

o
w

~
a:
o
a.
a:
o
o
~
en
w

~ g
U)
U)
c:(

o/S
w
z
a:
o
CD
U)
o
~
c:(
o
c:(

@

AN INTRODUCTION
TO MICROCOMPUTERS
VOLUME 2

SOME REAL MICROPROCESSORS

By Adam Osborne
With Jerry Kane

.. Osborne &. Associates, Inc.
Berkeley, California

Library of Congress Catalogue Card Number" 76-374891

ISBN 0-931988-15-2

Copyright © 1975, 1976, 1977, 1978 by Adam Osborne and Associates, Incorporated

All rights reserved. Printed in the United States of America. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form, or by any means, electronic, mechanical, photocopy­
ing, recording or otherwise, without the prior written permission of the publishers. Original bound volume of
AN INTRODUCTION TO MICROCOMPUTERS series published in 1975.

iv

Q
w

!i
II:
o
a..
II:
o
o
~
en
w

!i o o
en
en
c(

011
w
Z
II:
o
!Xl
en o
~
c(
Q
c(

@

Published By
Adam Osborne & Associates, Inc.

P.O. Box 2036
Berkeley, California, U.S.A. 94702

DISTRIBUTORS OF OSBORNE & ASSOCIATES, INC. PUBLICATIONS

For information on translations and on book distributors outside of the United States of America,
please call or write:

Osborne & Associates, Inc.
P.O. Box 2036

Berkeley, California 94702
United States of America

(415) 548-2805
TVVX 910-366-7277

v

vi

c
w

~
a: o
0.
a:
o
CJ
!!:
en w
~
(3
o
en
en «
~
w
Z
a:
o
Dl
en o
~ « c «
@

CONTRIBUTING AUTHORS

The following persons have contributed in the writing of sections of this book in addition to its principal
authors:

Susanna Jacobson
Osborne & Associates, Inc.

Curt Ingraham
Osborne & Associates, Inc.

vii

viii

TABLE OF CONTENTS

CHAPTER PAGE

4-Bit Microprocessors and the TMS1000 Series Microcomputers 1-1
Q
w TMS1000 Programmable Registers 1-3 ~
~ TMS1000 Memory Addressing Mode 1-5 a:
0 TMS1000 Status Flags 1-5 Q.
a: TMS1000 Input and Output Logic 1-5 0
CJ TMS1000 Series Microcomputer Pins and Signals 1-6
~ TMS 1000 Series Microcomputer Instruction Execution 1-10 en TMS 1000 Series Microcomputer Instruction Set 1-10 w
~ The Benchmark Program 1-10 ~
U Data Sheets 1-01
0
CI)

The Mostek 3870 (and Fairchild F8) CI) 2 2-1
~

oil The 3870 One-Chip Microcomputer 2-3
w 3870/F8 Programmable Registers 2-5 z
a: 3870 Memory Addressing Modes 2-6 0
In 3870/F8 Status Flags 2-9 CI)

0 3870 Pins and Signals 2-9
~ 3870 Instruction Timing and Execution 2-11
~
Q 3870 I/O Ports 2-11
~ 3870 Interrupt Logic 2-13
@ Timer/Counter Logic 2-15

The 3870 Control Code 2-17
The 3870/F8 Instruction Set 2-19
The 3870 Benchmark Program 2-26

The 3850 CPU 2-29
F8 Programmable Registers and Status Flags 2-31
F8 Addressing Modes 2-31
F8 Clock Circuits 2-32
F8 CPU Pins and Signals 2-34
F8 Timing and Instruction Execution 2-35
F8 I/O Ports 2-37
A Summary of F8 Interrupt Processing 2-37
The F8 Instruction Set 2-37
The Benchmark Program 2-38

The 3851 Program Storage Unit (PSU) 2-39
The 3851 PSU Read-Only Memory 2-40
3851 PSU Input/Output Logic 2-41
3851 PSU Interrupt Logic 2-42
3851 PSU Programmable Timer Logic 2-45
3851 PSU Data Transfer Timing 2-45
Using the 3851 PSU in Non-F8 Configurations 2-45

The 3861 and 3871 Parallel I/O (PIO) Devices 2-47
The 3856 and 3857 16K Programmable Storage Units (16K PSU) 2-47
Additional F8 Support Devices 2-49

The 3852 Dynamic Memory Interface (DMil 2-49
The 3854 Direct Memory Access (DMA) Device 2-53
The 3853 Static Memory Interface (SMil 2-54

Data Sheets 2-01

3 The National Semiconductor SC/MP 3-1

SCiMP Programmable Registers 3-3
Addressing Modes 3-4
SC/MP Status Register 3-5
SC/MP CPU Signals and Pin Assignments 3-5

ix

CHAPTER
3 (Cont.)

4

TABLE OF CONTENTS (Continued)

SC/MP Timing and Instruction Execution
SC/MP Bus ..;\ccess Logic
SCiMP Input/Output Operations
The SC/MP Halt State
SC/MP Interrupt Processing
SC/MP DMA and Multiprocessor Operations
The SC/MP Reset Operation
SCiMP Serial Input/Output Operations
The SC/MP Instruction Set
The Benchmark Program

Support Devices for the SC/MP CPU
Using Other Microcomputer Support Devices with the SC/MP CPU
Data Sheets

The8080A

The SOSOA CPU
SOSOA Programmable Registers
SOSOA Addressing Modes
SOSOA Status
8080A CPU Pins and Signals

SOSOA Timing and Instruction Execution
Clock Signals
Instruction Fetch Sequence
A Memory Read or Write Operation
Separate Stack Memory Modules
The Wait State
The Wait. Hold and Halt States
The Hold State
The Halt State and Instruction
The Reset Operation
External Interrupts
External Interrupts During the Halt State
Wait and Hold Conditions Following an Interrupt

The S080A Instruction Set .
The Benchmark Program
Instruction Execution Times and Codes

Support Devices that may be Used with the SOSOA
The 8224 Clock Generator and Driver

The 8224 Clock Generator Pins and Signals
The 8228 and 8238 System Controller and Bus Driver

Bus Driver Logic
Control Signal Logic
8228 System Controller Pins and Signals

The 8259 Priority Interrupt Control Unit (PICU)
8259 PICU Pins and Signals
The 8259 PICU Interrupt Acknowledge Vector
8259 PICU Priority Arbitration Options
How Interrupt Requests and Priority Status are'Recorded
Programming the 8259 PICU

The TMS 5501 Multifunction Input/Output Controller
TMS 5501 Device Pins and Signals
TMS 5501 Device Access
TMS 5501 Interrupt Handling
TMS 5501 Parallel I/O Operations
TMS 5501 Serial I/O Operation
TMS 5501 Interval Timers

Data Sheets

x

PAGE
. 3-7
3-8
3-10
3-13
3-14
3-17
3-21
3-21
3-22
3-28
3-29
3-31
3-01

4-1

4-3
4-3
4-4
4-5
4-6
4-7
4-8
4-12
4-12
4-12
4-13
4-16
4-17
4-19
4-19
4-21
4-24
4-24
4-24
4-25
4-33
4-46
4-46
4-46
4-48
4-48
4-49
4-49
4-52
4-52
4-54
4-57
4-60
4-62
4-67
4-67,
4-70'
4-74
4-75
4-75
4-76
4-01

o
w
~
a:
o
D.
a:
o u
~
en
w
I­
-t g
CI)
CI)

-t
CI/I
w
Z
a:
o
aI
CI)

o
:E
-t
o
-t
@

CHAPTER
5

6

TABLE OF CONTENTS (Continued)

The 8085

The 8085A CPU
8085A Programmable Registers
8085A Addressing Modes
8085A Status
8085A CPU Pins and Signals
A Comparison of 8085A and 8080A Signals

8085A Timing and Instruction Execution·
The Clock Signals
Memqry Access Sequences
Bus Idle Machine Cycles
The Wait State
The SID and SOD Signals
The Hold State
The Halt State and Instruction
External Interrupts
The Reset Operation

The 8085A Instruction Set
8085A Microprocessor Support Devices
The 8155/815.6 Static Read/Write Memory with 1/0 Ports and Timer

8155/8156 Device Pins and Signals
8155/8156 ParaliellnputlOutput
8155/8156 Device Addressing
The 8155/8156 CounterlTimer
8155/8156 Control and Status Registers
8155/8156 Device Programming

The 8355 Read-Only Memory with I/O
8355 Device Pins and Signals
8355 Ready Logic
8355110 Logic

The 8755A Erasable Programmable Read-Only Memory with 1/0
Data Sheets

The 8048 Microcomputer Devices

The 8048. 8748. 8049.8749 and 8035 Microcomputers
An 8048 and 8049 Functional Overview
8048. 8748. and 8035 Microcomputer Programmable Registers
8048 Series Addressing Modes
A Program Memory Map
8048 Series Status
8048 Series Microcomputer Operating Modes
8048 Series Microcomputer Pins and Signals

8048 Series Timing and Instruction Execution
Internal Execution Mode
External Memory Access Mode
Debug Mode
Single Stepping
Programming Mode
Verification Mode
InputlOutput Programming
Hold State

CounterlTimer Operations
Internal and External Interrupts

xi

PAGE
5-1

5-2
5-3
5-3
5-3
5-3
5-7
5-7
5-8
5-9
5-18
5-20
5-21
5-24
5-26
5-28
5-32
5-34
5-35
5-35
5-35
5-38
5-39
5-41
5-43
5-43
5-45
5-45
5-49
5-50
5-51
5-D1

6-1

6-2
6-3
6-7
6-8
6-12
6-13
6-14
6-15
6-18
6-18
6-20
6-23
6-23
6-24
6-26
6-26
6-26
6-27
6-27

CHAPTER
6 (Cont.)

7

TABLE OF CONTENTS (Continued)

The 8048 Microcomputer Series Instruction Set
The Benchmark Progra~

The 8041 Slave Microcomputer
An 8041 Functional Overview
8041 Data Bus Logic
8041 I/O Ports One and Two
8041 and 8741 Programmable Registers
8041 and 8741 Addressing Modes
8041 and 8741 Status
8041 and 8741 Slave Microcomputer Operating Modes
8041 and 8741 Pins and Signals .
8041 Series Timing and Instruction Execution
8741 Single Stepping and Programming Mode
8041 Input/Output Programming
8041 CounterlTimer Operations
8041 Interrupt Logic
Programming 8048-8041 Data Transfers

The 8041/8741 Instruction Set
The 8021 Single-Chip Microcomputer

An 8021 Fu nctional Overview
8021 I/O Port Pins
The T1 Pin
The 8021 Reset Input
The 8021 Clock Inputs
The 8021 Timer/Counter
8021 Scratchpad Memory and Programming

The 8243 Input/Output Expander
8243 Input/Output Expander Pins and Signals
8243 Input/Output Expander Operations

Data Sheets

ZilogZ80

The Z80 CPU
A Summary of Z80/8080A Differences
Z80 Programmable Registers
Z80 Addressing Modes
Z80 Status
Z80 CPU Pins and Signals
Z80-8080A Signal Compatibility

Z80 Timing and Instruction Execution
Instruction Fetch Execution Sequences
A Memory Read Operation
Memory Write Operation
The Wait State
Input or Output Generation
Bus Requests
External Interrupts
The Halt Instruction

The Z80 Instruction Set
Input/Output Instructions
Primary Memory Reference Instructions
Block Transfer and Search Instructions
Secondary Memory Reference (Memory Operate) Instructions
Immediate Instructions
Jump Instructions

xii

PAGE
6-32
6-32
6-41
6-42
6-43
6-44
6-44
6-44
6-45
6-45
6-45
6-46
6-46
6-46
6-47
6-47
6-47
6-49
6-51
6-51
6-51
6-51
6-52
6-53
6-53
6-53
6-53
6-53
6-55
6-01

7-1

7-1
7-1
7-5
7-6
7-7
7-7
7-9
7-11
7-12
7-13
7-13
7-14
7-14
7-15
7-16
7-19
7-38
7-38
7-39
7-39
7-41
7-41
7-41

CHAPTER
7 (Cont.)

Q
w
I-
oct
a:
0
a..
a:
0
CJ
~
en
w
I-
oct g
CI)
CI)

oct
all
w
Z
a:
0
a:I
CI)

0

:!:
oct
Q
oct
@

9

TABLE OF CONTENTS (Continued)

Subroutine Call and Return Instructions
Immediate Operate Instructions
Jump-on-Condition Instructions
Register-Register Move Instructions
Register-Register Operate Instructions
Register Operate Instructions
Bit Manipulation Instructions
Stack Instructions
I nterrupt Instructions
Status and Miscellaneous Instructions
The Benchmark Program

Support Devices that may be Used with the Z80
The Z80 Parallel 110 Interface (PIO)

Z80 PIO Pins and Signals
Z80 PIO Operating Modes
Z80 PIO Interrupt Servicing
Programming the Z80 PIO

The Z80 Clock Timer Circuit (CTC)
Z80 CTC Functional Organization
Z80 CTC Pins and Signals
Z80 CTC Operating Modes
Z80 CTC Interrupt Logic
Programming the Z80 CTC

Data Sheets

The Motorola MC6800

The MC6800 CPU
The MC6800 Programmable Registers
MC6800 Memory Addressing Modes
MC6800 Status Flags
MC6800 CPU Pins and Signals

MC6800 Timing and Instruction Execution
The Hold State. the Halt State and Direct Memory Access
Interrupt Processing. Reset and the Wait State
The MC6800 Instruction Set
The Benchmark Program
MC6800 Summary of Cycle by Cycle Operation

Support Devices that may be Used with the MC6800
The MC6802 CPU with Read/Write Memory
The MC6870 Two Phase Clocks

The MC6870A Clock Device
The MC6871A Clock Device
The MC6871 B Clock Device
The MC6875 Clock Device
Some Standard Clock Signal Interface Logic

The MC6820 and MCS6520 Peripheral Interface Adapter (PIA)
The MC6820 PIA Pins and Signals
MC6820 Operations

The MC6850 Asynchronous Communications Interface Adapter (ACIA)
The MC6850 ACIA Pins and Signals
MC6850 Data Transfer and Control Operations
MC6850 ACIA Control Codes and Status Flags

The MC6852 Synchronous Serial Data Adapter (SSDA)
MC6852 SSDA Pins and Signals
MC6852 Data Transfer and Control Operations
MC6852 Status Register

xiii

PAGE
7-41
7-41
7-41
7-42
7-42
7-42
7-42
7-43
7-43
7-44
7-44
7-44
7-45
7-46
7-49
7-51
7-52
7-54
7-54
7-55
7-57
7-60
7-60
7-01

9-1

9-3
9-3
9-3
9-5
9-6
9-7
9-10
9-12
9-16
9-17
9-25
9-31
9-33
9-39
9-41
9-41
9-43
9-44
9-44
9-45
9-45
9-48
9-55
9-55
9-57
9-59
9-61
9-61
9-63
9-65

CHAPTER
9 (Cant.)

10

TABLE OF CONTENTS (Continued)

The MC6852 Control Registers
Programming the MC6852

The MC8507 (or MC6828) Priority Interrupt Controller (PIC)
MC6828 Pins and Signals
The Interrupt Acknowledge Process
I nterru pt Priorities
Interrupt Inhibit Logic

The MC6840 Programmable CounterlTimer
The MC6840 CounterlTimer Pins and Signals
MC6840 Addressing
MC6840 CounterfTimer Programmable Options

The MC6844 Direct Memory Access Controller
MC6844 DMA Controller Pins and Signals
MC6844 Addressable Registers
MC6844 DMA Transfer Modes
MC6844 DMAC Three7State Control. Cycle Stealing Mode
MC6844 DMAC Halt Modes
Comparing MC6844 DMAC Modes
Using an MC6844 DMAC with Mixed Modes
The MC6844 Control Registers and Operating Options
Resetting the MC6844 DMAC
Programming the MC6844 DMAC

The MC6846 Multifunction Support Device
MC6846 Multifunction Device Pins and Signals
MC6846 CounterfTimer Logic
MC6846 I/O Port Logic
MC6846 Device Reset

Data Sheets

The MOS Technology MCS6500

The MCS6500 Series CPUs
MCS6500 Series CPU Programmable Registers
MCS6500 Memory Addressing Modes
MCS6500 Status Flags
MCS6500 CPU Pins and Signals

MCS6500 Timing and Instruction Execution
Interrupt Processing and System Reset
MCS6500 CPU Clock Logic
MCS6500 CPU Interface Logic
The MCS6500 Instruction Set
The Benchmark Program

Support Devices that may be Used with the MCS6500 Series Microprocessors
The MCS6522 Peripheral Interface Adapter

MCS6522 PIA Pins and Signals
MCS6522 Parallel Data Transfer Operations
MCS6522 Interval Timer Logic
MCS6522 Shifter Logic
MCS6522 Interrupt Logic

The MCS6530 Multifunction Support Logic Device
MCS6530 Multifunction Device Pins and Signals
MCS6530 Parallel Data Transfer Operations
MCS6530 Interval Timer and Interrupt Logic

The MCS6532 Multifunction Support Logic Device
MCS6532 Multifunction Device Pins and Signals
MCS6532 Logic Functions

Data Sheets

xiv

PAGE
9-66
9-70
9-71
9-72
9-74
9-75
9-77
9-78
9-78
9-82
9-94
9-106
9-107
9-109
9-110
9-111
9-113
9-116
9-116
9-116
9-122
9-122
9-124
9-124
9-127
9-128
9-129
9-D1

10-1

10-2
10-3
10-4
10-6
10-7
10-13
10-15
10-15
10-15
10-16
10-16
10-27
10-29
10-30
10-33
10-36
10-42
10-46
10-47
10-47
10-51
10-51
10-53
10-54
10-55
10-D1

Q
w

~
a:
o
a.
a:
o
u
~
en
w
l­
e{
(;
o
CI)
CI)
e{

~
w
Z
a:
o a:a
CI)

o
~
e{
o
e{

@

CHAPTER
11

12

1'3

TABLE OF CONTENTS (Continued)

The signetics 2650A

The 2650A CPU Logic
2650A Programmable Registers
The 2650A Memory Addressing Modes
The 2650A Status Flags
The 2650A CPU Pins and Signals
Interfacing Memory to the 2650A MicrocompLiter
Interfacing I/O Devices to the 2650A Microcomputer
The 2650A Microcomputer Instruction Process
2650A Microcomputer Direct Memory Access
The 2650A Microcomputer Instruction Set
The 2650A Benchmark Program
Support Devices that may be Used with the 2650A Microprocessor

Data Sheets .

The RCA COS MAC

The COSMAC CPU
COS MAC Programmable Registers
COSMAC Memory Addressing Modes
COSMAC Status Flags
COS MAC CPU Pins and Signals

COSMAC Timing and Instruction Execution,
COSMAC Memory Read Timing
COSMAC Memory Write Instruction Timing
COS MAC Data Input Data Output and Direct Memory Access
A Summary of COSMAC Interrupt Processing
The COSMAC Instruction Set
The Benchmark Program
Using COSMAC with Other Microprocessor Support Devices

The CDP1852 Parallel I/O Port
CDP1852 Pins and Signals
CDP 1852 Operations Overview
CDP1852 Input Operations
CDP1852 Output Operations

Data Sheets .

IM6100 Microcomputer Devices

The IM6100 CPU
IM6100 Programmable Registers
IM6100 Memory Space
IM6100 Memory Addressing Modes
IM61 00 Status Flags
IM6100 CPU Pins and Signals

IM61 00 Timing and Instruction Execution
IM6100 No Operation Machine Cycle
IM6100 Data Input Machine Cycle
IM6100 Data Output Machine Cycle
IM6100 Address Demultiplexing
IM61 00 Memory Read Machine CycleTimirig
IM6100 Memory Write Machine Cycle
IM6100 Input/Output Timing
IM61 00 Wait State
IM6100 Hold and Halt Conditions
IM6100 Direct Memory Access

xv.

PAGE
. 11-1·

11-1
11-3
11-4
11-8
11-10
11-12
11-12
11-12
11-14
11-14
11-15
11-23
11-D1

12-1

12-2
12-2
12-4
12-5
12-5
12-8
12-11
12-11
12-12
12-17
12-17
12-23
12-32
12-33
12-33
12-33
12-34
12-37
12-D1

13-1

13-2
13-3
13-3
13-3
13-6
13-6
13-9
13-10
13-10
13-10
13-11
13-13
13-14
13-18
13-22
13-23
13-26

CHAPTER
13 (Cont.)

14

15

TABLE OF CONTENTS (Continued)

The IM6100 Reset
IM61 00 Interrupt Logic
IM6100 Control Panel Logic
External Control Signal Priorities
IM6100 Instruction Set
The IM6100 Benchmark Program.

Some SpeciallM6100 Hardware Considerations
Implementing a Hardware Stack

Support Devices that may be Used with the IM61 00
The IM6101 Parallel Interface Element (PIE)

IM6101 Parallel Interface Element Pins and Signals
IM6101 Functional Logic
IM6101 Interrupt Handling Logic

The IM6102 MEDIC
IM6102 MEDIC Pins and Signals
The IM6100-IM61021nterface
IM6102 Extended Memory Control
IM61 02 Extended Memory Programming Considerations
IM6102 Extended Memory Interrupt Considerations
IM6102 Dynamic Memory Refresh and Direct Memory Access Logic
IM61 02 Programmable Real-Time Clock Logic
IM61 02 MEDIC Instructions

Data Sheets

The 8X300 (or SMS300)

The 8X300 Microcontroller
8X300 Addressable Registers
8X300 Status Flags
8X300 Memory Addressing
8X300 Pins and Signals
8X300 Instruction Execution and Timing
The 8X300 Instruction Set
The 8X300 Benchmark Program

The 8T32. 8T33. 8T35. and 8T36 Interface Vector Byte (IV Byte)
8T32/3/5/6 IV Byte Pins and Signals

8T32/3/5/6 IV Byte Operation
8T32/3/5/6 IV Byte Addresses

The 8T39 and 8T58 Bus Expanders
Data Sheets

The National Semiconductor PACE and INS8900

PACE and INS8900 Microcomputer System Overviews
INS8900 Programmable Registers
INS8900 Stack
INS8900 and PACE Addressing Modes
INS8900 and PACE Status and Control Flags
INS8900 and PACE CPU Pins and Signals
INS8900 and PACE Timing and Instruction Execution
The Initialization Operation
The Halt State and Processor Stall Operations
Direct Memory Access Operations
The INS8900 and PACE Interrupt System
The INS8900 and PACE Instruction Set
The Benchmark Program

The PACE DP8302 System Timing Element (STE)

xvi

PAGE
13-29
13-29
13-33
13-37
13-37
13-38
13-47
13-47
13-51
13-53
13-55
13-56
13-62
13-64
13-65
13-69
13-69
13-77
13-78
13-79
13-83
13-85
13-D1

14-1

14-1
14-3
14-4
14-4
14-5
14-6
14-9
14-17
14-21
14-21
14-23·
14-24
14-26
14-D1

15-1

15-2
15-4
15-5
15-6
15-9
15-10
15-11
15-14
15-14
15-15
15-19
15-24
15-33
15-35

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
15 (Cont.) The PACE Bidirectional Transceiver Element (BTE) 15-36

Using Other Microcomputer Support Devices with the PACE and INS8900 15-38
0 Data Sheets 15-01
w
l-
e:(16 The General Instrument CP1600 16-1 a:
0

The CP1600 Microcomputer System Overview 16-1 a..
a:

CP1600 Programmable Registers 16-3 0
0 CP1600 Memory Addressing Mode 16-3 ~
u) CP1600 Status and Control Flags 16-6
w CP1600 CPU Pins and Signals 16-6
l-
e:(CP1600 Instruction Timing and Execution 16-10
(;

CP1600 Memory Access Timing 16-10 0
(I) The CP 1600 Wait State 16-12 (I)
e:(The CP1600 Halt State 16-12
G/.I CP 1600 Initialization Sequence 16-13 w
z CP1600 DMA Logic 16-13 a:
0 The CP1600 Interrupt Logic 16-15
III
(I) The CP1600 Instruction Set 16-16
0

The Benchmark Program 16-25
~
e:(Support Devices that may be Used with the CP1600 16-27
0 The CP1680 Input/Output Buffer (lOB) 16-30 e:(

@ CP1680 lOB Pins and Signals 16-30
CP16BO Addressable Registers 16-31
The CP1680 Control Register 16-32
CP1680 Data Transfer Operations 16-33
The CP1680 Interval Timer 16-36
CP1680 Interrupt Logic 16-37

Data Sheets 16-01

17 The General Instrument 1650 Series Microcomputers 17-1

A 1650 Functional Overview 17-1
1650 Series Microcomputer Programmable Registers 17-4
1650 Series Microcomputer Memory Addressing Modes 17-6
1650 Series Microcomputer Pins and Signals 17-6
1650 Series Microcomputer Instruction Set 17-8
The 1650 Benchmark Program 17-9

Data Sheets 17-01

18 The Texas Instruments TMS 9900. TMS 9980, and TMS 9440 Products 18-1

The TMS 9900 Microprocessor 18-2
A TMS 9900 Functional Overview 18-2
TMS 9900 Programmable Registers 18-3
TMS 9900 Memory Addressing Modes 18-6
TMS 9900 I/O Addressing 18-8
TMS 9900 CPU Pins and Signals 18-13

TMS 9900 Timing and Instruction Execution 18~ 15
Memory Access Operations 18-15
Memory Select Logic 18-19
TMS 9900 I/O Instruction Timing 18-20
The Wait State 18-23
The Hold State 18-25
The Halt Stelte 18-25
TMS 9900 Interrupt Processing Logic 18-26
The TMS 9900 Reset 18-34
The TMS 9900 Load Operation 18-34

xvii

CHAPTER
18 (Cont.)

19

20

TABLE OF CONTENTS (Continued)

The TMS 9900 Instruction Set
The Benchmark Program

The TMS 9980A and the TMS 9981 Microprocessors
TMS 9980 Series Microprocessor Pins and Signals
TMS 9980 Series Microprocessor Timing and Instruction Execution
TMS 9980 Series Interrupt Logic
The TMS 9980 Series Instruction Set

The TMS 9940 Single-Chip Microcomputers
TMS 9940 Registers and Read/Write Memory
TMS 9940 CPU Pins and Signal Assignments
TMS 9940 General Purpose Flags
TMS 9940 Timer/Event Counter Logic
TMS 9940 Interrupt Logic
TMS 9940 Reset
Programming a TMS 9940E Erasable Programmable Read-Only Memory
Loading a Program into TMS 9940 Read/Write Memory
The TMS 9940 Instruction Set

The TIM 9904 Four-Phase Clock Generator/Driver
The TMS 9901 Programmable System Interface (PSI)

TMS 9901 Pins and Signals
TMS 9901 PSI Interrupt Logic
TMS 9901 Data Input and Output
TMS 9901 Real-Time Clock Logic
TMS 9901 Reset Logic

Data Sheets

Single Chip Nova Minicomputer Central Processing Units

A Product Overview
Nova Programmable Registers
Nova Memory Addressing Modes
Nova Status Flags
MicroNova and 9440 CPU Pins and Signals

CPU Logic and Instruction Execution.
Arithmetic/Logic Instructions
Memory Reference Instructions
Input/Output Instructions
A Nova Summary

9440 Timing and Instruction Execution
MicroNova and 9440 Interrupt Processing
MicroNova and 9440 Direct Memory Access Logic
The MicroNova and 9440 Instruction Sets

The Benchmark Program
Data Sheets

The Intel 8086

The 8086 CPU
8086 Programmable Registers and Addressing Modes
8086 Status
8086 CPU Pins and Signals

8086 Timing and Instruction Execution
8086 Bus Cycles
8086 Instruction Queue
8086 Memory and I/O Device Read Bus Cycle for Simple Configurations
8086 Memory or I/O Device Write Bus Cycle for Minimum Mode
8086 Read and Write Bus Cycles for Maximum Mode

xviii

PAGE
18-35
18-42
18-44
18-45
18-49
18-49
18-52
18-52
18-54
18-56
18-65
18-65
18-65
18-65
18-66
18-66
18-66
18-67
18-70
18-73
18-76
18-78
18-80
18-81
18-D1

19-1

19-2
19-4
19-5
19-10
19-10
19-17
19-17
19-20
19-20
19-22
19-23
19-27
19-31
19-32
19-32
19-D1

20-1

20-3
20-3
20-17
20-19
20-25
20-26
20-27
20-30
20-31
20-32

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
20 (Cont.) The 8086 Wait State 20-34

The 8086 Hold State 20-34
c The 8086 Halt State 20-36 w

The 8086 Lock 20-37 ~
a: The 8086 Processor Wait for Test State 20-38
0

The 8086 Processor Escape 20-38 a.
a:

The 8086 Reset Operation 20-38 0
CJ 8086 Interrupt Processing 20-38 ~
iii Single Stepping Mode 20-41
w The 8086 Instruction Set 20-41
~
< 8086-8080A Instruction Compatibility 20-48 g The Benchmark Program 20-48
CI) Instruction Execution Times and Codes 20-67 CI)

< The Intel 8284 Clock Generator/Driyer 20-77
o1J 8284 Clock Generator/Driver Pins and Signals 20-77 w
z The Intel 8288 Bus Controller 20-80 a:

8288 Bus Controller Signals and Pin Assignments 20-80 0
III

The 8282/8283 8-Bit Input/Output Port 20-83 CI)

0 The 8282/8283 Input/Output Port Pins and Signal Assignments 20-83
~
< The 8286/8287 8-Bit Bidirectional Bus Transceivers 20-85
c 8286 and 8287 Bidirectional Bus Transceiver Pins and Signal Assignments 20-85 <
@ Some 8086 Microprocessor Bus Configurations 20-86

Data Sheets 20-D1

22 2900 Series and 6700 Series Chip Slice Products 22-1

The 2901/6701 Arithmetic and Logic Unit (ALU) 22-2
The 2909 Microprogram Sequencer 22-5
The 2902 Carry Look Ahead 22-8
Data Sheets 22-D1

23 The MC1 0800 Series Chip Slice Logic 23-1

The MC1 0800 Arithmetic and Logic Unit Slice 23-3
The MC 10801 Microprogram Control Unit 23-5
The MC1 0802 Timing Device 23-6
The MC1 0803 Memory Interface Device 23-6
Data Sheets 23-D1

24 The Hewlett Packard MC2 24-1

An MC2 System Overview 24-1
MC2 Programmable Registers and Status 24-2
MC2 Memory Addressing Modes 24-4
Hardware Aspects of the MC2 24-4
The MC2 Instruction Set 24-5
The Benchmark Program 24-6

25 Selecting a Microcomputer 25-1

Designing Logic with Microcomputers -A Sequence of Events 25-2
Microcomputer Development Hardware 25-3
Microcomputer System Software 25-5
An Economic Example 25-9

A Look at the Future 25-10

xix

xx

LIST OF FIGURES

FIGURE PAGE

1-1 Logic of the TMS1000 Series Microcomputer 1-2

Q
1-2 TMS1000 and MC141000 Microcomputer Signals and Pin Assignments 1-6

w 1-3 TMS1200 and MC141200 Microcomputer Signals and Pin Assignments 1-7
l-
e(1-4 TMS 1070 Microcomputer Signals and Pin Assignments 1-7 a:
0 1-5 TMS1270 Microcomputer Signals and Pin Assignments 1-8
D.

1-6 TMS1100 Microcompu~er Signals and Pin Assignments 1-8 a:
0

1-7 TMS1300 Micrqcomputer Signals and Pin Assignments 1-9 CJ
~
en 2-1 A Fairchild/Mostek F8 Microcomputer System 2-2
w 2-2 Logic of the Fairchild/Mostek 3870 Microcomputer 2-4 l-
e(2-3 3870 Microcomputer Signals and Pin Assignments 2-9 (3
0 2-4 Instructions That Move Data Between the Scratchpad and Various Registers 2-26
U)

2-5 Logic of the Fairchild F8 3850 CPU 2-30 U)
e(

2-6· Fairchild 3850 CPU Signals and Pin Assignments 2-34
ciS
w 2-7 Logic of the Fairchild F8 3851. 3856. and 3857 Programmable Storage Unit 2-39
z 2-8 3851 PSU Signals and Pin Assignments 2-40 a:
0 2·-9 Conceptual Logic to Include a 3851 P5U in a Non-F8 Microcomputer System 2-46 a:I
U) 2-10 3856 PSU Signals and Pin Assignments 2-48 0

~ 2-11 3857 PSU Signals and Pin Assignments 2-49
e(2-12 Logic of the Fairchild F8 3852 Dynamic Memory Interface (DM!). and of the 3854
Q

Direct Memory Access (DMA) Devices 2-50 e(

@ 2-13 3852 DMI Signals and Pin Assignments 2-52
2-14 3854 DMA Signals and Pin Assignments 2-54
2-15 Logic of the F8 3853 Static Memory Interface (SM!) Device 2-55
2-16 3853 SMI Signals and Pin Assignments 2-56

3-1 Logic of the SC/MP Microcomputer 3-2
3-2 SC/MP CPU Signals and Pin Assignments 3-6
3-3 SC/MP Bus Access Logic Processing Sequence 3-9
3-4 Bus Utilization of Each SC/MP Instruction 3-11
3-5 SC/MP Data Input Cycle 3-12
3-6 SC/MP Data Output Cycle 3-12
3-7 NHOLD Signal Used to Lengthen SC/MP I/O Operation 3-13
3-8 Circuit to Cause Programmed Halt for SC/MP CPU 3-13
3-9 SC/MP Interrupt Instruction Fetch Process 3-14
3-10 Using SC/MP in a System with Direct Memory Access 3-17
3-11 One Method of Initializing an SC/MP Multiprocessor System 3-20
3-12 Forcing the Halt State in an SC/MP Multiprocessor System 3-20
3-13 An SC/MP System Showing Typical Support Devices that may be Required 3-29
3-14 SC/MP Data Lines Buffered Using 8216 Devices 3-30

4-1 The 8080A CPU. 8224 Clock and 8228 System Controller Forming a
Three-Device Microprocessor 4-4

4-2 8080A CPU Signals and Pin Assignments 4-8
4-3 A Machine Cycle Consisting of Five Clock Periods 4-8
4-4 Status Output During T2 of Every Machine Cycle 4-10
4-5 8080A Instruction Fetch Sequence 4-13
4-6 8080A Memory Write Timing 4-14
4-7 The 8080A CPU Operating With Fast Memory and No Wait State 4-15
4-8 The 8080A CPU Operating With Slow Memory and a Normal Wait State 4-16
4-9A Floating of Data and Address Busses at <1>2 in T3. for READ Operation Being

Completed Prior to Onset of Hold State 4-17
4-9B Floating of Data and Address Busses at <1>2 in T 4. for a WRITE. or Any Non-READ

Operation (R/WO=False) 4-18
4-10A Floating of Data and Address Busses for READ Operation in a Three Clock Period

Machine Cycle 4-18

xxi

FIGURE

4-10B

4-11
4-12

4-13.

4-14
4-15

4-16
4-17
4-18
4-19
4-20
4-21
4-22

4-23
4-24
4-25
4-26

4-27
4-28
4-29
4-30
4-31 "
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39

5-1 .
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10.

5-11
5-12
5-13
5-14.
5-15
5-16
5-17·
5-18

LIST OF FIGURES (Continued)

Floating of Data and Address Busses at <1>2 in T 1. for WRITE or Any Non-READ
Operation Being Completed Prior to Onset of Hold State·

Interrupt Initiation Sequence
Signal Sequences and Timing for Instructions: STC. CMC. CMA. NOP. RLC. RRC. RAL. RAR.

PAGE

4-18
4-20

XCHG. EI. DI: DAA. ADD R. ADC R. SUB A. SBB R. ANA R. XRA R. ORA R. CMP R 4-33
Signal Sequences and Timing for Instructions: INR. DCR. MOV REG REG. SPHL. PCHL.

DCX.INX
Signal Sequences and Timing for Instructions: DCR. INA. MVI M
Signal Sequences and Timing for Instructions: LDAX. MOV REG M. 'ADI. ACI. SUI. SBI.

ANI. XRI. ORI. CPI. MVI R. ADD M. ADC M. SUB M. SBB M. ANA M. XRA M.
ORA M. CMP M

Signal Sequences and Timing for Instructions:STAX. MOV M REG
Signal Sequences and Timing for Instructions; LHLD
Signal Sequences and Timing for Instructions: PUSH. RST
Signal Sequences and Timing for Instructions: POP. RET
Signal Sequences and Timing for Instructions: DAD

. Signal Sequences and Timing for Instructions: XTHL
Signal Sequences and Timing for Instructions: LXI. JMP. JNZ. JZ. JNC. JC. JPO.

JPE. JP. JM
Signal Sequences and Timing for Instructions: ST A
Signal Sequences and Timing for Instructions: LDA
Signal Sequences and Timing for Instructions:SHLD
Signal Sequences and Timing for Instructions: CALL. CNZ. CZ. CNC. CC. CPO. CPE.

CP.CM '
Signal Sequences and Timing for Instructions: RNZ. RZ. 'RNC.RC. RPO. RPE. RP. RM
Signal Sequences and Timing for Instructions: IN
Signal Sequences and Timing for Instructions: OUT
Signal Sequences and Timing for Instructions: HL T
8224 Clock Generator Signals and Pin Assignments
8228 System Controller Signals and Pin Assignments
A Standard. Three Device 8080A Microcomputer System
Timing for Control Signals Output by the 8228 System Controller
8259 Priority Interrupt Control Unit Signals and Pin Assignments
A System With One PICU
A System With Three PICUs -Gne Master and Two Slaves
Logic of the TMS 5501 Multifunction Input/Output Controller
TMS 5501 Multifunction Input/Output Controller Signals and Pin Assignments

Logic of the 8085A Microprocessor
8085A CPU Signals and Pin Assignments
A Comparison of 8085A and 8080A/8224/8228 Signal Interface
A Four Clock Period Instruction Fetch Machine Cycle .
A Six Clock Period Instruction Fetch Machine Cycle
A Memory Read Machine Cycle Following an Instruction Fetch
An I/O Read Machine Cycle Following an Instruction Fetch
A Memory Write Machine Cycle Following an Instruction Fetch
An I/O Write Machine Cycle Following an Instruction Fetch
A Bus Idle Machine Cycle Following an Instruction Fetch During Execution of a

DAD Instruction
Wait States Occurring in a Memory Read Machine Cycle
A RIM Instruction Followed by a SIM Instruction
A Hold State Following a Single Machine Cycle Instruction Execution
A Halt Instruction and a Halt StateTerminated by an Interrupt Request
Hold States Occurring Within a Halt State
An Interrupt Being Acknowledged Using a Single Byte Instruction
A Bus Idle Instruction Fetch Machine Cycle
Power On and RESET IN Timing for the 8085A

xxii

4-34
4-34

4-35
4-35
4-36
4-36
4-37
4-38
4-38

4-39
4-39
4-40
4-40

4-41
4-42
4-43
4-44
4-45
4-47
4-49
4-51
4-51,
4-53
4-54
4-56
4-68
4-69

5-2
5-4
5-6
5-9
5-10
5-15
5-16
5-17
5-18

5-19
5-20
5-23
5-23
5-26
5-27
5-28
5-30
5-31

LIST OF FIGURES (Continued)

FIGURE 'PAGE

5-19 Logic of the 8155 and 8156 Multifunction Devices 5-36
5-20 Logic Functions of the 8155/8156 Device 5-37

Q 5-21 8155/8156 Multifunction Device Signals and Pin Assignments 5-37 w
I- 5-22 An 8155 Device Connected to an 8085A CPU Bus 5-38 ~
a: 5-23 Logic of the 8355 and 8755 Multifunction Devices 5-46 0
D. 5-24 Logic Functions of the 8355 Device 5-47 a:
0 5-25 8355 Multifunction Device Signals and Pin Assignments 5-48 u
~ 5-26 An 8085A-8155/8156-8355 Microcomputer System 5-48
en 5-27 8755A Multifunction Device Signals and Pin Assignments 5-52
w
I-

6-1 Logic of the 8048 Series Microcomputers 6-3 ~

g 6-2 Functional Logic of the 8048,8049,8748,8749, and 8035 Microcomputers 6-4 '
CI) 6-3 8048 I/O p,orts '1 and 2 Pin Logic 6-6 CI)

~ 6-4 8048 Series Microcomputers' Memory Addressing 6-9
olI 6-5 8048,8748 and 8035 Microcomputer Pins and Signals 6-16 w
z 6-6 Execution of 8048 Single Machine Cycle Instructions Without any External Access 6-19 a:

6-7 An 8048 Series External Instruction Fetch 6-19 0
III 6-8 An 8048 Series External Data Read or Write 6-20 CI)

0 6-9 An 8048-8355 Configuration 6-21
~
~ 6-10 Demultiplexing DBO-DB7 to Create Separate Address and Data Busses 6-21
Q 6-11 An 8048 Single Step Circuit 6-24 ~

@ 6-12 8748 EPROM Programming and Verification Timing 6-25
6-13 An Eight-Device Daisy Chained Interrupt Request/Acknowledge Scheme 6-29
6-14 A Low Chip Implementation of an Eight-Device Daisy Chained Interrupt

Request/Acknowledge Scheme 6-31
6-15 A Comparison of 8048 and 8041 Functional Logic 6-42
6-16 8041 and 8741 Microcomputer Pins and Signals 6-45
6-17 A Comparison of 8048 and 8021 Functional Logic 6-50
6-18 8021 Microcomputer Pins and Signals 6-52
6-19 Logic of the 8243 Input/Output Expander 6-54
6-20 Input/Output Expander Pins and Signals 6-55
6-21 Functional Diagram of the 8243 Input/Output Expander 6-56
6-22 An 8243/8048 Configuration with External Logic Read and Write Strobes 6-57
6-23 \ Timing for Data Output to an 8243 Port Via an MOVD, ORLD, or ANLD Instruction 6-58
6-24 Timing for Data Input from an 8243 Port 6-58,

7-1 Logic Functions of the Z80 CPU 7-2
7-2 The Standard 8080A Three-Chip System and Z80,Signal Equivalents 7-3
7-3 Z80 Programmable Registers 7-5
7-4 Z80 CPU Signals and Pin Assignments 7-8
7-5 Z80 Instruction Fetch Sequence 7-12
7-6, Z80 Memory Read Timing 7-13
7-7 Z80 Memory Write Timing 7-13
7-8 Z80 Wait State Timing 7-14
7-9 Z80 Input or Output Cycles 7-15
7-10 Z80 Input or Output Cycles with Wait States 7-15
7-11 Z80 Bus TiminQ 7-16
7-12 Z80 Response to a Maskable Interrupt Request 7-16
7-13 Wait States During ?80 Response to a Maskable Interrupt Request 7-18
7-14 Z80 Response to a Nonmaskable Interrupt Request 7-19
7-15 Z80 Halt InstnJction Timing 7-19
7-16 Logic Functions of the Z80 PIO 7-46
7-17 Z80 PIO Signals ard Pin ASSignments 7-48
7-18 Mode 0 (Output) Timing 7-50
7-19 Mode 1 (lnpyt) Timing 7-51
7-20 Port A. Mode 2 (Bidirectional) Timing 7-51

xxiii

FIGURE

7-21
7-22
7-23

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
9-23
9-24
9-25
9-26
9-27
9-28
9-29
9-30
9-31
9-32
9-33
9-34

9-35
9-36

9-37

9-38
9-39

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

LIST OF FIGURES (Continued)

Interrupt Acknowledge Timing
Z80-CTC Signals and Pin Assignments
Z80-CTC Control Code Interpretation

Logic of the MC6800 CPU Device
MC6800 CPU Signals and Pin Assignments
A Standard MC6800 Read Machine Cycle
A Standard MC6800 Write Machine Cycle
TSC Floating the Address Bus
TSC Floating the Address and Data Busses When DBE is Tied to <1>2
System Bus Floating During the Halt State
MC6800 Interrupt Acknowledge Sequence
The Reset Sequence
MC6800 Wait Instruction Execution Sequence
Use of 8080A Support Devices With MC6800 CPU
Timing for8080A Support Devices Used With an MC6800 CPU
Logic of the MC6802 CPU Device
MC6802 CPU Signals and Pin Assignments
MC6870A Clock Device Pins and Signals
MC6871 A Clock Device Pins and Signals
MC6871 B Clock Device Pins and Signals
MC6875 Clock Device Pins and Signals
Logic of the MC6820 PIA
MC6820 PIA Signals and Pin Assignments
Functional Block Diagram for the MC6820 PIA
I/O Port A Control Register Interpretation
I/O Port B Control Register Interpretation
Logic of the MC6850 ACIA or MC6852 SSDA Devices
MC6850 ACIA Signals and Pin Assignments
MC6852 SSDA Signals and Pin Assignments
Data Flows Within an MC6852 SSDA
Logic of the MC6828 Priority Interrupt Controller
MC6828 Signals and Pin·Assignments
MC6840 CounterfTimer Signals and Pin Assignments
Logic of the MC6844 DMA Controller
MC6844 DrviA Controller Signafs and Pin Assignments
Timing for Three-State Control. Cycle Stealing Direct Memory Access with the MC6844
An MC6844 DMAC Connected for Three-State Control. Cycle Stealing Direct Memory

Access
Timing for Halt. Cycle Stealing Direct Memory Access with the MC6844
An MC6844 DMAC Connected for Halt. Cycle Stealing or Halt Burst Direct Memory

Acce~~
Logic for MC6844 DMAC with Channel 3 Chained to Channel 0 and Data Flowing

into Alternate Memory Buffers
Logic of the MC684p Multifunction Device
MC6846 Multifunction Device Signals and Pi~ Assignments

Logic of MCS6500 Series CPU Devices
MCS6502 Signals andPin Assignments
MCSQ503 Signals and Pin Assignments
MCS6504 S!~nalsand Pin Assignments
MCS6505 Signals and Pin Assignments
MCS6506 Signals and pin Assignments
MCS6512 Signals and Pin Assignments
MCS6513 Signals and Pin Assignments
MCS6514 Signals and Pin Assignments
MCS6515 Signals and Pin Assignments

xxiv

PAGE

7-52
7-56
7-61

9-4
9-5
9-8
9-8.
9-10
9-11
9-12
9-14
9-15
9-16
9-32
9-33
9-34
9-35
9-39
9-40
9-40
9-41
9-46
9-47
9-48
9-52
9-52
9-56
9-57
9-62
9-64
9-71
9-72
9-79
9-107
9-108
9-111

9-112
9-114

9-115

9-120
9-125
9-126

10-3
10-8
10-8
10-9
10-9
10-10
10-10
10-11
10-11
10-12

LIST OF FIGURES (Continued)

FIGURE pAGE

10-11 Time Base Generation for MCS650X CPU Input Clocks 10-17
10-12 Logic of the MCS6522 PIA 10-29

c 10-13 MCS6522 PIA Signals and Pin Assignments 10-31 w
I- 10-14 Auxiliary Control Register Bit Assignments 10-32 e(
a: 10-15 Peripheral Control Register Bit Assignments 10-34 0
Q. 10-16 Logic of the MCS6530 and MCS6532 Multifunction Support Devices 10-48 a:
0 10-17 Logic Provided by the MCS6530 Multifunction Device 10-49 tJ
~ 10-18 MCS6530 Multifunction Device Signals and Pin Assignments 10-50
u) 10-19 Logic Provided by the MCS6532 Multifunction Device 10-53
w 10-20 MCS6532 Multifunction Device Signals and Pin Assignments 10-54 l-
e(
(j 11-1 Logic of the 2650A MicrocomplHer CPU 11-2 0
en 11-2 2650A CPU Signals and Pin Assignments 11-9 en
e(11-3 How Control Signals Identify Address and Data Bus Use for the 2650A Microcomputer 11-13
all 11-4 2650A-8080A Signal Equivalents 11-24 w
z 11-5 2650A-MC6800 Signal Equivalents 11-24 a:

11-6 An 8251 USART Accessed by ci'2650A as an I/O Device 11-25 0
co

11-7 An 8251 USART Accessed by a 2650A as a Memory Device 11-25 en
0 11-8 An 8255 PPI Accessed by a 2650A as an I/O Device 11-26
~
e(11-9 An 8255 PPI Accessed by a 2650A as a Memory Device 11-26
c 11-10 Vectored Interrupt Using the 8214 PICU with a 2650A CPU 11-27 e(

@ 11-11 Synchronization Circuits in a 2650A-MC68XX Interface 11-28
11-12 An MC6850 ACIA Connected to a 2650A" 11-29
11-13 An MC6820 PIA Connected to a 2650A 11-29
11-14 Important Timing Considerations When Interfacing a 2650A CPU with MC68XX

Series Devices 11-30

12-1 Logic of the CDP1802 COSMAC CPU and the CDP1852 110 Port 12-3
12-2 CDP1802 COSMAC CPU Signals and Pin Assignmellts 12-6
12-3 COSMAC Machine Cycle Timing 12-8
12-4 COSMAC Memory Read Instruction Timing 12-10
12-5 COSMAC Memory Write Instruction Timing 12-11
12-6 COSMAC DMA-IN Machine Cycle 12-12
12-7 COSMAC DMA-OUT Machine Cycle 12-13
12-8 COSMAC I/O Data Input Instruction Execution Timing 12-15
12-9 COSMAC I/O Data Output Instruction Execution Timing 12-16
12-10 CDP1852 I/O Port Pins and Signals 12-32
12-11 CDP1852 I/O Port in Input Mode with Programmed Input 12-35
12-12 CDP1852 I/O Port in Input Mode with DMA Input 12-36
12-13 COP 1852 I/O Port in Output Mode with Programmed Output 12-38
12-14 CDP1852 I/O Port in Output Mode with DMA Output 12-39

13-1 Logic of the IM61 00 CPU and the IM61 01 Parallel Interface Element 13-2
13-2 IM61 00 CPU Signals and Pin Assignments 13-7
13-3 IM6100 Machine Cycles and Clock Periods 13-8
13-4 IM6100 Data Input Machine Cycle Timing 13-10
13-5 IM6100 Data Output Machine Cycle Timing 13-11
13-6 IM61 00 Memory Read Machine Cycle Timing 13-12
13-7 IM6100 Instruction Fetch Machine Cycle 13-12
13-8 Machine Cycle Timing for Memory Read from Indirectly Addressed Location 13-13
13-9 IM61 00 Memory Write Machine Cycle Timing 13-14
13-10 Machine Cycle Timing for Memory Write to Indirectly Addressed Location 13-15
13-11 Auto-Increment Machine Cycle for an IM61 00 Memory Reference Instruction that

Specifies Indirect Addressing with Auto-Increment 13-15
13-12 IM61 00 DCA Instruction Timing with I ndirect Addressing 13-16
13-13 IM61 00 DCA Instruction Timing with Indirect Addressing and Auto-Increment 13-17

xxv

FIGURE

13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-22a
13-23
13-24
13-25
13-26
13-27
13-28
13-29
13-30·
13-31
13-32
13-33
13-34
13-35
13-36

13-37
13-38

13-39

13-40

13-41
13-42

14~1

14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12

15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8

LIST OF F~GURES (Continued)

IM61 00 I/O Data Input Machine Cycle
IM6100 I/O Data Output Machine Cycle
IM6100 I/O InstructionTiming
Wait States within an IM6100 Data Input Machine Cycle
Wait States within an IM61 00 Data Output Machine Cycle
An IM61 00 Halt State Initiated by Execution of a HL T Instruction
An IM61 00 Halt State Initiated and Terminated by the RUN/HL T Input
IM6100 DMA Initiation Timing
IM61 00 DMA Termination Timing
IM61 00 Interrupt Acknowledge Timing
Logic and Instruction Sequce for an IM61 00 Vectored Interrupt Acknowledge
IM61 00 OSR Instruction Timing
IM6100 DCA Instruction in Control Panel Memory-Timing with Indirect Addressing
IM61 00 Jump-to-Subroutine Instruction Timing with IndirectAddressing
IM6100 Jump-to-Subroutine Instruction Timing with Stack Access Logic
Using an External Stack Memory to Avoid IM6100 JMS ROM Problems,
IM6100 System Bus Converted to an 8080A-Compatible System Bus
IM6101 Parallel Interface Element Signals and Pin Assignments
LogicofthelM6101 PIE' ,
An IM61 01 I/O Read Instruction's Timing
An IM6101 I/O Write Instruction's Timing
Logic of the IM6102 MEDIC
IM61 02 MEDIC Signals and Pin Assignments
An IM61 00 Microcomputer System that Includes an IM61 02 MEDIC and IM61 01

PIE Device '
Itvi61 02 Extended Memory Addressing Registers and Data Paths
IM61 00 DCA Instruction Timing with Direct Addressing Using Extended Memory

Addressing
IM6100 DCA I nstruction Timing with I nd irect Addressing Using Extended Memory

Addressing
IM6100 DCA Instruction Timing with Indirect Addressing and Auto-Increment Using

Extended Memory Addressing .
IM6102 DMA Read Timing
IM6102 DMA Write Timing

Logic of the 8X300 Microcontroller and 8T32/3/5/6
A Logic Overview of the 8X300 Microcontroller
8X300 Microcontroller Signals and Pin Assignments
An 8X300 Register-to-Register Instruction's Execution
An 8X300 IV Byte-to-Register Instruction's Execution
An 8X300 Register-to-IV Byte Instruction's Execution
An 8X300 IV Byte-to-IV Byte Instruction's Execution
8T32/3/5/6 Interface Vector Byte Signals and Pin Assignments
8T32/3/5/6IV Byte Control Signals and Interfaces .
8T32/3/5/6 IV Byte Address Programming Pulse
8T32/3/5/6 IV Byte Protect Programming Pulse
8T39 and 8T38 Bus Expander Signals and Pin Assignments

A National Semiconductor PACE Microcomputer System
A National Semiconductor INS8900 Microcomputer System
Logic of the INS8900 Microprocessor
INS8900 and PACE CPU Signals and Pin Assignments
INS8900 and PACE Data Input Timing
INS8900 and PACE Data Output Timing
Using the EXTEND Signal'to Lengthen I/O Cycles
INS8900 and PACE Initialization Timing

xxvi

PAGE

13-18
13-19
13-21
13-22
13-23
13-24
13-25
13-27
13-28
13-30
13~32
13-34
13-36
13-48
13-49
13-50
13-52
13-54
13-55
13-59
13-60
13~65
13-66

13-68
13-71

13-73

13-75

13-76
13-80
13-81

14-2
14-3
14-5
14-11
14-12
14-13
14-14
14-21
14-22
14-24
14-25
14-26

15-3
15-4
15-5
15-10
15-12
15-13
15-13
15-14

LIST OF FIGURES (Continued)

FIGURE PAGE

15-9 Terminating INS8900 or PACE Halt State 15-15
15-10 Timing Diagram for Processor Stall Using NHAL T and CONTIN Si,gnals 15-16

Q
w 15-11 Using PACE EXTEND Signal for Cycle-Stealing DMA 15-17 ...
~ 15-12 Idealized Circuit for Cycle-Stealing DMA During INS8900 and PACE Internal Machine
0:
0 Cycles 15-18
Q.

15-13 Timing for Cycle-Stealing 'DMA During INS8900 and PACE Internal Machine Cycle 15-19 0:'
0 15-14 Internal View of INS8900 ,and PACE Interrupt System 15-20 (.)

a: 15-15 Initiating INS8900 and PACE Level 0 Interrupt Using NHALT and CONTIN Signals 15-23
en 15-16 Circuit to Prevent ConflictsBetween PACE Level 0 Interrupts and Lower Priority w ... Interrupts 15-25
~
(3 15-17 DP8302 System Timing Element (STE) Pins and Signals 15-35
0 15-18 Circuit to Generate Substrate Bias Voltage (VBB) for PACE CPU 15-36 (I)
(I) 15-19 BTE Signals and Pin Assignments 15-36 ~

o/S 15-20 Signal Connections to Control BTE in a DMA System 15-37
w
z 16-1 Logic of the CP1600 CPU and CP1680 I/O Buffer 16-2 0:
0 16-2 CP1600 CPU Signals and Pin Assignments 16-7
CD
(I) 16-3 CP1600 Machine Cycles and Bus Timing 16-9
0

~
16-4 CP1600 Instruction Fetch Timing 16-9

~ 16-5 CP1600 Timing for Memory Read Instruction with Implied Memory Addressing 16-10
Q 16-6 CP1600 Timing for Memory Write Instruction with Implied Memory Addressing 16-11 ~

@ 16-7 , CP1600 Wait State Timing 16-12
16-8 CP1600 DMA Timing 16-14
16-9 CP1600 Interrupt Service Routine Initialization 16-14
16-10 CP1600 Timing forTCllnstruction's Execution 16-15
16-11 CP1600 to 8080A Bus Conversion 16-26
16-12 CP1600 lOB Signals and Pin Assignments 16-28
16-13 A CP1600-CP1680 Microcomputer Configuration 16-29
16-14 PD1680 Handshaking with Data Input 16-34
16-15 PD1680 Handshaking for Data Output 16-35

17-1 Logic of the 1650 Series Microcomputers 17-2
17-2 1650 Functional Logic 17-3
17-3 1650 Series Microcomputer Bidirectional I/O Port Pin Logic 17-4
17-4 1650 Microcomputer Signals and Pin Assignments 17-7

18-1 Logic of the TMS 9900 CPU 18-2
18-2 TMS 9900 Signals and Pin Assignments 18-14
18-3 TMS 9900 Clock Periods and Timing Signals as Generated by the TIM 9904 18-16
18-4 A TMS 9900 Memory Read Machine Cycle 18-16
18-5 A TMS 9900 Memory Write Machine Cycle 18-17
18-6 Two TMS 9900 Output-to-CRU Machine Cycles 18-21
18-7 Two TMS 9900 Input-from-CRU Machine Cycles 18-22
18-8 TMS 9900 System Bus Utilization During I/O Operations 18-24
18-9 The TMS 9900 Wait State 18-24
18-10 TMS 9900 Hold State Timing 18-25
18-11 TMS 9900 Memory Map 18-28
18-12 A TMS 9900 Interrupt Acknowledge Pulse Generated Using an SBO Instruction 18-33
18-13 TMS 9900 Interrupt Acknowledge Generated by Decoding Valid Addresses 18-33
18-14 Logic of the TMS 9980A and TMS 9981 Microprocessors 18-46 '
18-15 TMS 9980A Signals and Pin Assignments 18-47
18-16 TMS 9981 Signals and Pin Assignments, 18-48
18-17 TMS 9980 Memory Map 18-51
18-18 Some TMS 9980A/TMS 9981 Interrupt Interfaces 18-52
18-19 Logic of the TMS 9940 Single-Chip Microcomputers 18-53
18-20 TMS 9940 Memory Map 18-54

xxvii

FIGURE

18-21
18-22

18-23
18-24
18-25
18-26

19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17

20-1
20-2
20-3
20-4
20-5
20-6
20-7
20-8
20-9
20-10
20-11
20-12 '
20-13
20-14
20-15
20-16
20-17
20-18
20-19
20-20

22-1
22-2
22-3
22-4

23-1
23-2
23-3

LIST OF FIGURES (Continued)

TMS 9940 Microcomputer Signals and Pin Assignments
Handshaking Logic in a TMS 9940 Multi-Microcomputer Network Communicating

via the TD Data Line
TIM 9904 Signals and Pin Assignments
Logic of the TMS 9.901 Programmable System Interface
TMS 9901 Programmable System Interface Signals and Pin Assignments
TMS 9901 PSI General Data Flows and CRU Bit Assignments

Logic of the Data General MicroNova and the Fairchild 9440
MicroNova CPU Signals and Pin Assignments
9440 CPU Signals and Pin Assignments
The Nova Arithmetic and Logic Unit
Arithmetic/Logic Instruction Object Code Interpretation
Load and Store Instruction Object Codes
Jump and Modify Memory Instruction Object Codes
General Input/Output Instruction Object Code Interpretation
Input/Output Skip Instruction Object Code Interpretation
CPU Device 3F 16 Input/Output I nstruction Object Code Interpretation
CPU Device 1 Input/Output Instruction Object Code Interpretation
9440 Memory Read/Instruction Fetch Timing
9440 Memory Write Timing , ,
9440 I/O Data Input Timing
9440 I/O Data Output Timing
9440 Interrupt Acknowledge"lnstruction Execution Timing
9440 Mask Out Instruction Execution Timing

Logic of the Intel 8086 CPW
8086 Programmable Registers
8086 Pins and Signal Assignments
Two 8086 Bus Cycles
8086 Memory Read Bus Cycle for a Minimum Mode System (MN/MX=+5V)
8086 Memory Write Bus Cycle for a Minimum Mode System (MN/MX=+5V)
8086 Memory or I/O Read Bus Cycle for a Maximum Mode System (MN/MX=OV)
8086 Memory or I/O Write Bus Cycle for a Maximum Mode System (MN/MX=OV)
The 8086 READY Input and Wait States '
8086 HALT Instruction and Bus Cycle Timing for a Complex Bus Configuration
8086 Interrupt Vector '
Logic of the 8284 Clock Generator and Driver
8284 Clock Generator and Driver Pins and Signal A.ssignments
Normal 8284 Clock Generator Circuit
Clock Synchronization Logic in a Multi-CPU 8086 Cpnfiguration
8288 Bus Controller Pins and Signal Assignments
8282 and 8283 Input/Output Port Pins and Signal Assignments
8286 and 8287 Bidirectional Bus Transceiver Pins and Signal Assignments
Generating a System Bus for a Simple 8086 Configuration
Generating a System Bus in an 8086 Microcomp~ier System Using an 8288 Bus

Controller

The 2901/6701 Arithmetic and Logic Unit
2901 ALU Logic
2909 Microprogram Sequencer Block Diagram
Four 2901 s in a 16-Bit CPU Using the 2902 for CarfY ~ook Ahead

MC1 0800 Series Devices in a Central Processing Unit Configuration
The MC1 0800 ALU Slice Functional Diagram
MC10803 Memory Interface Device Block Diawam

xxviii

PAGE

18-58

18-62
18-68
18-71
18-72
18-75

19-3
19-13
19-14
19-16
19-16
19-19
19-19
19-20
19-21
19-21
19-22
19-23
19-24
19-26
19-26
19-30
19-31

20-4
20-5
20-19
20-26
20-30
20-32
20-33
20-33
20-34
20-36
20-39
20-76
20-76
20-78
20-79
20-80
20-84
20-85
20-86

20-88

22-2
22-3
22-6
22-9

23-1
23-2
23-6

c
w

~
a:
o
Q.
a:
o
(J

~
en
w

~ g
CI.I
CI.I
ct ..,
w
Z
a:
o
en
CI.I o
~
ct
C
ct
@

FIGURE

24-1
24-2

25-1

LIST OF FIGURES (Continued)

Logic of the Hewlett Packard MC2 Microprocessor
CPU and I/O Device Registers' Organization for the MC2

System Software Modules

xxix

PAGE

24-2
24-4

25-6

xxx

LIST OF TABLES

TABLE PAGE

1-1 TMS 1 000 Series Microcomputer Summary 1-1
1-2 TMS 1000 Series Instruction Set Summary 1-12

Q
w

2-1 3870/F8 Instruction Set Summary 2-21 t-
<
IX 2-2 Timing and ROMC States for F8 Instruction Set 2-27
0
D. 2-3 3870/F8 Instruction Set Object Codes 2-29
IX
0 2-4 ROMC Signals and What They Imply 2-33
CJ 2-5 Relationship Between Programmable Timer Contents and Effective Timer Counts 2-44 ~
en 2-6 A Summary of Differences Between 3851. 3856. and 3857 PSUs 2-47
w
t- 3-1 Status and Address Output via the Data Lines at the Beginning of an I/O Cycle 3-8 <
U 3-2 Statuses Output on the Data Bus for Various Types of Machine Cycles 3-8
0

3-3 SC/MP Instruction Execution Times 3-11 rJ)
rJ)

3-4 SC/MP Instruction Set Summary 3-24 <
oil 3-5 SC/MP Instruction Set Object Codes and Execution Times 3-27
w
z 4-1 Devices of the 8080A Microcomputer Family 4-2 IX
0 4-2 Statuses Output via the Data Lines During the Second Clock Cycle of an 8080A In
rJ)

Machine Cycle 4-11 0

~ 4-3 Statuses Output on the Data Bus for Various Types of Machine Cycle 4-11
< 4-4 A Summary of 8080A/9080A Microcomputer Instruction Set 4-27 Q
< 4-5 A S~mmary of Instruction Object Codes and Execution Cycles 4-32
@ 4-6 A Summary of 8259 PICU Operations 4-66

4-7 TMS 5501 Address Interpretations 4-70
4-8 TMS 5501 Interrupt Logic and Priorities 4-74

5-1 A Summary of 8085A Instruction Object Codes and Execution Cycles 5-32
5-2 8155/8156 Device Port C Pin Options 5-38

6-1 A Summary of 8048 Series Microcomputers 6-2
6-2 A Summary of 8048 Microcomputer Instruction Set 6-35
6-3 8048 Series Instruction Set Object Codes 6-41

7-1 Comparisons of Z80 and 8080A Instruction Execution Cycles 7-4
7-2 A Summary of the Z80 Instruction Set 7-22
7-3 A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics

for Identical Instructions 7-33
7-4 Z80 PIO Interpretation of Control Signals 7-45
7-5 Z80 PIO Select Logic 7-47
7-6 Z80 PIO and 8255 Mode Equivalences 7-49

9-1 A Summary of the MC6800 Instruction Set 9-19
9-2 Operation Summary 9-26
9-3 MC6800 Instruction Set Object Codes 9-30
9-4 MC6820 Operating Modes 9-49
9-5 Addressing MC6820 Internal Registers 9-49
9-6 MC6852 Status Register Bit Set/Reset Conditions 9-67
9-7 MC6852 Interrupt Summary 9-68
9-8 MC6828 Address Vectors Created for Eight Priority Interrupt Requests 9-74
9-9 MC6828 Interrupt Masks - Their Creation and Interpretation 9-78
9-10 MC6840 Addressable Locations 9-82
9-11 A Summary of MC6840 Options and Control Register Settings 9-99
9-12 MC6844 DMAC Register Addresses 9-110
9-13 MC6844 DMAC Modes' Response Times and Transfer Rates 9-116
9-14 MC6846 I/O Addressable Locations 9-124

xxxi

TABLE

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8

11-1
11-2

12-1
12-2

13-1
13-2
13-3
13-4
13-5

13-6

14-1
14-2
14-3
14-4
14-5
14-6

15-1
15-2
15-3
15-4
15-5

16-1
16~2

16-3
16-4

17-1
17-2
17-3
17-4

17-5

18-1
18-2
18-3
18-4

18-5
18-6
18-7
18-8

LIST OF TABLES (Continued)

A Comparison of MCS6500 Series and the MC6800 CPU Devices
A Summary of the MCS6500 Microcomputer Instruction Set
Summary of MCS6500 Object Codes, with MC6800 Mnemonics
Addressing MCS6522 Internal Registers
Summary of I/O Port A Handshaking Control Signals
A Summary of MCS6522 Interrupt Setting and Resetting
Addressing the MCS6530 Multifunction Support Logic Device
Addressing the MCS6532 Multifunction Support Logic Device

Summary of Signetics 2650A Instruction Set
Signetics 2650A Instruction Object Codes

COS MAC Instruction Set Summary
COSMAC Instruction Set Object Codes

IM6100 External Signal Sampling Priorities
IM61 00 Instruction Set Summary
IM61 00 Instruction Set Object Codes
IM61011nterpretation of I/O Instruction Control Bits 3-0
IM6102 MEDIC Pins that should be Tied to Power or Ground when Certain Functions

are Unused
IM6102 MEDIC I/O Instructions

8X300 Source and Destination Object Code Interpretations
8X300 Instruction Set
8X300 Instruction Set Object Codes
Interface Vector Byte Options
Specifications for Signals Illustrated in Figures 14-10 and 14-11
8T39 Bus Expander Addresses and IV Byte Addresses That May Be Connected

INS8900 and PACE Instruction Set Summary
INS8900 and PACE Instruction Set Object Codes
Branch Conditions for INS8900 and PACE BOC Instruction
PACE BTE Truth Table
Comparing INS8900 System Busses to 8080A System Busses

CP1600 Bus Control Signals
CP1600 Instruction Set Summary
CP1600 Branch Conditions and Corresponding Codes
CP1600 Instruction Set Object Codes

1650 Series One-Chip Microcomputer Options
1650 Series Microcomputer Register Designations
A Summary of the 1650 Series Microcomputer Instruction Set
Mnemonics Recognized by the 1650 Assembler for Special Cases of General

I nstru ctions
1650 I nstruction Set Object Codes

High-Order Address Bus Line Used by TMS 9900 I/O Instructions
TMS 9900 Instruction Set Summary
TMS 9900 Instruction Set Object Codes
A Summary of Differences Between the TMS 9900 and TMS 9980 Series

Microprocessors
A Summary of Differences Between the TMS 9980A and TMS 9981 Microprocessors
TMS 9980 Interrupts
TMS 9940 CRU Bit Address Assignments
TMS 9940 CRU Bits Whose Functions are Determined Under Program Control

xxxii

PAGE

10-2
10-20
10-26
10-33
10-37
10-47
10-52
10-55

11-17
11-22

12-26
12-31

13-37
13-40
13-46
13-57

13-67
13-87

14-10
14-18
14-20
14-21
14-24
14-27,

15-27
15-31
15-33
15-37
15-44

16-8
16-18
16-23
16-24

17-1
17-5
17 -11

17-14
17-15

18-23
18-38
18-43

18-45
18-50

18-59
18-60

LIST OF TABLES (C~ntinued)

TABLE PAGE

19-1 Nova System Bus Signals 19-11
c 19-2 MicroNova and 9440 Instruction Set Summary 19-35
w 19-3 MicroNova and 9440 Instruction Set Object Codes 19-40 l-
e(
a::

20-1 A Summary of Intel 8086 Memory Addressing Options 20-10 0
Q.

20-2 8086 Branch-on-Condition Instructions 20-47 a::
0 20-3 A Summary of Intel 8086 Memory Addressing Options Identified by the EA CJ
~ Abbreviations in Table 20-3 20-50
en 20-4 The 8086 Instruction Set Summary 20-51 w
I- 20-5 A Summary of 8086 Instruction Object Codes and Execution Cycles 20-68
e(

g 20-6 8080A to 8086 Instruction Mapping 20-74

CI) 20-7 Effect of lOB. CEN. and AEN on Control Signals Output by the 8288 Bus Controller 20-82
CI)
e(22-1 2901 ALU Function Control 22-3
CI/S

22-2 ALU Source Operand Control 22-3 w
z 22-3 ALU Destination Control 22-7 a::
0
m 23-1 MC 1 0800 ALU Logical Operations 23-3 CI)

0 23-2 MC 10800 Arithl'T1etic Operations 23-4
~
e(24-1 A Summary of the MC21nstruction Set 24-8 c
e(

@ 25-1 Some Typical Microcomputer Based Product and Development Costs 25-10
25-2 Unit Prices for Microcomputer Based Products 25-10

xxxiii

xxxiv

INDEX

A
Q
w
~
ct
ex:
0
Q.
ex:
0
u
~
en B
w
~
ct
g
(I)
(I)

ct C
0/1
w
Z
ex:
0
CD
(I)

0

~
ct
Q
ct
@

D

QUICK INDEX

Address/Data Lines. Demultiplexing in the INS8900
After Sales Service
ALE Differences in 8085 and 8085A
ALE Generation in 8085 and 8085A
AMD 9080A Status Difference
Assembler
Assembler/Editor Combined

Bidirectional Transceiver Element (BTE)
BTE Mode Control Signals
Buffering SC/MP Busses
Bus Interface Unit (BIU). 8086

CALL Instruction. 8080A Interrupt Response Using
Chip Slice Logic. Carry Status and Overflow in
Chip Slice Logic. Sign Status in
Chip Slice Logic. Zero Status in
Context Switch. TMS 9900
Context Switch. TMS 9900 Backward
Context Switch. TMS 9900 Forward
CONTIN and NHAL T Signals are Malfunctional
Continuing Engineering Costs
COSMAC Input/Output Programs
COSMAC Instruction Machine Cycle
COSMAC Interrupt Service Routine Programs
COSMAC Negative Set-up Time
COSMAC Nested Subroutine
COSMAC Timing Variations
Cost. Variable Contributing Factors
Costs. Variable
CPU Initiated DMA Block Data Transfers
CP1600 Direct Addressing
CP1600 Implied Addressing
CP1600 I/O Port Pin Characteristics
CP1600 PCIT Signal
CP 1600 Stack Addressing
Cycle-Stealing DMA During INS8900 and PACE Internal Machine Cycles
Cycle-Stealing DMA in PACE and INS8900 Systems

Debug
Demultiplexing the INS8900 Address/Data Lines
Demultiplexing the SC/MP Data Bus
DEND/IRO Signal. MC6844 DMAC
DGRNT. DMAC. TxSTB. TxAKA and TxAKB Signals. MC6844
DGRNT. TxRON. and DORT Signals. MC6844 DMAC
DMA and Multiprocessor Logic of the SC/MP
DMA Block Data Transfers Initiated by CPU
DMA Block Data Transfers Initiated by External Logic in PACE and .INS8900 Systems
DMA Control Sig'nals in IM6102
DMA. Cycle-Stealing. During INS8900 and PACE Internal Machine Cycles
DMA. Cycle-Stealing. in PACE and INS8900 Systems
DMA Modes in IM6102
DMA Priority Arbitration. MC6844 Fixed
DMA Programming in IM6102
DMA Registers in IM6102
DMAC. DGRNT. TxSTB. TxAKA. and TxAKB Signals. MC6844
DORT. DGRNT. and TxRON Signals. MC6844 DMAC
DROH Signal. MC6844 DMAC

xxxv

PAGE
15-38
25-1
5-5
5-18
4-6
25-5
25-5

15-2
15-37
13-29
20-25

4-54
22-5
25-5
22-5
18-5
18-6
18~6
15-15
25-1
12-23
12-9
12-23
12-9
12-22
12-8
25-1
25-2
15-16
16-3
16-4
16-30
16-13
16-5
15-18
15-17

25-8
15-38
3-30
9-113
9-114
9-112
3-1
15-16
15-17
13-79
15-18
15-17
13-83
9-11 q
13-83
13-79
9-114
9-112
9-114

INDEX

E (Cant.)

F

G

H

QUICK INDEX (Continued)

Editor
Editor/Assembler Combined
Enabling and Disabling INS8900 and PACE Interrupts
Execution Unit (EUl. 8086
Extend Used to Suspend INS8900 and PACE I/O During DMA Operations
Extended Memory. Base Page in IM6100

Fairchild F8 Device Set. The
Fixed Cost Contributing Factors
Fixed Costs
Floating INS8900 and PACE System Busses
F8 Device Set. The Fairchild
F8 Direct Memory Access
F8 DMI Memory Refresh
F8/3870 Accu mu lator
F8/3870 Data Counters
F8/3870 Program Counter
F8/3870 Scratchpad
F8/3870 Stack Register

Generating the PACE Substrate Bias Voltage

Halt State in 8085 and 8085A
Hold State in 8085 and 8085A

IM61 00 Base Page in Extended Memory
IM6100 Bit Numbering
IM6100 Clock Period Assignments
IM6100 Control Panel Switch Register
IM6100 Extended Memory Jump
IM6100 Extended Memory Subroutine Accesses
IM61 00-IM61 02 Interrupt Acknowledge
IM61 00-IM61 02 Reset Bootstrap
IM6100 Indirect Addressing with Auto-Increment Timing
IM6100 Indirectly Addressed Memory Read Cycle
IM61 00 Indirectly Addressed Memory Write Cycle
IM6100 Instruction Fetch Machine Cycle
IM61 00 Interrupt Processing Instructions
IM6100 Memory Fields
1fv1f31 00 Subroutines in Read-Only Memory
IMEl1 00 Vectored Interrupt Acknowledge
IM6101 Control Registers
IM6101 FLAG Instructions
IM6101 FLAG Outputs
IM61b1 Interrupt Acknowledge
IM6101 I/O lristructions
IM6101 Programming
IM61 01 Read Instruction
IM6101 ResetBootstrap
IM61Q1 Select Logic'
IM6101 Sense Inputs
IM6101 Sense Interrupt Priority
IM6101 SKIP Instructions
IM61 01 Write Operation
IM61 02 Data Field Register
IM6102 DMA Control Signals
IM6102 DMA Modes
IM6102 DMA Programming

xxxvi

PAGE

25-5
25-5
15-21
20-25
15-17
13-70

2-1
25-1
25-2
15-15
2-1
2-53
2-52
2-5
2-6
2-6
2-6
2-6

15-35

5-24
5-24

13-70
13-7 '
13-10
13-33
13-77
13-77
13-70
13-70
13-14
13-13
13-14
13-13
13-31
13-70
13-5
13-32
13-58
13-61
13-58
13-70
13-58
13-56
13-58
13-70
13-56
1~-58
13-63
13-q1
13-5S
13-70
13-79
13-83
13-83

Q
w

~
a:
o
D.
a:
o
o
~
en
w

~
g
en
en
ct
ell
w
Z
a:
o
III
en o
~
ct
Q
ct
@

INDEX

I (Cant.)

L

QUICK INDEX (Continued)

IM6102 DMA Registers
IM61 02 Extended Memory Addressing Registers
IM6102 Instruction Buffer Register
IM6102 Instruction Field Register
IM6102 Interrupt Acknowledge
IM61 02 Interrupt Vector Register
IM6102 Jump Across Memory Fields
IM6102 Reset Bootstrap
INS8900 and PACE CPU Registers During Interrupts. Saving
INS8900 and PACE. Cycle-Stealing DMA during Internal Machine Cycles
INS8900 and PACE Data Input Cycle
INS8900 and PACE Data Output Cycle
INS8900 and PACE Direct Addressing Options
INS8900 and PACE Direct Indexed Addressing
INS8900 and PACE Execution Speed
INS8900 and PACE Extend Signal for Slow I/O Operations
INS8900 and PACE. Extend Used to Suspend I/O During DMA Operations
INS8900 and PACE. Floating System Busses
INS8900 and PACE Halt State
INS8900 and PACE Interrupt Acknowledge and Return from Interrupt
iNS8900 and PACE Interrupt Pointers
INS8900 and PACE Interrupt Priorities
INS8900 and PACE Interrupt Response
INS8900 and PACE Interrupts. Enabling and Disabling
INS8900 and PACE Level 0 Interrupt Response
INS8~00 and PACE Logic Level
INS8900 and PACE Machine Cycle
INS8900 and PACE Machine Cycle Types
INS8900 and PACE Non-Maskable (Level 0) Interrupt
INS8900 and PACE Power Supply
INS8900 and PACE Processor Stall
INS8900 and PACE Signal Differences
INS8900 and PACE Split Base Page
INS8900 and PACE Split Base Page to Address I/O
INS8900 and PACE Stack Interrupts
INS8900 and PACE Systems. Cycle-Stealing DMA in
INS8900 and PACE Systems. DMA Block Data Transfers Initiated by External Logic
INS8900 and 8080A System Busses Compared
INS8900 Control Signal Polarity Considerations
INS8900. Demultiplexing the Address/Data Lines
INS8900 System. The 8212 Used as a Simple Input Port in an
INS8900 System. The 8212 Used as an Output Port in an
INS8900 System. 8255 PPI Devices Used in an
INS8900 Systems. The 8251 USART and 8253 Programmable CounterlTimer Used in
INS8900. Two 8255 Devices Used for 16-Bit I/O Ports with
INS8900. 6800 Support Devices Compatible with
INS8900. 8212 Used for Input with Handshaking in
Interrupt Differences in 8085 and 8085A
Interrupts During an MC6800 HALT
IRQ/DEND Signal. MC6844 DMAC

Label Table
Level 0 and Processor Stall Interrupt Similarities
Linking Loader

xxxvii

PAGE
13-79
13-70
13-71
13-70
13-70
13-78
13-72
13-70
15-22
15-18
15-12
15-13
15-24
15-7
15-1
15-13
15-17
15-15
15-14
15-21
15-21
15-21
15-21
15-21
15-22
15-2
15-12
15-12
15-22
15-1
15-15
15-10
15-16
15-7
15-5.22
15-17
15-17
15-43
15-39
15-38
15-39
15-41
15-42
15-43
15-43
15-44
15-40
5-28
9-38
9-113

25-8
15-15
25-8

INDEX

M

QUICK INDEX (Continued)

MCS6500 Slow Memory Interface
MCS6500 Wait State
MCS6522 Addressing
MCS6522 Interval Timer 1
tviCS6522 Interval Timer 1 Free Running Mode
MCS6522 Interval Timer 1 One-Shot Mode
MCS6522 Interval Timer 2
MCS6522 1/0 Port A Data Transfer
MCS6522 1/0 Port B Data Transfer
MCS6530 Addressing Logic
MCS6532 ~9dressing
MC6800 Bus State Controls
MC6800 Clock Signals
MC6800 Enable Signal Generation
MC6800 HALT. Interrupts During an
MC680Q Internal Operations Machine Cycle
MC6800 Interrupt Priorities
MC680d Machine Cycle
MC6800 Machine Cycle Types
MC6800 Non-Maskable Interrupt
MC6800 Normal External Interrupts
MC6800 Read Machine Cycle
MC6800 Reset
MC6800 Reset During Power-up
MC6800 Reset Operation
MC6800 Software Interrupt
MC6800 Stretching Address Timing
MC6800 SWllnstruction
MC6800 Synchronous HALT Generation
MC6800 Use of WAIT for DMA
MC6800 WAllnstruction
MC6800 Wait State
MC6800 Wait State with Slow Memory
MC680ti Write Machine Cycle
MC6820 Automatic Handshaking
MC6820 Control Codes
MCq820 Interrupt Logic
MC6820 Registers Addressing
MC6840 Continuous Mode
MC6840 Continuous Mode with 0 Initial Value
MC6840 Continuous 8-Bit Counting Square Wave Option
MC6840 Control Registers
MC6840 CounterlTimer Initialization
MC6840 Divide-by-Eight Clock
MC6840 Divide-by-Eight Mode
rviC6840 Event Counting
MC6840 External Signal Timing
MC6840 Frequency Comparison and Pulse Width Measurement Mode 5
MC6840 Hardware Initialization
MC6840lnterruptEnabie
MC6840 One-Shot Mode
MC6840 Output Signal Enable
MC6840 Programmed Initialization
MC6840 Status Register
MC6840 8-Bit Counting Mode
MC6840 16-Bit Counting Mode
MC6844 Channel Control Registers

xxxviii

PAGE

10-15 .
10-14
10-31
10-39
10-41
10-40
10-41
10-33
10-35
10-48
10-54
9-6
9-7
9-44
9-38
9-9
9-13
9-7
9-7
9-13
9-13
9-7
9-13
9-15
9-15
9-13
9-42
9-13
9-45
9-16
9-16
9-16
9-9
9-8
9-53
9-51
9-51
9-49
9-100
9-103
9-103
9-94
9-79
9-95
9-103
9-104
9-80
9-1 b5
9-102
9-96
9-104
9-97
9-94
9-97
9-96
9-95
9-119

QUICK INDEX. (Continued)

INDEX PAGE

M (Cant.) MC6844 Data Chaining 9-119

c MC6844 Data Chaining Control Register 9-117
w MC6844 DMAC Address 8us 9-109
I-

MC6844 DMAC Data 8us 9-109 ~
a::
0 MC6844 DMAC Device Select 9-109
a.

MC6844 DMAC. DGRNT. TxST8. TxAKA andTxAK8 Signals 9-114 a::
0 MC6844 DMAC DROH Signal 9-114 u
!: MC6844 DMAC Four-Channel Mode 9-118
en MC6844 DMAC IRO/DEND Signal 9-113 w
I- MC6844 DMAC Two-Channel Mode 9-117
~
C3 MC6844 DMAC TxAKA and TxAKB Signals 9-113
0 MC6844 DMAC. TxRON. DORT. and DGRNT Signals 9-112 en
en MC6844 DMAC TxRO-TxR3 Signals 9-114 ~

clJ MC6844 DMAC TxSTB Signal 9-113.115
w MC6844 DMAC <1>2 DMA Clock 9-112 z
a:: MC6844 Enable/Priority Control Register 9-116
0
m MC6844 Fixed DMAPriority Arbitration 9-116
en

MC6844 Interrupt Control Register 9-121 0

~ MC6844 Rotating Data Priority Arbitration 9-117
~ MC6846 Composite Status Register 9-129 c
~ MC6850 Control Register 9-59
@ MC6850 Interrupt Logic 9-59 .

MC6850 MODEM Control Signals 9-58
MC6850 Serial I/O Control Logic 9-59
MC6850 Serial I/O Data and Control Signals· 9-58
MC6850 System Reset 9-59
MC6852 Interrupt Logic 9-70
MC6852 Reset Operation 9-70
MC6852 Serialization Sequence 9-63
MC6852 Triple Data Buffers 9-65
Microcomputer Development Systems. Simple 25-4
Microcomputer Development Systems. Simulating 25-4
MicroNova I/O Bus 19-12
MicroNova Memory Bus 19-12
MODEM Control Signals 9-58
Monitor: 25-5
Motorola A and B Series Parts 9-2
Multiple Device Selects and Bus Loading (8085A) 5-11
Multi-8086 Clock Signals. Synchronizing 20-79

N NEC 8080A External Interrupt Differences 4-24
NEC 8080A Hold Differences 4-17
NEC 8080Alnstruction Execution Time Differences 4~33
NEC 8080A Instruction Set Differences 4-24.
NEC 8080A Interrupt Acknowledge Differences 4-24
NHAL T and CONTIN Signals are Multifunctional 15-15
Nova Direct Memory Addressing 19-6
Nova Indirect Indexed Addressing 19-8
Nova Indirect Page Zero Addressing 19-6
Nova Indirect Program Relative Addressing 19-7
Nova I/O Device Address Space 19-22
Nova I/O Device Addressing 19-9
Nova I/O Device Busy and Done $tatus 19-20
Nova I/O Device Registers 19-21
Nova Multiple Indirect Addressing· • 19-9

0 Object Programs. Relocatable 25-7·
Overflow and Carry Status in Chip Slice Logic 22-5 ..

xxxix

INDEX

P

R

s

. .
QUICK INDEX (Continued)

PACE Address Latches and Decoders '
PACE and INS8900. Cycle-Stealing DMA during Internal Machine Cycles
PACE and INS8900 Data Input Cycle
PACE and INS8900 Data Output Cycle
PACE and INS8900 Direct Addressing Options
P~CE a'ld INS8900 Direct Indexed Addressing
PACE and INS8900 Execution Speed
PACE and INS8900. Extend Used to Suspend I/O During DMA Operations
PACE and INS8900. Floating System Busses
pACE and INS89dO Halt State .
PACE and INS8900 Internjpt Acknowledge and Return from Interrupt
PACE and INS8900 Interrupt Pointers
PACE and INS8900 Interrupt Priorities
PACE and INS8900 Interrupt Response
PACE and INS8900lnterrupts. Enabling and Disabling
PACE and INS8900 Logic Level
PACE and INS8900 Machine Cycle
PACE and INS8900 Machine Cycle Types
PACE and INS8900 Non-Maskable (Level 0) Interrupt
PACE and INS8900 Power Supply
PACE and INS8900 Processor Stall
PACE and INS8900 Signal Differences
PACE and INS8900 Signal for Slow Operations
PACE and INS8900 Split Base Page
PACE and INS8900 Split Base Page to Address I/O

. PACE and INS8900 Stack Interrupts
PACE and INS8900 Systems Cycle-Stealing DMA
PACE and INS8900 Systems DMA Block Data Transfers Initiated by External Logic
PACE Clock Signals .
PACE CPU and INS8900 Registers during Interrupts. Saving
PACE DP8302 STE Clock Frequency
PACE Level 0 Interrupt Problems
PACE Level 0 Interrupt. Return from
PACE MILE Used in an SC/MP System. The
PACE Stack Interrupt Problems
Preventing Simultaneous Selection of I/O and Memory on an 8085A
Preventing Transient Selection on an 8085A
Processor Stall and Level 0 Interrupt Similiarities
Program Linking
PSU Address Space

Read-Only Memory. IM6100 Subroutines in
Relocatable Loader
Relocatable Object Programs
Relocating Assembler
Reset. 8048. 8748. and 8035
Return from PACE Level 0 Interrupt
ROMC State

Saving INS8900 and PACE CPU Registers During Interrupts
SC/MP and SC/MP-II
SC/MP and SC/MP-II. Signal Differences Between
SC/MP Bus Access Control Signals
SC/MP Bus-Sharing Control Signals
SC/MP Busses. Buffering
SC/MP Control Techniques in Multiprocessor Applications
SC/MP Data Bus Definition Signals

xl

PAGE

15-2
15-18
15-12

1~ .. ~ 13
15"24
15:7
15-1
15-17
15~ 15
15-14
15-21
15-21
i 5-21
15-21
15-21
15-2
15-12
15-12
15-22
15-1
15-15
15-10
15-13
15-16
15-7
15-5.22
15-17
15-17
15-11
15-22
15-35
15-24
15-23
3-31
15-22
5-12
5-12
15-15
25-8
2-40

13-5
25-7
25-7
25-7
6-17
15-23
2-35

15-22
3-3
3-5
3-6
3-17
3-29
3-19
3-7

c
w

~
a:
o
Q.
a:
o u
~
en
w
~
III(

g
(I)
(I)
III(

all
w
Z
a:
o
CD
(I)

o
~
III(
c
III(

@

INDEX

5 (Cant.)

T

QUICK INDEX (Continued)

SC/MP Data Bus, Demultiplexing the
SC/MP Data Input Cycle
SC/MP Data Output Cycle
SC/MP DMA and Multiprocessor Logic
SC/MP ENOUT Signal Used to Establish Access Priorities·
SC/MP Instruction Execution Speed
SC/MP 110 Cycle Status Information
SC/MP 110 Cycle, Suspension of an
SC/MP 110 with Bus Access Logic Continuously Enabled
SC/MP Logic Level
SC/MP Memory Pages
SC/MP in Multiprocessor Systems
SC/MP NHOLD Signal for Slow 1/0 Operations
SC/MP (P-Channell and SC/MP-II (N-Channell, Signal Differences Between
SC/MP Return-from-Interrupt Technique
SC/MP Serial 110
SC/MP System, The PACE MILE Used in an
SC/MP System, The 8212 Used as an Output Port in an
SC/MP Systems, The 8212 I/O Port Used in
SC/MP Timing Control Signals
SC/MP-II (N-Channell and SC/MP (P-Channel), Signal Differences Between
Select Problem with 8085
Service, After Sales
Sign Status in Chip Slice Logic
Simple Microcomputer Development Systems
Simulating Microcomputer Development Systems
Standard Memory Devices Connected to an 8048 Series Microcomputer
Subroutine Library
Suspension of an SC/MP 110 Cycle
Synchronizing Multi-8086 Clock Signals
System Timing Element

TMS 1000 Subroutines
TMS 5501 Nonstandard Features
TMS 5501 Output Signal Inversion
TMS 5501 Reset
TMS 5501 Wait State
TMS 9900 Backward Context Switch
TMS 9900 Context Switch
TMS 9900 Direct Addressing
TMS 9900 Forward Context Switch
TMS 9900 Implied Addressing
TMS 9900 Indexed Addressing
TMS 9900 Instruction Execution Sequences
TMS 9900 Internal Operations Machine Cycle
TMS 9900 Interrupt Vector Map
TMS 9900 Memory Addresses
TMS 9900 Multiple Interrupt Hardware Considerations
TMS 9900 Nested Interrupt Priorities
TMS 9900 Program Memory Addressing
TMS 9940 CRU Bit Utilization
TMS 9940 CRU I/O Expansion Mode
TMS 9940 HOLD Logic
TMS 9940 IDLE Logic
TMS 9940 Multiprocessor System Interface -
TMS 9940 Simple CRU 1/0 Mode
TMS 9940 Sync Mode

xli

PAGE

3-30
3-12
3-12
3-1
3-10
3-3
3-7
3-9
3-10
3-3
3-3
3-18
3-13
3-5
3-15
3-1
3-31
3-33
3-32
3-7
3-5
5-14
25-1
22-5
25-4
25-4
6-22
25-8
3-9
20-79
15-2

1-4
4-75
4-69
4-73
4-70
18-6
18-5
18-6
18-6
18-7
18-6
18-18
18-15
18-27
18-3
18-30
18-29
18-8
18-59
18-60
18-64
18-64
18-61
18-59
18-64

INDEX

T (Cont.)

u

V

w

z-

QUICK INDEX (Continued)

TMS 9980 Series Clock Logic
Transient Selection. Preventing on an 8085A
TTL Level PACE Bus
Two 8255 Devices Used for 16-Bit I/O Ports with INS8900
TxAKA and TxAKB Signals. MC6844 DMAC
TxAKA. TxAKB. DMAC. DGRNT. and TxSTB Signals. MC6844
TxAKB and TxAKA Signals. MC6844 DMAC
TxRON. DQRT and DGRNT Signals. MC6844 DMAC
TxRO-TxR3 Signals. MC6844 DMAC
TxR1 Signal. MC6844 DMAC
TxR2 Signal. MC6844 DMAC
TxR3 Signal. MC6844 DMAC
TxSTB Signal. MC6844 D
TxSTB Signal. MC6844 DMAC
TxSTB. TxAKA. TxAKB. DMAC. and DGRNT Signals. MC6844

Utilities

Variable Cost Contributing Factors
Variable Costs

Wait States during 8085 Interrupt Acknowledge

Zero Status in Chip Slice Logic
Z80 Bus Control Signals
Z80 CPU Control Signals
Z80 Indexed Addressing
Z80 LSI Technology
Z80 System Control Signals
Z80 Wait States During Interrupt Acknowledge
1650 Accumulator
1650 Counter/Timer Logic
1650 I/O Pin Logic
1650 I/O Port Registers
1650 Program Counter
1650 Program Memory
1650 Stack17-6
1650 Status Register
1650 Timing
1650 VXX Power Supply

2650A Accumulator
2650A Branch Instruction Addressing
2650A Bus Access Control Signals
2650A Bus Contents Identification Signals
2650A CPU Execution Control Signals
2650A Extended Addressing Options
2650A External Device Control Signals
2650A Index Registers
2650A Interrupt Control Signals
2650A Memory Page Selection
2650A Memory Pages
2650A Program Counter
2650A Program Relative Addressing Options
2650A Stack
2901 ALU Operations Specification
2901 ALU Source Specification

xlii

PAGE

18-49
5-12
15-2
15-43
9-113
9-114
9-113
9-112
9-114
9-114
9-114
9-114
9-113
9-115
9-114

25-8

25-1
25-2

5-29

22-5
7-9
7-9
7-6
7-1
7-7
7-18
17-4
17-7
17-3
17-3
17-4
17-3

17-5
17-8
17-8

11-3
11-7
11-11
11-11
11-11
11-6
11-12
11-3
11-12
11-8
11-3
11-3
11-4
11-4
24-4
22-4

c
w

~ a:
o
Q.
a:
o
(J

~
en
w

~ g
CI)
CI)

oct
a1:I
w
Z
a:
o
en
CI)

o
~
oct
C
oct
@

INDEX

QUICK INDEX (Continued)

3870 Clock Logic
3870 Direct Scratchpad Addressing
3870 Event Counter Mode
3870 Expansion
3870 Implied Scratchpad Addressing
3870 Interrupt Disable
3870 Interval Timer Mode
3870 Memory Addressing
3870 Pulse Width Measurement Mode
3870 r Scratchpad Addressing
3870 Reset
3870 Scratchpad Memory Addressing
3870/F8 Accumulator
3870/F8 Data Counters
3870/F8 Program Counter
3870/F8 Scratchpad
3870/F8 Stack Register

6800 Support Devices Not Compatible with INS8900

8T32 IV Byte Access Logic
8T32 IV Byte Addressing
8T32 IV Bytes
8T33 IV Byte Access Logic
8T33 IV Byte Addressing
8T33 IV Bytes
8T35 IV Byte Access Logic
8T35 IV Byte Addressing
8T35 IV Bytes
8T36 IV Byte Access Logic
8T36 IV Byte Addressing
8T36 IV Bytes
8X300 Data and I/O Addressing
8X300 Program Memory Addressing

. 8X300 Rotate and Mask Logic
8X300 Shift and Merge Logic
8035.8048. and 8748 Reset
8041 Buffer Status Register
8048 and 8748 Debug Mode
8048 Series External Memory Access Mode
8048 Series Internal Execution Mode
8048 Series 1/0 Port Pin Logic
8048 Series I/O Ports
8048 Series Machine Cycles and Clock Periods
8048 Series Memory Spaces
8048 Series Microcomputer. Standard Memory Devices Connected to an
8048 Series Microcomputer. 8355 or 8755 Connected to an
8048 Series Program Memory Addressing
8048 Series Single Stepping
8048 Series Verify Mode
8048 Wait State
8048.8748. and 8035 Reset
8049 Series Microcomputers
8080A and INS8900 System Busses Compared
8080A and 8086 Registers' Compatibility
8080A Carry Status Borrow Logic
8080A Carry Status Nomenclature

xliii

PAGE
2-10
2-7
2-17
2-3
2-7

. 2-13
2-16
2-6
2-16
2-8
2-10
2-6
2-5
2-6
2-6
2-6
2-6

15-44

14-23
14-4
14-4
14-23
14-4
14-4
14-23
14-4
14-4
14-23
14-4
14-4
14-4
14-4
14-7
14-8
6-17
6-44
6-15
6-14
6-14
6-5
6-5
6-18
6-8
6-22
6-22
6-8
6-15
6-15
6-20
6-17
6-3
15-43
20-3
4-5
4-26

INDEX

QUICK INDEX (Continued)

SOSOA Clock Periods
SOSOA Data Bus Definition Signals
SOSOA Direct Addressing
SOSOA Implied Addressing
SOSOA Instruction Status
SOSOA Interrupt Control Signals
S080A Interrupt Response Using CALL Instruction
SOSOA Machine Cycles
S080A Slow Memories
SOSOA Timing Control Signals
SOSOA Wait State Request Logic
SOS5 and SOS5A
SOS5 and SOS5A. ALE Differences in
SOS5 and SOS5A. ALE Generation in
SOS5 and SOS5A. Halt State in
SOS5 and SOS5A. Hold State in
SOS5 and SOS5A. Interrupt Differences in
S085 Interrupt Acknowledge
SOS5 Interrupt Acknowledge. Wait States During'
SOS5 I/O Write Timing
SOS5 Memory Read Timing
S085 Memory Write Timing
SOS5 Multibyte Acknowledge
SOS5. Select Problem with
SOS5A and SOS5
SOS5A and SOS5. Halt State in
S085A and SOS5. Interrupt Differences in
SOS5A Bus Control Signals
SOS5A Bus Idle Machine Cycle
SOS5A Clock Periods
SOS5A Control Signals
SOS5A Data Bus Definition Signals
SOS5A Device Select Logic
SOS5A Hold Within a Halt State
SOS5A Interrupt Acknowledge
SOS5A Interrupt Signals
SOS5A Machine Cycles
SOS5A Multibyte Acknowledge
SOS5A Multiple Device Selects and Bus Loading
SOS5A. Preventing Simultaneous Selection of I/O and Memory onan
SOS5A. Preventing Transient Selection on an
SOS5A Reset Signals
SOS5A RIM after TRAP
SOS5A Serial I/O
SOS5A TRAP Interrupt
SOS6 and SOSOA Registers' Compatibility
SOS6 AX Register
SOS6 Base Relative Indexed Addressing
SOS6 BCD Addition
SOS6 BCD Division
SOS6 BCD Multiplication
SOS6 BCD Subtraction
SOS6 Bus Interface Unit (BIU)
S086 BX Register
SOS6 Code Segment Register and Program Counter
SOS6 Complex Control Signals
SOS6 CX Register

xliv

PAGE

4-7
4-7
4-5
4-4
4-10
4-7
4-54
4-7
4-13
4-6
4-14
5-1
5-5
5-1S
5-24
5-24
5-2S
5-29
5-29
5-16
5-15
5-16
5-29
5-14
5-1
5-24
5-2S
5-5
5-1S
5-S
5-5
5-5
5-10
5-27
5-29
5-5
5-7
5-29
5-11
5-12
5-12
5-5

. 5-31
5-5
5-31
20-3
20-3

. 20-13
20-43
20-45
20-45
20-43
20-25
20-3
20-7
20-24
20-5

c
w

~
II:
o
a..
II:
o
o
~
en
w
I­
ct o o
(I)
(I)

ct
~
w
Z
II:
o
aI
(I)
o
~
ct c
ct

@

INDEX

QUICK INDEX (Continued)

8086 Data Memory Base Relative Addressing
8086 Data Segment and Stack Segment Registers
8086 Direct Indexed Addressing
8086 Direct Memory Addressing
8086 OX Register
8086 Execution Unit (EU)
8086 External Memory Addressing
8086 Extra Segment. Source Index and Destination Index Registers
80~6 HOLD in Maximum Mode System
8086 HOLD in Minimum Mode System
8086 Implied Memory Addressing
80~6 Indirect Addressing
808p Instruction Queue
8086 Interrupt Return
8Q~6 Interrupt Vector Table
80861/0 Port Addressing
8086 Maskable Interrupt
8086 Non-Maskable Interrupt
8086 Program Relative Addressing
8086 Reset
8086 Segment Registers
8086 Simple Control Sgnals
8086 Single Instruction Time Identified
8086 Software Interrupts
8086 Stack Segment and Stack Pointer Registers
8155 Device Reset
8155/8156 I/O Mode 0
8155/8156 I/O Mode 1
8155/8156 I/O Port Addresses
8155/8156 Timer Mode 0
8156/815p I/O Mode 0
8156/8155 VO Mode 1
8156/81551/0 Port Addresses
8212 I/O Port Used in SC/MP Systems. The
8212 Used as a Simple Input Port in an INS8900 System. The
8212 Used as an Output Port in an INS8900 System. The
8212 Used as an Output Port in an SC/MP System. The
8212 Used in an INS8900 System for Input with Handshaking. The
8224 Clock Signals
8243 Reset
8251 USART and 8253 Programmable CounterlTimer Used in INS8900 Systems. The
8253 Programmable CounterlTimer and 8251 USART Used in INS8900 Systems
8255 Devices Used for 16-Bit I/O Ports with INS8900
8255 PPI Devices Used in an INS8900 System
8259 PICU Interrupt Mask
8259 PICU Interrupt Masking
8259 PICU Interrupt Service Routine Priorities
8259 PICU Polling
8259 PICU Rotating InterruptPriorities
8284 Wait State Logic
8288 Advanced Write Control Signals
8288 Bus Controller Interrupt Signals
8288 Bus Controller Memory Protect
8288 I/O Bus Mode
8355 or 8755 .cQnnected to an 8048 Series Microcomputer
8748 and 8048 Debug Mode
8748 Programming Mode

xlv

PAGE

20-13
20-9
20-12
20-11
20-5
20-25
20-20
~0-8
20-35
20c35
20-12
20-17
20-25
20-41
20-39"
20-17
20-39.40
20-39.40
20-17
20-23.79
20-6
20-24
20-38
20-38.40
20-8
5-38
5-38
5-38
5-40
5-42
5-38
5-38
5-40
3-32
15-39
15-41
3-33
15-40
4-46
6-53
15-43
15-43
15-43
15-42
4-63
4-59
4-57
4-59
4-58
20-79
20-81
20-82
20-82
20-81
6-22
6-15
6-15

INDEX

QUICK INDEX (Continued)

8748.8048. and 8035 Reset
8755 and 8755A
8755 or 8355 Connected to an 8048 Series Microcomputer
8755A and 8755

9080A AMD Status Difference
9440 Instruction Fetch
9440 Memory Read
9440 System Bus

xlvi

PAGE

6-17
5-51
6-22
5-51

4-6
19-23
19-23
19-14

c
w
~
a:
o
Il.
a:
o
(,J

~
rn
w
I­
< g
CI)
CI)

<
c!I
w
Z
a:
o
m
CI)

o
~
< c
<
©

INTRODUCTION

This is the first of two volumes that replace An Introduction to Microcomputers: Volume 2 - Some Real Pro­
ducts. This volume describes microprocessors and dedicated support devices. Volume :3 de~cribes general sup­
port devices.

We define a "dedicated" support device as one best used with its parent microprocessor. We define a
"general" support device as one which can be used w~th any microprocessor.

Unfortunately, categorizing support devices as "dedicated" or "general" is not always straightforward. Cer­
tainiy IM6100 and TMS9900 support devices have' CPU interfaces which ara peculiar to the parent
microprocessor, so using them with other microprocessors makes little sense. Most MC6800 microprocessor
support devices are also considered dedicated because they use the MC6800 clock signal. This clock signal is
automatically generated by an MC6800 microprocessor or its clock device. It can be derived quite inexpen­
sively in other microcomputer systems; nevertheless, we include MC6800 support devices in Volume 2,
because in our opinion the added clock logic is not compensated for by any performance capabilities over and
above those which you would find in a competing device that did not require the added clock logic.

When reading Volumes 2 and 3, therefore, you should bear in mind that we have had to be subjective when
deciding whether some parts should be described in Volume 2 or Volume 3. Dp not automatically use support
parts described in Volume 2 without checking equivalent parts described in Volume 3. Conversely, there may
be instances where your application is better served by a support device described in Volume 2. In general, you
can look upon Volume 3 support devices as CPU-independent, while Volume 2 devices are CPU-dependent.

In order to cope with the rapid evolution of new parts, Volumes 2 and 3 have been printed loose-leaf. Each
volumo will have six updates per year, appearing at bimonthly intervals. For Volume 2, updates will appear in
November, January, March, May, July and September. Each Septembor the entire book will be reprinted, in­
cluding the past year's updates. If you have inserted your updates, you will not need to buy a new book next
year. For your convenience, an order form may be found at the back of this book.

SIGNAL CONVENTIONS

Signals may be active high, active low or active in two states. An active high signal is one which, in the high
state, causes events to occur, while in the low state has no significance. A signal that is active low causes
events to occur when in the low state, but has no significance in the high state. A signal that has two active
states will cause two different types of events to occur, depending upon whether the signal is high or low; this
signal has no inactive state. Within this book a signal that is active low has a bar placed over the signal name.
For example, WR identifies a "write strobe" signal which is pulsed low when data is ready for external logic to
receive. A signal that is active high or has two active states has no bar over the signal name.

TIMING DIAGRAM CONVENTIONS

Timing diagrams play an important part in the description of any microprocessor or support device. Timing
diagrams are therefore used extensively in this book. All timing diagrams observe the following conventions:

1) A low signal level is equivalent to no voltage. A high signal level is equivalent to voltage present:

Voltage present

No voltage
I

xlvii

2) A single signal making a low-to-high transition is illustrated like this:

low I
high

3) A single signal making a high-to-Iow transition is illustrated like this:

high

\ low

4) When two or more parallel signals exist. the notation:

r- signals change

l
states that one or more of the parallel signals change level. but the transition (high-to-Iow or low-to-high) is
unspecified.

5) A three-state single signal is shown floating thus:

~-------~ Signal .
floating

6) A three-state bus containing two or more signals is shown floating thus:

______ ~r---~~---i~-----
floating

7) When one signal condition triggers other signal changes. an arrow indicates the relationship as follows:

co~:~on J
Causes
change

here'

Thus a signal making a low-to-high transition would be illustrated triggering another signal making a high-to-Iow
transition as follows:

A signal making a high-to-Iow transition triggering a bus change of state would be illustrated as follows:

~-

xlviii

c
w
l-
e(
a:
0
Q.
a:
0
(J

~
en
w
l-
e(
(3
0
CI)
CI)
e(

ail
w
Z
a:
0
a:I
CI)

0

~
e(
c
e(

@

8) When two or more conditions must exist in order to trigger another logic event. the following illustration is used:

9)

TIre,. ~
""dit;o",)

cause
change

here

Thus a low-to-high transition of one signal occurring while another signal is low would be illustrated triggering a
third event as follows:

\ I

When a single triggering condition causes two or more events to occur. the following illustration is used:

This j' con,dition

causes
these

changes

Thus a low-to-high transition of one signal triggering changes in two other signal levels would be illustrated as
follows:

10) All signal level changes are shown as square waves. Thus rise and fall times are ignored. These times are given in
the data sheets which appear at the end of every chapter.

INSTRUCTION SET CONVENTIONS

Every microcomputer instruction set is described with two tables. One table identifies the operations which oc­
cur when the instruction set is executed, while the second table defines object codes and instruction times.

Because of the wide differences that exist between one instruction set and another, we have elected not to
use a single set of codes and symbols to describe the operations for all instructions in all instruction sets. We
believe any type of universal convention is likely to confuse rather than clarify; therefore each instruction set
table is preceded by a list of symbols as used within that table alone.

A short benchmark program is given to illustrate each instruction set. Some comments regarding benchmark
programs in general are, however, in order. We are not attempting to highlight strengths or weaknesses of
different devices, nor does this book make any attempt at comparative analyses, since the criteria which make
one microcQmputer better than another are simply too dependent on the application.

xlix

ATTENTION WRITERS

Osborne & Associates is seeking qualified contributors to future updates of Volumes 2 and 3.
Qualified contributors must have an excellent technical background, they must be able to write clearly,
'and they must be unaffiliated with any manufacturer of semiconductor devices. Faculty at universities
are particularly welcome as contributors.

A contributor, when selected, will be assigned a specific category of parts to keep updated. Keep­
ing parts updated will include describing new parts iIi the category as they appear, and improving the
description of parts that are aiready covered.

If you would like to become a contributor to Volume 2 and/or Volume 3, please write stating your
qualifications and the categories of parts that you believe you could cover competently. If possible, send
us a sample of your work; we suggest two or three pages of a part description following the format pre­
sented in these books as closely as possible. Send material to:

OSBORNE &: ASSOCIATES, INC.
P.O. Box 2036
Berkeley, California 94702
Attention: Volume 2/3 Contributors

c
w
~
a: o
a.
a:
o
u
~
en
w

~
g
(I)
(I)

<
G!I
w
Z
a:
o
In
(I)

o
~
< c
<
@

Chapter 1
4-BIT MICROPROCESSORS AND THE TMS1000

SERIES MICROCOMPUTERS

The earliest microprocessors were all 4-bit devices: that is to say. data was operated on in 4-bit units. frequently refer­
red to as "nibbles". Early microprocessors were 4-bit devices simply because the concept of an LSI CPU was am­
bitious enough; starting with an a-bit CPU would have been foolhardy.

But LSI technology has advanced so rapidly that there is an inconsequential difference between the cost of manufac­
turing an 8-bit CPU chip as against a 4-bit chip. Manufacturers attempted to maintain an artificial price differential bet-

. ween their 4-bit and 8-bit CPUs in order to prolong the life of the 4-bit product: but the pressure of competition has all
but extinguished these price differentials - with the result that the 4-bit microprocessor is a dying product. Price is the
only advantage that 4-bit microprocessors offer when compared to the more capable 8-bit microprocessor.

Early 4-bit microcomputers included such devices as the Intel 4004 and 4040 and the National Semiconductor IMP-4.
These early 4-bit microcomputers require package counts that exceed typical 8-bit microcomputers that are now
available: therefore the economics of today dictate that the Intel 4004, the Intel 4040 and the IMP-4 offer less
capability for more money. Only the most unusual application could be more economically implemented using one of
these three 4-bit microcomputers. rather than a simple 8-bit device such as the 3870. COSMAC. 8048. or one of the
38-pin MCS6500 series CPUs. We consider the Intel 4004, the Intel 4040 and the IMP-4 to be obsolete devices;
therefore they are not described.

It is interesting to note that even though these three 4-bit microcomputers are obsolete. they will continue to have a
significant market for many years to come. based on products that were designed around them before they became ob­
solete. The fact that they are obsolete simply means that. were you to design a new product today. you would be better
off using one of the simple 8-bit microcomputers. That does not mean it would be economical to redesign a product
that already exists. simply to take advantage of more recent microcomputer developments. The cost of re-engineering
around a new microcomputer will likely overwhelm any savings that may accrue.

The TMS1000 series microcomputer devices, initially manufactured by Texas Instruments, are still econom­
ically very viable - even though they are 4-bit devices. This is because the TMS 1000 is a one-chip microcom­
puter. ROM, RAM, CPU. and I/O logic are all provided within a single package. The low cost associated with the
single-chip TMS 1000 microcomputer package makes this the product of choice for a large number of simple ap­
plications that can be accommodated within the logical confines of the TMS 1000.

In reality, the TMS 1000 is a family of six 4-bit microcomputers whose differences are summarized in Table 1-1.
The various microcomputers are sufficiently similar for us to describe them together. PMOS and CMOS versions
are now available. Some CMOS versions manufactured by Motorola have the part number MC 141 000.

Table 1-1. TMS1000 Series Microcomputer Summary

·TMS TMS TMS TMS TMS TMS TMS TMS MC MC
1000 1200 1070 1270 1100 1300 1000C 1200C 141000 141200

Package Pin Count 28 40 28 40 28 40 28 40 28 40
ROM Program Bytes' 1024 1024 1024 1024 2048 2048 1024 1024 1024 . 1024·

RAM Data Nibbles" 64 64 64 64 128 128 64 64 64 64
R Signal Outputs 11 13 11 13 11 16 10 16 11 16
o Data Outputs 8 8 8 10 8 8 8 8 8 8
Maximum Rated Voltage 20 20 35 35 20 20 6 6 6.5 6.5
Typical Power Dissipation 15V/ 15V/ 15V/ 15V/ 15V/ 15V/ 5V/ 5V/ 5V/ 5V/ .

90mW 90mW 90mW 90mW 90mW 90mW 15mW 5mW 2.5mW 2.5mW
3V/ 3V/

0.5mW 0.5mW

. A Byte IS eight bits .. A Nibble IS four bits

1-1

Figure 1-1 illustrates that part of our .general microcomputer system logic which is implemented by the
TMS1000 series microcomputers. This figure is deceptive, since it would be hard to compare the primitive I/O
capabilities of the TMS1000 with a device such as the 8255 Programmable Peripheral Interface device, which
is described in Volume III. Nevertheless, Figure 1-1 does indicate the logic which is provided by a TMS1000
series microcomputer, albeit in a primitive form.

Logic to Handle
Interrupt Requests

from
External Devices

d.

Interrupt Priority
Arbitration

I/O Communication
..... Serial to Parallel

Interface Logic

Programmable
Timers

>"

I··

~

i) rj
•....

.................
~.··i .. L.:. ia

I.·· .• "i.e;
i Ii

\

.......

,'"

f

o"L, .c •
f .••.••... ••· •. \.··.

I······.

C I.· ... ·. \(1\
..

Stack Pointer

............ ·· ..• ···.ii •.• ·< , .. ;.. ...•.... iii'
'

.......•

....... .i

.:
.....

Figure 1-1. Logic of the TMS 1000 Series Microcomputer

Direct Memory
Access Control ~

Logic

The fact that the TMS1000 series microcomputers are single-chip devices has a number of secondary, non-ob­
vious implications. Most ifTiportant of all, there are no such things as support devices. The 1024 or 2048 bytes of ROM
represent the exact amount of program memory which will be present; there can be neither more nor less. Similarly,
the 64 or 128 nibbles of RAM cannot be expanded. Direct memory access logic is not present - and its presence
would make very little sense anyway; with the small total ROM and RAM memory available, there simply is not the op­
portu~ityto transfer blocks of data long enough to warrant bypassing the CPU.

Interrupts, similarly, would be of marginal value to a TMS1000 microcomputer. Given the small amount of program
memory available and the very low cost of the package, it would be hard to justify the complexities of interrupt logic,
simply to have the microcomputer perform more than one task.

All devices of the TMS 1000 microcomputer family are implemented using PMOS technology. Selected CMOS parts are
also available. .

1-2

c
w

~
a: o
D..
a:
o
u
~
en
w
t­
ct
C3 o
fI)
fI)

ct
all
w
Z
a: o
CD
fI)
o
~
ct
C
ct

@

A single -15V power supply is required for PMOS parts. CMOS parts use power supplies in the range +3V to +6.5V.

The fastest clock frequency which can drive a TMS 1000 series microcomputer has a 2.5 microsecond cycle time. All in­
structions execute in six clock cycles. or 15 microseconds: but beware of making direct execution speed comparisons
between the TMS 1 000 and the 8-bit microcomputers which are described next. A TMS 1 000 program will usually be
considerably longer than the 8-bit microcomputer equivalent because the TMS 1 000 instruction set is more primitive:
but this is not always true. It is possible for the TMS1000 instruction set to equal or surpass many 8-bit
microprocessors. in terms of instruction efficiency. for certain control applications.

The prime manufacturer of the TMS 1 000 is:

TEXAS INSTRUMENTS. INC.
P.O. Box 1443

Houston. Texas 77001

A second source for CMOS parts with MC 14xxxx part numbers (see Table 1-1) is:

MOTOROLA INCORPORATED
CMOS Products Division
3501 Ed Bluestein Blvd.

Austin. Texas 78721

TMS1000 PROGRAMMABLE REGISTERS
TMS 1000 programmable registers may be illustrated as follows:

4-bit Accumulator

2- or 3-bit X register

4-bit Y register

6-bit Program Counter

4-bit Page register

1-bit Chapter flag (optional)

6-bit Subroutine Return register

4-bit Page Buffer register

} 6- or 7-bit Data Counter

Apart from being only four bits wide. the Accumulator is a typical primary Accumulator. It is the principal source and
destination for data that is being operated on.

1-3

Taken together. the X and Y registers constitute a 6- or 7-bit Data Counter which addresses the 64 or 128 nibbles
of RAM. The X register is two or three bits wide and theY register is four bits wide. Since the Xand Y registers are in­
deed separate and distinct registers. RAM is effectively divided into four or eight pages. each of which is 16 nibbles
long. A four-page RAM may be illustrated as follows: .

CI\:) ~g~;
af~' ~ J==1

02 t==:I Page 0 . ,

'B' ,
OE
OF

10 }

lE'sl . ;
lF

;;~}
30 t=:j

Page 1

Page 2

~d§ Page 3

The Y register, in addition, serves as a secondary Accumulator'and ari output Address register. We will describe
its use as an output Address register shortly.

Those TMS 1000 series microcomputers that provide 128 nibbles of RAM have a 3-bit X register. RAM is then divided
into eight 16-nibble pages.

The Program Counter and Page Address register, taken together, constitute a 10-bit Program Counter. They are.
in reality. separate and distinct registers. with the result that program memory is divided into sixteen 64-byte pages.

ThoseTMS1000 microcomputers that provide 2048 bytes of program memory have an additional 1-bit flag,
referred to as Chapter Logic, which is used to select one of two alternate 1024-byte ROM chapters.

The Subroutine Return register is simply a buffer for the Program Counter register. Similarly, TMS 1000
the Page Buffer register is a simple buffer for the Page Address register. These two buffer SUBROUTINES
registers allow the TMS1 000 a single level of subroutine call logic. When a subroutine is called,
the contents of the Page Address and Page Buffer registers are exchanged. the Program Counter register contents are
moved to the Subroutine Return register. and a new value provided by the subroutine Call instruction is loaded into the
Program Counter. This may be illustrated as follows:

,-.-._~I_-'-.....I~~_""--,,,_ ... I Instruction object code

:::d~:::::g;,: ~ I tY1cc I 1=0 Subroutine Return register

Page Buffer register

1-4

Q
w

~
II: o
a.
II:
o
tJ
~
rJi
w

~ g
CI)
CI)
c(

o!I
w
Z
II:
o
a:I
CI)

o
~
c(
Q
c(

@

TMS1000 MEMORY ADDRESSING MODE
TMS1000 microcomputers have separate and distinct program and data memories. There are no instructions
capable of writing into program memory. and data memory cannot contain instruction object codes.

Data memory is accessed using implied addressing. The X and Y registers combine to serve as a Data Counter: we
have just described this Lise of the X and Y registers.

Only subroutine Call instructions and Branch instructions address program memory. These instructions address
program memory using variations of absolute, paged direct addressing. .

We have already illustrate~ the addressing logic of a subroutine call.

A Branch instruction loads the Program Counter with a new address. which is provided by the instruction. just as a Call
instruction does. If the Branch instruction occurs in a subroutine - that is. in the sequence between a subroutine Call
instruction and a subroutine Return instruction - the Page Address register will not be affected. However. execution
of a Branch instruction outside a subroutine will load the Page Address register from the Page Buffer register. The two
types of program branches may be illustrated as follows:

I I .Instruction object code

'-~ ~ ~ --~~
'\

Program Counter ... 1_ _ ... 1 '_ I_~~
Page Address register' I ~ Page Buff"'eg;",,

Only if Branch OS;curs

outside a subroutine

TMS1000 STATUS FLAGS
The TMS 1000 series microcomputers have a single status flag which combines to serve as a Carry status and a
simple logic decision stat'us. All Branch and subroutine Call instructions are conditional; the Branch or subroutine
Call occurs only if the status flag is 1.

The unique feature of the status flag as compared to most status logic is that its passive level is high (1). If an instruc­
tion causes the status flag to be reset to 0, it will revert to 1 after a single instruction cycle:

CLOCK

R~'~

--+---~t:
STATUS "_~II-____ "'"

Instruction I
I

Instruction

2

Instruction

3

Instructions that test the condition of the status flag must directly follow the instruction which modifies the level of the
status flag.

TMS1000 INPUT AND OUTPUT LOGIC
The only data input to a TMS1000 series microcomputer occurs as 4-bit nibbles, referred to in Texas Instru­
ments literature as K inputs. Instructions that access the K inputs simply input whatever signal levels exist at the time
of the access.

TMS 1 000 series microcomputers output data referred to as 0 outputs, and control signals referred to as R out­
puts.

1-5

There are eight data or 0 outputs: but they are created in an unusual way. 0 output logic receives, as inputs, the con­
tents of the Accumulator, plus the status flag. These five data bits create the eight 0 output signals according to a
matrix which you must define when you order the TMS 1000 microcomputer. This may be illustrated as follows:

Accumulator {
Contents

Status flag

o Output
Matrix

o outputs

As the illustration above would imply, the five inputs select 32 of the possible 256 signal combinations which can be
output via the eight 0 outputs.

The control R outputs are treated as 11, 13 or 16 single control signals. Refer to Table 1-1, which identifies the number
of R output signals available with each of the TMS 1000 series microcomputers. You can set or reset R output signals
individually. The Y register is used to identify the individual R signal which is being set or reset.

TMS1000 SERIES MICROCOMPUTER PINS AND SIGNALS
Figures 1-2 through 1-7 illustrate the pins and signals of the TMS1000 series microcomputers. Note that the
TMS 1000 and TMS 1100 microcomputers have identical pins and signals. Since signals are consistent for the entire
family of microcomputers, they will be described together.

The four data inputs are provided by K1, K2, K4 and K8. We would name these signals 010, OIL 012 and 013 to be
consistent with common microcomputer terminology: however. Texas Instruments literature uses the signal names K 1,
K2, K4 and K8 to represent the binary level of each signal.

R8

R9
RlO

(VSS in MC141000) VDD
K1

K2

K4

K8
INIT

07
06

05
04

03

Pin Name

K1. K2, K4. K8
00- 07
RO - R10 .
OSC1,OSC2
INIT

VDD, VSS

3
4

5

6
7

8

9
10
11

12

13
14

28
27

26

25
24

23

TMS1000 22
21

20

19
18
17
16

15

Description

Data input
Data output
Control output
Timing
Power on reset
Power and Ground

R7

R6

R5

R4
R3

R2

R1

RO

Vss (VDD in MC141000)
OSC2
OSC1

00
01

02

Type

Input
Output
Output
Input'
Input

Figure 1-2. TMS1000 and MC141000 Microcomputer Signals and Pin Assignments

1-6

Q
w

!i a:
o
D..
a:
o
u
~
en
w
l­
e:(

U o
CI)
CI)
e:(

~
w
Z
a:
o
In
CI)
o
~
e:(
Q
e:(

@

R8

R9

RlO
R11

R12

(VSS in MC141200) VDD
K1

K2

K4

K8

INIT

07

06

05

04

03

Pin Name

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16
17

18

19

20

K1, K2, K4, K8
00- 07
RO - R12,R13- R15
OSC1,OSC2
INIT

VDD' VSS

40

39

38
37

36

35

34

33

32

TMS1200 31

30

29

28

27

26

25
24

23

22

21

Description

Data input
Data output
Control output
Timing
Power on reset
Power and Ground

R7

R6

R5

R4

R3

R15 }
R14 in MC141200 only

R13

R2

R1

RO

Vss (VDD in MC141200)

OSC2

OSC1

00
01

02

Type

Input
Output
Output
Input
Input

Figure 1-3. TMS 1200 and Me 141200 Microcomputer Signals and Pin Assignments

R8 1

R9 2

R10 3

VDD 4

K1 5

K2 6

K4

K8 8

INIT 9

07 10

06 11

05 12

04 13

03 14

Pin Name

K1, K2, K4, K8
00- 07
RO - R10
OSC1,OSC2
INIT

VDD' Vss

28

27

26

25

24

23

TMS1070 22

21

20

19

18

17

16

15

Description

Data input
Data output
Control output
Timing
Power on reset
Power and Ground

R7

R6

R5

R4

R3

R2

R1

VSS
RO

OSC2

OSC1

00

01

02

Type

Input
Output
Output
Input
Input

Figure 1-4. TMS1070 Microcomputer Signals and Pin Assignments

1-7

A8 1
A9 2

Al0 3
All 4

A12 5

VDD 6

Kl 7

K2 8

K4 9

K8 10

INIT 11

12

13

07 14

06 15

05 16
. 09 17

04 18

03 19·

08 20

Piri Name

,Kl, K2, K4, K8
00- 09
AO - A12
OSC1. OSC2
INIT

VDD,VSS

40

39

38

37

36

35

34

33

32

TMS1270 31

30

29

28

27

26

25
24

23

22

21

Description

Data input
Data output
Control output
Timing
Power on reset
Power and Ground

A7

A6

A5

A4

A3

A2

Al

Vss
AO

OSC2

OSCl

00
01

02

Type

Input
Output
Output
Input
Input,

Figure 1-5. TMS1270 Microcomputer Signals and Pin Assignments

A8 1

A9 2

Al0 3

VDD 4

Kl 5

K2 6

K4 7

K8 8

INIT 9

07 10

06 11

05 12

04 13

03 14

Pin' Name

K 1, K2, K4; K8
00-07
RO - R10
OSC1,OSC2
INIT

VDD,VSS

TMSll00

Description

Data input
Data output

28

27

26

25

24

23

22
21

20

19

18

17
16

15

, Control output
Timing
Power on reset
Power and Ground

A7

A6

AS

A4

A3

A2

Al

RO

Vss
OSC2

OSCl

00
01

02

Type

Input
Output
Output
Input
Input

Figure 1-6. TMS 1100 Microcomputer Signals and Pin Assignments

1-8

c
w
I-
~.
o
0-
a:
o u
~
en
w
!(
g
CI)
CI)

<
olJ
w
Z
a:
o
III
CI)

o
:E
< c
<
@

R11
R12
R13
R14
R15

VDD
K1
K2
K4
K8

INIT
07

06 i----I
05 -----t
04 i----4I

03 -----1

Pin Name

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

K1, K2, K4, K8
00- 07
RO - R15
OSC1,OSC2
INIT
VDD,VSS

40
39
38
'37
36
35
34
33
32

TMS1300 31
30
29
28
27
26
25
24
23
22
21

Description

Data input
Data output
Control output
Timing
Power on reset
Power and Ground

R10
R9
R8
R7
R6

R5
R4
R3
R2
R1
RO

Vss
OSC2
OSC1
00
01
02

Type

Input
Output
Output'
Input
Input

Figure 1-7. TMS 1300 Microcomputer Signals and Pin Assignments

The 0 outputs are provided by 00 - 07, or, in the case of the TMS1270, 00 - 09.

The R outputs occur at RO - R15, or some smaller number of R outputs, depending on the microcomputer.

OSC1 and OSC2 are timing inputs and outputs. A number of timing options are provided. All TMS 1 000 series
microcomputers contain internal clock logic which you can access in conjunction with an external RC circuit as
follows:

::6=1=~=h ::
You can also input an externally created clock signal at OSC1, in which case OSC2 must be connected to ground (VSS).
When you have more than one TMS 1000 series microcomputer in a configuration. it is a good idea to synchronize the
many microcomputers by driving them with a single clock signal.

INIT is a power on reset signal. Following power on. INIT should be input high (VSS) for at least six consecutive clock
cycles. The Reset operation stores binary ones in the Page Address register and the Page'Buffer register. The 0 outputs.
the R outputs and the Program Counter are all zeroed. Thus. the first instruction executed will have the hexadecimal
address 3C016.

Page Address register ~ ~ Program Counter

111 1 0 0 000 0
--'-v-"'-'v-'"

3 C 0

1-9

TMS1000 SERIES MICROCOMPUTER INSTRUCTION EXECUTION
Noniicrdcomputer described in this book has simpler instruction execution timing than the TMS 1000 series. All in­
structions generate one byte of object code. There are no two- or three-byte object codes. Similarly. every instruc­
tion executes in a single machine cycle, as timed by the system clock.

TMS1000 SERIES MICROCOMPUTER INSTRUCTION SET
There are variations in the instruction sets of the different microcomputers in the TMS 1000 series. However. the
different instruction sets are similar enough for us to describe them all in Table 1-2. As compared to similar tables
for other microcomputers in this book. Table 1-2 has an additional column which identifies the instructions which are
available with each of the TMS 1000 series microcomputers. .

Within the confines of a single-chip microcomputer. the instruction set defined in Table 1-2 is both powerful and effec­
tive. It would be easy to point out instruction set features which. from a programmer's point of view. are undesirable;
however. theTMS1 000 series microcomputers are oriented to digital logic. The TMS 1000 is not a product that gets
programmed; rather. its instruction set is a means of defining an optional portion of the ROM mask. Within this context.
the instruction set is very adequate. Note that, since you are dealing with a singie-chip microcomputer, there is
nothing to prevent you from redefining the Control Unit and thus creating your own instruction set.

THE BENCHMARK PROGRAM
The benchmark program we are using throughout this book in order to exercise the various microcomputer instruction
sets is essentially meaningless in any TMS 1 000 application. Given 64. or at most. 128 nibbles of RAM. the whole con­
cept of moving data among tables is meaningless. We therefore simplify the problem and look upon 10BUF as external
logic. Instead of reading from 10BUF. we will input K data. We will assume that each block of K data is preceded by a
nibble which defines the number of data nibbles to follow:

n data nibbles
follow

: K1

K8

Thus. each block of data that is input must be fifteen nibbles or less in length.

LOOP

LDX
TKA
TAY
TKA
TAM
DYN
BR

TBHI

LOOP

LOAD TABLE PAGE ADDRESS
INPUT FIRST K NIBBLE. IT EQUALS DATA NIBBLE TO FOLLOW
MOVE TO Y. XY NOW ADDRESSES END OF TABLE
INPUT NEXT DATA NIBBLE
SAVE IN MEMORY
DECREMENT Y
IF Y NOT O. RETURN FOR NEXT NIBBLE

Symbols are used in Table 1-2 as follows:

Registers:

A - Accumulator
X.Y - Data Counter. Y also serves as an output address.
PC - Program Counter
PA - Page Address register
CF - Chapter Flag (one bit)
SR - Subroutine Return register
PB - Page Buffer

Statuses:

. ST - The Status Flag
C - The status flag reflects a Carry. That is. it is set if there is a Carry from the most significant bit

(MSBl. and reset otherwise.
NE - The status flag reflects "not equal". That is. it is set if the compared bits are not equal. and reset

if they are equal.

1-10

c
w ...
c(
a:
0
a..
a:
0
CJ
~
u)
w ...
c(

g
(I)
(I)
c(

GlJ
w
2
a:
0
III
(I)

0

~
c(
c
c(

@

Inputs and Outputs:

bb

b

data

label
R([Y]}

x
[X](MSB}

[[X.yJ]

[[X.Y]](b}
[]

K - the four input lines
o - the five-bit Output register
R - the control outputs

Two bits in the object code which specify one of the four bits of a RAM location:

3 o--BitNo.

I I I I. 1.--RAM location

j~ j .~ j

bb

-----00
'------10

'-------- 01

'------------ 11

Operand which specifies one bit of a RAM location

2. 3. or 4 bits of immediate data

Destination of Branch instruction (6 bits of direct address in the object code)

The control output line specified by the contents of the Y register.

One bit of immediate data or direct address in the object code.
The most significant bit of the X register

The contents of the RAM location addressed by the contents of the Data Counter.

The specified bit of the RAM location addressed by the contents of the Data Counter.

Contents of location enclosed within brackets. If C3 register designation is enclosed within the brackets.
then the designated register's contents are specified. If K or R is enclosed within the brackets. then the
data at the inputs or control outputs is specified.

Data is transferred in the direction of the arrow.

Data is exchanged between the two locations designated on either side of the arrow.

Where two object codes are given. the first is the code used in the TMS 1000. TMS 1200. TMS 1 070. and TMS 1270.
while the second is the object code used in the TMS 11 00 and TMS 1300.

X in one of the rightmost three columns means that th~ instruction is implemented on the designated TMS 1 000 device.

1-11

I

N

TYPE

g

NlNEMONIC

KNEZ

TKA

SETR

RSTR

TOO

TAM

TMY

TMA

XMA

TAMIY

TAMIYC

TAMOYN

TAMZA

AMAAC

SAMAN

IMAC

STATUSES
OPERAND I--_-~

C NE

x

x

X

X

X

X

Table 1-2. TMS1000 Series Instruction Set Summary

OPERATION PERFORMED

If [K] ,"",0, ST-I

Set status only if data on input lines is not O.
[K]-[A]

Load Accumulator with data on input lines.
R([Y])-1

Set R output addressed by contents of Y.
R([Y])-O

Reset R output addressed by contents of Y.
[0] -([A],STI

Transfer data from Accumulator and status flag to the 0 outputs.
[0] -00,.

Clear the a Output register.

[A]-[[X,Y))

Store Accumulator to RAM location addressed by contents of XY Data Counter.
[[X,Y))-[Y]

Load Register Y from RAM.
[[X,Y))-[A]

,Load Accumulator from RAM.
[[X,Y))--[A]

Exchange contents of RAM location addressed by Data Counter XY with those of
Accumulator.

[A]-[[X,Y)); [y]--'-[y] + 1

Store Accumulator to RAM and increment contents of Y register.
[A]-[[X,Y)); [y]-[y] + 1; ST-C

Store Accumulator to RAM and increment contents of Y register. Set status flag
only if there is a carry.

[A]-[[X,Y)); [Y]-[Y]-I: ST-C

Store Accumulator to RAM and decrement contents of Y register. Set status flag

only if there is no borrow.
tA]-[[X,Y)); [A]-O

Store Accumulator to RAM and then clear Accumulator.

