
T.M.

8700

COMPUTER/CONTROLLER

ASSEMBLY

AND

USING MANUAL.

© 1977 PAIA Electronics, Inc., 1020 W. Wilsbire Blvd., Oklahoma City, OK 73116

8700 ASSEMBLY

The PAIA 8700 COMPUTER/CONTROLLER is assembled on the double
sided, plated through ... hole, etched circuit board provided. Unlike other PAIA
circuit boards, this board has all conductive traces pre-tinned for easy
solderability and does not require scrubbing before assembly.

Also unlike many other PAIA circuit boards, the 8700 board is oomplex;
and on complex boards, unintended conducting paths between conductors
(particularly where a conductor passes between pins on an IC) are not
unheard of. While all reasonable quality control precautions have been
taken, it is a wise assembler who will spend several minutes closely ex
amining the circuit board for these unintentional bridges. Prints of the
circuit board artwork have been provided for this purpose in figures (1)
and (2). Bridges (particularly on the component side of the board) will
be particularly difficult to find once sockets and other components are
in place.

Because of the close proximity of some conductors to one another,
extreme care should be exercised during soldering to prevent unintentional
solder bridges during assembly. The likelihood of assembly-caused bridges
has been lessened by laying out the board with an absolute minimum
number of conductors passing between IC pins on the soldered side of
the board, but care is nevertheless advised.

Use a clean, low-wattage iron for soldering (40 watts max.). While most
temperature-sensitive components (with the exception of discrete tran
sistors) are mounted in sockets, excessive temperature can weaken or
destroy the bond between the conducting copper and the fibre-glass
board material.

All sockets and other components are mounted on the side of the board
with the silk-screened parts placement designators and soldered from the
opposite side ONLY. 00 NOT SOLDER COMPONENTS ON BOTH SIDES
OF THE BOARD.

NOT ALL HOLES ON THE cmcuIT BOARD WILL HAVE A PART
ASSOCIATED WITH THEM. Many of the holes are conductive pass-throughs
from one side of the board to the other while others are holes reserved for
mounting optional components. Some manufacturers recommend filling
through-board holes with solder to insure that a conductive path is established
from one side of the board to the other. If you elect to do this, make sure
that you know which holes are which. It is for all practical purposes im
possible to mount a component in a plated-through hole that has been filled with
solder.

NOT ALL PART NUMBERS ARE USED ON THIS CffiCUIT BOARD, some
part numbers (e. g. R4) are reserved for future expansion.

3

~ : '-4_•--= - -D~__..., •• ·= = ~~----=·
o-!!-.._ - - - • - --- --:----....• =

--

- --=--::::.-

-

4

•• •

1
• • --

- ---------

- - -- - --- - -- -- -- - - -„ „ „ „ „ „ „

•• ••
••
•• ••
•• •
•

--- - -- - - • • • •
• • •

• •

··~~-i --·-:tr:~ : :'\.~- :J/:
~-------;;-~ - - -••••• ~==----=

FIGURE 2 - CIRCUIT BOARD FOIL PATTERN 5

FIGURE 3

8700 COMPUTER/CONTROLLER PARTS PLACEMENT

When mounting components such as resistors, diodes and capacitors, the leads of the
part should be passed through the mounting hole and then bent to a slight angle to hold the
part in place for soldering. 00 NOT "cinch" the leads directly against the board (bend to
a 90° angle). This technique while great for the government (and others who are in the
habit of throwing away things that don't work) provides only marginal additional mechanical
strength and makes removing malfunctioning components extra-ordinarily difficult. AND
REMEMBER. .. pre-tinned boards require very little additional solder.

With all of these DOs and OON'Ts out of the way, we begin:

HAVE YOU INSPECTED THE BOARD? It might just save you a lot of trouble.

U sing parts placement designators and
the parts placement drawing in figure 3
as guides, solder the following resistors
in place. Notice that many of these
r~sistors are close together and consequently
may need tobe "stacked" as shown to the left.

Note that resistors are non-polarized components and that either lead may
be placed in either hole without affecting performance.

Installation of all resistors within a given group before any of the resistors
in the group are soldered in place is highly recommended.

ABC

1111, 1 '
Silver or gold - disregard this band.

,PART NUMBER(s) VALUE COLOR CODE A-B-C
(v5/Rl - R3 (3 parts). „ ... 3300 ohms. „ „ „. orange-orange-red

"#' /'f.:."

('')1R5 3300 ohms orange-orange-red <J R6 - R 13 (8 parts) .. „.27K„„ ... „.„ red-v~olet-orange
(,) R14 - R21 (8 parts)„ .. 27K„„ .. „ ... „„ ... red-v1olet-orange
(<YR22 27K. red-violet-orange
('/) R23 - R25 (3 parts) 27K. red-violet-orange
(") .;R.26 - R30 (5 parts)„„ lOK.„.„„ „ .. brown-black-orange
(jt1R31 - R37 (7 parts). „. lOK„ ... „ „ brown-black-orange
(~) R38 - R45 (8 parts)„ .. lOK„„„.„„„„„brown-black-orange

Install the following ceramic disk capacitors. Like resistors, these components
arenon-polarized and either lead may be installed in either of the holes provided.

;''

(/) Cl-C7 (7 parts)„„ „ „ .• 05 mfd disk
(1 C9„ .. „„ „. „„.„ ... „„„„. 05 mfd disk
V) Cll, C12 (2 parts)„.„„. 05 mfd disk
(V) C8 33 pfd. disk

Install the Integrated Circuit sockets. Note that four different socket sizes have
been supplied; 14 pin, 16 pin, 24 pin, and 28 pin. 00 NOT INSTALL ANY OF THE
INTEGRATED CIRCUITS AT THIS TIME!

When installing the sockets; note that there is a small notch at one end, between
the rows of pins. This notch should correspond to the notch on the circuit board
graphics for convenient reference later on.

7

8

Install the 14 pin sockets (17 supplied) in the following locations

Jl
J5
IC5
IClO
IC21

J2
!Cl
IC7
ICll

/

(\) J3
() IC3
() IC8
() IC12

()
()
()
()

J4
IC4
IC9
IC13

Install the 16 pin sockets (9 supplied) in the following locations

()
()

.)
' ;·

IC2
IC23
IC31

t
(l,)

<

(\~
IC6
IC26

(.) IC14
() IC29

() IC22
() IC30

(!~ Install the 24 pin socket supplied at the location of IC 19

(J) Install the 28 pin socket supplied at the location of IC15

J) Install the 3 pin power connector at the location indicated as J6. Note that this connector
i$ keyed by the shape of its base and must be installed properly. (see figure on page 27)

Install the 8 discrete transistors. Note that the transistors are keyed by
the flat on the side of their cases and must be installed properly for proper
operation. Because of later mechanical assemblies, it is also important
that the transistors seat as closely as possible to the board. The tops of
the transistors ßhould be no more than 3/8" above the surface of the board.

. J

() QO
) Q4

(/> Ql
(i) Q5

(~) Q2
(\) Q6

Q3
Q7

Install the three ln914 diodes provided. Like the transistors, these parts
are polarized and must be installed so that the banded end of the diode
co~responds to the band indicated on the circuit board graphics.

I \
(L)D3 ()>n4 V)D5

\

'
Like the IC's, the seven-segment displays are socketed, but since the pins

on the displays are not to standard tolerances, Molex pins must be used to
mount these parts. The molex pins are tied together at the top by a metal strip
referred to as a "carrier", and to be perfectly correct the carrier should be
on the outside of the two strips that will constitute the socket.

The molex pins are supplied in a continuous
strip and must be cut into lengths of 5 pins each
prior to installation on the circuit board.

Install and solder the four rows of molex
pins at the IC27 and IC28 locations.
Snap off the carrier strip after the pins
are soldered in place.

W e are now ready to begin installing the lntegrated Circuits, but first a brief
explanation of where we're headed. The chances are good that with careful
assembly the 8700 Computer/Controller will be ready to operate when power is
first applied. Nevertheless, it is a good idea to go through the "power-up"1"
procedure that we will outline. The procedure entails the use of an oscilloscope
and should be used by anyone with access to one of these devices.

If you absolutely cannot get a scope to use, you may skip this procedure,
but for those who can use it, it will give you confidence in certain sections of
the computer and simplify trouble-shooting procedures in the event that there
is a failure when the unit is fully assembled.

Open the integrated circuit package and install the following integrated circuits
in their respective sockets. Notice that the orientation of the ICs is keyed by a
semi-circular notch at one end of the device, and that the position of this notch
should correspond with the notch that is part of the circuit board graphics.

WARNING CMOS cmcurrs

Some of the integrated circuits used in this kit are Complementary Metallic Oxide
Semiconductors (CMOS). While state of the art internal protection is provided, these
circuits are still susceptible to damage from STATIC ELECTRICITY. You should
not experience any difficulties if you observe the following precautions.

1) The circuits are supplied to you inserted in blocks of conductive foam.
Leave them in these blocks until you are ready to install the part •.

2) Do not install the parts in sequence other than that called for in the
instructions.

3) Do not wear synthetic (e. g. nylon) clothing while handling these parts.

Inst all the following IC s in their sockets. NOTE: FND 357 displays are
k~.yed by a series of small grooves on their top edge •

. ,.

(l ICl 74LSOO (i) IC2 4042 () IC3

~ J
IC4 4001 () IC5 4011 () IC6
IC7 4001 () IC8 4001 () IC9

:l IClO 74LS02 () ICll 4001 () IC12
IC13 4011 () IC14 4556 () IC15

~··· ~
IC21 4001 () IC26 9368 () IC29
IC27 FND 357 Display) IC28 FND 357

4001
4042
4011
4011
6503
9368

This should leave you with 5 ICs that have not been installed; four 2112 RAMs and one
170'/A PIEBUG monitor PROM.

(A U sing a section of resistor clipping, form and install the jumper indicated as
S2 on the parts placement diagram. Leave a generous loop in this jumper as it will
be cut open later.

9

10

The jumper that was installed above enables a test feature of the 8700, described
in the "Self Test" section of this manual, you should at this point ski.p to that section
and perform the tests outlined there. Return to tllis point for final assembly when the
procedure outlined has been · com.pleted.

v{/ Clip the jumper :i.nstalled as S2 in a previous step into two sections and spread
the sections apart so they do not touch, but so that they may be re-soldered if needed.

<j(Using a section of excess resistor lead, form and install the jumper indicated
as Sl on the circuit board graphics. (This jumper enables "normal" operation of the
system, and ~ be in place for the unit to function properly. ·

c6 In.stall the rema:i.ning Integrated Circuits in their respective soc~ets (observe
. . • 1

orientation markings).
i

d) IC22
(~) IC31

2112
2112

/

<(> ()
IC23
IC19

2112
1702A PROM

{
<\t IC30 2112

This completes assembly of the 8700 CPU board. Proceed to assembly of the
8700A active keyboard. ·

87 00 / A KEYBOARD ASSEMBL Y

Prepare for asseinbly by thoroughly cleaning the exposed copper circuitry above
colored keyboard area. U se steel wool and/ or scouring cleanser. 00 NOT USE
PRE-SOAPED STEEL WOOL PAD. Use particular care to avoid scratching the
printed keyboard area. Rinse and dry the board completely before beginning assembly.

