
SNAP I ASSEMBLER

P8C 1018

....

I

pb 250

Lpl>J Packard Bell Co~puter

II

I
j I
I,
I
I

1 I
I
11
I

I
11

I'

11

!II

ll'
r

u
f

I

I

SNAP I ASSEMBLER

PBC 1018

Packard Bell Ce>mputer
A DlVlSlON OF PACKARD BELL ELECTRONICS

1905 ARMACOST AVENUE • LOS ANGELES 25. CALIFORNIA • GRANITE 8-4247

June 1, 1962

NOTICE

This document involves confidential PROPRIETARY
information vf Packard Bell Computer Corporation
and all design, manufacturing , reproductions, use,
and sale rights regarding the same are expressly
reserved. It is submitted under a confidential rela
tionship for a specified purpose, and the recipient,
by accepting this document assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special feature·s peculiar to this design
will not be incorporated in other projects.

When this document is not further required for the
specific purposes for which it was submitted, the
recipient agrees to return it.

CONTENTS

Introduction

J.

II .

III.

IV.

Description of Equipment

A .

B .

C.

General

Description of PB 250 Computer

Description of Flexowriter

The Assembly Language

A

B

C .

D .

E.

General

Location Field

Op Field

Address Field

Tag Field

SNAP Commands

A .

B .

c.
D.

General

Addressing Requirements

Pseudo Operations

Symbolic Programming .Code

Use of Assembler

A .

B .

c .

D.

E .

General

Loading the Assembler

Initializing the Assembler for Phase l

Initializing the Assembler for Phase 2

Restarting the Assembler

iii

Page

v

1-1

l - l

l - l

1-8

L-1

l-1

t. - l

l- t.

l -3

2.- 5

3-1

3-1

3-1

3-5

3-8

4-1

4-1

4-l

4-2.

4-3

4-3

CONTENTS (Continued)

v. E ;·ror Detection

A .

B .

Appendix A .

Appendix B .

General

Erro r Codes .

Sample Symbolic Program

Recirculation Chart, Fast Line

FIGURES

Frontispiece PB250 General Purpose Digital Computer

1-1 Data Word Configuration

1-2 Command Word Configuration

1-3 PB250 Computer Console

1-4 Flexowriter Keyboard

1- 5 Flexowriter Code . · ..

3-1

A-1

B-1

TABLES

Symbolic Programming Code

Machine vs Symbolic Coding

Fast Line Recirculation Chart

iv

Page

5-1

5-1

5-1

A - 1

B-1

vi

1-3

1-4

1-8

1- 9

1-10

3-10

A-6

B - 3

INTRODUCTION

The SNAP I, Symbolic Non-optimizing Assembly Program, enables

the programmer to code all instruction operation codes and addresses in

symbolic languag e. This symbolic language program is translated by the

assembler into Octal Utility Package listable format and punched on paper

tape. The symbolic tape may be read by either the Flexowriter or by the

modified HSR-1 High-Speed Reader, and the output tape may be punched by

either the Flexowriter or by the HSP-1 High-Speed Punch.

This manual contains a description of the PB250 Computer as a deci

mal device and provides instructions for programming using symbolic coding.

A list of symbolic codes to be used by the programmer is located in Section

III. A sample program using these codes is located in Appendix A.

v

PB250 Computer Rack and D esk Mounted

vi

I. DESCRIPTION OF EQUIPMENT

A. GENERAL

This chapter contains a description of the PB250 Computer and the

Flexowriter . A description of their controls and indicators is also provided.

B. DESCRIPTION OF PB250 COMPUTER

The Packard Bell PB250 is a high-speed, completely solid-state

general purpose digital computer in which both the data and the commands

required for computation are stored in a homogeneous memory. The storage

medium is a group of nickel steel magnetostrictive lines along which acoustical

pulses are propagated. At one end of each of these lines is a writing device

for translating electrical energy into acoustical energy. At the other end of

each line is a reading device for translating acoustical energy back into

electrical signals. By rewriting the stored information as it is read, infor

mation co;itinuously circulates without alteration except for alterations which

result from the execution of the com·puter program.

The PB250 provides a repertoire of more than 50 commands flexible

enough to permit coding of a very broad range of scientific and engineering

problems. Double precision commands are provided for operating upon large

nwnbers. Commands to normalize and scale numbers facilitate floating

point operation. Square root, and variable length multiplication and division

operations are available in the command list. Other features include input

output buffering, and a large nwnber of optional peripheral units such as

1-1

punched card equipment, tape handlers, shaft encoders, photo readers, and

analog-to digital and digital-to analog converters.

B-1. MEMORY ORGANIZATION

The memory of the basic PB250 contains 10 lines, numbered

decimally from 00 through 09, which hold both data and instructions. Each

long line, 01 through 09 contains 256 locations, also called sectors, that are

nwnbered 000 through 255. Since the information in any location can be

either data or a command, the generic term "word" is used to cover both.

The location of any word is specified by a line and sector number, and these

together are called an address . Line 00 is a 16-word fast access line. Since

line 00 is 1/ 16 the length of a long word line, any unit of information contained

in it is available 16 times during each complete circulation of the 256 -word

lines. Thus, any word in the fast access line can be identified by one of 16

sector addresses . For example, sector 000 of line 00 can be identified by

the following addresses: 00000, 01600, 03200, 04800, 24000.

Fifty-three additional lines, each of which may have from 1 to 256

words, can be added. These lines are numbered 10 through 30 and 32

through 63. Line number 31 is used as an Index register. If all of the

additional lines are used, and if all hold 256 words, the memory capacity of

the PB2'50 is extended to 15, 888 words.

Commands can be executed only from lines 00 through 15; these lines

are therefore designated "Command Lines".

B-2. Data Word Configuration

Every number stored in the PB250 is represented by a series of

pulses which correspond to a series of zeroes and ones that are the digits

1-2

of the binary number system. The term ''binary digit" is usually contracted to

h d
I~ , II

t e wor 01t •

A number stored in a location in the PB250 consists of 2 l bits (Figure

1- l) that represent magnitude, and a 22nd bit to indicate sign. A negative

number has a one in position zero, whereas a positive number has a zero m

position ii;ero. Negative nun1bers are expressed in their 2 's complement

forrn.

0 1 2 3 4 5 6 7 8 9 10 1 l 12 13 14 15 16 17 18 1'9 20 21

l±I I I I I I I I I 111 I I I I I I I I I I
Figure 1- l. Data Word Configuration

Thes e· 22 bits can represent any decimal number less than 2, 097 , 152.