[A]-[[X,Y)) + [A]; ST-C

Add contents of RAM location to those of Accumulator. Set status flag only if
there is a carry.

[A]-[[X,Y))-[AI; ST-C

Subtract Accumulator contents from those of RAM location. Set status flag only

if there is no borrow.
[A]-[[X,Y)) + I; ST-C

Load contents of RAM location to Accumulator and increment. Set' status flag

only if there is a carry. RAM contents are unchanged.

OBJECT
CODE

09
OE
08

00

DC

OA

OB

03

27
22

21

2E

Q3

20

25

24

04

26

25

06

27

3C

28
3E

TMS1000
TMS1200

'TMS1070
TMS1270

x

x

x

x

x

x

x

X

x

X

X

X

x

x

x

TMS1100
TMS1300

x
X

X

x

x

x
X

X

X

X

X

X

x

X

x

MC141000
MC141200

x

X

X

X

X

X

X

X

X

X

X

x

x

x

x

I

W

TVPE

W
U
Z
W
a:: w_
U.W wI-
a::e(-
>a::C
a:: ww
OO-~
::E0~
w>1-
::Ea:: Z

00
~~g
e(::E
C-
Z
0
U w
(I)

w
l-
e(

E
w
~

~

w
l-e(
a:: w
0-
0
w
~
Q
w
::E
~

MNEMONIC

OMAN

ALEM

MNEA

MNEZ

SBrr

RBIT

TBIT1

TCV

TCMIV

LOX

LOP

...

ALEC

VNEC

A2AAC

A3AAC

A4AAC

A5AAC

A6AAC

A7AAC

STATUSES
OPERAND

C NE

X

X

X

X

b

b

b X

data

'data

-
data

data

data X

data X

X

X

X

X

X

X

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 1-2. TMS1000 Series Instruction Set Summary (Continued)

OBJECT
TMS1000

'TMS1200 TMS1100 MC141000
OPERATION PERFORMED CODE TMS1070 TMS1300 MC141200

TMS1270

[A]-[[X,V))-1; ST-C 2A X X
Load contents of· RAM location to Accumulator and decrement. Set status flag 07 X
only if there is no borrow. RAM contents are unchanged.

If [A] ~ [[X,V)), ST-1 29 X X
Set status flag only if Accumulator contents are less than or equal to those of 01 X
RAM location addressed by Data Counter XV.

If [[X,V)) '" [AJ. ST-1 00 X
Set statu~ flag only if contents of RAM location are not equal to those of Ac-

cumulator.

·If [[X,V)) .; 0, ST - 1 26 X X
Set status flag only if contents of ~AM location are hot equal.to zero. 3F X

[[X,V]](b) -1 OO;;OObb X X X

Set specified bit of RAM location addressed by contents of Data Counter XV.
[[X,V]](b) -0 001101bb X X X

Reset specified bit of RAM location addressed by contents of Data Counter XV.
ST - [[X,V]](b) 001110bb X X X

Test specified bit of RAM location and set status flag only if the bit is set.

[V]-'data
-

X. 0100xxxx X X

Load Register V immediate.
[[X,V])-data; [V]-[V] + 1 0110xxxx X X X

Load RAM location immediate and increment contents of Register V.
[X]-data 001111xx X

Load Register X immediate. 00101xxx X X

[PB]-data 0001xxxx X X

Load Page Buffer register immediate .
.. .

If. [A] ~,data, ST-1 0111xxxx X X
Set status flag only if Accumulator contents are less than or equal to immediate

data.
If [V] ~ ~data, ST-1 0101xxxx X X X

Set status flag only if contents of Register V are not equal to immediate data.
[A]-[A]+2; ST-C 78 X

Add 2 to Accumulator contents. Set status flag only if there is a carry.
[Ak-[A] + 3; ST-C 74 X

Add 3 to Accumulator contents. Set status flag only if there is a carry.
[A]":'[A]+4;ST-C 7C X

Add 4 to Accumulator contents. Set status flag only if there is a carry.
[A]-[A]+5;ST-C 72 X

Add 5 to Accumulator contents. Set status flag only if there is a carry.

·[A]-[A]+6;ST-C 06 X X
Add 6 to Accumulator contents. Set status flag only if there is a carry. 7A X

[A]-[A]+7; ST-C 76 X
Add 7. to Accumulator contents. Set status flag only if there is a 'carry.

I

~

TYPE

~w

~
0:-
wC
a..w
0;:)
w~
~~
58
~-
~

IL
::;:
::;)

.'"

Z Z 0 0
:E: i=
(J i5 Z
c(Z
a: 0
IZI (J

,
a:ce
ww w >
~~O
~,~ ::;:
cece

I

ffi!ffi~
.......... c(
~ ~ ce
00 W
w w IL
a: ce 0

ce w w
~

CIl ce
5 w
w IL
ce 0

STATUSES
MNEMONIC O~ERAND

C NE

A8AAC X

A9AAC X

Al0AAC X

AllAAC X

A12AAC X

A13AAC X

A14AAC X

RETN

BR label

CALL label

TAY

TVA

YNEA X

CLA

IA

lAC X

Table 1-2. TMS1000 Series Instruction Set Summary (Continued)
. .

TMS1000
TMS1100 MC141000 OBJECT 'TMS1200 OPERATION PERFORMED'

CODE 'TMS1070 TMS1300 MC141200
TMS1270

[A]~[A]+8; ST -c· 01 X X
Add 8 to Accumulator contents. Set status flag only if there is a ·carry. 7E X

[A]-[A]+9;ST-C 71 X
.Add 9 to Accumulator contents. Set status flag pnly if there is a carry.

[A]-[A] + 10;ST-C 05 X

Add 10 to Accumulator contents. Set status flag only if there is a carry. 79 X X

[A]-[A]+ 11; ST-C 75 X
Add 11 to Accumulator contents. Set status flag only if there is a carry.

[A]-[A]+ 12; ST-C 70 X
Add 12 to Accum'ulator contents. Set status flag only if there is a carry.

[A]-[A]+ 13; ST-C 73 X
Add 13 to Accumulator contents. Set status flag only if there is a carry.

[A)-[A] + 14; ST-C 7B X
Add 14 to Accumulator contents. Set status flag only if there is a carry.

[PC]-[SRl. [PA]-[PB] OF X X X
Return from subroutine.

If ST = 1. then [PC]-Iabel; 10xxxxxx X X X
outside subroutine. [PA]-[PB]
Branch if status flag is set.
If ST = 1. then [SR]-[PC]+ 1. [PB]-[PAl. [PC]-label llxxxxxx X X X

Call subroutine if status flag is set. A subroutine call within a subroutine will act as
a branch. and load the Page Buffer from the Page Address register:

[PC]-LABEL
[PB]-[PA]

[A]-[Y] 24 X X

Transfer Accumulator contents to Register Y. 20 X
[Y]-[A] 23 X X X

Transfer Register Y contents to Accumulator.

If [Y]fo[A],ST-l 02 X X X

Set status flag only if contents of Y register are ncit equal to those of Accumula-
tor.

[A]-O 2F X' X

Clear Accumulator. 7F X
[A]-[A]+l OE X X

Increment Accumulator. No status affected.
[A]-[A]+ 1; ST -C. 70 X

Increment Accumulator. Set status flag only if there is a carry.

I

U1

TYPE

w
I-
<-a:C ww
D..:J
Oz
a:~
wz
1-0
~CJ
(!J-
w
a:

STATUSES
MNEMONIC OPERAND

C NE

DAN X

IYC X

DYN X

CPAIZ X

COMX

COMX

COMC

© AD~M OSBORNE & ASSOCIATES,INCORPORATED

Table 1-2. TMS 1000 Series I nstruction Set Su mmary (Continued)

TMS1000
MC141000

OPERATION PERFORMED
OBJECT TMS1200 TMS1100

CODE TMS1070 TMS1300 MC141200
TMS1270

[A)-[A]-I; ST-C 07 X X
Decrement Accumulator. Set status flag only if there is no b?rrow. 77 X

[Y]-[Y]+I;ST-C 2B X X
Increment Registar Y. Set status flag only if there is a carry. 05 X

[Y]-[Y]-I; ST-C 2C X X
Decrement Register Y. Set status flag only if there is no borrow. 04 X

[A]-[A] + I; if [A] = O. 'ST-I 20 X X
Negate Accumulator contents (twos complement). Set status only if result is 30 X
zero.

[X]-[X] 00 X X
. Complement contents of X register (ones complement).

[X](MSB) - [X](MSB) 09 X
Complement most significant bit of X register.

CF-CF OB X
Complement Chapter flag.

c
w
~
a: o
a.
a:
o
o
~
en
w

~
g
C/)
C/)

ct
~
w
Z
a:
o
III
C/)

o
:!:
ct c
ct

(cj)

DATA SHEETS

This section contains specific electrical and timing data for the TMS 1000 series microcomputer.

TMS 1000/1200 AND TMS 1100/1300

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Voltage applied to any device terminal (see Note 1)
Supply voltage, VDD
Data input voltage
Clock input voltage .
Average output current (see Note 2): 0 outputs

R outputs
Peak output current: 0 outputs .

R outputs .
Continuous power dissipation: TMS 1000/1100 NL .

TMS 1200/1300 N L .
Operating free·air temperature range
Storage temperature range.

. -20V
-20 V to 0.3 V
-20 V to 0.3 V
-20 V to 0.3 V

-24mA
-14mA
-48mA
-28mA
400mW
600mW

O°C to 70°C
-55°C to 150°C

·Stresses beyond those listed under" Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions"
section of this specification is not implied. Exposure to absolute·maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNIT

Supply voltage, VOO (see Note 3) -14 -15 -17.5 V

K -1.3 -1 0.3
High-level input voltage, VIH (see Note 4) V

INIT or Clock -1.3 -1 0.3

Low-level input voltage, VIL (see Note 4)
K VOO -4

V
INIT or Clock VOO -15 -8

Clock cycle time, tc(tP) 2.5 3 10 /.IS

Instruction cycle time, tc 15 60 /.IS

Pulse width, clock high, tW(<1>H) 1 /.IS

Pulse width, clock low, twld>U 1 /.IS

Sum of rise time and pulse width, clock high, tr + tw(dlHI 1.25 /.IS

Sum of fall time and pulse Width, clock low, tf + twld>U 1.25 /.IS

Oscillator frequency, fosc 100 400 kHz

Operating free-air temperature, T A 0 70 °c

NOTES: 1. Unless otherwise noted, all voltages are with respect to VSS.
2. These average values apply for any 100-ms period.
3. Ripple must not exceed 0.2 volts peak-to.peak in the operating frequency range.
4. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification for

logic voltage levels only.

VSS

Voo Jj-- Ii
--., ~ tf -.f \4- tr

I-e- tw(cpL) --.j ~ tW(c;'lHI

~,,--_-_-_-_-_V:,:(~,
I

-J
I

tc~"I-------- tC(c;'l1 ------t .. ~1
NOTE: Timing points are 90% (high) and 10% (low),

FIGURE 7 - EXTERNALLY DRIVEN CLOCK INPUT WAVEFORM

Data sheets on pages 1-02 through 1-05 are reproduced by permission of Texas Instruments Incorporated.

1-D2

Q
w

!i
a:
o
a.
a:
o
(J

~
en
w

!i g
en
en
ct
ell
w
Z
a:
o en
en o
~
ct
Q
ct
@

TMS 1000/1200 AND TMS 1100/1300
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE·AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN Typt MAX UNIT

II Input current, K inputs VI = OV 50 300 500 j./A

VOH
High·level output voltage I 0 outputs 10 = -10mA -1.1:1: -0.6:1:

V
(see Note 1) I R outputs 10 = -2mA -0."75 -0·4

10L Low·level output current VOL = VOO -100 j./A

IOO(av)
Average supply current from VOO

All outputs open
TMS 1000/1200 (see Note 2)

-6 -10 rnA

IOO(av)
Average supply current from VOO

All outputs open
TMS11 00/1300 (see Note 2)

-7 -11 rnA

P(AV)
Average power dissipation

All outputs open
TMS 1000/1200 (see Note 2

90 175 mW

P(AV)
Average power dissipation

All outputs open
TMS11 00/1300 (see Note 2)

1q5 193 mW

fosc Internal oscillator frequency Rext = 50 kn, Cext = 47 pF 250 300 350 kHz

Ci Small'signal input capacitance, K inputs VI =0, f = 1 kHz 10 pF

Cj(¢) Input capacitance, clock input VI = 0, f=1ookHz 25 pF

t All typical values are at VOO = -15 V, TA = 25°C.
:I: Parts with VOH of -2 V minimum, -1.3 V tvpical, are available if requested.

NOTES: 1. The algebraic convention where the most·positive (least.negative) limit is designated as maximum is used in this

specification for logic voltage levels onlv.
2. Values are given for the open·drain 0 and R output configurations. Pull·down resistors are optionally available on all

outputs and increase I DO (see Section 4,4).

SCHEMATICS OF INPUTS AND OUTPUTS

TYPICAL OF ALL K INPUTS

INPUT VSS

~
d

R' 50 kn l
VOD

TYPICAL OF ALL 0 AND R
OPEN·DRAIN OUTPUTS

VSS

J .
I
~OUTPUT

TYPICAL OF ALL 0 AND R
OUTPUTS WITH OPTIONAL

PULL·DOWN RESISTORS

Vss

i d
rOUTPUT

~VOO

The 0 outputs have nominally 60 n on·state impedance; however, upon request a 130·n buffer can be mask program·
med (see note It I section 4.3).

The value of the pull·down resistors is mask alterable and provides the fo!lowing nominal short·circuit output currents
(outputs shorted to VSS):

o outputs: 100,200,300,500, or 900 J.1A

R outpllls: 100, 150, or 200 J.1A.

l-D3

TMS 1000/1200 AND TMS 1100/1300
INTERNAL OR EXTERNAL CLOCK.

c(
E
I
c

~
:J
CJ
;
&
:J
0

!
...I

i.
i
I
l:
2

If the internal oscillator is used, the OSC1 and OSC2 terminals are shorted together and tied to an external resistor to
VOO and a capacitor to VSS' If an external clock is desired, the clock source may be connected to OSC1 and OSC2
shorted to VSS'

CONNECTION FOR INTERNAL OSCILLATOR

cext

osc': I lE------o Vss
OSC2 '---~-""--'l~VDD

Rext

TYPICAL BUFFER CHARACTERISTICS

-40

-30

o OUTPUTS
HIGH·LEVEL OUTPUT CURRENT

vs
HIGH·LEVEL OUTPUT VOLTAGE

oL-~ __ ~ __ ~~ __ ~ __ ~ __ ~~~~ __ ~
o -1 -2 -3 -4 -5

VOH - High·Lewl Output Volt8Qtl - V

TYPICAL INTERNAL OSCILLATOR FREQUENCY
vs

EXTERNAL RESISTANCE

100L-~~~--~--~~~--~~~~ __ ~~
o 20 40 60 80 100 120 140 160 180 200

Rext.- External Resistance - kn

R OUTPUTS
HIGH·LEVEL OUTPUT CURRENT

vs
HIGH·LEVEL OUTPUT VOLTAGE

-30 --.--.---.---..,....-..;...,.....---.r--....... -..,....-...,...---.

-~ ~~--~--~~~~~~~~~~-4-~
c(
E
I

! -20~-4--~~~--+---~~~-+--~~4-~
:;
CJ
:J.

~ -15
o

1
...I i -10 ~-4----t-.;+-,jC---+-­
l:
I
l:
2 -5

1-04

-1 -2 -3'

VOH - High·Lewl Output Volt. - V

-5

c
w

~
a:
o
Q.
a:
o
o
~
en
w
~
(3
o
(I)
(I)

<
o!I
w
Z
a:
o
al
(I)

o
~
< c
<
@

TMS 1070/1270
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Voltage applied to any device terminal (see Note 1)

Supply voltage, V DD
Data input and output voltage with VDD applied (see Note 2)
Clock input and IN IT input voltage
Average output current (see Note 3): 0 outputs

R outputs
Peak output current: 0 outputs .

R outputs .
Continuous power dissipation: TMS 1070 NL .

TMS 1270 NL.
Operating free-air temperature range
Storage temperature range.

• -20V
-20 V to 0.3 V
-35 V to 0.3 V
-20 V to 0.3 V

-2.5 mA
-12 mA
-5mA

-24mA
400mW
600mW

O°C to 70°C
-55°C to 150°C

·Stresses beyond those listed under "Absolute Maximum Ratings" maY cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions"

section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN NOM MAX UNIT

Supply voltage. VOO (see Note 41 -14 -15 -17.5 V

High-level input voltage, VIH (see Note 51
K -6 0.3

V
INIT or Clock -1.3 -1 0.3

Low-level input voltage, VIL (see Note 51
K (See Note 21 -35 -8

V
INIT or Clock VDO -15 -8

Clock cycle time, tcl¢1 2.5 3 10 SlS

Instruction cycle time, tc 15 60 SlS

Pulse width, clock high, tw(¢HI 1 SlS

Pulse width, clock low, tw(¢Ll 1 SlS

Sum of rise time and pulse width, clock high, tr + tw(¢HI 1.25 SlS

Sum of fall time and pulse width, clock low, tf t tw(¢Ll 1.25 SlS

Oscillator frequency, fosc 100 400 kHz

Operating free-air temperature, T A 0 70 C

NOTES: 1. Unless otherwise noted, all volt~ges are with respect to VSS.

2. VOO must be within the recommended operating conditions specified in ~.4.
3. These average values apply for any 100-ms period.
4. Ripple must not exceed 0.2 volts peak-to-peak in the operating frequency range.

5. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification for

logic voltage levels only.

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)

PARAMETER TEST CONDITIONS MIN Typt MAX UNIT

II Input current, K inputs VI=OV 40 100 300 SlA

VOH
High-level output voltage I a outputs 10 = -1 mA -1 -0.5

(see Note 11 I R outputs 10 = -10 rnA
V

-4.5 -2.25

10L Low-level output current VOL = VDD -100 SlA

IDO(avl Average supply current from VDD All outputs open -6 -10 mA

P(AVI Average power dissipation All outputs open 90 175 mW

fosc Internal oscillator frequency Rext = 50 kn, Cext = 47 pF 250 300 350 kHz

Ci Small-signal input capacitance, K inputs V, =OV, f = 1 kHz 10 pF

Ci(¢1 Input capacitance, clock input V,-OV, f - 100 kHz 25 pF

t All typical values are at VOO = -15 V, T A = 25°C.

NOTE 1: The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification.

for logic voltage levels only.

1-D5

c
w
~
IX: o
Q.
IX:
o
U
~
en
w
I­
~

g
en
en
~

all
w
Z
IX:
o
en
en o
~
~ c
~

@

Chapter 2
THE MOSTEK 3870
(AND FAIRCHILD F8)

The F8 has had a profound Impact on the microcomputer Industry. When it first appeared, the F8 was discussed
as an off-beat product with a strange set of chips and a ridiculous Instruction set. The chip set was strang~
because logic was organized with the goal of minimizing chip counts: In contrast, microprocessors such as the
8080A and 6800 were designed with logic distributed functionally on chips - one traditional CPU logic function
per chip. The F8 instruction set is indeed strange, and in some cases quite limiting, but it reflects the simple
chip design of the F8 CPU.

Many microprocessors are now going into consumer products. In this marketplace, the two-chip F8 system pro­
vided by a 3860 CPU and a 3861 PSU gained an early dominant position. Other microprocessors available when
the F8 was introduced required seven or more chips to provide the same capabilities as the two-chip F8. The
economics of consumer product volumes rendered the inefficiencies of the F8 instruction set inconsequential:
as a result, in 1977 the F8 was the world's leading microprocessor in terms of CPU sales. .

In recognition of the F8 success story, most microprocessor manufacturers have introduced one-chip and two­
chip microcompu~er systems.

Since the F8 3850 CPU/3851 PSU configuration was the world's first two-chip 8-bit microcomputer system. the F8 was
the easiest 8-bit microprocessor to convert into a one-chip microcomputer. Fairchild, the F8 prime source, and
Mostek, the F8 second source, both designed one-chip microcomputers around the F8. Fairchild des'gned the
3869, which was a simple combination of the 3860 CPU and 3861 PSU on a single chip. Mostek developed a
more ambitious one-chip microcomputer, the 3870. Mostek developed the 3870 ahead of the Fairchild 3859:
therefore, Fairchild dropped the 3869 and became a second source for the 3870. Thus. the original F8 second
source. Mostek. is now the new prime source. while the original prime source. Fairchild. is now a second source.

The majority of F8 customers have small configurations which convert readily to the 3870. This being the case. the
3870 is the F8 product being actively marketed, while the old F8 chip set is now manufactured to meet the needs of
existing customers and to represent a possible expansion for any customer whose application will no longer fit within
the confines of the 3870. In this chapter, therefore, we begin by examining the 3870 in detail. Dl3scriptions of the
F8 CPU and its support devices follow. .

These are the F8 devices described:

- The 3860 CPU.

- The 3861 Programmable Storage Unit (PSU), which provides read-only memory plus
various additional logic functions.

r-------.....,.
THE FAIRCHILD
F8 DEVICE SET

- The 3862 Dynamic Memory Interface (DM!), which primarily provides interface logic for dynamic or static
read-write mem~ry.

- The 3863 Static Memory Interface (SM!), which primarily provides interface logic for static read/write memo­
ry.

- The 3864 Direct Memory Access (DMA), which, in conjunction with the 3862 DMI, implements Direct Memo-
ry Access logic. '

- The 3866 and 3867 16K Programmable Storage Units (PSU 16), which are variations of the 3861 PSU b4t pro-
vide more read-only memory.

- The 3861 PIO, which provides the additional logic functions of the 3861 PSU but has no read-only memory.

- The 3871 PIO, which is equivalent to the 3861 PIO but has logic characteristics identical to thp 3870.

Some additional 3870 series products are planned for delivery in late 1978 and early 1979.

2-1

The 3872 is identical to the 3870. except that program memory is doubled from 2048 to 4096 bytes. The 4096 bytes of
program memory are configured as 4032 bytes of read-only memory and 64 bytes of read/write memory. Thus. the
3872 will have 128 bytes of read/write memory. of which 64 are in the scratchpad and an additional 64 are in external
memory.

The 3873. which will probably be available in early 1979. is equivalent to a 3870 with one serial I/O channel added.

The 3876. which will probably be available in late 1978. is equivalent to a 3870 with 64 bytes of additional read/write
memory; that is.to say. in addition to the 2048 bytes of program memory there will be 64 bytes of scratchpad memory
and an additiona>1 64 bytes of external read/write memory. This additional 64 bytes of external read/write memory will
have a low power standby option. allowing you to maintain data in these 64 bytes while power has been removed from
the rest of the device. .

Figure 2-1 illustrates logic associated with individual F8 devices, and the 3870 one-chip microcomputer.

All devices of the F8 family require +5V and +12V power supplies. The 3870. however, uses a single +5V power sup­
ply.

Using a 500 nsdock. instruction cycle time is 2 ,""sec. Instruction execution times ·rangefrom 1'to 6.5 instruction cy-
cles. or 2 to 13 ,""sec. . .

N-channel isoplanar MOS technology is used for the F8.

N-channel ion injection technology is used for the 3870.

The 3870 Microcomputer
.----------------------------,
: 3850 CPU 3851, 3856 or 3857 Program Storage

I Unit (PSU)
I
I
I I~~~R n eques - - Interrupt Request
I

I/O Port I/O Port I/O Port I/O ~ort
3853 Static

,~ • ~ ~ Memory Interface .
(SMJ)

, '. , r II

/
64-byte RAM Prog Timer Prog Timer

ALU ROM RAM
STATIC and. ,---

__ ...J
INTERFACE - --CU t 'Mem Addr Log LOGIC

RAM

-- __ J

t I~

SYSTEM BUS

~ I~ ~

r r '.
RAM

DYNAMIC INTERFACE DMA
or .. LOGIC . CONTROL

STATIC - ~

DMA CONTROL LOGIC
RAM

-- -
/ '" 3854 Direct

/
3852 Dynamic Memory Interface

(DMJ)

A maximum of 65,536 bytes of memory may be present in an F8 microcomputer system.

Figure 2-1. A Fairchild/Mostek F8 Microcomputer System

2-2

Memory Access
(DMA)

I

Q
w

~
a: o
Q.
a: o
u
~
en
w
l­
e:(

g
CI)
CI)
e:(

ciS
w
Z
a:
o
In
CI)

o
~
e:(
Q
e:(

@

The principal manufacturer for the F8 is:

The second source is:

FAIRCHILD SEMICONDUCTOR .
464' Ellis Street

Mountain View. CA 94040

MOSTEK. INC.
P.O. Box 169

Carrollton. TX 75006

The principal manufacturer for the 3870 is:

Second sources are:

MOSTEK. INC.
P.O. Box 169

Carrollton. TX 75006

FAIRCHILD SEMICONDUCTOR
464 Ellis Street

Mountain View. CA 94040

MOTOROLA. INC.
Semiconductor Products Division

3501 Ed Bluestein Blvd.
Austin. TX 78721

.THE 3870 ONE-CHIP MICROCOMPUTER

Functions implemented on the 3870 microcomputer are illustrated in Figure 2-2.

Some caution must be exercised when looking at Figure 2-2; functions shown as present should not always be
considered equal to larger systems. For example. read/write memory and memory addressing are shown as completely
present: however. only 64 bytes of read/write memory are provided. with no possibility of expansion. I/O ports and in­
terface logic are shown as provided. but the 3870 itself has only four I/O ports. Programmable timers and interrupt han­
dling logic are shown as present. yet only one interrupt request line is available and only one programmable timer is
present -- again with no possibility for expansion.

There is. in fact. a sharp contrast between the expansion philosophy of the 3870 as compared to
the Intel 8048. The 3870 is simply not expandable: if your application overflows the 3870 you
can keep your programs, but you must revert to the F8 chip set. In contrast. the 8048 is ex­
pandable. albeit in a somewhat clumsy fashion. Thus. when an application overflows a 3870. you can keep your pro­
grams but you must throwaway your 3870 chips. When an- application overflows the 8048. you can keep the 8048
already in hand. using expansion capabilities to support new functions.

2-3

it "'>"",'

,

','"

':','.

,
Interrupt Priority

Arbitration

1/ a Communication
~ Serial to Parallel

Interface Logic

.,"

("E~g~ralTIma?,',Ef
Timers,"':',)i}::,

.:'.

",,'.',
i<

/)(J. ,jJ

'\ A;ithM~tis~Hd' \
.)~9gic Unitii

.. ,', "., .

.,"

: ; Acc~mulat?r
~,., R~gistens)

.... ::).: ... """"",.

""
.. Stack Pointer

'". """'"
8~~ I~t~rtace ..

>Logi'9''')'''''''~< "i'.' I' ,:':', Program Counter

"/i:,'!/
'

,': ..

ROM Addressi;'~
t.\'iiiand

•. ' ..•• : Interface~&glc\

xi'
,.,

"'"

'i' "."".,

'}" >t:

IJqf'oris
Interface Logic

... ,
I/Oports ""'.'\

•••••••

•••••••••••••• i

I)

,""'" .>i< ,
Figure 2-2. Logic of the Fairchild/Mostek 3870 Microcomputer

2-4

Direct Memory
Access Control

Logic

•
i"'::"""
,"',',' ~.
it

.. ,?

RAM>Addressing
- \aod")/<\

.•• :,19terfil~eiLogic

",.,

. Read/Write :.-
)<Memor\i)

c
w
I­
< a:
o
a..
a:
o
lJ
~
rJi
w
I­
<
(j
o
II)
II)

<
o1S
w
Z
a:
o
era
II)

o
~
<
C
<
@

3870/F8 PROGRAMMABLE REGISTERS
These are the programmable registers of the 3870 and F8:

Scratchpad Byte Address

I 8 bits Accumulator (A) Scratchpad

11 bits in the 3870,116 bits in the F8 Program Counter (PCO) §
Program Counter buffer, or Stack register (PC 1) 11 bits in the 3870,16 bits in the F8'

11 bits in the 3870,16 bits in the F81 Data Counter (DCO)

11 bits in the 3870116 bits in the F8

I 6 bits

1 5 bits

Data Counter buffer (DC 1) .,
I I

Scratch pad Address register (lSAR) I 4

Status register (W) ~:
I I , .

W register" J

H .,,{ HU
DCO register :4

HL

PC 1 (Stack) register
K .-{ KU

KL

DCO or PCO registers ..
Q .. {QU

QL

H is equivalent to a Data I ,
Counter buffer register ",
K is equivalent to a Stack
register buffer

Q is equivalent to a Data
Counter or Program Counter
buffer register

Decimal

o

9

10

11

12

13

14

15

16

58

59

60

61

62

63

There is one 8-bit Accumulator, which may be likened to the Primary Accumulator (AO) of
our hypothetical microcomputer. Wherever there is a choice, this Accumulator is the usual
source or destination for data operations associated with any instruction's execution.

2-5

Octal Hexadecimal

o
1

2

11

12

13

14

15

16

17

20

72

73

74

75

76

77

3870/F8

o

1

2

9

A

B

C

D

E

F

10

3A

3B

3C

3D

3E

3F

ACCUMULATOR

The 64-byte scratchpad may be viewed either as a small read~write memory, or as 64 8-
bit secondary Accumulators. The first 11 scratchpad bytes may. be accessed directly. as
though they were secondary Accumulators. Remaining RAM bytes can only be accessed using
a form of implied memory addressing. where a 6-bit register (identified as the ISAR register) must provide the address
of the byte being accessed. The ISAR register is in every way identical to a 6-bit Data Counter.

Data Counter DCO is an implied addressing register, as described for our hypothetical 3870/F8 DATA
microcomputer. .. . COUNTERS

Data Counter DC1 is simply a buffer for the contents of Data Counter DCO. Implied address-
ing via Data Counter DC 1 is not allowed. The only instruction that accesses Data Counter DC 1 is an instruction which
will exchange the contents of Data Counters DCO and DC 1.

Program Counter PCO serves the same function in a 3870 or F8 system as it does in
our hypothetical microcomputer.

3870/F8 PROGRAM
COUNTER

The Stack register (PC1) is, in reality, a buffer for Program Counter PCO; the Stack register 3870/F8 STACK
does not address an area in read-write memory. and there arena Push or Pop instructions as REGISTER
described in Volume I. Chapter 6. Interrupts and Jump-to-Subroutine instructions save the
contents of Program Counter PCO in Stack register pct before loading a new address into Program Counter PCo:

Old Address from pca
is moved to PC 1 . Old Address in

NeWAddr~ss" ~ /' PClislost

I'-e.. ?J I~ -", .
Program Counter pea Stack register PCl

The classical Stack can be implemented in a 3870 or F8 system. but a short program needs to be written to do this.

Read-only memory is always addressed using implied addressing, with auto-increment, via
Data Counter DCO. No other memory addressing modes are provided.

MEMORY
ADDRESSING

There are a number of instructions which load immediate data into Data Counter DCO; data may also be transferred
between Data Counter DCO and scratchpad bytes. and it is possible to add the contents of the Accumulator to Data
Counter DCO. . .

In order to understand scratchpad addressing, one has to view it as representing neither 64
Accumulators nor 64 bytes of read-write memory, but rather as something between the
two.

3870 MEMORY ADDRESSING MODES
The 3870 microcomputer has two separate and distinct memories:

1) There is the 64-byte scratchpad. which is the only read/write memory available.

SCRATCH PAD
MEMORY
ADDRESSING

2) There are 2048 bytes of read-only memory. which must contain all programs. but may also contain constant data.

We will refer to addressing of the 64-byte scratchpad as "scratchpad addressing", while "memory addressing"
refers to the 2048 read-only memory bytes.

It is important to note that the scratchpad and the read-only memory have separate and distinct address spaces.
Scratchpad locations have addresses in the range 0 through 6310. while read-only memory locations have addresses in
the range 0 through 204710. Thus. addresses 0 through 6310 can access both a scratchpad byte and a read-only
memory location; however. this will never cause confusion since separate and distinct instructions access scratchpad
as against read-only memory. Since no one instruction can access both scratchpad and read-only memory. there is no
possibility for confusion.

2-6

c
w

~
a:
o
a..
a:
o
CJ
~
en
w
I­
ct
g
en
en
ct
oil
w
Z
a:
o
til
en o
:E
ct
c
ct
@

Instructions which access scratchpad memory use the four low-order object code bits to identify Scratchpad Address­
ing mode. as follows:

654 2 o ,,---Sit No.

... ~_I_...r.._ _ ... ·I_ .. I.- Scratchpad access instruction object code

L ~} Directly address one of Scratch pad bytes 0 through 11
1011

1100· S - Implied addressing via ISAR
1101 I - Implied addressing via ISAR

with auto-increment of three
low-order ISAR bits.

1110 D - Implied addressing via ISAR
with auto-decrement of three
low-order ISAR bits.

There are a number of register-register instructions that operate on the Accumulator and on one of the first 12
scratchpad bytes, using object codes as follows:

65432 o "'-SitNo.

0000

One scratch pad byte from bytes 0 through 11 is specified

1011

An instruction that accesses the Accumulator and one of the
scratchpad bytes is specified

This type of object code treats the first 12 scratch pad bytes as secondary Accumulators.

Any scratchpad byte may be addressed via the ISAR register using implied addressing; that
is to say. the 6-bit number in the ISAR (which can have a value in the range 0 through 63) iden­
tifies the one scratchpad byte which will be accessed by the next scratchpad referencing instruc­
tion.

The ISAR register provides implied addressing. and implied addressing with auto-increment or
auto-decrement: however. only the low-order three bits of the ISAR register are involved in the
auto-increment or auto-decrement operation:

5 4 3 o-SitNo.

l...-""'--'r.........I l i-.....I!..-ISAR

DIRECT
SCRATCHPAD
ADDRESSING

IMPLIED
SCRATCHPAD
ADDRESSING

T· TL--
- These three bits may be incremented or decremented by ~n im-

plied addressing scratchpad memory reference with auto-in­
crement/ decrement.

Specifies an instruction that accesses the Accumulator and one
of the scratch pad bytes

F8 scratch pad bytes may therefore be ·accessed as contiguous 8-byte buffers. with wraparound auto-increment or
auto-decrement within each 8-byte buffer.

2-7

Instructions shown in Table 2-2 use the symbol r in the operand to represent scratchpad ad­
dressing. This is what the symbol r represents:

- If r is a number between a and 11. one of scratchpad bytes a through 11 is addressed directly.

- If r is S. implied addressing via ISAR is specified.

rSCRATCHPAD
ADDRESSING

- If r is I. implied addressing via ISAR. with auto-increment of the low-order three implied address bits. is specified.

- If r is O. implied addressing via ISAR. with auto-decrement of the low-order three address bits. is specified.

Given the various ways in which scratchpad memory can be addressed. this is the most effective way of configuring
scratchpad:

o 89 AB C 0 E F 10 1718 1F20 2728 2F 30 3738 3F

11111111111111111111111111111111111111 111111111111111111111111111
Secondary

Accumulators
H K Q Buffer 1 Buffer 2 Buffer 3 Buffer 4

t t + Dot, Co""to, IDCOI 0' Prog"m Cou",,, IPCOI buff"
Stack (PC 1) buffer

Data Counter (OCO) buffer

'-------- Status register (J) buffer

Buffer 5 Buffer 6

Treat scratch pad bytes a through 8 as nine secondary Accumulators: access these bytes using direct scratchpad ad­
dreSSing.

Wherever possible. use scratchpad bytes 9 through F only as buffers for their associated registers: when accessing
these bytes. use the specific instructions which transfer data between these scratchpad bytes and their associated
registers.

Although you can address scratch pad bytes 9. A. and B by using direct addressing. do not do so when these
scratchpad bytes are being used as buffers for the Status registers (W) and Data Counter (DCa).

While indirect addressing via ISAR can access anyscratchpad byte. you should avoid addressing scratch pad bytes a
through F in this fashion. Wherever possible. use ISAR only to address scratch bytes 1 a16 through 3F16: divide this
area into 8-byte buffers as illustrated. Because I addressing auto-increments only the three low-order ISAR bits. this
form of scratchpad byte addressing will wrap around within one 8-byte buffer. as follows:

ISAR

X X X 0 0 0
x x x 0 0 1
X X X 0 1 0
X X X 0 1 1
X X X 1 0 0
x x X 1 0 1
X X X 1 1 0
X X X 1 1 1
X X X 0 0 0'
x x x 0 0 1

etc.

Similarly. 0 implied addressing via ISAR will wrap around within eight scratchpad byte divisions. as follows:

ISAR

X X X 0 0 0
X X X 1 1 1
X X X 1 1 0
X X X 1 0 1
X X X 1 0 0
X X X 0 1 1
X X X 0 1 0
X X X 0 0 1
X X X 0 0 0
X X X 1

etc.

2-8

Q
w

~
a: o
0.
a:
o
o
~
en
w·
l­
e(

U o
(I).
(I)
e(

01:1
w
Z
a:
o
III
(I)

o
~
e(
Q
e(

@

3870/F8 STATUS FLAGS
The Status register, also called the W register, holds five status flags, as follows:

4 3 2 o Bit No .
.-'1-.................

Status register (WI

'------- Interrupt Control Bit

The O. Z. C and S status flags are identical to the flags with equivalent symbols. as described in Volume I. Chapter 6 for
our hypothetical microcomputer.

The Interrupt Control bit is treated as a fifth status; this status will not be modified by arithmetic or logic operations.
but it will be transferred. as a unit with the other four status flags. to or from Scratchpad byte O. '

3870 PINS AND SIGNALS
3870 pins and si~nals are illustrated in Figure 2-3.

XTL1

XTL2
Po:O.
PO-1 !
PO-2 '

PO-3
STROBE

P4-0

P4-1
P4-2

P4-3

P4:4

-
----.. ---,-

P4-5

P4-6

P4-7

PO-7
PO-6
PO-5
PO-4
GND

-.. -

Pin Name

PO-O - PO-7
Pl-0 - Pl-7
P4-0 - P4-7'
P5-0 - pg:r
STROBE
EXTINT
RESET
TEST
XTL1. XTL2
VCC. GND'

..
...
...
... -
i. ...
..
~ -..
... ..
... -..
~.

... ..

.. ...

1 40
2 39
3 38
4 37'
5 36
6 35
7 34
8 33
9 32

10 3870 31
11 Microcomputer 30

12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22.
20 21

Description

I/O Port 0
I/O Port 1
I/O Port 4
I/O Port 5
Ready Strobe
External Interrupt
External Reset
Test Line
Time/Clock
Power Supply Lines

-:...------ ..
~ ... ---- -.. - ~

-- ... - ..
~ ~ -- '-- ... - ---. ... - .. .: - ~ - ..

~ .. - ~

- .--- -- .. - ~ ---
Type

Bidirectional
Bidirectional
Bidirectional
Bidirectional
Output
Input
Input
Input
Input
Input

Figure 2-3. 3870 Microcomputer Signals and Pin Assignments

2-9

32 of the 40 signals implement four 8-bit I/O ports, which are addressed as 1/0 Ports 0, 1, 4 and 5.

Pins POO through P07 implement I/O Port O.

Pins P10 through P17 implement i/o Port 1 ~

Pins P40 through P47 implement I/O Port 4.

Pins P50 through P57 implement I/O Port 5.

I/O port characteristics are described following signal definitions.

STROBE is a handshaking control signal associated with I/O Port 4. Whenever data is output to I/O Port 4, STR08E
is pulsed low for approximately three ~Iock periods.

External interrupt requests are input via EXT INT.

RESET is a master reset input. When it is grounded, the following events occur:

1) Program Counter contents (PCO) are pushed onto the Stack register (PC1,).

2) The ICB bit of the Status register is reset to 0; this di~ables all interrupts.

3) 1/0 Port 4 and 5 pins all output +5V. Reset does not affect I/O Port 0 and 1 pins.

4) Other internal registers are not affected.

The TEST input is used to test hardware. Normally the TEST pin is connected to ground, or it is left unconnected.
When a voltage between 2V and 2.6V is connected to TEST. 1/0 Ports 4 and 5 become output and input connections to
the internal Data Bus; as follows:

J' l ___ ~ __ /l ______ l"_' _ I/O Port 5 is a wire-OR input to th,e internal Data Bus; it is : ~ .. _ ----"'"T": -- logically false. (Port pin 1 = Data Bus 0)

Data Bus --.. I/O Port 4 is, the internal Data Bus output; it is logically true:
-----------~-----, 'TI-- (Port pin 1 = Data Bus ,1)

When a voltage level between +6V'and +7V is applied to the TEST pin, I/O Ports 4 and 5 are connected to the internal
Data Bus as illustrated above; but. in addition, internal program memory is disconnected from the Data,Bus. This allows
instruction codes to be entered via I/O Port 5. ' .

The TEST pin should be used for test purposes only. Do not use TESTduring normal 3870 operations. You can­
not. for example, use TEST as a means of transferring data between the Data Bus and external logic via I/O Ports 4 and
5. Also, you cannot use TEST to supercede internal program memory, with an external program memory. This is
because timing associated with the test conditions differs markedly from normal instruction execution timing.

XTL 1 and XTL2are clock signal inputs. These two clock signal inputs can be used in one of
four ways.

3870 CLOCK
LOGIC

If XTL 1 and XTL2 are both grounded. then an internal oscillator within the 3870 generates the clock signal. In­
ternal oscillator frequencies ranging between 1.7MHz and 4MHz are allowed.

An external crystal may be connected across XTL 1 and XTL2; in this case the external crystal determines clock fre­
quency. Any frequency in the range 1 MHz to 4 MHz is allowed. There are internal 20 pF capacitors between XTL 1 and
ground and XTL2 and ground; therefore, external capacitors are not required. This may be illustrated as follows:

XTL 1 t------.....
o 1 MHz to 4 MHz

XTL2 t------...J

2-10

c
w

~
a:
o
Q.
rc:
o
(.)

~
en
w
I­
ct
C3 o
(I)
(I)

ct
ell
w
Z
a:
o
!XI
(I)

o
~
ct c
ct

@

If an external clock signal is used, then it should be applied to pin XTL2, and pin XTL 1 should be left open.

The internal clock signal generated will have a frequency that is half of the external clock signal frequency. For exam­
ple. in order to generate a 1 MHz internal clock signal. a 2 MHz external clock signal must be applied to pin XTL2.

It is also possible to generate the internal 3870 clock signal using resistor capacitor (RC) or inductor capacitor
(LC) circuits. The RC mode may be illustrated as follows:

R VCC
XTL2 ~-----""-""";~",""--.I

XTL1 ~-----.

R
Capacitance

Minimum frequency
Maximum frequency

C (Capacitor C is optional)

4Kil Minimum
20.5 pF + 2.5 pF + C
1/(1.1 RC + 65 ns)
1/(RC + 15 ~s)

The external capacitor C is optional. since there is a 20.5 pF internal capacitor.

The LC mode may be illustrated as follows:

Inductor L = 0.1 mH (minimum)
Inductor quality =. (Q) = 40

If the external capacitor (C) is present. it must be 30 pF or less.
Capacitance 10 pF ± 1.3 pF + C

Frequency = 1/(2 7T J1C)

3870 INSTRUCTION TIMING 'AND EXECUTION

All 3870 instructions execute as a sequence of "Iong" and "short" machine cycles. A long machine cycle lasts
six clock periods. A short machine cycle lasts four clock periods. For each 3870 instruction. Table 2-2 identifies the
sequence of long and short machine cycles via which the instruction executes. By referring to this table. you can com­
pute instruction execution times as a function of clock frequency.

Note that Table 2-2 refers to ROMC states. ROMC states have no meaning when you are using a 3870: however. they
constitute five signals output by the 3850 CPU in an F8 configuration. as described later in this chapter. Since Table
2~2 applies to both the 3870 and the F8. ROMC states are identified.

3870 I/O PORTS
The 3870 has four 8-bit I/O ports, which we defined when describing 3870 pins and signals. I/O ports are ad­
dressed via port numbers 0, 1, 4, and 5. I/O port addresses 6 and 7 are also reserved by the 3870; I/O Port 6 is
used' to output control codes and to input interrupt status. I/O Port 7 is used to acc~ss interval time~ logic.

O. 1. 4. 5. 6. and 7 are the only I/O port addresses which have any meaning within a 3870. Output instructions that ad­
dress any other I/O port act as "no operation" instructions. Input instructions that address any other port will clear the
Accumulator. Nevertheless. the 3870 instruction set. as oefined in Table 2-1. includes both long-form and short-form
I/O instructions. allowing any I/O port to be accessed with addresses in the range 0 through 255. This permits the 3870
instruction set to be completely compatible with the full F8 instruction set -- a necessity if 3870 programs are to be
transportable to larger F8 configurations. .

2-11

Everyone of the 3870 1/0 port pins is truly bidirectional. Logic associated with each pin may be illustrated as
follows: .

Vee

~
c
0 . .,.
~
::l
en
'E

o
0
()

a:
0
-C'
~
]

l- I-
en a: a:
:J 0 0
al 0.. 0..

« 0 0

~ ~ «
0

0 a:I

Q

Output
Buffer

Port
I/O
Pin

The pin logic illustrated above is present in the 3870 microcomputer and the 3871 PIO only; other devices have
the F8 1/0 pin characteristics. .

If you do not understand digital logic. then you will not understand the illustration above. but that is not particularly im­
portant. The above illustration explains exactly how bidirectional 110 port pin logic works. From a programmer's point
of view. this simply translates into the fact that you can freely input and output data without worrying about prior 1/0
port contents. However. all 1/0 port pins have inverted logic. This means that when you write 1 to a!1110 port pin a 0
voltage will be generated. while a +5V voltage will be generated if you output 0 to the pin. Conversely. external logic
will cause your program to input 1 if it grounds a pin. while it will cause your program to input 0 if it applies +5V to the
pin. ..

The output buffer portion of 1/0 port pin logic determines th,e pin characteristics. Standard TTL logic is provided
by the standard output buffer, which may be illustrated as~ follows:

vee

I 6K II (typ;""n

2-12

c
w

~
a::
o
a.
a::
o
u
~
en
w ...
< g
(I)
(I)

<
oil
w
Z
a::
o
en
(I)
o
~
< c
1-
@

You can buy 3870 devices with different output buffers at I/O Port~ 4 and 5. but not at I/O Ports 0 and 1. I/O Ports 0
and 1 pins can only have the standard output buffer illustrated above. There are two optional output buffer designs
available for phls of I/O Ports 4 and 6. A direct drive output is similar to the standard output. but it sources more cur­
rent. Logic is illustrated as follows:

Vee

, 1 K n (typical)

--
The other option is an open drain output. which may be illustrated as follows:

The open drain output allows you to tie pins together: you can then wire-AND two or more pins when data is output.
Consider the following configurations:

, P44 --...-j--P43 ~

P45 -~----.... -

If all outputs are high. then the wire-AND will be high: however. if anyone of the three outputs goes low. then the wire­
AND resulti~g from all three outputs will also go low.

3870 INTERRUPT LOGIC
External logic can input an interrupt request to the 3870 via the EXT INT signal.

Interrupt requests may also be generated internally by timer/counter logic.

There are two levels of interrupt enable/disable logic within the 3870; There is a Control
register (described later in this chapter) which has bits 0 and 1 set aside to selectively ena­
ble or disable external interrupts and timer/counter interrupts, respectively. If one or both of
these interrupts are enabled. then any interrupt request is still subject to master ena-

2-13

3870
INTERRUPT
DISABLE

ble/disable logic, which is specified by the Interrupt Control bit of the Status register (bit 4 "of the W register).
This may be illustrated as follows:

""1 -----------~~ To CPU

432

Latch

a ... Bit No.

.... ~--- Status register (W)

,-"-.

For all bits:
1 =enable
a = disable

7 6 5 4 3 "2 1 a_--- Bit No.

I x I ta= Control ,,.;,ie,

1 ~t~
External Interrupt

• TIme,/Counte, ,Inte"upt

A timer/counter interrupt request is latched. If timer/counter interrupt logic has been disabled via Control register
bit 1. then an interrupt request will be held until timer/counter interrupts are subsequently enabled; the interrupt re­
quest will then occur.

External interrupt requests are not latched. An external interrupt request will only occur if the EXT INT signal makes
an active transition while external interrupts have been enabled by Control register bit O.

Ariy inteh'upt request that reaches Status register logic will be latched, Thus. if Status register bit 4 is 0 when
either an external interrupt request or a. timer/counter interrupt request occurs. then the interrupt request will be held
pending until Status register bit 4 is subsequently set to 1. .

A reset or power-on operation disables all interrupts: the Status and Control registers are cleared.

Timer/counter interrupt requests have priority over external interrupt requests. Thus. if a timer/counter interrupt
request and external intertupt request occur simultaneously and both are enabled. then the timer/counter interrupt re­
quest will be acknowledged.

When any interrupt request is acknowledged, further interrUpts are disabled via the Status register: however. in­
terrupt enable/disable logic associated with the Control register is not affected. Thus. an external interrupt request will
be held pending for the duration of a timer/counter interrupt seivice routine's execution. However. the external inter­
rupt request will be removed if. at any time while it is held pending. external interrupts are specifically disabledvia bit 0
of the Control register. . . .' .. .

If a timer/counter interrupt request is generated while an external interrupt service routine is being executed. then
Status register interrupt disable logic will prevent the timer/counter interrupt request from interrupting the external in­
terrupt service routine. However. the timer/counter interrupt request will beheld pending until interrupts" are subse­
quently enabled at the Status register. If for any reason timer/counter interrupts have been specifically disabled via
Control register bit 1. then any subsequent timer/counter interrupt request will be delayed until timer/counter interrupt
logic is specifically enabled via bit 1 of the Control register.

When an interrupt request is acknowledged. the Program Counter(PCO)"contents a~e s8vedon the Stack register (PC 1).
For a Timer interrupt request. a new value. 02016. is loaded into the Program Counter: . '. " I.

a2a16~ ~
I, I I ~I~'~~

pca PC1

2-14

o
w

~ a:
o
0..
a:
o
u
~
ui
w

~ g
fI)
fI)

~
Gl:I
w.
Z
a: o
ID
fI)
o
::i:
~
~

@

When an external interrupt request is acknowledged. Program Counter (PCO) contents are saved in the Stack register
(PCn then the new value OA016 is loaded into the Program Counter (PCO). Thus. interrupt service routines for timer
and external interrupts must originate at memory locations 02016 and OAO 16. respectively.

Since a reset or power-on clears the Program Counter. the beginning of program memory must be allocated thus:

000

020

OAO

TIMER/COUNTER LOGIC

Program
Memory

... .:~-·Initialization begins here

Timer interrupt service routine
.... _ ... -- begins here

__ Extemal interrupt service routine
... -~- begins here

3870 timer/counter logic represents a significant enhancement over prior F8 logic.

3870 timer/event counter logic consists of an 8-blt binary Counter register together with a Buffer register and
associated logic. The two registers are accessed as I/O Port 7. Data output to I/O Port 7 is written into the Counter
register and the Buffer register. Data input from Port 7 is read from the Counter register only. This may be illustrated
as follows:

Out to ---­
I/O Port 7 _~ __

Buffer Register

In from I/O Port 7

The scheme illustrated above allows timer/counter logic to operate in a "free running" mode. Whenever the contents
of the Counter register decrement to O. the new Counter register contents are taken from the Buffer register. and a
timer interrupt request occurs. This may be illustrated as follows:

Counter Buffer
Register Register

. Contents Contents
02 . xx
01 xx
---.;--------... ~ Timer interrupt request
00 xx
xx xx.

xx-1 xx
xx-2 xx
etc. etc.

You can read Counter register contents at any time. eVE!n while the timer/counter is operating. by inputting from I/O
Port 7: Counter register contents will be input.

Timer/counter logic can be operated in Interval Timer mode, in Pulse Width Measurement mode, or in Evant
Counter mode. The contents of a Control register (which is accessed as I/O Port 6) determine the mode.in which
timer/counter logic will operate. We will describe the Control register after discussing timer/counter operating
modes.

2-15

In Interval Time~ mode, timer/counter logic is used to compute time intervals. In order to 3870
compute a time interval, the timer/counter register contents are decremented at fixed INTERVAL
"decrement" intervals. The decrement interval is equal to a number of clock periods. as TIMER MODE
specified by the control code. The decrement interval may range between a low of two clock
periodsahd a high of 400 clock periods. If. for example. a 500 nanosecond clock is employed and the decrement inter­
val is 100 clock periods. then the Counter register contents will be decremented once every 50 microseconds. If the in­
itial value output to I/O Port 7 is 20010 (C816). then in Interval Timer mode. timer/counter logic will time out once ev­
ery 10 milliseconds.

Time interval = 0.5 x 100 x 200 microseconds

The time delays which can be generated using timer/counter logic in Interval Timer mode are given by the following
equation:

Time interval = Reset value x Decrement time interval

The reset value is the value written out to I/O Port 7; it may have any value in the range 0 through 255. 0 is in fact
equivalent to a count of 256. since the decrement ends with a Timer interrupt request when Counter register contents
decrement from 1 to O.

In Interval Timer mode, timer/counter logic operates as follows:

1) An initial value must be output to I/O Port 7. This becomes the reset value.

2) Using an appropriate control code. you select Interval Timer mode and options. The control code also starts and
stops timer/counter logiC in Interval Timer mode.

3) Once started by an appropriate control code. the Counter register continuously decrements. reloads. and redecre­
ments.

4) In order to stop the timer/counter when operating in Interval Timer mode. you must output ari appropriate control
code.

Each time the Counter register decrements to b. a ti~er interrupt request is generated. If timer iniernlp~ requests are
enabled. then the interrupt request will be ackn6wledged; if timer interrupt requests are disabled. the interrupt request
will be latched and will be held pending until timer interrupt requests are subsequently enabled.

If interrupts are enabled when timer/counter logic times out in Interval Timer mode. there will be a small time delay
before the interrupt is acknowledged; no interrupt cah be acknowledged until the conclusion of the currently executing
instruction. plus the next instruction if it is privileged. (Privileged instructions are instructions which cannot be inter­
rupted; they are identified in Table 2-1.) In the worst case. it is possible for 49 clock periods to elapse be.tween the
timer/counter timing out and a timer interrupt being acknowledged; on the average. between 24 and 30 clock periods
will separate these two events. If long delays between a time-out and interrupt acknowledge are not aC<:eptqble. then
you must avoid executing privileged instrLJctions while timer/counter logic is operating in Interval Timer mode.

In P~lse Width Measurement mode, timer/~aunter logic measures the duration of a pulse
which is input on the EXT INT pin. Under program control. you can measure a low pulse:

3870'
PULSE ,WIDTH
MEASUREMENT
MODE

EXTINT \
+

START
TIMER

or you can measure a high pulse:

EXTINT I

START
TIMER

I
+

STOP
TIMER

_---­
-4

STOP
TIMER

Stop and start logic represerits the only difference between Pulse Width Measurement mode and Interval Timer mode.
As illustrated above. it is EXT INT signal transitions that start and stop timer/counter logic in Pulse Width mode. In ad­
dition. you can use control codes to stop timer/counter logic in Pulse Width mode.

2-16

c
w

~
a:
o
Q.
a:
o
(J

~
en
w
I­
~
U o
en
en
~

o!I
w
Z
a:
o
al
en o
~
~
c
~

@

An external interrupt request occurs at the trailing edge of the EXT INT pulse. This external interrupt request will be
acknowledged only if external interrupts have been enabled. If external interrupts are disabled. no interrupt request oc­
curs. That is to say. if external interrupts are enabled at some point after the end of a pulse. no interrupt request will be
pending.

Within the pulse itself. timer/counter decrement logic works exactly as described for Interval Timer mode. The Counter
register contents are decremented once each decrement interval; the decrement interval is defined in Interval Timer
mode. If the timer/counter does not time-out within the pulse width. then on the trailing edge of the pulse the
timer/counter is stopped. By inputting from I/O Port 7. you read the contents of the Counter register at the trailing edge
of the pulse; the difference between this input value and the initial reset value can be used to compute the pulse dura­
tion. as follows:

Pulse duration = (Initial reset value - final Counter register contents) x decrement time interval

For example. su ppose the initial reset value output to I/O Port 7 is 10010 (6416). while the final value input from I/O
Port 7 is 1610 (1016); if the control code has set timer/counter logic to decrement once every 100 microseconds. then
the pulse width must be 8.4 milliseconds:

Pulse width = (100 - 16) x 100 microseconds

If the Counter register does time-out within a pulse. then a timer interrupt request occurs. the Buffer register contents
are loaded into the Counter register. and decrementing restarts. Program logic must respond to the timer interrupt re­
quest by incrementing a scratchpad counter; the total pulse time is computed as follows:

Pulse duration = (Initial reset value - final Counter register contents)
x decrement time interval
x initial reset value x decrement time interval
x scratchpad counter contents

Suppose. for example. that the initial reset value output to I/O Port 7 is 20010 (C816). and that the Counter register has
timed out three times within the pulse width; the scratchpad counter will now contain 3. If the final value input from
I/O Port 7 is 5310 (3516) and the decrement time interval specified by the control code is 50 microseconds. then the
total pulse timer interval is 37.35 milliseconds:

Pulse interval = (200 - 53) x 50 + 200 x 3 x 50
= 37.350 microseconds

In Event Counter mode, the Counter register contents are decremented on "active" transi­
tions of the EXT INT input. An "active" transition on this signal may be high-to-Iow or low-to­
high. as selected by the control code.

In the Event Counter mode. when the Counter register decrements to 0 a timer interrupt request is
latched. as described for the Interval Timer mode. Thus. if the timer interrupts are enabled. the in-

3870
EVENT
COUNTER
MODE

terrupt request will be acknowledged following execution of the next non-privileged instruction; if timer interrupts are
disabled. the interrupt request will be held until interrupt requests are re-enabled. Active transitions on the EXT INT
signal. while decrementing the Counter register contents. also cause interrupt requests to occur if external interrupts
are enabled. Since it would be pointless to have an external interrupt request occur on every decrement. external inter­
rupts are normally disabled in Event Counter mode.

THE 3870 CONTROL CODE
Operation of 3870 timer/counter logic and interrupt logic is controlled via an 8-bit control code which must bo
output to I/O Port 6. I/O Port 6 is a write-only location. When you input from I/O Port 6, you do not read the con­
tents of the Control register: rather~ the level on the EXT INT pin appoars at bit 7 of the Accumulator. This may
be illustrated as follows:

_~:_g~~~O_elr _~~"':'-';;';;';~$~~~~
I I I I I I I I I Accumulator

40000000

EXTINT ~}---------------j.' IN 6

2-17

If you need to read the control code after writing it out. then you must keep a copy of it in one of the scratch pad bytes.

Control code bits are assigned as follows:

7 6 5 4 3 2 o ",-SitNo.

I I I I I I I I I
I~ I ~ . ~ . .~ ~. ~ ~

~{

{
{
{

{

+ ,---.

Control code

o Extemal interrupts disabled
1 Extemal interrupts enabled

o Timer/counter interrupts disabled
1 Timer/counter interrupts enabled

o EXT INT is active low ~

1 EXT INT is active high ~

o Stop timer/counter in any mode
1 Start timer/counter in Interval Timer or Event Counter modes

o Interval Timer mode if bits 7, 6, 5 are not 000
Event Counter mode if bits 7, 6, 5 are 000

1 Pulse Width Measurement mode. (Do not use 000 for bits 7, 6, 5 in
this mode) .

+ 5 pre-scalar
+ 2 pre-scalar}

+ 20 p .. -,c,'" ~

7 6' 5 ",-SitNo.

o Event Counter mode o 0
o ·0
o 1
o

6 . ! ~ ~~:~:~:::~}" .
1 1 + 10 pre_scalar. Pre-scalar x Clock period gives decrement time in-

1 o 0 . + 20 pre-scalar terval in Interval Timer or Pulse Width Measure-
1 o 1 + 40 pre-scalar ment modes
1 1 0 '+ 100 pre-scalar .
1 1 1 + 200 pre-scalar . .'

Bits 0 and 1 are used to selectively enable or disable interrupt requests. External interrupt requests occur via
active transitions on the EXT INT input signal; timer/counter interrupt requests are generated within
timer/counter logic. You have the option of enabling both external interrupts and timer/counter interrupts; you
can enable one but not the other, or you can disable both.

Recall that timer/counter interrupt requests are latched; if timer/counter interrupt logic is disabled (control code bit 1 is
0) whe"n the timerlcounter interrupt request occurs. then the interrupt request will remain pending until timer/counter
interrupts are subsequently enabled (control code bit 1 is 1). or until the 3870 is reset. A reset removes the latched in­
terrupt request. External interrupts are not latched; an external interrupt request will be generated only as EXT INT
makes an active transition while control code bit 0 is 1. A timer/counter interrupt request occurs whenever the
timer/counter register decrements from 1 to O. as previously described.

An external interrupt request occurs whenever an "active" transition is sensed on the EXT INT pin. Bit 2 of the
control code determines what an "active" transition of EXT INT will consist of. If bit 2.is O. then a low level on
EXT INT is considered active. and high-to-Iow transition causes an external interrupt request. If bit 2 of the control code
is 1. then a high level on EXT INT is considered active and a low-to-high signal transition will cause an external inter­
rupt request.

Control code bit 3 is the start/stop bit. This bit must be used to start and stop timer/counter logic when operating in In­
terval Timer mode or Event Counter mode. When timer/counter logic is operating in Pulse Width Measurement mode.
then leading and trailing edges of an active EXT INT pulse start and stop timer/counter logic; within a pulse. however.
the start/stop bitof the Control code can be used to stop and then restart timer/counter logic.

2-18

c
w

~
a: o
Q.
a:
o
o
~
en
w

~
g
C/)
C/)

<
a!I
w
Z
a: o
CD
C/)

o
~.

< c
<
@

In Interval Timer mode or Pulse Width mode. bits 5. 6 and 7 select the decrement time interval. The important point to
note is that bits 5. 6 and 7 are cumulative. Thus. you have seven pre-scalar options shown with the control code.

In Interval Timer mode or in Pulse Width mode. the Counter register contents are decremented once every decrement
time interval. A decrement time interval is equal to the internal clock pulse time multiplied by the pre-scalar. Assuming
a 500 nanosecond internal clock pulse width. 010 in Control register bits 7.6 and 5 would generate a decrement time
interval of 2.5 microseconds. A decrement time interval of 50 microseconds would be generated by 110 in Control
register bits 7. 6 and 5.

THE 38~O/F8 INSTRUCTION SET
Table 2-1 summarizes the 3870/F8 instruction set: instructions are grouped into categories that conform with
our hypothetical microcomputer Instruction set, as described in Volume I, Chapter 7. .

With reference to Table 2-1. refer to the addressing modes description for an explanation of "r". which occurs in the
operand column to represent some of the scratchpad addressing options.

One of the more confusing aspects of 3870/F8 programming is understanding the ways in which data may be moved
between different registers: this information is therefore summarized in Figure 2-4.

The following symbols are used in Table 2-1 :

A The Accumulator
addr A 16-bit memory address

C Carry status
data3 A 3-bit binary data unit
data4
data5
DCO
DC1

dpchr

disp
FMASK

H

ISAR
J
K
o
p4

p8
. PCO

PC1
a

A 4-bit binary data unit
. A 5-bit binary data unit
Data Counter register
Data Counter buffer
Scratchpad Data or Program Counter Half Registers. These are KU (Register 12). KL (Register 13). au
(Register 14) and aL (Register 15).
An 8-bit signed binary address displacement
A 4-bit mask composed of a portion of the Status register (W):

3 2 0 Bit No.

I-~--I=FMASK

--------Overflow status

Scratchpad Data Counter Register H (Registers 10 and 11).
The Interrupt Control Bit in the Status register (W).
Indirect Scratchpad Address Register
Scratchpad Register 9
Scratchpad Registers 12 and 13
Overflow status
A 4-bit I/O port number
An 8-bit 1/0 port number

Program Counter
Stack register
Scratchpad Registers 14 and 15

2-19

S
sr
TMASK

Any of the following operands and Scratchpad addressing modes:
R direct address of bytes 0 through 11 .
S implied addressing via ISAR
I implied addressing via ISAR. with auto-increment of the low-order

three ISAR bits
D implied addressing via ISAR. with auto-decrement of the low-order

three ISAR bits
Sign status
The register specified by the r argument
A 3-bit mask composed of a portion of the Status register (W):

2 0 ~BitNo.

TMASK

~--- Sign status

~---- Carry status

'------- Zero status

W The CPU Status register

Z Zero status
x<y.z> Bits y through z of the quantity x. For example. A <3.0> represents the low-order four bits of the Ac­

cumulator; addr < 15.8 > represents the high-order eight bits of a 16-bit memory address
[] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets.

then the designated register's contents are specified. If an I/O port number is enclosed within the brackets.
then the liD port contents are specified. If a memory address is enclosed within the brackets. then the con-
tents of the addressed memory location are specified. .

[[]] Implied memory addressing; the contents of the memory location or register designated by the contents of
a register

A Logical AND
V Logical OR
¥ Logical Exclusive OR

Data is transferred in the direction of the arrow
Data is exchanged between the two locations designated on either side of the arrow

Under the heading of STATUSES in Table 2-1. an X indicates statuses which are modified in the course of the instruc­
tions' execution. If there is no X. it means that the status maintains the value it had before the instruction was ex­
ecuted. A 0 or 1 means the status is cleared or set. respectively.

2-20

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 2-1. 3870/F8 Instruction Set Summary

TYPE MNEMONIC OPERAND(S)
STATUSES-

BYTES OPERATION PER-FORMED
C Z S 0

INS P4 1 0 X X 0 (A]-[P4]

Input to Accumulator from I/O port.
IN PS 2 0 X X 0 [A]-[PS]

-g Input to Accumulator from I/O port.

OUTS P4 1 [P4]-[A]

Output to I/O port from Accumulator.

OUT PS 2 [PS]-[A]

Output to I/O port from Accumulator.

LM 1 [A]-[[DCO)). [DCO]-[OCO]+ 1

Load the Accumulator via DCO and auto-increment DCO.

ST 1 [[DCOll-[Al. [OCO]-[OCO+ 11
Store the Accumulator via DCO and auto-increment OCO.

LR A.r 1 [A]-[SR]

Load the contents of the specified register. SR. into the Accumulator. Increment or decrement

ISAR if specified by r.
LA A.DPCHR 1 [A]-[DPCHR]

Load Accumulator with the conterits of the specified DPCHR.
LR r.A [SR]-[A]

IU. Load the contents of the Accumulator into the specified register. Increment or decrement ISAR
U if specifl8d by r. Z
IU LR DPCHR.A 1 [DPCHR]-[A] a:
IU Load the contents of the Accumulator into the specifl8d DPCHR. ~
IU

LR DCO.H 1 [DCO]-[H] a:
>- Load the contents of Scratchpad registers 10 and 11 into DCO. a:
0 LR DCO,o 1 [DCO]-[o]
:E
IU Load the contents of Scratchpad registers 14 and 15 into DCO.
:E LR H,DCO 1 [H]-[DCO]
>-

Load the contents of DCO into Scratchpad registers 10 and 11. a:

i LR o.DCO 1 [O]-[OCO]
a: . L.oad the contents of DCO lnto Scratchpad registers 14 and 15. a.

LR PC1.K 1 [PCl]-[K]

Load the contents of Register K into the Stack register.

LR K,PCl 1 [K]-[PCl]

- Load the contents of the Stack register into Register K.

LR pco,o 1 [pco]-[o]

Load the contents of Register a into the Program Counter.

PI< 1 [pCl]-[PCO], (PCO]-[oi

Save the f=:ontents of the Program cOunter in the Stack register. then ioad the contents of
Register a into the Program Counter.

TYPE MNEMONIC OPERANDIS)

AS

ASD

NS

xs

OS

AM

AMD

NM

OM

XM

CM

LlSU DATA3

LlSl DATA3

DCI ADDR

US DATA4

LI DATA8

Table 2-1. 3870/F8 Instruction Set Summary (Continued)

STATUSES
BYTES ~---r---T--~~--~--~~

c z s o

x x x x

x x x x

x x o

o x x o

x x x x

x x X X

x x X X

o X X

o X X o

o X X o

x X X X

OPERATION PERFORMED

[Al-:[A]+ [SR]

Add binary the contents of the specified register to the cdntents of the Accumulator. Increment
or decrement ISAR if sPecified by r.

[A]--:-[A]+ [SR]

Add decil1)al the contents of the sP<ICified register to the contents of the Accumulator; that is.
both numbers are assumed to be BCD digits. Increment Or decrement ISAR if sPecified by r.

[A]-[A] A [SR]

. AND the contents of the specified register with the contents of the Accumulator. Increment or
decrement ISAR if specified by r.

tA]"":[A]¥[SR]

Exclusive-OR the contents of the specif.ect register with the contents of the Accumulator. Incre-'
ment or decrement the ISAR if specified by r.

[SR]-[SR] - 1

Decrement the specified register. Increment or decrement ISAR if specified by r.

[A]-[A1+ [(DCO]]. [DCO]-[DCO] + 1

Add Accumulstor contents to the contents of the memory location addressed by OCO. Incre­
ment DCO.

[A]-[A]+ [(DCO]]. [OCO]-[DCO]+ 1

Decimal add Accumulator contents to the contents of the memory location addressed by DCO.
Increment DCO.

[A]-[A] A [[DCa]]. [DCO]-[Dcol+ 1

AND Accumulator contents with the contents of the memory location addressed by DCO. Incre-
ment DCO. .

[A]-[A]V [(OCO]], [DCO]-[DCO]+ 1

OR Accumulator contents with the contents of the memory location addressed by DCO. Incre­

ment DCO.
[A]-[A] [(DCO]i. [DCO]-[DCO]+ 1

Exclusive-OR Accumulator contents with the contents of the memory location addressed by
DCO. Increment OCO.

[(DCO]] - [A1. [DCO]-[DCO] + 1

Subtract the contents of the Accumulator from the contents of the memory location addressed
. __ by OCO. !?nly the status fla.gs are affected. Increment DCO.

[ISAR <5.3 >]-oATA3
Load immediate into the upper three bits of the ISAR.

[ISAR<2.0>]-oATA3
Load immediate into the lower three bits of the ISAR.

[DCO]-ADDR

Load immediate data into the DCO.

[A<3.0>]-DATA4

Load immediate data into the lower four bits of the Accumulator .. Clear the high four b!ts of the

Accumulator.
[A]-DATA8

Load immediate data into Accumulator.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 2-1. 3870/F8 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND IS) BYTES OPERATION PERFORMED

C Z S 0

AI DATAS 2 X X ~ x [A)-[A) + DATAS
1&1 Add immediate to Accumulator: ~
4(NI DATAS 2 0 X X 0 [A)-[A) A DATAS a:
1&1 AND i.r:nmediate with Accumulator. a.
0 01 DATAS 2 0 X X 0 [A)-[A) VDATAS
1&1
~ OR immediate with Accumulator. 4(
Q XI DATAS 2 0 X X 0 [A)-[A).y.DATAB
1&1

Exclusive-OR immediate with Accumulator. ::E
~ CI DATAB 2 X X X X DATAB - [A]

Compare immediate: subtract Accumulator contents from immediate data. but only the status

f1,!I;1.~ are affected.

PI ADDR 3 [pcll-[PCOl. [PCO)-ADDR

Save Program .Counter in Stack register. then load immediate address into Program Cou·nter.
a. BR DISP 2 [pcO)-[PCO)+DISP
::E
:;) Add immediate displacement to contents of Program Counter. ..,

JMP AD DR 3 [PCO)-ADDR. [A)-ADDR<15.B>

Load irnmediate address into Program Counter.1.oad the high order byte of the address into the

Accumulator,

BT . DATA3.DISP 2 If DATA3 VTMASK4 0 then [PCO)-[PCO) + DISP

OR the 3 bits of immediate data with the current TMASK.lf any resulting bit is a 1. add the dis-

placement· to PCO.

BF DATA4.DISP 2 If DATA4 =FMASK. then [PCO)-[PCO)+DISP

If the 4 bits of immediate data are equal to FMASK. add the displacement to PCO.

BP DISP 2 If[S] = 1 then [PCO)-[PCO)+ DISP

Branch relative if the Sign bit is set.

Z Be DISP 2 If [e) = 1 then [PCO)-[PCO)+ DISP

0 Branch relative if the Carry bit is set.
·E BZ DISP 2 If [Z) =; 1 then [PCO)-[PCO)+ DISP

Q
Z Branc~ !.ellltive !!'!!J~ Zero bit is set.
0
U

8M DISP 2 If [S) =utnen lrCO]-[PCO)+ DISP
Z
0 .Branch relative if the Sign bit is reset.
:z:. BNC DISP 2 If [C) =0 then [PCO)-[PCO)+ DISP
U
Z Branch relative if the Carry bit is reset.
4(
a: BNZ DISP 2 If [Z] =0 then [PCO)-[PCO]+DISP
ID

Branch relative if the Zero bit is reset.

BNO DISP 2 If (0) =0 then· [PCO]-[PCO)+ DISP

Branch relative if the Overflow bit is reset.

BR7 DISP 2 If [ISAR <2.0 » = 7 then [PCO)-[PCO) + DISP

If the low three bits of the ISAR are not all 1s. branch relative.

Table 2-1. 3870/F8 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

C Z S 0

a: XDC 1 [DCO]-[DCll
'" I- Exchange:the contents of DCO with the contents of DC1.
(/)

S LR A.IS 1 [A]-[ISAR]

"'''' Load the contents of ISAR into the Accumulator.
~~
~~ LR IS. A 1 [ISAR]-[A]

(/) Load the contents of the Accumulator into the ISAR.

S pop

'"
1 [PCO]-[PCll

a: Load the contents of the Stack register, into the Program Counter.

a: a: '" ADC 1 0 X 1 0 [DCO]-[DCO]+ [A]
"'''' I-
1-1- c(Add the contents of DCO to the contents of the Accumulator, which is treated as a signed binary
(/)(/) a:
SS'" number. Store the ,result in DCO.
",,,,IL
a: a: 0

i

SR' 1 1 0 X 1 0 0--+f7 of.
Shift the contents of the Accumulator right one bit. The most significant bit becomes a O.

17 l I
i

0' SR 4 1 0 X 1 0 0000

T
Shift the contents of the Accumulator right four bits. The most significant four bits become Os.

'"
SL 1 1 0 X X 0 +--17 Ot.-O

I-
Shift the contents of the Accumulator left one bit. The least significant bit becomes a O. c(

a:

'" ,
~

IL
0 P I 0' 0000 a: SL 4 1 0 X X 0

'" T l-
(/)

S Shift the contents of the Accumulator left four bits. The least significant four bits become Os. w
a:

[A]-[M COM 1 0 X X 0
Complement Accumulator contents.

LNK 1 X X X X [A]-[A]+C

Add the Carry to the contents of the 'Accumulator.

INC 1 X X X X [A]-[A]+1

Increment the contents of the Accumulator.

CLR 1 [Al-O

Clear the Accumulator.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 2-1. 3870/F8 Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

C Z S O.

I-
[1]-0' CL DI 1

:I
a: Set the interrupt enable- bit in the Status register •. W, to O. a:
1&1 EI 1 (1)-1
I-
!: Set the interrupt enable bit in the Status register, W.to·1.

CI.I LR W,J 1 [W]-[J)
:I
I- Move the contents of Scratchpad register 9 into the Status register. W.
c(
I- LR J,W 1 [J]-[W]
CI.I

Move the contents.of the Status register, W. into Sclatchpad register 9.

NOP 1 No operation is performed. This is not a Haft.

THE 3870 BENCHMARK PROGRAM
The fact that the 3870 has just 64 bytes of read/write memory makes the benchmark program used In this book
somewhat meaningless. We will therefore substitute a program similar to the one given in Chapter 1 for the
TMS1000. A block of data is to be input via I/O Port O. The first byte of data identifies'the length of the data block to
follow: this data block must be less than 48 bytes in length so that it will fit into scratchpad memory starting at
scratchpad byte 1016. Here is the necessary program:

LOOP

7

7

INS 0 INPUT FIRST BLOCK LENGTH BYTE
LR O,A SAVE IN SCRATCHPAD BYTE 0
L1SU 1 INITIALIZE ISAR·
L1SL 0
INS 0
LR S,A
LR A,IS
INC
LR
DS
BNZ

IS,A
o
LOOP

Accumulator

ISAR

I

INPUT DATA BYTE
SAVE IN NEXT SCRATCHPAD BYTE
INCREMENT ALL SIX ISAR BITS

DECREMENT SCRATCHPAD BYTE 0
RETURN IF NOT ZERO

CPU .

0
LR r,A
LR A,r

I 0

General
: Registers

Register 2

0
Address
Poiriter

3 .. 4

5

6

LRJ,W 7
0 8

9 J

A H

B H

C K
Overflow

D K
Zero

Carry

Sign

15 o

Data Counter

Memory :r Address
Pointer

LR DC,H
LR H,DC
LR DC,Q
LR a,DC

E

F
10

Q

Q

· • · I • 3'RS3

PI, Interrupt, Reset

15
I 0 ____ .. t .. _____ ...

POP

Program Counter

PK
PI

Interrupt
Reset

........... _-_ _-_
Stack Pointer

LR P,K

Figure 2-4. Instructions That Move Data Between the Scratchpad and Various Registers

2-26

c
w

~ c: o
D­
c:
o
o
~
en
w

~
g
fI)
fI)

<
CI/S
w
Z
c: o
CD
fI)

o
~
< c
<
@

Table 2-2. Timing and ROMe States for Fa Instruction Set

ROMC
MNEMONIC: OPERAND IS) CYCLE. STATE MNEMONIC OPERAND IS) . CYCLE.

ADC L A LISU DATA3 S

S 0 LM L

AI OATA8 L '3 S

S· 0 LNK S

AM L 2 LR A,IS S

S 0 LR A,KL S

AMD L 2 LR A,KU S

S O· LR A,ClI. S

AS r S 0 LR A,QU S

ASD r S lC LR A,r S

S 0 LR' DCO,H L

BF { DATA4,DISP S lC

Branch L 1

S 0

L

S

LR DCO,Q L

S lC L

No { S 3

Branch S 0

S

LR H,DCO L

BR7 t DISP S 3

No' Branch S 0

{ L 1
Branch S 0

L

S

LR IS,A S

LR J,W S

BT

1
DATA3,DISP S lC

No S 3

Branch S 0
S lC

Branch L 1

S 0

LR K,P L

L

S

LR KLA S

LR KU,A S

LR P,K L

CI DATA8 L 3 L

S 0 S

CM L 2 LR PCO,Q L

S 0 L

COM S 0 S

DCI ADDR L 11 LR Q,DCO L

S 1 .-, L

L E S

S 3 LR QL,A S

S 0 LR QU,A S

DI S lC LR r,A S

S 0 LR W,J S

DS r L 0 S

EI S lC NI DATA8 L

S 0 S

IN P8 L 3 NM L

L lB S

S 0 NS' r S

INC S 0 01 DATA8 L

INS Oor 1 S lC S

S 0 OM L

INS 2 L lC S

through L 18 OUT P8 L

15 S 0 L

(INTERRUPTI L lC S

L 08 OUTS Oorl S

L 13 S
S 0 OUTS 2 L

JMP ADDR L 3. through L
L C 15 S
L 14 PI ADDR L
S 0 S

LI DATA8 L. 3 L
S 0 L

LIS DATA4 S 0 S
uSt. DATA3 S 0

2-27

ROMe

STATE

0
2
0
0
0
0
0
0
0
0
16

19

0
16

19

0
6

9

0
0
0
7
8

0
0
0
15

18

0

6
9·

0
0
0
0
lC

0
3

O.

2
0
0
3

0

2
0
3

1A

0
lC

0
lC

lA

O·
3

D

C

14

0

Table 2-2. Timing: and ROMC States 'for F8 Instruction Set (Continued)

MNEMONIC OPERAND!S)

PI<

:

pop

!RESET}

SL' 1
SL 4
SA 1
SA 4
Sf

XI DATAB

XM

xs r

The following symbols are used in Table 2-3:

aaaa Four bits choosing the register addressing mode:
0000-1011 Registers 0 - B directly addressed .

1100 ISAR addresses the register'

ROMC
, CYCLE, STATE

L 12
L 14
S 0
S 4
S 0
s 1C

L B
S 0
S 0
S 0
S 0
S 0
L 5
S 0
L 3

S 0
L 2

S 0
S 0

1101 ISAR addresses the register. Increment low three bits of ISAR.
1110 ISAR addresses the register. Decrement low three bits of ISAR.
1111 NOP. No operation is performed if aaaa=F16.

cc Two bits choosing a Scratchpad register:
OO--KU Scratchpad Register 12
01--KL Scratchpad Register 13
10--0U . Scratchpad Register 14
11--0L Scratchpad Register 15

d One bit of immediate data.
eeee A 4-bit port number.
qqqq A 16-bit address.

rr
ss
yy

An 8-bit signed d,isplacement.
An 8-bit port number.
One byte (8 bits) of immediate data:.

When two numbers are given in the "Machine Cycles" column (for example. 3/3.5). the first is the execution time if no
branch is taken. and the second is execution time if the branch is taken.' .

2-28

Q
w

~
a: o
0-
a:
o
CJ
~
en
w

~ g
en
en
ct
all
w
Z
a:
o
CD
en o
~
ct
Q
ct
@

Table 2-3. 3870/F8 Instruction Set Object Code

ODJECT MACHINE OBJECT MACHINE

INSTRUCTION CODE BYTES CYCLES INSTRUCTION CODE BYTES CYCLES

ADC BE 1 2.5 LNK 19 1 1

AI DATAB 24 yy 2 2.5 LR A.DPCHR OOOOOOcc 1 1

AM BB 1 2.5 LR A.IS OA 1 1

AMO B9 1 2.5 LR A,r 010081188 1 1

AS r . 11008888 1 1 LR DC,H 10 1 4

ASO r 11018888 1 2 LR DC,a OF 1 4

Be OISP B2 RR 2 3/3.5 LR DPCHR,A 00000lcc 1 1

BF DATA4.DISP l00ldddd 2 3/3.5 LR H,DC 11 1 4
RR LR IS,A OB 1 1

8M DISP 91 RR 2 3/3.5 LR J,W 1E 1 1

BNC DISP 92 RR 2 3/3.5 LR K,PCl OB 1 4

BNO DISP 9B RR 2 3/3.5 LR pco,a OD 1 4

BNZ DISP 94 RR 2 3/3.5 LR PC1,K 09 1 4

BP DISP Bl ~R 2 3/3.5 LR a,DC OE 1 4

BR DISP 90 RR 2 3.5 LR r,A 01018888 1 1
BR7 DISP BF RR 2 3/3.5 LR W,J 10 1 2

BT DATA3.DISP l0000ddd 2 3/3.5 NI DATAB 21 YY 2 2.5
RR NM BA 1 2.5

BZ DISP 84 2 3/3.5 NOP 2B 1 1
RR NS r 11118888 1 1

CI DATAB 25 YY 2 2.5 01 DATAB 22 YY 2 2.5
CLR 70 1 1 OM BB 1 2.5
CM BD 1 2.5 OUT PB 27 55 2 4
COM lB 1 1 OUTS P4 1011eeeo 1 4
DCI AD DR 2A aaaa 3 6 PI ADDR 2B aaaa 3 6.5
DI lA 1 2
DS r 00118888 1 1.5

PK OC 1 4

pop lC 1 2
EI lB 1 2
IN PB 26 55 2 4
INC lF 1 1
INS P4 1010eeee 1 4

SL 1 13 1 1

SL 4 15 1 1

SR 1 12 1 1

SR 4 14 1 1
JMP ADDR 29 aaaa 3 . 5.5

ST 17 1 2.5
LI DATA8 . 20 yy 2 2.5

XDC 2C 1 2·
LIS DATA4 0111dddd 1 1

XI DATAB 23 YY 2 2.5
LlSL DATA3 01101ddd 1 1 XM BC 1 2.5
LlSU DATA3 01100ddd 1 1 XS r 11108888 1 1
LM 16 1 2.5

THE 3860 CPU

Beginning with the 3860 CPU. we are going to describe the Individual devices of the Fa microcomputer system.
The 3860 CPU and the 3861 PSU descriptions depend on the preceding 3870 discussion for a frame of
reference. That Is to say. these two F8 devices are described as variations of the 3870. rather than as stand­
alone devices.

Functions Implemented on the 3860 CPU are illustrated In Figure 2-6.

These are the functions which one would expect to find on a CPU chip. and which are on the 3860 CPU:

- The Arithmetic and Logic Unit
- The Control Unit and Instruction register
- Logic needed to interface the System 8us with the 'control Signals which are input and output by the CPU

- Accumulator register

There Is no memory addressing logic. and there are no memory addressing registors on the 3860 CPU. Stack
Pointer. Program Counter and Data Counter reglaters are all maintained on memory chips and memory interface
chips.

With the F8 scheme. memory addressing logic will be duplicated if more than one memory device is present in
an F8 microcomputer system. We will discuss shortly how potential contention problems are resolved under
these circumstances. .

2-29

Logic to Handle
___ Interrupt Requests
---- from

External Devices

,

Interrupt Priority
Arbitration

I/O Communication
~ Serial to Parallel

Interface Logic

Programmable
Timers

Data Countensl

Stack Pointer

".

:·t - Program Counter

System Bus

t :.

ROM Addressing
and

Interface Logic i,{::.

t ~ /

Read Only
L Memory

Figure 2-5. Logic of the Fairchild F8 3850 CPU

Two advantages accruo from having no momory address logic on the CPU chip:

Direct Memory
Access Control ~

Logic

1) No address lines are needed on the System Bus. so neither the CPU nor connecting devices need 16 address pins.
These 16 pins are used instead to implement two 8-bit I/O ports at each device.

2) The real estate on the CPU chip which would have been used by Address registers and memory addressing logic is
available for other purposes; it is used to implement 64 bytes of read/write memory.

Having I/O ports and read/write memory on the CPU chip paves the. way for some very low-cost small
microcomputer configurations; for example. the 3850 CPU and the 3851 PSU form a two-device microcomputer
system. with all of the necessary prerequisites for reasonable performance. Until the advent of the 3870 single-chip
microcomputer. this two-chip configuration represented the lowest cost 8-bit microcomputer on the market.

The disadvantage of removing memory addressing logic from the CPU chip is that standard memory devices can
no longer connoct directly to the System Bus. This bus has no address lines;therefore. separate logic devices must
create the interface needed by standard memories. In the F8 system this is done by the 3852 OMI and the 3853 SMI
devices.

Clock signal generation logic is also part of the 3850 CPU. This is now standard among microcomputers.

2-30

c
w

~
II:
o
a.
II:
o
o
~
en
w

~
g
C/')
C/')
c:(

oil
w
Z
II:
o
II)
C/')

o
~
c:(
c
c:(

@

Fa PROGRAMMABLE REGISTERS AND STATUS FLAGS
F8 programmable registers and status flags are Identical to the 3870. For details. refer to the earlier discussion.

Fa ADDRESSING MODES
3870 and F8 addressing modes are Identical. both for scratchpad memory and for external program memory. But
memory addressing logic Is Implemented on F8 memory devices. not on the 3860 CPU.

Every 3851 PSU contains its own Program Counter (PCOl. Stack register (PS 11. and Data Counter (DCO). The 3851 PSU
has no Data Counter buffer (DC 1).

The 3852 DMI and 3853 SMI devices contain all four Address registers: PCO. PC1. DCO and DC1.

Since Address registers are present on every PSU. OMlor SMI device In an F8 microcomputer system. these
registers will be duplicated In any F8 system that contains more than a minimum amount of memory. So long as
the microcomputer system has been correctly configured. this presents no problem. Every memory device contains
identical connections to the common System Bus. and instructions that modify the contents of any Address register do
so identically for all memory devices. For example. if there are three memory devices. and therefore three Program
Counters in an F8 system. every Program Counter is incremented identically after a byte of object code is fetched. This
being the case. Address registers on different memory devices will always contain identical address information.

Every F8 device that contains memory addressing logic also contains a memory address mask which you must
define when ordering the device. This mask identifies the device's addressed space. Thus. a memory device will only
respond to memory accesses within its address space. So long as no two devices have overlapping address spaces
(and if they do. that is a logic design error) there Is no chance for memory contentions to arise. In order to illustrate
this point. consider the very simple example of an F8 configuration that contains two 3851 PSUs. Each 3851 PSU con­
tains 1024 bytes of read-only memory. Let us assume that 3851 PSU #1 responds to memory addresses in the range
000016 through 03FF16. while PSU #2 responds to memory addresses in the range 040016 through 07FF16. This may
be illustrated as follows:

PSU 1

These two Program
Counters always

contain the
same information

~

I

I DCO or PCO
I
I I

I 0 I 0 I 0 I 0 I 0 I 0 I MASK

PSU 1 responds only if PCO or DCO bits 10 through
15 are 000000. because

0000 16 = 0000000000000002
03FF16 = 00000011111111112 --....­

MASK

PSU 2

DCO or PCO

PSU 2 responds only if PCO or DCO bits 10 through
15 are 00000 1. because
0400 16 = 00000 1 00000000002
07FF16 =00000111111111112

"-v-"
MASK

Any memory reference instruction will identify a memory address as the contents of either the Program Counter (PCO)
or the Data Counter (DCO). When this address is in the range 000016 through 03FF16. PSU #1 will respond but PSU
#2 will not. If this address is in the range 040016 through 07FF16. then PSU #2 will respond but PSU #1 will not. A
memory address of 080016 or more will result in neither PSU responding.

There is one circumstance under which memory addressing contentions can arise. Since the 3851 PSU does not con­
tain a DC 1 register. it does not respond to the XDC instruction which exchanges the contents of the DCO and DC 1
registers. Therefore. in an F8 configuration that contains 3851 PSUs together with 3852 DMI and/or 3853 SMI devices.
execution of an XDC instruction will result in 3851 PSU DCO registers containing different information from 3852 DMI
or 3853 SMI DCO registers. If an external data memory reference instruction is now executed. it is possible for a 3851
PSU and 3852 OMlor 3853 SMI device to simultaneously consider itself selected. For example. consider an F8 con­
figuration which contains a 3851 PSU and 3853 SMI. Suppose the 3851 PSU mask causes it to respond to addresses in
the range 000016 through 03FF16. while the 3853 SMI responds to all other memory addresses. Now. if Data Counter
DCO contains 02A316 while the Data Co·unter buffer (DC 1) contains OA7F16. then. following execution of an XDC in-

2-31

struction, nothing will happen to the contents ofthe 3851 PSU DCO register: however, the 3853 SMI DCO register will
contain OA7F16. Any instruction that accesses data memory via DCO will now cause both the 3851 PSU and the 3853
SMI to consider themselves selected.

In F8 configurations that include the 3851 PSU together with 3852 OMlor 3853 SMI devices, the best way of avoiding
memory addressing problems is to not use the XDC instruction. If you do use the XDC instruction, you must be particu­
larly careful to ensure that DCO is never within a 3851 PSU's address space when the XDC instruction is executed.

F8 CLOCK CIRCUITS
Three ways of generating an F8 system clock have been advertised; these are the RC mode, Crystal mode, and
External mode. Only Crystal mode has worked consistently in practice.

Using the Crystal mode, a crystal In the 1 to 2 MHz range connects across the XTLX and XTLY pins; along with
two capacitors (C1 and C2), which provide a highly precise clock frequency:

Vss

RC

C,
XTLY

3850
CPU

D
XTLX

C2

1
VGG

The external crystal (and capacitors), together with internal circuitry, combine to form a parallel resonant crystal
oscillator. The two capacitors should be approximately 15pF. The crystal should have these characteristics:

Frequency: 1 to 2 MHz
Mode of Oscillation: Fundamental
Operating Temperature Range: 0 to 70°C
Equivalent Resistance: 1 to 1.5 MHz - 4750

1.5 to 2 MHz - 3500

Resonance: Parallel
Drive Level: 10mW
Load Capacity: - 15pF

Frequency Tolerance: Per customer's requirements
Holder (case) Style:

You can use an external clock to synchronize an F8 system with external logic. The clock signal must be input to the
3850 XTL Y pin as follows:

Vss

RC

External XTLY 3850
Clock CPU

XTLX

2-32

c
w

~
a:
o
c.
a:
o
o
~
en
w
l­
e(
(3
o
CI)
CI)
e(

c1:I
w
Z
a:
o
al
CI)

o
~
e(
c
e(

@

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

ROMC

3 2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 O.

1 0

1 1

1 1

1 1

1 1

1 0

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

Table 2-4. ROMe Signals and What They Imply

CYCLE
. FUNCTION

HEX LENGTH

00 S.L Instructio~ Fetch. The device whose address space includes the contents of the PCO register must place

on the Data Bus the op code addressed by PCO. Then all devices increment the contents of PCO.

01 L The device whose address space includes the contents of the PCO register must place on the Data Bus

the contents of the memory location addressed by PCO. Then all devices add the 8-bit value on the Data

Bus. as a signed binary number. to PCO.

02 L The device whose DCO addresses a memory word within the address space of that device must place

on the Data Bus the contents of the memory location addressed by DCO. Then all devices increment

DCO.

03 L.S Similar to 00, except that it is used for Immediate Operand fetches (using PCO) instead of instruction

fetches.

04 S Copy the contents of PCl into PCO.

05 L Store the Data Bus contents or write bus contents into the memory location pointed to by DCO. Incre-

ment DCO.

06 L Place the high order byte of DCO on the Data Bus.

07 L Place the high order byte of PCl on the Data Bus.

08 L All devices copy the contents of PCO into PC1. The CPU outputs zero on the Data Bus in this ROMC

state. Load the Data Bus into both halves of PCO thus clearing the register.

09 L The device whose address space includes the contents of the DCO register must place the low order

byte of DCO onto the Data Bus.

OA L All devices add the 8-bit value on the Data Bus. treated as a signed binary number. to the Data Counter.

OB L The device whose address space includes the value in PCl must place the low order byte of PCl on the

Data Bus.

OC L The device whose address space includes the contents of the PCO register must place the c~ntents of

the memory word addressed by PCO onto the Data Bus. Then all devices move the value which has just

been placed on the Data Bus into the low order byte of PCO.

00 S All devices store in PCl the current contents of PCO. incremented by 1. PCO is unaltered.

OE L The device whose address space includes the contents of PCO must place the contents of the word ad-

dressed by PCO onto the Data Bus. The value on the Data Bus is then moved to the low order byte of

DCO by all devices.

OF L The interrupting device with highest priority must place the low order byte of the interrupt vector on the

Data Bus. All devices must copy the contents of PCO into PC1. All devices must move the contents of

the Data Bus into the low order byte of PCO.

10 L Inhibit any modification to the interrupt priority logic.

11 L The device whose memory space includes the contents of Pc:O must place the contents of the ad-

dressed memory word on the Data Bus. All devices must then move the contents of the Data Bus to the

upper byte of DCO.

12 L All devices copy the contents of PCO into PC 1. All devices then move the contents of the Data Bus into

the low order byte of PCO.

13 L The interrupting device with highest priority must move the high order half of the interrupt vector onto

the Data Bus. All devices must move the contents of the Data Bus into the high order byte of PCO. The

interrupting device will reset its interrupt circuitry (so that it is no longer requesting CPU servicing and

can respond to another interrupt).

14 L All devices move the contents of the Data Bus into the high order byte of PCO.

15 L All devices move the contents of the Data Bus into the high order byte of PC 1.

16 L All devices move the contents of the Data Bus into the high order byte of DCO.

17 L All devices move the contents of the Data Bus into the low order byte of PCO ..

18 L All devices move the contents of the Data Bus into the low order byte of PC 1.

19 L All devices move the contents of the Data Bus into the low order byte.of DCO.

lA L During the prior cycle an I/O port timer orinterrupt control register was addressed. The devic\! contain-

ing the a~dressed port must move the current contents of the Data Bus into the addressed port.

lB L During the prior cycle the Data Bus specified the address of an I/O port. The device containing the ad-

dressed I/O port must place the contents of the I/O port on the Data Bus. (No~e that the contents of

timer and interrupt control regis'ters 'cannot be read back onto the Data Bus.)

lC Lor S None.

10 S Devices with DCO and DCl registers must switch registers. Devices without a DCl register perform no

operation.

IE L The device whose address spac'e includes the contents of PCO must place the low order byte of PCO

onto the Data Bus.

IF L The device whose address space includes the contents of PCO must place the high order byte of PCO on

the Data Bus.

F8 CPU PINS AND SIGNALS
3860 CPU pins and signals are illustrated in Figure 2-6. A description of these signals is useful as a guide to the
way in which the F8 microcomputer system works.

11>
WRITE·

VDD

VGG
I/O 03

DB3

I/O 13

I/O 12
DB2

I/O 02

I/O 01
DBl

I/O 11

I/O 10

DBO

I/O 00
ROMCO

ROMCl

ROMC2
ROMC3

Pin Name

·DBO - DB7
.11>. WRITE

---.. -----------
-

..
--...
'--...
...
--..
.. ---

I/O 00 - I/O 07
I/O 10 - I/O 17
·ROMCO - ROMC4
·EXT RES
·INT REO
*ICB
RC
XTLX
XTLY

VSS.VDD.VGG

1
2

3
4

5

6
7

8

9

10

11

12
13
14

15

16
17

18

19
20

40 -
39

.. -
38 -
37 ~
36 - ' .. -
35

.. - -
34 - -
33 - -- -
32

.. - -3850
CPU

31 ~
30 - ...
29 -- --- -
28 -- --, -
27 -- .. -
26 -- -- -,
25 -- -- -
24 i---

Description

Data Bus Unes
Clock Lines
I/O Port Zero

23

22
21

I/O Port One
Control Lines
External Reset
Interrupt Request
Interrupt Control Bit
Clock Oscillator
Crystal Clock Line
External Clock Une
Power Unes

--- ---

·These signals connect to the System Bus.

RC
XTLX

XTLY

EXT RES

I/O 04

DB4
I/O 14

I/O 15

DB5

I/O 05

I/O 06

DB6

I/O 16
I/O 17

DB7

I/O 07

VSS
INT REO

ICB
ROMC4

Type

Bidirectional
Output
Bidirectional
Bidirectional
Output
Input
Input
Output
Input
Output
Input

Figure 2-6. Fairchild 3850 CPU Signals and Pin Assi,gnments

The Data Bus lines (DBO - DB7) and the control lines (ROMCO - ROMC4) provide the heart of all data and control
information flow.

The Data Bus lines are common. bidirectional lines. and are the only conduit for data to be transmitted between devices
of an F8 microcomputer system.

A lack of address lines on the System Bus usually means that data and addresses must be multiplexed on a
single set of eight lines - which slows down all memory reference operations; they must now proceed in three
serial increments, rather than in one parallel increment. In the F8 System Bus, multiplexing is rarely needed,
since addresses originate within memory devices, or memory interface devices" whence they are transmitted
directly to memory. In other words. the only time addresses are ever transmitted on the Data Bus is when they are
being transmitted as data.

Refer to Fig~re 2-1. Suppose a memory reference instruction needs to access a by'te o,f dynamic RAM. ROMC control
signals (described in the next paragraph) specify that the memory byte whose address is implied by the Data Counters

, (DCa) is to be 'referenced. Every memory device receives the ROMC control signals. but only the 3852 DMI finds that its
address space includes the Data Counter implied address; therefore. only the 3852 DMI will respond to the/memory
reference instruction. The 3852 DMI then outputs an address directly to dyna.mic RAM; this address is not transmitted

2-34

Q
w
~
a: o
a.
a:
o
(J

~
u)
w

~
g
en
en
c(

all
w
Z
a: o
cg
en o
~
c(
Q
c(

@

via the System Bus. If the memory reference instruction requires data to be input to or output from dynamic RAM. the
data transfer occurs directly between the System Bus and Dynamic RAM. bypassing the 3852 DMI entirely ..

Since the 3851 PSU. the 3852 DMI and the 3853 SMI devices all contain Address registers and I ROMC STATE I
address generation logic. they also coritain rudimentary Arithmetic arid Logic Units equivalent to
very primitive CPUs. These primitive CPUs are driven by 5-bit instructions called ROMC states. ROMC states are out­
put by the 3860 CPU via five control lines, ROMCO - ROMC4. Each five-bit combination of ROMC signal states
identifies one 01.32 possible operations which the memory devices may have to perform to accomplish one step of an
instruction's execution. For example. ROMC state 00000 causes the contents of memory bytes addressed by the Pro­
gram Counter to be transmitted to the CPU: this is the "instruction fetch" ROMC state. Table 2-4 summarizes the in­
terpretation of ROMC states.

<I> and WRITE are two timing signals output by the 3850 CPU to synchronize events within the rest of the Fa system.

The EXT RES line disables Interrupts and loads a 0 address into all Program Counters. causing program execution to
restart with the instruction code stored in external memory byte O.

INT REQ and ICB are signals used for overall Interrupt control. INT REO is the master lihe on which all interrupt re­
quests are transmitted to the 3850 CPU. ICB is output low by the CPU if interrupts are enabled. and it is output high by
the CPU if interrupts are disabled.

The two I/O ports which are part of the 3860 CPU device use pins 1/000 -11007 and 1/010 -1/017, respectively.

RC, XTLX and XTL Yare the three pins used for clock inputs.

Fa TIMING AND INSTRUCTION EXECUTION
All instructions are executed in cycles, which are timed by the trailing edge of WRITE.

There are two types of instruction cycle, the short cycle which is four <I> clock periods long. and the long cycle
which is six <I> clock periods long. The long cycle is sometimes referred to as 1.5 cycles. WRITE high appears only at the
end of an instruction cycle. Timing may be illustrated as follows:

I

cJ> I I. I

I I. I
. I,· I I

WRITE.~~
I I I

,.-__ ' I I

WRITE ---1 \ I \ __ _
Start of

new
cycle

End of

short
cycle

End of

long

cycle

The simplest instructiohS of the F8 instruction set execute in one short cycle. The most complex instruction (PI) re-
quires two short cycles plus three long cycles. .

Table 2-2 summarizes the sequence in which short (5) and long (L) machine cycles are executed for each F8 in­
struction. ROMC states defining operations performed during each machine cycle are summarized In Table 2-4.

2-35

The trailing edge of the WRITE pulse triggers the next ROMC state to be output on the ROMCO - ROMC4 lines:

I I

<I> I. . I .

_rrE.~~~~
I . I . .

ROMC I I'
I I

:,...~ ---- One short machine cyCle ----.~~:
I I

For any instruction that only accesses the Accumulator or scratchpad memory. no further System Bus activity is .re­
quired. since all subsequent operations will occur within the F8 CPU. This inactivity on the System Bus is used to over­
lap the last (or only) machine cycle of one instruction with the instruction fetch for the next instruction. For instructions
that execute in a single machine cycle. accessing only logic within the 3850 CPU. timing may be illustrated as follows:

I

<I> I I I .

I I I
I I' I

WRITE I I I

I . I I
Instruction 1 execute I I

: Instruction 2 fetch I Instruction 2 execute I
I I Instruction 3 fetch I
I Short machine I Short machine I
I cycle 1 I cycle 2 I

Instruction 3 execute
Short machine

cycle 3

Instructions that do access external memory or I/O ports will always terminate with a machine cycle that does not
cause any System Bus activity: the next instruction is fetched during this machine cycle. This may be illustrated as
follows:

I I I

I I n ~~ ______ ~ ____ ~r--\~ ______ ~. _. __
: Instruction 1 execute Instruction 1 execute I

Instruction 2 fetch :
Long machine cycle 1 I Short machine cycle 2 I

WRITE

If for any reason data is to be transferred via the Data Bus during a machine cycle. then the data appears on the Data
Bus at some time which depends on the data source or destination. For details. see the data sheets at the end of this
chapter. There are no accompanying control signals since none are needed: the ROMC state identifies events which are
occurring. Tim}ng for any machine cycle that involves data transfer via the Data Bus may be illustrated as follows:

WRITE

ROMC

DATA

2-36

c
w

~
a:
o
a..
a:
o
o
~
en
w

~
(3
o
(f)
(f)

oCt
all
w
Z
a:
o
aI
(f)

o
~
oCt c «
@

Fa I/O PORTS
Logic associated with each F8 I/O port pin may be illustrated as follows:

+5V +5V

(

Output _____ --,
Strobe

FB)
~ Data Out ---;~ Latch

The characteristics of F8 I/O port pins differ markedly from the 3870. The only point of similarity is the fact that both
have inve'rse logic; when you output a 1-bit. OV' is output to external logic; when you write a O-bit. a +5V voltage is
output to external logic. Conversely. external logic must input OV for a 1 input bit and +5V for a 0 input bit.

On reset or power up. F8 I/O port pins are indeterminate. You must therefore start every Reset instruction sequence
with instructions that initialize all I/O port pins. In contrast. the 3870 clears I/O Port 4 and 5 pins on reset; this gener-
ates +5V outputs since logic is inverted. .

When using 3870 or F8 I/O ports. the following restrictiors apply:

1) You must write 0 to every I/O port pin that is to receive data input. This is because external logic cannot write a 0
to any I/O port pin that previously had a 1 bit output by the CPU.

2) The CPU cannot output a 0 bit (+5V output) to an I/O port pin if the pin is connected to external logic that is input-
ting a' 1 bit (OV input),

A SUMMARY OF Fa INTERRUPT PROCESSING
The interrupt handling capabilities of the F8 system are described with the 3861 PSU and 3863 SMI devices.
Although many different interrupt priority arbitration schemes could be implemented, the simplest scheme
would be to daisy chain 3861 PSUs, terminating the daisy chain with ~ 3863 8MI if present. '

As soon as an interrupt is acknowledged. the contents of Program Counters (PCO) a're saved in Stack registers (PC 1);
then an interrupt vector address is loaded into the Program' Counters. This address is a permanent mask option for
PSUs. with the exception of bit 7. which discriminates between timer interrupts and external interrupts. The interrupt
address vector is completely programmable for the 3853 SMI. again with the exception of bit 7. which discriminates
between timer interrupts and external device interrupts. .

, ,

Post-interrupt housekeeping operations must be handled via an appropriate program. Defining just what this program
consists of is not simple; an F8 system has only the Acc~mulator and Status register which must be saved. but at the
other extreme. it has the entire scratchpad which could be saved. '

THE Fa INSTRUqTION SET
The F8 and 3870 ins~ruction set~ are identical; for details see Table 2-1 and associated text.

2-37

THE BENCHMARK PROGRAM
Now consider our benchmark program: for the Fa it looks like this:

DCI TABLE lOAD TABLE BASE ADDRESS
lM lOAD DISPLACEMENT TO FIRST FREE BYTE
ADC ADD TO BASE ADDRESS
XDC SAVE THIS ADDRESS IN DC1
DCI 10BUF lOAD I/O BUFFER BASE ADDRESS

lOOP lM lOAD NEXT BYTE FROM I/O BUFFER
XDC SWITCH ADDRESSES
ST STORE IN NEXT BYTE OF TABLE
XDC SWITCH ADDRESSES .
DS 0 DECREMENT I/O BUFFER lENGTH
BNZ lOOP RETURN IF NOT END
lR H.DC IF END. STORE SECOND BYTE OF CURRENT
lR A.Hl TABLE ADDRESS AS DISPLACEMENT TO
DCI TABLE. FIRST FREE BYTE
ST

The benchmark pr!,gram above makes the following assumptions:

1) The I/O buffer can be located anywhere in read/write memory.

2) The number of occupied bytes in the I/O buffer is maintained in scratchpad byte O. Thus. decrementing scratchpad
byte 0 to zero provides the I/O buffer length. .

3) The permanent data table beginning memory address has all Os for the low-order eight bits:
I .. ,.... ..

The table is not more than 256 bytes long. and the displacement to the first free byte is stored in the first byte of the ta­
ble. Since the table beginning address has Os in the low~order eight bits. the displacement to the first free byte also
becomes the low-order eight bits of the first free byte address:

Table beginning address

Address of first free byte

pq and rs are hexadecimal digits

All of the above assumptions are valid - and. depending upon the application. may also be realistic. Removing any of
the above assumptions will make the FB program longer. by removing one of the inherent strengths of the F8 instruc­
tion set.

2-38

o
w

~
0:: o
D­
o::
o
(.)

~
en
w

~
g
(I)
(I)
c(

~
w
Z
0::
o
a:I
(I)

o
:E
c(
c
c(

@

THE 3861 PROGRAM STORAGE UNIT (PSU)

The 3861 PSU has been the principal read-only memory program storage device in small F8 microcomputer
systems. In addition to providing 1024 bytes of read-only memory, the 3861 PSU has two 8-bit I/O ports, a pro-
grammable timer, and interru~t logic. '.

The 3861 PSU can also' be used In non-F8 microcomputer systems. The most important and non-obvious advan­
tage of including a 3851 PSU in a non-F8 microcomputer system is the fact that 3851 PSU memory will lie outside of
the microcomputer address space. This is because the 3851 PSU relies on its own memory addressing logic. which ex­
ists independent of and parallel to any other memo,rv addressing logic.

Figure 2-7 illustrates functions provided by the 3851 PSU. Device pins and signals are given in Figure 2-8. Pins and sig­
nals which are unique to the 3851 PSU are described as part of the general 3851 PSU discussion.

Clock Logic

Arithmetic and
Logic Unit

Accumulator
Registerts)

Figure 2-7. Logic of the.Fairchild F8 3851. 3856 and 3857 Programmable Storage Unit

2-39

I/O B7 1 DB7
I/O A7 2 . 39 DB6

VGG 3 38 I/O B6

~ 4 37 I/O A6
EXTINT 5 36 I/O A5
PRiOUT 6 35 I/O B5

WRITE 7 34 DB5
<I> .8 33 DB4

INT REO 9 32 I/O B4
PRIIN. 10 3851 31 I/O A4
DBDR 11 PSU 30 I/O A3

12 29 . I/O B3
ROMC4 13 28 DB3
ROMC3 14 27 DB2
ROMC2 15 26 I/O B2
ROMCl 16 25 I/O A2
ROMCO 17 24 I/O Al

VSS 18 23 I/O Bl
I/O AO 19 22 DBl
I/O BO 20 21 DBO

Pin Name Description Type

I/O AO - I/O A7 I/O Port A Input/Output
I/O BO - I/O B7 I/O Port B Input/Output
DBO - DB7 Data Bus Tristate. Bidirectional
ROMCO - ROMC4 Control Lines Input
<1>. WRITE Clock Lines Input
EXTINT External Interrupt Input
PRIIN Priority In Input .,
PRIOUT Priority Out Output
INT REO Interrupt Request Output
DBDR Data Bus Drive Output

VSS.VDD.VGG Power Supply Lines Input

Figure 2-8. 3851 PSU Signals and Pin Assignments

THE 3851 PSU READ-ONLY MEMORX
Every 3861 PSU has 1024 bytes of read-only'memory, pIps memory addressing logic. The rea'd-only memory
must be defined when the chip is created. • .

3861 PSU memory addressing logic consists of a Program Counter (PCO), a Data Counter (DCO), and a Stack
register (PC1L which is in fact a buffer for the Program Counter. .

There is also a 6-bit page select mask, which must be specified when the chip is created; the
page select represents the high-order six bits of the memory address for all ROM bytes of the
PSU. As such, the page select defines the PSU's address space.

When a ROMC state output by the 3850 CPU. and received by the 3851 PSU, identifies a memory

PSU
ADDRESS
SPACE

reference operation, the ROMC state also identifies whether the memory address is to be found in PCO or in DCa. In
response to this ROMC state, PSU memory addressing logic will compare its 6-bit page select mask with the high-order
six bits of the specified Address regis.ter's contents:

lS 14 13 12 11 10 9 8 76 S 4 3 2 1 0 Bit No.

{xlxlxlxlxlxf ,II I I I I I I I I PCOorDCO

I I
I I
I I

I y I y I y I y I y I y I Page Select Mask

2-40

c
w
~
a:
o
a..
a:
o u
!:
u)
w

~ g
U)
U)
0(

CI/l
w
Z
a:
o
ID
U)

o
:!
0(
c
0(

@

If there is coincidence. the 3851 PSU will respond to the memory reference operation: if there is no coincidence. the
3851 PSU addressing logic modifies the contents of Address registers. as might be required by the ROMC state. but it
does not respond to the actual memory reference instruction.

3861 PSU INPUT/OUTPUT LOGIC
Every 3861 PSU has four I/O port addresses assigned to it. These four I/O ports have addresses which are
specified via a 6-blt I/O port address mask, which you must define when you order a 3851 PSU. This mask is in­
terpreted as the 6 high-order bits of an 8-bit I/O port address. These are the four addressable I/O ports:

I/O port address mask: XXXXXX
XXXXXXOO I/O Port A
XXXXXX01 I/O Port B
XXXXXX 10 Interrupt control port
XXXXXX11 Programmable Timer register

Suppose the 6-bit I/O port mask is specified as 0000112. I/O Ports OC16. OD16. OE16 and OF16 will then be selected.

An I/O port mask of 000000 is illegal. since I/O port addresses 0 and 1 are reserved for the two 3850 CPU I/O ports.

The two 8-bit I/O ports of a 3861 PSU are identical to the 3860 CPU I/O ports which we have already described.
except for one detail: there are three optional I/O port pin logic configurations available with a 3861 PSU.

The first option is the standard configuration which we described for the 3850 CPU I/O port pins.

The second option is open drain configuration. which maybe illustrated as follows:

-----------...,
I
I

VOO'
r --~;_----.--­
I
I
I

I/O Port
I
I
I
I

I
I

X (a) I
I

- I ________ ":::: ",::... J

y

I
I
L_

r­
I
I
I
I
I

~--(b) TTL Input

I------(c)

TTL Output
L- __________ _

This open drain configuration allows you to wire-OR outputs from a number of pins.

2-41

The third option is a driver pull-up configuration designed specifically to drive LED displays. This configuration may be
illustrated as follows:

------------,
I/O Port I

VDD

I
VDD

x ----.0---1

I
I
I

__ ~ ________ --l

3851 PSU INTERRUPT LOGIC

LED

R

The 3851 PSU can receive external interrupt requests or interrupt requests from its programmable timer. These
two sets of interrupt logic can be selectively enabled or disabled via a control code written to the interrupt con­
troll/O port. This control code is interpreted as follows:

I/O Port No: X X X X X X 1 0

6 4 3 2 o--BitNo.

~L o . . Control code
onb~ care . { O. 0 Disable all interrupts

Its 0 1 Enable external interrupt
: Disable timer interrupt

. . 1 0 Disable all interrupts
1 1 Enable timer interrupt

. . Disable external interrupt

External interrupt request logic may be illustrated as follows:

From
external

logic

From higher
priority device
in daisy chain

EXT tNT --1 t·· 'INT REQ

PRIIN ---~"'I'+----""I"'~· PRI OUT

To thtl CPU

To lower
priority device
in daisy chain

An external interrupt request is generated by external logic pulling EXT INT low. The interrupt request will be passed
on to the CPU by outputting INT REO low. providing these two conditions are met:

1) External interrupts have been enabled via the interrupt control code (01 in the two low-order bits).

2) The PRI IN signal is low.

2-42

c
w

~ a:
o
D­
a:
o
o
~
en
w

~
g
en
en
ct
oil
w
Z
a:
o
CO
en o
~
ct
C
ct
@

If EXT INT is low and external interrupts are enabled. an interrupt is~requested:· whether or not it is
acknowledged. PRI OUT is output high. The combination of the PRI IN and PRI OUT signals is designed to implement
daisy chain interrupt priority logic. which may be illustrated as follows:

1iN-rREQ~~----~----------------~--------------~&---------------~~-------

Device 1 Device 2 Device 3 Device 4

When an active interrupt request occurs at one device. outputting PRI OUT high disables external interrupt logic at all
lower priority devices in the daisy chain.

An interval timer interrupt request is generated when the programmablo timer I/O port decrements to zero. This
interrupt request will be acknowledged if programmable timer interrupts have been enabled via the interrupt control
1/0 port (11 in the two low-order bits). .

There is no priority arbitration between external interrupts and programmable timer interrupts. since one or the other
but not both can be enabled at any time.

When the CPU acknowledges an interrupt request, the 3861 PSU responds by saving Program Counter (PCO)
contents in the Stack register (PC1), then loading an interrupt sorvice routino starting address into the Program
Counter (PCO). This Interrupt service routine starting address is a mask option which you must specify when or­
dering the 3861 PSU. One bit of the interrupt address vector (it is bit 7) is set aside to identify the interrupt re­
quest a8 external or a8 coming from the programmable timer. This may be illustrated as follows:

15 14 13 12 11 10 9 8 6 5 4 3 2

Interrupt address vector

Vt / t '- f / J 0 '",ert_d fo< ,,,,",,,mmeble tlme< 'ote"",1

! 1 1 inserted for external interrupt
~------------------•• --------- Mask defined address bits

The actual interrupt response sequence consists of five machine cycles. during which ROMC states are output in the
order 1016. 1C16. OF16. 1316.0016. Table 2-4 identifies functions performed in response to each ROMC state.

2-43

Table 2-5. Relationship Between Programmable Timer Contents and Effective Timer Counts

TIMER TIMER TIMER TIMER TIMER TIMER TIMER TIMER TIMER TIMER
CONTENTS COUNTS CONTENTS COUNTS CONTENTS COUNTS CONTENTS COUNTS CONTENTS COUNTS

FE 254 F5 203 BC 152 62 101 2A 50
FO 253 EA 202 79 151 C4 100 55 49
FB 252 04 201 F2 150 88 99 AA 48
F7 251 A9 200 E4 149 11 98 54 47
EE 250 52 199 C9 148 22 97 A8 46
DC 249 A4 198 93 147 44 96 50 45
B8 248 49 197 27 146 89 95 AO 44
71 247 92 196 4E 145 13 94 41 43
E3 246 25 195 9C 144 26 93 83 42
C7 245 4A 194 38 143 4C 92 06 41
8E 244 94 193 70 142 98 91 00 40
10 243 29 192 El 141 30 90 lA 39
3B 242 53 191 C3 140 61 89 35 38
76 241 A6 190 86 139 C2 88 6B 37
ED 240 40 189 OC 138 84 87 07 36
OA 239 9A 188 18 137 08 86 AF 35
B4 238 34 187 31 136 10 85 5E 34
68 237 69 186 63 135 20 84 BO 33
01 236 03 185 C6 134 40 83 7B 32
A3 235 A7 184 8C 133 81 82 F6 31
47 234 4F 183 19 132 02 81 EC 30
8F 233 9E 182 33 131 05 80 08 29
IF 232 3C 181 67 130 OB 79 BO 28
3F 231 78 180 CE 129 16 78 60 27
7E 230 FO 179 90 128 2C 77 CO 26
FC 229 EO 178 3A 127 59 76 80 25
F9 228 Cl 177 74 126 B3 75 00 24
F3 227 82 176 E9 125 66 74 01 23
E6 226 04 175 02 124 CC 73 03 22
CD 225 09 174 A5 123 99 72 07 21
9B 224 12 173 4B 122 32 71 OF 20
36 223 24 172 96 121 65 70 lE 19
60 222 48 171 20 120 CA 69 3D 18
DB 221 90 170 5B 119 95 68 7A 17
B6 220 21 169 B7 118 2B 67 F4 16
6C 219 42 168 6E 117 57 66 E8 15
09 218 85 167 DO 116 AE 65 DO 14
B2 217 OA 166 BA 115 5C 64 A1 13
64 216 14 165 75 114 B9 63 43 12
C8 215 28 164 EB 113 73 62 87 11
91 214 51 163 06 112 E7 61 OE 10
23 213 A2 162 AD 111 CF 60 lC 9
46 212 45 161 5A 110 9F 59 39 8
80 211 8B 160 B5 109 3E 58 72 7
lB 210 17 159 6A 108 7C 57 E5 6
37 209 2E 158 05 107 F8 56 CB 5
6F 208 50 157 AB 106 Fl 55 97 4
OF 207 BB 156 56 105 E2 54 2F 3
BE 206 77 155 AC 104 C5 53 5F 2
70 205 EF 154 58 103 8A 52 BF 1
FA 204 DE 153 B1 102 15 51 7F 0

Timer counts are decimal numbers
Timer contents are hexadecimal numbers

2-44

Q
w

~
II: o
a.
II:
o
CJ
~
en
w

~
g
CI)
CI)

ct
all
w
Z
II:
o
In
CI)

o
~
ct
Q
ct
@

3861 PSU PROGRAMMABLE TIMER LOGIC
The 3861 PSU has a single programmable timer which Is addressed as the fourth I/O port (XXXXXX112). This
timer is free running unless it contains the value FF16. The value FF16 stops the timer. "

The Interval timer Is a polynomial shift register. Table 2-6 gives the correlation between timer counts and timer
register contents. ' ,

The programmable timer dec'rementsonce every 31 clock periods. Using a 500rianosecond c!ock. therefore. the timer
register will decrement once every 15.5 microseconds. '

In order to generate any specific, time interval. you must load an initial value into the programmable timer register by
outputting the appropriate,timer contents to the programmable timer I/O port address. For example. in order to have an
initial value of 10016. you must load the programmable timer I/O port with the value C416. Loading the programmable
timer with the initial value 2816 will generate an initial count of 16410. These correlations can be read off Table 2·5.

Once the programmable timer times out. it reloads the value FE16. representing 25410 counts. and starts to decrement
again. ,,,.

3861 PSU DATA TRANSFER TIMING
When data Is Input to the 3861 PSU from the Data Bus, no control signals are needed since the ROMC state sig·
nals identify the presence of data on the Data Bus. When data Is output by the 3861 PSU, however, the control
output DBDR is low. Timing ~ay be illustrated as follows:

WRITE--...I

ROMC----------------------R-------------~~~-----------------------------

DATAOUT--------------------------------------~~-----------------------------

5B5R--------------------------------------~

The purpose of the low DBDR signal is 'to prevent Data Bus contentions from ever'arising. This is also a very useful sig·
nal in non·F8 microcomputer systems that include a 3851 PSU. since it can be used as a data read strobe., ' , '.' , . ' ;:, ;~ r"·

.. ,:.J

USING THE 3861 PSU IN NON-F8 CONFIGURATIONS
The 3861 PSU is easily included in non-F8 microcomputer configurations. The trick is to generate ROMC s1ates
as memory addresses. A ROMC state of 1C idles the 3861 PSU. Appropriate logic is illustrated, in Figur~ 2·9.

Let us consider some examples. For simplicity. we will use 8080A assembly language mnemonics and assurl1~ that the
3851 PSU is selected by addresses FFED16 through FFFF16. This is how data input and data output'via 3851 PSU I/O
ports could be implemented. in conjunction with the logic of Figure 2·9: •

F8 Instructions' ROMC States 80aOA Instructions

IN PORT 03 MVI APORT

OUT PORT

1 B STA OFFE3H
00 LDA "OFFFBH

03
lA

2-45

MVI
LXI
MVI
STA
MOV

APORT
OFFFAH
B.DATA
OFFE3H
M.B,

:;;: - .-

T
~ . ,r t

SELECT CLOCK

LOGIC DERIVATIVE
LOGIC

l -, ~ .. -
2 IN .. · -.. 1 OUT · SELECT · .. -

+ 1'11002 ,

--

. ~
• n

... ,. ,.
DBO --- DB7

<I>

WRITE

ROMC

ROMC4

3851
PSU

4+ .+
I~ I~ I~

· · · ..
~ · · · .. ;. · -· .--
.. -

I/O AO -

~

I/O BO -

¢::>

AO

A4
A5

A15
DO

D7
iN'fR"EQ
CLOCK
SYNC

I/O A7

I/O B7

Figure 2-9. Conceptual Logic to Include a 3851 PSU in a Non-F8 Microcomputer System

Possibly the most useful application for a 3861 PSU in some other microcomputer system would be to imple­
ment lookup tables. The 1024 bytes of read-only memory could store data tables of that size. The Program Counter
and Data Counter are active Address registers which can be used to identify ,the location which must be looked up.

By way of illustration. consider a decimal multiplication table look-up program. 100 bytes of read-only memory could
be set aside to store the product of any two single decimal digits. This may be illustrated as follows:

Memory location: 00---0910 11 12-~"'19 20 21 22---293031 etc.
Contents: 00---000001 02---09000204---180003 etc.

Now. in order to compute any decimal multiplication. the two decimal digits are loaded into the eight low-order Data
Counter bits: the contents of the memory location addressed by the Data Counter are then read. Again assuming that
the 3851 PSU is selected by memory addresses FFED16 through FFFF16. and using 8080A assembly language
mnemonics in conjunction with Figure 2-9. appropriate instructions may be illustrated as follows:

ROMC States 8080A Instructions
19
02 MVI

. STA
LDA

46H
OFFF9H
OFFE2H

These instructions seek 4 x 6: 24 will be returned to the Accumulator.

These are just some conceptual examples of how the 3851 PSU can be used in non-F8 configurations. Clearly. the
specific microprocessor being used to drive the 3851 PSU will have a significant influence on the exact interface used
and the 3851 logic capabilities which are or are not accessible.

2-46

Q
w

~
a:
o
Q.
a:
o u
~
u)
w

~
g
CI)
CI)

ct
riJ
w
Z
a:
o
CD
CI)

o
:!!
ct
Q
ct
@

THE 3861 AND' 3871 PARALLEL 1/0 (PIO) DEVICES

The 3861 PIO contains the I/O ports, programmable timer, and Interrupt logic of the 3861 PSU. This device con­
tains no memory; It Is otherwise Id!~11~al to the 3861 PSU. Figure 2-8 provldes38~1 PIO signals aod pin assign-
ments. . . .

The 3871 has the I/O ports, timer/counter and Interrupt logic of the 3870 single-chip microcomputer. 3871 PIO
signals and'pln ~sslgnment., are Identical to the 3851 PSU Illustrated In Figure 2-8, with the exception that the
3870 STROBE signal __ gsoclated with 1/9 Port 4 Is output at pl~ 12.

THE 3866 AI\IP 3867 16K PROGRAMMABLE
\ STORAGE UNITS (16K PSU)

These two devices .are enhancements ?f and repl~cements for the 3861 PSU which we have just described.

Superficially. Figure 2-7 represents t~e logi~ implemented on all three PSUs-the 3851.3856 and 3857. Table 2-6
summarizes the differences between the devices. These are tho most significant features of the 3866 and 3867
PSUs:' .!' c',, . '

1) RESET sets all I/O port pins and address lines to zero. In the 3851. PSU RESET leaves 110 port pins indeterminate -
and this has caused problems in'marw applications. ',' .

2) The interval timers of the 3856 arid 38q7 PSUsare binary decremel'lters rather than polynomial shifters -with the
result that you can read timer contents directly and determine lapsed times. Also. a programmable option allows
you to measure pulse widths being input to the PSu. . I ..

3) The 3857 PSU uses the 16 pins of the two 8-bit I/O ports for 16 address lines. so that additional ROM or RAM can
be interfaced directly to a 3857 PSU "':":'" without requiring a 3852 DMI or 3853 SMI. as was the case with the 3851
PSU. .'

4) The 3856 and 3857 PSU~ both provide 2K bytes of ROM for program storage: this is twice the program memory
available on the 3851 PSU. This significantly increases the scope of two-device Fa microcomputer systems.

. .' ,. I· .

Figures 2-10 and 2-11 illustrate the pins anq si9flals of the 3856 anq 3857 16K PSUs respectively.

Table 2-6. A Summary of Differences Bem:een 3851. 3856 and 3857 PSUs

FUNCTION 3851 PSU 3856 PSU 3857 PSU

ROM 1024 !>ytes 2048 bytes 2048 bytes
I/O Ports 2 x 8 bits 2 x 8 pits None

Address lines None Non~: . 16
Interrupt Priority in an~ Priority in and Priority in only.
signals Priority out Priority out Must be end of

daisy chain.
Interrupt Enable timer or Enabl~ timer and/or Enable timer and/or
options external. but not external external

both

Timer register ~-Dit Polynomial 8-bit Count down 8-bit Count down
Timer decrement 31 clock cycl~s 2. 8. 32 or 128 2. 8. 32 or 128

interval clock cycles clock cycles
Timer stop/start No Yes Yes

control

Timer readback No Yes Yes
Timer read No Yes Yes

pulse width?

RESET zero No Yel> No I/O ports
I/O ports?

2-47

I/O B7 1 40 DB7

I/O A7 2 39 DB6

VGG 3 38 I/O B6

VDD 4 37 I/O A6

EXfTNf 5 36 I/O A5

PRIOUT 6 35 I/O B5

, WRITE 34 DB5

<1> 8 33 DB4

INT REO 9 32 I/O B4

PRIIN 10 3856 31 I/OA4

DBDR 11
16K PSU

30 I/O A~

STROBE 12 29 170B3
ROMC4 13 28 DB3

ROMC3 14 27 DB2

ROMC2 15 26 I/OB2

ROMCl 16 25 I/O A2

. ROMCO 17 24 I/O A1

VSS 18 23 I/O B1
. I/O AO 19 22 DB1

I/O BO 20 21 i:>~

Pin Name Description· Type

I/O AO- I/O A7 I/O Port A Input/Output
I/O BO - I/O B7 I/O Port B Input/Output
STROBE STROBE for I/O Port A Output '
DBQ-DB7 Data Bus Tristate, Bidirectional
ROMCO - ROMC4 Control Lines Input
<1>, WRiTE Clock Lines Input'
EXTINT External Interrupt Input
PRIIN Pri9rity In Input.
PRIOUT Priority Out Output
INT REO Interrupt Request Output
DBDR·· Data Bus Drive Output

VSS: VDD, VGG . Power Supply Lines

Fig~re 2-10. 3856 PSU Signals and Pin Assignments

2-48

c
w
l-
e:(
a:
0
D.
a:
0
(J

~
u)
w
I-
e:(

U
0
en
en
e:(

~
w
Z
a:
0
en
en
0

:!:
e:(
C
e:(

@

ADDR10 40 DB7
ADDR09 DB6

VGG ADDR12
VDD 4 37 ADDR13

EXTINT 5 36 ADDR14
ADDR15 6 35 ADDRll

WRITE 7 34 DB5
«1> 8 33 DB4

INT REO 9 32 ADDR07
PRIIN 10 3857 31 ADDROO 16K PSU
DBDR 11 30 ADDROl

CPU READ 12 29 ADDR03
ROMC4 13 28 DB3
ROMC3 14 27 DB2
ROMC2 15 26 ADDR04
ROMCl 16 25 ADDR05
~OM~O 17 24 ADDR02

VSS 18 23 ADDROS
RAM vyRITE 22 DBl

ADDR06 21 DBO
,J

Pin Name Description Type

ADDROO - ADDR 15 Address Lines Output
CPU READ Memory Read Enable Output
RAMWRITE Memory Write Signal Output
DBO - DB7 Data Bus . Tristate. Bidirectional
ROMCO - ROMC4 Control Cines . Input
«1>. WRITE Clock Lines Input
EXTINT External Interrupt Input
PRIIN Priority 'In Input
iNfREQ Interrupt Request Output
DBDR Data Bus Drive . Output
VSS. VDD.VGG Power Supply Lines

Fig'ure 2-11. 3857 PSU. Signal'S and PiO Assignments

ADDITIONAL F8 SUPPORT DEVICES

There are three additional F8 support devices: the 3862 Dynamic Memory Interface. the 3863 Static Memory
Interface. and the 3864 Direct Memory Access device. We are going to summarize these devices rather than
give complete descriptions. since th~se devices are infrequently used. ,. .

Only F8 configurations with a substantial amount of memory use these devices - and there are very few such F8 con­
figurations: however. in every case there are better alternatives. For example. the 3854 Direct Memory Access device
should not be used to implement direct memorY access logic in·r}on-F8 configurations: the Z80 OMA device is clearly
superior. In fact. signal peculiarities and timing problems associated with the 3852 OMI. 3853 SMI and 3854 OMA
devices make them unattractive components in non-F8 configurations.

If you do need to use the 3852 OMI. the 3853 SMI. or the 3854 OMA d~vices. you will have to refer t~ vendor literature.
since the discussion which follows provides performance summaries only - not product detail.

THE 3862 DYNAMIC MEMORY INTERFACE (DMI)
Primarily. this device contains the necessary address ge~eratlon and memory refresh logic needed to include
dynamic read/write memory in an F8 system.

Because of the way in which the F8 microcomputer system is organized. however. memory refresh and direct
memory access logic are closely related. That is why. in Figure 2-12. a small part of the direct memory access
control logic is shown as being implemented on the 3862 DMI c~ip.· . .

2-49

Logic to Handle
Interrupt Requests

from
External Devices

Interrupt Priority
Arbitration '

Interlace Logic

Programmable
Timers

Clock Log!c

Arithmetic and
, Logic Unit

Read Only
'Memory

Syste~ Bus

Accumulator
Registensi

Interlace Logic

I/O Ports

Figure 2-12. Logic of the Fairchild F8 3852 Dynamic M.emory Interface (OM!). and of the
3854 Direct Memory Acc!3sS (DM~) Devices

2-50

c
w
l-
e:(
a:
0
D.
a:
0
u
~
en
w
l-
e:(

g
II)
II)
e:(

all
w
Z
a:
0
CD
II)
0

:!
e:(
c
e:(

@

Figure 2-13 illustrates pins and signals of the 3852 OMI.

Conceptually, memory addressing logic of the 3862 OMI is very similar to 3867 PSU memory addressing logic;
there are, however, some differences between the 3862 OMI memory addressing and the 3861 or 3866 PSU:

1) The 3852 OMI contains two Oata Counters. oca and OC 1. The presence of the auxiliary Oata Counter (OC 1) has no
immediate impact on memory addressing logic within the 3852 OMI. However. as we discussed earlier. its pre­
sence in an F8 system that also includes a 3851 PSU calls for programming caution.

2) Oata and address flows surrounding a 3852 OMI are totally unlike the 3851 or 3856 PSU. In the case of these PSUs.
addresses are transmitted entirely within the logic of the PSU; the only communication needed between a PSU and
the CPU is via the eight Oata Bus lines of the System Bus. The OM I. on the other hand. generates a 16-bit address.
which it outputs directly to the read/write memory which it is controlling.

These address pins are equivalent to 3857 PSU address pins -:.. that is. the address pins which a CPU would have.
if the CPU contained memory addressing logic for the microcomputer system. In other words. the 3852 OMI cre­
ates the address lines and control signals. which. so far as the read/write memory is concerned. are lacking on the
F8 System Bus. The F8 System Bus does. however. contain data lines needed by the read/write memory to actually
transmit data to or from the CPU.

Oata and address flows around the 3852 OMI may be illustrated as follows:

Data lines {

Control lines

Data being

written or read

flows via this

connection

~

-P'

Iii. r

Dynamic

RAM

~

I

Master

Enable

D~ta being input to. -----"
or out from address

registers uses this

connection
.-

K Address lines .. -C Control lines ,.