A WORD OF ADVICE: - Do not clean th~ circuit board until you are ready to
assemble and test this unit. When assembly is complete and the unit verified as
being operational, a coat of artist1 ~ spray fixative (available at most artist1 s/ ,
engineers supply stores; e. g. 11Blair Spray Fix'') will keep the copper bright and
shiny and prevent oxidation.

DO NOT try to protect the copper with any oil-based sprays as these may
entrain moisture or otherwise become conductive;

NOTE that there are no sockets used in the 8700/ A.

And finally, just so there is no confusion, the parts are mounted
on the side of the board marked "ICl", 11Rl11 9 etc. ·

ABC

l_l l_l, __ I ,
Silver or gold - disregard this band.

Begin assembly by soldering all resistors in place as per the parts placement
designators printed on the circuit board and the detail figure 4.

Figure 4

DESIGNATION V ALUE COLOR CODE A-B-C

(}) Rl - R16 (16 resistors) 82K grey-red-orange
() Rl 7 - R20 (4 resistors) lOOK brown-black-yellow
() R21 - R24 (4 res~stors) 150K bro~-green-yellow
() R25-R48 (24 res1stors) 27K red-v1olet-orange

T~~re are 13 solid wire jumpers used on this board.
for7/a'.nd install these jumpers.

(~·· Form and install 13 jumpers. Count them.

(1 Locate the RESET push-button (Sl) and
prepare it for installation by using a pair
of needle-nose pliers, to carefully bend its
two solder lugs out to 90° angles as
/ 1· shown in detail figure 5.

() Cut the length of insulated wire provided
into two equal 5-inch lengths, strip 1/4
inch of insulation from each end of each
wire and twist and tin the exposed ends.
Solder one end of each of the lengths to the
lugs of the switch.

U sing the solid wire provided,

SOLDER TWO
LENGTHS

OF INSULA TED WIRE

Figure 5
11

12

1

:t
i

Using the hardware supplied, mount the RES~T button in the circular hole
directly above the rectangular display cut-out. NOTE that the pushbutton
m.ounts from the component side of the board so that the actuating stud
protrudes from the side of the board printed with the keyboard designations.·

Solder one of the two wires connected to the RESET button to the circuit
board point labeled "A" and the other to the circuit board point labeled "B".

Install the 14 lead, DIP header terminated I/O connector as follows:

(f) From the component side of the board, push the 14 pins of the keyboard I/O
cable header (either end may be used) into the 14 holes provided at the
circuit board location marked "I/0". While either end of the jumper
may be used here, the header MUST be installed so that the wires coming
from it point TOWARDS THE NEAREST EDGE OF THE CffiCUIT BOARD
as shown in detail figure 6.

(\) Carefully solder all 14 pins of the header in place. Excessive heat at this
operation can melt the header. Make sure that the copper is very clean
before soldering.

INSTALL DIP HEADER 50 THAT WIRES
COME FROM SIDE NEXT TO
CIRCUIT BOARD EDGE

W ARNING CMOS CIRCUITS:

Observe cautions previously outline •
Figure 6

A three-wire grounded soldering iron is ideal but if you don't have one,
your present iron may be used by allowing it to heat, then UNPLUGGING
it during the soldering operation. Before soldering and after unplugging
touch the tip of the iron momentarily to the ground screw of an electrical
outlet or other source of ground to drain the static charges.

Install the six 4001 CMOS NOR gate packages IC-1 through IC-6.

t~~~~~~-6 ~:::lB .
THIS COMPLETES ASSEMBLY OF THE PAIA 8700/ A KEYBOARD.

FINAL ASSEMBLY-

/'. Using the hardware illustrated, mount the 8700A active keyboard above
the 8700 CPU board. Note that two 5/16" spacers are used on each of the 1"
machine screws that hold the keyboard above the processor, and that the displays
are visible through the rectangular cut-out above the RESET· switch.

ALSO check that the solder lugs on the RESET switch (S3 on the 8700A)
do not contact any of the components on the CPU board. If necessary, loosen the

switcb and re-orient.

Uusing the hardware illustrated, mount the two remaining rubber feet at
the rear edge of the 8700 board.

(~l\fate the 14 pin header of the keyboard I/O cable with the 14 pin socket J3

(the middle socket of the five along the rear edge of the CPU board).

4-40X (-4 PLACES

,„
4- 40 X "'4 - 2 PLACES

Figure 7

S_...16 " SPACER-8 PLACES

RUBBER FEET- 6 PLACES

4-40NUTS-6 PLACES

THIS COMPLETES ASSEMBLY OF THE PAIA 8700 COMPUTER/CONTROLLER.
Check out the system using the Testing and Preliminary Familiarization section

which follows. 13

;>,, ',

NOTES

14

TESTING & FAMILIARIZATION
THE PAiA MONITOR

(PIEBUGl
Now that you have your computer assembled the next step is obviously to try

it out. To do that you will have to know a little bit about the monitor program. We will
assume that you know little or nothing about computers and attempt to explain why there
is a monitor program in the first place.

You can think of your computer as a machine that follows your instructions to
the letter. That's really all that any computer is. The group of instructions you give it
to do a specific job is called a program. A person that writes a set of instructions
(program) for a computer is commonly called a "computer programmer". There are
lots of computers in the world, consequently there are lots of computer programmers.
Y ou are about to become one !

In general, a computer by itself is useless. There is no way to feed instructions
into it or get results out of it. Although it has the ability to follow your directions it must
rely on external equipment or devices for input and output operations. The external
equipment and devices fall into a category known as "peripherals" and include such
things as printers, CRT terminals, teletype terminals, tape drives, card readers,
and so on. On small computers you may find peripherals such as cassette recorders,
A/D and D/ A converters, relays to control external events, etc.

The PAIA 8700 Computer/Controller has two peripherals that come with it;
a keyboard and display. The keyboard has 24 "touch-pad" keys. Each key is activated
by simply touching it with your finger, there is no key movement. If you have the
CS-87 Cassette option each keystroke is accompanied by the muted "beep" of the
audible feed-back circuitry. Eight of the keys are for control functions while the
other sixteen represent the hexadecimal number set. Hexadecimal is a number
set that fits computers very well but contains sixteen symbols instead of ten
like you are used to working with now. The symbols used in the hex (short for
hexadecimal) set are O through 9 and A through F (i. e. , O 12 3 4 5 6 7 8 9 AB C D E F).
If you don't know hex it will be fairly easy for you to learn since you are already
familiar with all the symbols.

Obviously the purpose of the keyboard/display is to get programs and infor
mation into and out of your PAIA computer. However, to do this task the computer
must have the instructions (program) to tell it how to perform. That is the purpose of
the monitor program. It instructs the computer on how to interpret the information
from the keyboard and what information is to be sent to the display. The basic use of
the monitor is in loading and examining the contents of memory using the keyboard
and disp1ay. That gives you the ability to enter a program into the computer from the
keyboard, try it out, and change it if necessary .• The Monitor will perform other
functions to aid you in your feat of using the computer and those functions will be
explained as you read on.

15

ENTERING A PROGRAM.INTO THE COMPQTER
' . -·

The following is a sample program that we will use as an example:

ADDR CODE LABEL INSTRUCTION COMMENTS

0000 A9 00 BEG IN LDA #0 ;CLEAR ACCUMULATOR
0002 BD 20 08 REPEAT STA $0820 ;DISPLAY ACC
0005 AO 00 LDY #0 ;CLRY
0007 A2 50 LDX #$50 ;SPEED SETTING (IN HEX)
0009 es LOOP INY ;DELAY LOOP
OOOA DOFD BNE LOOP ;BRANCH UNTIL Y=O
oooc CA DEX ;CHECK SPEED
OOOD DQ FA BNE LOOP ;BRANCH UNTIL X=O
OOOF F8 SED ;SET DECIMAL MODE
0010 18 CLC ;CLR CARRY
0011 69 01 ADC #1 ;ADD 1 TO ACC
0013 4C 02 00 JMP REPEAT ;00 IT ALL AGAIN

Fig 1.

This program will make your computer count from O to 99 and then start over. You
will be able to see it count by watching the display.

You will notice that the format of this program listing is divided into five
"fields"; ADDR, CODE, LABEL, INSTRUCTION and COMMENT. Each of
these fields has its own significance.

The ADDR column is the "address" in memory (more on this shortly) of
the data or instruction.

The CODE column is the actual "machine language" which will be stored at
the memory location specified by the ADDR field. The first two digits of the CODE
field are referred to as the OP-CODE, this is the part of the code field that tells the
computer which instruction~ among its repertoire of many dozen, it is to execute.
The pairs of digits following the op-code are called the OPERAND and in general
this part of the CODE field tells the computer where and how to execute the instruc
tion specified by the op-code. Notice that some op-codes have one pair of digits
for the operand while others have two pair or none at all.

In general, a. computer executes instructions in a linear manner; doing one,
then the next in line, then the next , etc; but, there will be times when a program
will "loop"; that is, repeat a given section of the program a number of times to
obtain the required result. For the convenience of the programmer (this is !!2.t
entered into the macbine) the LABEL field is provided for naming specific
locations or parts of the program that are to be "jumped" to out of their normal
sequence. For example, the last instruction in our demo program is JuMP REPEAT,
which mea.n.s that when the computer executes this instruction it will jump back
to the portion of the program marked as REPEAT in the label field (in this case,
at location 0002) and continue running the program from that point on.

The INSTRUCTION field, like the LABEL field is provided as an assistance

16 to the programmer. lt is difficult (at least) to remember all of the op-codes in

the computer' s repertoire, and the INSTRUCTlON field provides space for a
mnemonic (pronounced ne 1-mon-ic - a memory aid) for the instruction that the
computer is to execute. Some programmers may be able to look at the op-code A9
and remember that it is the instruction for loading the accumulator in the immed
iate mode, but LDA #0 (LoaD Accumulator; #, an almest universal symbol for
"immediate"; and O, the thing tobe entered in the accumulator) is a whole lot
easier to remember.

The COMMENT field is another aid to the programmer. In this area is written
a short comment on the reason for using that instruction. ldeally, the scope of the
comments used should be sufficient for a person other than the programmer to make
out what it is that the program is doing (this rarely happens in practice).

As you may have concluded, the ADDR and CODE fields are the only ones
that have anything to do with the numbers that you enter into the computer to make
the program run.

