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General Description 

A DDA is an electronic, digital model of the Vannevar Bush mechanical 
differential analyzer, circa::l932. A digital differential analyzer is a 
special purpose digital computer with a semi-fixed program. The program is 
stored internally and is fixed for a particular problem or computer run. That 
is, the program cannot modify itself, nor are there any transfer or jump 
operations. In fact, the DDA has no command structure as such: the program 
comprises numerical coding which directs the sequencing of pulses from memory 
to adder section. A magnetic drum, two serial adders, and an elaborate control 
section make up the computer, which is capable of solving linear and nonlinear 
differential equations. The DDA has a fixed number of registers which each 
contain the up-to-date count of one or more sequences of positive or negative 
pulses. Each register is up-dated once every iteration cycle -- usually one 
drum revolution time. 

The progrannner represents the DDA by a fixed number of operational 
elements called "integrators." Although these elements differ from the analog 
computer integrator, programming proceeds in a similar fashion to the preparing 
of an analog computer diagram. The name, integrator, is a carry over from the 
mechanical differential analyzer. A DDA integrator performs these two operations: 

Yi • yi-1 + 6 •I: Yi 6 "i) 

which approximate the operations: 

y = ~dy and dz= y • dx 

A schematic representation of the DDA integrator as well as the mechanical 

, differentia~ analyzer is shown in Figure 1. _ , .. "~ V,. ·( ·,., ~·-: c:: id, ,tJ 
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In the mechanical differential analyzer the dx, dy and dz quantities 
represent differential angular displacements of shafts. By convention the 
differential notation dx, dy, dz is retained to represent trains of pulses, 
where the quantity is measured not by the size of the pulses but by the pulse 
rate (relative to computer iteration rate). Thus "dytt stands for a pulse rate 
which is a function of time, changing in discrete steps. "dy" does not represent 



I·' 

I ' 

Lecture No. 13 
Hybrid Computation 
Page 2 

a differential quantity in the strict sense, nor does it precisely represent 
a discrete quantity, 6. y. 

To program a DDA to solve a differential ~quation, one first solves 
for highest derivatives and forms this derivative schematically by sunming 
lower order terms which are generated by a series of\integrators. 

For example, consider the differential equation 

K = - ax - bx 

d •• 
x == - adx - bdx 

which is programmed as shown in Figure 2. 
· t. J Pf . ./i dt ~ 0 <UA-:A n1,,c c 

I x dt =dx •• 
)( 
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Figure 2 
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Thus the DDA operational elements are interconnected, just as the operatiQnal 
elements of an analog computer, to form the solution of the differential 
equation. The major difference is that the DDA elements are fictitious entities 
which exist only as space on a magnetic drum and are interconnected not by 
wire but by numerical coding. This numberical coding can be extremely simple, 
requiring no specific knowledge of the computer or any computer language. 

The Bush mechanical differential analyzer utilizes a "wheel and disc" 
integrator which clearly illustrates the differential analyzer principle. 
Figure 3. 
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If one were to equip each shaft with a ratchet he would then have a mechanical 
~· Note that a shaft carries no information other than indicating a £.hfil1~ 
by its rotation -- thus even though the shafts interconnect all elements of 
the differential analyzer, it requires a unit other than a shaft to indicate the 
value of any parameter such as a revolution counter, or wheel and disc integrator. 

The DDA and mechanical differential analyzer operational elements, 
called integrators, are characterized by the holding of the current value of 
all parameters in a storage device within the element, and the transmission 
of only' differential changes. The current value of the parameters may be con­
tinually monitored by recording devices, but at no time are they actually 
operated on as in an analog computer (and a digital computer). 

Programming the. DDA closely parallels analog computer progralillling, 
including scaling of variables, except that the range of variables is between 
+ 1. Time scaling is different in that scaling is accomplished by assigning 
a weight to each pulse of the maxi.mummachine pulse rate and adjusting the mag­
nitude scaling of each integrator accordingly. This will be illustrated later. 

DDA techniques make the programming of some functions more complicated 
and others less so. For example, multiplication requires two integrators to 
form the product d(uv) = vdv + udv. On the other hand only three integrators 

1/2 -1/2 .f. \ are needed.to generate d(x ), d(x ), and '1ln~ simultaneously. Figure 4. 
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Furthermore: let y = tanx 

2 2 2 
dy = sec xdx = (1 + tan x) dx = (1 + y ) dx 

d>< 

2. '-j d 'J = d('J 2 ) :d sec2 ><: dtan 2X 

2 

Figure 5 

Note that multiplication with DDA may introduce a small but accumulating error. 
Consider: 

and 

Then d(uv)n+l = 

d(uv) 

= v + dv 
n 

udv+vdu+2~ n n 
h du 

Figure 6 

It should be clear from Figure 6 that the correct form is 

d( uv) 1 = u dv + v du + dudv 
. n+ n n -

The dudv term may be completely neglected or added twice. This is unavoidable 
on some machines, and properly compensated for on others. 