Address ~
Space

Logic .-

I

}

System

Bus

.~

• r u

3857 PSU

or

3852DMI

3) Unlike the 3851. 3856 or 3857 PSU. the 3852 OMI has no on-chip logic to determine address space for read/write
memory which the OMI is controlling. Address space determination is made by logic in between the OMI and the
read/write memory. Typically. selected'high-order address lines output by the OMI are gated through elementary
Boolean logic components to create the master enable signal used to strobe attached read/write memory. This is il­
lustrated above.

2-51

VGG 1 40 VDD
~ 2 39 ROMC4

WRITE 3 38 RDMC3
MEMIDLE 4 37 ROMCl

CPU SLOT 5 36 ROMCl
RAM WRITE 6 ROMCO
CYCLE REO 7 34 CPU READ

ADDR7 8 33 REGDR
ADDR6 9 32 ADDR15
ADDR5 10

3852
31 ADDR14 DMI

ADDR4 11 30 ADDR13
,ADDR3 12 29 ADDR12
ADDR2 13 28 ADDRll
ADDRl 14 27 ADDR10
ADDRO 15 26 ADDR9

DBO 16 25 ADDR8'
DBl 17 24 DB7
DB2 18 23 DB6
DB3 19 22 DB5

Vss 20 2.1 DB4

Pin Name Description . Type

DBO - DB7 Data Bus Lines Tristate. Bidirectiomil
ADDRO - AD DR 15 Address' Unes Tristate, Output
~. WRITE Clock Lines Input
MEMIDLE DMA Timing Une Output
CYCLE REO RAM Timing Line Output
CPU SLOT Timing Line Input/Output
CPU READ RAM Timing Line Output
REGDR Register Drive Une Input/Output'
RAM WRITE Write Line Tristate. Output
ROMCO - ROMC4 Control Lines Input-

VSS. VDD. VGG Power Lines Inpu~

Figure 2-13. 3852 DMI Signals and Pin Assignments

The process of refreshing dynamic memory and implementing direct memory access are integrally related in an
F8 syste~. . '

The presence of a separate DMI interface device means that there can be a limited overlap
between a -memory reference operation which was initiated by the CPU' and a memory
referenc~, operation that Is not Initiated by th~ CPU. '

Two types of memory reference operations are not initiated by the CPU: memory refresh
and direct .memo~ access. '

FaDMI
MEMORY
REFRE:SH

Let us consfch,r how a direct memory access may follow a CPU-initiated memory read' operation. These are the
events which occur: , ,. " '

, . , . ,

1) Upon receiving 'an appropriate ROMC state from the CPU. the 3852 DMI, outputs a 16-bit memory address.
together'wJth a read stroQe: these outputs from the 3852 DMI are received by read/write memory.

2) Read/writ~ m~mory responds by placing data directly on the Data Bus. The data must rema'in stable on the Data
Bu~ until the CPU has had time to read the data.

·2-52

c
w

~ a: o
no
a:
o
u
~
en
w

~ g
CI)
CI)

~
cW:I
w
z
a:
o
In
CI)

o
~
~ c
~

@

3) While data is stable on the Data Bus. DMA logic may apply a new memory address to
read/write memory. Following the arrival of address and control signals at read/write memory.
there is a fixed time delay before read/write memory responds by placing data on the Data
Bus. This time delay can overlap with time when prior data must be stable on the Data Bus.
This may be illustrated as follows:

Add .. ,. Bu, ~ Re,:;mA,: .. " x...t' __ A_~_:_r:_s_s_.JX,", ___ _

I

X Data stable n DMA

Data Bus to CPU Data Stable

I I --.. overlap ~
I I

F8 DIRECT
MEMORY
ACCESS

DMI logic outputs control signals which identify the way In which each memory access period is being used;
there are three possibilities:

1) Memory is communicating with the F8System Bus.

2) Memory is not communicating with the System Bus. but since it is dynamic memory it is being refreshed.

3) Memory is not Gommunicating with the System Bus and is available for external access.

Cases 2 or 3 above may follow case 1 in separate memory access periods of the same instruction cycle.

THE 3864 DIRECT MEMORY ACCESS (DMA) DEVICE
This device receives memory access period Identification signals output by the 3862 DMI. Based on the direct
memory access requirements specified by the currently executing program, the DMA device accesses
read/write memory, during available memory access periods, al defined by the 3862 DMI. Figure 2-14 illustr­
ates 3864 DMA pins and signals.

These are the variables which must be specified for a direct memory access operation:

1) The beginning address for the memory buffer into which data must be written. or out of which data must be read.

2) The length of the buffer.

3) Whether data is to be written or read out of the buffer.

Once a direct memory access operation has been initiated, it proceeds in parallel with other events occurring
within the F8 microcomputer system, using memory access periods which are defined by the 3862 DMI as
available for direct memory access. In other words. direct memory access operations in no way slow down program
execution that may be occurring in parallel.

DMA data transfe~ may be high-speed or low-speed. Low-speed DMA transfer means that each DMA access is
enabled by a signal from the external device. stating that it is ready to transmit or receive data. High-speed access
assumes that the external device will always be ready to transmit or receive data: therefore. every single available
memory access period is utilized.

As a direct memory access operation proceeds. after each access the memory address is incremented and the buffer
length is decremented. Memory address. buffer length and DMA controls are stored in buffers which the CPU accesses
as though they were I/O ports. The contents of these I/O ports may be written into. or read at any time. This means
that the F8 DMA system allows total flexibility for every type of programmable DMA operation; these include
such things as stopping a DMA operation temporarily. or interrogating a DMA operation to determine how far it has
progressed.

Indefinite DMA transfer may also be specified. In this case. no buffer length is given: rather. the DMA operation will
proceed until stopped.

2-53

DIRECTION

ENABLE

XFER

XFER'REci
VGG

VDD
ADDR8

. ADDR9

ADDR10

'ADDR11

ADDR12

ADDR13

ADDR14

ADDR15

Pin Name

P1

P2

DB7

DB6

DB5

084

Doo - DB7
ADDRO - ADDR 15
«1>. WRITE
LOAD REG/READ REG
P1. P2
MEMIDLE
XFER'REci
ENABLE. DIRECTION
DWS. XFER
STROBE

VSS,VDD.VGG

1.

2
3
4
5
6
7
8'

9
10

11

12

13

14

15

16

17
18

19

20

3854
DMA

Description

Data Bus Lines
Address Unes
Clock Lines

34

33
32

DWS

STROBE

LOAD REG

MEMIDLE

«I>

Vss
ADDRO

ADDR1

ADDR2

ADDR3

ADDR4

29 ADDR5

28 ADDR6

27 ADDR7

26 t-- READ REG

25 WRITE

24 DBO

23 DB1

22 DB2

21 DB3

Type

Tristate. Bidirectional
Tristate. Output
Input

Registers Load/Read Line
Port 'Address Select
Memory Idle Une
Transfer Request Line
Control Status Lines

Input
Input
Input
Input
Output

DMA Write Slot. Transfer'
Output Strobe Une
Power Lines

Output
Output

Figure 2-14. 3854 DMA Signals and Pin Assignments

THE 3853 STATIC MEMORY INTERFACE (SMI)
, .

The 3863 SMI provides interface logic for static read/write memory, that is, for memory which does not need to
be refreshed. Logic implemented on this device Is Illustrated in Figure 2-16, and Is a simple combination of func­
tions which have already been described for the 3861 PSU and for the 3862 DMI. Figure 2-16 illustrates 3863
SMI pins and signals.

The description of memory Interface logic which was given for the 3862 DMI applies also for the 3863 SMI. The
3863 SMI, however, does not identify memory access periods, and cannotbe used to Implement direct memory
access.

Becausethe 3853 SMI does not have me'mory refresh or direct memory access supportlogic. there is unused real estate
on the. SMI chip .. The real estate is used to implement a programmable timer and interrupt processing logic. as de­
scribed for the 3851 PSU. There are. however. two small differences between interrupt logic as implemented on the
PSU ,and the SMI devices: they are:

1) The 3853 SMI interrupt address vector is not a permanent mask option as it is on the PSU: rather. it is programma­
ble.

2) The 3853 SMI has no priority output line. which means that in a daisy chain interrupt configuration it must have
lowest priority: that is. it must come at the end of the daisy chain.

2-54

c
w
~
ex:
o
a..
ex:
o
(,J

~
en
w

~
g
CI)
CI)

~
o!I
w
Z
ex:
o
III
CI)

o
~
~
c
ct

@

Clock Logic

Arithmetic and
Logic Unit

Interface Logic

Read Only
Memory

System- Bus

I/O Ports
Interface Logic

I/O Ports

Figure 2-15. Logic of the F8 3853 Static Memory Interface (SMJ) Device

2-55

VGG 1 40 VDD
«I> 2 39 . ROMC4

WRITE 3 38 ROMC3

INT REO 4 37 ROMC2

PRIIN 5 36 ROMCl

RAM WRITE 6 35 ROMCO

EXfiNT 7 34 CPU READ

ADDR7 8 33 REGDR

ADDR6 9 32 ADDR15

ADDR5 10
3853

31 ADDR14
SMI

ADDR4 " 30 ADDR13

ADDR3 12 29 ADDR12

ADDR2 13 28 ADDR1l

ADDRl 14 27 ADDR10

ADDRO 15 26 ADDR9

DBO 16 25 ADDR8

DBl 17 24 DB7

DB2 18 23 DB6

DB3 19 22 DB5

Vss 20 21 DB4

Pin Name Description Type

000 - DB7 Data Bus Lines Bidirectional
ADDRO - ADDR 15 Address Unes Output
«1>. WRITE Clock Lines Input
INT REO Interrupt Request Output
PATiN Priority In Line Input
RAM WRITE Write Une Output
EXTiNT External Interrupt Line Input
REGDR Register Drive Une Input/Output
CPU READ CPU Read Line Output
ROMCO - ROMC4 Control Lines Input

VSS. VDD. VGG Power Supply Lines

Figure 2-16. 3853 SMI Signals and Pin Assignments

2-56

c
w

~
II:
o
Q.
II:
o
U
~
en
w
l­
e:(
(j
o
CI)
CI)
e:(

all
w
Z
II:
o
m
CI)

o
~
e:(
c
e:(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• 3870 One-Chip Microcomputer
.3850 CPU
.3851 PSU
.38520MI
.3853 SMI
.38540MA
·3856 2K P.SU
.3861 PIO

2-01

3870
ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias .. ooe to 700 e
Storage Temperature .. ; . -65"e to +150oe
Voltage On Any Pin With Respect To Ground- .. -1.0V to + 7V
Power Dissipation _ '.' 1.0W

De CHARACTERISTICS
TA = O°C to 70°C, Vec = 5V ± 10%

SYMBOL PARAMETER MIN MAX UNIT TEST CONDITIONS

Ice Power Supply Current TBD mA Outputs Open

Po Power Dissipation TBD mW Outputs Open

VIHEX External Clock
Input High Level

2.4 5 .. a V

V,LHEX External Clock -0.3 0.6 V
Inpl.Jt Low Level

',HEX External Clock 100 pA V'HEX= 2.4V
Input High Current

',LEX External Clock -100 pA V'LEX= 0.6V
Input Low Current

V,H Input High Level 2.0 5.8 V

V,L Input Low Level -0.3 0.8 V

IIH Input High Current 100 pA V'H= 2AV
(except open drain and internal pull-up
direct drive I/O ports)

IlL Input Low Current
(except open drain and

-1.6 mA V'L=O.4V

direct drive ports)

ILOD Leakage Current 10
(open drain ports)

pA Pull-down
. device off

10H Output High Current -100 pA VOH=2.4V
(except open drain and
direct drive ports)

IOHDD Output Drive Current
(direct drive ports)

-1.5 -8 mA VOH= 0.7V
to 1.5V

IOL Output Low Current 1.8 mA VOL=O.4V

IOHS Output High Current
(STROBE Output)

-300 pA VOH=2.4V

IOLS Output Low Current 5.0 mA VOL= O.4V
(STROBE Output)

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other condition above those indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Data sheets on pages 2-02 through 2-05 reprinted by permission of Mostek Corporation.

·2-D2

Q
w

~
a: o
a.
a:
o u
~
u)
w

~ g
CI)
CI)
c(

~
w
2
a:
o
m
CI)

o
:E
c(
Q
c(

@

3870
AC CHARACTERISTICS

TA = at to 70t, VCC = +5V ± 10%

SIGNA~ SYMBOL PARAMETER MIN MAX

to(XTL) Time Base Period, Crystal Mode 250 1000

to(LC) Time Base Period, LC Mode 250 1000

XTLl to(RC) Time Base Period, RC Mode 250 2000

XTL2 to(INT) Time Base Period, !nternal Mode 250 590',

to(EX) Time Base Period, External Mode 250 2500

tEX(H) External Clock Pulse Width, High 90 2000

tEX(L) External Clock Pulse Width, Low 90 2000

<I> t <I> Internal <l>C!ock Period 2to typo

Port Output to STROBE Delay STROBE tl/O-S 3t <1>-1 000 min.
3tcJ>+250 max.

1SL sTROBE Pulse Width, Low 8t<l> -250 min.
12t<l> +250 max.

RI;SET tRH RESET Hold Time, Low 6t<l> + 750 min.

EXT/NT tEH EXT INT Hold Time, Active 6t<l> + 750 min.
State

NOTES: 1. Load is SOpF plus 1 standard TTL input.

2. Specificatiol"l is applicable when the timer is in the Interval Timer Mode.
See "Timer Characteristics" for EXT INT requirements when in the Pulse Width,
Measure~ent Mode or the Event Counter Mode.

J. The AC Timing Diagrams are given in Figure 5.

CAPACITANCE

TA = 25t:, f= 2MHz
I

SYMBOL PARAMETER MIN

CIN IriPlh Capacitance: I/O Ports, RESET, EXT INT '

CXTL Input Capacitance: XTL 1, XTL 2 18

2-03

MAX

7

23

UNIT COMMENTS

ns 4MHz-1MHz

ns 4MHz-1MHz

ns 4MHz-500kHz

ns 4MHz-1.7MHz

ns 4MHz-400kHz

ns

ns

ns 0.5 JJS @ 4MHz
ext. time base

ns Note 1

ns,

ns

ns Note 2

UNIT TEST CONDITION

pF Unmeasuredcfrins
returned to N D

pF

3870
TIMER CHARACTERISTICS

Definitions:

Error = Indicated tim'e value - actual time value

tpsc = t <I> x Prescale Value

Interval Timer Mode:

Single interval error, free running (Note 3) , ±6t<l>
Cumulative interval error, free running (Note 3) 0
Error between two Timer reads (Note 2) ; "; ±(tpsc + t<l»
Start Timerto sto'pTimer error (Notes 1,4) ~ .. " +t4> to ~(tpsc +t<l»
Start Timer to read Timer error ([\Iotes 1,2) ~5t<l> to -(tpsc"+ 7t<l»
StartTimer to interrupt request error (Notes 1,3) -2t<l> to ~8t<l>
Load Timer to stop Timer error (Note 1) .. ': +t<l> to -(tpsc + 2t<l»
Load Timer to read Tiiner error (Notes 1,2) ... " .. " -5t<l> to -itpsc + 8teil)
Loa~ Timer to interrupt request error (Notes 1,3) -2t <I> to -9t<l>

Pulse Width Measurement Mode:

Measurement accuracy (Note 4) +t <I> to -(tpsc +2t <1»
Minimum pulse width of EXT INT pin ,' 2t<l>

Event Counter Mode:

Minimum active time of EXT INT pin ; 2t<I>
Minimum inactive time of Ext I NT pin ~ , 2t<l>

Notes:

1. All times which entail loading, starting, or stopping the Timer are referenced from the end
of the last machine cycle of the OUT or OUTS instruction.

2. All times which entail reading the Timer are referenced from the end of the .Iast machine
cycle of th~ IN ·or INS in~tructiori. . .' .

3. All times which entail the generation of an interrupt request are referenced from the start
of the machine cycle i"n which the appropriate interrupt request latch is set. Additional
time may elapse if the interrupt request occurs during ~ privileged or multicycle instruction:

4. Error may be ~ufl1ulative if operation is rep~tit~"ely perf~rmed.

2-04

c
w

~
a: o
D.
a:
o
CJ
~
u)
w ...
c(
(3
o
CI)
CI)
c(

ail
w
Z
a:
o a:a
CI)

o
:E
c(
c
c(

@

3870

External Clock

Internal <I> Clock

I/O Port Output

STROBE
f'VO.'

tSL

EXTINT lep BIT ~Ir--------.J'EH 3(~
BITJ _

Note: All measurements are referenced to VI L max., VIH min., VOL max., or VOH min.

FIGURE 5. AC TIMING DIAGRAMS

2-05

3850 CPU 2.2.2' EI~ctrical Specifications

Absoiuiema;<irilUm ratings (above which useful
life may be Impaired)

VGG
VOO ,,',
RC, XTLX and XTL Y

All othg~ inputs
Storage temperature
Operating temperature

+1!5V to -0.3V
+ 7V to ,-0.3V
+15V to -O.3V (RC with
5i<n series resistor)
+7V to -0.3V
-55°C to +150°C
O°C to +70°<::

Note: All voltages with respect to Vss.

DC Characteristics:, VSS = OV, VOO = +5V ± 5%,
\I GG= +12V ± 5%, T A = O°C
to +70°C '

SUPPLY CURRENTS

SYMBOL PARAMETER MIN. TYP. MAX. UNITS TEST
CONDITIONS

{: f = 2 MHz,

IDO VOO Current 45 75 rnA Outputs
unloaded
f - 2 MHz,

IGG VGG Current 12 30 rnA Outputs
unloaded

'.

, Data sheets on pages 2-06 through 2-033 reprinted by permission of Fairchild Camera and l~strumei1t Corporation.

2-06

c
w
~
a: o
a.
a:
o
o
~
en
w

~
g
CI)
CI)
c(

ail
w
Z
a:
o co
CI)

o
~
c(
Q
c(

@

3850 CPU Table 2-3. A Summary of 3850 CPU Signal DC Characteristics

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

4>, WRITE VOH Output High Voltage 4.4 VOO Volts 10H = -50 p.A
VOL. Output Low Voltage VSS 0.4 Volts 10L = 1.6 rnA
VOH Output High Voltage 2.9 Volts 10H = -100 p.A

XTLY VIH Input High Voltage 4.5 VGG Volts
VIL Input Low Voltage VSS O.B Volts
IIH Input High Current 5 50 pA VIN= VOO
IlL I nput Low Current -10 -120 pA VIN = VSS

ROMCO VOH Output High Voltage 3.9 VOO Volts 10H = -100 pA . VOL Output Low Voltage VSS 0.4 Volts 10L = 1.6 rnA
ROMC4

OB.O VIH Input High Voltage 2.9 VOO Volts
VIL Input Low Voltage VSS O.B Vo'its

OB7 VOH Output High Voltage 3.9 VOO Volts 10H = -100 pA
VOL Outpu~ Low Voltage VSS 0.4 Volts 10L = 1.6 rnA
IIH Input H igti Current 3 pA V IN = 7V 3-State mode
IlL I nput Low Current -3 pA VIN = VSS, 3-State mode

1/00 VOH Output High Voltage 3.9 VOO Volts 10H = -30 p.A
VOH Output High Voltage 2.9 VOO Volts 10H = -150pA

1/0 17 VOL Output Low Voltage VSS 0.4 Volts 10L = 1.6 rnA
VIH Input High Voltage (1) 2.9 VOO Volts Internal pull-up to VOO
VIL Input Low Voltage VSS O.B Volts
IlL I nput Low Current -1.6 rnA VIN = O.4V (2)

EXT RES VIH Input High Voltage 3.5 VOO Volts Internal pull-up to VOO
VIL Input Low Voltage VSS O.B Volts
IlL I nput Low Current -0.1 -1.0 rnA VIN = VSS

INT REO VIH Input High Voltage 3.5 VOO Volts Internal pull-up to VOO
VIL Input Low Voltage VSS O.B Volts
IlL I nput Low Current -0.1 -1.0 rnA VIN = VSS

VOH Output High Voltage 3.9 VOO Volts IOH = -10 p.A
reB VOH Output High Voltage 2.9 VOO Volts 10H = -100 pA

VOL Output Low Voltage VSS 0.4 Voits 10L = 100 pA

(1) Hysteresis input circuit provides additional 0.3V noise immunity while internal pull-up provides TTL
compatability. .

. (2) Measured while FB port is outputting a high level.
Note:
Positive current is defin~d as conventional current flowing into the pin referenced ..
(3) Guaranteed but ,not tested.

2-D7

3850 CPU Table 2-4. A Summary of 3850 CPUSignal AC Characteristics

~C Cha:acteristics: VSS = OV, VDD = +5V ± 5%, VGG =+12V ±5910, T A = O°C to +70°C

Symbols in this table are used by all figures in Section 2.

SYMBOL PARAMETER MIN. TYP. MAX; UNITS TEST CONDITIONS

P * x External Input Period 0.5 10 pS

PWx .. External Pulse Width 200 Px-200 nS tp tf ~30 nS

tXl Ext. to <I> - to - Delay 250 nS CL= 100 pf

txi' Ext. to <11+ to + Delay 250 nS CL= 100 pf

PtI> tI> Period 0.5 . 10 pS

PWl <I> Pulse Width 180 P(ll-180 nS' t r, tf = 50 nS; CL = 100pf

td 1 tI> to WRI~E + Delay 150 250 nS CL = 100 pf

td2 <Il to WRITE - Delay 150 250 nS CL = 100 pf

PW2 WRIT!: Pulse Width P(I'-l00 P(ll nS tr~tf = 50 nS typ; CL = 100 pf

PWs W~!T~ Period; Short 4P(I)

PWL WRITE period; Long 6P(I'

, .td3 WRITE to ROMC Delay 80 300 550 nS CL = 100 pf

td4 * WRITE to ICB Delay 350 nS CL = 50 pf

td5 WRITE to INT REO Delay 430 (2) nS CL = 100 pf

tsx * EXT RES set·up time 1.0 pS CL = ~O pf

tsu * I/O set·up tirT)e 300 nS

th * I/O hold time 50 ·nS

t * 0 I/O Output Delay 2.5 pS CL = 50 pf

tdbl * WRITE to Data Bus Stable 0.6 1.3 pS CL = 100 pf

tdb2 WRITE to bata Rus Stable 2P(ll 2P(I)+1,0 pS CL = 100 pf

tdb3 * Data Bus Set·up 200 nS.

tdb4 * Data Bus Set·up 500 nS

tdb5 Data B~s Set·up 500 nS

tdb6* Data. Bus S~t~up 500 nS
','

. .

*The parameters which are starred in the table above represent those which are most frequently of
importance when interfacing to an F8 system. These encompass 1/0 timing, external timing generation
and possible external.RAM timing.Theremaining parameters are typically those that are only relevant
between F8 chips and not normally of concern to the user.

(1) Input and output capacitance is 3 to 5 pf typical on all pins except VOD' VGG' and VSS'

(2) If INTREQis'being supplied asynchronously, it can be pulled down at any time except
during ~ fetch cycle that has been preceded by a non-priviledged instruction. In that
case INTREQ must go down according to the requirements of td5.

2-D8

Q
w
I-
~.
o
11.
a: o
(J

~
en w
~
g
(I)
(I)
0(

CI/S
w
2
a: o
CD
(I)
o
~
0(
Q
0(

@

3860 CPU· hPx-l
PW_ /.- I

XTLY x

/_--~
PARAMETERS ARE DESCRIBED IN TABLE 2·4

Figure 2·8. Timing Signal Specifications

WRITE--~
LONG CYCLE

ROMC _________________ ~, _____________ ~S~T~A~B~L~E~ _____________ __

SYMBOLS ARE DEFINED BY TABLE 2·4

Figure 2·9. ROMC Signals Output by 3850 CPU

2-09

3850 CPU pw h Px1
XTLY x~ ~

I--p<f>-'I ~td2 I
td,--I ~ ~---.---PWS---~==:::;:.~

-~I '/, ~~ __________ ~/ ~ __________ __

WRITE ~PW2~ I : i
I X---------II ., TRUE ROMC STATE 0 ROMC
I--td3-l \1
I - I ~tdb3~ll

DATA--------------~------------------~ ~------~-----------------BUS _____________ 1 _____________ ----J~ OP CODE FOR NEXT INSTRUCTION

I I
lONE CYCLE OF A SINGLE CYCLE I NEXT
I INSTRUCTION, OR LAST CYCLE OF A I INSTRUCTION

MUL llCYCLEINSTRUCTION

Symbols are defined in Table 2-4

Figure 2-1 OA. A Short Cycle Instruction Fetch

ROMC---------------I----~){~ ________ T_R_U_E_R_O_M __ C_S_TA_T_E __ O _______ ~~---

f.-td3-J ~tdb3-1 :
I I

___ ~~OPCODEFORNEXT
ONE CYCLE OF THE SINGLE, LONG I INSTRUCTI0

1
N

CYCLE OS INSTRUCTION
(DECREMENTSCRATCHPAD) NEXT

INSTRUCTION

Symbols are defined in Table 2-4

Figure 2-10B.A Long Cycle Instruction Fetch (During DS Only)

2-010

c
w

~
a:
0
0.
a:
0 u
~
en
w
~
c:(

U
0
CI)
CI)
c:(

ell
w
2
a:
0
en
CI)

0

~
c:(
c
c:(

@

3850 CPU

I:
PWL

'1 PWS ~ I
(WRITE)J " f ~ I- _____ ~

I I I I
I I I

I tdbl STABLE I I
DATA BUS (1)

tdbo~ (HIGH IMPEDANCE) I
DATA BUS (1) XI

I~ tdb2 "I: STABLE

DATA BUS X STABLE

l~tdb4 ~

I~ tdbS ~

DATA BUS X DATA STABLE

DATA BUS X DATA STABLE

l~tdbs~1

1. Timing for CPU outputting data onto the data bus.

Delay tdbl is the delay when data is coming from the accumulator.

Delay tdb2 is the delay when data is comi'ng from the scratch pad (or from a memory device).

Delay tdbO is the delay for the CPU to stop ~riving the data bus.

2. There are four possible cases when inputting data to the CPU, via the data bus lines: they depend on the data path and the
destination in the CPU, as follows:

tdb3; Destination - IR (instruction Fetch) - See Figure 2-10 for details.

tdb4; Destination - Accumulator (with ALU operation - AM)
tdb5; Destination - Scratch pad (LR K,P etc.)

tdbS; Destination - Accumulator (no ALU operation - LM)

In each case a stable data hold time of 50 nS from the WR ITE refrence point is required.

Symbol~ are defined in Table 2-4

Figure 2-11. Memory Reference Timing

2':'D11

3850 CPU.

(WRITE).../

I/O (1)

I/O (2)

11~~-~~~~~-_-_-_-_-_P_WS_-_-_-_-/---~~=~~~~I __________ __
I I
I I

j.-- tsu ---~"~I !..-- th

DATA MAY CHANGE X STABLE : X DATA MAY CHANGE

I I
I- to .. I I
: DATA FROM OLDOUTS X---N-E-W-D-A-T-A--+:----------

(1) This represents the timing for data at the I/O pin during the execution of the INS instruction, i.e., the
CPU is inputting.

(2) This represents the timing for data being output by the CPU at the I/O pin.

Symbols are defined in Table 2-4

Figure 2-13. Timing for Data Input or Output at I/O Port Pins

~ ~. PWs ~ / / --~ WRITE j.- -.j I PWL
I .. I PW2 II I

ROMC ~ X TRUE
:

td3-j I I
1

ICB (1)
~td4~

1 X
!::td5:1 I

INT REO (2)
1 \ I
I- td5 .. I I
I I 1

INT REO (2) I I
{ .. I EXT RES I tsx

(1) ICB will go from a 1 to a 0 following the execution of the EI instruction and will go from a 0 to 1
following either the execution of the 01 instruction or the CPU's acknowledgement of an interrupt .

. (2) This is an input to the CPU chip and is generated by a PSU or 3853 MI chip. The open drain outputs
of these chips are all wire "ANDed" together on this line with the pull-up being located on the CPU
chip. For a 0 to 1 transition the delay is measured to 2.0V.

Symbols are defined in Table 2-4

Figure 2-14. Interrupt Signals Timing

2-012

Q
w

~
a:
o
Q.

a:
o
CJ
~
en
w
t­
c(

U o
(I)
(I)
c(

c1J
w
2
a:
o
a:a
(I)

o
:!:
c(
Q
c(

@

3851 PSU 3.2.5 . Electrical Specifications

Absolute Maximum Ratings (Above which useful
life may be impaired)

VGG
VDD
I/O Port Open Drain Option
Exter:nal nHerrupt Input
All other inputs & outputs
Storage Temperature
Operating Temperature

+ 15V 'to -O.3V
+7Vto -O.3V
+ 15V., to -O.3V
-6ocfjiA to +225 J.l.A
+7V to -O.3V
-55°C to +150°C
O°C to +ib~c

Note: All voltages with r~spectto VSS'

DC Characteristics: VSS = OV, VDD = +5V ± 5%,
VGG ~ +12V ±5%,
T A = O°C to +70°C

SUPPL Y CURRENTS

SYMBOL PARAMETER MIN. TYP. MAX. UNITS TEST·
CONDITIONS

IDD VDD Current 28 60 rnA f = 2 MHz.
Outputs
Unloaded

IGG VGG Current 10 30 rnA f = 2 MHz,
Outputs
Unloaded

'2-013

3851 PSU Table 3-2. A Summary of 3851 PSU Signal Characteristics

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

DATA BUS (D80-D87) VIH Input High Voltage 2.9 VDD Volts

VIL 'Input Low Voltage VSS 0.8 Volts

VOH Output High Voltage 3.9 VDD Volts 10H = -100 /lA ,

VOL Output Low Voltage VSS 0.4 Volts 10L = 1.6 rnA

IIH Input High Current 1 /lA VIN = VDD: 3-State mode'

10L Input Low Current -1 /lA VIN = VSS' 3-State mode

CLOCK LINES (<I>, WRITE) VIH Input High Voltage 4.0 VDD Volts

VIL Input low Voltage VSS 0.8 Volts

IL Leakage Current 3 /lA VIN = VDI:>

"

PRIORITY IN AND CONTROL VIH Input High Voltage 3.5 VDD' Volts
LINES (i>'RTTN, ROMCD-ROMC4) VIL Input Low Voltage VSS 0.8 Volts

IL Leakage Current 3 /lA VIN = VDD

PRIORITY OUT (PRI OUT) VOH Output High Voltage 3.9 VDD Volts 10H= -100/lA

VOL Output Low Voltage VSS 0.4 Volts 10L = 100/lA

INTERRUPT REQUEST VOH Output High Voltage Volts Open Drain Output (1)
(INT REO) VOL Output Low Voltage VSS 0.4 Volts 10L": 1 mA

IL Leakage Current 3 /lA VIN = VDD

DATA BUS DRIVE (DBDR) VOH Output High Voltage External Pull:up

VOL Output Low Voltage VSS 0.4 Volts IOL ='2 rnA

IL Leakage Current 3 /lA YiN = VDD

EXTERNAL INTERRUPT VIH Input High Voltage 3.5 Volts
(EXT INT) VIL Input Low Voltage 0.8 Volts

VIC Input Clamp Voltage 15 Volts IIH = 185'/lA

IIH Input High Current 10 /lA VIN = VOD
IlL Input Low Current -225 /lA VIN = 2V
IlL Input Low Current -150 -500 /lA VIN = VSS

I/O PORT OPTION A VOH Output High Voltage 3.9(5) VDD Volts 10H = -30/lA
(STANDARD PULL-UP) VOH Output High Voltage 2.9 VDD Volts IOH = .;.150 JlA

VOL Output Low Voltage VSS 0.4 Volts 10L= 1.6 rnA
VIH Input High Voltage 2.9(3) VDD Volts Internal Pull-up to VDD [3]

VIL Input Low Voltage VSS 0.8 Volts

IL Leakage Current 1 /lA YiN = VDD
IlL Input Low Current -1.6 mA VIN =O.4V'(4)

I/O PORT OPTION B VOH Output High Voltage External Pull·up
(OPEN DRAIN) VOL Output Low Voltage VSS 0.4 Volts 10L = 2 ~A

VIH Input High Voltage 2.9(3) \tDD Volts (3)

VIL Input Low Voltage VSS 0.8 Volts

IlL Leakage Current 2 /lA VIN=+12V

2-D14

c
w

~ a: o
Q.

a: o
u
~
en
w
I­
ct g
U)
U)
ct
~
w
Z a:
o m
U)
o
~
ct c
ct

@

.3861 pSU Table 3-2. A Sumr:riary of 3851 PSU S/gnal Characteristics (Continued)

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

I/O p'ORT OPTION C (DRIVER VOH Output High Voltage 3.75 VDO Volts IOH = -1 mA
PULL·UP) VOL Output Low Voitage Vss 0.4 Volts IOL = 1.6 rnA

Notes:

1. Pull·up resistor to VOO on CpU.
2. Positive current is defined as conventional current flowing into the pin referenced.
3. Hysteresis input circuit provitJes additionai 0.3V n~ise immunity while internal/external puil-up provides TTL compatibility.
4. Measuted while I/O port is outputting a high level.
5. Guaranteed but not tested.

Table 3-3. A Summary of 3851 PSUSignalAC Characteristics'
, ;

AC Characteristics: VSS = OV, \tOO = +5V ± 5%, VGG = +12V ± 5%, TA = etc to +70°C

Symbols i~ this table are use8 by aU figures in Section 3.

SYMBOL PARAMETER MIN. TYP. MAX. UNITS
TEST
CONDiTIONS

Pet>· et> Period 0.5 10 pS
180 Pet>-180 nS tr. tl = 50 nS typo

250 oS CL = 100 pf
PWl et> Pulse Width
tdl et> to WRITE + De.lay

250 nS CL = 100 pf
2Pet> + 1.0 pS

td2 ct> to WRITE-Delay.
td4 WRITE to bB Input Delay

Pet>-100 Pet> nS tr. tl = 50 nS typo
4 Pet>
SPet>

PW2 WRITE Pulse Width
PWs WRITE Period; Short
PWL WRITE Period; Lo'ng

550 nS

2Pet> + 100-td2 2Pet> + 200 2Pet> + 850 - td2 nS CL = 100 pi

td3 WRITE to ROMCDelay
WRITE to DB Output Delay

td7 WRITE to DB"DR' - Delay
tds WRITE to i5'BDR -+- Delay 200 nS Open Drain
tn WRITE to INT REO - Delay 430 nS CL = 100 pf [1]
tf2 WRiTE to ~ + Delay 430 nS Cl, = 100 pf [3j
tpn PRIIN to INT REQ- Delay 200 '/ nS CL = 100 pf [2]
tpdl PAl IN to PRI OUT -:- Delay 300 nS CL = 5ci p~
tpd2 PRIIN to PRi'O'OT + Delax nS CL = 50 pf
tpd3 WRITE to j5§'jQ'O'T + Delay riS CL = 50 pf

~i:ld~:::}:: ,,;~:~~:to 'PATQij'f ::-:-~~~I:~y : :'i: ::::":.:'::'} ,<' ::) <;: ::;"S(0 ,,:<:::::;::) 1:<>::Jl ~': , .. t C>:,,~~ ~! ...• '. '.: ':::
.... .i.?i . iF; ... C .••. "'j: •.• • ••. ((.... ..;.. •.••." ili,i{ Ii. •.• '~i'ji~ ."i

II>.:.:.:: •. :: .•. ; .::: •. ~::: .••• : .• : ••.).::.:::.:." .: .• :: .••.•. !: .. :: .•. ::.: .•. :.: ...•. : .•• :.: •. : .•.• :: •.•.••••. : ..•• : •.•.•. :.: .••..••• : .•• :.: •.• : •. \: •. :.' >.: ...•.. :.c:.'.:: .• :.:.:: .':. :>.' •..•... : .. : : ...•. ~:<.... vr' '. ;)(•••• i,· .it> '>(:.;;~ I'~; [f;11" 1" •... ' .. ' •
C:, >:::::: -: .. :» . . : .•. ::., .:: .•.. i." .•.•. :! ..• : : .. • ••. ::i. :.i .. · •..•..• :.:. ::. ::.: '.'.::' •. 1/'·)j i.·.' , ii.;: 1:(~'i.I .. • •.. ! •..• : :~.,.j;i 2.; ••.. sc .•.•. ' ••. P .. 1·':.,~ ••.•..••. : •.... (.:. '.' ••

I; ·•.•• iii) '" .. ,'i.· , (j,:! •.••• ·~l.; :i Ii I .·.....ii:] I;i~l '\ li·~i~;.i
Notes:

1. Ass~me Priority In was enabled (PRI IN = 0) in previous F8 cycle before interrupt is detected in the PSU.
~.:: .

2. PSU has interrupt pending before priority in is enabled.

3. Assume pin tied to INT REQ input of the 3850 CPU.

4. The parameters which are shaded in the table above represent those which are most frequently of importance when
interfacing to an FB system. Unshaded paramet~rs are typically those that are relevant only between FB chips and not

normally of concern to the user.

5. Input and output capacitance is 3 to 5 pf typical on all pins except VOO, V GG, and VSS'

. 2-015

3851 PSU.

'I'

r----- , \

LONG CYCLE

ROMC STABLE
------~-------'

~----------td7------~--~~ I
DATA BUS OUTPUT ~ _____ ~I ____________________ --,~}-______ ~~S~T~A~B~L_E __________ ___

I
DBDR

(START OF DATA OUT)

DBDR
(ENDOF DATA

OUT IN SUBSEQUENT
CYCLE)

i

I
j.d8J..,;-.--____ _

~~I~~·------------~~t-d4::~~~-------~!------------~~--
DATA BUS INPUT __________________________ ~ STABLE

SYMBOLS ARE DEFINED IN TABLE 3-3

Figure 3-3. 3851 PSU Data Bus Timing

WRITE ~----~~------------I ~
I t----tsu--~ .. ~~~:th

INPUT (1) DATA MAY CHANGE DATA STABLE DATA MAY CHANGE

---------------------------'
OUTPUT (2) _________ ~I~~-. ___ ts~p~ __ ------------------~--------------------

(STANDARDPULLUP) ~~ ______ ~2~.9~V~ _____________ S~T~A~B~L~E~ ________ ~ ____ ~

__ ~~_tOd~ __________ _
OUTPUT (2) ~~ ____ 2_._9V _______________ S_T_A_B_L_E _________________ _

(OPEN DRAIN) --~------------- -

_----+-_t=--:-"'\td.P~I_ . ____ _
OUTPUT (2) r-- r--

(DRIVER PULLUP) _______________ ~ 2.9V STABLE

SYMBOLS ARE DEFINED IN TABLE 3-3

1. The set-up and hold times specified are with respect to the end ·of the second long cycle during execution of the three·
cycle IN or INS instruction.

2. All delay times are specified with respecUo the end of the second long cycle during execution of the three cycle OUT or

OUTS instruction.

Figure 3-7. Timing at PSU I/O Ports

2-016

Q
w

~
II:
o
a.
II:
o
CJ
~
en
w
t­
ct
g
en
en
ct
ell
w
Z
II:
o
III
en o
~
ct
Q
ct

@

3851 PSU

~---.....;,-,

I "

LONG CYCLE

ROMC STABLE -------------------'

INTREQ ~ __ ~ ______ ~~--t-r-'::i~. ____ ., ______ ~--------------:I·:======-tr-2----~~
t'pd3j._--+--F-tpd4=i~_

PRIIN ------------------~ ,

~tP't i ···ftP'2:kv
,~tPd,', r-_ I

PRI OUT ~ '\l._ rtPd2
,

EXT INT _________________________________;....---..~ tex~
,~--~----------------

NOTE: TIMING MEASUREMENTS ARE MADE AT VALID LOGIC lEVEL OF THE SIGNALS
REFERENCED UNLESS OTHERWISE NOTED.

SYMBOLS ARE DEFINED IN TABLE 3-3

Figure 3-13. Interrupt Logic Signals' Timing

2-017

3852DMI Table 4-2. Summary of 3852 DMI Signal Characteristics

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

DATA BUS VIH Input High Voltage 2.9 VDD Volts
(DBO-DB7)

.. J VIL I nput Low Voltage VSS 0.8 Volts
VOH Output Higb Voltage 3.9 VDD Volts IOH = -100 IlA
VOL Output Ldw Voltage VSS 004 Volts IOL =1.6 rnA
IIH I nput High Current 3 IlA VIN = VDD, 3-State mode
IlL Input Lbw Current -3 IlA VIN == VSS, 3-State mode

ADDRESS LINES VOH Output High Voltage 4.0 VDD Volts IOH = -1 rnA
(ADDRO-ADDR 15) VOL Output Low Voltage VSS 004 Volts IOL = 3.2 rnA
AND IL Leakage Current 3 IlA VIN = VDD, 3-State mode
RAM WRITE IL Leakage Current -3 IlA V IN = V SS' 3-State mode

CLOCK VIH Input High Voltage 4.0 VDD Volts
(til, WRITE) VIL Input LolJV Voltage VSS 0.8 Volts

IL Leakage Current 3 IlA VIN = VDD

MEMIDLE, VOH Output High Voltage 3.9 VDD Volts IOH = -1 rnA
CYCLE REQ, VOL Output Low Voltage VSS 0.4 Volts IOL = 2 rnA
CPU READ

CONTROL LINES VIH I nput High Voltage 3.5 VDD Volts
(ROMCO-ROMC4) VIL Input LoW Voltage VSS 0.8 Volts

IL Leakage Current 3 ~A VIN = 6V
, ,

REGDR, VOH Output High Voltage 3.9 VDD Yolts IOH = -300 IlA
CPU SLOT VOL Output Low Voltage VSS O.fl Volts IOL = 2 rnA

VIH Input High Vbltage 3.5 VDD Volts I nternal Pull-up
ViL Input Low Voltage VSS 0.8 Volts
IrL I nput Low Current -3.5 -14.0 rnA VIN = OAV & Device

(REGDR) outputting a logic "1"
, '. ~ IL Leakage Current ,3 IlA -- VIN = 6V

"

2-018

c
w

~
a:
o a..
a:
o
u
~
u)
w

~
g
(/)
(/)
c(

oll
w
2
a:
o
Ul
(/)

o
~
c(
C
c(

@

3862DMI Table 4-3. 3852 OM I Output Signals Timing Summary

SYMBOL PARAMETER MIN. TYP. MAX. UNITS NOTES

pcf) <I> clock period 0.5 10 ",S Fig. 2-9

td2 <I> to WRITE - Delay 250 nS

tad1 Address delay if PCO 50 300 500 nS 3
..

tad2 Address delay to high Z (short cycle with DMA on) tcs2+50 tcs2+200 nS 3

• tad3 Address delay to refresh (short cycle with REF on) tcs2+50 tcs2+400 nS 3

tad4 Address delay if DC 2P<I>+50-td2 2P<I>+400-td2 nS 3

tad5 Address delay to high Z (long cycle with DMA on) tcs3+50 tcs3+200 hS 3
. tad6 Address delay to refresh (long cycle with REF on) tcs3+50 tcs3+400 nS 3

tcrl CPU READ - Delay 50. 250 450 nS 1

tcr2 CPU READ + Delay 2P(I>+50-td 2 2PcI>+400-td2 nS 1

t?Sl CPU SLOT + Delay 80-td2 320-:td2 nS 1

tcs2 CPU SLOT - Delay (PCO access) 2P<I>+60-td2 2P<I>+420-td2 nS 1
tcs3 CPU SLOT - Delay (DC access) 4P<I>+60-td 2 2pcf>+420-td2 nS 1
tml MEMIDLE + Delay (PCO access) 2P<I>+50-td2 4P(I>+400-td2 nS 1
tm2 MEMIDLE - Delay (PCO access) 4Pc:f>+50-td2 4P<I>+350-tdi nS 1
tm3 MEMIDLE + Delay (DC access) 4P<I>+50-td 2 4P<I>+400-td 2 nS 1
tm4 MEMIDLE - Delay (DC access) 6P(I>+50-td 2 6P<I>+350-td2 nS 1
tCY1 WRITE to CYCLE REO - Delay 80-td2 400-td 2 nS 1,4
tCY2 WR ITE to CYCLE REO + Delay P<I>+80-td2 Pcf>+400-td2 nS 1,4

tCY3 CYCLE REO + to + Edge Delay 2P(I> 1,4

tCY4 CYCLE REO - to - Edge Delay 2P(1) 1,4
twr1 RAM WRITE - Delay 4PeI>+50-td2 4Pcf>+450-td2 nS 3
twr2 RAM WRITE + Delay 5P(I>+50-td2 5P(I>+300-td 2 nS 3
twr3 RAM WRITE Pulse Width 350 Pel> nS 3
twr4 RAM WRITE to High Z Delay tcs2+40 tcs2+200 nS 3
trgl REGDR - Delay 70 300 500 nS 1
trg2 REGDR + Delay 2P(I>+80-td2 2Pcf>+500-td2 nS 1
td4 WRITE to Data Bus Input Delay 2P11>+1000 nS
td7 WR ITE to Data Bus Output Delay 2P(I>+100-td 2 2P(fJ+850-td 2 2

Notes:

1. CL = 50 pf.

2. CL = 100 pf.

3. CL :: 500 pf.

4. CYCLE REO is a divide-by-2 of (I> for all instructions except the STORE instruction.

5. On a given chip, the timing for all signals will tend to track. For example, if CPU SLOT for a particular chip is fairly slow
and its timing falls out near the MAX aelay value specified, then the timing for all signals on that chip will tend to be out
near the MAX delay values. Likewise for a fast chip whose signals fall near the M IN values. This is a result of the fact that
processing parameters (which affect device speed) are quite uniform over small physical areas on the surface of a wafer.

6. Input and output capacitance is 3 to 5 pf typical on all pins except VDD, VGG' and VSS'

2-019

38520MI
W
I-

a:~

~ ~. tad3 ~
~ ~ tad2 --=--------.t
~ tad, =1 ' '. I
~ I)(~----------~--~><===><---R-E-F-.--~-------><~_R_E_F_. __ __

: 'I: rnd. rndS .\ "\ ",I:
~ tadS ---------------+1

~ ~::::g----------- --------
~ ~tcs, '\ ---------',

: I : "'3'1 ·1
~~, ,1m, ':::J~f--------\
~ I: ICY, + tCY3 __ t_m_4~:~:I'-----------------·~1
g , 'I • \ ' I ,\ ____ --J! \---'--7-_

: --: Icy, I===ICY'~
It: ,- -\.. twr'----------..;. ...
~ --
:E
~
It:

I

·1
~-----------------twr2----------------------~ ~

twr4

~ _ __ I _ _ tr_" 1 __ "'"-_________ -----------------...;...-
- - t-------------------

~ 1~:~----------tr-g2----------~t-d4-----~~-~-----------~~·~1
~I- __________________ ...;... ________ ~ __ ~

~£ _~ _______________ ~ ________ ~ ____ __Jx~-------------------
~! - .

~ ~ __ I: .. :====~~~~~~:::_-_-t_d_7~=============:·~1 ~ ~ x~--------------

~ 0 Figure 4-4. Timing Characteristics for 3852 OM I Output Signals

2-020

Q
w

!i
a::
o
a..
a::
o
o
~
iii
w

!i
u o
(/)
(/)
c:(

~
w
Z
a::
o
III
(/)

o
~
c:(
Q
c:(

@

3852 DMI/3853 SMI
4.2.2 OC Electrical Specifications DC Characteristics: VSS = OV, VOO = +5V ± .5%,

VGG = +12V ± 5%,
T A = O°C to +70°C Absolute Maximum Ratings (Above which useful

life may be impaired).
SUPPL Y CURRENTS

VGG
VOO
All other inputs & outputs
Storage Temperature
Operating Temperature

+15V to -O.3V·
+7V to -O.3V
+7V to -O.3V
-65°C to +150°C
O°C to +70°C

Note: All voltages with respect to VSS'

SYMBOL

100

IGG

PARAMETER MIN. TYP.

VOO Current 35

VGG Current 13

Table 5-2. 3853 SM I Output Signals Timing Summary

SYMBOL PARAMETER MIN. TYP. MAX.

P<I> <I> clock period 0.5 10

td2 <I> to WR ITE - Delay 250

tadl Address delay if PCO . 50 300 500

tad4 Address delay if DCO 2P<I>+50-td2 2P<I>+400-td 2

tcrl CPU READ - Delay 50 250 450

tcr2 CPU READ + Delay 2P<I>+50-td2 2P<I>+400-td2

twrl RAM WRITE - Delay 4P<I>+50-td2 4P<I>+450-td2

twr2 RAM WRITE + Delay 5P<I>+50-td2 5P<I>+300-td 2

t~r3 RAM WRITE Pulse 350 P<I>

trgl REGDR - Delay 70 300 500

trg2 REGDR + Delay 2P<I>+80-td2 2P<I>+500-td2

td4 WRITE to Data Bus 2P<I>+1000
Input Delay

td7 WRITE to Data Bus 2P<I>+ 1 00-td2 2P<I>+850-td2
Output Delay

trl . WRITE to INT REO - Delay 430

tpr l . PRI IN to INT REO - Delay 200 240

tex EXT INT Set·up Time 400

Notes:

1. CL = 50 pf.

2. CL = 100 pf.

3. CL = 500 pf.

MAX. UNITS

70 rnA

30 rnA

UNITS

J,lS
nS
nS
nS
nS
nS
nS
nS
nS
nS
nS
nS

nS

nS
nS
nS

TEST
CONDITIONS

f = 2 MHz,
Outputs
unloaded

f = 2 MHz,
Outputs
unloaded

NOTES

Fig. 2-9

2
3
3
1
1
3
3
3
1
1

2

2, 6
2, 7

4. On a given chip, the timing for all signals will tend to track. For example, if CPU SLOT for a particular chip is fairly slow
and its timing falls out near the MAX delay value specified, then the timing for all signals on that chip will tend to be out
near the MAX delay values. Likewise fora fast chip whose signals fallout near the MIN values. This is a result of the fact
that processing parameters (which affect device speed) are quite uniform.

5. Input and output capacitance is 3 to 5 pf typical on all pins except VDD, VGG, and VSS'

6. Assume Priority In was enabled (PRI IN = 0) in previous F8 cycle before interrupt is detected in the PSU.

7. PSU has interrupt pending before priority in is enabled.

2-021

·3853 SMI
w ... - ~ ,---, ~ I'~· __________________________ -L, ______ ~\ ________ ~/ ______ ~\~

~ en ~tadl --+_--------_ ~-----------------~ ~ I x Xl~ _________________ _
~ ~I 1-oI.t-------- tad4 ------'~~

: E~ "'1 -1\ "'2 -~.I I .-..1

"""-1----------- twrl ---------•• +0141- twr3,

~ - .. -<--~~~~~~~~~~~~~~~~~~~~~~-t-w-r2--~~~~~~~~~~~~~~\----~.r,.-----

I· td7-~
en ...

~ ~ ---------------------- r-------------------------~ ~ ______________________________ --JX~ __________________________ _
c5 0

I~
I~

I~

"2-:1-
2V

ItP) I 1-- tP'21
~~-------------------~------~I------------~ 2V

I§ ---~t-~t .. 1__!..___
Figure 5-4. 3853 Signal Timing

2-022

c
w ...
e:(
IX:
o
11.
IX:
o
CJ
~
en
w ...
e:(
(3
o
CI)
CI)
e:(

o/l
w
Z
IX:
o
!Xl
CI)

o
~
e:(
c
e:(

@

3854 DMA Table 6-3. Summary of 3854 DMA Signal Characteristics

ELECTRICAL SPECIFICA TlONS

Absolute Maximum Ratings (Above which useful life may be impaired)

Note: All voltages with respect to VSS'

VGG
VDD
All other Inputs & Outputs
Storage Temperature
Operating Temperature

+15V to -0.3V
+7V to -0.3V
+7V to -0.3V
-55°C to +150oC
OOC to +70oC

DC CHARACTERISTICS: VSS = OV, VDD = +5V ± 5%, VGG = +12V ± 5%, TA = a to +70oC

SUPPLY CURRENTS

SYMBOL PARAMETER MIN. TYP. MAX. UNITS

IDD VDD Current 20 40 mA

IGG VGG Current 15 28 mA

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS

DATA BUS (DBO-DB7) VIH Input High Voltage 3.5 VDD Volts

VIL Input low Voltage VSS 0.8 Volts

VOH Output High Voltage 3.9 ' VDD Volts

VOL Output low Voltage VSS 0.4 Volts

IIH Input High Current 1 pA

III I nput low Current -1 pA

ADDRESS LINES VOH Output High Voltage 4.0 VDD Volts
(ADDRO-ADDR15) VOL Output low Voltage VSS 0.4 Volts

IL Leakage Current 1 pA

ENABLE, DI RECTION VOH Output High Voltage 3.9 VDD Volts
DWS (DMA WRITE VOL Output Low Voltage VSS 0.4 Volts
SLOT), XFER,
STROBE IL Leakage Current 1 pA

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS

MEM IDLE, XFER REO VIH Input High Voltage 3.5 VDD Volts

VIL Input Low Voltage VSS 0.8 Volts

IL Leakage Current 1 pA

LOAD REG, READ VIH Input High Voltage 3.5 VDD Volts
REG, Pl, P2 VIL Input Low Voltage VSS 0.8 Volts

IL Leakage Current 0 1 pA

WRITE,«(l VIH Input High Voltage 4.0 VDD Volts

VIL Input Low Voltage VSS 0.8 Volts

Il Leakage Current a 1 pA

Note:

Positive current is defined as conventional current flowing into the pin referenced.

2-023

TEST CONDITIONS

.t = 2 MHz, Outputs Unloaded
f = 2 MHz, Outputs Unloaded

TEST CONDITIONS

IOH = -100pA
IOl = 1.6 mA
V IN = 6V, 3-State mode

VIN = VSS' 3-State mode

IOH=-lmA
IOl = '3.2 mA
VIN = 6V, 3-State mode

IOH = -100pA
IOL = 2 mA

VIN = 6V

TEST CONDITIONS

VIN = 6Y

VIN = 6V

VIN = 6V

3854DMA Table 6~4. 3854 DMA Device Signals Summary

SYMBOL PARAMETER MIN. TYP. MAX. UNITS NOTES

P<I> <I> Clock Period 0.5 10 /1S Note 1
PW 1 <I> Pulse Width 180 P<I>-180 nS t r, tf = 50 nS typo
td1 <I> to WRITE + Delay 60 300 nS Note 1
td2 <I> to WRITE - Delay 60 250 nS Note 1
PW2 WRITE Pulse Width P<I>-100 P<I) nS t r, tf = 50 nS typo
td3 WRITE to READ/LOAD REG 600 nS

Delay
td4 DB I nput Set-upTime 300 nS
td6 XFER REQ to MEM IDLE Set-up 200 nS
td7 MEM IDLE to ADDR True 50 200 500 nS CL = 500 pf
tdi MEM IDLE to ADDR 3-State ' , 30 ··250 nS CL = 500 pf
td8 READ REG to DB Output 40 300 hS CL=100pf
tdg WRITE to ENABLE & 450 nS CL = 50 pf

01 RECTI ON + Delay
tdg' MEM IDLE to ENABLE - Delay 400 nS CL= 50 pf
td10 MEM IDLE to, XFER & DWS 300 ' nS CL = 50pf

+ Delay'
td'10 MEM IDLE to XFER & DWS 300 nS CL = 50 pf

- Delay , ,

td11 <I> to STROBE + Delay 30
:

200 nS CL = 50 pf
td 11 <I> to STROBE - Delay 30 200 nS CL = 50 pf

Notes:

1. These specifications are those of <I> and W R 'I TE as su ppl ied by the 3850 CPU.
2. Input and output capacitance is 3 to ~ pf typic~·lon all pins except V DD , VGG , and VSS.

, 2-024

Q
w

~
a:
0
D.
a:
0
u
~
en
w
l-
e(

g
U)
U)
e(

CI/S
W
Z
a:
0
a:a
U)

0

~
e(
Q
e(

@

-

0
<{
gl!)
-.. UJ
00:
<{
UJ
0:

(1)-

::>1-
co::>
<{a..
1-1-
<{::>
oQ

z wO
...J-
col-
<{u
zUJ
UJ~

0

UJ
...J

e
~

OUJ
UJ~
0:
0:
UJ
u..
X

__________ ~L~ ____ ~~ ____ ~/~---~-~-~~,'~

--~)(~-------

I . . .

r--.. ,td3 -1
, X:..-,------------­

--------------I-.--------~ I~--------------~--~-------------

11.-tda -1:.,.-;... ______ ~ ______ _
________________________________ ~><:~ __________ S_TA_B_L_E __________ __

1 1'- td9'-j
~~~~r~-_-_-_--------------+---~~ 

________________________ ~~)f 

'. !.- td6-" 

------------------~i I 
/ I 

I 
I 

(I) , ~ td7'-1 ~ 'di~ 
~~ ------~--~~--~-----~~ _________________ 3_.S_TA_T_E ______________ --J>c~ ____ A~D~D~R~T~R~U~E~ __ ~I~3~.S~T~A~T~E 

~...J I L .' 
~ ______ ---,.--~t----JdlO) .. .. 'd,. ~'t::.....-. _ 

:_ti~dl 
~ ------------~~----------------------~~~----------------­
I-
(I) 

Figure 6-5. 3854 DMA Device Signals and Timing 

2-025 



3856 2K PSU 
ABSOLUTE MAXIMUM RATINGS (Note 1) 

Supply Voltage VGG 
Supply Voltage Voo 
I/O Port Open Drain Option 
Other I/O Port Options 
All Inputs and Outputs 
Storage Temperature 
Temperature (Ambient) Under Bias 

NOTE 1. Above which useful life may be Impaired. All voltages measured with respect to Vss. 

+15 to -0.3 V 
+ito -0.3 V 

+15 to -0.3 V 
. +7 to -0.3 V 
+7 to -0.3 V 

-55 to +150°C 
o to +70°C 

SUPPLY CURRENTS TYPICAL THERMAL RESISTANCE VALUES 

SYMBOL PARAMETER TYP 

100 Voo Current 75 

IGG VGG Current 30 

MAX UNITS 

125 mA 

45 mA 

TEST 
CONDITIONS 

f = 2 MHz, 
Outputs 
unloaded 
f = 2 MHz, 
Outputs 
unloaded 

PLASTIC: 
(}JA (Junction to ambient) 
(}JC (Junction to case) 

CERAMIC: 
(}JA (Junction to ambient) 
(}JC (Junction to case) 

TABLE 1. 3856 PSU SIGNAL DC CHARACTERISTICS 

= 60°C/W (Still Air) 
= 42°C/W 

= 48°C/W (Still Air) 
= 33°C/W 

DC ELECTRICAL CHARACTERISTICS: Vss = OV, Voo = +5.0V±5%, VGG = +12V ±5%, TA = O·Cto +70·Cunlessotherwisenoted. 

SYMBOL PAR~METER SIGNAL MIN MAX UNITS TEST CONDITIONS 

VIH Input HIGH Voltage Data Bus (DBo·DB7) 2.9 Voo V 
VIL Input LOW Voltage Vss 0.8 V 

VOH Output HIGH Voltage 3.9 Voo V 10H = -100/LA 

VOL Output LOW Voltage Vss 0.4 V 10L = 1.6 rnA 

IIH Input HIGH Current 3.0 /LA VIN = Voo, 3-State Mode 

10L Input LOW Current -3.0 /LA VIN = Vss, 3-State Mode 

VIH Input HIGH Voltage Clock Lines (</>, Write) 4.0 Voo V 

VIL Input LOW Voltage Vss 0.8 V 

IL Leakage Cumint 3.0 /LA VIN = Voo 

VIH Input HIGH Voltage . Priority In and Control 3.5 Voo V 

VIL Input LOW Voltage Lines (PFiiiN, ROM Co-ROM C4) Vss 0.8 V 

IL Leakage Current 3.0 /LA VIN = Voo 

VOH Output HIGH Voltage Priority Out (PRI OUT) 3.9 Voo V IOH = -100 /LA 

VOL Output LOW Voltage Vss· 0.4 If IOL = 100 /LA 

VOH Output HIGH Voltage Interrupt Request (INT REO) V Open Drain Output (Note 1) 

VOL Output LOW Voltage Vss 0.4 V IOL = 1.0 rnA 

I~ Leakage Current 3.0 /LA VIN = Voo 

VOH Output HIGH Voltage Data Bus Drive (DBDR) External Pull-up 

VOL Output LOW Voltage Vss 0.4 V IOL = 2.0 rnA 

IL Leakage Current 3.0 /LA VIN = Voo 

2-D26 



Q 
w 

~ 
II: 
o 
D.. 
II: 
o 
(.) 

~ 
u) 
w 
~ g 
(f) 
(f) 

ct 
o!I 
w 
Z 
II: 
o 
In 
(f) 

o 
~ 
ct 
Q 
« 
@ 

3866 2K PSU 

TABLE 1. 3856 PSU SIGNAL DC CHARACTERISTICS 
DC ELECTRICAL CHARACTERISTICS: Vss = OV, Vee = +5.0V :5%, VGG = +12V :5%, TA = o·bto +70·Cunlessotherwisenoted. 

SYMBOL PARAMETER SIGNAL MIN MAX UNITS TEST CONDITIONS 

VOH Input HiGH Voltage Strobe 3.9 Vee V IOH = 1.0 mA 

VOL Output LOW Voltage Vss 0.4 V IOL = 2.0 mA 

VIH Input HIGH Voltage External Interrupt (EXT INT) 2.9 Vee V liN = -130 p.A (Internal Pull-up) 
VIL Input LOW Voltage Vss O.B V 
IlL Input LOW Current -1.6 mA VIN = 0.4 V 

VOH Output HIGH Voltage 1/0 Port Option A 3.9 Vee V IOH = -30 p.A, Note 5 

VOH Output HIGH.Voltage (Standard Pull-Up) 2.9 Vee V IOH = -150 p.A 

VOL Output LOW Voltage Vss 0.4 V IOL = 1.6 mA 

VIH Input HIGH VoltagE! 2.9 Vee V Internal Pull-up to VOD, Note 3 

VIL Input LOW Voltage Vss O.B V 

IlL Input LOW Current -1.6 mA VIN = 0.4 V, Note 4 

VOH Output HIGH Voltage 1/0 Port Option B External Pull-up 

VOL Output LOW Voltage (Open Drain) Vss 0.4 V IOL = 2.0 mA, Note 3 

VIH Input HIGH Voltage 2.9 Vee V 

VIL Input LOW Voltage Vss O.B V 

VOH Output HIGH Voltage I/O Port Option C 4.0 Vee V IOH = -1.0 mA 

VOL Output LOW Voltage (Driver Pull-Up) Vss 0.4 V IOL = 2.0 mA 

NOTES: 
1. Pull-up resistor to VOO on CPU. 
2. Positive current is defined as conventional current Ilowing into the pin relerenced. 
3. HysteresiS input circuit provides edditional 0.3 V noise immunity while internallexternal pull-up provides TTL compatibility. 
4. Measured while 1/0 port is outputting a high level. 
5. Guaranteed. but not tested. 

. TABLE 2. 3856 PSU SIGNAL AC CHARACTERISTICS 
AC ELECTRICAL CHARACTERISTICS: Vss = 0 V, Voo = +5.0 V :5%, VGG = + 12 V :5%, TA = O·C to + 70·C unless otherwise noted. 

SYMBOL PARAMETER MIN TYP MAX UNITS TEST CONDITIONS 

P<t> <t> Period 0.5 10 p's 
PW1 <t> Pulse Width 1BO P<t>-1BO ns t r, tl = 50 ns Typ 

td1, td2 <t> to Write + Delay 250 ns CL = 100 pF 
td4 Write to DB Input Delay 2P<t>+1.0 p.s 

PW2 Write Pulse Width P<t>-100 P<t> ns t r, tl = 50 ns Typ 

PWs Write Period; Short 4P<t> 
PWL Write Period; Long ns 

td3 Wr~te to ROMC Delay 550 ns 

td7 Write to DB Output Delay 2P<t>+100-td2 2P<t>+200 2P<t>+850-td2 ns CL = 100 pF 

Write to DBDA - Delay 

tda· Write to DBDR + Delay 200 ns Open Drain 

tr1 Write to INT Req - Delay 430 ns CL = 100 pF, Note 1 

tpr1 PRI In to INT Req - Delay 200 ns CL = 100 pF, Note 2 

tpd1, tpd2 PRI In to PRI Out Delay BOO ns CL = 50 pF 
tpd3 • tpd4 Write to PRI Out Delay 600 ns CL = 50 pF 

tsp Write to Output Stable 1.0 p's CL = 50 pF, Standard Pull-up 

Note 3 

tod Write to Output Stable 2.5 p.s CL = 50 pF, RL = 12.5 kG 
Open Drain, Note 5 

tdp Write to Output Stable 200 400 ns CL = 50 pF, Driver Pull-up 

tsu 1/0 Set-up Time 1.3 p.s 

th 1/0 Hold Time 0 ns 

tax Ext Int Set-up;Time 400 ns 

tsB1 Write to Strobe + Delay 5P<t>+300 ns CL = 50 pF 

tsB2 Write to Strobe - Delay 6P<t>+410 ns CL = 50 pF 
NOTES: 
1. Assume Priority In was enabled (PRIIN ~ 0) in previous Fa cycle before interrupt is detected in the PSU. 
2. PSU has interrupt pending belore priority in is enabled. 
3. Assume pin tied to INT REa input 01 the 3850 CPU. 
4. The parameters which are shaded in the table above represent those which are most Irequently 01 Importance when interlacing to an Fe system. Unshadad 

parameters are typically those that are relevant only between Fe chips and not normaliy 01 concern to the user. 
5. Input and output capacitance is 3 to 5 01 typical on all pins except VOO' VCC and VSS' 

2-027 



3856 2K PSU 

WRITE 

- Id11 __ Id, - r---, 
1" l --- I .\ 

----:-- I-pw,-/ _ld3~1 LONG CYCLE 

ROMC STABLE . Id, . 
DATA BUS OUTPUT X STABLE. 

-. -
'\.. 

DBDR 
(START OF DATA OUT) 

DBDR 
-Id·-I 

I . Id. . (END OF DATA OUT 
IN SUBEQUENT CYCLE) 

DATA BUS INPUT ---------------....;..--------*------S-TA-B-L-E-----

Fig. 2 DATA BUS TIMING 

WRITE '\ , ,---, 
/ \ 

-1"-1 LONG CYCLE 

ROMC X STABLE 

_I"~ . I', • I 

~IPd3-1 4--tpd,,~ 

" / - tpr, - ~tpr2----+-

.--Ipd,-.. 4--IPd2-'1 

1-1.,-

"' . 'ISl . 
STROBE 

. '182 

Fig. 3 INTERRUPT LOGIC SIGNALS 1/0 STROBE 

NOTES: 1. Timing measurements are made at valid logic level to valid logic level 
of the signals referenced unless otherwise noted. 

2. Symbols are defined in Table 2. 

2-D28 

2V 

2 V. 

. 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(.) 

~ 
en 
w 

~ 
g 
en 
en 
ct 
a15 
w 
Z 
a: 
o 
III 
en o 
~ 
ct 
C 
ct 
@ 

3856 2K PSU/3861 PIO 
110 operations that use the two psu 110 ports execute in three instruction cycles. During the first cycle, the port 
address is transmitted to the Data Bus. During the second cycle, data is either sent from the Accumulator to the 
110 latch or enabled from the 110 pin to the Accumulator depending on whether the instruction is an output or 
an input. At the falling edge or Write (marking the end of the second cycle and beginning of the third cycle) the 
data is strobed into either the Latch (OUTS) or the Accumulator{ INS) respectively. The third cycle is then used 
by the CPU for its next instruction fetch. Figure 4 indicates 110 timing. 

Data Bus timing associated with execution of 110 instructions does not differ from Data Bus timing associated· 
with any other data transfer to, or from the PSU. However, timing at ttie 110 port itself depends on which port 
option is being used. Figures 5a, 5b, and 5c illustrate the three ports options. Figure 4 illustrates timing for the 
f~ree cases. 

WRITE 

INPUT III ------DA-Tr-A-M-AY-C-H-AN-G-E-~-~X DATA STABLE . X DATA M~Y CHANGE 

OUTPUT (2) ------r---__ 
(STANDARD PUllUPI Yi'2.9 v STABLE 

(OPENO~::~~ (2) ------r---~y~2.9 v STABLE 

-----------------~-P--.~)tL----------------------------~---------OUTPUT (2) • F"" 

(DR)VER PUllUPI 2.9V STABLE 

Fig. 4 TIMING AT PSU 110 PORTS 

(1,) The set-up and hold times specified are with respect to the end of the second long cycle during execution of the three cycle IN or INS 
instruction. 

(2.) All delay times are specified with respect to the end of the second long cycle during execution of the three cycle OUT or OUTS instruction. 
:,1 

7.2.2 Electrical Specifications 

Absolute Maximum Ratings (Above which useful 
life may be impaired) 

VGG 

VOO 
External I nterrupt Input 
All other Inputs & Outputs 
Storage Temperature 
Operating Temperature 

+15V to -0.3V 

+7V to -0.3V 
-600 p.A to +225 p.A 
+7V to -0.3V 
-55°e to+1500 e 
oOe to +70o e 

SUPPL Y CURRENTS 

SYMBOL PARMJIETER MIN. TYP. MAX. UNITS TEST 
CONDITIONS 

100 VOo Current 30 70 rnA f = 2 MHz, 
Outputs 
Unloaded 

IGG VGG Current 10 18 rnA f = 2 MHz, 
Outputs 
Unloaded 

Supply Currents measured with VOO = +5V ± 5%, 
VGG = +12V ± 5%, T A = oOe to +70o e. All other 
eleCtric~1 specifications are in Table 7-4. All 
voltages ~easured with respect to VSS. 

2-D29 



3861 PIO· Table 7-4. A Summary of 3861 PIO Signal Characteristics 

SIGNAL SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS 

DATA BUS VIH Input High Voltage 3.5 VOO Volts 
(DBO-OB7) VIL Input Low Voltage VSS 0.8 Volts 

VOH Output High Voltage 3.9 VOD Volts 10H'= -100 pA 

VOL Output Low Voltage VSS 0.4 Volts 10L = 1.6 mA 

IIH Input High Current 1 pA V IN = 6V, 3-State mode 

10L Input Low Current -1 pA V IN = V SS' 3-State mode 

CLOCK LINES VIH Input High Voltage 4.0 VDD Volts 
(<I>,WRIT~) VIL Input Low Voltage VSS 0.8 Volts 

IL Leakage Current 1 pA VIN = 6V 

PRIORITY IN AND, VIH Input High Voltage 3.5 VDO Volts 
CONTROL LINES VIL Input Low Voltage VSS 0.8 Volts 
(PRI IN, ROMCO- IL Leakage Current 1 pA VIN = 6V 
ROMC4) 

PRIORITY OUT VOH Output High Voltage 3.9 VDD Volts 10H = -100 pA 
(PRIOUT) VOL Output Low Voltage VSS 0.4 Volts 10L = 100 pA 

INTERRUPT VOH Output High Voltage Volts Open Drain Output (1] 

REOUEST VOL Output Low Voltage VSS 0.4 Volts 10L = 1 mA 
(lNT REO) IL Leakage Current 1 pA VIN = 6V 

DATA. BUS DRIVE VOH R~tPut High Voltage External Pull-up 
(DBDR) • VOL QLitput low Voltage VSS 0.4 Volts 10L = 2 mA 

IL Leakage Current 1 pA VIN = 6V 

EXTERNAL VIH Input High Voltage 3.5 Volts 
INTERRUPT VIL Input Low Voltage 1.2 Volts 
(EXT INT) VIC Input Clamp Voltage 15 Volts IIH = 185pA 

IIH Input High Current 10 pA VIN = VDD 

IlL Input Low Current -225 pA VIN = 2V 

IlL Input LpVJ Current -150 -500 pA VIN = VSS 

I/O PORT VOH Output High Voltage 3.9 VDD Volts 10H = -30 pA 
(STANDARD .- VOH OutP!Jt High Voltage 2.9 VDD Volts 10H = -100 pA 
PULL-UP) VOL Output Low Voltage VSS 0.4 Volts 10l = 2 mA 

VIH Input High Voltage 2.9 VOD Volts Internal Pull-up to VOO (3) 

VIL Input Low Voltage VSS 0.8 Volts 

IlL Leakage Current 1 /lA VIN = 6V 

IL I nput Low Current -1.6 mA VIN = O.4V (4) 

Notes: 
1. Pull-lip resistor to V DDDn CPU. 
2. POliitive current is defined as conventional current flowing into the pin referenced. 
3. Hysteresis input circuit 'provides additional 0.3V noise immunity while internal/external pull-up provides TTL compatibility. 
4. Measured while I/O port is outputting a high level. 

5. VSS = OV, VDD = +5V ± 5%, VGG = +12V ± 5%, T A = O°C to +70°C. 
6. Output device off. 

2-D30 



c 
w 

~ 
a: o 
0-
a: 
o 
(.) 

~ 
u) 
w 

~ 
U o 
C/) 
C/) 

< 
o/S 
w 
Z 
a: 
o 
al 
C/) 

o 
::?i 
< c 
< 
@ 

3861 PIO Table 7-5. A Summary of 3861 PIO Signal AC Characteristics 

AC Characteristics: VSS = OV, Vee = +5V ± 5%, T A = 0 e to +70o e 

Symbols in this table are used by all figures in Section 7. 

SYMBOL PARAMETER MIN. TYP. MAX. UNITS 

P(ll !f> Period 0.5 10 pS 
PWl !f> Pulse Width 180 P<I>-180 nS 
tdl !f> to WRITE + Delay 60 250 nS 
td2 !f> to WRITE - Delay 60 225 nS 
td4 WRITE to DB Input Delay 2P!f>+1.0 pS 
PW2 WR ITE Pulse Width P<ll-l00 P<I> nS 

PWS WRITE Period; Short 4P<I> 
PWL WRITE Period; Long 6P!f> 

td3 WRITE to ROMC Delay 550 nS 

td7 
WRITE to DB Output Delay 

2P<I>+100-td2 2P<I>+200 2P<I>+850-td2 nS 
WRITE to DBDR - Delay 

td8, WRITE to DBDR + Delay 200 nS 

tr1 WRITE to INT REO - Delay 430 nS 
tr2· WRITE to INT REO + Delay 430 nS 

tpr l PRI IN to INT REO - Delay 240 nS 

tpr2 PRI IN to INT REO + Delay 240 nS 
tpd l PRI IN to PRI OUT - Delay 300 nS 
tpd2 PRI IN to PRI OUT + Delay 365 nS 

tpd3 WRITE to PRI OUT + Delay 700 .nS 
tpd4 WRITE to PRI OUT - Delay 640 nS 
*tsp WRITE to Output Stable 2.5 pS 

*tsu I/O Set-up Time 1.3 pS 
*th I/O Hold Time 0 nS 
*tex EXT INT Set-up Time 400 nS 

Notes: 

TEST 
CONDITIONS 

t r, tf = 50 nS typo 
CL = 100 pf 
CL = 100 pf 

t r, tf = 50 nS typo 

CL = 100 pf 

Open Drain 
CL = 100 pf (1) 

CL = 100 pf [3] 
CL = 100 pf [2] 
CL = 100 pf 
CL = 50 pf 
CL = 50 pf 
CL = 50 pf 
CL = 50 pf 
CL = 50 pf. 
Standard Pull-up 

1. Assume Priority In was enabled (PRI IN = OJ in previous F8 cycle before interr~pt is detected in the Pia. 

2. PSU has interrupt pending before priority in is enabled. 

3. Assume pin tied to INT REO input of the 3850 CPU. 

*4. The parameters which are starred in the table above represent those which are most frequently of importance when 
interfacing to an F8 system. Other parameters are typically those that are relevant only between F8 chips and not normally 
of concern to the user. 

5. Input and output capacitance is 3 to 5 pf typical on all pins except VDD. VGG. and VSS. 

2-D31 



3861 PIC 
, (/ 

OAT A BUS OUTPUT 

DATA BUS INPUT 

DBDR 
(START OF 
,DATA OUT) 

r-- ---'\ _________ ...JL __ __ ).'-___ I'--___ ~\l..) _ 

LONG CYCLE 

STABLE 

~ STABLE 

I~ ~----~----td7----------~ 

-I X 

I 
I-~-----------td4------------~ 

STABLE 

i 
I 
I~ ~----------td7--------~~ 

, DBDR (END OF • L tda 

DATA OUT IN ," 
SUBSEQUENT CYCLE) 

'WRITE 

INPUT (1) 

OUTPUT (2) 
(STANDARD 

PULL-UP) 

Notes: 

Figure 7~3. 3861 PIO Data Bus Timing 

" . j \~-----r-'su =1 ----l 'h r-
___ D_A_T_A_M_,_A_Y_C_H_A_N_G_E ___ ~)(~;_' ____ '_DA_T_A_ST_A_B_L_E ______ J><t DATA MAY CHANGE 

----------~~-,--~-P~-'-2-.9-V--~-----S-r-AB-L-E------------~--
SYMBOLS USED AR'E DEFINED IN TABLE 7-5 

1. Data from the 1/0 port is strobed into the accumulator of the CPU at the end of the second instruction cycle during 
execution of an IN or INS instruction. 

2. During an OUT or OUTS instruction. data is strobed into the port latch at the end of the second instruction cycle; thus 
the cycle shown is the second cycle within the execution of the instruction. 

3. Input and output capacitance of 3 to 5 pf typical on all pins except VDD. VGG. and VSS' 

Figure 7-4. riming at PIO liD Ports 

2-032 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ 
g 
CI) 
CI) 
c( 

CI/l 
w 
Z 
a: 
o 
al 
CI) 

o 
~ 
c( 
c 
c( 

@ 

3861 PIO 

________________ 1 '\. ,~----""\ 

~~------~/~~~~\~-I LONG CYCLE 

ROMC STABLE 

"I "1 t I- "2-:i-
t 'pd3-j ~'pd4=j 2V 
-- ~~------------I --- ~~-----

I fi 

I ~'P'2--1 
I ~ 
I~I tpd2 ~ 

I I /" 

~~'P,~.-
_PR_I_O_U_T __________________ ·~I~t-~~~ 

E_X_T __ IN_T __________________________________ ~~~ __ t_ex ____ .~1 __________________ __ 

SYMBOLS ARE DEFINED IN TABLE 7·5 

Note: 

Timing measurements are made at valid logic level to valid logic level of the signals referenced unless otherwise noted. 

Figure 7·6. Interrupt Logic Signals's Timing 

2-033 



Q 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ g 
CI) 
CI) 

~ 
IIlJ 
w 
Z 
a: 
o m 
CI) 

o 
:E 
~ 
Q 
~ 

@ 

Chapter 3 
THE NATIONAL SEMICONDUCTOR 

SC/MP 

. SC/MP is a low-cost microprocessor that has been designed to operate easily in multi-microprocessor con­
figurations. The most interesting characteristic of SC/MP is its bus interface logic. Most microprocessors are 
designed to always operate as bus master in any microcomputer system. SC/MP, in contrast, has the bus inter­
face logic of a support device; it does not assume that it has any more right to a System Bus than any other 
device. Bus request/acknowledge logic coupled with bus access priority logic makes SC/MP the slave 
microprocessor of choice in any multi-microprocessor application. 

The very open bus interface logic of SC/MP results in it having no special support devices; it shares the support 
devices of other National Semiconductor microprocessors. These support devices are described in Volume III. 

The prime source is: 

NATIONAL SEMICONDUCTOR INC. 
2900 Semiconductor Drive 

Santa Clara. CA 95050 

The authorized second source for SC/MP is: 

SIGNETICS 
811 East Arques Avenue 

Sunnyvale. CA 94043 

Although Signetics is authorized as an SC/MP second source. they are not yet manufacturing SC/MP and are not likely 
to do so until late 1978. 

Figure 3-1 conceptually illustrates the logic functions which are implemented on the SC/MP chip. One of the 
weaknesses of Figure 3-1, and the equivalent figures for the other microcomputers, is that the way in which 
logic functions are implemented cannot be identified. SC/MP, for example, implements non-CPU logic at a very 
elementary level, well suited for simple applications only. 

Nonetheless, Figure 3-1 does reveal a few of the rather unusual capabilities provided by 
SC/MP. Notice that Serial-to-Parallel Interface Logic is shown as implemented by the 
SC/MP chip. SC/MP has two serial I/O device pins. one for serial binary input data. the other for 
serial binary output data. The assembly and disassembly of serial-to-parallel data is accomplished by one SC/MP in­
struction. 

Figure 3-1 also shows Programmable Timer logic as being implemented by the SC/MP chip. This is barely 
justifiable - the SC/MP instruction set includes a Delay instruction that is used to generate timed durations ranging 
from 13 to 131.593 microcycles. Note. however. that during this delay interval the CPU can be performing no other ac­
tions: the CPU is. in effect. operating solely as a programmable timer. This is obviously quite different from having a 
separate logic device that performs this timer function within a system. Once again. this points out the weakness of a 
generalized representation such as Figure 3-1. 

One other area of non-CPU logic shown as being implemented by SC/MP further illustrates 
this point. A portion of the Direct Memory Access (DMA) logic is provided by SC/MP 
using a few signals to control bus access. A significant amount of external logic would still 
be required to obtain an operational DMA system. Therefore. Figure 3-1 can be misleading 
because it cannot indicate the way in which the CPU implements a particular function. In this 

SC/MP DMA 
AND 
MULTIPROCESSOR 
LOGIC 

particular case there is also a significant area of non-CPU logic provided by SC/MP that is nowhere indicated by Figure 
3-1: The signals that can be used for DMA are primarily intended to simplify the design of multiprocessor 
systems. This is a very unusual logic function for a CPU to provide and therefore is not even suggested in Figure 3-1. 
But for SC/MP. the inclusion of this multiprocessor-oriented logic makes a lot of sense: its low cost and modest perfor­
mance make it a likely candidate for multiprocessor systems. 

3-1 



Figure 3-1. Logic of the SC/MP Microcomputer 



c 
w 

~ 
a: 
o 
a. 
a: 
o 
u 
~ 
en 
w 

~ 
(3 
o 
CI) 
CI) 

ct: 
GIS 
w 
Z 
a: 
o 
III 
CI) 

o 
~ 
ct: 
C 
ct: 

@ 

There are two versions of the SC/MP CPU: the original version uses P-channel silicon-gate SC/MP 
MOS/LSI technology and its part number is ISP-8A/500; the. new version (SC/MP-III uses AND 
N-channel technology and its part number is ISP-8A/600. The two versions are functionally SC/MP-II 
equivalent and fully compatible in terms of object code. and pin configuration. (A few minor 
signal level conversions are required for complete signal compatibility: see Figure 3-3.) The SC/MP-II provides some 
significant advantages over tile original version - it is twice as fast and uses only one-fourth the power of the 
original P-channel version. Additionally, while SC/MP requires two power sources (a +5, volt and a -7 volt sup­
,pIY,),:SC/MP-1i needs only a single +5 volt supply. Throughout this chapter. we will simply refer to the CPU as 
SC/MP: all the descriptions apply to both versions of the CPU unless we specifically mention SC/roM_P_-_II_. _' ___ ... 

Both versions of the SC/MP CPU have an on-chip clock oscillator and can use a capacitor, SC/MP 
crystal, or TTL clock input to drive the clock. The P-channel SC/MP can run at a maximum fre- INSTRUCTION 
quency of 1 megah~rtz. which results in instruction execution times in the range of 10 to 50 EXECUTION 
microseconds. SC/MP-II can operate at frequencies up to 4 megahertz with resulting instruction SPEED 
execution times in the range of 5 to 25 microseconds. Notice that although the,input frequency '--_____ ...1 

for SC/MP-II can be four times that of SC/MP. the instruction execution time for SC/MP-II is twice as fast (not four times 
as fast): this is because of internal differences in the way the on-chip clock oscillator uses the timing inputs. 

Both versions of SC/MP provide TTL-compatible input and output signals. SC/MP 

SC/MP PROGRAMMABLE REGISTERS 
LOGIC LEVEL 

SC/MP has an 8-bit Accumulator, an 8-bit Extension register, a 16-bit Program Counter, three 16-bit Pointer 
registers, and an 8-bit Status register. These programmable registers are illustrated as follows: 

I 
J 

16 bits 

16 bits 

16 bits 

16 bits 

L 

8 bits 

8 bits 

8 bits 

Accumulator (A) 

Extension register (E) 

Program Counter (PC) or Pointer Register 0 (PO) 

Pointer Register 1 (1'1) 

Pointer Register 2 (P2) 

Pointer Register 3 (P3) 

Status register 

. . . -,' . 

The Accumulator is a single, primary Accumulator, as described for our hyp~thetical microcomputer. 

The Extension register is used to assemble or disassemble serial-to-parallel data for serial data input and output. 
This register is also used as a buffer for the Accumulator. .' 

The Program Counter is 16 bits wide; therefore up to 65,536 bytes of memory may be ad­
dressed'in the normal course of events. The four high-order bits of the Program Counter 
represent page select bits; therefore the memory of an SC/MP system is divided into " 6. 
pages' of 4096 words each. ~, H~ 

SC/MP 
MEMOR,( 
PAGES' 

Notice that the Program Counter is shown as Pointer Register 0; this is done because some instructions move dala bet­
ween Pointer registers including the Program Counter. There is one other unusual fact about the SC/MP Program 
Counter: the four most significant bits (the page select bits) of the Program Counter are never incremellted dur­
ing the instruction fetch sequence. Instead, when the last address of a page is reached, the Program Counter 
"wraps-around" to the first address of the current page. For example. if the Program Counter-contains 2FFF16. 
when it is incremented the new contents of the Program Counter will be 200016 instead of 300016. The pag'e.select 
bits of the Program Counter can only be changed by executing an instruction that loads a new value into the most sig-
nificant bits of the Program Counter. ' . 

Note that t~e four hig h~order address bits are not output on separate addresspins; insteaq trey are output on the data 
lines at the beginning of an input/output cycle and must be demultiplexed by external logic in order to generate page 
sele?t si~nals. ,',' 

The three Pointer registers are also used as Index registers or Stack Pointers. Typically; you would assign a 
specific funct!on to each register. For example. the following assignments might be used: 

, ,P1 - ROM Pointer 
P2 Stack Pointer 
P3 Subroutine Pointer 

3-3 



These arbitrary assign'ments also reveal several interesting facts about the architecture of SC/MP. First. the SC/MP CPU 
does not provide an on-chip stack; instead. a stack can be maintained in memory using one of the Pointer registers as a 
Stack Pointer. Secondly. the SC/MP instruction set' does not include a Jump-to-Subroutine instruction: one of the 
Poin:ter registers must be used t.o hold subroutine addresses which can then be swapped with the Program Counter. 
We will discuss this in detail when we describe the SC/MP instruction set. 

ADDRESSING MODES 
The SC/MP memory reference instructions use program-relative direct addressing, indexed addressing, and 
auto-indexed addressing. All memory refererice instructions are two-byte instructions and have the following 
object code format: 

7 6 5 4 3 2 1 0 ~ Bit No. 

'----- 00 = PC 
01 =Pl 
10 =P2 

11 =P3 

7 

------ 0 = PC-relative or indexed 

1 = Auto-indexed 

'--------.;.---- Opcode 

o 
displacement 

Program relative and indexed addressing are as described in Volume I, Chapter 6. We will just re-emphasize 
here that all addressing in SC/MP is paged and uses the wrap-around technique - that is. there is no carry from 
the low order 12 bits of an address into the most significant 4 bits of an address, We mentioned this earlier when we 
discussed the Program Counter. and it also applies to indexed addressing. Thus. if the sum of the Index register {that is. 
one of the Pointer registers) and the second object code byte contents (displacement) is more than FFF16. the Carry bit 
will be discarded, This may be illustrated as follows: 

, Pointer register (Index register) displacement 

tF B4 I 
~---",<", 

T .. +-------
~ 

Effective Address = 1 FB4 + 4D 

1 F B 4 

+ 4 D 
Expected result = 2) 0 0 1 ' , ' , 

Discard carry.-/ \":Actual Result is 1001 . Ie 

Remember, all arithmetic operations during address formation, regardless of the addressing mode, obey this 
wrap-around technique: there is never a carry from bit 11 into bit 12. 

The auto-indexing mode of addressing provided by SC/MP instructions is actually an auto-increment/auto­
decrement operation. When auto-indexing is specified. the displacement. as a signed binary number. is added to the 
contents of a Pointer register in order to compute an effective address. If the displacement is less than zero. the Pointer 
register is decremented by the displacement before the memory access. If the displacement is equal to or greater than 
zero. then the contents of the Pointer register is the effective address and the Pointer register contents are incremented 
by the displacement after the memory access. This method of auto-increment and auto-decrement addressing is 
the same as that described in Volume I with one significant difference: SC/MP allows an address to be incre­
mented or decremented by any value in the range 0 - 127 instead of just by a value of one. 

3-4 



c 
w 
~ 
a: 
o 
Il.. 
a: 
o 
o 
~ 
en 
w 
l­
e:( 

U o 
(/) 
(/) 
e:( 

a!I 
w 
Z 
a: 
o 
a:I 
(/) 

o 
:!: 
e:(' 
C 
e:( 

@ 

SC/MP STATUS REGISTER 
sC/MP has a programmable 8-bit Status register which may be illustrated as follows: 

Circled numbers represent device pin numbers to which bits of the Status register are connected, 

The Carry (ey), Link (L) and Overflow (OV) status bits are typical microcomputer status bits as were desc:ribed 
in Volume I, Chapter 7. 

,The two sense bits, sB and SA, are tied to sC/MP device pins. These two bits directly reflect the state of the 
logic signals applied to the device pins and thus can be used to detect external events. Although there are no 
SC/MP instructions that allow you to directly jump or branch on the condition of one of these bits, a sequence of mask­
ing and testing instructions can be used to accomplish the same effect albeit more slowly, The SA and sB bits are 
read-only bits. Instructions may read the status of these two bits, but only incoming signals may ~hange t~eir 
condition. For example, an instruction that moves the contents of the Accumulator to the Status register may modify 
any of the o~her status pits, but bits 4 and 5 will not change, The SA bit serves a dual function. If the Interrupt Epa­
ble (IE) bit is set to one, the SA input serves as the interrupt input. We will di"scuss interrupt processing later in this 
chapter, ' , 

FO, F1 flnd F2 are control flags that are tied to SC/MP device pins. The state of these three flags may be 
changed under program control and may be used to control external devices. When the state of any of these flags' 
is chang~d, it is immediately reflected by a change in the signal level af the associated device pin, 

SC/MP. CPU SIGNALS AND PIN ASSIGNMENTS 
Figure 3-2 illustrates the SC/MP pins and signals. A description of these signals is useful as a guide to the way 
in which an SC/MP microcomputer system works. 

The 12 address lines ADOO - AD11 output memory and I/O device addresses. These are tristate lines, and may 
be floated, giving external logic control of the Address Bus. The four most significant address bits 
(A~12 - AD15) are time multiplexed on the data lines. 

The eight Data Bus lines DBO - DB7 are multiplexed, bidirectional data lines through which 8-bit data units are 
input a'nd output, and on which statuses and address bits are output at the beginning of any input/output 6ycle. 
Statuses on Data Bus lines DB4 - DB7 identify the type or purpose of the input/output cycle. The address bits 
on Data Bus lines DBO - DB3 are the four most Significant address bits (AD12 - AD15) which must be 'Used to 
generate page select signals for memory or peripheral devices. Table 3-1 ;descri~es the status and addr~ss infor-
mation that is output on the Data 'Bus. Like the address'lines, the data lines are tristate. ' .f ~ 

'. , ' I ..,.... 

SENS~A~ ~ENSEB, FLAGO, 1, al'lc;i 2 are pin connections for the simil~uly named Status register bits described 
earlier. '. ..,' 

I , 

SIN and SOUT are used il1 ~ombination with the SIO instruction for serial input of Data to the Extension register 
and serial output of data from the Extension register. 

The remaining Signals (excluding clock, power and ground) may be divided into bus access, Data Bus definition, and 
timing <::ontrol signals. 

You will notice that some of the SC/Mr pins in Figure 3-2 have two sets of signal SIGNAL 
names: the names enclosed in parentheses reflect the nomenclature used with SC/MP- DIFFERENCES 
II; Aside from the ciock and power' signals which we shall discuss separately, the only BETWEEN SC/MP 
difference between SC/MP and SC/MP-II is in the polarity of bus access signals: Bup Request (P-CHANNEL) 
(BREQ/NBREQ), Enable In (ENIN/NENIN), and Enable Out (ENOUT/NENOUT), The "N;' prefix to AND SC/MP-II 
each of the SC/MP-II signals indicates that these signals are negative-true - as opposed to (N-CHANNEL) 
the positive- (or logic "1 ") true signals for the P-channel SC/MP. In the descriptions that . 
follow, we will use P-channel SC/MP nomenclature. If you are using the N-cnannel SC/MP-II version, you m'ust 
simply invert these signals. 

3-5 



NWDS 

NRDS 
(NENIN) ENIN 

(NENOUl) ENOUT 

(NBREO) BREO 

NHOLD 

NRST 

CONT 

DB7 

DB6 

DB5 

DB4 
DB3 
DB2 

DBl 

DBO 
SENSEA 

SENSEB 

FLAGO 

(GND)VSs 

PIN ~AMEt 

-

----

-

-

.. 

.. 

.. 

.. 

.. 

1 40 
2 39 
3 38 .. 
4 37 

5 36 

6 35 

7 34 

. .8 33 
·9 32 

10 31 

11 
SC/MP 

30 

12 29 

13 28 
14 27 

15 26 

16 25 
17· 24 --
18 23 

19 22 

20 21 

DESCRIPTION 

Xl,X2 Crystal/Capacitor Connections 
-000 - DB7 Data Bus 
-ADOO- ADll Address Unes 
-SENSEA,SENSEB External Status Input: 
-FLAGO,l,2 Flags. 
-NRST Reset 
-CONT Halt/Continue 
-BREO (NBREO) Bus Request/Busy 
-ENIN (NENIN) Data Bus Enable 
-ENqUT !NENOUT) cPu ·Bus Access Status 
-NADS Address on Data Bus 
'"NRDS Data Input Strobe 
-NWDS Data Output Strobe 

. -NHOLD Clock Delay 
SIN Serial Data In 

. SOUT Serial Data Out 

VGG,VSS(VCC,GND) Power and Ground 

-These signals connect to the System Bus. 

t S:g!1~IS in parenthesis are SC/MP-II signal names. 

.. VGG (VCC) 

NADS 

;.. 

.... 

X2 (XOUT) 

Xl (XIN) 

AD11 

AD10 

AOO9 

ADOS 

A[)()7 

ADOS 

ADOS 

AD04 

AD03 

AD02 

Apol 

ADOO 

.. .. 

.. 

.. SIN 

SOUl 

fLAG2 
FLAG 1 

TYPE 

Input 

Bidirectional, Tristate 

Output, Tristate 

Input 

Output 

Input 

Input 

Bidirectional 

Input 

Output 

Output 

Output, Tristate 

Oy~put, Tristate 

Input 

Input 

Output 

Figure 3-2. SC/MP CPU Signals and Pin Assignments 

Before the SC/MP CPU can begin any input/output operation, it must gain access to the 
System· Busses .. This approach reflects the design philosophy behind SClMP.lt is a relatively 
low-cost. low-performance CPU and the designers anticipated that it would frequently be used in 
multiprocessor systems orin systems utilizing Direct Memory Access. Accordingly, three signals 
are proyided to control access to the System Busses. 

SC/MP 
BUS ACCESS 
CONTROL 
SIGN'ALS 

BREQ is· used as a bus busy input indicating that some other device is using the System Busses; as an output, 
BREQ.is a bus request which is output when the System" Busses are free and SC/MP requires access·to the 
busses. . . . 

ENIN is a control signal which is input to tt'!e c'pu by extern'allogic. When ENIN is low, the CPU i~ denied access 
to the System Bus'ses and the' SC/MP address and data lines are held in tristate mode. 

I ." '.' ';""~ 

3-6 



Q 
w 

~ a: 
o 
D. 
a: 
o 
o 
~ 
u) 
w 
l­
e( 

U o 
CI) 
CI) 
e( 

all 
w 
Z 
a: 
o 
III 
CI) 

o 
~ 
e( 
Q 
e( 

@ 

ENOUT is the CPU's output response to ENIN. When output high. ENOUT indicates that ENIN is high; therefore. the 
CPU can gain access to the System Busses. but it has not done so. If ENOUT is low. it indicates either that ENIN is low. 
therefore the CPU is being denied access to the System Busses or. if ENIN is high. then it indicates that the CPU is using 
the System Busses. . 

When the CPU has gained access to the System Busses, three signals identify the way in SC/MP DATA 
which the CPU is using the Da~~ Bus. BUS DEFINITION 

SIGNALS NADS is output to indicate that a valid address has been output on the address lines and 
that the low-order four ~its of the Data Bus contain the high-order four· bits of a 16-bit 
address. NADS also indicates.tti~t status information is being output on the high-order four bits of t~e Data Bus. 

!'IRDS, when output by the CPU, indicates that the CPU wishes to receive data on the Data Bus. 

NWDS, when output by the CPU, indicates that data is being output by the CPU on the Data Bus. NWDS may be 
used by external logic as a write strobe. 

There are three signals which control CPU timing. SC/MP TIMING 
CONTROL NRST is a system reset signal. When input low. it aborts any in-process operations. When 

returned high. all programmable registers are cleared. and program execution begins with the SIGNALS 
instruction fetched from memory I?cation 000116. 

CONT may be input to stop the CPU between instructions. When CaNT is input low. all CPU operations are halted 
after the current instruction execution has been completed. The CPU remains halted until CaNT goes high. 

NHOLD is an input signal used during input/output operations to lengthen the allowed time interval for devices 
to respond to CPU access requests. ;' . 

SC/MP TIMING AND INSTRUCTION EXECUTION 

The SC/MP timing for instruction execution is very simple. Instruction execution times are expressed in terms 
of microcycles. A typical instruction is executed in 10 microcycles; one (the first) or more of these microcycles is a'n in­
put/output cycle. The length of a microcycle depends on the frequency of the clock inputs to the CPU: with the P­
channel SC/MP. the minimum microcycle length is 2 microseconds; for SC/MP-II. the N-channel version. minilTlum 
microcycle length is 1 microsecond. Thus~ typical instruction execution time is 20 microseconds for the P-channel 
SC/MP. and 10 microseconds for SC/MP-II. All microcycles, whether in~~rnal machine cycles or input/output cy­
cles, are of the same length: the only variance occurs when the NHOLD signal is used to stretch an input or out-
put cycle. . . 

There are basically only three types of SC/MP machine (or micro) cycles: data input (read) cycles, data output 
(write) cycles, and internal microcycles. The execution of each instruction is merely a concatenation of these three 
types of microcycles. 

SC/MP does. however. output some status information at the beginning of every input or output 
cycle; this status information provides a more precise definition of the events that will occur dur­
ing that microcycle. Table 3-1 lists the information which may be output on the Data Bus at the 
beginning of an I/O cycle (when NADS is low). Table 3-2 defines the status information for non-I/O 
cycles.· . . 

3-7 

SC/MP 
I/O CYCLE 
STATUS 
INfOR!VIATION 



SYMBOLS 

H-Flag 

D"Flag 

I-Flag 

Table 3-1. Status and Address Output via the Data Lines 
at the ~eginning of an I/O Cycle 

DATA BUS 

BIT DEFINITION 

7 Indicates that a Halt instrl;lction has been executed. 

6 Indicat~s that !l Delay instruction has been executed and that a 

delay cycle is starting. 

5' .' Indicat~s that the CPU is in the fetch cycle for the first. byte of an 

instruction. 

R-F!ag 4 When high. indicates that the I/O Gycle is a read cycle and that input 

data should be placed on the Data Bus when NRDS is active. When low. 

AD15 

AD14 

Aq13 

AD12 

Status 

Information 

H-Flag 

D-Flag 

I-Flag 

R-Flag 

3 

2 

1 

0 

irdicates that the I/O cycle is ~ write cycle and that the Data Bus 

will contain output ·data' when NWDS is active. 

The four most significant bits of a 16-bit address. 

Can be used as page select signals. 

Table 3-2. Statuses Output on the Data Bus for 
V.grious Types of Machine. Cycles 

TYPE OF MACHINE CYCLE 
Data Bus 

Bit Instruction Halt Delay Data Input 

Fetch Instruclion Instruction (Read) 

0 1 
"-': 

0 0 7 

6 0 0 1 0 

5 1 1 0 0 

4 1 1 1 1 

SC/MP BUS ACCESS LOGIC 

Data Output 

(Write) 

0 

P 
0 

0 

Since the SC/MP CPU must gain access to the System Busses before it can perform an input or output cycle, 
we will describe the b.us, acce~slogic before dis~u~~ing. inp~t/output cyc:les.· . 

Figure 3-3 illustrates the bus access logic processing seq~ence that occurs whenever the SC/MP CPU is going 
to perform an input/~utput cycle. t, ,'" ~..' 

First. the bidirectional BREO line is tested, If the BREO input is high. it indicates that the System Bus is currently in 
use: the CPU holds the outputs of the address and data lines. and the NRD~ and ~WDS signals in t~e high-impedance 
(tristate) mode, . i.' ' 

When the BREO input signal is low (or goes low) it indicates that the System Bus is free. and the CPU then outputs a 
logic "1" on the BREO line. This informs external devices (for example. other SC/MP CPUs or a DMA controller) ,that a 
reques't for bus access has been initiated, 

The CPU next tests the state of the ENIN input line. ENIN is essentially the "bus grant" signal: if it is low. it indicates 
the Bus Request (BREO) is denied and the CPU remains in an idle state with its output held in the high impedance 
mode. When the ENIN input is high (or goes high) it indicates that the CPU's bus request has been granted a'nd the I/O 
cycle can now be initiated. ' 

When the I/O cycle has been completed. the CPU sets the BREO output low to indicate that it has finished using the 
System Bus and that its outputs are once again in the high impedance mode. ' 

3-8 



c 
w 

~ 
a: o 
D­
a: 
o 
(J 

~ 
iii 
w 

~ 
g 
en 
en 
< 
ell 
w 
Z 
a: 
o 
CO 
en o 
:iE 
< c 
< 
@ 

CHECK 

BREQ 

INPUT 

BUS IS AVAILABLE. 

OUTPUT BREQ 

HIGH 

BUS 

ACCESS 

GRANTED 

PERFORM 

I/O CYCLE 

SET BREQ OUTPUT 

LOW WHEN I/O 

COMPLETE 

YES 

Initiate an I/O cycle. 

(Instruction fetch, data 

input, or data output}· 

If BREQ input high, bus is busy. Address 

and data lines, and NRDS, NWDS held 

in tristate mode. 

Request bus access. 

If ENIN low, bus access is 

denied until ENIN goes high. 

Figure 3-3. SC/MP Bus Access Logic Processin'g Sequence 

There are a couple of aspects of the bus access sequence which are not revealed by Figure 
3-3. 

SUSPENSION 
OF AN SC/MP 

First, the SC/MP CPU has \he rather unusual capability of suspending an I/O operation after I/O CYCLE 
it has already begun. If the ENIN input line goes low while the CPU has access to the bus, the 
SC/MP address and data lines will go to the high impedance state, thus relinquishing access to the System Busses. The 
BREO output signal will remain high and, when the ENIN input line 'subsequently goes high once. more, the in­
put/output cycle which had been ~uspended will begin again. 

This ability to suspend an I/O cycle might be quite useful in a system where bus access is granted on a priority basis. In 
such a system, it is conceivable that one or more of the system devices (another CPU, for example) might have overrid­
ing priorities and require immediate access to the System Busses. The SC/MP bus access logic we've just described 
allows this to be accomplished with no difficulty whatsoever. There is, however, one gray area in this I/O-suspend 



function. If an SC/MP I/O cycle is nearly complete. it would seem to be'more efficient to go ahead and complete the'cy­
cle rather than suspending it and then restartil'1g the entire cycle later. This is precisely what SC/MP does. Unfor~. 
tunately .. the SC/MP literature does not tell us where this "point-of-no-return" lies within 'an I/O cycle. One would: 
assume. or at least hope that this point is prior to the time when NRDS or NWDS is sent out." These signals are the read 
and write strobe signals; if they were repeated when an I/O cycle was restarted. the same data might be read or written 
twice - a potentially vexing situation. However. you are at least assured that if ENIN goes low while SC/MP is perform-' 
ing an I/O cycle. the cycle will be performed - either by continuing to completion or by being restarted when the 
System Busses are again available. 

If you refer back to Figure 3-3 once again, you will notice that there is no mention of' SC/MP ENOUT 
the third SC/MP bus access control signal- ENOUT. This is not an oversight - it is SIGNAL USED 
simply due to the fact that the ENOUT signal performs a rather specialized function which TO ESTABLISH 
is not necessary to an understanding of the SC/MP bus access logic. The primary. function ACCESS PRIORITIES 
of the ENOUT output signal is as an enabling signal in systems where a "daisy chain" "', --------­
technique is used to establish priorities for bus access. We will defer a discussion of this use of ENOUT until later in 
this chapter when we discuss the use of SC/MP in multiprocessor and DMA systems. . 

If the SC/MP CPU is used in a single-processor. non-DMA system then there is no need for the 
built-in bus access logic. In these cases. which may in fact be in the majority. the bus access 
signals should be connected so that the SC/MP CPU is always guaranteed immediate access 
to the System Busses. This is easily accomplished by making the following connections: 

SIGNAL CONNECT TO 

SC/MP BREQ· . VGG through a pul!-downresist~r. 
ENIN VSS 
ENOUT Leave unterminated 

SC/MP-II NBREQ VCC via external 'resistor 
NENIN Ground 
NENOUT Leave unterminated 

~--------~ 
SC/MP I/O 
WITH BUS 
ACCESS LOGIC 
CONTINUOUSLY 
ENABLED 

In the descriptions of SC/MP input/output operations that follow, we will always assume that the SC/MP CPU 
has already been granted access to the System Busses, and that this access i~ not interrupted (or suspended). 

SC/MP INPUT/OUTPUT OPERATIONS 
Once the SC/MP CPU has control of the System Busses, an actual input or output cycle can begin. As we men­
tioned earlier in this chapter. the execution of any SC/MP instruction includes some combinations of input/output cy-' 

• cles and internal machine cycles. Figure 3-4 illustrates the bus utilization required for each of til!! SC/MP instruc­
tions, and also reveals an interesting, non-obvious fact about SC/MP input/output operations. Observe that each 
bus utilization interval is shown as being two microcycles in duration. This is true because each input/output opera­
tion effectively requires two microcycles. The CPU spends a portion of the first microcycle gaining access to the 
System Bus and placing address and status information on the address and data lines. The actual data transfer (read or. 
write) occurs during the second microcycle, This can be confusing if you are designing a DMA or 'multiprocessor 
system: the actual time that the bus is available is a great deal less than you would expect if you based your computa­
tions solely on the number of read and write cycles required for each instruction. To make this more clear: refer to Table 
3-3. which lists the read cycles. write cycles. and total microcycles required for execution of each SC/MP instruction. If 
you total up each of the columns.from this table. you come up with the following figures: 

Total Read Cycles 79 
. Total Write Cycles, 3 

Total Input/Output Cycles B2 
"!:otal Microcycles 466. 

Based on these figures. itwould appear"thatbus utilization is less than 20% (82/466). However. since the CPU main­
tains control of the bus for approxiinatelYtwo microcycles each time a read or write cycle is performed. the actual bus 
utilization is quit!3a bit greater than you would have expected. For precise timing parameters refer to the data sheets at 
the end of·this-chapter. Keep in mind that bus utilization computations should be based not only on thes'e data sheets. 
but also on the actual program being.used. since bus utilization is directly related to the composition of instructions 
which comprise your program - these calculations can differ significantly from any theoretical calculations 'based 
solely on a ~PU's ~omplete instruction set. 

Now. having discussed t'hose areas of SC/MP bus access and utilization which might be confusing. let us proceed to 
examine the actual data input/output operations -wewill find that these SC/MP operations are quite straightf<?rward. 

3-10 



c 
w 

!i 
a:: 
o 
D. 
a:: 
o 
o 
~ 
u) 
w 

!i g 
en 
en 
c( 

0/1 
w 
Z 
a:: 
o 
a::a 
en o 
~ 
c( 
c 
c( 

@ 

TIME IN MICROCYClES 
INSTRUCTION 

I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 1'0 I" 1'2 1'3 1'4 I IS 16 1'7 1'8 1 '9 I 20.121 I 22 123 124 I 25 26 

SCL. CCL. CSA. RR. RRL. SA. SAL. and SIO ~ J 

LDE. ANE. ORE. XRE. CAS. lEN. and OINT .. ~_"".1, ... ';1. "--____ .... 1 LEGEND: 

_ BUS UTILIZATION INTERVAL 

XAE. XPf'C. and ADE 

CAE. XPAH. and XPAL 

DAE 

HALT 

JP. JZ and JNZ (No jump) 

JMP. JP. JZ. and JNZ (00 jump) 

ADI 

LDI. ANI. ORI. and XRI 

CAl 

DAI 

ST 

LD. AND. OR. XOR 

ADO 

CAD 

DAD 

OLD and ILD 

OL y (mini~um) 

INSTRUCTION 
READ 

CYCLES 

ADD 3 

ADE 1 

ADI 2 

AND 3 

ANE 1 

ANI 2 
CAD 3 

CAE 1 

CAl 2 

CAS 1 

CCL 1 

CSA 1 

DAD 3 
DAE 1 

DAI 2 

DINT 1 

OLD 3 

DLY 2 

HALT 2 

lEN 1 

ILD 3 

JMP 2 

JNZ 2 

~ READ CYCLE WITH H-FLAG OUTPUT . 

'·:·:·::::::::::::::::1 OPERAND STORE 

_ BUS NOT RELEASED DURING THIS TIME 

Figure 3-4. Bus Utilization of Each SC/MP·lnstruction 

Table 3-3. SC/MP Instruction Execution Times 

WRITE TOTAL. 

CYCLES MICROCYCLES 

READ WRITE TOTAL 
INSTRUCTION 

CYCLES CYClES MICROCYClES 

0 19 JP 2 0 9,11 fodump 

0 7 JZ 2 0 9, 11 for Jump 

0 11 LD 3. 0 18 

0 18 LDE 1 0 6 

0 6 LDI 2 0 10 

0 10 NOP 1 0 5 

0 20 'OR 3 0 18 

0 8 ORE 1 0 6 

0 12 ORI 2 0 10 

0 6 RR 1 0 5 

0 5 RRL 1 0 5 

0 5 SCL 1 0 5 

0 23 SlO 1 0 5 

0 11 SR . 1 0 5 

0 15 SRL 1 0 5 

0 6 Sf 2 1 18 

1 22 XAE 1 0 7 

0 . 13 - 131593 XOR 3 0 18 

0 8 XPAH 1 0 8 

·0 6· XPAL 1 0 8 ,. 22 XPPC 1 0 T 

0 11 XRE 1 0 6 

0 9, 11 for Jump XRI 2 0 10 

Note: If slow memory is being used, the appropriate delay should be added for .each read or write cycle. 

3-11 



Figure 3-5 illustrates the timing for a standard SC/MP data input cycle. This timing applies SC/MP DATA 
regardless of whether the input cycle is to access data from memory or peripheral devices and INPUT CYCLE 
also applies to instruction fetch operations. 

Once the CPU has gained access to the System Busses. the input cycle begins by presenting address and statuses 
on the address and data lines. When the NADS signal is sent out. the least significant 12 bits of address data are valid 
on the SCiMP address lines. and the SC/MP data lines are outputting status information and the most significant 4 bits 
of address information. Table 3-1 defines the information that is output on the data lines while NADS is true. When 
these address bits and/or status bits need to be latched. either the leading or trailing edge of NADS can be used as a 
clock signal. 

BREQ I l 
ENIN~ 

NADS \ I 
F!oating r-------------------"'Il Roating 

AD11 -ADOO -------C( Address Valid ).----

Floating AD 12 - AD 1 ~ Rooting !"put Data Roating 

DB7 - DBO ------..... (And Status J~----------04( Valid J .. -~----­
Output 

Floating , r---... ,..., NRDS _______ J' \ I • 
... w ______ ~ 

Floating 

Figure 3-5. SCiMP Data Input Cycle 

Shortly after the trailing edge of NADS, the Data Bus is floated and the Read Data Strobe (NRDS) signal is out­
put. Valid input data is expected prior to the trailing edge of NRDS. 

The SC/MP data output cycle begins in the same way as the data input cycle. The only 
difference is that immediately after the status/address information is output on the data 
lines, the write or output data is placed on the data lines. As shown in Figure 3-6. the NWDS 
signal is sent out to indicate when valid output data is present. Either the leading or trailing edge 
of NWDS could be used to latch the output data into external data latches. 

BREQ -l 
ENIN~ 

NADS \ 
Floating 

AD11 - AOOO -------I( 

Floating 

I 

AD12 - AD15 

DB7 - DBO -------ofAnd Status Output 

Address Valid ) 

Output Data Valid ~--____ ~~ __________________ J 

NWDS __ .R.o.at.in.g __ ..... \ r 
Figure 3-6. SC/MP Data Output Cycle 

3-12 

SC/MP 
DATA 
OUTPUT 
CYCLE 

l 

Roating 

Roating 

Roating 



o 
w 
~ 
a:: 
o 
D.. 
a:: 
o 
o 
~ 
en 
w 

~ 
g 
CI) 
CI) 
c( ., 
w 
Z 

The data input/output cycles just described allow approximately one microcycle for exter­
nallogic to respond. If additional access time is required, the NHOLD input signal to the CPU 
can be used to lengthen an input/output cycle. The NHOlD signal can be set low any time prior 
to the trailing edge of NRDS or NWDS as shown in Figure 3-7; this causes the trailing edge of 
NRDS or NWOS to be delayed until after NHOlD has been returned high. On data input cycles. the 

SC/MP NHOLD 
SIGNAL FOR 
SLOW I/O 
OPERATIONS 

time until valid input data must be presented is simply delayed. On data output cycles. the valid output data is main­
tained on the data lines by the CPU until the delayed trailing edge of NWDS. 

NADS ~"'_,-JI II 

I 'be" l~ ________ N_orm_a_st ... ro, tlmlng~ ... ~_ ..... ________ _ 

NRDS/NWDS • --.:2 
'----....:l-oIl· Delayed strobe 

NHOlD 

a:: g Figure 3-7. NHOlD Signal Used to ~engthen SC/MP 110 Operation 

~ The NHOLD signal causes the I/O cycle to be lengthened in increments of 1/2 microcycle. There is no limit on 
::!: the duration of the NHOLD signal. 
c( 

~ THE SC/MP HALT STATE 
@ The SC/MP Halt state differs from those described for other microprocessors in this book in one significant and 

unusual way - execution of the SC/MP Halt instruction does not cause the CPU to enter the Halt state. Instead. 
when SCiMP executes a Halt instruction. it simply outputs the H-Flag status on data line 7 (OB7) when NAOS is true. 

In order to actually place the CPU in the Halt state the CONT input signal to the CPU must be forced low. 

You can use external logic to force CaNT low either in response to the H-Flag or completely asynchronously: whenever 
a low is applied to the CaNT input. the CPU enters the Halt state upon cOrT)pletion of the current instruction. Figure 3-8 
shows a circuit that can be used to force the CPU into the Halt state when a Halt instruction is executed. When OB7 is 
output high while NAOS is true. it indicates the Halt instruction has been executed: this combination of events is used 
to generate a low-going pulse (NHAl T) which is applied to the clear (ClR) input of a 0 flip-flop. The Q output of the flip­
flop is applied to the CaNT input signal to the CPU. Thus. whenever a Halt instruction is executed. the CPU will be 
forced into the Halt mode. CPU operation is resumed when the start switch S1 is momentarily closed to the NO con­
tacts. This causes a positive-going clock pulse that sets the 0 flip-flop and returns the CaNT input to the CPU high. 

SWITCH 
DEBOUNCER 

+5V 

ClK 

7474 

ClR 

CONT 
o ..... --of 

SC/MP 

NHAlT 

Figure 3-8. Circuit to Cause Programmed Halt for SC/MP CPU 

3-13 

DB7 



While the SC/MP CPU is in the Halt state, the address and data lines are floated. The CPu. remains in the Halt 
state until the CONTinput is returned high. There is one exception to this rule: if an interrupt request is 
detected while in the Halt state, the CPU responds to the interrupt by executing a single instruction. Thus. you 
could use the first instruction of your interrupt service routine to reset the external CONT input signal. and thereby ter­
minate the Halt state. 

SC/MP INTERRUPT PROCESSING 
The SENSEA input signal to the SC/MP CPU serves as the interrupt request line if bit 3 of the CPU's Status 
register is set to "'''. Bit 3 of the Status register is the Interrupt Enable (IE) flag and can be set using the Inter­
rupt Enable (lEN) instruction. 

When interrupts are enabled, the SENSEA input line is tested at the beginning of every instruction fetch opera-
. tion as shown in Figure 3-9. If SENSEA is high, the IE flag is reset, and the contents of the Program Counter are 
exchanged with the contents of Pointer Register 3. In other words. Pointer Register 3 must contain the beginning 
address of your interrupt service routine. The return address. that is. the address at which program execution must con­
tinue after the interrupt request has been serviced. is now held in Pointer Register 3. Thus. the return-from-interrupt se-
quence would be to set the IE flag high and then once again exchangethecontents of the Program Counter and Pointer 
Register 3 to resume the main program. 

Let us examine some of the special requirements and limitations of this interrupt processing sequence. First, 
before enabling interrupts you must load Pointer Register 3 (P3) with the beginning address of your interrupt 
service routine. Notice that the contents of P3 should actually be one less than the beginning address of the 
first instruction since the new contents of the Program Counter will be incremented prior to fetching the in­
struction. 

INTERRUPT - - - - -

ENABlE FlAG 
EXECUTE XPPC 3 

INCREMENT PROGRAM 
COUNTER. FETCH AND 
EXECUTE INSTRUCTION 

Figure 3-9. SC/MP I nterrupt Instruction Fetch Process 

3-14 



c 
w 

~ 
II: o 
D. 
II: 
o 
U 
~ 
iii 
w 

~ g 
II) 
II) 

ct 
a1J 
w 
Z 
II: 
o 
IX) 
II) 

o 
~ 
ct 
C 
ct 
@ 

Next, if you compare the interrupt response of SC/MP to those of most other microcomputers or to our hy­
pothetical microcomputer described in Volume I, you will notice that the following two steps are missing: 

1) There is no interrupt acknowledge signal. 
2) None of the SC/MP register contents are saved. 

In an SC/MP system, both of these functions are left up to your interrupt service routine. For example. you might 
provide an interrupt acknowledge indication using one of the CPU Flag outputs or by outputting a specially defined ad­
dress. If it is necessary to save the contents of the SC/MP registers. this must also be done by your program using a 
software stack or a predefined area of read/write memory. You must also provide the instructions necessary to 'restore 
the contents of any "saved" registers since. as we shall discuss next. the return-from-interrupt sequence used by 
SC/MP is also quite primitive. 

The final unusual aspect of the SC/MP interrupt system is that there is no Return-From­
Interrupt instruction. Instead, as we mentioned earlier, the last instruction of your inter­
rupt service routine must be an XPPC P3 instruction which restores the original contents 
of the Program Counter by exchanging the contents of PC and P~. This might seem quite 
straightforward, but it will require some special programming considerations. 

SC/Mp· RETURN­
FROM-INTERRUPT 
TECHNIQUE 

The XPPC P3 instruction. which we just mentioned. restores the correct value to the Program Counter - but what 
about P3? Remember that P3 is always supposed to point to the beginning address (minus 1) of your interrupt service 
routine (if interrupts are enabled). Yet. the interrupt response sequence we just described loaded the contents of P3 
into the Program Counter (PC) and then incremented the PC. And. as our interrupt service routine is executed. the con­
tents of PC will be incremented each time an instruction is executed. Thus. when we complete the interrupt service 
routine and again exchange the ~oritents of PC and P3. we will be loading P3 (our service routine pointer) with a value 
that has been altered. So. the problem is - how do we perform an interrupt service routine and ensure that P3 will con­
tain the correct pointer value upon completion of the service routine? 

The solution to this quandary requires a closer examination of interrupt service routines. A typical interrupt service 
routine might consist of three primary segments. One segment would be the entry point to the routine and would in­
clude such things as register save operations: let uscall this segment "S1". The second segment would be the instruc­
tion sequence which actually services the device which requested the interrupt: we will call this segment "S2". The 
final segment would restore registers and other system elements to their 'pre-interrupt' values. and then return control 
to the main (interrupted) program: we will call this segment "S3". Thus. the entire interrupt recogni­
tion/response/return sequence might be represented as follows: 

(We will use arbitrary addresses to simplify our discussion,) 

. MAIN PROGRAM 

PC I 00""0 -
P3 I 0~3F I---

After the SC/MP responds 
INTERRUPT 

SERVICE ROUTINE 
to the interrupt: 

L 05",,0 .. 51 . 
Entry point and save .. 

""- routine 
I 00",,0 

52 
: .. (;'~':. Main body of service 

PC 

P3 

routine 

53 
Restore routine and 

return to main 
program 

003E 

~3F 

0040 

053F 
0540 

054F 

0550 

055F 

0560 

Interrupt request recognized at this point. 

5C/MP performs an XPPC P3 operation. 

056F'" Last instruction of your interrupt 
service routine is XPPC P3. 
After this instruction - ___ _ 

) 
PCIr----O~O~""~O~--~I:.---------------------------------------------------~ ... _~-;..;.;;;....-...Jo.~----------------- Control is returned to Main Program 

P3 .. ' __ ..;.10.'_6 .. ' ___ ..... resuming at point of interruption. 

3-15 



This sequence causes a proper return to the interrupted program but. as we have discussed. does not leave us with our 
desired pointer value (053F in this example) .in P3. The solution requires us to rearrange the segments of our interrupt 
service routine as follows: 

MAIN PROGRAM 

003E t-------.... 003F 

~L-__ ~0~0~4~0_' __ -t--~~--~ __ ~ ____ ~ ____ ~~ Interrupt request recognized 

P3 L 053F 

fter SC/MP responds A 

to the interrupt: 

~ I 0540 

P3 I 0040 

J----

.. 
I 
I 

INTERRUPT 
SERVICE ROUTINE 

S3 
Restore routine 

and retum 
to main program 

SI 
Entry point and 

save routine 

S2 
Main body of service 

routine 

~30"~---------------~ 

last instruction of your service 
~3F ...- routine is XPPC P3 

0540 .-- Rrst instruction of 

~4F 

~50 

interrupt service routine 

055F.- This location contains a Jump instruction 
to the beginning of S2 at address 0530 

Now. our entry point for the interrupt service routine is still 0540. so we load P3 with a pointer of 053F as' before. 
However. by rearranging the segments and adding a Jump instruction at the end of the second segment (S2). we can 
have the last instruction of our interrupt service routine located at 053F. When this instruction (XPPC P3) is executed 
the following operation occurs: 

Before After 

PC ~ 00"0 Ipc 

P31 00 .. 0 V P3 

We have now returned control to the main program and we have also restored:the contents of P3 to the required 
pointer value to allow servicing of subsequent interrupts. 

One final point: the CPU's interrupt processing sequence resets the Interrupt Enable (IE) flag to zero. To allow 
subsequent interrupts to be serviced, your service routine must set the IE flag to "1". This wou Id typically be the 
next to last instruction of your interrupt service routine. So the sequence of instructions would be: 

lEN 
XPPC P3 

SET IE FLAG TO 1 
RETURN TO MAIN PROGRAM 
FIRST INSTRUCTION OF SERVICE ROUTINE 

3-16 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
o 
~ 
en 
w 

~ 
U o 
CI) 
CI) 

ct 
all 
w 
Z 
a: 
o 
CO 
CI) 

o 
~ 
ct 
c 
ct 
@ 

SC/MP DMA AND MULTIPROCESSOR OPERATIONS 
Because the SC/MP CPU is a low-cost. low-perfo'rinance microprocessor. its designers anticipated that it would fre­
quently be used in systems which include other devices of equal or greater intelligence and processing power. Accor­
dingly. logic is provided on the CPU which provid~s a simple yet effective method of operating in systems 
where the System Busses are shared. The logic req'uired to implement a shared-bus system is essentially the same 
regardless of whether the purpose is to allow another device (such as a high-speed peripheral) to perform a DMA opera­
tion or if it is required because there is more than one CPU operating in the system. There are a few rather subtle 
differences between the techniques used. and we shall point these out as we proceed with our discussion. 

As we have already described. three SC/MP signals are dedicated to bus-sharing ac- SC/MP 
tivities: BREQ is an input/output signal which serves both as a bus-request and bus-bu'sy' BUS~SHARING 
signal, ENIN is effectively a bus-grant input signal, and ENOUT is an output signal that CONTROL 
can be used to establish priorities in daisy chained qonfigurations. Let us begin by seeing SIGNALS 
how SC/MP might operate in a system which includes a DMA controller. 

The DMA logic provided by the SC/MP CPU is nearly the inverse of that provided by other microcomputers in 
this book. Most CPUs assume that they always have control of the System Busses. If another system device requires 
access to the System Busses. it makes a request to a pMA controller which. in turn. inputs a signal to the CPU request­
ifl9 that the CPU yield control of the busses. When the CPU has no need for the bus. it outputs an acknowledgement 
signa! to the DMA controller which then sends a bus-grant signal to the requesting device. The SC/MP CPU, 
however, competes for the System Susses just as any other system device: it never assllmes that it has control 
of the busses. Thus. there are really no' special considerations that need be accounted for when designing DMA logic 
for systems that include the SC/MP CPU. The DMA controller can treat the CPU as simply another device (no different 
from a peripheral device. although the CPU mig~t be assigned' to a higher priority) that requires access to the Sy~tem 
Busses. Therefore. a typical DMA application w'ould only require the use of the SC/MP BREQ and ENIN signals as 
shown in Figure 3-10. :" 

DMACK2 

DMACKl 

DMACKO 

DMA 
DMA REO 2 

CONT~qLLER 

DMA REO 1 

ww 
BREO 
(DMAREOO) 

A --... ENIN 
) SC/MP (DMACKO) 

"' .. -
CI) 
w 

DMAREOl CI) 
I/) .. ... ::> .. .. 

DEVICE r ) CD ) MEMORY ~ DMACKl .. .. w .. .. 1 
l-
I/) 
r 
I/) 

DM~~E02 .. ... 
DEVICE ~ .. .. 2 DMACK2 

\N" 

Figure 3-10. Using SC/MP in a System with Direct Memory Access 

3-17 



N'ow let us look at how the SC/MP bus-sharing logic might be used in a multiprocessor SC/MP IN 
system. It is in such a system that the CPU's bus-sharing logic can be most appreciated. MULTIPROCESSOR 
First, let us restate the rules which govern the conditions of the SC/MP ENOUT output SYSTEMS 
sign~1. ' , " ':,i ' 

1) ENOUTis always low while SC/MP is actually using the System Busses; that is, while the ENIN input and 
, BREQ output are both high. . .' 

2) When SC/MP is not using the System Busses (either BREQ output or ENIN input loW), ENOUT is held in the 
same state as the ENIN input. ' 

The effect of these rules may not be immediately obvious. To see how they function to simplify bus-sharing, let 
us construct a 'simple multiprocessor system consisting of two SC/MP CPUs and some memory. 

VGG (-7V) 

BREQ1 

~----t~ ENIN1 , ENOUTl t----.-... ENIN2 

SC/MP 
#1 

SYSTEM BUSSES 

MEMORY 
t.:: 

BREQ2 

SC/M,P 
#2 

There are three possible situations that can exist with this configuration. 

1) If one of the CPUs is currently using the bus. it is outputting a high on the BREG line. This automatically prevents 
the other CPU from vy'ing for the bus until the BREQ'lire goes low upon completion of the bus access by the first 
CPU. ' 

2) If neither CPU is currently using the bus. the BREG line is low. If one of the CPUs requires bus access. it can now 
output.a high on the BREG !!Il~' Once again. this will prevent the other CPU from subsequently vyi~g for the bus. 

Thus far there would seem to be no need for any control signals except the bidirectional BREQ line. However, it 
is when t~e third possibl~ situation is encountered that the ENIN and E"!OU'! signals are needed. 

3-18 



c 
w 

~ 
a: o 
a.. 
a: 
o 
u 
~ 
en 
w 

~ 
U o 
II) 
II) 

~ 

olI 
iii 
Z 
a: 
o 
al 
II) 

o 
~ 
~ c 
~ 

@ 

3) If both CPUs require bus access at the same time. each will test the BREQ line and. finding it low. will output a high 
on BREQ. This simultaneous occurrence of requests for bus access is resolved by using the ENIN and ENOUT sig­
nals. The operation of these bus access signals to resolve this situation can be illustrated as follows: 

BREQl 

BREQ2 

ENINl 

ENOUTl 

ENIN2 

BUS ACCESS 

, SC/MP #1 BUS 

,ACCESS COMPLETE 
SC/MP #2 'BUS 

ACCESS COMPLETE 

SC/MP #2 GRANTED 

BUS ACCESS 

When the BREQ line goes high it applies a high input to the ENIN1 input of SC/MP #1. SinceBREQ 1 is also high at this 
time. SC/MP #1 now has access to the bus and it outputs a low on ENOUT1. This is applied to the ENIN2 input to 
SC/MP #2 and thus deniesbus,access by SC/MP #2. Notice that SC/MP #2 holds its BREQ2 output signal high even 
though its request has not yet been granted. When SC/MP ,#1 has finished, its bus access. the BREQ 1 output returns 
low. However. since the BREQ2 output is still high. ENIN1 remains high. This condition of BFlEQ1 low and ENIN1 high 
causes the ENOUT1 signai to go high. thus enabling SC/MP .#2. 

This arrang~~e~t allows the 'first CPU in a daisy-chain string to have the highest priority for bus access and also 
automaticaliy allows any other CPU to gain immediate access to the busses whenever they become availabie. 

Now that we have described the .wayin which the bus-sharing logic of the SC/MP CPU can be SC/MP, CONTROL 
used in a multiprocessor system.' let us continue just a bit further and describe a few more TECHNIQUES IN 
common considerations that you must deal with if you are designing a multiprocessor system. MULTIPROCESSOR 
We will limit this discussion primarjiy to hardware and control considerations since program- APPLICATIONS 
ming in a multiprocessor system can become quite complex and is beyond the scope of this 
book. However. the techniques we will describe here are the first step towards simplifying the programming for such a 
system. " 

The first operation that you must deal with in any microcomputer system is initialization of the system. This 
operation requires some additional thought when designing a multiprocessor system. Typically. one CPU will be 
the primary or controlling CPU: how do you ensure that this CPU has control of the system when power is first ap­
plied? 

Figure.3-11 illustrates an easy method of establishing system control upon initialization.The system reset signal 
(NRST). which is generated at power-up. is applied to SC/MP #1. The FLAG 1 output from SC/MP #1 is then applied to 
the NRST input of SC/MP #2. Since the FLAG1 line is connected to a bit in the CPU's Status register which is set to 
zero onpower-up. SC/MP #2 will be held in a reset condition untii SC/MP #1 executes an instruction which sets that 
bit (and thUS. the FLAG1 output line) high. 

Of course. this method requires the FLAG1 output from SC/MP #1 to be dedicated to this initialization operation. If this 
is a problem. you could use two separate initialization circuits with. for example. the RC time constant for the SC/MP 
#2 circuitry being greater than that of the circuitry for SCiMP #1. This approach. however. does not provide the posi­
tive control of the first method we described. 

3-19 



Initialization 

Circuit 

7 -

~ 

NRST 

NRST 

SC/MP 

#1 

FLAG 1 
21 
~ 

SC/MP 

#2 

Figure 3-11. One Method of Initializing an SC/MP Multiprocessor System 

Once the multiprocessor system has been initialized and is running, the bus-sharing logic that we've already described 
will resolve contentions between the CPUs as far as access to System Busses is concerned. However, there might be 
situations where we want to assure that one of the CPUs will be guaranteed immediate and extended access to 
the System Busses. This can also be accomplished quite easily with SC/MP as illustrated in Figure 3-12. 

SC/MP 

#1 

~ 
8 

- CONT 

21 
FLAG 1 

SC/MP 

#2 

Figure 3-12. Forcing the Halt State in an SC/MP Multiprocessor System 

3-20 



c 
w 

~ 
II: 
o 
Q. 
II: 
o 
o 
~ 
en 
w 

~ g 
en 
en 
< 
a/I 
w 
Z 
II: 
o 
IC 
en o 
~ 
< c 
< 
@ 

In this illustration the FLAG 1 output of SC/MP #2 is inverted and applied to the CONT input of SC/MP #1. Now. if the 
F1 bit in the Status register of SC/MP #2 is set to "1". SCiMP # 1 will be forced into the Halt state and is effectively 
removed from the system until the F1 bit is reset under program control. 

THE SC/MP RESET OPERATION 
An NRST low signal input to the SC/MP CPU initializes the microprocessor. While NRST is low. any in-process 
operations are automatically aborted and the CPU's strobes and address and data lines are floated. NRST must be held 
low for a minimum of two microcycles. After NRST goes high again. this is what happens: 

1) All of the programmable registers are cleared. 

2) The first instruction is fetched from memory location 000116. 
3) The Bus Request (BREO) for this first input/output ope~ation occurs within 6-1/2 microcycles after NRST goes high. 

The NRST signal can be used at any time to reset the CPU, and must be used following power-up since SC/MP 
may power up in a random condition. After power has first been applied to the CPU. you should allow approximately 
100 milliseconds for the oscillator and internal clocks to stabilize before applying the NRST signal. 

SC/MP SERIAL INPUT/OUTPUT OPERATIONS 
The SC/MP CPU not only has two of its 40 pins designated primarily for serial input/output operations, it also 
dedicates one instruction from its rather limited instruction set solely to serial I/O. Allocation of this amount of a 
CPU's resources for this purpose would seem unwarranted with most microprocessors; however. keep in mind that 
SCiMP is a very low-cost device and intended primarily for use in slow-speed applications. It is quite likely that SC/MP 
will frequently be used to transfer data serially. so it is therefore not only reasonable but advantageous to provide 
straightforward methods of performing these operations, Let us look now at how this is done with SC/MP. 

In our description of SClMP's programmable registers. we described the Extension (E) register as an 8-bit register. 
When the E register is used for serial I/O, it is actually a 9-bit register with connections to two of the device 
pins as shown in the figure below. 

Extension 

Register 

Output 

Latch 

SIN ~716151 .. 131211Io~ sour 

When the SC/MP SIO (Serial Input/Output) instruction is executed, the contents of the Extension register are 
shifted right one bit positipn: the previous contents of bitO are'loaded into the output latch and output on the SOUT 
pin. and the level (1 or 0) present at the SIN pin is loaded into bit 7 of the Extension register. The Extension register can 
be loaded from. and its contents can be transferred to the Accumulator. A typical serial output operation would thus 
consist of: 

1) Loading the Accumulator with the data byte that is to be transmitted. 

2) Transferring the contents of the Accumulator into the Extension register. 
3) Performing eight SIO'instructions to shift the contents of the Extension register into the output latch and out onto 

the SOUT pin. 

Of course. this sequence does not cover all the programming requirements for serial data transfers. For example. your 
program must provide spme method of timing the bit transmission. This is easily accomplished with SC/MP by using 
the Delay (DL Y) instruction. which can generate variable time delays ranging from 13 to 131.593 microcycles. For 
asynchronous operations. one of the SC/MP Flags which are connected to device pins can be pulsed each time a new 
bit is shifted out (or in) and one of the sense conditions inputs (SENSEA or SENSEB) can be tested to detect bit 
received/ready. . . 

3-21 



THE SC/I\IIP INSTRUCTION SET 
Table 3-4 lists the SC/MP instruction set. 

Memory reference instructions are shown as having either full or limited addressing capability. Full addressing 
capability is identified in the operand as follows: 

It' OISP (X) 

T '" ,,' , If P""'"1. X "",d, '0"" .2 0,P3, ",d ;"d",d 
addressing is specified 

Must always be present. Specifies a program 

relative displacement. ' 

--------If present. specifies auto-increment or auto­

decrement addressing. 

Thus. the real options associated with full addressing capabHity are: 

DISP Direct. program relative' addressing 
DISP(X) Direct. indexed addressing 
@DISP(X)ALJto-increment or auto-decrement addressing' 

limited addressing capabilities do not include the auto-increment and auto-decrement feature. The operand field for 
instructions with limited addressing capability is shown as follows: ' 

OISP (X) r r If pre""" X ,,,,,d, '0' • I, .2 0' P3 ",d ;"d.,"" 
addressing is specified 

Must always be present. Specifies a program . 

relative displacement. 

The serial I/O instruction inputs serial data via the high-order bit of the Extension register. and/or outputs serial data via 
. the low-order bit of the Extension register. " 

The serial 110 instruction works as a on~-bit right shift of the Extension register contents. withbitO being s'hifted to the 
SOUT pin and the SIN pin being shifted into bit 7. This has been illustrated along with the logic description. 

It is worth noting that SC/MP has no Jump-to-Subroutine instruction: rather. the XPPC instruction is used to exchange 
the contents of the Program Counter with the contents of a Pointer register. In very simple applications (and those are 
the applications for which SC/MP is intended) this is a very effective scheme. Providing subroutines are not nested. a 
subroutine's beginning address may be stored in a Pointer register. then execution of XPPC moves the subroutine's 
starting address to the Program Counter. thereby executing the subroutine ~ but at the' same time. the Program 
Counter contents are stored in the Pointer register. thus preserving the return address. At the conclusion of the 
subroutine. execution of another XPPC instruction is all tha,t is needed to return from the subroutine. The only penalty 
paid is that one Pointer register is out of service while the subroutine is being executed. If all Pointer registers are 
needed by the subroutine. or if subroutines are nested. then the return address which is stored in the Pointer register 
must be saved inmemory. In these more complicated applications. one of the Pointer registers will probably be used as 
a Stack Pointer. 'and addresses will be saved on the Stack. 

This type of subroutine access. while it may appear primitive to a minicomputer programmer. is very effective in simple 
microcomputer applications. 

The following symbols are used in Table 3-4. 

AC Accumulator 

C 
DATA 

DISP 

E 

Carry status 

An 8-bit binary data unit 

An 8-bit signed binary displacement 

The Extension register 

3-22 



c 
w 

~ 
a:: 
0 
D-
a:: 
0 
u 
~ 
en 
w 
I-
< 
U 
0 
CI) 
CI) 

< 
~ 
w 
z 
a:: 
0 
CD 
CI) 

0 

~ 
< c 
< 
@ 

EA 

E<i> 
IE 

O 
PC 

X 

SIN 

SOUT 

SR 

Z 
@ 

X<y.z> 

@DISP(X) 

[ ] 

[[ ]] 

A 
V 
¥ 

Effective address. determined by the instruction. Options are: 
DISP EA is [PC] + DISP 

DISP(X) EA is [X] + DISP 
@DISP(X) EA is [X] if DISP ~ O. 

EA is [X] + DISP if DISP < 0; 
in both cases [X]-[ X] + DISP after EA is calculated. 

The ith bit of the Extension register 

Interrupt Enable 

Overflow status 

Program Counter 

One of the three Pointer registers 
Serial Input pin 

Serial Output pin 

Status register 

Zero status 
Auto-increment flag 

Bits y through z of a Pointer register. For example. P3 <7.0> represents the low-order byte of Pointer 
register P3. 
This designates the available addressing modes for the SC/MP. as described above. In all three of the ad­
dressing modes. if -128 is specified for DISP. the contents of the Extension register are used instead of 
DISP. 

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the 
brackets. then the contents of the addressed memory location are specified. 

Implied memory addressing; the contents of the memory location designated by the contents of a 
register. 

Logical AND 

Logical OR 

Logical Exclusive-OR 

Data is transferred in the direction of the arrow. 

Data isexchanged between the two locations designated on either side of the arrow. 

Under the heading of STATUSES in Table 3-4. an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X. it means that the status maintains the value it had before the instruction was ex-
ecuted. . 

3-23 



Table 3-4. SC/MP Instruction Set Summary 

STATUSES 

TYPE MNEMONIC OPERAND(SI BYTES OPERATION PERFORMED 
C 0 

SIO 1 [E<i-l >]-[E<i>] 

SOUT - [EO] 
g [E7l-SIN 

Shift the Extension register rigHt one bit. Shift bit 0 of the Extension register to the output Pin 
SOUTo Shift the data at input pin SIN into bit 7 of the Extension register. 

u.. w 
@ DISP(XI ~~Q lD 2 [AC]-[EA] 

«a:- load Accumulator from addressed memory location. 

~ ~"~ ST @ DISP(XI 2 [EA]-[AC] 
Q. W « Store Accumulator contents in addressed memory location. 
~ 

ADD @ DISP(XI 2 X X [AC]-[AC]+ [EA]+ [C] 
w Add binary to AcciJmulator the addressed memory location's contents with carry. u z DAD @ DISP(XI 2 X [AC]-[AC] + [EA] + [C] w a: w Add decimal to Accumulator the addressed memory iocation's contents with Carry, 
~~ CAD @ DISP(XI 2 X X [AC]-[AC]+ [EA]+ [C] 
~ffi 
>Q. Add complement of addressed memory location's contents with Carry to AccumulatOr. 
a:O AND @ DISP(XI 2 [AC]-[AC] A [EA] 
0> 
~a: AND Accumulator with addressed memory location's contents. 
wO 

OR @ DISP(XI 2 [AC]-[AC]V [EA] 
~~ 
"> w OR Accumulator with addressed memory location's contents. 
a:~ 
«0 XOR @ DISP(XI 2 [AC]-[AC]¥ [EA] 
Oz Exclusive-OR Accumulator with addressed memory location's contents. 
~« 
u IlD @ DISP(XI 2 [EA]-[EA]+l; [AC]-[EA] 
w Increment addressed memory iocation's contents, then load into Accumulator. en 

DLD @ DISP(XI 2 [EA]-[EA]-l; [AC]-[EA] 

Decrement addressed memory location's contents, then load into Accumulator, 

~ 
0 LDI DATA 2 [AC]-DATA 
w 
:E Load immediata into Accumulator, 

:! 

~" 
ADI DATA 2 X X [AC]-[AC]+DATA+ [C] 

Add binary immediete, Add Carry to result, 
a: DAI DATA 2 X [AC]-[AC] + DATA + [C] w Q. Decimal add immediate, Add Carry to result, 0 
w CAl DATA 2 X X [AC]-[AC] + DATA + [C]' 
I-
« Add the contents of the Accumulator to the complement of the immediate data value, Add Car-
0 
w ry to result. 
~ ANI DATA 2 [AC]-[AC] A DATA 
~ AND immediate. 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 3-4. SC/MP Instruction Set Summary (Continued) 

STATUSES 
TYPE MN1MONIC OPERAND'S) BYTES OPERATION PERFORMED 

C 0 
--

III 
~ 

~ 
52 ORI DATA 2 [AC]-[AC] V DATA 

I!!i OR immediate. 

,~g XRI DATA 2 [AC]-[AC]¥DATA 

;y Exclusive-OR immediate. 

;I 

D. 
JMP ~ DISP(X) 2 [PC]-EA 

::l Unco'nditional jump to effective address • ., 

JP DISP(X) 2 If [AC] ~O; [PC]-EA 

w 

ZZ If the Accumulator contents are greater than O. lump to effective address. 
02 JZ DISP(X) 2 If [AC] =0; [PC]-EA 
D.t: 
:EO If the Accumulator contents equal O. jl1rnp to effective address. 
::lZ JNZ DISP(X) 2 If [AC] =0; [PC]-EA "8 If the' Accumulator contents are not O. jump to effective address. 

N 
OJ 

III 
LDE 1 [AC)-[E) 

> Load the contents of the Extension register into the Accumulator. 
0 
:E XPAL X 1 [AC]-[X<7.0>] 
a: Exchange the contents of the Accumulator with the low order byte of the specified Pointer 
III 
~ register. (/) 

C; XI>AH 
III 

X 1 [AC)-[X<15.8>] 
a: Exchange the contents of the Accumulator with the high order byte of the specified Pointer 
ci: register. III 
~ XPPC X 1 [PC)-[X] (/) 

5 Exchange the contents of the Program Counter with those of the specified Pointer register. 
III 
a: XAE 1 [AC)-[E) 

Exchange the contents of the Accumulator with those of the Extension register. 

W 
ADE 1 X X [AC)-[AC]+ [E)+ [C) ~ cs: Add binary the contents of the Accumulator and the contents 0; the Extension register. Add Cei-a: 

III rry to this result. D. 
0 

DAE 1 X [AC)-[AC1+ [E1+ [C) a: 
III Add decimal the contents of the Extension register to those of the Accumulator. Add Carry to 
~ 
(/) this result. 
5 

1 [AC)-[AC) + [E) + [C) III CAE X X a: 
ci: Add binary the contents of the Accumulator and the complement of the Extension register con-
III tents. Add Carry to this result. ~ 
I/) 

ANE 1 [AC)-[AC] 1\ [E) 5 
III AND the contents of the Accumulator with those of the Extension register .. a: 



Table 3~4. SC/MP Instruction .Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERANDiS) BYTES OPERATION PERFORMED 

C 0 

o a 
~I~:~~ ORE 1 [AC]-[AC]V[E] 

(/)'(/)I~~ . OR the contents of the Accumulator with those of the Extension register. 
C;'Si~ !z XRE 1 [AC]-[AC1¥ [E) 
~a:IO 0 Exclusive-OR the contents of the Accumulator with those of the Extension register. g 

O-·~·V ~O~ .. 
SR 1 

Shift Accumulator contents right one bit. The high ~rder' bit becomes a O. The low order bit is 

iost. 

SRl 1 ~7 .. O~ w 
f-

Shift Accumulator contents right ~~e. bit. The Carry bit is shifted into the high order bit of the <t 
a: 
w Accumulator. The low order bit is lost. 
110 
0 Y7 oi=J a: 

RR 1 
.., 

W 
f-
(/) 

C; Rotate Accumulator contents right one bit. Rotate the low order bit of the Accumulator into the 
w high order bit. a: 

RRl ·1 4H7 .., oi=J. 
Rotate Accumulator contents 'right through Carry. 

f- DINT 1 [lE]':-O 110 
:l Disable interrupts. a: 
a: 

lEN 1 [lE]-l w 
f- Enable interrupts. ~ 

CCl 1 0 [C]-O 

: Oear Carry. 
(/) SCl 

' .. 
1 1 [C]-l 

:l 
f- Set Carry. 
<t 

1 . [AC]-[SR] f- CSA 
(/) 

load the contents of the Status register into the Accumulator. 

CAS 1 [SR]-[AC] 

load the contents of the Accumulator into the Status register. 

Hf'olT 1 Pulse the H-Flag 

NOP 1 No Operation. 

DlY DATA 1 Delays CPU for a number of cycles equal to: 

13 + 2(ACI + 2DATA + 290ATA 
'. 



c 
w 
~ 
a: 
o 
a. 
a: 
o 
o 
~ 
u) 
w 

~ g 
en 
(I) 

< 
o/J 
w 
Z 
a: 
o 
In 
(I) 

o 
~ 
< c 
< 
@ 

The following symbols are used in Table 3-5: 

aa Two binary digits designating the Pointer register: 
00 Program Counter 
01 Pointer Register 1 
10 Pointer Register 2 
11 Pointer Register 3 

m One binary digit specifying address mode: 
o Program Relative or Indexed ,': . '. . 
1 Immediate or Auto-increment or Auto-decrement 

PP Two hexadecimal digits representing an 8-bit. signed displacement 

00 Two hexadecimal digits representing 8 bits of immediate data 

Where two numbers are given - for example. 9/11. thefirst is execution time when no jump is taken: the second is ex-
ecution time when there is a jump. -' .. 

Table 3-5. SC/MP Instruction Set Object Codes and Execution !imes 

INSTRUCTION 
OBJECT 

BYTES 
MACHINE 

CODE CYCLES 

OBJECT MACHINE 
. INSTRUCTION 

CODE 
BYTES 

CYCLES 

ADD @DISP(X) 11110maa 2 19 JNZ DISP(X) lOoo11aa 2 9/11 
PP PP 

ADE 70 1 7 JP DISP(X) loooolaa 2 9/11 
ADI DATA F4 PP 

QQ JZ DISP(X) looo10aa 2 9/11 
AND @DISP(X) llQlOmaa 2 18 

pp 
PP 

LD ~ISP(X) llooomaa 2 18 
ANE 50 1 6 PP 
ANI DATA 04 2 10. LDE 40 1. 6 . 

QQ LDI DATA C4 2 10 . 
CAD DISP(X) lllllmaa 2 20 QQ 

pp NOP 08 1 5-10. 
CAE 78 1 8 OR @DISP(X) 11011maa 2 18 
CAl DATA FC 2 12 PP 

QQ . ORE 58 1 6 
CAS 07 1 6 . ORI DATA DC 2 10 
CeL 02 1 5 

." QQ 
CSA 06 1 5 RR lE 1 5 
DAD @DISP(X) 11101maa 2 23 RRL IF 1 ~ 
DAE 68 1 11 SCL 03 1 5 
DAI DATA EC 2 15 SIO 19 1 5 

QQ SR' lC 1 5 
DINT 04 1 6 SRL 10 1 5 
DLY DATA 101110aa 2 22 ST. ®OISP(X) lloolmaa 2 18 

PP pp 

DLY DISP 4F 2 13-131. 593" XAE 01 1 7 
PP XOR @DISP(X) llloomaa 2 18 

HALT 00 1 8 PP 
lEN 05 1 6 XPAH X ool101aa 1 8 
ILD DISP(X) 101010aa 2 22 XPAL X oollOOaa 1 8 

pp XPPC X oollllaa 1 7 
JMP DISP(X) l00000aa 2 11 XRE 60 1 6 

pp XRI DATA E4 2 10 
QQ 

"Delay time depends on the value of DATA. 

3-27 



THE BENCHMARK PROGRAM 
For SC/MP, the benchmark program looks like this: 

LD T ABLE(P3) LOAD HIGH BYTE OF FIRST FREE TABLE BYTE 
XPAH P1 ADDRESS MOVE TO PR1 HIGH-ORDER BYTE 
LD TABLE+1(P3) REPEAT FOR LOW-ORDER BYTE 
XPAL. P1 
LDI 10HI 
XPAH P2 
LDI 10LO 
XPAL P2 

LOOP LD @0(P2) 

, ST 

DLD 
JNZ 
XPAL 
ST 

@0(P1) 
IOCNT(P3) 
LOOP 
P1 
TABLE+1(P3) 

LOAD HIGH BYTE OF ,I/O BUFFER BASE ADDRESS 
MOVE TO PR2 HIGH-ORDER BYTE 
REPEAT FOR LOW-ORDER BYTE 

LOAD NEXT BYTE FROM I/O BUFFER 
AUTO-INCREMENT 
STORE IN NEXT FREE TABLE BYTE 
DECREMENT I/O BUFFER COUNT AND LOAD 
RETURN TO LOOP IF NOT ZERO 
LOAD LOW-ORDER TABLE ADDRESS INTO A 
SAVE IN FIRST FREE TABLE BYTE ADDRESS 

The SC/MP benchmark program makes the following assumptions. 

The address of the first free table byte is not stored at the beginning of the table; rather. it is stored in two bytes of a 
data area. addressed by Pointer Register 3. plus a displacement. The addresses of these two bytes are given by the dis­
placement TABLE and TABLE+1. 

It is assumed that TABLE begins at a memory address with Os for the low order eight binary digits (as for the F8 
benchmark program); therefore. the contents of the data area byte with address TABLE+1 (PC3) becomes the displace­
ment to the first free byte of TABLE. Assuming that T ABLE has a maximum length of 256 bytes. it is only necessary at 
the end of the data move operation to store anew byte address into TABLE+1. in order to update the address of the 
first free table byte. This scheme is illustrated below. 

The I/O buffer beginning address is stored in two immediate instructions. which load the two halves of the I/O buffer 
beginning address into the Accumulator: each half is then exchanged into a Pointer register. 

, The SC/MP benchmark program assumptions may be illustrated as follows: 

P3 

TABLE { 

loeNT .. 

MEMORY 

yy 
yy 

Middle of 256-byte data area 

addressed by P3 

Program . '~'" abba : LDI 
Area XPAH 

LDI 

, XPAL . . 
"bb ~ Start of IO"'F 

~Start of TABlE 

yyyyl t------Ir Fin" free byte of TABLE 

3-28 



c 
w 
~ 
a: 
o 
D. 
a: 
o 
CJ 
~ 
en 
w 

~ 
U o 
(I) 
(I) 
c:( 

~ 
w 
Z 
a: 
o 
III 
(I) 

o 
~ 
c:( 
c 
c:( 

@ 

SUPPORT DEVICES FOR THE SC/MP CPU 

~C/MP support devices are general-purpose and are therefore "described in Volume III. You may also use stan­
ttard off-the-shelf buffers, bidirectional drivers, RAM and ROM to implement any supporting functions needed. 
Figure 3-13 illustrates an SC/MP system and the type of supporting devices that might be needed. Notice that 
the buffers. latches and I/O ports are all indicated by dotted lines. We have done this because it is quite feasible that 
some SC/MP systems might consist only of the CPU and a small amount of memory. In such a system. there would not 
necessably be any ne~d for buffering the SC/MP input/output lines. nor demultiplexing status and page-select bits 
from the Data Bus. Many systems. however. will require some of the supporting devices indicated by Figure 3-13. In the 
remainder of this chapter we will briefly describe how some of the commonly required support functions for SC/MP can 
be implemented using both standard off-the-shelf devices and devices from other microcomputer families. 

CRYSTAL 
OR 

XI X2 
IXINI. IXOUTl 

.. 
AOO.AOl1t-__ """T" ______ -,. ________ --------------~)I 

'-_______ .;. __ .J 

:~~~C3~i:m:m~5·5 .. ~ .rE~mNm~ml;mcrmIOmN;m~mrul~m~mR-5'$lsm52mmmmmS~zmm·.·m,~5 ... m.~m .. mmE5zmmmmmmEmEmmmmmm5~~ 
NWM ~ __ ~_~ ___ ~_.J 

r ~N;;;';C~'~N;C·ru-;rtA-l ~~~:~~;~~S ANO 
FLAGO.l.2 t----.L......:......;;..,;.;;;;:.;.;;:;,;;,,;;~~--'...:;;;;.:;;.;:..:.:.;.:..::.:..----------------~ 

SOUT~--~------_,--------------------_YA~ L.. __________ J SENSE AND 
SENSEA SERIAL INPUT i SENSEB V--------'-,....-----......;.;;;.;;;.;;;,..;,,;;,.;;..;,.....-----------------J,: 

EXTERNAL 
OEVICES 
ANO/OR 

1/0 PORTS 
IMILE. 8212. 82551 

..... ___ S_INj'..,.-----------------'------------------;L .;.. ____ _ 

Figure 3-13. An SC/MP System Showing Typical Support Devices that may be Required 

As we mentioned earlier. the SC/MP Output lines can each drive one TTL load. Some systems. BUFFERING 
especially those which utilize low-power external devices. may not require any buffering. When SC/MP 
buffeting is needed, it can be provided using standard logic devices. The only area that re- BUSSES 
quires any special attention is when you are buffering the data lines: since these lines are 
used both for input and output of diita, you must provide bidirectional control of these buffering devices. Figure 
3-14 shows one easy method of implementing bidirectional buffers for the SC/MP data lines using 8216 bidirec­
tional bus drivers. (The B216 is a support device from the B080 family and is described in Chapter 4.) The SC/MP 
NRDS signal is inverted and used to provide directional control of the buffers. When the SC/MP is performing a read 
operation. NRDS is output low: this causes the contents of the system Data Bus to be gated through the buffers and 
onto the SC/MP data lines. At all other times. NRDS is high and whatever is on the SC/MP data lines is passed onto the 
system Data Bus. 

3-29 



If you ~eed to, Js~ t~~foLir most significant address bits (AD12 - AD1S) for page DEMUL TIPLEXING 
select functions or, if you are going to make use of the I/O cycle status h'lformation THE SC/MP 
th,at SC/MP outpUts; 'yt)ti must demultiplex this information from the SC/MP data DATA BUS 
lines. The most s'traightforward way of doing this is to use D-type flip-flops' or data 
registers with the SC/MP NADS signal as the clock pulse. Here are' some standard 7400 family devices that might 
be used: ' 

- 7475 Double 2=Bit Gated Latches with Q and Q Outputs 

-' 7477 D~uble 2-Bit G~ted Latches withQ Output Only 

- 74100 Double 4-Bit Gated Latches 

- 74166 Dual 4-Bit Gated Latches with Clear 

- 74174 Hex D~Ty~e Flip-Flops with Common Clock and Clear 

~ 741750uad D-TypeFlip-Flops with Common Clock and Clear 

Some of these devices requiretha,t the NADS signal be inverted to provide the necessary clocking signal. Remember, 
though, that the SC/MP address and status information is valid during both the leading edge (hign-to-Iow transition) 
and trailing edge (Iow-to-high transition) of NADS: this generally simplifies the demultiplexing operation. 

Another method of demultipiexing the address bits from the data lines is to use address decoding devices that 
are clocked by the NADS signal and provide latched outputs. These latched outputs can then be used,as the 
page select signals (or device select signals) during I/O cycles. 

DBO 
3 

DBO 

6 
DB1 DB1 

DB2 
10 

DB2 

DB3 
13 

DB3 

SC/MP 
SYSTEM 

DATA BUS 

3 
DB4 DB4 

DB5 
6 

DB5 
8216 

DB6 
10 

DB6 

DB7 OlEN cs 13 
DB7 

i' 

Figure 3-14. SC/MP Data Lines Buffered Using 8216 Devices 

3-30 



C 
ILl 

~ 
a: 
o 
0.. 
a: 
o 
(J 

~ 
en 
ILl 
l­
e:( 
(3 
o 
CI) 
CI) 
e:( 

all 
ILl 
Z 
a: 
o 
a3 
CI) 

o 
~ 
e:( 
c 
e:( 

@ 

USING OTHER MICROCOMPUTER SUPPORT 
DEVICES WITH THE SC/MP CPU 

There is nothing to ~revent SC/M~ from usin~ su~port devices from other microcomputer ~'iamilies". We have 
alrea~y shown one simple example - tho use o~ 8~16 bidirectional bus, ,~riversto buffer the SC/MPda~a lines. 
The SC/MP CPU provides numerous control signals which allow general-purpose microcomputer support 
devices to be included in an SC/MP system. We'will now describe a couple of specific examples of how this can 
be done - these examples will serve as guidelines' for interfacing SC/MP to other support devices.' 

r---~~-__ 
The Microprocessor Interface Latch Element (MILE) is a support, device from the PACE THE PACE. 
microcomputer family arid is described in detail in Volume III. The MILE can be used to pro- MILEUSEO 
vide an 8-bit, bidirectional I/O port in an SC/MP system as shown in the figure below. iN AN SC/MP 

Derive CS from --...;....--, 

Address Bus 

. Data to/from 

SC/MP 

From NWDS - ...... ~ 

SC/MP CPU NRDS _ .... ~ 

VCC 

D~t~ to/from 
'external logic 

External logic must 
generate these control" signals 

SYSTEM 

The chip select (CS) signal must be derived from the Address Bus and could consist of a single addr~ss line. a page 
select signal. or the output of address decoding logic. Remember that the SC/MP CPU does not differentiate between 
memory and 110 devices: it treats the MILE simply as a memory location. 

Directional control of the MILE is provided by the SC/MPread strobe (NRDS) and write str6be.(NWDS) signals. NRDS is 
connected to the MILE's DOUT2 input signal: when NRDS and CS are both low. the contents of the MILE's data latches 
are gated out onto theiSC/MP data lines for input to the CPU. The SC/MP NWDS signal is connected to the MILE's 
DIN2 input: when NWDS and CS are both low, the data output on the SC/MP data lines is latched into the MILE. 

In the figure above, the MILE's DIN1 and DOUT1 signals are continuousiy ~nabled by connecting them to +5V. 
An alternate method of using these two signals wouli:t be to connect.them to address lines in order to simplify 
the address decoding requirements of the SC/MP system as shown in the figure below. 

In this example, data transfers between the MILE and SC/MP are enabled when address bit 11 (AD11) is a zero 
and AD10 is a one. This figure also shows the two handshaking signals (STD and STP) provided by the MILE. 
These signals can be applied to the SENSEA or SENSEB inputs to SC/MP to implement simple I/O handshaking 
schemes. 

ADll-----, 

Data 
to/from 
SC/MP 

From NWDS - ...... ~ 
SC/MP 

CPU NRDS ---~ 

AD10 

TO SC/MP 

Cs 
DBO· 

PO ..... l--~ 

MILE 

SENSE INPUTS ..... ___________ ~ 

3-31 

Data to/from 
external logic 

External logic must gene fate 
these control signals 



The 8212 I/O port from ~he 8080A microcomputer . family is a~device sitnllar to the 
MILE: the only difference is that while 'the MILE.can operate bidirectio~ally, the 8212 is 
unidirectional. The signal connections required to use the 8212 with SC/MP are quite sim­
ple: 

DO 010 
Data to 

. Data from 
SC/MP 

CPU 
external logic 

007 8212 017. 

NRDS 
(from SC/MP) i5Si STB ·-Extemal logic strobes 

Derived from data i~to latches 

Address Lines •. .DS2 

To SC/MP -m Tie MD to Ground. Now STB clocks 

SENSE Inputs -. latches endDsl, DS2 enable buffers -

THE 8212 
I/O PORT 
USED IN 
SC/MP 
SYSTEMS 

The connections shown here use the 8212 as an input port with handshaking logic provided. When the external 
logic latches data into the 8212using the STS signal. the INT signal goes low: this signal can be applied to the SC/MP 
SENSEA or SENSES input to inform the CPU that input data is ready. SC/MP would then execute. a service routine pro­
gram that would include an instruction to read data from the input port. This instruction would send out the input 
port's address. thus generating the DS2 signal. and then gate the latched data onto the CPU data lines when the NRDS 
signal is generated. When the I~ltched data is read out of the 8212. the INT signal returns high to complete the transac­
tion. This sequence is summarized by the following timing diagram: 

010 - 017 

STB 

OS2 

os; (NROS) 

000- 007 

Sense input 

to SC/MP CPU 

Data latched by external logic 

Latched data gated onto 

SC/MP data lines 

3-32 



Q 
w 

~ 
a: o 
D. 
a: 
o 
o 
~ 
u) 
w 

~ 
U o 
en en 
c( 

oil 
w 
2 
a: 
o 
IZl 
en o 
~ 
c( 
Q 
c( 

@ 

Using the 8212 as an output port in an SC/MP system requires a simple reversal of the 
connections we described in the preceding example. 

THE 8212 USED 
AS AN OUTPUT 
PORT IN AN 
SC/MP SYSTEM 

Data from 
SC/MP 

CPU 

NWDS - __ ~11 

(from SC/MP) 

Derived ---!~ 
from Address lines 

010 

017 

DSi 

DS2 

000 

007 

8212 

STB 

MD 

Data to external 
logic 

ne to Vcc. Now DSi and DS2 clock 
latches and buffers are always enabled 

With this arrangement. data from the CPU will be loaded into the 8212 latches when the required address is generated 
to apply a high to DS2 and SC/MP outputs the NWDS strobe signal. Data that is latched into the 8212 is immediately 
gated out onto 000 - 007 and presented to external logic. 

We will conclude our discussion of support devices that may be used with SC/MP with the following observa­
tion. The MILE and 8212 devices, which we have used as examples, are both relatively simple support devices. 
However, more complex general-purpose support devices are usually no more difficult to interface to an SC/MP 
CPU. In fact, the interface is often simpler, from a hardware point of view, because such things as mode control 
are handled by software. 

3-33 



o 
w 

~ 
a: 
o 
a.. 
a: 
o 
CJ 
~ 
ui w 
~ 
(j 
o 
II) 
II) 
c:( 

olJ 
w 
Z 
a: 
o en 
II) 

o 
~ 
c:( 
c 
c:( 

@ 

DATA SHEETS 

This section contains specific electrical and timing data for both the SC/MP and SC/MP " (lNS8060). 

3-01 



SC/MP 

applications absolute maximum ratings 

• Test Systems and Instrumentation • Process Controllers Voltage at Any Pin VSS + 0.3V to VSS - 20V 
• Machine Tool Control • Terminals Operating Temperature Range O°C to +70°C 
• Small Business Machines 
• Word Processing Systems 
• Educational. Systems 

• Traffic Controls 
• Laboratory Controllers 
• Sophisticated Games 

Storage Temperature Range _65°C to +'50°C 

Lead Temperature (Soldering, 10 seconds) 300°C 

• Multiprocessor Systems • Automotive 

electrical characteristics (TA = o°c to +70°C, VSS = +5V ± 5%, VGG = -7V ± 5%) 

Parameter Conditions Min. Typ.* I Max. Units 

INPUT SPECIFICATIONS 

ENIN, NHOLD, NRST, SENSE A, 
SENSE B, SIN, DBO-DB7 
(TTL Compatible) (Note 2) 

Logic "1" Input Voltage VSS -, VSS + 0.3 V 

Logic "0" Input Voltage VSS - 10 O.S V 

Pullup Transistor "ON" Resistance VIN = (VSS - l)V 7.5 12 kU 
(Note 2) 

Logic "0" Input Current VIN = OV -1.6 mA 

BREO (Note 3) 

Logic "'" Input Voltage VSS -, VSS + 0.3 V 

Logic "0" Input Voltage O.S V 

Xl, X2 (Note 4) 

Logic "'" Input Voltage 3.0 VSS + 0.3 V 

Logic "0" Input Voltage 0.4 V 

Logic "1" Input Current VIN = 3.0V 5.0 mA 

Logic "0" Input Current VIN = O.4V -5.5 mA 

Input Capacitance 10 pF 
(All pins except VGG and VSS) 

Supply Current 

IGG ( s" T,p;,,' P'ot 0' ) T A = O°C, loads on all outputs: 100 135 mA 

ISS Normalized IGG [and ISINK = 1.6mA 90 125 mA 
ISS] Versus Ambient ( See diagram, Simulated) 
Temperature on page 6. Current Load, on page 6. 

OUTPUT SPECIFICATIONS 

BREO (Note 3) 

Logic "1" Output Current VOUT = (VSS -l)V -2.0 mA 

Logic "0" Output Current VGG .;;;;; VOUT .;;;;; VSS ±10 J.lA 

External Load Capacitance 50 pF 

All Other Outputs 

Logic "1" Output Voltage lOUT = -SOJ.lA VSS -1 V 
lOUT = -200J.lA 2.4 V 

Logic "0" Output Voltage lOUT = 1.6mA 0.4 V 

Logic "0" Output Current VOUT = -0.5V 4.0 mA 

Logic "0" Output Voltage lOUT = OmA (unloaded) -3.0 -0.7 V 

~Typical parameters correspond to nominal supply voltage at 25°C. 

Data sheets on pages 3·02 through 3·011 reproduced by permission of National Semiconductor Corporation. 

3-02 



Q 
w 

~ 
a: o 
D.. 
a: 
o 
(J 

~ 
en 
w 
I­
ct 
U o 
en 
en 
ct 
01:1 
w 
Z 
a: 
o 
cg 
en o 
~ 
ct 
Q 
ct 
@ 

SC/MP 
electrical characteristics (T A = o°c to +70°C. vss = +5V ± 5%. VGG = -7V ± 5%) (continued) 

Parameter Conditions Units 

TIMING SPECIFICATIONS (Note 5) 

T x (Notes 4 and 6) 1.0 10.0 p.s 

820pF ± 10% across X1 & X2 1.0 4.0 p.s 

f res crystal with equivalent series 900 1000 kHz 
resistance <; 600n 

Address and InputlOutput Status 
(See figures 5 and 6.) 

TD1 (ADS) (3Txl2) -150 3T x/2 (3T x/2) + 200 ns 

TW (ADS) (T x/2) - 250 ns 

TS (ADDR) (T x/2) - 300 ns 

TH (ADDR) 30 50 ns 

TS (STAT) (T x/2) - 300 ns 

TH (STAT) 30 50 ns 

Data Input Cycle (See figure 5.) 

TD (RDS) -80 -50 ns 

TW (RDS) (3T x/2) - 400 ns 

TS (RD) 300 ns 

TH (RD) 0 ns 

TACC (RD) 2T x - 400 ns 

Data Output Cycle (See figure 6.) 

TD (WDS) T x - 250 ns 

TW (WDS) T x - 250 ns 

TS (WD) (Tx/2) - 300 ns 

TH (WD) 60 100 ns 

InputlOutput Cycle Extend 
(See figure 7.) 

TS (HOLD) 300 ns 

TD1 (HOLD) 300 ns 

TD2 (HOLD) 500 ns 

TW (HOLD) 00 ns 

Bus Access (See figure 4.) 

TD (ENOUT) 300 ns 

TD2 (ADS) (Tx/2) - 350 T x + 500 ns 

OUTPUT LOAD CAPACITANCE 

External Load Capacitance 75 pF 

Nots ,: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended and 
should be limited to those conditions specified under electrical characteristics. 
Nots 2: Pullup transistors provided on chip for TTL compatibility. 
Nots 3: BREQ is an input/output signal that requires an external resistor to VGG or ground. 
Nots 4: X, and X2 are master timing inputs that are normally connected to a '-megahertz crystal or an external capacitor to control the frequency 
of the on-chip oscillator. 
A hermetically sealed quartz crystal is recommended. The crystal must be a series-resonant type and its equivalent series resistance must not exceed 
600 ohms. Suppression of third harmonic oscillations may be required depending on the characteristics of the crystal. Typically. a 500- picofarad 
capacitor across pin X, or X2 and an AC ground minimizes third harmonic effects. 
If use of an external oscillator is desired. the circuit shown in figure 3 or an equivalent may be used. 
Nots 5: All times measured from valid Logic .. a" or Logic ","Ievel. 
Nots 6: T x is the time period for one clock cycle of the on-chip or external oscillator. Refer to paragraph titled Timing Control for detailed 
definition. 

"Typical parameters correspond to nominal supply voltage at 25°C. 

3-D3 



SC/MP 
DRIVERS AND RECEIVERS 

Equivalent circuits for SC/MP drivers and receivers are 
shown below. All inputs have static charge protection 
circuits consisting of an RC filter and voltage clamp. 
These devices still should be handled with care, as the 
protection circuits can be destroyed by excessive static 
charge. 

RECEIVER DRIVER 

~~:~ r.:wi --------1--------1-

2

V.;;;------'cf>, 
SIN NWDS 

~~=: -1 NRDS 

. I PULL,U' 8 I . i Vss 0 ' Vss ' VG~SS i 
ENIN l -1H~:g~T 
NHDLD -1' . . ~~~:2 

IPU~~~ . ~ . I 
I Vss Vss ' VGG I 
I -1 I 

BRE'~l 
,,1. Vss r-::::-1 Yss -1

2
,--

xz~ ~ 

I -1 I L ________________ ~ _____ ~ 

m· INPUT PROTECTION ·----,."",,-,.f ....... !r-­
Vss 

SC/MP Driver and Receiver Equivalent Circuits 

B~' BREa, ENIN, and ENOUT Timing 

22 22 
NADS 

SUPPLY CURRENT DATA 

Below are the two diagrams referenced from the para· 
metric specification for the supply current, page 2. 

ISIN:0 

VL It) 

'INCLUDES JIG CAPACITANCE. 

a: 
:::> ... .. 
a: 

~ ... 
z 

; .. 
u ... 
~ 

~~ 
C> C> 
Z Z .. ~ .. .. .. .. 

Simulated Current Load 

'to 

0.8 

0.6 

0.4 

0.2 

-20 60 70 BO 100 

AMBIENT TEMPERATURE I'C) 

TYPICAL PLOT OF NORMALIZED IGG lAND ISS) 
VERSUS AMBIENT TEMPERATURE 
DC POWER' IGG • vGG+ ISS· VSS 

22 

NRDS!NWDS'~~ 

Note 1: ENOUT goes high to indicate that SC/MP was granted access to bus (ENIN high) but is not using bus. 

Note 2: ENOUT goes low in response to low ENIN input. 

Note 3: SC/MP generates bus request; bus access not granted because ENIN low. 

Note 4: ENIN goes high. Bus access now gran~ed and input/output cycie actually initiated. If ENIN is set low while SC/MP 
has access to the bus, the address and data ports will go to the high-impedance (TRI-STATE@) state, but BREQwili remain 
high. When ENIN is subsequently set high, the input/output cycle will begin again. 

Note 5: I/O cycle completed. ENOUT goes high to indicate th<!t SC/MP granted access to bus but not using bus. If ENIN had 
been set low before completion of input/output cycle, ENOUT would have remained low. 

Note 6: ENOUT goes low to indicate that system busses are available for use by highest-priority requestor. 

FIGURE 4. Bus Access Control 

3-D4 



c 
w 
!i 
a:: 
o 
a. 
a:: 
o 
CJ 
~ 
en 
w 

!i g 
(/) 
(/) 
c:( 

o1J 
w 
Z 
a:: 
o 
CD 
(/) 

o 
~ 
c:( 
c 
c:( 

@ 

SC/MP 

DB1·DBO I 'ADDRESS 
I AND STATUS 

ADDRESS VALID ~m~ 
~TH(ADDRI 

-I ~TD (RDSI ~I H-TH (RDI 

NR~S~~"""""';"'%f~_~·-.-: --.;....,\ 1/1 ~%i 
II ..... · -~---TACC(RD! ·I~TS(RDI~I 

I--TW(RDSI_I 

Note: Timing. is valid when ENiN'is wired' high or is set high before BREQ is set high by SC/MP; see figure 4 for NADS 
timing when ENIN is set high after BREQ. 

FIGURE 5. SC/MP Data Input Timing 

~~ L 
I 

ENOUT ~~ ____ ~ ______ ~ __ ~~ ______________________ ~ __________ ~ ____ .J~ 
I-TDI (ADSI---.:....I .. TW (ADSI.j 

NADS ~~ V: 
_I I .... Ts (ADDRI I 

ADII'ADOO~_ : I : AODRESS VALID 1%£4% 
TS(STATI~I I..... '-I I"TH(STATI I--t-TH (ADDRI 

DB1·DBO 
~~~~~~~~T---~i--A-D-DR-E-SS----~ 

