourselves that we'll
call this program by the name "LOOK",
From now on, when I say something like
"we LOOK at the keyboard" you'll know
that I mean we "execute' (run) this
program,

And, while we're hanging labels on

things, we may also just as well name
the list that LOOK generates "key-table",

or, since I'm a lazy typist, just KTABLE,
Got that? LOOK builds KTABLE,
OK, next,
There is another program that we'll

call NOTEOUT, because it takes care
of outputting the notes.

Like LOOK, this one can be stated in
simple terms: it reads the first entry
from a table and causes the D/A to
convert that key data to a control volt-
age which it then strobes into the first
S/H. It then gets the second entry from
the table, converts it to a control volt-
age and assigns it to the second S/H.,
Gets the third entry, etc.

Also, like LOOK, there are subtleties
that we'll look at later but the important
point is that this routine works quickly,
A block of 32 Sample and Holds can
easily be refreshed and up-dated in
about 16 ms. - more than fast enough,

The table that is read by NOTEOUT
we will call the "'note-table'" or, simply
NTABLE,

LOOK builds KTABLE and NOTEOUT
reads NTABLE, Maybe you're wonder-
ing why two tables - why not just one,

Well, we could do it that way - if
we did, a simplified diagram of the
system should look like figure c.

You will recognize that we're still
holding down that C chord., Now
suppose we let the E go, On the next
scan of the keyboard, LOOK up-dates
KTABLE to reflect the fact that the E
is no longer held down, KTABLE now

looks like this:
r—%— c

KTABLE
c
& \ —>e
PROGRAM
NOTEOUT :—Ei>—NDTMING

© [omer
: S/Hs

THIS MIGHT NOT BE Too BAD — MANY ORGANS
DO NO MORE. .
-P-gure. (d)

And when NOTEOUT reads this table
and up-dates the S/H circuits, guess
what? The G has moved to the loca~-

P — ———————— - COMPUTER =

KBD

THE
PROGRAM
LOOK

THE
PROGRAM
NOTEOUT

INDICATE THAT NO OTHER KEYS WERE

DOowN.

|
|
!
|
ESE “EMPTY“£0) MEMORY LOCATIONS ,'
|
)

, Q@ 0 o o

fiqure (e

tion previously occupied by the E and
from the S/H that previously was
producing the control voltage for the G
we now have nothing,

As if it weren't bad enough that the
VCO which was previously producing an
E is now playing a G (and we can hear
when it makes this change), we can't do
any decay processing on the E - the way
a natural instrument would - because it's
not there anymore,

Maybe this isn't too bad, A lot of
organs produce results very similar to
this - and all multiple output analog
keyboards do this exact same ''guess
where the note's going to come out"
trick, Still, it seems that there would
be a more pleasing way to do it.

There is,

Because we're using two tables, we
can generate a large (very large) family
of programs that make decisions on how

to transfer the information from KTABLE

to NTABLE, This produces a machine
which diagramaticly might look like this:

ST SSSS =SS TS S apMPUTER™)
KTABLE TABLE
C

\ E
MIDOLE'
PROG

1
[
|
|
Al
St Look
1
|
i
1
I

figure (e)

How this new middle program makes
transfers from KTABLE to NTABLE
determines completely the '"personality"
of the instrument.

For instance, a better way to handle
the multiple -output problem would be
to have the '""middle" program not
delete an entry from NTABLE simply
because it no longer appeared in
KTABLE, but rather to indicate that
while the note should still be played, the
key corresponding to it was no longer
being held down and decay processing
should begin, This is where the concept
of ""flags' associated with each note
comes in and while it is slightly out of
sequence, we should examine this
important feature now,

The data that goes out to the synthe-
sizer interface is a collection of 8
binary digits (bits - ""1" or "0'").
this:

Like
WORD

| 1plsle[s]s]4]

~N—
THESE 6 BITS SAY
WHICH NOTE

THESE 2 BITS ARE
THE FLAGS

* figure (F)

6

If we want to indicate to the synthe-
sizer that the note that the data repre-
sents is one which currently corresponds
to a key that is being held down on the
keyboard, then we set bit #7 (Dg) to a
n1r, If the data does not correspond to
a key that is currently down then this bit
is a zero, As you can see, if you're
already familiar with synthesizers, this
flag bit corresponds to the ""gate" signal
that you get out of most synthesizer key-
boards.

As you will see when you review the
included 8780 information, both of these
higher order bits are buffered and brought
out to the front panel of the Equally Tem-
pered Digital to Analog Converter,

This leaves us with a ""left-over"
flag that can be used in a variety of ways.
It can, for instance, be used simply as
an independent gate signal allowing the
processor to select between one of two
patching arrangements that we've set up.
Or, and I believe that this is the prefer-
able use, it can be used as a GLIDE
SELECT bit that turns glissando on and
off - under computer control,

But, to get back to the real subject at
hand, the polyphonic output procedure
described above is not the only (or, in
my opinion, the most) interesting thing
that the "middle" program can do.

It can examine the entries in KTABLE
and if they are lower than a given note
on the keyboard assign them to one
group of outputs and if they are higher
assign them to a second group of outputs.
Which has the effect of "splitting" the
keyboard into two different voices - one
for low keys and a second for high keys.

The "middle" program can take notes
from the keyboard and not only play them
immediately, but also store them in
another permanent table in the machine's
memory for playback again later.

The'"middle" program can take notes
from the permanent table mentioned above,
assign them to outputs and simultaneously
assign current keyboard activity to other
outputs - so that you can play along with
something that was previously "recorded',

These same programs can allow
independent recording and simultaneous
playback of multiple "tracks". Like a
multi-track recording studio only with-
out the hassle of tape splicing, editing
and (worst of all) over-dubbing noise,

The ""middle' program can do tricks
like making a chord played on the key-
board seem to be rising in pitch,
constantly, without ever actually going
beyond a pre-defined limit, It's not
magic, it involves forming a "stack' of
the notes and allowing the program to
increase the pitch of the notes in the
stack until they reach a pre-determined
limit at which time the note is ""faded
out" and placed in the bottom of the stack.

The "middle" program can do lots of

different things. So many, that it's

going to be a while (possibly a long, long

while) before we know what they all are,
If you're looking for something that

will reach a "finished" state beyond which

there is nothing further to do, this isn't

the product for you.

SO MANY "DIFFERENT'" PROGRAMS

One thing that you may notice in
the discussion above is that all of these
very different "resource allocation'
schemes have in common the fact that
they all use LOOK and NOTEOUT., We
could make these two routines a part of
each of the larger programs if we
wished - there wouldn't be any problems
with that - except that they are long-ish
and would take a while to ""load'" into the
machine's memory. Particularly if
you're not using the computer's optional
cassette interface, I think there's a
much better way.

We can write the LOOK and NOTEOUT
programs so that they're what's known as
"subroutines''.

Now ordinarily, computer programs
proceed sequentially through memory an
instruction at a time, Like this:

INSTRUCTION — INST.—»(NST.—> (NST.
figure (g}

But a subroutine allows a block of pro-
gramming to be stored out of sequence
in the machine so that when you "call" or
"jump to'" a subroutine it's like this:

JUMPTO
INST. —> INST.—> SUBROUTINE—> INST.»INST

INST. = INST: =>RETURN
Figure (h)

The "return'" causes the computer to go
back to the place that it was before the
subroutine was called and continue
executing the main program,

Maybe the " subroutine'' concept
confuses you (though after such a terrific
explanation it's hard to imagine how). If
it does, here's another way that you can
think of them:

SOFTWARE MODULES

You're certainly used to synthesizer
""hardware' modules by now - all those
little processing elements (VCO's, VCF's
ete,) that we tie together with patch cords
to produce different sounds or effects,

Here we have their equivalent in
computer instructions - little modules
of programming that are patched togeth-
er (not with wire, of cource, with more
programming) which, depending on how
they're tied together, produce different
effects,

LOOK and NOTEOUT are not the

only software modules that are useful,
others include SAVE (the ""recording'
module, SREPRO (the "playback' mod-
ule), DELAY (a time dclay routine),
POLY (a useful polytonic resource
allocation algorythm), and others.

These various modules are available
in a number of different forms. They're
available just as program listings (which
can be manually entered into the computer
- very tedious but about as cheap as you
can get) or they're also available on
cassette tape that can be loaded into the
computer using the optional cassette
interface,

First choice for a place to save these
universally useful programs, though, is
Read Only Memory.

This is the most expensive alternative
(ROMs have to go for about $20/each -
one would be filled by the programs
mentioned above) but it has the advantage
of NOT HAVING TO LOAD THE
PROGRAMS AT ALL, Every time you
turn on the machine, they're there,
waiting to be used.

SOUNDS INTERESTING
WHAT DO INEED TO GET STARTED?

If you already have some PAIA
synthesis equipment, you're well on
the way, but you need to convert to the
new digital format. We've tried to
make that as easy and inexpensive as
possible by providing a retro-fit kit to
digitally encode your present PAIA
keyboard, the EK-3 Keyboard Encoder
Kit mentioned in the POLYPHONY '"Lab
Notes' reprint included in this package.

This encoder is primarily designed
to fit 4700 series keyboards, but will
of course fit 2720 series equipment as
well, It is one of our experimenter's
kit series and does not include step-by-
step instructions., In fact, the EK-3
re-print that is part of this package is
the instruction set .

If you want to start over with a new
keyboard, we have the 8782 Encoded
Keyboard - one of our full kits with
complete instructions.

If you already have an organ and
would like to use that keyboard for
either synthesizer or synthesizer/com-
puter interface, we have the EK-4
Organ Keyboard Encoder as described
in the accompanying package,

The advantage to this is that the
keyboard already in the organ may be
used for both synthesizer/computer
and organ - all at the same time. Even
if there are no '"spare" contacts on the
keyboard.

BUT | DON'T HAVE A SYNTHESIZER!

Looking back over the text to this
point I notice an important point that has
not been prominently mentioned. This

system - because of the properties of
the D/A - will work only with low-cost
LINEAR synthesizer modules. Synthesis
modules whose characteristics are
cxponential cannot be used (though it is
an easy matter to substitute another D/A
for ours).

It is difficult to tell someone what
the configuration of their synthesizer
should be, Particularly with modular
equipment like our current linc, The
modules that make up the system are so
much a function of the use to which the
system is to be put.

Never the less, we have two systems
configured as starting points, '"Starting
points" because it has been our experience
that most people add and make changes to
their system as time goes on., Customizing
it to their application.

These two packages are the 4700/C
(primarily a monotinic system) and the
4700/3 (suitable for polyphonic work,
limited multi-track recording, etc.).
These arc both systems that we originally
put together to take to shows. Each for
its intended purpose, they have proven to
be reliable and versatile; each capable
(by design) of turning someone from an
"I don't like synthesizers' person into a
"I never realized they could do that"
person, Maximum usefulness and versa-
tility within minimum "waste'' capacity.

The module complement of each of
these systems is itemized in the product
summary, but this would seem an
appropriate place to discuss the "philoso-
phical" (if you will, just this once, excuse
so pretentious a term) implication of the
systems,

The 4700/C is a minimal, useable
system. It has roughly the capabilities
of the "mini" this and that that you see
advertised, It's made for people who
find synthesis interesting but aren't
really sure that they're going to get into
it in a big way. It is (briefly) an ideal
place to start. And since all of our gear
is modular and available separately, it
is a system which will easily grow as your
interest grows.

The 4700/J is by the standards of the
industry a ""good-sized" system. It's
difficult to make comparisons, since some
of the modules (particularly those that are
the computer interface) aren't available
from other manufacturers; but, if these
modules were available and you purchased
them assembled through the normal dis-
tribution chain the '/J would be on the
order of $2, 500 to $3, 500 worth of equip-
ment, And, again, it's not a dead-end
system, but one that can grow,

One final comment in this section is
in order, and it may seem strange for
someone who is, after all, trying to sell
you equipment;

DON'T OVER-BUY

There are two reasons for making a
statement like this - both imminently
practical; 1) our experience has been
that you will probably like the equipment
a lot and will be a customer for many
years, but if you don't (and aren't) you
don't have a bunch of money sunk in
something you're not going to use, We
won't have someone wandering around bad-
mouthing the gear.

2) Without committing to anything
in print, development goes on all the
time - to the practical synthesist, the
versatility of modular equipment makes
it desirable to have some of it around
(ask anyone seriously involved in elect-
ronic music synthesis), But, well, look
at any issue of POLYPHONY - development it
goes on and you never can tell what's
just around the corner.

WHICH COMPUTER?

This one is almost as bad as which
synthesizer. For the same reasons -
the decisions are very personal and user
related, Also like the "which synthesizer?"
though, we have suggestions.

Our first, and strongest, suggestion
is our own 8700 Computer/Controller,
High on the list of compelling reasons to
select this machine should be the fact that
it will have our fullest software support
(all of the programs mentioned earlier
are available now), it is physically
designed to fit into a space that has been
kept free in our 4700 and 8700 series
keyboards and is a machine designed to
the PAIA ideal of "maximum impact for
minimum bucks",

The 8700 is based on a 6503 processor
(a fully software compatible version of the
increasingly popular 6502) and has features
as described in the product summary,
This processor was chosen over others
which were - at the time that the decision
was made - more popular for a variety
of reasons, but by far the biggest was
that it is an easy machine to use, Even
if you're programming in machine
language (and don't kid yourself, the
day will probably come that you will
want to do something completely differ-
ent - something not available either from
us or from the independent user's group
program exchange - and the only way to
do it will be to write the code yourself,
it's easier than it looks).

But let's suppose that you already
have a computer, If that computer
happens to be something like a KIM-1,
you're in great shape. We will shortly
have a complete KIM-1 package showing
how to interface and almost as complete
a selection of programs as for our own
machine (we like the KIM series stuff -
and since it, too, uses a 6502.....)

If you have a SWTP 6800 system,
the 8780 and 8782 instructions already
outline using one of their MP-L's for

7

interfacing (sorry, no software support
from us right now, but surecly the user's
group will come up with some - Southwest
has a recally nice, popular system).
Coincidentally, there arc other
machines that usc the 6502 processor
for which all of our softwarc is written:
if you haven't heard of them yet, you will,
They arc:
Commodore's PET (personal
electronic transactor) which
looks at this point like it will
sell in the $600, 00 range,
Certainly you're all familiar
with Commodore - they're an
old-line (if there is such a thing)
calculator company.

and
Apple Computer Company's
APPLE I
We like the APPLE II machine a

lot and probably a single glance at the
enclosed literature will tell you why,
It not only looks nice and can grow up
to be a VERY LARGE system, but it
has all the bells and whistles including
FULL-COLOR VIDEO GRAPHICS
capabilities (vectored, no less). I
own one (one of the very first, I'm
led to believe) and I can tell you - it's
a very impressive system,

Equally Tempered Digital to Analog Gonverter

By: John S, Simonton, Jr,

Many experts will tell you that in
order to interface a computer to an
electronic music synthesizer, you
must use exponential response volt-
age controlled elements (oscillators,
filters, amplifiers, etc.).

Here's why:

Computer control of synthesizers
requires a Digital to Analog converter
to change the numbers that the com-
puter puts out into an analog control
voltage that the modules can use,

By far the most common type of
D/A (so common that many seem to
think it's the only kind) is known as
an "R/2R ladder'". I don't want to
get into the design details of this
circuit, If you are 1nterested, there
is plenty of information available
from text-books, manufacturers
literature, etc. But we do need to
examine a functional aspect of this
circuit.

Any analog to digital converter
works by accepting at its input a
digital quantity (we will call this data)
and generating at its output an analog

voltage that is a unique representation
of that data, Most of the D/A' s that
I'm familiar with accept the data as
binary digits - a bunch of 1's and 0's
that appear simultaneously on a group
of wires going into the converter,

In a R/2R ladder converter, a
unique weighting is assigned to each
bit in the data coming in. When the
time comes for a conversion to be
made, the circuitry adds together the
weightings corresponding to the bits
in the data that are in an "on'" state
(for our purposes, a 1; through not
always) and ignores the weighting
represented by the bits that are "off''-
equivalent to adding in a zero.,

If we assume that we are going to
be using exponential response oscil-
lators, the R/2R ladder converter
works quite well, We can assign
weightings to the bits that are integral
multiples of 1/12 volt; the same incre-
mental voltage change that keyboards
designed to operate exponential oscil-
lators produce, and when we do we
come up with a series of weightings

which - progressing from the Least
Significant Bit (LSB) to the Most Sig-
nificant Bit (MSB) - Looks like this:

LSB MSB
Va2, 212, 412,812, - 2,

Figure 1

Where n is, of course, the number of
bits that the converter can accept as
data,

Let's watch four bits '""count' into
this type of converter and observe the
resulting output voltages.

DATA MEANS OUTPUT
0000 0+04+0+0 0
0001 o+o+o+¥2 42
0010 0+o0+212+0 %12
0011 o+o0+%2+%2 342
1111 S22+ 2 =154

Table 1

If I had made the "word" (collec—
tion of 1's and 0's going into the
converter) 6 or 8 bits long instead of
just 4, the resulting series of output
voltages would still increase 1/12 volt
for every unit increment of the data
and the only effect would be toincrease
the range of the output voltage.

Unfortunately, while the dis-
tinguishing feature of an exponential
oscillator is that equal incremental
voltage changes will cause it to
generate a series of equally tempered
pitches, this is not the case for linear
response oscillators. A linear oscil-
lator requires constantly increasing
voltage increments to produce equally
tempered semi-tones,

While this increasing voltage
requirement doesn't make the appli-
cation of R/2R converters to linear
oscillators impossible, it certainly
makes it cumbersome,

Cumber some because we have to
make the incremental change from the
converter small enough to guarantee
that there will be some pattern of 1's
and 0' s that defines a control voltage
reasonably close to what we're really
after,

Very small voltage increments -

there are three things ""wrong' with this:

1) We're going to need a "bigger"
converter - one with greater resolution
and consequently greater word size,
Whereas 6 bits of data will provide a
little more than 5 octaves of control
voltage to an exponentail oscillator; the
same 5 octaves from a linear oscillator
will require 12 data bits. Now, if that
doesn't offend you by its notable lack of
elegance, it's cost certainly should. A
12 bit D/A is going to set you back about
$100. 00; then you've got to put it on a
pe board, add controls - front panel,
ete.

2) As if to add insult to injury,
there will be lots of combinations of bits
that represent the intervals between
adjacent semi-tones, but notice that
they are not equally tempered intervals
and therefore next to useless even for
micro-tonal tunings, We're paying out
our hard earned bucks for words that
we're never going to use, but must have
to fill up the ""cracks',

3) We've turned the determination
of what data to output from a relatively
simple matter of counting the keys and
using that as the data into a process
that at best is going to require a look-
up table (where the machine says
""Aha - key number 12, that's note
0001110010100001"") or some such
similar computer calisthenics. Not
particularly complicated, perhaps, but
why bother with it if we don't have to.

And that, friends, is the point of
all this. We don't have to. For the
simple reason that an R/2R ladder

10

converter is not the only kind that we
have to work with, There are other
kinds. One of the other kinds is called
a Multiplying D/A (or just MD/A, I
guess).

While the most important operation-

al feature of the R/2R ladder convert-
ers was that it added things to arrive
at the output, the dominant feature of
an MD/A is that (you're ahead of me,
right?)

IT MULTIPLIES,

Far out,

If you're up on your basic music
theory, a responsive chord (if you'll
pardon the expression) should be
struck here. The determination of
the frequency of the pitches in equally
tempered tunings is itself a multiplica-
tion process. The frequency of each
semi-tone in the series is greater than
the frequency of the Pflezceding semi-
tone by a factor of 2 - the infamous

"twelfth root of two" (21/12=1%/321.059).

Intuitively, it would seem that this
type of D/A would be more appropri-
ate for our purposes.

In fact, this is true. We assign
weightings to the bits (starting with
the LSB) according to this series:

LSB

Yo 2 40 .8
212 %2 M2 e

Figure 2

Where again, n is the number of bits
of data that the converter will accept.
Now, we count into this convert-
er the same way that we did in the
R/2R ladder type. Remember that
bits that are "off'"* here are not
included in the total (only now this
is equivalent to multiplying by 1)
and that the product that results
from the condition of the data will be
multiplied by some internal reference
voltage.

DATA QUTPUT
0000 1-1-1-1i'rel 1vm
0001 144-272.yret 242vret
0010 14272yl 2%12vref
0011 142%12.2.yret 2H2yrat
1111 2 22 ey, By,

Table 2 *

* Multiplying a base number raised
to various powers (exponents) is accom-
plished by adding the exponents. That's
how a slide rule works - remember
slide rules?

You may recognize this as an
equally tempered series (if not you'll
just have to take my word; it is). All
we have to do now is design a circuit
that does this.

Let's do that.

Here's a simple unity gain buffer
amplifier:

You may not be used to seeing it in
this form because ordinarily the resis—
tances that are shown would be replaced
with direct connections, But having the
resistances there doesn't matter simply
because for any practical case, they are
going to be much smaller than the equiv-
alent resistance from either of the oper-
ational amplifier's inputs to ground, I
should mention here that for any linear
operational amplifier circuit the volt-
ages at the inverting and non-inverting
unputs are equal (V;. +=Vi_ ; this is the
key to op-amp design, but that's another
story). Of the circuit in figure 3 we can
say:

@ Vout =Vref.

An excellent beginning, Here's another
circuit:

¥ out

Figure 4

Adding R2 to the circuit has pro-
duced a voltage divider at the + input
of the op-amp and because of this we
can say:

) yout= (IléLf-R—bv""

Fantastic, Now we change the
circuit again so that it looks like this:

R2 and R4 into the circuit and remov-
ing them is simply a matter of putting
switches (either mechanical or elect-
ronic) in series with them and when we
do the whole circuit looks like this:

Vout
Vret 7 R R3
W IneS
Figure 5
Vref Vout
and instead of a voltage divider at the L
+ input we now have one at the - input. R2
This means that:
+RY4 S1
(c) = (&—9
Vout Ré Vref. i
All together now: =
Figure 7

Figure 6

And for this configuration:

(d)
Yout= (—mn—fn-a G—:"ﬁu Vref.

Do the four equations from (a) - (d) look
familiar? No? Look back at Table 2.
Now do they look familiar? Still no?
Then let's say:

R2__ _ .1y, _R3+R4 _.2
© mere =22 T 27

and then by making these substitutions
and putting the equations together:
(a) Vout =Vref
' ®
® Vout=2"12.yref,
(©) Vout=2"2yret
@) Vout=2"12.22A2.yyeq = 23M2ypgy,
Now you must certainly recognize them -

it' s the same series as the first four
entries in Table 2. Putting the resistors

The switches S1 and S2 here are,
respectively, the Least Significant and
Most Significant data inputs to the
converter; and I will avoid the obvious .
comment about this being a 2 bit D/A.

Oh, but there' s one thing that I
forgot to tell you:

2 R2
M 2 F Wi

1/12

Why? Because 2 is a number
greater than 1 and the only way that the
ratio of a number to itself plus some-
thing else can be greater than 1 is if
the something else is negative - which
in our case, it's not (yes, there is
such a thing as negative resistance,
but the concept is not applicable here).

Happily, we have an alternative
to negative resistance and that is to
make:

_R2 .-l
® iRz 2

Making the exponent negative is equiva-
lent to taking the reciprocal of the num-
ber,

At this point I'm afraid that in the
interest of brevity I must make a
gigantic leap and say that -- because
we' re using the reciprocal of the
weighting, we must also complement
the bit representing that weighting, In
the instruction manual for this module,
we will cover why, But there's not
enough space to do it here, And, in
any case, any of you who really want to
can figure it out for yourselves, It's
easy, honest.

Expanding this D/A out to handle
greater word lengths is simply a matter

of cascading several of these sections.
When we do this and replace the mechan-
ical switches that we had earlier with
4066 type Quad Bi-lateral CMOS switches
we come up with a thing that looks like
the circuit shown in figure 8.

Notice that the complemented bits
that we require are indicated by the
overbar on like D~ for instance, This
is read "not DO"a.nd by custom indicates
that the low (0) state is considered to be
llon".

You are probably also wondering
about those R 's, 's, etc., The values
of these resis%ors are determined by
solving equations (a) through (d) and they
produce some strange values that need
to be exact, 5%'ers won't get it here,

In order to meet the necessary precision
and stability requirements, we've had '
"one of the nation's leading resistor
manufacturers" (at least that's what
they say) make up some custom Cermet
resistor networks. They look about like
any 16 pin DIP IC (except that they're a
beautiful robin's egg blue), but inside
are resistors instead of other stuff,
Once manufactured, they're trimmed

by LASER to be exactly the right ratios
(Laser, yet - how about that!),

I really don't expect that to impress
you too much, but this should:

THERE ARE NO ADJUSTMENTS TO
THIS MODULE

You just put it together and it "plays"
(which is the computer people's phrase
for works).

Do you realize that this gets rid of
all those trimmers from our old '-8
keyboard - it even gets rid of the zero
pot. I really like it.

But we're really not through yet, we
need to completely dress the design by
adding input latches (so that the input
information can be stored), and some
kind of indicators so that we will know
what's going on (LED's - they wink,
they blink, they twinkle like stars in
the night; anybody can look at this thing
and know that it's got something to do
with computers), This part of the cir-
cuit is shown in figure 9.

The 4042's are the latches and one
of their features is that they have both
Q and W (the complement of Q) outputs-
since we needed some complemented
data bits, this is nice. Q9 - Q14 are
level converters. We need to have the
"on" resistance of the 4066 switches
in the converter circuitry working at
as high a supply voltage as possible in
order to achieve predictable low "on'
resistances and this means that they
operate from the +9v, synthesizer
supply rather than the +5v. logic
supply.

That's the design. Let's take a few
minutes to review what we've got here,

"

We've got a new synthesizer mod-
ule that does at least one thing that
many people thought couldn't be done;

a 6 bit Digital to Analog converter that
will provide slightly more than 5 octaves
of equally tempered control voltage to
linear response voltage controlled
synthesizer elements.

The front panel PITCH control
allows the module's output to be chro-
matically transposed over another octave,
so the total range of output voltage
available is a little more than 6 octaves
(compared to typicly 4 octaves for a
#4782 keyboard).

We have two trigger flags available,
either of which can be set or re-set
independently (very handy). As we will

see in a future issue, these flags can
also be used to select micro-tonal
intervals.

The status of the 8 bits of data
coming into the module is displayed on
the front panel LED's, six of which
indicate the note that the module is
producing and two of which indicate the
status of the trigger flags.

To make the module easy to inter-
face to anyone's computer (or simply
keyboard encoders - sec LAB NOTES)
we have an input terminal marked RDY
(not ready). When this terminal is
grounded, the latches that are provided
on the data lines are in a "pass" condi-
tion and any changes of the data on the
data input lines will be reflected as

changes in the module's output voltage,
When the RDY line is taken to a high
logic state, the last data that appeared
on the input lines is stored in the
latches and further changes on the data
bus will not produce any change in the
output voltage (this is about like the
action of the SAMPLE inputs of clock-
able sample and holds).

The road to applying the processing
and control power of the computer to
electronic music synthesis is not a
short onc - but it is certainly a trip
worth taking, The Equally Tempered
D/A is only a first step.

As first steps go, though, this is
a good one - like walking in seven
league boots.

@ x
S
\ xz
" ||
Y2k ~
=
~ o
; Nx
R
&N
», h
+ 2 b3
=& °
o a

NOTE: ALL TRANSISTORS 2N5129

NOTES
1. O INDICATES RESISTOR NETWORK PIN NUMBER
2. 1IC5=4136

A"
R26

+5
~”| D5
2.2K
Qs

10, 12

r13< 22K

R2!
16 22K

+5
D4,
R
2.2K
Q4
Rd

a”
24

R
R20< 22K

+5
03
2.2K;
Q3
Re
13

~~
R23
22K

+5
D2
Rr18
2,2K
Q2

g
22
22K

+5
D
R19 R
2.2K
Ql

R2)
22K

6

R3V
4.7

1C5h

15
Ry
15

Rq

12

LAB NOTES
COMPUTER MUSIC, WITHOUT THE COMPUTER.

or: What to do 'til your processor arrives.

By: John S. Simonton, Jr.

1 realize that alot of you will respond
to the introduction of the 8780 Equally
Tempered D/A with a frustrated, "But,
I don't HAVE a computer, "

Here's a little surprise. You don't
really need a computer to do some very
interesting and useful things with the
8780. You are going to need some
additional hardware, as we'll see in a
moment, but it's not only inexpensive,
it's also equipment that you'll need for
processor interfacing later on anyway.
You're not building something that will
be scrapped when your computer arrives,
justgetting ahead start, Getting READY:_,
so to speak.

Let's shift our mental gears for a
minute, and instead of thinking of the
8780 as a computer peripheral, we'll
consider it in terms of being a digital
sample and hold.

Our analog S/H circuits are accept-
able, but they will always drift because
they store information by charging a
capacitor. Even if we were able to
miraculously devise a capacitor with no
leakage, we still have to measure the
charge on the capacitor; and whatever
circuit we use to do that will itself
eventually drain away all the charge
(I think that a Mr, Heisenberg had some-
thing to say about this, but I'm not
certain), With a digital S/H, we don't
have that problem, because we're
storing the information as a pattern of
1's and 0's,

To use our new digital S/H we need
some way to provide it with the 1's and
0' s it needs to decide what voltage to
produce, We need some way to '"encode"
our AGO keyboards.

There are lots of ways to do this,
including the simple expedient shown
in figure 1.

This is frequently referred to as a
""brute force" encoder, When a switch
closes, any diode connected to the switch
line forwardbiases, causinga 1 to appear
on the data line connected to it. The
diodes are there in the first place to
prevent ""sneak" current paths back
through the matrix, This is an accept-
able encoder as long as you assume that
only one key is going to be down at a
time, But, when two keys are pressed

R

Te Dg B B D R

DATA

Figure 1 - Brute Force Encoder

simultaneously, the diodes act like OR

gates and the data that comes out may

or may not (most probably not) represent

those keys. If, for example, we were

to press the first two keys down at the

same time, data lines Dy and Dy would

both go high, Exactly the same situa-

tion that we had defined in figure 1 as

being an indication that key 3 was down:
BUMMER

A more popular approach (because
it works better) is to ""scan' the key- .
board a switch at a time to see if any
are closed. There are LSI chips that
do this with a single integrated circuit
package; but, while saving design time
is a great temptation, we're not going
to use them, They're too expensive,
and worse yet, not versatile enough to
do all the things that I have in mind,

So that you can follow the design
that I prefer, let me turn you on to a
new part:

13 14 15 12 1 5 2 4

Yo Y1 Y2 Y3 Y4 Y5 Y Y7

11— Ao
10—y m 34051
9 —— Ay
6 —of E 2
I
3
Vpp = Pin 16
Vgg =Pin8
VEg =Pin7

Figure 2

This is called a ""4051 8 channel
analog multiplexer/demultiplexer", Or,
just 4051, Inside the package are 8
bilateral CMOS switches. While one
side of each of these switches is tied
to one of the pins Y, - Y, the other
side of all the switches are commoned
and connect to pin Z, In mechanical
terms, it looks like this:

& G—_‘sa‘/c':-————-oﬁ

Figure 3 -
Mechanical Equivalent of 4051

One of the neater things about the
4051 is that each of those switches is
individually ""addressable' from the pins
marked A0 - A2, If I put the binary
number 000 into the address pins, switch
So will ""close". 001 causes switch 5, to
be activated, and so on to 111 which
addresses Sy,

You will also notice a pin labeled E,
This is an enable pin that sort of says
"GO" to the rest of the circuitry in the
package, As long as this pin is held at
a high voltage, all of the switches will
be "oif', but when the E pin is ground-
ed, the switch specified by the address
currently on the A pins will close.

+ 2 rd
sTar < }';7,,, e
* 61 2345 @7
f— ¥ ° .
RESETO— > ot Az |7. Qows - l"omlou!m(
%e?olﬁ TC,14 A i CJomnt- Uer-l«u(
402 3 s
= »aL 4OS'Y 7
Do _[— e 7
SCAM ° GG G> . Yl
Az
lS'Oé ‘&K a
L TeR
.cos 4os
i € . ’ I—@b—» STROBE
L Q'L —» STROBE
1T leli
+f c:s"z\i“ ¢ L <L2Q.';‘ K RID
1 Tos 1
o O Do ’ Gt Cy222,d
. . b&‘clv.- Yo-back,
Figure 4 - Scanning Keyboard Encoder DATA

What a terrific part. We really
need to spend some time soon looking
at all of the potential applications for
this device, Not today, though. Today
we have too many other things to do.

You're already familiar with the
4024 CMOS seven stage divider, we've
used it before in other applications.
Now we're going to use it again in a
circuit that looks like figure 4.

This is our keyboard encoder. As
far as parts go, there's not a lot to it.
But it does a lot, watch.

Gates G1 and G2 along with R1 and
C1 form an astable clock buffered by gate
G3 that feeds the seven bit counter IC1.
Notice that I can stop and start the clock
by raising or lowering, respectively, the
line labeled SCAN. If I' m not using this
line, I can simply leave it disconnected
and the pull-down resistor R2 will keep
the clock running.

Notice that the three LSB's from
the counter (DO - D2) are connected to
the address pins of IC2 while the next
three MSB's connect to the address pins
on IC3 (we are going to temporarily
forget about the seventh bit). Assuming
that the counter starts counting at
000000, both IC2 and IC3's Z pins are
connected to their YO0 pins, If these two
YO lines are isolated from one another
another nothing happens; but, if they are
shorted together (by a switch at the point
at which they cross in the matrix, for
instance) then a current flows from the
Z pin of IC3 to the Z pin of IC2 through
R4 which is tied to the ground. The
resulting voltage rise across R4 appears
on the line labeled STROBE as a logical
1, which we can interpret as an indica-
tor that a key is down,

When the clock cycles and the
counter advances to 000001, it has no

effect on IC3, but IC2's Z pin is now
connected to it's Y1 pin, If those points
in the matrix are isolated - nothing; if
they're connected, we get a 1 on the
strobe line, As you can see, each clock
cycle advances the counter, which will
have the effect of looking at each cross
point in the matrix, one at a time, A
STROBE results if the cross points are
connected,

At any instant in time, the six bit
number appearing on the data line is the
number of the key being examined - in
binary, and the status of the STROBE
line will tell us whether that key is up
or down,

It will also be handy at times to
have a line that goes low when a down
key is found, so G4 isused as an inverter
to provide the complement of STROBE -
STROBE. (I'm tempted to say son-of-
strobe, but actually NOT strobe,)

One subtle point about the 4051's
that we overlooked above: the line from
the clock also connects to the E pin of
IC2. The effect of this is to allow a
STROBE to occur only during negative
half-cycles of the clock (immediately
after the counter changes state) like

this:

Clock LML
Do I LI LT
P —_

|
Strobe s
Figure 5 - Encoder Timing

1)

which assumes that key 000010 is down,
This is done for timing considerations.

Also, getting back to the counter
again for a moment, we have a reset
available; and while I can't think of a use
for it right now, one may come up later,
I bring it out on a line with a pull down
resistor, R3, and label the line RESET.
Raising this line to a 1 will reset the
counter, Also, that seventh bit that we
conveniently forgot, we can now bring
out on a line labeled START., In compu-
ter application this line will serve as an
indication that a scan is just starting or
ending.

So, that's our all-purpose, super-
gee-whiz keyboard encoder, In all of
the drawings, I've shown it operating
from a 5 volt supply because in computer
applications we're going to be tapping
power from the processor; but we' re
using CMOS logic here and the big reason
is that it likes all different kinds of
supply voltages - anywhere from 3 to 15
volts, If we retro-fit this stuff into a
4782 Road Keyboard (which as you might
expect, I highly recommend) we can
easily use the +9v, part of the supply
that' s already there to power both the
encoder and the D/A,

The encoder can handle up to 64
switches (the number of cross-points
in the matrix) and it will obviously work
with a 5 octave keyboard. We really
want to concentrate on a 37 note unit,
though, since this is our standard,

No matter whose keyboards we are
going to use, we are probably going to
have to make some changes in the switch
busses first. I'll show you on one of ours.
If yours is different, I'm sure you can
figure out something,

PAIA keyboards (and most others, too)

have two busses: one of which boils down
to a single switch that is closed as long
as any key is down. With analog S/II's,
this is a signal to the circuitry to do its
stuff. We don't need this anymore.