Larger numbers may easily be represented by using the double p r ecision

featu res of the computer.

B-3. Arithmetic Register.,

Three arithmetic registers, A, B, and C, are provided for arithmetic

operations and information manipulation. Each register has exactly the same

format as a memory l ocation, including the sign, and all are available to the

programmer. Double precision commands treat A and B as a double-length

registe r; information may be interchanged between A, B, and C. The con

tents of a register may be tested for non - posit ive values o r compared against

the contents of any memory location. A record may be kept in one register of

operations performed on the others.

1- 3

B-4. COMMAND WORD CONFIGURATION

Information in any memory location may be ei:;he r data or a command.

When the information is a command, it has a definite configuration, or for

mat, as illustrated in Figure 1-2.

o 1 2 3 4 s 6 1 I e I 9 1 o 11 12 13 1411 s 16 11 1 e 19120121

I I I I I I I I I I I I I I I I. I I I I I I
SECTOR NUMBER I SEQ.1 OP COO£ I LINE NUMBER I 111100

TAG TAG

Figure 1-2. Command Word Configuration

Each subdivision, or field, of the command word is uniquely identified. The

subdivisions are the sector number, sequence tag, op code, line number,

and in dex tag fields. There will be frequent references in subsequent dis

cussion s to the address field of a command. Although the address is made

up of a sect or and a line number, these numbers a r e not contiguous in t h e

command fo r mat. The address fi~ld, however, is considered as a single

entity. The address 03204 refers to sector 032, line 04. The contents of

the address field in a command do not always designate a memory location.

For exampl e, the shifting commande use the address field to indicate the

number of places to shift.

The sequence tag field may contain either a on e or a zero.

The op code field contains a numeric code which specifies one of the

PBZSO commands.

The index tag field may contain either a one or a zero. When a one

is placed in this field, the contents of the Index register are used; a zero in

the field indicates no use of that register.

1-4

Bit position 20 contains a one only when referring to a line number of

32 or greater .

B-5. INDEX REGISTER

The Index register contains a line number for use with commands

which are index-tagged. When used, the contents of the Index reg1ster

replace the line number of the address in the c.ommand. This 'replacement

is made during the reading of the command, but does not change the command

as it stands in memory.

Line number 31 is reserved to designate the Index register . Addresses

00031 through 25531 all apply to this register, and bit positions 16 through 20

are the useful positions for the line number.

B-6. COMMAND TIMING

The PB250 reads and executes commands from the circulating com

mand lines. The words of the long lines are read serially in sector number

sequence (000, 001, 002 --- 254," 255, 000, 001 ---). The time for each

word to pass through a reading device is· 12 microseconds; therefore, the

time for all 256 words of a long line is 307 2 microseconds. The commands

are read and executed in numerical order from a given line and a given

s~ator: 000 of line 01 (00001, 001 .01, 00201, ---)or 011 of line 05(01105,

01205, 01305, ---). The performant:e of each command involves four phases:

Phase I

Phase II

Phase III

Phase IV

Wait to read next command.

Read next command.

Wait to execute command.

Execute command.

For example, a command in 00001 to store A in 03004 will be read

(Phase II) in sector 000, held for execution (Phase III) in sectors ·001 through

1-5

Oi!9, executed (Phase IV) in sector 030, and held while waiting to read the next

command (Phase I) in sectors 031 through 000. Phase II will follow in sector

001 to read the next command in 00101.

differs.

There are four classes of commands in which the nature of Phase IV

CLASS 1.

In this class of commands, execution always follows the read

ing of the command by skipping Phase III. This class of com -

mands consists of all those which require an extended interval

of execution such as block transfer, shifting, and multiplica

tion. The execution time for this class of command varies

with the required duration . For example, block transfers

require 12 microseconds per word, shifting requires 12

microseconds per bit, and multiplication requires 12 micro

seconds per multiplier bit.

CLASS 2.

In this class of commands, execution is always completed in

the sector specified by the sector number of the command.

This class consists of all one-sector operations such as load,

store, ;,.dd, and clear'. All commands of this class require 12

microseconds to e xecute.

CLASS 3.

Class 3 is an extension of class 2 to handle double precis ion

operations. As in class 2, execution always starts in the

sector specified by the sector number of the command but the

execution phase is always extended into the following sector.

All commands of thi s class require 24 microseconds to execute.

1-6

CLASS 4.

Class 4 consists of commands for conditional and unconditional

transfer of control. The condition for a conditiona l transfer is

tested in Phase II and, if the condition is met, the next command

is read from the addr ess specified by the command. If the co1uhtion

is not met, the command direc tly following transfer of control com

mand is read. A conditional transfer where the condition is not met,

thus requi res no execution time. The unconditional transfer selects

the next command with no restrictions . The execution time when

control is transferred is 12 m ic roseconds per sector for the interval

between the transfer of control command and the next command.

B-7. THE COMPUTER CONSOLE

The console of the PBL.50, shown in Figure 1-3 , is composed of

lights and switches arranged in two rows. The top row has three sets of

lights: six for OPERATION, five for OPERAND, and three for COMMAND.

OPERATION specifies which OP ' code is being executed, i. e ., ADD, LOAD

A, etc. Using l to indicate light on, and 0 for a light off, the pattern 001100

represents the command ADD (Command 12 in decimal). OPERAND specifies

the l ine number p ortion o f the address, and COMMAND indicates from which

command line the command is befog executed.

On the second row are the 0 1 FLOW light, PARITY light, FILL switch,

TEST switches, and POWER button. The 0 1 FLOW light is on if an overflow

has occurred. The PARITY light indicates a parity check e r ror. Computa

tion may be started by depressing the ENABLE and BREAKPOINT SWITCHES

on the Flexowriter to clear the pa1·ity flip-flop. The FILL switch is used for

loading a "bootstrap loading program". The TEST switches are used for

l-7

maintenance of the system. The POWER button is an alternating type,

turning the power to the c omputer on or off.

DOD ODD DDDDD DO D
OPERATION OPERAND COMMAND

D D
O'FlOW PARITY Fill TEST 1 TEST 2 POWER

Figure 1-3. PB250 Computer Console

C. DESCRIPTION OF FLEXOWRITER

A Model FL Flexowriter is used a s the control unit for the PB250.

This machine is also used to prepa·re, duplicate, and read tapes. The Flexo

writer can be used on-line (Flexowriter under control of computer), o r off

line (Fl~xowriter under control of operator). The general appearance and

operation of the Flexowriter are similar to a standard electric typewriter.