I AND STATUS WRITE DATA VALID I

.1 I~TS(WDI_I _I I TH(WDI

NWDS7'77'W&777'~"7"7'7-.f3waa~~: ~-~~\ __ / t?%£%i
1"'1 •• ------TD (WDSI------i.~I~~Tw (WDSI

FIGURE 6. SC/MP Data Output Timing

3-05

SC/MP AND INS8060-SC/MP II

BREQ~
22 L

.--T02 (HOLOl-------..1

~'--____ ~ ________ ~~~ __ ~ __ ~IIIr--. ENOUT . \ l '
. 22

NAOS

NHOLO

NROSI
NWOS

22

1_ TW (HO LOl_1

------------.... I 1

~d T01(HOLOl

1--1 I~

\

!TS (HOLOl! r - - - tV·
I NOTE 1 J

\-----.:....--. -~~2~' -. _---I.

Note: Dashed trailing edge of NRDS/NWDS indicates normal strobe timing when NHOLD is not active.

FIGURE 7. Extended Input/Output Timing

Applications Absolute Maximum Ratings (Note 1)

· Test Systems and Instrumentation · Process Controllers Voltage'at Any Pin -0.5V to +7.0V

· Machine Tool Control · Terminals Operati'~g Temperature Range O°C to +70°C · Small Business Machines · Traffic Controls

· Word Processing Systems · Laboratory Controllers Storage Temperature Range -65°C to +150°C

· Educational Systems · Sophisticated Games

· Multiprocessor Systems · Automotive Lead Temperature (Soldering, 10 seconds) 300°C

DC Electrical Characteristics(TA = O°C to +70°C, VCC = +5V ± 5%)

Parameter I Conditions I Min. I Max. I Units

INPUT SPECIFICATIONS

All Input Pins Except VCC and GND
Logic "1" Input Voltage 2.0 VCC V

Logic "0" Input Voltage -0.5 0.8 V

I nput Capacitance
(All pins except VCC andGND) 10 pF

Supply Current TA = 25°C
ICC outputs unloaded 45 mA

TA = O°C
outputs unloaded 50 mA

OUTPUT SPECIFICATIONS

"TRI·STATE®" Pins (NWDS, NRDS,
DBO - DB7; ADOO-ADll)

Logic "1" Output Voltage lOUT = -100pA 2.4 V

Logic "0" Output Voltage lOUT = 2.0mA 0.4 V

NADS, FLAG 0 - 2, SOUT, NENOUT
Logic "1" Output Voltage lOUT = -100pA VCC-l V

Logic "1" Output Voltage lOUT = -lmA 1.5 V

Logic "0" Output Voltage lOUT = 2.0mA 0.4 .V

NBREQ (Note 2) .
Logic "0" Output Voltage lOUT = 2.0mA 0.4 V

Logic "1" Output Current o ~ VOUT ~ VCC ±10 pA

XOUT
Logic "1" Output Voltage lOUT = -100pA 2.4 V

Logic "0" Output Voltage lOUT = 1.6mA 0.4 V

3-D6

c
w
~ a::
o
a. a::
o
o
~
ui
w

~
g
en
en
-t
olJ
w
Z
a::
o
III
en o
~
-t
C «
@

INS8060-SC/MP II

AC Electrical Characteristi~s [TA = o°c to +70°C, VCC = +5V ± 5%,1 TTL Load (Note 3))

Parameter Conditions Min. Max. Units

fx 0.1 4.0 MHz

R = 24011 ± 5% (figure 2B) 2.0 4.0 MHz
C = 300pF ± 10%

TC (Note 4) 500 ns

Microcycle 1 p.s

External Clock Input (see figure 2A)
TWO 120 ns

TWl 120 ns

XOUT/ADS Timing Reiationship
(see figure 3)

TH (ADS) 100 225 ns

Address and Input/Output Status
(see figures 5 and 6):

TDl (ADS) 3TC12 ns

TW (ADS) (TC/2) - 50 ns

TS (ADDR) (TC/2) -165 ns

TH (ADDR) 50 ns

IS (STAT) (TC/2) -150 ns

TH (STAT) 50 ns

TH (NBREO) a ns

Data Input Cycle (see figure 5)
TO (RDS) a ns

TW (RDS) TC+ 50 ns

TS (RD) 175 ns

TH (RD) a ns

TACC (RD) 2TC --200 ns

Data Output Cycle (see figure 6)
TO (WDS) TC - 50 ns

TW (WDS) TC ns

TS(WD) (TC/2) - 200 ns

TH (WD) lOci ns

Input/Output Cycle Extend
(see figure 7)

TS (HOLD) 200 ns

T01 (HOLD) 130 275 ns
T02 (HOLD) 350 ns

TW (HOLD) CXl ns

TH (HOLD) a ns

Bus Access (see figure 4)
TO (NENOUT) 150 ns

T02 (ADS) TC/2 3TC12 ns

TH (NENIN) a ns

Output Load Capacitance
XOUT 30 pF

All Other Output Pins .75 pF

Note 1: Maximum rati09s indicate limits beyond which damage may occur. Continuous operation at these limits is not intended and should be
limited to those conditions specified under electrical characteristics.

Note 2: NBREQ is an input/output Signal that requires an ex~ernal resistor to VCC'

Note 3: All times measured from valid Logic "a" level = 0.8 V or valid Logic "1" level = 2.0 V.

Note 4: TC is the time period for two clock cycles of the on-<:hip or external oscillator (TC = 2/fx). Refer to paragraph titled Timing Control
for detailed definition.

Note 5: All times measured with a 50% duty cycle on the external clock.

3-07

INS8060.;.SC/MP II

The time interval of a microcycle is four times the period of the oscillator; that is:
period of one microcycle = 2TC

TC = 2(-L) = 2(...L) = 2(_'_)
fosc f res fXIN

where:
TC = time period for two cycles of on-chip or external oscillator

fosc = frequency of on-chip oscillator
f res = resonant frequency of crystal connected between XIN and XOUT pins

fXIN = frequency of external clock applied to XIN pin

A. External Clock Input C. Crystal with Low-PaSs Filter (Above 1 MHzl

DRIVER
EXT, ER, NAL ~

CLOCK -------y--- XIN

, o~~\e~~L SC/MP
OPTIONAL, ._,
SCYLW~ - - - - ~:.:-. - - XoUT

EXTERNAL CLOCK PARAMETERS

B. Resistor-Capacitor Feedback Network

~
t;:;
..:
Ii;

S
:g
;::
u
a:

SC/MP

Typical Oscillator Frequency
vs RC Time Constant

2000 I

/
1800

1600 -.l

1400
/

j
1200

/ 100~
j

800

600
./

/
400

'/
200 /
o~~~~~~~~~~~~

a 0.2 0,4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

CLOCK PERIOD (l/fMHzl

FIGURE 2. Frequency Contro! Networks for On-Chip Oscillator

SC/MP

XIN XoUT

" Rp

--'" . "'I~ o~111~~~L. ,
~, ' OPTIONAL LJ'D ~- .. ; -- SYSTEM :--11 ~, CLOCK

• XTAL

~Rl

Suggested values for Crysta!.With Low-Pass Filter Network.

Crystal , :'Rp C, R,

2MHz 100kn 56pF ,kn
3.58MHz 100kn 27pF lkn
4MHz 100kn 27pF lkn

XTAL is parallel resonant with maximum series resonance equal
to 1 kn. '

D. Crystal with Low-Pass Filter (1 MHz or Be'lowl

SC/MP

XIN XoUT

1 '" "'I~ OPTIONAL
R2 ,R2 " o:~VER oPTlo~AL

..A...... __ .A...... JD' ', _. SYSTEM

'" '" "'1"'.... II ' ." CLOCK
_,-' XTAL

~C2 *C2

XoUT~ {\. r-
.. ~ ... ~~, _r,H, (AoSI

NAoS" ~',

FIGURE 3. XOUT/NADS Timing Reilitionship

3-D8

Q
w
~
a: o
Q.
a:
o
u
~
en
w .­«
U o
en
en
~
olI
w
Z
a:
o
a:I
en o
::! «
Q
«
@

INS8060-SC/MP II

.",,-<~£ i
I I ~ ~TH (NENI~I

---(2 22 2~ ®II r .. ·t-2 ------

NBREQ : - I ®\ . I /
~~ I: ~F2(NENOUT'-1 --.;....-----+l-'~.. r 2

NENOUT . . . ~~ I :"V
I·T02 (AOS~I I
: 'V I
I I

-(2 22 22
NAOS

NROSINWOS~~
B. NBREQ, NENIN, and NENOUT Timing

V~~

Note 1: NENOUT is always high while SC/MP is actually using bus; that is, NENIN input and NBREO output are low.

Note 2: When SC/MP is not using bus (NBREO output or NENIN input high), NENOUT is held in same state as NENIN input.

Note 3: NENOUT goes low to indicate that SC/MP was granted acpess to bus (NENIN low) but i~ not using bus.

Note 4: NENOUT goes high in response to high NENIN input.

Note 5: SC/MP generates bus request; bus access not granted because NENIN high.

Note jj: NENIN goes low. Bus access now granted and input/output cycle actu~lIy initiated. If NENIN is set high while SC/MP has access to
the bus, the address and data ports will go to the high-impedance (Tri-State®) state, but NBREO will remain low. When NENIN is subsequently
set low. the input/out~ut cycle will begin again. .

Note 7: Input/output cycle completed. NENOUT goes low to indicate that SC/MP granted access to bus but not using bus. If NENIN had been
set high before completion of input/output cycle, N~NOUT would h~ve remained high.

FIGURE 4. Bus Access Control

3-09

INS8060-SC/MP II

HIREQ \'-_______________ ~--'---'---+_-~r.
TH (NBREQ)i-l

i .,,--
"I

NADS

AD"·ADOO ~~ I I
I I

ADD RESS VALID E~
-i 1-- TH (ADDRI

DB7·DIO I ADDRESS
I AND STATUS

I -I I+TH (RD)

NRDS~_ I , \ : v'1W£J@
I· TACC (RD: .. _,4TS (RD)~

~TW(RDS)~

Note: Timing is valid when NENIN is low before NBREO is set low by SC/MP; see figure 4 for NADS timing when NENIN is
set low after NBREO.

FIGURE 5. SC/MP Data Input Timing

"\' r NBREQ I

,+--0' -------i------':
TH (NBREQ)i-l

" I: \
HEHOUT ~: '---

I-TD1(ADS)-l.TW(ADS)~ I

NADS ~~ V: I
-I I-Ts (ADDR) I I

ADl1ADOD~_ :: : ADDRESS VALID E:%
1- . ~ I-TH (STAT) -l 1-- TH (ADDR)

~~~~~~~~~----------~--~ 

D81·DIO 

NWDSE_ 

ADDRESS 
AND STATUS WRITE DATA VALID I 

I 

~TS(WD)_' _I 

I \"'"---------II;.......;..,.f@~f£~~ 
1-01 •• -----TD (WDS),------_~I~Tw!WDS) 

FIGURE 6. Data Output Timing 

3-010 



Q 
w 

!i 
a: o 
a. 
a: 
o 
o 
~ 
en 
w 

!i 
(3 
o 
CI) 
CI) 

< 
ail 
w 
Z 
a: 
o 
en 
CI) 

o 
~ 
< 
Q 

< 
@ 

INS8060-SC/MP II 
NO EXTENSION OF INPUT/OUTPUT CYCLE 

N8REQ \ .. ________________________ ~r_ 

NHOlO NHOlO CAN CHANGE NHOlO CAN CHANGE 

NROS/NWOS \'----_ ....... 

EXTENSION OF INPUT/OUTPUT CYCLE 

N8REQ\ ;---

~.--------------------------~{ !-- TOZ(HOlOI --+j 

NHOlO NHOlD CAN CHANGE \ / \ ~HOlO CAN CHANGE _______ ~ _____ ...lo. ________ ~1 I 

I-TsIHOlOI-1 TOllHOlOI ~I THIHOlOI 

NROS/NWOS \ ~/r--<D---I 

Note 1: In order to extend the input/output cycle, NHOLD must remain low until the point where NRDS/NWDS would have made a 
low-to-hightransition with NHOLD inactive. Dashed line indicates the trailing edge of NRDS/NWDS when NHOLD is not active. 

FIGURE 7. NHOLD Timing 

3-011 



c 
w 
~ 
a: 
o 
a. 
a: 
o 
o 
~ 
ui 
w 

~ g 
fI) 
fI) 

ct 
oil 
w 
z 
a: 
o 
a:I 
fI) 

o 
~ 
ct' c 
oCt 

@ 

Chapter 4 
THE 8080A 

The 8080A is the most widely known of the microcomputers described in this book; as such, it becomes the 
frame of reference in many peoples' minds as to what a microcomputer should be. 

The 8080A CPU is the direct descendant of the 8008, which was developed to Datapoint's specification for a 
device that would provide intelligent terminal data processing logic. 

It should be borne in mind that the 8080A was designed as an enhancement of the 8008, at a time when no 
definable microcomputer user public had established itself; therefore. many of the design features· in the 8080A 
can be looked upon as astute shots in the dark. The success of this microcomputer is due either to the farsighted genius 
of its designers. or to the fact that the power of most microcomputers so overwhelms the needs of microcomputer ap­
plications. that CPU design becomes almost irrelevant when compared to product costs and product availability. 

An enhanced version of the 8080A, the 8085,. is now available. The 8085 is described along with its support 
devices in Chapter 5. Note that in many cases it will be possible to use 8080A support devices with the 8085 CPU. 
You are unlikely to use 8085 support devices with the 8080A: if your design is new enough to be looking at the 8085 
support devices. then in all probability you would be using the 8085 CPU in preference to the 8080A. 

There is also a family of one-chip microcomputers currently available from Intel only - the 8048 family. Where 
the 8085 is an enhancement of the 8080 with many similarities, the 8048 is a somewhat different product. The 
8048 devices are described in Chapter 6. 

The 8080A has more support devices than any other microprocessor on the market today. A f~w of these support 
devices are specific to the 8080A: however. the majority of them are used just as easily with almost any 
microprocessor. Only devices specific to the 8080A are described in this chapter: devices that cali be used with any 
microprocessor are described in Volume III. The following is a list of 8080A support devices: a • at the left margin 
identifies a device described in this chapter, while an • in the loft margin identifies a device which is described 
in Volume III. 

• The 8080A/9080A CPU 

• The 8224 System Clock Generator and Driver. This device generates timing signals for the entire 8080A 
microcomputer system. 

• The 8228 System Controller (SC). This device demultiplexes the data lines of the 8080A CPU which are used 
for bidirectional data transfer and to output control and status signals. 

• The 8251 and 8251A Serial I/O Communication Interface, which provides a variety of synchronous and 
asynchronous serial data communication options. 

• The 8273 SDLC Protocol Serial I/O Controller. 
• The ILPD379 and the ILPD369. These. devices provide. synchronous and asynchronous serial I/O interfaces, 

respectively. 
• The 8255 and 8255A Parallel I/O interfaces, which provide programmable parallel I/O communication with ex­

ternal devices. 
• The 8212 Input/Output port, which can be used as ~n address buffer/decoder, a priority interrupt arbitrator, or 

an I/O peripheral interface. 
• The 8257 Direct Memory Access control device, which enables data to be transferred between memory and 

external logic, bypassing the CPU. 
• The 8253 Programmable Timer. which is accessed as an I/O device to create delays and timed pulses. 
• The 8259 Priority Interrupt Control Unit, which arbitrates priority among eight interrupts and creates appropri­

ate CALL instructions in response to an interrupt acknowledge. . 

• The 8214 priority interrupt device, which allows a number of interrupt requests to be received and processed 
under program control. 

• The TMS 5501 Multifunction I/O Controller, which provides a variety of support logic functions. 

4-1 



* The 8205, 8216 and 8226 address buffer decoders, which provide the logic needed to decode address spaces 
out of the 8080A address lines. 

* The 8271 Programmable Floppy Disk Controller. This device provides a good deal of the logic needed to inter­
face a floppy disk to a microprocessor. 

* The 8275 Programmable CRT Controller. This device provides a great deal of the logic needed to interface in­
dustry standard CRT terminals to a microprocessor. 

Table 4-1 lists the sources for each of the products described. Device numbers in each column are the individual 
manufacturers' device numbers. which may differ for the same device. 

Table 4-1. Devices of the 8080A Microcomputer Family 

DEVICE AMD INTEL NEC TI NS SIGNETICS·** 

8080A 9080A** 8080A 8080A TMS 8080A 8080A 8080A 
8224 8224 8224 8224 . SN74LS424 8224 8224 
8228 8228/38 8228/38 8228/38 SN74S428 8228/38 8228/38 
8251 9551* 8251 8251 

JLPD379 

8255 9555* 8255 
JLPD369 

8255 8255 
8214 8214 8214 

8216/26 8216/26 8216 
8205 25LS138* 8205 
8212 8212 8212 8212 SN74S412 
8253 8253 8253 
8259 8259 8259 
8257 8257 8257 

TMS 5501 TMS 5501 

* Some parameters vary. but pin-for-pin compatible 
** Five CPU options are available offering clock speeds as fast as 250 ns. and wide temperature ranges 

*** Signetics second sources National Semiconductor products 

Companies manufacturing these microcomputer devices are: 

INTEL CORPORATION 
3065 Bowers Avenue 

Santa Clara. CA 95051 

ADVANCED MICRO DEVICES 
901 Thompson Place 
Sunnyvale. CA 94086 

TEXAS INSTRUMENTS INC 
P.O. Box 1444 

Houston. TX 77001 

NEC MICROCOMPUTERS INC 
5 Militia Drive 

Lexington. MA 02173 

NATIONAL SEMICONDUCTOR CORP 
2900 Semiconductor Drive 

Santa Clara. CA 95050 

SIGNETICS 
811 East Arques Avenue 

Sunnyvale. CA 94043 

SIEMENS A.G. 
Components Group 

Balanstrasse 73. D8000 
Munich 80. West Germany 

Siemens is manufacturing the 8080A family of devices in Europe with the active support of Intel. AMD is an 
authorized second source; however, most of their products were developed prior to the second source agree­
ment. All other 8080A manufacturers are unauthorized. In consequence, some differences exist between Intel 

4-2 



c 
w 
~ 
a: 
o 
n. 
a: 
o u 
~ 
en 
w 

~ g 
(I) 
(I) 
c( 

all 
w 
Z 
a: 
o 
CD 
(I) 
o 
~ 
c( 
c 
c( 

@ 

and second source parts; differences are in some cases designed by the second source manufacturer, while in 
other cases differences are accidents. Differences we know about are described. 

The 8080A uses three levels of power supply: +5V. +12V and -5V. 

Using a 500 ns clock. instruction execution times range from 2 to 9 p.sec. 

'AII 8080A devices have TTL compatible signals. 

THE 8080A CPU 

Of the 8080A devices available on the market, the NEC 8080A is the only one that differs significantly from the 
Intel 8080A. The NEC 8080A is advertised as "an upward enhancement". Some of the NEC 8080A upward enhance­
ments result in programs written for Intel 8080A not executing correctly on the NEC 8080A; therefore you should 
check carefully for incompatibilities when using the NEC 8080A. NEC now manufactures an exact 8080A reproduc­
tion as well; be sure you select the correct product if you buy from NEC. 

Most differences between Intel and second source 8080A devices pertain to maximum clock frequency. environmental 
constraints and electrical characteristics. For details see the data sheets at the end of this chapter. 

Functions implemented on the 8080A CPU are illustrated in Figure 4-1; they represent "typical" CPU logic. The 
8080A has an Arithmetic and Logic Unit. Control Unit. Accumulator and registers. 

N-Channel. silicon gate MaS technology is used by all 8080A manufacturers. 

The two most noticeable features of the 8080A CPU are the exclusion of clock logic and bus interface logic 
from the CPU chip. 

The need for a separate clock logic chip simply reflects the fact that the 8080A was a relatively early microprocessor. 
Other microprocessors developed at the same time also required external clock logic. 

Bus interface logic must also be provided externally since the 8080A outputs an inadequate set of control signals. 
These control signals are augmented by instruction status information output on the Data Bus. External bus interface 
logic must combine the control signals with the instruction status signals to create an adequate Control Bus. 

These characteristics of the 8080A CPU are described in detail on the following pages. 

The 8085 CPU incorporates clock logic and bus interface logic onto the CPU chip. 

8080A PROGRAMMABLE REGISTERS 
The 8080A has seven 8-bit programmable registers. a 16-bit Stack Pointer. and a 16-bit Program Counter. These may 
be illustrated as follows: 

B 
D 
H 

SP 
PC 

psw 
A 
C 
E 
L 

Program Status Word} These two sometimes 

Primary Accumulator treated as a l6-bit unit 

Secondary Accumulators/Data Counter 

Secondary Accumulators/Data Counter 

Secondary Accumulators/Data Counter 

Stack Pointer 

Program Counter 

The A register is an 8-bit primary Accumulator. The remaining six Accumulator registers may be treated as six in­
dividual. 8-bit secondary Accumulators. or else they may be treated as three. 16-bit Data Counters. which we will refer 
to as BC. DE. and HL registers. The 16-bit HL register is the primary Data Counter. and provides the implied memory ad­
dress for most memory reference instructions; a limited number of memory reference instructions use the BC and DE 
registers as Data Counters. 

The 8080A uses a memory Stack. addressed by the Stack Pointer. 

4-3 



Direct Memory 
Access Control 

Interface Logic 

Programmable 
Timers 

I/O Ports 
Memory 

Figure 4-1. The 8080A CPU. 8224 Clock and 8228 System Controller. 
. Forming a Three-Device Microprocessor 

8080A ADDRESSING MODES 
The memory addressing used by the 8080A is very straightforward: direct addressing and implied addressing are pro­
vided. 

The most frequently used memory addressing mode is implied addressing .. via the HL register. 
This was the only memory addressing mode available on the. predecessor microcomputer. the 
8008 .. 

4-4 

8080A 
IMPLIED 
ADDRESSING 



Q 
w 
~ 
a: o 
0.. 
a: 
o 
lJ 
~ 
en 
w 

~ g 
en 
en 
< 
a!I 
w 
Z 
a: 
o 
III 
en o 
~ 
< 
Q 

< 
@ 

Register-register Move. and Register-register Operate instructions allocate three bits to specify one of eight registers: 
since there are only seven registers. the eighth code becomes a memory reference specification. using implied address­
ing via the HL register. as follows: 

3 2 1 0 ...-..-Bit No~' 

I I I I I 

T .... ____ 000 B specified 

001 C specified 

010.D specified 

011 E specified 

100 H specified 

101 L specified 

110 Memory reference via HL 
111 A specified 

With one exception, direct addressing is the only addressing mode provided for Jump and 
Branch instructions; the exception is the instruction with the mnemonic PCHL. which provides a 
jump using implied addressing. Direct addressing is also available for a limited number of 
memory reference instructions. All direct addressing instructions are three bytes long; a 
two-byte (16-~it)direct address is always specified. . . '. 

8080A STAT~S 
The 8080A has a Status register with the following status flags: 

Zero (Z) 
Sign (S) 
Parity (P) 
Carry (C) 
Auxiliary Carry (AC) 
SUB. present in the NEC 8080A only 

8080A 
DIREGT 
ADDRESSI~~ 

The,se status flags may be accessed by some instructions as a single Program Status Word (PSW). PSW bits are 
assigned as follows: 

7 6 5 " 3 2 1 0 ~ Bit No, 

I s I z rX 1£1 xl p I X I c I . 

t' !i Unassigned 

SUB (NEe 8080A only) 

Instructions that access register pairs treat PS\,,/ and the Accumulator as. a register pair. 

The 8080A uses its Sign status as described for the hypothetical microcomputer in Volume I. Chapter 7. 

The Carry status is not completely standar~. When an addition instruction is executed. any car­
ry out of the high-order bit causes the Carry status to be set to 1. while no carry causes the Carry 
status to be reset to O. This is standard Carry logic. also known as Add Carry logic. When a 
subtraction instruction is executed. however. the Carry logic is inverted, 

4-5 

CARRY 
STATUS 
BORROW 
LOGIC 



A subtraction is actually the twos complement addition of the subtrahend to the minuend. The use of the Carry status 
is different: if there is a carry out of the high-order bit. then the Carry status is reset to 0; if there is no carry out of the 
high-order bit. then the Carry status is set to 1. This philosophy is known as Borrow Carry logic and is used only during 
subtraction operations. Here are illustrations of the two philosophies: 

Hexadecimal Binary Twos Complement 

241C 
- 16A 7 

=0075 

Add Carry Logic Borrow Carry Logic 

NO~ • NOC~ 
o 1 11111111 

00100100~00011100 0010010000011100 

C, 

11101001.\01011001)~11101,OlO 0101~1001, 
00001101 01110101 00001101 01110101 
~~'~'~ 

00 75 00 75 

Ones Twos Twos complement 

complement complement individual 

of high- of low_ bytes without 

order order regard to byte 

byte, byte order 

In a CPU which uses Add Carry logic. the twos complement of the low~order subtrahend byte is added to the minuend 
low-order byte. However. the ones complements of higher order subtrahend bytes are added to minuend bytes when 
the CPU executes a "Subtract with Carry". This logic adds the unaltered Carry status. This is equivalent to inhially 
assuming that there is no carry from the lower order byte; if there is a carry from the lower order byte. then the ones 
complement addition is incremented. ' 

In a CPU which uses Borrow Carry logic. the twos complement of every subtrahend byte is added to every minue,nd 
byte. irrespective of whether we are dealing with the low-order or any other subtrahend byte. This is equivalent to 
assuming that there will always be a carry from the lower order byte - hence the twos complement add. If there is no 
carry. the sum' must be decremented. When a lower order byte borrows from the next high-order byte. there will be no 
carry; therefore. no carry, causes the Carry status to be set to 1. However. the "Subtract-with-Carry" instruction 
subtracts the, 1 Carry status from the result rather than adding it. ' .------"'11 
The Auxiliary Carry status is set and reset by the NEC 8080A following execution of any AM D 9080A 
subtract instruction, to correctly indicate whether a borrow from bit 4 occurred during the ,STATUS 
subtraction, The Intel 8080A uses the Auxiliary Carry at all times to indicate a carry out of bit 3 DIFFERENCE 
following addition. The AMD 9080A always clears the Auxiliary Carry status following ex-
ecution of a Boolean instruction: the Intel 8080A sometimes does and sometimes does not. 

8080A CPU f»INS AND ~IGNALS 
8080A CPU pins and signals are illustrated in Figure 4-2. 

The 16 address lines AO - A 15 output memory and 110 device addresses. These are tristate lines. and may be 
floated. giving external logic control of the Address Bus. 

The eight Data Bus lines DO - D7 are multiplexed, bidirectional data lines via which 8-bit data units are input 
and output, and on which statuses are output during the first clock period of any machine cycle: statuses on the 
Data Bus identify events which are to occur during the balance of the machine cycle. as described in Table 4-2. Like 
the address lines. the data lines are tristate. ' . 

Remaining signals (excluding power and ground) may be divided into timing control, Data Bus definition, and in­
terrupt control signals. 

These are the timing control signals: 

A device which cannot respond to a CPU access request within the allowed time interval 
extends the time interval by pulling the READY input control low. In response to READY low. 
the 8080A enters a Wait state. during which the CPU inserts an integral number of clock periods; 
WAIT is output high, and all operations are suspended within the CPU, but the address re­
mains stable on the Address Bus. 

8080A 
TIMING 
CONTROL 
SIGNALS 

CPU logic can be stopped between the end of one instruction's execution, and the beginning of the next, by in­
putting a high level on HOLD. This causes the CPU to float the Data and Address Busses. allowing external logic to ac­
cess these busses. usually to perform direct memory access operations. 

4-6 



c 
w 

!t 
a: o 
D. 
a: 
o 
(,) 

~ 
en 
w 

!t 
u o 
CI) 
CI) 

oct 
o!I 
w 
Z 
a: 
o 
a3 
CI) 

o 
~ 
oct 
C 
oct 
@ 

The CPU responds to a HOLD request by outputting a Hold Acknowledge, HLDA, high; this signal can be' used by 
external logic to identify the beginning of the time when the CPU has actually floated external busses. and external 
logic can take control of the microcomputer system, 

RESET is a typical reset signal; if held high for a minimum of three clock periods. it will zero the contents of all 
registers (excluding the status flags which maintain previous values!' thus causing program execution to start with the 
instruction stored at memory location DODO, 

Two signals identify the condition of the Data Bus: 

When DBIN is output high, data from an addressed memory location, or I/O port, must be 
placed on the Data Bus; DBIN may be used as a data input strobe. 

WR is output low when data 011 the Data Bus is stable; WR may be used as a write strobe. 

The two interrupt control lines are'lNT and INTE.An external device requests an' interrupt by 
inputting INT high, The CPU uses INTE to indicate whether interrupts are enabled or disabled. 

8080A TIMING AND INSTRUCTION 
EXECUTION 

SOSOA 
DATA BUS 
DEFINITION 
SIGNALS 

SOSOA 
INTERRUPT 
CONTROL 
SIGNALS 

An SOSOA instruction's execution is timed by a complex sequence of MACHINE CYCLES each of which' is sub-
divided into CLOCK PE~IODS. !. "/ • . 

An instruction's execution may require from 1 t05 machine cycles. Machine cycles are labeled 
MC 1. MC2. MC3. MC4 and MC5." I 

. \ . 

A machine cycle is made up of 3. 4. or 5 clock periods; the first machine cycle of an instruction 
must have 4 or 5 clock periods. Cloc~ periods are labeled T 1. T2. T3. T 4. T5: 

",' 

SOSOA 
MACHINE 
CYCLES 

SOSPA 
CLOCK 
P~RIODS 

Where MC is shaded. the entire machine cycle is option91. Where T is shaded.' the clock period is optional within its 
machine cycle. ' ' . 

4-7 



Al0 

(Vss) GND 

04 

05 

06 

07 

03 

02 

01 

DO 
(VBB) -5V 

RESET 

HOLD 

INT 

4>2 

INTE 

DBIN 

WR 
SYNC 

(VCC) + 5V 

PIN NAME 

-AO - A15 

-DO - 07 
SYNC 

_ -DBI~ 

;READY 
"-WAIT 

-\iVA 
-HOLD 

-HLDA 

~INT 

-INTE 

-RESET 

4>1. 4>2 

VSS·VDD'vCC·VBB 

-These signals connect to the System Bus. 

1 

2 

4 

5 

6 

7 

8 

9 

10 

11 8080A 

12 

13 

14 

15 

16 
17 

18 

19 

20 

DESCRIPTION 

Address Lines 

Data Bus Lines 

40 

39 

38 
37 

36 

35 
34 

33 

32 

31 

30 

29 

28 

27 

26 

25 
24 

23 

22 

21 

Machine Cycle Synchronizer 

Data Input Strobe 

Data Input Stable 

CPU In Wait State 

Data Output Strobe 

Enter Hold State 

Hold Acknowledge 

Interrupt Request 

Interrupt Enable 

Reset CPU 

Clock Signals 

Power and Ground 

All 

A14 

A13 

A12 

A15 

A9 

A8 

A7 

A6 

A5 
.4.4 
A3 

+ 12V (VDD) 

A2 

Al 

AO 

WAIT 

READY 

4>1 

HLDA 

TYPE 

Output. Tristate 

Bidirectional. Tristate 

Output 

Output 

Input 

Output 

Output 

Input 

Output 

Input 

Output 

Inpu~ 

Input 

Figure 4-2. 8080A CPU Signals and Pin Assignments 

CLOCK SIGNALS 
Two clocks.' <1>1 and <1>2. provide the CPU with· its til"!ling .. 

Figure 4-3 illustrates the way in which clock signals <1>1 and <1>2 are used to generate a machine cycle consisting 
of fiye 'clock periods. A SYNC pulse identifies the first clock period of every machine cycle. 

4>1 JJl n n n~_ .... n~ ___ : 
4>

211t9 '1 ~ I ~r"'\-. -~: n ~"'. :',' I: i" ' .... --"1_..1 ............. _. I . I _ 'I II 

SYNC: ~ Ii .... -~.I-----~ ...... ----.... ---.-.... , 
I .•. .. J . I 

SYNC. pulse Identifies clock period T 1 

Figure4-3. A Machine C'ycle Consisting of Five Clock Periods:' 

4-8 



c 
w 

!t 
a: 
o 
Do 
a: 
o 
u 
~ 
en 
w 
!t 
u o 
Cf) 
Cf) 

ct 
olI 
w 
Z 
a: 
o 
m 
Cf) 

o 
~ 
ct 
C 
ct 
@ 

A 9-segment clock is specified for the 8080A.where the <1>1 and <1>2 signals are generated out of 9 segments as 
follows: 

2 3 4 I 5 6 7 8 9 
1 I 

I I I I· I 

<Ill) ~ ,-
I 

<Il2 I 1 I' 
I I 

1 I 

The following alternative se~"Jentations will also work: 

I l' I 2 3 I 4 5 
I I 

6 7 8 

<Ill j"'-~:\ ; ...... -~-~ 
1 1 

<Il2 ~ 

. I 
I 
I 

<Ill.J 
I 

<Il2 I 
1 

<Il2 

I 
I 
I 

I 
I 
I 

\ 
I 
1 

I 

1\ 
I 

I 
I 
1 
I 
I ... ,~ 
I 
I 
I 
I 

1 

:, 
I 
I 

I 
I 
I 

1 
:\ ~--~------+-----~----~----~----~~ 
I 

~ 
I 

~ ..... _-+-_ ....... I­
I 

Irrespective of the segmentation used. note that the total clock period time must remain the same. For example.~up­
pose you have a 500 nanosecond clock; individual segments must be timed as follows: 

Number of Segments 
Duration of one segment 

(na nosecondsl 

9 
55.55 

8 
62.5 

7 
71.43 

6 
83.33 

4-9 

5 
100.09 

4 
125.00 



In summary. there~ore. a clock period will normally have 9 segments. but may have 4. 5. 6. 7 or 8 segments.' 

Note that the only time you ever need to know about clock segmentation is when you are creating your own 
clock signals. If you use the 8224 Clock Signal Generator (described later in this chapter) you can ignore clock signal 
segmentation. 

Clock periods T1, T2 and T3 of each machine cycle are used (with one exception) for memory reference opera­
tions. During periods T4 and TS functions internal to the CPU 'are executed. These two clock periods can be 
used by external logic for a limited number of approved operations that do not involve the CPU: 

Operations internal to CPU 

'---------, Mem~ry reference operations 

The first three clock periods of the first machine cycle are always used to fetch an instruction from memory, and 
load it into the Instruction register. The first machine cycle always has at least four clock periods. with the Program 
Counter being incremented during T 4: 

'------ Increment Program Counter .' 

L Operations internal to CPU 

'-------- Instruction Fetch 

The CPU identifies the operations that will occur during every machine cycle by outputting 
status information on the Data Bus during clock p~riod T2. External logic uses SYNC and ~he 
<1>1 pulse at the start of T2 to read status off the Data 8us. Timing is illustrated in Figure 4-4. 

8080A 
INSTRUCTION 
STATUS 

If you are using an 8228 System Controller, it will decode status output on the Data Bus 
during T2. By combining this status information with 'the three control signals: WR. DBIN and HLDA. the 8228 System 
Controller is able to generate a set of bus control signals which will interface' industry standard memory devices and ex-
ternal logic. . 

If you are not using an 8228 System Controller, then you must provide external logic that decodes the Data Bus 
during <1>1 of T2. Your external logic must generate control signals which will be active during' subsequent clock 
periods, at which time the Data Bus no longer holds status information. j;. 

<1>1 

<1>2 

SYNC 

. Status on 

Data Bus 

Strobe to read status off Data Bus 

when <1>1 and SYNC are both high 

Figure 4-4. Status Output During T2 of Every 
Machine Cycle 

4-10 



Q 
III 

~ 
a: o 
D. 
a: 
o 
CJ 
~ 
en 
III 

~ 
g 
en 
en 
oCt 
ail 
III 
Z 
a: 
o 
aI 
en o 
~ 
oCt 
Q 
oCt 

@ 

Table 4-2 defines the statuses which may be output during clock' period T2. Table 4-3 defines the way in which 
statuses should be interpreted to identify the various possible types of, machine cycles. 

SYMBOLS 

HLTA 

INTA* 

INP* 

OUT 

MEMR* 

M1 

STACK 

WO 

Table 4-2. Statuses Output Via the Data Lines Du~ing the Second 
Clock Cycle of an 8080A Machine Cycle 

DATA BUS 
BIT DEFINITION 

D3 Acknowledge signal for Halt instruction 

DO Acknowledge signal for INTERRUPT request. Signal should be used to gate a 
Restart instruction onto the Data Bus when DBIN is active. 

D6 Indicates that the Address Bus contains the address of an input device and 
the input device shou Id be placed on the Data Bus when DBIN is active. 

D4 Indicates that the Address Bus contains the address of an output device and 
the Data Bus will contain the output data when WRis active. 

D7 Designates that the Data Bus will be used for memory read data. 

D5 Provides a signal to indicate that the CPU is in the fetch cycle for the first 
byte of an instruction. 

D2 Indicates that the Address Bus holds the pushdown stack address from the 
, Stack Pointer. 

D1 Indicates that the operation in the current machine cycle will be a WRITE 
memory or OUTPUT function (WO = 0). Otherwise a READ memory. INPUT 
operation. or interrupt or Halt acknowledge will be executed. 

*These three'status bits can be used to control the flow of data onto the 8080A Data Bus. 

z 
0 
j: 
< 
~ .... a: 

iii 0 
II. 

III ~ ;:) 
ID III 

;:) < .... .... < < .... e III 

DO INTA 

01 Wo 

02 STACK 

03 HLTA 

04 OUT 

05 M1 

06 INP 

07 MEMR 

Table 4-3. Statuses Output on the Data Bus for 
Various Types of Machine Cycle 

TYPE OF MACHINE CYCLE 

:I: C.) 
.... 
~ e III 

III III .... 
" z < a: III .... 

0 III e .... e a: e 
~ j: a: < a: ,< ~ 

.... 111 
III 0. .... C.) > > a:. ~ III ;:)~ a: a: a: .... ;:) 

0 0 ~ ~ .... ;:) a:o a: .... ~ ~ 
C.) C.) ;:) 0. a:z 
~ <. .... III~ III III III .... 0. ;:) ""C.) 

~ ~ ~ III III ~ 0 ~< 

0 0 0 0 0 0 0 1· 

1 1 0 1 0 1 0 1 

0 0 0 1 1 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

1 0 0 0 0 0 0 1 

0 0 0 0 '0 1 0 0 

1 1 0 1 o· 0 0 0 

(0) Identifies status outputs of the NEC 8080A which differ from those of the Intel 8080A. 

This status is output as 0 by the NEC 8080A during a Call instruction being executed within 
the interrupt acknowledge process. 

4-11 

III 

" e 
III .... 
~ 
0 
z 

III ~ 

" C.) 
e < .... 
~ ........ 

0.< 
~ ;:):1: 
0 a: III 

.... z a: .... 

....~ 111-
<C.) .... :1: 
:1:< ~~ 

0 '1 

1 1 

0 0 

1 1(0) 

0 0 

0 1 

0 0 

1(0) 0 



INSTRUCTION FETCH SEQUENCE 
Instruction fetch timing is illustrated in Figure 4-5: events occur as follows:' 

Period T 1 The leading edge of <1>2 triggers the SYNC high pulse'. identifying period T 1, 
I.,.' • 

Period T2 

WAIT is low. since the CPU is not in the Wait state, 

WR remains high since this is an instruction fetch cycle; data is not being writte,n to memory, 

The leading edge of <1>2 is used to set selected Data Bus lines high. providing external logic with status 
i.nformation as follows: 

RlfWO (D1), . The CPU is expecting data input. 
M 1 (D5) ,This is an instruction fetch period.' 
MEMR (D7) . Data input is expected from memory. 

The leading ,edge 0(<1>2 is used to set the required memo~ address on the address lines AD to A 15. 

External logic uses the <1>1 pulse of ti'me 'period T2 to read status off the Data Bus, The read status strobe 
may be created as follows: ' 

SY:~ ________ '~D"--------READSTATUSSTROBE 
Remember. if you are using an 8228 Syste'm Controller.' it reads and decodes status for you. 

ImmediatelY after status has been output on the Data Bus. the Data Bus is free to receive the instruction 
object code. The addr'ess for the instructio'n object code'will be on'the Address Bus; this address appears 
on the Address Bus during T 1. beginning with the rising edge of <1>2, The fact that status has been output 
and the Data Bus is free to receive the instruction,object code is indicated by DBIN being pulsed high. 
The DBIN high pulse begins with the rising edge of <1>2 in T2 and lasts exactly one clock period. 

Period T3 While DBIN is high. external logic must place the addressed instruction code on the Data Bus. The CPU 
will store this data iii the 'Instruction register -whence the Control Unit interprets it as an instruction 
code. 

The Data Bus is floated at <1>2 during T3. This means that the Data Bus has been disconnected from the 
CPU a~d can be used in any way by .Iogic external t~ the CPU. , . 

Period T 4 The Address Bus is floated at <1>2 during T 4, 

The 8080A uses', 2 and 3 byte instructions. Each byte of a multibyte instruction requires its own instruction 
fetch. Exact timing for multibyte instructions is given later in this chapter. after the 8D8DA instruction set has been de-
scribed. . . 

A MEMORY READ ,OR WRITE OPERATION 
SO far as external logic is concerned. there is no difference between "read from memory" timing and instruction fetch 
timing - ex~ept that the M 1 status (D5 on the Data Bus) is high during an instructio,", fetch only. Figure 4-5 therefore 
applies to a memory read operation also. 

Since a memory read operation is executed during time periods T" T2 andT3 of a,machine cycle, the presence 
of a memory read operation in an instruction's execution sequenc~ will add one machine cycle to instruction ex-
ecution time. ' " 

Figure 4-6 shows timing and signal sequences for a memory write opera~ion. The signal sequences are identical 
to the instruction fetch sequence with the exception that DBIN remains low during T2 and T3, and different 
status signals are output on the Data Bus during T,. ' 

SEPARATE STACK MEMORY MODULES 
One 8080A CPU can access two memory modules with overlapping memory, addresses: a stack memory 
module and a nonstack memory module. Overlapping memory addresses can be used by the two memory modules. 
since Stack status (D2 high at <1>1 in T2) can be used to select the stack memory. while lack of Sta~k status (D2 low at 
<1>1 in T2) can be used to select nonstack memory. External logic must decode the' address as referencing stack or non-
stack memory. ' , 

4-12 



Q 
w 

~ 
a: o 
Q. 
a: 
o 
u 
~ 
iii 
w 

~ 
g 
U) 
U) 

ct 
~ 
w 
Z 
a: 
o 
CD 
U) 

o 
~ 
ct 
Q 
ct 
@ 

Note that the 8228 System Controller does not generate a STACK control signal. Nevertheless. if you wish. you may im­
plement separate stack and nonstack memory. with overlapping addresses; this requires your own status decode logic 
to isolate the Stack status. Such logic is quite simple. and may be illustrated as follo~s: 

SY:: _____ . D--[l>~ .. ----- Stack memory select 

- Nonstack memory select 

The only disadvantage associated with having a separate stack memory is that nonstack instructions cannot reference 
the stack memory. 

T1 

<1>1 

SYNC 

READY.f\ I 

I 
I 

WAITjr1l~I+-________ -+ __ ~ ______ -p ______ ~ __ ~~ ____ ~~~ __________ ~ 

DBIN 

Di 

AO (instruction I 

to A15 

I I 
I . External Logic I I 
I Read Status I . I 
I Di - Signals I I 
I I· I .1 

I I I I ... 1. .... 1------ Instruction Fetch -----~.~ 

-The NEC 8080A maintains the address on the Address Bus during T 4 and T 5' 

Figure 4-5. 8080A Instruction Fetch 'sequence 

THE WAIT STATE 
A Wait state may occur between clock periods T2 and T3. The Wait state frees external 8080A 
logic or memory from having to operate at CPU speed. Wait state timing is illustrated in Figure SLOW 
4-7 and Figure 4-8. MEMORIES 

If READY is low during <1>2 of T2. the 8080A CPU will enter the Wait state following T2. The Wait 
state consists of any number of clock periods during which the CPU performs no operations and maintains the levels of 
all output signals. The Wait state ends when READY is input high. The CPU samples READY during every <1>2 pulse 
within the Wait state; the Wait state will therefore end with the <1>1 pu Ise which follows a <1>2 p~ Ise during which 
READY is sensed high. 

4-13 



Memory interface logic in any 8080A microcomputer system must be designed to anticipate that every memory 
access either will, or will not require a Wait state. 

If memory is as fast as the 8080A CPU, then READY will normally be held high, in anticipation of no Wait state. In 
Figures 4-7 and 4-8 a broken line is used to represent this "READY normally high" case. Memory interface logic will 
pull READY low in order to insert one or more Wait machine cycles only in special circumstances: memory interface 
logic has until <lJ2 of T2 to pull READY low. 

$2 

SYNC 

Oi 

AO 
to A15 

External Logic 

Read Status 

Oi - Signals 

Figure 4-6. 8080A Memory Write Timing 

If memory is slower than the 8080A CPU, then READY will normally be held low in anticipation of one or more Wait 
machine cycles occurring between T2 and T3. In the special circumstance where no Wait state is needed, memory in­
terface logic has until <lJ2 of T2 to set READY high. 

Note that WR, if active, will be held low for the entire duration of a Wait state. This is because if WR is to be set low, the 
transition occurs at <lJ1 of T2 and lasts until <lJ1 of T 4 - a period which completely encompasses the Wait state. 

Relatively simple logic can be used to add a Wait state to a machine cycle. Consider the 8080A WAIT 
following scheme: STATE REQUEST 

LOGIC 

+ 5V +5V 

PR fiR 
MEMR 01 01 02 02. 

(from 8228!. 

$1 OK1 7474 CK2 7474 

Qi 02 
a:R CLR 

+5V +5V 

4-14 



c 
w 

~ 
a: o 
a. 
a: 
o 
(J 

!: 
en 
w 
l­
e:( 

g 
(I) 
(I) 
e:( 

~ 
w 
Z 
a: 
o ca 
(I) 

o 
~ 
e:( 
c 
e:( 

@ 

Our goal. using the logic above. is to create a low READY pulse. which is one clock period wide. whenever MEMR 
makes a high-to-Iow transition. 

4>1 ______ ....1 

READY 

Consider the sequence of signal transitions in the logic we have illustrated above. At each <1>1 clock pulse. tranSitions 
will occur as follows: 

4>1 

01 
--0-_.1 

01-' 02 

02 

READY 

It requires 01 and 02 to be high simultaneously for READY to be low; and that condition exists for a single clock pulse. 

Observe that you can use READY to trigger a one-shot in order to create a low READY input of any duration. 

T, T2 T3 T4 T5 

4>1 

4>2 

SYNC 

READY 

I 
WAIT.f\. I 

I 

WRVI 
I 
I I Status 

.-••• "' ••• Represents alternate signal form for READY as described in text accompanying this figure. 

Figure 4-7. The 8080A CPU Operating With Fast Memory and No Wait State 

4-15 



T2 

cfJl 

cfJ2 

SYNC, 

READY 

I 

WAITJ\ I 
1-, --_ ..... _-..., 

WRVI 
I 

WAIT 

(Write Only) 

-_ ••• "'... Represents alternate signal form for READY as described in text accompanying this figure. 

READY is false at cfJ2 in T 2, so next cfJl pulse initiates a Wait state, with WAIT set high by the leading 

edge of the cfJl pulse. When READY is high at a <fJ2 pulse, clock period T 3 will be initiated by the next 

cfJ1 pulse and WAIT will be reset low. 

Figure 4-S. The SOSOA CPU Operating With Slow Memory and a Normal Wait State 

THE WAIT, HOLD AND HALT STATES 
We have discussed the Wait state within an 8080A microcomputer system, now we have to look at two further 
states during which instructions are not executed: the Hold and the Halt states. 

The fact that there are three states within which instructions are not being executed is frequently a source of confusion 
to SOSOA users. Let us, therefore, clearly identify the differences between these three states before continuing a dis .. 
cuss ion of the Hold and Halt states. ' 

As we have already seen, the Wait state consists of one or more clock periods which are inserted within a machine cy­
cle, giving external logic time to respond to a memory access. Thus, the Wait state consists of an indeterminate num­
ber of clock periods which occur within a machine cycle and extend the duration of that machine cycle. 

The purpose of the Hold state is to float the System busses so that external logic can perform direct memory access 
operations. Conceptually, therefore, a Hold condition consists of any number of clock periods, occurring in between 
two machine cycles which define the termination of one instruction's execution and the initiation of the next instruc­
tion's execution: 

I 
'1>1 n n n ,.., ,.., M n M 

...I .""1' '--' '-____________ ••••• _____ J W LJ W \J L 
La" mac~". cycle I I "<St moohi". ovel. 
of an instruction's .. HOLD state clock periods' ~ I of nex~ instruction's 

execution execution 

The Hold state may be looked upon as a period of time during which the CPU goes into a state of suspended animation. 

The Halt state results from the' execution of a Halt instruction. The System Bus is not floated duringa Halt state. During 
the Halt state, the CPU simply marks time. The purpose of a Halt state is to define those time intervals when there is 
nothing for the CPU to do; now when the CPU has nothing to do, it is only logical to assume that the CPU cannot know 
how long it will be before it has something useful to do. Typically a Halt condition will end when some external logic 
demands the service of the CPU. One method that external logic uses to demand CPU service is the interrupt request. 
The SOSOA therefore requires an interrupt request to terminate the Halt state. 

4-16 



c. 
~i 
~ 
a: 
o 
a.. 
a: 
o u 

. ~ 
en 
w! 
!-' 
~ 
(; 
o 
CI) 
CI) 

~ 

CilJ· 
w 
Z 
a: 
o 
al 
CI) 

o 
:iE' 
~ c 
~ 

@ 

Let us now look at the Hold and Halt states in more detail. 

THE HOLD STATE 
The Hold state allows external logic to stop the CPU. 

The Hold state is similar to the Wait state. During both states, signals output by the CPU are held constant; but 
the Data and Address Busses are floated in the Hold state only, not in the Wait state. 

The Hold and Wait states are also initiated in different ways and they serve different functions; 

The Wait state is initiated if external operations will not be completed during T3. The purpose of the Wait state is to 
allow the CPU to operate with slow memories or external logic, therefore a Wait always occurs between clock periods 
T2 and T3· . 

A Hold state is initiated by the hold request input signal HOLD. The CPU acknowledges the onset of the Hold state by 
outputting HLDA high. If a HOLD is requested during a read or input operation (RliWO (01) high in T2). then HLDA is 
set high by the leading edge of <1>1 in T3. If a HOLD is requested during a write or output operation, then HLDA is set 
high by the leading edge of <1>1 in the cycle following T3. 

Note that even though HOLD is acknowledged and the Hold state is initiated in T3 during a read memory or input data 
machine cycle, logic must still hold data steady on the Data Bus until the leading edge of <1>2 in T3. This is because 
operations internal to the CPU will be executed normally during a HOLD. Operations internal to the CPU will only cease 
if the Hold state lasts for more cycles than would normally ~e present before the onset of the next T 1 cycle. 

HOLD low will cause the end of the Hold state. HOLD low must coincide with the leading edge of <1>1 or <1>2, and will 
terminate the Hold state at the <1>1 pulse of the next machine cycle's T 1 clock period. The 8080A CPU will signal the 
end of the Hold state with HLDA false. 

During the Hold state, the Data Bus and the Address Bus are floated. Floating begins at <1>2 in T3 for a read operation 
and at <1>2 in the clock period following T3 otherwise. 

Figures 4-9 and 4-10 illustrate some variations on the Hold state. 

The NEC 8080A and the Intel 8080A differ when a Hold is 'requested during a DAD instruc­
tion's execution. The NEC 80BOA initiates the Hold as though a read operation was occurring, 
while the Intel 8080A initiates the Hold operation as though a write operation was occurring. 

M.chine Cycle N + 1 

SYNC 

HOLD 

NEC 8080A 
HOLD 
DIFFERENCES 

HLDA H---t---I-f--+-+---+---+-- HOLD STATE --+-----+----+----4!'-----j 
Wi H--~~~~~-~~--~---~---+_--+_---+_---~---~--~ 

00 to 07 
\V--+---+---+-'--t floating 

f---'-----l---+---+- flo.ting· 
I 

·optional, depending on instruction being executed 

Figure 4-9A. Floating of Data and Address Busses at <1>2 in T3, for READ Operation Being Completed Prior 
to Onset of Hold State 

4-17 



Figure 4-9B. Flo'ating of Data and Address Busses at <1>2 in T 4. for a WRITE. or Any 
Non-READ Operation (RI/WO=False) 

Machine Cycle N Machine Cycle N + 1 

SYNC 

HOLD 

HLDA rt------r----t--~.----+~------~-----HOLDSTATE--~------~------~L~----_1 

WR ~------r----r--~---+~------~------~------~~----~~------~----~ 

"""---+-------+------_+_~ floating 

I 
Figure 4-1 OA. Floating of Data and Address Busses for READ Operation in"a Three Clock 

Period Machine Cycle 

Machine Cycle N Machine Cycle N + 1 

SYNC 

HOLD 1-+------1--+-----1-+--' 

HLDA hr------r-lr----ri----~I.-+_~~~----~--HOLDSTATE ____ ~------~~L-----_1 

WR Ht-------I--+----.J 

DO to 01 H:J'---.:......,-.... 

Ao to A,s 1--A----I------I-------1--_ 

Figure 4-1 OB. Floating of Data and Address Busses at <1>2 in T 1. for WRITE or Any Non-READ Operation Being 
Completed Prior to Onset of Hold State 

4-18 



Q 
w 

~ 
a:: 
o 
Do 
a:: 
o 
CJ 
,~ 

en 
w 

~ 
g 
(I) 
(I) 

<C 
~ 
w 
Z 
a:: 
o 
III 
(I) 

o 
~ 
<C 
Q 
<C 

@ 

THE HALT STATE AND INSTRUCTION 
The Halt state is similar to the Wait state, except that it is initiated by a Halt instruction. 

The Halt state is not initiated by READY low. although READY low is a necessary requirement for the onset of the Halt 
state. This means that READY high cannot be used to terminate a Halt state. Instead. an interrupt request (lNT high) 
must be used to terminate the Halt state. 

Note that if interrupts have been inhibited, the interrupt request (lNT high) will never be acknowledged, and 
the only way to get out of a Halt state is to power down, then power up the CPU. 

, l 

An anomaly of the Halt state is that the Data and Address Busses may be floated by entering th~ Hold state after enter­
ing the Halt state; that is. you can move into. and out of the Hold state while in the Halt state. 

If the Hold state is entered after the Halt state. then the Hold state must be exited py setting HOLD low before exiting 
the Halt state. 

During a HALT. a hold request signaled by HOLD will not be acknowledged if an interrupt has been requested (lNT 
high) but not acknowledged (lNTE high); i.e .. the CPU will not enter the Hold state in the time be~ween an interrupt 
being requested and acknowledged. Once the interrupt has been acknowledged (lNTE 10wL the CPU may enter the 
Hold state. ' 

Figure 4-30 illustrates signal sequences and timing for the Halt instruction (and state). 

THE RESET OPERATION 
A RESET high signal input to the 8080A CPU will clear the Program Counter and disable interrupts. 

To properly perform the reset operation, RESET should be held high for at least three clock periods. During these 
three clock periods. reset operations are executed in the following sequerce: 

1) The Program Counter is cleared.' ' 

2) All interrupt requests are disabled. 

3) Internal interrupt acknowledge logic (associated with signallNTE) is cleared. 

4) Internal hold acknowledge logic (associated with signal HLDA) is cleared. 

For as long as ~ESET is high, all 8080A CPU operations will be suspended. 

When RESET is reset low. instruction execution will resume with aT 1 clock period at the next <1>1 pu Ise. Since the Pro­
gram Counter contains 0000. the first instruction executed following RESET will be the instruction stored in memory 
location 0000) 6. " ' , 

Interrupts remain disabled when program execution resumes. 

When you power up any 8080A system you must simultaneously reset it. Powering up does not reset or change 
anything within the 8080A. If you power u'p without resetting. then registers. including the Program Counter. will con­
tain undefined data; thu~ program execution will immediately and erroneously begin at some random location of 
memory. 

Here are two possible reset on power up logic implementations: 

First a simple logic sequence: 

+ 5V 

RESIN 
8224 

~ I 
RESET 



Next a more s:omplex. and more reliable one: 

1.0 

MH 

~ I +O.47UF 

--
RESET 

SYNC 

READyJ\ 

DBIN 

WAITJ\ 

W'RJ\ 
INT 

INTE 

--
N 

h 
Ln 

1---

~. 

1.0 
B MH 4 

if Vee 
6 

T~ 

1/674LS04 

2 
TR 555 OUT 

7 
DIS GND 

ev 

lo.,uF lo.,u
f 

- - -- - -
Machine Cycle N t 1 

T, T2 T3 T4 T5 

h U~ h n n 
1~ ~ ~ 

/\ '\ 11 \ 
\ I 

\ ) / V 

I 

l\,) 
\ 

\., D; Status I DS~~~lt~ I 
\~ I floating , 

I I I 
External Logic 
Read Status 
Do - Status 

Inte;rupt Initiation 

Figure 4~ 11, Interrupt Initiation §e'Quence 

4-20 

+5V 

. RESIN 

8224 

"": N + 2 

T, 

n 
.(L 

.J 



c 
w 

ti 
II: 
Q 
a.. 
II: 
o 
U 
~ 
en 
w 

~ 
g 
en 
en 
c:( .., 
w 
Z 
II: 
o 
CD 
en o 
~ 
c:( 
c 
c:( 

@ 

EXTERNAL INTERRUPTS 
External logic may reque~tan i,nterrupt at any time by setting thelNT input hi~h. An interrupt request will only 
be acknowledged if interrupts have been enabled. Normally the EI (Enable Interrupts) and 01 (Disable Interrupts) in­
structions are ~xecuted to enable and disable interrupts; however. interrupts are automatically disabled by the CPU 
during the RESET condition. and following an interrupt ackhowledge. 

The 8080A CPU outputs INTE high when interrupts have been enabled. and low when interrupts are dis~bled. If inter­
rupts are enabled. then the 8080ACPU will acknowledge an interrupt request during the next T1 clock period. on the 
rising edge of <P2. At t~is time INTE .is set low.to reflect the fact that an interrupt acknowledge automatically disables 
interrupts. Timing Is illustrated in Figure 4-11. 

The 8080A CPU informs external logic that an interrupt has been acknowledged by out~utting tliis status on 
the Data Bus:. 

J 

DO -INTA. 
01 - RI/WO 
05 - M1 

INTA iS,the principal interrupt acknowledge status; it is coriverted into a separate int~rruPt acknowledge con­
trol signal by the ~228 System Controller . 

Once an interrupt has been acknowl~dged, the 8080A CPU' enters ali instruction fetch sequence - but with 
two differences: 

1) Program Counter increment logic is suppressed. 

2) . Different statuses are output on the Data Bus during T2. The status~s output on the Data Bus during various 
machine cycles are summarized in Table 4-3. 

The different statuses output during T2 of a normal, or a post-interrupt acknowledge instruction fetch are very 
important. 

During a normal instruction fetch sequence. MEMR is output true on 07. 

During the instruction fetch sequence which follows an interrupt acknowledge. MEMR is not output true on 07. but 
INT A is output true on DO.. . 

Thus. external logic can differentiate between a normal instruction fetch and the instruction fetch sequence which 
follows an interrupt acknowledge. 

It is very important that external logic be able to differentiate between a.normal instruction fetch and an interrupt 
acknowledge instruction fetch. When the interrupt is acknowledged. the Program Counter is addressing an instruction 
which will, not get executed until the interrupt service routine has completed execution: 

When instruction @ compl~tes execution •. pc 
is addressing Instruction @Object code byte 

Interrupt Service fiJ 
\ D.. •• Rout;". 

But Instruction © is to be executed 

directly fOllowing Instruction @ 

4-21 



Therefore the first instruction executed following the interrupt acknowledge must save the Program Counter 
,contents. The last instruction executed within the interrupt service routine restores the Program .Counter con­
<tents.Duringthe instruction fetch which follows· an . interrupt acknowledge, the Program Counter 'increment 
logic is suppressed, because the 8080A CPU expects the object code for the first interrupt service routine. in-
struction to be supplied by the interruptin'gdevice instead of memory: ' 

~----------------
Interrupting logic provides first object code byte 

following interrupt acknowledge 

PROGRAM 
,MEMORY 

I 

I 

I 
I 

.. --' 

n-1 
n 
n+1 
n+2 -
n+3 
n+4 
n+5 
n+6 
n+7 

Interrupt acknowledged 

PC now addresses n + 3 

The object code provided by external logic during the instruction fetch which follows the ,interrupt 
acknowledge must be the object code for an instruction which will save the Program Counter contents for sub­
sequent retrieval. There is only one instruction which will do this and that is a subroutine CALL instruction. 
Recall from Volume I that the subroutine CALL instruction will save the current Program Counter contents on the 
Stack. then will load a new starting address into the Program Counter, Thus. a subroutine CALL instr'uction satisfies the 
logical requirements for interrupt service routine initiation, 

The normal way of terminating a subroutine is via a Return instruction. This instruction loads the Program Counter 
from the top of the Stack, The Return instruction will. therefore. satisfy the logical requirements for interrupt service 
routine termination, 

There are two types of 8080A subroutine CALL instruction: the RESTART (RST) and the CALL. The RST instruction is 
a orie-byte subroutine CALL with. the following obj,ect code: 

RST N instruction code: 111 XXX 11 
~ 

000 N =0 

001 N = 1 

010 N ';"2 

011 N = 3 
100 N =;,4 
101 N = 5 

110 N =6 

111 N = 7 

Now .,""<om· i 
Coun,ter .contents: 00'00000000 X X X 0 0 0·, 

Therefore RST n instructions are equivalent to subroutine CALL instructions. with program execution branching as 
follows: 

Subroutine 

RST 0 branch to 000016 
RST 1 branch to 0008 16 
RST 2 branch to001016 ' 

. RST 3 branch to 001816 ' 
RST 4 branch to 002016 
RST 5 branch to 0028 16 
RST 6 branch to 003016 
RST 7 branch to 003816 

,4-22 



Q 
w 

~ a: 
o 
a. 
a: 
o 
o 
~ 
en 
w 

~ 
(; 
o 
(I) 
(I) 
ct 
oil 
w 
z 
a: 
o 
CO 
(I) 
o 
:!: 
ct 
Q 
ct 

@ 

The CALL instruction is a typical three-byte, direct memory addressing subroutine'call: 

nnnn + 3 to Stack 

PC 

{ 

PROGRAM 
MEMORY 

CD 
qq 

pp 

nnnn-1 

nnnn ..-. Call subroutine 

nnnn + 1 } ~ubroutine execution address 

nnnn + 2 IS ppqq 

nnnn + 3 

nnnn + 4 

The address of ' the instruction following the subroutine call (nnnn+3) is saved on the Stack. to be retrieved subse­
quently by a Return instruction. The second and third CALL instruction object code bytes provide the address of the 
subroutine's first instruction; this address (ppqq) therefore is load~d into the Program Counter. 

What is not clearly understood by many 8080A users is that external logic can respond to an interrupt 
acknowledge by inserting either an RST or a subroutine CALL instruction. 

Responding to an interrupt acknowledge by inserting an RST instruction is very straightforward. The INTA status 
output during T2 can be used to select external logic as the source of an object code. while the lack of an MEMR status 
can be used, to suppress the normal instruction fetch which would occur from program memory. Thus. a simple 8-bit 
I/O buffer will generate a Restart instruction as follows: 

+5V 

Tie to +5V for 1. {---------1.--I 
Tie to GND for 0 

DO (lNTA) ____ ~."""""" INTA Strobe 

Any 

a-Bit 
Buffer 

SYNC .---------~ 

Connect to Data Bus 

With a little more effort, external logic can be designed to provide a subroutine CALL instruction's object code 
following the interrupt acknowledge. Providing the ,INTA status is used to suppress normal program memory ac­
cesses for the next three machine cycles. logic associated with the external interrupt request can supply the three con­
secutive object code bytes of a normal subroutine CALL instruction. 

In a.configuration that includes an 822!3 System Controller. if the first object code byte received following INTA output 
is a CALL (CD161. then the 8228 System Controller outputs two more INTA statuses for the next two machine cycles. 
Now external logic can use INTA as a signal which disables normal memory accesses. selecting external logic instead. 
For more details. see the 8228 System Controller description given later in this chapter. 

If your configuration does not include an 8228 System Controller. then external logic must be quite complex if it res­
ponds to an interrupt acknowledge with a CALL instruction. These are the operations external logic must perfo'rm: 

1) In response to INTA true. suppress normal memory references and transmit the code CD16 to the CPU. This code 
must be transmitted at the proper time. as an instruction code on the Data Bus. 

2) Suppress normal memory accesses for the next two clock periods. Remember. there is no INT A true for these two 
periods. 

3) During the next two clock periods. transmit the low order half. then the high order half of the interrupt service 
routine starting addre?s. These two address bytes must be provided out of external logic. and their timing on the 
Data Bus must conform exactly to th'e second and third bytes of a CALL instruction. 

4-23 



If your configuration includes an S259 Priority Interrupt Control Unit. then this device takes care of all logic associated 
with responding to an interrupt acknowledge with a CALL: the S259 is described later in this chapter. ,...--------t 
The NEC 8080A does not handle the INTA signal in the same way as the Inte18080A.ln NEC 8080A 
response to a Call instruction executed during an interrupt acknowledge. the NEC SOSOA out- INTERRUPT 
puts INTA true for three machine cycles: in an IntelSOSOA system an S22S System Controller ACKNOWLEDGE 
must be present for. this to occur. The NEC SOSOA DO status output also differs at this time: DIFFERENCES 
see Table 4-3 for details. 

The NEC S080A responds to Restart instructions following an interrupt acknowledge in the same way as the Intel 
80S0A. 

EXTERNAL INTERRUPTS DURING THE HALT STATE 
With all 8080A devices except the NEC 8080A, interrupt acknowledge logic during a 
Halt state is as illustrated in Figure 4-11. For the NEC 8080A,however, the interrupt 
acknowledge sequence differs slightly during the Halt state only. INTE is reset low by the 
NEC S080A on the rising edge of <1>2 in clock period T2:this is one clock period later than il­
lustrated in Figure 4-11. Note that this difference in NEC 8080Aresponse applies only to the 
interrupt acknowledge process occurring within a Halt state. 

WAIT AND HOLD CONDITIONS FOLLOWING 
AN INTERRUPT 

NEC 8080A 
EXTERNAL 
INTERRUPT 
DIFFERENCES 

An interrupt cannot be a'cknowledged during a WAIT or HOLD condition. However. either of these conditions may oc­
cur following the interrupt acknowledge. For example. if there is insufficient time between <1>1 in T2 and <1>2 in T2 for 
external logic to fetch the required RST or CALL instruction. more time may be acquired by using the READY signal to 
generate a Wait state. as with any instruction's execution. 

THE 8080A INSTRUCTION SET 

Table 4-4 summarizes the 8080A instruction set; there is.a significant departure in instruction set philosophy 
from the hypothetical microcomputer described in Volume I. 

The 8080A is most efficiently programmed by making extensive use of the Stack and of subroutines. By providing a 
variety of Jump-to-Subroutine on Condition. and Return-from-Subroutine on Condition instructions. the S080A allows 
the execution of subroutines to become an integral part of programmed logic sequences. 

Observe that the 8080A has a number of 16-bit instructions: that is. instructions that operate on the 16~bit contents of 
the BC. DE or HL registers. These include 16-bit increment and decrement. 16-bit add. and 16-bit data moves. 

The 16-bit instruction XTHL' is particularly useful. since by allowing the top two Stack bytes to be exchanged with the 
HL registers. an easy method is provided for switching addresses. 

The DAA instruction modifies the A register contents to generate a binary coded decimal equivalent of t~e original bin­
ary value. If carries out of bit 3 or bit 7 result. these are reported in the Auxiliary Carry and Carry statuses. respectively. 
See Volume I for a discussion of the decimal adjust operation. 

There are a few differences be.tween NEC 8080Aand Intel80BOAinstruction execution. 

For binary subtraction and BCD arithmetic the NEC 8080A performs operations in what is 
theoretically the "correct" fashion - which diffe.rs. from the actual implementation of the Intel 
8080A. Specifically. the NEC S080A has a SubtraCt status (SUB) which is set after any addition 
is pei'formep.:Only the NEC 8080A has a Subtract st~tus.' , ' 

NEe 8080A 
INSTRUCTION 
SET ~ 
DIFFERENCES 

The NEC 8080A correctly sets and resets the Auxiliary Carry status (AC) during subtract operations. identifying any 
borrow by the low order digit as follows: 

(f Borrow here sets AC 

,7 6 4 3 2 1 0... Bit No. 

X X X X X X X X 
-.Y Y Y Y Y Y Y Y 

Z, Z Z Z Z Z Z Z 

4-24 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
u 
~ 
en 
w 
l­
e( 

U o 
CI) 
CI) 
e( 

o/S 
w 
Z 
a: 
o 
III 
CI) 

o 
~ 
e( 
o 
e( 

@ 

X. Y and Z represent any binary digits. 

Decimal subtraction for the Intel 8080A and NEC 8080A may be illustrated as follows. assuming the contents of 
Register B are to be subtracted from the contents of Register C: 

INTEL 8080A NEC 8080A 
MVI A.99H MOV A.B 
SUB C SUB C 
ADD B DAA 
DAA 

In the instruction sequence illustrated above for the Inte18080A. you cannot use the Subtract instruction directly since 
it works for binary arithmetic only. You must create the nine's complement of the subtrahend by subtracting it from 99. 
Then you add the minuend to the nine's complement of the subtrahend. Finally you decimal adjust the result. 

In the case of the NEC 8080A you may use the Subtract instruction for either binary or BCD data. 

For a complete discussion of decimal subtraction using the Intel 8080A. see 8080 Programming for Logic Design. 
Chapter 7. 

The Carry and Auxiliary Carry statuses are also treated differently by the NEC and Intel 8080A. When Boolean 
instructions are executed by the Intel 8080A, the Carry status IC) is always reset; the Auxiliary Carry status 
lAC) is sometimes reset. The NEC 8080A leaves the Carry and Auxiliary Carry statuses alone when executing 
Boolean instructions. 

When the AMD 9080A executes Boolean instructions it always clears both the Carry and Auxiliary Carry 
statuses. 

THE BENCHMARK PROGRAM 
Our ben~hmark program is coded for the 8080A as follows: 

LHLD TABLE ;LOAD ADDRESS OF FIRST FREE TABLE BYTE IN HL 
LXI D.IOBUF ;LOAD STARTING ADDRESS OF 10BU'F IN DE 
LDA 10CNT ;LOAD I/O BUFFER LENGTH 
MOV B.A ;SAVE IN B 

LOOP LDAX D ;LOAD NEXT I/O BYTE 
INX D ;INCREMENT BUFFER ADDRESS 
MOV M.A ;STORE IN TABLE 
INX H ;INCREMENT TABLE ADDRESS 
DCR B ;DECREMENT BYTE COUNT 
JNZ LOOP ;RETURN FOR MORE BYTES 
SHLD TABLE ;AT END. RESTORE ADDRESS OF FIRST FREE TABLE BYTE 

The 8080A makes very few assumptions regarding the benchmark program. 

The address of the first free byte in the data table is assumed to be stored in the first two bytes of the data table - ad­
dressed by the label TABLE. The immediate addressing instruction LHLD loads the contents of the first two bytes of the 
data table into the Hand L registers. At the end of the program. the incremented table address is restored with the 
direct addressing instruction SHLD. 

Since the I/O buffer starting address does not change. an Immediate instruction is used to load this address into the DE 
registers. 

Since the number of occupied bytes in the 110 buffer may change. a direct addressing instruction. LDA. is used to load 
this buffer length into the Accumulator. It is then moved to the B register. since the Accumulator is used to transfer 
data within the program loop. 

The 8080A program makes no assumptions regarding the location of either the I/O buffer. or the data table. but it does 
assume that the table is not more than 256 bytes long. 

These are the abbreviations used in Table 4-4: 

A 

B 

C 

D 

E 

The Accumulator 

The B register} These are sometimes treated as a register pair 
The C register 

The D register} These are sometimes treated as a register pair 
The E register 

4-25 



H 
L 

C 

AC 
Z 
S 

P 
SUB 

12 

13 

PC 

SP 

PSW 

DATA 

The H register} This register pair provides the implied memory address 
The L register 

Carry status. In Table 4-4 C refers to Carry status. not to the C register. 

Auxiliary Carry status 

Zero status 

Sign status 

Parity status 

Subtract status (present in the NEC 8080A only) 

The Instruction register 

Second object code byte 

Third object code byte 

The Program Counter 

The Stack Pointer 

The Program Status Word. which has bits assigned to status flags as follows: 

7 6 5 4 3 2 1 0 .... _---- Bit No. 

I sIz ~x 1)(1 X I pix 1 c I 

T+~-04tt-~! ..... ---- Unassigned 

..... ---------SUB (NEe 80BOA only) 

8-bit immediate data 

DATA16 16-bit immediate data 

DEV An I/O device 

REG Register A. B. C. D. E. H or L 

s 
d 

M 
LABEL 

RP 

PORT 

ADDR 
[ ] 

[[ ]] 

n 

+ 

A 
V 

V-

Source register 

Destination register 

Memory. address implied by HL 

A 16-bit address. specifying an instruction label 

A register pair: B for BC. D for DE. H for HL. SP for Stack Pointer 

An I/O port. identified by a number between 0 and FF16 

A 16-bit address. specifying a data memory byte 

Contents of location identified within brackets 

Memory byte addressed by location identified within brackets 

Complement of the contents of 

Move data in direction of arrow 

Exchange contents of locations on either side of arrow 

Add 

Subtract 

AND 

OR 

XOR 

The letter C is used to identify Carry status. Although C also identifies one of the 8080A 
registers. registers are always referenced generically in Table 4-4. 

4-26 

8080A 
CARRY 
STATUS 
NOMENCLATURE 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 4-4. A Summary of 8080A/9080A Microcomputer Instruction Set 

STATUSES 
TYPE MNEMONIC OPERANO(S) BYTES OPERATION PERFqRMED 

C AC Z S P SUB' 

IN DEY 2 [A]-[DEV] 

g Input to A from device DEV (DEV = 0 to 255) 

OUT DEV 2 [DEV]-[A] 

Output from A to device DEV (DEV = 0 to 255) 

LDAX RP 1 [A]-[[RP)) 

load A using address implied by BC (RP = B) or DE (Rp = D) 
STAX RP 1 [[RP))-[A] 

w Store A using implied addressing as for LDAX u 
2 MOV REG,M 1 [REG]-[[ H,Ll] w 

>a: load any register using address implied by Hl 
a::f c(w MOV M,REG 1 [[ H,Ll]-[ REG] 
~a: Store any register using address implied by Hl -> a: a: lDA ADDR 3 [A]-[ADDRl. i.e., [A]-[[13, 12)) 0.. 0 
~ load A, use direct addressing w 

STA ADDR 3 [ADDR]-[Al. i.e., [[13, 12))-[A] ~ 

LHlD ADDR 3 

Store A. use direct addressing 
[l]-[ADDRl. [H]-[ADDR+ 11. i.e., [Li-[[13,12]l. [H]-[[I3, 12]+ 1] 

load Hand l registers, use direct addressing 

SHlD ADDR 3 [ADDR]-[Ll, [ADDR+ ll-[H] i.e., [[13,12))-[Ll. [[13,12]+ l]-[H] 
Store Hand l registers, ·use direct addressing 

- --

ADD M 1 X X ?C X X 0 [A]-[A] + [[H,l]] 

Add tp A 

ADC M 1 X. X X X X 0 [A]-[A] + UH,L)] + [C) 

Add with Carry to A 
w 

[A]-lA] - [[H,Ll] u SUB M 1 X X X X X 1 
2 Subtract from A w 
a: [A]-[A] - [[H,Li] - [C] w _ 

SBB M 1 X X X X X 1 u.w 
w~ Subtract from A with borrow a:c( 
>a: ANA M 1 0" ?w· X X X [A]-[A] I\. [H,l)) 
a: w 
00.. AND with A 
~o 

XRA M 1 0" Ot"" X X X [A]-[A]¥ [[H,L)) w> 
~~ Exclusive-OR with A 
>~ a:w ORA M 1 0" Ot"" X X X [A]-[A] V [[H,Ll] 
c(~ 
0-

O~ with A 
2 CMP M 1 X X X X X 1 [A] - [[ H,Ll1. Discard result but set flags. 
0 
u Compare with A w 
II) INR M 1 X" X X X 0 [[H,Ll]-[[H,Lll+ 1 

Increment memory 

DCR M 1 X·· X X X 1 [[H,L]]-[[H,l]]-l 

Decrement merr'ory 



Table 4-4. 'A S~m~ary of'SOSOA/90S0A Microcomputer Instruction Set (C~~tinued) , 

STATUSES 

TYPE MNEMONIC OPERAND(S) BYTES OPE~ATION PERFORMED 
C AC Z S P SUB" 

LXI RP,DATAI6 3 [RP]-DATAI6 

w 
Load 16-bit immediate data into BC (RP = B), DE (RP = Dt 

~ MVI M,DATA 2 HL (RP = H) ()( SP (RP = SP) 

is [[H,L]J-DATA 
w Load a-bit immediate data into memory location with address 
~, 

~ ,. implied by HL 

MVI REG,DATA 2 [ RE4]-DATA 

Load a-bit immediate data into any register 

JMP ADDR 3 [PC]-ADDR 
Q. Jump to instruction with label ADDA 
~ 

,:l PCHL I [PC]-[H,Ll 
:.., 

Jump to instruction at location implied by HL 

CALL ADDR 3 [[SPIJ-[PCl. [PC]-ADDR, [SP]-[SP]-2 

Jump to subroutine starting at ADDR 

CC ADDR 3 [[SP])-[PCl. [PC]-ADDR, [SP]-[SP]-2 

' .. Jump to subroutine if C = I 

CNC ADDR 3 [[SP]]-[PCl; [PC]-ADDR, [SP]-[SP]-2 

Jump to ,subroutine if C = 0 

CZ ADDR 3 [[SPJ]-[PCl. [PC]-ADDR, [SP]-[SP]-2 

; Jump to subroutine if Z= I 

Z CNZ ADDR 3 [[SPJ]-[PCl. [PC]-ADDR, [SP]-[SP]-2 
ce Jump to subroutine if Z= 0 :l"";' 
t:;~ CP ADDR 3 [[SP]]-[PCl. [PC]-ADDR, [SP]-[SP]-2 
ce~ Jump to subroutine if S = 0 o I-
Zen CM AD DR 3 [[SPJ]-[PCl. [PC]-ADDR, [SP]-[SP]-2 
<CO 
..J Z Jump to subroutine if S = I 
..J<C 

CPE ADDR 3 [[SP]]-[PCl. [PC]-ADDR, [SP]-[SP]-2' 
<CW 
(JI- Jump to subroutine if even parity 
w<C 

~ffi CPO ADDR 3 [[SP]]-[PCl. [~C]-ADDR, [SP]-[SP]-2 

:l~ Jump to subroutine if odd parity 
O~ RET I [PC]-[[SPJ],[SP]-[SP] + 2 ce_ 
ca- Return from subroutine 
:l 
en 

RC I [PC]-[[SP]l. [SP]-[SP] +2 
Return f~om ~ubroutin'e if C = 'I 

RNC 1 [PC]-'-[(SPJ], [SP]-[SP] + 2 

Return from subroutine if C ,;, 0 

RZ I [PC]-[[SP]l. [SP]-[SP] +2 

Return from subroutine if Z = I 
. RNZ I [PC]-[[SP]l. [SP]-[SP] +2 

Return from subroutine if Z = 0 

RM I [PC]-[[SP]l. [SP]-[SP]+2 

Return from subroutine if S = I 



© ADAM OSBORNE & ASSOCIATES, INCORPORATED 

fable 4-4~ A Summary of 8080A/9080A Microcomputer Instruction Set (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION' PERFORMED 

.:: AC z S P SUB' 

~~ 
Q 
w 

"'< :l 
-J- Z RP 1 [PC]~[[SP]l. [SP]-[SP]+2 
-JQ ~ 
"'w Z Return from subroutine if S = 0 
u::!: 0 

RPE 1 [pc]-[[SP)). [SP]-[SP]+2 w::!: 9 
z= 

~ Return from subroutine if even parity 
~ z u RPO 1 [PC]-[[SP)). [SP]-[SP] +2 :l cr 

"' o :l I- Return from subroutine if odd parity 1'1- C/) 

:l W Q 
C/) cr 

Z 

"' 
ADI DATA 2 X X X X X 0 [A]-[A] +.DATA 

Add immediate to A 

ACI DATA 2 X X X X X ·0 [A]-[A]+DATA+[C] 
W Add with carry immediate to A 
l- X [A]-[A]-DATA "' SUI DATA 2 X X X X 1 cr 
W Subtract immediate from A a. 
0 SBI DATA 2 X X X X X 1 [A]-[A]-DATA-[C] .-
W 

, 
I- Subtract immediate with borrow from A 

"' ANI DATA 2 0" a Xt X X X [A]-[A] A DATA 
W AND immediate with A 
::!: 
.~ 

XRI DATA 2 0" 0·· ~ X X [A]-[A]¥DATA 

exclUsive-OR imm~iate with A 

ORI DATA 2 0·· 0·· X X X [~]-~A] V. DATA 

OR immediate with A ' 

CPI DATA 2 X X x. X X Compare im~ate ~th A " 

J~ ADDR 3 [PCf-ADDR 

Jump if C = 1 

JNC ADDR 3 [PC]-ADDR 

Z 
JumpifC=O· 

0 JZ ADDR 3 [PC]-ADDR 
~ Jump if Z = 1 C 
Z JNZ ADDR 3 [PC]-ADDR 
O. 

Jump if Z =0 U 
Z JP ADDR 3 [PC]~ADD~ 
0 
a. Jump if S =0 
::!: JM ADD~ 3 [PC]-ADDR 
:l 
~ Jump if S"; 1. 

JPE ADDR 3 [PC]-ADDR -
Jump on even<parity 

JPO ADDR 3 [pC]-ADDR 
.. 

Jump· on odd parity 



~ 
I 

W 
o 

TYPE 

W 
> 
0 
~ 

" W 
a: 
6 
W 
a: 

a: 
W 

tn 
c:;~ 
~~ 
ffi~ 
tn o 
c:; 
W 
a: 

a: W 
WI-
1-", 
~ffi 
~~ 

MNEMONIC· OPERAND(S) 

MOV ds 

XCHG 

SPHL 

ADD REG 

ADC REG 

SUB REG 

SBB REG 

ANA REG 

XRA REG 

ORA REG 

eMP REG 

DAD RP 

INR REG 

OCR REG 

CMA 

OM 

RLC 

RRC 

Table 4-4. A Summary of 8080A/9080A Microcomputer Instruction Set (Continued) 

STATUSES 
BYTES OPERATION PERFORMED 

C AC Z S P SUB" 

1 [REG]-[REG] 

Move any register (5) to any register (d) 

1 [D]--[H1. [E]--[LJ 

Exchange DE with HL 

1 [SP]-[HLJ 

Transfer HL to SP 

1 X X X X X 0 [A]-[A]+ [REG] 

Add any register to A 

1 X X X X X 0 [A]-[A] + [REG] + [e) 

Add with Carry any register to A 

1 X X X X X 1 [A]-[A] - [REG] 

Subtract any register from A 

1 X X X X X 1 [A]-[A] - [REG] - [e) 

Subtract any register with borrow from A 

1 0" xt X X X [A]-[A] "[REG] 
AND any register with A . 

1 0·· at"" X X X [A]-[A]¥-[REG] 

Exclusive-OR any register with A 

1 0·· at"" X X X [A]-[A] v [REG] 

OR any register with A 

1 X· X X X X 1 [AI - [REG]. Discard result but set flags. 

Compare any register with A 

1 ·x 0 [H.LJ-[H.L]+ [RP] 

Add to HL 

1 X·· X X X 0 [REG]-[REG] + 1 

Increment any register 

1 X·· X X X 1 [REG]-[REG] - 1 

Decrement any register 

1 [A]-[A] 

Complement A 

1 X X·· X X X Decimal adjust A ;·O .. J I I I I I I I I iJ 
1 X Rotate A left with branch carry 

cOJ .. 1 I I I I I I I ~ 
1 X Rotate A right with branch carry 



TYPE MNEMONIC OPERAND(S) 

w 
I- RAL 
~ 0': ww 
11.;:) 
02 

ffii= 
I- Z 
(/)0 RAR 52 
w 

INX RP a:; 

DCX RP 

PUSH RP 

~ 
u POP RP 
~ 
I-
(/) 

XTHL 

I- EI 11. 
;:) a:_ 01 a: 
w 
I- RST N 
Z 

(/) STC 
;:) 
I-
~ CMC 
l-
(/) 

NOP 

HLT 

Statuses: C Carry 

Ac Carry out of bit 3 

Z Zero 

S Sign 

P Parity-

X Status set or reset 

0 Status reset 

- Status Set 

Blank Status unchanged 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

. . 
Table 4-4. A Summary of 8080A/9080AMicrocomputer Instruction Set (Continued) 

BYTES 
C AC 

1 X 

1 X 

1 

1 

1 

1 

1 

1 

1 

1 

1 1 

1 X 

1 

1 

STATUSES 

Z 
OPERATION PERFORMED 

S P SUB· 

LTI~- I I I I I I I I j:J 
Rotate A left with'carry 

li{j :-. I- I I I I I I I ~ 
_Rotate A right with carry 

[RP]-[ RP] + 1 

Increment RP. RP = BC. DE. HL or SP" 
'[RP]-[RP] - 1 

Decrement RP 

[[SP]]-[RPJ. [SP]-[SP] - 2 } 
Push RP contents onto stack RP = BC. DE. HL or PSW 

[RP]-[[SP]J. [SP]-[SP]+2 . 

Pop stack into RP 
[ H.Ll-- [[ SP]] 

Exchange HL with top of stack - . 

Enable interrupts 

Disable interrupts 

Restart at addresses S·N. N = 0 through 7. 

[C]-l 

Set Carry. 
[C]-[C] 

Complement Carry 

N? operation 

Halt 

• . SUB status is present in NEC 8080A only 
•.• NEC S080A does not modify these status flags 

t The AMD 9080A always-resets Ac to 0 for all Boolean instructions. The Intel 8085 sets Ac _to 1 for all AND 

instructions. and resets AC to 0 for all other Boolean instructions. 



Table 4-5. A ,Summary of Instruction Object Codes 
and Execution Cycles 

f 
CLOCK 

INSTRUCTION OBJECT CODE BYTES PERIODS FIGURE 
,~~ . 

LXI RP,DATA16 OOXXOOOI 3 10 4-22 

f ~~ t. YYYY 

MOV REG,REG 01dddsss 1 " 5(4)" 4-13 

MOV M:F~EG ' 01110sss 1 7 4-16 

MOV .REG,M 01dddl10 1 7 4-15 ' 

MVI REG,DATA OOdddll0 2 7 4-15 
YY 

MVI M,DATA 36, YY 2 10 4-14 

NOP 00 1 4 4-12 

ORA REG 10110XXX 'I 4 4-12 

ORA M B6 1 7 4-15 

ORI' DATA F6 YY 2 7 4-15 

OUT PORT 03 
\ 
YY 2 10 4-29 

PCHL E9 1 5 4-13 
pOP RP llXXOOOl 1 10 4-19 

PUSH RP l1XX010l 1 11 4-18 

RAL 17 1 4 4-12 

RAR IF 1 4 4-12 

RC 08 1 5/11 4-27 

RET C9 1 10(11t" 4-19 

RLc 07 1 4 4-12 

RM F8 1 5/11 4-27 

RNC DO 1 5/11 4-27 

RNZ CO 1 5/11 4-27 

RP FO 1 5/11 4-27 

RPE E8 1 5/11 4-27 

RPO EO 1 5/11 4-27 

RRC OF 1 4 4-12 

RST N l1XXXll1 1 11 4-18 

RZ C8 1 5/11 4-27 

SBB REG l00IIXXX 1 4 4-12 

SBB M 9E 1 7 4-15 

SBI, DATA DE YY 2 7 4-15 

SHLD ADDR 22 .ppqq 3 16 4-25 

SPHL F9 1 '5(4)" 4-13 

STA ADDR 32 PPqq 3 13 4-23 

STAX RP OOOX0010 1 7 4-16 

STC 37 . 1 4 4-12 

SUB REG l0010XXX 1 4 4-12 

SUB M 96 1 7 4-15 

SUI DATA 06 YY 2 7 4-15 

XCHG EB 4 4-12 

XRA REG 10101XXX 1 4 4-12 

XRA M AE 1 7 4-15 

XRI DATA EE YY 2 7 4-15 

XTHL, E3 1· 18(17)" 4-21 

ppqq represents four hexadecimal digit memory address 

YY represents two hexadecimal data digits 

YYYY represents four hexadecimal data digits 

X . represents an optional binary digit 

ddd ' represents optiMal binary digits identifying a destination register 

sss , represents optional binary digits identifying a source register 

* The NEC 8080A has five instructions with unique execution times, defined above by 

:'(N)* where N is the number of NEC 8080A instruction cycles. 

4-32 

INSTRUCTION' OBJECT CODE 

Aci DATA CE yy 

'ADC REG l0001XXX 

ADC M 8E 

ADD REG l0000XXX 

ADD M 86 

ADI DATA C6 yy 

ANA REG 10100XXX 

ANA M A6 

ANI DATA E6 yy 

CALL LABEL CD ppqq 

CC LABEL DC ppqq 

CM LABEL FC ppqq 

CMA 2F 

CMC 3F 

CMP REG 10111XXX 

CMP M BE 

CNC LABEL 04 ppqq 

CNZ LABEL C4 PP<1q 
CP LABEL F4 ppqq 

CPE LABEL EC ppqq 

CPI DATA FE yy 

CPO LABEL E4 ppqq 

CZ LABEL CC ppqq 

DAA 27 

DAD RP OOXX100l 

OCR REG OOXXX101 

DCR M 35 

DCX RP OOXX1011 

01 F3 

EI FB 

HLT 76 

IN PORT DB YY 

INR REG OOXXX100 

INR M 34 

INX RP OOXXOOll 

JC LABEL DA ppqq 

JM LABEL FA ppqq 

JMP LABEL C3 ppqq 

JNC LABEL 02 ppqq 

JNZ LABEL C2 ppqq 

JP LABEL F2 ppqq 

JPE LABEL EA ppqq 

JPO LABEL E2 ppqq 

JZ LABEL CA ppqq 

LOA ADDR 3A ppqq 

LOAX RP OOOX1010 

LHLO ADDR 2A ppqq 

CLOCK 
BYTES PERIODS FIGURE 

2 7 4-15 

1 4 4-12 

1 7 4-15 

1 4 4-12 

1 7 4-15 

2 7 4-15 

1 4 4-12 

1 7 4-15 

2 7 4-15 

3 17 4-26 

• 3 11/17 4-~6 

3 11/17 4-26 

1 4 4-12 

1 4 4-12 

1 4 4-12 

1 7 4-15 

3 11/17 4-26 

3 11/17 4-26 

3 11/17 4-26 

3 11/17 4-26 

2 7 4-15 

3 11/17 4-26 

3 11/17 4-26 

1 4 4-12 

1 10(11)* 4-20 

1 5 4-13 

1 10 4-14 

1 5 4-13 

1 4 4-12 

1 4 4-12 

1 7 4-30 

2 10 4-28 

1 5 4-13 

1 10 4-14 

1 5 4-13 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 10 4-22 

3 13 4-24 

1 '7 4-15 

3 16 4-17 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
o 
~ 
en 
w 
I­
et 
(; 
o 
CJ) 
CJ) 

et 
ell 
w 
Z 
a: 
o 
en 
CJ) 

o 
:!: 
et c 
et 

© 

INSTRUCTION EXECUTION TIMES AND CODES 
Table 4-5 lists instructions in alphabetic order, showing object codes and execution times, expressed as 
machine cycles. 

Where two instruction cycles are shown, the first is for "condition not met" whereas the second is for "condi­
tion met". 

Detailed timing for instructions is provided by Figures 4-12 through 4-30. Table 4-5 identifies the timing diagram that 
applies to each instruction. 

Instruction object codes are represented as two hexadecimal digits for instructions without variations. 

Instruction object codes are represented as eight binary digits for instructions with variations; the binary digit 
representation of. variations is then identifiable. 

The NEC 8080A has four instructions with execution times that differ from the Intel 
8080A. These four instructions are the Register Move (MOVi. the Return (RET). the 16-bit Add 
(DAD). and the Exchange instructions XTHL and SPHL. 

T1 

<1>1 

<1>2 

SYNC 

READY f\. 

WAIT f\. 
DSIN 

W~ F\. 
Ai 

Di 

I nstruction Fetch 

MC1 

T2 

RI/WO 
MI 
MEMR 

T3 

Instruction 
Execute 

Figure 4-12. Signal Sequences and Timing for Instructions: 
STC, CMC, CMA. Nap, RLC, RRC, RAL. RAR. XCHG, EI. 

DI. DAA, ADD R, ADC R, SUB R, SSB R, ANA R, XRA R, ORA R, CMP R 

4-33 

NEC 8080A 
INSTRUCTION 
EXECUTION 
TIME 
DIFFERENCES 



I Instruction . I nstruction Fetch Execute 

. . 
MCI 

Tl T2 Tj T4 TS 

11>1 
n t<l\ n "'.' n h h-

~ '5; -'1 ~ I \'\ '" 

I , 
I J 

Il 1 
J. \\ '/ Y 

SYNC 

. READY F\. 

WAIT F\. 

\\ I 

~ \ \ I 
-1 Instruction Address 

--' 
1\ , 

'Ai 

Di l Status IData in Stable I 

I "MQ I,Lt;o, MI 
MEMA Code 

Figure 4-13. Signal Sequences and Timing for Instructions: 
INR. OCR. MOV REG REG. SPHL. PCHL. DCX. INX 

. .1 Instruction 
. ~lnstructlon Fetch.----.. E.ecute Oltl Read Data Write 

SYNC 

READY J\ 
WAIT J\ 

Ai 

Oi 

MCI MC2 M:3 

Tl T2 T3 T4 Tl T2' T3 Tl T2 T3 

h--It<i1L---h--h--""----~L-.. rL-rL-~L-f= +-~~ + T ~ ~~ ~ ~ ~t:)L ~. If Y\ 1'1 If ~ Y'\ 
I I \ 

J / 
Il 1 

~ "., .J 
/ '/ \' [ 

\\ \ I \\ II ./ 
~I / ~ \\ 

\ Innruction Address \ Oat. Addr ... \I Dlte Add' ... , , I\, .... , \ 
I Sillul 10 .... n SIIbI'J I StltUI 1011l,nSllbl'1 1 Stlt"" I OIf.outSt.bl, 

A1/WO 

I nttruttion 
RI/WO All 

M, 
MEMR Low 

MEMA 
Code 

Figure 4-14. Signal Sequences and Timing for Instructions: 
OCR. INR. MVI M 

4-34 

~ 
J 
~ 

I 



Q 
w 

~ 
a: 
0 c.. 
a: 
0 
0 
~ 
u) 
W 
I-
ct 
U 
0 
CI) 
CI) 

ct 
0/1 
w 
z 
a: 
0 
aI 
CI) 

0 

~ 
ct 
Q 
ct 
@ 

-I Instruction Data Read Instruction Fetch_ E t xecu e r 

MCl MC2 

Tl T2 TJ T4 Tl T2 TJ 

'1'1 V"L-~ V"L-f"L-f"L-~IL-~ 
~ ~ -\(---t;:-~ '~' \ f-P. !f \' . YI 

I / 

./ I / 
It 1 ~ / 

'J Y I 1\ L-
\\ I II 

~I \ ! ~I \ Instruction Address \ Data Address 

1\ \ '\ '. I 

'1'2 

SYNC 

READY 11 
WAIT 11 

DBIN 

"WAF\. 
Ai 

Di Y Status yoataIn $talJ'el I Status IData In Stable} 

[ AI/WO 

[ILuction 
[IAI/wa I MI MEMA MEMA 

Code 

Figure 4-15. Signal Sequences and Timing for Instructions: 
LDAX, MOV REG M. ADI. ACI, SUI.SBI. ANI. XRI. ORI.CPI. MVI R, ADD M, 

ADC M, SUB M, SBB M, ANA M, XRA M. ORA M, CMP M 

Instruction Fetch . Instruction 
D~ta Write Execute 

Mel MC2 

Tl T2 TJ 1'4 Tl T:z . T3 

f\ ~ n h h .~ 

~ ~ ~ ~ T SYNC 

READY J\ 
WAIT f\ 

DBIN 

Ai 

Di 

~ 

l\ 

\\ 
I 

Y 

\-~ 
- 1\ "\ IT \" 

I \ 

I / \ . 

Il 1 / / '/ ~ I 
I 1\ V ft-./ \\ \ \ 

\ Instruction Address I Dala Adt1rl!'\\ 

~ '. I 

I 

~ I t 
Stalus [Data In Slab'el I Status I Oa'. out SUhl1!' 1 

IAI/WO 

I f 
I All . I MI Low 

MEMR 

Figure 4-16. Signal Sequences and Timing for Instructions: 
STAX,.MOV M REG 

4-35 



:1,n'''"C"on _-lnstruct,onFetch--EKe::ute Data Read Data Read Data Read Oata Read 

MC' MC2 M:3 MC4 MC5 

T, T2 T3 T4 T, T2 T3 T, T2 T3 T, T2 T3 T, T2 TJ. 

SYNC 

fL--

~ rt--
fL--rL-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

~ K'-T ~ ~ ~ ~ t:)L ~ rC= t:)L K-~ ~ ~ P 1'1 Y Y 
/ I J \ I \ 

i / / ) / ) / } 

~ "- / 
~ /\ .I 

~ 1\ / 
~ 1\ / 

L ., I'. r L....:... 
\\ , \\ I 

READY I\ 
WAIT .J\ 

DBIN 

\\ .I 

\~ \~·t ~~t ~~ Instruction Address y Data Addre~'i -OataAddress 

'. 

""~1;, "·'·~T .. "~~. 
AI'WO . RlWO RI/WO AI/WO 
MEMR MEMR MEMR MEMR 

Instruction 
Corle 

Figure 4-17. Signal Sequences and Timing for Instructions: 
LHLD 

I· Instruction 
Instruction Fetch Execute DataWrlte Data Write 

MCI MC2 WC3 

Tl T2 T3 T4 TS Tl T2 T3 Tl T2 T3 

<1>1 V"L-~ rL-T\ rL-tL-~\ 

W-rt-.-~\ 

~ 
~ 

<1>2 ~ ~ ¥ -fL 1:- 2)L ~ T ~. I \~ \ 
SYNC r-p n 

L \ \ 
READY J\ L \ 

WAIT J\ 
l 1 I \ / / 

DBIN 
'/ \' I 

\\ I \ V \' .\ V ~ 'WRf\ 

~i / \\ \\ 
Ai \ Instruction Address \ I Data Ac1drlPn \ I Data Address , ~ I , 

# t I , f t I 
Di I Status 10ata In Stablel I Slatus I Data oul Stahle I Status I Data oul Stable I I RI/WO I~truction Stack 

I 
I Stack MI RI/W?:> Low RI/WO Low 

MEMR Code 

Figure 4-18. Signal Sequences and Timing for Instructions: 
PUSH. RST 



· © ADAM OSBORNE & ASSOCIATES. INCORPORATED 

I Instruction 
I nstruction Fetch Execute Data Read Data Read 

MCI MC2 MC3 

Tl T2 T3 T4 T5 Tl T2 T3 Tl T2 T3 

4>1 
h ~ h h h h ~~ h h ~~ h 

4>2 

SYNC 

~ 
READY F\. CAl 

'-l 

WAIT f\ 
DBIN 

~ 
.fL ~ ~ ~ re-liT ~ ~~ \ 

1 7 / 

I / / I / I 
Il 1 I1\, 7 ) "- / 

'/ ~ J -y "Y L-
\\ 7 1\ 1\ 

Wrif\ 
Ai ~I \ \ I \\ ~ \ 

\ Instruction Address y \ Data Address y \ Data Address 

1\ , 1 ['\:\ I\, \ I 
Di Y Status ¥oata In Stablel I Status (Data ,n Stabl;J" I Status IOata In Stable I 

I'''"' 1 ,"t.~'HO" 1''''0 1 1''''0 1 MI MEMR MEMR MEMR Code STACK STACK 

Figure 4-19. Signal Sequences and Timing for Instructions: 
POP. RET 



, I nstruction Fetch 
Instruction 

I nstruction Execute Instruction Execute Execute 

MCl MC2 MC3 

Tl T2 T3 T4 Tl T2 T3 Tl T2 T3 

(1'1 h ~ h n h h h h n n 
<1'2 p-"1\ - r-'" - - .JL 

i SYNC r \[ 
J 

READY J\ I J 
WAIT 1\ 

It 1 
DBIN 

\\ 'J t 1 
\\ I 

WrfJ\ 

~i \ / 
Ai \ Instruction Address 

I' _, I 
Di I Status yoata In Stab If> I 

AI WO I MI 
MEMA 

Instruction 
Code 

Figure 4-20. Signal Sequences and Timing for Instructions: 
DAD 

_-ln~t.ur.llonFt'tch __ ·I"~\~~~~t,'~n _ OillaRead D ... ,W •• " ----j - - -
Data ReiICI O ... "W"'1' InstrUctlOnE .. ecule 

Mel Me, MC3 MC4 MeS 

TI T, T3 T, T, T, T3 T, T, T3 T, r, T3 T, T, T3 T4 TS 

<1>, V'L-

~ 
~ h--~ 

~ 
~ ~ 

~ rL-r-L.- 1"---~CL-~ ~ 
~ (L.. 

~', ~ H'-~ ~ + ~ rr If~ t)'- If~ ~r- WL---
SYNC 

., ., \':. "1 y ., 
READY J\ ! / I / ) I 

\ 1 WAlT 1\ 
DBIN fir-- ----t ~ ty ""t t fy -y i 

w-J\ \\ \ / 

~~f ~~~t 
\\ L- '\\ L--fY I) 

A. In<;lruCllonAddress 1l~'.1 A' ..... " n .. uA ........ 

F1;,1 
, f 

D. ." .... \ 0 ••• ,,·,'<;, .... • .. .. ..... , n ........ <;, ....... 

FlIWO I~' wo '" IR'~'"'' InS"uellon STACIC 

Cm1e 

Figure 4-21. Signal Sequences and Timing for Instructions: 
XTHL 



. © ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Instruction Fetch 
Instruction 

. Data Rud Data Read Execute 

MCI MC2 MC3 

Tl T2 T3 '- T4 Tl T2 T3 Tl T2 T3 

<1>1 
fl ~ h h -h ~ h fl ,(~ h 

<1>2 ~ 6:"'\ ~ J\L 
~~' 

~ 

~\ ~. ~ \ ~ ~ If II 0 YJ' 
SYNC ---, I 7 

READY f\ I OJ I / I I 
WAIT J\ A J 

-/\ J fy I f\, / 
'[ . \' -y L-qBIN \\ I 1\ [\ 

WRV 
~~ \ \ / \\ \\ \ 

Ai \ Instruction Address I \ Data Address ,-y \ Data Address 

.1\ , I- I\, " 
, 

I'- " 
Di Y Status YOata in Stable I I Status IData '" Stabl;;J 1 Status IData '" Stable I 

RIlWo + RIIWO RIIWO 
MI Instruction 

MEMR MEMR MEMR CooP 

Figure 4-22. Signal Sequences and Timing for Instructions: 
. . LXI JMP JNZ JZ JNC JC JPO JPE JP JM 

,-!Instruction ...--Instructlon Fetch E t xecu e r------Instruction Fetch Instruction Fetch OataWnte 

MCI MC2 MC3 MC4 

Tl T2 T3 T4 Tl T2 T3 Tl T2 T3 Tl T2 T3 

<1>1 V"L-L-h--V"L-h--~ h--h-- L-h--h-- L-

hn= ~ <1>2 ~ P\L KL ~ ~ ~ ~ ~ t:)L ~ ~ ~ SYNC P " V\ YI '''I y\ , / I 7 \ \ 
READY f1. I / / II \ 

WAIT f\ '\ 
Il \ "- / \ fy 7 

I ~ '/ \' "I Y' 'Y 
DBIN 

II I 1\ I \\ i\ I 
WFiV 

~J I ~ 
\ \\ 1\ IY 

Ai \ Instruction Address \ InsuuctlOl'l Address \ J \ Inltructlon Address \-V- O.UI Address 

\ 

",,".,~ I" " I , 
I\, " I , I / 

Di 'i I Status IDatotmSlab't'1 r Status fData In Stabl:Y T Stalus 1 Oala out Slable I 
~','Wo t RI/WO 

l!strucllOn 

AI/WO T flO MEMR InstructIOn MEMR MEMR 
Low 

Instruction 
Code Code Code 

Figure 4-23. Signal Sequences and Timing for Instructions: 
STA 



'. -I Instruction . ...-Instructlon Fetch-_ Execute ......---Instructlon Fetch Instruction Fetch Data Read 

MCl MC2 MC3 MC4 

Tl T2 T3 T4 Tl T2 T3 Tl T2 T3 Tl T2 T3 

"--
~ . 

iL--~ f"L-.:.... ~ ~ fL-rL-~ rL-"--~~ "--

SYNC 

READY f\ 
WAIT f\ 

~ 
f1 ~ + T ~ ~ r-T ~ tr ~ -c= ~ T 11 '( J 

I / / L 

I L I / / 
DBIN 

WR V 

Il 1 1 /'''1 / 
~ I\. / 

~ 1\ / 
J ~ f "I f ., L-

\ \\ I \\ I \ \ J \\ 
, \\ / ~\ \ \\ \ \\ \ 

I \ Instruction Address \ Instruction Address \ y \ Instruction Address \ I .\ DataAddress 

\ , 
I\, ". 

'" \. "- I " Statu5~"'~ J Status yoatalnStablel I Status IOatamStablel I Status IDatalnStablel I 
, AI/WO 

"Luetlon 
IRIIWO I,Luct>On IRIIWO 

"Luct,on 1~lIwO 
I 

MI 
MEMR MEMR MEMR MEMA 

Code Code Code 

Ai 

Di 

figure 4-24. Signal Sequences and Timing for Instructions: 
LOA 

l-'O"'",<>OOF"'h-l'~:~~~','~O ~Da'aAead Oala Read DataW"le DataWrlte_ 

Mel Me2 Me3 Me. Mes 

TI T2 T3 T. Tt' T2 T3 Tt T2 T3 Tt T, T3 Tt T, T3 

~ ~ 
rL-~ ~ ~ h--r.-

~ n--n--~ PN ~ :L--s;n= ~ ~ ~ K-~ K'-= ~ ~ ~ ::r- ~ t:)L 
.p L1 _'I \" ~ \': 'f \' 'f \" 

READY.f\. 

WAIT J\. I / j / j ( I 
fir-H ~ IY ~ ty -! / \ / -V ~ 

J \ J ~ \\ \ / 
\\ \ 0" • .0'" .. 

\ \ \ \\ ~ \\ '-------' 

InstructIOn Address \ D",Ad"", n .. ,~ A I .... " (Jd'.A.'.'· .... 

~~I '~~T' 
\ \ ~ 

S1aTuI Oala,nSTabtl' s,.t". 0.·."",5 .. ','" S,~, ., 0.,. ""'S,.,, ... 

:::~MR ~:~uctlon ·I,""WG I 1'°" I I···· I MEMA MEMR 

Figure 4-25. Signal Sequences and Timing for Instructions: 
SHLO 



<1>, 

READY f\ 
WAIT f\ 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

_'n"'",I"'nF'''"~ 
~~~:t'~~::~ ~:~;'-

Instruction
Execute -OalaRl!ad OalaRI!<Jd 0 .• 1 •• ~\ .. I" D.'I .• ~\·.I .. _

MC' MC2 MC3 MC_ MC.