The second buss is really 37 switches,
with one side of each switch tied to a
common connection, We could represent
it like this:

3 7 Sw{k—g\\el

Figure 6 - An Unmodified

The switch contacts that are not common-
ed would ordinarily go to the voltage
divider board in an analog system.,

We need to break these switches
down into groups of 8 (giving us 4 such
groups with a group of 5 keys left over)
by cutting small sections (about 1/8
inch or so) out of the buss rod that runs
the length of the keyboard. When you

do this, don't forget that you have the
keyboard upside down. Be sure that

the first cut is between the first G and
G# onthe keyboard, Iranintostructural
problems after cutting the buss rod: one
section of it was supported at only a sin-
gle point. An easy fix for this problem
was to slip short sections of clear tubing
(spagetti) over the adjacent ends of the
cuts, providing both insulation of the
buss section and mechanical rigidity.
When you're finished, what you have
could be represented by figure 7.

Now we buss together the individual
key switches from each group by con-
necting together all of the first keys in
each group, all the second keys in each
group, etc. Notice that again to prevent
sneak current paths which could generate
""phantom' keys if multiple switches
were closed, we've added a diode in
series with each key. When we' re
done, we have what's shown in figure 8,

If we now redraw what we've got
and superimpose it on the matrix, we
have what' s shown in figure 9.

You probably noticed that the first
key does not begin at note 000000, but
rather picks up from row 2 of the
matrix; equivalent to making it key

number 010000 from the encoder's
standpoint, and transposing the key-
board 16 semi-tones up-scale from the
D/A's point of view.

IT DOESN'T MATTER WHERE THE

FIRST KEY STARTS,

/{\ .
T

1 A 3 4

S G 7

Figure 9 - The Keyboard As Matrixed

37 sw \-\&\\QS

f'“—&—\

N
c‘\r#

%

Figure 7 - The KBD Modified

;a%é%*%?f

Qol-
T

Eif B,

——
Ce ,; G
o

apt

8 &

——
TITI,T
Elale

"8,

2 32 4 5 6
)) ; ?
h _$
(C ({C (f
1T)y 17
(4 £ . {4
1] 12) 17
{C. {C_ «
) P
(C_ [(a (
11 LI I S_
if {f- i
oD ? 2 ;L “é é 2 I7 Figure 8 - The Modification Complete

15

Between the pitch knobs on our
oscillators and the one on the D/A, we
will be able to "put" the oscillator in
any pitch range we want anyway.

There are a couple of good reasons
for starting with key number 010000;
First, I have a fewcomputer things in
mind for keys 000000 through 000111,
and I want to hold them in reserve.
Also, one of the things that our com-
puter is eventually going to do for us
is take care of transpositions into a
new key signature, which will simply
be a matter of adding to, or subtract-
ing from, the note data the number of
semi-tones by which we want to trans-
pose, If my first key is 000000, I'm
going to have a hard time transposing
it down scale.

Now that I have the keyboard
connected to the encoder, I'm ready
to start doing things. Like replacing
my old analog S/H with this shiny new
digital model. There are lots of ways
that I can do this, One is shown in
figure 10.

Assuming that no keys are down,
the encoder's STROBE line is at a 0
and STROBE is at a 1, making the
RDY on the D/A high., The 8780's
input latches are in a holding state
and the activity on the data lines D -
Dg is invisible to the converter. This
is fortunate, since the data lines are
"counting'' as the encoder continually
looks at the keyboard.

Now, we push down a key. For
the purpose of illustration let's say
that it's the first key, number 010000,
When the data lines next reach the state
010000, the encoder finds that the key is
down, and because of that, the STROBE
line goes high stopping the encoder clock,
and the STROBE line goes low which
takes the D/A's RDY line to a 0 putting
the D/A's latches in a pass state.

The new note data (010000) is strobed
into the converter and a control vol-
tage representing that key appears

at the control voltage output of the
D/A, The STROBE line from the
encoder also connects to the Dg input
of the D/A, which appears at the D/A
output panel as the first trigger flag
(F1), so we have a trigger showing
that a key is down. And this trigger
is used the same way we would a
trigger from the analog system,

As long as the key is down, the
system is going to sit in this con-
figuration, But, when I release the
key, new things happen. Almost
simultaneously STROBE goes low
which removes the trigger flag D6 (indi-
cating that the key is now up) and allows
the clock to start again (searching for
the next key down), Simultaneously,
STROBE goes high forcing the RDY line
on the D/A high which puts the latched
in a holding condition - and what they' re

16

STRBE :
SRoBe
S¢Au
Py
W
7
Q
ElcoDeER

\<EYBorRD|

DY D —Fe .

" Yo —» T T"'ﬂ"“
Ds

o

D: U"A_ - Q¢U..

v

Do

Dh

Figure 10 - A Digital Keyboard

holding is data on the last key that was
down,

This is behaving exactly like the
old analog system that we had, except,
as I already mentioned, it doesn't
drift, AND it gets rid of that annoy-
ing "in between" note that we had with
the old keyboard if two notes were
pressed at the same time (since the
clock stops, the encoder can '"see'
only one down key at a time), AND,
it doesn't have 37 adjustments to
tune it; now there are none,

Let me show you something that
this keyboard can do that our others
can't,

Suppose that we remove the wire
connection between the encoder' s
STROBE output and SCAN input. You
will remember that this was the thing
that caused the clock to stop when a
key was found down. If we replace
the wire with a capacitor, say about
.22 mfd, or so, we have generated
a little time delay in this loop. The
clock will stop when a key is found
down, but only temporarily - until
the capacitor discharges - then it is
going to go looking for the next key
down, If, in the process of search-
ing, the encoder finds another key
down, it will strobe it into the latch-
es, hold for the time delay, and then
go searching again, With this
arrangement, if two keys are held
down, the output of the D/A will
alternate between the two, and what
we will hear is a trilling between
these two notes, If three keys are
held down, each note will be heard
in turn and while this is not poly-
tonic by any stretch of the imagin-

ation, it can certainly sound that way,

Can you imagine what the effect
of pushing down a large number of
keys will be? 1 call it the "orgasma-
tronic glide'" but everyone here thinks
that's a terrible name.

Anyway, the arpeggiation
gimmick is slick and if you wish it
can be left in place and bypassed
with a switch when not used as
shown in figure 11.

—/ﬂrp.
Moen,
"

s—_me——.—,——-ﬁ
3CAU STRoRE I De

B eopeR

Figure 11 -
The "arpeggiation' Modification

Here's another one,

You may have noticed that there is
an input to the encoder that I hadn't
mentioned; the one labeled (innocuously)
RND. This line is normally held high
by R5, but when pulled low moment-
arily it causes G5 and G6 to both
change state which in turn activates
the strobe line - even though there are
no keys down.

The effect of this is that whenever
we activate this line, whatever number
happens to be on the data buss at that
instant will be strobed into the D/A,
Since the encoder clock is working very
fast, there is no way to know in advance
what the number on the data lines will
be. As you've probably guessed, RND
stands for RANDOM, since that is the
effect of this input. It causes a random
note to be strobed into the D/A.

If it occurs to you that there is a
lot of activity around G5 and G6, what
with R5, R6, C3 and C4 and the funny
little jumper marked (*) being there,
you're right, This circuit not only
buffers the RND input line, it is also
a slow clock. If we hold the RND down
for more than just an instant, square
waves begin appearing at the output of
G6. And, naturally, for each cycle of
the output of G6 a new random note is
strobed into the D/A, With the values
shown, the tempo of this clock is
several cycles per second, That's a
bunch, and that's where the (*) marked
jumper in series with R5 comes in, By
replacing this jumper with a pot (about
500K is a good value) we've picked up
a control of the tempo of this circuit.

By adjusting this new tempo control
we can effect not only the rate at which
random notes are thrown out, but also
the character of the notes (whether they
appear to be really random, or run
upscale, or downscale, or whatever).

To understand why the character
of the notes is effected, imagine for
a moment that the tempo of the RANDOM
clock is exactly 1/64 that of the
scanning clock., Under these conditions,
the RANDOM clock is going to pull one
note from the encoder for each complete
encoder scan, Since 64 notes constitutes
an entire scan, the RANDOM note that
we pull will not be random at all, It
will be the same note each time,

Suppose, now, that the RANDOM
clock is running at exactly 1/65 the
tempo of the scan clock. Now each time
the RANDOM clock says ""sample", the
scanner will have gone through a complet
cycle plus one note, Each succeeding
sample will pull a note that is one semi-
tone higher in pitch than the previous
sample, and we will hear an ascending
series of semi-tones that increments
by one semi-tone for each event.

If the RANDOM clock is running at
1/63 the frequency of the scan clock we
will have a similar situation except that
the note pulled each time will be one
semi-tone lower in pitch than the pre-
ceeding semi-tone,

Actually, for any practical situation,
the RANDOM clock is going to be running
several hundred or thousand times
slower than the scanning clock; but the
principle still applies. Small changes
in the RANDOM clock rate will produce
wide variations in the character and
organization of the notes that are
"randomly" pulled from the encoder.

Out of space and out of time,
again, And so much left to do. It
will have to wait for next time.

Speaking of next time - here are
some things that we're going to do:

We're going to look at 2 memory
add-on for the encoder, D/A combin-
ation that will allow you to do some
terrific digital sequencer things.

We're also going to look at an expan-
sion system that will convert what
we've done so far into a polytonic
(phonic) keyboard. Also we'll have
a story on a touch keyboard - the
easy way, and will look at ways that
this kind of thing can be tied into our
encoder, D/A set-up.

And, I think, our computer will
be ready. We've put a lot of time
into configuring it for maximum
usefulness either as a stand-alone

micro-processor trainer or for use
with the music stuff. I believe that
the time has been well spent, When
you see all of the things that this
system will do for you it's going to:

BLOW YOU AWAY
No kidding,

POST SCRIPTS

NOTE:

The PAIA Experimenter's Kit
series is not intended for the novice
builder. They are intended to provide
the experimenter with a place to start
on what will hopefully be a series of

~ interesting and enlightening projects

at the very lowest possible cost.

Because of this, parts that are
considered to be either optional or
easily obtainable from other sources
(your 'junk box'" for instance) are not
included. Also, circuit boards in this
series are not normally printed with
parts placement designations and
assembly instructions are minimal,
with most of the narrative type textual
material concentrating on "how it
works" and '""how to make it do other
things." If you feel that this approach
does not serve your purposes you
should return this item immediately
for a refund.

Parts placement for the EK-3
circuit board is shown below.

Note that with the exception ot the
RND input, all input and output lines
come together at the 14 pin DIP
configuration between IC4 and IC5 on
the circuit board. A DIP socket and
connector may be used here if desired
for easy connection and disconnection
(a nice touch, but not highly recom-
mended).

17

Below is an enlarged version of this

recommend that they be wired as listed

Some forethought has gone'into the

1/0 cluster which may be cut out and below: configuration of these connectors with
placed in the vicinity of the EK-3 for additional scheduled elements of the
easy reference, PIN # 8780 D/A EK-3 encoder series in mind,
(plug) (socket) For example, if this scheme is
1 Dy Dy followed, the arpeggiation gimmick
SPARE —® &—START 2 D1 D1 described in the text would be added
SCAN —o &—Dg 3 D2 Dg as shown in the figure below.
STROBE —o &— Dy 4 D3 D3 The three position switch can then
STROBE —e —Dj3 5 D4 D4 select a mode of operation in which the
RESET —® o— D, 6 Ds Ds clock stops when a down key is found
GROUND —® — D, 7 De¢ STROBE (up position); a mode in which the
+ - o— Dg 8 D7 START clock does not stop when a down key
PIN1 9 RDY STROBE is found, and this mode will be used
10 N/C SCAN in polytonic retro-fits (middle position);
The ""standard" connectors that we 11 N/C RESET and the arpeggiation mode in which the
will be using for the complete kit 12 N/C N/C clock stops momentarily for down keys
version of these devices will be 25 pin 13 N/C N/C (bottom position), As is indicated, a
"DB25" type sockets and plugs. If you 14 + supply +supply control of the arpeggiation rate (within
decide to use these connectors, we 15 (=) (=) limits) may be added with the 1 meg
potentiometer shown,
D—> 1 > 25
D > 2 > D,
1%} > 3 > Oe
Vs > 4 > Ds
e > T
"%/8;80 > 7 > —¢—STRoOTE
> 8 > START T EK-
—_ 9 > STROBE ?
— >0 > Yy T o Q‘vs er
> 1 >— RESET
—> 2 >
—_— 3 >
+ sqf\\—e a4 > + s.wl‘]} " Sase
—_— N,
S > 15> KBD
Pries 16-R¢
5Gh.re.
LO/Z_;—[=.22,.0
2 1 m1
q._ "Arp@ﬁhl&m Tempo
= Countml

LAB NOTES

IN PURSUIT OF THE WILD QuASH

by John S, Simonton, Jr.

Now that we have a way to interface
our synthesizers to computers - the
8780 D/A -~ we can begin thinking of
ways to independently control large
numbers of musical elements simultan-
eously, Lots of VCOs, lots of VCFs.

The first time that you think of this
your reaction may be something like:

WOW! - ALL THOSE D/As.

Multiple D/As (one for each control
"channel") would be a possible way to
go. An expensive way - at $35. 00 each,
controlling just 4 VCOs means almost
$150 worth of just D/As.

There' s a much cheaper way.

You may find this a little circuitous,
after working so hard at our digital inter-
face, but we're going back to analog
Sample and Hold circuits.

Now wait, don't panic. These S/H's
are nothing like the ones that we're
accustomed to, They don't have to hold
a voltage steady for a long period of
time - only a few milli-seconds. Long
before even that short time has passed
we will have used the computer to come
back and re-write the correct voltage
into the circuit. Computer re-freshed
S/Hs.

Magic!

When you're designing a S/H to be
good for only a fractional part of a
second it gets really easy. Like this:

vin hald E-—

Snmple Td’
L

'Flgur'e (Q.\

Vout
>

I'm sure that we've all seen this
kind of thing before, It's an op-amp
used as a unity gain voltage follower.

When it comes time to take a
sample, the switch closes causing the
capacitor to charge up to the input
voltage. The output of the voltage
follower "follows' this voltage (what
else?), and when the switch opens again,
the capacitor "remembers" the voltage.

One of the characteristics of this
circuit is that the "+' input represents

a very high input impedance to any load
that it sees. A relatively small capa-
citor can accurately hold a voltage for
almost a second,

Now, we're not going to use a
mechanical switch here, Last time,
we looked at the 4051 multiplexer and
decided that we would be using it a lot.
And we are, just not this time,

This time, we're going to use a
very close relative of the 4051 - the
4052 (I defy you to get any closer than

that), The 4052 looks like this:
1z| Yoa
zn.o—icru/ o—H _oNia
' o—5l oYsa
Rl (<2 9 !
Ao 0410 i o—1il oYob
M o—=l oYip
= o o—2! oY2b
o—4 oYz

figure (b)

and whereas the 4051 was an electronic
equivalent of a Single Pole Eight Throw
switch, the 4052 is like a Double Pole

Four Throw one.

Which pairs of switches are to
close is specified by“the two address
lines (Ay & Aq). The switches
actually close when the E pin goes to
ground,

Using 1/2 of one of these devices
we can come up with a Quad Addressable
Sample and Hold (QuASH?) that
looks like figure C, and it works about
the way that it looks. An address applied
to the Aj and A, pins sets up one of the
four switches and when the E pin is taken
to ground that switch closes connecting
the output of the D/A to the selected
S/H. Simple,

That takes care of our control
voltage output - but there are still
other things to think about. For
instance, we need a trigger flag (gate
signal) to go along with each of the
control voltages to take care of things
like triggering envelope generators, *(1)

An easy way to handle this is to
use the other 1/2 of the 4052 to route
one of the two trigger flags available
from the D/A to an output corresponding
to the control voltage output. And since
we're time sharing the D/A we also need
some way to hold the status of that flag
during the times that other control

> CV 1

1B

fomDAo——Za Yoo
E o—] Yia.

A o— Y20l
Ag o— Yaa}
~ 14052~

‘Figure (e

—>CV2

-

—>CV3

Ualy

LS CV 4

THE NEWBORN QuASH

el

19

channels are being addressed., Do
latches come to mind? Forget them - in
this application they're going to be far
too expensive and complex by the time
we get them to act the way we want,

Instead, we'll use a small capacitor
and a CMOS inverter like this:

(1C-1) ‘I-TD‘V B8ATEL
o T
_I:-FDQ‘GRTEZ

=T
_LIDo—GATE 3

=X
- GATE4

'Pigure (d) ;

This is a little S/H in its own right - but
it doesn't hold an analog voltage, only a
"1t (output high) or "0" (output low).

Oh, yes - since we are buffering the
condition of the capacitor with an inverter,
we need to also invert the trigger line
going into the 4052 so that everything
comes out right, That's why that other
inverter goes between the trigger flag
line from the D/A (F1) and the Z pin of
the 4052,

But, there are two trigger flags
available from the D/A - and here we a
are only using one of them, Waste, ugh.

Let's do something neat with the
left over flag, something really sexy.
Let's use it to:

Switch to turn the glide off by shorting
out the resistor (so that the glide is on
when the switch is off), and to latch the
status of this glide bit we'll use the
same capacitor/inverter trick that we
used on the other flag. One section of
this circuitry looks like figure e.

For programming reasons, it will
be handy to have the glide select bit
(which is now flag 2) be a ""1" when the
glide is enabled and that requires a
second inversion - between the trigger
output of the D/A and the Z pin of this
new 4052,

And now here we are with 1/2 of a
4052 left over,

Don't you believe it,

Since we will frequently have more
than a single synthesizer module con-
trolled from one of our control voltage
outputs (two VCO's or a VCO and VCF
would be two typical cases), it will be
handy to have a modulation input
associated with each control channel so
that all modules driven from that chan-
nel will experience the modulation at
the same time,

Another thing that ties into this is
that our D/a is an exponential converter
of sorts and so for the first time gives
us the opportunity to do equally tempered
vibrato (for example) with our linear
oscillators,

We'll use the left over section of
4052 to multiplex a modulation voltage
back into the D/A in the same way that
we multiplexed the control voltage out.
Like this:

Because the modulation voltage
corresponding to a given control channel
is applied to the D/A only when that
channel is re-freshed, youmay thinkyou
will be able to hear the modulating
influence as a series of steps. But you
don't for the same reason that the glide
doesn't appear to be a series of steps.
Everything is just happening too fast.

One last detail and we're done with
the design of this ecircuit,

Addressing (selecting) one S/H out
of the four on this card is of course
handled by the address pins of the 4052's,
But, many systems will not stop at just
4 outputs; some folks, I'm sure, will
want to take the system to the limit
(in practical terms about 32 outputs) -
which implies that more than one of these
cards may (and probably will) be used
in a system, We need a way to be able
to select not only one of the four outputs
on this card, but also a means of
selecting one card from many,

Here's the address decoding scheme
we'll be using:

RS o
ROY Q'_\L Q3
Ay Y e —Ir Y 4052's
Ay g}l‘ 51
Ao - q,
L3 l_ ";}‘l;o 41152’5
0 ML
‘Pigure (g)

The 4042 Quad Latch isanold friend -
SELECT GLIDE(tah-dah) l/z 4052) - here we' reusing it to latch the computer's
ik) q?l’ﬁ-l) q_l-o] 4 least significant address bits at the
. You may think that becaus.e we're Ry - Ybb < same time that data is put outtothe D/A
time Sha'rl.nig the D/ A we've ellfninat?d a g (the RDY line on this card is connected
the possibility of doing thn'ags‘ like this, D - —O = the same as the corresponding line on
but we haven't, In a functioning system 2 the D/A)
the S/H's are being up-dated so fast that | 1., p/Q = —O E We want to latch these address lines
we can in fact generate glide the same 3 cef <1=v Yab < because the WRITE cycle of any computer
way that we did in our old pure analog —|-O 2 we come up with is going to be much
system, simply by placing a variable 'P () IC-2 g shorter than the time required for
resistor in front of the holding capacitor. iqure f settling of the D/A and S/Hs. Latching
We'll use a regular 4066 Quad Bilateral the address lines allows us to output
Glide rote
—VV\s —\ N\ v
flag 2 = Y -~
a oo, K = i
oA L Ny 4066 T S/H copacitor
T T =
A 1 *Latehing”,
A Y L = coapncitor
2 ———] 3a +5 osther
A 4057 A glide select
tireuits
(rc-2)
-Figure Ce)

data and then wait (or do something else)
while these analog circuits get to where
they're supposed to be, *(2)

Notice that the Qg and Qq outputs
of the latch - corresponding to the two
least significant address bits - go
directly to the 4052's where they serve
to select one of the four outputs.

Notice also that Qg and its comple-
ment Qg as well as Qg and Qg from the
4042 come out to pads on the circuit
board, By jumpering these outputs to
the inputs of the NOR gate G1 we can
determine which group of addresses
the card we're working with represents.

For exam_gl_e, if__v_l_e connect the in-
puts of G1 to Qg and Qg then this block
of four $/H's occupies the addresses
00XX in binary where XX represents
the bits that select one of the four S/H.,
Address 0000 corresponds to the first
S/H, 0001 to the second, and so on. By

connecting the inputs of G1 to Q2 and
Q3, the S/H's occupy the address 01XX.
The first S/H is 0100, the second 0101,
and like that. This scheme allows us to
easilyuse up to four of these expanders
(16 outputs) in a system without needing
to do anything but set the jumpers
properly.

You will notice that there is another
line coming out of this decoding circuit
which is labeled "BS'"'. This is not my
opinion of this whole mess, it's a means
by which we may expand the system
beyond even four expander modules -
BS stands for '"Bank Select and as long
as this line is held at a logical '"1" level
the system operates as described to this
point.

But, when the BS line is pulled low
one input of the NAND gate G2 is not
fulfilled resulting in its output being high
which in turn holds the 4052's enabling

input (T)' high - which means that none
of the switches in the multiplexer will
close (even if addressed otherwise) and
none of the S/H's will be selected,

External decoding circuitry is
required to drive the BS input, naturally,
but we would begin to need external
circuitry at about this point anyway to
buffer address lines, The decoding
required here will be covered in the
instruction manual for this kit.

When we tie all of these bits and
pieces together, we come up with a thing
that looks like figure H, our complete
QuASH. And in the interest of saving
space and time, we will from this point
forward represent it with the symbol
shown (at least until we can come up
with something more abbreviated). The
knobs in the output '"boxes', by the way,
represent the glide rate controls assoc-
iated with each output channel,

| A 1
Seetext RS o : CHANNEL 1 :
fromD/A RBYV P ! GLIDE RATE |
I » } 30 Sy,
| i m : ouT
G B I [
P e - = [e : I i
Computer ofn, 4042 B — TN EEE ! EE o o
Ao °'“°m_3 89 i o0 = [mosuLATION
. | T K
! =
ch> ' . '
>es @ 61> | =P |
>’ = | =T |
>3 leh> | — ¥ | ' !
>—h2 6> | foemDA 2, E Ty ="
[y "< CV. output L ay Y.
>—Ao ek ! no 052 15y FTmm e s ey
> LS | fromD/a £ —— =>CV.
e, @ 72<: flag 1 e oy Yo _1 H CHANNEL 2 . P> 0ATE
>F, c> | 4 (Same as Channel 1) —<MoD.
<{¥in. @ o> | b 4
M —<: —
oy Aoy | Flag 2 L ey, g CHANNEL3 —>GATE
6= TRIQ (GATE) OUT | Aagd052 oy —I—“ —<MO0D
M = MODULATION (IN) | +o D/A L
z
I Vref 2ooo Yol
i [
I] >Lv.
1 |
| ﬁGATE
I CHANNEL 4 < oo,
! Figure (h) TP
I
| ; A FULLY MATURED QuASH * POLVSTYRENE CAPACITOR
NOTES:

*(1) Those of you who have been
thinking about this stuff for a while will,
of course, recognize the imminent
demise of the ADSR. Providing Attack,
Decay, Sustain and Release parameters
is one of the easier tasks to turn over
to the computer entirely. On the other

hand, I've played with this some and can
testify that varying the position of a knob

is handier - in this case - than changing
parameters in the memory of the machine,
Some Hardware ADSRs mixed with some
Software ADSRs seems a good compromise.

*(2) This off-hand statement is not
meant to imply a wait in human terms
(major fractions of a second), but rather
a wait in machine terms - micro-seconds.
You don't have to wait for a GLIDE to
finish (for instance) before doing some-

thing else.
21

DATA

IMPLEMENTING A COVEY OF QuASH

¥/

ADDRESS

-7

If we're going to use morc than one
of these things, they all tie to a bus made
up of four address bits (the least signi-
ficant four from the computer probably),
a RDY line (the same RDY line that
sclects the D/A which really should
correspond to a block of addresses
representing a particular state of the
Most Significant Address lines of the
computer), the control voltage output of
the D/A, a modulation input line to the
D/A's Vyef (the wiper of the "tunc" pot),
and the two.trigger flags from the D/A,

They all go together like this:

22

/
Az-AgRoY CV. F4 Fp MoD.

TO OTHERS

-+
T—-BS —> \
ROV o
= Ag R
° QUASH °
CV. 00 xx
:1 o
— N — > LOTS OF
OUTPUTS
BS >
RDY o
R3 -
> o
k2, QuASH| o
UV 01 xx
F1 fo}
(n:oo. —>
Figure T

LAB NOTES

We've come a long way over the last
year in terms of developing a series of
digitally interfaced modules that will
allow computer control of music syn=
thesizers. I suppose that the time has
come to look at tieing them all together,
with the computer, and begin doing
interesting things,

I had wanted to start with "the ulti=
mate sequencer programs'' but am not
completely happy with them yet. They
still need a little polishing.

Instead, we'll start with what should
be another popular system:

THE POLYPHONIC SYNTHESIZER
Which is a much simpler job than the
ultimate sequencer,

I would like to go through the system
showing specific ways to do things for
a variety of manufacturers equipment
but that just isn't practical, Instead,
we'll look at a completely PAIA based
system and assume that if you are
using different equipment you are
familiar enough with it to make what=
ever changes are necessary.,

Oh, one more thing before we begin,

THE PAL.YEPHEATE
EVATHEESZER -

be sure that you understand that there
are a wide variety of ways to do poly=-.
phonic synthesizers, This is only one
of them, I hope that the algorhythm
used here works for you., It's one of
many, some with sort of special quirks
that make them useful in certain
situations but difficult to work with
generally - This seems to be good
general purpose way. Ready? We
have lots to do and little space and time;
here we go.

THE HARDWARE

Most of the hardware that we'll be
using has been described here over the
last year (or so), For the controller
portion of this system we'll need:

1) AN ENCODED KEYBOARD

8782 or EK=3 retro~fitted
equivalent

2) A COMPUTER

An 8700 in it's minimum confi-
guration will run the programs
that we'll list. A cassette inter=
face system is useful to the point
of being almost mandatory. We'll
show some new panels and stuff
to make it all pretty.

3) DIGITAL/ANALOG CONVERTER
AND SAMPLE AND HOLDS
the 8780/8781 system.

And, of course, we'll also need
as much synthesizer as we think is
necessary,

With all of the items listed, various
wiring schedules have been mentioned
for doing various non~-computer things,
We now need to establish some standards
for this new use, a computer based
polyphonic system,

If we choose wisely, we should
come up with a standard that has plenty
of room for future growth, Some con=
sideration has gone into the system
which follows and I believe that it will
serve our needs for some time to come.

Many of you will already have much
of this wiring done, as much of it is
simply an extension of what we've done
before. Check carefully to be sure
your wiring is to this new standard.

THE KEYBOARD

Let's go ahead and configure this
system from the beginning so that the
computer fits in the synthesizer cases
that we've been using, All of the parts
will fit in the case like this:

SR SANL s SN S D)

D R L AT IR RASAS

figure 1. computer/synthesizer
sub~module placement,

;J{

RTINS

SUDNTARIRA Y

Sz o &
RONESRRINTRNENTRS

NN A

253 "i‘::

PAIA 8700 COMPUTER, POWER SUPPLY AND KEYBOARD ENCODER
RETRO-FIT TO 4700 OR 8700 SERIES KEYBOARD,

=

A R Ny P A RN

23

24

ENCODER BOARD

TO KEYBOARD
BUSSES

50999990 99979797
T T

TO DIODES / SWITCHES

FIG.2

FIG.3: The Keyboard as Matrixed

At this stage you may have more
dis~assembly to do than assembly,
Particularly, the old control panel of
the keyboard is removed to make room
for the computer and any unregulated
supply that was powering your keyboard
encoder is replaced with a PS-87
which supplies all digital power for the
entire system., This is going to give
you a few parts for your "bench stock',
the old power supply components and
a couple of push=buttons, but some of
the parts we will be re-using, Don't
throw anything away.

KEYBOARD
TO ENCODER CONNECTIONS

Maximum useability of the system

would seem at first to depend on where
the AGO keyboard switches appear in the
key matrix, We want them in the middle
so that we have as much room to trans-
pose down in pitch as we do for up-scale
transpositions. Some 8782 instructions
had the keyboard placed 8 switch posi=
tions below where it should be for this
ideal, The "column' connections are
fine, but the "row' connections on these
keyboards will need to be "slid up one"
so that they conform to the configuration
as shown in figure 2,

This will place the keyboard more
or less in the middle of the matrix as
shown in figure 3. This is really a fine
point, and the system will work OK in
most applications almost no matter
where in the matrix the keys are, but
go ahead and change now so that you
won't be limited in the future.

ENCODER MODIFICATIONS

KEYBOARD
ENCODER DIP HEADER
1/O CLUSTER TO
(WIRE DIRECT) 8700 J4
DOIQ\+50 0+5_0O |enp
D1 O\:O’ o O
D2 0] -Ob7 D6
D3 == STROBE Op5 _O b4
D4 [@) } p3 O |o2
D5 [e) QOp1_0O |po
START Q [e) o) o
FIG.4
DIP HEADERS
DR-25
10 FEMALE
DATA BUS = TO 87|80/ 8781
n —1
+—< 2
D
l <4
<
< i
—<7
] L <38
O L <9
[e) O : °
TO ABO (o] —14
EXPANSION AB1 (o] +—<15
37 AB2 (0] <16
AB3 K o JI <17
O\\ O 8
[+ <19

FIG.5: COMPUTER TO 8780/8781

We don't need any of the "trick"
things that we used when we didn't
have a computer (the orgasmatronic
glide circuit, etc.), just the bare=
bones encoder. You may remove all
push=buttons slide switches, pots
etc, ; most of these will come out when
you remove the old front panel.

ENCODER TO COMPUTER
I your system previously had a

DB=-25 female connector tied to the
output of the encoder, desolder it
(carefully - whistling may make the
job seem easier). In place of the
DB-25 connector, we now need to
terminate the output of the encoder in
a DIP header that will mate with the
INPUT PORT #1 (J4) connector on the
rear edge of the 8700 computer board,
These connections should be made

as in figure 4,

These connections should also be

made carefully and the DIP header
pins well heat=sinked to prevent melt-
ing the plastic header, NOTE that
while many of the non=computer app=
lications used the STROBE line to
trigger the D/A, here we ignore this
line and instead use the STROBE as the
seventh data bit (D6) of the interface.
Similarly, the encoder's START
line becomes the 8th data bit (D7).
Also, you will notice that power to

the encoder is picked up through this
connection from the 8700 itself,

COMPUTER TO SYNTHESIZER HEAD

So that our resulting system can
be easily broken down into two separate
units (computer/keyboard and synthe-
sizer head), this is the place to use
the DB-25 connector that was salvaged
from the old keyboard front panel.
Connections should be made between
the female DB=-25 connector and a pair
of DIP headers like those in figure 5,

NOTE that the first header (P2)
provides data lines and the CASS select
signal (our 8780/8781 shares this out-
put structure) while the second connec-
tor (P3) provides the address lines
required by the QuASH,

8780/8781 WIRING

The male DB=25 connector that
terminates the cable to the 8781 is
wired in what is essentially an expanded
version of our previous standard so that
here you are faced more with adding
wires than re-arranging them,

Connect these elements together
as in figure 6.

This wiring schedule is examined
in detail in the 8781 QuASH assembly
manual, An important thing to notice
here is the way the grounds are handled.
Note that the = (ground) pin on
the rear of the 8780 board serves as
the central ground for both analog
(synthesizer) and digital power distri-
bution, This grounding scheme is
important to prevent ground loop
problems and should be followed exactly.
This entire 8780/8781 assembly should
be mounted in the synthesizer head
cabinet.,

FINAL ASSEMBLY

Finally, make arrangements for
physically mounting the computer in
the keyboard case by first mounting
the computer to a suitable front panel
as shown, (See figure 7)*

And don't forget to provide a socket
at the 8700's expansion connector (J7)
or to mate P3 with this socket before
assembling the computer/front panel.
If the cassette interface is being used,
terminate the input and output lines
in miniature phone jacks as shown in
figure 8.

Plug all the connectors together and
you should be ready to load a program,

TO TAPE
INPUT

!

n FROM TAPE
OUTPUT

—)
U

FIG.8: CASSETTE CONNECTIONS

THE PROGRAM

The polyphonic program that we'll
be using is called simply:

POLY 1.0

This program supports up to 8 output
channels the way that it is written and
can be easily modified to provide for
more,

POLY 1.0 allocates synthesizer
resources to keyboard requirements
using this algorhthm:

1) Output all notes appearing in the

output buffer area (NTABLE) after

adding the corresponding transposing

figure from TTABLE, Go to 2.

2) Wait for keyboard scan to start

and place a list of all keys currently

being held down in the input buffer
area (KTABLE), When buffer full

or scan complete go to 3.

12 «—
8780 n <
FRONT PANEL 1
CONNECTIONS 13 «—
WIPER¢
R34 MOLEX
EDGE CONNECTOR
L~ |
+504] : O+5
/) °
_— 1 =
£ | 0BS
- 1 ——
— S | ORD
RDY > oF2
D70— ——3> OF1
D60 : 0A3
D50 - OA2 8
o ! ©
2 D4C : 3 OAl
® p3o- T 0A0
D20- ; om
p1o 1 oo/a
DO O +—1 0+9
-9 1 : A OGND
+90g 1 o0-9
|
]
!
SYNTHESIZER
POWER BUS 4>
T 15 CONDUCTOR
—9> #V " " CABLE
I—Sr'_v_v_« a2 e 2w A 2 2 2 3 B 2
| ~ N ©®<wmON®oowege @~ o |DB-25CONNECTOR
-, - - - | PLUG
| (MALE)
| O ~ &N ™M ¢ un ~ IB ll'h) -] |
185833885k gz
FIG.6

25

OPTIONAL

ARTICLE

FIG.7

THE 8700 COMPUTER, CASSETTE RECORDER INPUT &
OUTPUT JACKS AND EIA CONNECTOR TO SYNTHESI ZER
HEAD ALL MOUNT ON NEW FRONT PANEL,

A HARDWARE KIT IS AVAILABLE - SEE END OF

S HARDWARE SEQUENCE

4-40X1

4-40 NUT
4 FLAT WASHER

4-40 NUT

3) Clear the trigger flags (D6) of all
notes in NTABLE (the output buffer),
4) Compare each entry in the in=
put buffer (KTABLE) to each entry
in the output buffer (NTABLE), If
they are the same, set the trigger
bit of the NTABLE entry and elim=
inate (zero) the entry from KTABLE,
If all available outputs are used, or
if all keys down find a home go to 1.
5) Place the remaining input buffer
entries in output buffer locations
which do not currently correspond
to a down key (those in which D6

is cleared), When all input data

has been placed or all channels
available have been used go to 1,

There are a number of subtle implie
cations here and unfortunately not
enough space to cover them all.:

A couple of really important ones
are that if we think of "new" notes as
ones corresponding to keys that were
just pressed, this method tries to place
those new notes in output channels
which at some point in the past were
already producing those notes.,

This prevents a string of identical

26

eighth notes (for example) from being
assigned to different outputs each time
they're used, Notes, once assigned,
tend to, stay assigned regardless of
other keyboard activity = they don't
move around in a totally unpredictable
fashion as with some analog multi=note
keyboards,

It also means that once the number
of oufput channels available is "used
up' by down keys that need to be
placed, all other keys that are down are
simply ignored (this is exactly what you
want),

One important aspect of the above
is that the program must "know' how
many output channels are available to
it, otherwise there is the possibility
that notes may be assigned to non-
existant channels (ones that have no
corresponding hardware, not too bad
in itself) and further (the really bad
part) future activations of the note will
be assigned again to these non-exist=
ant outputs = producing ''dead" synthe-
sizer keys that seem not to be doing
anything,

Memory location $00EA contains
the number of synthesizer channels
available, more on this shortly.