(See diagram of Flexowriter keyboard in Figure 1-4.) Such features as space

lever, paper r elease lever, platen knobs, margin release lever, ribbon posi

tion lever, margin and tab stops, and type guide, are used in exactly the

same manner as for a standard typewriter.

The Flexowriter prepares tape by punching coded holes across the

width of the tape. The punched tape is prepared manually from the keyboard

(off-line) or by output commands from the computer (on-line), and is

described as having channels and characters. The channels run lengthwise

1-8

along the tape while characters are across its width. The PB250 uses six

channels of an eight-channel tape; the code used in this tape is pictured in

Figure 1-5. The tape reader can read and type out the information contained

on a coded tape.

When the Flexowriter is under the control of the computer, its paper -

tape reader, typewriter keyboard, and paper-tape punch are used as input

output devices by the computer. Each typewriter character has a specific

code, which is sent to the computer as a pattern of six bits.

The command READ PAPER TAPE will cause the tape reader to read

a single character and load it into the input buffer of the computer. The

command READ TYPEWRITER KEYBOARD will turn on the INDICATING

LIGHT of the Flexowriter, after wh.ich a typewriter key must be depressed

to load the input buffer. The INDICATING LIGHT is turned off by the loading

operation.

The command WRITE OUTPUT CHARACTER provides information to

either the typewriter or the punch. It is possible to prepare a tape with as

many as eight channels by this command and read such a tape back into the

computer with the READ PAPER TAPE command.

ITHT no•
HAO •UO •HH HAILI ·111DICATlllt

LltHT

HIU no• COOi TAH

•Ol•T CODC Oii.CTi PllO

[] w m rn ~ rn [I] m [] rn rn
@] ~ w [[] IT1 CT] [QJ OJ @] ~ Q [;]
~ [§] @] [I] @] [8J QJ IBJ w OJ [I] ~
rn 0 C£J ~ []] [fil (0 CJ CJ rn ~

Figure 1-4. Flexowriter Keyboard

1-9

ALL ,
~

u • • •
--·!~-.. ,
• ~ • I • ,,,

A

8

c
D

E

F

G

H

J

K

l

M

N

0

" Q

•
s
T

u
v
w
x
y

z

C H A N N ·E l
A88,21

• • • • •• •• • • •• • • •• •• • • • • • • •• AU'HAIETICAL CHARACTERS
AVAii.Ail£ IN BOTH

Uf'PElt & LOWER CASE

CHANNEL
'='='A88,21

) 0

1f

v 2 - 3

(' J 5

.ti. 6

& 7

• 8

(9

? +

"
' '
/ $

Upper co ..
lower Cose

Tab

Carriage Return

Stop Code

Delete

Space

• • • • • • • • • • • •• • • • • •• • • • • • • • • • • • • •• • • • • • • • • • • • • • • NUMERICAL & SPECIAL
CHARACTERS

•• • • •• • • • • • • • • • • • • • • •• • • • • • CONTROL CHARACTERS

Figure 1-5. Flexowriter Code

The keyboard of the Flexowriter is similar to a standard typewriter

keyboard and may serve many of the same purposes. The numeric, alpha

betic, and symbolic keys require no explanation other than the alphanumeric

code for the computer as given in Figure 1-3. The TAB KEY, CAR RET

(Carriage return), LOWER CASE, UPPER CASE, and SPACE BAR are self

explanatory and are analogous to controls on a standard typewriter. The

1 -1 0

REGEN SWITCH, when depressed, pe r mits exact du pile ati(m nf the tape

which is in the Flexowrite r tape reader .

Cer tain switches and keys on the Flexowriter are used to contr ol the

computer .

ENABLE SWITCH:

1. Inter r upt s computation.

2. C onditions the use of other switches and keys of the

Flexowriter.

BREAKPOINT SWITCH.

1. Sends signal to computer which may b e t ested by the

command T RANSFER ON EXTERNAL SIGNAL.

2. With ENABLE SWITCH clears parity flip-flop (indicated

by PARIT Y l ight on) .

I K ey: With ENAB LE SWITCH causes the computer to e xecute the

command in memory location 0000 l.

C Key: With ENABLE SWITCH causes the computer to cycle by o n e

command.

l -1 1

I ~

n
I.
f ~

f
1 ·

I
1 ·

II. THE ASSEMBLY LANGUAGE

A. GENERAL

This chapter describes the instruction format to be used for coding

programs symbolically and describes the principles of programming using

SNAP. All numbers used in this section are radi x l 0.

SNAP instructions consist of four parts, or fields, separated by tabs,

with the entire instruction terminated with a carriage return . The fields are

designated as location, operation code (op code), address, and tag and are

described in paragraphs B through E below . The only field required for each

instruction is the op code, however, many op codes require an address (see

paragraphs C and D below). A typical instruction is shown below.

Location Op Code Address

~
START ~ ADD $ + 5

B. LOCATION FIELD

Programs assembled using SNAP are free of many of the clerical

chores required for octal coding. This is accomplished by the SNAP func

tion, which assigns sequential location to instructions once an absolute

location is specified. If an initial absolute location is not specified, instruc

tions are assigned sequential locations, beginning with sector 000 of l i ne 02.

Instructions will be assigned sequentially within the same command line,

2-l

with sector 000 following sector 255, until a new absolute loc ;:i.ti o n is speci

fied by the user . When a location other than 00002 i s desired, the absolute

location is inserted in the location field .

A symbolic location field may contain from one to five alphanumeric

characters, at least one of which mu~t be alphabetic Alpha numeric charac

ters include A through Zand the numbers 0 through 9 . Special c haracters

such as $, +, -, etc., should not be used in the location field .

It is also permissible to specify an absolute decimal location of the

form SSSLL, where SSS is a three-digit decimal sector number from

000-255, and LL is a two-digit decimal number from 01-ll. Wh1,;n an abso

lute locati(Jn field is encountered, the location counter in the assembler is

set to the new value, and instructions are assigned sequential locations from

there . If an absolute location is spec ified, to which an instruction has been

assigned previously by the. as serribler, the location will be flagged as a

memory overlap error, and an error printout will occur . The location

counter will be set to the new location, however, and the assembler will

assign instructipns sequentially from there .

The location field must be terminated by a tab. lf a blank location

field is de~ired, a tab alone should be typed, followed by the operation code

C. OP CODE FIELD

The operation code field (op code) contains the operation to be per

formed, such as "add" or "subtract". A list of the operations to be per

formed is given in Table 3-1 . Each op code must consist of one of the

symbolic codes shown in the table.

Operations are divided into two categories :

1) Standard Operations, which are those operations which can

be performed by the PB250 Computer and which are

l-l

described in PBC 1004, PB250 Programming Manual. U sc of

one of these op codes results in a command format word.