At this point it becomes necessary to define a "byte". As we mentioned above,
some of the instructions consist of two digits, some four, and some six, but all of
them were in two-digit clusters. Each cluster is called a ''byte" and that is the main
unit of measurement we will be working with. For example: instead of saying each
instruction can consist of two, four, or six digits, we say that it consists of one,
two, or three bytes.

The memory of your computer is also measured in bytes. lt comes with 512 bytes
and an additional 512 bytes can be added by simply plugging in four more memory lC 's.
lt takes three bytes of memory to store (hold) a three-byte-instruction. Each byte of mem
ory has a unique address associated with it which enables the computer to pick out the
particular byte it's looking for. You can easily visualize how the computer's memory is
organized if you think of it as a town with only one very long street. All the houses of
the town are on that one street and the only way you can locate a particular house is by
its address. If you think of each house as representing one byte of memory then that's
what your computer's memory looks like. Each unique address is specified using a four
digit hex number. Look under the "ADDR" column of the program listing (Fig. 1) for
µn. example of this. Notice that some numbers are skipped in the column. Each address
shown is the address of the first byte of the instruction on the same line. In the case
of a two- or three-byte instruction the addresses of the additional bytes are not shown
but they are counted. Count the bytes in the program and you will notice that each time
you start on a new line, the count will agree with the address listed on that line until
you get past nine. Remember now that we are working in hexadecimal (hex) and there
are six more symbols to count after the "9" symbol. Here is an example of how to
count in hex:

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E~F,10,ll, 12,13,14,15,16,17,18,19,
lA, lB, lC, lD, lE, lF, 20~21, ...••....•.... 97,98,99,9A,9B,9C,
9D,9E, 9F, AO,Al,A2, ..•..•• A8,A9,AA,AB,AC,AD,AE,AF, BO, Bl,
B2,• F8, F9,.FA,FB, FC, FD, FE, FF, 100, 101, 102, ..••.•...•
and so on.

17

\

Now you should be ready to enter the program from Fig. 1 into yourcomputer.
·.Start by applying power tO the computer • then press the reset button. Arbitrarily touch
some of the numbered keys and notice how the .numbers shift left through the display.
The display only shows the last two entries from the keyboard but the computer can
remember as many as the last twelve. If anything goes wrong and the display stops
responding to the keyboard, press the reset button and it should return to normal;

. 18

Now type: 0-0-0-0 DISPLAYshows: 00
(Touch the O key four times)
DISPLAY xx <x-don't know, don't care)
(Touch the DISP key)

Tbis sets the pointer to memory location 0000, which is the address of the first
byte to be entered into the memory (see ADDR column of Fig. 1.). The display will
show the contents of that location. This operation lets the monitor know where in memory
your program is tobe stored (programs don't always start at 0000).

Type: A-9
ENTER

DISPLAY shows: A9
XX

Tbis ente:rs the first byte of the program into the computer's memory,
moves the pointer to the nex.t address in memory and displays the contents of that next
address. lt is important to understand the concept of the pointer since it will be referred
to quite often. Each time the "ENTER" key is touched1 what you see in the display will be
stored in the memory location specified by the pointer. The pointer will then be increment
ed to the nex.t memory location and the contents of that location will be displayed.

Type: 0-0
ENTER

DISPLAY shows: 00
XX

This enters the second byte of the progra.m into memory. The first and
second bytes of the program form the first instruction of the program which is a LDA
(load accumulator) instruction (See Fig. 1).

Type: 8-D
ENTER
2-0
ENTER
0-8
ENTER

DISPLAYshows: 8D
XX

20
XX

08
XX

These three bytes form the second instruction (STA-store accumulator) of the
program (See Fig. 1).

Now that you have the hang of it, enter the rest of the program listing under the
"CODE" column in Fig. 1 starting with AO, 00, A2, etc •

CORRECTING ERRORS

lf you make a mistake in typing but catch it before touching the "ENTER" key
then you can correct it by simply retyping the correct entry; the mistake will be shifted
out of the display. If you have already entered the mistake in memory; then touch the
"BACKSPACE" key and the mistake will reappear in the display. Now type the correct
entry and then be sure to touch the 11ENTER" key or the memory will still contain the
mistake. Touching the "BACKSPACE" causes the mon.itor to decrement the pointer and
then display that location.

EXAMINING THE PROGRAM

Now that you have the program in memory it's a good idea to go back and
cneck it to make sure it was entered 100% correctly. If even one digit is wrong then
the program will not operate properly. First you must let the monitor know where in
memory your program is; or in more technical terms: set the pointer to the beginning
of the program. To do that you must type: "0-0-0-0-DISPLAY". Always remember
that the "DISPLAY" key is used to set the pointer. The display should now show the
first byte of the program (A9). If it doesn't then you have done something wrong and
you should start all over. If it does then you can examine the next byte by simply
touching the "ENTER" key. This causes the data shown in the display (which is what
was in the memory location in the first place) tobe entered back into the same
memory location and increments the pointer to display the next location.
You can step through the program by repeatedly touching the "ENTER" key.
The series of bytes seen in the display should correspond with the ones in the
program ("CODE" column of Fig. 1). lf you find a byte that's not correct you
should retype it while it's in the display and then touch the "ENTER" key.

RUNNING THE PROGRAM

Everything should be set to run the sample program now. To execute (run) a
program you must tell the computer where the starting point of the program is. lt)
the sample program the starting point is at the beginning instruction (ADDR 0000);
However, not all programs start at their beginning.

Type: 0-0-0-0
RUN

DISPLAY shows: 00
the program countiri.g

This tells the monitor to execute a program starting at location 0000. If all
is well your display should have started with 00 and should be counting its way to 99
at which time it will start over. It will take approximately 30 seconds to count from
00 to 99. If your display is not counting then something is wrong and you should go
back and examine the program for errors. Notice that touching keys on the keyboard
produces no results since the computer is running the sample program and not the
monitor program. Keyboard control can only be regafaed by pressing the "RESET"
button which causes the computer to return to the monitor program.

19

MODIFYING THE PROGRAM

Y ou can make your computer count faster or slower by changing the speed
setting at address 0008. To make it count faster, a smaller number should be sub
stituted. For example;

Type: RESET
0-0-0-8
DISP
2-0
ENTER
0-0-0-0
RUN

DISPLAY shows: 00
08
50
20
es
00
counting

This will cause the counting rate to increase by more than double. Notice
that the operations performed were: (o-o-o-8-DISPLAY) set the pointer to location
0008; (2-0-ENTER) enter 20 in location 0008; (0-0-0-0-RUN) run the program starting
at location 0000. (Note: the speed setting is in hex; therefore the largest number that
can be used is "FF" and not "99".) ·

Y ou can change the number that the program counts with by changing
location 0012 (presently "Ol"). Try "05".

For an interesting effect restore location 0012 to "Ol" and then change
locations 0007 and 0008 to "AA" and "EA" respectively. (The easiest way to accom
plish this is as follows: 0-0-0-7-DISPLAY-A-A-ENTER-E-A-ENTER-O-O-l-2-
DISPLAY-0-1-ENTER). This replaces a two-byte instruction (LDX #$50) with
two one-byte instructions ("TAX" and "NOP")• Now run the program and note that
the effect produced is to count slower as the number gets larger. It is left as an
exercise to the user to determine why these changes produce this effect.

If you would like for the computer to teach you how to Count in hex then
restore the program to normal and then Change location OOOF to "D8". Run the program
and watch the display count up in hexadecimal (You may want to slow it down as noted
above).

OTHER GOODIES IN PIEBUG
So far you have used four control keys (DISPLAY, ENTER, BACKSPACE, and

RUN). Four more remain tobe defined (POINTER HIGH, POINTER LOW, TAPE, and
RELATIVE ADDRESS COMPUTE). Since the pointer contains four digits but the display
can only show two digits, the pointer is divided into two segments: POINTER HIGH
and POINTER I.DW. Each contains two digits of the pointer.

POINTER HtGH (PH) AND POINTER LOW (PL)
These two keys are used to see exactly what address the pointer contains.

Touching key "PH" will display the first two digits of the pointer and likewise "PL" will
display the last two digits. Normal sequence is '·'PH-PL-DISP" which will show you

2othe pointer and then the contents of the location it's pointing to.

TAPE
lf you have the cassette tape option this key can be used to save programs on tape

and load them back into the computer at a later time. Details of its use are supplied
with the option.

CAUTION
lf your computer does not have this option and you touch this key, you
may lose control of the computer and it may overwrite portions of
your program with garbage and it may just eat your lunch!

RELATIVE ADDRESS COMPUTE
As you learn to write programs you will develop a need to compute relative

addresses. These addresses take only two digits instead of the usual four and can be
computed by hand. However, a much faster and more accurate way is to let the computer
do it at the touch of a button. The monitor contains a program to compute relative
addresses for you. To use it you simply enter a program as you normally would and then
when you come to a brauch operand, instead of typing in the operand (relative address)
type in the absolute (4-digit) address of the destination and then touch the "REL" key.
Instantly the correct operand will appear in the display. lf the display indicates_ 11 0011

then the destination was out of range. Otherwise you may enter the operand with the
"ENTER" key. Part of the sample program is used for an example. Starting at location
0009;

Type: 0-0-0-9
DISP
C-8
ENTER
D-0
ENTER
0-0-0-9
REL
ENTER

DISPLAY shows: 09
X.X

es
X.X

DO
X.X

09
FD

When you touched the "REL" key the display should have indicated "FD" 9 as
shown in the program.

DEBUGGING YOUR PROGRAMS

Normally a new program will never run properly the first time (this is
a perfect example of Murphy's Law: lf anything can go wrong, it will!). Therefore
some means of determining what went wrong with your program is necessary. Most
computers use a "breakpoint" for this purpose. The idea behind it is to stop the computer
at some specified point in your program and display the contents of the processor's
internal registers as well as any other memory locations pertinent to your program (such
as those containing status information). By doing this you can compare the status of
the computer against what you thought it should be at that point. lf it doesn't agree then
you have a clue to what is wrang and by placing the breakpoint at previous points in
your program you can determine just where it is that you and your computer disagree.

21

22

Determining just where to put the first breakpoint is usually a "seat-of-the
pants" operation. If some part of your program is supposed to do a certain job and that
particular job doesn 't get done then that' s usually a good place to start witb a break
pöint. Indeed, many times you will put in a breakpoint only to find that the computer
never got to that part of the prog:ram at all (indicated by the fact that it bever breaks).
In such a case you should pat breakpoints in earlier parts of the program until you
find some part of the program that the computer is running and then proceed to move
the breakpoint toward the problem area until you find where you are losing the computer.