THE PROGRAM

Shown on the next page is a dis=
assembled listing of POLY 1.0.

Because, again, of space limitation
we cannot re=print a fully documented
version of POLY 1,0, It is supplied
with the assembly and using manuals
for the 8781 QuASH.

POLY 1,0 is also available in

8700 compatible cassette~-tape form
for $4.00.

LOADING AND INITIALIZING POLY 1.0

I you have a cassette interface on
your 8700 and the POLY 1.0 tape,
loading is simply a matter of connecting
your tape recorder to the cassette input
connectors on the 8700 and loading the
tape using the following entry sequence:

O=(=0=(=(=(=FaF=(ul=el=1-TAPE
If you don't have the CS=87 option,

you must enter the code manually from
the 87¢0 keyboard,

The cassette version of this program

loads all of page zero of memory (its
total requirement) and in the process
initializes a couple of things that you
will need to care for manually if the
cassette is not available, When enter-
ing manually, be sure to set the number
of outputs to correspond to the number
you have available. For example,
assuming that you have a system with

a single QuASH, the number of channels
available should be set to 4 using the
following computer keyboard sequence:

RESET=-0-0-E~A-DISP
0-4=-ENTER

The tape version initializes the number
of outputs at the most likely number of
4, X you want to use less channels
(because of lack of modules, say) or
have a system with more, do it as was
shown above.

When entering the program manually,

make sure the decimal mode flag in the
status register is cleared by using this
sequence:

RESET=(0=0=F=F=DISP
0-0-ENTER
This is automatically taken care of
when the tape version is loaded.

USING POLY 1,0

With everything connected, loaded
and initialized, we're ready to begin
making music. Go to the beginning of
the program and begin running it.

RESET=0-0-0-6-RUN

If everything is working properly,
we will see the 8700 displays counting
quickly, incrementing by one for each
scan of the keyboard, All of the QuUASH
outputs should be af a very low output
voltage (the program initializes them as
zero) and the trigger flags for each
channel should be cleared.

As we press synthesizer keys,
QuASH channels should ""come alive'

and produce control voltages correspond-

POLY 1.0

By John S. Simonton, Jr.
© 1978 by PAIA Electronics, Inc.
All rights reserved.

#4060
#4518
$CF. X

$9351
#405
$D7. X

$0F, 2
$3589
SEIFT, 3
#$4

$831E

$9511
#4065
#3509
$CF. X

$8928
#$0s
wH:w

$ER
$EB
#$U5
#5EF
$07, %
$07: %

#3302
$ES
$ED
8300

ing to the keys that POLY 1,0 has assigned on the 8700) provides a tuning function

to them, The trigger flags should be
set if the key corresponding to the
channel is currently down and clear
when the key is released.

TWO MORE FEATURES OF POLY 1.0

While POLY is running, touching

any of the keys from 0-3 on the 8700
keyboard (the first row of keys) causes
the system to clear all QuASH channels
to zero and wait for new data to be
assigned. You'll figure out what this
is good for as you become familiar
with the system.

Maybe more importantly, touching
any of the keys 4=7 (the second row

and causes all QuASH channels to pro=
duce the same note with the trigger
flags set, allowing all oscillators to be
set to the same pitch, The note pro-
duced corresponds to the 2nd C on a
standard configuration 3 octave key=
board, THE CHANNELS MUST BE
CLEARED AFTER TUNING by touching
the first row of 8700 keys.

THE SYNTHESIZER

There are an almost unlimited number

of ways to use the multiple control
voltage produced by the QUASH and
POLY 1.0.

w6 E3 $E9
B4 CF $CF, X
F8 1D $985C
R2 93 #3053
CH

] $8363
53

55 R $D7, K
B

UA

(0] 48271

$07, X
$07, X
$EE
$85B5
$E9
#3908
JLF, 8%
$35635
#on
#sa

$82E83
#5aa
307, 8

95 L7

Fg

[¥5]

28 B

ca

BB 03

40 96

Y as

e 2E

4 B
40 BF 751515

You may want to use multiple VCO's
mixed into a single voicing circuit,
(See figure 9), or what amounts to a
complete synthesizer for each con-
trol channel or anything in between,
(See figure 10).

A word of advice: in your beginning
stages of learning to use this system,
you should try to stick to configuration
in which all of the channels are produc-
ing the same "type" of sound = as close
to identical as possible, As your skills
progress and you develope a feel for
how POLY 1,0 is going to massage data
you can work up to using some output
channels to set VCO pitches while

others control filter parameters (just
an example = the number of possible
combinations is extraordinarily large).
POLY 2.0 is under developement CHANNEL
and features the use of some QuASH A ||
channels as software controlled envel= ouT
ope generators, reducing the need for | frd
lots of these hardware modules. CHAN x
POLY 3.0 provides for computer T 8 GlnNC — =
storage of sequences of chordes or -2
notes. Scuan ©
ONLY POLY 1.0 IS AVAILABLE S | ne
NOW,. The others are still a couple G
of months away. I mention them only C
because I want to make sure that we C’EN ADSR
all understand that the nature of this G rNc
new musical tool is a function of the e —
program that is running and not so FIG.9
much of the hardware that it uses.
vco VCA\
° ol
CHANNEL ADSR
A I
Gi
vco VCA
c \/{ o gUT
CHAN =
B /— ADSR E
Z ©l @ VCA
-3
)
CHAN ADSR |
C /— \
G
@ vea
; 1
CHAN
D Vo ADSR

FIG.10

28

With the exception of the bare~bones
listing of POLY 1. 0 that ran in the last
issue, we haven't looked at any software-
mainly because there was little to examine.

But MUS1 was just recently finalized,
so that situation is beginning to change.

MUS]1, for the benefit of those of you
who haven't been waiting for it for the
last six months, is what many would call
""system firmware'=- and since that has
the sort of technical ring to it that tends
to make things interesting, we'll call it
that, too.

In almost any computer application
there are some programs which, for one
reason or another, are best handled as
firmware- a name that these days means
not software (which must be loaded from
some storage media external to the com-
puter) and not hardware (a permanently
wired collection of gates, etc. which
cause a specific, set sequence of actions
to take place) but something betwixt and
between; most usually, software that is
contained in a PROM somewhere.

The most obvious firmware is a mon-
itor program such as PIEBUG. Since
this program is the thing that allows for
the entry of data and instructions into
the memory of the computer in the first
place (as well as usually providing what-
ever de-bugging and editing features the
designer thought were important and/or
had room for), it is at least inconvenient
to have to load it every time it is needed.
Much better to have it in a dedicated
PROM where it is always available for
immediate use.

The firmware of MUS1 is roughly an-
alogous. These are universally useful
routines that, with rare exceptions, will
be used with everything we do musically.
It's a waste of time and resources to have
to load them to RAM from tape (or worse
yet, manually) every time they're needed.
A PROM is their happiest home. In our
8700 Computer/Controller, MUS 1 is a
1702A PROM that occupies the address
range $D00-$DFF (IC-17).

Examples? OK, the keyboard read-
ing routine (LOOK). It isn't particularly
long or complicated (a little over 30
bytes) but we're going to need it every
time we turn on the system- even if it
isn't used to read the keyboard, it's the
thing that our protocols dictate will be
the tempo~determining element in the
system (based on the clock rate of the
encoder). At some future date the oc-
casion may arise when we can examine
this in detail. Today, it's not the point.

LAB NOTES!MUST -

With the new mirccle ingredient

The QuAsh drivers (called NOTE)-
same thing- we're going to need them for
almost everything we do. Why bother to
load them ?

In addition to these two routines, MUS1
also contains:

INIT: an initialization routine that takes
care of setting various variables and buf-
fer areas to a known, acceptable state
(as opposed to the random numbers they
will contain when power is first applied.)

POLY: essentially the polyphonic (I
still prefer polytonic) allocation algo=
rhythm from POLY1. 0, except refined
somewhat to take less memory space.

TRGN: The new miracle ingredient-
Software Transient Generators (STG).

A routine that will serve as a software
substitute for ADSRs.

OPTN: A very simple option selecting
program that allows the remaining firm-
ware of MUS1 to be tied together into a
16 voice polyhonic synthesizer with or
without software transient generators-
without having to lead any additional
software (though several parameters will
need to be initiallized manually).

All of this is pretty straight-ahead
code that should be understandable from
the documented listing that appears at
the end of this article- you may need to
refer back to previous articles in this
series for background information; '"In
Pursuit of the Wild QuAsh " (reference
Polyphony, July '77) and “What the Com~
puter Does' (reference Polyphony 4/76)
would be particularly useful ones.

Two exceptions,. NOTE and TRGN,
need some additional explanation - they
introduce some new ideas.

In an embryonic form, NOTE was a
part of POLY 1.0. It is the responsibil-
ity of this routine to take individual en-
tries from the output buffer area (NTBL),
add to it the corresponding entry from
the Transpose buffer area (TTBL)and
output the results to the QuAsh channels.
Some aspects of the significance of the
addition that takes place will be seen
when we look at TRGN=- for now, it will
suffice to say that this will be an extra-
ordinarily handy convention in a number
of cases.

A more important function of NOTE
is to make sure that what comes out of
the QuAsh channels has no annoying
glitches that may be artifacts of the D/A
and multiplexing process. In an earlier
story, we looked at one of the annoyances
- the fact that our 8780 D/A, though
quick, takes a finite amount of time to

S. Simonton, jr.

_stg

change from one value to the next and

if appropriate settling time is not allow-
ed between writes to the QuAsh channels
we will be able to hear the changes as a
slight "buzz" in each of the channels.
The solution here is to output the data
first to a "dummy channel" that is
occupied solely by the D/A, with no
corresponding QuAsh, followed immedi-
ately by a write of the identical infor-
mation to an output which does corres-
pond to a QuAsh channel. The first
write allows the D/A to settle while the
second strobes the settled output into
the appropiate QuAsh channel.

And here we come face to face with
the next problem; the QuAsh really need
some settling time since they are at
their heart nothing more than an RC
circuit.

As long as we are thinking in terms
of small systems(8 output channels ar
less) this is not a big problem since it
can be dealt with simply by delaying af-
ter writing to one QuAsh but before set=
ting up the next. If the delay is not long
enough, we will hear changes from one
value to the next not as an instantaneous
change, but rather as a series of steps
from the initial value to the final one:

vt f vt

™ if the QUAY
But if the SH
We want this settling delay is not
figure a lg%t e%?ugh, will

In larger systems, this constant delay
approach is not a practical solution be=
cause there is not enough time during al-
ternate ""dummy" scans of the keyboard
(the time which our conventions allow for
processing, output driving, allocations,
etc.) to allow all of the output channels
the luxury of a delay. The time comes
for the keyboard to be read again (or
other things to happen) and the processor
is still busy waiting for all of those QuAsh
to get to the right value.

The key to the solution of this problem
is to notice that there is really only one
set of circumstances under which the
long QuAsh-settling delay is required,
and that's when the output of one of these
channels must change from one value to
another (which happens only a small per=
centage of the time) and then, only when
the glide of the channel is turned off. (if

29

the glide is on, its integrating action will
smooth out the steps; and, in fact, a
short write time is preferable here since
it will serve to increase the time required
for the glide.)

The actual solution is what I feel we
should call "DYNAMIC QuAsh DRIVERS"
-a small block of programming, more or
less in the middle of NOTE.

This part of the program first checks
to see if the glide control bit (the most
significant bit of the data just written to
D/A and S/Hs) was turned on or not, If
we are in ""glide mode," no delay is re~
quired so the program immediately goes
to see if there are any channels left to
write; if there are, it services them.

If the glide is not on, we have a cand-
idate for dynamic operation so the dynam=-
ic mode switch is checked (more later)
and if this option is selected the current
data is compared to the data that was
previously written to this channel (requires
a new table that we' ve generated called
"LAST") and if they' re different (a
change), the program goes into the delay
that allows the output of the QuAsh to
instantaneously (apparently) step from
its previous value to the next one. The
new value is saved in LAST (for use
next time) and if there are more channels
to do- it does them,

SOFTWARE TRANSIENT GENERATORS

Here we begin, for the first time, to
replace some of the elements that consti-
tute traditional synthesizer hardware with
software that performs the same function
(hopefully as well, or better) with less
costly hardware. STGs are a good
place to start because they're not super
difficult to implement.

Just like their hardware equivalents,
STGs respond to a note which has just
been triggered (pressed on the key-
board) by producing a voltage that rises
at a controlled Attack rate. After reach-
ing some peak value, the voltage then
drops at a Decay rate until it reaches
a pre-set Sustain level where it stays
as long as the note remains triggered.
When the key is released, the voltage
drops to its lowest level at the Release
rate,

Computing the number which repre-
sents the current value of the transient is
only slightly more complicated than
adding, subtracting and comparing.

Unlike an ADSR, an STG has no
knobs to set, in their place you enter
numbers setting Attack rate, etc. into
the computer,

Perhaps the biggest problem having to

do with STGs is deciding where they should
come out. Oh, the QuAsh channels, ob-
viously; but which ones ? Of the numerous

possibilities, we've selected the conven=
tion of having pitch setting voltages (those
that correspond to notes) and transient
voltages come from alternate QuAsh chan-
nels, primarily because this will work
nicely with some stuff under development
(or consideration, at least), without mak-
ing obsolete all of the hardware that we've
accumulated up to now.

This implies two distinct modes of
operation; the first in which the STGs
are not asserted and POLY assigns notes
to sequential QuAsh chamnels; and, the
second mode (STGs on), in which notes
are assigned by POLY * to the odd
number QuAsh channels (first, third,
etc.) while transients are produced at

the even number outputs (second, fourth,
etc.).

The note produced at the first QuAsh
output has a corresponding transient hap-
pening at the second output, and so on.
Just as if the trigger from the first chan-
nel were patched to the input of an ADSR
whose output was somehow tied to the
output of the second QuAsh channel.

This would seem a good place to men=
tion (in case it's not already obvious)
that in this implementation all of the STGs
produce the same kind of transient, and
for the kinds of things that we're doing
now, this is how it should be. It may also
be worth mentioning that while the trans-
ients are all the same, they are totally
independent where following the triggered
and released states of their respective
note channels is concerned.

There are also some internal details
which muddy the STG waters, For instance,
a key that is currently down may require
a transient function that is either in the
Attack cycle (Increasing) or Decay/Sus-
tain cycle (decreasing or holding) depend-
ing on its past history (had it already
peaked ?). Somewhere we need to save
information on which cycle the transient
is actually in.

Another, somewhat interrelated, prob-
lem concerns the smoothing of the trans-
ient waveform. Under most conditions,
the glide of the QuAsh channels that are
being used as transient outputs should
be turned on so that a smoothly increas-
ing or decreasing function is produced.
But, the glide can't always be on because
that would limit the maximum attack rate.

Without having the space to cover it
entirely, I can only state that the solution
to both of these difficulties lies in the use
of the Transpose table and remembering
that the data stored in TTBL entries is
added to the output parameter in NTBL
(where we're storing the actual current

* Note that POLY checks to seeif the
STGs are turned on as it assigns notes
to outputs.

value of the transient) before the output
operation takes place. Note also that
while the data in NTBL is manipulated
extensively by POLY and TRGN (as they
calculate, allocate, - regurgitate?) TTBL
is untouched by computer hands, and this
makes it an ideal place to save control
type functions. Not only transpositions,
but a place that glide and trigger bits and
such can be permanently set.

These locations are so handy for this
application that in TRGN they have been
re-named CWRD (Control-Words. ..but
do not be confused, this is still our old
friend TTBL and has no relationship at
all to the System Control Word-CTRL)
and it is here that we keep track of the
A/D/S state of each of the transient
channels.

Also, to help me keep things straight
in my own mind, the NTBL bytes that
are used to store the current value of
the transient have been re-named PARM
(parameter); but, again, this is the same
physical area as NTBL.

NOW, HOW DO WE USE ALL THIS?

Perhaps the best way to begin an essay
on how to use MUS1 is to state one of the
functions that it was devised to perform

As you are no doubt beginning to real-
ize, we've carefully developed a system
that will have applications far beyond what
we've discussed to this point. It's complex;
and while the complexity implies unmatched
versatility, it undeniably has its intimida-
ting aspects.

At one level of use, MUS1 should re-
duce this intimidation by giving the user
an instrument with a specific (though with-
in certain limits alterable) personality the
instant that it's turned on, without having
to hassle around with loading any additional
programs (success) or variables (well...)

Also, these program modules should
be written so that they easily interface
with future expansions of the system, ei-
ther hardware or software, so that, when
needed, they can be accessed by programs
offering distinctly different personalities
(success here maybe~ only tine will really
tell).

While we've reduced the intimidation,
we've not eliminated it entirely because
even when using MUS1 as a stand-alone
personality there are some variables
which must be initialized before you begin
to play- some information that the system
must have in order to operate properly.
This data could be part of the PROM, but
not without significantly compromising
versatility.

For instance, we've mentioned in passing
a couple of times the System Control Word-
CTRL. This is a single word in the com-

puter's RAM memory at location $0ES.

1t is most helpful to visualize CTRL
as a collection of eight "switches', each
bit representing one switch. To MUS1,
only two of these switches have any sig-
nificance= D7, which turns the STGs on
and off, and D6, which enables or disables
the dynamic mode option. The rest are
reserved.

Every time you power up the system,
CTRL must be set so that the desired op=
tions are selected- there is no default
setting that is part of MUS1. If you want
dynamic mode (which you should, for now)
then bit 7 should be turned on. If you want
STGs, bit 8 must be set.

The 4 possible combinations of these
2 bits then have the following significance:

bin: hex action

00000000 $00 STGs off; dynamic mode off
01000000 $40 STGs off; dynamic mode on
10000000 $80 STGs on; dynamic mode off
11000000 $CO STGs on; dynamic mode on

CTRL is not the only variable which must
be initialized manually. There's also:

EXTERNALLY INITIALIZED “YARIABLES

LOC. LABEL UzE

BEE CTRL SYSTEM CONTROL WORL
DF SET TURNS ON
TRANSIENT GEMERATORS
DE SETS DYHAMIC MODE
BE> ODLY SETS QUTPUT DELAY:
IN DYHAMIC MODE 28
RECOMMEMDED

BEA OUTS HNUMBER OF HARDHWARE
SUPPORTED CONTROL
CHANMELS AVAILAEBLE

—= AND TRANSIENT FRRAMETERS ——

@BA ATCK ATTACK RATE
8B DCY DECAY RATE
@BC SUST SUSTRIN LEVEL
BEBD RELS RELEASE RATE
BBE FERK PEAK VALUE -SEE TEXT
RATES: $81 (SLOW>
#3F (FAST>
LEVEL: #6141 <(MINIMUM>
$3IF CMAXKIMUMS

Most of these are easily understood or
have been examined in the past, so we

won't go into any great detail. A few points

are worth mentioning, however.

ODLY~ this is a number that repre-
sents the delay that the QuAsh drivers
will use, when required. For normal
use, a value in the range of $20-$30 is
most appropriate.

OUTS- this variable tells the POLY
subroutine how many output channels it
has to work with, so that notes don't get
lost; we talked about this last time. Now
we need to notice that when the STGs are
asserted we should think of the QuAsh
channel that is producing the transient
as simply an extension of the channel pro-
ducing the note. In other words, the two
QuAsh channels constitute a single "hard-
ware supported' channel, A single QuAsh
represents two such channels.

ATCK/DCY/SUST/RELS~- When the

transient generators are turned on, we
also need to enter the attack, delay, sus-
tain and release parameters that we want
produced. These four entries should need
little explanation other than the examples
which follow shortly; their range is from
$01-$3F, with $01 representing the low-
est rate or level and $3F the highest.

PEAK- this fifth transient parameter
needs a little extra attention. PEAK has
only one use; it determines whether the
transient produced is going to be percus-
sive (quickest possible attack and full
ADSR segments) or non-percussive. In
the non-percussive mode, the glide is
on for all segments of the transient and
the Decay and Sustain states of the trans-
ient are eliminated entirely.

In fact, there is only one bit in the
word PEAK that is changed to select one
of these two options- the most significant
bit. The remaining seven bits should (for
now= until you have a real feel for what's
happening) be set to $3F (00111111 in binary)
If the most significant bit of this word is

cleared, you're in percussive mode. If
the bit is set (so that PEAK contains $BF
= 10111111 in binary) you are in non-percus=-
sive mode.

The differences between the two are

great. Assume for a moment that we have
set the ADSR parameters at $3F/$04/$20
/$01 respectively (fastest attack/moder-
ated decay/medium sustain/slowest re=-
lease) and that we are only going to change
the PEAK parameter. If PEAK contains
$3F(percussive mode), a 'scope display

of the transient will look something like
this:

v

\

key release

T—

key down

figure b

Setting PEAK to $BF (non-percussive)
produces this result:

vi

s

key down key release

—
figure ¢ T

Because the glide is now on during the en-
tire attack cycle and the Decay and Sus-
tain portion of the transients are elim-
inated. Straightforward stuff, really.

We need to cover an example of sys-—
tem set-up before we wind up, but first
must notice that the effect of having the
PEAK parameter are far more far-reach-
ing than we've been able to cover in detail.
A quick example:

ADSR parameters set to $10/$04/$20
/$01 and PEAK containing $3F will pro-
duce this kind of transient:

v

& ey
release
key down

figure d T——>‘
which, when heard, starts out with a
non=-percussive kind of "swell" with a
percussive ''pip" added at the last in-
stant before the transition to the Decay
and Sustain cycles. This would seem to
be a unique and useful transient that isn't
produced by traditional ADSRs.

Along the same lines, the TSGs can
be considered to be "better" than our

hardware ADSRs in that they need not

finish the Attack cycle before transition-
ing to the Release state. If a key is re-
leased before its transient has gone all
the way to PEAK, the transient immedi-
ately switches to the release state. This
is frequently called "muting' and it offers
the possibility of effective control of es—
pression directly from the AGO keyboard.

A SUMMARY, OF SORTS

So, we've gotten our hands on a MUS1
PROM and are ready to start doing things.
What has to be done first? Really very
little.

First, the System Control Word, Out-
put Delay and number of hardware chan-
nels available must be set. For example:

keystrokes explanation
0-E-8-DISP sets monitor pointer
to $E8-CTRL
C-0-ENT sets $E8-asserts STGs
dynamic mode
3=-0-ENT sets ODLY value
0-2-ENT sets output channels

at 2
these entries define the personality of the
instrument as a 2 voice polyphonic synthe-
sizer (notes from channels A & C) with
software transient generators (which ap-
pear at QuAsh channels B & D) .

31

32

Next, we must set the transient par-
ameters to the desired values:

keystrokes explanation
0-B~A-DISP sets monitor pointer
to $BA- ATCK
3=-F-ENT sets shortest attack
0-4-ENT sets moderate decay
2-0-ENT sets moderate sustain
0-1-ENT sets slowest release
3=-F=ENT percussive mode

and you may recognize these parameters
as being those that we examined in the
illustration earlier.

Finally, we simply begin running the
program:

keystrokes explanation

D-0-0-DISP sets monitor pointer
to beginning of OPTN
RUN presto- the program

runs

A typical patching configuration that
would be consistent with these entries
would look something like this:

QUASHC

@ %_ MIX 1= ouT
Ol O—Jo—

O

@ Hz figure e

Oh, yes- I almost forgot. OPTN, like
POLY 1.0, uses the 8700 keyhoard to con-
trol two important functions. While OPTN
is running, touching key 0 of the control
keyboard will cause the entire system to
be re-initialized. Not the entries that we
made manually- those remain unchanged,
but all the notes and transients go immed-
iately to zero level.

Similarly, touching key #1 produces
a tuning function that makes the synthe-
sizer respond as if all the channels were
seeing the second C on a three octave
keyboard held down. The transients go,
the notes play, etc. After tuning, be sure

to re-initialize the system by touching
control key #0,

I prefaced one of the earlier paragraphs
with "at one level of use." In all of the
preceding words, that's all that we've
examined- one level of use (the simplest
and most obvious leve], at that.) . I've
also referred in the past to "software
modules" which can be strung together
in different ways (just as can hardware
mcdules) to produce different effects and
personalities. MUS1 is the first set of
these modules,

With more regret than you can imagine,
I haven't the space here to go into all of
the implications of this (even if I knew
them all, which I'm sure I don't).

Providing you're more than just cas -
ually interested, you should spend some
time trying to understand how MUS1 works
internally (there are numerous different
entry points to the routines that we haven't
covered - for instance). I believe that the
time investment will be wisely made.

e b o b :
e i " (INIT CLEARS INFUT BUFFER <KTELD
: ML - {OUTPUT EBUFFER <NTEL> AND TRANS-
e N 'FOSE BUFFER/COMTROL WORDS CTTEL>
TOHN S1MONTIN . HEXADECIMAL MODE 15 SELECTED
v FHIA ELECTROMICS, MO
- S EHTE BECERVE . {ENTER AT INT@ To FILL TRBLES
ALL RIGHTS RESERVED M ‘WITH CHARACTER FROM ACCUMULATOR
ES : - -
- S * | ep21- A oo INIT LDR 98 :FREFARE TO ZERO
“*“T”E:i“gzb HERLLTINES | ep23- Az zs INTO LDH 28 {SET POINT/COUNT
y R TTor EOLvEnon1e e | BD25— DB CLD :SET HEX MODE
e T EEnaEEL RIS v) ap26- 95 BF INTL STA TBEG, X :ZERO BUFFER
SOFTWARE TRANSIENT + | eb2s- cA DEX [POINT TO NEXT
SEMERET 10M + | 8029~ DB FB BNE INT1 {SOME LEFT -LDOP
M : HOTEQUT /LOOK
116 CHANNEL GUASH DRIVERS AND AGO
: OFTH KEYBORRD READING ROUTINE
(FOLYFHONIC SYNTHESIZER ~ OFTION
: SELECTION
CTRL . DL @OES
: oDLY . DL @PES
INIT . DL @D21 KTEL . DL ©OLF
FOLY . DL O0FL NTEL . DL 88CF
TRGN . DL @DC3 TTEL .DL @@BF :ALSO CLCK
NOTE . DL 8DZEB . DL BeRs
DECD . DL ©Fa& L DL BYEF
FILL . DL @DS2 e
DISF . DL Bs2e oL
CLCK . DL @@EF
: dit WIITEOUT s
(OPTION TIES MUs1 FIRNHHRE§ . . CYHAMIC RUARSH DRIVERS
TOGETHER INTC A FOLYFHOWIC SYNTH (GETS NOTES TO BE FLAYED FROM THE
"WITH OR WITHOUT TRANSIENT GENER- (OUTFUT BUFFER CHTELY AND ADDS
STION: WAWO DYHAMIC GQUASH CRIVERS TRENSFOSING WALUE FROM TRANSPOSE
LSO USES FIEEUG DECODE FANC JBUFFER (TTEL>. OUTFUTS RESULT
: SES FIEEUG DECOD s :
HﬁglﬁgsﬁﬁEﬁuxg HSEES?IEEEE#E¢§ 16 MOTE LO# 15 (SET FOINTER
: = - ' - S FOHNTEL, -G o
ALL CHANNELS 2ND “C" ON KED DOWN F NOE LDH SHTEL. 3 (GET NOTE
: 2 g | :FREFARE FND
: BF A L. ¥ ADD TRANSFOS
wbeo- 2@ 21 @D OFTH JSR INIT {ZERO ALL BUFFS BE . o ILGL :Eéﬁ gﬁ:"g;#?fa
@DBI- 2@ 71 8D LOOF JSR FOLY CALLOCATE CHANS eF na STH oM L% WRITE 1O S
@pes- 26 CI @D JSR TRGN {NEM TRANSIEMTS .
oDBS- 28 2B D JSR NOTE OUTPUT-READ FGO NOW THE DYMAMIC PRRT: IF GLIDE
?ggg_ gg g; e &$: ??;ﬁK CGET ChgbﬁnszUE 15 OM, DELAY 15 SKIFFED. IF NOTE
vhaE- d = o2 B e (I3 SAME AS LAST FLAYED ©IGNORING
BD11- 26 88 F éﬁg gELD 1ALDQQZND“ CCONTROL EITS D6 & DFy DELAY IS
ab14- C9 o1 BMI GFTH CLEFE PLL CEKIFFED. IF HOT IN DYNAMIC MODE
e CoES BNE LUOF “WEER LM CAND NGO GLIDE. GELAY ALMAYS TAKEN
@b1A—- AE SC Loy SC cdli TUME ZND - ’ y = . o
avic- 2o 52 ov ISR FILL KEVS ALL DOWN a5 o Ckm SaIGNORE FLAGE
apiF- F@ E2 BEG LOOF : HALHAYS =4 EE EIT #CTRL DYNAMIC MODE 7
INIT S5 B4 BYC DLAY MO, JHME TODELAY
DS A CMP #LAST. ¥ :COMFARE TO LAST
INITIALIZATION ROUTINE Abdz- FO 85 BER HOZ | SAME : SKIF DELAY
: Bbdd4— A4 ES GLAY LDY #0DLY :GET DELAY YALUE
-) BLas- 53 HOL DEY : DECREMENT DELAY
CTRL . DL @eES Gh47T- DA FD EME NO1 (LOOF TIL DOME
TEEG . DL ©8EF Gb43- 95 AY NOZ STA «LAST. ¥ :FOR MEXT TIME

5[
apic-

ab4E-
[alsdiuig
apSz-
abSg-
apsy—
BbS3-
BapSC—
aDSE-
BDSF -
BDs1-
Bbez—
BDE—
apsr—
ape3~
BDEHR—
@apec—
apsh-
BAD5F -

gb71-
ap73-
abvS—
= erargdy
apvs-
apvB-
807D~
BL7F -
aps1-
epsz-
aDs4—
8D87-
apsI-
aDsSE—
apgn—
aDeF—
apsl—~
aD34—
[z le=Tot
apsg-
aboA—
6DIC—-
BDIE-
aLoF—
aDRe-

BDAz2-
BDA4-
BDRAG~
abARS—
aLRA-
aDAC—
abAb-
BDAF—
abe2-
QDE4—
ADES—
abes—
B6DER-
(5100 = ey
OCBE-
oDLEF—
abca-
5] elwtely

E&
HE
[2=3
RD
=8
Al
29
2R
18
€A
a5
cD
Fa
CH
Da
&0
254
za

Az

A3
25
Da
=1
Fa

Fa
25
ce
Fa
d4

CA
cA

=1s]

EF
[=12]
ag
16
FE
10
aF

F&
DF
ia
FB
ED

DF
F&

18

49
CF
BE
13
DF
Fg
CF

557
ES

E4

a8
o8

=1z

=15}

CFOINT TO NEXKT
:S0ME LEFT -LOOP

DEX
ENE MO@

THE BEGINNING OF
N-EBEGINS FUTTING
:THE NUMBERS OF KEYS DOWN IN SE-
TRUENMTIAL IN-BUFF WORDS. WHEM
SCAN DOME REMAINING IN-BUFF IS
CZEROTD

LOOK WRITS FOR
AN CACTIVE"

Lok

INC #TTEL INCREMENT CLOCK
LY aa :FREFARE FOR CLR

FILL LDX && :SET UP POINTER

LK& LDA KED CWRIT FOR
BMI LKZ ("ACTIVE" SCAN

LK2 LDA KBD (GET KEY
EMI DONE :END SCAN? -CLR
ROL :5TROBE TOQ D?
BFL LKZX :D¥=6, NO STROBE
ROR :RESTORE DATH
STAR #KTBL. X :TO IN BUFFER

Lk4 CHMF KED NOW WAIT FOR
BE® LK4 INEXT KEY

LK& DEX FNT TO NEXT BUF
BME LKZ :SOME LEFT -LOOQP

RTN RTS :LERYE

DONE ST #KTEL. ¥ :ZERO IN-BUFFER
BMI LK@ BRANCH ALWAYS

FOLY
A LIMITED RESOURCE ALLOCATION
ALGORHYTHM

QUTT . DL BBEE

OuUTS . DL BeER

CTRL . DL BGBEE

KTEL . DL B8DF

NTBL . DL @ecF

POLY-FIRST HALF OF ALGORHYTHM

:IN THIS BLOCK DE-RCTIYATED CHANS
:ARE REACTIYATED IF THE DATA THEY
:CONTRIN APFEARS IN THE IN BUFFER

;D? IN CTRL SET - ALTERNATE MODE

H T " CLR — SEGUENTIAL MODE
POLY LDR *0QUTS :# OF OUT CHANS
STA *0UTT :USE AS COUNTER
LDX 16 :PREFARE FNT/CNT
POLE LDA #NTBL. X :GET NOTE
BEW NWKY :8-0LD KEYS DONE
AND 7F :CLERR D7
ORA 4@ :SET Dé
LDY @3 :PREPARE FNT/CNT
LPB DEY :POINT NEXT KEY
BEQ NEXT :DONE —NEXT NOTE
CMP KTBL.Y :SAME AS KEY?
BNE LF@ :NO —-NEXT KEY
STA #NTBL, ¥ SAYE NOTE DS=1
DEC #0UTT (OME L QUTFUT
BEG QUT CNONE LEFT-LERYE
LDA @3 (R PREFARE AMD
STH KTEL. Y CELIMINATE EEY
BER LF1 : ERANCH ALWA
HEXT RND 9EF EAR TRIG (DE>
STH #NTEL. ¥ & RESTORE NOTE
LF1L EBIT A FL CALTERMNTE MODE?
EFL HO ~DEC. OMCE
DEX YES-DEC. THICE
SKFL DEX INT NEXT MOTE
BHE FOLS ME LEFT —~LOOF
HEMEEY — SECOMD HALF. KEEYS DOMM
ARE ASSIGNED TO OUTPUT ELUFFER
LOCATIONS WHICH ARE STILL DE-
CRACTIVATED

NHEY LDH 1@ SHTRELE PHNT.