2) Pseudo Operations, which are those additional operations

which can be performed using SNAP and which are described

in Section III of this manual. Some pseudo ope rations result

in the storage of a data format word, while others provide

cont r ol functions.

Most operations require an address field. The Reference column of

Table 3-1 refers to the paragraph which defines the address requirements

for each op code. These requirements are described in Section III of this

manual.

When an op code requires an address, the op code field is terminated

with a tab and the address is inserted as described in pa r agraph D below.

When the op code does not require an address, the op code field is termi

nated with a carriage return, indi cating end of instruction, and the program

ccntinues.

D. ADDRESS FIELD

'It is not necessary to use the address field for each instruction, this

is determined b y the op code (see Section III of this manual) . When the

address field is required, use one of the following forms :

1) An absolute decimal consisting of five decimal digits' of the

form SSSLL -.vhere SSS is a sector number from 000 to 255,

and LL a line number from 00 through 63.

2) A symbolic address consisting of from one to five alphanu

meric characters, at least one of which must be alphabetic.

2-3

Alphanum e ric characters include the let ters A th r ough z. a nd

the n umbers 0 through 9 .

3) A relative address, which refers to an a ddress relative to an

established symbolic location, o r a n addres s relat ive to the

location of the instruction being written. A s suming that a

symbolic address of NOT 12 has been established previously,

and that it is desired to refer to the fourth sector location

following that assigned to NOT 12, it is permissible to wr ite

in the address field NOT 12+4. Any decimal integer up to 22.5

may be used. To refer to sectors preceding NOT 12, a minus

sign should be used instead of the plus .

If the desired address is in the next sector location, a $+1 is

required: where $ means, "this location. " Thus , $ -1 means

this location plus one location, or the next location. Any + or

- integer may be used depending on the location desired.

An address may be re.lative to a symbolic address or to the

location of the instruction. An address relative to an absolute

address should not be used. The+ or - will be ignored by

SNAP, and SNAP will function on the absolute address listed,

resulting in error or false computation. The relative address

will, in all cases, have the same line number as the base

address .

4) A decimal integer less than 256. The number used represents

the duration of certain operations such as shifts. Assuming

that the number 6 is used in the address field of one of the

shift op codes, the AB registers will shift once for each unit

o f the number .

2-4

5) An addre~s fie l d used as defined in Section III for certain

pseudo operations.

6) An address field left blank for op codes not requiring an

address . Where an op code, such as CLA or IAC, does not

normally require an address, but an address is specified, only

the sector portion is used, and the line portion is set to 00.

E. TAG FIELD

The tag field contains an S if an instruction is to be sequence-tagged,

an I if index- tagged, or SI if both sequence and index tagging are to be used.

No instruction in SNAP is required to have either a sequence tag or an index

tag . Certain pseudo ops use the tag field to spec ify control data. This usage

is described in Section III.

2-5

I ,

r· ,

. I :
I :
I

I :

!

L
l
l.
I_

l
L

III. SNAP COMMANDS

A GENERAL

This section describe s the addressing requirements of the PB250

Computer and the SNAP pseudo operations. Table 3-1 lists the symbolic

coding data alphabetically, gives it designation and octal values , and

describes their functions. Reference is provided to paragraphs which con

tain specific data for each code.

B. ADDRESSING REQUIREMENTS

The addressing requirements of each of the commands are described

in the following paragraphs.

B-1. The commands listed below require an address field which is either

symbolic, absolute decimal in the form SSSLL, or which uses the notation $.

A relative address (Section 11, paragraph D) may also be used.

ADD EBP LDP TAN

AMC EXF STA TBN

AOC LAI STB TCN

CAM LDA STC TOF

DPA LDB STD TRU

DPS LDC SUB

3-1

B-2. The commands listed below do not require an address . If an address

is specified, only the sector portion is used with the line address being set at

00, except in the case of HLT, in which the line address is also inserted into

the c ommand.

If no address is specified, the assembler inserts sector and line

addresses of 000 and 00, respectively, except in the case of MAC, in which

the r.orrect sector address will be formed.

Execution occurs during the sector address specified, except in the

cases of NOP and HLT in which execution occurs up to, but not including, the

specified sector address.

CIB

CLA

CLB

CLC

Example:

Symbolic

!BC

DIU

GTB

HLT

!AC

!BC

MAC

NOP

RFU

ROT

RPT

RTK

Machine Word

JOO 0200;

B-3. The commands listed below require an address consisting of a decimal

integer les·s than 256, which indicates the number of bit positions the AB

registers are to be shifted.

Execution occurs during the next N sectors, where N is the number

specified in the address field.

LRS

LSD

NAD

NOR

RSI

SAI

3-2

SBR

SLT

SRT

Example:

_Symbolic

00003 SLT 6

Machine Word

007 2110;

B-4. Certain commands do not require an address. When an address is

specified, it must be a decimal number indicating the number of sector times

the command is to operate.

When no address is specified, a full-length command will be formed.

A full-length DIV, DVR, or MUP command requires 22 sector times for

execution, while a full-length SQR requires 21 sector times for execution.

Example:

Symbolic

00002 MUP

Machine Word

027 3200;

B-5. The commands listed below require an address of the form LL, M, ·

where LL is a 2-digit decimal line number and M is a memory location of the

form described under paragraph B-1 above. In forming the command, only

the sector address of M is used, with the line address coming from LL.

Separate LL from M by a comma.

Execution starts in the sector following the command and continues up

to, and including, the sector address of M.

BSI

BSO

Example:

Symbolic

00005 MCL 00, $+5S

JAM

MCL

3-3

MLX

PTU

Machine Word

00687105;

B - 6. The TES command has an address of the form LL, Mas described in

paragraph B-5 above. In the case of TES, however, when the specified signal

is p r esent, transfer is made to M, which must be located in the same memory

lin e as the TES command itself.

B-7 .

U s e signal numbers 21 through 31 to specify the following:

Sig n a l Number

21 - 24

25

26

27

28

29

30

31

Example:

Symh0lic

TES 29, ALPHA

Function

Arbitrary input signals

High-speed punch sync. s ignal

Magnetic tape gap signal

Magnetic tape reader clock input signal

Photo tape reader sprocket input signal

BREAKPOINT switch input signal

Typewriter or paper tape reader " character
input complete" signal

11 Typewriter not ready for output character"
signal

Machine Word

025 77 35;

The WOC command requires an address of the form X, M (where X is

the particular output character and M is the location in which the command is

to be executed). Only the sector address of M is used. X must be separated

from M by a comma.