-- - -
T, T2 T3 T4 T. T, T2 T3 T, T2 T3 T, T, '.I " " "

f\--~ ~ /L-'rL-"---- tL-"----~ ~ "----"----
I~ W ~ 1'--

~ ~ ~ ~ ~ WL-t;= ~ ~ ~ -=t ~ t1'- ~ t1'-
.p IT \' 'f ~ "f \" "f \"

I /) ! 1))

'1,----- ----t ~ I t'l ~ (\, J \ / / l'
/ -I I-

\\ / ~ \ \ 0,' \\ \ D",AM',,,
\\ '-------' \\ ~

Instruction"''''''''' II .. ' .. A.,· I , ~

fT'i FI 'rt , I ,

'i II ••• . ~.I '. " , II

Mr InstructIOn
RII O R,WO

I·'~'-I I·'~'-I MUlA Code

Figure 4-26. Signal Sequences and Timing for Instructions:
CALL. CNZ. CZ. CNC. CC. CPO. CPE. CPo CM

If Condition Test Fails.

I
Instruction Ends Here~

Instruction . Instruction Fetch Execute Data Read Data Read

MCI MC2 MC3

Tl T2 T3 T4 T5 Tl T2 T3 Tl T2 T3

<1>1 ~ ~ h In ~ ~ 1oc1L--~ h....-~IL--h....-
<1>2

SYNC
f"

READY A
~
N

WAlTA

DBIN

~ ~ T lJL ~ I/~ ~ ~ ~~ f ~ IT Y 11 YI
. I 7 7

I I / I ./ I··
1\ J

'"
7

~. " I
'/ \' I "'I y. 'Y L-

\\ I 1\ 1\
VlRA

Ai ~I 7 \\ \\
\ Instruction Address l \ Data Address ,-y \ Data Address

~ I~ , I I\, " " I "
Di '{ Status . YOau,nStab,eI I Status . IOatamStablel -y Status JOata In Stabl;}

I RI/WO
llntruction IRIiWo

'"
/RIiWo

I
MI MEMR MEMR
MEMR Code STACK STACK

Figure 4-27. Signal Sequences and Timing for Instructions:
RNL RL RNC. R~ RPO.RP~ RP. RM

© ADAM OSBORNE & ASSOCIATES,INCORPORATED

. I nstruction Fetch
,J Instruction

Execute Data Read Data Read

MCl MC2 MC3

Tl T2 T3 T4 Tl T2 T3 Tl T2 T3

<1>1
fl .r<i\ (\ 'r\ h fC?\ n (\ ,«;\ n

<1>2

SYNC -; c;(\

~ ~ T I \~' \ -At \ ~ 1 '"~
J L I

READY f\
~
I

WAIT 11. ~ w

DBIN

I / I /
It 1 / 1\'1 / ~ /

1\ '/ Y I r L-
\\ .' f \ 1\

"WRF\
Ai ~i \ \ / 1\ \\

\ Instruction Address y \ Data Address I \ Data Address

1\ , I ~". I" "- I
Oi t Status YOata In Stable I I Status IOata in StableI' I Status IOatainStablel

RI/Wo t RI/WO RIIWO
M. MEMR INP
MEMR

Instruction
Code

Figure 4-28. Signal Sequences and Timing for Instructions:
IN

. Instruction Fetch • I I nstruct ion
Execute Data Read Data Wrote

Me, MC2 rIIC3

T, T2 T3 T4 T, T2 T3 T, T2 T3

4>,

4>2

SYNC

~ READY J\
.b.
~

WAIT J\
DBIN

WR J\
Ai

n ~ f\ n h ,<~ h h ~ f\ ~

~ ~ v- ~ \ \
\~ \-~ ~

-
'\ rP· If y\

I \ / \ \

/ . I I \

It 1 I ~- / J l\] t I f
\\ I l\ \ j ,J-
~j / \ 1\ X

\ \
\ Instruction Address' I \ Data Address I Oafa Ad(hE'\\

\ , I '\ '. # ~

Di r Status yoata In Stable I I Status IOata in Stablel- I S1a1u\ I Oafa oul Stahle l
RI/Wo t RIfWO out
MI MEMR MEMR

Instruction
Code

Figure 4-29. Signal Sequences and Timing for Instructions:
OUT

. © ADAM OSBORNE & ASSOCIATES,INCORPORATED

.\1 nstruction
Initiate Halt I H Instruction Fetch~ E

. xecute
AL T ------t. ____ Interrupt Terminates Halt

MC1 MC2 MC1

T1 T2 T3 T4 T1 T2 TW

4>1

4>2

SYNC

READY f\.
~

WAIT f\. ."..
U1

OBIN

h--~ rL-h--rL-~\ ~ h-
~ -r K'-r1- ~ ~ Lr #-W Ii '(I(Il" \

T)
I ~ I ...

""- /
~

II 1 \ ~ '/ \' I
\\ I \ \

"WAf\.
Ai ~Y -; \ '\ Instruction Address

i\ f' ,
Di Y Status YData In S'ab'f'I I Status

AI Wo • AI WO

MI Instruction HI TA

INT f\.
MEMR Code

INTE J\

Figure 4-30. Signal Sequences~and Timing for Instructions:
. HLT

SUPPORT DEVICES THAT MAY BE USED
, WITH THE 8080A

Of the microprocessors described in this book, none have a wider variety of support devices than the 8080A.
These support devices are described in the rest of Chapter 4 and in Volume III. Most of the devices described
were originally developed by Intel, although a few were not. Note that the 8224 C lock Generator and the 8228
System Controller devices are used so routinely with the 8080A that they frequently are looked upon as a three-chip
CPU. An exception to this three-chip concept is the TMS 5501 made by Texaslnstruments; it cannot be used with an
8228 System Controller.

A number of general-purpose support devices are described in Volume III. These are support devices that may be used
with any microprocessor and are specific to none.

One generalization that can be maderegarding 8080A support devices is that the 8080A is so well endowed with sup­
port logic that it will rarely make m~ch sens:e to use another micro'processor's support part in preference.

It is very difficult to use 6800 support devices with the 8080A because 6800 support devices require a synchronizing
strobe signal which is difficult to generate within an.8080A system.

. THE 8224 CLOCK GENERATOR AND DRIVER

The primary purpose of this device is to provide the 8080A CPU with its required <1>1 and <1>2 clock signals. Coin­
cidentally, the 8080A READY and RESET inputs are created, with correct synchronization. Recall that these two
signals must be ~ynchronized with <1>2. '

Logic implemented on the 8224 Clock Generator corresponds generally to the block labeled "Clock Logic" in
Figure 4-1. To be completely accurate, however, a small portion of the Bus Interface Logic should also be illustr­
ated as provided by the 8224 device.

" '

8224 CLOCK GENERATOR PINS AND SIGNALS
8224 pins and signals pre illustrated in Figure 4-31. Figure 4-33 illustrates the 8224 connected to an 8080A
CPU and an' 8228 System Controller.

Signals may be divided between tilTling logic and control logic.
, I . I

Clock frequency is controlled by a crystal connected to the XT AL 1 and XT AL2 pins. Crystal,
frequency must be exactly nine times' the required clock frequency. The fastest clock period
supported today is 250 nanoseconds, provided by the AMD 9080A. 500 nanosecond clock

8224
CLOCK
SIGNALS

periods are standard. Since crystal frequency has to be nine times the clock frequency, the usual, ... _--..
500 nanosecond clock will require an 18 MHz frequency crystal.

If an overtone mode crystal is employed, then it must be supported by an external LC network, connected to
the TANK input. This is standard'clock logic practice; microprocessor clock logic represents no special case, therefore
we will not discuss overtone· mode crystals further. '

4-46

c
~,
ct
a: o
D.
a:
o
o
~
ui w
~ g
UJ
UJ
ct
IllS
w
Z
a:
o
a:J
UJ o
::!:
ct c
ct
@

RESET

RESiN
RDYIN

READY
SYNC

1112 (TIL)

STS'i'B
GND

PIN NAME

RESET

ReSiN
RDYIN
READY

SYNC
1112 (TTL)

STSTB

.. -
-
--

XT AL l,XTAL2
TANK
OSC
1111, 1112

VCC,VDD,GND

---.. -

1 16
2 15

-. -
3 14 --
4 13 --8224 -
5 12
6 11

7 - 10
8 9

DESCRIPTION

Control signal output to 8080A
Reset logic input
Ready logic input

Control signal output to 8080A
Control signal input from 8080A
TTL level duplicate of 1112
Sync signal output to 8228-

External crystal connections
Overtone crystal extra input
Crystal oscillator waveform
Clock signals to 8080A
Power and Ground

.. -.. ----

VCC
XTALl

XTAL2
TANK

OSC
1111
1112

VDD

TYPE

Output
Input
Input
Output

Input
Output
Output
Input
Input

Output
Output

Figure 4-31. 8224 Clock Generator Signals and Pin Assignments

The principal clock-signals output are <1>1 and <1>2, as required by the 8080A CPU.-These tyvo clock signals are
derived from a divide-by-nine counter that defines <1>1 and <1>2 as follows:

I I 2 3 .. 5 6 7 8 9

I
<1>1 ---1- I

~ I I 1 I I I
I I I
I , 1112

I
,

I
I I I I I
I' - I-

Two additional timing ?ignals are output:

The crystal oscillator frequency is output as OSC.

A TTL level duplicate of <1>2 is also output for general use within the microcomputer systen:t.

The RESET input signal required by the 8080A CPU is usually generated by special external logic to provide
sharp signal edges and synchronization with the <1>2 clock pulse. Consider one common use of RESET - to detect
power failure. A vague input may have to be converted into a crisp RESET as follows:

Threshold

Input (RESIN) ::::::::::-::-::-:-:::,~~~~~~.g~~_.;... __ _._I./~ __ ~ __ ;._=.:_:.;_:.:_:.

1112

RESET

4-47

. The 8224 Clock Generator will accept a sloppy input, as illustrated above by RES I N, and in response will create
a sharp RESET output that conforms to the requirements of the 8080A CPU. A Schmitt trigger within the logic of
the ~224 clock chip creates the appropriate reset logic level change when RESIN falls below a threshold level.

RESET is also frequently connected to manually operated switches; this allows the microcomputer system to be reset
by human intervention. The following simple circuit creates the appropriate RESIN input to the 8224 Clock Generator
so that either power failure oran external switch may reset the CPU: '

Vee (Power fail detect source)

~--------~--------------------------RESIN

- -- -
. READY logic accepts an asynchronous RDYIN signal and creates a synchronous READY input to the 8080A
'CPU: ' ,

RO:: J_----(~~~. _fL_: .. ry==
READY ~ Y

One further signal created by the 8224 Clock Generator is the status strobe signal STSTB, which is required by
the 8228 System Controller. This signal is of very little interest toa user since it simply accepts an 8080A SYNC out­
put and converts it into the required 8228 STSTB input.

When comparing the 8080A microcomputer system with other devices, it would be inaccurate to dismiss the
822~ Clock Generator simply as an additional device - which must be added to an 8080A system, supplying
logic which is commonly found on competing CPU chips. Do not forget the reset logic capability provided by the
8224 Clock Generator, "

it can be argued that the 8080A CPU creates an artificial restriction - that RESET and READY inputs must. be syn­
chronized with <1>2; therefore the fact that the 8224 does this for you. simply eliminates a self imposed problem that
should never have been 'there in the first place, This reasoning has merit. but the ability' of the 8224 to receive a ragged
RESIN input is a valuable feature that should not be overlooked, . " ..'.,'

THE 8228 AN~ 8238 SYSTEM CONTROL~'ER AND BUS DRIVER

The 8228 System Controller consists of a bidirectional bus driver, plus control signal generation logic. The 8238
Sy~temControlier advances IIOW and MEMW to give large me'mories mo~e time 'to respond to a memory write.

BUS D~IVER LOGIC
A large number of memory and 1/0 devices may be connected directly to the 8228 bidirectional Data Bus; such
connection~'to the 8080A Data Bus would not be feasible. Remember. memory devices leak current even when
they are'notselected; therefore. even the passive load ofunselected memory devices connected directly to an 8080A
CPU will leak more currerit than is available, "

4-48

Q
w
~
a:
o
Q,
a:
o u
~
en
w

~ g
(/)
(/)

ct
all
w
Z
a:
o
CD
(/)

o
~
ct
Q
ct

@

When comparing the 8080A microcomputer system with an alternate microcomputer system, you should look
carefully at the fan out provided by the alternate CPU.

If the alternate CPU busses need to be buffered. then the 8228 System Controller becomes the equivalent 8080A
system device; as such it does not represent an economic liability,

If the alternate CPU busses do not need to be buffered. then the 8228 System Controller represents an additional
device. peculiar to the 8080A system.

CONTROL SIGNAL LOGIC
The 8228 combines the three 8080A control signals: WR, OBIN and HLOA, with the statuses output on the
Data Bus during T2 in order to generate bus control signals as follows:

MEMR status on 07 true. with DBIN true generates MEMR true

OUT status on 04 false. with WR true generates MEMW true

INP status on 06 true. with DBIN true generates IIOR true

OUT status on 04 true. with WR true generates I/OW true

INTA status on DO true generates iNTA true

.. --------.:: -----

STSTB

HLDA

WR

DBIN

DB4
04

DB7

07

DB3

03

DB2

02

DBO
GND

~ -----
PIN NAME

00- 07

DBO - DB7

STSTB

HLDA

WR
DBIN

IIOW

MEMW

I/OR

MEMR

INTA

BUSEN

VCC·GND

----.. --:.. ..
.. -..
--..
-:. -

1 28
2 27 -
3 26 --
4 25 ..
5 24 --
6 23 ...
7 22

,8
8228 -- -21 ...

9 20 -= = -10 19 .. -11 18 .. -12 17
13 ..: : 16
14 ... :. 15 - -

DESCRIPTION

Data Bus connection to CPU

Data Bus to external logic

Status strobe input from 8224

Hold acknowledge input from CPU

Data output strobe. input from CPU

Data input strobe. input from CPU

1/0 write control output

Memory write. control output

I/O read control output

Memory read control output

Interrupt acknowledge control

DB Bus float/enable control input

Power and Ground

~
IIOW

MEMW

IIOR
MEMR

INTA

BUSEN

06

DB6

05

DB5

01

DBl

DO

TYPE

Bidirectional

Bidirectional

Input

Input

Input

Input

Output

Output

Output

Output

Output

Input

Figure 4-32, 8228 System Controller Signals and Pin Assignments

8228 SYSTEM CONTROLLER PINS AND SIGNALS
8228 pins and signals are illustrated in Figure 4-32.

DO through 07 represent the bidirectional Data Bus connection between the 8228 System Controller and the 8080A
CPU; it is referred to as the "Processor Data Bus",

OBO through OB7 represent the high fan out. bidirectional Data Bus accessed by external logic; it is referred to as the
"System Data Bus",

4-49

WR, DBIN and HLDA represent the control signals of the same name that are output by the 8080A CPU

All control bus signals use active low logic and may be defined as follows:

MEi\iiR - a read from memory strobe

MEMW - a write to memory strobe

I/OR - a read from external I/O strobe

I/OW - a write to external I/O strobe

iNTA - interrupt acknowledge

Control signal timing .is given in Figure 4-34.

The interrupt acknowledge signallNTA has two special features which need to be explained. This signal may be
tied to a +12 Volt power supply through a 1 K Ohm resistor, in which case 8228 logic assumes that there is only one
possible interrupting source within the microcomputer system. Now the 8228 will automatically insert the object
code for an RST 7 instruction in response to the interrupt acknowledge. This means that external logic does not
need to supply the first post-interrupt instruction's object code. Of course, this means that all interrupt service'routines
effectively begin with the execution of an RST 7 instruction.

If external logic responds to the INTA low pulse by supplying the first byte of a CALL instruction's object code
(11001101), then the 8228 System Controller will automatically generate two more INTA low pulses for the
next tW..E..!!!achine cycles. See Figure 4-34 for i'i\iTA pulse timing within the machine cycle~ Now external logic can
use the INTA pulse as a memory deselect and an interrupt acknowledge logic select. Here is a very general illustration
of external logic that responds to an interrupt acknowledge by supplying the CPU with a three-byte CALL instruction's
object code:

INTA

from
8228

Data Bus to CPU -
--

t
Any pulse

count logic

Select true on
first i'NTA pulse

Select true
on second
iNTA pulse

Select true on third
i'NTA pulse

i.
8-bit port,
holds 11001101
(a CALL instruction)

.....

8-bit port,

holds Call
address, low

order byte

--
8-bit port,

holds Call
address, high
order byte --

.4-50

-

---- . -

Program memory
select (High true)

C
W ...
ct
a:
0
Q.
a:
0
CJ
~
en
w ...
ct g
CI)
CI)

ct
olI
W
Z
a:
0
a:I
CI)

0

~
ct
C
ct

@

GNO AO 25 AO
+W AI AI
·W A2 A2

+12V A3 A3
A4 A4
A5 A5
Ae Ae
A7 A7 ADDRESS
AS AS BUS
A9 AS

AIO AIO 13
HOLO All All SYSTEM DMA REa.

1~
AU A12

INT 8080A AI3 AI3 SYSTEM INT. REa.
BUS AI4 AI4 16

INTE AIS AIS INT. ENABlE
Wii

DBiN
HLOA

<1>1 _000
<1>2 _OBI
WAIT _DB2
READY _DBJ }~,.
RESET _DB4 BUS

05 _OBS

S 19
De _DOO

SYNC 07 _OB7

TANK
OSC

<l>2(ml
RDYIN

ReSiN
+ 12V
+5V
GNO

W} MEMR CONTROL . SYSTEM
STATUS STROBE CONTllOL ~W BUS

iToW imm

Figure 4-33. A Standard. Three Device 8080A Microcomputer System

READ1\1

I

--
T,

Instruction Fetch

MCl

I, T2 I
I- I

I
I

T3 I
I

Instruction

Execute .-c;- Data Out

Me2

T4· T, I T2 I T3
1_

rf\
1

WAIT I
1:+-----~~._--~~--~~----~~~----_4--~--~--~~_P--

I
DBIN~+-_~~""'J

WR1J:I~--~-'--------~~--~~+-------P-~
I ~--~~
I

MEMRI I
(I/OR or INTA) I I

MEMW:------~~------~------~:-------+------~------~~,
orl/OW I I I I

Figure 4-34: Timing for Control Signals Output by
the 8228 System Controller

4-51

Recall that the NEC 8080A generates three INT A low output pulses in response to a Call instruction object code being
returned during the interrupt acknowledge process. But the NEC 8228 System Controller does not assume that these
three low INTA pulses will occur. Thus the NEC 8228 System Controller may be used with an NEC 8080A or any
other 8080A.ln every case the NEC 8228 will generate three low INTA output pulses when external logic responds to
an interrupt acknowledge by providing a Call instruction object code.

The status strobe STSTB which is output by the 8224 Clock Generator is a variation of the SYNC output from the
8080A CPU. STSTB synchronizes the 8228 System Controller and is of no other concern to an 8080A user.

BUSEN is an external input to the 8228 System Controller. This is a very useful signal because it allows external
logic to float the Data Bus. When this signal is input low, the bidirectional bus driver logic of the 8228 System
Controller presents a high impedance to the external Data Bus, thus allowing external logic to gain access to
this bus.

Figure 4-33 illustrates the way in which the 8080A CPU normally combines with the 8224 Clock Generator and the
8228 System Controller. These three devices are frequently looked upon as a single entity.

THE 8259 PRIORITY INTERRUPT CONTROL UNIT (PICU)

This is a very flexible, programmable interrupt handling device; it provides a CALL instruction's object code in
response to three interrupt acknowledge (lNTA) signals; the 8228 System Controller responds to an interrupt
acknowledge in this fashion, as described earlier in this chapter. Therefore the 8259 PICU should be looked
upon as a companion to the three-chip (8080A, 8224, 8228) microprocessor system.

The 8259 PICU cannot be used with non-8080A systems.

A single 8259 PICU with an 8080A microcomputer system will handle up to eight external interrupts, providing
a variety of programmable interrupt priority arbitration schemes.

Alternatively, an 8080A microcomputer system may have a single 8259 PICU designated as a master, controll­
ing up to eight additional 8259 PICUs designated as slaves. This allows a maximum of 64 levels of interrupt
priority. Priority arbitration schemes may be set independently for the master and for each slave, resulting in a
bewildering profusion of priority arbitration possibilities.

Use extreme caution before including master and slave PICUs within an 8080A microcomputer system. When
an application is implemented around a microprocessor with the general speed and performance characteristics
of an 8080A, then it is usually more efficient to handle numerous external request lines using multiple CPU con­
figurations and/or programmed polling techniques, rather than interrupts.

The 8259 PICU is fabricated using NMOS technology; it is packaged in a 28-pin plastic DIP. All outputs are TTL
compatible.

With reference to the standard logic functions' illustration used throughout this book. the box marked "Interrupt
Priority Arbitration" represents the functions implemented by the 8259 PICU. But it is hard to equate the large number
of options provided by the 8259 PICU with the interrupt logic provided by other microcomputer systems. An applica­
tion that needs the 8259 PICU would certainly not be satisfied by Interrupt Priority control logic provided by almost any
other device described in this book.

8259 PICU PINS AND SIGNALS
8259 PICU pins and signals are illustrated in Figure 4-35; we will summarize these signals, then discuss how
the PICU is used.

From the programmer's point of view, the 8259 PICU will be accessed either as two I/O ports, or as two memo­
ry 10cations.CS is a typical chip select and AO identifies one of two I/O ports or memory locations. The way you.
as a programmer. must interpret the function of each 8259 PICU I/O port or memory location depends on an intricate
logical sequence.

The two 8259 addressable locations are accessed via the Data Bus (DO - 07).

lOR and lOW are standard read and write control signals. If the 8259 PICU is being accessed as two I/O ports. then
these two signals will be connected to the IIOR and IIOW controls output by the 8228 System Controller; on the other
hand. if the 8259 PICU is being accessed as two memory locations. then lOR and lOW must be connected to the MEMR
and MEMW controls output by the 8228 System Controller.

External devices requesting interrupt service have their request signals connected to IRO - IR7. A high level on
anyone of these signals will be interpreted as an interrupt request. An interrupt request is passed on to the CPU via
the INT signal. This is illustrated in Figure 4-36.

4-52

c
w

~
a::
o
0.
a::
o
(.)

~
en
w
I­
ct
U o
(f)
(f)

ct
ell
w
Z
a::
o
en
(f)

o
~
ct
C
ct

@

In a configuration that includes master and slave 8259 PICUs external logic will connect to the interrupt request
signals (lRO - IR7) of the slave PICUs only. The INT outputs of the slave PICUs will be connected to the interrupt re­
quests (lRO - IR7) of the master PICU. This is illustrated in Figure 4-37.

When more than one 8259 PICU is present in a system. SP identifies the master and slave units. SP high defines the
master. while SP low forces an 8259 PICU to operate as a slave. SP also determines the sense of the three cascade
lines (CO, C1, C2); these are output lines from the master and input lines to a slave.

The 8080A CPU provides the standard interrupt acknowledge via INTA. This interrupt acknowledge will be
received by all 8259 PICUs in the system. master or slave.

In a system that includes a master 8259 PICU only, the three bytes of a CALL instruction's object code are out­
put via the Data Bus in response to the three INTA control signals arriving from the 8228 System Controller. The
second and third bytes of the CALL instruction's object code provide an address which is unique to the selected inter­
rupt request.

In a configuration that includes master and slave 8259 PICUs, the master PICU outputs the first byte of a CALL
instruction's object code; the master also outputs a value between 000 and 111 via the three cascade lines
(CO - C2). This three-bit binary value identifies the interrupt request level being acknowledged - and therefore
the slave PICU being selected. The selected slave P.ICU provides the second and third bytes of the CALL'in­
struction's object code in response to the second and thi'rd II'.!TA pulses output by the 8228 System Controller.
Thus the slave PICU identifies the interrupt request I~V~! it is acknowledging.

The interrupt acknowledge logic of the 8259 PICU is referred to as "Vectoring". Let us examine 8259 vectoring
in more detail.

PIN NAME

CS

AO

DO - D7

iOR
loW
IRO -IR7

INT

iNTA
SP

co - C2

cs
lOW

i5R
D7

D6

D5

D4

D3

D2

D1

DO
CO

C1

GND

VCC. GND

-..

--

1 28

2 ' 27

-., 3 26

4 25

., 5
8259

24

6 23
PRIORITY

7
INTERRUPT

22

8
CONTROL

21

9 20
UNIT

10 19

11 ,18

- 12

13

14

DESCRIPTION

Device Select

Identifies PICU as one of two

I/O ports or memory locations

Data Bus

Read control signal

Write control signal

Interrupt request lines to PICU

Interrupt request sent by PICU

Interrupt acknowledge

IdE:ntifies PICU as either master

or slave

Cascade lines select slave in

multiple PICU systems

Power and Ground

17

16

15

-

-"
--
- a

VCC
AO

INTA

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IRO

INT

SP
C2

TYPE

Input

Input

Tristate. Bidirectional

Input
, Input

'Input

Output

Input

Input

Output on master

Input on slave

,Figure 4-35. 8259 Priority Interrupt Control Unit Signals And Pin Assignments

4-53

INT MEMR ori/OR

MEMW 8228
8080A or TfOi1J SYSTEM
CPU - CONTROLLER

INTA -
AO A15 DBO •• • " ••• DB7 .. ~O

,

--
or -' 07

........ DO 07

INT iOR -- ~ ADDRESS:
DECODING AO loW

~ 8259 -PRIORITY
CS INTERRUPT iNTA

CONTROL
UNIT

"

IRO . IIRl •••••• • ••••• ·1·IR6 IIR7

DEVICE DEVICE DEVICE DEVICE
0 1 6 7

Figure 4-36. A System With One PICU

THE 8259 PICU INTERRUPT ACKNOWLEDGE VECTOR
Vectoring is a general term used to identify an interrupt acknowledge sequence which results in the immediate
identification of the interrupting external source. With a non-vectored interrupt acknowledge, the CPU must ex­
ecute some instruction sequence whose sale purpose is to identify the source of the interrupt - and that assumes
'more than one possible external interrupting source. ' , ------..
Recall that when an interrupt request is "acknowledged by a three-device 8080A microprocessor 8080A
system, the 8228 System Controller outputs a low pulse on the INTA control line. External logic INTERRUPT
must interpret the low INTA pulse as a signal to bypass normal instruction fetch logic, and provide RESPONSE
the object code for the first instruction to be executed following the interrupt acknowledge. (If this USING CALL
is new to you, refer to our discussion of the 8080A and 8228 devices.) If a CALL instruction's ob- INSTRUCTION
ject code (CD16) is returned to the 8228 System Controller, then low INTA pulses are output for

4-54

c
w

~
a:
o
D.
a:
o
(.J

:!!E

iii
w

~
g
en
en «
oil
w
Z
a:
o ca
en o
:!: «
c «
@

the next two machine cycles - thus making it easy for external logic to fetch all three bytes of a CALL instruction's ob­
ject code. The 8259 PICU uses this 8228 logic to supply a three-byte CALL instruction's object code as the first
instruction executed following an interrupt acknowledge. But a ~ALL irstruction's object code is interpreted
thus: .' "

Byte 1

~

CALL

Byte 2 Byte 3

··"-.... -----..v~-----'./
16-bit address of called subroutine's

first executable instruction

There are two ways in which the 8259 PICU can compute the address portion of the CALL instruction object
code (bytes 2 and 3). These are the two options:

Option 1
XXXXXXXXXXXYYYOO

Option 2
XXXXXXXXXXYYYOOO

X represents binary digits which are defined. under program control. to be a constant portion of the Call address,

Y represents binary digits which identify the interrupt priority level (000 through 111).

Since the CALL is the first instruction executed following an interrupt acknowledge. it causes program logic to branch
to a memory location which is uniquely set aside for a single external interrupting source. Suppose you have selected
CALL instruction Option 1, as illustrated above. You would then Set aside. an area of memory for a jump table. as
follows:

XXXXXXXXXXXYYYOO
o 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 -----.... - 3800

3804
etc

3808

380C

3810

Memory addresses have been selected arbitrarily in. the illustration above.

4-55

PROGRAM

MEMORY'

(3

(3

(3

(3

(3

etc.

JMP

} ADDR1

Unused

JMP

} ADDR2

Unused

JMP

l ADDR3

Unused

JMP

~ADDR'4
Unused

Program logic does not have. to determine the source of an interrupt. You simply orlgrn separate interrupt service
routines at starting addresses specified by the Jump instructions in the jump table. This may be illustrated asfollows:

MORE

PROGRAM PROGRAM
MEMORY MEMORY

OEOO ADDR2
"1-r.t
3800 (3

OEOl
OE02 ----4

80
OF

OE03

3804 '(3
OE04 t----4

00
'OF

-- . ~!l08- "'" (3
" .. ~OO

Of' ~
'.'

380C (3'

80
00

The illustration above arbitrarily assumes that the interrupt request arriving at IR2 has its service routine origined at
OE0016. In this example. the address vector provided by the 8259 is 380816:

AO

~'
A15

~ 8080A

C~U

JAO •• , A15

l f' t .~ ..
tDO .. ·tD7_

lOR
INT' '. ~

~
lOW -ADDRESS I iNi'A

DECODING --
I CO

CS Cl

+ 5V.i!!.-
8259 C2
PICU

IVeel (Masterl

To level 7

Slava CS L~ IR6

To level 6

IR;:::::t'R5 Slave CS

DEVICE I DEVICE
0 • 5

2
--'-

XXXXXXXXXXXYYYOO
0011100000001000
~ --...-.-- '-v-" '-.,-..'

3 8 0 8

4

MEMR or iToR

MEMW o;TroW 8228

SYSTEM

iN'fA CONTROLLER

l DSO" ,.DB7

t
too .. ·tD7 _

lOR
j DO· .. t 07

~ ~
~ I-

INTA

~ r-----.
~AO If~om Addr.s. Busl ____ AO (from Address Busl

8259 r----~ (fro!!l Address
8259
~ B' (from Addres! Oecoding I PICU PICU

ISlavel
' Decoding)

CO ISiavel

INT INT

t sp-r

IRO ... IR7 IRO" • IR7

I DEVICE I I DEVICE. I DEVICE I I DEVICE

14 21 6 13

" V
,.

'- 'V'
,;

• DEVICES AT MASTER PlCU LEVEL 7 DEVICES ZT'MASTER PICU LEVEL 6

Figure 4-37. A System With Three PICUs - One Master And Two SI?ves

4-56

ogicl

Q
w

~
a:
o
a..
a:
o
o
~
en
w

~
g
(/)
(/)

«
a!I
w
Z
a:
o
CD
(/)

o
~ «
Q
«
@

At memory location 380816. the object code for the instruction:

JMP ADDR2

takes us directly to the required interrupt service routine.

8259 PICU PRIORITY ARBITRATION OPTIONS
Priority arbitration logic is used to determin~ which interrupt request will be acknowledged when two or more
interrupt requests exist simultaneously. The 8259 PICU allows interrupt priorities to be specified at two
levels - which need to be clearly separated and identified.

As discussed in Volume 1- 8asic ConceRts. interrupt priority arbitration usually applies to simultaneous interrupt re­
quests: at the instant an interrupt is acknowledged. if more than one external requesting source is requesting an in­
terrupt, priority arbitration logic decides which single interrupt request will be acknowledged. Once an interrupt
has been acknowledged. priority arbitration has nothing to do with whether the interrupt ser.vice routine can itself be
interrupted. or by whom. ,.

The 8259 PICU extends interrupt priorities to the service routines themselves. Once an interrupt has been
acknowledged. its service routine can only be interrupted by a higher priority interrupt.

If you are unsure of the difference between interrupt priority arbitration at the point when interrupts are acknowledged.
as against priority arbitration for the entire duration of an interrupt service routine. then refer to Volume I - 8asic Con­
£f3RtS. where this subject is covered thorough!y.

Let us now look at the various priority arbitration options provided by the 8259 PICU.

The Fully Nested Mode is the default case. Interrupt priorities are set sequentially from 0 (highest) to 7 (lowest).

As we will describe shortly. the 8259 PICU must be initialized by an appropriate instruction sequence before it can
be used in any way. Upon completing programmed initialization, Fully Nested Mode is ttle priority arbitration op­
tion in force. It takes additional instructions to specify a'ny other priority arbitration option.·

In Fully Nested Mode. interrupt priorities will never change. An interrupt request arriving at an IR
line will never be acknowledged if an interrupt request exists at a higher priority line. or if an inter­
rupt service routine is being executed in response to a higher priority interrupt request. Conver­
sely. once an interrupt has been acknowledged. the interrupt service routine which is sUQse­
quently e.xecuted may be interrupted only by a higher priority interrupt. It makes no difference
whether interrupts have. or have not been disabled. the 8259 PICU will ignore all interrupt re­

8259 PICU
INTERRUPT
SERVICE
ROUTINE
PRIORITIES

quests at priority levels below that of an interrupt service routine currently being executed. For example. suppose inter­
rupts are being requested simultaneously at levels 2 and 5. The level 2 interrupt will be acknowledged and its interrupt
service routine will be executed. While the level 2 interrupt is being executed. the level 5 interrupt requeslwill be
denied by the 8259 PICU. whether or not interrupts have been disabled at the CPU. However. if an interrupt request ar­
rives at priority level 1. the PICU will acknowledge this interrupt request. and will allow the level 2 interrupt service
routine to be interrupted. This may be illustrated as follows:' .'

Program

executing

New interrupt

request appears

at IRI

Interrupt is

higher priority

than IR2. so

is acknowledged

Interrupts are requested ".lioe,,?
Denied - IR5 IR2 - acknowledged

IRI request's

service routine

is executed

I
An interrupt request at IR5.

if still pending. can now

be acknowledged

Ir'----.

4-57

IR2 request's

service routine

is executed

It is very important to understand that the 8259 PICU extends interrupt priority logic beyond the interrupt
acknowledge. to the interrupt service routine itself. Standard priority arbitration logic does not extend to the interrupt
service routine. Thus. in the standard case if interrupts were being requested at prio~ities 2 and 5. then the priority level
2 request would be acknowledged. but the priority level 2 interrupt service routine could be interrupted by the level 5
interrupt request. unless all interrupts were disabled at th.e CPU - in which case pn interrupt request at level 1 would
also be denied. '

If you do not want to extend interrupt priorities to the interrupt service routines. you can output a Special Mask Mode
comlTla~~ (which we will describe shortly) to selectively enable interrupt requests of lower priority than the currently
exec~ting interrupt service routine.

~otating Priority, Mode A is the next option. This differs from the Fully Nested Priority Mode.
which we just described. in that after being serviced. a request is immediately relegated to lowest
priority. This may be illustrated as follows:

Before first acknowledge

After first acknowledge

~fter second acknowledge

• id~f1tifies active interrupt r~quests.

r
Lowest

7

IR7

IR2
IRS

6
IR6

IRl
IR4

Priorities assigned to IR lines
'~ .

S 4 3 2

IRS· IR4 IR3 IR2· IRl

IRO IR7 IR6 IRS· IR4

IR3 IR2 IRl IRO, IR7

8259 PICU
ROTATING
INTERRUPT
PRIORITIES

"-Highest

0
IRO
IR3

IR6

In a microcomputer system that makes heavy use of interrupts, Rotating Run in Priority Mode A may be a necessary
replacement for the default Fully Nested Priority Mode. In the default case, the lowest priority levels may get little or no
service if there is heavy interrupt traffic. In an application that does not have a well defined hierarchy of interrupt
priorities. a rotation of priorities, as illustrated above, is superior - because it has the effect of giving every priority
level equal service.

Rotating Priority MoqeA is implemented as a sequence of single programmed events. The microprocessor outputs an
appropriate Control code to the 8259 PICU upon completing'every interrupt service routine. Thus Rotating Priority
Mode A is not a perman~ntly specified PICU condition: each rotation represents a single response to a single Control
code - unconnected to previous or future priority selections

l
. For the moment. however, it is not necessary that you un­

derstand the programrnin~ techniques emp!oyed when selecting 8259 interrupt priority rrodes: that is a subject we
will cover after completing the description of all available priority options. '

Rotating prio'rity lYIode B gi~es you some fle.xibility in determining future priorities. Now under program control
you can fix the next division between top and bottom pr!<?ritie~ at any time. This may be illustrated as follows:

Before first acknowledge

After first acknowledge

IRS is defined as ,

lowest priority

After next aCknowledge

IR3 is defined as

lowest priority ...

etc.

r

IR7

IRS

IR3

Priority aSSigned to IR lines

~
Lowest' Highest

6 4 2

IR6 IRS IR4 IR3 IR2

IR4 IR3 IR2 1R1 IRO

IR2 IR1 IRO IR7 IR6

etc.

4-58

"-
1 0

IRl IRO
IR7 IR6

IRS IR4

Q
w

~
a:
o
Il.
a:
o
u
~
en
w

~ g
CI)
CI)

ct
oI!I
w
z
a: o
III
CI)

o
:!
ct
Q
ct
@

Rotating Priority Mode B allows program logic to determine subsequent interrupt priorities based upon transient
system conditions. Rotating Priority Mode B rotates priorities any number of positions to the right. much as you might
rot,ate the bits of an Accumulator. .

Like Rotating Priority Mode A. Rotating Priority Mode B depends on the microprocessor outputting an appropriate Con­
trol code to the 8259 PI CU. However. in Rotating Priority Mode A. rotation can be done only at the conclusion of an in­
terrupt service routine. whereas in Rotating Priority Mode B. priorities can be changed at any time. .-----"'" Two mask modes allow individual priorities to be selectively disabled. A Simple Mask Mode 8259 PICU
allows the microprocessor to output an 8-bit mask, where 1 bits will cause corresponding INTERRUPT
interrupt request lines to be disabled. For example. the mask value CA 16 will disable interrupt MASKING
lines IR7. IR6. IR3 and IR1:

7 6 5 4 3 2 1 0 ~ Bit No.

11 11 1 0 1 0 11 1 0 11 1 0 ~ Interrupt Mask

t !. I! These IR lines are selectively disabled.

A Special Mask Mode is also provided: it allows you to enable Interrupts at a lower priority level than that of the
currently executing interrupt service routine. By writing a 1 to the appropriate bit of the Mask register. an interrupt
level can be disabled while. its interrupt'service routine is executing. Even though the level is masked. all lower level in­
terrupts will remain disabled until the conclusion of the service routine. Once the current leve'l is masked. however. en~
tering Special Mask Mode will enable all unmasked lower priority interrupt levels. Thus·a request can interrupt a service
routine operating on a higher priority level.

Masksmay be superimposed on Rotating Priority Mode A or Mode B without restriction. This allows you to selectively
enable and disable individual interrupt request lines. then rotate priorities for the enabled lines. Special Mask Mode
also allows you to selectively enable interrupts of lower priority than a currently executing interrupt service routine.

Polled Mode bypasses priority arbitration altogether. If you select Polled Mode, then you
must poll the 8259 PICU. You will interpret the polled data as follows:

7 6 5 4 3 2 1 0 ~ Bit No.

Polled Status

Highest priority level requesting

an interrupt (000 through 111)

---------Unassigned

------------ 1 Interrupt request pending
o No interr.upt requests pending

In a configuration thatincludes master and slave 8259 PICUs. you will first read status from the master PICU. Upon
detecting a 1 bit in bit 7. you will poll the slave PICU which is identified by bits 2. 1 and a of the master's polled data.
The slave poll identifies the highest priority interrupt request. This may be illustrated as follows:

7 6 5. 4 3 2 1 0 ~ Bit No.

Master:

7654321076543210

etc.' 1 1 I I I II II I 1 I I I I
• •

4-59

7 6 5 4 3 2 1 0...- Bit No

I ... ·, ~ I ,~ , ~ Slaves

Suppose the· represents interrupt requests. The master poll would return:

7 6 5 .. 3 2 i 0 ____ Bit No.

l,fa 10 1 01 0li!f!
f---- Priority 1 slave device

...... ----------- Requesting an interrupt

The polling program must now poll slave 1: it will read:

7 6 O~BitNo .
..... 1"""""1'""""'

....... ---- Priority 3 interrupt request

....... ------------Requesting an interrupt

In Polled Mode, the 8259 PICU is not being used as an interrupt processing device at all. In effect interrupt requests are
reduced to status flags, which will be processed by the CPU when itis ready to doso. External logic is no longer able to
force the CPU to suspend current program execution: thus the key concept of an interrupt is missing. .

While it may not immediately appear obvious. using the 8259 PICU in Polled Mode is possibly one of t·he most
effective ways of utilizing this device. A point we have frequently made, both in Volume I and in Volume II. is·that
the average microprocessor is simply too slow to efficiently handle random, nested interrupts in a traditional minicom­
puter fashion. It is faster and more efficient to poll status on a round-robin basis, branching to appropriate subroutines
Upon detecting a status flag via which extt;lrnallogic has requested service. A detailed discussion of this point may be
found in the book 8080 Programming For'Logic Desig!l,

HOW INTERRUPT REQUESTS AND PRIORITY STATUS ARE RECORDED
I~ternal to the 8259 PICU there are two registers: an Interrupt Request (lR) register and an Interrupt Status ·(15)
register.

The Interrupt Request and Interrupt Status registers may be looked upon as receiving external interrupt request
status.in a cascaded fashion as follows: ..

7 6 5 .. 3 2 1 0 ~ Bit No.

1-41f---INTA latches highest.

,"""~I""'-""""""""''''''''''",",,. priority IR bit into IS

.... II---IRN inputs set IR bits

..,..r.,~""''''''''''''''''''~roI immediately INT A clears IR register

IR7 IR6 IR5 1~4· IR3 IR2 IRI IRO

Any active interrupt request appearing on the interrupt request lines IRO - IR7 will set corresponding bits of the Inter­
rupt Request register. When any interrupt is acknoyvledged, the acknowledged interrupt's bit in the Interrupt Status
register is set: simultaneously, all bits of the Interrupt Request register are reset. This may be illustrated as follows:

IRn
Interrupt request signal

~~ _______ IR register bit

IR(n)

lS(n)
(n) is the highest priority

(i.e., acknowledged) interrupt request

c
w
~
a:
o
a..
a:
o
u
~
en
w

~
U o
(/)
(/)
c:(

all
w
Z
a:
o
CO
(/)

o
~
c:(
c
c:(

@

In order to reset any bit of the Interrupt Status register you must issue a specific "End-Of-Interrupt" instruction which
we will describe shortly.

You may therefore look upon the Interrupt Request register as identifying active, but unacknowledged interrupt re­
quests. Notice that Interrupt Request status is not preserved across an acknowledge. This means external logic must
hold its Interrupt Request true until it has been selected and acknowledged.

You may look upon the Interrupt Status register as identifying the interrupt requests which are currently being ser­
viced. If you do not nest interrupts, then only one bit of the Interrupt Status register will be set at any time. If you do
nest interrupts, then more than one bit of the Interrupt Status register may be set - for the interrupt request being ser­
viced currently and for any interrupt requests which were being serviced, but were themselves interrupted. But remem­
ber you can misuse the Interrupt Status register. If you do not end interrupt service routines by outputting an "End-Of­
Interrupt" command to the 8259 PICU, then bits of the Interrupt Status register will remain set after the appropriate in­
terrupt has been serviced.

If you use a mask to inhibit interrupt levels, then the inhibit logic will prevent bits of the Interrupt Request and Interrupt
Status register from being set for the inhibited interrupt levels.

The Interrupt Request (lR) register stores a 1 bit at every requesting level; it may be visualized as a simple reflection of
IR input signals:

IR7 IR6 IRS IR4 IR3 IR2 IR 1 IRO

• represents active interrupt requests

The Interrupt Status (IS) register reflects the status of current interrupt priority arbitration logic. Whenever an interrupt
is acknowledged, the IS bit corresponding to the interrupt level is set. This bit is reset by the End-Of-Interrupt (EOI) in­
struction at the end of the interrupt service routine. We will tell you how to issue an EOI instruction shortly.

Suppose the 8259 PICU is operating in the default mode: fully nested interrupts, no mask bits set. An interrupt request
is made at level 4. When this interrupt is acknowledged, bit 4 of the IS register is set:

7 6 5 4 3 2 1 0 - -- Bit No.

I 0 1 0 1 011 1 0 1 0 1 0 I 0 I --IS

and interrupts at levels 5,6 and 7 are disabled, since they are of lower priority than level 4. While the level 4 request is
being serviced, a request is made at level 1. Since level 1 has higher priority, it will be acknowledged, interrupting the
level 4 service routine. IS will look like this:

7 6 5 -4 3 2 1 0 ~ Bit No.

,01 0 I 011 1 0 1 0 11 1 0 J-.- IS

Now interrupt levels 2 through 7 are disabled. At the conclusion of the level 1 service routine, EOI will reset bit 1:

7 6 5 -4 3 2 I O·~ Bit No.

101 01 0 11 1 01 0 1 0 1 0 J-.- IS

thus enabling interrupt levels 2 and 3 - and level 4, whose service routine can now continue. On the next EOL assum­
ing no further interruptions, bit 4 of IS will be reset. at which time levels 5, 6 and 7 will again be enabled.

In priority modes other than the Fully Nested Mode (Rotating Priorities A and B and Special Mask Mode) the 8259 PICU
cannot be depended on to reset the correct IS bit when it receives the usual EOL Therefore, it is sent a special EOI
which specifies which levers service routine is ending - and therefore which IS bit is to be reset.

4-61

PROGRAMMING THE 8259 PICU
As we have already stated, the 8259 PICU appears to the programmer as two 1/0 ports, or memory locations.
However, there are a number of ways in which data written to, or read from either location may be interpreted.
Let us begin by defining these interpretations; then we will explain the sequence in which Control codes should
be written, and statuses read, in order to access the many capabilities of the 8259 PICU.

Control codes output to the lower I/O port or memory address (AO = 0) may be interpreted in one of three ways, labeled
Initialization Control Word 1 (lCW1) and Operation Control Words 2 and 3 (OCW2 and OCW3):

7 65"

'-.......... ~--- Don't care

'----- lOne 8259 in a system only
o Master and slave 8259s in system

'-_____ ... 1 4 bytes between address vectors

o 8 bytes between address vectors

'--------- Must be 1

'------------ Bits 7, 6 and 5 of interrupt address vector

7 6 5 .. 3 2 1 0 - Bit No ..

I I I ,0 I 0 I I I I- OCW2

'- -- --, .. ------ 000 Select priority level 0 as lowest

00 1 Select priority level 1 as lowest

010 Select' priority level 2 as lowest

011 Select priority level 3 as lowest

100 Select priority level 4 as lowest

101 Select priority level 5 as lowest

110 Select priority level 6 as lowest

111 Select priority level 7 as lowest

.... --------Must be 00

.... ----------- 000 No Operation
011 Simple end of interrupt, ignore bits 2, 1,0

010 No Operation

011 Special end of interrupt, and reset IS bit specified by bits 2, " 0

100 No Operation

101 End of interrupt and execute Rotate Priority Mode A
110 Execute Rotate Priority Mode B. level. set by bits 2, " 0 is lov/est level

111 End of interrupt and execute Rotate Priority Mode B. level set by

bits 2, " 0 is lowest level.

7 6 5 .. 3 2 1 0 -- Bit No.

Ixl 10 11 I I :

J' L
OCW3

00 Not allowed

01 Not allowed

10 Select IR register on status read

11 Select IS register on status read

Normally O. If " Polled Mode in force

Must be 01

11 Select special mask mode

10 Deselect special mask mode

Don't care

4-62

Q
w

~
a:
o
D.
a:
o
lJ
~
en
w

~ g
en
en
ct
01:1
w
Z
a:
o en
en o
~
ct'
Q
ct
@

When reading from the lower address (AO = 0). the condition of the most recently issued OCW3 bits 0 and 1 determine
what will be read. If these two bits were 01. the Interrupt Request register (lR) is read: if these two bits are 11. the Inter­
rupt Status register (IS) is read.

Control codes output to the higher I/O port or memory address (AO = 1) may also be interpreted in one of three
ways. After an ICW1 control has been output to the lower address (AO = 0). either one. or two Control codes must be
output to the higher address (AO = 1). If ICW 1. bit 1 is 1. a second Control code (lCW2) must be output to the higher
addreSs (AO = 1) of the master 8259 PICU. and to every slave 8259 PICU. that may be present. This is the format of
ICW2:

7 6 5 " 3 2 1 0 -- Bit No.

I I I I I I I I ~I" •. ~-- ICW2

'-, ~

T .. ________ Bits 15 - 8 of the interrupt address vector

If ICW1. bit 1 is O. ICW2. as illustrated above. must be output - and it must be followed by a second Control code
(lCW3). output to the higher address (AO = 1) of the master 8259 PI CU. and then to each slave 8259 PICU. The master
8259 will interpret ICW3 as follows:

I
7 6 5 " 3 2 1 0 ~Bit No.

I I I
'-,

I I I 1--. -----ICW3 to master

~

T -------Any 1 bit identifies a request level to

which a slave 8259 has been attached

A slave 8259 will interpret ICW3 as follows:

..... ~-ICW3 to slave
~~~1.00.1""'''''''''''~ 

..... ---- These three bits identify the 

request level at the master 8259 

to which this slave 8259 

has been connected 

---------- Don't care 

A system with a single 8259. therefore. has ICW1. then ICW2 output to it. 

A system with master and slave 8259 devices must have ICW1. ICW2 and ICW3 output to the master. then ICW1. 
ICW2 and ICW3 output to each slave. 

After the initiation sequence has been completed, when reading or writing to the higher I/O 
port address (AO = 1), the Interrupt Mask register is accessed. Writing a 1 into any bit posi­
tion will disable corresponding IR line requests. 0 bits enable interrupt requests at corres­
ponding IR lines. When you return to the initiation sequence, the higher I/O port address 
again accesses ICW2 or ICW3. 

4-63 

8259 PICU 
INTERRUPT 
MASK 



We will now examine the normal sequence in which the 8259 PICU will be programmed. Programming logic may be 
defined as follows: 

Start 

Output ICW' to Master 

8259 

Output ICW2 to Master 

8259 

NO Are there 
.---..... It.. slaves 

.i .•.....••.... ·· .. 

··)···.· •• ·•· ••. i·· 

? 

YES 

Output ICW3 to Master 

8259 

Output ICW', ICW2 and 

ICW3 to each slave 8259 

Write any ir]itializing 

codes to master and 

slaves (If present! 

4-64 

Interrupt 

Service 

Routine 



c 
w 

~ 
a:: 
o 
c.. 
a:: 
o 
o 
~ 
iii 
w 

~ 
g 
en 
en « 
o!I 
w 
Z 
a:: 
o 
m 
en o 
::!: « c « 
@ 

Using arbitrary data. the initiation sequence for a single 8259 PICU system may be illustrated as follows: 

MVI PICUL.12H ;WRITE OUT ICW1 
MVI PICUHAOH ;WRITE OUT ICW2 

The labels PICUL and PICUH address the lower and higher 8259 PI~~ addressable locations. respectively. 

The two instructions above assume that the 8259 PICU is being add~essed as memory. The two immediate data bytes 
specify. an interrupt address vector beginning at location 400016. incrementing eight bytes with each priority level. 

. I . 

Now consider a configuration where there is a master PICU and three slave PICUs connected to IRO. IR1 and IR2. Here is 
the initiating instruction sequence required: 

;INITIALIZE MASTER PICU 
MVI . PICUL.14H 
MVI PICUHAOH 
MVI PICUH.07H 

;INITIALIZE FIRST SL~VE PICU 
MVI SPCL 1.1 OH 
MVI SPCH1A8H 
MVI SPCH1.0 

;INITIALIZE SECOND SLAVE PICU 
MVI SPCL2.30H 
MVI SPCH2A8H 
MVI SPCH2.1 

;INITIALIZE TIlIRD SLAVE PICU 
MVI SPCL3.52H 
MVI SPCH3A8H 
MVI SPCH3.2 

;WRITE OUT ICW1 
;WRITE OUT ICW2 
;IDENTIFY SLAVES TO MASTER ,',_. 

;WRITE OUT ICW1 
;WRITE OUT ICW2 
;IDENTIFY PRIORITY TO SLAVE 

;WRITE OUT ICW1 
;WRITE OUT ICW2 
;IDENTIFY PRIORITY TO SLAVE 

;WRITE OUT ICW1 
;WRITE OUT ICW2 
;IDENTIFY PRIORITY TO SLAVE 

Since there is a single master. and three slaves. there must be four sets of initiating instructions. 

First. we initiate the master. Again. the interrupt address vector is origined at 400016. This origin and the specification 
that four bytes will separate each vector will be used when interrupts are requested on levels to which no slave 8259 
PICUs are connected. In this case the value 0716 is output indicating that IRO. IR1 and IR2 have connected slaves. 

Slave initiation is straightforward. The first slave PICU has labels SPCL 1 and SPCH1. representing the lower and higher 
addressable locations. SPCL2 and SPCH2 are second slave PICU labels. while SPCL3 and SPCH3 are third slave PICU 
labels. . " , 

All three slave PICUs specify a four-byte displacement between interrupt address vectors. Initial origins of 480016. 
482016 and 484016 are specified for slave 1. 2 and 3. respectively. Notice that the second byte written out to the high 
order address SPCH1. SPCH2 or SPCH3 identifies the slave's priority. 

Once 8259 PICUs have been initiated, programmable features are controlled by outputting appropriate Control 
codes and inputting appropriate status. Every interrupt service program must end by outputting an "End-Of-In­
terrupt" Control code to the 8259 PICU. Any form of "End-Of-Interrupt" Control code will do. Otherwise, there 
is no well defined sequence in' which controls and status should be used. . 

4-65 



Table 4-6. A Summary of 8259 PICU Operations 

OPERATION INSTRUCTION SEQUENCE 

Select Fully Nested None. This is selected after initiation. 
Mode 

Issue simple End Of Output 2016 (OCW2) to PICUL. 
. Interrupt command 

Rotate Priorities Output A016 (OCW2) to PICUL. 
Mode A with 
End Of Interrupt 

Rotate Priorities Output Cn16 (OCW2) to PICUL. n is the new lowest 
Mode B without priority. . 
End Of Interrupt 

Rotate Priorities Output En16 (OCW2) to PICUL. n is the new lowest 
Mode B with priority. . 
End Of Interrupt 

Output an interrupt Output mask byte to PICUL any time after 
mask initiation sequence. 

Read interru pt Input PICUH. 
mask 

Enter special Output OCW3 to PICUL with 681 '6 in lower 7 bits. 
mask mode 

Exit special Output OCW3 to PICUL with 4816 in lower 7 bits .. 
mask mode 

Specify Poll~d Output OCW3 to PICUL with OC 16 in lower 7 bits. 
Mode 

Poll any PICU Output OCW3to PICUL with 011 in bitsA. 3. 2. 
then immediately read from PICUL. 

Read IR Status Output OCW3 to PICUL with OA16 in lower 7 bits. 
Then read from PICUL. 

Read IS Status Output OCW3to PICUL with OB16 in lower 7 bits. 
Then read from PICUL. 

Reset an IS status Output 6N 16 (OCW2) to PICUL if End Of Interrupt. 
bit N is the IS status bit to be reset. 

PICUL identifies the PICU lower address (AO = 0). 
PICUH identifies the PICU higher address (AO = 1). . 

Here is an eXample of the end of an interrupt service routine: 

MVI 
RET 

PICUL.20H ;SIMPLE END OF INTERRUPT 
;RETURN TO INTERRUPTED SEQUENCE 

The simplest "End-Of-Interrupt" (EO!) is sent as OCW3. This-command will reset the highest set bit in the IS register. 
Notice that we thus assume that this interrupt occurred in Fully Nested Priority Mode. where the highest bit corres­
ponds to the highest priority level. 

In other priority schemes. however. the interrupt level being serviced may not correspond to the highest set bit of the IS 
register. Suppose the interrupt handling scheme is Rotating Priority Mode B with level 2 the lowest priority and a level 
o request being serviced: 

LOWEST HIGHEST ____ Interrupt priorities 

1211 10 1716151413 ~ Interrupt levels 

i · '-----------In Service 

. 4-66 



Q 
w 
~ 
a: o 
D.. 
a: 
o 
CJ 
!: 
en 
w 

~ g 
(I) 
(I) 
c:( 

all 
w 
Z 
a: 
o 
en 
(I) 

o 
~ 
c:( 
Q 
c:( 

@ 

A request at level 4 (*) will interrupt the level 0 routine. The IS register would look like this: 

7 6 5 4 3 2 1 0 ~ Bit No. 

1010101110101011 ~ISRegister 

A simple EOI in the level 4 service routine will now reset bit 0 - which is wrong. The following instruction sequence 
will reset the correct IS bit and return: 

MVI 
RET 

PICUL,64H ;END LEVEL 4 INTERRUPT 
;RETURN TO INTERRUPTED SEQUENCE 

Since we are rotating priorities. the following would be preferable: 

MVI 

RET 

PICUL,E4 ;END LEVEL 4 INTERRUPT AND MAKE 
;LEVEL 4 LOWEST PRIORITY 
;RETURN TO INTERRUPTED SEQUENCE 

The priorities and IS register now look like this: 

LOWEST HIGHEST~ Interrupt Priorities 

. 14131211 I 0 ,71615 ~ Interrupt Levels 

7 6 5 4 3 2 1 . 0 -..- Bit No. 

UiIIili.lo I 0 I 0 10 ,1 ~ IS Register 

. . ~ . 

Either of the suggested EOI instructions would allow the level 0 routine to resume. 

THE TMS 5501 MULTIFUNCTION 
'INPUT/OUTP~T CONTROLLER 

This is a multifunction peripheral logic device built by Texas Instruments only. It is designed to work with 8080 
or 8080A CPUs. The TMS 5501 does not use the 8228 System Controller; it decodes the Data Bus during the 
SYNC pulse. 

The TMS 5501 provides many of the functions provided by the 8255 PPI, 8251 USART, 8253 Programmable 
Timer/Counter and 8259 Priority Il"!terrupt Control Unit. In each case, the TMS 5501 has simpler logic, with 
fewer options; but for a very large number of applications, TMS 5501 features will be more than adequate. 

Here are the TMS 5501 features provided: 

1) Two external interrupt request lines. 

2) An 8-bit, parallel input port. 

3) An 8-bit, parallel output port. 

4) A single, asynchronous serial I/O channel without handshaking. 

5) Five programmable timers, each of which times out with an interrupt request after an interval that may 
range from 64 microseconds to 16.32 milliseconds. 

Figure 4-38 illustrates those logic functions in our standclrd microcomputer system illustration which have been 
implemented by the TMS 5501. 

The TMS 5501 is fabricated using N-channel silicon gate technology and is packaged as a 40-pin DIP. 

TMS 5501 DEVICE PINS AND SIGNALS 
Figure 4-39 illustrates TMS 5501 dev,ice pins and signals. We will begi~ by summarizing these signals. 

There are three data busses. DO - D7 are the bidirectional Data Bus P!rS via which data is transferred between the 
TMS 5501 and the CPU. X10 - X17 are the pins via which external logic inputs 8-bit parallel data to the TMS 5501. 
XOO - X07 are the eight pins via which the TMS 5501 outputs 8-bit parallel data to exte~'nallogic. Notice ~hat XO lines 
are negative-true whereas XI lines are positive-true. Optionally X 17 may be used for low priority external interrupt re­
quests. 

4-67 



..... 

".' •... ' .. "' . 
. ":., 

i .".,:, 
'i< > 

."", 

>i { :.':c 

" 

'.' •• , > 
' .. "'" 

/ I tLogictoHandl~ 
>Interrupt~eq~est~ 
Iii: from 
I Exterriill Devices 

,: ~;) 

.'." .•• '.' ••.•• , .. :. Ii : 
>,. 

i,' 

(i."·:· "' .. ':, 

,<: ·'···"·x> 
,(,' 

.' ..... ". ..... '. 

> 
' ... "."y 

"::' 
" .. " .'., 

I' Clock Logic I 

Arithmetic and 
·Logic Unit -- Accumulator 

Registeris) 

Instruction Register ~ 
, ~ 

~ Control Unit 

I~ 

.,., .. "". 

ROM Addressing 
and 

Interface Logic 

Read Only 
Memory 

Data Counteris) 

Stack Pointer 

~ Program Counter 

System Bus 

)/i 
·"··' •. ·.·.',,·,,,·':":i'··""",··,· i,. p" 

(". ,> 

t 

Direct Memory 
Access Control ~ 

Logic 

RAM Addressing 
and . 

Interface Logic 

Read/Write 
MerTlOry 

'Figure 4-38. Logic of the TMS 5501 Multifunction InputlOutput Controller 

4-68 



Q 
w 

~ 
a: 
o 
0. 
a: 
o 
CJ 

~ 
en 
w 
l­
e( 

g 
fI.I 
fI.I 
e( 

ell 
ILl 
Z 
a: 
o 
!Xl 
fI.I o 
~ 
e( 
Q 
e( 

@ 

VBB 
VCC 

VOO 

Vss 
RCV 

07 

06 

05 

04 

03 

02 

01 

DO 

AO 

Al 

A2 

A3 

CE 

SYNC 

ct>1 

,;; PIN NAME 

DO - 07 

XIO - XI7 

XOO -xo-; 
XMT 

RCV 

SENS 

INT 

CE 

AO - A3 

SYNC 

11>1. ct>2 

VBB·VCC·VOO·VSS 

1 40 

2 39 
3 38 
4 37 "'"-

5 36 
6 35 

7 34 - -8 33 

9 32 
":' 10 TMS 31 

~ 

-.. 11 5501 30 ..... -12 29 
~ 

-- .. 13 28 ~ .. 
~ 

14 27 -
15 26 
16 

~ 
25 

~ 17 24 .. 18 

19 

~ 20 

DESCRIPTION 

Data Bus to CPU 

Data Bus from external logic 

Data Bus to external logic 

Transmit serial data line 

Receive serial data line 

External interrupt sense 

Interrupt request 

Chip Select 

Address Select 

23 . 
22 

21 

Synchronizing signal (SYNC) from 8080A 

Clock inputs. same as to 80abA . 

Power Supply (-5V. + 5V. + 12Vl and Ground 

XMT 

Xl0 

XII 
XI2 
XI3 

XI4 

XI5 

XI6 

XI7 

Xo7 
X06 
XOs 
X04 
Xo3 
X02 
XOI 

XOO 
INT 

SENS 

11>2 

TYPE 

Bidirectional 

Input 

Output 

Output 

Input 

Input 

O~tput 

Input 

Input 

Ihput 

Input 

Figure 4-39. TMS 5501 Multifunction Input/Output Controller Signals 
and Pin Assignments 

Do not miss the significance of XO negative logic; whatever yo~ write to the TMS 5501 for 
parallel output will be complemented. XO signals are the inverse of the output buffer con­
tents. 

Serial I/O data uses the XMT and RCV pins. XMT is used to transmit serial data. whereas RCV is 
used to receive serial data. Note that RCV is a negative-true signal. whereas XMT is a positive-true 
Signal. 

.. ' . \ 

TMS 5501 
OUTPUT 
SIGNAL 
INVERSION 

External logic may request interrupt service either via the SENS input or via the XI7 input. A low-to-high transi-
tion on either signal constitutes an interrupt request. SENS is always part of external interrupt request logic; XI7 must 
be programmed for this purpose - in which case the eight XI pins cannot be used to input 8-bit parallel data. . 

Logic internal to the TMS 5501 may also generate interrupt requests. Whatever the source of the interrupt re­
quest. it is passed on to the CPU via the INT interrupt request signal. 

The TMS 5501 is acc~ssed either as 16 I/O ports or 16 inemory locations. Addressing logic consists of a chip 
select (CE) and four address select inputs (AO, A 1, A2 arid A3). 

The TMS 5501 receives the SYNC timing pulse, and this requires special mention. While SYNC is high. the TMS 
5501 decodes statuS off the Oat? Bus. therefore the 8228 System Controller is not needed. 

Additional signals required by the TMS 5501 are the two 8080A clock signals <1>1 and <1>2. Slight clock signal 
variations will confuse serial I/O logic which computes baud rates internally. 

4-69 



A feature of the TMS 5501 which you must note carefully is that it cannot handle Wait 
states. Any TW clock periods in a machine cycle will cause the TMS 5501 to malfunction. 

There is a further unlikely ramification of the TMS 5501 inability to handle Wait states. If you are 

TMS 5501 
WAIT STATE 

accessing the TMS 5501 as 16 memory locations, then you cannot have a Halt instruction's object code in the 
memory location immediately preceding the 16 TMS 5501 addresses. If you do. the Halt instruction will execute. 
following which the Address Bus will contain the address of the next sequential memory location -which now is a 
TMS 5501 address. Thus. the TMS 5501 becomes selected. But the TMS 5501 logic cannot cope with a sequence of 
'undefined clock periods. which is exactly what will happen following a Halt instruction's execution. The net effect is 
.that following a Halt. the TMS 5501 receiver buffer loaded flag will be inadvertently cleared. 

Always make sure that the memory address directly preceding the 16 addresses assigned to a TMS 5501 remains 
unused. . 

TMS 5501 DEVICE ACCESS 
, ,i 

Some of the 16 I/O port or memory addresses via which the TMS 5501 device is accessed are equivalent to 
memory locations, but others are command identifiers. Table 4-7 defines the manner in which addresses are in­
terpreted. 

You will find the TMS 5501 far easier to use if you address it as 16 memory locations. because that will give you access 
to memory referencing instructions. 

When creating TMS 5501 select logic. any of the select schemes described earlier in this chapter will do -with one 
addition. Include READY as part of the select logic; if READY is low. a Wait state will follow. and that will cause the 
TMS 5501 to malfunction. By making READY high a necessary component of device select logic. you can avoid this 
problem. 

In the following discussion of individual TMS 5501 capabilities. we will use programming examples to show the effec­
. tiveness of including the TMS 5501 device within your memory rather than I/O space. 

Table 4-7. TMS 5501 Address Interpretations 

A3 A2 A1 AO FUNCTION 

0 b 0 0 Read assembled serial input data byte out of Receiver Buffer 

0 0 0 1 Read parallel data input via XIO - XI7 

0 0 1 0 Read RST instruction code. as a data byte. when polling interrupt requests 

0 0 1 1 Read Status register contents to the CPU 

0 1 0 0 Write command code to the TMS 5501 
0 1 0 1 Load. serial I/O Control register. specifying baud rate and stop bits 

0 1 1 0 Write data byte to serial transmit logic 

0 1 1 1 Write data byte to parallel output port 
1 0 0 0 Write out interrupt mask byte to selectively enable and disable interrupts 

1 0 0 i Write initial count to Interval Timer 1 
1 O· 1 0 Write initial count to Interval Timer 2 
1 0 1 ; Write initial count to .Interval Timer 3 
1 1 0 0 Write initial count to Interval Timer 4 
1 1 0 1 Write initial count to Interval Timer 5 
1 1 1 0 No Operation 
1 1 1 1 No Operation 

. . 

TMS 5501 addressable locations 3, 4 and 5 are used for status. and controls which generally apply to serial I/O 
and interrupt processing. We will define how these ports are used now. in advance of our discussion of TMS 5501 
serial I/O and interrupt processing capabilities. . . 

4-70 



c 
w 
!( 
ex: o 
Q. 
ex: 
o 
u 
~ 
en w 
!( 
g 
en 
en 
~ 

all 
w 
Z ex: 
o 
ID 
en o 
~ 
~ 
C 
~ 

@ 

Locations 3 and 5 apply to serial I/O logic. Location 3 is a Status register whose bits are interpreted as follows: 

7 6 5 4 3 2 1 0 ~Bit No. 

I I I I I I I I : 
• . ~ ~ + 

Serial I/O Status register (Address 3) 

1 Framing error detected 

1 Overrun error detected 

1 No serial data being received 

1 Receive Buffer ready to be read 

1 Transmit Buffer empty 

1 Intenupt pending 

1 Serial data character being received 

1 Start bit as been de'tected 

Bits 0 and 1 are standard framing and overrun error indicators. 

If a framing error is detected. Status register bit 0 will be set to 1 and will remain 1 until assembly of the next complete 
serial data character has been completed. 

If Receiver Buffer contents are not read while the next serial character is being input and assembled. an overrun error 
will be reported in bit 1 of the Status register. This error indicator will be cleared as soon as the Status register contents 
are read. or when a reset command is output. Remember. you have the time it takes to receive. and assemble one 
character in which to read the previous character out of the Receiver Buffer. This is because receive logic includes a 
double buffer. A character is assembled in a Receiver register: when completely assembled. it is shifted to a Receiver 
Buffer and the next character is assembled in the Receiver register: 

RcV I Byte N \ I Byte N + 1 \ 
Receiver Byte N being Byt~ N + 1 being 

Register assembled assembled 

Contents 

Receiver Assembled Byte N - 1. Assembled Byte N. 

Buffer waiting to be read· waiting to be read 
Contents 

Status bits 2,3,6 and 7 monitor the condition of the serial data input signal. During a break. that is. when no valid 
serial data is being input. status bit 2 will be high. As soon as a start bit has been detected. status bit 2 will be reset low 
and status bit 7 will be set high. When the first valid data bit is detected. status bit 6 is also set high. When the 
received character has been assembled in the Receiver Buffer. and may be read by the CPU. status bits 7 and 6 are 
reset and status bit 3 is set. This may be illustrated as follows: 

End of first data character 

RCV M D M D 

M Marking 

A Start bit 
Bit 2 

D Data bits 
Bit 3 P Parity bit 

0 Stop bits 

Bit 6 

Bit 7 

4-71 



Status bit 4 applies to serial transmit logic. As soon as the Transmit Buffer is ready to receive another byte of data. 
status bit 4 will be set high. It will remain high until new data has been loaded into the Transmit Buffer. 

Transmit logic. like receive logic. is double-buffered. A byte of data is held in a Transmitter register while being output 
serially; meanwhile. the next data byte may be loaded into a Transmitter Buffer. Transmitter Buffer contents are auto­
matically shifted to the Transmitter register when' serial output of a data byte is complete. This may be illustrated as 
follows: 

XMT I Byte N \ I Byte N + 1 \ 
Transmitter Byte N being Byte N + 1 being 

Register output serially output serially 

Contents 

Transmitter Write Byte N + 1 into Write Byte N + 2 into 

Buffer transmitter Buffer Transmitter Buffer 

Contents during this time during this time 

Status bit 4 is high from the insti:lntTransmitter Buffer contents are shifted into the Transmitter register. until a new 
data byte is written into the Transmitter buffer. 

Status bit 5 isset whenever the TMS5501has an unacknowledged interrupt request. While this status bit is very 
important in sedall/O operations. it also may have application elsewhere; this bit therefore may be looked upon asan 
exception within the Status register. in that it is the only status flag that does not apply strictly to serial 1/0 operations. 

TMS 5501 addressable location 5 is also dedicated to serial I/O. Into this location you must load a control byte 
which selects baud rate. and the number of stop bits. Register contents will be interpreted as follows: 

7 6 5 .. 3 2.. . 0 ~ Bit No . 

..... ----Baud Rate Register (Address 5) 
~~~~~~ .. ~~ 

... ____;.. __ j ~ ~[;~}. Baud rates based

_________ 1 = 2400 saud on 2 mHz clock

---------- 1 = 4800 Baud

'------------1 = 9600 Baud

"'------------ 1 = One stop bit
o = Two stop bits

If more than one of bits 0 through 6 are high. then the highest indicated baud rate will be selected. If no baud rate bit is
high. then all serial transmit and receive logic will be inhibited.

·4-72

Q
w

~
a:
o
Q.
a:
o
u
~
en
w

~
(j
o
fI)
fI)

ct
ell
w
Z
a:
o
m
fI)

o
~
ct
Q
ct

@

TMS 5501 addressable location 4 is a general command register. Its contents will be interpreted as follows:

7 6 5 .c 3 2 1 0 ~ Bit No .