LDY B9 CETHELE PHTACNT
NK1 LDA 4& :FPREFARE M
AND #NTEL. ¥ NOTE TRIGGEREDT
BNE NKZ MES 1 T MERT
HEZ DEY CPOINT HEST K
BEGR OUT 'NE LEFT-LERYE
LDA E'Y NEEDS HOME?
BEG MO —-GET MEXT
STA (WES-PUT IM NOTE
DEC #0UTT CONE LESE QUTFUT
BEG OUT CNIOME LEFT-LERYE
HEX BIT #C ALTERNATE MODEY
BFL. MO —-DEC OMCE
DEX WES-DEC TWICE
SKPZ DEX CPOINT NEKT NOTE
ENE HEZL CSOME LEFT —LOOF
RTS RETURN

ouT

apC3-
apcs—
8DCy—

AnhS—

BDEG-
aUEZ~
@DE4~
BOES—
BDES—
BUEA-

BOEC-
BOED-
GDEF-
@DF1—
BDF -
ADFS—

@DF7-
@D S—
enFE—
aoFC—
BLFD—
BUFF-

i
&5
co
ls)
AS

K}

=

8
L)
ES
c]
HE

HZ

35
L=
CA
[82=]
[=1=]

AS ES
18 38
A2 18

BA
EF
1E
EBE
17

=ic]
ED
a4
[ul=]
=1

EBE
CE

A

RGH
TRHH =IENT GENERATOR PROGRAM

NTEL 9abo-0abF
TTBL 98Ce-A6CF

TRGM

LDA «CTRL DO TRAMSIENTS?
EFL RTNL NO —-RETURM
LDx 18 (NTRELE FNTSCNT

B AADASAR DETERMINATION
:ROUTINE PREPARES Y TO USE RS
:CONTROL WORD. GETS NOTE AND
:SHIFTS TRIG. TO CARRY. GETS
JURRENT STATE <(CS> FARAMETER.
IF NOTE TRIG. NOT SET STRTE IS
:RELERZE. IF C= FA 5 FOSI-
CTIVE STATE IS DECAY/SUSTRINM
TOTHERMIZE. STRTE IS ATTHCK

ADSR LDY 43 :FREFARE CLRD
LA #MTEL. ¥ GET NOTE AMD
FOL ROTATE TRIGGER
ROL :TO CARREY BIT
LDA #FPAREM. 2 GET CS PARA
BECC REL= CNO TRIG? -RLS
EFL D= : >@7 —DECAY/S

: ATTACK ROUTINE

CARDS ATTACK PARAMETER TO CS FARA

(AMD IF GREATER THANW FEAK

CSUBSTITUTES $3F AMD SETS CONTROL
JORD TO #$4@ (DE SET — NO GLIDED.

CNOTE THAT CS FARR WILL BE 29

WHEN NEXT CHECKED.

ATTE

[:FREFARE

D #HTCHE TADD ATTHCK PARA .
[BEF >FEAK

ECC NEXT :NO -PLACE FHARA.
LDA #FPERK YES-FPEAK VYALUE
ENE MNEXT EBRANCH RALWAYS
DECHY RMD SUSTHIN ROUTINE

‘NOTE THAT CARRY IS SET. DECAHY

*ARAMETER IS SUBTRACTED FROM

:CURRENT STARTE FARAMETER. IF
ESULT IS LESS THAM SUSTAIN

HMETER THEN SUST. FARA.

ELUHES CURRENT STHTE FARA.

€ & DY OF CONTROL MWORD SET

LS LbY aCe :PREFARE CHRD
SBC #DCY {SUBTRACT DCY
CMP #5UST :>SUSTRIN?
EBPL NERT :PLACE PARRA
LDA #SUST :CS PARA=SUST
BFL NEXT :PLACE PARA

: RELEASE ROUTINE

:MAKES SURE THAT CURRENT STARTE
:GLIDE BIT IS SET (NOTE-MAKES
:C5 NEGATIYEY. SUBTRACTS RELEASE
ARA. FROM CURRENT STATE. IF

{RESULT & MAKES CS & CWRD =@

RELS SEC : FREPRRE
ORF 8@ {SET CS GLIDE
SEC *RLS :SUBTRACT RLS
EMI NEXT :CS<B -PLACE CS
LDY o@ :C5>8 -DONE MAKE
LDA 88 :C5=88; CWRD=8
NEXT

PLACES CS PARA AND CWRD IN

:FROPER CONTROL CHANNEL CUTPUTS
{DECREMENTS FOINTER <TWICE> AND
:IF NOT YET DONE LOOPS FOR MORE
HEXT

STY #CWRD, X :PLRCE CONTROL

STA *PARM. X :FLACE CS PRRA

DER :DECREMENT FOINT

DEX TAND AGAIN

ENE RDSR :SOME LEFT -LOOF
RTH1 RT= RETURN

33

AFTERTHOUGHTS

It has been pointed out that some
perhaps pertinent details have been
omitted from the preceeding explana-
tion of MUS 1,

The most prominent example is
"why would you ever want to not have
dynamic mode". The most probable
reason is for special effects.

In general, the difference between
special effects and noise is imagination.
Contemporary musical lore is full of
instances where a special effect resulted
from an unsuccessful attempt to do some-
thing entirely different. Phil Spector's
original "flanging" effect, so popular
today, was supposed to be voice
doubling, but didn't work.

In this same manner, there will be
those who will be able to use the "step
glissando" that results from too short a
QuASH settling delay as a valid musical
device,

Also, the dynamic mode requires an
additional 16 byte table area that might
easily be put to better use in some pro-
grams.

This same philosophy of maximizing
versatility is responsible for the QuASH
settling delay being an externally initial-
ized variable. For the purpose of effect,
there may be times when you want a
short delay.

In addition to this, we have seen
systems which were marginal in their
power supply complement which would
have a discernible pitch ""blip"' when keys
were pressed with long delays (in the
$30 - $40 range) - caused by the relative-
ly heavy charging current producing a
momentary dip in supply voltage, In these
systems, a short term solution has been to
decrease the QuASH driver delay to some-
thing on the order of $10. The long term
solution is more power,

SEVERAL POINTS RELATIVE TO THE

OPERATION OF THE STGs SHOULD BE
MENTIONED,

QuASH GLIDE CONTROLS, The setting

of the QuASH glide pots have an effect on
the transients produced. In most cases,

these controls will need to be advanced only

slightly from their fully counterclockwise
"off! position.

The most noticeable effect of different
settings of the glides will be observed when
the STGs are set to the percussive mode by
PEAK.

When the most significant bit of PEAK
is cleared, it will effect only on the last
increment of the attack cycle, For all
increments other than the last, the glide
will be set. A detailed example will best
illustrate this.

34

Assume that we have set the STG
parameters as follows:

ATCK - 08

DCY - 04

SUST - 20

RELS - 04

PEAK - 3F
or in our more or less standard notation,
$08/$04/$20/$04/$3F.

If we were able to disable glide entire-
ly, and then scope'd the transient we'd see
this:

figure (2)

!

\Y

T —— >

as the STG program counted up to the peak
and then down to the sustain level before
counting down to the base level when the
key was released.

If we then enabled the glide and set
them to a slightly advanced position and
examined the same output we would find
that this change had taken place.

figure (b)

T ——>

The integrating action of the glide
circuitry has smoothed the steps of the
Attack, Decay and Release, with the ex-
ception of the last Attack step where (as
we have already stated) the glide is off
under all percussive circumstances. In
this specific case, the last glide-less
increment will be hardly noticeable.

If, on the other hand, the glide is
set to a long value (fully advanced, for
instance) an examination of the waveform
will show this:

figure (¢)

The heavy glide has slowed the waveform
to the point that when the glide-less final
increment comes it takes a much greater
step (one that is completely noticeable,
and unique). The heavy glide also has
the effect of slowing the decay and re-
lease rates as shown.

It would also be appropriate to men-
tion at this point that the instantaneous
steps produced by the STG/QuASH com-
bination is much faster than the maxi-
mum attack rate available from a 4740,
or in fact from most ADSRs. Whereas
a typical ADSR may have a minimum
attack time of more or less 5 millisec-
onds, the QuASH in dynamic mode can
step in a fraction of a millisecond.

This means that if there are any
tendencies on the part of the VCA being
used to have interaction between control
and signal channels it will be aggravated
when using STGs. We may hear "pops"
and "thumps" that were not objectionable
before. Probably the best solution here
is to limit the response of the control
voltage inputs of the VCA. In a 4710
Balanced Modulator, this means the
addition of a small capacitor. Like this:

Optional
0, 01 typical

Vo

RO
[y [EAY
2.2 R4
I3 22

MODULATION By
=

figure (d)

Another point to be considered is the
fact that the output voltage from a QuASH
channel doesn't go to zero - there may be
some leakage from the VCA when it is
supposed to be off. The easiest fix here
is to re-adjust the Modulation rejection
control of the VCA being used. In the
4710 this is R25, Be aware that this
also limits somewhat the useable range
of the D/A's TUNE control since wide
variations in the setting of this control
will affect the leakage from the VCA,
Tuning changes on the order of 1/4
octave should not present any particular
difficulties.

There is a point dealing with this
which may not be immediately exploit-
able by many, but which should be men-
tioned in any case; the action of the
trigger outputs of the QuASH channels
which are being used as STG channels.

The trigger outputs QuASH chan-
nels which are being used to produce
pitch setting voltages behave in the
normal manner. When the AGO key

corresponding to that QuASH channel is
being held down, the trigger is at a high
state. When the key is released, the
trigger goes low. A standard "'gate"
type response.

In a similar manner, the triggers
of transient channels also go high as
soon as the AGO key fo which they
correspond is pressed; but unlike the
" normal trigger, this level remains high
until the software has completed the
last increment of the Release cycle. In
future hardware this will drive a '""noise
gate'", a simple semi-conductor switch
which completely quiets a channel that
is inactive.

pitch channel

STG channel

pitch channel

STG channel

@

key key
down up

4

[]

00|00

ZHOEHOEO0

36

LAB NOTES!

By: John S. Simonton, Jr,

As we begin this month's journey
into the bizarre I should warn you that
I'm operating in a somewhat altered
state of consciousness.

Oh, not from chemicals or nature's
own, none of that, There's just some

very nice color graphics going on the
Apple II and the background music is a
slightly oriental feeling 4 part harmony
being composed by a P4700/3. 1t's really
a most unique environment,

Wait. Composed by the synthesizer?
Surely not, surely just something pre-
recorded and played back.

Well,~I suppose that I wouldn't
attack someone who asserted that I
composed the piece. I'd be flattered,
but it wouldn't be entirely correct. I
knew before the tune started what sort
of texture (for lack of a better term)
it would have, But I have no idea what
exactly is coming next,

And that, in case you hadn't
already guessed, is what we want to
talk about this time, Computer pro-
grams that compose music.

Let's start at a very elementary
level. Probably you've seen or
connected synthesizer patches that look
something like this:

CLocK

ADSR

It's a relatively common configuration
in which, at regular intervals, the
instantaneous value of the noise source
is captured by the S/H and the resulting
voltage used to set the pitch of the VCO,
The ADSR and VCA give us some knobs
to twiddle and control dynamics, but
otherwise are just window dressing.

If you've done one of these, you
know that the results are interesting,
but certainly not a musical composition
in the traditional sense. As a compos-
ing device, it's hard to know what the
biggest fault is here, but certainly it
must be the fact that there are no
guarantees that the series of pitches
produced are going to be equally
tempered intervals (or any known
tempering for that matter)., In fact,

you can almost guarantee that they
won't be; the control voltages applied
to the oscillator are completely random.

And therein lies the tale.

I don't believe that anyone is able
at this point in human development to
concisely explain what makes music
"musical", but most folks that have
thought about it seem to feel that ""good"
music (ugh, all the subjective terms)
combines both order and disorder.
Establish a pattern in the listener's
mind ... then surprise him; pleasantly,
preferably.

Like the "noise music'' example
above, any compositional program that
we come up with today is in some way
going to rely on a STOCHASTIC (big
word for random) process. If it didn't,
we wouldn't be writing the program that
wrote the music; we'd be writing the
music.

Our task then, is to bring order
from disorder (in a very real sense,
nothing less than reversing entropy) -
but not completely. It isn't easy, but in
an elementary form not as difficult as it
may sound either because we now have
at our disposal that wonder of wonders
(which many right-thinking people say
is Maxwell's Demon personified):

THE COMPUTER

By simply programming the com-
puter to randomly select only pitches
that are part of the equally tempered
sequence, we've made a start, but in all
honesty not much of one; still there is
too much disorder. Low pitches follow-
ed as likely as not by very high ones, no
identifiable key signature. It's still
"noise music''.

The quickest way to begin bringing
the kind of order that we're looking for
is to write a program that uses a ran-
dom number not as the note, but as a
""pointer'' which is used to select one of
a number of acceptable "candidate'' notes
from a previously entered table, We're
using our intellect to select ahead of
time only those notes which we know will
harmonize with the rest of the notes
which the computer is allowed to select.
T've written a few of these kinds of
programs. They're a little better than
purely random notes, but not much,

Still too much disorder,
There are a lot of tricks to bring

PINK TUNES

rigorous order, like making random
substitutions of candidate notes into
previously entered melody lines. This
kind of thing produces terriffic results,
but it's not the computer doing most of
the composition - you are,

Now comes the April issue of
Scientific American and there, in
Martin Gardner' s consistently enlight-
ening Mathematical Games column, is a
piece on computer music. Well, not just
computer music - as is usual, Mr.
Gardner s mind ranges far and the
column covers visual art and computer
generated "landscapes' and fractal
curves and the place of pink noise in
"the meaning of it all". Very heavy.
And buried in amongst it all is an
algorithm conceived by Richard Voss
(of IBM) for turning "white" random
numbers "'pink'',

Don' t let this "white'" and "' pink'
business throw you., You're used to
white noise and the pink noise that
results when you filter it, We can
think of the Vogs algorithm as a filter
for random numbers.

The realization of the Voss algo-
rithm which is used in PINK TUNES
(the program listing at the end of this
column) can be likened to rolling a set
of 5, four sided dice whose faces bear
the numbers 0 - 3. We get the random
number that we'1l use as the pointer to
the list of candidate notes by adding
together the numbers on the exposed
face of each die (I know, a 4 sided die
won' t have an upper face, that's not
the point).

If we consistently rolled all 5
dice, we would still produce too random
a number; even through, as any crap-
shooter can tell you , the probability is
that the total of the faces will be some-
where in the middle of the range of
possible numbers - just as a pair of
six sided die "like" to come up 7,

The trick is not to roll all 5 dice
every time, but rather to come up with
a scheme that most frequently rolls one
or two and infrequently rolls all 5.
Since the random number that is pro-
duced is always a total of the 5 dice,
this produces a series of numbers that
most frequently vary only slightly from
one another while still permitting
periodic large changes.

37

Voss's scheme (and ours) is to
maintain a 5 bit "pinking counter'" (our
term) which is incremented each time
we get ready to generate a new pink
number. The new value of the pinking
counter is compared to the old and only
those ""die'" which correspond to bits in
the counter which have changed are
rolled.

The rest of the program is "over-
head'". As I mentioned in the beginning,
PINK TUNES actually generates a 4 part
harmony (provided that we supply it
with harmonizing notes in the candidate
list) and the program must keep track
of how long each of the notes in the 4
parts is to play and allow for the up-
dating of the candidate list and recog~
nize a limited number of commands
from the computer's keyboard.

The fully documented listing is
the best place to go to see how it all
works (it's in your best interests to
understand it as fully as possible) and
specific details and asides are covered
in the boxes.

After entering the program and
its data base (note part of the program
is on page zero, part is on page one and
the data base and working registers are
on page zero), first save a copy on tape.
If something goes crazy, you don't want
to have to enter it all again.

Set up the synthesizer and start
running the program starting at the
hard start location of $0003. The data
that you loaded is for the pentatonic
scale composition that I mentioned in
the opening paragraph and you should
immediately hear the synthesizer pro-
ducing the composition. It should go
without saying that you will undoubtedly
have to call the tuning function (control
key #1) and tune the oscillators before
it makes music.,

You have the ability to change the
candidate note list while the program is
running simply by pressing keys on the
keyboard, but bear in mind that the
candidate list is 16 notes deep. As you
enter a new note, the one that was
entered ''16 notes ago'' disappears from
the list. I any of the 16 notes are
inharmonious, the program will periodicly
produce discordant sequences,

With PINK TUNES running, three
of the computer's control keys have
meaning:

Key 0 "scrambles' the random
number generator to produce a new tune,
This is really only useful if you are in
the cyclic mode (see box).

Holding key 1 provides a tuning
function by causing all 4 outputs to
produce a triggered middle C.

38

Touching key #2 initiates a muted
shut-down of the synthesizer and branch
back to the monitor, allowing changes in
the memory locations described in the
boxes.

After making changes using the
monitor, always start the program
running again from the soft startlocation
$000B,

The program runs very nicely,
but is experimental and not intended as
a finished product. Skillful polishing
should reduce its length by at least 15 -
20% and it would be nice to make changes
in timing, etc. 'on the fly"" without
having to shut down the synthesizer.

At the same time that the program
is primarily "just for fun'", don't dis-
miss it as trivial. It definitely produces
4 part harmonies and even those that are
not directly useable in a composition can

serve as inspirational lubrication to the
gears of creativity. If you're involved
in producing commercial jingles, this
is a terriffic tool.

As you play with the program you
will begin to get a feel for how various
probabilities affect the composition and
you're sure to learn some things about
composition that you never knew before.

Finally, a very special thanks to
Bob Yannes who sent me a listing of
a similar program (PINK FREUD)
which generates 4 part canons on a
P4700/3. Ihaven't reviewed this
program thoroughly yet, but knowing
Bob it's sure to be neat, I'm sure
that he wouldn't mind my sharing copies
of the listing with anyone who sends a
SASE,

'Til next time, my best to all.

NOTE DURATIONS

Each of the 4 output channels
has associated with it its own dura-
tion timer and two variables in the
computer's memory which determine
what characteristics the time values
of the notes produced by that channel
will have. In the interest of conven-
ience, we'll name these two variables
MASK and TIME; or, simply M and T,

We need to think of each of these
variables as being composed of a high
half-byte (hhb) and a low half-byte (lhb).
The hex number $F3 (an arbitrary
example) has an hhb of $F and an lhb
of $3. This is necessary because the
half-bytes determine two separate
parameters.

The lower half-bytes of MASK
and TIME (M1 and T1 respectively)
interact to determine what time values
are possible from a given channel. A
channel can be restricted so that it
produces only 1/16 notes or 1/16 and
1/8 notes or a wide variety of other
possibilities as summarized in the
table below:

Ml
1 2
d&d|dd
dd | dd
ddldo
d

do |5y

Tl

o |6 (e e, o

& e [N

KEY:

3
49
d
g
dse
ORR

O = whole note
duration

Q’B = two whole note

J = sixteenth note duration
J\ = cighth note duration
d. quarter note duration § SO - three whole note
EJ = half note duration

Note that this is a partial table intend-
ed only to demonstrate the pattern.

Other combinations of M1 and T1
produce other possible time values.
Some combinations not listed will
produce undesirable results,

The high-half-bytes of MASK
and TIME (Mh and Th) interact to
determine the probability that the
note being produced by that channel
will be dotted (its duration extended
by half of its actual value).

In actual practice, it is most
convenient to set Mh to $F and reg-
ulate the probability using only Th,
The influence of Th on the probabi-
lities of a dotted note is illustrated
below:

Th | Probability of dotted note

$8 | one in two

$4 | one in four
$2 | one in eight
$1 | one in sixteen
$0 | zero

EXAMPLE: A channel which
has MASK and TIME values of $F3
and $11 respectively will be capable
of producing 1/16, 1/8, 1/4 and 1/2
notes with a one in sixteen probability
of the note being dotted. A channel
with M and T of $F0 and $01 will pro~
duce nothing but 1/16 notes, none of
which will be dotted.

The page zero addresses of the
MASK and TIME parameters for the
four output channels are given below:

CHANNEL
A B C D
MASK | $8F $8E $8D $8C
TIME | $8B $8A $89 $88
————

_

R —

-—

TEMPO

By using the MUS-1 subroutine
LOOK to gather data from the AGO
keyboard, PINK TUNES follows our

standard protocol of using the key-
board encoder clock rate as the
gystem master clock. Analog control
of tempo may be provided by varying
this clock rate as has been mentioned
in previous columns.

PINK also has a variable at zero
page location $A9 which gives gross
digital control of tempo. The recom-
mended range of values for this
variable are from $FF (far too fast)
to $F0 (insanely slow).

GLIDE AND TRANSPOSE

PINK uses the MUS-1 QuASH
drivers (NOTE) and therefore allows
for both independent pitch transpositions
of any and/or all 4 channels as well as
providing a means of enabling or dis-
abling glides.

Though not strictly true, it is
most convenient to think of these
variables as being divided into high
half-byte and low half-byte with the
hhb controlling glide ($8 turns the
glide on, $0 turns it off) and the lhb
determining transposition, For
example, a channel which has this
transposing variable set to $8C will
have its glide turned on and be playing
notes an octave higher than the actual
note selected by PINK,

- Here are the transposing
variable addresses:

CHANNEL
A B C D

TRANSPOSE| $CF | $CE | $cp | $cB]

CYCLE CONTROL

The variable at zero page loca-
tion $D3 controls the number of notes
which will be played before the cycle
repeats, Changing the contents of
this location to $20 (for instance) will
cause 4 bars of eighth notes to be
played before the tune repeats. $40
would produce 8 bars of eighth notes.

Setting the contents of the loca-
tion to $00 amounts to enabling a''free
run'' mode in which the patterns do not
repeat (in practical terms). .

If you want to get really fancy,
you can change program location $188
from its current value of 85 (STA to
the zero page) to EA (a NOP) and the
result will be that on successive cycles]
the time values of notes will not
change but the actual notes played will,
producing a strong rhythmic tie from
cycle to cycle. It also doesn't always
work, sometimes a repeating loop will
be entered anyway., Other times the
duration of a tune will be 2 or more
times as long as the actual cycle time.

To change a cyclic tune, touch
control key 0.

DE-PINKING

To get some feel for the effect
that the Voss pink-ing algorithm has
on the composition, you may want to
change it slightly, There are a couple
of easy ways that this can be done. By
changing the current instruction at
program location $11C from $45
(Exclusive-OR-on the zero page) to
$EA (a NOP), you slightly de-pink
the note selector, making it somewhat
more random., You may have to lis-
ten a while before you notice the dif-
ference, but there is one,

To completely eliminate the Voss
algorithm make these substitutions
beginning at location $118; A9 FF
EA EA EA EA, This change is
equivalent to rolling all 5 of our
alleged 4 sided dice each time a new
note is selected and will produce
changes that even a tone deaf
aborigine would recognize.

THE SYNTHESIZER

The module complement of a
P4700/J is not large enough to do a
true 4 voice, 4 part composition;
since this package has only 3 oscil-
lators. Even lacking a true 4th voice,
however the 4th harmony part can still

Here is the most universal of
the patches used during the develop-
ment of PINK TUNES:

Note that the 4th harmeny part
(from channel D of the QuASH) is
used to set the center frequency of
the VCF,

>
e

J1

be put to good use. .
ADSR Rev. _L
T}> VA l MIXER |—3 ovT

>—las 6> TA J

>—{rov ': oy

A

s @ 6l> nJ
>—1a = Mm—< ’
g ¢ > CVC AR BV In use, it is handy to think of
v (6 > channel A as a lead voice, channel B

> M counter-point and channel C bass line,

—1F C > CvD ADSR Using this concept, the channel C

<Iwon. 6> TD _I oscillator would ordinarily be tuned

d MD & an octave below channels A and B,

——
P————

39

THE CANDIDATE NOTES

Selection of the candidate notes
that you give PINK TUNES and the
order in which they're entered play
a big part in the feel of the final com-
position. As an obvious example,
the pseudo-pentatonic scale resulting
from entering only accidentals (sharps
and flats) tends to produce oriental

sounding compositions.

The selection of notes is
"pinked" on a compositional (rather
than a per-channel) basis, which
means that the 4 notes being played
at any one time tend to cluster
around a relatively short series of
entries in the candidate table. The
significance of this is that it allows
statistical control of changes in key
signature. For example, entering
the candidate sequence C1, E1, G1,
c2, E2, G2, C3, G2, A2, F2, D2,

—

A1, F1, D1, F1, Al will produce a
composition that periodicly changes
from the key of C to D minor.

It is important to remember
that the candidate table will always
contain 16 notes and in order to
produce consistant harmonies, all
16 notes must be harmonious. Also
remember that notes at the ends of
the table (oldest and newest entries)
have a lower probability of being
played than the notes in the middle.

LOADING THE PROGRAM

NOTE THAT PINK TUNES CONSISTS OF
THREE MAJOR SECTIONS: THE MAIN PROGRANM
ON PAGE B OF MEMORY, SUBRODUTINES (N
FAGE 1, AND DATA BASE ON PAGE 6.

BEFORE ENTERING ANY PROGRAMMING,
MAKE SURE THAT THE MONITOR STACK AND
USER’S STACK ARE BOTH SET TO $FF
(S0 THAT THE STACK DOES NOT OVER-WRITE
PROGRAMMING ON PAGE 1) AND THAT THE
STATUS REGISTER IS SET TO $88 (T0
INSURE THAT THE CPU IS WORKING IN THE
HEXADECIMAL MODE) USING THESE ENTRY
SEQUENCES :

OED-DISP-FF-ENT (SETS MONITOR STRCK)
OFE-DISP-FF-ENT-@8-ENT (USER STACK
AND STATUS REGISTER)

RLL OF THE FOLLOWING PROGRAMMING.
DATA BASE, AND INITIALIZATION OF MUS-1
NEED BE DONE ONLY ONCE. THEY WILL
SUBSEQUENTLY LOAD TO THE COMPUTER’S
MEMORY FROM THE MRSTER TRPE THAT YOU
WILL GENERATE AT THE END OF THE

INITIRLIZE THE MUS-1 YARIPBLES
CTRL ($BES) AND ODLY (3BE9)

PES-DISP-00-ENT-26-ENT

ENTER THE DRTR BASE LISTED BELOW
BEGINNING AT LOCATION $888 USING THI=
ENTRY SEQUENCE -

853-D1SP-B2-ENT-@4-ENT-81-ENT (ETC)

DATA BASE

685:62 04 0
M

SA

]

FA

(=4

81 F2 FB FIF2
64 ol

i

08

IR

5 W
5% 58
88 o

B8 A
LD

B
%
09

NEXT LOAD THE MAIN PROGRAM:

AND THE SUBROUTINES:
186-DISP-8A-ENT-48-ENT-AS-ENT (ETC)
BEFORE TRYING TO RUN THE PROGRAM
SHYE IT ON TAPE FROM LOCRTION $8 TO
$1A0:
6-6-8-8-6-1-A-0-0-1-D-D-TAPE

BEGIN RUNNING THE PROGRAM FROM
THE “HARD START” LOCATION $3:

B83-RUN

RFTER A SHORT (3 SECONDS (R SO)
DELAY. THE PROGRAM WILL BEGIN PRO-
DUCING THE COMPOSITION.

THE “SOFT START/ LOCATION IS $@88

LOADING PROCESS. B0%-D15F-4C-ENT-CE-ENT-FF-ENT (ETC)

0016 6478
029 x * B11- ASE? gdge MAIN LDA #KTBLHBS ANY KEYS DOWN?
0930 ¥ PING TUNES * 613- Fo a2 498 BEG OUT1 :NO-CHECK FOR TIME OUT'
0040+ X 815- ¢S EC #509 O «TENP VES-A NEN KEY?
8858 * A COMPOSING PROGRAM * 647- 85 EC @516 OUTL STR +TEMP :SAVE FOR NEXT TIME
BBEB + FOR FOUR PART HARMONIES B3~ Fo oA #5298 BEG OUT :BRANCH IF SAME KEY
0870 * * @538
0888 x BY JOHN 5 SIMONTON, JR * o1B- A2 10 #548 LDX 18 :IF NEW KEY SHIFT
8898 :*(() 197¢ PAIA ELECTRONICS, INC * 610~ B4 oF 8556 LF3 LDY +NBUF,X :ALL 16 CANDIDATES
0108 : BF- 95 &F 8560 STA #NBUF,X :DOWN BY ONE
6308 1~ 98 2578 his]
0318 - @z R @508 DEX
8326 :FIRST ATTEND TO HOUSKEEFING—- 823- DB F8 5% BNE LP3 :NOT DONE-LOOP
8368 6608

000- 4CCOFF 8378 BEG JMP BRRK :BREFK YECTOR 8616 :NOW CHECK FOR CLOCK TIME OUT

@3- 292100 . 9388 STAR JSR INIT :SET UP SYNTH (%

W6- AD 10 88 @3% LDA KBD (INITIALIZE RANDOM B25- RS BF 8638 OUT LDA *CLCK :GET MASTER CLOCK

089- 5 Do 8408 STA *NTMP+B1 :NUMBER GENERATOR @27- DB 1A 8646 BNE TEST :AND IF TIMED OUT

BB~ 26 71 61 @416 LOOP JSR SET JINIT FINK TUNES 89~ HS A9 8650 LOA «TMPU :SET TO TEMPO VALUE

@0E- 202BB) 9420 LP@ JSR NOTE :PLAY NOTES RERD AGO @B- 85 6F 6668 STR #CLCK :CALL SUB FOR NEW
0438 a2~ 28 5361 0670 JSR ALOC :NOTES (IF NEEDED)
8448 :CHECK FOR ADDITTIONS TO CANDIDATE @38~ A5 fE 8689 LDA #LNTH :GET CYCLE STATUS
#4568 :NOTE TRBLE 632- 8 20 68 9690 STR DISF :SHOW IT AND IF ZERO

33~ el] vkl ks TOLE 15 COMPLELE
ui7- U6 RE @718 DEC #LNTH :IF NOT DOME, CCRMNT
039~ Db BE B720 BNE TEST IF NOT ZERD NOWLERVE
G- 2087161 9738 JSR SET JIF ZERD, REINIT
G- WS el gri JSE ALOC :GET FIRST NOTES AND
gdi- FO B @775 BER LFB :BRANCH FLWRYS TO FLAY
@3- 20 @b OF 749 TEST JSR DECD (GET H COMMAND
#46- D@ GC 8759 BNE TSTZ :NOT ZERU, NEXT TEST
#46- Rz 83 755 LDX @2 :COMMAND @, NEW TUNE
o757 SET POINTER/COUNTER
B4R~ 2680 U1 6768 TSTL JSK RNDM :GET RANDOM NUMBER
D~ 95 OF 76z STH #NTMP, % NEW IRITIFL RANDOH
w4F- (A o764 DEX :POINT TO NEXT
@56- 0B F3 8766 BNE TST1 :NOT DONE - LOOP
@52- FaB? 6778 BEG LOOP :BRANCH ALWAYS
834- (9@l o768 TST2 O @1 :COMMEND 1, TUNEING
@56~ Do e 8798 BNE TST4 :MOT 1, TEST NEXT
@8- A2 o4 6300 LO¥% 04 ;4 OUTPUT BUFFERS
#5R- A9 5C vg1e LDA 5C :PUT MIDDLE C IN ALL
85C- 9D DB 6@ @626 TSTI STA NT@B,X :OUTPUT BUFFERS
@F- (# 6338 DEX
8e- D@ FR 8840 BNE TST3 :NOT DONE-LOOP
#%2- FoMA 8350 BEQ LPO :BRANCH ALNRYS
064- (902 8860 TST4 CWP 82 :COMMAND 2, STOP
o6~ D8 A6 8870 BNE LPO :NO COMMAND - LOOP
@68- 207101 0889 JSR SET :CALL TO ZERO OUT-BUFFS
868- 20 2B.00 @690 JSR NOTE :THEN MUTE SYNTHESIZER
B6E- 09 2900 BRK :AND RETURN TO PIEBUG
SUBROUTINES
8228 : RANDOM NUMBER GENERATOR
0238
8231 ESSENTIALLY A 22 BIT LONG SHIFT
8232 :REGISTER WITH EX-OR TAPS AT -.
8233 :STAGES 22 AND 21 FED BACK TO
8234 INPUT.
' @235
108~ 8 8240 RNDM TXA :SAVE X
164~ 48 6250 PHA
162- RS RS 8268 LDA #N0IS+81 :LAST BYTE SR
164- 0 8z70 ASL :ALIGN BITS 22 &
165~ 45 A5 6209 EOR #NOIS+81 :21 AND DO EX-OR
107- oA #2990 ASL :THEN SHIFT RE-
168- o 9300 ASL :SULT TO CARRY
109- o 8310 RSL
168 A2 @3 6328 LDX 83 :SET UP PNT/CNT
18- 36 A4 8338 LP1 ROL *NOIS, X :AND SHIFT 3 BYTE
16E- (A @340 DEX :SHIFT REGISTER
16F- D@ FB 0350 BNE LPL :BY ONE BIT LEFT
111- 68 0366 PLA :HHEN DONE RE-
112- MR 8370 TAX :STORE X REG.
143- A5 A7 0389 LDA #NOIS+93 :AND LEAVE WITH
15- 68 "3 RTS :RITH NO. IN ACC.
0408
8410 NEW NOTE
0411
8412 CTAKES CARE OF PICKING PINK NOTE
8413 :FROM CANDIDATE NOTE TRBLE AND
8414 CALCULATES AND UPDATES NOTE TIMERS
8415 :NOTE THAT ¥ POINTS TO CHANNEL FOR
8416 UPDATE
8420
116- Az 85 0428 NWNT LDX 05 :SET UP PNT/CNT
118- A5 EA 6440 LDA *0UTS :GET COPY PINKING
1R~ 06 ERA 8450 DEC *QUTS :COUNTER, DEC ORIGINAL
11C- 45 ERA @478 EOR #QUTS :PATTERN OF CHANGED
1E- 85 € 8499 STR *OUTT :BITS - SAVE CHANGES
126- RO 00 #5600 LDA 8 :PREFARE TO SUM DICE
122- 46 ER 8518 MWL LSR #0UTT :CHECK FOR CHANGED
124- 9% A 8528 BCC Mz :BIT - IF CHANGED,
126~ 48 85308 PR :SAVE CURRENT TOTAL
127- 86081 8546 JSR RND :GET RANDOM NUMBER

153-
155-
157-

150-
158-
15%-
15F-
168-
161~
163~
165-
167-
169-
168-
16D~
16€-
178~

bl
HRES £
2

B OSSE
g2

-
o

BURESETRLIY & T
]
8

28 16 61

BHERES

TEESHEVEETESER
a

m

6748

8768
A77e
87¢8
8790

8792
8793
8794

8810

1600
1018
1041
1812
1013
1014
1029
1636
1648
1950
1068
1670
1088
16%
1106
1416
1120
1138
1146
1158
1160
1178
1188
119

AND B2 MAKE RANGE @ TO 2

STA #FAND, x SRYE YALUE FOR NE:D

FLH CPECOVER TOTARL

0L FREFARE ADDITTION
Nd2 ALC #RARD, 2 ADD YHLUE UF DIE

DEX SFOINT TO REXT

BRE Nil (LOOF IF NOT DONE

THY U5E TOTAL A= POINTER

LDF #NBUF, X .GET CANDIDATE

BEQ DURA :ZERD, DU NOT CHANGE
STR NTE?.4 .FLACE IN TEMP BUFFER
DURR LDF #NOIS+81 (A CHERF RANDOM NOC.
CLe FREPARE
AND MASK, Y HASK DURATION VAL
ADC TIME,Y :ADD MINIMUM WAL
AND OF AND MASK RESULT
THY .USE AS COUNTER AND
LbA 61 :DO DURATIONS RS
NT2 ROL :POWERS OF 2. CARRY
DEX (SET DOTS NOTE
BNE NT2 :NOT DONE - LOOP
STA NTBB, Y PUT RESULT IN NOTES
RTS :TIMER AND RETURN
:ALLOCATION 8151

;SEES IF NEW NOTES ARE NEED AND IF
:50 GETS THEM. ALSO CLEARS TRIGGER
:0F NOTE OUTPUT ONCE IT IS PLAYED.

ALOC LOX &4

:D0 4 NOTE CHANNELS
LP6 DEC *NTBE, X :DECREMENT NOTE TIMER
BNE LPS (AND IF TIME OUT
TXR TRANSFER X KEG. TO
TRY oY
JSR NEW (AND GET NEW NOTE
™A :AND DURATION AND
TRX :RESTORE X
LPS DEX :DECREMENT COUNTER
BNE LP6 :IF NOT DONE -~ LOOP
LDX 84 :AGAIN, FOUR CHANNELS

A1 LDA *NTB?, X :GET NOTE FROM TEWP
STA #NT@B, X :BUFFER, SAYE IN OUT
AND 3F :BUFFER, CLEAR FLRAG
STA #NTB7, X :PUT BACK IN TEMP.
DEX :POINT TO NEXT
BNE ALL :NOT DONE - LOOP
RTS :DONE, RETURN

SET

:PREPARES KNOWN STARTING POINT FOR
:CYCLIC TUNES.