3-4

lt is not necessary to specify an address of ext:cutiun. When one is not

designated, a sector address of 000 will be inserted.

The character, X, may be any alphanumeric or special character,

including space. Control characters other than space should not be used

directly. The special codes listed below should be used.

To form a dummy WOC command, terminate the WOC op code with a

carriage return.

Example: To output the letter A, the command would be as follows:

Symbolic Machine Word

woe A 000 6 101 ;

C ontrol Character Special Code

Carriage Retu:::-n CR

Tab TB

Upper Case UC

Lower Case LC

Stop Code ST

Code Delete DE

Blank (Tape Feed) BL

c. PSEUDO OPERATIONS

Each of the pseudo operations used with SNAP are described'below.

C-1. BINARY-CODED DECIMAL (BCD)

Information in the address field is stored as six-bit bed data, pre

ceded by a leading octal zero and a positive sign, as shown below. The

address field can conta in any combination of up to three alphanumer ic

3-5

characters, including space. Control character s other than space, must be

represented by two-letter co·les (carriage return= CR, tab = TB, upper case

= UC, lower case = LC, stop code = ST, delete = DE). When a special two

letter code is used, it must be the only information in the address field of the

particular bed instruction and the tag field of the instruction must cont;:;.h an :X.

Example: Message: END OF JOB

.QE_

BCD

BCD

BCD

BCD

BCD

Addr

END

OF

JO

B

CR x

Machine Word

+0650544

+02.00666

+02.0d06

+042.0000

+0560000

C - 2.. BLOCK STARTED BY SYMBOL ·(BSS)

This pseudo op code reserves consecutively the number of words

specified in the address field, up to 2.56, beginning with the location specified

by the BSS instruction. The reserve. block must lie entirely within one mem

ory line .

Loe Addr

TABLE BSS 100

2.0003 BSS 10

C-3. DECIMAL (DEC)

Machine Word

Locations TABLE through TABLE+ 99,
inclusive, are reserved. Location TABLE
will be defined as the location of the BSS
instruction .

Sectors 2.00 - 2.09 of line 03 are reserved.

This pseudo op code is used to enter decimal data. The decimal num

ber can contain a sign, decimal point, and no more than seven decimal digits.

3-6

The magnitude of the decimal number, ignoring decimal point, must be less

than 2 , 097, 152. If the decimal number is entirely fractional, the maximum

number of digits possible is six. The decimal number will be stored as a

binary machine word at specified binary s caling, Q . Q is expressed dec i.::>.vdly

and must lie within the range 0 _-~ Q ~ 21. The Q value must be placed in the

tag field. If no Q is specified, the number will be assumed an integer and

stored at 21. For example, to convert the number 100 . 25 to binary and store

it at a Q of 7 :

~
DEC

C-4. END

Addr

100. 25

Tag

7

This pseudo op code terminates the program. The address field is

ignored and the op code is terminated by a carriage retu rn. A 11 W11 will be

punched at the end of the listable assembled tape as an Octal Utility Package

control code. This pseudo op code is nongenerative.

C-5. EQUALS (EQU)

This pseudo op code is used to define symbols. The location field

must be symbolic and contain a symbol which does not appear in the location

fie ld of any other instruction. This pseudo op code is nongenerative.

Examples:

Loe

A LE-HA

SS2

FIN

~
EQU

EQU

EQU

Addr

TAB2

DATA+20

Machine Word

The symbol ALPHA is entered.into the
symbol table as equal to sector 001 of
line 07 .

SS2 is now defined to have the same
location a s TAB2. TAB2 must have
been previously defined.

FIN is as signed to the 20th sector
fo llowing that previously assigned to
the symbol DAT A.

3 -· 7

C-6. OCTAL (OCT)

This pseudo op code is used to enter octal data. The address field

may contain a sign and from one to seven octal digits. If no sign is present,

plus is assumed. If less than seven digits are present, the machine word

will be right-justified with leading o~tal zeros and the appropriate sign. A

minus sign will not generate a complemented number. Example:

Qp Addr Machine Word

OCT +4217077 +42.17077

OCT - 20 - 000002.0

OCT 1 +0000001

C-7. PROGRAM ORIGIN (ORG)

The location counter is set to .the absolute address appearing in the

location field. Instructions are as signed sequentially from this point. This

pseudo op code is nongenerative.

C-8. SKIP (SKIP Y)

The location counter is advanced Y + 1 sectors within the same

command line. This pseudo op code does not r~serve any memory sectors,

nor does it generate any instructions.

D. SYMBOLIC PROGRAMMING CODE

Table 3-1 lists all of the operations used with SNAP, briefly ·

describes their functions, and gives their class. The Reference column lists

the paragraph which outlines the addressing requirements of the op code.

Symbols used in the table are described as follows:

3-8

Symbol

--+
NC

-(

+

Mm

PSEU

contents of

replaces

Meaning

next command

complemented contents of

logical NOT

sum or logical OR

Memory sector locations M and M + l

pseudo operation

3-9

Operation

Add

AND Mand C

AND OR
Combined

Binary-Coded
Decimal

Block Serial
Input

Block Serial
Output

8lock Startt:d
by Symbol

Compare A
andM

Clear Input
Buffer

Clear A

Clear B

Clear C

Decimal

Dia connect
Input Unit

Divide

Double
Precieion Add

Double Preci-
eion Subtract

Divide
Remainder

Extend Bit
Pattern

End

Equal a

Extract Field.

Gray to Binary

Halt

Interchange
A and C

Interchange
A andM

Interchange
.Band C

Table 3-1. (Sheet 1 of 3)

SYMBOLIC PROGRAMMING CODE

Octal
Code Value Function

ADD 14 (M) + (A) -A

AMC 42 (C) A (M) -B

AOC 46 MC+ MB -B

BCD - Alphanumeric Address

BSI 73 Transfers (external register)
to M

BSO n Transfers (M) to External
Register

ass - Reserve data block

CAM 56 Set Overflow il (A) = (M)

GIB 57 Clear Input Buffer

CLA 45 Clear (A) to Zero

CLB 43 Clear (B) to Zero

CLB 44 Clear (C) to Zero

DEC - De.cimal Number

DIU 50 Disconnects input buffer

DIV 31 (AB)-T- (C) -n, R in A

DPA 16 (mM) + (AB) -AB

DPS 17 -(mM) +(AB) - AB

DVR 31 (AB)+ (C) -(B)

EBP 40 (M) lock (A) -A

END - Terminates Program

EQU - Defines Symbols

EXF .47 (M) A (B) -(B)

OTB 41 (A) from gray to binary

HLT 00 Stopa Computation

IAC 01 (A) -(C)

lAM 25 (A)-(M)

lBC 02 (B)-(C)

3-10

Class Reference

2 B-1

z B-1

2 B - 1

PSEU C-1

I B-5

l B-5

PSEU C-l

z B- 1

2 B-2

2. B-2

2 B-Z

2 B-2

PSEU C-3

2 B-2

1 B-4

3 B-1

3 B-1

1 B-4

2. B-1

PSEU C-4

PSEU C-5

2 B-1

2 8-2

1 8-2

2 B-2.

1 B-5

2 B- 2

Table 3- I.