In general, the programmer is limited to non-linearities which can 
be described by differential relationships; such as products, powers, roots, and 
transcendental functions. Some DDA's are capable of simulating non-linearities 
like hard and soft limiting, backlash, etc. 

For input-output of data, present day DDA's employ these devices: 

Program Input 

Paper tape 
Flexowriter 
Cards 
Keyboard 

"Live'' Input (function generator) 

Curve follower (single variable) 
Tabulated functions (multi-variable) 

Output (on line) 

Curve plotter 
Paper tape 
Flexowriter 

( 
\ 
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The ·following discussions refer to binary arithmetic operations as 
well as decimal arithmetic, for both decimal and binary machines exist. The 
only commercial models now on the market perform binary arithmetic (Litton 20, 
-40, Packard-Bell TRICE, and the Bendix DA-1, which is an attachment to the 
G-15 general purpose digital computer). Earlier models, the CRC-105 and Bendix 
D-12, use binary coded decimal logic. 

Since integrators are used to perform all computing functions except 
output recording, it should suffice to describe the theory of operation of a 
DDA integrator. Actually, there are a few'other special computing elements, 
the DDA multiplier and the DDA servo, but 'these involve only simple modifications 
of the basic integrator and will be mentioned later. 

First the integrator will be described functionally, as if parallel 
arithmetic were performed. Then the operation of the serial DDA will be in­
dicated. Let the integrator be represented by two registers, Y and R , 

r r 
Figure 7, one dy input pulse rate which increments or decrements the Y register, 

r 
one dx input pulse rate which causes the contents of Y to be added to or sub­

r 
tr acted from the 
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and one output pulse rate, called dz. / 
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Figure 7 
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The number if Y may be positive or negative and must be less than one in mag-
, r . 

nituc1e: '£he dedmal point is at the left end of the register. If Y overflows 
r 

the computer will stop. Initial values of the variable y can be placed in Y 
r 

at the beginning of the problem. The number in R may be positive or negative 
r 

and may increase in either direction until an overflow or underflow occurs. 

Such an occurrence produces a dz output pulse, either positive or negative. 

The sum of these pulses in another integrator is proportional to Jydx. 

Initially R is set to a value of one half. The number in R represents the 
r r 

fractional. remainder of the summation l: Y .!:::. x + R 
n n n 
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which is equivalent to a fraction of a revolution of the dz shaft in the mechan­

ical differential analyzer. Each positive dx pulse causes subtraction of Y 
r 

from R and each negative dx pulse causes subtraction of Y from R • The over-
r r r 

flow of Rr' creating a ~ dz pulse, corresponds to completion of a full clockwise 

or counter clockwise dz shaft rotation. 

The representation of numbers in a DDA is unique and is best des­
cribed by the table on the next page. The full range of possible numbers lies 
between plus one and minus one. The numper of possible numbers between these 
extremes depends upon the number of stages in a register. The difference be­
tween two successive numbers is the "least·obunt" of a register, or "one" in 
· ... . ' · ·· . · .. ·· · ' -n -n , 
the last place: 2 for a binary machine with n-bit registers or 10 for a 
decimal machine with n-digit registers• Let this least count be denoted by t::.. 

Number Binary Decimal 

+LO ............... 0.000000 . .............. 0.0000 
L.O-t::. . . . . . . . . . . .. . . . . 1.111111 ••••••••••••••• 1.9999 
1.0-21'.1 . . . . . . . . . . . . . . . 1.111110 ••••••••••••••• 1.9998 
1.0-3.!l . . . . . . . . . . . . . . . 1.111101 ••••••••••••••• 1.9997 

* * * 
0.875 . . . . . . . -· ....... 1.111000 ................ 1.875 
o. 75 ••••••••••••••• 1.110000 ••••••••••••••• 1. 75 
0.5 . . . . . . . . . •· ..... 1.100000 ••••••••••••••• 1.5 
0.125 • • • • • • • • • • • • • • • 1.001000 ••••••• 0 ••••••• 1.125 