TO USE THE BREAK DEBUGGER FUNCTION IN THE MONITOR YOU MUST
ENTER THESE THREE BYTES STARTING AT LOCATION 0000: 4C, eo, FF. To
place a breakpoint in your program, change the opcode of the selected instruction to
"OO". This is the break code and it must always be substituted for an opcode and
never an operand. When the computer comes to the break code it will display "BB"
to indicate a break and it will save the contents of its internal registers in the
following memory locations:

OOF9 ACCUMULATOR
OOF A Y-REGISTER
OOFB X-REGISTER
OOFC PROGRAM COUNTER LOW
OOFD PROGRAM COUNTER HIGH
OOFE STACK POINTER
OOFF STATUS REGISTER

Control will then be returned to the monitor and you can examine and change any
memory locations including the ones above. The program counter locations above will
indicate where the break occurred.

·If desired you can continue from where the break occurred by replacing the break
1"Jode with the original instruction opcode and then running the program from that point.
l~ach time the RUN key is touched all the registera in the processor are loaded from the
above locations before executing the program (with the exception of the program
counter which is loaded from the keyboard). This gives you the ability to run a program
to the break, examine and change any registers or memory locations necessary, and
then continue from tha~ point. Y ou can also start a program at some point other than the
beginning by preloading the registers with the values expected at that point in the
program and then rwming at that point.

STACK POINTER

The PIEBUG Monitor maintains two different stacks; one for the monitor and
cassette routines and a seperate stack for your programs. The reason for this is to keep
the monitor from deßtroying your program stack. Preserving your stack can some
times aid in program debugging since the monitor can then be used to examine it.

This is especially useful if your prpgram stores data on the stack. However, you must be
careful how you interpret this information since the break command itself uses
three bytes of your stack.

You have control over where these two stacks are located in page one of memory
(0100 - OlFF; the processor limits the stack pointer to page one). To set the initial
position of the monitor stack, store the desired value in memory location OOED; like
wise your stack is set with location OOFE. The monitor and cassette routines require
only ten bytes of stack space.

Note: It is not necessary to set the stack locations at all if
(1) You do not need to examine the stack during debugging

and (2) You do not write any programs in page one.

If you do write programs in page one then you must be familiar with how the
stack operates, know how much room it will need, and locate it accordingly so it will
not destroy your program. To save space, both stacks can be located at the same
place if you do not need to examine the stack during debugging.

GENERAL NOTES

Always remember that the reset button is the panic button! When pushed,
control should return to the monitor. If it doesn 't. then something is wrong with the
computer.

The DJ.emory that you are storing programs in is called "RAM" memory.
When you turn the power off it loses its mind and forgets everything it knew (such as
programs and data; hence the cassette tape for saving things). So ü you can't seem
to make the break function work, make sure you have re-entered those three bytes
starting at 0000.

RAM locations OOED thru OOFF are reserved for use by the monitor. You
should not use these locations in your programs unless you are familiar with how they
affect the mo.nitor.

23

24

Dei initions:

BUFFER

POINTER

OUICK REFERENCE

Memory locations (OOFO through OOF5) that the monitor
uses to save the last 12 entries from the keyboard. Only
the last 2 or 4 entries are used in monitor operations.

16-bit address that indicates which byte of memory is to
be affected by the next operation.

ACTIVE CELL Memory location currently being specified by pointer.

DISPLAY

Commands:
DISPLAY

ENTER

BACKSPACE

RUN

POINTER HIGH

POINTER LOW

TAPE

RELATIVE

On-board two-digit led display.

Displays contents of memory location specified by the
last 4 entries from the keyboard and sets the pointer
to that location. Moves buffer to pointer ~ then moves
active cell to buffer and display.

Stores the contents of the display in the currently
addressed memory location and then displays the
contents of the next location. Moves buffer to active
cell, increments pointer and moves new active cell
to buff er and display.

Displays contents of the memory location previous
to the current one and then sets the pointer to that
location. Decrements pointer, then moves active cell
to buff er and display.

Executes program starting at location specified by the
last 4 entries from the keyboard. Loads program counter
from buff er, all other processor registers from appropri
ate register storage (OOF9 thru OOFF).

Displays first two digits of pointer. Moves pointer to
buffer, pointer high byte to display.

Displays last two digits of pointer. Moves pointer to
buffer, pointer low byte to display.

Transfers control to the tape routines (optional).
Note: U se of this key without the tape option will cause

loss of control.

Computes relative address when active cell is a branch
operand. Moves resüit of (buffer minus pointer+l)
to buffer and display. Sets results to "OO" if out of
range. See Text.

Usef ul Zero Page Locations:

OOED Monitor stack

OOFO Bu:ffer, LSB (latest entry)
OOFl Bu:ffer
OOF2 Bu:ffer
OOF3 Bu:ffer
OOF4 Bu:ffer
OOF5 Bu:ffer, MSB (o ldest entry)

OOF9 Accumulator
OOFA Y-Register
OOFB X-Register
OOFC Program counter low
OOFD Program Counter high
OOFE Stack pointer (user)
OOFF Status register

Vectors:

NMI - 0003
RES - FF48
IRQ - 0000

Break Vector: Store starting at 0000; 4C, eo, FF

Memory Map:

0000-00FF RAM (IC22, IC30)
0100-0lFF RAM (IC23, IC31)
0200-02FF RAM (IC24, IC32)
0300-03FF RAM (IC25, IC33)

0400-07FF UNOCCUPIED - i<t-rv ,,.,,._ '{~/..,,.,r ~

0800-0SFF I/O
0900-09FF CASSETTE (IC20, IC21) S9

OAOO-O~FF UNOCCUPIED - ~;" "~ ~
oe,oo - OßPr;; PP--OM e ~'"' ~ o~t~-~,1. ,n . .n.-r,.,-,~· UA,,,.
OCOO-OCFF PROM (IC16) - 1 1°'--~A "-""'f ,
ODOO-ODFF PROM (IC17) - r~
OEOO-OEFF PROM (IC18) CASSETTE OPTION
OFOO-OFFF PROM (IC19) MONITOR

25

26

1/0 Breakdown

0801
0802
0804

0808
0810

KEYBOARD
KEYBOARD
KEYBOARD

INPUT PORT
INPUT PORT

(!Cl,
(IC3,
(IC5,

2
1

IC2) KEYS 0-7
IC4) KEYS 8-F
IC6) CONTROL KEYS

(IC4, IC8) J5
(IC3, IC7) J4

0820 DISPLAY (IC26, IC27, IC28, IC29)
0840 OUTPUT PORT (IC2, IC6) J2
0880 STROBE (!Cl) Jl

tl

Syste01 Analysis

OUTPUT PORT INPUT PORT 1
J2 KEYBOARD J4 INPUT PORT 2

J3 JS

-9V
GROUND (NOTE

FEMALE PIN)

27

28

..-----------•OUTPUT PORT (J2)------------...

+s- 01
-9- 0

BIT7- 0
BITS- 0
BIT3- Q
Bill- Q
+s- 0 7

ANALYSIS

OUTPUT PORT. ADDRESS - xS40

14Q -GND
Q-GND_. _
Q -BIT6 . .

Q -BIT4
Q -BIT2
Q - BITfiJ

80 -GND

The output port is a means of getting data
being processed within the computer out to
peripheral devices.

The eight output lines (bit 0-bit 7) are all
latched and each represents a CMOS output
structure. •.

Includoo at the output port conne ctor are
the system power voltages, +5 volts and -9
volts and gnd.

PROGRAMMING CONSIDERA TIONS

The port is memory-mapped, so that any
instruction which would ordinarily be used to
write data into memory can also be used to write
data to the output port.

PROGRAMMING EXAMPL E

0020 LOOP ES inx; increment count
0021 SE stx (abs); write result to output port

40
AS

0024 4C jmp LOOP; go to do next
20
00

This short program causes the bits of the output port to count in binary. Bit O is
the least signüicant, bit 7 the most significant.

When running, the program increments the X index register by 1 (INX) at location
0020, the STX instruction at location 0021 causes the incremented result in the X
register tobe "stored" in the output port which occupies memory location xS40. The
JMP instruction at location 0024 causes the program to loop back to the beginning.

NOTICE TWO THINGS:

1) the location of the output port is listed as xS40 where x can be any hexadecimal
digit. In this example x is A, but this is arbitrary. Using an oscilloscope you can check
that the output lines are counting and that x can be given any value from 0-F without
aff ecting the operation of the program.

2) because of the pipe-lined architecture of the 650x family of processors, ab
solute addresses are given LEAST SIGNIFICANT BYTE FIRST. This will be confusing
to first-time users of these processors but results in significantly greater processor
through-put than would otherwise be possible. (See 6500 PROGRAMMING MANUAL.}

HARDWARE INTERFACING

The easiest s1tuation is interfacing the output port to CMOS logic, which is simply

a matter of tying the output port pin to the input of the CMOS load. Like this:

A

OUTPUT
PORT

BIT N CMOS OR
TTL GATE

Because of the static nature of these outputs, practically any number of CMOS
gates can be driven. (The limiting factor is the risetime of the output as the additional
capacitors that the inputs of the gates represent are added.) If you like, and if the
specifications of the power supply are not exceeded, power for the peripheral device
can be picked up on J2 as are the signal leads.

TTL gates are just as easily driven from the output port, but unfortunately not in
unlimited quantities. To be on the safe side, stick to one regular TTL load or two
LS TTL loads max.

When interfacing to a discrete transistor, a current-limiting resistor should
be put in the line like this:

B

OUTPUT
PORT
BIT N

LOAD

lOK

If needed, the activating signal that strobes new data into the output port latches,
(OUTPORT) is present on pin #10 of the DATA BUSS and·STROBE connector (Jl)

29

-------------•INPUT PORTS -------------.

30

+s- 0 1

-9- 0
BIT7- 0
BITS- 0
BIT3~ 0
Bill- 0

+s-- 01

PORT :/l=l (J4) - ADDRESS x810
PORT :/1=2 (J5) - ADDRESS x808

140 -GND
0-GND
0 -BIT6
0 -BIT4
0 -BIT2
0 -BIT f/J

BQ-GND

The input ports are means of getting
data from the outside world into the com
puter.

Each input line represents a single
CMOS input structure.

Included at the input port connectors
are the system supply voltages +5 volts
-9 volts and gnd.

PROGRAMMING CONSIDERATIONS

Like the output port, these input ports
are memory mapped and any instruction
which reads data from a memory location
may be used to read the port into the
processor.

PROGRAMMING EXAMPLE

0020 LOOP AD LDA (abs) IN:/l=l ;read input port

ANALYSIS

10
A8

0023 8D STA (abs) DSPLY ;put result in display
20
A8

0026 4C JMP LOOP ;do again
20
00

The instruction at location 0020 causes data which is currently being presented to
the input port to be read to the processor' s accumulator. The next instruction writes
this same data to the display. Finally, the jump instruction at 0026 causes the program
to loop and start again.

NOTICE ONE THING

Since the input port is a CMOS input, normalprecautions should be taken to prevent
static damage at these pins; also, if the above program is run without some device con
nected to the port, some means must be provided to hold the input pins of the port at
either ground or supply. Otherwise, normal environmental electromagnetic fields will
cause the state of the input lines to be indeterminate. lOK ohm resistors from the pins
to either ground or supply (see also HARDWARE INTERFACING) will suffice.