SYMBOLIC PROGRAMMING CODE

Octal
Operation Code Value Function Class Reference

Load A from LAI

I
55 (Input Buffer) A (Ml 2 B-1

Input Buffer t (A) A (M) -A

Load A LOA 05 (M)-(A) l B-1

Load B LOB 06 (M}-(B) 2 B-1

Lead C LDC 05 (M} --(C) 2. B-1

Load Double LOP 07 (mM) -(AB) 3 B-1
Precision

Logical Right LRS 33 (AB) Shifted S places 1 B-3
Shift

Left Shift and LSD 2.1 Shift {AB) le!t Decrement (C) 1 B-3
Decrement I

Merge A and C MAC 00 (A) to (C), {C) = l when (A) 2. B-2.
or (C) = l

Move Com1nand MC.L 71
Line Block

Command line to Line ML 1 B-5

Move Line X MLX 2.6 (ML) -Line 07 1 B-5
to Line 7

Multiply MUP 32 (B) X (C) - (AB) l B-4

Normalize and NAO 2.0 Normalize (AB) decrement (C) 1 B-3
Decrement

No Operation NOP 24 Continue in Command Sequence 1 B-2.

Normalize NOR 20 Normalize (AB) Decrement (C) l B-3

Octal OCT - Enter Octal data PSEU C-6

Pr·~g:ram Origin ORG - Set location counter PSEU C-7

Pulse to PTU 70 Starts - Stops External l B 7 5
SpecU:ied Unit

I
Equipment

Read Fast Unit RFU ~3 Enable fast character input 2. B-2.

' Rotate A, B, c I ROT 03 ~- (A)-;;::J 3 B-2

I
B) --(C)

Read Paper Tape RPT 52 (Paper tape) to input buffer 2 B-2

Right :>hiit a11d RSI 22 Shi.ft (AB) right, Increment C l B-3
!nc1·ement

I
Read T ypewrittir RTK

I
51 (Keyboa.,.d) to input b uffer 2 B-2

Keyboard

S c ale Right and SAI z:~ Scale (AB) right, Incrtiment C l B-3
Inc1·e1n ent

Shiit B R1gt1.t SBR 33 Shift (AB) right S positions l B-3

Skip SKF - Advance location counter PSEU C-8

Shi.ft Left SLT 2.1 Shift (AB) left S positions 1 B-3

Sq\la» e Root SOR 30

I
-f(AB) -C l B- 4

Shi!!. Right SRT 22 Shift (AB) right S pooitiono I B- 3

Store. A S TA ll I (A)-(M) z. B··l
-

3-1 1

Operation Code

Store B STB

Store C STC

Store Double STD
Precision

Subtract SUB

Transfer if TAN
A Negative

Tranefer if TBN
B Negative

Transfer if TCN
C Negative

Transfer on TES
External Signal

Transfer on TOF
Overflow

T.ranlfer TRU
Unconditionally

Write Output woe
Character

Table 3-1. (Sheet 3 of 3)

SYMBOLIC PROGRAMMING CODE

Octal
Value ~unction

1 z. {B) -{M)

10 (C) -(M)

13 (AB) -(mM)

15 -(M) + (A) -{A)

35 NC from (M) if (A) negative

36 NC from {M) if (B) negative

34 NC from (M) if (C) negative

77 When external signal is pres-
ent, transfer to specified
address. When external sig-
nal ia not present, take next
ins truction.

75 NC from (M) if Overflow

37 NC !rom'(M)

6X Character Output

3 -1 2

Class Reference

z. B-1

z. B-1

3 B-1

z. B-1

4 B-1

4 B-1

4 B-1

4 B-6

4 B-1

4 B-1

l B-6

IV. USE OF ASSEMBLER

A. GENERAL

Since SNAP is a two-pass assembler, the symbolic tape must be read

in twice for a complete assembly. The first pass generates a symbol t<...)le

and checks for memory overlaps, errors in the location field, and certain

operation code errors. The second pass checks for illegal operation codes

and certain address field errors. Any absolute addresses used in the sym

bolic program must be in decimal.

B . LOADING THE ASSEMBLER

SNAP requ (re~ J 3 long ~m9ry lines in the PB2 50 Comf>Uter. The

assembly program has it s own bootstrap and is self-loading.

To load tne program, insert tne tape in the Flexowriter tape reader

and raise the FILL switch. 1£ the PARITY light is on, depress the ENABLE

and BREAKPOINT switc hes. After the tape starts to move, raise the

ENABLE and the BREAKPOINT switches. When the bootstrap section has

been loaded, tne computer will halt witn the parity light on . To read the

tape, d epress tne ENABLE and BREAKPOINT switches, strike the I ·key,

and raise the switches.

T~e SNAP tape is prepared witn a 6 - to 8-inch space between sections.

As each section of the assembler is loadad, a check sum is formed and com

pared against the one punched on the SNAP tape. If the two sums agree,

loading continues; if not, the computer halts with an octal line number of 37

4-1

displayed on the OPERAND lights of the computer. Should this happen, back

up the SNAP tape to the beginning of the particular section involved, depress

the ENABLE and BREAKPOINT switches, and raise the switches to attempt

to read the section again. If a parity error occurs on the first binary section

of the tape, it will be necessary to restart loading from the bootstrap section

of the tape.

C. INITIALIZING THE ASSEMBLER FOR PHASE l

When the assembler has been properly loaded, the following heading

will be printed out:

PB250 ASSEMBLY

IDENTIFICATION:

At this time, information may be typed to identify the particular

symbolic program being assembled. When a carriage return is typed, the

assembly will continue. When no identification is desired, strike the

carriage return to continue.

The assembler will not print:

PHASE l

INPUT:

Load the symbolic tape to be assembled into either the Flwxowriter or

modified HSR-1 and type the desired input mode as follows:

For Flexowriter input, type FLEX

For photo reader input, type HSR

When the proper input mode has been specified, type a carriage return.