* * * 
o.o+Jt::. 1.000011 1.0003 
0.0+2A 1.000010 1.0002 
o.o+ ts. 1.000001 1.0001 
o.o ••••••••••••••• 1.000000 • •••••••••••••• 1.0000 
o.o- e:. 0.111111 0.9999 
o.o-26. 0.111110 0.9998 
0.0-3A 0.111101 0.9997 

* * * 
-0.125 ..•.......•.... 0.111000 •••••••••••••••• 

c:j//; .():;~ 

-0.5 ••••••••••••••• 0.100000 ........... •· ... 0.5 
-0.75 • • • • • • • • • • • • • • • 0.010000 ••••••••••••••• 0.25 
-0.875 ••••••••••••••• 0.001000 ••••••••••••••• 0.125 . 

* * * 

( 



-O.P+3.6. 
-1.0+26 
-1.o+ 6 
-1.0 ................. 

0.000011 
0.000010 
0.000001 
0.000000 
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. ............. . 
0.0003 
0.0002 
0.0001 
0.0000 

The digit to the left of the point is the sign indicator, one for 
plus, zero for minus. This is a binary stage and is the same-rnoinary and 
decimal machines. Note that in both binary and decimal the addition of an in­
crement to the largest number and the subtraction of an increment from the 
smallest number results in 0.00000 which in 'some cases may stop the computer 
but in other applications may be used to ad~antage. If + 1.0-6 is considered 
the largest number possible in Y (1.9999· in.machine) and·~i.o the smallest 

r 
(0.0000), then the presence of a plus or minus pulse in the lowest decimal 
order at the input,-dy, can cause Y to change from maximum to mininrom value 

r . 
or vice versa. This is equivalent, in a sense, to a analog computer integrator 

n 
driving a relay. Such a device is called a DDA servo. It may be used to gen­
erate many .speci·al functions but has limited value because of the large oscil­
lations it causes. 

An integrator may be used for multiplication by a constant simply by 
not supplying a dy input. For simplicity some DDA's provide constant nroltipliers 
which are integrators without provis~on for dy inputs. 

To avoid the error in multiplication described earlier some DDA 1s have 
special multiplier units which are simply two integrators connected so as to 
compute the following: 

(u + du) dv + v du n . n 

III. Computer Design' 

It was mentioned before that present day DDA 1s do not.require the 
construction of individual integrators, each with registers, gates, and adders. 
By sequencing the operations of each integrator an entire DDA computer can be 
constructed' with one magnetic drum, two serial adders and a few other simple 
elements. That is, each register is a cell on the drum and each output pulse 
is also held on a special track on the drum. In one drum revolution the fol­
lowing steps, Figure 8, take place for each integrator in turn: 

a. Detect input pulses, dy. 

b. · ~ead y from the drum and add (or subtract) in a serial adder. 

f c~ .· If a dx pulse is present feed the result of step {b) into a 
( serial adder with the contents of R which is read from the drum in proper synchronism. 



Lecture No. 13 
Hybrid Computation 
Page 8 

d. If there is a carry from the highest order in step (c) place a 
pulse on the dz track. 

Actually step (d) for integrator i takes place simultaneously with 
step (a) for integrator i +1. 

R 

y 
SERIAL 

dy ADDER 

DELAY 

Figure 8 

dx 
c 

. ~ . ( 
.,._,.;,.if .,. \, . '" 
I (-., }./. '°' /'» 

SERIAL s 
ADDER 

DEL~Y 

tDA-. 

The following is a detailed description of a serial DDA. (Refer to Figure 9) 

Present values of Yi and Ri (i • 1, 2, ••• N) are stored on parallel 

tracks. Each cell Yi or Ri contains N bits~ There are N cells around the drum 

(N integrators). 

There are si.milarly N cells in tracks L and L • Cell L i contains 
th . y x y 

bits in the j positions (j = 1, ~' ••• N) corresponding to dy inputs to 

integrator i from integrator j. 

mation for the dx inputs. 

Track L contains similar prograrmd.ng infor­
x 

Track Z is not divided into cells but has ~ bit-storage positions 
around the drum. A pair of read-write heads are·separated by N-1 positions 
with the read head feeding the write head so that a bit read at position r is 
simultaneously written in position r + N.:.1 (position numbers increasing as they 

{ . 