HARDWARE INTERFACING

Being a CMOS input, a variety of devices can supply data to the input ports. The
output of another CMOS gate can be connected directly to the port:

A

CMOS GATE

or switches or transistors may be used:

i--~~~TOINPUTPORT
BIT N

33K

~--~TO INPUTPORT
BIT N

and note that if the transistor or switch above is "on", it represents a 0 input to that pin
of the port.

If the output of a TT L gate is being used to drive the input port, a pull-up resistor
to supply must be provided:

c

TTL GATE

2.2K

n----'---~ TO INPUTPORT
BIT N

31

D 0

1 1

2 2

3 3

·11 4

s 5

6 6

l 7

32

B
g
R
b
[
d
E
F

DISPLAY

DISPLAY ADDRESS - x820
The displays consist of two seven-

segment displays and assocJ.ated
9368-type decoders/latches/ drivers.
The decoder portion of the 9368

8 takes care of converting a single
4-bit hexadecimal digit input to the

9 appropriate code required to operate
the seven-segment displays.

A These devices will display all 16
symbols in the hexadecimal character

B set from 0-F. NOTE that the char-
acters B and D are both displayed

c as lower case characters (b and d),
and that the character 6 is distinguished

D from the character b by the horizon-
tal "tail" at the top of the 6.

E Like other peripheral ports, the
displays are memory mapped and any

F instruction that writes to memory
will operate them.

NOTE: it is normal for the 9368
driver IC s to operate at an elevated
temperature.

TYPICAL SOFTWARE

(see KEYBOARD section of system
analysis for typical programming
examples using the displays.)

... „„„„„„„„„„„„ ... KEYBOARD„„„„„„„„„„„„„„ ...

0
00

FffiST RANK (0-7) - address x801
SECOND " (8-15) - address x802
THIRD " (16-23) - address x803
DECODE SUBROUTINE address FFOO

The keyboard is used by the monitor for
control of user data and program entry as well'
as operation of the PIEBUG debugging tools,
but may also be read by the user 's programs
employing a variety of techniques.

Because of the capacitive operating
principle employed in the 8700 keyboard,
this device should provide exceptionally
long and trouble-free lif e.

(FOR EXPLANATION OF KEYBOARD
WHEN USED WITH MONITOR, SEE
PIEBUG MONITOR.)

USING THE KEYBOARD AS AN INPUT TO
USER'S PROGRAMS

There are two ways that ~he 8700's
keyboard may be used to input data to a user' s
program.

1) Individual "ranks" of keys may be
read with any of the statements that read
memory locations. For example:

0020 LABEL AD LDA (abs) A801 ;read first rank
01
AS

0023 FO BEQ LABEL ;if no key, loop
FB

causes the status of the first 8 keys on the keyboard to be read into the accumulator
of the computer (instruction at location 0020). If no keys are being touched when the
read operation occurs, the accumulator will be loaded with $00. Under these circum
stances, the Branch Not Equal at location 0023 will cause the processor to loop back
to the top of the program and read the keyboard again. If a key is being touched when
the read operation happens, the accumulator will be loaded with a number that repre
sents the key. Each of the 8 bits in the word that is read represents a key, from $01
(in binary 00000001) for key #0 to $80 (in binary 10000000) for key #.7.

While there are circumstances when the above procedure will suffice for inputting
data, there will be times when it is most convenient to read not simply one rank of

33

34

keys, but rather the whole keyboard.
A n·ew program to do thls can of course be written, but under most conditions the

effort would be redundant as this program is already apart of the PIEBUG Monitor
and written as a subroutine so that it can be easily accessed from user' s pro grams.
This subroutine is named DECODE and it lives in the Monitor Prom at address
FFOO.

Before using this subroutine, there are a few things that you should know about it,
like; when called, the rnutine returns with the number of the key down in both the
accumulator and the Y index register, so if either of these registers contains data
that will be needed after the keyboard scan, it should be either pushed to the stack
or otherwise saved in memory. Similarly, though the X index register doesn't con
tain any key information when DECODE is exited, its contents are altered by this
routine and as with the accumulator and Y register it should be saved (if needed)
before entry to DECODE.

If no keys are down, the routine is exited with $18 in A and Y and this fact can
of course be used to determine if a key is down or not.

A problem that is just as important as determining that a key is down and which
key it is, is to determine w hether the key that is down now is the same one that was
down the last time through the program. (Otherwise, what is intended as a single
keyboard stroke can be interpreted as multiple switch activations, one activation
for each pass through the routine). Again, external user written code could be
used to perform this task; but, again, it would be redundant as DECODE already
indicates whether the key that is currently down is the first activation of that key
or if the key is simply still down. It indicates this by clearing (setting to 0) the
Carry Flag in the processor status register; if the key that is activated during the
current scan of the keyboard is different from the key that was activated during the
last scan. If the same key that was down during the last scan of the keyboard is the
same one as is down during thls scan, the Carry Flag will not be cleared. Note
also that the carry flag is cleared only when a new key is activated, E.2!, when
a key is released.

The existence of instructions to test the Carry Flag (BCS-Branch if Carry Set
and BCC-Branch if Carry Clear) make the use of thls feature exceptionally easy.

A simple user program to scan the keyboard and display the key that is down
could look like thls:

0020 LOOP 20 JSR DECODE ;jump to monitor
00 ;keyboard routine
FF

23 BO BCC LOOP ;test for new key
FB

25 8D STA DSP ;ü new key, put
20 ;in display and
AS

28 4C JMP LOOP ;begin again
20
00

lt is the op code (BO) at location 0023 and its corresponding operand at
· the next location that causes the program to skip the display if no key is found

down. By replacing these two bytes with NOPs (EA) the program may be modified to
display the key number while the key is held down and display 18 (the no-key code)
when no keys are pressed.

35

36

.-.............................. -DATABUSSandSTROBE

087- 0 1

085- 0
083- 0
081- 0 ---STR08E- 0

DISPLAY- 0
+s- 01

140 -086
0-084
0-082

CONNECTOR (Jl)

STROBE - Address x880
DISPLAY - Address x820
OUTPORT- Address x840
CASSETTE-Address x9xx

This connector provides direct access
to the data buss as well as a selection of the
system peripheral enable signals. Some
of the enabling signals are actlvated when
a single address is accessed, others when
any one of a group is called for, as summar
ized below.

* Electrical loading is an important con-
0 -D8f/1
0-0UTPORT
0 -CASSETTE

sideration in using this connector. Five
CMOS loads or one LS TTL is,a safe bet,
but more than that is on the questionable
side. The select lines (STROBE, etc) will
each drive 4 TTL loads.

80-GND

The pins labeled DBO-DB7 provide
access to the data buss from least sig
nificant to most significant respectively.;

System +5 volts and ground appear at
pins 7 and 8 respectively.

All enable signal lines are memory
mapped.

PERIPHERAL ENABLE SIGNALS

STROBE - Provides a low-true signal when any of the following addresses are read
from or written to:

x880 x8AO x8CO x8EO
x890 x8BO x8DO x8FO

DISPLAY-Tbis is the select line for the 8700 displays. This line is low-true on a
write operation to the address occupied by the displays (x820).

OUTPORT-The low-true select line for the output port which lives at address x840
acti vates on write operations only.

CASSETTE-The select line for a contiguous block of 256 addresses from locations
x900 - x9FF. Activates on write operations only.
NOTE: All tape <lump operations are written to address x900 and this address
should be reserved for this operation only. All active addresses above x900 may
be used, but if the two relay drivers are used,care must be taken during transfers
so that the duty factor of the pulses is not sufficient to close the relays.

.... -----------EXPANSION CONNECTORs-----------„
J7 and J8

EXPANSION CONNECTORS

J7 ANO J8

IRQ- 0 1

NM'i"- 0
AB~- Q
ABl - 0 J7
AB2- Q
AB3- Q
AB4- Q

ABS- 01
AB6- 0
AB7- 0
ABS- 0 J8
+s- 0

AB11- 0
AB9- 0

0-RES
0-GNO
0-(b2

0 -~2·R/W
0-RAM R/W

0-0B~
0-0Bl

0-0B2
0-0B3
0-0B4
Q-OBS
0-0B6
0-0B7
0-ABlO

The expansion connectors J7 and J 8
provide access to the DATA, ADDRESS,
and CONTROL busses of the processor
as shown at right.

While these connectors are reserved
for future expansions by PAiA, they may
be used by the experienced user for
system expansion. Appropriate care
must be exercised that devices connect
ed to these points do not exceed the
loading capabilities of the processor and
that appropriate protection against such
real-world hazards as overvoltages and
transient spikes is provided.

„----------cASSETTE CONNECTOR (J9)-------------

CASSETTE CONNECTOR

J9

+s- 0 1

-9- 0
EAR- 0
EAR- 0

0-RELAY2
0-RELAY 1
Q-MIC
0-GND

The cassette connector is used in
conjunction with the CS-87 option to
provide program and data-saving and
loading from cassette recorder (see
CS-87 Cassette option manual for op
erating details).

Additionally, this port and its
corresponding components pro
vides for a keyboard "beeper" which
indicates activation of the control
keys of the 8700/ A Active Keyboard.

37

NOT ES

38

F<ESEI

cLeAR. FbRrs

ÄND DfSPLA.'(

561 MDflJIToR.

SIA<:K.
PDINTcr~

LJ>A FRowt

ßUFFE'..R_

Flow Charts & Monitor Listing

Go10
APP~1>PRIATE.
CONT~oL

R6V"t"INE.

ENTER.

LD,t\ F~OM

/3VFFER..

SrA IN
ADDr(fZS$
Si"EC.1 F1 E..D B'r'
Pö1A>1e:R...

1/.JCfNEM/;,IJ/

?Ollt) TE.f<..

Lt>A FROtv\
A l:>t:>RE.<5.S
Sf'EC.IFIED B '(
POlfJ't"ER,

..STA 1r0

8üFFE~

39

40

. DIECO/:JE l<EY

5CMJ Ket/BoA({D

PtJ T RJ:SVL IS
IN AC.CIJMUL.An>A.

/..10

'T"t~B DEI.Al{ -
ALßo se.e..P
IF A>G.l\J l<E-Y

RE.TUR~

REL A-DD/Z..

susnuk1
?o ttJTc '2., + t

Ff<.DM
ßOF'F€.R.

XP'S~
Po11vTE1t

To
ßOFFEte.,

TAPE

.J\'l'\p 10

TA-PE
Ro\JT1AJE.

Xl'<EI'<..
P011JTEt<.

Tc:>
8UFPE~

L.bA F~OM
Po1~TE'.~

nl-\1e..H" .B'r'TE

t>EcRE""1E:rJI

Pou.JISI<,.