The assembly program proceeds automatically through phase 1.

4-2

D . INITIALIZING THE ASSEMBLER FOR PHASE 2

Upon completion of phase 1, the assembler will print:

PHASE 2

OUTPUT:

Reload the symbolic tape into the same input unit used for phase 1 and

spec~fy whether the output tape is to be punched on the Flexowriter or High

Speed Punch (HSP-1) . The output mode is specified as follows:

For Flexowriter output, type FLEX

For. H i gh-Speed Punch output, type HSP

When the proper. output mode has been specified, type a carriage return.

The assembly program proceeds automatically through phase 2 and produces

an output tape . Upon completion of phase 2, the assembler prints END OF

JOB and halts with an n cta.l line number of 37 displayed on the OPERAND

lights of the console.

E . RESTARTING THE ASSEMBLER

Afte r a r107mal end-of-job halt, SNAP_ may be res tarted for a new

assembl y b y depr essing, then raising, the ENAB LE and BREAKPOINT

s witche s.

A t any time during phase 1 o r phase 2, except during input, the ass em

b l y p rogram ma y be r estarted at phase 1 by depressing the ENABLE and

BREAKPOINT switches , st .dking the I key, then raising the switches.

During phase 2 th e a s s embly Inay be restarted in the phase 2 mode by

de p r ess ing the BREAKPOINT switch . Phase 2 will be restarted after the

a ss embler complete s t he current instruction being processed, including any

inpu t -outpu t :!.n p r ogress. Raise the BREAKPOINT switch after phase 2

r es t.arts .

4 - 3

[

r
r
I

l
I_

I_

I.
L

V ERROR DETECTION

A. GENERAL

SNAP contains an error diagnostic which has been designed as an

integral part of the assembler itself. The syrnbolic program is checked for

a large number of possible errors and these errors are printed on-line as

soon as they are detected.

When an error is detected and printed out, the assembler will continue

to process the symbolic program, if possible. All errors detected during

phase 1 should be corrected before going on to phase 2 .

An error in the operation o r address field will cause a word of zeroes,

preceded by a space, to be punched on the output tape if phas e 2 i s p erformed.

This format causes faulty instructions to be readily discernible.

The error printout will be of the form

SSSLL$XXSp

where SSSLL is the current setting of the location counter and XX is a

special two-letter code, followed by a space, indicating the type of error

detected. Following this, normally, will be the field which was in error.

B. ERROR CODES

B-1. ADDRESS FIELD ERROR (AD)

The printed address field contains an e rror . The possible errors are

(1) an absolute sector number greater than 255, (2) an absolute line number

5-1

greater than 63, (3) illegal special code for control character, (4) n o comma

in instruction as required, and (5) a BCD pseudo op code containing more

than three characters in address field.

B-2. FIELD LENGTH (FL)

Indicates that an exc essively long field has been found in an instruction.

The remainder of the instruc tion will be ignored.

B - 3. LOCATION FIELD ENDS IN C/R (LC)

Indicates that a location field has been terminated in a carriage return

instead of the required tab

B-4. LOCATION FIELD ERROR (LO)

An error is present in the location field printed out. The location

field will be ignored, The possible errors are: $, field contains more than

6 characters, field contains + or -, absolute sector greater than 255,

absolute line equal 00 or greater than 21, and numeric or blank location field

used with an EQU instruction.

B-5. MULTIPLE DEFINITION OF SYMBOL (MD)

The c;::rnc: 1 printed out has been used in the location field of more than

one instruction. The symbol will be reassigned to the current setting of the

location counter.

B-6. MEMORY OVERLAP (MO)

The pr-ogram has assigned an instruction or reserved a data block in a

sector to which an instruction has been previously assigned or which has pre

viously been reserved as part of a data block. Each overlapping sector will

be printed out; however, the assembler will assign the sectors as indica ted

in the symbolic program.

5-2

B-7. NO ADDRESS (NA)

An address has been omitted in an instruction which requires an

address. If possible, the op code will be printed out. The entire instruction

will be set to +0000000.

B-8. NO OP CODE (NO)

The instruction contains no operation code.

B-9. OP CODE ERROR (OP)

The operation code printed out is in error. The possible errors are:

op code contains more than three characters, or an illegal mnemonic.

B-10. SCALING ERROR (SC)

In DEC pseudo op, designated m~.mber can not be held at specified

scaling.

B -11. SYMBOL TABLE FULL (SF)

The capacity of the symbol table (256 entries) has been exceeded. No

further symbols will be assigned to the table. The symbol printed out and all

symbols following will therefore be undefined.

B-12. TAG FIELD ERROR (TG)

Illegal character in tag field.

B-13. TAPE FORMAT (TF)

Indicates that a carriage return has been omitted from a symbolic

instruction in the aeneral area. printed out. The a11embly will halt with an

octal line number o! 11 displayed on the console . It will be necessary to

correct the error and restart the entire a.uembly.

5-3

B-14. UNDEFINED SYMBOL (UD)

The symbol used in the address field has not been defined by

being in the location field of an instruction.

5-4

A P?ENDIX A

SAMPLE SYMBOLIC

PR.OGRAM

A -1

The following sample program is used t o assemble interpretive

control words from data read on paper tape. The data represents several

variables required to compute a special function, where the variables are

constantly changing . T he function of the program is t o accept octal inputs,

and when a carriage ret urn is sensed, to establish the fields according to

the predetermined format shown below.

Data Address Message Address

8 bits 8 bits

Data Line

I 2 bits I
c:::::;:::::J

2 bits j z bits I
\.

"' Class Link

Immediately following the sample program Table A-1 shows the

symbolic coding prepared by the programmer as compared to the machine

coding prepared by the computer.

A-2

~· SNAP SYMSOL.IC CODING SHEET

PROBLEM: D. P . C-W AsselT'bly

PROGRAMMER : ------------- PAGE _l_ of _ 3_

LOCATION OP ADDRESS TAG REMARKS

START L D p $+! s
T 0 F Al

I la Ir

ST B SPACE Set space link- I

S T A PHASE Sel _Ehase link- I

c LA READ s
L A I MASK s ll character -+ A

READ R p T $-2 s If
LR _E _I ..i±.l ~ last~racter
T E s 30, $-1 If
T ES 30 READ Wtjt fil n~ char4cti:.x_

c I B $-2 s
MASK 0 c T 77

c A M $+! s
0 c T 56

T 0 F CR Exit if CR

c AM $+1 s

0 c T 20

SPACE T 0 F Al Exit to s~ce link

PHA~i:': LI_ B_ Jc_ _Exil_ to nh~ link.