( 

come under a·head). Thus there is a continually circulating and precessing ~ 
storage on H-1 numbers in track z. The block of N-1 numbers shifts one position 1 
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relative ·to the read-write head in N pulse times. The numbers on this track 
are the dz outputs or overflow from the R registers. As each integrator is 
serviced a new dz is created and is written on the Z track by the write head 

. (overriding the signal from the read head), so that after every N pulse times 
(pn) a new dzr is added to the precessing loop of dzi 1s and the old dzr destroyed. 

The N-1 dz output pulses from the previous N-1 integrators all pass 
under the Z track read head during the processing time of one integrator. Thus 
coincidence of these dz pulses with programmed information on the L track, in 

y 
the dy decoder, generates a dy input which i,s added to the value Yi in the 

serial adder. This sum or its complement is gated by a plus or minus dx input 

from the L and Z tracks. Thus Y. + dy is added to R .• The sum is written on x . l. l. 

the R track and any overflow in the highest order (pulse time, p ) is placed 
n 

on the Z track •. Start pulses from track Y and clock pulses generate "s" pulses 
which occur for each utilized binary place in each Y .• The clock track also 

l. 

generates the dz output synch pulse, p and the basic computing rate, d.t, 
n 

(one pulse every drum revolution). 

IV. Scaling 

The following discussion will consider scaling in detail and some of 
the difficulties which occur in prograrrming a DDA. Scaling is very similar to 
analog computer scaling, buy requires a few simple tricks which are unique to 
the DDA. Scaling reveals a peculiarity of the DDA, which is most disturbing: 
accuracy is partially dependent on scaling. 

The dynamic range of an analog computer variable (voltage, or shaft 
position) is determined on the low side by one or more quantities which are 
not directly under the control of the designer. For a chopper stabilized oper­
ational amplifier these are the noise voltage level and the stabilizer offset 
voltage. The granularity of the "foUow-up" potentiometer and, again, noise 
voltages determined the maximum resolution of a servo-multiplier. The upper limit 
to dynamic range of an analog variable is directly determined by the designer 
and is usually some convenient reference level: + 10 volts, + 30 volts, + 100 
volts, and 360° of shaft rotation. Therefore, as-a practical-matter the iower 
limit may be considered fixed and the upper limit determined by the required 
dynamic range. The ratio of the upper limit to the lower is the number of 
significant or distinguishable levels that the variable may assume -- or the 
resolution. 

The DDA variable is a numeric quantity held in a register of n 
decimal (or binary) stages. The decimal point (or binary point) is always at 
the extreme left hand end. Thus in contract to the above the upper limit to 

(1 the dynamic range is fixed at 1.0 - 10-n (or 1.0 - 2-n), or the maximum number 
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WRITE 

dy 
DECODE 

d x =-I 

dX==+I 

C..OUNTfR------ d·t 

Figure 9 

Serial DDA 
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ADDER 
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less than unity, possible with an n-stage register, while the lower dynamic 
range limit is determined by the length of the register and, therefore, is 
controlled by the designer. The resolution of the DDA or the number of 
significant quanta assumed by the variable is, therefore, lOn (or 2n). To make 
the significance of the above contrast clear, note that an analog variable 
when properly scaled will utilize the full dynamic range of the analog device 
and a constant voltage near the maximum value, say, 95 volts, will be precise 
to within the full resolution of the device. Now further note that a DDA var­
iable when properly scaled should approach the maxinrum limit of the register 
asthe variable.assumes its maximum value, but that this.does not mean that the 
full dynamic range of the device is utilized. In fact, if the variable has a 
valt.le of 0.9500 the precision of the DDA va'riable is not determined by the 
resolution of the device, lOn, but rather by the scale of the input variables. 
The scale of an input quantity {dy) to a DDA integrator directly determines 
the number of decimal (or binary) places of· the Y register that. will be 
utilized,. The remaining stages, to the right, be~ome superfluous. For 
examp13, if y has a unity scale factor and one dy pulse is assigned a weight 
of 10 , only the first three significant places of Y are utilized, as shown. 

r 

-3 Thus fluctuations in the variable y smaller than 10 will not appear in Y 
although they do occur in the computer, and they may be significant. Suchr 
fluctuations take place in the R register of the integrator whose output pulse 
rate is the input dy rate above. Only Y registers can supply output information 
for recording purposes. Thus, in the above example, y can be recorded to no 
greater accuracy than 1 part in 1000. 

Since Y1 = f' Y dx_ + R = fdy + R · o o o 1 o' 

where R is the fractional remainder of the summation, the true value of y1 
may be ! abcdefghijk, while only ~ abcde can be recorded. Figure 10. 