41

41

SAvE
Rea.1sTEK'S

bb ~ Ac.c_

Sl·\IFI

Sl-\tFT L..OW 4
ßl T.S OF ACC...

llVTb St>FF'G.R.

RE.TV~AJ

.J V"1 p \o 0$E

AI:>bRE95
SPecl FIS.D ß'(

&,IFl=EI'<?..

PAiA INTERACTIVE EDITOR DEBUGGER

(PIEBOG)

0100
0110
0120
0130
0140
0150
0160
0170
0180
0190
0200
0210
0220
0230
0240
0250
0260
0270
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370
0380
0390
0400
0410
0420
0430
0440
0450
0460
0470
0480

0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
0200
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OF'OO

Monitor Listing

J
J
J

J
J
J

J **************************************
J * *
J * PIEBUG VERSION 1·0 *
J * PAIA INTERACTIVE EDITOR-~fRUGGF~ *
J * WRITTEN BY ROGER WALTON *
J * COPYRIGHT 1977 BY PAIA *
J * ELECTRONICS, INC. *
J * *
J **************************************
J
J
J

*=$0F'OO
J
KEY
TF.MP
LASTKE
BUF'FER
DISP
MSTACK
PNTER
TAPE:l
CASS

=$0800
=$EE
=$F8
=$F'O
=$0820
=$ED
=$F'6
=$0EOO
=$0900

JBASE ADDR Or KEY PORT~

JTrMPORARY STO~AGli'.

;PREVIOUS ~fY or.con~n
JKF\' ENTRY ß!JF'Fli'.R

J
J
ACC
YREG
XREG
PC
STACKP
PREG
J
J

=$F'9
:$F'A
=U'B
=$F'C
:$F'E
=$F'F'

JLF'.O OISPLAY
JMONITOR STACK PQT~r~o
J16 BIT AOD~ POINTü~
JSTART OF' TAP~ SY~T~M
JCASSF:TTE PO~T

JRF:G STORAGI:" „
J

„
„

J
JRF'G STORAGI'

43

0490
0500
0510
0520
0530
0540
0550
0560
0570
0580

0590
0600
0610
0620
0630
0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870

0880
0890

0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020

44

OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OFOO
OF02
OF04
OF'06

OF'08
OFOB
OFOD
OJiOF'
OFlO
0Ji12
OF'l 4
OF15
OF16
OF17
OF19
OF1B
OF'l D
OFl E
OFlF
OF'lF
OFl F'
OF1F
OFlF
OF1F
OFlF
OF1F
OF1F
OFlF
OFl F'
OF'1F
OFlF'
OF1F
OF'l F

OF'lF
OF22

OF'24
OF26
OF28
OF28
OF2C
OF2E
OF2F
OF31
OF33
OF34
OF34
OF34
OF34

AO 00
A2 21
A9 01
85 EE

80 00 08
25 EE
00 OA
CS
06 EE
90 F4
SA
OA
AA
90 EB
C4 F'8
84 F8
98
60

20 00 OF'
A2 14

AO 3F
BO 03
SC 00 09
88
oo r8
CA
DO F3
BO EC
60

J
;
J
;
J
DECODF.:

LOOP

NEXT

RESULT

;
J
;
J
J
J
J
J
J
J
J
J
J
J

J
GETKEY
BEEP

NXTX
DELAY

DLY

J
J
J
J

DECOOE KEY SUBROUTIN!!:
THIS SUB SCANS THE ENTIRF K~YB04~D Q~O
RETURNS WITH DECODED Kr.Y VALUF IN A ANO y.
CARRY IS CLEAR IF' NEW K~Y. X IS
OESTROYED· $18 IS „NO KF.Y" coor..

LOY #0
LDX #$21
LOA #1
STA TEMP

LOA KEY ,x
ANO TEMP
BNE R[SULT
INY
ASL TEMP
BCC NEXT
TXA
ASL A
TAX
BCC LOOP
CPY LASTKE
STY LASTKE
TYA
RTS

JCLEAR RESULT ~~R
JX IS PORT Ri;-G

JSE:T UP MASK
JREAO CURRfNT KEY PO~T

;USF:: 1'11'.\S;< rn ~"'~F!'.j ~1;-,

JBRANCH Ir KF.Y nowN
JSET RESULT TO NFXT KFY
JSHIFT MASK TO NF.XT K~Y
J8R Ir MORF. KF.YS ON PQ~T

JSELECT NF.XT PO~T

JARANCH Ir NOT LA~T POOT
JCL~AR CARRY IF N~W K~Y
JlJPDATF: LASTKf"Y
SMOVE KFY TO ACr,
JRF.TIJRN

GETKEY SUBROUTINE
THIS SUB WAITS FOR A NEW KEY TO 81'
TOUCHED AND THEN RETURNS WITH THE
KE:Y VALUE IN THF: ACCUMULATOR.
X AND Y ARE CLEARED.

BEEP SUBROUTINE CEM8FDDED IN GFTK~Y ~!Al
THIS SUB PRODUCES A SHORT Bl'F.P AT
THE CASSETTE PORT. CARRY MUST RF
CLEAR BE!iORE ENTERING. X ANO Y
ARE CLF.ARED.

JSR DECODE
LOX #20

LDY #$3li
BCS DLY
STY CASS
OEY
BNE DELAY
DEX
BNE NXTX
BCS GETKEY

· RTS

J GET A KEY
JENTF:R HF:RI': F'OR 8FF'P ~11R

JSKIP TONE Ir CARRY ~~T

JGEN!i:RATE TONF
J OF:LAY

JDELAY SOMI' MORI'
J NFXT X
JBRANCH IF' NOT NFW ~FY
;RETURN

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
11 so
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550

OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF34
OF'34
OF35
OF36
OF37
OF38
OF3A
OF'38
OF3D
OF3F'
OF40
OF42
OF43
OF45
OF46
OF46
OF46
OF'46
OF46
OF48
OF48
OF40
OF4D
OF40

OF4D
OFSO
OF52
OFSS
OFSS
OF57
OF58
OFSB
OFSD
OFSF
OF60
OF63
OF65
OF57
OF69
OF'6A
OF60
OF60

OA
OA
OA
OA
AO 04
2A
A2 FA
36 F6
ES
00 FB
88
00 FS
60

A9 00
80 EO 08
rO 08

20 34 OF
AS FO
80 20 08

A6 ED
9A
20 1F OF
C9 10
90 EE
AS
BE E2 OF
86 EE
A2 FF
86 EF'
ES
6C EE 00

J SHIFT BUFFER SUBROUTIN[
J THIS SUB SHIFTS THg LOW~R 4 BITS OF
J THE ACCUMULATOR INTO TH[LFAST
J SIGNIFICANT POSITION OF BUFF'FR· THr
J ENTIRE BUFFF.R IS SHIFTED 4 TIMrs AND
J THE MOST SIGNIFICANT 4 BITS ARF'. LOST•
J X AND Y ARE CLEARED. IF ON RrTURN11
J A SINGLE "ROL A" IS PERFORMF:D11
J THE LOWER 4 BITS OF' THF: ACCUMOLt\TOR
J WILL CONTAIN THE 4 BITS THAT W~Rr
J SHIFTED OUT OF BUFFER.
J
SHIFT ASL A

ASL A
ASL A
ASL A
LDY 114

JSHIFT KEY INFO~~ATIO~
JTO UPPER 4 BITS O~ ACC

ROTATE ROL A
LDX #$F'A

ROTNXT ROL BUFFER+611X
INX

J
J

BNE ROTNXT
DEY
BNF.: ROTATE
RTS

JSHIFT BIT TO CARqy
JWRAP AROUND TO $FO
JCARRY TO BUFF~R TO CAQRY
JAND SO ON
J UNTIL END OF' BllF'rF'.R
JDONE 4 BITS?
JBRANCH IF NOT
JRF:TURN

J RESET ENTRY POINT
J
RESET LOA #0

J
J
J

STA $08EO
BEQ COMAND

SHFTD JSR SHIFT
OSPBUF LOA BUFFER
SEE STA DISP
J
COMAND LDX MSTACK

TXS

J
J

JSR GE:TKEY
CMP #$10
sec SHFTD
TAY
LDX TABLE-1611Y
STX TEMP
LDX #$FF'
STX TEMP+l
INX
JMP CTEMP>

JCLEAR DISPLAY Al\lrl PQoTc:

JBRANCH ALWAYS

JSHIF'T KF:Y INTO R!Jli'fir;-::;i
J GFT BIJF'F"F.R
JUPDATF'. DISPLAY

JSgT MONITOR ST~C~

JWAIT F'OR KF:Y
JIS IT CONTROL ~F:Y
JBRANCH IF NOT
JCONTROL K~Y INTO Y
JGET COMMAND AnnR LOW
J SAV!T IT
JGET COMMANO ADOR HIGH
JASSFMALr COM~ANn Annq
JCLR X
J EXF.CUTF. COMMAND

45

1560 OF6D 18 PHIGH CLC
1570 OF6E AS F6 PLOW LOA PNTER JMOVF. POINTF'.~ TO AffF'F~~
1580 OF70 8S F'O STA BUF'F'ER
1590 0Ji72 AS F'7 LOA PNTER+l
1600 OF74 8S F' 1 STA BUF'FER+t
1610 OF76 80 08 BCS DSPBUF JBRANCH I F' POINTl"".R LOW
1620 OF78 90 08 BCC SEE JBRANCH 1 F' POINTF.q HI Gf.f
1630 OF7A J
1640 OF7A J
1650 OF7A AS FO DISPLA LOA BUFF'ER JMOVE 9UFF'[R TO ?OINT~q
1660 OF7C 85 F6 STA PNTER
1670 OF7E AS Fl LOA BUFFER+l
1680 OF80 85 F7 STA PNTER+l
1690 OF82 BO 14 BCS LOAD JBRANCH ALWAYS
1700 OF84 J
1710 OF84 J
1720 OF84 AS F6 BACKSP LOA PNTER J DF.C 16 BIT POINTJ".R
1730 OF86 00 02 BNlt SKIP JBRANCH IF" NO BORROW
1740 OF88 C6 F7 DEC PNTER+l
1750 OF8A C6 F6 SKIP DEC PNTE:R
1760 OF8C 80 OA BCS LOAD JBRANCH ALWAYS
1770 OF8E J
1780 OF8E J
1790 OF8E: AS FO ENTER LOA BUFFER J GET BYTE IN FH,F'F'f<R
1800 OF90 81 F6 STA CPNTER„X> ;STORE IT IN ACTIV~ CF'LL
1610 OF92 E6 F6 INC PNTER J INC 16 BIT POI"1TFR
1820 OF94 DO 02 BNE LOAD JBRANCH IF NO CARRY
1830 OF96 E6 F7 INC PNTER+l
1840 OF98 Al F6 LOAD LOA CPNTER„X> JGF.T BYTE IN ACTIV~ Cfö'LL