Ls.. 1.13. L:r. .1.. Pha...s..e.link-1

I ~c Assemble~ 3

s R T 19

Le. ..l .A ...B..E.AD s Return to read

A_l s L T 14 S_E?.c e link- I

Is 1:r.. LB _Ml Sa 'lJLla...s1...a bits

LD A $+1 s Set space link-2 -
T 0 F Al

[p_bl SNAP SYMBOLIC CODING S H E ET

PROBLEM: D.P. C-W ._A_s_s_e_m_b_l_y ____ _ DATE: _ ____ _

PROGRAMMER:------ - - - - --- PAGE _ z. _ _ or _ 3_

.!.....

LOCATION OP ADDRESS TAG REMARKS

s TTA SPACE

c _Id A READ s Return to read

A2 E x F $+1 s Space link-2

0 c T -7777400

s L T 6 Save last 8 bite

s T B Mltl

L D p $t I s Set space link-3

T 0 F A3 and phase link-2

I B c CW-l s

s T D SPACE -
c LA READ s Return t o read

cw s H T z. Phase link-2

LL A _c_ - Assemble b_y_2.

s R T 2.0

c L A READ s Return to read

A3 E x F $+1 s Space link-3

0 q T -7777774

s L T 2. Save last 2. bit e -
s T B Ml+ ?.

c _l. A Bi;AD s Return to read .. _
CR EJ! F $+1 s Save last 4 bite ·-

0 q T -7777760 --
S L T 2.0 High o r de r :Z.-A

CJ.. c Save in C

.l. A.S:. ·-
s R T 2. SJ?!i t the 2. · ·-
I A c Merge ·-
s LT 4 Position in A

A-4

ipbl SNAP SYMBOl...IC COOING SHEET

PROBLEM: D. P, C-W Assembly DATE: _____ _

PROGRAMMER: ____________ _
PAGE_3_or_3_

LOCATION OP ADDRESS TAG REMARKS

AD D Ml Add remaini1!8.

AD D Ml+l Fields

AD D Ml+2.

STORE S T A 00014 Store in output

' L DA STORE Advance Store

IA D D S+l s

L9 c T +0040000

S T A STORE

TR u START 3 Return for next wor d

Ml BS~ 3

EN D

-·---·-··
A-5

T Gt ble A-1. (Sheet 1 of 2)

MACHINE VS SYMBOLIC CODING

Mac hine Coding

PB250 ASSEMBLY
IDENTIFICATION: CONTROL LIST ASSEMBLY
PHASE l
INPUT:FLEX

PHASE 2
OUTPUT: FLEX

END OF JOB

00002$001S0702;
00102$030 7502;
00202$000 0200;
00302$022 1202;
00402$023 llOZ;
00502$007S4500;
00602$01455502;
00702$005S5ZOO;
0l007.$011 5200;
01102$010 7736;
01 202$007 7736;
01302$011S5700;
01402$+0000077;
01502$0 l 6S5602;
01602$+0000056
01702$060 7 502;
02002$021S5602;
02102$+0000020
02202$030 7502;
02302$000 0200;
02402$030 2210;
02502$000 0100;
02602$052 2210;
OZ70Z$007S4SOO;
03002$047 2110;
03102$101 1202;
03202$033S050Z;
03302$036 7502;
03402$022 1102;
03 502$007S4500;

START

READ

. MASK

SPACE
PHASE

Al

A-6

S mbolic Godin

LOP $+1
TOF Al
IBC
STB SPACE
STA PHASE
CLA READ
LAI MASK
RPT $-Z
RPT $+1
TES 30, $-1
TES 30, READ
GIB $-Z
OCT 77
CAM $+1
OCT 56
TOF CR
CAM $+1
OCT zo
TOF Al
IBC
SRT 3
IAC
SRT 19
CLA READ
SLT 14
STB Ml
L OA $+1
TOF AZ
STA SPACE
CLA READ

s

s
s
s

s

s

s

s

s

s

Table A- 1. (Sheet 2 of 2)

MACHINE VS SYMBOLIC CODING

Machine Coding Symbolic Coding

03602$03754702; AZ EXF $+ l s
03702$-7777400 OCT -7777400
04002$047 2110; SLT 6
04102$102 1202; STB Ml+l
04202$043S0702; LDP $+ 1 s
04302$053 7502; TOF A3
04402$046S0200; IBC CW-1 s
04502$022 1302; STD SPACE
04602$007S4500; CLA READ s
04702$052 2210; cw SRT 2
05002$000 0 l 00; IAC
05102$076 2210; SRT 20
05202$00754500; CLA READ s
05302$054S4702; A3 EXF $+1 s
05402$-7777774 OCT -7777774
05502$060 2110; SLT 2
05602$103 1202; STB Mlt2
05702$007S4500; CLA READ s
06002$0 61S4 7 02; CR EXF $+1 s
06102$-7777760 OCT -7777760
06202$107 2110; SLT 20
06302$000 4400; CLC
06402$000 0100; IAC
06502$070 2210; SRT 2
06602$000 0100; IAC
06702$074 2110; SLT 4
07002$101 1402; ADD Ml
07102$1 02 1402; ADD Ml+l
07202$1 03 1402; ADD Ml+2
07302$0 00 1116; STORE STA 00014
07402$073 0502; LDA STORE
07502$07651402; ADD $+1 s
07602$+0040000 OCT +0040000
07702$073 1102; STA STORE
10002$000S3702; TRU START s
w Ml BSS 3

END

A-7

~ .

1 •

['

I

l
!

. l '
I .

I .

I:

APPENDIX B

FAST LINE

RECIRCULATION CHART

B-1

Table B-1.

FAST LINE RECIRCULATION CHART

F OO FOl F02 F 03 F04 F05 F 06 F07 F08 F09 FlO F ll Fl2 Fl3 F14 Fl5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I-·· . -· ---1----I- ---·-· ---

16 17 18 19 20 2 1 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 ... ___ -

48 49 50 5 1 52 53 54 55 56 57 58 59 60 61 62. 63 -- t--

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
.. ··-

112 113 I 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 j 129 , 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 T 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

1601 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 1 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 19 5 196 197 198 199 200 : 201 202 203 204 205 206 207

208 209 210 211 212 I 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227
1

228 I 229 230 231 232 233 234 235 236 237 238 239
·- ·

240 241 242 243 244J 245 246 247 248 249 250 251 252 253 254 255

B - 3

n,

n
[~

n
n
11

n
I~

c
I~

0
u
[:
[;

l ;
I :

I

I :

[~
....

'--