X XX x XI 

( ' -~ XX XXI 

xx xx 
Figure 10 Jo 
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It was mentioned above that the initial val:ue us:ually assigned to 
all R registers is 0.5. A more correct procedure would be to compute the correct 
value for each R register from the precise initial value of the Y register it 
suppUe:a •. :'For example: 

yl (0) = + 2/3 = + • 66666 
yl 

666667; 
R 

0 

R = 666667 
0 

Such a procedure becomes ~xceedingly difficult when one considers that each R 
may supply several Y , and each Y may have several inputs. In fact the r 

r r , 
setting of initial conditions on a DDA often requires trial and error methods 
in order to determine a set of effective initial conditions. * 

The preceeding difficulties might be called "scale mark'• errors. 
The scale mark sets the effective length of the y register. Scale mark errors 
are most likely to effect parameters with large values, limiting them or their 
derivatives to as little as 2, 3, or 4 place acc:uracy in a 10 place machine and 
it may be precisely these variables (altitude, range) which have caused one 
to look for so-called digital acc:uracy. 

The situation is further complicated by more than one integrator 
feeding another 

Yo 
t 

Figure 11 

In this case, the true value 
of y is Y plus a combination 

0 

of R1, R2, R3, i.e., 

-5 -6 -7 
Y = Y0 + 10 R3 + 10 Rz + 10 R3 

* Cf: Digital Differential Analyzer, by G. Forbes 
"On the initial cycle of calculation, the first pulse to each integrator will 
us:ually be negative. The n:umerical order of the integrators, various componsating 
techniques, and the specific design of the machine will influence this eff~ct. 

''The effective initial value of any integrand will not be the same as the value 
actually filled in coding the problem. The effective val:ue can be approximated 

( 

( 

by reading all variable integrands for the first ten or twenty cycles and plotting 
each. A smooth curve making an approximate best fit through these points will 
sometimes permit determination of the effective initial value to a greater accuracy.·· 
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Figure 11 suggests another serious limitation of some DDA's: multiple inputs 
require differe.nt input scale factors_. While this can be helpful in some 
situations it is generally considered a limitation, a burden and an added 
complication to progranming. 

EXAMPLE OF SCALING 

Consider: y + ay +by= 0 

Range of variables a= .005 

+ 950<y < -950 b = .01 
i 

-4 Let the step in time, dt = 10 sec; + lOO< Y< -100 

Then d(yj = -ady - bdy 

dt dt 
ydt = dy 

• y y 

(RECORD y) 

-a 

-bd -b 
The scaled diagram looks like this: 

104 dt ,., 104 dt 

y/102. 10 l.d 10 d Y /102 
6 5 3 

-i0 4ddy 
-IOOa 

-10 3 bd 
-1001b 

Figure 12 
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The numbers under the int~grators, Figure 12, (except for constant 
nrultipliers) are called scale .marks. They are equal to the difference between 
the dy and y scale factors and they represent the effective length of the Y 
register in each case. Note that the two inputs to the y integrator are at 
different scale factors. This particular difficulty is handled differently 
by each DDA but usually involves some scaling restriction of this sort. 

Note that the values of a and b could adversely effect the scaling. 
In this case larger values of a or b would reduce the scale mark of one or 
more of the top three integrators. 

It is of interest to consider this' situation in a more general way. 
Let us choose scale factors s1 such that 

I y1 x io8 i l<l 
-T T 

and let the step in time be dt = 10 so that 10 dt = one unit of time. Now 
consider an undamped second order system: 

i;-dl 

2 
y = -~ = a negative 

3 
S1 + T 

dz1 = y 1dt x 10 

s 
(y2 x 10 2 ) = n+l 

Figure 13 

constant 

where k2 =scale mark= s1 - s2 +T 

s + ,. 
dz2 ·= y2dt x 10 2 

s 
dz3 = (y3 x 10 3) 

--- .... ij,-... -

( 

( 
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where kl = scale mark = S2 + S3 - Sl + T 

Thus it follows that 

k + k = 2T + S3 1 2 

Therefore it is concluded that the total available register length, 
(k1 + k~), is determin§~ by the step size (dt) and the maximum loop gain (since 

y3 = -w ) and (y3 x 10 < 1). This is comparable to the analog computer 

2 situation where the loop gain is equal to -w ; except that in the DDA, computer 
speed is fixed by dt, and the natural frequency of the system (w) determines 
the maximum resolution in y, i.e., the size of the dy step, and thus the regis-
ter length. 