SET LDA @@

:T0 ZERD THINGS WITH
LDY &1 :PRESET FOR NOTE CNTRS
LDX 84 :DO 4 CHANNELS

LP18 STH *NT@B, X :ZERD QUT-BUFFERS
STR #RND, X :ZERD 4 DICE
STY #NTBB, X :PRESET NOTE TIMERS
PHA :SRYE THE ZERD
LDA +NTMP, X :SET UP RNDM’S S/R
STR #NOIS, X :AND CYCLE COUNTER

PLA :RECOVER ZERO
R :FOINT TO NEXT
BNE LP13 :NOT DONE - LOOF
STH *RND8 :ZERU S5TH DIE
STA #(UTS :ZERO PINKING COUNTER
RTS :AND RETURN
END EN

4

42

SEQUE 1.0

UNIVERSAL MONOTONIC SEQUENGER

Now we're going to start a
long discussion of sequencers.

It's going to be long
because there is no single kind
of sequencer that's best in every
situation. Some will do Dbetter
on stage and others will be more
at home in a studio setting.
Polyphonic sequencers should at
times be structured for storing
and reproducing chord sequences
while at other times each channel
should be treated as a separate
voice. The only really workable
solution is to come up with an
entire "family" of sequencers.

The common limitation of all

programming devices currently
available is that none of them
can offer this kind of
versatility. But, this is an

area where the system that we've
developed, with its ability to
accept a wide variety of
personality endowing programs,
will really come into its own.
If we need a studio sequencer
(with click track synchronization
and full score editing features,
etc.) we can load that program;
when a chord sequencer is
required, that software can be
loaded.

With few exceptions, these
programs will all be "complete"
in that once they are running,
the system loses any "computer
personality" that it may have
had. All of the features that
the program offers will be
available with one or two touches
of the "command" (computer)
keyboard. You can forget that the
computer's there because its
control keys are dedicated
exclusively to functions assigned
them by the program. "This key
makes it play - this key makes it
play faster." Easy.

To illustrate these points,
we'll begin with a program called
SEQUE 1.0, a monotonic sequencer

REAL TIME MODES

written to run on a PAIA P-4700/C
or its equivalent. It can also be
easily patched to run on a
P-4700/J as outlined in the box.

SEQUE 1.0 is an acceptable
"general purpose" sequencer
(acceptable from the standpoint

of our new perspective - in terms

of the alternatives that are
available it is the most
sophisticated sequencer ever

produced). It has some features
tailored for live performance and
others that are primarily for
studio wuse. The program listing
and some additional notes appear
in following pages.

COMMAND KEYS

When SEQUE 1.0 is running,
the command keys should Dbe
thought of as being labeled like
this:

'F‘CH

Figure 1

Undoubtedly, some of the
designations on the keys still

. © 1979 PAIA Electronics, Inc.

seem a little on the cryptic
side. Let's look at function and
begin by pointing out some of the
ways that SEQUE 1.0 is different
from what you're accustomed to.

PROGRAMMING A SEQUENCE

The first way that it's
different is that you don't
program it with knobs, you simply
enter the note sequence from the
AGO keyboard. More specifically
the first operating mode that
we'll examine 1is a completely
"real time" performance mode. You
simply touch the "PROGRAM SCORE"
key and start playing. Except for
the fact that we will be able to
do much magic, the result is the
same as if there were a tape
recorder somewhere recording what
you're playing. Whatever tempo
you play in, including subtle
timing nuances, are faithfully
captured by SEQUE 1.0 and stored
in the computer memory. When you
reach the point at which you want
the sequence to repeat, touch
REPEAT PLAY and it all comes
back.

PLAYING THE SEQUENCE

Since this is a real time
mode, the timing of punching up
REPEAT PLAY is important. If you
were storing a repeating bass
line, for example, you would play
the single figure that
characterizes the bass 1line and
then, at the exact point (and on
the beat) where the first note of
the figure was to be repeated,
touch REPEAT.

There -are other sequencers
beginning to appear that operate
this way, and if real music was
played with droning bass lines
that repeat unchanged, endlessly,

43

they would be perfectly adequate.
And the music would be perfectly
boring.

Not that real music doesn't
frequently have the
characteristic of a repeating
bass figure, it does, but it's
also made to sound different by
transposing the figure into
different keys to follow key
changes in the composition.
While this fact seems to have
been largely ignored by sequencer
manufacturers, we don't have to
settle for that.

TRANSPOSING

SEQUE 1.0 has a variety of
provisions for transposing the

programmed sequence. The
simplest of these is that while
in playback mode it can accept
information on key changes

directly from the AGO keyboard.
A little explanation.

Since we obviously want to
be able to transpose both up and
down 1in pitch, we need to decide
that some arbitrary key
represents no transposition (play
the sequence as programmed).
SEQUE 1.0 assumes that the 2nd C
on the keyboard is the "0
transpose" key. keys up-scale
and down-scale from this one,
then, represent transpositions up

and down scale respectively.
press the C# above the 2nd C ,
and the entire sequence plays

with each note a semi-tone higher
than was originally programmed.
Press the F below the 2nd C and
then each note plays a fifth
lower.

As an example of this,
suppose that we were going to
want to play a walking bass line
as shown in figure 2.

Because of the things we've

talked about already, it should

be relatively obvious that we
only need to really "play" this

much of the entire bass line:

Repeat

(NOTE: Do not hit this note!
Hit repeat at exactly the time
you would have played it.)

Figure 3
because from then on it simply
repeats, transposed into

44

Figure 4

different keys. As the riff from
figure 3 plays, we can extend it
out to the entire bass 1line
simply by pressing keys on the
AGO keyboard to perform the
appropriate transpositions at the
proper time. Like that shown in
figure U. Pretty exciting. And
we really haven't even started
yet.

THE TRANSPOSE SEQUENCE

While being able to
transpose the programmed sequence
with real time keyboard entries
will be plenty useful again and
again, there are also going to be
times when it will be at best a
pain in the neck. You'll be busy
doing other things. For these
times, SEQUE 1.0 offers another

feature, the ability to save a
programmed sequence of
transpositions.

Programming the T-sequence
(as we'll call it) 1is just as
simple as programming the melody
sequence (M-sequence), you simply
touch the PROGRAM TRANS pad and
enter the sequence from the AGO
keyboard. The major difference
from a programming standpoint is
that the T-sequence is a sequence
of events, which is to say that
it 1is not sensitive to the tempo
in which you enter the
information. We'll talk more
about EVENT sequences later.

When the PROGRAM TRANS pad
is first touched, it wipes out
any previously programmed
T-sequence and starts a new one.
Each subsequent AGO keyboard
entry then represents a key
change that the M-sequence will
go through at the point at which
it repeats.

During the programming of a
T-sequence, the displays count to

show wWhere we are 1in the
sequence, and the note
corresponding to the

transposition will play while the
key is held down. When the key is
released, the note stops
completely, so that there is no
possibility of confusing this
programming mode with others.

On playback, the M-sequence
will be played completely
through, transposed to the key
signature corresponding to the
first T-sequence entry; then
completely through transposed by
the second T-sequence entry, then
the third, etc. When the end of
the T-sequence 1is reached, the
whole thing starts over again
with the first note and the first
T-sequence entry. To go back to
our walking bass 1line for a
moment, the T-sequence would
program like this:

% ad lib.
- 5

D)) - b

Figure 5

In the terms which we will
find most wuseful, enabling the
automatic transpose is an OPTION
which may be selected along with
one or more of the major
operating MODES. If we want to
assert the T-sequence option
during playback we do so by
touching the T-seq. OPTION key.
To stop the T-sequence and revert
to the manual entry of
transpositions, simply touch the
OPTION CANCEL pad.

It is important to note that
canceling the T-seq. option
simply keeps the system from
invoking the T-sequence, and does
not in any way alter the sequence
as stored. You can turn the
option on and off as many times
during a set as desired.

And still there's more.

SINGLE PLAY

There will be times when we
don't want the sequence to repeat
endlessly, but simply to play one
time through and stop. A SINGLE
PLAY MODE.

An important difference
between the two modes is that
whereas REPEAT begins playing the
sequence as soon as it is
touched, SINGLE PLAY waits for an
AGO key to be pressed and then
plays.

The T-sequence option may
also be asserted in the SINGLE
PLAY MODE, but it has been my
experience that it's not
tremendously useful. Much more
useful is to have the T-seq.
option cancelled (which selects
the AGO keyboard as the
transposition source), so that
pressing an AGO key not only
starts the sequence playing, but
causes it to play in the key
selected.

Releasing the key which
initiated the sequence will not
cause it to stop (once started it
always plays to the end), but
pressing a different key in the
middle of the sequence will
immediately transpose it to a new
key signature.

TEMPO KEYS

The function of the TEMPO UP
and TEMPO DOWN keys is just what
you would expect. Touch TEMPO UP
and the tempo of the sequence
being played doubles. Touch it
again and the tempo doubles
again. Touch TEMPO DOWN and the
tempo rate is divided in half.

If not over-used, these two
keys will increase and decrease
tempo while still keeping
relative timing of notes
unchanged; however, raising the
tempo too high will cause some
timing information to be lost and
will cause the notes to be
" jammed" together so that
synchopation will change. Beware
and be aware that this fact has
special effects implications -
there may be times when you want
to do just this.

TAPE SAVES AND LOADS

The TAPE pads control a
couple of operating modes which
should also be useful. TAPE SAVE
causes the M-sequence and
T-sequence information currently
in the computer's memory to be
dumped to magnetic tape. when you
come up with a "keeper" start

your recorder going (recording)
and touch TAPE SAVE. After a
short leader and synchronizing
tone is generated, the displays
will start to count and within a
few seconds your complete
composition will be stored as
data on the tape (a hint - always
save things twice))

Loading a composition that
was previously saved on tape
consists of playing the tape and
touching the TAPE LOAD command
pad. As with the saving
operation, the displays count as
the data transfers from tape to
memory. If, after loading a tape,
you punch up PLAY MODE and
nothing happens, it means that
the load was unsuccessful. Try
again with the second copy (and
review the "tape selection"
section of PAIA's CS-87 POT SHOT
manual) .

NORMAL MODE

NORMAL is simultaneously the
most straightforward and
ubiquitous of all the operating

modes. NORMAL is nothing more
than a normal monotonie
synthesizer function, the

important point is that asserting
this mode of operation does not
alter previously rnrogrammed M or
T sequences. .t simply ignores
them as long as this mode is
selected. at any time you can
punch-up SINGLE or REPEAT PLAY
and do that magic and with a
touch of the NORMAL pad be back
to plain synthesizer.

SUBTLETIES AND TRICKS

It seems to me that a
sequencer for use on stage should
have two major design goals: it
should be easy to program and
operate (which SEQUE 1.0
certainly is) and it should
enable the user to do a better
job of the thing he's there to do
- put on a show. As theatrical a
show as possible. SEQUE 1.0 has
several of these "show" features.

The ability to shift back
and forth between the various
modes of operation (and
specifically the availability of
the NORMAL mode which doesn't
mess up programmed sequences) is
definitely one of these.

Others are less obvious, for
example:

When you have the T-sequence
option selected (so that
transpositions come from their
programmed sequence) and you go

directly from the PROGRAM SCORE.

mode to REPEAT PLAY without first
asserting another operating mode,
the first entry of the T-sequence
will be skipped and the melody
sequence will begin playing
immediately transposed by the
second entry in the Transpose
Sequence.

Why?

Because, when you entered
the characteristic sequence it
was equivalent to its being
played the first time through

(which would have been done using-.

the first T-sequence entry).
When you hit REPEAT PLAY and the
computer takes over, it is in
effect playing the sequence the
second time - which should be
done in the key of the second
T-sequence entry. .

The major application here
is to allow you to enter (during
set-up and tuning) a T-sequence
for the number that you are going
to be doing and then enter the
actual sequenced figure
extemporaneously. We all know how
great it 1is when the magic is
working and everybody's really
cooking. This feature allows
your automation equipment to tap
into that energy and the
innovation that frequently
results from it.

If for some reason you don't
want to skip the first T-sequence
entry, you simply terminate the
PROGRAM SCORE mode with a command
other than REPEAT PLAY (NORMAL,
for instance; or SINGLE PLAY),
then punch into REPEAT PLAY.
Remember always, though, that the
termination of PROGRAM SCORE mode
must be done "in tempo" if the
timing of the playback is to be
correct.

Here's another special
application:

In most cases, the

M-sequence is reserved for the

melody, but the UP TEMPO command
allows -you to enter some short
riff (live, yet) then speed the
sequence up to the point that it
has the effect of being a "voice"
of its own. By then punching
into SINGLE PLAY mode, the
sequence can then be used as yéu
would a single note, which you
"play" by transposing it.
Naturally, the T-seq. option
should be cancelled for this.
And another:

REPEAT PLAY mode always
starts the M and T sequence from
the beginning, making it any easy
matter to use the first few bars
of the sequence again and again,
for introductions, bridges, and
special effects.

45

46

Now we turn our attention to
the studio-oriented options
offered by this '"universal"
monotonic sequencer program.

Some of the distinctions
between stage and studio use are
somewhat arbitrary.

For example:

EVENT PROGRAM

The real-time SCORE melody
programming mode that we examined
in the first section of this
piece can obviously be used in a
recording studio as well as it
can on stage, providing that
you're interested in recording
only those things that are within
the limits of your physical
abilities. But the real promise
of a small studio (or a big one,
for that matter) is that it
allows us to produce music that
we don't have the chops to do in

real time. After all, not
everyone has the hours per day
that it takes to gain physical

mastery of a keyboard - but that
doesn't mean that we don't have
valid musical ideas, only that we
need a little help in expressing
them.

If a recording studio is a
single thing, it's a time machine
that allows days or weeks of work
to be compressed into a few
minutes of music. One of the
programming modes that we have
available (EVENT) is specifically
designed to operate in this type
of time-compression environment.
In this mode we enter the music
not so much as a melody, but as a
series of notes and rests. A
series of events which, when
reproduced by the computer, turn
out to be a melody (maybe).

There 1is of course nothing
new about this mode of operation,
this is the way sequencers have
always worked. About the only new
part 1is that instead of entering
the events as positions of a knob
or a series of numbers, we have
an AGO keyboard on which to
program.

Touching the command
keyboard's PROGRAM EVENT pad puts
us in this programming mode. (See
Figure 1.) Melody 1lines are
entered much as they were with
the SCORE mode, except that the
computer 1is no longer watching
for how long we hold a key down

STUDIO MODES

or how rapidly the notes are
played. It is now only interested
in whether a key is up or down.

One of the ma jor
implications of this is that
notes in the melody are "jammed"
together in time, and on playback
will come out exactly equally
spaced, one note per beat. While
this is OK in some cases, as a
general rule it is unacceptable;
because it 1is unacceptable, we
have a REST pad on the command
keyboard. The REST pad provides
for syncopation. It is a means of
"extending" an event so that it
takes more than a single beat.

If you're familiar with the
operation of the rest key on

something like PAIA's
Programmable Drum Set, you
already have a good idea what's
going on, but there still are

some surprises here.

Your first thought may be
that when you press and release a
key on the AGO keyboard, that
constitutes an event. Actually,
it's two events as far as SEQUE
1.0 is concerned - the first when
the key was pressed and the next
when it was released. It's
important to keep in mind that
the REST pad can extend either of
these events.

For example, this simple

phrase:

— ——

‘tEEEa
Figure 6

would be entered from the
keyboard by pressing F and
releasing, press A and release,
press C, release, press D,
release, press F and while

holding the F key down, hit the
REST block on the keypad, release
the F key, tap the REST block,
play A, touch the rest block
before letting up the A key,
release the key, and hit the rest
block once more. The measure is
now completely entered, and may
be played by using the REPEAT or
SINGLE keys as described last
time. Note particularly that on
the fifth note (the second F)
where we wanted to extend the
note to a full beat, the REST pad
had to be touched twice; once to
extend the "key down" event and
again to extend the "key up"
event.

At first, having to enter
two RESTs when we actually want
to extend a note for a single
beat may seem a pain in the neck
(undeniably, it is) but the
slight inconvenience buys us a
number of things. For example,
the ability to slur notes.

In the above example, the D
could have been slurred into the
F by first touching the REST pud
before releasing the D key. This
will 1lengthen the note to occupy
the time normally used when the
key is released. Then press the F
key before releasing the D. This
will cause the D to be entered in
the next time slot without any
articulation (triggering). Now,
while holding the F key, touch
the REST pad to lengthen it to a
quarter note as covered earlier.
After releasing the key, enter
the additional REST required and
proceed as usual.

Having each REST pad
activation correspond to a "half"
event (kind of) also allows us to
produce dotted notes as the
exceptions that they are rather
than having to make specific
tempo provisions for them which
must be carried over to all notes
in the sequence.

It is also possible to
generate articulation changes
whenever a note is extended

beyond a basic "dual" event. If,
for example, you are generating a
series of notes where each note
uses a key depression plus a REST
and a key release plus a REST
(four events), theses notes can
be performed in three different
manners. If entered as listed
above, the note has equal time
allotted for note performance and
release. For a staccato style,
the note could be entered with a
key depression, release, and then
two RESTs. For legato styles, the
two RESTs could be entered while
the key is held down, yielding
three "on" events and one "off"
event. Each of the above would
occupy the same execution time

during playback, but would
reflect the different
articulation styles.

Once the melody is in the

computer's memory, it makes no
difference whether it got there
with SCORE or EVENT programming
modes as far as the playback and
options are concerned. All of

these features (real time or
programmed transpositions, single
or repeat play, tempo up and
down, and tape saves or loads,
etec.) work the same.

CLICK TRACK SYNCH

Even more powerful in the
studio than the EVENT programming
mode are the features added by
two other command pads; CLIK and
(in the option box) SYNC. These
provide a means of synchronizing

multiple tracks of sequencer
operation.
Once you start using a

sequencer for recording, you
begin to find more and more
places where it can be used to
relieve a 1lot of tedium. The
problem in the past has been that
it 1is, for all practical
purposes, impossible to manually
synchronize a sequencer to a
track that's already on tape.
Even slight differences in tempo
soon build up to an intolerable
variation in when a note is
supposed to happen and when it
actually does happen. Maybe there
are people who could manually
twiddle a tempo knob and keep
things locked together, but
that's a hassle.

Most of us are familiar with
the classical "elick track"
approach in which a
metronome-like "tick" is recorded
on one track of a tape so live
musicians can easily maintain the
tempo of the original work in
over-dubs. Our CLIK and SYNC
command pads are simply this old
concept extended into the realm
of automation.

Touching the CLIK pad causes
SEQUE 1.0 to begin producing a
very rapid series of "clicks"
that are machine readable and
represent a standard clock rate
which the SYNC option can read

and synchronize to. The click
appears at the normal cassette
output jack (where progranms,

etc., that are to be saved to
tape come from) and when using
this option, this output is tied
to one of the channels of the
tape recorder on which you're
recording your audio tracks.

To use the click track
option, the tape that you will be
recording and mixing your audio
onto must always be prepared
first; you can't record a 1lead
part and then come back and lay
down the click, it won't work
like that. Before doing anything
else, connect the 8700's cassette
output to the input of one track

of your recorder, start the tape
rolling in record mode, and after
allowing a comfortable quiet
leader, punch the CLIK pad. Allow
the tape to run much longer than
you think you'll ever need for
what you're going to be
recording, one thing you don't
want to do is run out of click in
the middle of things.
Synchronizing to the click
track is simply a matter of
connecting the output of the tape
channel that contains the elick
to the normal cassette input jack
of the computer, but note that
some Jjuggling of the record and
playback levels of this channel
may be necessary for the computer
to properly write and read the

channel. In many cases, unless
your recorder is capable of
providing very high outputs

(similar to the earphone levels
from the cassette recorders which
the computer was designed to work
with), you may need to use a
small external amp to provide the
extra gain and current drive
required. If your SYNC fails to
respond, try using the earphone
Jjack signal usually provided on
multi-track recorders. If this
doesn't provide enough power, try
using a small portale practice
amp (such as a Pygmy or Pignose)
whose earphone output should
adequately drive the cassette
input jack of the computer.
Assuming that you have some
rhythm sequence (ordinarily the
first laid down) in the computer
memory and that you're getting
ready to record it as audio,
proceed by first punching into
the T-SEQ option (if you plan to
use it) then touch the SYNC
control pad. Roll the tape with
the eclick track channel set to
playback and the audio going to
one of the other tracks which is
naturally in record mode. Before
the quiet leader ends, touch the
REPT/PLAY command pad and hold
it. When the click track starts,
so will the sequence. When enough
of the track is laid down,

terminate the play mode by

touching the NORMAL pad.

It is necessary to select
the SYNC OPTION last in the above
sequence of events because once
this option is asserted, a elick
track must be coming in on the
cassette port for the computer to
recognize any further commands.
If you find yourself with a
"dead" computer caused by CLIK
being selected with no click
track present, you can either run
a tape which has a click track or

reset the computer and run the
program again.

In situations where the
sequence is not to be played from
the first down-beat, the SYNC
OPTION should be enabled before
rolling the tape and REPT/PLAY
punched in when the time comes
for the sequence to start.

A little constructive play
will go a long way toward
familiarizing you with the
capabilities of this powerful

option. Here are some we haven't
mentioned yet:

You have probably already
noticed the somewhat cryptic METR
designations that appear in both
the OPTION and TEMPO control
boxes. And probably you've
figured out that it means
metronome (a handy thing in any
studio). But this is kind of a
super metronome because not only
does it hawe a "pendulum" (which
shows in the computer's twin
displays) and an audible click
(which you hear from the beeper)
but it also provides an
electrical output in the form of
a short positive going pulse that
appears as D7 of the D/A output
channel (which in turn shows up

on the Flag 2 pin jack of the
D/A's front panel). This pulse is
enormously useful in
synchronizing external devices (a
Programmable Drum Set, for
example).

Since both the SYNC and METR
options may be asserted at the
same time, the external device
can be synched to a pre-recorded
audio track.

The METR pad in the TEMPO
control box 1is obviously the
tempo control for the metronome.
Like the other tempo controls
that we looked at last time, this
one works in octaves. Each time
the pad is touched the metronome
tempo doubles until the maximum
rate is reached, then the next
touch causes the tempo to "fold
back" to the minimum rate.

It may be somewhat out of
sequence (?) to mention here that
the tempo of the metronome is the
tempo at which sequences stored
in EVENT mode will play back,
though of course, the TEMPO UP
and DOWN command pads will also
alter the tempo of the sequence
once saved, as outlined last
time.

Another point - When
electrically synchronizing things
to the click track, the METR
TEMPO can still be varied to
accomodate different timings, and
since it operates by octaves the

47

integrity of the timing will be
preserved.

And a hint - the metronome
"beep" can also be recorded on
tape to provide a "human
readable™ click track (though it
must be saved on a different
track than the CLIK).

The only other command pads
that we've added are STOP/STEP (a
means of stopping the sequence
without "forgetting" where we
were as well as single stepping
through the sequence) and CONT
(continue) which allows us to
pick up from the point where we
STOPped. This feature can provide
easy introductions to songs.
STOP/STEP through the piece until
you reach the REST just prior to
the point where the introduction
should start. When the CONTINUE
pad is touched, the introduction
will play, leading into the
repeating sequence.

48

SEQUE 1.0
COMMAND SUMMARY

PROGRAM

SCORE - Saves melody sequence
in real time.

EVENT Saves melody sequence
as regularly spaced
events,

TRANSPOSE - Saves transpose

sequence as events.

PLAY

REPEAT - Plays sequence from be-
ginning, cycles until
stopped.

SINGLE - Waits for key on AGO
then plays sequence from
the beginning. Stops at
end of melody.

STOP/STEP - Allows stops or pauses
during playback.

CONTINUE - Starts melody playback
from where you are in
memory.

TAPE

SAVE - Dumps current Melody
and Transpose sequences
to mag. tape.

LOAD - Loads M & T sequences
from tape.

OPTIONS

TABLE - Selects transpose sequence
table as source of trans-
positions (otherwise AGO
is source),

METRONOME-Initiates visual metro-
nome display and a
"beep".

SYNC. — Shuts down internal
timing and accepts pre-
recorded click-track
for timing information.

CANCEL - Turns all selected
options off.

TEMPO
upP - Doubles tempo of melody
sequence,
DOWN - Halves tempo of melody
sequence,

METRONOME - Doubles speed of metro-
nome display and '"beep"

MISC

NORMAL - The "normal synthesizer"
mode. Does not alter
stored sequences.

LOADING FROM TAPE

Because part of the SEQUE 1. 0 program is held on the
same page that the 6502 processor uses as a stack register,
some very slight preparation is required before the SEQUE
1. 0 tape can be loaded. Specificly the stack pointer which is
used by the PIEBUG monitor program and the stack pointer
associated with the applications program must be set to
agsure that the stack will not over-write the program. And,
as long as we are setting the stack pointer, the status
register may as well be set to a known state.

These objectives may be met by these keyboard
manipulations:
0-0-E-D-DISP-F-F-ENT this sets the monitor stack

0-0-F-E-DISP-F-F-ENT-0-0-ENT this sets the user stack
and status register,

On the tape supplied, SEQUE 1. 0 is saved with the
identifier 01; and should be loaded to memory from location
$0000 to $0280 using this entry sequence:

0-0-0-0-0-2-8-0-0-1-1-1-TAPE

The program is saved in triplicate so if the first copy
won' t load for some reason you can always try for the next.
All copies have the same identifier 01. If you experience
continued difficulties in loading, refer to the POT-SHOT
cassette interface manual.

HAND LOADING

If you are absolutely unable to load the program from
this cassette, return it for a replacement. Since transit time
back and forth may present unbearable delays, you may
consider hand-loading the program and dumping your own
tape (which goes a long way toward eliminating any problems
caused by differences in tape recorders). To assist you
should this solution become desirable, a hexadecimal dump
of SEQUE 1. 0 is provided below. NOTE that even if you
hand load the program, the stack and status register setting
manipulations outlined above should be performed before
you start loading the program.

With the stack pointers and status register set, the
program may be hand loaded as outlines in the various 8700
manuals:

PAGE 0 899- 11 68 BB @€ A9 FF 85 ES
898- 28 BS 11 SE 28 88 A9 08
900~ A9 88 85 E2 A9 6C 8D 7B ®A9- 85 E6 60 BO 62 85 E5 20
006- 11 4C 18 11 BY @5 85 E6 BAS- 84 11 AS ES DB 85 18 65
816 8D 28 88 RS EC D@ 04 RS @88~ E1 85 ES 68 85 E9 AS E2
018- EB 29 3F 85 EB 69 BO 0A 863- @9 89 D@ OE AS E2 89 46
@20~ 85 E6 85 EB 85 E7 A9 88 ©8C8- DO 88 RS E2 @9 o1 D@ 82
828- 85 E2 A6 E7 SE 28 88 RS BC8- R9 0@ 85 E2 4C OF 12 18
839~ EC F@ 86 CS EB FO @5 E6 908~ 28 25 1E 68 4C 54 12 4C
©838- E7 9D CO 82 85 EB 60 28 8D8- 20 12 4C 33 12 FF FF 09
948- 84 11 E6 E5 60 38 28 AC OEG- 66 B4 08 00 60 00 99 00
848- 11 AD 14 44 CS E3 DB 62 @ES- 00 00 08 08 08 FF FF FF
850~ E6 E9 24 E2 30 OA AS EC
@56~ F@ 82 85 E4 RS E4 85 E6 PAGE 1
960~ E6 E5 60 99 04 RS EC D@ 108- 85 10 85 85 C2 BC B4 C8
868~ DD 20 46 18 RS ER D@ 8B 108~ CF D4 88 7C DA D7 oC oC
878~ RS 98 85 ES A6 ES BD 81 118- 45 92 63 46 3F A3 4E 46
978- @83 85 EB 68 A9 7E DB 62 118- AS E2 48 @A 16 22 C6 DF
088~ A9 3E 4C 00 12 18 AS ES 126~ 16 1E A6 E1 CR 86 DF A9
988~ 65 E1 85 ES AS E3 8D 7B 128- 88 AR 18 65 EO 85 E6 18

LOADING SEQUE 1.0

SEQUE 1.0 HEXADEGIMAL DUMP

First the programming on page 0:
0-0-0-DISP-A-9-ENT-0-0-ENT-8-5-ENT- (etc.)
Then page 1:
1-0-0-DISP-8-5-ENT~1-0-ENT-8-5-ENT- (etc.)
And finally page 2:
2-0-0-DISP-8-D-ENT-0-6-ENT-1-2-ENT- (etc.)

Note that none of these blocks go all the way to the end of
the page.

When done loading, immediately save the program to
tape from $0000 to $0280. Do this before running the pro-
gram to avoid the unpleasant experience of having some
incorrectly copied code wipe out the program. Next verify the
program by stepping through it and comparing memory con-
tents to the hex dump. Finally, when you' re sure that it' s
entered correctly and have a copy ontape justin case, runm it.

RUNNING THE PROGRAM

Location 0 is both the hard start and the soft start loca-
tion for this program,

0-0-0-0-RUN.

If the program crashes (as perhaps when SYNC is selected
with no synchronizing tape input) it may be re-started from
this same location without losing any melody or transposing
sequences that had been saved to that point. Re-starting from
this location will cancel any options which may have been select-
ed and will cause SEQUE 1. 0to come up in its NORMAL mode.

RUNNING SEQUE 1. 00N A P-4700/J

SEQUE 1. 0 may easily be modified to run on a polyphonic
system (though it will still be a monotonic sequencer) simply
by changing the address of the output port which appears at
SEQUE 1. 0 locations $14B & $14C. Changingthis address to
$09FF will cause the output to appear at QuASH channel #1.
This may be accomplished as follows:

1-41B-DISP-F-F-ENT-0-9-ENT

If you make this change, you should also save the altered
program to tape.

A fully documented assembler listing of SEQUE 1. 0 starts
on the following page.

138- oC RS EB 89 89 85 EB 18 1D8- BB DE 84 E9 D8 DC BD @3
138- 28 25 1E A2 88 SE 20 68 1D8- 83 85 EB BS €@ 82 85 E6
148- RS EG FO 03 18 69 A4 18 1E@- 68 FF 88 FF 03 C@ 82 Co
148- 65 EB 8D 48 88 63 6 99 1E8- @2 FF FF FF FF FF FF FF
150- 86 28 49 1E 4C 6D 11 2C :

158- 10 88 18 FB AD 16 85 30 PAGE 2

168~ FB 2C 16 @8 38 85 50 F9

168- AD 16 @8 85 EC 20 88 1F 269- 8D 86 12 A2 89 18 7E 02
170- BO 66 B9 98 11 8D 7B 11 208- 82 E8 E8 E4 E8 D@ F6 RS
178- RS 90 28 83 09 AD 7B 11 216- E3 8D 7B 11 60 A2 87 BD
189- 85 E3 D@ 94 BY 09 8D 61 218~ E1 11 85 F@ CR D8 F8 68
188- B2 85 E8 85 E6 85 EB AS 228- 20 15 12 AS ES 8D @8 63
19¢- E5 A6 ES 9D 09 03 20 13 226- RS E7 8D 04 83 A9 DD 28
198- 18 29 7F DD @1 63 F@ 0B 238- 46 12 68 20 15 12 A9 11
1AB- ES E8 86 ES 9D 61 @3 A9 238- 20 46 12 AD 08 @3 85 E8
1RS- 90 85 ES5 60 BO 88 85 E4 246- AD 81 B3 85 E7 68 20 AR
1B8- 85 E9 85 EA 85 ES RS ES 248- 1E AD OF 11 8D 7B 11 18
1B8- R4 E9 A6 EA DD 82 83 90 258- 28 22 1F 60 85 DF 66 E1
1C@- 15 A9 P2 85 E5 E8 ES 86 258- 99 82 66 E1 D@ B1 FF FF
1C8- EA E4 ES DB 09 C8 C4 E?

49

1008
1082-
1004~
1006~
1009~

1eac-
100€-
1618-
1e43-
1615-
16e17-
1619-
164B-
1e10-

164E-

162¢-
1626-

1628-

1eec-

50

58383
53BN

(4

TEVEABRSA

RAEIREES

FRTEBIRY

BIREIERNS
43 PEREE]

8150

8170
8188
8190
6208
0210
06220
8230
0249
0258
0268
8270
0280
0290
0308
8310
0320
0339
0340
8350
0360
8370
03¢0
0390

0410

0610

A T EE LR

SEQUE 1.0

MONOTONIC SEQUENCER PROGRAMS

, BY
JOHN 5. SIMONTON, JR.

(C> 1978 PAIA ELECTRONICS,
ALL RIGHTS RESERVED *

* K E X ¥ ¥ K ¥

INCx

*

;DEFINE RDDRESSES OF LABELS

BEEP . DL 1F22
DECD . DL 1F0@
CASS . DL 1EAA
DBIT . DL 1E49
SBIT . DL 1E25
OUTP . DL 8840
DSP . DL 8826
KBD . DL @818

MTB3 . DL @363
MTB2 . DL 8382
MTB1 . DL 83084
MTBL . DL 0308
TTBL . DL 82Ce

BUFF . DL 80F@
KBUF .
PBUF .
MPNT .
TPNT .
MEND .
TEND .
TRNS .
CNTR .
TTRN .
LSTL .
STUS .
TPO
METF .
MTRC .
buMy .