1850 OF9A 8S F'O STABUF STA BUFFER JSTORE IT IN 8UF'FER
1660 OF9C BO 82 BCS OSPBUF JBRANCH ALWAYS
1870 OF9E J
1880 OF9E J
1890 OF9E 08 RELADR CLO
1900 OF9F 18 CLC ;THIS ADOS 1 TO POINTF:~
1910 OFAO AS FO LOA BUFFER JGET BUF"F'F.R LOW
1920 OFA2 ES F'6 sec PNTER JSUBTRACT POINTER LOW + 1
1930 OFA4 85 FO STA BUFFER J SAVE RESUL TS
19 .110 OFA6 AS Fl LOA BUF'F'ER+t J GFT BUFF'FR HI ~H
19SO OFAS ES F'7 SBC PNTER+l JSUBTRACT POINT~R HIGH
1960 OFAA A8 TAY JSAVE RFSULTS IN Y
1970 OFAB AS FO LOA BUF'F'ER J GET RESUL TS LOW
1980 OFAD ao 08 BCS POS ;BR IF' TOTAL R~Sl~T PO~
1990 OF'Afi 10 OA BPL BAD J8R IF RESULT LOW POS
2000 OF'Bl CS INY J I NC RESLJL T HI GM

2010 OFB2 98 CHK TYA JCHECK RESULT HIGH
2020 OFB3 00 06 BNE BAD ;BR IF' NOT ZERO
2030 OFBS FO 99 BEQ DSPBUF JBR ALWAYS„ OISP Rl<'.L AOl)o
2040 OFB7 30 02 POS BMI BAD JBR Ir RESULT LOW N~G
2050 OFB9 10 F7 BPL CHK JBR ALWAYS
2060 OFBB SA BAD TXA JCLEAR ACC
2070 OFBC 38 SEC
2080 OFBD 80 DB BCS STABUF JBRANCH ALWAYS
2090 OF'BF' J
2100 OFBF J
2110 OFBF EA NOP
2120 OF'CO J

46

2130 OJi'CO J
2140 OFCO J
2150 OJi'CO J BREAK ROUTINE ENTRY POINT
2160 OFCO J

2170 OFCO 85 F9 BREAK STA ACC JSAVF. ACCUMULATOR
2180 OFC2 84 FA STY YREG JSAVE Y
2190 OFC4 86 FB STX XRE:G J SAVE X
2200 OFC6 68 PLA J GF.T STATUS RF.G
2210 OFC7 85 FF STA PREG J SAVE IT
2220 OFC9 68 PLA J GET PC LOW
2230 OFCA 08 Cl..D
2240 OFCB 38 SEC
2250 OFCC E9 02 SBC 12 JCORRECT PC LOW
2260 OFCE 85 FC STA PC JSAVE IT
2270 OFDO 68 PLA J GET PC HIGH
2280 OFD1 E9 00 SBC 10 JSUBTRACT CARRY
2290 OFD3 85 FD STA PC+l J SAVE IT
2300 OFDS BA TSX J GET USER STACJ< POINTl!:R
2310 OFD6 86 FE STX STACKP J SAV&: IT
2320 OFD8 A9 88 LOA #$88 J8R€AK INDICATION
2330 OFOA 80 BE BCS STABUF' JBRANCH ALWAYS
2340 OFDC J
2350 OFDC J
2360 OFDC A6 FE RUN l..OX STACl<P J GF.T USER STACK POINTF:q
2370 OFDE 9A TXS JINIT STACK
2380 OFDF AS Fl l..DA BUFFER+l J GET PC HIGH
2390 Of'El 48 PHA JPUT IT ON STACi(
2400 OFE2 AS FO LOA BUFFER J GET PC LOW
2410 OFE4 48 PHA JPUT IT ON STACK
2-420 OFES AS FF LOA PREG J GET STATUS RFG
2430 OFE7 48 PHA JPUT IT ON STACK
2440 OFE8 A6 FS LDX XREG JRE':STORE X
2450 OFEA A4 FA LOY YRE:G JRESTORF.: Y
2460 OFEC AS F9 LDA ACC JRESTORE ACCUMUL4TOR
2470 OFEE 40 RTI JRESTORE PC & STATUS RFG
2480 OFEF J F'ROM STACK AND F.Xl'.:CUTF.
2490 OFEF J USER•s PROGRAM
2500 OFEF J
2510 OFEF J
2520 OFEF 4C 00 OE TAPE JMP TAPE1 JEXECUT~ TAPE OPTION
2530 OFF2 J
2540 OFF2 J

47

2550 0Ji'F2 J COMMAND ADDRESS TABLE
2560 OFF2 J STORES LOW BYTE ONLY OF ENTRY
2570 OFF2 J ADDRESS FOR EACH COMMAND
2580 OFF"2 J
2590 OFF2 DC OF TABLE •WORD RUN
2600 OFF4 •=•-1
2610 OFF3 7A OF .WORD DISPLA
2620 OFFS •=•-1
2630 OFF4 84 OF .WORD BACKSP
2640 OFF6 •=•-1
2650 OFFS SE OF ·WORD ENTF.:R
2660 OFF7 •=•-1
2670 OFF6 6D OF .woRo PHIGH
2680 OFFS •=•-1
2690 OFF7 6E OF ·WORD PLOW
2700 OFF9 •=•-1
2710 OFFS EF OF •WORD TAPF.
2720 OFF'A. •=•-1
2730 OFF9 9E OF .woRD RELADR
2740 OFFS •=•-1
2750 OFFA J
2760 OFFA J
2770 OFfA 03 00 .woRo $0003 JNMI VECTOR
2780 OFFC 46 OF .WORD RESET JRESET VECTOR
2790 0-FFE 00 00 ·WORD $0000 J IRQ VECTOR
2800 1000 J
2810 1000 J
2820 1000 .END

ERRORS = 0000

SYMBOL TABL.E

RESULT OF19 DLY OF2B COMAND OFSS LOAD. OF98
SKIP Ofi'8A POS OFB7 BAD OFBB TA.BLF. OF'F'2
KEY 0800 TEMP OOEE LASTKE OOF'8 BUF'FER OOF'O
DISP 0820 MSTACK OOED PNTER OOF6 TAPEl OEOO
CASS 0900 ACC 00Ji'9 YREG OOF'A XREG OOFB
PC OOFC STACKP OOFE PREG OOFF DECODF. OF'OO
LOOP OF04 NEXT OF'08 GETKEY OFtF BEEP OF22
NXTX OF24 DELAY OF26 SHIFT OF34 ROTAT€ OF3A
ROTNXT OF30 RESET OF'46 SHFTD OF'4D OSPBUF OF'SO
SEE OF52 PHIGH OF'6D PLOW OF6F.: DISPLA OF'7A
BACKSP OF84 ENTER OF8E STABUF OF9A RELADR OF'9F.
CHK OFB2 BREAK OFCO RUN OFDC TAPE OF'EF'

48

SCHEMATICS

49

+5

15

6503

400KHZ

RES l----+---..-o--53 ~
1

. ~ RESEJ _
R23127K

+5

.>
R5 > 3.3K

+5

Vcc ~+5

L-__.__,........,..._...,.-V<s_s_ 2 ~ CPU

FIGURE 1

_,,. D 87
__.,, 086
...... 085

~ 084
? 083
~ 082
__,,. 081

---.,. DB-

..... ;2. Pjw „

_,. RAM r{w ,..
_,..

p2 ,,.

0 .,,

AB11

AB10

AB7
AB6
ABS
AB4 2112

AB3
AB2 22
ABl
AB0

AB7
AB6

2112 ABS
A84
Ali3
AB2 30
A81
AB0

"' -

AB9

ABS

~ B 15 2

13
2112 2112

23 24

2112 2112

31 32

14

12 11

13
2112

2S

2112

33

RAM-PROM
MEMORY

FIGURE 2

+5
AB11

4 AB10
3 16 14 13

4556

10 9 4 5 6 7

13

14 14 14 14

-9
+s

1702A
1702A 1702A 1702A

OB7
OB6
OB5

16 17 lB 19 084
083
082
OBI
080

1/0 DECODING

AB 11---::=:-------!!.ir---.
ABl0---11~--...

2
A B 9----...-1.

AB 8-----:---------i-..__J

2

3

s -CS7
AB7

6

CS6
AB6

12

css
ABS

13

9

CS4
AB4

8

9

AB3
CS3

8

s
AB2

CS2

6

2

CSl
ABl

12

ABf/l
es_,

13

FIGURE 3

52

"' w

CS7

STROBE SELECT

1 2
2 1

1

f/J2 · R/W

FIGURE 4

TB7

TB6

+s

TBS

ST ROBE
(Jl)

TB4

TB3

TB2

TBl

TB~

TRANSISTOR BUSS

DB7
Q7

DB6
Q6

DBS
QS

DB4
Q4

DB3
Q3

DB2
Q2

DBl
Ql

DB~
Q~

1 s 1
1

j

FIGURE 5

CS4,3

CS0,1,2

8 TB7

9 R20,21

12 TB6
TB7 BIT6

13

82 'KflooefisoK~TOUCH PADS

R18,19

8 TBS
TB6 BITS

9 R12,13

12 1B4
TBS BIT4 13 Rl0,11

TO J4,J5

TB4
2

BIT3
TB3

R 7,6

6 TB2
TB3 BIT2

5 R 9,8

TB2
2

BIT 1
TBl

RlS,14

TBl
iepJ

5 ~17, 16

TB,0 INPUT PORTS

3 AND7,4AND 8
PORT 1 PORT 2

KEYBOARD

FIGURE 6 FIGURE 7

....
III

DISPLAYS

+5

R3 3.3

A
13 10 8

5

3

9 c

rn
+5

12

6

16

6 11 8
D FND359

8 9368 ~2·R/W
10 5

E
9 4

087 F
15 2G 27

6
086 26

2 14 3
085

084
7

A
3 13 10 8

DISPLAY

+5 (Jl)
12 9 c 16 9368

6 8 8 11

10 5
o FND359

E
9 4

F Dß3
15 2 G

6
28 082

29 14 3 2
081

l
080

7

FIGURE 8

FIGURE 9

The PAiA 8700 Seif-Test Micro-Diagnostic
T.M.

There is a significant test feature built into the PAIA 8700 which, while simple in
co:ncept, provides an exceptio:nally powerful tool for spotting a :number of potential faults
associated with tlie Grand Buss architecture common to micro-computers. Two small
circuitry details are involved in implementing this feature:

1) A means by which devices connected to the CPU's data buss may be disconnected
and allowed to float.

2) A means by which a no-operation (NOP) instruction is forced onto the data buss.

Together, these two things cause a properly assembled and functioning 8700 board to
operate in a very special manner.