Therefore, if the loop gain is>l, i.e., y3 >l, then s3 is negative; 

or, as expected, the res~lution in yi must go down with higher frequency. 

Pursuing this approach with higher order and with cross-coupled 
systems leads to the conclusion that: 

(a) For an Nth order system the total available register length is 
--~··•·i<~ ...... - • •·•rf" ,,._ 

~ = k = NT + L: Si' where S. are the scale factors for all 
{p,.l n i 

constant multipliers in the loop. 

(b) Coupling between loops can under certain circumstances intro­
duce sealing limitations which reduce the total available register length. 

Going back to the undamped secondorder systems let the sole require­
ment be maximum accuracy (or at least full utilization of all registers); 
let the registers have 10 decimal places and then determine dt from the relation 

2 . ) kl + k2 = 2T + S3 · Let W < 100, $0 s3 = -2 (natural frequency< 1. 6 cps • 

Then k 1 + k2 = 20 = 2~ -2, or ~ = 11, dt = lo-11 • 

5 Assuming a machine with a clock rate of 2 x 10 pulses/sec (which is2 
higher than any existing DDA) the solution of the differential equation y = w y 

. .· 11 
for one cycle (or about 0.6 seconds of machine time) will require 0.6 x 10 I 

5 6 2 x 10 = 0.3 x 10 seconds, or 83 hours. And this assumes parallel operation 
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of the DDA integrators. For four decimal accuracy, k1 • k2 • 4, T = 5, one 

cycle would take 0.3 seconds of real time and, therefore, operates twice as 

fast as real time. Thus a 106 increase in resolution costs a 106 increase in 
time of operation. 

V. DDA Errors 

An adequate error analysis of the DDA has not been made. DDA errors 
are not generally amenable to analysis by axisting numerical techniques, primarily 
because of the asynchronous nature of the pulse trains. Therefore, the following 
is limited to a few general remarks. 

The two kinds of erros inherent in digital computation are known as 
truncation error and round-off error. Truncation error is a measure of the 
degree of accuracy attained in approximating an integral by a summation of small 
discrete quantities. The ternary output scheme: 
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The Packard Bell TRICE computer is a parallel DDA in the sense that 

a number of integrators, rate adders and servos are interconnected at a plug 
board, and each component computes simultaneously. However, the operations within 
each component are serial in nature. The addition, yi = Yi-l + dy and Ri = 
Ri-l + Y are performed by serial adders -- delay lines being used for storage, 
in additton to the R, Y and "initial conditions" registers. The basic clock 
rate for this all solid state canputer is quite high: 3 me. However, the 
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serial(f nature of the device results in an iteration rate or ~.ffect.Lv:e clo_!::JL 
~.2J: 100 ~c. The TRICE uses a ternary output scheme, "trapezoidal'' integration, 
and serial binary logic. 

Truncation error can be reduced in only two ways: 

(a) By decreasing the size of the step in the independent variable 
(often called the mesh size), at the expense of speed. 

sunnnation 
(b) By using a more sophisticated scheme in forming 6. y in the 

N 
y = y + 
N o L: . 

n=l 
6. y 
- n 

The two schemes presently used by DDA's, very unsophisticated mathematically, 
are known as rectangular and trapezoidal integration. They correspond to ap­
proximating the area under a curve with small rectangles or trapezoids. Clearly 
the latter is more accurate in general. 

While we know what is meant by round-off error when the least signifi­
cant digits of a large or irrational number are dropped, it is not exactly clear, 
on the other hand, what is meant by round-off error when dealing with a sequence 
of pulses. The former type error does not trouble the ODA, but the latter does. 
Since the magnitude of the rate represented by the sequence of pulses is pro­
portional to the average of the pulses (as described below) clearly there is 
some error due to changing the rate, but it is not the normal kind of round-off 
error. It is also clear that this error will be smaller if the number of 
discrete levels assumed by the pulse train is increased. Thus the so-called 
ternary pulse system, illustrated below and used by the Bendix DDA is superior 
to the binary scheme used by the Litton DDA. In the latter scheme the dz output 
of each integrator at every time interval is a positive or a negative pulse, 
as shown below 
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EXPERIENCES WITH A DDA-GP COMPUTER HYBRID SYSTEM* 

Introduction 

The greatest difficulties in scaling a problem for reasonable running 
times on a digital differential analyzer are encountered when implicit algebraic 
operations, such as division, are performed on variables with a wide range of 
possible values. This is due to a DDA's fixed point operation. It is most 
obvious when the algebraic functions are generated by solving a differential 
equation of which they form a solution. Frequently the time scale must be 
prohibitively slow in order to obtain reasonable accuracy' in the functions. 
For example, suppose the terms x and l/x are desired where: 

1/15 < x < 1 

and the coefficient of 217 is assigned to dt, the machine iteration rate. 
Then the following circuit may be used: 

1"7 x 

1 Thus, in order to have the same 17 binary place accuracy in - that is now avail­
x 

able in x, the coefficient 221 must be assigned to dt, slowing the problem tine clown 

by a factor of 16. 