...... - COntrol Register (Address 4)
~~~~~~~~ 

~--- 1 = Device reset -----1 = Output Mark on idle 

o = Output space on idle 

~----- 1 = Select XI7 as lowest priority interrupt 

o = Select interval timer 5 as lowest priority interrupt 

~-------, = Enable TMS 5501 interrupt acknowledge 

o = Disable TMS 5501 interrupt acknowledge 

~-------- 0 = Normal baud rate and interval timing 

1 = TMS 5501 11>1 intemal clocking runs eight times normal rate. which 

11 multiplies all baud rates in the baud rate register by 8. allowing 

high speed data transfers at rates up to 76.8 kilo baud 

21 decrements the interval timers every 8 microseconds ----------0 = Normal operation 

1 = INT outputs a clock whose frequency depends on bit 4. If bit 4 is reset 

(0). the output frequency is the system clock frequency divided by 128. 

If bit 4 is set (11. the output frequency is the system clock frequency 

divided by 16. 

.... -----------Can have any value 

If your system does not require interrupts from the TMS 5501, you can set bit 5 high to derive a TTL compatible 
clock from the INT output. 

If the TMS 5501 device is reset by outputting 1 to bit 0, then the following events will oc­
cur: 

1) Serial receive logic enters the Hunt mode. Status bits 2.3.6 and 7 are all reset however. reset 
will not clear the Receive Buffer contents. 

2) Serial transmit logic will output a high marking signal. Status bit 4 will be set high indicating that transmit logic is 
ready to receive another data byte. 

3) The interrupt mask register is cleared with the exception of the Transmit Buffer interrupt. which is enabled. (Inter-
rupt levels and interrupt masking are described shortly.) 

4) All interval timers are halted. 

The Reset has no effect on any of the following: 

- Parallel input and output port contents 
- Interrupt acknowledge enable 
- Interrupt Mask register contents 
- Baud rate register contents 
- Serial Transmit or Receive Buffer contents 

. Control command bit 1. determines whether serial transmit logic will mark or space when not transmitting data. 
A 1 in bit 1 will cause serial transmit logic to mark (output high) while a 0 in bit 1 will cause transmit logic to space 
(output low). 

If Reset conflicts with the break specification. then Reset will override and transmit logic will mark. irrespective of the 
break bit specification. 

The TMS 5501 can receive an interrupt request from one of nine different sources. Using the eight Restart instructions. 
each interrupt request is assigned one of eight priorities. For this to be possible. two interrupt sources share the lowest 
priority interrupt level (RST 7); these two sources are an external request arriving via XI7 and the Interval Timer 5 time 
out interrupt request. You use bit 2 of the control command to select which requesting source will be active at 
any time as the lowest priority interrupt. 

Bit 3 of the control command is a master enable/disable for TMS 5501 interrupt logic. If this bit is output as O. 
then TMS 5501 interrupt acknowledge logic is disabled - and that effectively disables the entire interru pt processing 
system. Observe that with interrupt acknowledge logic disabled you can still use polling techniques in lieu of interrupt 
processing. 

4-73 



Table 4-S. TMS 5501 Interrupt Logic and Priorities' 

Interrupt Data Bus 
RST 

and Mask Status 
Instruction' 

Interrupting Source 

Bit 05 04 03 
• f 

o (highest) 0 0 0 RSTO Interval Timer 1 
1 0 0 1 RST 1 Interval Timer 2 

2 0 1 0 RST 2 External SENS interrupt request 
3 0 1 1 RST 3 Interval Timer 3 
4 1 0 0 RST'4 Serial I/O Receiver Buffer full 
5 1 0 1 RST 5 Serial I/O Transmitter Buffer full 
6 1 1 0 RST 6 Interval Timer 4 

7 (lowest) 1 1 1 RST 7 Interval Timer 5, or external XI7 
interrupt request, whichever has 

beeri selected by commant;! code 

TMS 5501 INTERRUPT HANDLING 
The TMS 5501 responds to nine different interrupt requests, with priorities as defined in Table 4-S. 

When an interrupt is acknowledged, INT is output high by the TMS 5501. If the TMS 5501 INT output is connected 
to the SOSOA INT input. then the SOSOA will acknowledge the interrupt by outputting D1 high at SYNC high. The TMS 
5501 responds to this acknowledge by placing an RST instruction's object code on the Data Bus. as required by stan­
dard SOSOA timing. This is an utterly standard SOSOA interrupt request/acknowledge sequence. 

Interrupts may be selectively disabled by writing a mask to TMS 5501 Register S: see Table 4-7. A 0 bit will disable 
an interrupt: mask bits are related to priorities as follows: 

7 6 5 4 3 2 1 0 ........... -- Bit No. 

I 1 I I I I I I : 
~ , , 

t ' 
TMS 5501 Register 8 

Interval Timer 1 

Interval Timer 2 

External SENS interrupt request 
Interval Timer 3 

Serial I/O Receiver Buffer full 

Serial I/O Transmitter Buffer full 
Interval Timer 4 

Interval Timer 5 or external XI7 interrupt request 

Note that TMS 5501 interrupt priorities apply to the request/acknowledge sequence only -which is the standard 
passive interrupt priority arbitration sequence used in most microcomputer applications. Once an interrupt is 
acknowledged and is being serviced by an interrupt service routine. it is up to the programmer to disable all interrupts. 
or selected interrupts. if the interrupt service routine is not itself to get interrupted. If. for example. an interrupt were to 
be acknowledged at priority 3 (Interval Timer 3). in the normal course of events the SOSOA CPU will disable all inter­
rupts upon acknowledging any interrupt. Therefore the Interval Timer 3 interrupt service routine will deny any other in­
terrupt request. whatever its priority. until the Interval Timer 3 service routine completes execution. If the Interval Timer 
3 interrupt service routine were to immediately enable all interrupts. then any other·interrupt request would be 
acknowledged. irrespective of priority. 

If you want to ensure that only higher priority requests interrupt the Timer 3 service routine. then the Timer 3 service 
routine must begin by outputting a mask to disable all lower level interrupts at the TMS 5501: then it must enable all 
interrupts at the CPU. Here is the necessary instruction sequence: 

MVI 
EI 

TMSS.07H :OUTPUT MASK TO REGISTER S OF TMS 5501 
:ENABLE INTERRUPTS 

The mask output in this case has the value 07. since mask bits O. 1 and 2 only must be set to 1. enabling the highest 
three interrupt priority levels. . , 

4-74 



c 
w 

~ 
ex: 
o 
Il. 
ex: 
o 
CJ 
~ 
en 
w 

~ 
(3 
o 
U) 
U) 
c( 

all 
w 
Z 
ex: 
o 
aI 
U) 

o 
~ 
c( 
c 
c( 

@ 

Let us now look at the nonstandard features associated with TMS 5501 interrupt 
handling logic. First of all. so long as there is an unacknowledged interrupt request. Status 
register bit 5 is set to 1; next the RST instruction object code for the highest level interrupt 
request is stored in TMS 5501 Register 2. This allows you to bypass normal interrupt pro-
cessing logic and poll the TMS 5501 instead. . 

TMS 5501 
NONSTANDARD 
FEATURES 

In order to bypass interrupt logic. simply disconnect the TMS 5501 INT output from the 8080A INT input. You can still 
identify interrupt requests occurring within the TMS 5501 by reading the TMS 5501 Status register. If bit 5 of the 
Status register is 1. then one or more interrupt requests are active within the TMS 5501. In order to determine which is 
the highest level active interrupt request. read the contents of TMS 5501 memory location 2. The RST instruction ob­
ject code corresponding to the highest priority interrupt request will have been assembled in this location. Bits 3. 4 and 
5 of the RST instruction object code identify the priority level. Thus you can determine which of the eight priority levels 
was the highest active interrupt request. Here is a typical polling sequence: 

;ASSUME THAT THE TMS 5501 ADDRESS SPACE CONSISTS OF 16 MEMORY 
;LOCATIONS FROM 8000 THROUGH 800F. TMS5 IS THE SYMBOL ASSIGNED 
:TO THE BASE ADDRESS 
TMS5 EOU 8000H 

;TEST STATUS REGISTER FOR INTERRUPT PENDING 
LOA TMS5+3 ;LOAD STATUS TO ACCUMULATOR 
ANI 20H ;ISOLATE BIT 5 
JNZ TMS5+2 ;IF NOT ZERO. AN INTERRUPT HAS BEEN 

;REOUESTED 

It is worth spending a minute looking at the three-instruction sequence illustrated above. The TMS 5501 Status register 
contents are loaded into the Accumulator by the LOA instruction. The next instruction isolates bit 5. If bit 5 is 1. then 
an interrupt has been requested. and the next instruction. a JNZ. branches program execution to a memory location 
within the TMS 5501 itself. Will that work? Indeed. it will. The label TMS5+2 addresses TMS 5501 Register 2. which 
contains an RST instruction's object code; this is the object code which would have been output in response to a nor­
mal interrupt acknowledge. What the JNZ instruction does is cause this RST instruction's object code to be executed 
next; and that is precisely the logic sequence which a normal interrupt response would have implemented. 

Notice that the very simple method we have illustrated for polling on status only works if the TMS 5501 can be ad­
dressed as memory locations rather than I/O ports. 

TMS 5501 PARALLEL I/O OPERATIONS 
It is very easy to handle simple parallel I/O. without handshaking, using the TMS 5501. This is equivalent to 8255 
Mode 0 operation. TMS 5501 address 1 accesses the parallel 8-bit input port. while address 7 accesses a parallel 8-bit 
output port (see Table 4-7). Assuming that the TMS 5501 is addressed as memory. input and output operations are 
handled using any memory reference instructions. 

A very limited amount of parallel I/O handshaking is available. The SENS interrupt input signal can be used by ex­
ternallogic either to indicate that it has read output data. or to indicate that it has transmitted input data .. However. the 
TMS 5501 device itself has no control~als which can be used to prompt external logic; that is to say. the TMS 5501 
has no signal equivalent to the 8255 OBF control. When comparing the parallel I/O capabilities of the TMS 5501 with 
the 8255. therefore. we conclude that 8255 Mode 0 operations can be duplicated without problems. but neither Mode 
1 nor Mode 2 parallel I/O operations with handshaking can be duplicated. Only a primitive level of parallel I/O with 
handshaking exists within the TMS 5501 and even this exists at the expense of external interrupt logic. 

TMS 5501 SERIAL I/O OPERATION 
A significant asynchronous, serial I/O capability is provided by the TMS 5501. Synchronous serial I/O is not sup­
ported. 

There are very significant differences between the implementation of asynchronous serial I/O by the TMS 
5501. as compared to the 8251 USART. 

The TMS 5501 has separate serial transmit and receive pins (XMT and RCV). but it has no accompanying handshaking 
control signals; instead 5th and 6th priority interrupts identify Receiver Buffer full and Transmit Buffer full. respec­
tively. Bits 2. 3. 6 and 7 of the Status register (addressable location 3) identify the condition of a serial receive data 
stream. 

4-75 



When using the TMS 5501. you have to continuously read in the contents of the Status register and test the condition 
of appropriate status bits in order to implement standard serial receive logic: however. in the end you can implement 
the same serial receive logic as is provided automatically by the 8251 USART. Here is the relationship between the 
TMS 5501 and the 8251 USART controls: 

8251 USART 
TxRDY 
TxE 
TxC 
RxRDY 
RxC 
SYNDET 

TMS 5501 EQUIVALENT 
Status register bit 4 
None 
Baud Rate register 
Status register bit 3 
Baud Rate register 
None 

Probably the most significant difference between TMS 5501 and 8251 USART control is the fact that TMS 5501 baud 
rate is programmed by outputting an appropriate Control code. while it is clocked by rate signals input to the 8251 
USART. The TMS 5501 advantage is that the TMS 5501 does not need external baud rate clock generation logic: 
however there must be a very precise synchronization between the TMS 5501 and whatever external logic it is com­
municating with. Minor timing differences are no problem when using an 8251 USART since a clock signal can accom­
pany the serial data stream. Minor timing differences can be intolerable when using the TMS 5501: a small difference 
between TMS 5501 baud rate and external clock signals can generate very significant errors. 

TMS 5501 INTERVAL TIMERS 
The TMS 5501 has five programmable Interval Timers. Each timer can be loaded with an initial count ranging 
from 01 (lowest) through FF16 (highest). Each Timer will decrement one count every 64 microseconds. As soon 
as a programmable timer counts out to zero, it requests an interrupt. In our discussion of TMS 5501 interrupt logic. 
we have defined the priority levels assigned to the various Interval Timers. Notice that Interval Timer priorities have 
been spread across the range of priority levels. By using Interval Timer 1 or 2. you can be sure of precise time intervals. 
since an interrupt request will be acknowledged with little or no delay. Timers 4 and 5. being the lowest priority. can be 
used to generate less precise time intervals. It is conceivable that interrupt requests originating at these two timers 
might have to wait a significant amount of time before being serviced - if there is any degree of interrupt traffic within 
the microcomputer system. 

Loading a 0 value into an Interval Timer causes an immediate interrupt request. 

When a nonzero value is loaded into an Interval Timer. it starts to count down immediately. If a new value is loaded into 
an Interval Timer while it is halfway through counting out. then the new value will be accepted: it will override the pre­
vious value and subsequently will be decremented. Therefore the Interval Timers are retriggerable. 

Once an Interval Timer counts out. it halts. 

4-76 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
o 
~ 
en 
w 

~ 
g 
CI) 
CI) 
c( 

o!I 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
c( 
c 
c( 

@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• 8080A CPU 
• 8224 Clock Device 
• 8228 System Controller 
·8259 PIC 
• TMS 5501 I/O Controller 

4-D1 



BOBOA/BOBOA-1/BOBOA-2 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias .•.......•.• O°C to +70° C 
Storage Temperature ..•...•..•.•. -65°C to +150°C 
All Input or Output Voltages 

With Respect to VeB ....•..•... -0.3V to +20V 
Vce , VOO and Vss With Respect to VBB -0.3V to +20V 
Power Dissipation .•..•••..• -..... ...•••. 1.5W 

D.C. CHARACTERISTICS 

·COMMENT: Stresses above those listed under "Absolute Maxi­
mum Ratings" may cause permanent damage to the device. 
This is a stress rating only and functional operation of the de­
vice at these or any other conditions above those indicated in 
the operational sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for extended 
periods may affect device reliability. 

TA = o°c to 70°C, VOO = +12V ± 5%, Vce = +5V ± 5%, VBB = -5V ± 5%, Vss = OV, Unless Otherwise Note~. 

Symbol Parameter Min. 

VILC Clock Input Low Voltage Vss-l 

VIHe Clock Input High Voltage 9.0 

VIL Input Low Voltage Vss-l 

VIH Input High Voltage 3.3 

VOL Output Low Voltage 

VOH Output High Voltage 3.7 

100 (AV) Avg. Power Supply Current (Voo) 

leC(AV) Avg. Power Supply Current (Vce! 

IBB (AV) Avg. Power Supply Current (VSB) 

IlL Input Leakage 

ICL Clock Leakage 

IOL(2] Data Bus Leakage in Input Mode 

IFL 
Address and Data Bus Leakage 

During HOLD 

CAPACITANCE 
TA = 25°C Vce = VOO = Vss = OV, VBB = -5V 

Symbol Parameter Typ. Max. Unit 

Ccf> Clock Capacitance 17 25 pf 

CIN I nput Capacitance 6 10 pf 

COUT Output Capacitance 10 20 pf 

NOTES: 
1. The RESET signal must be active for a minimum of 3 clock cycles. 
2. When OBIN is high and VIN > VIH an internal active pull up will 

be switched onto the Oata Bus. 
3. A I supply (AT A = -0.45%1' c. 

Typ. Max. 

Vss+0.8 

Voo+l 

Vss+0.8 

Vec+ 1 

0.45 

40 70 

60 80 

.01 1 

±10 

±10 

-100 
-2.0 

+10 . 

-100 

Test Condition 

fc = 1 MHz 

Unmeasured Pins 

Returned to Vss 

Unit Test Condition 

V 

V 

V 

V 

V } IOL = 1.9mA on all outputs, 
V IoH = -l50J.lA. . 

mA 

mA } Op,,";oo 

mA 
Tcy = .48 J.lsec. 

J.lA Vss ~ VIN ~ Vce 

J.lA Vss'~ VCLOCK ~ Voo 

J.lA Vss ~VIN ~Vss +0.8V 
mA Vss +0.8V ~VIN ~Vcc 

J.lA 
VAOOR/OATA = Vee 

V AOOR/OATA = VSS + 0.45V 

1.5 

... 
~ 
:J 
c.> 

~ 
t 
iil 

0.5 
0 +25 +50 

AMBIENT TEMPERATURE (OC) 

Figure 2. Typical Supply Current vs. 
Temperature, Normallzed(JI 

~:]----~ 
o Vee 

YIN 

Figure 3. Data Bus Characteristic 

During DBIN 
Data sheets on pages 4-02 through 4-012 are reprinted by permission of Intel Corporation, Copyright 1978. 

4-02 

+75 



c 
w 

!i a: o 
Q. 
a: 
o 
u 
~ 
en 
w 

!i 
g 
CI) 
CI) 

ct 
oil 
w 
z 
a: 
o 
III 
CI) 

o 
:!: 
ct c 
ct 

@ 

SOSOA/SOSOA-1/S0S0A-2 

A.C. CHARACTERISTICS (8080A) 
TA = o°c to lODC, VDD = +12V ± 5%, Vee = +5V ± 5%, VBB = -5V ± 5%, Vss = OV, Unless Otherwise Noted 

--'-' 
·1 ·1 ·2 ·2 

S,mbol PI,.mlllr Min. Mu. Min. MIx. Min. MIx. Unll TI.I Condition 

tcyl31 Clock Period 0.48 2.0 0.32 2.0 0.38 2.0 "sec 

Ir,l, Clock Rise and Fall Time 0 50 0 25 0 50 nsec 

1", "1 Pulse Width 60 50 60 nsec 

t"2 "2 Pulse Wldlh 220 145 175 nsec 

tDl Delay "1 to "2 0 0 0 nsec 

tD2 De~ay "2 to "1 70 60 70 nsec 

tD3 Delay "1 to "2 Leading Edges 60 60 70 nsec 

IDA[21 A~dress Output Delay From "2 200 150 175 nsec 
} CL"'OOpF 

tDD[21 Data Output Delay From "2 220 180 200 nsec 

toc[21 Signal Outpul Delay From "2 or ~ (SYNC, WR, WAIT, HLDA) 120 110 120 nsec 
} CL-50pF 

tOl:(21 DBIN Delay From "2 25 140 25 130 25 140 nsec 

tDI[ll Delay 'or Input Bus to Enter Input Mode tDF tDF tDF nsec 

tDSl Data Setup Time During "1 and DBIN 30 10 20 nsec 

WAVEFORMS (Note: Timing measurements are made at the following reference voltages: CLOCK "1" = B.OV 

"0" = 1.0V; INPUTS "1" = 3.3V, "0" = O.BV; OUTPUTS "1" = 2.0V, "0" = O.BV.) 

"I 
-::r"-"-~ ;rr /\ /\ 
~ ,r-\ ......--, ~ 

~~ 
Qz .r ~ I 

-toJ ... 1 t02 --- I 
. 

--1 ~--- ~-A'5'Ao 
I-to.:=r 

--- -- -- ~--- ----
'f-tAW 

I-too-1 - tOI J- ....., toHI- I--too- i i 
~, I .. Pit" ~ ~ -r"!."-.o!!,:( 0 7,00 -----4-- ~ -r.- I --- -
I 

~ '0$14- -tow -
SYNC 1 .\.. tou - I 

-I toe 1- -'ocl-

i 
Ii 

OBIN T 1 :i 
I-to~ _tOF-l I 

I m ! ----------- I toc f-- I _L tH - J-- ! 

READY .I@I Y &t~ ! 
I ------------

- tRsf.-l 
-

tRS - toc-I Ii I 
WAIT tH- - I I X.I I! 

toc-I 1- - tH -.: 14 - Ii 
HOLD I@ I 

-I~;~ 
II HLDA 

INT ________________________ -_~ 

INTE 

4-03 



80S0A/8080A-1/8080A-2 

A.C. CHARACTERISTICS (8080A) 
TA = oOe to 7ooe, VDD = +12V ± 5%, Vec = +5V ± 5%, VBB = -5V ± 5%, Vss = OV, Unless Otherwise Noted 

SymbOl 

tDS2 

tDH(1 ) 

t1E(2) 

tRS 

tHS 

tiS 

tH 

tFD 

tAW2) 

tDW2) 

tWD(2) 

tWA(2) 

tHF(2) 

twF(2) 

tAH(2) 

. , 
'2 

A'5 Ao 

0)'00 

syrJC: 

OBIN 

\/ill 

REAllY 

WAIT 

HOLD ~ 

HLDA 

~ 
IN~ 

INTE 

·1 ·1 ·2 ·2 
Plrlmetlr Min. Mu. Min. MIx. Min. MIX. Unit Te.t Condition 

Data Setup Time to "2 During DBIN 150 120 130 nsec 

Data Holt time From "2 During DBIN (1) (1) (1) nsec 

INTE Output Delay From "2 200 200 200 nsec CL= 50 pF 

RE~DY Setup Time During "2 120 90 90 nsec 

HOLD Se'up Time to "2 140 120 120 nsec 

INT Setup Time During "2 120 100 100 nsec 

Hold Time From "2 (READY.Ir.H. HOLD) 0 0 0 nsec 

Delay to Float During Hold (Address and Data Bus) 120 120 120 nsec 

Address Stable Prior to WR 

OutP'!t Data Stable Prior 10 WR 

Output Data Stable From WR 

'Address Siable From WR 

HLDAto Float Delay 

WR to Float Delay 

Address Hold Time After DBIN During HLDA 

f\ 

- toe ______ 

l,,,~ 
_Jt;-

1-
IS) (5) (5) nsec 

(6) (6) (6) nsec 

(7) (7) (7) nsec 

(7) (7) (7) nsec 
CL = 100 pF: Address. Data 
CL = 50 pF: WR,HLDA,DBIN 

IB) [B) [B) nsec 

(9) (9) (9) nsec 

-20 -20 -20 nsec 1-

NOTES: (Parenthesis gives ·1. ·2 specifications. respectively) 
1. Data input should be enabled with DB IN status. No bus conflict can then occur and data hold time is assured. 

tDH = 50 ns or tDF. whichever is less. 
2. Load Circuit . 

B080A 
OUTPUT 

+SV 

3. ICY = tD3 + tr+2 + t+2 + t'+2 + t02 + tr+1 ~ ~80 ns (- 1 :320 ns, - 2:3BO ns). 

TYPICAL ~ OUTPUT DELAY VS. ~ CAPACITANCE 

c 

> 

~ 
0 
.... 
~ 
::> 
0 .., 

+20 .------.-----r-.--~--

·10 

.l CAPACITANCE Ipll 

ICACTUAL - CSPEcl 

+10r. 

4. The following are relevant when interfacing the aOaOA to devices having VI H = 3.3V; 
al Maximum output rise time from .av to 3.3V = lOOns @ CL = SPEC. 
b) i)utput delay when measured to 3.0V • SPEC +60ns @ CL = SPEC. 

c) If CL * SPEC, add .6ns/pF if CL> CSPEC, subtract .3ns/pF (from modified delay) if CL < CSPEC. 
5. rAW = 2tCY - tD3 - tr+2 -140ns(-1:110ns. -2:130ns). 
6. tow = ICY - tD3 - tr+2 - 170 ns (-1:150 ns, -: 2:170 ns). 
7. If not HLDA. tWD = tWA = tD3 + tr<l>2 +10ns. If HLDA. tWD = tWA = tWF. 

a. tHF = tD3 + t"1>2 -SOns. 
9. tWF = tD3 + tr<l>2 -IOns 

10. Data in must be stable for this period during DBIN ·T3. Both tDS1 and tDS2 must be satisfied. 
11. Ready signal must be stable for this period during T2 or TW. (Must be externally synchronized.) 

I 

12. Hold signal must be stable for this period during T2 or TW when entering hold mode. and during T3. T 4, TS 
and TWH when in hold mode. (External synchronization is not required.) 

13: Interrupt signal must be stable during this period of the last clock cycle of any instruction in order to be 
recognized on the following instruction. (External synchronization is not required.) 

14. This timing diagram shows timing relationships only: it does not represent any specific machine cycle. 

4-04 



Q 
w 

~ 
a: 
o 
0. 
a: 
o 
CJ 

~ 
en 
w 

~ 
U o 
CI) 
CI) 

« 
o1J 
w 
Z 
a: 
o 
c:a 
CI) 

o 
~ « 
Q 
« 
@ 

8224 

ABSOLUTE MAXIMUM RATINGS· 

Temperature Under Bias ............... O°C to 70°C 
Storage Temparature .............. -65°C to 150°C 
Supply Voltage. Vee ................ -0.5V to +7V 
Supply Voltage. Voo .. : ........... -0.5V to +13.5V 
Input Voltage ..................... -1.5V to +7V 
Output Current ......... ; ............... 100inA 

D.C. CHARACTERISTICS 
TA = O°C to 70°C; Vee = +5.0V ±5%; Voo = +12V ±5%. 

Symbol Parameter Min. 

IF Input Current Loading 

IA Input Leakage Current 

Ve Input Forward Clamp Voltage 

V1L Input "Low" Voltage 

VIH Input "High" Voltage 2.6 
2.0 

VIWVIL RESIN Input Hysteresis .25 

VOL Output "Low" Voltage 

VOH Output "High" Voltage 

4>" .4>2 9.4 
READY. RESET 3.6 
All Other Outputs 2.4 

Ise (1 ) Output Short Circuit Current -10 
(All Low Voltage Outputs Only) 

Icc POI·'''· ~ ... pply Current 

100 Power Supply Current 

·COMMENT: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
thoSe indicated in the operational sections of this specifi­
cation is not implied. E~posure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

Limits 
Typ. Max. Units Test Conditions 

-.25 mA VF = .45V 

10 J1A VA = 5.25V 

1.0 V Ie = -5mA 

.8 V Vee = 5.0V 

V Reset Input 
All Other Inputs 

V Vee = 5.0V 

.45 V (4)1.4>2). Ready, Reset, STSTB 
IOL=2.5mA 

.45 V All Other Outputs 
iciL= 15mA 

V IOH = -100J1A 
V IOH = -lOOJ1A 
V IOH =:= -lmA 

-60 mA Vo = OV 
Vee =5.0V 

115 mA 

12 mA 

Note: 1. Caution. <P1 and <P2 output drivers do not have short· circuit protection 

Crystal· Requirements 

Tolerance: .005% at O°C -70°C 
Resonance: Series (Fundamental)· 
Load Capacitance: 20-3~pF 
Equivalent Resistance: 75-20 ohms 
Power Dissipation (Typ.): 4mW 

·With tank circuit use 3rd overtone mode. 

4-D5 



8224 

A.C. CHARACTERISTICS 

Vcc = +5.0V ± 5%; Voo = +12.0V ± 5%;TA = O°C to io°c 

limits Test 
Symbol Parameter Min. Typ. Max. Units Conditions 

~1 cf>1 Pulse Width 2tcy _ 20ns 
9 

t4/2 cf>2 Pulse Width 5tcy _ 35ns 
9 

t01 cf>1 to cf>2 Delay 0 ns 

t02 cf>2 to cf>1 Delay 2tcy _ 14ns 
9 

CL = 20pF to 50pF 

t03 cf>1 to cf>2 Delay 
2tcy 2tcy + 20ns 

9 9 

tA cf>1 and cf>'j Rise Time 20 

tF cf>1 and cf>2 Fall Time' 20 

t04/2 cf>2 to cf>2 (TTL. Delay -5 +15 ns cf>2TTl,Cl=30 
R1=300n 
R2=600n 

toss cf>2 to STSTB Delay 6tcy _ 30ns 6tcy 
9 9 

tpw STSTB Pulse Width tcy _ 15ns STSTB,Cl=15pF 
9 R1 = 2K 

tOAS 
RDYIN Setup Time to SOns _ 4tcy R2 = 4K 

Status Strobe 9 

tOAH 
RDYIN Hold Time 4tcy 
After STSTB 9 

tOA 
RDYIN or RESIN to 4tcy _ 25ns Ready & Reset 
cf>2 Delay 9 Cl=10pF 

R1=2K 
R2=4K 

tCLK ClK Period tcy 

9 

f max 
Maximum Oscillating 

27 MHz 
Frequency 

Cin Input Capacitance 8 pF Vcc=+5.0V 
Voo=+12V 
VSIAs=2.5V 
f=.1 MHz 

Vee 
TEST 

CIRCUIT 

R, 

INPUT 

CL Rz 

~ND GNO 

4-06 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 

~ g 
(/) 
(/) 

< .., 
w 
Z 
a: 
o 
III 
(/) 

o 
~ 
< c 
< 
@ 

8224 
WAVEFORMS 

I-----~----~ 
1------102----1 

1121TTLI 

SYNC 
(FROM 8080A) I 

I-o---------IOSS------

~--_-IORH------

""\1,-----------"""'\.1, - - - - - - - - - - - - - - - - - - - - - - - - - - - -
RDYINOR RESIN 

- - - - - - - - - - - - - - - - - - - '\j:------+-----------------
READY OUT 

~tDR 

RESET OUT 

VOLTAGE MEASUREMENT POINTS: ':>1.':>2 Logic "0" = 1.0V. Logic "1" = B.OV. All other signals measured at 1.5V. 

EXAMPLE: 

A.C. CHARACTERISTICS (For tCY == 488.28 ns) 

TA = O°C to 70°C; VOO = +qV ±5%; Voo = +12V ±5%. 

Symbol Parameter Min. 

t.p1 <1>1 Pulse Width 89 

t4>2 <1>2 Pulse Width 236 

t01 Delay <1>1 to <1>2 0 

t02 Delay <1>2 to <1>1 95 

t03 Delay <1>1 to <1>2 Leading Edges 109 

tr Output Rise Time 

tf Output Fall Time 

toss <1>2 to STSTB Delay 296 

to':>2 <1>2 to <1>2 (TTL) Delay -5 

tpw Status Strobe Pulse Width 40 

tORS RDYIN SetupTimeto STSTB -167 

tORH RDYIN Hold Time after STSTB 217 

tOR READY or RESET 192 
to 4>2 Delay 

fMAX Oscillator Frequency 

Limits 
Typ. Max. Units Test Conditions 

ns tCy=488.28ns 

ns 

ns 

ns r- <1>1 & <1>2 Loaded to 

129 ns CL = 20 to 50pF 

20 ns 

20 ns 
-

326 ns 

+15 ns 

ns 
Ready & Reset Loaded 

ns to 2mA/10pF 
ns All measurements 

ns referenced to 1.5V 
unless specified 
otherwise. 

18.432 MHz 

4-07 



8228/8238 

ABSOLUTE MAXIMUM RATINGS* 

Temperature Under Bias ............ _O°C to 70°C 
Storage Temperature .............. -65°C to 150°C 
Supply Voltage, Vce ................ -0.5V to +7V 
Input Voltage ..................... -1.5V to +7V 
Output Current ......................... 100mA 

*COMMENT: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

D.C. CHARACTERISTICS TA = DoC to 70°C; Vce = 5V ±5%. 

Limits 
Symbol Parameter -. Min. Typ.(1) Max. - Unit Test Conditions 

Vi; Input Clamp Voltage, All Inputs .75 -1.0 V Vee=4.75V; le==-5mA 

IF Input Load Current, 
STSTB 500 pA Vcc':'5.25V 

02& 06 750 pA VF=0.45V 

00,01,0.i;bs, pA 

& 07 250 

All Other Inputs 250 pA 

IR Input Leakage Current 
STSTB 100 pA Vcc=5.25V 

OBO·OB7 20 pA VR =5.25V 

All Other Inputs 100 pA 

YTH Input_1~~eshold Voltage, All Inputs 0.8 2.0 V Vee=5V 

I~c POW~~,S~bply Current 140 190 mA Vee=5.25V 

VbL Output Low Voltage, 
00.0 7 .45 V Vee=4.75V; 10L =2mA 

All Other Outputs .45 V 10L = 10mA 

VOH Output High Voltage, 
00.0 7 3.6 3.8 V Vee=4.75V; IOH=-10pA 

All Other Outputs 2.4 V 10H = -1i'nA 

los Short Circuit Current, All Outputs 15 90 mA Vce=5V -

101off) Off State Output Current, 
All Control Outputs 100 pA Vee=5.25V; VO=5.25 

-100 pA Vo=.45V 

liNT I NT A Current 5 mA -(See _ Figure below) 

Note1: Typical values are for T A = 250 e and nominal supply voltages. 

4-08 



c 
w 

~ 
a:: 
o 
a. 
a:: 
o 
o 
~ 
u) 
w 

~ 
g 
en 
en 
ct 
o1J 
w 
Z 
a:: 
o 
a:I 
en o 
~ 
ct 
C 
ct 

@ 

8228/8238 

WAVEFORMS 

°a----J 
------=j~~. ------------~ SnT~AT .. ~~5T~RN08DE V \J 

IOIOOATAD:::===::=:;,u?\._. ~J( ! 
,,,~;o;; .• '.' .: + 

HLDA 'DC i -+ i ( 

.... 'RR ,.-r.-------------
I 

! i .1 '. 'HO 
iNTA.iOR.MEMR-------""i\ : , /.,-....;,::....-------------

DURING HLDA !.! _ 'os :1- 'OH .., 

S~STEM BUS DURING ~EAD - - - - - - - - t- - - -~ t ~ - - - - - - - - - - - --
--- -- - - -t---I-l''Ao I. I=~- ------- -----

I0IO IUS DURING READ· - - - - - - - -1- - - - -~ - - - - - - - - - - - - - -
i, 'RE~ 1-

WR 

IOWORMEMW 

\ ..... __ -----1 

SYSTEM BUS OUTPUTS - - - - - - - - - - - - - - - < 1 > - - - - - - - - - - - - - -
I I 

VOLTAGE MEASUREMENT POINTS: 00.07 (when outputs) Logic "0" = 0.8V, Logic "1" = 3.0V. All other signals measured 
at 1.SV. 

-ADVANCED IOW/MEMW FOR 8238 ONLY. 

A.C. CHARACTERISTICS TA = O°C to 70"C; Vee = 5V ±5%. 

Limits 
Symbol Parameter· Min. Max. Units Condition 

tpw Width of Status Strobe 22 ns 

tss Setup Time, Status Inputs 00.07 8 ns 

tSH Hold Time, Status Inputs 00.07 5 ns 

toc Delay from STSTB to any Control Signal 20 60 ns CL = l00pF 

tRR Delay from DBIN to Control Outputs 30 ns CL = 100pF 

tRE Delay from DBIN to Enable/Disable 8080 Bus 45 ns CL = 25pF 

tRO Delay from System Bus to 8080 Bus during Read 30 ns CL:: 25pF 

twR Delay from WR to Control Outputs 5 45 ns CL = 100pF 

tWE Delay to Enable System Bus DBo·DB7 after STSTB 30 ns CL = 100pF 

two Delay from 8080 Bus 00.07 to System Bus ns CL = 100pF 
DBo·DB7 during Write 5 40 

tE Delay from System Bus Enable to System Bus DBo·DB7 30 ns CL - 100pF 

tHO HLDA to Read Status Outputs 25 ns 

tos Setup Time, System Bus Inputs to HLDA 10 ns 

tOH Hold Time, System Bus Inputs to HLDA 20 ns CL = 100pF 

4-09 



8228/8238 AND 8259/8259-5 
CAPACITANCE 
This parameter is periodically sampled and not 100% tested. 

Limits 

Symbol Parameter Min. Typ.ll1 Max. Unit 

CIN I nput Capacitance 8 12 pF 

GoUT 
Output Capacitance 

7 15 pF 
Control Signals 

I/O 
I/O Capacitance 

8 15 pF 
(0 or DB) 

Test Conditions: NS: VSIAS = 2.5V, Vee=5.0V, TA = 25°C, f = 1 MHz. 

Note 2: For 00-07: Rl = 4Kn. R2 = ""n. 
eL = 2SpF. For all other outputs: 
Rl = soon. R2 = 1 Kn. eL = 100pF. 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ........ 0° C to 70° C 
Storage Temperature .............. -65°Cto+150°C 
Voltage On Any Pin 

With Respect to Ground .............. -0.5 V to +7 V 
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 Watt 

D.C. CHARACTERISTICS 
(TA = o°c to 70°C; Vee = 5V ±S%) 

SYMBOL PARAMETER 

VIL Input Low Voltage 

VIH Input High Voltage 

VOL Output Low Voltage 

VOH Output High Voltage 

VOH-INT Interrupt Output High Voltage 

Input Leakage Current 
.IILIIRO_7) 

for IRQ..7 

IlL Input Leakage Current 

for Other Inputs 

IOFL Output Float Leakage 

lee Vee Supply Current 

CAPACITANCE 
TA = 25°C; Vee = GND = ov 

MIN. 

-.5 

2.0 

2.4 

2.4 

3.5 

SYMBOL PARAMETER MIN. TYP. MAX. 

CIN Input Capacitance 10 

CliO I/O Capacitance 20 

4-010 

+12V 

lKH ·10% 

8228 

23 
INTA D---------l 

Figure 1. INTA Test Circuit (for RST 7) 

'COMMENT: 
Stresses above those listed under '"Absolute Maximum Ratings'" 
may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. 

MAX. UNITS TEST CONDITIONS 

.8 V 

Vee+.5V V 

.45 V IOL = 2 mA 

V IOH = -400 /1A 

V IOH = -400 /1A 

V IOH = -50 /1A 

-300 /1A VIN = OV 

10 /1A VIN = Vee 

10 /1A VIN = Vee to OV 

±10 /1A VOUT = 0.45V to Vee 

100 mA 

UNIT TEST CONDITIONS 

pF fc = 1 MHz 

pF Unmeasured pins returned to Vss 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(J 

~ 
ui 
w 

~ 
g 
U) 
U) 

< 
oil 
w 
2 
a: 
o 
m 
U) 

o 
:!: 
< c 
< 
@ 

8259/8259-5 

A.C. CHARACTERISTICS 
(TA = o°c to 70°C; VCC = +5V ±5%, GND = OV) 

Bus Parameters 
Read: 

8259 8259·5 

SYMBOL PARAMETER MIN. MAX. MIN. MAX. 

tAR CS/Ao Stable Before RD or INTA 50 50 

tRA CS/Ao Stable After RD or INTA 5 30 

~R RD Pulse Width 420 300 

tRO Data Valid From RD/INTAI1 J 300 200 

tOF Data Float After RD/INTA 20 200 20 100 

Write: 

8259 8259·5 

SYMBOL PARAMETER MIN. MAX. MIN. MAX. 

tAW Ao Stable Before WR 50 50 

tWA Ao Stable After WR 20 30 

tww WR Pulse Width 400 300 

tow Data Valid to WR (T. E.) 300 250 

two Data Valid After WR 40 30 

Other Timings: 

8259 8259·5 

SYMBOL PARAMETER MIN. MAX. MIN. MAX. 

tlW Width of Interrupt Request Pulse 100 100 

tiNT INT t After IR t 400 350 

tiC Cascade Line Stable After INTA t 400 400 

Note 1: 8259: CL = 1 OOpF, 8259-5: CL = 150pF. 

Input Waveforms for A.C. Tests 

2.4 ---""X::: > TEST~INTS < :::x ..... __ _ 
0.45 ___ .I -

4-011 

UNIT 

ns 

ns 

ns 

ns 

ns 

UNIT 

ns 

ns 

ns 

ns 

ns 

UNIT 

ns 

ns 

ns 



8259/8259-5 

WAVEFORMS 

Read Timing Write Timing 

ADDRESS BUS ADDRESS BUS 

----~'~----------------~--------~-~------------- ----~,~----~---------+--------~.'--------------

DATA BUS 

flOWA 

Other Timing 

,:: --);J f~-----------""""\\,-_______ _ 
INTA 

DB 

Note: Interrupt Request must remain "H IGH" (at least) until leading edge of first INT A. 

Read Status/Poll Mode 

, ____ ...J! 
~----------~ ~-------------------------------

~'--+j---'I 

DAT .. :vzzzod DOW, rzz;zmzz~ DATA I womz;;mu 

4-012 



Q 
w 

~ 
IX: 
o 
D.. 
IX: 
o 
CJ 
~ 
en 
w 

~ 
g 
CI) 
CI) 

ct 
~ 
w 
Z 
IX: 
o 
CD 
CI) 

o 
:!: 
ct 
Q 
ct 
@ 

TMS 5501 
TMS 5501 ELECTRICAL AND MECHANICAL SPECI FICATIONS 

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE·AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)-

Supply voltage, V CC (see Note 1) 
Supply voltage, VDD (see Note 1 
Supply voltage, VSS (see Note 1) 

All input and output voltages (see Note 1) 
Continuous power dissipation 
Operating free·air temperature range 
Storage temperature range 

-0.3 V to 20 V 
-0.3 V to 20 V 
-0.3 V to 20 V 
-0.3 V to 20 V 
.... 1.1 W 

O°C to 70°C 
-65°C to 150°C 

·Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only 
and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" section of this specification is not implied. Exposure to absolute·maximum·rated conditions for extended periods may affect 

. device reliability. 
NOTE 1: Under absolute maximum ratings voltage values are with respect to the normaliy most negative supply voltage, V BB (substrate). 

Throughout the remainder of this data sheet, voltage values are with respect to VSS unless otherwise noted. 

RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX UNIT 

Supply voltage, VSS -4.75 -5 -5.25 V 

Supply voltage, Vee 4.75 5 5.25 V 

Supply voltage, VOO 11.4 12 12.6 V 

Supply Voltage, VSS 0 V 

High·level input voltage, VIH (all inputs except clocks) 3.3 Vee+ 1 V 

High·level clock input voltage, VIH(<t» 9 VOO+1 V 

low·level input voltage, Vll (all inputs except clocks) (see Note 2) -1 O.B V 

low·level clock input voltage:VIU<t» (see Note 2) -1 O.B V 

Operating free·air temperature, T A 0 70 °e 

NOTE 2: The algebraic convention where the most negative limit is designated as minimum is used in this specification for logic voltage levels only. 

Data sheets on pages 0-13 through 0-16 are reproduced by perrrlission of Texas Instruments Incorporated. 

4-013 



TMS 5501 
ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(UNLESS OTHERWISE NOTED) 

PARAMETER TEST CONDITIONS MIN MAX 

II 
Input current (any input except 

VI = 0 V to VCC ±10 
clocks and data bus) 

II~) Clock input current VI(q,) - 0 V to VDD ±10 

II(DB) Input current, data bus VIIDB) = 0 V to VCC, CE at 0 V -50 

VOH High-level output voltage IOH = 400l'A 3.7 

VOL Low-level output voltage IOL = 1.7 mA, 0.45 

IBB(av) Average supply current from VBB -1 

ICC(av) , Average supply current from Vec 
Operating at tc(q,) = 480 ns, 100 

IDD(av) Average supply current from VDD 
TA = 25°C 40 

Ci Capacitance, any input except clock VCC - VDD - VSS - 0 V, 10 

CI(q,) Clock input capacitance VBB = -4.75 to -5.25 V, f = 1 MHz, 75 

Co Output capacitance All other pins at 0 V 20 

TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 

MIN MAX 

tc(q,) Clock cycle time 480 2000 

tr(q,) Clock rise time 5 50 

tf(q,) Clock fall time 5 50 

t w (q,l) Pulse width, clock 1 high 60 

t w (q,2) Pulse width, clock 2 high 200 300 

td(q,1L·<t>2) Delay time, clock 1 low to clock 2 0 

td(q,2-cPl) Delay time, clock 2 to clock 1 70 

td(q,l H-<t>2) Delay time, clock 1 high to clock 2 (time between leading edges) 80 

tsu(ad) Address setup time SO 

tsu(CE) Chip-enable setup time 50 

tsu(da) Data setup time 50 

tsu(sync) Sync setup time 50 

tsu(XI) External input setup time 50 

th(ad) Address hold time 0 

th(CE) Chip-enable hold time 10 

thIda) Data hold time 10 

th(sync) Sync hold time 10 

th(XI) External input hold time 40 

tw(sens H) Pulse width, sensor input high SOD 

tw(sens Ll Pulse width, sensor input low 500 

td(sens-intl Delay time, sensor to interrupt (time between leading edges) 2000 

td(rst-intl Delay time, RST instruction to interrupt (time between trailing edges) 500 

4-D14 

UNIT 

I'A 

I'A 

I'A 

V 

V 

mA 

pF 

UNIT 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



c 
w ..... 
< a: o 
11. a: 
o 
CJ 
~ 
en w 
~ g 
en 
en 
< 
all 
w 
Z 
a: 
o 
In 
en o 
~ 
< c 
< 
@ 

TMS 5501 
SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED 
OPERATING CONDITIONS (SEE FIGURES 6 AND 7) 

tpzx 

tpxz 

tpD 

1/>1 

PARAMETER 

Data bus output enable time 

Data bus output disable time to high-impedance state 

External data output propagation delay time from q,2 

TMS 5501 

OUTPUT 

3V 

-IL ';'1.3kn 

J CL'" lOOpF 

CL includes probe and Jig capacitance 

LOAD CIRCUIT 

TEST CONDITIONS 

CL'" 100 pF, 

RL'" 1.3 kn 

... �.I--------tc(q,}-------~.I ~ ...... tf(q,} 

MIN MAX 

200 

180 

200 

I I I I 
t w(q,ll I- .1 tdq,l--I 14"'- I I- .1 td(l/>l L-4>21 

UNIT 

ns 

ns 

ns 

-----.-r~1 t ( 1 1_.' ~ ! j I I 
w 1/>2 I I 1 ' tdCPI~ ,.- ...... 14-t1(1/>1 

1/>2\ __ td_(_1/>1_H_-4>_2_1 ... !_I_' ___ Ip-__ ...-,~ -I td (1/>2-4>11: ~ 
.: th(CEI~ I . I ... ! I 

CHIP 

ENABLE 

DO 

~~rg*j~ 
th(synclJ.....--....l I 1 . ~I I 

I I I· I I 1 I I 1 
...... --... 1 th(dal~1 tpzx tpxz~ 

I I I Hi-Z I<I! . I '-L 
I :~ .1 OUTPUT DATA yALID /lUIHI -Z 

tsu(dal I. _I th(dal~ I 

W II \! Hi-Z (,I ,...!-----t------~I 01 ., _ OUTPUT DATA VALID 
I' . HI-Z 

INPUTS 

I .l 1 I I I 

~=~ Hi-Z k: OUTPUT DATA yALlD *",I-Z 

I. -t tsu(adl I I. _I th(adl W< I READ FUNCTION A~DRESS ~~~~,.."O .... N .... 'T...,C...,~-~-§§.,..,. 
I. ., tsu(XII I. _I th(XII 

~ EXTERNAL INPUT DATA ~~~~~~D~ON~*~r~{A~*~~~~~~~~ 

02-07 

AO-A3 

EXTERNAL 

NOTE: For 1/>1 or 1/>2 inputs, high and low timing points are 90% and 10% of V'H(I/»' Allother timing points are the 50% level. 

FIGURE 6-READ CYCLE TIMING 

4-015 



TMS 5501 

cP1 

CHIP 

ENABLE 

SYNC 

00,01 

--~~ ~~-------
I . I I 
I.~ ,~ 

____ ---1 ____ ... '_..;;.,.;... -J/ "J I /j '--
tsu(CE) I_ 'I ~th(CE) . '.;. ,I ~ 

mr, I ~k9E:rj}~~ 
I I f I 

7 " I I I ---Ii, ~ I I I 
:. . tsu(da) I- -, thIda) I_ 'I I 

~: ~ INPUTDATA! ~~~-~~~ 
, . ·,1· !:= 

D2-07'~g&itst~~ INPUTDATA: ~ 
~.---M-tsu(ad) , th(ad)~ I 

AO-A3 

EXTERNAL 

OUTPUTS 

~ WRITE FUNCTION ADDRESS ~,.~_~~~-,r-_ 
tPD ,. ,I 

PREVIOUS EXTERNAL OUTPUT DATA ~TA 

NOTE: For ct>1 and ct>2 inputs, high and 10":' timing points are 90% and 10% of VIH(ct>l. All other timing points are the 50% level. 

FIGURE 7-WRITE CYCLE TIMING 

k-tw(sens H) ...... tw(sens L)~ 
J£ ~~ SENSOR --I'! ""l\ if" 

I 
... ' ...... -------td(sens-int)-------.-.,' 

----------------------------~)(------------------~ INTERRUPT 

RST INSTRUCTION !.-td(rst-int)--t 

-------------------------------~~. ON DATA BUS ~ , 
(See Note 1) --------

NOTES: 1. The RST instruction occurs during the output data valid time of the read cycle. 
2. All timing points are 50% of VIH. 

FIGURE 8-SENSOR/INTERRUPT TIMING 

4-016 



c 
w 

~ 
a: 
o 
Q. 

a: 
o 
(J 

~ 
en 
w 

~ 
g 
en 
en 
oct 
c/J 
w 
Z 
a: 
o 
In 
en 
o 
~ 
oct c 
oct 
@ 

Chapter 5 
THE Q085 

The 808SA is Intel's enhancement of the 8080A - just as the Z80 is Zilog's enhancement of the 8080A. The 
Z80 is described in Chapter 7. 

Intel is the developer of the 808SA; Intel is also the principal manufacturer of the 8080A. But the individuals at 
Zilog who developed the Z80 were previously employed by Intel, at which time they developed the 8080A 
from the' 8008. The Z80 and the 808SA therefore have equal claim to be the legitimate desc'endent of the 
8080A. 

The 808SA provides the same logic as the 8080A, 8224 and 8228 tflree-chip CPU. The 808SA has the following 
additional enhancements: 

1) The SOS5A requires a single +5V power supply, 

2) The SOS5A uses a single clock signal. 

3) The SOS5A has a primitive on-chip serial I/O capability which may also be used to input status and output control 
signals. 

4) The SOS5A has interrupt request pins with hardware-generated interrupt vectoring, 

5) The SOS5A operates with a standard 320 nanosecond clock as against the standard 500 nanosecond clock of the 
SOSOA. Blo!t recall that there are versions of the SOSOA that operate with a 250 nanosecond clock. 

The 808SA instruction set is almost identical to the 8080A instruction set; in contrast, the Z80 has a massively 
expanded instruction set. The large ZSO instruction set has been criticized for its complexity. but one could argue that 
since the ZSO also provides the complete SOSOA instruction set. anyone who does not want to use the additional in­
structions can simply ignore them. . . 

The 808SA multiplexes its pata Bus with the low-order Address Bus lines. Such multiplexing demands custom 
support devices. or external demultiplexing logic. 

Figure 5-3 and associated text provide a direct comparison of 808SA and 8080A signal interfaces. 

In addition to the 808SA microprocessor, support devices described in this chapter inclucte: 

- The S155/S156 static RAM with I/O ports and timer, This device provides 256 bytes of static read/write memory. 

- The S355 ROM with I/O ports. This device provides 204S bytes of read-only memory plus I/O logic. 

- The S755A EPROM with I/O ports, This device provides 204S bytes of erasable programmable read-only memory with 
I/O logic. ' 

The 808SA is a new version of an earlier device, the 8085. In most respects the two parts 
are identical - however, there are some important differences, which we will note 
througho~t this chapter. Where we note no difference, the discussion applies to both the 
8085 and the 808SA. . 

Standar~ 8080A support devices described in Chapter 4 and in Volume III cannot be used with the 808SA 
unless the 808SA is operating with a 500 ns clock. If you are using the 808SA with a 320 ns clock, you must 
use the special -5 series of support parts. 

The SOS5A prime source is: 

The SOS5A second source is: 

INTEL CORPORATION 
3065 Bowers Avenue 

Santa Clara. California 95051 

ADVANCED MICRO DEVICES 
901 Thompson Place 

Sunnyvale. California 940S6 

5-1 



The 8085A uses a single +5V power supply; it is packaged as a 40-pin DIP. 

Using a 320 nanosecond clock. instruction execution times range from 1.3 microseconds to 5.75 microseconds. 

All 8085A devices have TTL compatible signals. 

Logic to HandlEj 

.. Interru~:d~lg0jJ~ 
ExternalOevices 

/? 

I/O Com~u~i?a~jon 
.. Serial to~ata!l~r 

Interfac~,+ogi9 ii 
,.. . ......... . 

'Programmable 
Timers 

ROM Addressing 
and 

Interface Logic 

Read Only 
Memory 

I •• '" 

'"." 

System Bus 

:.'.:: 

I/O Ports 
Interface Logic 

1 
I/O Ports 

II 

Figure 5-1. Logic of the 8085A Microproc'essor 

THE SOS5A CPU 

Direct Memory 
Access Control ~ 

Logic 

t 
t 

RAM Addressing 
and ~ 

Interface' Logic 

t 
Read/Write 

~ Memory 

Functions implemented on the SOS5A CPU are illustrated in Figure 5-1; they represent typical CPU logic. The 
8085A has an Arithmetic and Logic Unit. a Control Unit. Accumulators and registers. 

Clock logic is on the 8085A CPU chip; only an external crystal or RC network is needed. 

Bus interface logic which was excluded on the 8080A is provided by the 8085A. 

N-channel silicon gate technology is used by all 8085A devices. 

5-2 



Q 
w 
!i 
a: 
o 
0.. 
a: 
o 
u 
~ 
en 
w. 

!i 
u o 
CI) 
CI) 

ct 
all 
w 
Z 
a: 
o en 
CI) 

o 
~ 
ct 
Q 
ct 
@ 

SOS5A PROGRAMMABLE REGISTERS 
The SOS5A programmable registers are identical to the SOSOA programmable registers. They may be illustrated 
as follows: 

psw 
A 

Program Status Word } These two sometimes 

Primary Accumulator treated as a 16-bit unit 

B C Secondary Accumulators/Data Counter 

0 E Secondary Accumulators/Data Counter 

H L Secondary Accumulators/Data Counter 

SP Stack Pointer 

PC Program Counter 

For a discussion of SOS5A programmable registers refer to the SOSOA CPU description given in Chapter 4. 

SOS5A ADDRESSING MODES 
The SOS5A uses exactly the same memory addressing modes as the SOSOA. Direct and implied memory ad­
dressing are available. See the SOSOA addressing mod~s description given in Chapter 4 for details. 

SOS5A STATUS 
The SOS5A has the same set of status flags as the SOSOA; status flags are stored in the same bits of the Pro­
gram Status Words. The five status flags provided are: . 

Zero (Z) 

Sign (S) 

Parity (P) 

Carry (C) 

Auxiliary Carry (AC) 

Status flags are assigned to bits of the Program Status Words as follows: 

7 6 5 4 3 2 1 0 ~ Bit No. 

I s I z I X 1:XC1 X I p I X I c I 
+",-~l .... -"l.----- Unassigned 

For a discussion of status flags refer to the SOSOA status description given in Chapter 4. 

SOS5A CPU PINS AND SIGNALS 
SOS5A CPU pins and signals are illustrated in Figure 5-2. 

Whereas the internal architecture and the instruction sets of the 8080A and the 8085A are very similar. pins and sig­
nals are not. We will therefore begin by describing 8085A signals without reference to. or comparison with. the 8080A; 
then we will compare the two interfaces. 

The Address and Data Busses of the SOS5A are multiplexed. Pins A8 - A 15 are output-only lines which carry the 
high-order byte of memory addresses. ADO - AD7 are bidirectional lines which output the low-order byte of memory 
addresses: ADO - AD7 also serve as a bidirectional Data Bus. 

5-3 



Xl 
X2 

RESET OUT 

SOD 

SID 

TRAP 

RST 7.5 

RST 6.5 

RST 5.5 

INTR 

iNT'A 
ADO 
ADl 

AD2 

AD3 

AD4 

AD5 

AD6 

AD7 

Vss 

PIN NAME 

ADO.- AD7 

A8 - A15 

ALE 

R5 
\VA 
10iM 
SO. Sl 

READY 

SID 

SOD 

HOLD 

HlDA 

INTR 

TRAP 

RST 5.5} 
RST 6.5 

RST 7.5 

iNTA 
REsETTN 
RESET OUT 

Xl. X2 
elK' 

VCC Vss 

.. 
--.. -

-:ow .. 
.. ---. -.. --

-.. ... 
-:- -.. ... -- --"" 
~ .. ... - -- .. ,- -- --- ----- -.:.. -

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 
8085 

12 

13 

14 

15 

16 

17 

.18 

19 

20 

DESCRIPTION 

Address/Data Bus 

Address Bus 

Address Latch Enable 

Read Control 

Write Control 

40 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

28 

2~ 
26 

25 

24 

23 

22 

21 

I/O or Memory Indicator 

Bus State Indicators 

Wait State Request 

Serial Data Input 

Serial Data Output 

Hold Request 

Hold Acknowledge 

Interrupt Request 

---

Non-maskable Interrupt Request 

Hardware vectored 

interrupt requests 

Interrupt Acknowledge 

System Reset 

Peripherals Reset 

Crystal or RC Connections 

Clock Signal 

Power. Ground 

·This output is tristate on the 8085. but not on the 8085A 

.. -

-----
-
-... 
--

' . 
--, 
.. 

VCC (+ 5V) 

HOLD 

HlDA 

CLOCK (OUT) 

RESET IN 

READY 

10/M 
Sl 

R5 
WR 

ALE 

SO 
A15 

A14 

A13 

A12 

All 

Al0 

A9 

A8 

TYPE 

Bidirectional. tristate 

Output. tristate 

Output· 

Output. tristate 

Output. tristate 

Output. tristate 

OutPUt 

Input 

Input 

Output 

Input 

Output 

Input 

Input 

{

Input 

Input 

Input 

Output 

Input 

Output 

Input 

Output 

Figure 5-2. 8085A CPU Signals and Pin Assignments 

5-4 



Q 
w 
~ a: 
o 
a.. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
CI) 
CI) 

< 
oil 
w 
z 
a: o 
ID 
CI) 

o 
~ 
< 
Q 

< 
@ 

ALE is an address latch enable signal which pulses high when address data is being out­
put on ADO - AD7. You may use the falling edge of ALE to strobe the address off 
ADO - AD7 into external latches if you are demultiplexing ADO - AD7 into separate Address 
and Data Busses. ALE is a tristate output on the 8085, an earlier version of the 8085A. 

ALE DIFFERENCE 
IN 8085 AND 
8085A 

Five control signals control memory and I/O accesses. 

RD is pulsed low for a memory or I/O read operation. 

WR is pulsed low for a memory or I/O write operation. 

10/M is output high in conjunction with RD or WR for an I/O access. 

10/M is output low in conjunction with RD or WR for a memory read or write operation. 

The state of the System Bus is further defined by the SO and S1 status signals as follows: 

S1 SO OPERATION SPECIFIED 
o 0 Halt 
o 1 Memory or I/O write 
1 0 Memory or I/O read 
1 1 Instruction fetch 

8085A 
CONTROL 
SIGNALS 

8085A 
DATA BUS 
DEFINITION 
SIGNALS 

External logic that does not have sufficient time to respond to an access can gain additional time by using the READY 
input signal. The READY input can be used to insert Wait state clock periods in any machine cycle. Timing and 
logic associated with Wait states is described later in this chapter. 

Two signals allow a primitive serial I/O capability. The high-order Accumulator bit may be out­
put via SOD. The signal level at SID may be input to the high-order bit of the Accumulator. 
SID and SOD may also be used to input status and to output control Signals. 

Two signals allow external logic to take control of the System Bus. 

HOLD, when input high, floats the Address Bus plus the RD, WR, 10/M and ALE control sig­
nals. HLDA is output high to acknowledge this Hold condition. 

There are six signals associated with interrupt logic. Interrupts may be requested via INTR, 
RST 5.5, RST 6.5, RST 7.5 and TRAP. An interrupt request made via INTR is acknowledged 
via the INTA output. 

INTR is the general purpose interrupt request used by external logic: it is equivalent to the aOaOA 
INTR signal. 

8085A BUS 
CONTROL 
SIGNALS 

8085A 
INTERRUPT 
SIGNALS 

TRAP is a non-maskable. highest priority interrupt request. TRAP is used for catastrophic failure interrupts. 

RST 5.5. RST 6.5 and RST 7.5 are three interrupt request signals supported by hardware-implemented vectoring. 

Interrupt capabilities of the 8085A are described in detail later in this chapter. 

There are two signals associated with 8085A Reset logic. 8085A 

RESET IN is the Reset input signal. This Signal need not be synchronized with the clock. RESET ~~:~iLS 
OUT is a Reset signal output by the 8085A for use throughout the rest of the 8085A microcom-
puter system. 

X1 and X2 connect an external crystal or RC network to drive clock logic internal to the 8085A. A crystal will be 
connected as follows: 

Xl 

D 
'-----I X2 

5-5 



An RC network will be connected as follows: 

,....--.. - ...... X1 

R 

..... - ..... X2 

You can apply a clock signal directly to X 1: 

+ 5V 

CLK-------4~--~~ X1 

X2 

The input frequency must be twice the operating frequency. Thus. to obtain a 320 nanosecond clock. or 3.125 
MHz. the input frequency must be 6.25 MHz. 

Slave SOS5A devices in a multiple CPU system will usually be driven directly by a clock signal. 

A TTL level clock signal (ClK) is output by the SOS5A. It may be used to drive slave CPUs. or for any other synchroniza­
tion purpose within the microcomputer system. The frequency of ClK is the operating frequency of the SOS5A; that is. 
the ClK frequency is half the input frequency. 

GND------------------~~~ +sv __________________ ~~~ 
'-sv _________________ ---,-....~ 

, + 12V -------------------IIoi..i-l 

~ SYSTEM DMA -------------------;.;...,-1 
REO. 

SYSTEM INT. ------------------....:~~ 
REO. 

'INT. ENABLE _---------------:.:;..-1 

'TANK 

'esc 
<l>21TTl) 

RDYIN 
mm 

'+12V 
'+5V 
'GND 

~-------------------------1~AO 
~~---------------------_1~Al 
~~------------------------4~A2 
~~-------------------------4~A3 
~~---------------------------.~A4 

~~-------------------------_1~A5 

~---------------------------~~A6 
~---------------------------4~·A7 

~-----------------------------1~A8 

~----------------------------1~A9 
~~--------------------------_~ A 10 
~---------------------------1~ All 
HiI~-------------------------~~ AU 
m~------------------------1~ A13 
~------------------------1~AI4 

~1:-------------------------_~ AIS 

'+ sv _____ .,.2.::-8 _4-4 
'GNO ---""':--'i 

SYSTEM 
COHTAOl 

24 

_DBO 
_OBI 
-OB2 
-0B3 
-0B4 
-OBS 
-oae 
-087 

-Signals no longer needed or not present. 'BUSEN ------.... ~L ____ P .... ------
New 8085A signals: RST 5.5. RST 6.5. RST 7.5. TRAP. RESET OUT. SID. SOD 
Shaded signals represent 8085A equivalents of 8080A. 

Figure 5-3. A Comparison of SOS5A and SOSOA/S224/S22S Signal Interface 

5-6 



c 
w 

~ 
a: o 
a. 
a: 
o 
o 
~ 
ui 
w 

~ 
g 
en 
en 
~ 

CI1J 
w 
Z 
a: 
o 
III 
en o 
~ 
~ 
c 
~ 

@ 

A COMPARISON OF SOS6A AND SOSOA SIGNALS 
No attempt has been made to maintain any kind of pin compatibility between the SOSSA and the SOSOA. 
Nevertheless, as illustrated in Figure S-3, it is relatively simple to derive equivalent system busses when using 
the SOSSA or SOSOA. But look at Figure 5-3 with an element of caution. Many logical combinations of 8085A signals 
are shown reproducing 8080A signals: in reality you will never generate such logical combinations - a point which 
will become clear as the chapter proceeds. The purpose of Figure S-3 is to illustrate the equivalence of the system 
busses generated by the SOSSA and the SOSOA without indicating that creation of equivalent busses is desira­
ble. 

The 8080A signals which are shown as having direct 8085A equivalents are either obvious. or will become so after you 
have read this chapter. . 

What is more interesting is to. look at the 8080A Signals which no longer exist and the new 8085A signals which have 
been added. . 

Let us first look at the signals which have been dropped. 

There are the surplus power supplies -5V and +12V. plus the secondary power supplies required by the 8224 Clock 
Generator and the 8228 System Controller. Elimination of these signals is self-evident. 

INTE is an 8080A signal that indicates to external logic when interrupts have or have not been enabled internally by the 
8080A. This signal is not very useful. since external logic cannot use the information it provides. Apart from illuminat­
ing an appropriate indicator on a minicomputer-like control panel. the INTE signal of the 8080A serves little useful pur­
pose. 

WAIT is a signal which is output high by the 8080A while Wait states are being inserted within a machine cycle. There 
is little that external logic can do with this signal. therefore its elimination in the 8085A carries no penalty. 

BUS EN is a control input to the 8228 System Controller: it causes the 8228 to float its output signals. This signal is no 
longer required in the 8085A since the Hold state floats all equivalent 8085A output signals - with the exception of 
INT A. which does not need to be floated. . 

The 8224 Clock Generator outputs two synchronizing clock signals - OSC and <1>2 (TTL). <1>2 (TTL) is approximately 
reproduced by ClK: OSC has no equivalent 8085A signal. 

The TANK input to the 8224 Clock Generator allows overtones of the external crystal to be used. No such signal exists 
with the 8085A - which simply means that you have to use the primary frequency of any crystal connected across the 
X 1 and X2 inputs. 

Seven new signals have been added to the· SOSSA; it would have been possible to provide separate Data and 
Address Busses by eliminating these seven signals, plus the ALE control signal whose presence is a direct conse­
quence of having multiplexed Data and Address Busses. Intel has chosen to provide the seven new signals. paying the 
price of having multiplexed Data and Address Busses. 

Let us examine the new signals. 

RST 5.5. RST 6.5. RST 7.5 and TRAP represent additional interrupt request inputs. TRAP is a non-maskable. high 
. priority interrupt: the other three interrupt requests are supported by hardware-implemented vectoring. 

RESET OUT is a Reset signal output by the 8085A: it may be used to reset support devices around the 8085A. 

SID and SOD are control signals which provide a primitive serial input and output capability. These signals can also be 
used as a general purpose status input (SID) and a control output (SOD). 

SOS5A TIMING AND.INSTRUCTION EXECUTION 

An SOSSA instruction's execution is timed by a sequence of machine cycles, each of which is divided into clock 
periods. 

An instruction is executed in from one to five machine cycles labeled MC 1. MC2. MC3. SOSSA 
MC4 and MC5. MACHINE CYCLES 

5-7 



The first machine cycle of any instruction's execution will have either four or six clock periods. 
Subsequent machine cycles will have three clock periods only. This may be iliustrated as follows: 

MCl 
i··/i\ 

TlIT2IT3IT41:t~IT~; Tl T2 T3 Tl T2 T3 Tl T21 T3 Tl T2 T3 

Where MC is shaded, the entire machine cycle is optional. Where T iss haded, the clock period is 
optional within its machine cycle. 

SOS5A 
CLOCK 
PERIODS 

8085A machine cycles and clock periods are very similar to those ofthe 8080A. You will find in Table 5-1 that the 
number of clock periods required to execute 8085A instructions is equal to the number of clock periods required by the 
8080A to execute the same instructions, or differs by one clock period only. 

THE CLOCK SIGNALS 
The SOS5A times its machine cycles using this simple clock signal: 

MCl MC2 MC3 . 

ClK 

Although the SOS5A has no SYNC signal to identify the start of a new machine cycle, you can use the SOS5A 
ALE signal for the same purpose, This signal is output true during the first clock period of every machine cycle - at 
which time the ADO - AD7 lines are outputting address data. In addition, you can identify the first (instruction fetch) cy­
cle of any instruction's execution. SO and S1 will both be output high during an instruction fetch machine cycle. Clock 
periods and machine cycles may therefore be identified as follows: 

CLK I 

I 

IO/M.\ 
I 

SO 

51 

AS - A15 

ADO -AD7 

ALE 

MCl 

Tl T2 

Low-order 

T1 identified 

T3 

MC 1 identified 

by SO = 1 

and 51 = 1 

5-8 . 

MC2 



C 
LU 

~ 
a: 
o 
Q. 
a: 
o 
CJ 
~ 
en 
LU 

~ g 
U) 
U) 

« 
ell 
LU 
Z 
a: 
o en 
U) 

o 
~ 
ct· 
c « 
@ 

MEMORY ACCESS SEQUENCES 
SO far as external logic is concerned, there is very little difference between an instruction fetch, a memory 
read, and a memory write. We will therefore examine timing for these operations together. 

Mel 

elK 

101M 

so 

51 

P~ high-order byt~ 
I Input i~struction .. ---~ object code ADO- AD7 

I 
I 

I Unspecified I 

Me2 

Tl 

I I I I ~ ______ ~I 

::;L-=;.=~t:;r-...., .. ~ ~ ______ JI ~.------

ALE 

latch low- I 

order 

address 

byte 

~~--""""~'r~--""""~/~ 
Instruction Fetch ' Instruction 

Decode 

Figure 5-4. A Four Clock Period Instruction Fetch Machine Cycle' 

, I 
I 

Let us first consider an instruction fetch. Timing is illustrated in Figure 5-4 for a four clock period machine cycle, 
and in Figure' 5-5 for a six clock period machine cycle. ' 

The most important aspect of the instruction fetch machine cycle is the fact that it will have either four or six clock 
periods. as against three for all subsequent machine cycles. The instruction fetch machine cycle must have at least four 
clock periods. since the fourth clock period is needed to decode the instruction object code which has been fetched .. If 
the instruction requires no subsequent memory accesses. then a fifth and sixth clock period may be needed to perform 
the internal operation specified by the fetched instruction. If additional memory accesses will be required. then the 
fourth clock pe'riod of the first machine cycle is sufficient.' " 

At the end of the first clock period. ADO - AD7 is floated transiently: then it is turned around to act as a Data Input Bus. 
RD is pulsed low to strobe data onto the Data Bus. 

The memory read must occur within three clock periods. Since this is an instruction fetch machine cycle. the CPU will 
place the input in .the Instruction register. If external logic requires more time to respond to the memory access. then it 
can generate additional Wait clock periods. We will describe the 8085A Wait state shortly. 

During the fourth clock period of the instruction fetch machine cycle the instruction object code is interpreted by logic 
of the 8085A CPU. Fifth and sixth clock periods will be required by some instructions to execute required internal 
operations. 

5-9 



ClK I 

I 

Tl T2 T3 

MCl 

I 
I 

I· 

Mel 

T4 T5 Te Tl T2 T3 T4 

loiM ~ 
I~--~----~--~----~----~--------~----~--------~ 

so ~ 
I 

SlV~~----+---~--~--~--~~--+---~--~--~ 

I 

AS - A15 I Unspecified PC high-order byte 

I I I 

ADO-AD7 ~~.j~~~~ __ ~~---;I;-~-;I----~!;!:~ (·--I-~~I---'J: 
order byte I 

RD, 
I 
I 

Latch low­
order 

address 

byte 

I 

'-~----~'r~""~~ '-~--"~'r~""~~ 
Instruction Fetch Instruction decode 

and execute 

Figure 5-5. A Six Clock Period Instruction Fetch Machine Cycle 

During the fourth and subsequent clock periods, ADO - AD7 is floated and A8 - A 15 contains unspecified data. 

The fact that ADO - AD7 and A8 - A 15 are unknown data during the fourth and subsequent 8085A 
clock periods of an instruction fetch machine cycle must be taken into account when you DEVICE 
create memory select and I/O device select logic.· SELECT 

In Figures 5-4 and 5-5 SO and S1 are both high. identifying this as an instruction fetch machine 
cycle. 101M is low since the instruction object code is to be fetched from memory. An instruction 
fetch is thus equivalent toa memory read. 

LOGIC 

The address of the memory location to be accessed is fetched from the Program Counter (PC) and is output on 
ADO - AD7 {low-order byte) and AS - A 15 (high-order byte). The low-order byte of this memory address is stable on 
ADO~ AD7 during the first clock period. ALE is pulsed high at this time. The trailing edge of ALE is designed to act 
as a strobe signal which external logic can use to latch the low-order address byte off ADO - AD7. If you are using 
one of the 808SA support devices (the 8155, the 8156 the 8344 or the or the 8755A), then the low-order byte 

5-10 



c 
w 
!;( 
a: 
0 
Q. 
a: 
0 
u 
~ 
u) 
w ... 
oCt 
U 
0 
CI) 
CI) 

oCt 
o!I 
w 
Z 
a: 
0 
Ol 
CI) 

0 

~ 
oCt c 
oCt 

@ 

of the memory address is latched off the ADO - AD7 lines for you. If you are using standard memory devices, 
then you must demultiplex ADO - AD7. Any simple latched buffer can be used for this purpose; here is an exam­
ple of the 8212 I/O port being used as a demultiplexer: 

A8 - A 15 

ALE 

Address 

OS2 OSl 
Bus 

8085A 

8212 

010 000 • ' . 
AO-A7 • • 

017 007 

MO CLR 

ST8 

~----~--------------~~-----VCC 

Data Bus 

You might argue that there is no harm done if memory or 1/0 devices select themselves 
when the System Bus is supposed to be idle; if neither the read nor write strobe is present, 
data transfer between the System Bus and the selected device ~annot ?ccur. 

MULTIPLE 
DEVICE 
SELECTS 
AND BUS 
LOADING 

Unfortunately, the problem is not so simple. 

It is possible for more than one memory or I/O device to consider itself sf3lecteq while the bus is 
idle; this may occur under the following conditions: ' 

1) If I/O devices are being selected as I/O ports. then the Address Bus lines may select an I/O port while 
simultaneously selecting a memory device. ' 

2) In microcomputer systems that use only a small portion of the total allowed memory - and most microcomputer 
systems fall into this category - memory select logic need not decode unique memory addresses. Here is an ex­
ample of two 4096-byte memory modules. each of which uses a single line of the Address Bus in order to create 
device selects: 

" 

Y> 
., 

..-. 
. -.. 

5-11 

~-

-.. 
: .. -
... . 

A15 
A14 
All 
AO 

CSl 
t Address to Memory 
fModule 1 

} 
Address to Memory 
Module 2 



Memory module 1 will be assigned the address space 800016 through 8FFF16. Memory module 2 will be assigned the 
address space 400016 through 4FFF16. In reality a variety of other addresses will select memory modules 1 or 2. Ad­
dresses C00016 through CFFF16 will select memory modules 1 and 2. 

A correctly written program will keep either A 15 or A 14 low; but while the System Bus is floating. both address lines 
could be high - in which case both memory modules will become selected. 

While signal levels on the Address Bus are changing state. memory and I/O devices may be transiently selected. Tran­
sient selection may occur during T1 as well as during T4. T5 and T6. Transient selection may leave more than one 
memory or I/O device simultaneously selected for shoq periods of time. 

If more than one memory or 1/0 device is simultaneously selected, excessive loads may be placed on the 
System Bus: At best. these excessive loads will cause devices connected to the' System Bus to temporarily malfunc­
tion: 'at worst. device failures may result. 

It is very important to prevent devices from being spuriously selected. 

If you use RPIVI devices with multiple chip select inputs, you can prevent transient memory 
selection'~y 'connecting the SOS5A RD output to one of the select (or enable) inputs. This 
will ensure that the device responds only when a valid address is on the System Bus: therefore 
only one ROM device will be 'selected at a time. Refer to Volume III for information on memory 
devices. . 

The simplest w~y of preventing memory and 1/0 device selection is to use 101M, RD and 
WR as cqntributors to' device select logic: 

ADO A15 

Memory 
Address 

Decode 

L~ic 

PREVENTING 
TRANSIENT 
SELECTION 

PREVENTING 
SIMULTANEOUS 
SELECTION' 
OF 1/0 AND 
MEMORY 

AD -----c;;a 

"WR-----c:. 
s ~______ Memory 

10iM-----------' 

AD -----4~ 
'WR-----4" 

10/M ----4:1 

AS A~5 

I/O Device 

Select 

Decode 
Logic 

5-12 

Select 

I/O device 
select 



Q 
w 

~ 
a: 
o 
c.. 
a: 
o 
u 
~ 
en 
w 
I­
~ 

g 
t/) 
t/) 

~ 

CI/:I 
w 
Z 
a: 
o 
ID 
t/) 

o 
:E 
~ 
Q 
~ 

@ 

Timing for the memory select illustrated above may be illustrated as foll~ws: 

I T1 T2 

I I 

~ 
I 

elK I , I 
I I 

I 
101M i\ I 

I I 
I I 

RDorWR I \ 
I 

Memory I 
Select I \ 

I 
'1 

1/0 device select logic timing differs only in the level of 101M. 

I 
I 
I 

I 

I 

I 

!O/M distinguishes between memory and 110 devices. When AD or WA is low. memory or 1/0 
device addresses must be valid. Thus the logic illustrated above will guarantee that spurious 
memory and 1/0 device selects never occur. 

I 

L 

But there is a problem associated with the solution illustrated; memory and i/O devices do not receive a valid select sig­
nal until early in the second clock period. This is unfortunate. since valid addresses are available early in the first clock 
period. Delaying memory select logic until the second clock period may require Wait states to be added between clock 
periods 2 and 3 - and that unnecessarily slows down CPU operations. If e>secution speed is not a problem to you. then 
the simple select logic illustrated above will do. If execution speed is a problem, then you must replace: 

Ri5 D WR. ____________ . ~------------ S 

in the simple select logic with alternative logic that may be defined as follows: 

ALE 

RoorWR 

s 

5-13 



The required S output may be generated using two flip-flops as follows: 

~-------------s 

VCC----t J 0 .... --... a 

ALE ---<1I>CK 74107 

RESET---...lI("' ........... 

AD ----til.""'" WR >----------~ 

If your system contains an 8085. rather than an 8085A. the first S output after a Reset will 
occur before the address.lines are valid. Since ALE is tristate in the 8085. a falling edge occurs 
when Reset goes off: at this time the address lines may still be floating. One solution is to con­
nect the first J input above to the Q output of the following D·flip-flop: 

VCC----f 0 a t---tl~ 

ALE·-----I::~K 7474 

CLR· 

RESET 

The flip-flop above prevents S from going high until after the first rising edge of ALE. 

5-14 

SELECT 
PROBLEM 
WITH 8085 



Q 
w 
~ 
a: o 
Il. 
a: 
o 
CJ 
~ 
iii 
w 

~ g 
en 
en 
ct 
a!I 
w 
Z 
a: 
o 
III 
en o 
~ 
ct 
Q 
ct 
@ 

I 

MCl Me2 Mel 

elK I 
I I 

~/~ ~ : 
I~----------------~----------------~------I------

so ~ \'-___ ....;. __ ..:..-_~~ 
I I 

Sl ,r----~------~----~----~----~I~·----~------~----~ 
I 

AS - A15 PC high-order'byte 

ADO- AD7 

ALE 

RDI 
I I I 

Latch low. Latch low· 

order 

address 

byte 

order 

memory 

address 

'-' .... EB .. ~ .... ~~ ~ .... aa .... _~~ b~~.e __ .... ,~~.rrmz~ag .. ~~ 
Instruction Fetch' Memory Read 

Figure 5-6. A Memory Read Machine Cycle Following an Instruction Fetch 

Let us now consider a memory read operation; timing is illustrated i,n Figure 5-6. So far as ex- 8085 
ternal logic is concerned. the only difference between a memory read and an instruction fetch is MEMORY 
the SO and S1 signal levels; they are both high for an instruction fetch. but SO is low during a READ TIMING 
memory read. Also. the instruction fetch has four or six clock periods. while the memory read has· 
three; but the extra instruction fetch clock periods occur after the memory access is completed. Therefore. so far as ex­
ternal logic is concerned. the extra clock periods of the instruction fetch machine cycle are irrelevant. 

5-15 



I 
MCl MC2 

I 
Mel 

ClK 

10iM 

50 

51 

AS - A15 

ADO - AD7 

ALE 

AD 

Tl 

I 
I 

~ 
I 

~ 
I 

~ 
I 

order 

address 

byte 

I I 

\ 

I 
Unspecified 

I/O evice select code 

Read I/O 

port address 

from either 

half of 

........ ...... __ ---..... ~ ... --___ ~~ Ad!reSS Bus 
V". / v~---..", 

Instruction' Fetch .' lIO Read 

Figure 5-7. An I/O ~ead Machine Cy~le Followi~g an Instruction Fetch 

Figure 5-7 illustrates I/O read timing. Only the 101M signal level in Figure 5-7 differs from 
Figure 5-6. 

Memory write timing, illustrated in Figure 5-8, is very similar to memory read timing. The 
principal difference is that during a memory write WR is output low. whereas during a memory 
read RD'is output low. Also. during a memory write operation S 1 is output low while SO is out-· 
put high. . . 

An I/O write operation is illustrated in Figure 5-9. As compared to Figure 5:8. 10/Mis high in 
Figure 5-9 during the write machine cycle: there are no other timing differences. 

5-16 

I 

I 
I 
I 

8085 I/O 
READ TIMING 

8085 
MEMORY 
WRITE TIMING 

8085.1/0 
WRITE TIMING 



Q 
w 
I-
~, 
0 
a. 
II: 
0 
U 
~ 
en 
w 
l-
e( 

g 
en 
en 
e( 

~ 
w 
Z 
II: 
0 
ID 
en 
0 

~ 
e( 
Q 
e( 

@ 

Tl 

ClK 
I 
I 

IO/M~ 
I 

SO ~ 
I 

Sl :/ 
I 

AS - A15 

ADO - AD7 

latch low­

order 

address 

byte 

MCl MC2 

Tl 

I 
I 

MCl 

\ 1r--........ 
~--------------~I 

Address high-order byte 

Latch low­

order 

memory 

address 

byte 

~~ .......... -~~ ~~--.... ~~,. ...... ~~ 
Instruction Fetch Memory Write 

Figure 5-8. A Memory Write Machine Cycle Following an Instruction Fetch 

5-17 



elK 

10/M 

so 

Sl 

AS - A 15 

ADO - AD7 

ALE 

Mel Me2 

T2 T2 

I 
I 

~ 
I 

~ 
I 

~ 
I 

PC high-order byte 

Latch low­

order 

Unspecified 

\ 

I/O device select code 

port address 

address from either 

byte half of Address Bus 

~~--""""~~~--""""~~~~""--''r~--''''~~ 
Instruction Fetch I/O Write 

Mel 

I 

Figure 5-9. An I/O Write Machine Cycle Following an Instruction Fetch 

BUS IDLE MACHINE CYCLES 
During a Bus Idle machine cycle no control signals change state on the System Bus. 

There are three types of Bus Idle machine cycles: 

1) An instruction fetch Bus Idle machine cycle. The 8085A CPU acknowledges an interrupt from 
TRAP. RST 5.5. RST 6.5. and RST 7.5 by generating a Restart instruction internally. No exter­
nal instruction fetch operations occur; however. logic internal to the CPU requires time to 

8085A 
BUS IDLE 
MACHINE 
CYCLE 

create the instruction object code. Therefore a Bus Idle instruction fetch machine cycle is executed. Timing is il­
lustrated in Figure 5-17. 

2) The instruction execute Bus Idle machine cycle. Only the DAD instruction uses this machine cycle. The DAD in­
struction adds the contents of two CPU registers to two other CPU registers. It takes six clock periods for logic in­
ternal to the 8085 CPU to complete these operations. The six clock periods are generated via two instruction ex­
ecute Bus Idle- machine cycles. Timing is illustrated in Figure 5-10. 

Figure 5-10 shows a difference in operations between The 8085A and the earlier version. the ALE GENERATION 
8085. During an instruction execute Bus Idle machine cylce, the 8085A does not gener- IN 8085 AND 
ate a high pulse on ALE. The 8085, however, pulses ALE high during every T1 of every 8085A 
machine cycle - including instruction execute Bus Idle machine cycles. --------.... 

3) The Halt Bus Idle machine cycle. Following execution of a Halt instruction an indeterminate number of Bus Idle 
machine cycles are executed for the duration of the Halt condition. Timing is illustrated in Figure 5-14. 

5-18 



c 
w 

~ 
0:: o 
Q. 
0:: 
o 
o 
~ 
ui w 
~ 
g 
fI) 
fI) 

~ 
o1J 
w 
Z 
0:: 
o 
m 
fI) 

o 
~ 
~ c 
~ 

@ 

The condition of the 101M, S1 and S2 signals during a Bus Idle machine cycle varies with the type of Bus Idle 
machine cycle. These three signals will conform to instruction fetch level during an instruction fetch Bus Idle machine 
cycle. During an instruction execute Bus Idle machine cycle. Memory Read signal levels are maintained. but the RD 
control signal is not pulse low. 

During a Halt Bus Idle machine cycle. 50 and 51 are both low but 101M. along with other tristate signals. is floated. 

CLK I 

I 

MCl 

Tl 

MC2 MC3 

I 

101M ~ 
I~--~~----------~----~------------~-----------

SO :/ I 
, 

I 

51 ~~--~~--~----~----~--~----~----~--~ 
I Unspecified 

AS-A15 111~ ______ pc_l_h_i9_h_-O_rd_e_r_~_yt_e ______ ~I .. __ .. I~ ____ PC~h-i9-h-.o-rd-e-r~~~t-e----~I------~ 
PC low- I .Input DAD instruction I PC low- i I I 

ADO - AD7 

ALE 

Latch low-

order 

address 
byte 

I I 

I 

·1 

*SOS5A does not generate ALE; only SOS5 generates ALE during MC2 and MC3 of DAD. 

~~ .......... ~~~ ........ --~~ ~~"""~'r~"""~~ 
Instruction Fetch Bus Idle 

Figure 5-10. A Bus Idle Machine Cycle Following an Instruction Fetch During 
Execution of a DAD Instruction 

5-19 



Mel Me2 Mel 

I I 

101M ~ : - : 

I~--~--------~-----I--------~----~--~----~I----~ 

so~ :' ) 
I I ~~--------------~----~ 

S1 �,r----+-----~----~----~I----.~'~----~----~----.-----+-----~ II 

AS -A15 

ALE 

I I Unspecified I 

order 

address 

byte 

order 

address 

byte 

Address high-ord':!r byte 

'11 I 
r---+---In-p-u~t:-da-t-a--~:~--~~ 

i . '}----I, 

I 
I 

'-~--------~~~--.... --,~ '-~ .......... ~~~ ........ ~~ 
Instruction Fetch Memory Read with Wait States 

Figure 5-11. Wait States Occurring in a Memory Read Machine Cycle 

THE WAIT STATE 
The 8085A will insert Wait states between clock periods T2 and T3 in a manner that is closely analogous to the 
8080A. Timing is illustrated in Figure 5-11. which shows Wait states being inserted in a memory read cycle; a 
Wait state inserted in any other memory reference or I/O machine cycle would differ only in the levels of control 
signals. 

The 8085A samples the READY line during T2. If READY is low during T2. then a Wait clock period will follow T2. The 
READY line is sampled in the middle of each Wait clock period; Wait clock periods continue to be inserted until READY 
is sampled high. As soon as READY is sampled high. the next clock period will be a T3 clock period - and normal pro­
gram execution continues. This sampling may be illustrated as follows: 

elK 

READY 

5-20 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 

~ 
U o 
en 
en 
~ 

oil 
w 
Z 
a: 
o 
III 
en o 
::E 
~ 
c 
~ 

@ 

Wait states are used in an 8085A system exactly as described for the 8080A in Chapter 4 - to give slow memories and 
I/O devices more time in order to respond to an access. Thus the discussion of Wait states provided in Chapter 4 ap­
plies equally to the 8085A. 

In Chapter 4 a pair of 7474 flip-flops are shown creating a low READY pulse that generates a single Wait state in a 
memory read machine cycle. For the 8085A the following variation applies: 

SI ----I 

IO/M---a 
I--~ 01 Q1 1----------. .... 02 

ALE ----c:II >----II~~lK 7474' ClK (8085A) 

·CLK is rising edge triggered 
·ClEAR is low level active 

The circuit will operate with the following timing: 

TW 

>--..... ~ClK7474 

READY 

If the cycle is a memory read (S = 1. SO = 0) or an instruction fetch (S 1 = 1. SO = 1). 01 will go high at the falling edge 
of ALE. This will cause flip-flop 2 to go on at the next falling edge of the 8085A.clock. thereby forcing READY low. The 
Iowan READY will clear flip-flop 1. so that READY will return high on the next falling edge of the 8085A clock. 

THE SID AND SOD SIGNALS 
The 8085A has two instructions which handle single-bit data. 

The RIM instruction inputs data from the SID pin to the high-order bit of the Accumulator. The SIM instruction 
. outputs the high-order bit of the Accumulator to the SOD pin. 

You may use the RIM and SIM instructions in order to implement a primitive serial 1/0 capability. A more useful applica­
tion of these instructions is to read single signal status and to output single-signal controls. 

5-21 



When the RIM instruction is executed. the SID signal level is sampled on the rising edge of the clock signal during clock 
period T3 of the instruction fetch machine cycle. The high-order bit of the Accumulator is modified while the clock sig­
nal is high during T1 of the next instruction fetch machine cycle. Timing may be illustrated as follows: 

'MCl Mel 

ClK 

SID 

A. Bit 7 

When an SIM instruction is executed. the actual change in SOD signal level does not occur until T2 of the next instruc­
tion fetch machine cycle; that is to say execution of the SIM instruction overlaps with the next instruction fetch. 

This may be illustrated as follows: 

Mel Mel 

Following an SIM instruction fetch. the high-order bit of the Accumulator is sampled while the clock is low during T2 of 
the next instruction fetch machine cycle. During the same clock period. the SOD signal level is modified to reflect the 
contents of the high-order Accumulator bit. This overlap is feasible since neither the SOD signal nor the Accumulator 
contents are modified while an instruction is being fetched. Note that SOD must be enabled before it can be accessed 
or changed; you use bit 6 of the Accumulator to enable SOD. as detailed later in this chapter when we describe the 
8085A instruction set. 

5-22 



c 
w 

~ 
a:: 
o 
a. 
a:: 
o 
CJ 
~ 
en 
w 

~ g 
en 
en 
ct 
oil 
w 
2 
a:: 
o 
III 
en o 
:!! 
ct c 
ct 
@ 

Figure 5-12 illustrates SID and SOD signal timing during execution of a RIM instruction followed by a SIM in­
struction. 

ClK 

SOD 

SID 

A REG (BIT 7) 

AS - A15 

ADO- AD7 

ALE 

MCl 

PC high-order byte 

latch PC low­
arder byte 

MCl 

PC high-order byte 

latch PC low­
order byte 

MC1' 

PC high-order byte 

latch PC low­
order byte 

Figure 5-12. A RIM Instruction Followed by a SIM Instruction 

5-23 



~~-----HOlD------~~ 

MCl MCl 

ClK 

HOLD 

HlDA 
I 

I I 
101M 1\ I I 

I ' ~··-I··-·i·-··--' I~----------------~I I I ~----------~ 

~~ l 
I I 

51 ~ 
I 

A8 - A 15 J PC ~igh.order brte } •• II ......... ~ ..... , ........ ~ ............ ~ .. ________ .. 

~ PC low-1 Input instructIOn I I I I I 

ADO - AD 15 lorder bYte~.~ object code ............... ~ ....... a ....... ~ ............. ~·----""""hll .... llr. 
I I I 8085 I I I '---i 

ALE h I ,. .... ~ .............. ~ ............. ~ ......... ." h I 

I I I I I 

~D I I \ rl ... ~~~~~ ... ~ ............. ~ ........... J 
I 
I 

~ I I I I I I 

.... --..... ---.... ---"""':\ ...... " ... -~ ............ ~ .............. jp---..... --~ 
I I I I 

I • I 

Figure 5-13. A Hold State Following a Sill9le Machine Cycle Instruction Execution 

THE HOLD STATE 
The 8080A and the 8085A both USf3 the Hold state as a means of transiently floating the System Bus. During a 
Hold, external logic gains bus control, usually to perform direct memory access operations. 

External logic requests a' Hold state by inputting HOLD high. The microprocessor responds by entering the Hold state 
an~ outputting HLDA high. During ~'Hold §tate the microprocessor floats all tristate signals. 

In the 8085, an earlier version of the SOS5A. ALE is a tristate signal and is floated during the HOLD STATE 
Hold sta~e. In the 8085A, how~ver, ALE is kept low during Hold.' IN 8085 AND 

Both the SOSOA and the SOS5A initiate the Hold state at the conclusion of an instruction's execu- ~085A 
tion. But there are si'gnificant differences b~tween Hold. state initiation logic for the SOS5A as 
againstihe ~OSOA. .. . 

The sosbA initiates a Hold state following T3 for a Read machine cycle, or following T 4 for a Write machine cycle. Tim­
i'l9is illustrated in Figure~ 4-9 and 4-10. 

5-24 



Q 
w 

~ 
a: 
o 
a. 
a: 
o 
(J 

~ 
en 
w 

~ 
(3 
o 
CI) 
CI) 

<t 
ciS 
w 
Z 
a: 
o 
al 
CI) 

o 
~ 
<t 
Q 
c:( 

@ 

The SOS5A in contrast. has a fixed, two machine cycle sequence for Hold state initiation; it may be illustrated as 
follows: . 

Tn - 1 Tn Tn + Tn + 2 Tn + 3 

During every machine cycle, Hold is sampled during T2; if Hold is high at this time, Hold acknowledge is output 
high during T3 and the Hold state begins during T4. Timing is illustrated in Figure 5-13. 

During a six ciock period machine cycle, if Hold is low. when sampled during T2, then Hold will be sampled again 
during T4. If Hold is sampled high during T4. then a Hcild state will be initiated cluring T6. This may be illustrated as 
follows: 

Tl 1) TS 

elK 

HOLD: ~I ______________ ~~ ______ -J 

I 
HlDA I 
~ ____ ~ ________ ~ ____ ~~ ______ p--J 

Hold is sampled during every clock period of a Halt state; As soon as Hold is dete~ted high. a two clock period Hold 
state initiation sequence begins. Figures 5-14 and 5-15 illustrate the onset of Hold states within and before Halt states. 

A Hold state terminates two clock periods after the Hold signal goes low . 

. There are no restrictions placed by 8085A logic on the duration of a Hold state. The Hold state lasts for as long as the 
HOLD input is high. Here is an example of a one clock period Hold state occurring during T4 and a three clock period 
Hold state beginning during T6 of a six clock period machine cycle: 

Mel HOLD MCl 

ClK 

HOLD 

HlDA 

5-25 



Figure 5-13 illustrates a Hold state lasting three clock periods, beginning during T4 of a four clock period machine cy­
cle. 

THE HALT STATE AND INSTRUCTION 
When a Halt instruction is executed, the 8085A enters a Halt state. The Halt state consists of an indeterminate 
number of Halt Bus Idle clock periods, during which the S1 and SO status signals are both output low while the 
tristate signals are floated. 

In the 8085, an earlier version of the 8085A, ALE is a tristate signal and is floated during the . HALT"STATE 
Halt state. In the 8085A, however, ALE is kept low during Halt. . IN 8085 AND 

Halt state timing is illustrated in Figure 5-14. 8085A 

MCl HALT MCl 

iNTA : I : : 
I. I! I 

IO/M :\ ',';! r· ......... ~·· .. ai ....... r ......... · .. ~: 
I '--........... ---"---....;.---... 1 I ! ,"---,-1, 

SO~ \ I i ~ 
.I : 

Sl I \ f 
I"---...... --...... --~ 

I I ! 

A8 - A 15 Xv---P-C-h-j9-h--O-rd-er-b .. y-te--..... X.,..--... t ... PC-hl-9 .... h )-.......... r ........ · .. 1r----, 

I PC low- I HALT object I I I! I 

ADO - AD15 ~-....... "-_-co-d .. e ... jn-p-ut-...... ""! .. ~ •••••••• ..( PC low ~ ... • .. •••• .. r···· ... ····~ ~ 
I I 8085. I I I 

•• llt •••••••••••• ~ •••• , .... I 

I 8085A i 
AD I ........... ~ ............ ~ ............ !I 

I I I' I 
~ II ____ .... __ - .... -~--~ ............ ~t I I ,r---~ 

I ~ .......... 't •••••.••• ~--1 ........ ai •••• :J 
, I : 

. Figure 5-14. A Halt Instruction and a HaltState Terminated by an Interrupt Request 

A Halt state may be terminated by a system reset or by an interrupt request. Figure 5-14 shows an interrupt re­
quest terminating the Halt state. 

Note that the INTR signal. like the HOLD signal. is sampled, two clock periods before anything can happen, Thus, as il­
lustrated in Figure 5-14, an additional Halt clock period will occur after the clock period within which INTR goes high. 

5-26 



C 
w ... 
ct 
a: 
0 
CL 
a: 
0 
(J 

~ 
en 
w ... 
ct g 
(I) 
(I) 

ct 
~ 
w 
Z 
a: 
0 en 
(I) 

0 

~ 
ct 
c 
ct 

© 

HOLD HOLD 

Mel HALT Mel 

eLK 

INTR 

iNTA 

HOLD 

HLDA 

I 

~.,.. ••.••.. ~._ ..... _L ........ ~ TRISTATE 
SIGNALS 

I I I I 
I I I I 

Figure 5-15. Hold States Occurring Within a Halt State 

An interrupt request will only be executed if interrupts are enabled: however. the 8085A has a TRAP non-maskable in­
terrupt. Thus you can always exit an 8085A Halt state via a TRAP interrupt request or by resetting the system. 

While in a Halt state you can enter and exit the Hold state. Figure 5-15 illustrates timing for 
the Hold state existing within the Halt state. Notice that the Hold state only lasts for as long as 
the HOLD input is kept high. 

Entering a Hold state within a Halt state also prevents you from terminating the 8085A Halt state 

SOS5A HOLD 
WITHIN A 
HALT STATE 

with an interrupt request: this is because a HOLD request has priority over any interrupt request. Thus. if an interrupt 
request occurs while the 8085A is entering a Hold state. or is in a Hold state. the interrupt request will be ignored until 
the end of the Hold state. At that time. the interrupt request will be acknowledged - providing interrupts are enabled. 

Resetting the SOS5A will terminate a Halt state at any time, whether or not you are in a Hold state. 

5-27 



elK 

IO/M' 

SO 

S1 

A8 - A15 

ADO - AD7 

ALE 

INTR 

*The 8085 samples INTR one cycle later than the 8085A 

Ackn wledged external 
device must select· 

itself and provide 

the instruction object 

code before iNTA goes 

high 

Figure 5-16. An Interrupt Being Acknowledged Using a Single Byte Instruction 

EXTERNAL INTERRUPTS 
There are some differences between the interrupt acknowledge logic of the 8085A as compared with the 
8080A; however, the 8080A interrupt acknowledge logic is a subset of 8085A capabilities. 

Providing a valid interrupt request has been applied and interrupts are enabled. the 8085A acknowledges the inter­
rupt request on terminating execution of the current instruction. The 8085A then executes an interrupt 
acknowledge machine cycle. 

An interrupt acknowledge machine cycle is very similar to a six clock period instruction fetch machine cycle; however. 
during the interrupt acknowledge machine cycle the 8085A. like the 8080A. anticipates receiving an instruction object 
code from an I/O device - presumably the device whose interrupt request is being acknowledged. Since an I/O device 
is supposed to provide the object code during an interrupt acknowledge instruction fetch. INTA is pulsed low instead of 
RD. Timing is illustrated in Figure 5-16. 

Figure 5-16 shows two differences between the 8085A and the earlier 8085. the 8085A 
samples INTR during the next-to-Iast clock period of each instruction's execution, but the 
8085 samples INTR one clock period later. The level of 101M during Interrupt Acknowledge 
is also different: the 8085A holds 101M low at this time. 

5-28 

INTERRUPT 
01 FFERENCES 
IN 8085 AND 
8085A 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
en 
en 
c( 

~ 
w 
Z 
a: 
o 
III 
en o 
:! 
c( 
c « 
@ 

Note that even though memory is not being accessed, Program Counter contents are output 
on the Address Bus during an interrupt acknowledge instruction fetch: providing memory select logic uses 101M 
a'nd RD, no harm will be done by having a valid address on the Address Bus'during an interrupt acknowledge in­
struction fetch. 

The Program Counter contents are not incremented during the interrupt acknowledge process. 

The SOS5A signallNTA serves as a read strobe during interrupt acknowledge. The SOS5A SOS5A 
first acknowledges an interrupt with the state of S1, SO, and 101M: in the SOS5A these INTERRUPT 
three status signals are all high during an interrupt acknowledge machine cycle. Recall that ACKNOWLEDGE 
S 1 and SO both high signifies an instruction' fetch. which is always a memory operation. 
Therefore. an "instruction fetch" which access I/O instead of memory is an interrupt acknowledge. r------..... 
In the SOS5, an earlier version of the 8085A. interrupt acknowledge has the same 51, SO, and SOS5 
lo/iVi levels as an instruction fetch. This means the interrupt acknowledge signal INTA INTERRUPT 
serves both as an interrupt acknowledge and a read strobe. External logic must use INT A both ACKNOWLEDGE 
as a device select signal and a strobe signal identifying the time interval during which the inter-
rupt acknowledge instruction code must be placed on the Data Bus. This can cause a timing problem. For any other in­
struction fetch. the trailing edge of ALE can be used to initiate device select timing; thus during any other instruction 
fetch you have from the middle of T1 until the middle of T2 to resolve the device select and wait for the read strobe. But 
you cannot use ALE in this fashion following an interrupt acknowledge. since external logic does not know that the in­
terrupt has been acknowledged until INT A goes low. On the trailing edge of ALE during an interrupt acknowledge in­
struction fetch' machine cycle. the Program Counter. contents are being output on the Address Bus even though this 
address is irrelevant. You must therefore use INTA as a signal which disables all 1/0 device select logic with the 
exception of the device whose interrupt request is being acknowledged. • ' ------..... 
If your system contains an SOS5, rather than an SOS5A, you may well have to insert Wait WAIT STATES 
states during an interrupt acknowledge instruction fetch machine cycle: the DURING SOS5 
acknowledged external logic has the duration of the low INTA pulse within which it must INTERRUPT 
resolve its select logic and place an instruction object code on the Data Bus. ACKNOWLEDGE 

Earlier in this chapterwe showed you how you can create a one clock period low READY pulse 
using two 7474 D-type flip-flops. The circuit shown would generate the low READY pulse during a memory read or in­
struction fetch. The same circuit will also cause a Wait state during an 8085 interrupt acknowledge. which is identical 
to an instruction fetch as far as our small circuit is concerned. 

You can respond to an interrupt acknowledge by transmitting any instruction object code to the SOS5A. Usually 
a Restart (RST) or a Call instruction object code will be transmitted. 

Figure 5-16 illustrates timing for a Restart instruction being transmitted following an interrupt acknowledge. The 
Restart instruction has been described in detail in Chapter 4 together with circuits which allow a Restart instruction to 
be created. 

The SOS5A contains internal logic to cope with multibyte instruction object codes transmit­
ted during the interrupt acknowledge process. During the second and third instruction fetch 
machine cycles. INTA is pulsed low while 10/M is output high. Thus responding to an interrupt 
acknowledge with a Call instruction simply involves creating a Call instruction's object code. 

The earlier SOS5 also handles multibyte instruction object codes during interrupt 
acknowledge. The second and third acknowledge machine cycles are similar to memory read cy­
cles. the only difference being that INTA pulses instead of RD. 

SOS5A 
MULTIBYTE 
ACKNOWLEDGE 

SOS5 
MULTIBYTE 
ACKNOWLEDGE 

The SOS5A has four interrupt request pins which the SOSOA does not have. These are TRAP, RST 5.5, RST 6.5 
and RST 7.5. Interrupts requested via these pins cause the SOS5A to generate its own internal interrupt 
acknowledge instruction. 

The internal interrupt acknowledge instruction results in subroutine calls to the following addresses: 

Interrupt CALL Address 

TRAP 2416 
RST 5.5 2C16 
RST 6.5 3416 
RST7.5 3C16 

TRAP is a non-maskable interrupt. 

RST 5.5 and RST6.5 are level sensith~e:that means a high level input at these pins generates an interrupt request. 

5-29 



RST 7.5 is edge sensitive; an interrupt request occurs when the input to RST 7.5 makes a low-to-high transition. 

TRAP is both level and edge sensitive; the low-to-high transition and the subsequent high level generate an inter­
rupt request. 

If an interrupt request is generated at RST 7.5 by a low-to-high transition. the 8085A will remember the interrupt re­
quest. whether or not the RST 7.5 input remains high. You can thus generate an interrupt request via RST 7.5 using 
a high pulse. 

Since you can request an interrupt via an RST 7.5 low-to-high transition, the RST 7.5 interrupt request signal it­
self cannot reset the interrupt request. This may be illustrated as follows: 

RST 7.5 -----~ 
Interrupt 

request 

New interrupt request 

only if previous 

request has been 

serViced 

You need not terminalte service of an RST 7.5 interrupt request by executing an SIM instruction with bit 4 of 
the Accumulator .set to 1; the CPU does this automatically when it recognizes the interrupt. 

A low-to-high transition of the TRAP input creates an interrupt request. The interrupt request will only be 
acknowledged' while the TRAP input remains high: however. once a TRAP interrupt request has been acknowledged. 
TRAP must go low and then high again before another interrupt request will be acknowledged. 

MCl 

T5 I T6 Tl 

ClK I I 

I I 
I I 

L -.J 

I I I 8085A I 

101M I ~ I I 
I; __ ..... ~ __ .L... _ _ I.... _ -L. __ 1_ _.J 

I 
I 
I 

I I I I I 8085 I 

SO J\.~ ::: : 
I I I I I I 

. Sl I ~r------+:------~------~------+-----~~----~~----~: 
I I 

A8-A15 I pc. high-order 1yte I : 
I~~. I I 

ADO-AD7 ~:------~~ro~r~d:er~b~y;te~J~----~~------~------~----~--------l( ~ 
I I I I 
~I __ ~~r. ~ i 

ALE !_ ! ~ , '--i 
I I ~~------~------------+-----~------ . I 

- n I I I I 
RD.J \.1 I I I 

I I 1 
~~ ................... , ~ .................. ~~ ...... ~ ~ 

End of 

previous 

machine 

cycle 

Bus idle instruction fetch machine cycle 

Figure 5-17. A Bus Idle Instruction Fetch Machine Cycle 

5-30 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
u 
~ 
en 
w 

~ 
U o 
(/) 
(/) 

< 
clJ 
w 
Z 
a: 
o 
CD 
(/) 

o 
~ 
< c 
< 
© 

BOB5A interrupt priorities are as follows: 

Highest HOLD 
TRAP 
RST 7.5 
RST6.5 
RST 5.5 

Lowest INTR 

The BOB5A executes an instruction fetch Bus Idle machine cycle after acknowledging a TRAP, RST 5.5, RST 6.5 
or RST 7.5 interrupt request. Timing is given in Figure 5-17. 

The TRAP interrupt request cannot be disabled. In the BOB5A, but not in the BOBS, the TRAP 
interrupt preserves the state of the interrupt enable flag. This allows the user to restore the in­
terrupt enable status after a TRAP interrupt. 

The RST 5.5, RST6.5, and RST 7.5 interrupt requests can be individually enabled and disabled using the SIM in­
struction. All interrupts except the TRAP can be enabled and disabled via the EL and DI instructions. 

You may at any time examine interrupt enable/disable status by executying the RIM instruction. 

In the BOB5A, but not the earlier BOBS, the first RIM instruction executed after a TRAP in- ..... ----.. 
terrupt will show what the interrupt status was just before the TRAP, no matter how many 
IEs and Dis have been executed since the TRAP acknowledge. You must perform RIM after 
every TRAP to ensure that subsequent RIMs will provide accurate interrupt enable status. 

The RIM and SIM instructions are described in detail later in this chapter. 

You will service interrupts in an BOB5A system exactly as described for the BOBOA system. For a discussion of 
an interrupt acknowledge see Chapter 4. 

Remember that a Hold request has priority over an interrupt request. Thus. an interrupt will not be acknowledged 
while a Hold state exists and the SOS5A will respond to a Hold request following an interrupt acknowledge. 

POWER SUPPLY 

OR SIGNAL 

POWER ON 

ITRESET 

I 
+5V'-

, ~I 
Vee 1 I 

> 500 J.l.SEC I 

Tl 

Ml Ml 

I 
T2 TRESETITRESE~TRESET Tl IT2 

I I I r 

OV~F __________ ~_: :1 
VBB (INTERNAL) 1 ~ 

-2V L ....... ----------------------
I , 

ClK I 
~ , 

RESET IN I 
~ 
I 

RESET OUT 1 
~ 

ALE .1 
l­
I , 

A8 - A15 , 
l­
I 

ADO - AD7 I 

L­
I 

1 I 
I I I I 1 8085 I 

_.J_ 82; n ..... : __ ... I, ... ,._-_-_..l_-_-_-_._-_~ .. , -1 

ADDRESS RESET I ADDRESS RESET 
TO All ZEROES TO All ZEROES I ............... . .•.............•......... 1 ", __ ""-_-J ~ __ _ , 

1 .1." ......... . 

*8085 floats ALE during Reset; 8085A does not do this. 

Figure 5-1S. Power On and RESET IN Timing for the 8085A 

5-31 



THE RESET OPERATION 
You reset an SOS5A by inputting a low signal via RESET IN. 

When power is first turned on, the RESET IN pulse must last at least 500 nanoseconds (3 full clock cycles); no 
further requirements are imposed on the RESET IN signal. Logic internal to the SOS5A will synchronize the 
RESET IN pulse with the internal clock. Timing for a Reset following a powerup is given in Figure 5-1S. 

Notice that a RESET OUT signal is provided. You can use this signal to reset other devices in the SOS5A 
microcomputer system . 

. When the SOS5A is reset the following events occur: 

1) The Program Counter is cleared; thus the first instruction executed following a reset must have its object code 
stored in memory location O. 

2) The Instruction register is cleared. 

3) Interrupts are disabled. 

4) The RST 7.5. RST 6.5 and RST 5.5 interrupts are masked out and thus disabled. 

5) All tristate bus lines are floated. In the earlier 8085. ALE is tristate and thus floats during Reset. In the 8085A. ALE 
is not tristate. 

Table 5-1. A Summary of 8085A Instruction Object Codes and Execution Cycles 

CLOCK PERIODS 8085A 
INSTRUCTION OBJECT CODE BYTES 

MACHINE CYCLES 8080A 8085A 

ACI DATA CE yy 2 7 7 13 

AOC REG l000lXXX 1 4 4 1 

ADC M 8E 1 7 7 1.3 

ADD REG l0000XXX 1 4 4 1 

ADD M 86 1 7 7 13 

ADI DATA C6 yy 2 7 7 13 

ANA REG 10100XXX 1 4 4 1 

ANA M A6 1 7 7 13 

ANI DATA E6 yy 2 7 7 13 

CALL LABEL CD ppqq 3 13i~~~~ CC LABEL DC ppqq 3 I(l/;l,~ii .......••.•... ~.f, •• ~ .. ~ .. ( ••.. h>,,:;; 
..,' .•....••..• ,.;;.~ .. c.:... . .... 

CM LABEL FC ppqq 3 .... 
CMA 2F 1 4 4 1 

CMC 3F 1 4 4 1 

CMP REG 10111XXX 1 4 4 1 

CMP M BE 1 7 7 13 

CNC LABEL 04 ppqq 3 
.f '''.~! 

••••••• 

CNZ LABEL C4 ppqq 3 I.··· I j5 

CP LABEL F4 ppqq 3 I} 
CPE LABEL EC ppqq 3 

.... /i; 

CPI DATA FE YY '2 7 7 13 
CPO LABEL E4 ppqq 3 .... 3SS( 
CZ LABEL CC ppqq 3 ... 
DAA 27 1 4 4 1 

DAD RP 00XX100l 1 10 10 177 

OCR REG OOXXX10l 1 5 4 1 

OCR M 35 1 10 10 135 
DCX RP OOXX10ll 1 5 6 2 
01 F3 1 4 4 1 

EI FB 1 4 4 1 
HLT 76 1 4 4 1 
IN PORT DB YY 2 10 10 134 
INR REG OOXXX100 1 

INR M 34 1 10 10 135 
INX RP OOXXOOll 1 
JC LABEL DA ppqq 3 10 1 133 
JM LABEL FA ppqq 3 10 7/10 13. 133 
JMP LABEL C3 ppqq 3 10 10 133 
JNC LABEL 02 ppqq 3 10 7/10 13.133 
JNZ LABEL C2 ppqq 3 10 7/10 13. 1 33 
JP LABEL F2 ppqq 3 10 7/10 13. 1 33 

5-32 



C 
w 
t-
c( 
a: 
0 
D. 
a: 
0 
(J 

!: 
u) 
w 
t-
c( 

g 
en 
en 
c( 

oll 
w 
Z 
a: 
0 
a:J 
en 
0 

~ 
c( 
C 
c( 

@ 

ppqq 
YY 

YYYY 

X 

ddd 

sss 

Table 5-1. A Summary of 8085A Instruction Object Codes and Execution Cycles 
(Continued) 

INSTRUCTION OBJECT CODE 

JPE LABEl EA ppqq 

JPO LABEL E2 ppqq 

JZ LABEL CA ppqq 

LOA ADDR 3A ppqq 

LDAX RP OOOX10l0 

LHLD ADDR 2A ppqq 
LXI RP.DATAI6 OOXXOOOI 

YYYY 

MOV REG.REG 01dddsss 

MOV M.REG 01110sss 

MOV REG.M 01dddl10 

MVI REG.DATA OOdddl10 

YY 

MVI M.DATA 36 yy 

NOP 00 

ORA REG 10110XXX 

ORA M B6 

ORI DATA F6 yy 

OUT, PORT 03 yy 

PCHL E9 ' 

POP RP llXXOOOl 

PUSH RP l1XX0101 

RAL 17 

IF 

F8 

RNC DO 
RNZ CO 

RP FO 

RPE ES 

RPO EO 

RCC OF 

Rsr N' l1XXXll1 

RZ C8 

SBB REG l0011XXX 

SBB M 9E 

STA ADDR 32 ppqq 
STAX RP OOOX0010 

STC 37 

SUB REG l0010XXX 

SUB M 96 

SUI DATA 06 yy 

XCHG EB 

XRA REG 10101XXX 

XRA M AE 

XRI DATA EE yy 

XTHL E3 

represents four hexadecimal digit memory address 

represents two hexadecimal data digits 

represents four hexadecimal data digits 

represents an optional binary digit 

represents optional binary digits identifying a destination register 

represents optional binary digits identifying a l;Ource register 

BYTES 

.1 

5-33 

, CLOCK PERIODS 

8080A 

10 

10 

10 

13 

16 

10 

13 

7 

4 

4 

4 

SOSSA 

7/10. 

7/10 

7/10 

13 

7 

16 

10 

13 

7 
4 

7 
4 
4 

SOSSA 

MACHINE CYCLES 

13'.133 

13. 133 

13.133 

i 333 

13 

13333 

133 

1335 

15 

1 3 

13 

1 

13 

Machine cycle types: 

1 - Four clock period instruction fetch (Figure 5-41 

2 - Six clock period instruction fetch (Figure 5-51 

3 - Memory read (Figure 5-61 

4 -lio read (Figure 5-71 

5 - Memory write (Figure 5-81 

6 - I/O write (Figure 5-91 

7 - Bus idle (Figure 5-101 



THE SOS5A INSTRUCTION SET 

There are just three differences between the SOS5A and the SOSOA instruction sets: 

1) The 8085A has two additional instructions - RIM and SIM. 

2) The number of clock periods required to execute instructions differs in some cases; Table 5-1 summarizes these 
differences. 

3) Following a Halt instruction's execution, the 8085A floats tristate bus lines in the ensuing Halt state; the 8080A 
does not. 

Because the SOS5A and SOSOA instruction sets are so similar, the same benchmark program applies to both 
microprocessors. Refer to Chapter 4 for a discussion of this benchmark program. 

Refer to Table 4·4 for a summary of the SOS5A instruction set. The only two SOS5A instructions not present in 
Table 4·4 are the RIM and SIM instructions. 

When the RIM instruction is executed, the following data is loaded into the Accumulator: 

7 6 5 <4 3 2 1 0 ~ Bit No. 

IIIIIJII· RIM This data is loaded into the Accumulator 

t 
RST 5.5 interrupt mask } 

RST 6.5 interrupt mask 

RST 7.5 interrupt mask 

M, aster interrupt enable I 
RST 5.5 interrupt status 

RST 6.5 interrupt status 

RST 7.5 interrupt status 

SID signal level 

o =enabled 

1 =disabled 

1 =enabled 

0= disabled 

1 = request pending 

o = no request 

Thus, the RIM instruction allows you to examine interrupt and external status. 

When the SIM instruction is executed the contents of the Accumulator are interpreted as follows: 

SIM 

7 6 5 4 3 2 1 0 ~Bit No. 

I 1 I I II I I ,. 
~ ~ t • 

This data must already be in the Accumulator 

RST 5.5 maSk} 
RST 65 m.ask 0 =. enable 

1 = disable 
RST 7.5 mask 

o = ignore bits 0, 1 and 2 

1 = mask as per bits 0, 1 and 2 

1 = reset RST 75 latch so a leading edge will cause another 

interrupt request 

o = disable serial data out 

1 = enable serial data out 

This bit is transmitted to SOD pin if bit 6 is· 1 

Thus the SIM instruction is used to selectively mask interrupts and to output a control signal via the SOD pin. 

Note that if bit 6 of the Accumulator is 0 when the SIM instruction is executed, then the contents of bit 7 will not be 
transferred to the SOD pin. 

5-34 



c 
w 

~ 
a: 
o 
Q. 
a: 
o u 
~ 
en 
w 

~ 
g 
(/) 
(/) 
c( 

all 
w 
Z 
a: 
o 
CD 
(/) 

o 
:!! 
c( 
c 
c( 

@ 

From our discussion of the 8085A reset. recall that following a reset RST 5.5. RST 6.5 and RST 7.5 are all disabled: also. 
reset sets the SOD output to O. Thus. following a reset an RIM instruction would input the following data to the A~­
cumulator: 

RIM 1""1 ..... -- Data loaded to the Accumulator 
~~~--~~~~~ 

lI-____ Mask 1 bits disable interrupts

RST 7.5. RST 6.5 and RST 5.5

'-------- Master interrupt is disabled

---------- These bits reflect the state of the
~ST 7.5. RST 6.5 and RST 5.5 inputs

'--------------- This bit reflects the SID signal level

8085A MICROPROCESSOR SUPPORT DEVICES

The 8085 has four special purpose multifunction support devices; they are described in this chapter.

The 8085A can use any -5 version of the 8080A support devices described in Chapter 4 and Volume III. If you
Use the low-order eight 8085A address lines, you must de,multiplex the 8085A Address and Data Busses to use
8080A support devices.

THE 8155/8156 STATIC READIWRITE MEMORY
WITH I/O PORTS AND TIMER

The 8155 and 8156 are custom circuits ~esigned specifically for the 8085A microprocessor. Each device pro­
vides 256 bytes of static read/writ~ memory, two or three parailel I/O ports, and a programmable timer. The
8155 and 8156 devices differ only in the active level of the chip enable signal.

Figure 5-1~ illustrates that part of general microcomputer system logic which has been implemented on the
8155 /8156 devices.

Figure 5-20 provides a functional diagram of 8155/8156 logic.

The 8155 or 8156 device is pa~kaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and o~tputs
are TTL compatible.

8155/8156 DEVICE PINS AND SIGNALS
8155/8156 pins and signals are illustrated in Figure 5-21. Signals ni~y be divided into the following categories:

1) CPU interface and control
2) Parallel I/O

3) Programmable Timer

We will first consider CPU interface and control signals.

ADO - AD7 cOlmect to a bidirectional, multiplexed Data and Address Bus. As illustrated in Figure 5-22. these pins
connect to the ADO - AD7 bus lines output by the 8085A microprocessor.

ALE is the Address Latch Enable control signal output by the 8085A microprocessor to identify addresses on the
multiplexed Data and Address Bus.

The 8155 or 8156 has both a memory space and an I/O address space. Whe~ 10/M is high, I/O port addresses are
decoded off ADO - AD7 on the high-to-Iow transition of ALE: this may be illustrated as follows:

ADO - AD7

ALE

101M

5-35

Clock Logic

Logic to Hantlle
Arithmetic and .. InteH'upt Requests - Accumulator

" from Logic Unit - - Registerlsl
External, Devices

-,
~

Instruction Register ~
~ Data Counterlsl Control Unit

, ~

~ Stack Pointer

, 1. 1

(, Direct Memory
Interrupt Priority Bus Interface

~ Program Counter Access Control ..
Arbitration Logic

Logic

~. t t
System ,Bus ~

I~ ,~ ~
I)',

"""
'ii}

I/O Communication ROM Addressing \ "'. 'i

,/1:1" }i
~ Serial to Parallel and '"C ":"

:-: "-
Interface Logic 'Interface Logic '0

"."""

:', I,'"
I{,

i,
Programmqble

~
Read Only

.I i
Timers Memory ,,,'

,/

l

1

Figure 5-19, Logic of the 8155 and 8156 Multifundion Devices

When lo/iVi is low, the address strobed off,ADO- AD7 is interpreted as a memory address.

CE is active high hi the 8156 device; it is active low in the 8155. There is no other difference between the 8155
and 8156 devices.

The 8155 or 8156 device uses standard 8085A coritrol signals on its CPU interface. These signals are RD, WR,
ALE and 101M. Refer to the description of these control signals given in the 8085A section of this chapter.

5-36

c
w

~
a:
o
Q.
a:
o
o
~
en
w

~
g
(J)
(J)
c(

01:1
w
Z
a:
o
In
(J)

o
~
c(
c
c(

@

101M

[j 256 x 8 PAO - PA7

STATIC

RAM

G
PORT B

ADO - AD7 < 8 > PBO·P07

CE (8155) or CE (8156)

EJ
ALE
AD PCO - PC7

WR ' TIMER
RESET

TIMER IN Vce (-+ 5V)

TIMER OUT Vss (OV)

Figure 5-20. Logic Functions of the 81?5/8156 Device

PC3

PC4

TIMER IN

. .RESET

PC5

TIMER OllT

101M
CE (8155) or CE (8156)

AD
\VA
ALE

ADO

ADl

AD2

AD3

AD4

AD5

AD6

AD7

(GND)VSS

PIN NAME

ADO- AD7

PAO - PA7

PBO - PB7

PCO - PC5

AD
iNA
101M
ALE

RESET

CE/CE
TIMER IN

TIMER OUT

"SS VCC

--
_ ..
.

-

.

-

~

1 40

2 39

3 38 ""-

4 37

5 36

6 35

7 34

8 33 ---.
9 32 ..

10 31 --"
11 8155 30

.. -
12 29

13 28

14 27 ~

15 26

16 25

17 24 ..
18 23 '.
19 22

20 21

DESCRIPTION

MUltiplexed Address and Data Bus

Eight 1/0 pins. designated as Port A

Eight 1/0 pins. designated as Port B

Six I/O pins. designated as Port C

Read from device control

Write to device control

I/O ports or memory sel~ct
Address latch enable

System reset

Chip enable

Timer clock

Timer output signal

Ground. Power

Vec (+ 5V)

PC2

PCl

PCO

PB7
PB6

PB5

PB4

PB3
PB2

PBl

PBO
PA7

PA6

PA5

PA4

PA3

PA2

PA

PAO

TYPE

Bidirectiomil

Bid~rectional

Bidirectional

B!dir~tional
Input

Input

Input

Input

Input

Input

Input

Output

Figure 5-21. 8155/8156 Multifunction Device Signals and Pin Assignments

5-37

elK

8085

Device

select

logic

ADO - AD7

ALE ~----------""'0.1 ALE
RD' AD

WR WR

101M 101M
RESET OUT RESET

8155

Figure 5-.22 ... An 8155 Device Connected to an 8085A CPU Bus

Table 5-2. 8155/8156 Device Port C Pin Options

Pin ALT 1 ALT 2 ALT 3 ~ J ALT4

PCO Input Port Output Port A INTR (Pon A Interrupt) A INTR (Port A Interrupt)

PC1 Input Pon Output Port A BF (Port A Buffer Full) A BF (Port A Buffer Full)

PC2 Input Pon Output Port A Si'B (Pon A Strobe) A Si'B (Port A Strobe)

PC3 Input Port Output Pon Output Port B INTR (Port B Interrupt!

PC4 Input Pon Output Pon Output Port B BF (Port B Buffer Full)

PC5 Input Pon Output Pon Output Port . B Si'B (Port B Strobe)

The 8155/8156 device is reset by a high input at the RESET pin. The Reset operation does not
clear memory or I/O locations within .the 8155/8156 device. Thus all memory locations con­
tain zero. 1/0 ports are assigned to input mode and the CounterlTimer is stopped with an initial
zero value.

8155/8; 56 PARALLEL INPUT/OUTPUT

TIMER IN

TIMER OUT

8155
DEVICE
RESET

The interface presented by the 8155/8156 device to external logic consists of three I/O ports and two signals
associated with CounterlTimer logic. .

We will examine the I/O port logic and then the CounterlTimer logic.

1/0 Ports A and Bare 8-bit parallel ports; each may be defined as an input port or an output port.

1/0 Port C is a 6-bit parallel I/O port; it may be used to input or output parallel data. or Port C pins may support
handshaking control signals for Ports A and B. Table 5-2 defines the four ways in which 1/0 Port C may be used.

When I/O Ports A and B are used for simple parallel input or output, then their operation is 8155/81'56 I/O
identical to Mode 0 as described in Chapter 4 for the 8255 PPI. Handshaking mode is identi- MODE 0
cal to 8255 Mode 1. We will therefore discuss 8155 input and output with handshaking briefly. 8155/8156 I/O'
For a more detailed discussion refer to the 8255 PPI description given in Volume III. MODE 1

5-38

c
w
~
a:
o
Do
a:
o
tJ
~
rn
w

~ g
en
en
ct
D1:I
w
Z
a:
o
!Xl
en o
~
ct
C
ct
@

Input with handshaking may be illustrated as follows:

An event sequence begins with external logic inputting parallel data to I/O Port A or B: external
logic must pulse STROBE low, at which time the parallel data is loaded into the I/O port buffer. This causes BF.
the Buffer Full signal. to go high.

External logic uses the BF signal as an indicator that no more data can be written.

As soon as the externally provided low STROBE pulse is over. the interrupt request signallNTR goes high. This allows
the 8085A to be interrupted once data has been loaded i~to the input buffer of the I/O port.

BF and INTR remain high until the CPU reads the contents of the I/O port. The read operation will be identified by a low
RD pulse input to the 8155/8156 device.INTR is reset at the beginning of the RD'pulse. while BF is reset at the end of
the RD pulse. BF therefore is high while data is waiting to be read and while data is being loaded into the I/O port buffer
or read out of the I/O port buffer. INTR is high only while data is waiting to be read.

BF and INTR have associated bits in the Status register of the 8155/8156 device.

You connect INTR to an 8085A interrupt request if you want an interrupt-driven system. You write a program
which polls the Status register of the 8155/8156 if you want to operate the system under program control.

Strobod output timing may be illustrated as follows:

In output mode the I/O port buffer is initially empty. which means that the CPU must transmit data to the I/O port.
Therefore INTR is initially high.

As soon as the CPU writes data to the I/O port. the interrupt request signallNTR is reset low: this occurs on the leading
edge of the WR pulse. On the trailing edge of the WR pulse BF is output high, telling external logic that data is in
the I/O port buffer and may be read. .

External logiC strobes the data out by providing a low pulse at STROBE. The leading edge of STROBE resets BF
low. while the trailing edge of STROBE sets INTR high. causing the CPU to again output parallel data.

You connect INTR to an appropriate 8085A interrupt request pin if you want an interrupt-driven system. You
write a program to poll the Status register if you want to operate the 8155/8156 Linder program control.

A simple method of using the 8155/8.156 device parallel input/output with handshaking. in interrupt mode would be to
connect INTRA and INTRB to RST 5.5 and RST 6.5.

8155/8156 DEVICE ADDRESSING
Having discussed 8155/8156 device memory and I/O ports, we must now look at device addressing ..

The 8155/8156 has 256 bytes of static read/write memory which are addressed by ADO - AD7 while Chip Enable is
true. and 10/M = O.

5-39

The 8155/8156 has eight addressable I/O ports. ADO. AD1 and AD2 select I/O ports while Chip
Enable is true and 10/M = 1. These are the eight addressable I/O ports:

AD2 AD1 ADO PORT

a a a Status/Command registers
a a 1 Port A
a 1 a Port B
a 1 1 Port C
1 a a CounterlTimer register. low-order byte
1 a 1 CounterlTimer register. high-order byte
1 1 a Unused
1 1 1 Unused

8155/8156
I/O PORT
ADDRESSES

Chip Enable is derived from A8 - A 15. which holds th~ high-order byte of a memory address. or the I/O device number.
Chip Enable thus defines the exact address and I/O space for the 8155/8156 device. Here is one possible con­
figuration:

A15
A14
A13
A12
All
Al0

A9
AS

These lines

contribute

to CE

These lines

are ignored

J---- CE(S156)

101111 1010 I n I n I n I x I x I x I x I x'l x I x I x 11"'II4t--- Valid memory addresses T t /
ADO - AD7. x can be 0 or 1

These bits are ignored. They may have
any value.

8155/8156 memory bytes will be selected by any memory addresses in the range 6n0016 through 6nFF16. "n" repre­
sents any digit in the range a through 7. Let us assume that programs access 8155/8156 memory bytes via addresses
in the range 600016 through 60FF16; we must further assume that addresses created by values of n in the range 1
through 7 never occur.

Now the same chip select that you use to define your memory address space is also going to define your I/O ad­
dress space. Recall that the 8-bit I/O device number is output twice following execution of an I/O instruction - once
on the high-order eight address lines A8 - A 15 and again on the low-order Address/Data Bus lines ADO - AD7. Thus the
device select code which you generate from the eight high-order address lines for a memory address is the same device
select code which you generate for the 8155/8156 I/O space.

5-40

Q
w

!i
a: o
Q.
a:
o
CJ
~
en w
I­
< g
CI)
CI)

<
all
w
Z
a:
o
III
CI)

o
~
<
Q

<
@

But whereas the 8155/8156 has 256 addressable memory locations, it has eight addressable I/O ports: I/O ports are
selected as follows:

7 6 5 .. 3 2 1 0 ~ Bit No .. TI' p .. I_ .. _- ~rt Num~'

- CE

If Chip Enable is true when A 15 - A 11 is 011002, then I/O port addresses will be 6016 through 6716.

Address lines A 15 - A 11 represent I/O device number bits 7 through 3. This is because the I/O device number is output
on A 15 - A8 following execution of an I/O instruction. It is therefore fortunate that we only used address lines
A 15 - A 11 to create Chip Enable. Had we used A8, A9 or A 10, the low-order three I/O device code bits would have
served a double purpose - with strange results.

Suppose A 10 = 0 is a prerequisite for device select logic to be true: these are the memory and I/O port selects which
will result:

Memory

Address

I/O Port
Address

r A..-....... _----.. ,.... r ,A.. :&1 "
15 1413 1211 10 9 8 7 6 54 3 2 1 0 7 6 5 4 3 2 1 0-Bit No.

TI~' I, It" I'I~I~
Address bits

Don't care

Device Select

You can now address only four of the eight 8155/8156 I/O Ports. You cannot include address lines A8, A9 or
A 10 in the device select logic that you use for any 8155/8156 device; if you do, you will limit the I/O
capabilities of the device.

101M discriminates between exectuion of I/O instructions and memory reference instructions.

THE 8155/8156 COUNTER/TIMER
CounterlTimer logic consists of a 16-bit register, addressed as two 8-bit I/O ports, an input clock signal and an
output timer signal. This may be illustrated as follows:

I/O Port I/O Port
100 101

~ ~~ ~~ .. -~ r 'r ,
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 :... .. ---- Bit No. t: I I I I I + .. __ I_I_I_I_I_.#"_'_. __ "_::~~~~ '~~nt

- Timer mode

5-41

The low-order 14 bits of the Counter!Timer register must be initialized with a 14-bit binary value that will
decrement on low-to-high transitions of TIMER IN. If TIMER IN is connected to the 8085A clock output signal elK.
then the timer is computing real time. TIMER IN can alternatively be connected to any external logic in which case the
timer is counting external events.

The timer times out when it decrements to zero.

The two high-order bits of the Counter!Timer register define one of four ways in which the TIMER OUT signal
may be created. ' .

In Mode 0, TIMER OUT is high for the first half of the time interval and low for the second half of 8155/8156
the time interval. This may be illustrated as follows: TIMER

TIMER IN

TIMER OUT

Timer

initial count

is N

START

If N is odd. the extra pulse will occur while TIMER OUT is high.,

MODE 0

STOP

In Mode 1, as in Mode O. TIMER OUT is high for the first half of theco~ilt and low for the' second half. However. the
timer is automatically reloaded with the initial value following each time out. creating a square wave which may be il­
lustrated as follows:

TIMER OUT

f
\

f
\

f
l

Timer initial Reload N Reload N
count is N

START

Mode 2 outputs a single low clock pulse on the terminal count. then stops the timer. Timing may be illustrated as
follows:

TIMER IN

TIMER OUT

Timer initial

count is N

'-----, ,-_
.... --..aqr---.. --... ------............. ----..., ... - ... ,

Decrement

START

. Decrement

to Zero

STOP

Mode 3 is identical to Mode 2. except that when the timer times out 'the initial counter value is automatically reloaded .

. 5-42

c
w

~
II:
o
D.
II:
o
o
~
en
w

~
(3
o
en
en
<
oIS
w
Z
II:
o
a:I
en o
~
< c
<
@

8155/8156 CONTROL AND STATUS REGISTERS
The Control and Status registers of the 8155/8156 are used to control both timer and parallel I/O logic. Let us
now examine these registers.

The Control and Status registers of the 8155/8156 device are accessed via a single I/O port address. This is the
lowest of the 8155/8156 I/O port addresses. When you write to this address you access the Control register;
when you read from this address you access the Status register.

8155/8156 internal logic will interpret Control register bits as follows:

7 6 S .. 3 2 1 0 ~Bit No.

.. __ --Control register .. ~~~~~~~~
Port A definition } 0 = Input

..... ----Port B definition 1 = Output

Port C definition

00 =ALT 1 ------1 01 = ALT 3
10=ALT4
11 =ALT 2

See Table 5-2

.... --------Port A interrupts 0 = Disable

.... ---------Port· B interrupts 1 = Enable

Timer control

00 = No effect on timer -----------<: 01 = Stop timer immediately. if running

Status register bits are set and reset as follows:

10 = Stop timer after next time out. if running

11 = Start timer immediately

7 6· S .. 3 2 1 0....- Bit No.

'-1--- Status register

~I..r-I~~""""""",,,"""'"
~ ___ Port A interrupt request

-----Port A buffer full

'"-------Port A interrupt enabled 1 = True

--------Port B interrupt request 0 = False

...... --------Port B buffer full

...... ---------Port B interrupt enabled

------------Timer interrupt. Set to 1 on time out. reset to 0 when

Status regist.er is read or a new count is started

8155/8156 DEVICE PROGRAMMING
Accessing 8155/8156 read/write memory is self-evident. If you execute a memory reference instruction that
specifies an address within the 8155/8156 address space. you will access an 8155/8156 memory byte.

Parallel I/O programming is also self-evident; you begin by outputting an appropriate code to the Control register jn
order to define the modes in which various ports will operate. and to enable or disable Mode 1 interrupts. Your only
caution at this time must be to ensure that the two high-order bits of the Control code are 0; this prevents initiation of
any timer operations.

If you are using I/O ports without handshaking, the Status register is not affected by I/O operations. No control
signals or status indicate that new data has been input to. or has been read from I/O ports.

If 'you are operating the 8155/8156 in handshaking mode under program control. then you must poll the Status register
in order to determine whether data is waiting to be read or must be written. Your program will consist of a series of in­
put instructions which read status. followed by conditional branches that read or write data.

5-43

If you are operating the 8155/8156 parallel I/O in handshaking mode under interrupt control. then whenever data is
waiting to be read or must be written. the high INTR control signal will vector program execution to an appropriate in-
terrupt service routine. .

You can at any time read the contents of an I/O port that has been declared an output port. You will simply read
back whatever data was most recently written out to that 110 port. Reading the contents of an output port will have no
effect on handshaking control signals associated with that port.

Let us now examine programming associated with 8155/8156 CounterlTimer logic.

You must first initialize the .16-bit CounterlTimer register by outputting two bytes that specify timer mode and initial
count. The order in which you output these two bytes is unimportant.

Next you output an appropriate Control code in order to start the timer. When you output a Control code. remember not
to modify any control bits that define parallel I/O operations.

Here is an appropriate initialization instruction sequence:

MVI
OUT
MVI
OUT
MVI
OUT

A.80H
OC4H
A.60H
OC5H
A.OFAH
OCOH

LOAD 6080H AS AN INITIAL COUNTER
VALUE. SELECT COUNTER MODE 1

START TIMER

. This instruction sequence assumes that the 8155/8156 I/O port addresses are C016 through C516. The code FA16
output to the Control register starts the timer. and defines Port A as an input port. Port B as an output port. both in
handshaking mode with interrupts enabled.

You can at any time stop the counter. either immediately or following the next time-out. The following instructions will
stop the counter immediately:

MVI
OUT

A.7AH
COH

STOP THE TIMER IMMEDIATELY

The following instructions will stop the counter after the next time-out:

MVI
OUT

A.BAH
COH

STOP THE TIMER AFTER THE
NEXT TIME OUT

The Counter/Timer instruction sequences illustrated above contain a nonobvious propensity for programming
errors. We start the timer by outputting the code FA 16 to the Control register; we stop immediately by outputting the
code 7A16 and we stop the timer after the next time-out by outputting the code BA16. In reality. this is the code we are
outputting:

7 6 5 4 32 1 0 ----Bit No.

I I 'Tl IllT1 10 I tL....

I
_+.

O

_' __ Port A input

- Port B output

Port C ALT 4

Enable Ports A and B interrupts

Timer code:

11 = Start immediately

10 = Stop after next time out

01 = Stop immediately

Whenever you output Control codes to modify 8155/8156 timer operation. you must always remember to output bits 0
through 5 correctly. in order to maintain previously defined parallel I/O options. A commonly used programming
technique that frees you from having to remember the condition of irrelevant bits in a control word is to use
AND and OR masks. Consider this general purpose instruction sequence:

IN
ANI
(ORI
OUT

COH
3FH
COH
COH

INPUT PRESENT CONTROL CODE
CLEAR TIMER BITS
SET TIMER BITS)
RESTORE CONTROL CODE

5-44

c
w
!i
II:
o
a..
II:
o
U
~
ui
w

!i
g
(I)
(I)
c(

~
w
2
II: o
CD
(I)

o
~
c(
C
c(

@

This technique will not work with the 8155/8156 device, since you cannot read the contents of the Control
register. If you read from the address of the Control register, you will access the Status register. If you want to
use a masking technique. you must maintain the Control code in memory. Here is an instruction sequence that will
work:

LDA
ANI
(ORI
OUT
STA

CONTRL
3FH
COH
COH
CONTRL

LOAD CONTROL CODE FROM MEMORY
CLEAR TIMER BITS
SET TIMER BITS)
OUTPUT CONTROL CODE TO 8155/8156
SAVE CONTROL CODE IN MEMORY.

Your instruction sequence will include the ANI mask to clear timer bits. or the ORI mask to set timer bits. but obviously
not both.

CONTRL is the label for som~ read/write memory byte which always holds the current 8155/8156 Coritrol code.

THE 8355 READ ONLY MEMORY WITH I/O

The 8355 provides 2048 bytes of read-only memory and two 8-bit I/O ports. The device has been designed to
interface with the 8085A CPU.

Figure 5-23 illustrates that part of our general microcomputer system logic which has been implemented on the
8355 device. '

" .
The 8355 is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL-com-
patible. The device is implemented using"N-channei MOS technology.

Figure 5-24 fu~cti~~aiIY illustrates logic of the 8355 device. A simple 8085A-8155/8156-8355 configuration is
illustrated in Figure 5-26.

There are many similarities between the 8155/8156, which we have already described, and the 8355. Where
appropriate we will refer back to the 8155/8156 discussion for clarification of concepts.

8355 DEVICE PINS AND SIGNALS

8355 pins and signals are illustrated in Figure 5-25.

The 8355-8085A interface differs somewhat from the 8155/8156-8085A interface in that the 8355 has more
memory, fewer addressable I/O ports, plus the ability to address I/O ports within the memory space of the,
device.

Having 2048 bytes of addressable read-only memory. the 8355 requires eleven address pins. These are derived
from ADO-AD7 and A8-A 10.

Having only four addressable I/O ports. the 8355 I/O address logic decodes ADO and AD1 only. I/O ports are selected
as follows:

AD1 ADO
o a I/O PORT A
a 1 I/O PORT B
1 a DATA DIRECTION REGISTER A
1 1 DATA DIRECTION REGISTER B

5-45

Clock Logic

Logic to Handle
Arithmetic and Accumulator ... Interrupt Requests

~ from Logic Unit - Registerisl
External Devices

~
Instruction Register Data Counterisl

,'" Control Unit,

~

~ Stack Pointer

r r

Interrupt Priority Bus Interface
' Direct Memory

Arbitration Logic ~ Program Counter Access Control ..
,. Logic

r ,t
$ System 'Bus

~ • A t .. i.'iii,' . .'.'

I/O Communication
, •.... ~", i. Iii '.'i f!) RAM Addressing

i,r;r~' ;; ~; ... Serial to Parallel
J i'" and ~

Interface Logic Interface Logic

,>/ _t_

Programmable
~

! Read/Write
~ Timers Memory

i.".
,.'C:}{i·<.'.".'."

,

Figure 5-23. Logic of the 8355 and 8755 Multifunction Devices

5-46

Q
w
I-
<
II:
0
Q.
II:
0
U
~
en w.
I-
<
U
0
U)
U)

<
all
w
z
II:
0
In
U)

0

~
<
Q
<
@

CLK

READY

AOO- AD7

AS-A10

CE
Ce

101M
ALE
AD

iOW
RESET

lOR

2Kx 8

ROM

A PAO - PA7

B PBO - PB7

~-------- VCC (+ 5V)

L... __________ Vss (OV)

Figure 5-24. Logic Functions of the 8355 Device

8355 device select logic must generate the chip enable signals CE and CE from the hve address lines A 11-A 15.
The discussion of select logic given for the 8155/8156 device applies also to the 8355.

If you select 8355 memory and I/O ports in their respective address spaces, the control signals ALE, RD, and
10liVi are used exactly as described for the 8155/8156 device.

But you can also access 8355 I/O ports within the 8355 memory space using control signals lOW and lOR.

lOW and lOR are control signals which override 10/M and RD when accessing I/O ports.

Providing CE and CE are true. a low input on lOW will cause data on the Data Bus to be written into the I/O port
selected by ADO and AD1. irrespective of the 10/M level. Similarly. lOR low will cause the contents of the I/O port
selected by ADO and AD1 to be output on the Data Bus.

You can connect lOW directly to the WR control signal. and thus write into the four I/O ports of the 8355 device as
though they were the four low-order memory bytes. But connecting lOR to RD is not so straightforward. The 8355
device may receive a low input on lOR. to'gether with low inputs on RD and 101M; it will then attempt to read the con­
tents of a read only memory byte and an I/O port at the same time. While elaborate schemes could be devised for
generating separate selects that map the four I/O ports into a memory space of its own. it is wisest to ignore the lOR
signal if you are using 8355 memory and I/O logic. Use lOR only when the 8355 is configured as two I/O ports­
and the 8355 memory is unused. lOFi and lOW are used in 8048 microcomputer systems; that is the principal
reason they were designed into the 8355 device.

5-47

~b~
RESETIN---

HlDA-HOlD __

INTR __

INTA-
RST7.5_
RST6.5--
RST5.5 __

TRAP ---
50-
51-

I

J

CE
CE

CLK

RESET

READY
10/M

i5R
RD

iOW
ALE
ADO
ADl

AD2
AD3
AD4
AD5

AD6
AD7

(GND),(SS

PIN NAME

ADO-AD7
AS -Al0

~AO - PA7
PBO - PB7

R5
iOR
loW
10/M
ALE
RESET

CE.Ce
READY

rl------;~--- VCC (+ 5V) 40

10

11
12
13

14
15

16

17
18'
19

20

39

38
37

36
35
34

33
32

8355
31
30

29
28

27
26
25

24
23
22

;n
DESCRIPTION

.... r--...... PB7

PB6
............. PB5

t-........ - PB4
................ PB3

............. PB2

............. PBl

............. PBO

..... f--~ PA7

............ - PA6
.............. ~ PA5

PA4

............. PA3

PA2

.............. PAl

..... 1-.... - PAO

......... __ Al0

A9

.... 1---A8

TYPE

Multiplexed Address and Data Bus
Memory Address Unes

Bidirectional

Input
Bidirectional

Bidirectional
Input

Eight I/O pins. designated as Port A
Eight I/O pins. designated as Port D

Read from device control
Read from I/O port control
Write to I/O port control

I/O ports or memory select
Address latch enable
System reset
Chip enables

Wait state request

Input
Input

Input
Input
Input
Input

CLK TIming for Wait state request

Output. tristate
Input

VSS. VCC Ground. Power

Figure 5-25. 8355 Multifunction Device Signals and Pin Assignments

~
["-
f----
I--

8085A t--
f----

~
1-' IT A8-A15

llElIJCE·

~ ~¢:!> ~~ -AD7 .
S£lECT
lOGIC

t 1- RESET 8155
i- I_101M 1 ____ WA

X2 I_AD ___ ALE

VCC- loR

~
READY

L-- ClK - ~ RESET ---- == iO/M ---- iOW -- Ro 8355
~ ALE

AS -Al0

~ ADO - AD7

CE
DEVICE· CE

·Complexity of device select logic depends on L '----.I SELECT

the number of devices in the system. LOGIC

Figu re 5-26. An 8085A-8155/8156-8355 Microcomputer System

5-48

)A8-A15

> ADO-AD7

• ALE

• Rii
WI! · 101M · RESET OUT !: ~~~DY

LTIMERIN

~:"':~
PCO - PC5

- Poo - PB7

PPAO-PA7

PPoo-PB7

c
w

~
a:
o
D..
a:
o
(..)

~
en
w

~
g
en
en
ct
ciJ
w
Z
a:
o
!Xl
en o
~
ct
C
ct

@

8355 READY LOGIC

The 8366 device has on-chip logic to create a READY signal that will insert one Wait state into the 8085A
machine cycle that references the 8355 device. 8355 READY signal timing may be illustrated as follows:

MC1

Tw

ClK

CE·CE

ALE

READY ..
I I
I I

The READY output is floated by the 8355 device while CE·CE is false.

READY is forced low by the combination of Chip Enable true while ALE is high: READY stays low until the first low-to­
high transition of CLK following the end of the ALE pulse. If you refer back to Figure 5-11. you will see that this READY
logic creates a single Wait state. .

The problem with the READY logic illustrated above is that in order to have Chip Enable true while ALE is high. chip
enable logic must be tied directly to Address Bus lines. Refer to the timing diagram below and you will see that AO­
A 15 is stable while ALE is high.

But as we discussed earlier in this chapter. you can derive chip enable logic directly from A8-A 15 only in small 8085
microcomputer systems. When a large number of support devices are connected to the System Bus. you must
guarantee against spurious device selects by including control signals in the chip enable logic. Logic illustrated earlier
in this chapter shows how to create a chip select signal that is true between the trailing edge of ALE and the low-to­
high transition of RD or WR. The following chip enable timing results:

T1 T2

I
T3

ClK ~ I \ I
I I

: l I
I

, I
),(~ I
I

ALE I

AD orWR

CE

5-49

Timing illustrated above is theoretically the best guarantee against spurious selects: but it will not work if you want to
create a single Wait state when using an 8355 device. If Chip Enable (CEl goes true on the trailing edge of ALE. READY
will never be reset lciw:

'Tl

I
ClK :L..J
ALE

I
cE·EE 1 1 ___ ...".'-1

I
~
1
I

I:--__ ..,._ ~

AD orWR I
1 ,

READY .fl .. --------. I

: 1

T2

I

MCl

I
T3 I T4

I

~ L , I I
I
I

You can resolve this problem by simply inverting ALE as a clock input to the select logic flip-flop.

But when do you need to induce a Wait state?

8355 device timing is fast enough to respond to memory and I/O accesses without the inclusion of a Wait state. unless
you have buffers on the System Bus and the buffers introduce unacceptably long response delays. Therefore. ignore
the READY signal logic of the 8355 in small 8085Asystems and derive chip enable logic directly from the high-order
address lines A 11 ~A 15. In larger systems where buffers on the System Bus force the 8355 device to require a Wait
state. use READY logic of the 8355 device.

8355 I/O LOGIC
Let us now I~ok at the I/O logic of the 8355 device. This device has two I/O ports whose pins can be individually
assigned. to input or output. This assignment is made by loading appropriate Control codes into a Data Direction
register assocIated with each I/O port. A 1 in any bit position of the Data Direction register defines the associated 1/0
porfpirias an output pin. A 0 in any bit position defines the associated I/O port pin as an input pin. This may be illustr­
ated ~as follows:

Data Direction

Register A:
(Port 2)

1 "

0
0
1
0
1
1
0

I/O Port A
. (Port 0)

-
...

Data Direction

Register B
(Port 3)

1
1
1
0
1
0
1
1

I/O Port B
(Port 1)

... -... -

...

Observe that the 8355 has no 1/0 with handshaking. For I/O with handshaking you should use the 8155/8156 or the
8255 devices.

5-50

Q
w
~
a: o
a.
a:
o
o
~
u)
w

~
g
en
en
~
alS
w
Z
a:
o
m
en o
~
~
Q
~

@

THE 8755A ERASABLE PROGRAMMABLE READ
ONLY MEMORY WITH 1/0.

The 8755A device provides 2048 bytes of erasable programmable read-only memory and two 8-bit I/O ports . .
The only difference between this dev.ice and the 8355, which we have just described, is the fact that the
8755A read-only memory is programmable and erasable. There are minor pin and signal variations supporting
the EPROM. These differences are identified in Figure 5-27. . .

The 8755A is a new version of an earlier device, the 8755. The only difference between the
two is the level of Vee during normal read operations: +5V on the current 8755A, but OV
on the earlier 8755.

This discussion of the 8755A device is limited to describing how you program the read-only memory. In all other ways.
the 8755A device is identical to the 8355.
There are two Chip Enable signals' on the 8755A device: CE is the standard chip enable. which must be true when the
8755 device is being accessed for any purpose. either in normal operation or when programming the read-only memo~
ry. CE is a high true signal. .

The second Chip Enable signal. CE/PROG. is first held low. then is pulsed true only when you are programming the
read-only memory. You must apply a +25V pulse lasting between 50 and 100 milliseconds. beginning with the leading
edge of ALE. At this time. data will be written into the addressed read-only memory location. Timing may be illustrated
as follows:' .

ClK

I

ADO - AD7 I ADDRESS I DATA. ,
ALE n :----1

I

CE I ~
I

CE/PROG , I A

26V 8755A I VDD 5V
OV --------

8755

READY \

You erase the programmable read-only memory by exposing it to ultraviolet light for a minimum of twenty minutes.

5-51

*

;·.···~~ANDCf

CE

ClK

RESET

VDD (+5Vor +25V)

READY
10/M

iO'R
R5

TOw
ALE

ADO
ADl

AD2

AD3

AD4

ADS

AD6

AD7

(GND) Vss

PIN NAME

ADO - AD8

AS - Al0

PAO - PA7

PBO - PB7

Ri5
iOR
iOW
10/M
ALE

RESET

CE

..

.. - -
--'"

--
...
-- ..

- .
-- -- -

PROG AND CE
READY

ClK

VDD

VSS· VCC

1 40

2 39
..

3 38 "'"- --
4 37 ..
5 36
6 35 -- ---
7 34

6 33

9 32 .. -
10 31
11 8755A 30
12 29 --
13 28 ...
14 27
15 26

16 25 ..
17 24

18 23

.19 22
20 21

DESCRIPTION

Multiplexed Address and Data Bus

Memory address lines

Eight I/O pins, designated as Port A

Eight I/O pins. designated as Port B

Read from device control

Read from I/O port control

Write to I/O port control

I/O ports or memory select

Address·latch enable

System reset

Chip enable

PROM programming chip enable

Wait state request

Timing for Wait state request

Programming voltage:

+ 25V to program

+ 5V in normal read operation*

Ground. Power

*VDD is OV in earlier 8755 read mode

VCC (+5V)

PB7
PB6

. PB5

PB4

PB3

PB2
PBl
PBO

PA7

PA6

PA5

PA4

PA3

PA2

, PAl

PAO

Al0

A9

A8

TYPE

Bidirectional

Input

Bidirectional

Bidirectional

Input

Input

Input

Input-

Input

Input

Input

Input

Output. tristate

Input

Figure 5-27. 8755A Multifunction De·vice Signals and Pin Assignments

5-52

Q
w

~
a: o
D.
a:
o
u
~
en
w

~
g
en
~
all
w
Z
a:
o
Ul
en o
~
c(
Q
c(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• 8085A CPU
• 8155/8156 RAM/IO
• 8355 ROM/IO
• 8755A EPROM/IO

5-01

SOS5A
ABSOLUTE MAXIMUM RATINGS*

*COMMENT: Stresses above thosh;stedUhfl.e(i<~'Absolute
Maximum Ratings" may cause per;a'n8ntdafn~'t() the
device. This is a stress rating only and iun~tiQ,,!if~p,~il­
tion of the device at these or any other cond"tionfafjC?J#;\~
those indicated in the operational sections of titl$spe~j1J,i;,
cation is not implied. Exposure to absolute maximum"
rating conditions for extended periods may affect de~ice'
reliability.

Ambient Temperature Under Bias O°Cto 70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin

With Respect to Ground - 0.5 to + 7V
Power Dissipation 1.5 Watt

D.C. CHARACTERISTICS
(TA = o°c to 70°C; Vee = 5V ±5%; Vss = OV; unless otherwise specified)

Symbol Parameter Min. Max. Units Test Conditions

Vil Input Low Voltage -0.5 +0.8 V

VIH Input High Voltage 2.0 Vee +0.5 V

VOL Output Low Voltage 0.45 V IOl = 2mA

VOH Output High Voltage 2.4 V IOH = -400J.LA

lee Power Supply Current 170 mA

III Input Leakage ±10 J.LA Vin = Vee

IlO Output Leakage ±10 J.LA 0.45V < Vout < Vee

VllR Input Low Level, RESET -0.5 +0.8 V

VIHR Input High Level, RESET 2.4 Vee +0.5 V

VHy Hysteresis, RESET 0.25 V

TIMING CHARACTERISTICS
Bus Timing Specification as a Tcye Dependent

tAL - (1/2) T - 50 MIN

tlA - (1/2) T - 60 MIN

tLl - (1/2) T - 20 MIN

t lCK - (1/2) T - 60 MIN

t Lc - (1/2) T - 30 MIN

tAD - (5/2 + N) T - 225 MAX

tRO - (3/2 + N) T - 180 MAX

tRAE - (1/2) T -10 MIN

teA - (1/2) T - 40 MIN

tow - (3/2 + N) T - 60 MIN

two - (1/2) T - 60 MIN

tcc - (3/2 + N) T - 80 MIN

tCl - (1/2) T-ll0 MIN

t ARy - (3/2) T - 260 MAX

t HACK - (1/2) T - 50 MIN

tHABF - (1/2) T +50 MAX

tHABE - (1/2) T + 50 MAX

tAC - (2/2) T - 50 MIN

t1 - (1/2) T - 80 MIN

t2 - (1/2) T - 40 MIN

tRV - (3/2) T - 80 MIN

NOTE: N is equal to the total WAIT states.

T = tCYC.

Data sheets on pages 5-02 through 5-018 reprinted by permission of Intel Corporation. Copyright 1978.

,5-02

c
w

~
a:
o
11.
a:
o
(J

~
en
w
~ g
en
en
< .,
w
Z
a:
o
CO
en o
:!:
< c
<
@

. SOS5A

A C CHARACTERISTICS (T = o°c to 70°C' V A CC = 5V +5%' '" - OV) - SS-

Symbol Parameter Min. Max.

TCYC ClK Cycle Period 320 2000

t1 ClK low Time 80

t2 ClK High Time 120

t r , t f ClK Rise and Fall Time 30

tAL Address Valid Before Trailing Edge of ALE 110

tLA Address Hold Time After ALE 100

tLL ALE Width 140

t LcK ALE low During ClK High 100

t LC Trailing Edge of ALE to leading Edge of 130
Control

tAFA Address Float After leading Edge of 0
, ,READ (lNTA)

tAO Valid Address to Valid Data In 575

tAO READ (or INTA) to Valid Data 300

t ROH Data Hold Time After READ ONTA) 0

tAAE Trailing Edge of READ to Re·Enabling 150
of Address

tCA Address (AB-A 15) Valid After Control 120

tow Data Valid to Trailing Edge of WR ITE 420

two Data Valid After Trailing Edge of WR ITE 100

tce Width of Control low (RD, WR, INTA) 400

tCL Trailing Edge of Control to leading Edge 50
of ALE

t AAy READY Valid From Address Valid 220

t AyS READY Setup Time to leading Edge of ClK 110

t AYH READY Hold Time 0

t HACK HlDA Valid to Trailing Edge of ClK 110

tHABF Bus Float After HlDA 210

tHABE HlDA to Bus Enable 210

tLOR ALE to Valid Data In 460

tAV ' Control Trailing Edge to leading Edge of 400
Next Control

tAC Address Valid to leading Edge of Control 270

t HOS HOLD Setup Time to Trailing Edge of ClK 170

t HOH HOLD Hold Time 0

tiNS INTR Setup Time to Falling Edge of ClK 160
(M1, Tfonly). Also RSTand TRAP

tlNH INTR Hold Time 0
-NOTES: 1. AB-15 Address 5pecsapply to 101M, 50 and 51.

2. For all output timing where CL '" 150pf use the following correction factors:
25pf <: CL < 150pf: -.10 nslpf

150pf < CL <: 300pf: +.30 ns/pf
3. Output timings are measured with purely capacitive load.

!;

i, ,', "j",,:,;.t _

Units T estJ;ol:ld itiot\f'i t,

ns See note;'1/2:~a~;4"5~y
ns ..
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns
T eYc = 320ns;

ns CL = 150 pF

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

4. All timings are measured at output voltage VL = .av, VH - 2.0V, and 1.5V with 20ns rise and fall time on inputL
5. To calculate timing specifications at other values of TCYC use the table in Table 2.
6. L.E. - Leading Edge T.E ... Trailing Edge

5-03

SOS5A

WAVEFORMS

Figure 10. Clock Timing Waveform

Read Operation

T,

'AO------------

ALE

1-----+----- t RO-------.. ,

RD/INTA--+----++----.I --- 'CC-- ·~---Ir--__j---

READY

Writs OpGn~tlon

T,

''--_...-1 ,'--_...-
ADDRESS

I I ,tCA _

) ADDRESS X DATA OUT X
1-r'll- ~_llA---l ~ tow -two-I

ALE 1/

I+-tAl -

I tcc .
II

~tlC-1- tel ---.

f------ tAC ----

' ARy ·- tRYS t RYH .1

\ 1 I
READY

Figure 11. 808SA Bus Timing

5-04

Q
w

!t
a:: o
a..
a::
o
(J

~
en
w

!t g
o
o
c:(

011
w
Z
a::
o
III
o o
~
c:(
Q
c:(

@

SOS5A

TZ T3 THOLO T HOLO TI

\ ClK / \ .J / \ ,
HOLD t "\ :~

IHOS • +IHOH r-IHACK"

f .T ,
• I--IHA.F-I-

~IHAIl-H
HlDA

(ADDRESS, CONTROLS) H I.r'
1"10. BUS

I

Figure 13. BO~5A Hold Timing I

11----- BUS FLOATING' ------.1
ALE

Rol--------------t-----~----------------~

HOLD

HLOA ________________ -JI

'HACK ,"AIF 'IO!Q IS ALSO FLOATING DURING THIS TIME

Figure 14. BOB5A Interrupt and Hold Timing

5-05

8155/8156

ABSOLUTE MAXIMUM RATINGS·

TemperatureUnderBias 0°Cto+70°C
Storage Temperature -65°Cto+150°C
Voltage on Any Pin

WithRespecttoGround -0.3Vto+7V
Power Dissipation 1.5W

*COMMENT: Stresses above those listed under "Absolute
Maximum Ratings" may cause permanent damage to the
device. This is a stress rating only and functional opera­
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi­
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS .ITA = O°C to 70°C; Vee = 5V ±·5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

VIL Input low Voltage -0.5 0.8 V

VIH Input High Voltage 2.0 Vee +0.5 V

VOL Output low Voltage 0.45 V IOL = 2mA

VOH Output High Voltage 2.4 V IoH = -400,uA

IlL Input leakage ±10 J.LA VIN = Vee to OV

ILO Output leakage Current ±10 J.LA 0.45V ~VOUT ~Vec

IcC Vee Supply Current 180 mA

IldCE) Chip Enable l~akage
8155 +100 J.LA VIN = Vee to OV'
8156 -100 J.LA

.5-06

Q
w

~
a: o
11.
a:
o
(J

~
en
w
~ g
II)
II)
c(

01:1
w
Z
a:
o
!XI
II)

o
~
c(
Q
c(

@

8155/8156

A.C. CHARACTERISTICS (TA = o°c to 70°C; Vcc = 5V ± 5%)

SYMBOL PARAMETER MIN.

tAL Address to Latch Set Up Time 50

tLA Address Hold Time after Latch 80

tlC Latch to R EAD/WR ITE Control 100

tRO Valid Data Out Delay from READ Control

tAD Address Stable to Data Out V~!id

tll Latch Enable Width 100

tROF Data Bus Float After READ 0

tCl READtWRITE Control to Latch'Enable 20
..

tcc READ/WRITE Control Width 250

tow Data In to WR ITE Set Up Time 150

two Data In Hold Time After WRITE 0

tRv Recovery Time Between Controls 300

twp WR ITE to Port Output

tpR Port Input Setup Time 70

tRP Port Input Hold Time 50

tSBF Strobe to Buffer Full

tss Strobe Width 200

tRBE READ to Buffer Empty

tSI Strobe to I NTR On

tROI READ to I NTR Off

tpss Port Setup Time to Strobe Strobe 50

tpHS Port Hold Time After Strobe 120

tSBE Strobe to Butter Empty

tWBF WR ITE to Buffer Full

tWI WR ITE to INTR Off

tTL TIMER-IN to TIMER-OUT Low

tTH TIMER-IN to TIMER-OUT High

tROE Data Bus Enable from READ Control 10

Note: For Timer Input Specification, see Figure 10.

5-07

MAX. UNITS TEST CONDITIONS

ns

ns

ns

170 ns

400 ns

ns

100 ns

ns

ns ,.
ns

ns

ns

400 ns

ns

ns 150 pF Load

400 ns

ns

400 ns

400 ns

400 ns

ns

ns

400 ns

400 ns

400 ns
<, ,

400 ns

49P ns

ns

8155/8156

WAVEFORMS

Read Cycle

CE (8155) \[- ,(\
OR

CE (8156) Jf- ~\ /
101M \ ,(\

.. tAD

X r-)(
~

H ADDRESS DATA VALID
[-

!----.tAl - -tlA -

ALE J<- ~I\ -,(
~r-

-tll - l_ tRDE • -- t RDF -

--'\ -tRD_
~

~~
(- . ,~

-tle~ - tel-

l---- t ee - -.-·tRV -

Write Cycle

CE (8155) .

OR

CE (8156)

101M

ALE

Figure 7. 815518158 ReadlVlrlte Timing Diagrams

5-D8

8155/8156

Strobed ~np~t Mode

c
w £!F

~
a:

tSBF 0
D.
a:
0
(.)

~
en
w

~ INTR

g
(/)
(/)
c:(

a/J RD
w
Z t pHS a:
0
CD INPUT DATA
(/) FROM PORT 0

~
c:(
c
c:(

@ Strobed Output Mode

BF

STROBE

tWBF

INTR

tWI

WR

twp

OUTPUT DATA
TO PORT

Figure 8. Str~bed 110 Timing

5-09

8155/8156

Basic InPL!t M,ode

DATA BUS' ~ = = =-=-=-.=x _________ _
Basic Output Mode

DATA BUS'

OUTPUT

'DATA BUS TIMING IS SHOWN IN FIGURE 7.

F~gure 9. Basic I/O Timing Diagram

TIMER IN

'i"iMEi'iOuf
(PULSE)

TIMER 04T
(SQUARE WAVE)

LOAD COUNTER FROM CLR --I.
I 2. I ,..1

\ (NOTE1I " __ ;..J

\ (NOTE') " ________ ..1

~OTE', THE TIMER OUTPUT IS PERIODIC IF IN AN AUTOI11ATIC
RELOAP MODE (M, MODE BIT·')

figure 10. Timer Output Waveform

.5

COUNTDOWN FROM 5 TO ,

tcvc
t, ANDtl
t,';'
t2
tTlANDtTH

320 nsec
JOnsec
80 nsec

'20 nsec
400 nsec

'S-Dl0

MIN.
MAX.
MIN.
MIN.
MAX.

RELOAD COUNTER FROM CLR -t
I 2 I, I

c
w

~
a:
o
D..
a:
o u
~
en
w

~ g
C/)
C/)

-t
all
w
Z
a:
o
III
C/)

o
~
-t
C
c(

@

8355

ABSOLUTE MAXIMUM RATINGS·

Temperature Under Bias .•.............. O°C to +70°C
Storage Temperature -65°Cto +150°C
Voltage on Any Pin

WithRespecttoGround -0.3Vto+7V
Power Dissipation 1.5W

·COMMENT: Stresses above those listed under "Absolute
Maximum Ratings"may cause permanent damage to the
device. This is ,a stress rating only and functional opera·
tion of the device at these or any other conditions above
those indicated in the operational sections of this specifi·
cation is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device
reliability.

D.C. CHARACTERISTICS (TA = o°c to 70°C; Vee = 5V ± 5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

VIL Input Low Voltage -0.5 0.8 V Vee = 5.0V

VIH Input High Voltage 2.0 Vee+O·5 V Vec = 5.0V

VOL Output Low Voltage 0.45 V IoL=2mA

VOH Output High Voltage 2.4 V IoH = -400J,.LA

IlL Input Leakage 10 J,.LA VIN = Vcc to OV

ILO Output leakag~ Current ±10 pA 0.45V ~VOUT ~Vee

Icc Vee Supply Current 180 mA

A.C. CHARACTERISTICS (TA = o°c to 70°C; VCC = 5V ± 5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

tCYC Clock Cycle Time 320 ns

T1 ClK Pulse Width , ,80 ns CLOAO = 150 pF

T2 ClK Pulse Width 120 ns

tf,tr ClK Rise and Fall Time 30 ns

tAL Address to latch Set Up Time 50 ns

tLA Address Hold Time after Latch 80 ns

tLC Latch to READ/WRITE Control 100 ns

tRO Valid Data Out Delay from READ Control 170 ns

tAD Address Stable to Data Out Valid 400 ns 150 pF load

tLL Latch Enable Width 100 ns

tROF Data Bus Float after READ 0 100 ns

tCL R EADIWR ITE Control to latch Enable 20 ns

tee R EADIWR ITE Control Width 250 ns

tow Data In to WR ITE Set Up Time 150 ns

two Data In Hold Time After WR ITE 10 ns

twp WR ITE to Port Output 400 ns

tpR Port Input Set Up Time 50 ns

tRP Port Input Hold Time 50 ns

tRYH READY HOLD TIME 0 160 ns

tARY ADDRESS (CE) to READY 160 ns

tRV Recovery Time between Controls 300 ns

tRI;lE Data Out Delay from READ Control 10 ns

5-011

8355

WAVEFORMS

Figure 4. Clock SpeCification for 8355

-\
tCYC

\ / CLK / ""-----_

A~,O
ADDRESS 101M

tAD

AD0-7 ADDRESS DATA

(CE -1)'
(CE=O)

t LA -

ALE

tAL

R5
iOR

1+----- 'DW-----+I
tcc -------------~ ir------t-----

Figure 5. ROM Read and 110 Read and Write

5-012

Q
w

8355

elK

~ ICE-1l. U:-E-OI
a:
o
a..
a:
o
U ALE

~
u)
W

~
(j
o
en en
oct
ell
w
Z
a:
o

Figure 6. Wait State Timing (READY 5 0)

In
en o
~
oct
Q
oct
@

A. INPUT MODE

DATA"- - --- --)<
BUS ------- ----------------------

B. OUTPUT MODE

PORT
OUTPUT

GLITCH FREE
/OUTPUT

~~iA* = = = = =)(10.... _______ ...IX"' ____ _
*DATA BUS TIMING IS SHOWN IN FIGURE 3.

Figure 7. 110 Port Timing

5-D13

8755A

ABSOLUTE MAXIMUM RATINGS·

TemperatureUnderBias -10°C to +70°C
Storage Temperature -65°C to +150°C
Voltage on Any Pin .

With Respect to Ground -0.5V to + 7V
Power Dissipation 1.5W_

<
<.<)

·COMMENT: Stresses above those''1;~~~iJfJ
Maximum Ratings" may cause permanilnltJatrl
device. This is a stress rating only and f~;'c.·tt'wJ,.a
tion of the device at these or any other cond,'tl'o~hi II
those indicated in the operational sections of thisSRik/,.
cation is not implied. Exposure to absolute maxfrrwfn.
rating conditions for extended periods may affect devide
reliability.

D.C. CHARACTERISTICS, (TA = o°c to 70°C; Vee = 5V ± 5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

VIL Input Low Voltage -0.5 0.8 V

VIH Input High yoltage 2.0 Vee +0.5 V

VOL Output low Voltage 0.45 V IoL = 2mA

VOH Output High Voltage 2.4 V IoH = -400J.LA

IlL Input leakage 10 p.A VIN = Vee to OV

ILO Output leakage Current ±10 J.LA 0.45V ~VOUT ~Vee

Icc Vce Supply Current 180 mA

A.C. CHARACTERISTICS (TA = o°c to 70°C; Vee = 5V ± 5%)

SYMBOL PARAMETER MIN. MAX. UNITS TEST CONDITIONS

tcvc Clock Cycle Time 320 ns

T1 ClK Pulse Width 80 ns CLOAD = 150 pF

T2 ClK Pulse Width 120 ns (See Figure 3)

tf,tr ClK Rise and Fall Time 30 ns

tAL Address to Latch Set Up Time 50 ns

tLA Address Hold Time after latch 80 ns

tLC Latch to R EADIWR ITE Control 100 ns

tRO Valid Data Out Delay from READ Control 170 ns

tAD Address Stable to Data Out Valid 450 ns 150 pF load

tLL latch Enable Width 100 ns

tROF: Data Bus Float after READ 0 100 ns

tCL R EADIWR ITE Control to latch Enable 20 ns

tcc READIWRITE Control Width 250 ns

tow Data In to WR ITE Set Up Time 150 ns

two Data In Hold Time After WR ITE 30 ns

twp WR ITE to Port Output 400 ns

tPR Port Input Set Up Time 50 ns

tRP Port Input Hold Time 50 ns

tRVH READY HOLD TIME 0 160 ns

tARV ADDRESS (CE) to READY 160 ns

tRV Recovery Time between Controls 300 ns

tROE Data Out Delay from READ Control 10 ns

5-D14

c
w

~
a:
o
D..
a:
o u
~
en
w

~ g
CI)
CI)

< ..,
w
Z
a: o
III
CI)

o
~
< c
<
@

8755A

WAVEFORMS

Figure 5. Clock Specification for 8755A

A .. ,O ~ ADDRESS :K
tAD

AD()'7) ADDRESS }·--~D
r f-tll-

ALE \0-
!-tAl_ ~tlA_

(PROG)/CE \~

CE }r- -'\

-- I--tRDE

~tlC_ -tRO

Figure 6. PROM Read, 110 Read and Write Timing

Please note that ffi must remain low for the entire cycle.
This is due to the fact that the programming enable
function common to this pin will disrupt internal data bus
levels If CE1 is taken high during the read.

tcc

5-015

ADDRESS

DATA)-----(ADDRESS .>-
f

\
-- tROF I--

Jr- oJ

L-
tow -~ t-two

,~ L-
I---tCl-

tRV

8755A

Input Mode

Output Mode

A. INPUT MODE

DATA- - - -- - - -)<
BUS - - - - - - - -------------

B. OUTPUT MODE

PORT
OUTPUT

GLITCH FREE
/OUTPUT

~~iA-= = = = =)< ________ X"' ____ _
-DATA BUS TIMING IS SHOWN IN FIGURE 6.

Figure 7. 110 Port Timing

Figure 8. Walt ~tate Timing (READY = 0)

5-016

Q
w

~
a: o
Q.
a:
o
o
~
en
w

~
g
en
en
ct
.;s
w
Z
a:

8755A

D.C. SPECIFICATION FOR PROGRAMMING
(TA = O.J C to 70°C; Vee = 5V ±5%; Vss = OV)

SYMBOL PARAMETER MIN.

Voo Programming Voltage 24
(during wri$e to EPROM)

lop Prog Supply Current

~ A.C ... SPECIFICATION FOR PROGRAMMING
en
o (TA = o°c to 70°C; Vee = 5V ±5%; vss = OV)
~
ct
Q
ct

@
SYMBO·L.

tps

tPD

ts

tH

tpR

tpF

tPRG

PARAMETER

Data Setup Time

Data Hold Time

Prog Pulse ~etup Time

Prog Pulse Hold Time

Prog Pulse Rise Time

Prog Pulse Fall Time

Prog Pulse Width

MIN.

10

0

2

2

0.01

0-01

A5'

5-017

TYP. MAX. UNIT

25 26 V

15 30 mA

TYP. MAX. UNIT

ns

ns

I1S

I1S

2 I1S

2 I1S

50 msec

8755A

WAVEFORMS

FUNCTION PIN NO. ... I~ •. ------ PROGRAM CYCLE ------'.~I. __ ---VERIFY CYCLE- ---· ... ~ ... I: .!;~~;~
ALE 11

AlDO_7 12-19

A8·10 21·23

CE

PROG/CE

V OD

DATA TO BE
PROGRAMMED

~-----------------------

\J--

• VERIFY CYCLE IS A REGULAR MEMORY READ CYCLE (WITH V DD = +5V FOR 8755A. VDD = OV FOR 8755.1

Figure 10. 87SS/87S5A Program Mode Timing Diagram

5-018

.<~{
4

c
w

!i
a: o
Q.
a:
o
(,)

:!!:
en
w

!i
~r
U)
U)

oCt
011
w
Z
a:
o en
U)

o
~
oCt
C
oCt

@

Chapter ,6
THE 8048 MICROCOMPUTER DEVICES

The 8048 series microcomputers are single-chip 8-bit devices which have been developed by Intel to compete
in the market for low-cost, high-volume applications. This is a market where the 8080A, with its high chip
counts, does not do well. One version of the 8048, the 8748, is also likely to do exc'eptionally well in low-
volume, custom applications because it is very easy to use. '

The 8048 looks like a one-chip 8080A with heavy' F8 influence. The F8 was the first 8-bit microprocessor to
bring the economics of low chip counts to the attention of the semicoriductor industry. It is therefore not
surprising to find an F8 influence in the 8048. (The F8has now been superceded by the 3870; both parts are de-
scribed in Chapter 2.) . ,

It is intriguing to note that, in terms of general architectural organization, there are striking similarities between
the 8048 and the MCS6530 (which is described in Chapter 10).

The 8041 and 8021 are slave microcomputers of the 8048 family. On simple inspection the principal di1ference
between the '8948 ij(1d the 8041/8021 w'ould appear to be that the 8041/8021 cannot generate external
System Busses. In fact, there are non~obvious differences between the 8048 and the 8041/802'1; there are
further significant d!fferences between the 8041 and the 8021. ,.' .

The 8048 is a simple. single-chip microcomputer that may be a stand-alone device. or part of a multi-microprocessor
configuration. As a stand-alone device. the 8048 mayor, may not have external additional logic. Thus. the 8048 is a
straightforward. low-end, low-cost microprocessor with less versatility than a device such as the 8085.

If you ~ontinue the philosophical progression from the 8085 to the 8048. you reach the 8021. This is a single-chip
microcomputer with no expansion capabilities, and very low-cost. If the 8021 exists in a multi-microprocessor con­
figuration. then so far as the 8021 is concerned there is logic beyond'its perimeters. The fact that this logic contains
one or more microprocessors is quite immaterial to the manner in which the 802,. will be programm~d.

The 8041. in sharp contrast. is a slave microprocessor that assumes the presence of a master microprocessor 011 on~
side and extern'al logic on the other side. The 8041 thus becomes an interface and control part - which is how the
8041 should be considered. But you will observe that a large number of microprocessor support parts also act as inter­
faces between a microprocessor. assumed to E3xist on one side. and some other logic. assumed to eXist on thE3 other
side. This is a very accurate parallel to draw. The 8041 is. in fact. a universal interface device. limited only by the speed
of the part and the amount of programmed logic that can be included in it. The 8041 can s.erve a wide variety of inter­
face logic functions. Thus. when'ever you consider using a complex interface controller part, you should also con­
sider using the 8041 as an alternative. Because.the 8041 is programmable. you can tailor it to meet. exactly. the re­
quirements of the specific microprocessor on one side and specific logic on the other side, This is something you can­
not do with dedicated controller parts such as floppy disk and CRT controllers. which must look generically. rather than
specifically. upon the CPU on one side and the device being controlled on the other side.

There is also an erasable programmable read-only memory version of the 8041; it is the 8741.
I' •

8048 series microcomputers are summarized il'!Table 6-1.

The only support device described in this chapter is the 82431/0 Expander. In addition, the 8155, the 8355, and
the 8755 multifunction devices (which have~:'been desc~ibed in Chapter 5) can be used with 8048 family
microcomputers.

6-1

The prime source for the 8048 series rnicrocomputers is:

Second sources for the 8048 include:

INTEL CORPORATION
3065 Bowers Avenue

Sa nta Cia ra. Ca I iforn ia 95051

ADVANCED MICRO DEVICES
901 Thompson Place

Sunnyvale. California 94086

SIGNETICS
811 East Arques Avenue

Sunnyvale;. California 94043 '

Neither of the8048 second sources are likely to have' sign,ificantProduct volumes until mid-1978,

Intersil plans to introduce a CMOS version of the 8048 ih early 1979,

The 8048 series microcomputers use 'a single +5V power supply. There are two versions of each microcomputer; one
uses a 2.5 microsecond clock while the other LJ~es a 5 microsecond clock. 8048 instructions execute in either one or
two clock periods. The 8021 uses alb microqecond clock. A ~e~ version of the 8049 uses a 1 A JLsec clock, '

All 8048. '804~ and 8041 devices are p~'ckaged as 40-pin DI~s and ~flve TTL-compatible signals, 8021 devices are
packaged a,s 28-pin DIPs and have TTL-compatible signals, . '

Table 6-1. A Summaryof 8048 Series Microcomputers

ON CHIP MEMORY
CYCLE EXTERNAL PACKAGE

ANALOG TO
I/O PORTS TIMER EXPANDABLE DIGITAL

R9M/EPROM
TIME INTI;RRUPTS PINS CONVERTER RAM

8048 102~ROM 64 2.5p.sec 3x8 bits 1 Yes 40 Yes No
8035 0 64 2.5p.sec 3x8 bits 1 Yes 40 Yes No
8035-8" 0 64 5.0 p.sec 3x8 bits 1 Yes 40 Yes No
8748 1024 EPROM 64 2.5 p.sec 3x8 bits 1 Yes 40 Y~s No
8748-8 1024 EPROM 64 ~.O p.sec 3x8 bits 1 Yes 40 Yes No
8049 2048 ROM 64 lAp.sec 3x8 bits 1 Yes 40 Yes No

; 8041 1024 ROM 64 2.5 p.sec 3x8 bits 0 Yes 40 N8 No
8741 1024EPROM 64 2.5p.sec 3x8 bits 0 Yes 40 No ' No
8021 1024 ROM 64 10 p.sec 2x8 bits 0 Yes 28 No ' No

lx4 bits

802~ 2048 ROM 64 10 p.sec 3x8 bits 1 Yes, 40 No Yes

THE 8048, 8748,. 8049, 8749 AND 8035
, MICROgo~~~frE~~"

For a description of an 8048, 8748, 8049, 8749, or 8035 device, read the following text; where ambiguities
may arise in your mind,:r~m~mber'these overriding rules: ..

1) The 8049 is an 8048 with twice as much on-chip program memory. and. in newer models. higher execution speed,
There are no other differences between these two parts. '

, ,. l' '.

2) , A~ 8035 is alJ 8048 with no on-chip program memory. There are no other differences between these two parts.

For a ~escription of an 8041,8741 or 8021 device, read the following'text, then read the specific device discus­
sion tt,at ~ppears Ia.~er-'in this ch~Pt~r.
Functioj,~ ilT!plemented qn the tt1~e~ versions of the 8048 micr~c~mputer are illustrated in Figure 6-1. With the
exception of the 80~~, yo~ will see that complete microcomputer logic is provided within a single pac!<age. But
remen\qet. just be2ii1u'se a fU'nction is present in Figure 6-1. that does not mean to say it will be sufficient for your ap­
plication. For example. read/write memory is shown as present. yetthereare only 64 bytes of read/write memory' on
any 8048 series microcomp'utf3r chip. ' , . .
j," I

6-2

c
w

~
a: o
a..
a:
o
(J

~
en
w

~
g
U)
U)
c(

all
w
2
a:
o
CD
U)

o
~
ct·
c
c(

@

~ Present in all
~ rrlicr6computers

1 .•..•...•.. · ... ·.< .•.. <.,· ... <.1 Not present in
........ / .'. the 8035

Figure 6-1. Logic of the 8048 Series Microcomputers

The only differences between 8048 series and 8049 series microcomputers are in the on­
chip read-only memory and execution speed; 8049 series microcomputers have twice as
much on-chip read-only memory as 8048 series microcomputers, and execute instructions
80% faster.

t~~ ~

AN 8048 AND 8049 FUNCTIONAL OVERVIEW

8049 SERIES ,:-:
MICROCOMPUTERS

Logic of the 8048 and 8049 series microcomputers is illustrated functionally in Figure 6-2.

The Arithmetic and Logic Unit. the Control Unit arid the Instruction register are all inaccessible to you as a user;
therefore we will ignore this portion of the microcomputer.

1024 bytes of program memory are provided by the 8048 arid 8748 microcomputers; the 8b35 has no program memo­
ry. The 8049 has 2048 bytes of program memory. The 8048 and 8049 have Read Only Memory (ROM), while the 8748
has Erasable Programmable Read Only Memory (EPROM); this is the only difference between the 8048/8049 and the
8748. .

. .
There is a 12-bit Program Counter which allows the 8048 series microcomputers to access 409.6 bytes of program
memory. Since the 8048 and 8748 microcomputers have only 1024 bytes of program memory on the computer chip,
the additional 3072 bytes must be external if you are going to expand program memory to the maximum addressable
space. All 8035 microcomputer program memory is external. Only 2048 bytes of external program memory can be ad­
ded to an 8049.

6-3

Program
Counter may
be output on

P23 - P20 plus
07 - DO

Interrupt Request

System Reset

PROM/Expander strobe

CPU/Memory Separate

External Crystal {

Address Latch and Clock

Program Memory Enable

Single Step

Read Strobe

Write Strobe

Test input or Timer output

Test or Event Counter input

pio - P17
~ --

¢:::> ~
A

~

~
"'I

ex:
0 a..

-
.~ Program Counter f--'\

DO - 07 ~

.~
ex:

~
0 a..
en
::l m

~

" I--

N "

~
P20 - P27 ex:

.<=::> 0

~ ~
a.. Program

Status Word

I--

INT A -.
.... - RESET

-- PROG

.-- EA

.. XTAL1 ~ Accumulator
~, . XTAL2

, --- ALE --- PSEN -
-- 58

- RO -......;.,
WR ...