2
3

SRRRRRRRAREAD

EREREREZRERERRER

w

OR 1000

STAR LDA 80
STR *STUS
LDA ec
STA ACTN+BL
Jup COoM

:START / RESTART
:CANCEL OPTIONS
:NRML COMMAND LINK
:PLACE COMMAND LINK
:JUMP TO COMMON

:NORMAL OPERATING MODE - DOES NOT ALTER
:T-SEQUENCE OR M-SEQUENCE

NRML BCS NRM1
STA *TRNS
STA DSP

NRML LDA *KBUF

NRM2 BNE STOR
LDA *PBUF
AND 3F

STOR STR *PBUF
RTS

:FIRST PASS THROUGH
:2ERC TRANSPOSE
:AND DISPLAYS
:CHECK FOR NOTES
:ZERO~ NO NEW KEY
:50 GET OLD KEY
:CLEAR BOTH FLAGS
:SAYE AGARIN

:AND RETURN

:PROGRAM TRANSPOSE MODE - NOTE PLRYED
:1S "KILLED" WHEN KEY IS RELERSED

TLOD BCS TL1
STA *TRNS
STA +PBUF
STA *TEND
LDA 88
STA *STUS
LDX *TEND
STX DSP

:FIRST PRSS, INITIALIZE
:ZERO TRANSPUSE FIGURE
:ZERO OUTPUT NOTE

:ZERO TRBLE END POINTER
:TURN T-SEQUE OPTION

:ON
:GET TRANSPOSE POINTER
:SHOW 1T

162F-
1631~
1033~
16835-
1037-
1039-
103C-
163E-

103F-
1642-
10644~

10845~

10846~
1649~
164C-
164E-
1e5e-
1652-
1054~
1656~
1e58-
165a-
165C-
165E-
1666~
1062-

16863~
1665-
1067~
1869~
106C-
1086E-
1670-
1872~
1674~
16876~
1679-
1678~

1e7C-
1687e-
1ese-
1682~

1885-
1886-
1e88-
168A-
1esC-
188E-
1631-

1892-
1094~
16896~

THRERNSGIA
BSURBRA

28 84 11
E6 ES

20 AC 11
AD 14 11
CSE3
D@ 82
E6 E9
24 E2
30 oA
AS EC
Fo 82
85 E4
AS E4
85 E6
E6 ES

10

SHRBREABIARSRS
ZRRL8BTASTR

B33
KA

I0ARA

E8IRAA6
B

338
SAR

0830

0860
8870

0910

8938
8940
8950
8960
0970

1000
1016
1626
1030
1648
1058
1060
1070
1060
169
1160
1110
1126

1140
1150
1168
1170
1180
1198
1208
1216
1220
1238
1240
1258
1268
1278
1268

1300
1310
1328
1339
1348
1350
1368
1270
1390
1399
1400
1410
1428
1439
1448
1450
1468
1478
1480
1499
1508
1510

1528

1530
1540
1550
1568

1580
159
1600
161@
1620
1630
1640

LDA *KBUF :GET THE NOTE
BEQ TL2 :ZERO- NO KEY, SAVE
CMP *PBUF :KEY SAME RS LAST?
BEQ TRTN :YES - LERVE
INC *TEND :POINT TO NEXT LOCATION
TL2 STA TTBL,X :SAYE TRANSPOSE
TRTN STA *PBUF :AND OUTPUT RS NOTE
RTS :THEN RETURN
:PROGRAM SCORE MODE - USES REAL-TIME CLOCK
MSAV JSR MSY1 :CALL SAVE MODULE
INC #CNTR : INCREMENT THE TEMPO
RTS :COUNTER AND RETURN
:CONTINUE PLAY MODE - DOES NOT RESET
:M-SEQUENCE OR T-SEQUENCE POINTERS
CNTU SEC :SKIP INITIALIZATION
:REPEAT PLAY MODE - WHEN FIRST ENTERED
:M-SEQ AND T-SEQ POINTERS ARE SET TO ZERO
:BY THE PLAY MODULE (PLR1)
RPLA JSR PLAL :CALL PLAY MODULE
LDA STBL+14 :WAS THE PREVIOUS MODE
CMP #LSTL :MSAY (PROG. SCORE)?
BNE RPL1 :NO-SKIP INCREMENT
INC #TPNT :INC. T-SEQ@ POINTER
RPL1 BIT *STUS :T-SEQ@ ASSERTED ?
BMI ROUT :OPTION ON - LERVE
LDA *KBUF :OPTION OFF- GET NOTE
BEQ OLDK :AND IF NO NOTE, BRANCH
STA *TTRN :SAVE NOTE FOR NEXT TIME
OLDK LDAR *TTRN :GET LAST ACTIVE NOTE
STA *TRNS :USE AS TRANSPOSE
ROUT INC *CNTR :INCREMENT TEMPO COUNTER
RTS :AND RETURN
:SINGLE PLRY MODE - WAITS FOR AGO KEY
:THEN PLAYS SEQUENCE ONCE THROUGH
:TRANSPOSED TO INDICATED KEY
SING BCC SNG1 :FIRST PASS, BRANCH
LDAR *KBUF :AGO KEY DOWN ?
BNE RPLA :YES - PLAY SEQUENCE
SNG1 JSR RPLA :NO - "PLAY" THEN RETURN
LDA *MPNT :M-SEQ POINTER > 8 ?
BNE SRTN :YES - RETURN
LDA 00 :NO - PREPARE
STA *CNTR :ZERO TEMPO COUNTER
LDX *MEND :POINT TO LRST NOTE
LDA MTBL, X :OF M-SEQ AND GET IT
STR *PBUF :PLACE IN PLARY BUFFER
SRTN RTS :THEN RETURN
:UP TEMPO AND DOWN TEMPO - COMMON PORTION
:0OF BOTH PROGRAMS ON PAGE 2
UTMP LDA 7E :THE OP-CODE FOR ROR
BNE U/D :BRANCH ALWARYS
DTMP LDA 3E :THE OP-CODE FOR ROL
u/D JMP TCOM :JUMP FOR THE REST
:REST MODE - EXTENDS NOTES OR UN-NOTES
{WHEN IN PROGRAM EVENT MODE
REST CLC :PREPARE FOR RDDITTION
LDA *CNTR :GET TEMPO COUNTER
ADC *TPO :ADD TEMPO YALUE
STA *CNTR :PUT COUNTER BACK
LDA #LSTL :AND RETURN TO
STA ACTN+81 :PREVIOUS OPERATING
RTS :MODE
:STOP/STEP MODE - STOPS PLAY WITHOUT
:CHANGING POINTERS. SINGLE STEPS THROUGH
: SEQUENCE
STEP BCS STP1 :NOT FIRST PRSS-BRANCH
LDA OFF :SET TEMPO COUNTER RT
STA *CNTR :"TIMED OUT" VALUE

1098- 2086 11 1650 JSR CONT :CALL PART OF PLAY MODULE 1127- RO 88 2999 LDR 98 :70 DETERMINE ALTERNATE DISPLAY
1098- 8F 2068 1660 STX DSP :DISPLAY M-SEQ POINTER 1129- MR 2998 TRX :CYCLE AND “PENDULUM® LEFT
1096~ A9 088 1670 LDR 0@ :MAKE TRANSPOSE VALUE 112/~ 18 3000 cLe :PREPARE FOR ADDITTION
16R8- 85 E6 1689 STA *TRNS :EQUAL TO ZERO 1128- 65Ee 3910 RDC *METF :ADD FLIP-FLOP YALUE
16A2- 68 1698 STPL RTS :AND RETURN 1120- 85 E@ 3020 STA *METF :SAYVE NEW VALUE
1780 - 112F- 16 6C 3038 BPL MET1 :ALTERNATE? - DISPLRY
1718 :PROGRAM EVENT MODE - SAVES M-SEQUENCE 1431- RS EB :ggg %.22 ;zsw :ggﬂ;grsz, GET OUTPUT
: T CLOCK FOR REAL-TIME 1133~ @9 86 :
i§§3 ;ammkﬂasmums BRI 1135- B5EB 3068 STA PBUF SAVE IN PLAY BUFFER
b g v 2 R i
- ‘ ES1 -FIRST PASS, INITIALIZE 1138- 20 25 1E 36890 :
ig_ Q §§ ﬁgg EsRY ?%f. +CNTR :TEMPO COUNTER RS ZERD iﬁg— : g o ggzg - ;l%i ggp :m&gﬁﬁ
- : MODULE - :
fg- gsa g . ig e iiﬁ :Sc:'irn :%er COUNTER 1149- AS E6 3118 COM@ LDA *TRNS :IS THERE A TRANSPOSE 7
10°C- D 85 1790 BNE EOUT :NO ENTRY-RETURN 1142- FB O3 3128 BEQ COML :NO - BRANCH
16RE- 18 1800 cLe :PREPARE 1144- 18 3130 TRAN CLC -VES - PREPARE
10RF- 65 E1 1810 ADC *TPO :ADD TEMPO VALUE 1145- 69 R4 3140 ADC BA4 :CALCULATE TRANSPOSE VALUE
1081- 85 E5 1820 STA *CNTR :SRYE AS TEMPO COUNTER 1147- 18 3158 COML CLC :MORE PREPARATION
1083- 68 1838 EOUT RTS :THEN RETURN 1148- 65EB 3169 ADC *PBUF :CALCULRTE NOTE
1840 - 114f 8D 40 88 3178 COUT STA OUTP :PLAY NOTE
1858 :OPTION MENU - RETURNS TO PREVIOUS 1140- 68 3188 PLR :GET STUS (OPTION CODES)
1860 :OPERATING MODE AFTER TURNING ON OR 1146- 6A 3198 ROR :SYNC OPTION ON 2
1878 :CANCELLING OPTIONS 114F- 98 06 3200 BCC KRED :NO - SKIP
189 - 1151- 28 49 1E 3218 JSR DBIT :WAIT FOR CLIK
1884~ 85 E9 1899 TBLM STA «TPNT :T-GEQ POINTER TO BEG 1154- 4C 6D 11 3228 I CTRL :SKIP RERDING AGO
1886- RS E2 1900 LDA *STUS :RSSERT T-SE@ OPTION 1157- 2C 18 88 3238 KRED BIT KBD :WAIT FOR DUMMY SCAN
1088- 89 98 1910 ORA 88 1158- 16 FB 3248 BPL KRED :LOOP UNTIL STARTED
108A- D8 0E 1926 BNE MCOM :BRANCH RSLWRYS 115C- AD 1@ 83 3258 KR2Z LDA KBD :WAIT FOR SCAN TO START
10BC- AS E2 1938 MET LDA *STUS :TURN METRONOME ON 115F- 38 FB 3260 BMI KR2 :LOOP UNTIL STARTED
108E- 09 40 1940 ORR 49 1161- 2C 18 88 3278 KR3 BIT KBD {CHECK FOR KEYS DOWN
1608- DO 88 1950 BNE MCOM :BRANCH ALWAYS 1164- 3885 3289 BMI KRTN :WHEN SCAN DONE, RETURN
18C2- A5 E2 1968 SYNC LDR *STUS :TURN ON SYNC TO 1166- 58 Fy' 3298 BYC KR3 :CURRENT KEY NOT DOWN, LOOP
18C4- @9 81 1978 ORA 1 :CLICK TRACK OPTION 1168- AD 16 88 3300 LDA KBD :KEY DOWN, GET IT
16C6- DB 62 1900 BNE MCOM :BRANCH ALWAYS 116B- 95 EC 3318 KRTN STA #KBUF :SAVE RESULT
10C8- A9 80 1998 CNCL LDA 8@ :PREPARE AND 116D- 20 @ 4F 3320 CTRL JSR DECD :GET COMMAND
100A- 85 E2 2000 MCOM STR #STUS :CANCEL ALL OPTIONS 1170- B0 86 3330 BCS DO :0LD COMMAND - DO IT
18CC- 4C 6F 12 2010 I TCML :JUMP FOR THE REST 1172- B9 89 11 3348 LDA STBL,¥ :NEW COMMAND - GET LINK
2020 : 1175- 80 7B 11 3350 STR ACTN+B1 :PLACE LINK
2030 :CLICK MODE - SENDS CLICK TRACK TO TAPE 1178- A9 8@ 3368 DO LDA 8@ :THIS WILL BE HANDY
2640 :AGO KEYBOARD SCAN RATE IS TIMER 117R- 20 @3 8@ 3378 ACTN JSR DUMY :CALL OPERATING MODE
2050 1170~ AD 7B 11 3389 LDA ACTN+B1 :SAVE CURRENT COMMAND
1ecF- 18 2068 CLIK CLC :PREPARE TO SEND “8" 1188- 85 E3 3398 STR *LSTL :LINK FOR LATER
1008~ 20 25 1E 2678 JSR SBIT :SEND IT 1182- DB 94 3490 BNE COM :AND LOOP ALWAYS
1003- 68 2000 RTS :RETURN FOR KEVBOARD DELAY 3410
2098 ¢ 3428 :SAYE MODULE - TAKES CRRE OF ALTERNATELY
2100 :METRONOME TEMPO CHANGE - PROGRAM ON PAGE 2 3438 :STACKING DURATIONS AND NOTES IN M-SEQUENCE
2148 3440 :USES WHAT WILL BE "END OF SEQUENCE"
18D4- 4C 54 12 2128 TCHG JWP TCH :JUNP TO PROGRAM 3458 :INDICATOR IN PLAY MODES RS POINTER
2138 3468
2148 :DUMP MLT-SEQ TO TAPE - PROGRAM ON PAGE 2 1184- B8 89 3478 MSYL BLS MS1 :FIRST PRSS?
21% 1186- 8D 01 83 3489 STA MTBL+81 :YES-ZERO PROGRAM NOTE
1807- 4C 2012 2160 OTAP JWP TOUT :JUMP TO PROGRAM 1189- 85 E8 349 STR +«MEND :ZERO M-SEQ POINTER
2170 : 1188- 85 E6 3508 STR #TRNS :ZERO TRANSPOSE
2188 :LOAD MLT-SEQ FROM TAPE - PROGRAM ON PAGE 2 1190- SSEB 3510 STR #PBUF :ZERC OUTPUT NOTE
2198 116F- RS ES 3528 MS1 LDA #(NTR :GET TIME SINCE LRST NOTE
180 4C 3312 2208 ITAP JWP TIN :JUMP TO PROGRAN 1191- A6 E8 3538 LDX #MEND :AND M-SEQ END POINTER
g : 113- 90 00 83 3548 STA MTBL,X :SAVE THE TIME
: 1196~ 20 13 18 3556 JSR NRML
2299 COMMAND LINKS - LOW BYTE OF ADDRESS OF SUBS | 1199- 29 7F 3568 AND 7F :m;‘?u%%m
2388 - 1198- DD 81 83 3570 CMP MTBL X :SAME RS LAST NOTE?
1108- 85 85 85 85 €2 BC B4 (8 119%- FB 08 3508 BEQ OUT :YES, LEAVE
1188~ CF D4 88 7C DR D7 @C 6C 11A8- E8 359 INX :NO, SAVE BY INCREMENTING
1110- 45 92 63 46 3F A3 1E 46 11A1- E8 3600 INX :M-SEQ POINTER TWICE
2798 1R2- 86 E8 3610 STX #END :AND SRVING RS END
2808 OR 1418 11R4- 9D 01 03 3628 STA MTBL, X :THEN SAVE NOTE
2810 11A7- A9 88 3439 LDR 08 :AND ZERO TIME SINCE
2820 :COMMON PROGRAM - DOES METRONOME HHEN ON RS- &S E 3640 STA ‘LAST NOTE
2838 :ADDS PLAY AND TRANSPOSE BUFFERS TO GET i1me- 6o 3658 QUT RTS :AND RETURN
2840 :OUTPUT NOTE, PLAVS NOTE, READS COMMAND 3660 :
2850 :KEYBORRD AND JUMPS TO SELECTED MODE 3678 :PLAY MODULE - MANRGES M-SEQ AND T-SEQ
2868 :SUBSTITUTES CLICK SYNCH FOR KEYBOARD 3688 :POINTERS RS WELL RS TEMPO CLOCK.
g:a?g :TIMING LOOP WHEN SYNC OPTION IS RSSERTED gggg :DETERMINES WHEN NOTES ARE TO BE PLAYED
1118- A5 E2 2898 COM LDA #STUS :CHECK OPTIONS 11AC- BO 88 3718 PLAL BCS CONT :FIRST PASS ?
111 48 2908 PHA :SAVE A COPY 11RE- 85 E4 3720 STR #TTRN :YES-ZERO TEMP. TRANSPOSE
111B- @A 2918 fSL " MERONOYE ON 2 11B0- 85 E9 3738 LPL STA #TPNT :ZERO T-SEQ POINTER
110~ 10 22 2928 BPL COMG NO - BRANCH 11B2- 8SER 3748 LP2 STA #PNT :AND M-SEQ POINTER
111E- €6 DF 2939 DEC *MTRC :DECREMENT METRONOME COUNTER | 11B4- €5 ES 375@ STA #CNTR :AND CLOCK (TEMPO CONTER)
1128- 10 1E 2940 BPL COM@ :NOT <@ YET, BRANCH 11B6- ASES 3768 CONT LDA #CNTR :GET CLOCK
1122- A6 E1 2956 LDX *TPO :TIME UP, GET TEMPO VALUE 11B8- A4 E9 3770 LDY *TPNT :GET T-SEQ POINTER
1124~ CA 2960 DEX :DECREMENT ONCE 118A- A6 ER 3780 LDX #MPNT :GET M-SEQ POINTER
1125- 86 OF 2978 STX #MTRC :THEN SAVE RS COUNTER 118C- DD @2 83 3799 O MTB2, X :TIME UP?

51

11BF- 96 15 3800 BCC PL1 :NO, BRANCH 4620
11C1- A9 08 38160 LDA 80 :YES, PREP. COUNTER, ETC. 1254- 85 DF 4630 TCH STR »MTRC :ZERO METRONOME CLOCK
11C3- 85 ES 3820 STA #CNTR :FOR NEXT ACCUMULATION 1256- 66 E1 4640 ROR *TPO :HALVE TEMPO VALUE
11C5~ E8 3838 INX - INCREMENT M-SEQ POINTER 1256- 90 62 4650 BCC TCHR :IF NOT ZERO, LEAVE
11C6- E8 3840 INX :TRICE 125a- 66 E1 4660 ROR *TPO :ZERO, MAKE NOT ZERO
11C7- 86 EA 3850 STX #MPNT :AND SAVE NEW POINTER 125C- Do B1 4670 TCHR BNE TCML 160 SET UP PREVIOUS MODE
11C9- E4 E8 3860 CPX +MEND :END OF M-SEQ? 4680
11cB- Do 09 3870 BNE PL1 :NO - BRANCH 4698 END . EN
11C0- C8 3880 INY :VES, INC T-SEQ POINTER 4708
11CE- C4 E? 3890 CPY «TEND .END OF T-SEQ ?
1100~ B8 DE 3908 BCS LP4 :YES-START T&M-SEQ AGRIN
11D2- 84 E9 3910 STY *TPNT :NO-SAVE T-SEQ POINTER
11D4- D8 DC 3920 BNE LP2 BRANCH-START M-SEQ AGRIN
1106- BD @3 83 3938 PL1 LDA MTB3, X :GET THE NOTE
1109- 85 EB 2948 TR +PBUF -SAVE IN PLAY BUFFER MITRTTITGRniaaaiaiaiaiasasaasaasasass,
11D8- B9 CO 82 3950 LDA TTBL,Y :GET TRANSPOSE
11DE- 85 E6 3968 STA #TRNS :TO TRANSPOSE BUFFER
11E6- 60 3970 RTS :RETURN
3980
39990 TAPE TRANSFER PARAMETER TRBLE
4000
4010 TAPE . HS FFOOFFA3CHB2C002
4020
4038 . OR 1208
4040
4050 COMMON PORTION OF TEMPO UP & DOWN -
4068 :ROTATES RIGHT OR LEFT THE DURATIONS
4870 :SAYED WITH M-SEQUENCE
4060
1208- 60 06 12 4898 TCOM STA PLAC :PLACE ROR OR ROL OP CODE
1263- A2 08 4100 LDX 08 :ZERO A COUNTER/POINTER
1205- 18 4116 TP CLC :PREPARE
1206- T7E 62 03 4120 PLAC ROR MTB2,X :ROTATE SAVED TEMPO
1289- E8 4138 INX : INCREMENT POINTER TWICE
120R- E8 4140 INX :TO POINT TO NEXT
1208- E4 E8 4150 CPX *MEND :END OF M-SEQ ?
1200~ DO Fé 4160 BNE TLP :NO - LOOP FOR MORE
120F- RS E3 4170 TCML LDA +LSTL :DONE, GET LINK AND
1211- 8D 7B 11 4160 STA ACTN+G1 :SET UP FOR PREVIOUS MODE
1214- 60 4190 RTS :THEN RETURN
4208
4218 SET UP PROCEDURE FOR TAPE TRANSFER
4220 .
1215- A2 @7 4230 STTP LDX 67 :TRANSFER 7 BYTES
1217- BOD E1 11 4240 STP LDA TAPE,X :GET PARAMETER FROM TABLE
121/~ 95 F@ 4250 STA *BUFF, X :PLACE IN POT-SHOT BUFFER
121C- CA 4260 DEX . :POINT TO NEXT, MORE ?
124D0- Do F8 4270 BNE STP :YES - LOOP
121F- 68 4260 RTS :NO - RETURN
' 4290
4300 :DUMP M-SEQ AND T-SEQ TO TAPE
4318
1228- 20 15 12 4328 TOUT JSR STTP :SET UP FOR TRANSFER
1223- A5 ES 4330 LDA *MEND :SAYE M-SEQ END WITH
1225~ 6D 0@ 63 4340 STA MTBL :M&T-SEQUENCE
1228- A5 E? 4350 LDA *TEND :ALSO T-SEQUENCE END
122/~ 8b o1 &3 4360 STR NTB1
1220- RS DD 4378 LDA 80D :SET UP FOR DUMP
122F- 28 46 12 4389 JSR DOTP :AND DO IT
1232- 68 4398 RTS :THEN RETURN
4400
4410 :LOAD M-SEQ AND T-SE@ FROM TAPE
4428
1233- 28 15 12 4438 TIN JSR STTP :SET UP FOR TRANSFER
1236- A9 11 4440 LDA 11 :SET UP FOR LORD
1238- 20 46 12 4450 JSR DOTP (AND DO IT
1238- AD 08 63 4469 LDA MTBL :PLACE M-SEQUENCE END
123e- 85 E8 4470 STR *MEND
1240- AD 61 63 4480 LDA MTBL ‘AND T-SEQUENCE END
1243- 85 E7 4490 STR *TEND
1245- 60 4500 RTS :THEN RETURN
4518
4520 :PERFORM TRPE TRANSFER
4530
1246- 20 AR 1E 4548 DOTP JSR CASS :CALL POT-SHOT
1243- AD OF 11 4550 LOA STBL+GF :SET UP TO RETURN
124C- 8D 7B 11 4560 STA ACTN+B1 :IN NORMAL MODE
124F- 18 4570 CLe :PREPARE
1256- 20 22 1F 4580 JSR BEEP :SIGNAL DONE
1253- €68 4590 RTS :AND RETURN
4600
4610 :CHANGE METRONOME TEMPO

52

ECHO...ECHO.... ECHO................

A couple of issues ago, I
said that we were going to 1look
at a D/A that would allow those
of you with exponential response
synthesis equipment to begin
playing with the computer
software we have been discussing
here. Then SEQUE ran longer than
I thought it would, and we ran
into logistics problems and
In any case, it's not ready yet.
Next time for sure.

Meantime, I've got some
quickie code that I think you'll
like, It's a program we call
ECHO. I'1l bet you think that
ECHO echoes. It does.

It works in conjunction with
an allocation algorithm (POLY
from MUS 1 in this case, though
something like Bob Yannes' SHAZAM
could also be patched in to wuse
this) and "follows" whatever data
is being produced from QuASH
channel #1, delaying it for a
controllable period of time
before playing it from a second
channel, delaying again before
playing on a third channel, and
so on.

A convenient conceptual
handle that may help you
understand the "how-it-works" of
ECHO might be a clock face. With
only a second hand.

The numbers around the clock
face represent memory locations
and the second hand represents a
pointer to these memory locations
which, as it sweeps past each
number, writes whatever note
happens to be coming out of QuASH
channel #1. This is really a
funny clock, though, because in
addition to the single second
hand it has many minute hands
that rotate at the same rate as
the second hand. If the second
hand is a ‘"writing pointer",
these funny minute hands are
"reading pointers". Within some
restrictions that we'll discuss

shortly, we can have as many
reading pointers as we like; the
important feature is that each of
these fast minute hands
correspond to an additional QuASH
channel.

Now as the clock runs, the
writing pointer scans merrily
through memory, writing the note
that's in channel #1. In step
behind it are the reading
pointers, and as they point to
successive memory locations they
read them and, place thé result in
the QuASH channel to which they
correspond. Presto, echo.

In computerese, this kind of
procedure is called a queue.

ECHO has a variety of
software control features, and
since I don't really know which
of them are more important, we'll
Jjust plunge into the middle..

While ECHO always pulls the
note that it's going to echo from
channel #1, the first channel
that the echo effect appears on
doesn't have to be channel #2.
Why? So that some channels can be
set aside for polyphonic work
while others are producing the
echo.

Here's how. One piece of
data that every polyphonic
allocation subroutine must have
is the number of output channels
available for its use. POLY
established the precedential name
OUTS for this datum and seét its
location in a Paia 8700 as $EA.

Previously, we've always set
this variable to represent the
number of QuASH channels that
were hardware supported. In a
system which had a single QuASH,
OUTS was set to contain $04 so
that all available outputs were
used for polyphonic allocation.

But OUTS may be set equal
(may I please start saying
"equal" instead of "contains"?
It's not strictly true, but much

less cumbersome.) to a number
less than the number of hardware
supported channels and the result
will be to reserve some channels.
In a system with two QuASH (for
example) OUTS could be set equal
to $05 and the result would be
that the upper 3 channels (6 - 8)
will not have keyboard
activations directly assigned to
them. POLY (or whatever) doesn't
know they're there.

So we can use them for other
things. Like echo channels.

ECHO, in its turn, must know
how many channels it has to work
with. The location labeled ECCO
($BB) serves this function, and
in most cases will be set equal
to the number of remaining
channels.

To give a final example; if
we make OUTS equal to $03 and
ECCO equal to $05, we've produced
a system which has 3 polyphonic
channels (the first three) with
channels 4 through 8 echoing, in
sequence, the notes that appear
on polyphonic channel #1.

I would be less than candid
if I didn't forewarn you that
successful use of a system which
combines both polyphonic and echo
channels requires a thorough
understanding of the allocation
algorithm being used as well as a
certain manual and mental
dexterity. It's best to start
playing with a configuration
which has only one channel
available to POLY and the
remainder used as echo channels.
With practice, you can progress
from there.

DELAY CONTROLS

As you certainly know by
now, all timing in our system
references back to the scan rate
of the keyboard, and ECHO has
associated with it a variable

53

labeled EDLY ($BC) which
regulates how fast (in terms of
keyboard scans) the hands in our
clock analogy (the reading and
writing pointers) advance from
one memory location to the next,
which in turn contributes to how
long the echo delay is.

If we set EDLY equal to $01,
the echoing routine is invoked
after every keyboard scan (which
is variable, but typically will
be every 10 to 50 milliseconds).
Making EDLY equal to $02 means
that the routine is wused on
alternate scans which, if
everything else is equal, will
produce an echo delay twice as
long.

Notice that this affects
only the ECHO and does nothing to
alter POLY's allocating channels
after every keyboard scan. This
is important because when
changing the value of EDLY you
should be aware that if you skip
more than about 8 scans before
invoking ECHO, it may miss some
keyboard activity in a fast riff.
The notes will still play through
the polyphonic channels, but
won't be echoed.

A second variable also
interacts with EDLY to detirmine
the echo delay. OFST ($BD)
controls the offset between the
pointers into the echo queue.
Going back to the clock
metaphore, it detirmines how "far
apart” the hands on the clock
are. The farther apart they are
(the bigger the number in OFST),
the greater will be the echo
delay.

Like EDLY, there are some
caveats that go with OFST. The
echo buffer (queue) area of
memory is 64 bytes on page 1. You
don't want ¢~ come up with too
many pointers (controlled by
ECCO, remember) that are too far
apart or they will represent a
memory area larger than that set
aside. The result of that is far
from disastrous, but it will
cause things like the high order
channels echoing mich sooner than
you expected, as the reading
pointers for those channels "wrap
around™ past the writing pointer.
But, as we've decided here in the
past, the difference between
noise and a neat effect is often
nothing more than a creative
mind.

Control of the time delay
involved in the echo is important
for reasons that you might not
first think about, because like
any device (or now software) that
messes with the subjective flow

54

of time, echo offers a variety of
totally different effects
depending on how long a time we
are talking about.

For example, if the delay is
very short, as when both EDLY and
OFST are set to $01, the effect
will not even be percieved as an
echo, but rather as a
"thickening" of the voice (voice
doubling, actually). It's a lot
like phasing or flanging, except
that with those techniques the
predominant effect is frequently
that the subjective flow of time
is cyelicly changing.

Longer delays (EDLY = $01
and OFST = $08) produce the types
of effects which give ECHO its
name. Echoplex type echoing.
There is a major difference,
though, in that with conventional
echo devices you can only echo in
a voice that is essentially the
same as the starting voice. Here,
the echoes can be anything, and
there's no way to appreciate the

power that this implies without

working with it.

When the delays get very
long (EDLY = $02 and OFST = $10)
you find yourself playing with an
instrument that allows you to
play rounds with yourself. Also,
of course, in different voices.

Because the character of the
instrument is so greatly
influenced by delay times, and
because the different characters
can so frequently be used in the

same musical performance, we've
added a means of quickly
switching from one set of

operating parameters to another.
Four of these presets are
provided by pads 0-3 on the
command keyboard. Touching one of

‘these pads causes ECHO to get the

requested set of parameters from
a table that lives in memory $9A
- $A9 and place them in the
locations referenced by the rest
of the program. The pre-sets that
are in place in the listing which
follows are:

COMMAND POLY ECHO TIME DELAY
KEY CHANS CHANS (KBD SCNS)

0 1 7 1
1 1 7 8
2 1 3 16
3 1 3 32

Notice a couple of things
here. First, if you're using a
system with only a single QuASH
(a PU4700/J or its equivalent) it
doesn't matter that there are
more echo channels than there are
hardware channels; the last four

iterations simply won't have the
hardware to voice them. Secondly,
observe that when we got to
longer delays we cut back on the
number of echo channels so as to
circumvent the "too many channels
too far apart" problem that we
looked at earlier.

You can substitute your own
presets for those shown simply by
altering or replacing the values
shown. Here is a map of locations
that will make that a little
easier:

PRESET #

0 1 2 3
OUTS $9A $9E $A2 $A6
ECCO $9B $9F $A3 $AT
EDLY $9C $80 $A4 $A8
OFST $9D $A1 $A5 $A9

With some experimentation
you will find echo presets which
seem to complement each other
particularly well. You will
inevitably get to where you use a
specific set of presets for each
particular song, not only
changing presets throughout the
song but within a riff or phrase.
This can create some neat effects
such as having an initially long
delay set and, in the middle of
the echo chain, hit a faster
preset to initiate a burst of
echoes. Or, have one preset for
the "voice doubling™ character-
istics we discussed. Then you can
switch between echoes for special
effects and doubling for use on
bass lines or solos.

Actually, there is a lot of
power hidden in this program that
can be liberated with innovative
patching, voicing, and mixing.
How about having a chain of
voices which are all related but
slightly different, such as
having higher Q on the filters as
the echo is passed on. Or
changing envelope times so the
first echoes have sharp attacks
and delays and later voices have
increasingly softer envelopes.
Here's a good one- progressively
detune each voice so you get a
spiraling echo, or the echoes
sequence upscale (or downscale).
Completely different voices can
be used, and this technique
really works well on the long
delays for doing rounds.

Just playing with the mixing
or panning of the normal echo
voices can entertain you for
hours. Have the echoes pan across
the stereo field, or bounce back
and forth. Or have the echoes
begin to fade out, but set the
last or next to last voice at a

—

higher level. 8958 :ADJUST AS NECESSARY
You can also use a multi- voice setup with only a few of the 0960 -
outputs driving voices. Set up the computer to provide (for @sr- oA 8378 LP1 TXA :ECHO BUFFER POINTER TO ACCUMULATOR
example) one poly voice and seven echo voices, but only use 038- 18 0350 CLe :PREPARE FOR ADDITTION
channels 1, 4, 5, and 8 to drive oscillators. Work with various @39- 65 BD 8990 ADC *OFST :CALCULATE NEXT LOCATION
combinations here; each is a completely different rhythm and could 836- (9 40 1600 CHMP 48 :STILL WITHIN ECHO BUFFER?
easily provide a rhythmic basis for a whole piece. a30~ 90 @z leoie BCC SAYE ~ :YES, BRANCH TO CONTINUE
Well, by now you are probably ready to dig into the program, @3F- 38 1020 SEC :NO, SET CARRY FOR SUBTRACTION
0 here is the listing. @40~ E9 40 1630 SBL 48 {AND ADJUST POINTER
nd42- AA 1640 SAVE TAX :PUT POINTER IN PLACE
LOADING THE PROGRAM 1056
As with other programs that we've examined in the past, 1868 :THEN PULL NOTES FROM ROTATED ECHO BUFFER LOCATIONS
ECHO may be hand-loaded using the 8700 computer's monitor, 1678 :AND PLACE IN ECHO CHANNELS OF OUTPUT BUFFER (NTBL)
but first sgtgtgen?ggigog E'fﬁck pointer: 1088 -
Vs Stack point . @43~ ED 00 02 1099 LDA EBUF,X :GET NOTE FROM ECHO BUFFER
and the user's stack pointer and status register: : @46~ 99 08 BB 1108 STA NTBL,Y -PLACE TO OUTPUT CHANNEL
and then load the program: 949~ 88 111e DEY :POINT TO NEXT OUTPUT CHANNEL
0-0-0-DISP-2-0-ENT-2-1-ENT-8-D-ENT- (etc.) 04A- C6 BR 1120 DEC #TEMP :ONE LESS ECHO CHANNEL
and don't forget this data base information: @4c- DB E9 1130 BNE LP1 :BUT SOME LEFT, LOOP
088- 20 21 OD 4C CO FF C9 07 1148 -
IR ST A R 1156 :NOTES ARE PLAVED BY CALLING THE QUASH DRIVER (NOTE).
0A0- 01 08 01 03 02 08 01 03 1168 :FINALLY, ECHO OUTPUT CHANNELS RRE CLEARED SO RS NOT
0A8- 02 10 1170 :TO CONFUSE POLY WHEN CALLED
0B8- FF FF 01 03 02 04 1180 -
OE8- 40 20 01 @4E- 20 2B BD 1198 JSR NOTE :CALL MUS1 QUASH DRIVERS, ETC.
After loading (and before running) the program and data 851- A4 EB 1200 LDY #0UTT :GET FIRST ECHO CHANNEL POINTER
:tl;guld be dumped to tape (from location $000 to $0EC) using 653- A6 BB 1216 LDX *ECCO :GET # OF ECHO CHANNELS
is sequence: 955- A9 00 1226 LDA &6 :PREPARE TO ZERO
0-0-0-0-0-0~-E-C-0-1-D-D-TAPE - | .
When this tape is loaded in the future, it should be es7- 99 Dpge 1238 LP2 STANTBL,Y :ZERQ ECHO OUTPUT CHANKEL
loaded from $000 to $0EC so that the presets will be loaded 85a- 88 1240 DEY ‘POINT TG NEXT OUTPUT
along with the program. 858- CR 1250 DEX :ONE LESS ECHO CHANNEL
95C- D@ F9 1260 BNE LP2 :SOME LEFT, LOOP
prrram 1270 - _
2020 i * * 1280 :READ COMMANDS. ©-3; PRESETS, 4-INITIRLIZE SYSTEM
2039 x ECHO @.31 * ig :5-CLEAR ECHO, 6-BRERK, 7-TUNE
0040 * * :
. @SE- 20 08 OF 1318 JSR DECD :READ COMMAND KEYBOARD
g :: POLYPHONIC VOICE QUEUING : 861~ C9 04 1326 CMP 84 :1S COMMAND A PRE-SET?
078 % By N - ot 13 BPL NEXT :NO, BRANCH FOR NEXT TEST
peootiiod JOHN STHONTON : 1358 :THE COMMAND IS TO CALL UP A PRE-SET. AFTER CALUCLATING
. 1368 :THE BASE ADDRESS OF THE PRE-SETS CALLED FOR, THE PRESET
O T R o ey 1376 VALUES ARE TRANSFERED T0 THEIR RESPECTIVE LOCATIONS
91280 % * 1380 :AS ACTIVE PARAMETERS. NOTE THAT THE NUMBER OF
9139 . 14390 :CHANNELS ALLOCATED TO POLY USAGE (OUTS - $8BEA) 1S IN
9149 . 1498 :NON-CONTIGUOUS LOCARTION AND MUST BE HANDLED SEPARATELY
2499 - 1418 :NOTE THAT THE CONTIGUOUS LOCATION *TEMP IS USED RS R
500 :INITIALIZE SYSTEM, CLEAR OUTPUT BUFFERS AND ECHO BUFFER 1429 DUMIY VARIRBLE RT THIS POINT
8518 :
. 965- 8C 28 88 1448 STY DISP :SHOW PRESET
LD TR R ot e T N TER @8- R9FF 1450 LDA OFF :ONE LESS THAN PRESETS BASE ADDRESS
05 9A 8546 1% -SET STACK TO TOP OF PAGE B6A- 18 1468 LP3 CLC :PREPARE FOR CALCULATION
006- A9 09 0550 EBZR LDA 80 :PREPARE TO ZERO OUT ECHO BUFFER 968- 69 84 1476 fOC o4 :THERE ARE 4 PRESET VARIRBLES
838~ A2 3F 560 LDX 3F :POINTER TO END OF ECHO BUFFER 66D- 88 1480 DEY :POINT TO NEXT PRESET BASE
@R 9D @0 62 @578 ILP STA EBUF,X :ZERO ECHO BUFFER LOCATION O6E- 10 FR 1490 BPL LP3 :IF NOT THIS PRESET, LOOP
@8- CA 8588 DEX :POINT TO NEXT LOCATION 07e- AA 1560 TAX :PUT POINTER CALCULATED TO X
8%E- 18 FA 8599 BPL ILP -NOT DONE YET, LOOP 871~ f@ B3 1510 LDY 83 :4 PRESETS, WILL COUNT TO -1
£16- 207100 6O@ ECHO JSR POLY :CALL MUSL POLYPHONIC ALLOCATION B73- BS 9A 1520 LP4 LDA #PRST,X :GET PRE-SET DATR
09638 075- 99 BA Y@ 1538 STA TEMP,Y :AND PLACE RS ACTIVE PARAMETER
8640 DETERMINE ADDRESS OF THE FIRST CHANNEL AYAILABLE 678~ CA 1540 DEX :POINT TO NEXT PRESET DATA
8658 :FOR ECHO USE @79~ 88 1550 DEY :AND NEXT RCTIVE PARRMETER
0660 O7R- 1@ F7 1568 BPL LP4 :IF NOT YET DONE, LOOP
613~ Ao oF 0670 LDY oF :OFFSET TO FIRST OUT-BUF LOCATION 67C- 85 ER 1570 STA *0UTS :SAVE THE MAVERICK PRRAMETER
815~ A6 EA 08680 LDX *QUTS :NUMBER OF POLYPHONIC CHANNELS @7E- 30 9% 1588 BMI ECHO :BRANCH ALWAYS
e17- 88 8698 LP@ DEY :POINT TO NEXT OUTPUT CHANNEL 1598
8i8- €A 8700 DEX :ONE LESS POLY CHANNEL 989~ FO 7E 1600 NEXT BEQ STAR :COMMAND IS FOR CLEAR, BRANCH
019- D8 FC 0710 BNE LPO (ALL POLY CHANS NOT USED, LOOP 882- (9 06 1618 CHP 86 :IS COMMAND 5 (CLEAR ECHO) OR 6 (BRK)?
81B- 84 EB 8720 STY *QUTT :SAVE FIRST ECHO POINTER FOR LATER 084- 30 88 1620 BMI EBZR :COMMAND IS CLERR ECHO, BRANCH
9730 886- DB 06 1630 BNE NXTG :COMMAND IS NOT BRK, BRANCH
8748 RDVANCE ECHO BUFFER POINTER AND ADJUST IF NECESSARY 988- 20 21 oD 1640 JSR INIT :SHUT DOWN SYNTHESIZER
arse 08B~ 4C C8 FF 1650 JMP BRAK :AND RETURN TO MONITOR
@iD- A6 BE 0760 LDX *EPNT :GET CURRENT ECHO BUFFER POINTER @ge- €9 07 1660 NXTG CMP 07 1 IS COMMAND TUNE?
81F- C6 EC @778 DEC #CNTR :DECREMENT TIMER 099~ D@ 65 1670 BNE BRDG ‘R BRANCH TOO FAR
621- D8 89 0780 BNE GETN :TIME NOT UP, BRANCH 892- A@ SC 1688 LDY SC :PREPARE TO TUNE TO MIDDLE C
823- RS BC 0799 LDA *EDLY :TIME UP, RE-INIT TIMER VRLUE 0%4- 205280 1699 JSR FILL :SEE MUS 1.@ DOCUMENTATION
825- 85 EC 8300 STR *#CNTR :RE-INITIALIZE TIMER 897- 4C 16 1@ 1760 BRDG JMP ECHO :PLRY ON AND ON AND ON
@27- CA 8810 DEX :POINT TO NEXT 1716
828- 18 @2 2820 BPL GETN :BRANCH IF STILL WITHIN BUFFER ARER 1726 :SET-UP YARIRBLES FOR MUS1
82R- A2 3F 8830 LDX 3F :OTHERWISE, RE-INIT POINTER 1730 . OR 188R (INITIAL PRE-SET
82C- 86 BE 8848 GETN STX *EPNT :SAVE NEW POINTER 1740 . HS 81038204
9858 - 1750 . OR 10E8 :SYSTEM CONTROL AND QUASH DELARY
88680 :PUT CURRENT CHANNEL 1 NOTE IN ECHO BUFFER AND 1760 .HS 482001 (AND QUTS
0870 :PREPRRE ECHO CHANNEL COUNTER 1770 :AND PRESETS
8888 1780 . OR 169A
826~ A5 DF 8899 LDA #CHN1 :GET CHANNEL 1 NOTE 1790 . HS e1ereiel
836- 9D 88 82 08900 STA EBUF, X :SAYE IN ECHO BUFFER 1800 . HS 81676108
933- A5 BB 9916 LDA *ECCO :GET NUMBER OF ECHO CHANNELS 1816 . HS 810302088
835- 85 BA 8920 STR *TEMP :SAVE AS COUNTER 1820 . HS 81038210
8930 1838
9949 CALCULATE SUCCESSIVE ECHO BUFFER LOCRTIONS AND 1840 END . EN

55

”

SYSTEMS

CONTROLLING EXPONENTIAL

The two most common
questions I hear about the
computer - based synthesizer
systems we've been developing
here are:

1) How do I wuse it with my

exponential synthesis gear?
and

2) How do I wuse it with my
Razmataz RMT-80 computer?