Use of implicit methods involving servos are sometimes more effective; 
however, certain hidden errors, such as the servo getting behind, can occur in 
these setups. 
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At the M>FC, Computation Division, it was found that using a General 
Purpose computer to automatically rescale a DDA for different ranges of the 
variables was quite successful on some problems. Following are descriptions of 
two sample problems solved and some of the results obtained by using this tech­
nique. One criterion used in choosing these examples was that they cannot be 
done satisfactorily on an analog computer because of the accuracy required. 

I. A Celestial Mechanics Problem 

A practical problem of this type,which frequently occurs is a rela­
tively small body traveling in the earth-moon plane with coordinates x and y. 
This is described by the equations: 

" . 

- y 1\: x 'Y ~ ( x - R ) 2 .. 
+ x + 2 

. 
x"" 

(X2 + y2 ) 3/2 ( [x-a] 2 + y2) J/'l, 
w wy 

. . y 1\: y 'Y Mx. y 
+ 2 

- 2 
. 

y = -
(X2 +y2) 3fl <[x-~ 2 + y2)3/2 

wy wx 

Where the coordinate system is rotating at a velocity w in order to keep the 
earth and moon fixed. For computer scaling purposes, these equations present 
the same problems.~ in principle, as the simple two body problem: 

.. 
y = -

yMy 

Since (14-3) and (14-4) may be checked analytically, these were the 
equations actually solved by direct integration. The DDA circuitry used is 

(14-1) 

(l4o:>2) 

(14-3) 

(14-4) 

shown in Figure 1. The register lengths and binary scale factors of the variables 
and time are given in terms of j and k, the negative of the binary scale factors 
for velocity and distance respectively. Since the TRICE operates at 105 iterations 
per second» 217 dt represents approximately real time operation. 

( 

( 
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Each time an overload in the DDA occurs, operation halts and the con­
tents of the "y'' registers are read into the General Purpose computer. These 
readings are modified appropriately and read back into the "IC" registers. The 
DDA is now reset and operation continues. The modifications followed the following 
logical scheme. 

Element Overloaded Changes Made 

(1) 208 (2=jx and 2-JY < ~) j -+ j 1 

(2) 101 or 201 c2-Jx or 2-Jy. > 1) j -+ j + 1 

(3) 106, 107, or 108 (2k-l (1) > 1) k 7 k - 1 
r 

(4) 105 (2-kr > 1) k~k + 1 

Reductions in j were limited since each such reduction caused a net loss of one 
place of accuracy in the velocity terms. 

The eliptic trajectory generated by the values: 

5 yM = 3098533 x 10 

x0 = 9.35 km/sec 

3 2 km /sec 

Y• = 5.5 km/sec 
0 

X0 = 0 Y0 = 6400 km 

j = 4 k = 13 = > 211 dt ....., 1 min. per hr. 
0 0 

is shown in Figure 2. At t = 72 hours (approx. 1 2/3 orbits) the system had 
accunulated errors in r of about 150 km and of less than 2° in 9. The run 
took about 5 minutes. 

This demonstrates the effectiveness of the rescaling technique. 
Without it, a run as long as 12 hours would be required to prevent the 
gravitational acceleration (i.e. the l/r3 term) from completely vanishing 
before the body reached apogee. To obtain comparable accuracy would require 
running times longer than real time (72 hours). 

On a high speed General Purpose computer (e.g. IBM 7090) with opti­
mum variable interval programming, this problem can be solved in approximately 
10 minutes. 
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II. An Eigenvalue Proglem 

One problem received by the M>FC, Computation Division, was to find 
those positive constant values of W for which P(o) = hm P(r) = 0 in the equation: 

r~0o0 

P =WP (14-5) 

where L is an integer ~ 0, and d is a positive constant. 