- TO ~ Counter /Timer -- --.. T1 ----
Figure 6-2. Functional Logic of the 8048.8049 .. 8748.

8749 and 8035 Microcomputers

6-4

"'V

~

..
,..

1024 x ,8 Bits
'ROM (8048)

or EPROM
(8748)

. Arithmetic and
Logic Unit;

Control Unit
and Instruction

Register

64 x 8 Bits
RAM

Q
w

~
a: o
Q.
a:
o
o
~
en
w

~ g
CI)
CI)
c(

o!I
w
Z
a:
o
a1
CI)

o
~
c(
Q
c(

@

All 8048 series microcomputers (with the exception of the 8021) have three 8-bit I/O ports.
For the 8048 series and 8049 series microcomputers, one of these ports, the Bus Port, is a
truly bidirectional I/O port with input and output strobes. Outputs can be statically latched.
while inputs are nonlatching. This means that external logic must hold input data true at Bus Port pins until the data
has been read. All eight pins of the Bus Port must be assigned either to input or output: you cannot mix input and out­
put on the Bus Port.

Bus Port is used as the primary I/O port in a single-chip microcomputer system. In multiple-chip microcomputer
systems Bus Port serves as a multiplexed Address and Data Bus. .

I/O Ports 1 and 2 are secondary I/O ports with characteristics that differ significantly from Bus Port. If you output
parallel data to I/O Port 1 or 2. it is latched and maintained at the I/O port until you next write data. But the only way
external logic can input data to I/O Port 1 or2 is by pulling individual pins from a high to a low level. Thus when a high
level is being output at any pin of I/O Port 1 or 2. external logic can pull this level low - and subsequently if the ~PU
reads back data from the I/O port it will read a a bit value. This may be illustrated as follows:

CPU I/O Port External Logic

output (2) 11110101 ----------I.~11110101

~ Pull one pin low 0
,>--' ---2

11010101

input CD 11010101 --------- 11010101

External logic cannot create a high level at any pin of I/O Port 1 or 2 which is outputting a .Iow level.

Here is a summary of I/O Port 1 and 2 capabilities:

1) You can at any time output parallel data to I/O Port 1 or 2. The data will be latched and held until the next output.

2). Individual pins of I/O Ports 1 and 2 can serve as input or output pins. When you output data to I/O Port 1 or 2. you
must output a 1 bit to any input pill. This may be illustrated as follows:

Data Output --+ X 1 1 X X 1 X 1 (x.;. 0 or.1)

7 6 5 4 3 2 1 0 ~Bit No.

I 0 I I 1.1 01 0 I 0 I I I 0 I I ~ I/O Port 1 or 2 (0 = Output. I = Input)

3) External logic writes to input pins of I/O Ports 1 and 2 by leaving low levels alone. and by pulling high levels low.

Figure 6-3 illustrates logic associated with each pin onto Ports 1 and 2 in all 8048 series 8048 SERIES
microcomputers. I/O PORT

Output data is latched by a Ootype flip-flop. PIN LOGIC

The Q and Q outputs of the Ootype flip-flop control a pair of gates on either side of the pin connec- . .
tion. To provide fast switching times in 0-to-1 transitions. a relatively low impedance (~5K ohms) is switched in for ap­
proximately 500 nanoseconds whenever a 1 is output.

6-5

ORl.ANl--------------~

INTE:RNAl ---4~"" D
BUS

D
FLIP
FLOP

elK

Q 1-...... ---4

QI---+-------"""1

WRITE -~--f---~ __ ---...
PULSE

IN--------....I INPUT BUFFER

+5V +SV

Figure 6-3. 8048 I/O Ports 1 and 2 Pin Logic

=50Kfl

I/O PIN
PORT 1 AND 2·

Pins are continuously pulled upto +5V through a relatively high impedance (-50K ohms). When a 0 is output to the
D-type flip-flop. a low impedance (-3K ohms) overcomes the pull-up and provides TTL current sinking capability.

When a 'pin of I/O Port 1 or 2 is at a high level. external logic can sink the 50Kfl. pull-up. But when the pin is at a low
level. external logic cannot overcome the low impedance to ground; thus it cannot pull the pin up to a high level.

By placing an input buffer between the pin and the switching gates. pin logic allows the CPU to read current levels in­
duced by external logic - but only while external logic is connected to the pin.

The buffer connecting the Q output of the D-type flip-flop to the D input is present to enable 8048 instructions that
mask I/O port data.

Later in this chapter we will iook at I/O ports in more detail. showing programming and design examples.

6-6

c
w

~
a:
o
D.
a:
o
CJ
~
en
w

~
(3
o
CI)
CI)
c(

a!I
w
Z
a:
o
III
CI)

o
~
c(
c
c(

@

8048, 8748 AND 8035 MICROCOMPUTER PROGRAMMABLE REGISTERS
The 8048 series microcomputers have an 8-bit Accumulator, a 12-bit Program Counter and 64 bytes of
scratchpad memory. Scratch pad memory may be visualized either as read/write memory or as general purpose
registers.

The Accumulator, Program Counter and scratch pad memory may be illustrated as follows:

8 Bits

~

{ RO 00
Data Counters R 1

01

R2 02

R3 03 General Purpose

R4 04 Registers

R5 05

R6 06
R7·

50 { 09

51 {
OA

OB

52 {
OC
00

53 {
OE

OF

54 {
'-0

5tack

11

55 {
12

13

56 {
14

15

57 {
16

17

{ RO' 18
Data Counters

19 Rl'
R2' 1A

R3' 1B Alternate General
R4' 1C Purpose Registers
R5' 10

R6' 1E

R7' 1F

20

· • • • •

~'O
l3eneral 5cratchpad

3E

3F

8-bit Accumulator ~-t-t-"I-~I~-t-t-t-"I-..,..-r-..,.-"I
12-bit Program Counter "' _'---"_ _ _

6-7

The Accumulator is the principal conduit for all data transfers. The Accumulator is' always one source and the
destination for Arithmetic or Boolean operations involving memory or registers.

Two sets of eight scratchpad bytes serve as secondary registers. At any time one set of general purpose registers
is selected while the other set of general purpose registers is not selected.

The first two general purpose registers of each set, RO and R1, act as Data Counters to address scratchpad
memory and external data memory. Thus you address scratchpad memory using implied memory addressing via
general purpose Register RO or R1: you can address anyone of the 64 scratchpad bytes. including the general purpose
registers. or even the Data Counter register itself.

In between the two sets of eight general purpose registers there is a 16-byte stack. The Stack Pointer is main­
tained in the Program Status Word: therefore we will defer our discussion of stack operations until we look at status.

8048 SERIES ADDRESSING MODES
The 8048 series microcomputers separate memory into program memory and data memory.
Without resorting to complex expansion schemes, you are limited to a maximum of 4096
program memory bytes and 320 data memory bytes.

The 8048 and 8748 microcomputers have 1024 bytes of program memory on the CPU chip. The

8048 SERIES
MEMORY
SPACES

8049 microcomputer has 2048 bytes of program memory on the CPU chip. More program memory. if present. must be
external to the CPU chip. The 8035 microcomputer has no on-chip p'rogram memory: it requires all program memory to
be external.

All 8048 series microcomputers provide 64 bytes of read/write data memory on the CPU chip. In addition. 256 bytes of
external data memory may be addressed. The external data memory space must be shared by external data memo­
ry and any external 1/0 ports - that is to say. I/O ports other than the microcomputer's own three I/O ports or 8243
Expander ports.

8048 series microcomputer address spaces and addressing modes are illustrated in Figure 6-4.

Let us first examine program memory addressing.

A single address space is used to access all of program memory. In the normal course of events
program memory is addressed via the 12-bit Program Counter. The high order Program
Counter bit is isolated in Figure 6-4 because when the Program Counter is incremented only
bits 0 through 10 are affected. You must execute special instructions to modify the contents of
the high order Program Counter bit. Program memory is therefore effectively divided into two

8048 SERIES
PROGRAM
MEMORY
ADDRESSING

memory banks. each containing up to 2048 bytes of program memory. You cannot branch. via Jump-on-Condition in­
structions. from one program memory bank to the other. nor can instructions stored in one program memory bank
directly access the other. You can switch completely from one program memory bank to the other by preceding a JMP.
CALL or RET instruction with a SEL MB instruction.

Two types of program memory addressing are available: you can read data from program memory and you can
execute Jump instructions.

You can unconditionally jump anywhere within the currently selected program memory bank: this may be illustrated as
follows:

PC

These bits
replaced

~~--------~~~------~ "-

New Address

6-8

PROGRAM
MEMORY

11000100

10111010

Arbitrary
Memory
Address

010A

010B} JMP instruction

010C object code

0100

06BA

06BB

06BC

06BO

c
w

~
a:
o
a..
a:
o
u
~
en
w

~ g
CI)
CI)

~

~
w
Z
a:
o
al
CI)

o
~
~ c
~

@

Memory
Bank 0

Memory
Bank 1

Program Memory

0000

On 8048, 8748
and

8049 Chip

03FF
0400

On 8049
Chip

07FF

0800

OBFF
OCOO

OFFF _____ --'

00 ... ----.....

External
Data Memory

FF _____ /

00 ... ----.....

On Chip
Scratchpad

Memory
3F ______ J

r
I
I
I

11 : 10

I S I
........

9 8

I

,
IA

7 6 5 4 3 2 0

I PC

#'"

7 6 4 3 2 0

I I I I I I I I I:~

A = Accumulator
PC = Program Counter
RO, R 1 are general purpose registers

in scratch pad memory

Figure 6-4. 8048 Series Microcomputers' Memory Addressing

6-9

Thus the JMP instruction stored in program memory bytes 010B16 and 010C16 causes program execution to jump to
location 06BA16.

You can also jump using a form of paged. indirect addressing. where the Accumulator points to an indirect address
stored in the current page of program memory. This may be illustrated as follows:

Program
Memory

Arbitrary
Memory
Addresses

t-----I 013A

Accumulator
t-----I 0138

__ r------::::::::=--I'1-~C~8~..J 013C

Program I 1 58
Counter ~. _ __ ...

0130
I---...-.t

013E
t---........
I •
I I

~3 ~~:: ...-JMPP@A

015C

0150

I I
I I

01CA
~ ___ J----~ 01C8 ~Jump here

01CC
t-----f

01CO

All conditional Jump instructions allow you to branch within the current page of program memory only. This may be il­
lustrated as follows:

Arbitrary
Program Memory
Memory Address

~~ __ --_~ .. II------fl ~~~~ _ J,mp he"

P I. I
rogram I A I AD I ~ I

Counter ... _~. __ --'.

condition is rriet

OAA8
I---...-.t

I----...-.t JC instruction F6 OAAC}

-----------t __ 12~C~OAAO
OAAE

I---...-.t

6-10

c
w

~
a: o
a..
a:
o
u
~
u)
w

~
U o
en
en
oCt
clJ
w
Z
a:
o
III
en o
~
oCt
C
oCt

@

You cali ~ead data from program memory, but there are no instructions which allow you to write data to program
memory. Instructions (other than immediate instructions) that read data from program memory use paged, im­
plied addressing. There are two forms of paged, implied programming memory addressing; they may be illustrated as
follows: .

Arbitrary
Memory
Address,

01AA

Program
Memory

1------1
MOVP A,@A01ASI---_A_3_-t

013E
1------1

o 13F 1----.;.4;..;A_-I
0140

1------1

Program Counter

Program

Memory

Arbitrary
Memory
Address

01AA
1----1

E3 01AS MOVP3 A,@A
1-------1

01AC
1-----1

1-----1
01AD

033E
1-----1

4A 033F
1-----1

t-----I 0340

The illustration above compares execution of the MOVP and MOVP3 instructions. These are the two instructions which
allow you to read a byte of data from program memory into the Accumulator. Both instructions load 4A into the Ac­
cumulator, as illustrated above.

When the MOVP instruction is executed, the program memory address is formed by concatenating the high-order four
bits of the Program Counter with the contents of the Accumulator:

Program Counter (X < y Z I ~ Accumulator

, , I I
" " / .I , , .I I

" ... ' / .I

I· X>' P Q f

When the MOVP3 instruction is executed, the program memory address is computed by appending the Accumulator
contents to 0011:

~ Accumulator

I I
I I
I I

I 3 P Q I} Program Memory Address

Thus the MOVP instruction loads into the Accumulator the contents of a program memory byte within the current pro­
gram page. The MOVP3 instruction loads into the Accumulator the contents of a byte from program memory page 3.

Note carefully that paged addressing of program memory carries with it the usual page boundary problems. The
program memory addressing modes which replace th·e low-order eight Program Counter bits keep the four high-order
Program Counter bits - after the Program Counter has been incremented. .

Refer back to the JMPP @A instruction. This instruction is illustrated as being stored in program memory location
015B16. But suppose this instruction were stored in memory location 01 FF16; then after the JMPP ins~ruction is
fetched, t~e Program Counter will no longer contain 01 FF16, it will contain 020016. Now instead of jumping to pro­
gram memory location 01CB16, you would jump to program memory location 02CB16.

This page boundary problem is common to all microcomputers that use absolute paged addressing. For a complete dis­
cussion of this problem refer to Volume I - Basic Concepts, Chapter 6.

6-11

Note that the 8048 has no instructions which write into program memory. If you want to write into program
memory you must have external logic which overlaps external program and data memory.

Let us now look at data memory addressing. First of all. notice that scratchpad memory and external data memory
have overlapping address spaces. Separate and distinct instructions access scratchpad memory as against external
data memory. External data memory does not represent a continuation of scratchpad memory. For example. there will
be memory bytes with addresses in the range 0016 through 3F16 in the scratchpad and in external data memory.

Implied memory addressing is the only addressing mode available to you when accessing data memory.

Instructions that access scratchpad memory take the scratchpad memory byte' address from the low-order six bits of
General Purpose Register RO or R1.

Instructions that access external data memory take the external data memory address from all eight bits of General Pur­
pose Register RO or R1.

The eight general purpose registers within scratchpad memory can be addressed directly. We could argue that this
constitutes a limited scratchpad memory direct addressing capability: but in order to remain consistent with other
microcomputers described in this book. we will classify these direct accesses of general purpose registers as register­
to-register operations rather than direct addressing of data memory.

A PROGRAM MEMORY MAP
The instruction set of the 8048 microcomputer is designed to allocate the on-chip program memory as follows:

3FF

} Data Tables
300
2FF

} Pro9"""
200
1FF

100
OFF;

: .
007 ~ l Ti~~r interrupt calls subroutine r ongmed here

003 } External interrupt calls subroutine

~
origined here

000 t R~s~art calls subroutine
f ongmed here

The MOVP3 instructions assume that the 256 byt~s of program memory with addresses 30016 - 3FF16 have been set
aside to hold tables of constant data.

Interrupt logic (which is described later) uses low memory locations O. 3 and 7 to origin interrupt service routines that
will be executed in response to a restart. an external interrupt or a timer interrupt. Jump instructions will normally be
located in these low program memory locations.

6-12

c
w

~
a:
~
a:
o
(J

~
en
w

~
g
en
en
ct
clJ
w
Z
a:
o
III
en o
~
ct
C
ct
@

8048 SERIES STATUS
8048 series microcomputers have an 8-bit Program Status Word which may be illustrated as follows:

j-' ------------These four bits saved on Stack

~
7 6 5; 4: j 2 o -:4--Bit No.

r--P--~~~--~~--~~
Program Status Word

'-------Stack Pointer

'----'---~----- Register bank select
o = Scratch pad bytes 0-7 selected
1 = Scratch pad bytes 18-1 F selected

'------------- FO, software flag
'---------------AC, Auxiliary Carry

L----------______ C, Carry

C and AC are the standard Carry ~nd Auxili~ry Carry statuses as defined in Volume I and used throughout this
book.

FO is a flag ~hich you set or reset using apprd~riate Status instructions. A conditional Jump instruc!ion tests the
level of Fa. Fa is not connected to external logic and cannot be modified or tested by external logic.

BS identifies which set of gen~~al purpose registers is currently selected. If BS is 0, then scratchpad byte~ a
through 7 are serving as general purpose registers. If BS is 1, then scratchpad bytes 1816 through 1 F16 are serving as
general purpose registers.

The low-o~der three Pro~ram Status W~rd bits serve as a Stack Pointer. The 16 Stack bytes are treated as eight
16-bit registers, with the current top of Stack identified by the three low-order Program St~tus Word· bits.

A subroutine Call instruction pushes the Program Counter contents and the four high-order Program Status
Word bits onto the Stack as follows:

Scratchpad Lowest
11 o .4--Bit No. Memory Scratchpad

Program I P P Q R I Address
P P Q ,0 Q R R R

T
Counter QQQQRRRR

SSSSPPPP jxxx
7 o .--SitNo.

PSW Is xi
xxx+ 1

S S S X X

7 o ...-Bit No. Highest
Scratch pad

Address

In the illustration above. P. Q. R. S and X represent any binary digits.

6-13

Observe tHa~ the begirlhing of the Stack has the lowest scratchpad address. The order in which Program Status Word
and Program Counter contents are pushed onto the Stack is illustrated above. Here is a specific case: .

Fl!1I 07

PSW
000 { Full

Full

08-Beginning of Stack

09

PC 12

;,
: !'

001

010

-------G1
100

~

~

<

Full OA
4A OB

72 oc·
OD

OE
OF
10

You need to know the exact order ih which data is stored Qn the Stack since the Stack is also accessible as general
scratch pad memory. .

There are two ReHjrn-from~Subroutine instructions; one restores Program Counter contents only. the other restores
. Program Counter ~~d Program Status Word contents.

Since the Stack has eight 16-bit registers. subroutines may be nested eight deep. If you are using interrupts. thEm the
combined t6tal G,t sutHbutine nesting levels on either side of the interrupt must sum to 7 or less. For example. if the in­
terrupt service' routine nests subroutines .t6 a maximum level of 3. then non-interrupt programs cannot nest
subroutines to a level greater than 4. The interrupt itself requires one Stack location.

8048 SERIES MICROCOMPUTER OPERATING MODES
8048 series microcomputers can operate in a variety of modes. Many signals serve more than one function, de-
pending on the operating mode. . , .

In order to clarify this potentially confusing' subje'ct, w'e will summarize 8048 series operating modes in the
para'graphs below, then we will summarize' deVice signals; these two summaries are followed by an in-depth
anaiysis of operating modes, illustrating timing and signal fUhctions.

IntEnnal execution'mode is the simplest case; . the _8048 ~eries microcomputers normally
operate in Internal Execution mode, at which time they execute programs without access­
ing external program memory or data memory. All iriformatio~ transfer with external logic oc­
curs via. I/O ports or control signals. The 8035. having no i'nternal program memory. cannot oper­
ate in Internal Execution mode.

Expandable 8048 series microcomputers can access e)(ternal program and data memory. Having
exter.nal,program memory and/or data memory causes the ri1icroco~puter to output additional
control signals which identify extern'al program and data memory accesses. This is External
Memory Access mode. Memory addresses are output via the Bus Port and four pins of I/O Port 2;
bidirectional data transfers occur via the Bus Port. This may be illustrated as follows:

P20 - P23

,;. DBO - DB7

8048 ...
. 8748

8035

6-14

....

..
Jo..

)

..
-;,
..,.
:.

}
Address Bus

Data Bus

RD
WR
PSEN
ALE

} Control B"

8048 SERIES
INTERNAL
EXECUTIOr,;
MODE

8048 SERIES
EXTERNAL
MEMORY
ACCESS MODE

c
w
t-
< a:
0
0.
a:
0
0
~
en
w
t-
<
(3
0
CI)
CI)

<

"" w
Z
a:
0
III
CI)

0

:!!
< c
<
@

External Memory Access mode represents the simplest case for the 8035 microcomputer. which has no on-chip pro-
gram memory.

The 8048 series microcomputers can be operated in Debug mode. In Debug mode the CPU is
disconnected from its internal program memory. All program memory accesses are deflected to
external program memory. This may be iliustrated as follows:

0000

Internal External
Program Debug
Memory Memory

- 03FF ..

0400

External
Program
Memory

OFFF

Since the 8035 has no internal program memory. it is always in "Debug mode."

8048 AND
8748 DEBUG
MODE

You will use Debug mode to test microcomputer systems built around an 8048 series microcomputer. Typically. special
purpose test and verify programs will be maintained in external debug memory.

Single stepping is not really a mode, but is worth mentioning in connection with Debug
mode since it is a powerful debugging tool. In any of the operating modes you can apply a
Single Step signal (SS) which halts instruction execution following the next instruction fetch. This
allows you to execute programs one instruction at a time in order to locate errors or gain a better
understanding of event sequences.

The 8748 microcomputer contains Erasable Programmable Read Only Memory (EPROM). In
Programming mode you can program the EPROM.

Finally .. there is a Verify mode. In Verify mode you can read the contents of internal or ex­
ternal program memory as data. Verify mode is used in conjunction with Programming mode
to test data written into EPROMs. Verify mode can also be used on its own to examine the con­
tents of program memory for any 8048 series microcomputer.

8048 SERIES MICROCOMPUTER PINS AND SIGNALS

8048 SERIES
SINGLE
STEPPING

8748'
PROGRAMMING
MODE

8048 SERIES
VERIFY MODE

Figure 6-5 illustrates pins and signals for the 8048 series microcomputers. We will briefly summarize functions
performed by signals before discussing how signals are used in different modes.

DBO - DB7 serves both as a bidirectional 1/0 port and as a multiplexed Address and Data Bus. When no external
data or program memory accesses are occurring. OBO - DB7 serves as a simple bidirectional I/O port or latch. During
external program or data memory accesses. DBO - DB7 serves as a bidirectional Data Bus as well as outputting the low­
order eight bits of all memory addresses. Data inputs are not latched in bidirectional mode. External logic must hold in­
put signal levels until the CPU has read input data.

6-'5

TO 1
XTAL1 2
XTAL2

..
3

RESET 4
SS 5

INT 6

EA 7
AD 8

PSEN 9
WR 10
ALE 11
DBO 12
DB1 13
DB2 14
DB3 15
DB4 16
DB5 17
DB6 18
DB7 19

40

39

38
37

36
35
34

33

32
8048 31
8748 30
8035

29

28
27

26

25
24

23
.~2

VCC (+5V)
.T1

P27

... t--~~26

... t--~P25
P24

..... 1--~P17

P16

..... 1--~P15

....... __ ~P14

..... I--~ P13

P12
....... --~P11

.... 1--~P10

VDD
PROG

..... I--~ P23

(GND) VSS 20 21

P22

.... 1--~P21

P20

PIN NAME

DBO - DB7

pio - P17
P20 - P27

ALE

fill
WR
PSEN
EA
SS
INT
TO

T1
RESET

VSS
VCC
VDD

PROG

XTAL1, XTAL2

DESCRIPTION

Bidirectional I/O port, Data Bus and
low-order eight Address Bus lines
I/O Port 1 ..
I/O Port 2. P20 - P23 aiso serves as four \
high-order Address Bus lines
External clock signal and address
iatch enable
Data merllory read control
DatcLmemory write control
External program memory read control
External program memory access
Single step control
Interr·upt request
Test input, optional clock output
a~d. Program/Verify mode select
Test input, optional event counter input
System reset and EPROM address latch
Ground
+5V
+ 25V to,program 8748. + 5V standby·
for 8048 RAM
+ 25V input to program 8748. Control

output for 4-bit I/O
External crystal connections

TYPE

Bidirectional, tristate

Ouasibidirectional
Ouasibidirectional

Output

Output
Output
Output
Input
Input
IrJput
Bidirectional

Input
Input

Bidirectional

Figure 6-5. 8048. 8748 and 8035 Microcomputer Pins and Signals

6-16

Q
w

~
a::
o
D.
a::
o
o
~
en
w

~
U o
en
en
oct
~
w
Z
a::
o
m
en o
~
oct
Q
oct
@

P10 - P17 and P20 - P27 support I/O Ports 1 and 2, respectively. We described the characteristics of these two 1/0
ports earlier in this chapter. During external accesses of program memory the four high-order address lines are output
via P20 - P23.

ALE is a control signal which is pulsed high at the beginning of every instruction execution machine cycle. This
signal may be used as a clock by external logic. During external memory accesses. the trailing edge of ALE strobes
memory addresses being output.

RD is a control signal which is pulsed low to strobe data from external data memory onto the Data Bus ..

WR is a control signal which is strobed low when external data memory is to read data off the Data Bus.

PSEN is a control signal which is strobed low when external program memory is to place data on the Data Bus.

External logic inputs EA high in order to separate the CPU from internal program memory and force the microcom-
puter into Debug mode. .

SS is input low in order to stop instruction execution following an instruction fetch: this allows you to singie step
through a program.

INT is the input for external interrupt requests. If the interrupt is enabled. a low input at INT causes a subroutine call
to program memory location 3 when the current instruction finishes execution.

TO is a test input which may be sampled by a conditional Jump instruction. TO is also used while selecting External
Program mode and Verify mode. The internal CPU clock signal can be output via TO.

T1 is a test input which can be sampled by a Jump-on-Condition instruction. T1 can also be used to input a signal
to Counter/Timer logic when it is serving as an event counter.

. RESET is a standard system reset input signal. The normal RESET signal should be output from
an open collector or active pUll-up:

~Vcc

~ 1K

------------~~------------~l~------RESIT
The power-on RESET should be generated as follows:

r-----------~~C~----------~~----------_o~------RESIT

1Kil 1p.F ::r: 10V

8048,8748
AND 8035
RESET

There is an internal pull-up resistor which. in combination with an external 1 ~F capacitor. generates an adequate inter­
nal RESET pulse. If the RESET pulse is generated externally. then it must be held below 0.5V for at least 50 millise­
conds.

This is what happens when you reset an 8048 series microcomputer:

1) The Program Counter and the Program Status Word are cleared. This selects register bank 0 and program memory
bank O. Also. the first instruction executed following a Reset will be fetched from program memory location O.

2) The Bus Port is floated.

3) 1/0 Ports 1 and 2 are set to Input mode.

4) External interrupts are disabled.

5) The counterltimer is stopped and TO is disconnected from the timer.

6) The timer flag and internal flags F1 and FO are cleared.

6-17

An external crystal, if present. is connected across XTAL 1 and XTAL2. Typically a 6 MHz crystal will be used. You
can input a clock signal directly to XTAL 1. If you do. the input clock signal should have a frequency in the range of 1
MHz to 6 MHz. or 11 MHz for the 8049.

The 8048 series microcomputers use power supplies in a number of interesting ways.

Vee is the standard +5V power supply. VSS is the standard ground connection.

VDD is .an additional +5V standby power supply. This standby power supply will maintain the contents of
scratchpad memory when all other power has been removed. Typically VDD will be connected to a battery so that
when the system is powered down data can be preserved in scratchpad memory (8048 .. 8035l and 8049 only).

The 8748 and 8749 microcomputers use VDD and PROG in order to program the EPROM. While programming the
EPROM. a voltage of +25V is input at VDD. +25V pulses lasting 50 milliseconds are input at PROG. A single byte of
program memory will be written during a Single PROG +25V pulse.

PROGserves as a control strobe output to the 8243 Input/Output Expander during the execution of instructions
that reference the Expander ports. This function of PROG is described in more detail later in this chapter. when we de­
scribe the 8243 I/O Expander.

8048 SERIES TIMING AND INSTRUCTION EXECUTION

Let us begin our detailed analysis of 8048 series microcomputer operations by looking at basic instruction tim­
ing.

A master clock signal must be input via XTAL 1, or the clock signal may be generated internally by connecting a
crystal across XT Allor XT Al2. A 6 MHz crystal is recommended. This clock signal is divided by 3 to generate a
master synchronizing 2 MHz signal which is used throughout the microcomputer system. You can output this 2
MHz clock signal via the TO pin.

All -8 versions of 8048 series microcomputers operate at half speed; they use 3 MHz crystals and generate a 1
MHz master synchronizing signal.

InstriJctions execute in machine cycles. Every machine cycle has five clock periods.
Using a 2 MHz clock signal. therefore. each machine cycle will last 2.5 microseconds. Instruc­
tions execute in either one or two machine cycles.

INTERNAL EXECUTION MODE
Figure 6-6 illustrates timing for the simplest case - execution of a single machine cycle in-

8048 SERIES
MACHINE
CYCLES AND
CLOCK PERIODS

struction accessing internal program or data memory only. The only signal change seen beyond the microcomputer
chip itself is the ALE pulse - and the elK Signal. if you elect to output it via TO. The events which occur during each
clock period are illustrated in Figure 6-6; but remember. these operations are internal to the microcomputer. They are
beyond you r access or control.

Figure 6-6 also illustrates timing for instructions that execute in two machine cycles. but access only program and/or
data memory internal to the microcomputer chip. Once again external logic sees ALE. and optionally elK.

6-18

c
w

~
II:
o
a..
II:
o
(.)

~
en
w
~
<
(3
o
CI)
CI)

<
~
w
Z
II:
o
aI
CI)

o
~
<
C
<t

@

MCl MCl

Tl T5 Tl

(TO) ClK

ALE

Output instruction address Increment PC,

Execute instruction

Decode instruction

(TO) ClK

ALE

PSEN

DBO - DB7

P20 - P23

Input instruction

Decode instruction

Figure 6-6. Execution of 8048 Single Machine Cycle Instructions
without any External Access

T1

A

External
Address
Strobe

A = Address
I = Instruction Code
0= I/O Data

MCl

T5

Instruction
must be
stable

on 000 - DB7

Tl

I

External
Address
Strobe

Figure 6-7. An 8048 Series External Instruction Fetch

6-19

MCl

T5

Instruction
must be
stable

T5

o

on 000 - DB7

(TO) eLK

ALE

DBa - DB7

Tl

External
Address
Strobe

Mel

A Address
DO Data Out

01 Data In

Data
Output

. Strobe

T5 Tl

External
Address
Strobe

Mel

These two machine cycles would never occur in the sequence illustrated.

They are shown together for comparison only.

Figure 6-8. An 8048 Series External Data Read or Write

EXTERNAL MEMORY ACCESS MODE
Now consider external program and data memory accesses.

Data
Input

Strobe

T5

Figure 6-7 illustrates timing for an external program memory read. The external program memory address is output
via DBO - DB7 (low-order eight address lines) and P20 - P23 (high-order four address lines). The address is maintained

. stable just long enough for external logic .to latch it on the high-to-Iow transition of ALE.

The low PSEN pulse serves as an external program memory read strobe. While PSEN is low. external program memory
must decode the latched address and place the contents of the addressed memory byte on the DBO - DB7 lines. The
microcomputer will read DBO - DB7 on the trailing (low-to-high) transition of PSEN.

Timing associated with rea"ding data from external data memory and writing to external data memory is illustr­
ated in Figure 6-8. Timing is very similar to the external instruction fetch illustrated in Figure 6-7. Instead of PSEN
being pulsed low. RD is pulsed low to strobe data input: WR is pulsed low to strobe data output. Since the total exter­
nal data memory address space is 256 bytes. the complete address is transmitted via DBO - DB7; thus P20 - P23 is in­
active during an access of external data memory.

Note that the 8048 series microcomputers have no Wait state. External memory must
therefore respond to read or write operations within the allowed time. This is not much of a prob­
lem since 8048 series microcomputers operate relatively slowly; most standard memory devices
will have no trouble meeting timing requirements. If you want to use slower memories. use the
slower 5 microsecond machine cycle versions of the 8048 microcomputers.

6-20

c
w

~
a:
o
D.
a:
o
u
~
en
w

~
g
en
en
~ ..,
w
Z
a:
o
III
en o
~
~ c
~

@

P

ALE

..

8048
8748
8049

or
8035 ~

PSEN
1m"
WR

I

8048
8748
8049

or
8035

ALE

20 - P23

DBO - DB7
A

...
P20 - P22

DBO - DB7

v-

~

- ALE

ADO - AD.? PAO- PA7
A -'"

V)
"

A8 - A~

8355 ...
8755

PBO - PB7 :: CE
RD

' ..
:. lOR .. r - lOW

r CE

Signals not directly involved in the 8048-8355 interface are not shown.

Figure 6-9. An 8048-8355 Configuration

-

-
...
) ..

y+5V

010 - D~ 000 - 007 ".
STB))

8212

LJ+5V

MD
DS2 DS1

+ --b. -
Y+5V

010 - 013 ..
STB

000 - 007 J\.

) .. r

014
8212 015

~+5V. 016
017 MD

-==- DS2 DS1 - + ~

(Program Memory)

} (Data Memory)

Data Bus
DO - 07

AO - A7

A8 - A15

Address Bus

Figure 6-10. Demultiplexing DBO - DB? to Create Separate
Address and Data Busses

6-21

Let us examine microcomputer configurations that include external memory.

Vendor literature illustrates complex microcomputer systems built around 8048 series microcomputers; while
such large microcomputer systems are certainly feasible, they are not advisable. If you are going to expand an

. 8048 series microcomputer system to more than two or three devices, in all probability an 8085 system would
be more economical and powerful - not to mention a number of other microcomputers described in this book .

. We will therefore confine ourselves to illustrating 2- and 3-chip configurations.

Figure 6-9 illustrates an 8048-8355 (or 8755) configuration. The 8355 (or 8755) is a multifunction support
device described in Chapter 5.

Figure 6-10 shows how you can connect standard memory devices to an 8048 series microcomputer.

Let us examine Figure 6-9. The 8048 Bus Port is directly compatible with ADO - AD7. the multiplexed Data and Ad­
dress Bus of the 8355 device.

The three high-order address lines required by the 8355. A8. A9 and A 10. are taken
directly from P20. P21 and P22. P23. the high-order address line output by the 8048. is
used to enable the 8355. As shown in Figure 6-9. this means the 8355 will respond to ad­
dresses in program memory bank 1. If you are using an 8035 microcomputer. then P23
could be connected to the CE enable pin of the 8355; now the 8355 will respond to ad­
dresses in program memory bank O.lt would make little sense having the 8355 respond to

8355 OR 8755
CONNECTED
TO AN 8048
SERIES
MICROCOMPUTER

addresses in program memory bank 0 when using an 8048 or 8748. because the first 1024 bytes of program memory
are internal to these microcomputers; that means the first 1024 bytes of 8355 memory wou Id never be accessed. The
8049 microcomputer has 2048 bytes of on-chip program memory. so you would access no 8355 memory.

Control signals needed to read data out of 8355 program memory are easily derived. The 8048 ALE output is exactly
what is needed ·for the 8355 ALE input. The memory strobe RD required by the 8355 is adequately generated by the
PSEN output of the 8048.

You can also access the 8355 I/O ports by connecting the RD and WR outputs of the 8048 to the lOR and lOW
inputs of the 8355; the lOR and lOW control inputs of the 8355 were specifically designed for this purpose. RD
and WR control signals are generated by the 8048 series microcomputers in order to access data memory external to
the microcomputer device itself. Thus the I/O ports of the 8355 device must be accessed within the address space of
external data memory. In Figure 6-9 external data memory addresses O. 1. 2 and 3 will access the 8355 I/O ports - and
their respective Data Direction registers. Of course. the 8355 I/O ports can be accessed only while the 8355 is selected
- via a high CE input.

In order to attach standard memory devices to an 8048 series microcomputer, you
must demultiplex the DBO - DB7 lines to create separate Data and Address Busses.
Figure 6-10 shows how to do this using two 82121/0 ports. 82121/0 port operations
are described in Chapter 4. In Figure 6-10 the 8212 I/O ports are being used as simple out­
put ports vvithout handshaking. By tying STB and MD high. the 8212 I/O ports will output
whatever is being input while the device is selected. We use the ALE signal to complete
selection of the 8212 I/O ports; thus while ALE is high the two ports are selected.

Timing may be illustrated as follows:

ALE

DBO - DB7

P20 - P23

8212 DO

8212
Ports

A

A

6-22

D

8212
Ports

STANDARD
MEMORY
DEVICES
CONNECTED
TO AN 8048
SERIES
MICROCOMPUTER

D

A

A

Q
w

!t
a:
o
Il..
a:
o
u
~
en
w

!t
C3 o
(/)
(/)

<
01.1
w
Z
a:
o
al
(/)

o
:!:
< o
<
@

Thus the 8212 ports output DBO - DB7 or P20 - P23 levels latched while ALE is high. Once ALE goes low. 8212 port
outputs remain constant.

But there are a few subtleties associated with Figure 6-10.

When an 8048 series microcomputer is accessing external program memory. a 12-bit address is output via DBO - DB7
and P20 - P23; therefore the entire Address Bus is needed as illustrated. A low PSEN pulse serves as the external
memory read strobe.

When 8048 series microcomputers access external data memory. however. only DBO - DB7 is affected. Thus the sec­
ond 8212 I/O port creates address lines A8 - A 15. which will carry the most recent data output to I/O Port 2 - for ex­
ample. you may set all I/O Port 2 pins to 0 during initialization. If I/O Port 2 is undefined. spurious selecti.on of program
memory will occur in configurations that include external program and data memory. At the time ALE is output as a
high pulse no other signals indicate whether the subsequent memory access will involve program memory or data
memory. It is only the separate control strobes - PSEN for program memory. WR and RD for data memory - that in­
sure the correct memory module will be accessed. If your 8048 program uses I/O Port 2 for data output as well as for
external memory addressing. you should buffer the System Bus; make sure. in this case. that the System Bus has suffi­
cient capacity to handle two selected memory devices simultaneously.

Even though two memory devices may be selected simultaneously. you will not run into memory access contentions
since program memory is strobed by PSEN while data memory is strobed by RD and WR. Only one of these Signals will
be active at any time.

DEBUG MODE
You can bypass program memory internal to the 8048 series microcomputer by inputting a high signal at EA.
While EA is high, timing for all program memory accesses will conform to external program memory accesses as
illustrated in Figure 6-7. You may change the level of EA only when RESET is low; that is. you cannot switch bet­
ween internal and external memory during program execution.

Here is one of the ways in which you may use Debug mode:

In user end products an external memory device may contain test and verify programs. A service representative will ex­
ecute these test and verify programs by applying a high input at EA. For example. you could connect an 8355 multi­
function device to the 8048. selecting it via program memory bank O. If EA is taken out to a switch. a serviceman will be
able to execute programs out of the first 1024 bytes 'of 8355 program memory. instead of internal microcomputer
memory.

EA is also used by programming and verification modes. This use of EA, however, has nothing to do with Debug
mode.

SINGLE STEPPING
If you input a low Signal at SS. then when ALE next pulses high. it will stay high until S5 returns high. While ALE is
high. instruction execution ceases and the current Program Counter contents are output via DBO - DB7 and P20 - P23.
Timing may be illustrated as follows:

ALE _::h_' __ I __

DBO - DB7 PCO - 7 I I
P20 - P23 pca'- PC11 I I

S::-C"'8 I
The CPU only tests 55 level while ALE is high. At other times SS level is irrelevant.

Single stepping is an 8048 series microcomputer program debugging aid. Intel literature suggests the circuit il­
lustrated in Figure 6-11 to create an 55 signal that is initiated by an ALE pulse and terminated by a pushbutton.

6-23

+5V

10K

+5V +5V

PRESET
Q SS

1/27474

CLOCK

CLEAR
DEBOUNCE

LATCH
ALE -

1/2 7400

Figure 6-11. An 8048 Single Step Circuit

If you do not wish to single step. then connecting the Single Step switch in the Run position will hold PRESET at
ground. which forces the Q output high; instructions will execute normally. With the Single Step switch in the Single
Step position. PRESET is held high; now the ALE input to CLEAR becomes active. As soon as ALE goes low the Q out­
put is also driven low; thus SS is low. The low SS is detected on the next high ALE pulse. at which time ALE remains
high and the cycle is stopped. This condition persists until the pushbutton is depressed. Depressing the pushbutton
creates a low-to-high clock transition which forces SS high- thus terminating the stopped condition. You, as a user,
will see a program advance one instruction every time you press the pushbutton.

While an 8048 series microcomputer is stopped in a single step, the current Program Counter contents are out­
put via the Bus Port (OBO - OB7) and P20 - P23. The Bus Port output presents no problem since you would expect to
see address information output at this time. But if I/O Port 2 is being used as a regular I/O port. then prior data present
on lines P20 - P23 will not be available' during the address output. Thus if you wish to view 1/0 dnta output while
single stepping, you must latch I/O Port 2 data externally.

PROGRAMMING MODE
Of the 8048 microcomputer series, only the 87XX numbered microcomputer program memory can be written
into. We will now examine the way in which the 8748 EPROM is programmed and verified.

In all probability, you will program an 87XX memory using a development tool which automates the entire pro­
cess. That being the case, the event sequence which we are about to describe is not particularly interesting to
you, since it is taken care of by the PROM programmer; But if you build your own PROM programmer, or if for
any reason·you need to understand the PROM programming sequence, then read on.

While programming and verifying the EPROM. you should input a clock signal at XTAL 1 with a frequency between 1
and 6 MHz; you can also use the on-chip oscillator at this time.

Operations now proceed one byte at a time; you write a byte into program memory. then you verify that the data has
been written correctly.

C' wi
1-. <.
a:'
0
0.
a:
0
(J,

~
en
w·
I-
< g
(/)
(/)

<
all
w.
Z
a:
0 en
(/)
0

:!:
<
C
<
@

+5V
XTAL1 -

0

RESET
+5V

0

+5V
TESTO

r-- BUS and PROG can only be driven at this time .. ~I -------i
0

+25V
EA

+5V

BUS· ADDRESS AO - A7 DATA ~---o(DATA OUT

P20 - P21 ADDRESS AS - A15

+25V
VDD

+5V

+25V
PROG +5V

+OV

Figure 6-12. 8748 EPROM Programming and Verification Timing

In the discussion which follows. refer 'to Figure 6-12. which illustrates timing for the prog~am/verify sequence.

Step 1) Initially +5V is input at VOO. TO 'and EA. RESET is held at ground. Under these conditions you insert the
8748 into the programming socket. You must make certain to insert the 8748 correctly. If you insert the
8748 incorrectly you will destroy it.

Step 2)

Step 3)

Step 4)

Step 5)

Step 6)

Step 7)

TO is pulled to ground:. this selects Programming mode.

+25V is applied to EA. This activates Programming mode.

A 10-bit memory address is applied ~ia OBO - OB7 and P20 - P23. Rememb~r. there are 1024 bytes of pro­
gram memory on the 8748 device: The low-order eight address bits are input via OBO - OB7 while the two
high-order address bits are input via P20 and P21.

+5V is applied at RESET. This latches the address.

The datato be written into the addressed programmed memory byte is inpUt at OBO - OB7.

In order to write the data into the addressed program memory byte apply +25V to VoD. then ground PROG.
then apply a +25V pulse at PROG: the +25V pulse at PROG must last at least 50 milliseconds.

Step 8) Now reduce VOO to +5V. Programming is complete and verification is about to begin.

Step 9) In order to verify the data just written. apply +5V to the TO input. This selects Verify mode.

Step 10) As soon as Verify mode has been selected. the data just written is output on OBO - OB7. You must read and
verify this data using appropriate external .circuitry. Verification is now complete.

. , .

In order to write into the next memory byte. select Programmirig mode again by connecting TO and RESET to ground:
then return to Step 3.

Repeat the program/verify sequence. byte-by-byte. until the entire program memory has been written into.

In order to erase the EPROM expose it to ultraviolet light for a minimum of 20 minutes.

6-25

VERIFICATION MODE
You can verify the contents of an 8048 series microcomputer program memory at any time.

When verifying program memory contents for an 8048 series microcomputer with EPROM. you enter the Verify mode
by applying +25V to the EA pin and +5V to the TO pin. RESET must be held at ground while you apply +5V to the TO
pin.

Using an 8048 series microcomputer with ROM. you enter the VerifY'r:node by 'applying +12V to the EA pin.

Once in the Verify mode .. place the address of the program memory location which is to be read at DBO - DB7 (Iow­
order byte) and P20 - P2i (high-order four bits).

Latch this address by applying +5V to RESET.

While RESET is high. the contents of the addressed program memory location are output via DBO - DB7.

You may repeat the verification process. byte-by-byte.

Verification timing is illustrated as follows:

r----------------------------- (+ 5V. 8748 only)
TO (8748 only) -1

r-___ (+2?V8748)

EA -.J + '2V 8048

DBO - DB7 Address (AO - A 7) .

P20 - P21 ____ ~y _____ A_d_d_re_s_s_(A_8_-_A_'_'} _____ ~I ______ A_d_dr_e_SS_(_A_8_-A_"_'_} _____ x===

INPUT/OUTPUT PROGRAMMING
8048 series microcomputers (with the exception of the 8021) have three I/O ports. the physical characteristics of
which we have already described. Instructions allowydiJ to input or output Accumulator data via anyone of the
three I/O ports. You can also directly mask data resident at an I/O port using an AND mask or an OR mask.

There are two types of input/output beyond the 8048 series microcomputer chip itself.

The low-order four bits of I/O Port 2 may be connected to the 8243 Input/Output Expander which has four in­
dividually addressable 4-bit I/O ports. The 8243 Input/Output Expander is described later in thjs chapter.

You can also implement I/O ports within the external data memory address space for the expandable microcom­
puters of the 8048 series. We have already seen how you do this using an 8355 multifunction device connected to an
8048 series microcomputer. In this particular case the two I/O ports of the 8355 device are addressed as external data
memory locations 0 and 1. Any other implementation of external I/O ports is allowed; however. in every case the I/O
ports must be addressed as external data memory bytes using external data memory access instructions.

HOLD STATE
There is no Hold state that external logic can induce in an 8048 series microcomputer. This is not unreasonable.
since the purpose of the Hold state is to enable direct memory access operations - which would make little
sense in a microcomputer system as small as an 8048. which has a maximum of 256 external data memory
bytes. .

6-26

c
w

!t
a::
o
c..
a::
o
c.J
~
en
w

!t
(3
o
en
en
c(

oil
w
Z
a::
o
en
en
o·
~
c(
c
c(

@

COUNTER/TIMER OPERATIONS

All 8048 series microcomputers have an internal counter/timer. Counter/timer logic may be illustrated as
follows:

ClK----...,~

~ ~I I
0. Inc.rement .. t:-..... - - --........... -~. J register on - -----..V,,------.,-""

T1 ----.... ClK or T1 a-bit register
1 .. ~ Time out flag

_ Time out
L...... ___ ~ interrupt request

high-to-Iow
transition

The Counter/Timer register is eight bits wide: it is accessed via Accumulator instructions, which move Accumulator
contents to the CounterlTimer register or move CounterlTimer register contents to the Accumulator.

Generally stated, this is how the counter/timer works:

You begin by loading an initial value into the CounterlTimer register. Next. you start the counterltimer by executing
the STRT T or STRT CNT instruction. The counter/timer will increment continuously until stopped by a Stop
CounterlTimer instruction.

Whenever the counterltimer increments from FF16 to 0016, it activates a counterltimer interrupt request and sets a
time-out flag. If the counterltimer interr~pt has been enabled, then program execution will branch to the appropriate
interrupt service routine. If the counterltimer interrupt has been enabled, then you must test for a time-out by execut­
ing the JTO Branch-on-Condition instruction.

You can operate the counter/timer as a counter or as a timer. The STRT T instruction operates the counterltimer as
a timer, in which case the internal system clock increments the Timer register once every 480 crystal oscillations
(80 microseconds, assuming a 6 MHz crystal).

You operate the counterltimer as a counter by executing the STRT CNT instruction. Now high-to-Iow transitions of a
signal input at T1 increment the counter. The minimum time interval between high-to-Iow T1 transitions is 45 crystal
oscillations (7.5 microseconds, assuming a 6 MHz crystal). There is no maximum delay between T1 high-to-Iow transi­
tions. Once T1 goes high it must remain high for at least 3 crystal oscillations (500 nanoseconds, assuming a 6 MHz
crystal).

You execute the STOP TCNT instructiofl to stop the counterltimer, whether it is operating as a counter or as a timer.

Here is an instruction sequence which initiates the counter/timer operating as a timer with interrupts enabled:

MOV
MOV
EN
STRT

A,#TSTART
·T.A

TCNTI
T

:LOAD INITIAL COUNTER/TIMER CONSTANT

:ENABLE TIMER INTERRUPT
:START THE TIMER

The following instruction sequence operates the counterltimer as a counter with interrupts disabled:

DIS TCNTI :DISABLE COUNTER INTERRUPT EARLY IN PROGRAM

MOV A.#TST ART :~OAD INI,TIAL COUNTERITIMER CONSTANT
MOV T,A
STRT CNT :START COUNTER

INTERNAL AND EXTERNAL INTERRUPTS
The 8048 series microcomputers have a simple interrupt scheme that is effective and adequate for small
microcomputers. Interrupts can originate from one of three sources:

1) A Reset. This is a non-maskable interrupt.

2) An external interrupt induced by setting INT low. (This is not available on the 8041 and 8021 series microcom­
puters.)

3) A counterltimer interrupt which is automatically requested every time the CounterlTimer register increments from
FF16 to 0016·

6-27

External interrupts and counterltimer interrupts can be enabled and disabled individually.

When anyone of the three interrupt requests is acknowledged, the microcomputer executes a Call instruction
to one of these three locations:

Reset: CALL 0
External interrupt: CALL 3

CounterlTimer interrupt: CALL 7

The Reset interrupt always has highest priority and cannot be disabled.

If an external interrupt request and a counter/timer interrupt request occur simultaneously. the external interrupt will
be acknowledged first. When either an external interrupt or a counter/timer interrupt is acknowledged, all inter­
rupts (e>icept Resed are disabled until an RETR instruction is executed. Within an Externaior Timer interrupt
service routine you cannot'enable interrupts under program control. This maybe a problem if you are using the
timer and external interrupts in timer sensitive applications. If execution time for an external interrupt's service routine
extends over more than one counterltimer time out. then you will fa!! to detect one or more time outs. The simplest way
of resolving this problem is to make sure that your External interrupt 'service routines are very stiort - executing in 75%
of the counterltimer interval. or less. If this is not feasible. then you must monitor the counterltimer by testing its time
out flag rather than by using counterltimer interrupt logic. You can execute the JTF conditional Jump instruction at
frequent intervals within the main program and interrupt service routines. thus catching time outs irrespective of when
they occur: "" ,

You cal"! re-enable interrupts within an interrupt service routine by executing a dummy RETR instruction. Here is
an appropriate instruction sequence:

START OF INTERRLJPT SERVICE ROUTINE

CALL
EN .

ENAB
I
TCNTI

;RE-ENABLE INTERRUPTS

EN

END OF INTERRUPT SERVICE ROUTINE
ENAB RETR

En~bling i"terrup~s within a service routine, as illustrated above, is not recommended in' an 8048 microcomputer
system.

Two problems need to be resolved when using external interrupts in an 8048 series microcomputer system: an
interrupt acknowledge must be created, and in muitiplf! interrupt configurations we must be able to identify the
interrupting source. '

8048 series microcomputers have no interrupt acknowledge signal. An interrupt acknowledge signal must be created;
otherwise external logic does not know when to remove its interru'pt request. And if the interrupt request remains after
an RETR instruction executes. the interrupt will be reacknowledged. The only straightforward way of acknowledg­
ing an interrupt is to assign one of the I/O port pins to serve as an interrupt acknowledge signal. The extern'al in­
terrupt service ro~tine will begin by outputting an appropriate low pin signal. Here is one possibility: '

ANL P1.#7FH ;RESET PIN 7 OF I/O PORT 1 LOW
ORL P1.#80H ;SET PIN 7 OF I/O PORT 1 HIGH

Here. the output at pin 7 of Va Port 1 is a low pulse with a duration of two machine cycles (5.0 microseconds).

But remember. if you us~ an !f0 port pin as an interrupt acknowledge. you cannot use the same pin to perform standard
I/O operations, '

6-28

c
w
!i
a: o
Q.
a:
o
(J

!:
en
w

!i
g
(/J
(/J

<
01:1
w
Z
a:
o
In
(/J

o
~
< c
<
@

lACK
(p17) IACKO

.------+------+-----~------~----~------~----~~~17

10

9318
or

74148

P10

P11

P12

t----------!~ INT
to CPU

Figure 6-13. An Eight-Device Daisy Chained Interrupt Request/Acknowledge Scheme

If there are many external devices which can request interrupt service. then the most effective way of handling multiple
interrupts is via a daisy chain. Daisy chain logic has been discussed in Volume I - Basic Concepts. The acknowledged
device in the daisy chain must create a device code that is input to an I/o port. Figure 6-13 illustrates a scheme
whereby eight devices in a daisy chain may request interrupt service, and upon being acknowledged, the
selected device will input a unique code to I/O Port 1. The high-order bit of I/O Port 1 serves as an interrupt
acknowledge. I/O Port 1 bits O. 1 and 2 receive as inputs a 3-bit code identifying the acknowledged device. .

The daisy chain logic in Figure 6-13 is created using a chain of eight AND gates and eight NAND gates. The AND g~tes
are chained in order of priority. with INTO h'aving the highest priority and INT? having the lowest priority. The first
NAND gate receives as its inputs INTO and the acknowledge signal output via pin? of I/O Port 1. Subsequent NAND
gates receive as their inputs an interrupt request signal. the acknowledge signal and the output of the previous AND
gate. The output of each NAND gate becomes an interrupt acknowledge signal which is low-true. Thus in Figure 6-13
there are eight low-true interrupt requests. represente~gnals INTO through INT? and there are eight low-true in­
terrupt acknowledges. represented by IACKO through lACK? Each external device capable of requesting an interrupt
must output a low-true INTn which it removes upon receiving a low-true IACKn. For device 3 this may be illustrated as
follows: '

------~_\--------;j I
The eight interrupt request signals INTO through INT? are input to an AND gate. The AND gate generates a master low­
true interrupt r.equest. INT. If anyone or more of the INTn signals are low. then the AND gate will output a low INT.

The eight interrupt acknowledge signals IACKO - lACK? are input to an 8-to-3 Decoder. The 8-to-3 Decoder will receive
seven high signals and one low signal. The one low signal will be identified by the decoder 3-bit output which is
transmitted to pins O. 1 and 2 of I/O Port 1.

6-29

This then is the event sequence associated with an interrupt request:

1) INT is input low to the 8048.

2) The interrupt is acknowledged by the CPU. which branches to an interrupt service routine.

3) The first instruction of the interrupt service routine outputs a low level via pin 7 of I/O Porr1.

4) The interrupt ser~ice routine receives back. via pins O. 1 and 2 of I/O Port 1. the device code for the acknowledged
device. You must make sure that the program being executed gives external logic time to return this code. You
may have to insert No Operation instructions to create the necessary time delay.

5) A high level is output via pin 7 of I/O Port 1.

6) Using the code input via pins 0.1 and 2 of I/O Port 1. branch to the appropriate interrupt service routine.

Here is the initial instruction sequence required by the logic of Figure 6-13:

ORG 3
;START OF INTERRUPT SERVICE ROUTINE

JMP EXTINT

ORG
ANL
NOP
IN
ORL
ANL
JMPP

EXTINT
P1.#7FH

. A.P1
P1.#80H
A.#7
@A

;SET I/O PORT 1 PIN 7 LOW
;ALLOW SETTLING TIME
;INPUT PORT 1 CONTENTS
;SET I/O PORT 1 PIN 7 HIGH

. ;CLEAR ALL ACCUMULATOR BITS BAR O. 1 AND 2
;JUMP TO IDENTIFIED INTERRUPT SERVICE ROUTINE

Let us examine the interrupt service routine begInning instruction sequence illustrated above.

When an 8048 series microcomputer is initially reset. all I/O port pins output high levels. Thus you do not have to in~
itialize pin 7 of I/O Port 1 to a high level. -

We actually identify one of eight device interrupt service routines by creating a 3-bit code in bits 1. 2 and 3 of the Ac­
cumulator. We then perform an-indirect Jump. This Jump instruction will branch to a location on the current page of
program memory; the address is fetched from the location in the current page addressed by the Accumulator contents.
We illustrated this addressing technique earlier in the chapter.

Given the instruction sequence illustrated above. the first eight program memory locations on the same page as the
JMPP instruction must be set aside for eight addresses; these are the starting addresses for the interrupt service
routines. This may be illustrated as follows: . -

ORG
DB
DB
DB
DB
DB
DB
DB
DB

EXTINT ANL

#0300H
ISO
IS1
IS2
IS3
IS4
IS5
IS6
IS7
#7FH

;ADDRESS OF INTERRUPT SERVICE ROUTINE 0
;ADDRESS OF INTERRUPT SERVICE ROUTINE 1
;ADDRESS OF INTERRUPT SERVICE ROUTINE 2
;ADDRESS OF INTERRUPT SERVICE ROUTINE 3
;ADDRESS OF INTERRUPT SERVICE ROUTINE 4
;ADDRESS OF INTERRUPT SERVICE ROUTINE 5
;ADDRESS OF INTERRUPT SERVICE ROUTINE 6
;ADDRESS OF INTERRUPT SERVICE ROUTINE 7
;SET I/O PORT 1 PIN 7 LOW

The daisy chained interrupt scheme discussed above can also be implemented using the circuit in Figure 6-14.
The advantage of this circuit is that it requires fewer chips than the circuit of Figure 6-13. As far as the 8048
program is concerned, however, the two circuits are identical. '

The INT and device code inputs are generated in exactly the same way. However. an eight-line-to-three-line priority en­
coder (9318 or 74148) replaces the network of AND gates. As the function table for the encoder shows. the device code
output on lines A2. A 1 and AO is that of the highest priority request. The CPU enables the code outputs by sending the
acknowledge signal.

-6-30

c
w
!;i
a:
o
a.
a:
o
CJ
~
en
w
!;i
g
en
en
<
G/J
w
Z
a:
o
III
en o
~
< c
c(

@

iAcKIP171
iNTo
,~
~
INT3
iNTi
INT5
INT6
INT7

74LS138. 745138

INPUTS

'---

'---

FUNCTION TABLE

OUTPUTS

IT
ii, CiS
16 EO
~ 9318
14' or
jj 74148.
i2 A2
IT AI
iO AO

~
......J

'--- GiA
rue YO
Gl VI

745138 Vi
or Y3

74LS138 Y4
C Ys
B Ys
A Y7

-... .. -.--

9318. 74148 FUNCTION TABLE.

INPUTS

Pl0
Pl1
P12.

iNT to CPU

OUTPUTS
ENABLE SELECT

Gl

X
L

H

H

H

H
H

H

H

H

G2° C B A ,YO VI Vi Y3 Y4 Ys Y6 y:; B iO i1 12 i3 i4 is 16 i7 A2 AI

H X X X H H H H H H H H H X X X X X X X X H H
X X X X H H H H H H H H L ,H H H H H H H H H H
L L L L L H H H H H H H L X X X X X X X L L L
L L L H H L H H H H H H L X X X X X X L H L L
L L H L H H L H H H H H L X X X X X L H H L H
L L H H H H H L H H H H L X X X X L H H H L H
L H L L H H H H L H H H L X X X L H H H H H L
L H L H H H H H 'H L H H L X X L H H H H H H L
L H H L H H H H H H L H L X L H H H H H H H H
L H H H H H H H H H H L L L H H H H H H H H H

om = G2A v G2a H = high level. L = low level. X = irrelevant

Figure 6-14. A Low Chip Count Implementation of an Eight-Device Daisy Chained
Interrupt Request/Acknowledge Scheme

AO Gs

H H

H H

L L

H L

L L

H L

L L

H L

L L

H L

EO

H

L

H

H

H

.H

H

H

H

H

In Figure 6-13. a network of NAND gates generated the low-true interrupt acknowledge signal to inform the appropri­
ate device that its interrupt was being serviced. In Figure 6-14. a three-line-to-eight-line decoder (745138 or 74LS138)
translates the device code output by the encoder and sets the corresponding acknowledge line low. as is shown in the
function table for the decoder.

Connecting the enable inputs as shown prevents spurious acknowledgements or phantom device codes. provided that
the CPU gives the external devices time for response and propagation delay.

6-31

THE 8048 MICROCOMPUTER SERIES
INSTRUCTION SET

Table 6-2 summarizes the instruction set for the 8048 series microcomputers. Instruction object codes and tim­
ing are given in Table 6-3. This instruction set reflects the specific architecture of 8048 series microcomputers. For ex­
ample. there are separate I/O instructions to access the three on-chip I/O ports. as against 8243 Input/Output Expander
I/O ports. Also. there are separate instructions to access on-chip scratchpad read/write memory. as against external·
data memory.

The 8048 instruction set is probably more versatile than any other one-chip microcomputer instruction set de­
scribed in this book. The only omission that may cause problems is the lack of an Overflow status; this will make
multibyte signed binary arithmetic harder to program.

THE BENCHMARK PROGRAM
The benchmark program we have been using in this book is not realistic for the 8048 with its limited data memory.
Using the 8048 you would not load data into some general depository. then transferit to a specific data table.

In order to provide some illustration of 8048 instructions. however. we will slightly modify the benchmark program and
move a number of data bytes from the top of scratchpad memory to a table in external data memory. Since the data in
scratchpad memory must have been input from an I/O port. we will assume that the number of scratchpad memory
bytes is stored in General Purpose Register R7. The table in external memory begins at a known location and the first ta­
ble byte addresses the first free table location. Operations performed may be illustrated as follows:

Scratchpad

R0t-__ --4

R1 ~--------

R2
t-----4

R3
~----4

R4
t----t

R5t-__ --4

R6
I----t

R7 NN

I I
I I·.

~ \..- Last byte

~
RO indexes I I

scratch pad ,I

3F 1-----4

transfer
performed

6-32

/

t
I

I
I

External Data
Memory

I
I

t-~x~x-11~~ ... __ TBASE. 'start
_ _ of data table

~
I I
I I

xx ...- First free byte

c
w

~
a:
o
D.
a:
o
o
a;
en
w

~ g
(J)
(J)

«
ail
w
Z
a:
o
m
(J)

o
~ « c «
@

LOOP

MOV
MOVX
MOV
ADD
MOVX
MOV
MOV
MOVX
DEC
INC
DJNZ

RO.#TBASE
A.@RO
R1.A
A.R7
@RO.A
RO.#3FH
A@RO
@R1.A
RO
R1
R7.LOOP

;LOAD EXTERNAL TABLE BASE ADDRESS INTO RO
;LOAD ADDRESS OF FIRST FREE BYTE INTO A
;SAVE IN R1
;ADD NEW BYTE COUNT TO A
;RESTORE IN FIRST FREE BYTE OF EXTERNAL TABLE
;LOAD SCRATCHPAD ADDRESS INTO RO
;MOVE DATA FROM SCRATCHPAD TO A
;STORE IN EXTERNAL DATA TABLE
;DECREMENT RO
;INCREMENT R1
;DECREMENT R7. SKIP IF NOT ZERO

These are the abbreviations used in Table 6-2:

A The Accumulator

A03 Accumulator bits 0-3

R Register RO or R1

REG Accumulator. RO. R1. R2. R3. R4. R5. R6 or R7

RN Register RO. R1. R2. R3. R4. R5. R6 or R7

T Timer/Counter

C Carry status

AC Auxiliary Carry status

MBO Program memory bank 0

MB1 Program memory bank 1

MBN MBO or MB1

The Instruction register

12 Second object code byte

PC The Program Counter

PC10 The Program Counter. bits 0-10

PCL The Program Counter. bits 0-7

PCH The Program Counter. bits 8-11

SP Stack Pointer: PSW bits O. 1 and 2

PSW The Program Status Word which has bits assigned to status flags as follows:

S

DATA

DEV

PORT

ADDR

ADDR8

[] -

[[]]

I []J
([])

PSW bit C. FO or F1

8-bit immediate data

An I/O device

6 5 4 3 2

I/O Port P1. P2 or BUS

o "'-BitNo.

An 11-bit address. specifying a data memory byte

The low-order eight bits of a memory address

Contents of location identified within brackets

Scratch pad memory byte addressed by location identified within brackets

External memory byte addressed by location identified within brackets

Program memory byte addressed by location identified within brackets

6-33

Move data in direction of arrow

Exchange contents of locations on either side of arrow

+ Add

Subtract

A AND

V OR

¥ Exclusive-OR

BUS Bus I/O port

P1 I/O Port 1

P2 I/O Port 2

EP 8243 Expander Port P4. P5. P6 or P7

PN P1 or P2

6-34

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 6-2, A Summary of 8048 Microcomputer Instruction Set

B04B
STATUS

TYPE MNEMONIC OPERANDIS) B021 B041'
B049

BYTES OPERATION PERFORMED
C AC

ANl PORT.#OATA 2 [P,ORT]-[PORT] A DATA

AND immediate data with I/O Port Pl. P2 or BUS

ANlD EP.A 1 [EP]-[A03] A [EP]

AND expander port P4. P5. P6 or P7 with Accumulator bits 0 - 3

IN A.PN 1 [A]--:-[PN]

Input I/O Port PI or P2 to Accumulator

IN A.DBB 1 [A]-[BUS]

Input to Accumulator from Data Bus,buffer

INS A,BUS 1 [A]-[BUS]

Input BUS to Accumulator with strobe

g MOVD A.EP 1 [A03]-[EP]

Input expander port P4. P5. P6 or P7 to Accumulator bits 0 - 3

MOVO EP.A 1 [EP]-[A03]

Output Accumulator bits 0 - 3 to eKpander port P4. P5. P6 or P7

ORl PORT.#OATA 2 [PORTl-[PORT] V DATA

OR immediate data with I/O Port Pl. P2 or BUS

ORlO EP.A 1 [EP]-[A03]V [EP]

OR Accumulator bits 0 - 3 with expander port P4. P5. P6 or P7

OUT OBB.A 1 [BUS]-[A]

Output from Accumulator to Data Bus buffer

OUTL PORT.A 1 [PORT]-[A]

Output Accumulator contents to I/O Port Pl. P2 lor BUS B04B. 8049 onlyl

MOV A.@R 1 [A]-[[Rll

Load contents of scratchpad byte addressed by RO or R 1 into Accumulator
'MOV @lA.A 1 [[Rll-[A]

Store Accumulator contents in scratch pad byte addressed by RO or R 1
w

MOVP f:.,.@lA l [A]-I[PCH] [A]l (.)
Z load into the Accumulator the'contents of the program memory byte addressed by the Ac-w
II: cumulator and Program Counter bits B - 11. w
~ MOVP3 A.@A 1 [A]-(3 [A]l
II:

> load into the Accumulator the contents of the program memory byte with binary' <lddress
II: 00IIXXXXXXXX where XXXXXXXX represel)ts initial Accumulator contents. 0
~ MOVX A.@R 1 [A]-: [R]I w
~ Load conte!1tsof external data memory byte addressed by RO or R 1 into Accumulator

> MOVX @R.A 1 : [R]I-[A]
II:
c:(Store Accumulator contents in external data memory byta addressed by RO or R 1
~ XCH A.@lR 1 [A]- [[~ll a:
Q. Exchange contents of Accumulator and scratchpad memOry byte addressed by RO or R 1

XCHO A.@lR 1 [A03] - [[R103] ,

Exchange contents of Accumulator bits 0 - 3 with bits 0 - 3 of scratchpad memory byte ad-
dressed by flO or R 1

Table 6-2. A Summary of 8048 Microcomputer Instruction Set (Continued)

8048
STATUS

TYPE MNEMONIC OPERAND(S) 8021 8041 BYTES OPERATION PERFORMED
8049 C AC

W
1 [A)-[A)+[[RII (J ADD X X

Z
W Add contents of scratchpad byte addr!lSsed bV RO ()(R 1 to Accumulat()(
a:

1 [A)-[AI+ [[RII + [C) W - ADDC X X ",w
w~ Add contents of scratchpad byte addressed bV RO or Rl. plus Carry. to Accumulat()(a:c(
>ffi ANL 1 [A)-[A) A [[RII
a: a..

AND contents of scrat~hpad byte addressed bV RO or Rl with Accumulat()(00
~> ORL 1 (A)-[A)V [[RII wa:
~O OR contents of scratchpad byte addressed bV RO ()(Rt with Accumulat()(
>~ XRL 1 [A)-[A)¥- [[RII a: w
c(~ Exclusive OR contents of scratchpad byte addressed bV RO ()(R 1 with Accumulat()(c-
z INC 1 [[RII-[[RII": 1
0
(J Increment the contents of the scratchpad byte addressed bv RO ()(Rt w
II)

w
MOV 2 [REG)-DATA ~ c(

Load immediate data into Accumulator. ()(Register RO. Rt. R2. R3. R4. RS. R6 or R7 C w MOV 2 [[RIl-DATA
~
~ Load immediate data into scratchpad byte addressed bV RO ()(R 1

JMP ADDR 2 [PC10)-ADDR

Jump to instruction in current 2K block having label ADDR

JMPP @lA 1 [PC)-[PCH)[AI. [PCL)-([PCH)[A))

a.. Load into the eight low order Program Counter bits the contents of the program memory byte

~ addressed bV the Accumulator and the four hgih order Program Counter bits.
:l .,

SEL MOO 1 With the next JMP or CALL instruction. reset the high order bit ':If PC to O. thus selecting first 2K
program memory bytes.

SEL MBI 1 With the n'ext JMP or CALL instruction. set high order bit of PC to 1. thus selecting second 2K
program memory bytes.

Z CALL ADDR 2 STACK -STATUS + [PCI. [spl-[SPI + 1. [PCI-ADDR
a: Call subroutine at specified address.
:l
~ RET 1 [PCI-STACK. [SPI-[SPI-l w
a: Return from subroutine without restoring status
C
Z RETR 1 X X [PCI + STATUS -STACK. [spl-[SPI-l
c(Return from subroutine and restore status
-'
-' c(
(J

w
Z
~
:l

.'

0
a:
CD
:l
II)

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 6-2. A Summary of8048 Microcomputer Instruction Set (Continued)

S04S
STATUS

TYPE MNEMONIC OPERANDIS) S021 S041 BYTES OPERATION PERFORMED
S049

C AC

ADD A.#DATA X X X 2 X x [A1,-[A] + DATA
1&1 Add immediate data to Accumulator !(

.ADDC A#DATA X X X - 2 X X [A]-[A]+DATA+ [e] a:
1&1

Add immediate data plus Carry to Accumulator Q.
0 ANL A.#DATA X X X 2 [A]-[A] 1\ DATA
1&1
~ AND immediate data with Accumulator contents «
i3 ORL A.#DATA X X X 2 [A]-[A] V DATA
1&1

OR immediate data with' Accumulator contents ~

~ XRL A.#DATA X X X 2 [A]-[A]¥DATA

Exclusive OR immediate data with Accumulator contents

DJNZ RN.ADDRS 2 [RN]-[RN]-l.lf [RN] ~O. [PCLl-ADDRS

Decrement Register RO. R1. R2. R3. R4. R5. R6 or R7.lf the result is not O. branch to ADDRS on _
the current program memory page.

JBb ADDRS 2 [PCL]-ADDRS
Jump on current page if Accumulator bit b is 1. b must be O. 1.2.3.4.5.6 or 7

JC AD DRS 2 [PCL]-ADDRS

.:dump on current page if Carry is 1

JFO ADDRS 2 [PCL]-ADDRS

Jump on current page if flag FO is 1

JF1 ADDRB 2 [PCL]-ADDRS
Jump on current page if flag F1 is 1

Z JNC ADDRS 2 [PCL]-ADDRS
'0 .Jump on current page if Carry is 0
;::

JNI ADDRB 2 [PCL]-"ADDRS 0
Z Jump on current page if interrupt request input is 0
0

JNIBF ·ADDRS 2 [PCL]-ADDRS CJ
Z . Jump if IBF flag is 0
0
Q. JNTO ADDRS 2 [PCL] - ADDRS
~ .. • - Jump on current page if TO input is 0
::l .., JNTl ADDRS 2 [PCL] - ADDRS

Jump on current page if Tl input is 0
JNZ ADDRS 2 [PCL]--' ADDRS

-!ump on current page if Accumulator contents is nonzero

JOBF ADDRS 2 [PCL]-ADDRS

Jump if OBF flag is 1

JTF ADDRS 2 [PCL)- ADDRS

Jump on current page if timer has timed out. that is. if timer flag is 1. The ti~r flag is reset. to 0
by this instruction.

JTO ADDRS 2 [PCL]-ADDRS

Jump on current page if TO input is 1

JT1 ADDRS 2 [PCL]-ADDRS
Jump -on current page if Tl input is 1

JZ ADDRS 2 [PCL]-ADDRS

Jump on current page if Accumulator contents are zero

Cf
w
00

TYPE

w
>

a: ° w ::E
I-Ir
IIlW al­
Will
Ira

Ir
W
I-
III

w
Ir

·a w
wI­
Ir~
'Ir Irw

Wll.

ti° a
w
Ir

w
I­
~
Ir
W
Il.
o
Ir
W
I­
III a
w
Ir

MNEMONIC

MOV

MOV

XCH

ADD

'AD DC

ANL

ORL

XRL

CLR

CPL

DAA

DEC

INC

RL

RLC

RR

OPERAND(S)

A,RN

RNA

ARN

ARN

ARN

ARN

A,RN

ARN

A

A

REG

REG

A

A

A

Table 6-2. A Summary of 8048 Microcomputer Instruction Set (Continued)

8021 8041
8048

8049
BYTES

STATUS

C AC

x x

x x

x

OPERATION PERFORMED

[A)-[RN)

Move the contents of a general purpose register to the Accumulator
[RN)-[A)

Move the Accumulator contents to a general purpose register
[A)--[RN)

Exchange the Accumulator contents with the contents of a general purpose"register

[A)-[A)+ [RN)

Add the contents of a general purpose register to the Accumulator
[A)-[A) + [RN) + [C)

Add the contents of a general purpose register, plus Carry, to the Accumulator
[A)-[A) A [RN)

AND the contents of a general purpose register with the Accumulator
[A)-[A) V [RN)

OR the contents of a general purpose register with the Accumulator
[A)-[A)¥- [RN)

Exclusive-OR the contents of a general purpose register with the Accumulator

(A)-O

Zero the Accumulator
[A)":"[A)

Complement the Accumulator

Decimal adjust Accumulator contents

[REG)-[REG)-l

Decrement the contents of the Acrumulator or general purpose register.

The 8021 can only decrement Accumulator contents.
[REG)-[REG) + 1

Increment the contents of the Accumulator or general purpose register

"Rotate Accumulator left

Rotate Accumulator left through Carry

EQ!itlf7f:tll !OJ
Rotate Accumulator right

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 6-2. A Summary of 8048 Microcomputer Instruction Set (Continued)

8048
STATUS

TYPE MNEMONIC OPERAND(S) 8021 8041 BYTES OPERATION PERFORMED
8049

C AC

RRC A 1 X Rotate Accumulator right through Carry

C ~ ~ w
:;) l\fllI±I z
~ SEL RBO 1 Select register bank 0 Z
0 SEl RBl 1 Select register bank 1 g
w SWAP A 1 Swap Accumulator nibbles ...
ct
a::
w
0..

[AI
0
a::
w

I I I I I I I I I ...
til
(;
W
a::

,DIS TCNTI 1 Disable timer interrupt
EN TCNTI 1 Enable timer interrupt

DIS I 1 Disable external interrupt
EN I 1 Enable external interrupts

ENTO ·CLK 1. Enable timer output:on TO until next system reset
, MOV A,T 1 [AI-[TI

Read timer/counter

MOV T,A 1 IlI-[AI

Load timer/counter

STOP TCNT 1 Stop timer/counter

.STRT CNT 1 Start counter

STRT T 1 Start timer

CLR S 1 0 Clear PSW bit C, FO or Fl. 8021 can only clear Carry,

CPl S 1 X Complement PSW bit C, FO or Flo 8021 can only complement Carry.

MOV A,PSW 1 [AI-[PSvit) --

Move Program Status Word contents to the Accumulator

MOV 'PSW,A 1 X X [PSWI-[AI

Move Accumulator contents to the Program Status Word

NOP 1 No Operation

The following symbols are used in Table 6-3:

bbb

.ee

k

MM
nnn
pp

qq

Three bits designating which bit of the Accumulator is to be tested.

Two bits designating an 8243 Expander port:
00 -' P.4
01 - P5
10 - P6
11 - P7

One bit selecting a memory or register bank:
o MBO or RBO
1 MBl or RBl

Eight bits of immediate data

Three bits designating one of the eight general purpose registers

Two bits designating one of the on-chip I/O ports:
. 00 - BUS .

01 - Pl
10 - P2

Two bits designating either I/O Port 1 or I/O Port 2:
01 - Pl
10 - P2

One bit selecting a pointer register:
o - RO
1 - Rl

xxx The high-order three bits of a prowam memory address

XX T~r low-order eight bits of a progra~ memory address

6-40

c
w
~
a:
o
D..
a:
o
o
~
en
w

~ g
rn
rn
c:(

all
w
Z
a:
o
en
rn o
~
c:(
C
c:(

@

Table 6-3. 8048 Series Instruction Set Object Codes

INSTRUCTION OBJECT CODE BYTES
MACHINE

INSTRUCTION OBJECT CODE BYTES
MACHINE

CYCLES CYCLES

ADD A.RN 01101nnn 1 1 JOBF AnDR8 86 XX 2 2
ADD A.~1,fl 0110000r 1 1 JTF ADDRII 16 XX 2 2

ADD A.#DATA 03 MM 2 2 JTO 'ADDR8 36 XX '2 2
ADDC A.RN 01111nnn 1 1 JTl ADDR8 56 XX 2 2

ADDC A.((!,'fl 0111000r 1 1 JZ ADDR8 C6 XX 2 2

ADDC A.#DATA 13 MM 2 2 MOV A.#DATA 23 MM 2 2

ANl A.RN 01011nnn 1 1 MOV A.PSW C7 1 1

ANl A.ql~ 0101000r 1 1 MOV A.RN lllllnnn 1 1

ANl A.#OATA 53 MM 2 2 MOV A.ei:'R llll000r 1 1

ANl PORT.#DATA loo110pp 2 2 MOV A.T 42 1 1

MM MOV PSW.A 07 1 1

ANlD EP.A loolllee 1 2 MOV RN.A 10101nnn 1 1

CAll AODR 'xxxl0loo 2 2 MOV RN.#DATA 10111nn 2 2

XX MM

ClR A 27 1 1 MOV 1tlR.A 1010000r 1 1

ClR C 97 1 1 MOV 1tR.#DATA 1011000r 2 2

ClR Fl A5 1 1 MM

ClR FO 85 1 1 MOV T.A 62 1 1

CPl A 37 1 1 MOVD A.EP 00001100 1 2

CPl C A7 1 1 ,MOVD EP.A ooflllee 1 2

CPl FO 95 1 1 MOVP A.{liA A3 1 2

CPl Fl B5 1 1 MOVP3 A.1tA E3 1 2_
OA A 57 1 1 MOVX A.!IJR l000000r 1 2

DEC A 07 1 1 MOVX ;t(fl,A lOO1000r 1 2

DEC RN l1oo1nnn 1 1 NOP 00 1 1

DIS I 15 1 1 ORl A.RN 01oo1nnn 1 1

DIS TCNTI 35 1 1 ORl A.lOR 0100000r 1 1

DJNZ ' RN.ADDR8 • 11101rrr 2 2 ORl A.#DATA 43 MM 2 2

XX ORl PORT. # DATA looo10pp 2 2

EN I 05 1 1 MM

EN TCNTI 25 1 1 ORlD EP.A looo11ee 1 2

ENTO ClK 75 1 1 OUT DBB.A 02 1 1
IN A.PN oooolOqq 1 2 OUTl BUS.A 02 1 2

IN A.DBB 22 1 1 OUTl PN.A oo1110qq 1 2

INC A- 17 1 1 RET 83 • 1 2

INC RN 'ooollnnn 1 1 RETR 93 1 2
INC 'fR oool000r 1 1 'Rl A E7 1 1

INS A.BUS 08 1 2 RLC A F7 1 1

JBb ADORa bbbloo10 2 2 RR A 77 1 1

XX RRC A 67 1 1
JC ADORa F6 xx 2 2 SEl MBk l11kOl0l 1 1

JFO ADORa B6 xx 2 2 SEL RBk lfokOl0l 1 1

JFl ADDR8 76 XX 2 2 STOP TCNT 65 1 1
JMP ADDR :xxxOO100 2 2 STRT CNT 45 1 1

XX STRT T 55 1 1
JMPP ({IJA B3 1 2 SWAP A 47 1 1
JNC ADORa E6 xx 2 2 XCH A.RN oo101nnn 1 1
JNI ADORa a6 xx 2 2 XCH A.fl:ll 00loooor 1 1
JNIBF ADORa 06 xx 2 2 XCHD A.fl'R oollooor 1 1

JNTO ADORa 26 xx 2 2 XRL A.RN 11011nnn 1 1

JNTI ADORa 46 xx 2 2 XRL A.'flCA 1101000r 1 1

JNZ ADORa 96 xx 2 2 XRL A.#DATA 03 MM 2 2

THE 8041 SLAVE MICROCOMPUTER

This device is also referred to in Intel literature as a Universal Programmable Interface (UP!); it represents a sim­
ple variation of the 8048 microcomputer.

The 8741 is a slave variation of the 8748 microcomputer.

This discussion of the 8041 and 8741 slave microcomputers explains differences as compared to the 8048 and
8748; you should therefore read the following pages after reading the 8048 and 8748 descriptions.

6-41

AN 8041 FUNCTIONAL OVERVIEW
The principal difference between the 8048 and the 8041 is the fact that the 8041 Data Bus and I/O Port 0 are
used exclusively to communicate with a master microprocessor. The 8041 generate"s no external Address or
Data Bus. so on-chip 8041 program memory and scratchpad data memory cannot be expanded.

External interrupt logic. which is available on the 8048. is not available on an 8041; the 8041 uses this logic as
a handshaking interrupt for data input from the master microprocessor.

8048 and' a041 logic are compared functionally in Figure 6-15.