The answer to the second
question is going to have to wait
just a bit longer (though I
expect to have a surprising
answer soon).

The answer to the first
question 1is what we're going to
focus on this time by looking at
a Digital to Analog converter
that is designed to be compatible
with almost every synthesizer in
the world with the exception of
the linear holdouts- Paia, Yamaha
CS series, Unicord, some EML; you
know who they are. For them, you
use the stuff we've already
covered.

By way of a very short
review, the differences between
D/As that are to be used with
linear response elements and
those that are to work with Moog,
Arp, or any other exponential
system are not great from a basic
conceptual standpoint. A binary
number is fed in one end, and a
DC control voltage comes out the
other. But, they do differ
greatly in the character of the
voltage that comes out.

For linear response
equipment, the D/A must produce
an output that has an exponential
character- as the control voltage
increases, the incremental change
in voltage must also increase.

Since exponential response
equipment has analog circuitry
built into the front end of each
control input which "bends" the
linear control signal into an
exponential curve, a D/A that is

to be used with this equipment
must produce a linear output
voltage function. That is, the
incremental change in output
voltage must be constant. See
figure 1.

One of the nicer things

about this 1linear D/A is that
it's common, the kind that most
applications require. Since it is
common, we have a large number of
parts to choose from. From that
large number we've selected a
"5008" type which is made by a
number of manufacturers. When
Signetics makes it and houses it
in a 16 pin plastic package it
becomes an NES008N.

Inside, this chip is
relatively simple. It looks like

figure 2. The transistors shown
are each a current source and the
values of the resistors in the
matrix that their emitters are
tied to are such that if the
source associated with DO is
pumping some current (i), the one
that corresponds to D1 will pump
twice that (2i). Similarly, the
source that goes along with data
bit D2 produces twice what the
previous one did (4i), and so on.

In response to a bit being
set, the current produced by the
source associated with that bit
is switched so that instead of
~appearing at pin 2 of the IC it
appears at pin 4 (Iout). At any
given instant, this output
current will be the sum of the
currents corresponding to each
input bit which has been set.

To turn this chip into a
"system" that accepts data at the
input and controls a synthesizer
at the output, we need to add
such niceties as latches to hold
the data that the computer sent
out, an I/V (current to voltage)
converter to change the 5008's
current output to a voltage that
our synthesizers will 1like, and

BLOCK DIAGRAM

v-
139

Vic

|
|
|

NETWORK
CURRENT
SWITCHES

13 sf
B N D SRS N N A

v

! 2{?%?
[== e

REF
Aer !

e

{l))R G R avu b o b dvw DI
INIENIENRIENIENIENII NI 5 il

57

other bells
available.
When we do all this, the
design looks like figure 3. It's
pretty straight - forward. We've
used 4042's to latch the data
coming in and the RD line is the
strobe on these latches which,
when low, allows the data present
at their inputs to appear at the
outputs. When RD is high,
whatever data was present at the
latech inputs when the line went
high will be held at the outputs.
Notice that the two most
significant data bits follow our
previous protocols in that they
come out simply as flags rather
than being presented to the
converter circuitry. But notice
also the jumper JP1 which, as
we'll see later, can be used to
double the range of the D/A
(although at what might be an
unacceptably high cost).

We've used a 4136 quad
to provide all of the
support that the 5008
one stage serves as a
between the calibration
and the 5008's Vref input

another comprises a
current to voltage converter
(IC1b), and a third is an
inverting summing amplifier that
allows a modulation input (ICile).

and whistles as

op-amp
analog
needs;
buffer
trimmer
(IC1a),

With the exception of the
standard "be tidy" caveats,
there's nothing very critical

about this D/A system and you can
build it using whatever
construction techniques appeal to
you, but the board which is
available from Paia has enough
interesting features that it's
worth taking a special 1look at
it. Check out figure 4.

I suppose the most
interesting thing is the way the
input, output, and control lines
are configured. Notice that the
connections to the computer all
appear on two 14 pin dip outlines
(J1 and J2), while connections to
the synthesizer (including some
computer address lines that QuASH
in an expanded system will need;
see "In Pursuit Of The Wild
QuASH", Polyphony July '77, page
19) come out to the 15 pin
Molex-type edge connector (J3).

We've already examined in
general terms how this type of
D/A connects at the computer side
(see "The Polyphonic Synthe-
sizer", Polyphony February '78,
page 28). If the computer you're
using is a Paia 8700 (which is
not a bad idea since it has some
useful music software to support

58

OMPUTER-

US

0

+ 50

D.GndO—;

RD
(CASS)
D70—

N

D50—

o

==

D30 13
D20- 7
D10— 14

Ic-2
N=3 =

N

i

Cc3
01

lo)

SNE HSwn

v
+
b

v-v

ajuanbas w jou

A4O

O
=

A30

A20-
A0~

EXPANSION
J7

w

it),, these connections couldn't
be simpler - there is a one to
one correspondence between J1 and
J2 and the connectors they mate
with on the computer. Standard
pre~-terminated jumpers are used
to connect the two. No soldering.

The wiring to the
"synthesizer" side is also
arranged to acknowledge the fact

that almost everyone will want to
expand to a multi-channel system
sooner or later (it's actually

what the computer stuff is best
at!), so the Molex wiring is the
same as that found on QuASH
modules.

All of this means that from
an inter-wiring standpoint, a
fully expanded system is
exceptionally easy to implement.
Figure 5 shows you how.

Calibration of the 8785 D/A
consists of adjusting the D/A CAL
trimmer (R1) so that octave
changes in the input data produce

octave changes in the module
being controlled; this can easily
be done by ear. The MOD CAL
trimmer (R2) should be set so
that a one volt (or whatever
represents one octave in your
system) change at the modulation
input produces a one octave
change in the controlled element.

Before we wrap this column
up, there are some little detail
things that really need to be
mentioned.

Going back to the schematic
for a minute, observe that there
are two '"programming" Jjumpers
(JP1 and JP2) indicated on the
circuit board.

As we've mentioned again and
again, the Paia protocols use the
least significant 6 bits of an 8
bit word to specify an analog
parameter while the two most
significant bits are flags (D6 is
used as a gate, and D7 is a
general purpose control bit which
QuASH recognize as a portamento
control bit). Since the 5008 is
an eight bit converter, obviously
some bits will not be wused. I
decided to permanently not use
the least significant bit (LSB)
of the converter (pin 12) by
grounding it. The only effect of
this is to slide all the lines of
the controller "up one" as far as
the 5008 is concerned, and it has
no electrical effect that we need
to worry about.

The other unused 5008 bit is
then it's MSB (most significant
bit - D7, pin 5) and if the
jumper JP1 is not in place, this
bit is in fact not used. But, if
you are one of those people for
whom nothing is ever enough, you
have the option of installing the
Jjumper. This means that the MSB
of the 5008 is tied to data bit
D6, effectively doubling the
range of the D/A from 64 notes
(over 5 octaves) to 128 notes
(almost 11 octaves).

The cost of this "simple"
modification is much greater than
Jjust a piece of wire, though,
because if the option is selected

the system is no longer
compatible with our existing
software (which might be just
fine for your purposes). Maybe
worse than that, it's no longer
compatible with QuASHes either.

But if you need it, it's there.
A second jumper (JP2) is
meant to be used in systems with

4 or more QuASH and causes the
fifth address bit from the
computer to serve as the Bank

Select (BS) line (see "In Pursuit
Of The Wild QuASH" referenced

earlier).

Something else to worry
about is grounding. At some point
in the system, digital power
ground (recognized as a chassis
ground symbol) and analog power
ground (recognized as an earth
ground symbol) must be tied
together. However, they must have
a common connection at only one
point. Otherwise you run the risk
of ground loop problems. I
recommend that these two grounds
be tied together at the Molex
connector of the D/A, as shown in
figure 5.

Finally, Moog "S" triggers
must be pulled to ground rather
than accepting the high logic
level that our trigger outputs
provide. The simple ecircuit in
figure 6 takes care of this using

almost any NPN transistor you
happen to have laying around.
Synthesizers that have both

"gate" and "trigger" inputs can
use the scheme shown in figure 7
to derive both of these signals
from the single gate that our D/A
produces. []

un
g EXPANSION $— |

—

ROP uny

(I

+5

8785

F1

+V) From Analog
_ power

O

(synthesizer)

O O

1 =

L]

4 QUASH
(16 Chonnels)

[

o)

A complete kit for the Linear D/A including printed circuit board,
sockets, headers and edge connector is available from Paia Electronics,
Box 14359, Oklahoma City, OK 73113. Order #8785 Linear D/A. $22.95 ppd.

y §
O
to Moog
From D/A “s" trigger
FlorQUASH JoK \
Trigger Any NPN
transistor

MOOG"'S" TRIGGER ADAPTER.

-
7/

FromD/A o— —>,"Gate”

Flor QUASH 01

Trigger . “Trigger”
47K IN918

“GATE'' & "“TRIGGER" ADAPTER.
59

NOTES

There are plenty of times when a switch is a great
way to control things- 1like when you want to turn
something on and off, or select a preset. But when
you're just playing around looking for the right sound,
there's nothing quite 1like a knob. Unless it's a
joystick.

Knob or joystick, either one- we need some way to
digitize it's position so a computer can read, save and
manipulate the data various ways. And preferably it
should be a cheap and simple way.

We need something we'll call a digitizer. It's an
analog-to-digital converter, really; the only reason I
don't think we should call it an ADC is that we reserve
that term for something more elaborate than what we are
getting into. This is really simple.

In every electronic scheme that I know of to
convert an analog parameter to a digital one there is a
thing called a comparator. See figure 1. The thing it
compares are the voltages at its "+" and "-" inputs. If
the voltage at the "+" input is greater, the output is
at a high voltage. If the "-" input is greater, the
output is driven to a low voltage.

The elaborate ADC's use the comparator as only a
small part of a larger circuit that will probably look
something like figure 2. When it's time to quantize the
voltage to be measured, the counter is reset and its
digital output goes to zero. Because of this, the D/A
puts out a low voltage (in this scheme you must first
have a digital to analog conversion before you can have
the reverse). The output of the D/A will probably be
lower than the voltage that is being measured, so the
output of the comparator is high and allows pulses to
pass from the clock through the NAND gate to the
counter. The counter counts up and, as it does, the

output of the D/A increases. When the output of the D/A
exceeds the voltage to be measured, the comparators
output goes low and clock pulses can no longer pass
through the gate to the counter. At that point, the
counter's output is a digital representation of the
analog voltage being measured.

There are a number of variations on this design
that have to do with the way the counter works, and in
a computer based system it is common to replace both
the clock and counter with software. Unfortunately, the
common features of all these variations are modest
complexity and/or relatively slow conversion rate.

hérds

Now, for a really simple digitizer, take a look at

figure 3. Since the resistors in the divider that
detirmines the reference voltage (Vr) are equal, the
digital output is a 1 (high) if the voltage is greater
than 1/2 the supply voltage and 0 if the input is less
then Vs/2. I know what you're thinking, and you're
right. A one bit digitizer isn't exactly an improvement
over a switch in most cases.

OK, 1let's add another stage. Only on this one,
let's make the reference voltage a function of the
output state of the first stage. Schematically, this is
represented in figure 4.

In order to easily see how this circuit works, you
have to assume that Vr1 (the voltage at the junction of
the two R1's) is constant at Vs/2. In fact, this
voltage will change as the comparator output D1 changes

(1 2

3)

VOLTAGE
10 ©-
CONVERT

A COMPARATOR

RESE;I’—T

CONVERSION
—> N
PROGRESS ,

\/

= A ONE BIT

cLock DIGITIZER

L A CLASSIC A/DC C

J

61

62

and alternately sinks or sources current through the
two resistors, R2. But as long as the value R1 is kept
much lower than the value R2 (the lower the better, at
least 1/10), the change in Vri1l will not be too
significant.

Imagine that a voltage which 1s 1increasing from
ground to supply is applied to the input of the
digitizer. When at ground, the voltage 1is 1less than
Vs/2, so D1 1is low (ground). The two R2's now form a
voltage divider at the junction of which is a voltage
equal to 1/2 of Vs/2, or 1/4 of the supply voltage
(Vs/4). This voltage (Vs/l) is the reference voltage
for the new stage. Since we said that our input voltage
was initially at ground (which is less than Vs/l), the
output of the new stage is also low. In binary, the
output of the two stages is 00. An equivalent circuit
would look like figure 5.

Now we increase the input voltage and, as it
exceeds Vs/4, the output of the new stage changes from
low to high. That's all that happens; the binary output
of the two stages is now 01.

We continue to increase the input voltage and, as
it exceeds Vs/2, the output of the first stage goes
high. But, that's not all, because with the output high
(at Vs), an equivalent circuit of the voltage divider
that forms the reference for the new stage looks like
figure 6. Since the input voltage is less than 3/4 of
the supply voltage, the new stage changes state back to
low and all is once again stable with a binary output
of 10.

Increasing the input voltage further will exceed
3Vs/4. The new stage again changes to a high state and
the binary output of the two stages reads 11.

Additional stages can be added in much the same
way we just added the second stage. Each new stage
becomes the least significant bit of the digitizer and
its reference voltage is a weighted sum of the outputs
of the more significant stages. Using 5% resistors, the
scheme can be carried to 5 bits. 1%'ers would probably
take us up to 6 bit resolution; 7 or 8 bit resolution
should be realizable by going to active summing amps
instead of the passive summing we've used. But, then
you're back to complicated again.

Instead, we'll stop at an easily obtainable 4 bits
with the design shown in figure 7. Since the MC3302P is
a quad comparator, only one IC is used in this circuit.
Like I said, it's simple. Resistors R5, R12, R19, and
R27 have been added to give just the slightest
hysteresis (positive feedback) to each stage to help
overcome any uncertainty at input voltages that
correspond exactly to 'change of state' points. When
powered from a computer's 5 volt supply, the range of
input voltages is also O to 5 volts and the pot to be
digitized is hung across the supply as laboriously

(- A

A FOUR BIT
DIGITIZER
R1 R2 +v
A\N\~0+5
= 470 470 MC3302P
; R6
R3 | 2.2K
fo‘x“

R4

D3

8 a

OLD STAGE 5

IN
—> D Vg
Ry R Ry
VW T VO
= \"
vy 2“2 %
< R
2
v/«l VVV R
R2 NEW
STAGE
D
o
R << Ry =

S, v v,
it % /2
2

=+ Ry

depicted in the formidable technical drawing of figure
8. At this point, we may as well establish the standard
that the pot should be wired so clockwise rotation of
the control causes the output of the digitizer to go
from $0 to $F (see test program).

I believe that the most useful configuration for
this ecircuitry is actually two digitizers on a single
board, with each half providing half of an 8 bit word.
“The configuration shown in figure 9 is Paia's EK-7 and
is made to plug directly into input port #2 of a Paia
8700 computer. It can also be connected to any 8 bit
input port of any computer.

The nicest thing about the digitizer is that it is
easy to program for. There are no clocks to worry about
and no elaborate software overhead (in fact, none at
all). You just read the port to which the digitizer is
connected to find the state of the knobs.

A good first example is the short program written
for an 8700 to test the unit's operation shown in
Listing 1. This program reads the output of the
digitizer and shows the result in the 8700's displays.
When the value of either of the digitizer outputs
changes, the beeper sounds. As the knobs are rotated,
the displays should show that the output increases or
decreases sequentially without skipping any of the
hexadecimal numerals $0 - $F and that there is no
interaction between the two digitizer sections.

r 8910 :TEST FOR 4 BIT DIGITIZER j
9026 :DIGITIZER INPUTS TO PORT %2
[X .
0840 . A) SHOW QUTPUT OF DIGITIZER
8858 : B) BEEP WHEN YALUE CHANGES
9138
1096- AD 08 88 0148 STAR LDA INPT :GET DIGIT
1883~ C5 20 8160 CMP *TEMP :SAME AS LAST?
1885- F8 04 8178 BEQ LP1 :YES-BRANCH
10687- 18 8180 CLC :PREPARE
1008- 20 22 6F 9196 JSR BEEP :AND BEEP
18¢B- 85 20 8208 LP1 STA *TEMP :SAYE YALUE
ieeD- 6D 20 68 @210 STA DISP :SHOW YALUE
1016~ 4C 00 16 8220 JMP STAR :AND SO ON...
0238
8256 END .EN J
list1

The fact that there are two digitizer sections on
the EK-7, one contributing the upper half-byte and the
other the lower half-byte 1is going to be of great

significance in some future software and hardware that
we'll be doing.
For now, we'll use the PINK TUNES software

(Polyphony July/August 78, pp. 22-26) as an example.
When you review PINK TUNES, you'll notice that the
statistical properties of the note durations (half
notes, quarter notes, dotted notes, ete.) are
controlled by the upper half-byte (UHB) and lower half
byte (LHB) of memory locations we call MASK and TIME.
We don't have the space here to duplicate the detailed
explanation of how these variables interact which
appeared 1in Polyphony, and is reprinted in "Friendly
Stories About Computers/Synthesizers"; but briefly,
both UHBs interact to determine the probability of a
dotted note. The LHB of TIME sets the minimum note
duration that will occur, while the MASK's LHB controls
the range of possible note durations.

+5

__8

softwara considaration

DUAL
DIGITIZER

TO COMPUTER

T0 . INPUT PORT

DIGITIZER
INPUT

=) v,

These dual half-byte control words are just right
for use with a dual half-byte digitizer. From a

programming standpoint, all we have to do is read the
memory location where the knobs are ($808 on an 8700)
| e KNOES FOR PINK TIHES
.I 0869
08% . (R 1066
aiee :
8149 :BEFORE ME BEGIN NOTE THAT THE FOLLOWING SECTION REPLACES PART OF THE
2120 :EXISTING PINC TUNES PROGRAN PRINARILY, WE CHANGE THE BRANCH DESTINRTION
2 8139 :FOR THE BNE AT LOCATION $866 SO THAT THE BRANCH IS TO THE TESTS MHICH
l 2148 :FOLLON RATHER THAN BACK TO THE START OF THE PROGRAM RS 1T MRS ORIGINALLY.
% :
1066- DO &7 8468 BRE TSTS :RATHER THAN TO LPO AS ORIGINALLY WRITTEN
i68- 274 8 JR SET
1968 2281 o® JR NOTE
1066~ 08 8% BRK
000 t
@218 RS KE JOIN OLR PROGRAM, TEST HAVE ALRERDY BEEN MRDE TO SEE IF COMYD
:FROM KEVBORRD WRS FOR SCRAMBLE, TUNE, OR STOP. NOW ME ADD TESTS FOR
6230 :CHANGE TEXPO (R TIME AND MASK PRRAMETERS
w4
166F- (96 6258 TSTS O &C :1S THERE A COMYAND AT ALL?
107- BB%B 8260 BCS L8 :NO, JUST GO AHERD AND BRANCH TO KEEP ON TRUCKIN'
973- @ (2] e 83 :NORMALIZE COMMAND FOR POINTER USE (CARRY MRS CLEAR)
1675 @ 6208 P :SAWE THE + OR - STRTUS OF THE SUBTRACTION FOR LATER
16%- M 2% TRY AD TRANSFER THE RESILT TO POINTER, MRY USE
1877- M1 @39 LDA DGIT :GET THE DIGITIZER QUTPUT
o 28 8318 PP -NOW RECOVER THE + OR - STATUS OF THAT SUBRACTION
1678- 10 66 032 BPL TST6 -IF THE POINTER IS =)@ BRANCH TO CHANGE MASX (R TIME
16D~ @Fe [xe:] ORA oF8 TENPO CHANGE, SET ALL UMB BITS T0 1S NITH THIS MAK
97F- &R 340 STA +TMP0 :THEN SAYE RESILT RS TENPO CHANGE
1661- 06 88 6358 BNE LP9 -AHD BRANCH ALWRYS TO CONTINUE
1863- 9588 8368 TST6 STA #TIME, X :CHANGE TINE (R MRSK PARAPETERS
1085~ 16 87 [teg) BPL LP BRANCH ALWRYS TO KEEP ON
[x::
3%

L N}

and put the result in the memory location where PINK
TUNES is going to look for the variable that we're
changing.

Now, there's a minor difficulty as we have 8 bytes
worth of variables (MASK and TIME for each of 4
channels) to set with only two knobs. At some point in
the future we'll look at hardware ways to multiplex our
digitizer so it can be fed by multiple addressable pots
(something like QuASHes in reverse), but for now we're
going to actually multiplex the knobs - with software.

Depending on which command pad is being touched, a
knob may be controlling minimum note duration on
channel A, or the range of durations on channel C, or
any of the other possibilities. The program shown in
Listing 2 can be added to PINK TUNES to make all this
happen. With the software running, the first 12 pads of

63

the 8700's command keyboard take on the
responsibilities depicted in figure 10.

The first three keys on the computer serve the
same function they did in the un-altered PINK TUNES,
but from there on it's all new. When TEMPO is touched,
the knob corresponding to the LHB of the digitizer
provides a coarse control of tempo; the other control
has no effect. Touching one of the pads $4 - $B causes
the selected parameter for the selected channel to be
read from the pots. By the way, thinking of the pots as
being labeled as shown in figure 11 will help you keep
their functions straight in your mind (particularly if
you remember that TEMPO is a duration function).

Yep, the knobs are definitely a plus for PINK
TUNES. You can really try things out fast without
having to shut everything down and scratch your head
each time you want to change a channel from quarter to
half notes, and so on. Also, the first program is a
good example of how to program the knobs when you're
setting variables that are organized as 4 bits each;
two to the byte.

But there are other ways that the knobs can be
programmed. For example, some parameters simply require
more resolution than the 16 quantizing levels that 4
bits provide. An obvious answer is to think of the two
knobs as both controlling one value, in which case the
UHB knob can be thought of as a coarse range control
while the LHB knob is fine tuning (our first test
program can be thought of as acting this way). We'll
look at another way that resolution can be extended in
a moment.

In some cases the 16 quantizing levels provided by
a single digitizer "channel" is sufficient resolution,
but the resulting parameter must have a greater range
than 4 bits allow. A brute force method of dealing with
this is to use the output of the digitizer as a pointer
to a table of parameter values like the code in Listing
3. This program reads a value from the table based on

RANGE
CHAN CHAN CHAN CHAN
0 c] A
MINIMUM
CHAN CHAN CHAN CHAN 10
) c] A
SCRAMII.EI TUNE sToP TEMPO
PROBABILITY DURATION

11

DIGITIZER

the setting of the LHB knob and shows iF ip the
displays. In this case the table is an approx1m§tlon of
1/4 cycle of a sine wave, but it could be anything.

64

In some cases the digitizer's output can be used
in some way to calculate the parameter value.

One of the difficulties with software multiplexing
of the knobs is that unless you're one of those people
blessed with eidetic memory you have little way to know
what the position of the knob was the last time you set
it. In some cases this isn't important, but in others
(when you want to smoothly change a parameter from what
it is to what you want it to be) it can cause problems.
You punch in to change a value and the value
immediately Jjumps to correspond to the current setting
of the control. Glitch-ville.

A solution is to use the knob not to" set the
parameter, but to change it. That may not sound like a
big difference, but it is. Using the knob to change the
parameter means that when a function is punched in, the
current setting of the knob is not important. As the
knob is turned, though, the change in its position
produces a corresponding change in the parameter. Try
running the software in Listing 4.

With the code operating, any changes in the
setting of the LHB knob are ignored completely until
the parameter change is called for by touching the "0"
command pad. Then, as the knob is rotated clockwise,
the parameter (as shown in the displays) increases.
Unlike the other code that we've examined, when the end
of control rotation is reached, you can release the
command pad, turn the knob fully counterclockwise,
touch the pad again and continue increasing the
parameter. This technique not only provides smooth
control over a value without having to know its current
state, it also extends the range of values that can be
set with the knob.

The things that we've covered here are not all the
possibilities, but hopefully they will get you started
in adding variables to your software. It's really hard
to beat a knob.

The following are available from Paia Electronics,
Inc., 1020 W. Wilshire, Oklahoma City, OK 73116:

*#¥ EK-7 Dual Digitizer kit, with PC board and all parts
(including pots, knobs, and sockets); $14.95 + $1
postage and handling.

*% WFpriendly Stories About Computers/Synthesizers", a
compendium of past Lab Notes from Polyphony; $5.00 ppd.i

r 018 TRBLE LOOK-UP DENO
%% .
9638 :THE DIGITIZER IS READ AND THE LHB IS MRSKED OFF WITH fN ‘AND’. THE
8048 -RESULT IS PLACED IN THE X REGISTER FOR USE AS R POINTER T0 THE TRBLE OF
0645 -VALUES WHICH OCCUPIES THE MEMORY IMPEDIATELY FOLLOWING THE PROGRAM.
858 THE YALUE CORRESPONDING TO THE KNOB POSITION IS FETCHED AND SHOWN IN
868 THE DISPLAYS.
07
108~ D618 0080 STAR LDA DGIT :READ THE DIGITIZER
i3- B¢ D o /A’ WITH MRSK (Be0atdil) TO MKE B ZERO
1005~ fA 6168 TR :THEN PUT TO X REGISTER T0 USE RS POINTER
1086 B5 6€ 840 LDA ¥TABL X :GET THE PARAMETER YALLE FOR THIS KNOB SETTING
i03- @218 8128 SIA DI :SHOW THE PRRAMETER VALLE
i068- 40810 38 JWP STR :THEN LOOP FOR MORE
#14e
58 TABL . HS BR19324R62780EA2BACTMELECFAFAFE
860
6178 N
L]
— list 3
|
(list 4
0816 - DELTR TUNE DEMO
[
0038 :AFTER A SHORT DELAY GENERATED BY CALLING THE MUS 1 @ SUBROUTINE LOOK,
0049 :WE READ THE COMMAND KEYBOARD BY CALLING THE MONITOR SUBROUTINE DECODE.
0856 0N RETURNING FROM THIS SUBROUTINE THE ACCUMULATOR AND Y REGISTER CONTAIN
0068 :THE NUMBER OF THE LOWEST KEY THAT WAS PRESSED ($18 FOR HO KEY). THE
8978 :CARRY FLAG IS CLEARED BY DECODE IF THE KEY WRS TOUCHED THIS SCAW BUT NOT
8088 THE LAST, LE IF THE KEY MRS JUST TOUCHED
0%
1008- W4 D @108 DLTA JSR LOK :THE CAPACITIVE KEYBOARD REQUIRES R DELAY BETMEEN SCAIS
1063- 2800 4F 8110 JR DECD :READ THE COMMAND KEYBORRD
1086~ DO F8 828 BNE DLTR :IF ZERD KEY HOT TOUCHED, LOOP
1088- D B8 18 ai30 LDA DGIT :CHANGE COMMAND RSSERTED, SO GET THE DIGITIZER OUTPUT
8148 -
8158 :NOW THE ACCUMULATOR HAS THE DIGITIZED KNOB POSITION. WE’RE REALLY ONLY
@168 INTERESTED IN THE LHB, SO WE MAKE THE LM ZERO NITH AN ‘AND". IF THE
@178 COMMND WAS JUST ASSERTED, ME SKIP THE CALCULATION OF CHANGE IN SETTING
8188 :AD SINPLY SAYE THE CURRENT SETTING RS THE STARTING YALUE
8%
8- I 6200 RO oF /A’ WITH MRSK TO MAKE UHB ZERO
1000 917 [-at) BCC DNXB :IF COMMAND JUST RSSERTED, SKIP CALCULATING CHANGE
100F- 48 2]] :SAYE KNOB POSITION ON THE STACK FOR USE LATER
106~ B8 6238 SEC :PREPARE FOR SUBTRACTION TO FOLLOW
648 -
6258 :IT/S TIME 10 SEE HOW THE KNOB HAS CHANGED. CURRENT SETTING IS SUBTRACTED
0268 :FROM PREVIOUS SETTING AHD THE DIFFERENCE (MAY BE + OR -) IS ADDED TO THE
06270 :CURRENT VALUE OF THE PARAMETER TESTS ARE MADE TO SEE THAT WE‘RE NITHIN
6280 :THE ARBITRARY RANGE $06-$3F AND IF OUT OF RANGE THE LIMIT IS SUBSTITUTED
6298 :FOR THE CURRENT PARAMETER
0308
181- E588 0318 SBC «TEMP CTEMP IS THE POSITION OF THE KNOB THE LAST TIME THROUGH
ip13- 18 0320 o :NOW PREPARE FOR RDDITION
1814- 6581 6338 fOC +PARM :ADD THE DIFFERENCE BETWEEN NOW AND LRST TIME TO VALLE
i0t6- 10 @2 0340 BPL DRXL :IF GREATER THAN ZERD, SKIP THE NEXT INSTRUCTION
1618- A3 00 0350 LDR 08 :IF HE'RE HERE, WE'RE UNDER-RANGE. NAKE PARAMETER ZERO
1oif- C93F 0368 DXL CWP 3F <ARE WE GREATER THAN THE MAX ALLOWABLE FOR PARRMETER?
16iC- B @ :21L] BCC DNK2 :NO, S0 BRANCH T0 SKIP MEXT INSTRUCTION
1ME- ¥ 6389 LDA 3F :OVER-RANGE, MRKE PARAMETER EQUAL TO MAX LINIT
1626- 8581 €390 DNX2 STR #PARM :SAVE THE NEW YALUE OF THE PARRMETER
182- 022818 0408 STADIS :AND SHOW IT IN THE DISPLAYS
0448 -
8428 :NOW ME GET READY FOR THE NEXT PRSS BY SAVING THE CURRENT KNOB POSITION
8438
165 68 0448 PR :PULL THE DIGITIZER QUTPUT FROM THE STACK
106- 8580 8458 DHXB STR *TENP :FND SRYE IT TO DETERMINE CHANGE IN SETTING NEXT TINE
1028- 400010 0460 JP DT THEN JUP TO START TO CONTINE
27N
8489 N

65

66

POLY-SPLIT

Many times we've talked about how the personality of our
computer based equipment is a function of the operating system
software that we happen to be running at the moment. Let's
play some head games with the gear and feed it some code that
will give it a split personality.

POLY-SPLIT does just that; it gives us two complete
polyphonic synthesizer systems under the control of one
keyboard. Play a chord or note on the lower keys and they are
always assigned to a lower group of outputs. Play on higher
keys and the result is assigned to another group.

Before we get into the listing of this program and its
operation and use, we need to keep one fact clearly in mind;
POLY-SPLIT is simply an extension of the polyphonic
personality offered in MUS 1.0. All of the options offered by
that code (STGs, dynamic output refresh, etc.) are provided by
this one also. Since many of MUS 1.0's subroutines are used by
POLY-SPLIT you must have this PROM or its equivalent
available, and the variables that you manually initialize for
MUS 1.0 (see LAB NOTES: MUS 1.0, April/ May 1978 Polyphony)
must be set for POLY-SPLIT also.

In addition to OUTS, CTRL, etc. which MUS 1.0 used there
is a new variable which is unique to POLY-SPLIT; OUT2 ($BF).
This is the variable that tells the program how many channels
are to be set aside for use exclusively by AGO keys below the
split point. Notice specifically that if MUS 1.0's STG option
is selected, the number entered into this variable must
include those channels which will be producing envelope
transients. (i.e. The number entered for OUT2 will always be
an even number when STGs are being used.)