As r -1 0 e -r/d-? 1 - r/d and equation (14-5) becomes 

d2P + [z. _ L(L+l)J p = (W + Z,d) p :;: WlP 
d 2 r 2 

r r 
r V'! 0 (14-6) 

which has the solution: 

( 

-Wr L+l 
P =Ne r a 

n 
ri 

r ( 14-7) ( 

n=o 

where all a. 's are known and N is arbitrary. For convenience, let U be de-
]. 

fined by 
L+l U = P giving, from eq. (14-5) r 

uu + ~L+ll ul 
-r/d 

+ 2e u = w u 
r r 

A small value of r = r 0 (machine time) was chosen and the first 

two terms in equation (14-7) used to approximate U(ra) Several runs were 
ul (ro). 

then made changing W values in equation (14-8). 

The working assumption was that if, with d and L fixed, a setting of 
W1 generates k roots of U before divergence and w2 < w1 generates k + 1 roots, 
then one eigenvalue of W exists between w1 and w2• 

(14-8) 

( 
( 
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The circuit used to solve equation (14-8) is shown in Figure 3~ In 
this case, the General Purpose computer is used both to rescale the TRICE and 
to ''hunt" the eigenvalues. 

For purposes of demonstration and as an accuracy check2 the following 
equation was solved on the computer: 

u11 + (L+l) ul + i u = w u 
t ' t 

( 14-9) 

1 
The eigenvalues of this equation are known to be, Wn = "l"where n is any posi-

n -t/d 
tive interger. Since, from a computer 'V'iewpoint, generation of e is several 
orders of magnitude more accurate than the other integrations in the circuitry~ 
it is reasonable to suppose that the accuracy of equation (14-9) is a good guide 
to the accuracy of equation (14-8). Actually, for given t 0 's, running times, 
and running rates, equation (14-8) probably gives more accurate determinations 
of W since it has fewer cycles. Sone results of solving both equations (14-8) 
and 14~9) are shown in Figure 4. The General Purpose computer 1 s rescaling logic 

was quite simple •. Each time t changed by a factor of two dt x 2k went to dt x 2k=l, 
from k = 25 to k = 17. An overload in 103 causes this transition. 
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"DDA Considerations in Combined Computation"* 

__ __, 

By taking specific examples and comparing solution tin~s of a 73 inte­
grator DDA having an iteration rate of 623 iterations /sec with the IBM 704, the 
following generalizations can be made: 

(a) For problems requiring 3 to 5 decimal places of accuracy and de­
manding full integrator capacity of the DDA, the incremental computer has a defi­
nite speed advantage. This advantage is further enhanced by the fact that the 
DDA can readout "on line" (i.e., there is ,no need to hang up cornput,'9.tion processes 
while reading out results). 

(b) Problems requiring greater than 7 deci~~l places of accuracy, and 
not large enough to demand full DDA integrator capacity are more rapidly solved 
on the general purpose computer. 

Unfortunately no specific statements can be made regarding the vast "grey" areas 
which are not included in the above generalizations. The reason for this is that 
too much depends o.n the nature of the individual problem. 

( 

The east of programming of the DDA is a definite factor when deciding 
which type of digital computer to use for the solution of differential equations. ( 
Another important consideration is that convergence problems a.re not nearly as 
critical with the DDA due to the extremely simple integration processes involved. 
In addition to the above factors, the incremental computer updates all solutions 
at a high rate, making it desirable in certain control loops involving analog 
equipment. 

From an external standpoint DDA behavior is in many respects similar t~ 
a low speed analog computer with sampled outputs. With this in mind many general 
purpose computer programming techniques developed for ana_log-digi.tal computation 
can be applied to the GP-DDA combination. Furthermore, this likeness enables the 
DDA to aid in analog computer computations. Three promising applications of the 
DDA in conjunction with analog computers are nonlinear function generation, the 
performance of multiply operation$, and simulation of sampled data systems. 

The advantages pointed out are not intended to imply that the DDA has in 
·any sense more over-all utility than analog or general purpose digital computers, 

but rather that it is a desirable partner in combined computation. Combined compu­
tation implies that the problems being solved are so large or complex in nature 
that they cannot be handled readily on a single computer. In that general purpose 
digital computers require solution times proportional to the size of the problem, 
it is seen that if it is possible to allocate- portions of its computation to a 
DDA, an over-all time saving will result. 

*Excerpt from 0 DDA Considerations in Combined Computation", by R.J. Leake, IBM (. 
Report No. 60-097-275, <:kt. 1960, Federal Systems Division, CMego, New York. \. 