The processor, on being reset, will fetch the first instruction from the memory location
specified by the reset vector. Since all sources of data have been isolated from the data
buss, the only source of instructions to the processor is from the combination of the data
buss pull-up resistors R39 - R44 and the three diodes D3- D5. The diodes clamp data buss
lines DO, D2, and D4 to ground producing the binary pattern 11101010 (EA in hex) on the
data buss. EA is a NOP instruction.

The processor's response to a NOP is to increment the address buss to the nex.t address
and fetch the instruction that it finds there, which is of course again a NOP. The address
lines increment again and fetch the NOP, etc.

The overall result is that the address lines (all 12 of them) count in anormal binary
sequence. This in turn allows for easy checking of the address lines which are operating
in an easily verified and predictable manner as well as ex.ercising all of the address decoding
circuitry, making for easy checking of the various chip select lines to output ports, memory
locations, etc. to see that this portion of the circuitry is operating properly.

Using the Seif-Test

1) Remove all RAM (IC22 -IC25; IC30-IC33) and ROM (IC16-IC19) from their
sockets.

2) Close the circuit board jumper 82 either by putting it in place, or, if already
installed but severed, by soldering the cut ends together. This step ties the cathodes of
the three diodes D3-D5 to ground causing them to forward bias and hold the data lines
DO, D2 and D4 low.

3) If the jumper Sl is in place, cut it so that no co:nnection is made and isolate
the two ends from one another. Also, tie the end of the jumper designated by the arrow on
the circuit board to the+5 volt power supply line.A clip lead may be used here and the best
place to pick up the-t-5 volts is at the left end of R5. These steps isolate the data buss by
break:ing the emitter leads of the transistors QO -Q7 and assures isolation by reverse
biasing these devices.

57

4) Apply power to the processor. And note that since only the ROMs require the -9
volt supply, this voltage does not have to be provided for these tests. On the other hand,
it won't hurt to have it there eith.e;_:-:-;hichever is easier. When the power is applied the
displays should immediately light with some random digits. This is of course a quick check
that the-t5 volt supply is active and that there is not a direct short across the supply lines
somewhere. The 9368 Display Drivers will quickly become uncomfortably warm to the
touch. This is normal.

5) Reset the CPU by using a clip lead or other temporary jumper to momentarily
ground the RESET line. For the purposes of these tests the RESET line is most easily
accessed at pin 14 of the expansion connector J7 and ground can be picked up at the circuit
board jumper 82. Since some malfunctions can cause the processor to "lock-up" (recieve
an instruction that causes paralysis of the address and data busses - who knows what it's
up to internally) it would be wise to have your temporary RESET switch handy during the
entire procedure.

is:
6) Check the 02 clock signal at pin 12 of the expansion connector J7 to see that it

a) present
b) swinging between essentially -t5 v. and ground
c) has a period of approxi.mately 2. 5 :micro-seconds + 20%
d) has a duty factor somewhere betw~en 30% and 70%:: exact duty factor is not

critical

7) Check, in sequence, the 12 address lines ABO-ABll. These lines are most easily
accessed at the expansion connectors J7 and J8 as shown below:

iiQ- 01

NMi-O
AB9J- Q
ABl - 0 J7
AB2- 0
AB3-0
AB4- 0

EXPANSION CONNECTORS

0-RES
0-GNO
0-f/)2
0 -f/)2·R/W
0-RAM R/W
0-0B-
0-0Bl

J7 ANO J8 AB.5- 01

AB6- 0
AB7- 0

Figure 1

ABB- 0 JS
+s- 0

AB11- 0
AB9- 0

0-082
0-083
0-084
Q-085
0-086
0-087
0-ABlO

NOTE that AB9, .!\BlO and AB 11 are out of sequence at these connectors~ When checking
these waveforms you should observe that:

a) they are perfectly square (50% duty factor)
b) they will be slightly rounded on the rising as in figure 2:

\ I / /
/

--
/ / \ / GOOO \ 58 \

Figure 2

c) each of the lines in ascendihg sequence, starting with ABO, is exactly half
the frequency of the preceding line in the sequence.

d) each line should swing from essentially supply to ground.
e) both the "1" state and the "O" state of the lines should be relatively free of

glitches. (not more than 200 - 300 millivolts)

There are two problems that you will most likely spot with this test. First, that the lines
do not toggle symmetrically but switch in bursts, which at low oscilloscope sweep rates
will look like this:

BAD

Figure 3

which could be an indication either of a malfunctioning component or a defective conductive
trace or solder joint on the circuit board.
Second, one or more of the address lines may not swing fully between supply and ground,
which, again at low sweep rates, will look like this:

.. ::_.·,: .. ,:_.·':_.,: ... ·': .. ,: ... ':.·': ... ': .. ,:_.·':.·,: ... ': .. ,:_.·':_,·.:_.·': __ ,: __ .':.·,: .. ·': .. ,: __ .,: .. ,:,_,.·': .. ,:.·„ __ rnr:mtr: _ l~lf 1I1J~~[~f

BAD

Figure 4

and could also be caused by a defective component but is more probably the result of a
short between adjacent conductors on the circuit board. Even more specifically, this
condition can most often be traced to a short between the malfunctioning address line and
either a data line or one of the chip select lines. More information on these conditions can
be gained with the rest of the tests.

8) Check the chip select lines individually. There are seventeen of them;
4 lines going to the RAM chips (check at pin 13 of each of

the RAM locations IC22- 25)

4 lines going to the ROM chips (pin 14 of each of the ROM
locations IC16 -19 ·

1 line (CS9) present at pin 11 of IC 12

4 lines (CSO, CSl, CS2, and CS3) present at pins 11, 3, 4 and
10 respectively, of IC13

4 lines (CS4, CS5, CS6 and CS7) present at pins 10, 11, 3 and
4 respectively, of IC 9

59

60

At each of tbese points you should see the same thing; a narrow negative pulse on the
order 1 to 2 milli-seconds in duration. Like this:

SINGLE EVENT
\

MULTIPLE EVENTS /
"\. (FAST SWEEP) (SLOW SWEEP)

~
"\.

1

..,.,,.

' -
1 1

... '-
/ \ / / GOOD \ \ " / GOOD \

1 :: III 11
BAD BAD

·- -BAD BAD

Figure 5

You should be sure that these pulses:
a) occur at a constant repetition rate
b) occur at constant time intervals
c) swing essentially from supply to ground
d) do not have faster switch!ng ~nts happening inside the pulse

(with the exception of CS{d - CS7, which will have switching inside the
negative-going pulse)

9) If you have checked and successfully verified that all of the points above are as
they should be, this last becomes academic. Check the data buss lines which are access
ible at the expansion connectors J7 and J8. These lines should be totally static (not
switching at all) and. should be at the logical levels which follow:

DB0-0
DBl-1
DB2-0
DB3-1
DB4-0
DB5-1
DB6-1
DB7-l

Even if tbe lines are static, check to make sure that
tbey are all within 500 millivolts of either supply or
ground.

Successful completion of all of the foregoing procedures is a very strong indication
that the 8700 Computer is functioning properly and will continue to do so when mated
with its companion keyboard.

BEFORE LEAVING THIS SECTION BE SURE TO RESTORE THE MACHINE TO ITS
ORIGINAL CONFIGURATION. Put RAM and ROM back in place, solder the ends of the
jumper Sl back together and cut Jumper 82 being sure to fold the ends back so they do
not touch each other or surrounding circuitry.

If any of these tests failed, you must begin trouble shooting. It would be nice ü we
could cover all of the things which can potentially die or short to one another. We can't.
Trouble shooting a system of this level of complexity is most readily accomplished in
much the same manner as methods employed by medical diagnosticians:

a) consider all the symptoms (complete all tests)
b) postulate a defect that would produce some or all of

the observed symptoms
c) check you r hypothesis
d) probably go back and try again.

WE CAN HELP and are happy to do it. If you have any düficulties with the tests in this
section, write or call:

PAIA Electronics, Inc.
1020 Wilshire Blvd.
Okla. City, OK, 73116
(405) 843-9626 9:00 am - 5:00 pm CST

Please supply information relative to the results of your tests: which lines looked
OK, which didn't, etc.

61

NOTES

62

8700 ERRATA

87 00 manual erratta sheet
(we 'll get it right yet)

On page 60 of the manual, in the section
dealing with using the Micro-Diagnostic to

. check the chip select lines CSO-CS7;

Each of these chip select lines in a
properly operating 8700 will be different.
CS7 will be identical to the GOOD Single
Event (fast sweep) waveform shown Oll page
60. CS6, at fast sweeps, will appear tobe
two very closely spaced llegative-going pulses.
CS5 will be 4 closely spaced pulses, and so
oll "up" to CSO which will be a quick hurst
or 256 pulses (which will appear simply as
a ha.ze on most 'scopes). An important
point is that the width in time of the group
pulses will be the same for all 8 lines,
whether 1 pulse or 256.

NOTE CONSTllNT

CS7 -----uwm~

1 1
1 1
1 1
1 1
1 1
1 1

NOTE:_C_S_5 ___ C_S_1--~"-------
NOT SHOWN 1 * 2. PULSES

1 • 1

1 • l

II
1 ~.256 PULSES
1 1
1 1
1 1

8700 CPU

PARTS LIST

Before beginning assembly of your 8700 computer controller, carefu.lly
check the parts enclosed in each parts bag against this parts check list. Every
effort has been made to assure that the proper parts are included.

One each of the following parts:

8700 IC PACK 24 pin socket 28 pin socket

3 CKT power connector
(see drawing page 27)

33 pf. ceramic disc. capacitor

one strip of 20 molex pins

Three each:

1N914 diodes

Four each:

33K resistors (orange-orange-red)

Eight each:

2N5129 transistor

Nine each:

16 pin socket

Ten each:

. 05 mfd. ceramic disc capacitor

Seventeen each:

14 pin socket

Twenty each:

lOK 1/4 watt resistor (brown-black-orange)

27K 1/ 4 watt resistor (red-violet-orange)

8700A Keyboard

Parts List

Before beginning assembly of your 8700A Keyboard, carefully check the
parts enclosed in the parts bag against this parts check list. Every effort has
been made to assure that the parts enclosed in the parts bag correspond with
this check list. Report a.ny shortages at once to P AIA.

One each of the following Parts:

12" length of bare wire 12" length of insulated wire

Miniature SPDT pushbutton switch IC header (see fig 6, page 12; fig 7,page 13)

Two each:

4-40 X 1/ 4 inch machine screws

Four each:

150K resistor (brown-green-yellow) lOOK resistor (brown-black-yellow)

4-40 X 1 inch screws

Six each:

Rubber feet 4-40 nuts

CD-4001 Jntegrated Circuit (in foam)

Eight each:

5/16 inch spacers

Twelve each:

:ff:4 fl.at washers

Sixteen each:

82K resistors (grey-red-ora.nge)

Twenty-four each: 27K resistors (red-violet-ora.nge)