For example, if you have hardware (QuASH, etc.) for eight
channels, this number 1is entered into the normal MUS 1.0
location for it; OUTS ($EA). If you want to split these into
three channels for low keys and five for high keys, you would
set OUT2 ($BF) to contain 03.

The program appears at the end of this column and 1is
loaded starting at location $000 in the same way that we've
loaded programs in the past. If you're the careful sort, you
will also save the program on tape as soon as it's loaded so
that if there's a problem it won't wipe out all of your work.

When the program has been loaded, preset the MUS 1.0
variables according to your preferences and application, and
set the low channels variable (OUT2) as discussed above.

Run the program from location $000. With POLY-SPLIT
running, keys O and 1 on the command keyboard retain the
functions that they had under MUS 1.0. Key 0 clears and mutes
the system; key 1 causes all of the channels to produce a note
corresponding to middle C on the AGO keyboard.

A use for command key 2 has now been added; it provides a
means of changing the split point while you're playing. Touch
this pad and, as long as it's held down, any key on the AGO
keyboard that you press will become the new split point. Now
while playing, any key below the split point will be assigned
to the channels that you've set aside for them, while keys
greater or equal to the split point will be assigned to the
remaining channels.

1008~
1882-
1004~
1806~
1608-
1090~
1698-

" 1680-

1e1@-
1013-
1016-
1818-
1616~
101C-
161E-
1621~
1823~
1025-
1627-
1629~
1628~
1020-

SEBIRB
88IBB

18 F9

@110
8129
6130

6810

20 80 6F 8340

Fe EC
cset
ba 7
A9 2E

8350
8360
8378
8388

20 23 8D @398

Fé ED
C9 @2
Da 88
A5 E7
F@ ES
85 AL
D8 E1

@460
0410
0420
0420
844@
8450
8460

R L R R

POLY-SPLIT

R PROGRAM FOR

SPLIT KEYBOARD

BY

JOHN STMONTON

(C) 1979 - PAIA ELECTRONICS

POLYPHONIC

* % o X X % K K K X K

KTBL
NTBL
HKEY
SPLT
ouT2
ouTT
ouTS
TRGN
INIT
NOTE
POLY
DECD

. DL 9OE®
. DL 8eD8
. DL 8eA2
. DL 821
. DL BOEC
. DL ooEB
. DL BOER
. DL @DC3
.DL @b21
. DL eD28
DL @b71
. DL BFoe

:FIRST, SYSTEM THINGS ARE DISPOSED OF. THE SYSTEM IS
:INITIRLIZED USING MUS 1.8°S “INIT" ROUTINE, THEN THE
:QUASH CHANNELS ARE REFRESHED AND THE AGO KEYBOARD
:SCANNED ALSO USING ROUTINES FROM MUS 1.8

:FINALLY, THE PIEBUG ROUTINE “DECODE" IS USED TO READ THE
:COMMAND KEYBOARD AND RANY COMMANDS RRE EXECUTED.

:8-SYSTEM CLEAR AND RE-INIT; 1-TUNE ALL CHANNELS;

:2-SET SPLIT POINT, ANY RGO KEY PRESSED BECOMES SPLIT

STAR

POSP
SLP9

SLPS

NTST

. OR 1008

LDA *0UTT
STA *0UT2
LDX 87

LDA 98

STA +HKEY, X
DEX

BPL SLP9
JSR INIT
JSR NOTE
JSR DECD
BEQ POSP
CHP 01

BNE NTST
LDA 2E

JSR INIT+82
BEQ SLP6 .
cMP 82

BNE SPLI
LDA *KTBL+07 :
BEQ 5LP6
STH *SPLT
BNE SLPE

:GET THE # OF RESERVED LOW CHANS
:SAVE PERMANENTLY

{SET UP R POINTER/COUNTER

:AND GET RERDY TO ZERO STUFF

:ZERD THE TEMPORRRY BUFFER

:AND POINT TO THE NEXT

:IF SOME FRE LEFT, LOOP

:MUS 1. - INTIRLIZE SYSTEM

{MUS 1.8 - REFRESH AND RERD AGO KBD
:PIEBUG - RERD COMMAND KEYBORRD

:IF COMMAND = 0, BRANCH TO RE-INIT
;15 COMNAND = 17

:NO, BRANCH TO NEXT TEST

:MILL BECOME MIDOLE C

:USE PART OF MUS 1. INITIALIZE
:BRANCH ALWAYS

115 COMMAND = 27 ™
‘N0, BRANCH TO POLY-SPLIT PROGRAM

GET THE LOWEST KEY DOWN

<IF NONE ARE DOWN, LOOP
:SAYE THE KEY AS THE SPLIT POINT
:BRANCH ALWAYS

67

68

102F-
1831~
1833~
1635~
1637-
1839-
1038~
1@3E-
163F-
1041~
1043-
16844~

1046-
1848~
104A-

104D~
164F-
1851~
1853~
1055~
1856~
1858-
165R-
185C-
165E-
1060~
1061~

1063-
1864-
1066~
1868~
1069~
106A-
1e6C-
106E-
1070~

1072~
1075~
1077~
1678-
1878~
167C-
107E-
1680~
1682~
1683~
1685-

A@ &7
Az o7
BS E9
Fa o
C5 AL
98 88
93 RZ 90

A9 08
95 E@
A

10 ED

AS EC
83 EB
28 75 8D

R4 EC
A2 o7
BS A2
95 E@
88

30 83
BS D8
95 A2
@9 48
95 D8
CA

18 EE

A3 18
ES EC

38

fAS EA
ES EC
85 EB
20 77 @

@478 -

8480 :NOW THE SPLIT PROGRAM. AT THIS POINT A LIST OF THE

8498 RGO KEYS WHICH THE MUS 1.8 SUBROUTINE “LOUK* FOUND TO
@588 :BE FRESSED HAS BEEN COMPILED AND SRVED IN THE INFUT BUFFER
@516 :AREA “KTBL". WE BEGIN BY REMOVING FROM THE INFUT BUFFER
8328 :ALL THOSE KEYS WHICH ARE ABOVE THE SPLIT PUINT AND

8536 :TRANSFERING THEM TO THE TEMPORARY BUFFER RRER "HKEY".

asdg

8550 ‘éPLI LDy a7 :SET UP POINTER TO HIGH BUFFER

o568 LDX 87 AND ONE TO INFUT BUFFER
@570 S5LP@ LDA #KTBL,X :GET THE KEY

8588 BEQ@ SNX1 . IF ZERD, GO TO NEXT

8599 CHP *SFLT :GREATER THAN SPLIT POINT?
8509 ECC 5NX8 :IF NOT GREATER, BRANCH

8618 STA HKEY,Y :GREATER, SAYE IN HIGH BUFFER
8628 DEY :PUINT TO NEXT HIGH KEY BUFFER
9630 LDA 88 :PREPARE AND

8640 STR *KTBL, X :ZERQ THIS KEY

8650 SNX@ DEX :POINT TO NEKT KEY

8668 BPL SLPD :IF 50ME LEFT, LOOP

0670

8659 NEXT THE NUMBER OF CHANNELS RYAILABLE FOR LOW KEY USE
8698 IS TRANSFERRED TO THE TEMPORARY CUUNTER "OUTT" AND THE
070@ :MUS 1.8 ALLOCATION PROGRAM POLY IS5 CALLED TO ASSIGN LOW
0710 :KEYS TO LOW CHANNELS.

8728

8730 SNX1 LDA *0UT2 :GET THE NUMBER UF LOW CHANS RYAILABLE
@740 STR #QUTT :AND PUT IT IN THE TEMPORARY COUNTER
8750 JSR POLY+84 :AND CALL THE MAIN PORTION OF POLY
a76e

8778 :NOM THAT THE LOW KEYS HAVE BEEN ALLOCATED TO LOW CHANNELS,
0788 :THE HIGH KEYS ARE TAKEN FROM "HKEY" AND FLACED BACK IN THE
8798 :INPUT BUFFER (KEYS ALREFDY ALLOCATED ARE REMOYED FROM THE
8800 INFUT BUFFER). SIMULTANEQUSLY THE LOW CHANNELS ARE MOYED
6816 :TO HKEY AND ALL LOW CHANNELS IN THE OUTFUT BUFFER

8820 :ARE MARKED AS "IN USE" SO THAT THEY WILL BE IGNORED

©8360 :WHEN HIGH KEYS ARE ALLOCATED.

884¢

8358 LDY *QUT2 :f COUNTER TO M3YE ONLY THE LOW CHANNELS
8268 LD¥ &7 :AND F POINTER/COUNTER

8378 SLPL LDR #HKEY,X :GET THE HIGH KEY FROM TEMP BUFFER
6528 STA #KTBL, K :PUT IT IN THE INPUT BUFFER

88398 DEY :ONE LESS LOW CHANNEL TO DO

0500 BMI SNX2 ALL LOW CHANNELS DONE, BRANCH
0910 LDA #NTBL,X :GET THE LOW NOTE

8928 STR #HKEY, X :PUT IT IN TEMPORARY BUFFER

8930 ORA 48 :THEN SET THE TRIGGER TO MARK NOTE
8340 STA #NTBL,X :AND REPLACE THE NOTE

8958 SNX2 DEX :ONE LESS CHANNEL, POINT TO NEXT
8960 BPL SLP1 :IF SOME LEFT, LOOP

e97e

8988 :NOW POLY IS CALLED AGAIN, THIS TIME TO ALLOCRTE HIGH CHRNNELS
6998

1000 SEC :PREPARE FOR SUBTRACTION

1618 LDA 18 116 CHANNELS SUPPORTED BY MUS1
1628 SBC *0UT2 :LESS THE LOW RESERVED CHANNELS
168 . TAX :RESULT IS POINTER

1646 SEC :ANOTHER SUBTRACTION - PREPARE
1850 LDA *QUTS :TOTAL HARDWARE CHANNELS

1060 SBC *QUT2 :LESS LOW RESERVED CHANNELS

1678 STR *0UTT :BECOMES CHANNELS LEFT TO ALLOCATE
1680 JSR POLY+@6 :CALL MAJOR PORTION OF POLY

1650

1188 :FINALLY, THE REAL STATE OF THE LOW CHANNELS IS RESTORED
1110 :TO THE QUTPUT BUFFER. SIMULTANEOUSLY THE TEMPORARY BUFFER
1128 :15 ZERD’D FOR THE NEXT PASS.

1130

1140 LDY #QUT2 :NUMBER OF LOW CHANNELS FOR COUNTER
1150 LDX 07 :POINTER/COUNTER

1168 SLP2 DEY :ONE LESS LOW CHANNEL

1178 — BMI SNK3 :AND IF ALL DOME, SKIP NEXT TRANSFER
1180 LD *HKEY, X :GET THE REAL CHANNEL STATE

1190 STR #NTBL,X :PLACE IN OUTPUT BUFFER

1268 SNX3 LDA 09 :NOW GET RERDY AND

1216 STR #HKEY, X :ZERD THIS TEMPORARY BUFFER LOCATION
1220 DEX :ONE LESS TEMP BUFFER LOCATION

1230 BPL SLP2 :IF SOME REMAIN, LOGP

1248 BMI SLP6 BRANCH ALWAYS TO CONTINUE

1256

1268 END .EN

1

2

¥ KK KK E K KK K E X K KR XK F K EE KKK R R K KR EE N

w
<

NOTES:
DUMP PRUGRAM FROM B886-8858

SET THESE 1 OCATIONE -

¥
*
*
£
*
$UES CTRL $48 DYNAMIC *
4BE% ODLY $28 DELAY *
$BER OUTS $XX TOT CHANS *
$OER OUTT $4% 1 QW CHANE «
*
*
*
&
*
*

COLD START - #6605
WARM START - $@8064

NOTE THE FOLLOWING THINGS:
*

) THE PROGRAM IS RELOCATABLE; *
IT MAY BE LOADED AND RUN IN
ANY NON-CONFLICTING MEMRORY*
SPACE *
*

CALLING POLY TWICE IS NOT *
EXTRA EFFICIENT. TIME RE- *
QUIREMENTS DICTATE MEDIUM *
TEMPO KNOB SETTING - ABOUT *
19 MS/SCAN *
*

AS 500N AS THE PROGRAM IS *
RUNNING, TOUCH COMMAND PRD *
2 AND THE KEY WHICH IS5 TO *
EE THE SPLIT POINT. THEN 1 *
TO TUNE AND FINALLY 8 *
BEFORE PLAYING

=

*
*

POLY-SPLIT 8.8

0G93: AN INTERPRETIVE
ARPEGGIATION
PROGRAMMER & EDITOR

One of the major advantages that
our hybrid computer/synthesizer system
offers is the ability to realize a class
of new tricks which for lack of a better
term we'll call "keyboard effects". I
have in mind new sounds which arise not
so much from the timbre of each note,
but from the timing and sequence in
which the keys played are converted to
notes and how they're allocated to
available output channels.

Using this definition, I suppose
that POLY-SPLIT from 1last time would
qualify as a keyboard effect because it
affects the way that keys held down are
allocated to note-producing output
channels. But, ECHO (January-March 1979
Polyphony, page 29) is more specificly
what I feel the term should mean because
with that program new effects (and at
short delay settings, new timbres) arise
that would be extremely difficult to
accomplish without some means of
juggling key activations and how they're
assigned to outputs.,

Another good example would be the
ORGASMATRONIC GLIDE arpeggiation trick
that the keyboard encoder and D/A did by
themselves (remember?). Hold down a
bunch of keys and the encoder, while
scanning, stopped momentarily when it
reached one of the down keys and played
the note briefly before continuing the
scan. When another key was found down,
it stopped again to play that one, and
so on. Altogether an alright thing that
allowed arpeggiations to be played much
more rapidly than they could be without
electronic assistance.

When we installed the computer in
the loop, we lost Orgasmatronic Glide
(0G), which maybe was not such a huge
sacrifice when considering the power
that was gained in the process; but
still, I know several folks who mourned
the loss because it was an effect that
they were using to good purpose in their
music.

Here's a terrific replacement. This
new program does the same thing that the
old 0G did, hold down a bunch of keys
and it plays them in sequence, but it
also gives control that wasn't possible
with the old "state machine" version.
For instance, it can arpeggiate
down-scale as well as up. And it plays
staccato or legato. It also allows
touch pad control of glide and similar
control of the tempo of the
arpeggiation.

Great. But not the greatest part,

we'll get to that soom.

*1000LLL
1008- 28 24
1003- 28 28
1006- 26 08
1003- B2 63
1008~ 20 09
100E- A9 OF
1618- 28 16
{e43- 40 a3
1616- 24 E7
1018- S8 iE
1e18- C6 72
181C- 38 65
10E- 2474
1628- 58 46
18622- 68
163- A6 73
1825~ 24 74
1627- 1065
1629- A
102R- 38 87
162C- 10 26
1626- E8
162F- EG 68
1631- DB 2

55 B &S5

6116

8148

2578
859
8618

8760
8716
0728
0720
0740

0760

1008
1610
1628
1038

WK R KRR %R

ORGRSMATRONIC GLIDE

ARPEGIATION PROGRAMMER AND
EDITOR

JOHN S. SIMONTON, JR

ENE R B BE B 3

:*(C) 1979 PAIA ELECTRONICS, INC*

Tk

*

:THIS IS THE MAIN PROGRAM LOOP. START BY INITIALIZING THE SYNTHESIZER
:AND CALLING THE QUASH DRIVERS AND RGO KBD READING ROUTINES FROM MUS1
:CHECK TO SEE IF A COMMAND KEY HAS BEEN TOUCHED; AND IF SO, JUMP TO
:SUBROUTINE TO DETERMINE THE COMMAND AND EXECUTE IT. DETERMINE THE
:POINTER FOR THE OUTPUT CHANNEL AND JUMP TO SUBROUTINE FOR ORG. GLIDE
:PROCESSING. ON RETURN, LOOP.

JSR INIT
LOOP JSR NOTE
JSR DECD
BCS HERE
JSR Co
HERE LDY OF
JSR STAR
Jup LOOP

:MUSL SYNTH INIT ROUTINE

:QUASH DRIVERS AND RERD RGO

:PIEBUG READ COMMAND KBD

:IF NO NEW KEY TOUCHED, SKIP NEXT
:CALL COMMAND DECODER

:POINTER TO ORG. GLIDE OUTPUT CHANNEL
:CALL ORG. GLIDE PROGRAM

:LOOP TO CONTINUE

:FIRST THE TIMER IS TESTED AND IF NOT TIME FOR THE NEXT NOTE TO BE
:PROCESSED THE STRCCATO CONTROL BIT IS CHECKED AND IF CLEAR
:(STRCCATO) BRANCH IS TAKEN TO DE-TRIGGER NOTE IN OUTPUT

:BUFFER. IF LEGATO MODE, EXIT IS IMMEDIATE

STAR BIT #KTBL+67 :ARE THERE ANY AGO KEYS DOWN?

BVC SINT

DEC *TIMR

BNI ADVA

BIT *SCTL

BYC CLRN
RTS

:NO KEYS, BRANCH TO RE-INIT ARP. POINTER
OTHERWISE, DECREMENT THE TIMER

:IF EVENT TIME, BRANCH

:OTHERNISE CHECK FOR STACCATO AND IF TRUE....
:BRANCH TO CLEAR TRIGGER FROM OUTPUT NOTE
:OTHERNWISE, RETURN WITHOUT CLEARING TRIGGER

:IF I77S TIME FOR R NOTE TO BE PROCESSED, THE POINTER TO THE INPUT
:BUFFER IS RDVANCED (EITHER FORWARD OR BACKWARD) AND IF THERE IS NO
:MORE BUFFER LEFT WE DROP THROUGH TO ADVANCE THE POINTER TO THE SEQUENCE
:BUFFER TO GET THE NEXT SET OF GLIDE PARAMETERS. IF WE ARE NOT YET
:T0 THE END OF THE IN BUFFER, WE BRANCH OUT TO RESET THE TIMER, ETC.

ADVA LDX #PNTR
BIT #SCTL

BPL DOWN
DEX

BMI SADY
BPL STIM

DOWN INX

CPX 88
BNE STINM

:GET POINTER TO INPUT BUFFER
:CURRENTLY ARPEGGIRTING UP?

:NO, BRANCH TO DO DOWN

:70 GO UP-SCALE, DECREMENT POINTER
- IF POINTER NOW <0, BRANCH

:STILL IN RANGE, BRANCH ALWAYS
DOMN-SCALE, INCREMENT POINTER
:0UT OF RANGE?

:STILL IN RANGE, BRANCH

:IF WE GET HERE (SADY) IT MEANS THAT WE HAVE PLRYED ALL OF THE KEYS
THAT WERE DOWN AHD HAVE RERCHED THE END OF THE INPUT BUFFER

‘NOW IT°S TIME TO GET THE NEXT ENTRY FROM THE CONTROL SEQUENCE.
ME TEST TO SEE IF ME ARE AT THE END OF THE SEQUENCE AND IF SO THE

:POINTER IS RE-INITIALIZED. OTHERWISE, THE COMMAND IS FETCHED AND IF

69

Enter the program as outlined at 1640 :ZERO IT MEANS THAT IT IS THE END OF THE SEQUENCE AND THE POINTER
the end of the column and start it 1858 :IS ALSO REINITIALIZED
running, then press down a group of 1068
keys. If you've done everything 1033- A6 76 1078 SADY LDX *SPNT :GET CONTROL SEQUENCE POINTER
correctly, you should hear a relatively 1635- CR 1668 DEX :POINT TO NEXT SEQUENCE ENTRY
slow down-scale arpeggiation of the 1036~ 16 @2 109 BPL GSEQ :IF NOT TO END, BRANCH
notes that you're holding down. When 1038- A2 @7 1168 SINT LDX @7 :RE-INIT SEQUENCE POINTER
the lowest note has played, the sequence 103R- 86 76 1116 GSEQ STX #SPNT :SRYE SEQUENCE POINTER
should start again from the highest. 103¢- B5 77 1120 LDR *CSEQ, X :GET COMMAND FROM CONTROL SEQ.
Now 1let's play with the control 103E- FO F8 1130 BEQ SINT :ZERO ENDS THE SEQUENCE, BRANCH -
some. Here's what the keys mean with 1148
0G93 running: 4156 :A NEN COMMAND FROM THE SEQUENCE. FIRST USE IT TO SET OR CLEAR THE
1468 :THE GLIDE CONTROL BIT FROM THE TRANSPOSE BUFFER IN THE PROCESS,
1170 :THE NEW COMMAND IS SHIFTED ONE BIT TO THE LEFT; WHICH MULTIPLIES
1186 :THE TEMPO YARIABLE BY 2 AND SHIFTS THE UP/DOWN AND LEGR/STACC BITS
1190 :INTO MORE ERSILY TESTED POSITIONS.
1208 :
1648- 85 74 1210 GLID STA #SCTL :SAVE SEQUENCE ENTRY IN CONTROL BUFFER
1642- B9 (B 09 1220 LDA TTBL,Y :GET THE CURRENT TRANSOSE BUFFER ENTRY
1645- 28 1230 ROL :ROTATE GLIDE BIT TO CARRY
1646~ 86 74 1240 ASL #SCTL :ROTATE CONTROL WORD GLIDE TO CARRY
1648- 68 1258 ROR :ROTATE CARRY TO GLIDE BIT
1649- 99 Co 08 1260 STA TTBL,Y :THEN RETURN TO TRANSPOSE BUFFER
1278
1288 :THIS LITTLE ROUTINE DETERMINES WHETHER SCAN IS UP OR DOWN AND
1299 :INITIALIZES THE POINTER TO THE PROPER VALUE
1300 :SKYP-SET KEY POINTER
1318
14C- A2 07 1328 SKYP LDX 7 :PREPARE FOR ARP. UP INITIAL POINTER
164E- 24 74 1338 BIT #SCTL :CHECK COMMAND BUFFER - ARP. UP?
1056- 30 62 1340 BMI STIN :YES, BRANCH
1652- A2 08 1358 LDX 08 :NO, ARP. DORN INTIAL POINTER
1368
1378 :NOW THE ROUTINE TO RESET THE TIMER. SINCE ALL KEY POINTER MANIPULATIONS
1388 :WIND UP AT THIS POINT, THE FIRST INSTRUCTION IS TO SAVE THIS POINTER
1398 :THE TIMER VALUE IS EXTRACTED FROM THE CONTROL WORD SCTL
1408 :STIM-SET TIMER
1418
1054- 86 73 1428 STIM STX *PNTR :SAVE INPUT BUFFER POINTER
18356- A9 1F 1438 LDA 1F :PREPARE MASK AND
1058- 26574 1449 AND *5CTL :GET THE TIMER (TEMPO) YALUE
185a- 85 72 1458 STR *TIMR :AND SAVE IN THE TIMER VARIRBLE
1468
1478 :NOW HE GET THE CURRENT NOTE OF INTEREST FROM THE INPUT BUFFER
1489 :AND IF THE KEY IS NOT DOWN, R CHECK IS MADE TO SEE IF ANY KEYS
1498 :ARE DOWN. IF NONE ARE, THE TIMER IS TRICKED INTO TIMING OUT THE
1508 :NEXT TIME THROUGH WHICH WILL THEN RESULT IN THE WHOLE COMMAND
1518 :SEQUENCE FOLLOWING SYSTEM BEING RESET
Touching the DIR:UP pad will cause 1528
the arpeggiation to change direction 165C- BSE@ 1538 LDA *KTBL,X :GET THE CURRENT KEY FROM INPUT BUFFER
from down-scale to wup. GLID:ON turns 16%E- D8 @0 1540 BNE BOUT :IF ZERO, NO KEY - BRANCH
the glide for the arpeggiation channel 1068~ 24 E7 1550 BIT *KTBL+07 :ARE ANY KEYS DOWN?
on and (you guessed it) GLID:OFF turns 1062- 78 BF 1568 BVS RDVA :YES, BRANCH
it off. 1064- A 6L 1578 LDA &1 :NO, PREPARE TO MAKE TIMER RUN OUT
The LEGATO ARTICULATION pad causes 1066- 85 72 1588 STA #TIMR :NEXT PASS THROUGH
the trigger signal to remain high as 1668- B9 DO 80 1596 CLRN LDR NTBL,Y :GET THE CURRENT OUTPUT NOTE
long as any keys are down so that there 106B- 29 BF 1608 AND BBF :CLEAR THE TRIGGER FLAG
will be no re-articulation as one note 166D~ 99 D@ @8 1616 BOUT STA NTBL,Y :AND REPLACE IN OUTPUT BUFFER
finishes playing and the next begins. ie7e- 68 1620 RTS :RETURN
STACCATO ARTICULATION triggers the note 1638
the first instant that it plays then 1648 :NOW SOME TEMPORARY LOCRTIONS AND THEIR INITIAL STATES
releases the trigger. 1656
The TEMPO keys cause the rate of 137?; 2 ig .}II:'; "Hg g
arpeggiation to change from slow (7) to 07 . 1689 PNTR .HS €8
fast (0) over a range from so slow that :
10674 C4 1698 SCTL . HS C4
almost anyone could play the run
' 1075 07 1708 PPNT . HS @7
manually to a rate that's so fast that 1076 87 1718 SPNT . HS 87
the sequence begins to take on the 1728 CSEQ . HS 0O00000P0BAOE404
texture of a chord (which should g)i.ve 1748 :OR 1068
you a clue to one interesting 1758 STUP . HS 462004
application of 0G93 in a piece of 1778 R 1100
music). . . 1798 :THIS IS THE COMMAND KEY DECODING AND SEQUENCE EDITING SUBROUTINE
If you were an Orgamatronic Glide 1800 % OF COMMAND KEY IS IN Y REGISTER
fan in the first place, we could 1818 -
probably stop here and Y°‘."d be 1168- A6 75 1820 CMND LDX #PPNT :GET THE EDITORS POINTER TO COMMAND SEQ
completely happy - the program is a lot 1162- B5 77 1838 LDA #CSEQ, X :GET THE COMMAND POINTED TO CIN ACC, DON’T FORGET)
better than the old manual version. 1164- CB 10 1848 cPY 10 :15 KEY 10 - CLEAR COMMAND SEGUENCE
We'd also be stopping before we really 1106- F@ oF 1850 BEQ CLR “VES, BRANCH
got started, because by far the most 1188- 99 F 1869 BCC CNXT ‘N0, ITS LESS THAN "F", BRANCH
interesting feature of 0G93 is that it's 1878 -
an interpreter that allows us to program 1888 :THE KEY IS 11 OR GREATER. EXCHANGE THE CORMAHD POINTED TO WITH
a series of arpeggiations and an editor .
that makes the gnify and manipulationtof ig :mﬂwﬁ&MIm TEWP. NOTE THAT THIS CAN BE USED TO
those programs easier. : COMMANDS IN THE SEQUENCE

70 ~

Each program step contains ail of 1910
the information that we controlled 1108 M 71 1928 LDY #TEMP :GET THE COMMAND IN THE TEMPORARY BUFFER
earlier (glide on and off, up-scale or 116C- Do 64 1938 BNE ELPO :1S THE COMMAND FROM TEMP A 87 NO, BRANCH
down, staccato or legato, and one of 8 116E- E0 07 1940 CPX 87 :POINTING TO FIRST COMMAND?
tempos) and when the program is run, i118- Fe 28 1958 BEQ RN :YES, BRANCH DON’T WRITE ZERO AS FIRST COMMAND
each step will be taken in turn and an H12- ¥ 7w 1960 ELP® STV *CSEQ, X :PUT COMMAND IN THE SEQUENCE SLOT POINTED TO
arpeggiation of the keys held down H14- 87 1978 STA +#TEMP :AND THEN SAVE OLD COMMAND IN THE TEMP LOCATION
performed using *he status of the 1116- ¢o 1988 RTS :THEN RETURN
parameters specifie¢ by that step. At : 19%
the end of the program it jumps back to 2000 :THE KEY IS "10", CLEAR THE COMMAND SEQUENCE. NOTE THAT THE FIRST
its beginning and the sequence of 2016 :ENTRY IN THE SEQUENCE IS NOT CHANGED.
arpeggiations repeats. 2028
Each step of the program is 1117- A2 @7 2838 CLR LDX @7 :SET POINT TO FIRST SEQUENCE ENTRY
"written" in exactly the same way that 1119- 8675 2049 STX #PPNT :AND SAVE IT
we set the parameters earlier; in fact, 111B- CAR 2056 DEX :DECREMENT THE POINTER(SKIP FIRST ENTRY)
as you'll soon realize, you were in 111C- A9 60 2060 LOR 08 :AND GET READY
effect writing the first step then. The 111E- 8D 20 18 2070 STA DISP :ZERO THE DISPLAVED EDITOR POINTER
key to forming these steps into programs 112- 871 2080 STR *TEMP :AND THE EXCHANGE REGISTER
is the PNTR : BACK/ADV block of pads on 1423- 577 2099 CLLP STA *CSEQ. X :ZERO THE SEQUENCE ENTRY
the command keyboard. The pointer 1125- CA 2108 DEX :AND POINT TO NEXT ENTRY
(PNTR) refers to the program step that 1126- 16 FB 2118 BPL CLLP :SOME LEFT, LOOP
you're writing. 1128- 60 2120 RTS ‘RETURN
One quick example should get the 2138
idea across. We'll write a program that 2140 :NOW WE TEST FOR "E" OR "F", BACKSPACE OR ADVANCE THE EDITOR’S
sweeps up the keyboard at a moderate 2150 :EDITOR’S POINTER TO THE COMMAND SEQUENCE. NOTE THAT INCREMENTING THE
tempo, re-articulating each note, 2168 :POINTER PRODUCES R BACKSPACE.
followed by a quick legato run 2478
down-scale. Program the first step by 1123- (@ @E 2188 CNXT CPY OF IS KEY "E" OR "F"?
touching these keys - TEMPO:4, DIR:UP, 1128- 98 18 219 BCC STWP :NEITHER AND LESS THAN "E", BRANCH FOR NEXT TEST
GLID:0FF, ART:STAC. That takes care of 1120- F8 oF 2208 BEQ BACK ;175 "E®, BRANCH TO BACKSPACE
the up part. 1F- @ 2210 DEX :1T“S *F", ADVANCE THE POINTER
Now for the down part, begin by 1129- 38 88 2220 BMI RTN :AND IF OUT OF RANGE, BRANCH TO LERVE IMMEDIATELY
touching PNTR:ADV so the commands that 1132- 86 75 2238 COUT STX #PPNT :SAVE NEN POINTER
we enter next are '"pointed" at the 2240
second program step (which is step #1 as 2258 :IN THIS SECTION THE POINTER (WHICH IS 87 FOR THE START OF THE SEQUENCE
shown in the displays, the first step is 2268 :AND 88 AT THE END) IS CONVERTED TO AN INCRERSING NUMBER FROM 8-7 FOR
#0) and touch TEMPO:2, DIR:DOWN, 2278 :DISPLAY PURPOSES.
GLID:OFF, ART:STAC. Now hold down a big 2280
chord structure to hear the full effect 1124- @A 229 TXR :POINTER TO THE ACCUM. FOR A CALCULATION
of this dual arpeggiation. 1135- 38 2300 SEC :PREPARE FOR A SUBTRACTION
Editing an existing program is 1136- E9 €8 2348 SBC 8 :THO’SD COMPLEMENT
simply a matter of pointing to the 1138~ 49 FF 228 EOR OFF :COMPLEMENT OF THAT
program step that you want to change and 1138- 8D 20 18 2320 STA DISP :SHOW YALUE IN THE DISPLAYS
entering the changed parameter. To 1130- 69 2348 RIN RTS :RETURN
change the first step (#0) in the 2%
example above to a slower tempo, for 2368 :BACKSPACE POINTER AND MAKE SURE IT IS STILL IN RANGE, THEN BRANCH
example, touch PNTR:BACK so the display 2378
shows 00 and then touch TEMPO:7 (or 143e- E8 2380 BACK INX :BACKSPACE THE POINTER
whatever). 113F- E0 €8 2399 CPX 88 :0UT OF RANGE?
0G93 can handle programs up to 8 1144~ FOFR 2408 BEQ RTN :YES, BRANCH TO LERVE IMMEDIATELY
arpeggiations deep and, when you begin 1143-. DO ED 2418 BNE COUT :NO, BRANCH ALWAYS TO SAVE POINTER. ETC.
stacking that many steps, it's easy to 2420
get lost. The EDIT:EXCH key helps here 2438 :IF THE KEY IS ONE OF THE TEMPOS, ADD 1 (@ TEMPO NOT ALLOWED) AND
by allowing us to remove the step 2448 :FIT IT INTO THE CONTROL SEQUENCE ENTRY POINTED TO
pointed to from the program and 2450
replacing it with an instruction for 1145- (8 €8 2460 STHP CPY 68 :TENPO KEY?
repeat. By backspacing the pointer to 1147- BB ER 2478 BCS SaLb :NO, BRANCH
step #1 and touching the EDIT:EXCH pad, 1149- €8 2488 INY :YES, ADD 1 TO KEV #
we cut the program to just the first 1148- 29 F8 2498 AD 6F0 :MASK PRESENT TEMPO IN COMMAND TO ZERO
step, EDIT:EXCH again and the original 114C- 9577 2508 STA *CSEQ, X :SAVE CONTROL FLAGS IN TEMPORARILY
program step 1is back in place, so that 114E- 98_ 258 ™ :BRING NEN TEMPO TO ACC
the entire program runs again. By U4~ 157 2528 ORA +CSEQ, X :COMBINE WITH OLD CONTROL FLAGS
stepping through the program and causing 1151- DO 1R 2538 BNE SAVA :BRANCH ALWAYS
it to repeat after the 2nd, 3rd, etc. 2549 :
steps, it's fairly easy to locate where 2350 :NOW R SERIES OF TESTS WHICH RESULT IN THE CARRY BIT BEING SET OR
in the program a specific sound is 2560 :CLEAR. R SERIES OF ROTATES BRINGS THE CARRY TO THE APPROPRIATE BIT
coming from and then make changes there. 2578 :IN THE COMMAND WORD
As you may surmise from the name, 25680
the EDIT:EXCH key causes the program 1153- 28 2598 SGLD ROL :ROTATE THE GLIDE COMMAND BIT TO CARRY
step pointed to to be exchanged with a 1154- 88 2608 PHP :AND SAYE THE CRRRY ON THE STACK
memory buffer location which is 1155- (8 @9 2640 CPY 89 :1S KEY GLIDE ON OR OFF?
initialized to contain the interpreter's 1157- F0 12 2620 BEQ ROT4 :9-GLIDE ON, BRANCH
repeat code (00). This implies that this 1159- 99 10 2638 BCC ROT4 :8-GLIDE OFF, BRANCH
key can also be used to exchange two 2648 :
program steps by pointing first to onme 2650 :THE KEY WRS NEITHER GLIDE ON NOR OFF, TEST FOR DIRECTION UP OR DOOMN
and touching EDIT:EXCH and then to the 2668
next and again EDIT:EXCH. In fact, this 15%8- 28 2670 SMOD PLP :GET THE OLD GLIDE BIT FROM THE STACK
is the case; with one exception. The 145C- A 2680 ROL :ROTATE DIRECTION BIT TO CARRY
first step of the program may not be the 1- e 2699 PHP :SAYE IT ON STACK
repeat code 00. If it is, the i15- Co o8 2700 CPy 08 :15 KEY UP OR DOWN?
interpreter will lock up as it reads the 1160- Fe @8 2710 BEQ ROT2 :B-UP, BRANCH
first step, finds that it's a repeat, so 1162- 98 @6 2728 BCC ROT2 :R-DOWN, BRANCH
it reads the first step, and so on. 2738

0G93 protects against this by checking 2748 :THE KEY HAS TO BE C OR D (STACCATO OR LEGATO)
: A

John Simonton designs unusual electronic things
and writes about them. He's one of the most
fortunate people you could ever meet. He does
the things he loves - and gets paid for it.

	000
	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72