System rp'sl~t--__ '" RESET

PROM/Expander strobe PROG

CPU/Memory Separate EA

----1~ XTAL 1

----1~ XTAL2

~~~~~~~~~!~:~~~~~~~~~:~j~J~~~f'--~-iPS~NorAO 
Steo--__ ... SS 

Read suc>De ..... i---i RD 

Write strc)be ..... f----i WR 

Test or event counter input 

Program 
Status Word 

" Accumulator 

Counter/ Timer 

Figure 6-15. A Comparison of 8048 and 8041 Functional Logic 

6-42 

1024 x 8 Bits 
8048 or 

8041 = ROM 
8748 or ' 

8741 = EPRQM 

Arithmetic And 
Logic Unit. 

Control Unit 
and Instruction 

Register 

64 x 8 Bits 
RAM 



Communications between an 8041 and a master microprocessor are very limited. Data must be transferred byte­
by-byte under program control. with nearly all handshaking protocol being implemented via program logic. You must 
therefore define the protocol within the logic of your 8041 and master microprocessor programs. A rigid protocol is 
absolutely necessary, since the 8041 offers no protection against data transfer contentions. 

8041 DATA BUS LOGIC 
~ 8041 Data Bus logic may be illustrated conceptually as follows: 
~ 
a: 
o 
D.. 
a: 
o 
u 
!: 
en 
w 
I­
oCt 
(3 
o 
C/) 
C/) 

oCt 
~ 
w 
Z 
a: 
o 
en 
C/) 

o 
~ 
oCt 
C 
oCt 

@ 

r-

Master .... .... 
< 
'" or Microprocessor 

.... 

""-
K 
'" 

A 

... 
Connected 
as follows: 

-F1 Bit 3 
FO - Bit 2 

IBF - Bit 1 
OBF - Bit 0 

Data A 

Out J 
Buffer .... 

t.. Data '" In 8041 LOGIC 
... Buffer 

y 

Buffer 
Status register 

F1 }¢:::> -
J>. FO 

r IBF 

OBF 

In reality, the Data Out buffer and the Data In buffer are a single piece of logic; however, operations occur (to 
some extent) as though there were two separate buffers. 

A master microprocessor will access an 8041 as two 1/0 ports or two memory locations. These locations are iden­
tified via chip select (CS) and address (AO) input signals as follows: 

CS AO 

{

Read from Data Out 
buffer 

o 0 Write to Data In buffer 
and reset 
F1 Buffer status to 0 

{

Read from Buffer 
Status register 

o Write to Data In buffer 
and set 
F 1 Buffer status to 1 

6-43 



"Read" and "Write" above refer to master microprocessor operations . 

.The 8041 accesses the Data Bus buffer register as I/O Port O. The Status register is inaccessible to the 8041 as an 
addressable I/O port however. there are specific 8041 instructions that access the FO and F1 Buffer Status bits . 

.The four Buffer Status register bits may be defined as follows: 8041 

OBF is the output buffer full flag. This flag is automatically set to 1 when the 8041 outputs data 
to the Data Out buffer. When the master microprocessor reads the contents of the Data Out 
buffer: the OBF flag is reset to O. 

IBF is the input buffer full flag. This flag is set to 1 when the master microprocessor writes data 

BUFFER 
STATUS 
REGISTER 

into the Data In buffer. This flag is reset to 0 when the 8041 subsequently reads data from the Data In buffer. 

FO is a general-purpose flag which can be set or reset by the 8041. The master microprocessor can sample FO by read­
ing Buffer Status register contents. 

F1 is another general-purpose flag which can be modified by the 8041. F1 is also set or reset to the level of AO 
whenever the master microprocessor writes data into the Data I n buffer. The master microprocessor can sample F1 by 
reading Buffer Status register contents. 

When the master microprocessor reads buffer status. flags appear on the Data Bus lines as follows: 

07 

} Undef;"d 
06 
05 
04 
03 F1 
02 FO 
01 ISF 
00 OSF 

Whenever the 8041 outputs data to I/O Port O. the data is stored in the Data Out buffer and the OBF status flag is set to 
1; when the master microprocessor subsequently reads the contents of the Data Out buffer. the OBF flag is reset to O. 

When the master microprocessor writes to the 8041. the data is loaded into the Data In buffer. the IBF status is set to 1 
and an interrupt request is generated within the 8041; this interrupt request replaces the external interrupt logic of the 
8048. The IBF status is cleared when the 8041 subsequently reads the contents of the Data In buffer. 

The FO flag is set or reset by the 8041 using appropriate instructions. There is no predefined manner in which this flag 
is interpreted; your program logic can use this flag in any way. 

The F1 flag is set to the level of the AO signal input whenever the master microprocessor writes a control byte into the 
Data In buffer.- In reality. there is no difference between a control byte and a data byte; that is to say. thero is no pre­
defined way in which the 8041 will interpret the contents of the Data In buffer based on the F1 flag level. 

The master microprocessor reads data which has been output by the 8041; the master microprocessor cannot read 
back data which it wrote to the 8041. 

The 8041 inputs from I/O Port 0 data that was written by the master microprocessor; the 8041 cannot read back data 
which it previously output to 110 Port O. 

8041 1/0 PORTS ONE AND TWO 
Physically. 8041 I/O Ports 1 and 2 have logic which is identical to the 8048. Thus the pseudo-bidirectional I/O port 
characteristics described for the 8048 110 Ports 1 and 2 apply also to the 8041 110 Ports 1 and 2. 

Note that the 8041 does not generate an external Address Bus. therefore I/O Port 2 pins P20 - P23 never output ad­
dress information. 

8041 AND 8741 PROGRAMMABLE REGISTERS 
The 8041 and 8741 have a 1 O-bit Program Counter. The 8048 and 8748 have a 12-bit Program Counter. These are the 
only differences between the 8041 series and 8048 series programmable registers. 

8041 AND 8741 ADDRESSING MODES 
The 8041 and 8741 can address only on-chip memory. This includes the 1024 bytes of on-chip program memory and 
64 bytes of on-chip scratchpad data memory. 8041 and 8741 addressing modes are identical to the 8048 and 8748 
on-chip memory addressing modes. Of course. the 8048 and 8748 external memory addressing modes will not apply 
to the 8041 or the 8741. 

6-44 



8041 AND 8741 STATUS 
The 8041 and 8741 slave microcomputers have two Status registers. First, there is the Buffer Status register, 
which is part of the Data Bus logic. We have already described this 4-bit Status register. The 8041 and 8741 
also have the 8-bit Program Status Word described for the 8048 series microcomputers. 8041 and 8048 Pro­
gram Status Words are identical. 

~. 8041 AND 8741 SLAVE MICROCOMPUTER OPERATING MODES 
~: The 8041 and 8741 can be operated in Internal Execution mode and Debug mode; in addition, the 8741 can be 
~ operated in Single Stepping mode, Programming mode and Verification mode. Neither the 8041 nor the 8741 
~ can be operated in External Memory Access mode. 
u; 
~ 8041 AND 8741 PINS AND SIGNALS 
en 
w There are a few differences between 8041 and 8741 pins and signals, as compared to the 8048 and 8748. 
~ Figure 6-16 defines 8041 and 8741 pins and signals; the four changed signals are shaded. . 
(j 
o 
(I) 
(I) 

oct 
o!I 
w 
Z 
a: 
o 
In 
(I) 

o 
:!: 
oct 
Q 
oct 
@ 

TO 

XTAL1 

XTAL2 

RESET 

SS 

CS 
EA 

Ro 
AO 

WR 

SYNC 
DBO 

OBI 
DB2 

DB3 

DB4 

DB5 

DBB 

DB7 
(GND) Vss 

PIN NAME 

DBO - DB7 

PIa - P17 
P20 - P27 

Tl 
RESET 

VSS 
Vee 
VDD 

PROG 

XTAL1, XTAL2 

I 40 
2 39 
3 38 
4 37 
5 36 
6 35 
7 34 
8 33 
9 32 

10 8041 31 
II 8741 30 
12 29 
13 28 
14 27 
15 26 
16 25 
17 24 
18 23 
19 22 
20 21 

DESCRIPTION 

Bidirectional I/O port, Data Bus and 
low-order eight Address Bus lines 
I/O Port 1 
I/O Port 2, P20 - P23 also serves as four 
high-or~er . A~.~refj~Bu~ lines 
Extemalclocksigl'lal 
Data memory read control 
Data write control 

program memory access 
Single step control 
Test inpu(and 
PrOgramlVerifYrn6i::ie.··sel~ct 
Test input, optional event counter input 
System reset and EPROM address latch 
Ground 
+5V 
+ 25V to program 8741. + 5V standby 
for 8041 RAM 
+ 25V input to program 8741. Control 

output for 4-bit I/O 
Extemal crystal connections 

Vee (+5V) 

Tl 

P27 
P26 

P25 
P24 

P17 

P16 

P15 

P14 

P13 

P12 

Pll 
Pl0 

VDD 
'PROG 

P23 

P22 

P21 
P20 

TYPE 

Bidirectional, tristate 

Ouasibidirectional 
Ouasibidirectional 

Input 
Input 

Bidirectional 

Figure 6-16. 8041 and 8741 Microcomputer Pins and Signals 

6-45 



CS and AO are the device select inputs which we have already described. 

SYNC is an external synchronizing signal which is output once per machine cycle. 

TO cannot be connected to the internal system clock; other uses of TO are the same for the 8041/8741 and the 
804S/8748. 

All other signals are identical to the 8048 and 8748 as previously described. Note. however. that no addresses are out­
put on the DBO - DB7 pins or the P20 - P23 pins. 

8041 SERIES TIMING AND INSTRUCTION EXECUTION 
The 8041/8741 clock signals and instruction execution timing logic is identical to the 8048/8748. Of course. the 8041 
and 8741 have no external memory reference instructions. therefore timing associated with these instructions will not 
apply. 

8741 SINGLE STEPPING AND PROGRAMMING MODE 
Single Stepping and Programming modes of operation are available only with the 8741; the 8041 cannot be 
operated in these modes. 

There are, of necessity, some differences between 8741 and 8748 Single Stepping and Programming modes; 
this is because the 8741 has no ALE signal and no output Address Bus. 

In Single Stepping mode. the 8741 is stopped by applying a low SS input when SYNC is low. 

The 8741 responds by stopping during the next instruction fetch. At this time. SYNC is maintained high. The address 
of the next instruction to be accessed appears at 1/0 Port 1 and 'the low-order two bits of 1/0 Port 2. This condition is 
maintained until SS is input high again. Timing may be illustrated as follows: 

SYNC -1 

Pl0-P17----------------------------u-------------------~ ~--~~----------------
PCO - PCg P20-P21------------------__________ R-__________________ ~~---n------------------

There are also some minor differences between 8741 and 8748 Programming modes. The ten-step 8741 pro­
gramming sequence is therefore given below. Differences as compared to the 8748 are shaded. 

Step 1) Initially +5V is input at VDD.g§. TO and EA. RESET and~.9 are held at ground. Under these conditions you 
insert the 8741 into the programming socket. You must make certain to insert the 8741 correctly. If you 
insert the 8741 incorrectly you will destroy it. 

Step 2) 

Step 3) 

Step 4) 

Step 5) 

Step 6) 

Step 7) 

Step 8) 

Step 9) 

Step 10) 

TO is pulled to ground; this selects Programming mode. 

+25V is applied to EA. This.activates Programming mode. 

A 10-bit memory address is applied via DBO - DB7 and P20 - P21. Remember. there are 1024 bytes of pro­
gram memory on the 8741 device. The low-order eight address bits are input via DBO - DB7 while the two 
high-order address bits are input via P20 and P21. 

+5V is applied at RESET. This latches the address. 

The data to be written into the addressed programmed memory byte is input at DBO - DB7. 

In order to write the data into the addressed program memory byte apply +25V to VDD. then ground PROG. 
then apply a +25V pulse at PROG; the +25V pulse at PROG must last at least 50 milliseconds. 

Now reduce VDD to +5V. Programming is complete and verification is about to begin. 

In order to verify the data just written. apply +5V to the TO input. This selects Verify mode. 

As soon as Verify mode has been selected. the data just written is output on DBO - DB7. You must read and 
verify this data using appropriate external circuitry. Verification is now complete. 

6-46 



c 
w 

~ 
a: 
o 
D.. 
a: 
o 
(J 

!: 
en 
w 

~ 
U o 
CI) 
CI) 
c( 

all 
w 
Z 
a: 
o 
al 
CI) 

o 
~ 
c( 
c 
c( 

@ 

8041 INPUT/OUTPUT PROGRAMMING 
The only differences between 8041/8741 and 8048/8748 input/output programming are those which result 
from the uniq~e 8041 I/O Port 0 logic - which we have described. 

8041 COUNTER/TIMER OPERATIONS 
" ' .. 

8041 series and 8048 series counter/timer operations are identical. 

8041 INTERRUPT LOGIC 
The entire external interrupt logic of the 8048 has been converted in the 8041/8741 Data Bus handshaking in­
terrupt logic. This interrupt request occurs every time a master microprocessor writes to either of the 
8041/8741 addressable locations. 

In order to generate external interrupt logic at an 8041 or 8741 you must use the counterltimer. By loading the 
counterltimer with an initial value of FF16 and operating the counterltimer in Counter mode, the first high-ta-Iow input 
transition on T1 will generate a Timer interrupt request. Of course, if you are using the counterltimer in this way, you 
cannot use it for any of its normal functions. ',' ' 

PROGRAMMING 8048-8041 DATA TRANSFERS 
The only complexity associated with programming an 8041 involves data transfers between the 8041 and a 
master microcomputer. Programming these data transfers is not straigh~forward. 

We described earlier how there are separate data paths for data entering or leaving the 8041 via the Data Bus buffer. 
Nevertheless, if a master· microcomputer attempts to write to the 8041/8741 while the 8041/8741 is 
simultaneously outputting to I/O Port 0, then there will be an undefined result.,This is unfortunate, since there are 
no signals or indicators of any kind allowing the master microcomputer to lock out the 8041/8741; nor can the 
8041/8741 lock out the master microcomputer. Lock out logic rn~!it be implemented by you, via your program 
logic. Program logic must also make sure that data written by ;'~:I master microcomputer has been read by the 
8041/8741 before the master microcomputer writes any new data; similqrly, the 8041/8741 must make sure that any 
data it has output to I/O Port 0 has been read by the master microcomputer before the 8041/8741 attempts to output 
new data to 1/9 Port O. 

Let us look at the programming steps required for error free data transfers between the 8041/8741 and a 
master microcomputer. Programming examples assume an 8048 is the 'master microprocessor because the 8048 is 
described in this chapter and has an instruction set that is similar to the 8041. In reality, the master microprocessor is 
likely to be an 8085-type device. 

The mastElr microcomputer can make sure that it does not overwrite data by testing both the IBF and the OBF flags; 
that is to say, the master microcomputer will,not attempt to write data to the 8041/8741 if prior data it wrote is waiting 
to be read by the 8041/8741, or if data output by the 8041/8741 is waiting to be read by the master microcomputer. 
The following master microcomputer output instruction sequence will suffice: . 

MOV 

MOVX 
RRC 
JC 
RRC 
JC 
DEC 

0,ADDR+1 

A,@O 
A 
NEXT 
A 
READ 
o 

;LOAD 8041 ADDRESS INTO 8048 REGISTER RO 

; LOAD STATUS 
;TEST LOW ORDER (OBF) FLAG 
;IF IT IS 1, DO NOT WRITE NEW DATA 
;TEST NEXT BIT (lBF) FLAG 
;IF IT IS 1, DATA IS WAITING TO BE READ 
;OK TO OUTPUT 

6-47 



But this scheme does not prevent the master microcomputer and the 8041/8741 from simultaneously accessing the 
Data Bus buffer. This must be guaranteed by 8041/8741 lock out logic. The 8041/8741 can use programming logic or 
interrupt logic to lock out the master microcomputer. Using programming logic. the 8041/8741 will use the FO flag to 
identify those time intervals when the master microcomputer is free to access the Data Bus buffer. Now any 8048 
master microcomputer instruction sequence that accesses the 8041/8741 will first read 8041/8741 status and test the 
Fa flag. If this flag is "false". no data transfer must occur. Continuing our master microprocessor instruction sequence. 
this may be illustrated as follows: 

MOV 0.ADDR+1 ;LOAD 8041 ADDRESS INTO 8048 REGISTER RO 

TEST MOVX A@O 
A 
NEXT 
A 
READ 
A 
TEST 
o 
A@1 
@O.A 
OUT 
A 
TEST 
o 
A@O 
@1.A 
OUT 

;LOAD STATUS 
RRC 
JC 
RRC 
JC 
RRC 
JNC 
DEC 
MOV 
MOVX 

. JMP 

;TEST LOW ORDER (OBF) FLAG 
;IF IT IS 1. DO NOTWRITE NEW DATA 
;TEST NEXT BIT OBF) FLAG 
;IF IT IS 1. DATA IS WAITING TO BE READ 
;TEST FO FLAG 
;IF Fa IS a. MASTER IS LOCKED OUT 
;FO IS 1 SO IT IS OK TO OUTPUT DATA 
;LOAD DATA TO BE OUTPUT INTO ACCUMULATOR 
;OUTPUT DATA TO 8041 

READ RRC ;TEST FO FLAG 
JNC 
DEC 
MOVX 
MOV 
JMP 

;IF FO IS O. MASTER IS LOCKED OUT 
;FO IS 1 SO IT IS OK TO READ DATA 
;INPUT DATA 
;STORE IN SCRATCHPAD 

The instructions above assume that scratchpad register R1 addresses the scratchpad byte out of which written data is 
fetched. or into which read data is stored. . 

If there is heavy traffic between an 8041/8741 and a master microcomputer. then the 8041/8741 shou Id use interrupt 
logic to identify times when a master microcomputer can either output data to the 8041/8741 or input data from the 
8041/8741. To do this. one or two 8041/8741 110 port pins must be set aside as interrupt request generation lines. 
Now the master microcomputer will not access the 8041/8741 except within an interrupt service routine which is initi­
ated by an interrupt request arising from one of the t,wo dedicated 8041/8741 I/O port pins. 

Data transfers from the 8041/8741 to the master microcomputer are easy to program. When the 8041/8741 writes to 
I/O Port O. the OBF flag is set to 1 ; th is flag is reset to 0 when a master microcomputer reads data. Thus. the 8041/8741 
simply tests the OBF status before outputting data; here are appropriate instructions: 

CLR FO ;ZERO FO TO LOCK OUT THE MASTER MICROPROCESSOR 
JOBF NEXT ;TEST OBF FLAG 
OUT DBB.A ;IF IT IS ZERO. OUTPUT NEXT DATA BYTE 
CPL FO ;SET FO TO ALLOW MASTER MICROPROCESSOR ACCESS 

NEXT 

6-48 



Q 
w 

~ 
a: o 
Q. 
a: 
o 
u 
!: 
en 
w 

~ g 
CI) 
CI) 
01( 

oil 
w 

The 8041 /8741'can respond to data arriving from the master microcomputer by using polling logic or interrupt logic. If 
polling logic is used. then the 8041/8741 must test the IBF flag before reading any data that the master microcomputer 
has output. In order to determine whether the master microprocessor has output data or a control code. the 8041/8741 
must also check the F1 flag. Here is an appropriate instruction sequence: 

CLR Fa :ZERO Fa TO LOCK OUT THE MASTER MICROPROCESSOR 
JNIBF ~EXT :TEST FOR DATA WAITING TO BE READ 
JF1 CONT :DATA IS READY TO BE READ. TEST 

: FOR DATA BYTE OR CONTROL BYTE 
IN A.DBB :READ DATA 
CPL Fa :?ET Fa TO ALLOW MASTER MICROPROCESSOR ACCESS 

CONT IN A.DBB :READ CONTROL CODE 
CpL' Fa :SET Fa TO ALLOW MASTER MICROPROCESSOR ACCESS 

z NEXT 
a: 
g If 8041/8741 data input logic is interrupt driven. then external interrupts must be left enabled. Now as soon as the 
~ master microcomputer outputs data to the 8041/8741. an interrupt request will occur. followed by a Call 3 instruction 
:iE being executed. Beginning at rnemory location 3. the following instruction sequence will initiate the data input inter-
~ rupt service routine within the 8041/8741: 1 

01( 

@ qRG 3 
JMP DTIN :JUMP TO DATA INPUT ROUTINE 

DTIN· CLR Fa :ZERO Fa TO LOCK OUT MASTER MICROPROCESSOR 
JFl CONT :TEST FOR DATA TYPE 
IN A.DBB :READ DATA 

CONT IN A.DBB :READ. CONTROL CODE 

CPL Fa :SET Fa TO ALLOW MASTER MICROPROCESSOR ACCESS 
RET :RETURN FROM INTERRUPT SERVICE ROUTINE 

The master microprocessor must not write to the 8041/8741 while data thatthe 8041/8741 has output is waiting to be 
rea~j; similarly. the 8041/8741 cal1not output data fO the master microprocessor while data from the master 
microprocessor is w~iting to be read by the 8041/8741. In each case. prior data will be overwritten and lost. In order to 
prevent this from happening. you must have appropriate lock out logic. Fa is used for this pur~o~j3 abo,:,e. 

THE 8041/~741 INSTRUCTION SET 
~ :,~ .' ;;. ~ .. . 

The 8041/8741 instruction set differs from the 8048/8748 in minor ways only. Tables 6-2 and ~-3 therefore 
summarize t~e instruction set for both the 8048 series and 8041 series microcomputers: .•. . . . 

6-49 



Iii All 8021 I/O port pins have uni~ue characteristics 

1:1 These signals ar~ not pres~nt in an 8021 . 
. . , . ' . :} ~ ~ ~ 

1::;1 8021 T1 characteristics are unique 

Count~r /Timer 

Figure 6-17. A Comparison of 8048 and 8021 Functional Logic 

6-50 

1024 x 8 Bits 

RP~ 

Arithmetic and 
Logic Unit, 

Control Unit 
and Instruction 

Register 

64 x 8 Bits 
RAM 

8021 has one 
set: of registers 

only 



c 
w 

~ 
a: 
o 
11. 
a: 
o 
CJ 
~ 
en 
~, 
ct' 
U o 
CI) 
CI) 

ct 
olJ 
w 
Z 
a: 
o 
III 
CI) 

o 
~ 
ct 
c 
ct 

@ 

THE 8021 SINGlE-CHIP MICROCOMPUTER 

The 8021 is a low-cost subset of the 8048,slngle-chip microcomputer. Unlike .the 8041, the 8021, is not 
designed to operate as a slave microcomput~r. The 8021 is intended for high-volume, low-cost 'applications 
with limited microcomputer logic requirements. The only easy way in which an 8021 can be expanded is by adding 
an 82431nput/Output Expander. There is no simple way to increase either 8021 program memory or data memory. over 
and above that which is internal to the 8021. 

This discussion of the 8021 single-chip microcomputer explains differences as compared to the 8048 and 8748; 
you should therefore read the following pages after reading the 8048 and 8748 descriptions .. 

AN 8021 FU NCTIONAL OVERVIEW 
The principal difference between the 8048 and the 8q21 is the fact that the 8021 has no Data Bus, and 1/0 Port 
o is simply another 1/0 port. Thus. the only way in whli:h an 8021 can communicate with logic beyond the chip Itself 
is via its 1/0 ports. which have no accompanying handshaking control signals. In contrast. the 8041 has I/O Port 0 logic 
designed for two-way communication between the 8041and a master microprocessor. The 8021 cannot distinguish 
between a master microprocessor or any otrer external logic. 

The 8021 has no external interrupt logic and only one Test input. 

Only two control signals are output by the 8021: a synchronizing 'clock signal and an 8243 Input/Output Expander 
control strobe. 

With these reduced capabilities. the 8021 is pa~kaged bs a 28-pin DIP, in contrast to other members of the 8048 
series. which are 'packaged as 40-pin DIPs. 

. The 8021 can be driven by a crystal oscillator with a maximum 3 MHz frequency. This is half the maximum fre­
quency of the 8048 and 8041. but equivalent to the maximum frequency of the -8 parts. This3 MHz crystal generates 
10-microsecond machine cycles. Thus. all 8021 instructions execute in either 10 or 20 microseconds. 

Functionally, 8048 and 8021 logic are compared in Figure 6-17. 8021 pins and signals are illustrated in Figure 
6-18. 

802 i I/O PORT PINS 
8021 1/0 port pins are referred to as quasi-bidirectional, a term we also use to describe 8048110 port pins. 8048 
and 8021 1/0 port pin logic is identical. . 

THE T1 PIN 
When you order an 8021 microcomputer, you can specify one of two configurations for the T1 pin. Electrically, 
these maY'be illustrated as follows: 

Option A (Zero cross-over sensing) 

CPU Pin 
13 

, , , 
I 
I 
I 
I 
I i Capacitor 

Il-

External 
logic 

Option B (Pull-up resistor) 

CPU Pin 
13 

Switch 

External 
logic 

Option A allows you to detect the zero cross-over point on Slow-moving input Signals. Option B. with the pUll-up. is 
designed to sense fast changes such as contact switch~s. 

6-51 



P22 
P23 

PSEN 
POQ 

POl 

P02 

P03 
P04 
P05 
P06 

P07 

ALE 

• T1 
(GND) VSS 

PIN NAME 

POO - P07 
Pl0 - P17 
P20 - P23 
Ai.E 
PSEN 
Tl 

RESET 
XTAL1. XTAL2 

VSS 
VCC 

--.. ~ 
~ .. .. 
--
--.. 
-----
~ 

- 1 -. ---.. 2 

3 - 4 
- 5 - 6 -.. - 7 - 8 

. -
9 

--.. 10 - 11 

12 

'- 13 - .. 
14 

. 8021 

DESCRIPTION 

lib Port 0 
I/O Port 1 
1/.0 :port2 . 
tlock,signal 
8243 Control 

28 

27 

26 
25 
24 

23 

22 

21 

20 
19 
18 

17 

16 

15 

Test iMput. optional 
event counter 
System reset 

-
'.- -- .. -:. .. -.. --: .... -... . ,;. -- .. 
- .. 
-

External crystal connections 
Ground 
Power 

Vcc (+5V) 
P21 

.P20 

P17 

P16 

P15 

P14 

P13 

P12 

P11 

~10 

RESET 
XTAL2 

XTAL1 

,TYPE 

Ouasibidirectional 
ciuasibidirectional 
Ouasibidirectional 

. Output 
Output 
Input 

Input 

Figure 6-18. 8021 Microcomputer Pins and Signals 

THE 8021' RESET iNPUT 
When the 8021 is reset, the same internal operations occur as described for the 8048; the, Program Counter and 
Program Status Word are cleared and 1 is output to 1/9 port pins. However, 8021 reset logic has been modified so 
that the 8021 can operate with noisy power supplies. You have one of two options. which may be illustrated as 
follows: 

Option A (Reset when power falls below 1.5V) 

RESET -r" .' '. ~I -0 VCC 
, lJ.lF 

, 10V 

--

Option B (Operate as long as power will drive chip) 

RESET ..... ------... 1 ~ VCC 

lJ.lF 
10V 

In the case of Option A. you connect the diode between reset and ground to force a reset whenever power drops below 
1.5V. Thus. operations will stop while power falls below 1.5V. but when normal power rl3turnsoperations will restart. 
Since chip operations continue only as long as poWer remains high enough to maintain the contents of chip read/write 
locatio·ns. this circuit guards against execution with faulty data. By removing the diode. as illustrated in Option B. this 
reset feature is eliminated ahd the 8021 will operate as long as power is sufficient to drive logic internal to the chip. 



C' 
w 
~ 

~: 
o 
no· 
a:: 
o 
(J 

~ 
ui 
w 

~ 
g 
en 
en 
oct 
all 
w 
Z 
a:: 
o 
III 
en o 
:1! 
oct 
C 
oct 
@ 

THE 8021 CLOCK INPUTS 
A crystal Resistor/Capacitor or inductor circuit can be connected to the XTL 1 and XTL2 pins to provide the 
needed internal clock signal. The maximum external crystal frequency allowed is 3 MHz. This generates 10-microse­
cond machine cycles. All instructions execute in 1 or 2 machine cycles. 

THE 8021 TIMER/COUNTER 
Logic associated with the 8021 timer/counter is identical to that which we have described for the 8048. The 
contents of the Accumulator can be moved to the Counter/Timer register. which is subsequently incremented once ev­
ery 32 crystal oscillations in Timer mode. or once every high-to-Iow transition of a T1 input in Counter mode. However. 
there is no interrupt logic on the 8021, which means that a time-out will not cause an interrupt request to occur. You 
must therefore test for a time-out under program control using the JTF (Branch-on-Timer Flag) instruction. 

8021 SCRATCHPAD MEMORY AND PROGRAMMING 
In addition to the lack of interrupt logic, the 8021 has no Status register and data memory is simplified. 

Instead of having a Status register. the 8021 has a 3-bit Stack Pointer and a single Carry status flag. 

Data memory consists of eight general purpose registers in scratchpad bytes 0-7. plus a 16-byte Stack which uses 
scratchpad bytes 8-1716. This stack allows subroutines to be nested to a level of 8. The 8021 does not have the second 
set of eight registers located in scratchpad bytes 1816 - 1 F16. as is available on the 8048 and the 8041. 

The 8021 instruction set is a subset of the 8048 instruction set. In Table 6-1. 8021 instructions are identified. 

THE 8243 INPUT/OUTPUT EXPANDER 

This support device expands I/O Port 2 of an 8041 or 8048 series microcomputer to four individually addressable 4-bit 
I/O ports. The 8243 Input/Output Expander is particularly useful in numerical applications where data is transferred in 
4-bit nibbles. 

Figure 6-19 illustrates that part of our general microcomputer system logic which has been implemented on the 8243 
Input/Output Expander. 

The 8243 Input/Output Expander is packaged as a 24-pin DIP. It uses a single +5V power supply. All inputs and out­
puts are TTL-compatible. The device is implemented using N-channel MOS technology. 

8243 INPUT/OUTPUT EXPANDE~ PINS AND SIGNALS 
The 8243 Input/Output Expander pins and Signals are illustrated in Figure 6-20. Functional internal architecture is il-
lustrated in Figure 6-21. ' , 

P20 - P23 represent the 4-bit bidirectional I/O port or bus connection between the 8243 Input/Output Expander and 
the 8048 series microcomputer. P20 - P23 must be connected to the low-order four pins of the microcomputer I/O Port 
2. Figure 6-22 illustrates the 8243-8048 interface. 

P40 - P43, P50 - P53, P60 - P63 and P70 - P73 provide four bidirectional I/O ports, referred to as Ports 4.5. 6 and 
7. respectively. These are 4-bit ports via which data is transferred to or from external logic. 

Data being output via one of these four ports IS latched and held in a low impedance state. 

Data input is buffered. During a read operation 8243 I/O port pins are sampled - while the read is being executed; 
then I/O port pins are floated. 

CS is the single chip select signal for the 8243 device. CS must be low for the device to be selected. There is no 
specifically defined manner in which CS has to be created; in Figure 6-22 it is shown being decoded off the four high­
order pins of I/O Port 2. 

PROG is the single control strobe output by the 8048 series microcomputer to time 8243 events. On the falling 
edge of PROG. data input via P20 - P23 is decoded as an I/O port select and operation specification. Resulting 8243 
operations are strobed by the rising edge of PROG .. 

There is no Reset input to the 8243. The device is reset when power is first applied, or when 
power input at the VCC pin drops below +1 volt. Following Reset. Port 2 is inlnput mode while 

18243 RESET I 
Ports 4. 5. 6 and 7 are floated. The 8243 device will exit the Reset mode on the first high-to-Iow transition of PROG. 

6-53 



Logic to Handle 
Interrupt Requests 

from 
External Devices 

I 

Interrupt Priority 
Arbitration 

I/O Communication 
... Serial to Parallel 

Interface Logic 

Programmable 
Timers 

• 

Clock Logic 

Arithmetic and 
Logic Unit 

,", Accumulator 
Register(s) 

Instruction Register ......... 

.... Control Unit 

• 

r 

Bus Interface 
Logic 

ROM Addressing 
and 

Interface Logic 

Read Only 
Memory 

.. Data Counter(s) 

~ Stack Pointer 

.. Program Counter 

u 

System Bus 

(" ,.;}:.':: '<,,' ".',.\ i, ,",> ,. ',:/: 
"2·'··/"<·,·; : .',')'i,,· <'.".'<.( 

." •. " ... < :, ii' iii ' ..... " .<i 

, .. ".<¥.' 'or~~i\ ,;?i 
.<i 

Figure 6-19. Logic of the 8243 Input/Output Expander 

6-54 

Direct Memory 
Access Control ~ 

Logic 

RAM Addressing 
and 

Interface Logic 

Read/Write 
Memory 



c 
w 

~ 
II: 
o 
Q. 
II: 
o 
lJ 
!: 
en 
w 

~ g 
r/) 
r/) 

« 
o!I 
w 
Z 
II: 
o 
III 
r/) 

o 
::iE « 
c « 
@ 

PIN NAME 

P20 - P23 
P40 - P43 
P50 - P54 
P60 - P64 
P70 - P74 
PROG 
CS 
VCC.GND 

P50 

P40 

P41 

P42 

P43 

CS 

PROG 

P23 

P22 

P21 

P20 

GND 

-- -... - --- .. .. .. - -.... - --... 
- -- .... -.. .. - -

1 24 

2 23 
3 22 ... -
4 21 -
5 20 --
6 19 -8243 -
7 18 --
8 17 -
9 16 -10 15 -

11 14 --12 13 --
DESCRIPTION 

Bidirectional I/O Port to CPU 
I/O Port 4 
I/O Port 5 
I/O Port 6 
I/O Port 7 
Address/Data Strobe 
Chip Select 
Power. Ground 

... 
-... -... 
'-... -.... -... --.... -

VCC (+5V) 

P51 

P52 

P53 

P60 

P61 
P62 

P63 
P73 

P72 
P71 

P70 

TYPE 

Bidirectional. tristate 
Bidirectional. tristate 
Bidirectional. tristate 
Bidirectional. tristate 
Bidirectional. tristate 
Input 
Input 

Figure 6-20. 8243 Input/Output Expander Pins and Signals 

8243 INPUT/OUTPUTEXPANDER OPERATIONS 
8048 and 8041 series microcomputers have four instructions designed specifically to access an 8243 In­
put/Output Expander. These instructions are: 

MOVO PN.A 
MOVO A.PN 
ORlO PN.A 
ANlO PNA 

These are the operations performed: 

1) You can output the low~order four Accumulator bits to I/O Expander Port 4. 5. 6 or 7. Following a write opera­
tion the four port lines are held in a low impedance state. External logic does not receive any type of "data ready" 
signal after data has been output: however. as illustrated in Figure 6-22. you can easily create such a signal by 
combining PROG and device select logic. 

2) You can input data from Port 4,5,6 or 7 of the 8243 device to the four low-order Accumulator bits. Again Figure 
6-22 shows how you can create a strobe signal which tells external logic when to apply data to an I/O port of the 
8243 device. ' 

3) You can output data from the low-order four Accumulator bits to one of the four 8243 device ports. but instead of 
simply writing to the port. you can AND or OR with data already in the port output latch. That is to say. you per­
form a Boolean operation between the four low-order Accumulator bits and the data most recently output to the 
8243 port. 

You cannot perform a Boolean operation between the low-order four Accumulator bits and data input to an 
8243 port; the input data is buffered. not latched. You must read the input data to the Accumulator and mask it there. 

8243 device Ports 4, 5, 6 and 7 have been'designed to operate continuously as input ports or output ports. If 
you switch a port from input to output, or from output to input, then the first 4-bit data unit written or read will 
be erroneous and should be discarded. 

6-55 



- Output . 
Timing Latch P40 - P43 

" 
and " ) Port 4 

PROG 
Control A Input '" '" - Buffer ... 

Output 
P20 - P23 ... Latch P50 - P53 .. 

Port 2 ( / Multiplexer ) Port 5 

'" ... ... " ... ... 
Input 

... Buffer 

Output 
P60 - P63 v Latch 

A ... 
Port 6 

'" " A Input 
1\ Buffer v 

, ~ 

A .. Output 
Latch P70 - P73 

AND/OR .. 
) 

LOGIC ... 
Port 7 

" 
Input 

v " Buffer 

'-

Figure 6-21, Functional Diagram of the 8243 Input/Output Expander 

'6-56 



c 
w 

~ 
a: o 
Q. 
a: 
o 
o 
!: 
en 
w 

~ g 
U) 
U) 

~ 

ell 
w 
Z 
a: 
o 
III 
U) 

o 
:!! 
~ 
c 
~ 

@ 

A P20 - P23 ... AP40 - P43 ... 

'" 
) 

... r '" " 
8048 P24 -

]50 - P53 ... 
) 

8035 P27 ... Device " .. 
CS 8243 .l60 -P63 ... or Select -r 

8748 ) .... ... 

PROG -- PROG 
AP70 - P73 ... 

) 
'" " 

!+5V 

P22 _ 

1 '-. D o f--READ ..... 
P23 

7474 

L[>o- ClK ,.-
ClR 

L-£>- J 
6 

ClR 

~ 
J 01 t--WRITE 

K 74107 

"--- CLK 
PRE 

~+5V 

PROG 

P22. P23 

READ 

WRITE 

Figure 6-22. An 8243/8048 Configuration with External Logic Read and Write Strobes 

6-57 



PROG 

P20 - P23 

PNO - PN3 

PROG 

P20 - P23 

PNO - PN3 

~ ~ \ 
Float I Instruction 1\ Float I Data Out 

Old output data , 
8243 

device 
decodes 

instruction 

Figure 6-23. Timing for Data Output to an 8243 Port Via 
an MOVD. ORlD or ANlD Instruction 

~ 0 
'\ \ 

I \ , 
I 

Float I Instruction I \ Float 1 Data·ln ~ 
L 

Old input data I New input data b 

8243
1 

device 
decodes 

instruction 

Figure 6-24. Timing for Data Input from an 8243 Port 

Timing for 8243 port accesses is illustrated in Figures 6-23 and 6-24. 

Float 

New output data 

Float 

In each case an instruction is output via P20 - P23 of the 8048 microcomputer on the high-to-Iow transition of 
PROG. The instruction is decoded as follows: 

P20 P21 8243 Port Selected P22 P23 Function Defined 
0 0 Port 4 0 0 Read from Port 
0 1 Port 5 0 1 Write to Port 
1 0 Port 6 1 0 OR with Port 
1 1 Port 7 1 1 AND with Port 

The actual I/O operation within the 8243 device is strobed by the subsequent low-to-high transition of PROG. 

Observe that external logic must transmit data to an 8243 I/O port on the high-to-Iow transition of PROG. External logic 
must read data output after the low-to-high transition of PROG. These signals to external logic are shown in Figure 
6-22. Let us take a more careful look at this figure. . 

The 8243 device select CS is derived in some fashion from the four high-order lines of the 8048 I/O Port 2. The manner 
in which we decode CS from these four lines is not relevant: however. the fact that we are generating CS in this fashion 
means that any 8243 access instruction must be bracketed by instructions that select and then deselect the 8243 
device. 

It is not a good idea to leave the 8243 device selected when you are not accessing it: therefore do not leave high-order 
bits of I/O Port 2 in a condition that would select the 8243 device while the device is supposed to be idle. 

6-58 



c' 
~! 
e:( 
a: 
o 
D.. 
a: 
o 
o 
~ 
en 
w 

~ g 
en 
en· 
e:( 

CI/l 
w 
Z 
a: 
o 
III 
en o 
~ 
e:(1 
C 
e:( 

@ 

The PROG signal connecting the 8048 to the 8243 requires no explanation. The signal is output by the 8048 with tim­
ing required by the 8243. 

The READ and WRITE strobes created in Figure 6-22 identify the time at which external logic must either read data 
from an I/O port. or write data to an I/O port however. the I/O port is not itself identified. The READ and WRITE strobes 
would have to be qualified by P20 and P21 on the high-to-Iow transition of PROG in order to create READ and WRITE 
strobes specific to any given I/O port. Here. for example. is the logic which would make READ and WRITE specific to I/O 
Port 5: 

READ READ 5 
D Q .......... -----1 P21------f 

P20 

7474. 

PROG -X)-------ICLK 
WRITE WRITE 5 

Referring to the timing in Figure 6-22. let us first look at the READ strobe. This signal must go true on the high-to-Iow 
transition of PROG - but only if P22 and P23 are both low. READ can stay high until the device is deselected. provid­
ing external logic uses the low-to-high transition of READ or timing immediately thereafter. in order to place data at the 
required I/O port - whence it can be read by the 8048. We obtained the required waveform by using the complement 
of CS as a CLEAR input to the READ 7474 flip-flop. Thus while the 8243 device is not selected READ will be low. The 
NOR of P22 and P23 becomes the D input to the READ flip-flop; this input will be high only when P22 and P23 are both 
low - and that specifies a Read operation. On the high-to-Iow transition of PROG. PROG goes low-to-high. and that 
clocks the READ flip-flop Q output high. READ subsequently stays high until CS goes high again. at which point the 
READ flip-flop is cleared and READ goes low. 

A 74107 master-slave flip-flop creates the WRITE pulse. The high-to-Iow transition of PROG marks the instant at which 
P22 and P23 must be decoded to determine that a non-read operation is in progress. but the actuallow-to-high transi­
tion WRITE must not occur until the subsequent low-to-high transition of PROG. 

The 74107 modifies the Q 1 output on the trailing edge of ClK. based on the JK inputs at the leading edge of ClK; thus 
WRITE logic requirements are met. 

6-59 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 
en 
en 
< 
all 
w 
Z 
a: 
o 
III 
en o 
:1! 
< c 
< 
@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

8048/8748/8035 } 
8049/8039 
8041/8021 
8243 liD Expander 

One-Chip Microcomputers 

6-01 



8048/8748/8035 

ABSOLUTE MAXIMUM RATINGS· 
Ambierit ,Temperature Under Bias ........... ooe to 70°C 
Storaga Temperature ................... -65°C to +150oe 
Voltage On Any Pin With Respect 

to Ground ............................. -0.5V to +7V 
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.5 Watt 

'COMMENT: 
Stresses above those listed under "Absolute Maximum Ratings" 
may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other 
conditions above those indicated in the operational sections of this 
specification is not implied. 

D.C. AND OPERATING CHARACTERISTICS TA = o°c to 70°C, VCC = VDD = +5V ±10%*, VSS= OV 

Symbol Parameter 
Limits 

Unit Test Conditions' 
Min. Typ. Max. 

V IL InpLlt Low Voltage 
-.5 .8 V 

(All Extept XTALl, XTAL2) 

V IH Input High Voltage 
2.0 Vcc V 

(All Except XTAL 1,XTAL2,RESET) 

V IH1 Input High Voltage (RESET,XTAL1) 3.0 Vcc V 

VOL Oqtput Low Voltage 
.45 V IOL = 2.?mA (BUS, RD, WR, PSEN, ALE) 

VOL1 Output Low Voltage 
.45 V IOL = 1.6mA (All Other Outputs Except PROG) 

VOL2 Output Low Voltage (PROG) .45 V IOL = 1.0mA 

VOH OlJtpu!...!::!.ig~oltage 
2.4 V IOH = 100J..IA 

(BUS, RD, WR, PSEN, ALE) 

VOH1 Output High Voltage 
2.4 V IOH = 50J..IA 

(All Other Outputs) 

IlL Input Leakage Current 
±10 J.1A VSS:!(VIN:!(VCC 

(Tl, EA, INT) 

IOL Output Leakage Current (BUS, TO) 
-10 J.1A Vcc >VIN~VSS +.45 

(High impedance State) 

I DO V DO Supply Current 10 20 mA 

100+ Icc Total Supply Current 65 135 mA 

A.C. CHARACTERISTICS TA = o°c to 70°C, Vcc = VOO = +5V ±10%*, Vss= OV 

8048/8748 8748-8 
Symbol Parameter 8035/8035L 8035-8 Unit Conditions (Note 1) 

Min. Max. Min. Max. 

tLL ALE Pulse Width 400 600 ns 

tAL Address Setup to ALE 150 150 ns 

tLA Ai:ldress Hold from ALE 80 80 ns 

tcc Control Pulse Width (PSEN, RD, WR) 900 1500 ns 

tow Data Setup before WR 500 640 ns 

tWD Data Hold After WR 120 120 ns CL = 20pF 

tCY Cycle Time 2.5 15.0 4.17 15.0 J.1s 6 MHz XTAL 
(3.6MHz XTAL for -8) 

tOR Data Hold 0 200 0 200 ns 

tRD PSEN, RD to Data In 500 750 ns 

tAW Address Setup to WR 230 260 ns 

tAD Address Setup to Data In 950 1450 ns 

tAFC Address Float to RD, PSEN 0 0 ns 

*Standard 8748 and 8035 ±5%, t 1 0% available. Notel: Control Outputs: CL = 80 pF 
aUSOutputs: CL=150p;, tCy=25fJs 

Data sheets on pages 6-02 through 6-014 are reprinted by permission of Intel Corporation, Copyright 1978. 

6-D2 



C 
LLI 

~ 
o 
Q. 
c: 
o 
CJ 
~ 
en 
LLI 
I­
< 
(j 
o 
C/) 
C/) 

< 
c/J 
LLI 
Z 
c: 
o en 
C/) 

o 
~ 
< 
C 
< 
@ 

8048/8748/8035 

A.C. CHARACTERISTICS 
TA = O°C to 70°C, Vee = 5V±10% 
- •.. 

Symbol Parameter .. _. 

tcp Port. Control Setup Before Falling 
Edge of PROG 

tpc Port Control. Hold After Falling 

-. Edge of PROG 

tpR PROG to Time P2 Ir)put Must Be Valid . 

top Output Data Setup Time 

tpo Output Data Hold Time 

tPF Input Data Hold Time 

tpp PROG Pulse Width 

tPL Port 2 I/O Data Setup 

tLP Port 2 I/O Data Hold 

WAVEFORMS 

PORT 2 TIMING 

A~E J \'--.......... ---~ 
EXPANDER 
PORT 

OUTPUT 

EXPANDER 
PORT 

INPUT 

PROG 

PCH 

PCH 

6-D3 

Min. Max. Unit Test Conditions 

110 ns 

140 ns 

810 ns 

220 ns 

65 ns 

110 ns 

1510 ns 

400 ns 

150 ns 



8048/8748/8035· 
WAVEFORMS 

Instruction Fetch Fr~m External Program Memory 

l:··~~-'-LL -=1·_· __ ._- ~y-- ----'I 
ALE J '--_____ ;-1 ~-----'L 

PSEN 

BUS 

INSTRUCTION 

Read From External Data Memory 

ALE J L 

RD 

BUS 

Write to External Data MemorV 

ALE J L 

WR 

BUS 

WARNING: 

An attempt to program a missocketed 8748 will result in severe 
damage to the part_ An indication of a properly socketed part is the 
appearance of the ALE clock output. The lack of this clock may 
be used to disable the prqgrammer. 

6-04 



c 
w 

~ 
a:: 
o 
D. 
a:: 
o 
tJ 
~ 
iii 
w 
I­
ct 
g 
CI) 
CI) 

ct 
all 
w 
Z 
a:: 
o 
CD 
CI) 
o 
:!: 
ct c 
ct 

@ 

8048/8748/8035 

Programming Options 

The 8748 EPROM can be programmed by either of two 
Intel products: 

·1. PROMPT-48 Microcomputer Design Aid, or 
2. Universal PROM Programmer (UPP-101 or UPP-1021 

peripheral of the Intelleci!!l Development System with a 
UPP-848 Personality Card. 

8748 Erasure Characteristics 

The erasure characteristics of the 8748 are such that 
erasure begins to occur when exposed to light with wave­
lengths shorter than approximately 4000 Angstroms (A). 

It should be noted that sunlight and certain types of floure­
scent lamps have wavelengths in the 300()'4000A range. 

WAVEFORMS 

Combination ProgramNerify Mode (EPROM's Only) 

Data show that constant exposure to room level floure­

scent lighting could erase the typical 8748 in approx­
mately 3 years while it would take approximately 1 week 
to cause erasure when exposed to direct sunlight. If the 
8748 is to be exposed to these types of lighting conditions 
for extended periods of time, opaque labels are available 
from Intel which should be placed over the 8748 window 
to prevent unintentional erasure. 

The recommended erasure procedure for the 8748 is expo­
sure to shortwave ultraviolet light which has a wavelength 
of 2537 Angstroms (A). The integrated dose (i.e., UV 
intensity X exposure time) for erasure should be a mini­
mum of 15W-sec/cm2 • The erasure time with this dosage 
is approximately 15 to 20 minutes using an ultraviolet lamp 

with a 12000tIW/cm2 power rating. The 8748 should be 
placed within one inch from the lamp tubes during erasure. 
Some lamps have a' filter on their tubes and this filter 
should be removed before erasure. 

f--------- PROGRAM --------'*0--- I~----PROGRAM----

TO 

DBO-DB7 J--
LAST 

ADDRESS 

DATA TO BE 
PROGRAMMED VALID ---< NEXT ADDR x== 

VALID 

NEXT 
ADDRESS 

.":~::~=====================-I-O=~=~:OW~--~_-~-:_--_----I __________________________ ~----------
~--- --""'\.'-_____ L..;.... .... ¥J 'U - --,'-------_ 

Verify Mode (ROM/EPROM) 

TO.RESET ~ / 
\\.-. __ ---J 

=>--- ADDRESS 
(0-7) VALID 

\ __ -----11 \'-----
---<'-___ A_~_~_~_Js_S _ __JX'__~_~_~T_VD_A~_iD_A_'>_ - - - - - - -

__________ __J)('_ _________ A_D_D_R_E_SS_(8_-_9)_V_A_L_ID ________ __J)(~· ___________ N_E_X_T_AD_D_R_E_SS_V~A-L-ID--------------__ 

NOTES: 

1. PROG MUST FLOAT IF EA IS LOW (i .•.• ~ 25V). OR IF TO s 5V FOR THE 8741. 
FOR THE 8041 PROG MUST ALWAYS FLOAT. 

2. VEAH FOR 8041· 11.4V MIN .• 12.6V MAX. 

6~D5 

3. THE FOLLOWING CONDITIONS MUST BE MET: 
cs= TTL '1' 
AOa TTL '0' 

THIS CAN BE DON'E USING 10K RESISTORS TO Vee. Vss RESPECTIVELY. 
4. Xl AND X2 DRIVEN BY 3 MHz CLOCK WILL GIVE 5 psec ICY. THIS IS GOOD 

FOR -8 PARTS AS WELL AS NON -8 PARTS. 



8048/8748/8035 

AC TIMING SPECIFICATION FOR PROGRAMMING 
TA-25°C+5°C Vcc=5V+5% Voo=25V+1V - - , - , -

Symbol Parameter 

tAW Address Setup,Time to RESET I 

tWA Address Hold Time After RESET I 

tow Data ,in Setup Time to PROG 1 

two Data, in Hold Time After PROG I 

tPH RESET Hold Time to Verify 

tvoow Voo 

tVOOH Voo Hold Time After PROG I 

tpw Program Pulse Width 

trw Test 0 Setup Time for Program Mode 

twr Test 0 Hold Time After Program Mode 

too Test btoData Out Delay 

tww RESET Pulse Width to Latch Address 

tr. tf Voo and PROG Rise and Fall Times 

tCY CPU Operation Cycle Time 

tRE RESET Setup Time Before EA 1 

Note: If Test 0 is high too can be triggered by RESET I. 

DC SPECIFICATION FOR PROGRAMMING 
TA = 25°C ± 5°C, Vee = 5V ± 5%, Voo = 25V ± ,1V 

Symbol Parameter 

VOOH Voo Program Voltage High Level 

VOOL Voo Voltage Low Level 

VPH PROG Program Voltage High Level 

VPL PROG Voltage Low Level 

VEAH EA Program or Verify Voltage High Level 

VEAL EA Voltage Low Level 

100 Voo High Voltage Supply Current 

IpROG PROG High Voltage Supply Current 

lEA EA High Voltage Supply Current 

6-06 

" ,':' , 

Min. Max. Unit ,Te.(eo~ffitl~';'/;';;: 
4tcy <'" 
4tcy 

4tcy 

4tcy 

4tcy 

4tcy 

0 

50 60 MS 

41cy 

41cy 

41cy 

41cy 

0.5 2.0 p's 

5.0 p's 

41cy 

Min. Max. Unit Test Conditions 

24.0 26.0 V 

4.75 5.25 V 

21.5 24.5 V 

0.2' V 

21,5 24.5 V 

5.25 V 

30.0 mA 

16.0 mA 

1.0 mA 



c 
w 

~ 
a: o 
D. 
a: 
o 
u 
~ 
u) 
w 

~ g 
en 
en 
< 
all 
w 
Z 
a: 
o 
CO 
en o 
~ 
< c 
c( 

@ 

8049/8039 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ........ 0° C to 70° C 

Storage Temperature ............... -65°Cto+150°C 

Voltage on Any Pin With 
Respect to Ground ...................... -0.5V to +7V 

Power Dissipation .... . . . . . . . . . . . . . . . . . . . . .. 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 

Symbol Parameter 
Min. 

VIL Input Low Voltage 
(All Except XTALl. XTAL2) -0.5 

VIH Input High Voltage 
(All Except XTALl. XTAL2. RESET) 2.0 

VIHl Input High Voltage (R ESET. XTALl) 3.0 

VOL Output Low Voltage 
(BUS. RD. WR. PSEN. ALE) 

VOLl Output Low Voltage 
(All Other Outputs Except PROG) 

VOH Output High Voltage 
(BUS. RD. WR. PSEN. ALE) 2.4 

VOHl Output High Voltage 
(All Other Out puts) 2.4 

IlL Input Leaka~c Current 
(Tl. EA. INT) 

IOL Output Leakage Current (Bus. TO) 
(H}gh Impedance State) 

100 Power Down Supply Current 

loo+lce Total Supply Current 

·COMMENT: Stresses above those listed und9t "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional 
operation of the device at these or any other conditions 
above those indicated in the operational sections of this 
specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may 
affect device reliability. 

TA = DoC to 70°C, Vee = Voo = +5V ±1 0%. Vss = OV 

Limits 
Unit Test Conditions 

Typ. Max. 

0.8 V 

Vee V 

Vee V 

0.45 V IOL = 2.0mA 

0.45 V IOL = 1.6mA 

V IoH = 100J1A 

V IOH = 50J1A 

±10 J1A VSS~VIN~Vee . 

-10 J1A Vee~VIN~VSS + 0.45 

20 50 mA TA = 25°C 

75 140 mA TA = 25°C 

A.C. CHARACTERISTICS TA = o°c to 70
n

C. Vee = Voo = +5V ±10%. Vss = ov 

8049/8039 
Symbol Parameter Unit Conditions 

Min. Max. 

tLL ALE Pulse Width 400 ns 

tAL Address Setll[J to ALE 150 ns 

tLA Address Hold from ALE 80 ns 

tee Control Pulse Width (PSEN. RD. WR) 900 ns 

tow Data Set·Up Before WR 500 ns 

two Data Hold After WR 120 ns CL = 20 pF 

tey Cycle Time 2.5 15.0 J1S 6 MHz XTAL 

tOR Data Hold 0 200 ns 

tRO PSEN. RD to Data In 500 ns 

tAW Address Setup to WR 230 ns 

tAD Address Setup to Data In 950 ns 

tAFe Address Float to RD. PSEN 0 ns 

A.C. TEST CONDITIONS Control Outputs: CL = 00 pF BUS Outputs: CL = 150 pF tey = 2.5J1s 

6-07 



8049/8039 

WAVEFORMS 

Instruction Fetch From External Program Memory 

I
--------~y--------

-tll--I 
ALE JI .... ________ .... L 

- tAFcl-ta;-i 
----------~--~~ ~--------------

BUS 

INSTRUCTION 

Read From External Data Memory 

ALE J L 
l-4--f(;C-1 

RD ---------~I ~I -----------
'm -I I ".OATING 11- "'~ 

FLOATING---I=-t-O-A-T-IN-G-, ---
BUS 

.I-'A,,~I 
Write To External Data Memory 

ALE J L 
I-tce 

WR 
-------.1 

Itow 

BUS 

4-tAW_ 

6-08 



c 
w 

~ 
c: 
o 
D. 
c: 
o 
o 
~ 
u) 
w 

~ 
U o 
(I) 
(I) 

oct 
CI/:I 
w 
Z 
c: 
o 
In 
(I) 

o 
~ 
oct c 
oct 

@ 

8041/8741 

ABSOLUTE MAXIMUM RATINGS* 

AmbientTemperature Under Bias ........ O°C to 70°C 
Storage Temperature .. . . . . . . . . . . . .. -65°C to +150°C 
Voltage on Any Pin With 
RespecttoGround ...................... 0.5Vto+7V 

Power Dissipation .. . . . . . . . . . . . . . . . . . . . . . . .. 1.5 Watt 

D.C. AND OPERATING CHARACTERISTICS 
TA = O°C to 70°C, Vcc = Voo = +5V ±5%, Vss = OV 

·COMMENT: Stresses above those listed under "Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional opera· 
tion of the device at these or any other conditions above 
those indicated in the operational sections of this specifi· 
cation is not implied. Exposure to absolute maximum 
rating conditions for extended periods may affect device 
reliability. 

Limits 

Symbol Parameter Min. 

VIL Input Low Voltage(AIi -0.5 
Except Xl. X2) 

VIH Input High Voltage (All 2.0 
Except Xl. X2 RESET) 

VIH2 Input High Voltage (Xl. 3.0 
RESET) 

VOL Output Low Voltage (Oo-D7. 
Sync) 

VOL2 Output Low Voltage (All 
Other Outputs Except Prog) 

VOH Output High Voltage (OO-D7) 2.4 

VOHI Output High Voltage (All 2.4 
Other OutputS) 

III Input Leakage Current 
(To. T,. RD. WR. CS. Ao. EA) 

IOL Output Leakage Current 
(Oo-D7. High Z State) 

100 Voo Supply Current 

Icc + 100 Total Supply Current 

VOL3 Output Low Voltage (Prog) 

IlI1 Low Input Source Current 
PlO-P17 P20-P27 

IlI2 Low Input Source Current 
RESET.SS 

A.C. CHARACTERISTICS 
TA = O°C to 70°C, Vcc = Voo = +5V ±5%, Vss = OV 

DBB Read: 

Typ. Max. 

O.B 

Vcc 

Vcc 

0.45 

0.45 

±10 

±10 

10 25 

65 135 

0.45 

0.4 

0.2 

Symbol Parameter 
8741 

Min. Max. 

tAR CS, Ao Setup to RD , 60 

tRA CS, Ao Hold After RD t 30 

tRR RD Pulse Width 300 2)( tCY 

tAD CS, Ao to Data Out Delay 370 

tRD RD , to Data Out Delay 200 

tOF RD t to Data Float Delay 
10 

140 

tRV 
Recovery Time Between Reads 

1 
And/Or Write 

tCY Cycle Time 2.5 

6-D9 

Unit Test Conditions 

V 

V 

V 

V IOL = 2.0 rnA 

V IOL = 1.6 mA 

V IOH = -400J.lA 

V IOH = -50J1.A 

pA Vss ~ VIN ~ Vee 

pA Vss + 0.45 ~ VIN ~ Vec 

mA 

mA 

V IOl = 1.0 mA 

mA Vll = O.BV 

mA VIL = O.BV 

8041 
Units Test Conditions 

Min. Max. 

0 ns 

0 ns 

250 ns tCY = 2.5,..s 

150 ns 

150 ns 

10 ns 

100 ns 

1 ,..S 

2.5 ,..S 6 M Hz Crystal 



8041/8741 

DBB Write: 

Symbol Parameter 

tAW CS, Ao Setup to WR , 

tWA CS, Ao Hold After WR t 

tww WR Pulse Width 

tow . Data 'Setup to WR t 

two Data Hold After WR t 

A.C. TEST CONDITIONS 
DrDo Outputs 

WAVEFORMS 

Read Operation - Data Bus Buffer Register 

~OR Ao 

8741 

Min. Max. 

60 

30 

300 2)( tCY 

250 

30 

RL = 2.2k to Vss . 
4.3k to Vee 

CL = 100 pF 

8041 
Units' 

Min. Max. 

0 ns 

0 ns 

250 ns 

150 ns 

0 ns 

~---------------------

DATA BUS 
(OUTPUT) 

I---------.Rv----t-------I 

I----·R.----I 

--.RO-I ." - tDF l 

--"'<----""m"d>>-------

Write Operation - Data Bus Buffer Register 

Test Conditions 

tCY = 2.5 ",s· 

(SYSTEM'S 
ADDR ESS BUS) 

(R EAD CDNTRO.l) 

4 r (SYSTEM'S 
Cl: DR Ao ADDR ESS BUS) 

~ ~~.A-w---l1------.w-w------IJ--~~~A--~-----------------
- ... -f L ... 'w"'''''''''' 

DATA BUS DATA \J--DATAVALID-" __ V DATA 
MAY CHANGE !INPUT) MAY CHANGE J'IJ ~ 

__________________ J ~ __________________ ~ __ 

6-010 



c 
w 
~ 
a: 
o 
D.. 
a: 
o 
(J 

~ 
ui 
w 

~ 
C3 o 
CI) 
CI) 

ct 

"" w 
Z 
a: 
o 
III 
CI) 

o 
~ 
ct c 
ct 

@ 

8041/8741 

8748 Erasure Characteristics 

The erasure characteristics of the 8748 are such that 
erasure begins to occur when exposed to light with 
wavelengths shorter than approximately 4000 Ang­
stroms (A). It should be noted that sunlight and certain 
types of fluorescent lamps have wavelengths in the 
3000-4000A range. Data show that constant exposure to 
room level fluorescent lighting could erase the typical 
8748 in approximately 3 years while it would take ap­
proximately one week to cause erasure when exposed 
to direct sunlight. If the 8748 is to be exposed to these 
types of lighting conditions for extended periods of. 

time, opaque labels are available from Int~1 which 
should be placed over the 8748 window to prevent 
unintentional erasure. 

The recommended erasure procedure for the 8748 Is ex­
posure to shortwave ultraviolet light which has a wave­
length of 2537 A. The Integrated dose (I.e., UV Intensity 
x exposure time) for erasure should be a minimum of 15 
W-sec/cm2• The erasure time with this dosage Is approx­
Imately 15 to 20 minutes using an ultraviolet lamp with a 
12,000 JAW/cm2 power rating. The 8748 should be placed 
within one inch of the lamp tubes during erasure. Some 
lamps have a filter on their tubes which should be 
removed before erasure. 

A.C. TIMING SPECIFICATION FOR PROGRAMMING 
TA = 25°C ±5°C, Vee = 5V ±5%, Voo = 25V ±1V 

Symbol Parameter Min. Max. Unit Telt Conditions 

tAW Address Setup Time to RESET I 4tcy 

tWA Address Hold Time After RESET I 4tcy 

tow Data in Setup Time to PROG I 4tcy 

two Data in Hold Time After PROG I 4tcy 

tPH RESET Hold Time to Verify 4tcy 

tvoow Voo 4tcy 

tVOOH Voo Hold Time After PROG I 0 

tpw Program Pulse Width 50 60 MS 

tTW Test 0 Setup Time for Program Mode 4tcy 

tWT Test 0 Hold Time After Program Mode 4tcy 

too Test 0 to Data Out Delay 4tcy 

tww RESET Pulse Width to Latch Address 4tcy 

tr.lt Voo and PROG Rise and Fall Times 0.5 2.0 '"'s 
tey CPU Operation Cycle Time 5.0 '"'S 
tRE RESET Setup Time Before EA I 4tcy 

Note: If TEST 0 is high. too can be triggered by RESET 1. 

D.C. SPECIFICATION FOR PROGRAMMING 
TA = 25°C ±5°C, Vee = 5V ±5%, Voo = 25V ±1V 

Symbol Parameter Min. Max. Unit Test Conditions 

VOOH Voo Program Voltage High Level 24.0 26.0 V 

VOOL Voo Voltage Low Level 4.75 5.25 V 

VPH PROG Program Voltage High Level 21.5 24.5 V 

VPL PROG Voltage Low Level 0.2 V 

VEAH EA Program or Verify Voltage High Level 21.5 24.5 V 

VEAL EA Voltage Low Level 5.25 V 

100 Voo High Voltage Supply Current 30.0 rnA 

IPROG PROG High Voltage Supply Current 16.0 rnA 

lEA EA High Voltage Supply Current 1.0 rnA 

6-011 



8041/8741 

WAVEFORMS 

Combination ProgramlVerify Mode (EPROMs Only) 

1--------- PROGRAM ----------t--- VERIFY--~F I~'---- PROGRAM -----

TO 

DBO-DB7 'J--. 
PZO-P, 

LAST 
ADDRESS 

DATA TO BE 
PROGRAMMED VALID 

------"'\. 

-< NEXT ADDR X==' -- VALID 

NEXT 
ADDRESS 

,,:~ ~::-~---'---'~~~==----~~---------~~-'---------_'D-,_~~·~~D~W~:Df,'~_-~·-,'_-_-' -J---------------------

:~ ------""'\"'------l..;..._Jt " 1-1. --''''--------

Veriiy Mode (ROM/EPROM) 

VERIFY MODE (ROM/EPROMI 

TO,RESET ~"' ________ .I/ \'--_----J/ \'"----
DBO-DB7 J-- NEXT 

, ADDRESS 

Pzo-P, ______ -J)("' ______ A_D_D_RE_S_S_(8_-_91_V_A_L_ID _____ .I)(~ _____ N_E_X_T_A_D_D_R_ES_S_V_A_L_ID ________ _ 

6-012 



Q 
w 
~ 
a: o 
a. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 

8243 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... o°c to 70"C 
Storage Temperature .............. -65°C to +150°C 
Voltage on Any Pin 

With Respect to Ground ............ -0.5V to +7V 

Power Dissipation ....................... 1 Watt 

~ D.C. AND OPERATING CHARACTERISTICS 

w 
Z 
a: 
o 
III 
C/) 

o 
::E 
c( 
Q 
c( 

@ 

Symbol Parameter 

VIL Input Low Voltage 

VIH Input High Voltage 

VOL1 Output Low Voltage Ports 4-7 

VOL2 Output Low Voltage Port 7 

VOH1 Output High Voltage Ports 4·7 

11L1 Input Leakage Ports 4·7 

IIL2 Input Leakage Port 2, CS, PROG 

VOL3 Output Low Voltage Port 2 

ICC Vee Supply Current 

VOH2 Output Voltage Port 2 

IOL Sum of all IOL from 16 Outputs 

·See following graph for additional sink current capability. 

A.C. CHARACTERISTICS 

Symbol Parameter 

tA Code Valid Before PROG 

ts Code Valid After PROG 

te Data Valid Before PROG 

tD Data Valid After PROG 

tH Floating After PROG 

tK PROG Negative Pulse Width 

tes CS Valid Before/After PROG 

tpo Ports 4-7 Valid After PROG 

tLP1 Ports 4-7 Valid Before/After PROG 

tAee Port 2 Valid After PROG 

Min. 

-0.5 

2.0 

2.4 

-10 

-10 

2.4 

'COMMENT: Stresses above thoselisted u~der ';Absolute 
Maximum Ratings" may cause permanent damage to the 
device. This is a stress rating only and functional ~p(Jra. 
tion of the device at these or any other conditions above., 
those indicated in the operational sections of this speci'i·} :':\' 
cation is not implied. Exposure to absolute maximum,' 
rating conditions for extended periods may affect device 
reliability. 

Typ. Max; Units Test Conditions 

0.8 V 

Vee+0.5 V 

0.45 V IOL = 5 mA * 

1 V IOL = 20 mA 

V IOH= 240pA 

20 pA Vin = Vee to OV 

10 pA Vin = Vee to OV 

.45 V IOL = 0.6 mA 

10 20 mA 

IOH= 100pA 

100 mA 5 mA Each Pin 

Min. Max. Units Test Conditions 

100 ns 80 pF Load 

60 ns 20 pF Load 

200 ns 80 pF Load 

20 ns 20 pF Load 

0 150 ns 20 pF Load 

900 ns 

50 ns 

700 ns 100 pF Load 

100 ns 

750 ns 80 pF Load 

6-013 



8243 

WAVEFORMS 

PROG 

~-----------------tK----------------~ 

PORT 2 FLOAT FLOAT 

.. t ACC 

PORT 2 
OUTPUT 
VAllO 

~tpo 

PORTS 4·7 PR EVIOUS OUTPUT VALID OUTPUT 
VALID 

tiP - tiP 

PORTS 4-7 INPUT VALID 

tcs 

6-014 



c 
w 

~ 
IX: 
o 
a.. 
IX: 
o 
CJ 
~ 
en 
w 

~ 
(3 
o 
CI) 
CI) 

ct 
oil 
w 
Z 
IX: 
o 
til 
CI) 

o 
~ 
ct c 
ct 
@ 

Chapter 7 
ZILOG zeo 

Zilog Z80 microcomputer devices have been designed as 8080A enhancements. In fact, the same individuals 
responsible for designing the 8080A CPU at Intel designed the zao devices at Zilog. The 8085, described in 
Chapter 5, is Intel's 8080A enhancement. . . . 

The Z80 instruction set includes all 8080A instructions as a subset. In deference to rational necessity, 
however, neither the Z80CPU, nor any of its support devices attempt to maintain pin-for-pin compatibility with 
8080A counterparts. Compatibility is limited to instruction sets and general functional capabilities. A program 
that has been written to drive. an 8080A microcomputer system will also drive the ZSO system - within cer­
tain limits; for example, a ROM device that has been created to: implement object programs for an 8080A 
microcomputer system can be physically remo~ed and used in 'a Z80 system. 

But Z80-8080A comp~tibility does extend ~omewhatfurther, since most support devices that have been 
designed for the 8080A CPU will also work with a Zeo CPU; therefore in many cases you will be able to upgrade 
an 8080A microcomputer system to a Z80, confining hardware' modifications to the CPU and its immediate in-
terface only.' . 

It is interesting to note that the Z80 pins and signal interface is far closer than the 80S5 to the three-chip S080A 
configuration illustrated in 8QSOA chapter: Also, whereas the Z8Q instruction set is greatly expanded as compared to 
the 8080A the 8085 instruction set 'contains just two new instructions. However, both the Z80 and the 8085 have 
resolved the two most distressing problems associated wi~h the 8080A~ the three-chip 8080A CPU has in both cases 
been reduced to one chip, and the three 8080Apower supplies have in both cases been reduced to a single +5V power 
supply. . . 

ZILOG, INC., manufacturers of the Z80, are located at: 

10460 Bubb Road 
Cupertino, California 95014 

The official second source for Zilog products is: 

MOSTEK, INC. 
1215 West Crosby Road 

Carrollton, Texas 75006 

N-Channel MOS technology is used for all Z80 devices. 

THE zao CPU 

Z80 LSI 
TECHNOLOGY 

Functions implemented on the ZSO CPU are illustrated in Figure 7-1. They represent "typical" CPU logic, 
equivalent to the three devices: 8080A CPU, 8224 Clock and 8228 System Controller. . 

A SUMMARY OF ZSO/SOSOA DIFFERENCES 
Weare going to summarize Z80/S080A differences before describing differences in detail. If you know the 
SOSOA well, read on; if you do not, come back to this summary after reading the rest of the Z80.CPU descrip­
tion. We will also contrast the ZSO and the 80S5, where relevant . . , 
For the programmer, the Z80 provides more registers and addressing modes t~an the 8080A, plus a much larger 
instruction set. 

Significant hardware features are a single power supply (+5V), a single system clock signal, an additional inter-
rupt, and logic to refresh dynamic memories. .... . . 

7-1 



Interface Logic 

Programmable 
Timers 

Interface Logic 

Read Only 
Memory . 

Interface Logic 

I/O Ports 

Figure 7-1. Logic Functions of the Z80 CPU 

Direct Memory 
Access Control 

Memory 

The 8085 also has a single power supply and a single system clock signal. The 8085 has three additional interrupts. but 
lacks logic to refresh dynamic memories. 

I.s the ZBO CPU indeed the logical next BOBOA evolution? 

Hardware aspects of the BOBOA represent its weakest features, as compared to principal current competitors. 
Specifically. the fact that the 8080A is really a three-chip CPU is its biggest single problem: three chips are always 
going to cost more than one. Next. the fact that the 8080A requires three power supplies (+5V. -5V and + 12V) is a very 
negative feature for many users and the desirability of going to a single power supply is self-evident: the Z80 requires a 
single +5Vpower supply. This is also true of the 8085. 

The problems associated with condensing logic from three chips onto one chip are not so straightforward. Figure 7-2 il­
lustrates the standard three-chip 8080A CpU. Let us assume that the three devices are to be condensed into a single 
chip. Asterisks (*) have been placed by the signals which must be maintainf~d if the single chip is to be hardware com­
patible with the three chips it replaces. Forty-three signals are asterisked. therefore the standard 40-pin DIP cannot be 
used. The 'problem is compounded by the fact that not all 8080A systems use an 8228 System Controller. Some 8080A 
systems use an 8212 bidirectional 1/0 port to create control signals. A few' of the earliest 8080 systems use neither the 
8228 System Controller. nor an 8212 1/0 port: rather external logic decodes the Data Bus when SYNC is true in order to 
generate control signals; for example. that is how the TMS5501 works. We must therefore conclude that any attempt 

7-2 



Q 
w 
~ 
a: o 
D.. 
a: 
o u 
~ 
(I) 
w 

~ 
g 
CI) 
CI) 

ct 
olI 
w 
Z 
a: 
o 
CD 
CI) 

o 
~ 
ct 
Q 
ct 

@ 

to reduce three chips to cine will create a product that is not pin compatible with the 8080A: and. indeed. the Z80 is not 
pin compatible. What Zilog has done is include as many hardware enhancements as possible within the confines of a 
40-pin DIP that must be philosophically similar to the 8080A. without attempting any form of pin compatibility. Figure 
7-2 identifies the correlation between Z80 signals and 8080A signals. Notice that there is a significant similarity. 

Figure 5-3 is equivalent to Figure 7-2. comparing 8085 and 8080A signals. Z80 signals are far closer to the 8080A 
three-chip set than the 8085. 

Here is a summary of the hardware differences: 

1) The Z80 has reduced three power supplies to a single +5V power supply. 

2) Clock logic is entirely within the Z80. 

3) The complex. two clock signals of the 8080A have been replaced by a single clock signal. 

4) Automatic dynamic memory refresh logic has been included within the CPU. 

5) 

6) 

Read and write control signal philosophy has changed. The 8080A uses separate memory read. memory write. I/O 
read and I/O write signals. The Z80 uses a general read and a general write. coupled with a memory select and an 
I/O select. This means that if a Z80 CPU is to replace an 8080A CPU then additional logic will be required beyond 
the Z80 CPU .. You will either have to combine the four Z80 control signals to generate 8080A equivalents. or you 
will have to change the select and strobe logic for every I/O device. We will discuss this in more detail later. 

Address and Data Bus float timing associated with DMA operations have changed. The 8080A floats these busses 
at the beginning of the third or fourth time period within the machine cycle during which a bus request occurs: 
this initiates a Hold state. The Z80 has a more straightforward scheme: a Bus Request input signal causes the Data 
and Address Busses to float at the beginning of the machine cycle: floating busses are acknowledged with a Bus 
Acknowledge output signal. 

7) The Z80 has an additional interrupt request. In addition to.the RESET and normal 8080A interrupt request. the Z80 
has a nonmaskable interrupt which is typically used to execute a short program that prepares for power failure. 
once a power failure has been detected. 

Now consider internal organization of the zao in terms of instruction set compatibility and enhancement. 

As illustrated by Table 7-3 the 8080A instruction set is. indeed. a subset of the Z80 instruction set. Unfortunately. the 
Z80 uses completely new source program instruction mnemonics. therefore 8080A instructions carinot immediately be 
identified. Technical Design Labs. Inc .. has an 8080-like Z80 assembly language . 

.GND 2 • 10.0 125 10.0""1 
• +6\1 20 ·10.1 

2e 10.1 
II 27 

·5V 
21 

·10.2 
29 

IU 
+ 12V ·10.3 

30 
10.3 

·10.4 
31 

10.4 

·10.5 
32 

10.5 
·Ae 

33 
Ae 

·10.7 
34 

10.7 
) ADDRESS BUS. ·10.8 AS 

1tmiiCi SYSTEM DMA REO 
13 

HOlD· ·10.9 
35 10.9 

·10.10 I 10.10 
808010. _AlL 10.11 

14 CPU ·10.11 
37 

SYSTEM INT. REO. INT-. ·10.12 
J8 

10.12 
·10.13 10.13 

NT. ENABlE 
Ie INTl· ·10.14 

JII 
10.14 

·10.15 
J8 

10.15 ... . Wi! ,'-

r,~[J1TAL OBiN 
17 L 

. HLDA 21 BUsAK 
14 IS 2[ 41 3' 

TNW.~ . . II 22 ~ 
13 

4>1.· DO =t 10 15 • 17 \8 

~tt. 4>2· 01 

~ 1224 W11'I"..;f WArT· D2 8228 • 
11 

082 

MNW~ CLOCK 4 
READY· 03 ~ BIDIRECTIONAL. I 

:: )DATABUh .liESiN GENERATOR I 12 D4 ~ BUS DRIVER • ~ 
RESET·. 

.'2V~ DRIVER 05 ~ 
'11 

085 5 m 19 .IV~ SYNC· DB ~ 
20 

DB8 
OND --2- 07 

~ 
7 

017 ----- '1 lORa MI iNTA 
(7 GN , 

24 MREO RD MEMR 
STATUS STROBE SYSTlM 20 MREQ WR MfMW CONTROL BUS 

CONTROL 25 lORa RO iiCiii 
DEN~. 7,KJ-"~ iiOw 

1li' Z80 equiv • ., •. or new lign.ll. ~} TheM.,. zeo lignall 

• Signlil reproduced by the zeo . HALT with no 808010. 
Signlil which mUlt be dupliclted by I NMi counltlf'P8rt 
_ ... NPioclmont product. 

Figure 7-2. The Standard 8080A Three-Chip System and Z80 Signal Equivalents 

7-3 



There are very few unused object codes in the 8080A instruction set. The Z80 has therefore taken what few unused ob­
ject codes there are. and used them to specify that an additional byte of object code. follows: 

110111014-Spare 8080A object code 
4-Specifies new Z80 object code follows 

This results in most new Z80 instructions having 16-bit object codes; but simultaneously it means that a very large 
number of new instructions can be added. 

Any enhancement of the 8080A can include major changes within the CPU; providing the 8080A registers and status 
flags remain as a subset of the new design. instruction compatibility remains. These are the principal enhancements 
made by the Z80: 

1) The standard general purpose registers and status flags have been duplicated. This makes it very easy to handle 
single-level interrupts. since general purpose register and Accumulator contents no longer need to be saved on the 
Stack; instead. the program may simply switch to the alternate register set. 

2) Two Index registers have been added. This means that additional Z80 instructions can use indexed memory ad­
dressing. 

2) An Interrupt Vector register allows external logic the option of responding to an interrupt acknowledge by issuing 
the equivalent of a Call instruction - which vectors program execution to a memory address which is dedicated 
to the acknowledged external logic. . 

4) A single Block Move instruction allows the contents of any number of contiguous memory bytes to be moved from 
one area of memory to another. or between an area of memory and a single I/O port. You can also scan a block of 
memory for a defined value by executing a Block Compare instruction. 

5) Instructions have been added to test or alter the condition of individual register and memory bits. 

In contrast to the extensive enhancements of the Z80. the 8085 registers and status architecture are identical to the 
8080A. There are only two additional instructions in the 8085 instruction set; however. the 8085. like the Z80. allows 
Call instructions to be used when acknowledgi~g an interrupt - a particularly useful enhancement. 

While on the surface the zao instruction set appears to be very powerful, note that instruction sets are very 
subjective; right and wrong, good and bad are not easily defined. Let us look at some nonobvious features of the 
zao instruction set. . . 

First of all. the ex.ecution speed advantage that results from the new Z80 instructions is reduced by the fact that many 
of these instructions require two bytes of object code. Some examples of Z80 instructions and equivalent 8080A in­
struction sequences with equivalent cycle times are given in Table 7-1. 

Table 7-1. Comparisons of Z80 and 8080A 
Instruction Execution Cycles 

Z80 8080A 

I nstru ctions Cycles Instructions Cycles 

LD R.(lX + d) 19 LXI H.d 10 
DAD IX 10 
MOV R;M 2-

27 
LD RP.ADDR 20 LHLD ADDR 16 

MOV C.L 5 
MOV B.H '5 

26 
SET B.(HL) 15 MOV A.M 7 

ORI MASK 7 
tvlOV ·M.A 7 

21 

Also. a novice programmer may find the Z80 instruction set bewilderingly complex. At a time when the majority of po­
tential microcomputer users are terrified by simple assembly language instruction sets. it is possible that users will 
react negatively to an instruction set whose complexity (if not power) rivals that of many large minicomputers. 

Many of the new Z80 instructions use direct. indexed memory addressing to perform operations which are otherwise 
identical to existing 8080A instructions .. Now the zao has two new 16-bitlndex registers whose contents are added to 

7-4 



c 
w 

~ 
II: 
o 
D.. 
II: 
o 
(,) 

~ 
u) 
w 

~ 
g 
CI) 
CI) 

ct 
o1J 
w 
Z 
II: 
o 
III 
CI) 

o 
~ 
ct 
C 
ct 
@ 

an a-bit displacement provided by the instruction code: this is the scheme adopted by the Motorola MC6aOO. This 
scheme is inherently weaker than having a 16-bit. instruction-provided displacement. as implemented by the Signetics 
2650. When the Index register is larger than the displacement. the Index register. in effect. becomes a base register. 
When the Index register has the same size. or is smaller than the displacement. it is truly an Index register as described 
in "Volume 1 - Basic Concepts". The Signetics 2650 implementation is more powerful. 

zao PROGRAMMABLE REGISTERS 
We will now start looking at the Z80 CPU in detail, beginning with its programmable registers. 

The Z80 has two sets of 8-bit programmable registers, and two Program Status Words. At any time one set of 
programmable registers and one Program Status Word will be active and accessible. 

In addition, the Z80 has a 16-bit Program Counter, a 16-bit Stack Pointer, two 16-bit Index registers, an 8-bit 
Interrupt Vector and an 8-bit Memory Refresh register. 

Figure 7-3 illustrates the Z80 registers. Within this figure, the 8080A registers' subset is shaded. 

are sometimes treated ~ ___ ~ 
{

These two 8-, bit registers 

as a 16-bit unit ~ 

Program Status Words TsW'Il..J 
Primary Accumulators f 

t-~~-,-+-~~--t Secondary Accumulators/Data Counter 
Secondary Accumulators/Data Counter 

Secondary Accumulators/Data Counter 

Stack Pointer 
t---~:--::--~~-t. Program Counter 

Index Register X 

IV Index Register V 

IV Interrupt Vector 

R Memory Refresh Counter 

Shaded registers represent the 8080A subset.' 

Figure 7-3. zao Programmable Registers 

A' 
B' C' 
0' E' 
H' L' 

The Z80 uses its Program Status Word, its A, B, C, 0, E, H, and L registers, plus the Stack Pointer and the Pro­
gram Counter exactly as the 8080A uses these locations; therefore no additional discussion of these registers 
is needed. 

The Program Status Word, plus registers A, B, C, 0, E, Hand L are duplicated. Single zao instructions allow you to 
switch access from one register set to another. or to exchange the contents of selected registers. At any time. one or 
the other set of registers. but not both. is accessible. 

There are two 16-bit Index registers, marked IXand IV. These are more accurately looked upon as base registers. as 
will become apparent when we examine zao addressing modes. 

The Interrupt Vector register performs a function'similar to the ICW2 byte of the 8259 PICU device (described 
in the 8080A chapter). zao interrupt acknowledge logic gives you the option of initiating an interrupt service routine 
with a Call instruction. where the high order address byte for the call is provided by the Interrupt Vector register. The 
80a5 also provides this capability. 

The Memory Refresh Counter register represents a feature of microcomputer systems which has been over­
looked by everyone except Fairchild and Zilog. Dynamic memory devices will not hold their contents for very long. 
irrespective of whether power is off or on. A dynamic memory must therefore be accessed at millisecond intervals. 
Dynamic memory devices compensate for this short-coming by being very cheap - and dynamic refresh circuitry is 
very simple. Using a technique akin to direct memory access. dynamic refresh circuitry will periodically access dynamic 
memories. rewriting the contents of individual memory words on each access. About the only logic needed by dynamic 
refresh is a counter via which it keeps track of its progress through the dynamic memory: that is the purpose of the zao 
Memory Refresh Counter register. The zao also has 'a special DMA refresh control signal: therefore the zao provides 
much of the dynamic refresh logic needed by dynamic memory devices. 

7-5 



zao ADDRESSING MODES 
zao instructions use all of the aOaOA addressing modes; the ZaOalso has these two enhancements: 

1) A number of memory reference instructions use the IX and IV registers for indexed, or base relative ad-
dressing. 

2) There are some two-byte program relative Jump instructions .. 

A memory reference instruction that uses the IX or IY register will include a single data displace­
ment byte. The 8-bit value provided by the instruction object code is added to the 16-bit value 
provided by the identified Index register in order to compute the effective memory address: 

zao 
INDEXED 
ADDRESSING 

PROGRAM 
MEMORY 

, ':::,IY I 5d-- 0. Cod, } 

" "~~~ D;,~."me", 
I I 
I • 

Effective Address = ppqq + dd )II' I 
P. q and d represent any hexadecimal digits; 
dd represents an 8-bit. signed binary value. 

Memory . 

Reference 

instruction 

This is standard microcomputer indexed addressing and is less powerful than having the memory 
reference instruction provide a 16-bit base address or displacement; for a discussion of these addressing modes see 
"Volume 1 - Basic Concepts", Chapter 6. . 

The program relative. two-byte Jump instructions provided by the Z80 provide standard two-byte, program relative ad­
dressing. A single. 8-bit displacement is provided by the Jump instruction's object code: this 8-bit displacement is ad­
ded. as a signed binary value, to the contents of the Program Counter - after the Program Counter has been incre­
mented to point to the sequential instruction: 

Branch instruction op code 
Displacement 

~ 

~ 

PROGRAM Memory 
MEMORY Address 

XX 
dd 

ppqq-2 

ppqq-l 

ppqq 

ppqq + 1 
ppqq +2 

Program Counter 

The next instruction object code will be fetched from memory location ppqq+2+dd. p. q. and d represent any hex­
adecimal digits. dd represents a signed binary. 8-bit value. 

For a discussion of program relative addressing. see "Volume 1 - Basic Concepts" 

The zao addressing enhancements are of significant value when comparing the zao to the aOaOA. 

The value of the Index register comes not so much from having an additional addressing option. but rather IX and IY 
allow an efficient programmer to husband his CPU register space more effectively. Look upon IX and IY as performing 
memory addressing tasks which the 8080A would have to perform using the BC and DE registers. By freeing up the BC 
and DE. registers for data manipulation, you can significantly reduce the number of memory reference instructions ex-
ecuted by the Z80. . 

7-6 



c 
w 

~ 
II: 
o 
D.. 
II: 
o 
U 
~ 
u) 
w 

~ 
g 
CI) 
CI) 
c( 

all 
w 
Z 
II: 
o 
III 
CI) 

o 
::! 
c( 
c 
c( 

@ 

The two-byte program relative Jump instruction is useful because in most programs 80% of the Jump instructions 
branch to a memory location that is within 128 bytes of the Jump. That is the rationale for most microcomputers offer­
ing two-byte as well as three-byte Jump instructions. 

zao STATUS 
The Z80 and 8080A both use the Program Status Word in order to storo status flags. These are the Z80 status 
flags: 

Carry (C) 
Zero (Z) 
Sign (S) 
Parity/Overflow (P/O) 
Auxiliary Carry (AC) 
Subtract (N) 

Statuses are recorded in the Program Status Word by the Z80. as compared to the 8080A. as follows: 

7 6 5 '" 3 2 1 0 ~ Bit No. 

I s I z I X rei X lij N I c ~ zao Program Status Word 

7 6 5 '" 3 2 1 0 ~ Bit No. 

I s I z I X est X I p I X I c ~ a080A Program Status Word 

The Parity/Overflow and Subtract statuses differ from the 8080A. All other statuses are the same. Note that 
the Z80, like the 8080A, uses borrow philosophy for the Carry status when performing subtract operations. That is 
to say. during a subtract operation. the Carry status takes the reciprocal value of any Carry out of the high-order bit. For 
details see the 8080A Carry status descriptions given in the 8080A chapter. 

The 8080A has a Parity status but no Overflow status. The Z80 uses a single status flag for both operations. which 
makes a lot of sense. The Z80 Overflow status is absolutely standard. therefore only has meaning when signed binary 
arithmetic is being performed - at which time the Parity status has no meaning. Within the Z80. therefore. this single 
status is used by arithmetic operations to record overflow and by other operations to record parity. For a complete dis­
cussion of the Overflow status see "Volume 1 - Basic Concepts". 

The Subtract status is used by the DAA instruction for BCD operations. to differentiate between decimal addition or 
subtraction. The Subtract and Auxiliary Carry statuses cannot be used as conditions for program branching (condi­
tional Jump. Call or Return instructions). 

zao CPU PINS AND SIGNALS 
The Z80 CPU pins and signals are illustrated in Figure 7-4. Figure 7-2 providos the direct comparison between 
Z80 CPU signals and the standard 8080A, 8228, 8224 three-chip systems. 

Let us first look at the Data and Address Busses. 

Ttle 16 address lines AO - A 15 output memory and I/O device addresses. The address lines are tristate: they may 
be floated by the Z80 CPU. giving external logic control of the Address Bus. There is no difference between Z80 and 
8080A Address Bus lines. 

The Data Bus lines DO - D7 transmit bidirectional data into or out of the Z80 CPU. Like the Address Bus lines. the 
Data Bus lines are tristate. The Z80 Data Bus lines do differ from the 8080A equivalont. The 8080A Data Bus is 
multiplexed: status output on the Data Bus by the 8080A during the T2 clock period of very machine cycle is strobed 
by the SYNC pulse. The Z80 does not multiplex the Data Bus in this way. The Z80 Data Bus lines operate at normal TTL 
levels. whereas the 8080A Data Bus lines do not. 

Control signals are described next; these may be divided into system control, CPU control 
and Bus control. First we will describe the System control signals. 

M1 identifies the instruction fetch machine cycle of an instruction's execution. Its function 
is similar, but not identical to the 8080A SYNC pulse. The Z80 PIO device uses the low M1 
pulse as a reset signal if it occurs without 10RO or RD simultaneously low. 

MREO identifies any memory access operation in progress; it is a tristate control signal. 

Z80 SYSTEM 
CONTROL 
SIGNALS 

lORa identifies any I/O operation in progress. When 10RO is low. AO - A7 contain a valid I/O port address. lORa is 
also used as an interrupt acknowledge; an interrupt is acknowledged by M 1 and lORa being output low - a u ni­
que combination. since M1 is otherwise low only during an instruction fetch. which cannot address an I/O device. 

7-7 



RD is a tristate signal which indicates that the CPU wishes to read data from either memory or an I/O device. as 
identified MREO or 10RO. 

WR is a tristate control signal which indicates that the CPU wishes to write data to memory or an I/O device as in­
dicated by MREO and 10RO. Some laO I/O devices have no WR input. These devices assume a Write operation when 
10RO is low and RD is high. RD low specifies a Read operation. 

The various ways in which the three control signals. M1. 10RO. and RD. may be interpreted are summarized in Table 
7-5. which occurs in the description of the laO PIO device. 

RFSH is a control signal used to refresh dynamic memories. When RFSH is output low. the current MREO signal 
should be used to refresh dynamic memory. as addressed by the lower seven bits of the Address Bus. AO - A6. 

Next we will describe CPU control signals. 

All 
A12 

~13 

A14 

A15 

<l> 
D4 

D3 
D5 

D6 

+5V 

D2 

D7 

DO 
Dl 

INT 

NMi 
HALT 

MREQ 

iORQ 

PIN NAME 

AO - A15 

DO - D7 

Ml 

MREQ 

lORa 

RD 

WR 

RFSH 

HALT 

WAIT 

iNT 
NMI 

RESET 
BUSRQ 

BUSAK 

<l> 
+5V.GND 

-
~ 

-

--

1 40 

2 39 

3 38 

4 37 

5 36 

6 35 

--'" 7 34 

8 33 

9 32 

10 ZOO 31 

11 CPU 30 

12 29 

- 13 28 

- 14 27 

- 15 26 

- 16 25 

17 24 
18 23 

·19 22 

20 21 

DESCRIPTION 

Address Bus 

Data Bus 

Identifies instruction fetch machine cycle 

Memory request - indicates that CPU 

is performing memory access 

I/O request - indicates I/O operation 

in progress 

CPU read from memory or I/O device 

CPU write to memory or I/O device 

Refresh dynamic memories 

CPU Halt executed 

Wait state request 

Interrupt request 

Nonmaskable interrupt request 

Reset and initialize CPU 

Request for control of Address. Data 

and Control Busses 

Bus acknowledge 

CPU clock 

Power and Ground 

_ .. 

.. 

TYPE 

Al0 

A9 

A8 

A7 

A6 

AS 
A4 

A3 
A2 
Al 

AO 
GNO 

RFSH . 
.Ml 

RESET 
WSRQ 
WAIT 

WSAK 
Wii 
iID 

Trist<!te. Output 
Tristate. Bidirectional 

Output 

Tristate. Output 

Tristate. Output 

Tristate. Output 

Tristate. Output 

Output 

Output 

Input 

Input 

Input 

Input 

Input 

Output 

Input 

Figure 7-4. laO CPU Signals and Pin Assignments 

7-8 



c 
w 

~ 
a: o 
Q. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
CI) 
CI) 
c( 

ell 
w 
Z 
a: 
o 
en 
CI) 

o 
~ 
c( 
c 
c( 

@ 

HALT is output low following execution of a Halt instruction. The CPU now enters a Halt state laO CPU 
during which it continuously re-executes a NOP instruction in order to maintain memory refresh CONTROL 
activity. A Halt can only be terminated with an interrupt. SIGNALS 

WAIT is equivalent to the aOaOA READY input. External logic which cannot respond to a CPU 
access request within the allowed time interval extends the time interval by pulling the WAIT input low. In response to 
WAIT low. the Z80 enters a Wait state during which the CPU inserts an integral number of clock periods; taken 
together. these clock periods constitute a Wait state. 

INT and NMI are t"\'o interrupt request inputs. The difference between these two signals is that NMI has higher 
priority an~ cannot be disabled. 

There are two Bus control signals. 

RESET is a standard reset co!:'trol input. When the Z80 is reset. this is what happens: 

The Program Counter. IV and R re~isters' contents are all set to zero. 

Interrupt requests via INT'are disabled. 

All tristate bus signals are floated. 

lao BUS 
CONTROL 
SIGNALS 

BUSRQ and BUSAK are bus request and acknowledge signals. In order to perform any kind of DMA operation. ex­
ternal logic must acquire control of the microcomputer System Bus. This is done by inputting BUSRQ low; at the con­
clusion of the current machine cycle. the Z80 CPU will float all tristate bus lines and will acknowledge the bus request 
by outputting BUSAK low. 

zao - 8080A SIGNAL COMPATIBILITY 
If you are designing a new product around the laO CPU, then questions of lao - aOaOA signal compatibility 
are irrelevant; you will design for the CPU on hand. 

If you are replacing an aOaOA with a laO, then it would be helpful to have some type of lookup table which 
directly relates aOaOA signals to laO signals. Unfortunately, such a lookup table cannot easily be created. The 
problem is that the Z80 is an implementation' of three devices; the 8080A CPU. the 8224 Clock. and 8228 System Con­
troller; but there are very many 8080A configurations that do not include an 8228 System Controller. 

Possibly the most important conceptual difference between the Z80 and 8080A involves read and write control signals. 
The a228 System Controller develops four discrete control signals for memory read, memory write, I/O read and 
I/O write. The zao has a general read and a 'general write, coupled with an I/O select and a memory select. By 
adding iogic. it would be easy enough to generate the four discrete 8080A signals from the two Z80 signal pairs; here 
is one elementary possibility: . 

zao· aOaOA Equivalent 

Signals Signals 

MREa D MEMR 

AD 

MREQ D MEMW 

WR 

iORci D I/OR 
Ro 

IORO 0 I/OW 
WR 

7-9 



If your design allows it. however. it would be wiser to extend the Z80 philosophy to the various support devices sur­
rounding the CPU. Recall from our discussion of 8080A supportdevices in Chapter 4 that every device requires sepa­
rate device select and device access logic. For some arbitrary read operation. timing might be illustrated as follows: 

Select \ , 
Read 

Strobe 

______________________________ ~r____\~ __________________ _ 

With an 8080A scheme. select logic is decoded from Address Bus lines. while strobe logic depends on one of the four 
control lines I/OR. I/OW. MEMR or MEMW. Using the Z80 philosophy. the memory select (MREO) or 1/0 select (lORO) 
control, lines become part of the device select logic. while the read (RD) or write (WR) controls generate the strobe. 

The zao has no interrupt acknowledge signal; rather it combines IORQ with M1 as follows: 

IO:~ _______________ ~--------------

Some Z~O support devices also check fora "Return-from-Interrupt" instruction object code appearing on the Data Bus 
during an instruction fetch (when Ml and RD will both be low). This condition is used to reset interrupt priorities 
among Z80 support devices . 

.The aOaOA HOLD and HLDA signals are functionally reproduced by the zao BUSRQ and BUSAK signals. 

The 8080A SYNC pulse has no direc't Z80 equivalent. Ml is pulsed low during an instruction fetch. or an interrupt 
acknowledge. but it is not pulsed low during the initial time periods of an instruction's second or subsequent machine 
cycles. Frequently the complement of M 1 can be used instead of SYNC to drive those 8080A peripheral devices 
that require the SYNC pulse. . 

TheZaO has no signals equivalent to aOaOA INTE, WAIT or <1>2. There is also no signal equivalent to the a228 
BUSEN. 

If for any reason external logic must know when interrupts have been disabled internally by the CPU. then the Z80 will 
be at a loss to provide any signal equivalent to the 8080A control signals. Remember INTE in an 8080A system tells ex­
ternal logic when the CPU has enabled or disabled all interrupts;since external logic can do nothing about interrupts 
being disabled. and requesting an interrupt at this time does neither good nor harm. knowing that the condition exists 
is generally irrelevant. 

The single Z80 WAIT input serves the function of the 8080A READY input. Irrespective of when the WAIT is requested. 
a Wait clock period will only be inserted between T2 and T3; moreover. as we will see shortly. there are certain Z80 in­
structions which automatically insert a Wait state. without waiting for external demand. You would need relatively 
complex logic to decode instruction object codes. clock signal and the WAIT input if your Z80 system is to generate the 
equivalent of an 8080A WAIT output. In all probability. it would be simpler to find an alternative scheme that did not 
require a signal equivalent to the 8080A WAIT output. 

The Z80 simply has no second clock equivalent to 8080A <1>2. Any device that needs clock signal <1>2 cannot easily be 
used in Z80 configurations. 

The 8228 BUSEN input is used by external logic to float the System Bus. In a Z80 system. CPU logic floats the System 
Bus; therefore BUSEN becomes irrelevant. 

The aOaOA CPU has no signals equivalent 'to zao RFSH, HALT and NMI. 

RFSH applies to dynamic memory refresh only; it is irrelevant within the context of a Z80 - 8080A signal comparison. 

NMI. being a nonmaskable interrupt request. also has no 8080A equivalent logic. 

The zao HALT output needs some discussion. One of the more confusing aspects of the aOaOA is the interac­
tion of Wait, Halt and Hold states. Let us look at these three states, comparing the zao and aOaOA configura­
tions and in the process we will see the purpose of the zao HALT output. 

The purpose of the Wait state is to elongate a memory reference machine cycle in deference to slow external memory 
or I/O devices. The Wait state consists of one or more Wait clock periods inserted between T2 and T3 of a machine cy­
cle. The 8080A and the Z80 handle Wait states in exactly the same way. except for the fact that the Z80 has no Wait 
acknowledge output and under certain circumstances will automatically insert Wait clock periods. 

7-10 



Q 
w 

~ 
a: 
o a. 
a: 
o u 
~ 
en 
w 

~ 
g 
CI) 
CI) 

ct 
IllS 
w 
Z 
a: o 
m 
CI) 

o 
:!! 
ct 
Q 
ct 
@ 

The purpose of the Hold condition is to allow external logic to acquire control of the System Bus and perform Direct 
Memory Access operations. Again both the Z80 and the 8080A have very similar Hold states. The only significant 
difference is that the Z80 initiates a Hold state at the conclusion of a machine cycle. whereas the 8080A initiates the 
Hold state during time period T3 or T 4. The 8228 System Controller also needs a high BUSEN input in order to float its 
Data and Control Busses while the Z80 has no equivalent need. 

The big difference between the Z80 and the 8080A comes within the Halt state. When the 8080A executes a Halt in­
struction. it goes into a Halt state. whi,ch differs from a Hold state. There are some complex interactions between Hold. 
Halt. Wait and interrupts within 8080A systems. None of these complications exists in the Z80 system. since the Z80 
has no Halt state. Afte~ executing a Halt instruction. the Z80 o~tputs HALT low. then proceeds to continuously execute 
a NOP instruction. This allows dynamic memory refresh logic to continue operating. If you are replacing an aOaOA 
with a zao, you must give careful attention to the Halt state. This is one condition where unexpected incom­
patibilities can arise. 

zao TIMING AND INSTRUCTION EXECUTION 

zao timing is conceptually similar to, but far simpler than aOaOA timing. Like the aOaOA, the zao divides its in­
structions into machine cycles and clock periods. However. al1280 machine cycles consist of either three or four 
clock periods. Some instructions always insert Wait clock periods. in which case five or six clock periods may be pre­
sent ir"a machine cycle. Recall that 8080A machine cycles may,have three.,four or five clock periods. 

The 808bA may require from one to five machine cycles in order to execute an instruction: Z80 instructions execute in 
one to six machine cycles. If we shade optional machine cycles and clock periods. Z80 and 8080A instruction time sub­
divisions may be compared and illustrated as follows: 

ackn~lfIledge 

only 
During input 

or output 

machine cycle' 
only 

7-11 

} 8080A 



zao clock signals are also far simpler than the aOaOA equivalent. Where the 8080A uses two clock signals the Z80 
uses o'ne. Clock logic may be compared as follows: 

Tl T2 T3 T5 

} OOOOA 

Z80 

INSTRUCTION FETCH EXECUTION SEQUENCES 
As ~om'pared to the aoaOA, zao instructiol'! timing is '1larvelously simple. Gone is the SyNC pulse a~d the decod­
ing cif Data Bus for status. Every instruction's timing' degenerat~s' into an instruction fetch, optionally followed by 
memory orl/O read orwrite. Add to this a few variations for Wait sta'te, interrupt acknowledge and bus floating and you 
are.done.' .. \, ,,' . . . 

, . -' . 

Let us begin by looking at an instruction fetch. Timing is illustrated in Figure 7-5. Look at the instruction fetch timing 
in the 8080A chapter to obtain an immediate comparison 9fthe Z80 and the 8080A. 

~I--------- MCl Cycle ----'----~ .... ~ 

T, T, 

AD - A15 

MREQ 

RD 

MI 

DBO - DB7 

RFSH 

Figure 7-5. Z80 Instruction Fetch Sequence 
. , " 

Referring to Figure 7-5; note that the instruction fetch cycle is identified by M1 output low during T1 and T2 (CD). 
Since there is no status on the Data Bus to worry about. the Program Counter contents are output immediately on the 
Address Bus and stay stable for the duration Qf T 1 and T2. ' 

Since an instruction fetch is also a memory operation, MREO and RD controls are both output low. This occurs half-way 
through T 1, at wh'ich time the Address Bus will stabilize. The falling edges of MREO i3nd RD can therefore be used to 
select a memory device and strobe data out. The CPU polls data on the Data Bus at the rising edge of the T3 clock ((Z)). 

7-12 



c 
w 
!;( 
a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 
!;( 
g 
CI) 
CI) 
c( 

coli 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
c( 
c 
c( 

@ 

Clock perods T3 and T 4 of the instruction fetch machine cycle are used by the Z80 CPU for internal operations. 
These clock 'periods are also used to refresh dynamic memory. As soon as the Program Counter contents are taken off 
the Address Bus (@l. the refresh address from the Refresh register is output on lines AO - A6 of the Address Bus. This 
address stays on the Address Bus until the conclusion of T 4 (@). 

Since a memory refresh is a memory access operation. MREQ is again output low; however. it is accompanied by RFSH 
rather than RD low. Thus memory reference logic does not attempt to read data during a refresh cycle. 

A MEMORY READ OPERATION 
, , . 

Memory intenaqe logic respon~s to an instruction fetch and a memory read in exactly the same way. There are, 
however, a few differeces between memory read and instruc~ion fetch timing. Memory read timing is illustrated 
in Figure 7-~. The principal difference to note is that durin'g a memory read operation. the data is sampled on ,the falling 
edge of the T3 clock pulse. wherea~ during an instruction fetch it is sampled on the rising edge of this clock pulse. Also 
a normal memory read macbine cycle will consist of three clock periods. while the normal instruction fetch consists of 
four «lock pe·rio·ds. R~mel"f1ber, al$9 t~at the Z80 identifies'i,lninstruction fetch machine cycle by outputting M 1 low dur­
ing the firsttyvo clock periods of the instruction fetch machine cycle. 

AO- A1S 

MREO 

RD 

WR 

DATA BUS 

(DO - D7! 

.... r.--- Memory Read Cycle ----t~ 

AO - A1S 

MREO 

RD 

DATA BUS -+------i------+--{ 
(DO -- p71 

Figure 7-6. Z80 Memory Read Timing 

Memory Write Cycle 

Tl T2 T3 

n' \ \ 

.}OIIIII" MEMORY AD DR 
., 

\ 1 

\ J 

OATA OUT 

I 
Figu're 7-7. Z80 Memory Write Timing 

MEMORY WRITE OPE~ATION 

--" 

,~ 
~ 

Co"'. " 

I 

Figure 7-7 iIIu!)trates memory write' timing for the zao. Th~ only differences between memory read <:Ind memory 
write timing are the obvious ones:' yvR is pulsed low for a write. and can be used as a strobe by memory interface 
logic to read'd9ta off the Data Bu~, ' . . , 

7-13 



THE WAIT-STATE 
Like the 808QA. the Z$O,JlIIQws a Wait state to occur betyieen clock periods T2 and 1"3 of a machine cycle. The 
Wait state frees external lo~!c or memory from having to,operate at CPU speed. 

The Z80 CPU samples th~ WAIT input on the falling edge of $ during T2. Providing WAIT is Iowan the falling edge of 
$ during~ait clock periods will be inserted. The number of Wait clock periods inserted depends strictly on how 
long the WAlT inP4t is held low. As soon as the Z80 detects WAIT high on the falling edge of $. it will ir"!itiate T3 on 
the next rising edge of $. < ' • •• -

Note thft~ the Single'~ap "V~IT signal replaces the READY and WAIT aOaOA signals. As this would imply. no sig­
nal is output telling ext~rnallogic the Z80has entered the Wait state, In the event that external logic needs to know 
whet"'~r or n~t a Y'aJt'state Ilas been entered, these a~e the rules:' - - . 

1) The Z80 will samp'le ,yv~IT 01') the f~lIin~' edge of $ in T2. ' 

2) ff WAllis low. then ,~he ~8R will continue to sample the yvAIT inP!Jt for all subsequent ,Wait state clock periods. 

3) The Z80 will not sample the WAIT input during any clock period other than 'T2 or a Wait state. 
. . , I . I , , • ~ •• , 

Figure 7-8 illustrates Z80vyai~ st~'te timing. 

AO - A15 

~REa 

RD 

~AIT 

Figure 7-8. Z80W~it State Ti,rnin9, 

INPUT OR OUTPUT GENERATIQN 
Timing for zao input and output gener~tion is given in Figures 7·9 and 7·10. 

. .' . .' ' ~ ., 

The important point to note is that Zilog has acknowledged the infrequency with which typical I/O logic can operate at 
CPU speed. One Wait clock period is therefore automatically Inserted between T2imd T3 for all inm~t or output 
machine cycles. Otherwise timing differs from men:qry read and write operations only in that 10RO is' output low 
rather than MREO. . : 

Note that there is absolutely nothing to prevent you from'selecting I/O devices within the memory space. This is some­
thing we did con'sistently in the 8080A chapter when describing 8080A support devices. But if you adopt this design 
policy. remelTlber that your I/O logic must execute at CPU speed. unless you rns~rt Waitstates. 

7-14 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 

~ 
u) 
w 

~ 
C3 o 
en 
en 
< 
a1J 
w 
Z 
a: 
o 
ell 
en o 
~ 
< c 
< 
@ 

<Il 

AD -A7 

lORa 

RD 

DATA BUS 

WAIT 

WR 

DATA BUS 

AD -A7 

lORa 

DATA BUS 

RD 

WAIT 

DATA BUS 

WR 

BUS REQUESTS 

Forced 

Wait 

State 

~ 

T1 T2 Tw' T3 

-rL-- -

OUT 

Figure 7-9. zao Input or Output Cycles 

Forced 

Wait 

State 

~ 

T1 T2 T • w Tw 

ou:r 

T3 

T1 

} Re.d 
Cycle 

} 

Write 

Cycle 

} 

READ 

_-+---' CYCLE 

} 

WRITE 

--+--- CYCLE 

Figure 7-10. zao Input or Output Cycles with Wait States 

The zao does not have a Hold state as described for the aOaOA. but zao bus request logic is equivalent. The zao will 
float Address, Data and tristate Control Bus lines upon sensing a low BUSRQ signal. BUSRO is sampled by the 

. zao CPU on the rising edge of the last clock pulse of any machine cycle. If BUSRO is sampled low. then tristate lines are 
floated by the CPU. which also outputs BUSAK low. The zao CPU continues to sample BUSRO on the rising edge of ev­
ery clock pulse. As soon as BUSRO is sensed high. floating will cease on the next clock pulse. This timing is illustrated 
in Figure 7-11. 

7-15 



One significant difference between the zao and aOaOA results from differences between the Hold and bus 
floating states. As the logic we have described for the laO would imply. it will only float the System Bus in between 
machine cycles. The 8080A. on the other hand. will enter a Hold state variably during T3 or T 4 of the machine cycle. 
depending on the type of operation in progress. It is therefore possible for the l80 to float its bus three clock periods 
later than an 8080A in a similar configuration. 

------ Any M Cycle --_.-+-... -- Bus Available States 

Last T State 

BUSRQ 

BUSAK 

AO - A15 

DO -07 
--+-------~-------+------~ 

~~ --+--------r-------+-------4~ 
WR IORQ 

RFSH 

Figure 7-11. l80 Bus Timing 

Floating 

Last M Cycle .. It .. 4 Interrupt Acknowledge __ ~ ___ _ 
of Instruction .... ~ ..... f-------

I Forced Wait State 

J 
Last T State 

iNT-

AO-A15 __ +-______ ~------~~---~--PC~--+_---~---~~~----
Mi --+--------+------;n 

~---+------~---~--~~~ 

MREQ 

IORQ 

DATA BUS 

WAiT -

AD 

Figure 7-12. l80 Response to a Maskable Interrupt Request 

Note also that if you are using the dynamic memory refresh logic of the zao, then during long bus floats, external 
logic must refresh dynamic memo·ry. The simplest way around this problem in a l80 system is to ensure that DMA 
operations acquire the System Bus for many short periods of time. rather than for a single long access. 

EXTERN~LINTERRUPTS 

The zao h~s two interrupt request input signals, one of which cannot be disabled. 

Timing for the I~wer priority interrupt request acknowledge sequence differs significantly from the single 
aOaOA interrupt i'~ques~, and is illustrated in Figure 7-12. 

The interrupt requ~st signallNT is sampled by the l80 CPU on the rising edge of the last clock pulse Of any instruc-
tion's execution. . . 

7-16 



c 
UJ 

~ 
a: 
o 
0. 
a: 
o 
u 
~ 
en 
UJ 

~ 
g 
en 
en 
ct 
ell 
UJ 
Z 
a: 
o 
III 
en o 
::E 
ct 
c 
ct 
@ 

An interrupt request will be denied if interrupts have been disabled under program control. or if the BUSRO signal is 
also low. Thus a DMA access will have priority over maskable interrupts. 

The Z80 CPU acknowledges an interrupt request by outputting MT and IORO low. This occurs in a special interrupt 
acknowledge machine cycle. as illustrated in Figure 7-12. Note that this machine cycle has two Wait states inserted so 
that external logic will have time for any type of daisy chained priority interrupt scheme to be implemented. 

When IORQ is output low while iVff is low, external logic must interpret this signal combination as requiring an 
interrupt vector to be placed on the Data Bus by the acknowledged external interrupt requesting source. This 
interrupt vector can take one of three forms; the form depends on which of the three modes you have selected for 
the Z80 under program control. 

In Mode 0, the interrupt vector will be interpreted as a single-byte object code. representing the first instruction to be 
executed following the interrupt acknowledge. This is equivalent to the standard RST instruction response used by 
the 8080A. Whenever you are replacing an 8080A with a Z80. therefore. the Z80 must operate in interrupt response 
Mode O. 

Z80 interrupt response logic in Mode 1 automatically assumes that the first instruction executed following the in­
terrupt response will be a Restart, branching to memory location 003816' If the Z80 is in Mode 1. no interrupt vec­
tor is needed. 

Z80 Mode 2 interrupt response has no 8080A equivalent. When you operate the Z80 in Mode 2, you must create a 
table of 16-bit interrupt address vectors, which can reside anywhere in addressable memory. These 16-bit ad­
dresses identify the first executable instruction of interrupt service routines. When an interrupt is acknowledged by the 
CPU in Mode 2. the acknowledged external logic must' place an interrupt response vector on the Data Bus. The 
Z80 CPU will combine the IV register contents with the interrupt acknowledge vector to form a 16-bit address, 
which accesses the interrupt address vector table. Since 16-bit addresses must lie at even memory address bound­
aries. only seven of the eight bits provided by the acknowledged external logic will be used to create the table address; 
the low order bit will be set to O. Thus the table of 16-bit interrupt address vectors will be accessed as follows: 

Interrupt response 

IV Register vector from external logic 

111111111 

T 
16-bit address points to first 

of two bytes in Interrupt Address Vector 

INTERRUPT 

ADDRESS 

VECTORS 

JJ 
JJ 

·KK· 
KK 
LL 
LL 

MM 
MM 
NN 
NN 

The Z80 CPU will execute a Call to the memory location obtained from the interrupt address vector table. 

Let us clarify this logic with a simple example. Suppose that you have 64 possible external interrupts; each interrupt 
has its own interrupt service routine. therefore 64 starting addresses will be stored in 128 bytes of memory. Let us ar­
bitrarily assume that these 128 bytes are stored in a table with memory addresses OF0016 through OF7F16· Now in 

7-17 



order to use Mode 2. you must initially load the valueOF16 into the Z80 IV register. Subsequently an external interrupt 
request is acknowledged and the acknowledged external logic returns on the Data Bus the vector 2E 16; this is what 
will happen: 

Memorv 

IV Register MEMORY Address 

Interrupt response 

from external logic JJ 
JJ 
KK 
KK 
LL 
LL 
80 
20 
NN 
NN 
pp 
pp 

OF28 

OF29 

OF2A 

OF2B 

OF2C 

OF2D 

Program 

Counter 

~
I 207F 

Push previous 

contents onto 

Stack 2080'6 to Program Counter. 
First post-interrupt instruction 

object code fetched 

from here 

2080 
2081 

2082 

2083 

If two Wait states are insufficient for external logic to arbitrate interrupt priorities and place 
the required vector on the Data Bus. then additional Wait states can be inserted in the usual 
way by inputting WAIT low. Timing is illustrated in Figure 7-13. 

zao WAIT 
STATES 
DURING 
INTERRUPT 

, ACKI\JOWLEDGE 

1 • 
!-o; ...... ---------- Interrupt Acknowledge __________ ... ~: 

! Forced Wait State i 
1 1 
1 .1 

AO -- A1S 

MI 

WAIT 

lORa 

DATA BUS 

MREQ 

RD 

Figure 7-13. Wait States During Z80 Response to a Maskable Interrupt Request 

7-18 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(J 

~ 
en 
w 

~ g 
C/) 
C/) 

oCt 
all 
w 
Z 
a: 
o 
In 
C/) 

o 
~ 
oCt 
C 
oCt 

@ 

The nonmaskable interrupt differs from the maskable interrupt in two significant ways. 

First of all the nonmaskable interrupt has priority over both the maskable interrupt and bus re­
quests. 

Next. the nonmaskable interrupt operates in Mode 1 only. Following the interrupt acknowledge, an RST instruction will 
always be executed. with a Call to memory location 006616. No other RST instruction can be executed and no interrupt 
vector should be placed on the Data Bus; if a vector is placed on the Data Bus. it will be ignored. 

Nonmaskable interrupt timing is illustrated in Figure 7 -14. 

-- last M Cycle - .... +-_--- Interrupt Acknowledge -----:t~ 

(I> 

AO - A15 

MREQ 

RD 

RFSH 

Figure 7-14. Z80 Response to a Nonmaskable Interrupt Request 

THE HALT INSTRUCTION 
When a Halt instruction is executed by the Z80 CPU. a sequence of NOP instructions is executed until an interrupt re­
quest is received. Both maskable and nonmaskable interrupt request lines are sampled on the rising edge of <I> during 
T 4 of every NOP instruction's machine cycle. 

The Halt state will terminate when any interrupt request is detected. at which time the appropriate interrupt 
acknowledge sequence will be initiated. as illustrated in Figures 7-13 and 7-14. 

Note that the Z80 executes the sequence of NOP instructions during a Halt so that it can continue to generate dynamic 
memory refresh signals. 

Halt instruction timing is illustrated in Figure 7-15. 

HALT 

iNT or 

NMi 

--M1 ~~~~--------M1 

HALT INSTRUCTION 

IS RECEIVED 

DURING THIS 

MEMORY CYCLE 

---------~~~--- M1 

Figure 7-15. Z80 Halt Instruction Timing 

7-19 



The following abbreviations are used in this chapter: 

A.F.B.C.D.E.H.L 

AF'.BC'.DE'.HL· 

addr 

x(b) 

cond 

data 

data16 

disp 

xx(HI) 

IV 

IX.IY 

xy 

LSB 

label 

xx(LO) 

MSB 

PC 

port 

pr 

R 

reg 

rp 

SP 

The 8-bit registers. A is the Accumulator and F is the Program' Status Word. 

The alternative register pairs 

A 16-bit memory address 

Bit b of 8-bit register or memory location x 

Condition for program branching. Conditions are: 
NZ - Non-Zero (Z=O) 
Z - Zero (Z=1) 
NC - Non-carry (C=O) 
C - Carry (C=1) 
PO - Parity Odd (P=O) 
PE - Parity Even (P=1) 
P - Sign Positive (S=O) 
M - Sign Negative (S=1) 

An 8-bit binary data unit 

A 16-bit binary data unit 

An 8-bit signed binary address displacement 

The high-order 8 bits of a 16-bit quantity xx 

Interrupt vector register (8 bits) 

The Index registers (16 bits each) 

Either one of the Index registers (IX or IY) 

Least Significant Bit (Bit of . 
A 16-bit instruction memory address 

The low-order 8 bits of a 16-bit quantity xx 

Most Significant Bit (Bit 7) 

Program Counter 

An 8-bit I/O port address 

Any of the following register pairs: 
BC 
DE 
HL 
AF 

The Refresh register (8 bits) 

Any of the following registers: 
A 
B 
C 
D 
E 
H 
L 

Any of the following register pairs: 
BC 
DE 
HL 
SP 

Stack Pointer (16 bits) 

7-20 



o 
w 

~ 
a: 
o 
D.. 
a: 
o 
(J 

~ 
ui 
w 

~ 
C3 o 
CJ) 
CJ) 

ct 
o1S 
w 
Z 
a: 
o 
a:I 
CJ) 

o 
~ 
ct 
o 
ct 

@ 

Statuses 

[ ] 

[[]] 

A 
v 

The Z80 has the following status flags: 
C Carry status 
Z Zero status 
S Sign status 
P/O Parity/Overflow status 
AC Auxiliary Carry status 
N Subtract status 

The following symbols are used in the status columns: 
X 
(blank) 
1 
o 
? 
P 
o 
I 

flag is affected by operation 
flag is not affected by operation 
flag is set by operation 
flag is reset by operation 
flag is unknown after operation 
flag shows parity status 
flag shows overflow status 
flag shows interrupt enabled/disabled status 

Contents of location enclosed within brackets. If a register designation is enclosed within the 
brackets, then the designated register's contents are specified. If an I/O port number is enclosed 
within the brackets, then the I/O port contents are specified. If a memory address is enclosed within 
the brackets, then the contents of the addressed memory location are specified. 

Implied memory addressing: the contents of the memory location designated by the contents of a 
register. 

Logical AND 

Logical OR 

Logical Exclusive-OR 

Data is transferred in the direction of the arrow· 

Data is exchanged between the two locations designated on· either side of the arrow. 

The fixed part of an assembly language instruction is shown in UPPER CASE. 

The variable part (immediate data, I/O device number, register name, label or address) is shown in lower case. 

7-21 



~ 

-Address Bus: AO-A7: [C) 
A8-AI5: [B) 

TYPE MNEMONIC 

IN 

IN 

INIR 

INDR 

g _. 

INI 

INO 

OUT 

OUT 

OTiR 

OPERAND IS) BYTES 
C 

A.port 2 

reg.IC) 2 

2 

2 

2 

2 

portA ,- 2 

IC).reg 2 

2 

'. 

Table 7-2. A Summary of the Z80 Instruction Set 

STATUS 
OPERA TION PERFORMED 

Z S P/O AC N 

[A]-[port] 

Input to Accumulator from directly addressed I/O port. 

Address Bus: AO-A7: port 
A8-AI5: [A] 

X X P X 0 [reg]-[(C)) 

Input to register from I/O port addressed by the contents of C.-

If second byte is 7016 only the flags. will be affected. 

1 ? ? ? 1 Repeat until [B]~: 
[[HLll-[[C)) 
[B]-[B]-1 

[HLl-[HLl+ 1 

Trensfer a block of data fr~m I/O port addressed by contents of C to memory location ad-
dressed by contents of HL. going from low addresses to high. Contents of B serve as a count of 
bytes remaining to be transferred.-

1 ? ? ? 1 Repeat until [B]-o: 
[[HL))-[[Cll 
[B]-[B]-1 

[HL]-[HL] - 1 

Transfer a block of data from I/O port addressed by contents of C to memory location ad-

dressed by contents of HL. going from high addresses to low. Contents of B serve as a count of 
bytes remaining to be transferred.· 

X 7 7 7 1 [[HL))-[[C)) 

[B]-[B]-1 

[HL]-[HL] + 1 

Transfer II byte of datil from I/O port IIddrllsslld by contents of C to mllmory loclltion addressed 
by contents of HL. Decrement bytll count and increment destination IIddress.· 

X 7 7 ? 1 [[HLll-[[C]) 
[B]-[B]-1 
[HL]-[HLl-l 

Transfer a byte of data from I/O port addressed by contents of C to memory location addressed 
by contents of HL Decrement both byte count lind destination address.· 

[port]-[A] 

Output from Accumulator to directly addressed I/O port. 

Address Bus: AO-A7: port 

A8-AI5: [A] 
[[C))-[reg] 

Output from register to I/O port addressed by the contents of C.-

1 7 7 7 1 Repeat until [B] =(); 

[(C))-[[HL)) 

[B]-[B]-1 
[H-Ll-[HL]+ 1 

Transfer a block of data from memory location addressed by contents of HL to I/O port.ad-
dressed by contents of C, going from low memory to high. Contents of B serve as a count of 

bytes remaining to be transferred.-



·Address 8us: AO-A7: [C) 
AB-A15: [8] 

TYPE MNEMONIC 

OTDR 

'ii 
II 
:> 

~ 0UJ1 c 
0 
g 

g 

OUTO 

LD 

LD 

LD 

w 
0 LD z 
w 
a: 
w LD IL 
w 
a: 
> LD a: 
0 
::E 
w 
::E LD 
> a: 

"" ::E LD 
ii: 
a. 

LD 

LD 

. LD 

LD 

OPERANDISI 

A.laddrl 

HL.laddrl 

rp.laddrl 
xy.laddrl 

laddrl.A 

laddrl.HL 

laddrl.rp 

laddrl.xy 

A.IBCI 
A.IOEI 

reg.IHLI 

(BCI.A 
(DEI.A 

(HLI.reg 

reg.(xy + dis pI 

(xy + displ.reg 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 7-2. A Summary of the Z80 Instruction Set (Continued) 

STATUS 
BYTES OPERATION PERFORMED 

C Z S PIO AC N 

2 1 7 7 7 1 Repeat until [8]=0: 
[[C))-[[HL)) 

[8]-[8]-1 

[HLl-[HLl- 1 
Transfer a block of data from memory location addressed by contents of HL to I/O port ad-
dressed by contents of C. going from high memory to low. Contents of 8 serve as a count of 

bytes remaining to be transferred.· 

2 X 7 7 7 1 [[C))-[[HL)) 
[8]-[8]-1 

[HL]-[HLl + 1 

Transfer a byte of data from memory location addressed by contents of HL to I/O port ad-

dressed by contents of C. Decrement byte count and increment so.uree address.· 

2 X 7 7 7 1 [[C))-[[HL)) 

[8]-[8]-1 

[HLl-[HL] - 1 

Transfer a byte of data from memory location addressed by contents of HL to I/O port ad-
dressed by contents of C. Decrement bOth byte count and source address.· 

3 [A]-[addr] 

Load Accumulator from directly addressed memory location. 

3 [H]-[addr+ 11. [Ll-[addr] 

Load HL·from directly addressed memory. 

4 [rp(HIl]-[addr+ 11. [rp(LO))-[addr] or 
[xy(HIl]-[addr+ 11. [xylLO))-[addr] 

Load register pair or Index register from. directly addressed memory. 

3 [addr]-[A] 

Store Accumulator contents in directly addressed memory location. 

3 [addr+ 1J-[Hl [addr]-[Ll 

Store contents of HL to directly addressed memory location. 

4 [addr+ 1J-[rp(HIlJ. [addrJ-[rp(LO)) or 
[addr+ 1J-[xy(HIlJ. [addr]-[xylLO)) 

;'Store contents of register pair or Index register to directly addressed memory. 

1 [A]-[[8C)) or [A]-[[DE)) 

Load Accumulator from memory location addressed by the contents of the specified register pair. 

.1 [reg] ..... [[ HL)) 

Load register from memory location addressed by COntents of HL. 

1 [[BC))-[A] or [[DEJ]-[A] 

Store Accumulator to memory location addreaaed by the contents of the specified register pair. 

1 [[HL))-[reg] 

Store register contents to memory location eddreaaed by the contents of HL 

3. [reg]-[[xy] +disp] 

Load regiSter from memory location using base relative addreaaing. 

3 [[xy] + disp]-[ reg] 
Store register to memory location addressed relative to contents of Index register. 



Table 7-2. A Summary of theZ80 Instruction Set (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(Sl BYTES OPERATION PERFORMED 

C Z S PIO AC N 

LDIR 2 0 0 0 ' Repeat until [BC]-C>: 
[[DEll"';"[[H'Lll 

[DE]-[DE]+ 1 

[HL}-[HLl + 1 

[BC]-[BC]-l 

Transfer a block of data from the memory location addressed by the contents of HL to the 

memory location addressed by the contents of DE. going from low addresses to high. Contents 

of BC serve as a count of bytes to be transferred. 

LDDR 2 0 0 .0 Repeat until [BC)=O: 
[[DEll-[[HLl], 

[OE]-[DE]- 1 

'[HLl-[HLl- 1 

[BC]-[BC]- 1 

Transfer' a block of data from the memory .location addressed by the contents of HL to the 

~;-'-''ITlemory location addressed by the contents of DE. going from high addresses to low. Contents 
:r of BC serve as a count of bytes to be transferred. u a: 
04: LDI 2 X 0 0 [[ DEll- [[ HLll 
w 
!II [OEl-[DE]+l 
c [HLl-[HLl+ 1 Z 
04: -[BC]-[BC]- 1 
a: 
w -Transfer one byt~ of data from the memory-location addressed by the-contents of HL to the 
IL. 
!II memory location addressed by the contents 'of DE. Increment 'source and destination addresses 
Z 

.04: --and decrement byte count. 
a: ... LOD 2 X 0 0 [[ DEll-[[ HLl] 
~ [OE]-[DE]- 1 u 
0 [HLl-[HL]- 1 ...J 
III '[BC]-[BC]- 1 

Transfer one byte of data from'the memory location addressed by the contents of HL to the 

memory location addressed by the contents of DE. Decrement source and destination addresses 

and byte count, 

CPIR 2 X X X X 1 Repeat until [A]=[[HLll or [BC]=O: 

[A]- [[HLl] (only flags are affectedl 

[HLl-[HLl+ 1 

[BC]-[BC]- 1 

Compare c<.>ntents- of Accumulator with those of memory block addressed by contents of HL. 
going from low addresses to high. Stop when a match is found or when the byte count becomes 

zero. 

CPOR 2 X X X X 1 Repeat until [Al=[[HL]] or [BC]=O: 

[A]- [[ HLll (only flags are affectedl 
[HL]-[HL]- 1 

"[BC]-[BC]- 1 
Compare contents of Accumulator with those of memory block addressed by contents of HL. 

going from high addresses to low. Stop when a match is found or when the byte count becomes 

zero. 



TYPE. . MNEMONIC 

o 
z­
c(j 
a: :I w.s 
I&. .. o c 
z8 
c( -. 
a:% 
~u 
~a: 
uC( 
OW 
..... 0 
III 

w 
U 
Z 
w 
a: 
w 
I&. 
w 
a: 
> a: 
o 
~ 
w 
~ 
> a: 
c( 
o 
Z o 
U 
w 
o 

CPI 

CPO 

ADD 

ADC 

SUB 

SBC 

AND 

OR 

XOR 

CP 

INC 

DEC 

OPERAND(S) 

. (HL) 

(xy+disp) 

(HL) 

(xy +disp) 

(HLl 

(XV + disp) 

(HP 
(xy+disp) 

(HLl 

(xy+ disp) 
(HL) 

(xy+disp) 

(HLl 

(xy+ disp) 

(HLl 
(xy+disp) 

(HLl 

(xy+disp) 

(HLl 

(xy+disp) 

. © ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 7-2. A Summary of the zao Instruction Set (Continued) 

STATUS 

BYTES ~---r--~--~~--~--~--~ 

1 

3 
1 

3 
1 

3 
1 

3 
1 

3 
1 

3 
1 

3 
1 

3 

1 

3 
1 
3 

C 

x 

x 

x 

o 

o 

o 

x 

z S PIO AC N 

x x x x 

x x x x 

x X 0 X o 

o 

X X O. X 

X X 0 X 

X X p. 1 o 

x· X P 1 o 

X X P 1 o 

X X 0 X 

X X o X o 

X X o X. 

OPERATION PERFORMED 

I A] - [[ HL]].(only flags are affected) 

[HLl-[HL] + 1 
[BC]-[BC]- 1 

Compare contents of Accumulator with those of memory location addressed by contents of .HL. 

Increment address and decrement byte count. 

[Af- [[HL)) (only flags are affected) 

[HLl-[HL] - 1 
[BC]-[BC] - 1 

Compare contents .of Accumulator with thOse of memory locatiOO addressed by contents of HL 

Decrement address and byte count. 

[A]-[A]+[[HL)) or [A]-[A]+ [[xy]+disp] 

Add to Accumulator using implied addressing or base relative addressing. 

[A]-:-[A]+ [[HL))+Cor-[Ah-[A]+ [[xy]+disp]+C 

Add with Carry using implied addressing or base relative addressing. 
[A]-[A]- [[HL)) or [A]-[A] - [[xy]+disp] 

Subtract from Accumulator using implied addressing or base relative addressing. 

[A]-[A] - [[HLl- C or [A]-[A]- [[XV] +disp] - C 

Subtract with Carry using implied addressing or base relative addressing. 

CA]-[A] A [[HL)) or [A]-[A] A [[xy]+disp] 
AND with Accumulator using implied addressing or base relative addressing 

[A]-[A]V [[HLl] or [A]-[A]V [[xy]+disp] 

OR with Accumulator using implied addressing or base relative addressing. 
[A]-[ A].y. [[ HL)) or [A]-[ A]¥- [[ xy] + disp] 

Exclusive-OR with Accumulator using implied addressing or base relative addressing. 

[A] - [[HL)) or [A] - [[XV] + disp] 
Compare with Accumulator using implied eddressing or base relative addressing. Only the flags 

are affected. 
[[HL))-[[HL)) + 1 or [[XV] + disp]-[[xy] +disp] + 1 

Increment using implied addressing or base relative addressing. 

[[HL))-[[HL))-l or '[[xy]+disp]-[[xy]+disp-]-l 

Decrement using implied addressing or base relative addressing. 



Table 7-2. A Summary of the zao Instruction Set (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED:: 

C Z S P/O AC N 

~7 of:;] RLC (HL) 2 x X x P 0 0 CI 
(xy+disp) 4 [[HL)) or [[xy]+disp] 

Rotate contents of. memory location (implied or base relative addressing) left with branch Carry. 

~7 Ot;] RL (HLl 2 X X X P 0 0 CI 
(xy+disp) 4 [[HL)) or [[XV] + disp] 

Rotata contants of memory location left through Carry. 

III l;47 O~ S RRC (HL) 2 X X X P 0 0 .. 
0 (xy+ disp) 4 [[HL)) or [(xyl+disp] 
II: 
C Rotate contents of memory location right with brench Carry. 
Z 

~7 o~ 
or( 

t: RR . (HL) 2 X X X P 0 0 !: 
% (xy+disp) 4 . [[ HL)) or [( XV] + disp] en 
>- Rotate contents o(memory Icx:ation right through Carry. 
II: 
0 
:::E 

(HL) 2 X X X P 0 [§}-1----17 .. o t.-o III SLA 0 
:::E (xy+ disp) 4 [[ HL)) or [[ xy] + disp] 

Shift contents of memory location left and clear LSB (Arithmetic Shiftl. 

SM (HL) , 2 X X X P 0 0 ~ "·O~ 
(xy+disp) 4 

[[HL)) or ([xy] +disp] 

Shift contents of memory location right and preserve MSB (Arithmetic Shift). 

SRL (HLl 2 X X X .P, 0 0 O~7 .. O~ 
(xy+ disp) 4, [[ HL)) or ([ xy] + disp] 

Shift conte~ts of memory location right and clear MSB (Logical Shift). 

III LO reg, data 2 [ reg]-- data 

I- Load immediate into'Tegister, 
or( 

. [rp]--dat~16 'or [xy]--data16 0 LO rp,data16 3 
III 

XY,data16 4 Load 16 bits of immediate data into register pair or Index register. 
:::E 
~ Lb (HL),data 2 [[HL))--data or [[XV] +.disp]--data 

(xy + disp),data: 4 , Load immediate into memory location using implied or base relative addressing. 



-....I 
I 

N 
-....I 

TYPE 

D. 
::! 
:::I .., 

. ...J 
...J 

'" Z u a: 
w :::I 
Z ... 
i= ·W 

:::I a: 
0 0 
a: Z 
III '" :::I 
II) 

w ... 
'" a: 
w 
Do 
0 
w ... 
'" Q 
1&1 

::! 
~ 

MNEMONIC OPERAND(S) 

JP label 

JR· disp . 

JP (HL) 

Ixy) 

,. 
CALL label 

CALL cond.label 

RET 

RET cond 

ADD data 

ADC data 

SUB data 

SBC data 

AND data 

OR data 

XOR data 

CP data 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 7-2. A Summary of the zao Instruction Set (Continued) 

STATUS 
BYTES OPERATION PERFORMED 

C Z S P/O Ac N 

3 [PC]-Iabel 

Jump to instruction at address represented 'by label. 

2 [PC]-[ PC] + 2 + disp 

,. Jump relative to present contents of Progrem Counter • 

1 [PC]-[HL] or [PC]-[xy] 

2 Jump to address contained in HL or Index register. 
,. 

3 . [(SP]-l]-[PC(HII] 
[[SP]-2]-[ PC(lO)] 
[SP]-[SP]-2 
[PC]-Iabel 

Jump to subroutine starting at address represented by labei. 

3 Jump to subroutine if condition is satisfied; otherwise. continue in sequence. 

1 [PC(LOI1-[[SP)) 
[PC(Hil1-[[sp]+ 1] 

[SP]-[SP] + 2 

Retum from subroutine. 

1 Return from subroutine if condition is satisfied; otherwise. continue in sequence. 

2 X X X 0 X 0 [A]-[A] + data 

Add immediate to Accumulator. 

2 X X X 0 X 0 [A]-[A]+data+C 

Add immediate with Carry. 

2 X X X 0 X 1 [A]-[A]-data 

Subtrect immediate from Accumulator. 

2 X X X 0 X 1 [A]-[A] - data -.C 
Subtract immediate with Cany. 

2· 0 X X P 1 0 [A]-[A] A data 

AND immediate with Accumulaior. 

2 0 X X P 1 0 [A]-[A] V data 

OR immediate with Accumulator. 

2 0 X X P 1 0 [A]-[A]¥data 

Exclusive-OR immediate with Accumulator. 

2 X X X 0 X 1 [A] - data 
Compare immediate data with Accumulator contents; only the flags are affected. 



~ 
N 
OJ 

TYPE 

Z 
0 
i= e 
Z 
0 
U 
Z 
0 
IL 
~ 
:) -, 

w 
> 
0 
~ 
c:: 
w 
I-
I/) 

a 
w 
c:: 
ci: 
w 
I-
I/) 

a 
w 
c:: 

MNEMONIC 

JP 

JR 

JR 

JR 

JR 

DJNZ 

LD 

LD 

LD 

LD 

LD 

. LD 

LD 

EX 

EX 

EXX 

OPERAND(S) 

corid,label 

C,disp 

NC,disp 

Z,disp 

NZ,disp 

disp 

dst,src 

AN 

A,R 

IV,A 

R,A 

SP,HL 

SP,xy 

DE,HL 

AF,AF 

Table 7-2. A Summary of the Z80 Instruction Set (Continued) 

STATUS 
BYTES OPERATION PERFORMED 

C Z s PIO AC N 

3 If cond, then [pe]-Iabel 

Jump to instruction at address represented by label if the condition is true. 

2 If C=l, then [PC]-[PC] +2+disp 
Jump relative to contents of Program Counter if Carry flag is set. 

2 IfC=(),then [PC]-[PC]+2+disp 
Jump relative to contents of Program Counter if Carry flag is reset. 

2 If Z=l, then [PC]-[PC]+2+disp 

Jump relative to contents of Program Counter if Zero flag is set. 

2 If Z=(), then [pc]-[ PC] + 2 + disp 

Jump relative to contents of Program Counter if Zero flag is reset. 

2 [B]-[B]-l 

If [B] J'oO, then [pc]-[PC]+2+disp 

Decrement contents of B and Jump relative to contents of Program Counter if result is not O. 

1 [dst]-[src] 

Move contents of source register to destination register. Register designations src and dst may 

each be A, B, C, D, E, H or L. 

2 X X I 0 0 [A]-[IV] 

Move contents of Interrupt Vector register to Accumulator. 

2 X X ·1 0 0 [A]-[R] 

Move contents of Refresh register to Accumulator. 

2 [IV]-[A] 

Load Interrupt Vector register from Accumulator. 

2 [R]-[A] 

Load Refresh register from Accumu!ator, 

1 [SP]-[HLl 

Move contents of HL to Stack Pointer. 

2 [SP]-[xy] 

Move contents of Index register to Stack Pointer. 

1 [DE]-[HLl 

Exchange contents of DE and HL, 

1 [AF]-[AF] 

Exchange program status and alternate program status. 

1 eBeI) (,Bel) [DE] - [DE'] 
[HLl [HL'] 

Exchange register pairs and alternate register pairs. 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 7-2. A Summary of the Z80 Instruction Set (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES 'OPERATION PERFORMED 

C Z S PIO AC N 

ADD reg , X X X 0 X 0 [A]-[A1+ [reg] 

Add contents of register to Accumulator. 

ADC reg , X X X 0 X 0 [Al-[A1+ [reg] + C 

Add contents of register and carry to Accumulator. 

, SUB reg , X ~ X 0 X , [A]-[Aj - [reg] 

Subtract contents of register from Accumulator. 

SBC reg , X X X 0 X , [A]-[A] - [reg] ~ C 

au Subtract contents of register and carry fro~ 'AccumuJ8tor. 
I-

AND , 0 X X P , 0 [A]-[A] A [reg] .:( reg 
a: AND contents of register with contents of Accumulator. au 
IL 
0 OR reg , 0 X X P , 0 [A]-[A] V [reg] 
a: OR contents of register with contents of Accumulator. au 
I-

XOR , 0 X X P , 0 [A]-[A].y. [reg] (/) reg 
·6 Exclusive-OR contents of register with contents of Accumulator. 
au 
a: CP reg , X X X 0 X , [A] - [reg] 
ri: 
au Compare contents of register with contents of Accumulator. Only the flags are affected. 
l-
(/) ADD HL,rp , X' 7 0 [HL]-[HL]+ [rp] 
6 '6-bit add register pair contents ,to contents of HL au 
a: 

ADC HL,rp X X X 7 0 [HL]-[HL]+ [rp]+C 2 0 
'6-bit add with carry register pair contents to contents of HL 

SBC HL,rp 2 X X X 0 7 , [HL]-[HL] - [rp] - C 

'6-bit subtract with carry register pair contents from contents of HL 

ADD IX.pp 2 X 7 0 [IX]-:[IX]+ [pp] 
'6-bit add register pair contents to contents of Index register IX (pp=BC, DE, IX, SP) 

ADD lV,rr 2 X 7 0 [IV]-[IV]+[rr] 

'6-bitadd register pair contents to contents of Index register IV (rr-BC, DE, IV, SPI. 

OM 1 X X X p X Decimal adjust Accumulator, assuming that Accumulator contents are the sum or difference of 

BCD operands. 

CPL 
, , , [A]-[A] 

Complement Accumulator (ones complement). 

NEG 2 X X X 0 X , [A]-["A] + 1 
w 

~ 
Negate Accumulator Itwos complement!. 

a: INC reg 
, X X 0 X 0 [reg]-[regl+ , 

au 
IL Increment register contents. 
0 
a: INC rp 

, [rp]-[rp] +' or [Xy]-[xy] +' 

~ xy Increment contents of register pair or'lndex register. 
(/) 

6 DEC reg 2 X X 0 X , [reg]-[reg] - , 
au Decrement register contents. a: 

DEC rp , [rp]~[rp] - , or [xy]-[xy] - , 

xy 2 Decrement contents of register pair or Index register. 



~ w 
o 

TYPE 

w 
I-« 
I-
0 
cr 
0 
Z 
« 
I-
u.. 
l: 
(/) 

cr 
w 
I-
(/) 

(; 
w 
cr 

MNEMONIC OPERAND(S) 

RLCA 

RLA 

RRCA 

RRA 

RLC reg 

RL reg 

RRC reg 

RR reg 

SLA reg 

SRA reg 

Table 7-2. A Summary of the zao Instruction Set (Continued) 

STATUS 
BYTES OPERATION PERFORMED 

C Z S PIO Ac N 

1 X 0 0 @}-Lj 7 .. 0 f4J 
[A] 

Rotate Accumulator left with branch Carry. 

1 X 0 0 c:m:;=t 74 0 i+l 
[A] 

Rotate Accumulator left through Carry. 

1 X 0 0 L;:j 7 ... o~ 
[A] 

Rotate Accumulator right with branch Carry. 

1 X 0 0 L;:j7 .. o .---.:tIP 
[A] 

Rotate Accumulator right through Carry. 

2 X X X P 0 0 ~7 .. o~ 
[reg] 

Rotate contents of registe~ left with branch Carry. 

LEJ+=j7 o j:;J~. 0 2 X X X P 0 ... .... 
[reg] 

Rotate contents of register left through Carry. 

2 X X X P 0 0 4.J7 ~ O~ 
[reg] 

Rotate contents of register right with branch Carry. 

2 X X X p 0 0 L;:j7 .. O~ 
[reg] 

Rotate contents of register right through Carry. 

2 X X X P 0 0 ~7 .. o t----O 
[reg] 

Shift contents of register left and clear LSB (Arithmetic Shift). 

2 X X X P 0 0 ~ ... O~ 
[reg] 

Shift contents of register right and preserve MSB (Arithmetic Shift). 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 7-2. A Summary of the zao Instruction Set (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

C Z S PIO AC N 

SRL 2 X X X P 0 0 o-.J 7 .. o I .-@] 
w [reg] 
I- Shift contents of register right and c~ear MSB (Logical Shih). < 
I-

~: 0 

: 0 I II: 17 413 17 413 o I 0_ RLD 2 X X P 0 0 
2"C i ' ... < g: .. 
I- .!: [A] ([HLl] 
II.. .. Rotate one BCD digit left between the Accumulator and memory location (implied addressing). :E c 

0 Cl)g Contents of the upper half of the Accumulator are not affected. 
II: 
w 

: 01 
~I I -: I-

17 413 413 01 CI) 17 (; RRD reg 2 X X P 0 0 
W 
II: 4 

[A] ([HL)) 
Rotate one BCD digit right b8tween the Accumulator and memory location (implied addre~ing). 
Contents of the upper half of the Accumulator are not affected. 

BIT b,reg 2 X ? ? 1 0 Z-oeg(b) 
Zero flag contains complement of the selected register bit. 

2 BIT b,(HL) 2 X ? ? 1 0 Z- ([HL))(b) or Z- ([)(y] +disp](b) 

0 b,(xy + disp) 4 Zero flag contains complement of selected bit of the memory location (implied addressing or 
~ base relative addressing). < 
..J 

SET b,reg 2 reg(b)-l ~ 
a.. Set indicated register bit. 2: 
< SET b,(Hl) 2 [[HLl](b)-l or Hxy]+disp](b)-l 
~ b,(xy + disp) 4 Set indicated bit of memory location (implied addressing or base relative addressing). 

'1-
iii RES b,reg 2 reg(b)-O 

Reset indicated register bit. 

RES b,(HL) 2 [[HL))(b)-O or [[xy] +disp](b)-O 

b,(xy + disp) 4 Reset indicated bit in memory location (i~plied addressing or base relative addressing). 

PUSH pr 1 [[SP]-ll-[ priHl)] 

xy 2 [[SP)-2]-[priLO)) 
[SP]-[SP]-2 

Put contents of register pair or Index register on top of Stack and decrement Stack Pointer. 

~ POP pr 1 [priLO))-[[SP)) 
u 2 [priHIl]-[[SP] + 1] < xy 
I- [SP]-[SP1+2 CI) 

Put contents of top of Stack in register pair or Index register and increment Stack Pointer. 

EX (SP).HL 1 [H]-[[SP] + 11 
(SPl.xy 2 [Ll-[[SP)) 

Exchange contents of HL or Index register1md. top of Stack. 



Table 7-2. A Summary of the Z80 Instruction Set (Continued) 

STATUS 
TYPE MNEMONIC OPERANDISI BYTES OPERATION PERFORMED 

C Z S P/O AC N 

01 1 Disable interrupts. 

EI 1 Enable interrupts. 

RST n 1 [[ SP]-1 ]-[ PC(HIl] 
[[SP]-2]-[PC(LO)) .-

l-
ll. [SP]-[SP]-2 
:J 

[PC]-(8~n)16 II: 
II: 
W Restart at designated location. 
I-
~ RETI 2 Return from interrupt. 

RETN 2 Return from nonmaskable interrupt. 

1M 0 2 Set interrupt mode O. 1. or 2. 

1 
2 

CI) SCF 1 1 0 0 C';""1 
:J Set Carry flag. l-
e( 

CCF 1 X ? 0 C-C 1--
CI) Complement Carry flag. 

NOP 1 No operation - volatile memones are refreshed. 

HALT 1 CPU halts. executes NOPs to refresh volatile memories. 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
(J 

~ 
ui 
w 

~ g 
en 
en 
ct 
cZI 
w 
Z 
a: 
o 
III 
en o 
~ 
ct 
C 
ct. 
@ 

Table 7-3. A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics 
for Identical Instructions 

CLOCK 8080A 8080A 
INSTRUCTION OBJECT CODE BYTES 

PERIODS MNEMONIC CLOCK 
PERIODS 

ADC data CE vy 2 7 ACI data 7 

ADC (HL) 8E 1 7 ADC M 7 
ADC HL,rp ED 01xxl0l0 2 15 

ADC (lX+disp) DO 8E vy 3 19 

ADC (lY+ disp) FD 8E vy 3 19 

ADC reg l000lxxx 1 4 ADC reg 4 
ADD data C6 vy 2 j ADI data 7 
ADD (HL) 86 1 7 ADD M 7 

ADD HL,rp OOxxl00l 1 11 DAD rp 
I ·,0.··/· .. · .•...•• ·• •..•• \ 

ADD (lX+disp) DO 86 vy 3 19 

ADD IX,pp DO OOxxl00l 2 15 

ADD (lY+disp) FD 86 vy 3 19 

ADD IY,rr FD OOxxl00l 2 15 

ADD reg l0000xxx 1 4 ADD reg 4 
AND data E6 vy 2 7 ANI data 7 
AND (HL) A6 1 7 ANA M 7 
AND (IX + disp) DO A6 vy 3 19 
AND (lY+disp) FD' A6 vy 3 19 
AND reg 10100xxx 1 4 ANA reg 4 
BIT b,(HL) CB 2 ;2 

01bbb110 

BIT b,(lX+ displ DO CB vy 4 20 
01bbb110 

BIT b,(lY+displ FD CB vy 4 20 
01bbb110 

BIT b,reg CB 2 8 
01bbbxxx 

CALL label CD ppqq 3 17 CALL label 17 
CALL C,label DC ppqq 3 10/17 CC label ........ 
CALL M,label Fe ppqq 3 10/17 CM label 1'<II<~t/ 
CALL NC,label 04 ppqq 3 10/17 CNC label 

/11/. If;? CALL NZ,label C4 ppqq 3 10/17 CNZ label 1.<1 I/~: if 
CALL P,label F4 ppqq 3 10/17 CP label Ii 11 

CALL PE,label EC ppqq 3 10/17 CPE label liii .. /.(.i .•• l/t7·.····· •.. / .• •i ••• 

CALL PO,label E4 ppqq 3 10/17 CPO label 'iii 1117./< ii 
..i> >··.·.\i CALL Z,label CC ppqq 3 10/17 CZ label 

CCF 3F 1 4 CMC 4 
CP data FEvy 2 7 CPI data 7 
CP (HL) BE 1 7 CMP M 7 
CP (lX+disp) DO BE vy 3 19 
CP (lY+ disp) FD BE vy 3 19 CMP reg 19 
CP reg 10111xxx 1 4 
CPO ED A9 2 16 
CPDR ED B9 2 21/16· ,; 

CPI ED Al 2 16 
CPIR ED Bl 2 21/16· . 
CPL 2F ~ 4 CMA 4 
OM 27 1 4 DAA 4 
DEC (HL) 35 1 11 OCR M 1/./"'"", 2. i'·· 

DEC IX DD2B 10 
1 ••••. /.i<10/.( .•.••• · .....• 

2 
DEC (lX+disp) DO 35vy .3 ~3 
DEC' IY FD 2B 2 lQ 

DEC (lY+ disp) FD 35 vy 3 23 
DEC rp OOxx1011 1 6 DCX rp 5 

DEC reg OOxxxl01 1 4 OCR reg rii.·· 

DI F3 1 4 01 4 

OJNZ disp 10 vy 2 8/13 

EI FB 1 4 EI 4 
EX AF,AF' 08 1 4. 

EX OE.HL EB 1 4 XCHG 4 
EX (SP),HL E3 1 19 XTHL li<i18.·i i i 
EX (SP),IX DO E3 2 23 

7-33 



Table 7-3. A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics 
for Identical Instructions (Continued) 

CLOCK 8080A 80BOA 
INSTRUCTION OBJECT CODE BYTES 

PERIODS MNEMONIC CLOCK 
PERIODS 

EX (SP),IY FD E3 2 23 
EXX 09 1 4 
HAlT 76 1 4 HLT 4 
1M 0 ED 46 2 B 
1M 1 ED 56 2 B 
1M 2 ED 5E 2 B 
IN A,port DB yv 2 10 IN port 10 
IN reg,(C) ED 2 11 

01dddOOO 

INC (HL) 34 1 11 INR M 
INC IX DO 23 2 10 
INC (lX+disp) DO 34 yv 3 23 
INC IY FD 23 2 10 
INC (lY+disp) FD 34 yv 3 23 
INC rp OOxxOOll 1 6 INX rp ../.0.// .••••••..• 
INC OOxxxl00 1 4 INR reg Ii·::':·. :.).: reg I ...... ""·.·::·::.:.: 
IND ED AA 2 15 . 
INDR ED BA 2 20/15 
INI ED A2 2 15 
INIR ED B2 2 20/15 
JP label C3 ppqq 3 10 JMP label 10 
JP C,label DA ppqq 3 10 JC label 10 
JP (HU E9 1 4 PCHL ·····iiiii.· 
JP (IX) DO E9 2 8 
JP (IY) FD E9 2 8 
JP M,label FA ppqq 3 10· JM label 10 
JP NC,labei 02 ppqq 3 10 JNC . label 10 
JP NZ,labei C2 ppqq 3 10 JNZ label 10 
JP P,label F2 ppqq 3 10 JP label 10 
Jp. PE,labei EA ppqq 3 10 JPE label 10 
JP PO,labei E2 ppqq 3 10 JPO label 10 
JP Z,label CA ppqq 3 10 JZ label 10 
JR C,disp 38 yv 2 7/12 
JR disp 18 yy 2 12 
JR NC,disp 30yy 2 U12 
JR NZ,disp 20 yy 2 7/12 
JR Z,disp 28 yy 2 7/12 
LD A,(add.) 3A ppqq 3 13 LDA auY' 13 
LD A,(OC) OA 1 7 LDAX B 7 
LD A.(DE) lA 1 7 LDAX 0 7 
LD A,I ED 57 .2 9 
LD A.R ED 5F 2 9 
LD (addr),A 32 ppqq 3 13 STA addr 13 
LD (addr),OC ED 43 ppqq 4 20 
LD (addr),DE ED 53 ppqq 4 20 

LD (addr),HL 22 ppqq 3 16 SHLD addr 16 
LD (addr),IX DO 22 ppqq 4 20 
LD (addr),IY FD 22 ppqq 4 20 
LD (addr),SP ED 73 ppqq 4 20 
LD (BC),A 02 1 7 STAX B 7 
LD (DE),A 12 1 7 STAX 0 7 
LD HL,(addr) 2A ppqq 3 16 LHLD addr 16 
LD (HL),data 36 yv 2 10 MVI M,data 10 
LD (HL),reg 01110s55 1 7 MOV M,reg 7 
LD I,A ED 47 2 9 
LD IX,(addr) DO 2A ppqq 4 20 
LD IX,datal6 DO 21 yyyv 4 14 
LD (IX + disp),data DO 36 yv yy 4 19 
LD (IX + di5p),reg DO 01110s5s 3 19 

yv 

LD IY,(addr) FD 2A ppqq 4 20 
LD IY,datal6 FD 21 yyyv 4 14 

7-34 



c 
w 
~ 
a: 
o 
0.. 
a: 
o 
o 
~ 
en 
w 

~ g 
(I) 
(I) 
c( 

~ 
w 
Z 
a: 
o co 
(I) 

o 
::!: 
~ 
c( 

@ 

Table 7-3. A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics 
for Identical instructions (Contjm-!ed) 

CLOCK 8080A 8080A 
INSTRUCTION OBJECT CODE BYTES 

PERIODS MNEMONIC CLOCK 
PERIODS 

LD (IV + displ,data .FD 36 vyyy 4 19 

LD (IV + displ,reg FD 01110sss 3 19 

yy 
lO R,A ED 4F 2 9 

LD reg,data OOdddl10 2 7 MVI reg,data 7 
yy 

LD reg,(HLI 01dddll0 1 7 MOV reg,M ·7 
LD reg,(lX + displ DO 3 19 

01dddll0 

yy 
lO reg,(lV + displ FD 3 19 

01ddddll0 

yy 
LD reg,reg 01dddss5 1 4 MOV reg,reg 5 
lO rp,(addrl ED 01xxl0ll 4 20 

ppqq 

LD rp,data16 OOxxOOOI 3 10 LXI rp,data16 10 
vyyy 

LD SP,HL F9 1 6 SPHL 5 
i.D SP,IX DO F9 2 10 

lO SP,IV FD F9 2 10 

lOD ED AB 2 16 

LDDR ED BB '2 21/16 0 ; 

LDL ED AO 2 16 

LDIR ED B9 ~ 21/16 0 0 

N~G ED 44 2 B 

~PP 00 1 4 NOP 4 
OR data F6 yv 2 7 ORI data 7 
OR (HLI B6 1 7 ORA M 7 
OR (lX+displ DO B6 yy 3 19 

OR (IV + di5pl FD B6 yy 3 19 

OR reg 1011b~xx 1 4 ORA reg 5 
OroR ED BB 2 20/15 0 0 

OriR ED B3 2 20/15 0 0 

OUT (Cl,reg ED 01s55OO1 2 lZ 

OUT ~rt,A 03 '/'( 2 11 OUT port 
aUTO ED AB 2 15 

OUTI ED A3 2 15 
pop IX DO El 2 14 

PoP IV FD El 2 14 

POP pr l1xxOOOl 1 10 POP rp 10 
PUSH IX DO .E5 2 15 

PUSH IV FD E5 2 15 

PuSH pr l1xxOl0l 1 11 PUSH rp 11 
RES b,(HLI CB 2 15 

lobbbll0 
RES b,OX+ displ QD CB yy 4 23 

tOb!)bl1b 
RES b,(lV+displ FDCB yy 4 23 

IObbbll0 
RES b,reg CB 2 B 

1 Obbbxxx 
RET C9 1 10 RET .10 
RET C 08 1 5/11 RC . 5/11 

RET M Fa 1 5/11 RM 5/11 
RET NC DO 1 5111 RNC 5/11 
RET NZ co 1 5/11 RNZ 5/11 
~ET P FO 1 5/11 RP 5/11 
RET PE ES 1 5/11 RPE 5/11 
RET PO EO 1 5/11 RPO 5/11 
RET Z CB 1 5/11 ·RZ 5/11 
RETI ED 40 2 14 

7-35 



Table 7-3. A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics 
\ .. . for Identical Instructions (Continued) 

CLOCK 8080A 8080A 
INSTRUCTION OBJECT CODE BYTES 

PERIODS MNEMONIC CLOCK 
PERIODS 

RETN ED 45 2 14 
RL (HL) C~ .16 . 2 ;5 

RL (lX+disp) DO cavy 16 4 23 
RL (lV+disp) FD C~ yy 16 4 23 

.. RL reg ... CB 2 8 

00010xxx 

RLA 17 1 4 RAL 4 
RLC (HL) CB 06 2 15 
RLC (IX +disp) DO CB yy 06 4 23 
RLC (lV+disP) FD CByy 06 4 23 
RLC reg CB 2 8 

OOOOOxxx 

RLCA 07 1 4 RLC 4 
RLD ED 6F 2 18 
RR (HL) CB 1E 2 15 
RR (lX+disp) DO CB.yy 1E 4 23 
RR (lV+disp) FD CB yy 1E 4 23 
RR reg CB 2 8 

00011xxx 

RRA 1F 1 4 RAR 4 

RRC (HL) CB .DE 2 15 
RRC (IX +disp) DO CB·yy OE 4 23 
RRC (lV+disp) FD CB yy OE 4 23 

RRC reg CB :2 8 

00001 xxx 
RRCA OF 1 4 RRC 4 

RRD ·ED 67 ·2 18 
RST n 11xxx111 ~ 11 RST n 11 
SBC data DE yy 2 7 SBI data 7 
SBC (HL) 9E 1 ,7 SBB m 7 

SBC HL,rp ED 01xxOO10 2 15 

SBC (lX+disp) DO 9E yy 3 19 
SBC (IV + disp) FD 9E yy 3 19 

SBC reg 10011xxx 1 4 SBB reg 4 
SCF 37 1 4 STC 4 
SET b,(HL) CB 2 15 

11bbb110 

SET b,(lX+ disp) DO CB yy 4 23 

11bbb110 

SET b,(lV+ disp) FD CB yy 4 23 

11bbb110 

SET b,reg CB 2 8 

11bbbxxx 
SLA (HLI CB 26 2 15 

SLA (IX +disp) DO CB yy 26 4 23 
SLA (IV +disp) FD CB yy 26 4 23 
SLA reg CB 00100xxx 2 8 
SRA (HL) CB 2E 2 15 
SRA (IX + disp) DO CB yy 2E 4 23 
SRA (IV +disp) FD CB yy 2E 4 23 
SRA reg CB 00101xxx 2 8 
SRL (HL) CB 3E 2 15 
SRL (lX+disp) DO CB yy 3E 4 23 
SRL (IV +disp) FD CB yy 3E 4 23 
SRL reg CB 00111xxx 2 8 

SUB data 06 yy 2 7 SUI data 7 
SUB (HL) 96 1 7 SUB M 7 
SUB (lX+disp) DO 96 yy 3 19 
SUB (IV + disp) FD 96 yy 3 19 

SUB reg 10010xxx 1 4 SUB reg 4 
XOR data EE yy 2 7 XRI data 7· 
XOR (HL) AE 1 7 XRA M 7 

7-36 



c 
w 
~ 
a:: 
o 
0-
a:: 
o 
u 
~ 
en 
w 
t­
ct 
U o 
CI) 
CI) 

ct 
oil 
w 
Z 
a:: 
o 
aI 
CI) 

o 
~ 
ct 
c 
ct 

@ 

Table 7-3. A Summary of Instruction Object Codes and Execution Cycles with 8080A Mnemonics 
for Identical Instructions (Continued) 

CLOCK 8080A 8080A 
INSTRUCTION OBJECT CODE BYTES 

PERIODS MNEMONIC CLOCK 
PERIODS 

XOR (IX +displ DO AE yy 3 19 
XOR (ly+ displ FD AE yy 3 19 
XOR reg 10101xxx 1 4 XRA reg 4 

x represents an optional binary digit. 

bbb represents optional binary digits identifying a bit location in a register or memory byte. 

ddd ~epresents optional binary digits identifying a destination register. 
sss repr~;;ents optional binary digits identifying a source register. 

ppqq represents a four hexadecimal digit memory address. 

yy represents two hexadecimal data digits. 
yyyy represents four hexadecimal data digits. 

When two possible execution times are shown (i.e .• 5/111. it indicates that 
the number of clock periods depends on condition flags. 

"Execution time shown is for one iteration. 

7-37 



THE zao INSTRUCTION SET 

We are going to describe the zao instruction set as an aOaOA enhancement. Table 7-2 summarizes the zao in­
struction set in the standard format used for all microcomputers in this book; unfortunately, the fact that the 
aOaOA instruction set is a subset of Table 7-2 is not immediately obvious, since a number of significant concep­
tual differences exist between the Zilog and aOaOA assembly language mnemonics. Table 7-3 therefore shows 
zao equivalents for every aOaOA instruction. The few incompatibilities which exist are identified. 

Also because of zao mnemonics, the Zilog instruction set is not easily forced· into the standard instruction 
categories that we have selected for consistency. In particular, zao mnemonics group Memory Reference, 
Register-Register Move and Immediate instruction into a single "Load and Exchange" category. The same holds 
true for zao Arithmetic and Logical instructions; in Table 7-2 these become Secondary Memory Reference, 
Register-Register Operate and Immediate Operate instructions. 

INPUT/OUTPUT INSTRUCTIONS 
These are the types of input/output instructions provided by the zao: 

1) The standard aOaOA IN and OUT instructions, whereb·y the second byte ofinstruction object code provides an 
I/O port address. which appears on Address Bus lines AO - A7. 

2) Register indirect Input and Output instructions. These instructions transfer data between Register A. B. C. D. E. 
H or L. and the I/O port identified by the contents of Register C. Thus the instruction: 

LD C.PORTN :LOAD PORT NUMBER INTO REGISTER C 

IN 

is equivalent to: 

IN 
LD 

D.(C) 

A. (PORTN) 
D.A 

:INPUT DATA FROM PORTN TO REGISTER 0 

The I/O port address. now the contents of Register C. is output on AO - A7 in the usual way. 

3) Block Transfer I/O instructions. These instructions move a block of data between the I/O port identified by 
Register C and a memory loca!ion addressed by the Hand L register pair. Register B is used as a block byte counter. 
After each byte of data within the block is transferred. the contents of Register B are decremented: you can specify 
block transfer I/O instructions that will either increment or decrement the memory address in Registers Hand l. 
Here is a programming e~ample with the SOSOA equivalent: 

ZSO SOSOA 
LP B.COUNT MVI B.COUNT 
LD C.PORTN LXI H.START 
LD HL.START LOOP: IN PORTN 
INIR MOV M.A 

INX H 
OCR B 
JNZ LOOP 

These instruction sequences input COUNT bytes from I/O port PORTN. and store the data in a memory buffer 
whose beginning address is START. COUNT and PORTN are symbols representing S-bit numbers. START is an ad­
dress label. The block transfer I/O instruction will continue executing until the B register has decremented to O. 

4) Single Step Block Transfer I/O instructions. These are identical to the block transfer I/O instructions described in 
category 3 above. except that instruction execution ceases after one iterative step. Referring to the INIR instruction 
example. if the INIR instruction were replaced by an INI instruction. a single byte of data would be transferred from 
PORTN to the memory location addressed by START. The address START would be incremented. Register B con­
tents would be decremented. then instruction execution would cease. 

When a block transfer or single step. block transfer I/O instructibh is executed. C register contents. which identify the 
I/O port. are output on the lower eight Address Bus lines in the usual way: however. B register contents are output on 
the higher eight address lines A 15 - AS. Thetefor~ external logic can. if it wishes. determine the extent of the transfer. 

Let us now look at the advantages gained by having the new zao I/O instructions. 

The value of the Register Indirect I/O instructions is that programs stored in ROM can access any I/O port. If I/O 
port assignments change. then all you need to do is modify that small portion of program which loads the I/O port ad­
dress into the C register. 

7-38 



c 
w 

~ 
a: o 
D. 
a: 
o 
(J 

!: 
en w 
l­
e:( 

U o 
CI) 
CI) 
e:( 

~ 
w 
Z 
a: 
o 
Dl 
CI) 

o 
~ 
e:( 
C 
e:( 

@ 

The Block Transfer I/O instructions must be approached with an element of caution. In response to the execution 
of a single instruction's object code. up to 256 bytes of data may be transferred between memorY'and an I/O port.' This 
data transfer occurs at CPU speed - which means external logic must input.or output data at the same speed. If exter­
nallogic cannot operate fast enough. it can insert Wait states in order to slow the CPU. but that takes additional logic: 
and one might argue that the traditional methods of polling on status to effect block I/O transfers is cheaper than 
adding extra Wait state logic. 

Note that all Z80 enhanced I/O instructions require two bytes of object code. 

PRIMARY MEMORY REFERENCE INSTRUCTIONS 
Instructions that we classify as Primary Memory Reference constitute a subset of the Load instructions. as classifed by 
Zilog. Within the Primary Memory Reference instructions category, as we define it, Zilogoffers a single enhan­
cement: base relative addressing. Instructions that move data between a register and memory may specify the 
memory address as the contents of an Index register: plus an 8-bit displacement provided by the instruction object 
code. Here is a programming example of Zilog base relative addressing and the 8080A equivalent: 

Z80 8080A 
LD IX.BASE LXI H.BASE 
LD C.OX + DISP) LXI D.DISP 

DAD 0 
MOV C.M 

Observe that the two Z80 instructions do not use any CPU registers - other than the IX Index register. The 8080A uses 
the DE and HL registers. Here is an example of the true value that results from having Index registers. The Z80 can use 
the DE and HL registers to store temporary data. which the 8080A cannot do: the 8080A would have to store such tem­
porary data in external read/write memory. 

The biggest single advantage that accrues to the Z80 from having indexed addressing is the fact that well written Z80 
programs will contain far fewer memory reference instructions than equivalent 8080A programs: therefore Z80 pro­
grams will execute faster. 

Other primary memory reference instructions provided by the Z80. and not present in the 8080A. include instructions 
which load data into the I ndex registers and store I ndex registers' contents in memory. Since the 8080A does not have 
Index registers. it cannot have memory reference instructions for them. The Z80 also has instructions which transfer 
16-bit data between directly addressed memory and any register pair. except AF. Recall that in the 8080A. HL is the 
only register pair which stores to memory and loads from memory using direct addressing. 

BLOCK TRANSFER AND SEARCH INSTRUCTIONS 
We classify the Zilog Block Transfer and Search instructions in a separate category, since our hypothetical com­
puter, as described in Volume I, had no equivalent instructions. 

A Block Transfer instruction allows you to move up to 65,536 bytes of data between two memory buffers 
which may be anywhere in memory. The Hand L registers address the source buffer. theD and E registers address 
the destination buffer. and the Band C registers hold the byte count. 

After every byte of data is transferred. the Band C' registers' contents are decremented: instruction execution ceases 
after the Band C registers decrement to zero. You have the option of incrementing or decrementing the source and 
destination addresses following the transfer of each data Oyte. Thus you can transfer data from low to high memory. or 
from high to low memory. Here is a programming example of the Z80 Block Move instruction. along with the 8080A 
equivalent: 

LD 
LD 
LD 
LDIR 

Z80 
BC.COUNT 
DE.DEST 
HL.SRCE 

LOOP: 

8080A 
LXI 
LXI 
LXI 
MOV 
STAX 
INX 
INX 
DCX 
ry10V 
ORA 
JNZ 

B.COUNT 
D.DEST 
H.SRCE 
A.M 
o 
H 
o 
B 
AB 
C 
LOOP 

The two instruction sequences illustrated.above move a block of data. COUNT bytes long. from a buffer whose starting 
address is SRCE to another buffer whose starting address is DEST. SRCE and DEST are 16-bit address labels. COUNT is 
a symbol representing a 16-bit data value. 

7-39 



The Z80 - 8080A comparison above is one that makes the 8080A look particularly bad. This is because it emphasizes 
8080A weaknesses; the 8080A requires memory addresses to be incremented as separate steps. Also .. after decrement­
ing the counter in Registers B andC. status is not set. therefore BC contents are tested by loading B into A and ORing 
withC. 

You can use Block Move instructions in zao configurations that include dynamic memory. While the Block Move 
is being executed. dynamic memory is refreshed. 

The Block Search instruction will search a block of data in memory, looking for a match with the Accumulator 
contents. The Hand L registers address memory. while the Band C registers again act as a byte counter. When a 
match between Accumulator contents and a memory location is found. the Search instruction ceas~s executing. After 
every Compare. the Band C registers' contents are decremented; once again you have the option of either increment­
ing or decrementing Hand L registers' contents. Thus you can search a block of memory from high address down. or 
from low address up. 

The results of every step in a Block Search are reported in the Z and PIO statuses. If a match is found between Ac­
cumulator and memory contents. then Z is set to 1; otherwise Z will equal O. When the Band C registers count out to 
zero. the PIO status will be reset to 0; otherwise the PIO status will equal 1. 

Here is an example of a program using the Z80 Block Search instruction. along with 8080A program equivalent: 

Lb 
LD 
LD 
CPDR 

Z80 
A.REFC 
BC.COUNT 
HL.SRCE 

JR Z.FOUND 
;NO MATCH FOUND 

;MATCH FOUND 
FOUND: 

8080A 
LXI BC.COUNT 
LXI HL.SRCE 

LOOP: MVI A.REFC 
CMP M 
JZ FOUND 
DCX H 
DCX B 
MOV A.B 
ORA C 
JNZ LOOP 

;NO MATCH FOUND. 

;MATCH FOUND 
FOUND: -

Each of the above inst~Jctian sequences tries to match a character represented by the symbol REFC with the co~tents 
of bytes in a memory buffer. The memory buffer is origined at SRCE and is COUNT bytes long. 

In the example iliustrated above. SRCE is the highestmemory address for the buffer. which is searched towards the low 
memory address. FOUND is the label for the first instruction in the sequence which is executed if a match is found. If no 
match is found. that is. the BC registers count out to O. program execution continues with the next sequential instruc­
tion. 

The Z80 Block Search instruction is particularly useful when searching a large memory buffer for a byte that 
may frequently occur. Suppose you have an ASCII text in which Control codes have been imbedded. For the sake of 
argument. let us assume that all Control codes are two bytes long. where the first byte has the hexadecimal value 02 
and the second byte identifies the Control code. You can use one set of registers in order to search the text buffer for 
Control codes. while using the second set bf registers to process the text buffer after each Control code has been lo­
cated. 

All you need to do in the Block Search instruction sequence illustrated above is follow the CPDR instruction with an 
EXX instruction; after executing the instruction sequence following MATCH FOUND. again execute an EXX instruction 
before returning to search for the next Control code. 

Each of the Block Move and Block Search instructions has a single step equivalent. the single step instruction 
moves one byte of data. or compares the .Accumulator contents with the next byte in a data buffer; addresses and 
counters are incremented and decremented as for the Block Move and Search instructions. however execution ceases 
after a single step has been completed. 

7-40 



c 
w 

~ 
IX: 
o 
11. 
IX: 
o 
(J 

~ 
en 
w 
l­
e( 
(j 
o 
CI) 
CI) 
e( 

oi'J 
w 
Z 
IX: 
o 
en 
CI) 

o 
~ 
e( 
c 
e( 

@ 

SECONDARY MEMORY REFERENCE (MEMORY OPERATE) INSTRUCTIONS 
Instructions that we classify as Secondary Memory Reference. or Memory Operate. constitute a portion of the 
arithmetic and logical instructions. as defined by the zao. Within the Memory Operate group of instructions, the 
single enhancement offered by the zao is a duplicate set of instructions that uses base relative addressing. We 
have already discussed this enhancement in connection with Primary Memory Reference instructions. Here is a pro­
gramming example with the aOaOA equivalent: 

LD 
ADD 

zao aOaOA 
IX. BASE LXI H.BASE 
(IX + DISP) LXI D.DISP 

DAD 0 
ADD M 

The same comments we made regarding the use of indexed addressing in the Primary Memory Reference example ap­
ply to the instruction sequences above. 

IMMEDIATE INSTRUCTIONS 
Within the group of instructions that we classify as Immediate, the zao offers two enhancements: 

1) Instructions are provided to load immediate data into the additional zao registers. 

2) You can use base relative addressing to load a byte of data immediately into read/write memory. 

JUMP INSTRUCTIONS 
In addition to the standard Jump instruction offered by the aOaOA, the zao has a two-byte, unconditional 
Branch instruction, and two instructions which allow you to jump to the memory location specified by an Index 
register. 

The two indexed Jump instructions ,ransfer the contents of the identified Index register to the Program Counter. 

The two-byte Jump instruction interprets the second object code byte as an a-bit signed binary number. which is ad­
ded to the Program Counter. after the Program Counter has been incremented to point to the next instruction. This is a 
standard program relative branch. as described in Volume I. 

Note that the zao uses many of the spare aOaOA object codes to implement the two-byte Branch and Branch-on-Con­
dition instructions. This makes sense; it would certainly not make much sense to have two bytes of object code 
followed by a single branch byte. since that would create a three-byte Branch instruction - offering no advantage over 
the three-byte Jump instructions which already exist. 

SUBROUTINE CALL AND RETURN INSTRUCTIONS 
The zao instructions in this group are identical to aOaOA equivalents. 

IMMEDIATE OPERATE INSTRUCTIONS 
zao Immediate Operate instructions, as we define them, are identical to those in the aOaOAinstruction set. 

JUMP-ON-CONDITION INSTRUCTION 
The zao offers two significant Jump-on-Condition instruction enhancements over the aoaOA: 

1) There are two-byte equivalents for four of the more commonly used Jump-on-Condition instructions. The 
two-byte Jump-on-Condition instructions execute exactly as described for the two-byte Jump instruction. 

2) There is a decrement and Jump-on-Nonzero instruction which is particularly useful in any kind of iterative loop. 
When this instruction is executed. the B register contents are decremented; if the B register contents. after being 
decremented. equal zero. the next sequential instruction is executed. If after being decremented the B register con­
tents are not zero. then a Jump occurs. This is a two-byte instruction. where the Jump is specified by a single a-bit 
signed binary value. 

7-41 



Here is an example of how the DJNZ instruction may be used along with the 8080A equivalent: 

LOOP: 

AND 
LD 
LD 
LD 
LD 
ADC 
LD 
INC 
INC 
DJNZ 

Z80 8080A 
A ANA 
IX.VALA LXI 
IY.VALB LXI 
B.CNT MVI 
AOX) LOOP: LDAX 
AOY) ADC 
OXl.A STAX 
IX INX 
IY INX 
LOOP DCR 

JNZ 

A 
D.VALA 
H.VALB· 
B.CNT 
D 
M 
D 
D 
H 
B 
LOOP 

The two instruction sequences illustrated above perform simple multibyte binary addition. The contents of two buffers. 
origined at VALA and VALB. are summed: the results are stored in buffer VALA 

The first instruction in each sequence is executed in order to clear the Carry status. Like the 8080A the Z80 does not 
have an instruction which sets the Carry status to O. while performing no other operation. 

REGISTER-REGISTER MOVE INSTRUCTIONS 
Register-Register Move instructions. as we defined them in this book. constitute a subset of the Z80 Load instructions. 
All Z80 Exchange instructions. except those that exchange with the top of the Stack. are also classified as Register-

. Register Move instructions. 

The ZaOenhancements within this instruction group apply strictly to the additional re'gisters i~plemented 
within the laO. That is to say. because the Z80 has registers which the 8080A does not have. the Z80 must also have 
instructions to move data in and out of these additional registers. 

'The instructions which exchange data between registers and their alternates need comment. Note that you can swap 
the entire set of duplicated registers. or you can swap selected register pairs. If you use these instructions following an 
interrupt acknowledge. you do not have to save the contents of the registers on the Stack. Of course. this will only work 
for a single interrupt level. There are also occasions when the alternate set of registers can be used effectively in normal 
programming logic. as we illustrated when describing the Block Search instruction. 

REGISTER-REGISTER OPERATE INSTRUCTIONS 
There are a few new laO Register-Register Operate instructions which do the follo~ing: 

1) Add without Carry the contents of a register pair to an Index register. 

2) Add with Carry to HL the contents of a register pair. 

3) Subtract with Carry from HL the contents of a register pair. 

REGiSTER OPERATE INSTRUCTIONS 
Within this category, the laO has two enhancements: 

1) You can increment or decrement the contents of an Index register. 

2) A rich variety of Shift and Rotate instructions h·ave been added. These instructions are illustrated in Table 7-2. In 
particular. note the RLD and RRD instructions. which are very useful when performing multidigit BCD left and right 
shifts. 

BIT MANIPULATION INSTRUCTIONS 
The aOaOA has no equivalent for this set of laO instructions. We give these instructions a separate category in Ta­
ble 7-2 because of their extreme importance in microprocessor applications. 

Bit manipulation instructions are particularly important for signal processing. A single signal is a binary entity: it is not 
part of an 8-bit unit. One of the great oversights among microprocessor designers has been to ignore bit manipulation 
instructions. The laO has instructions that set to 1 (SET), reset to 0 (RES) or test (BIT) individual bits in memory 
or any general purpose register. The resu It of a bit test is reported in the Zero status. 

7-42 



c 
w 

~ 
a:: 
o 
D. 
a:: 
o 
tJ 
~ 
u) 
w 
I­
ct 
g 
(I) 
(I) 

ct 
olS 
w 
Z 
a:: 
o 
a3 
(I) 

o 
~ 
ct 
c 
ct 
@ 

Here are some Z80 instructions with 8080A equivalents: 

Z80 8080A 
BIT 4.A MOV B.A 

ANI 10H 
MOV A.B 

.The 8080A tests Accumulator bits destructively - all untested bits are cleared; Accumulator contents must therefore 
be saved before testing. We can also contrive an example to emphasize the strengths of the Z80 bit instructions: 

LD 
SET 

'Z80 
IY.BASE 
2.0Y + DISP) 

LXI 
LXI 
DAD 
MVI 
ORA 

8080A 
H.BASE 
D.DISP 
D 
A,4 
M 

Once again. note that the 8080A needs to use the D. E. Hand L registers. 

Note that all Z80 Bit instructions operate on memory or CPU registers. But in most microcomputer applications in­
dividual pins at I/O ports will most frequently be set. reset or tested. The Z80 has no I/O Bit instructions. If you wish. 
you can interface I/O devices so that they are addressed as memory locations; however. in that case. you cannot use 
Block I/O instructions. 

The 8080A can do anything that a Z80 Bit Manipulation instruction can do but an additional Mask instruction is 
needed and the Accumulator is involved. On the surface these seem to be small penalties; but it is the frequency with 
which Bit Manipulation instructions are needed that escalates small penalties into major aggravations. 

STACK INSTRUCTIONS 
Additional Stack instructions provided by the Z80 allow the Z80 Index registers to be pushed onto the Stack, 
popped from the Stack, or exchanged with the top of the Stack. 

INTERRUPT INSTRUCTIONS 
In addition ·to the 8080A Interrupt instructions. the Z80 has two Return-from-Interrupt instructions. RETI and RETN are 
used to return from maskable ~nd nonmaskable interrupt service routines, respectively. 

RETI and RETN are two-byte instructions. Within the CPU these instructions enable interrupts, but otherwise ex­
ecute exactly as a Return-from-Subroutine (RET) instruction. However, devices designed by Zilog to support 
the Z80 CPU use the RETI and RETN instructions in a unique way. Any support device that has logic to request an 
interrupt also includes logic which tests the Data Bus contents during the low M1 pulse. Upon detecting the second 
byte of an RETI or RETN instruction's object code. a device which has had an interrupt request acknowledged deter-
mines that the interrupt has been serviced. . . 

Why does a support device need to know that an interrupt service routine has completed execution? The reason is that 
Zilog extends interrupt priority arbitration logic beyond the interrupt acknowledge process to the entire interrupt ser­
vice routine. 

This is the scheme adopted by the 8259 PICU. After reading the next paragraph. if you are, still unclear on concepts. 
refer to the 8259 PICU discussion in the 8080A chapter.- . 

Consider the typical daisy chain scheme used to set interrupt priorities in a multiple interrupt microcomputer system. 
Daisy chaining has been described in good detail in Volume 1. When more than one device is requesting an interrupt. 
an acknowledge ripples down the daisy chain until trapped by the interrupt requesting'device electrically closest to the 
CPU. As soon as the interrupt acknowledge process has ceased. an interrupt service routine is executed for the 
acknowledged interrupt; acknowledged external logic will now remove its interrupt request. Unless the CPU disables 
further interrupts. a lower priority device can immediately interrupt the service routine of a higher priority device. With 
the Zilog system. that is not the case. A device which has its interrupt request acknowledged continues to suppress in­
terrupt requests from all lower priority devices in a daisy chain. until the second object code byte for an RETI or RETN 
instruction is detected on the Data Bus. The acknowledged device responds to an RETI or RETN instruction's object 
code by re-enabling interrupts for devices with .Iower priority in the daisy chain. 

,Providing a Zilog microcomputer system has been deSigned to make correct use of the RETI and RETN instructions. in­
terrupt priority arbitration logic lJI.Iill allow an interrupt service routine to be interrupted only by a high priority interrupt 
request. 

7-43 



Here is an illustration of the Zilog interrupt priority arbitration scheme: 

IREOl 

Main 

Program 

Lower priority 

interrupts 

-Active 

IRE02 
(,-= -Active 

IRE04 

o 

Only IREO 1 can be 

acknowledged while Device 2 

interrupt service routine is 

executing 

Main 

Program 

RETI instruction executed 

here enables interrupts at 

Devices 3 and 4. IRE04 

can now be acknowledged 

o 

The three 1M instructions allow you to specify that the CPU will respond to maskable interrupts in Mode 0.1 or 
2. These three interrupt response modes have already been described. 

STATUS AND MISCELLANEOUS INSTRUCTIONS 
Z80 and 8080A instructions in these categories are identical. 

THE BENCHMARK PROGRAM 
Our benchmark program is coded for the Z80 as follows: 

LD 
LD 

LD 
LDIR 

BC.LENGTH 
DE. (TABLE) 

HL.lOBUF 

;LOAD 10 BUFFER LENGTH INTO BC 
;LOAD ADDRESS OF FIRST FREE TABLE BYTE OUT OF FIRST TWO TABLE 
;BYTES 
;LOAD SOURCE ADDRESS INTO HL 
;EXECUTE BLOCK MOVE 

The program above makes absolutely no assumptions. Both source and destination tables may have' any length and 
may be located anywhere in memory. 

Notice that there is no instruction execution loop. since the LDIR block move will not stop executing until the entire 
block of data has been moved. 

SUPPORT DEVICES THAT MAY BE USED WITH THE zao 
The Z80 signal interface is very close to that of the 8080A. When looking at Z80 signals we saw how they may be com­
bined to generate 8080A equivalents. Thus 8080A support devices may be used with the Z80 CPU. Exceptions 
are the 8259 Priority Interrupt Control Unit and the TMS5501 multifunction device. 

The 8259 Priority Interrupt Control Unit should not be used with the Z80 CPU because the Z80 CPU provides essen­
tially the same capabilities within the CPU chip itself. So far as signal interface is concerned. you could use an 8259 
with a Z80. but it would make no sense. 

7-44 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 
CI) 
CI) 
c( 

c!I 
w 
Z 
a: 
o 
m 
CI) 

o 
~ 
c( 
c 
c( 

@ 

The TMS5501 cannot be used with a Z80 because it assumes status on the Data Bus - as output by the 8080A with­
out an 8228 System Controller. 

The aOa5 support devices - the 8155. the 8355 and the 8755 - are difficult to use with the zao; you have to 
multiplex the low order eight Z80 address lines and the Z80 8-bit Data Bus to sin:'ulate th~ 8085 multiplexed bus lines. 
Logic needed to perform this bus multiplexing would likely be more expensive than discrete packages that implement 
individual functions provided by the 8155 and 8355 multifunction devices. 

Using MC6aOO support devices with the zao is not practical. MC6800 support devices all require a synchronizing 
clock signal whose characteristics cannot be generated simply from the Z80 clock signal. 

With the exception of the zao DMA device, ZaOsupport devices (which we are about to describe) are not 
general-purpose devices. The Z80 Pia. SIO. and CTC devices decode the M1. 10RO. and RD control signals to identify 
a number of functions. Table 7-4 defines the manner in which these signals are decoded. Were you to use the Z80 Pia. 
SIO. or CTC with any other microprocessor. you would have to multiplex the other microprocessor's control signals in 
order to create equivalents of M 1. 10RO. and RD; this may not be straightforward. 

Table 7-4. Z80 Pia Interpretation of Control Signals 

SIGNALS 
FUNCTIONAL INTERPRETATION * 

M1 10RO RD 

0 0 0 No function 
0 0 1 Interrupt acknowledge 
O' 1 0 Check for end of interrupt service routine 
0 1 1 .Reset 
1 0 0 Read from Pia to CPU 
1 0 1 . Write from CPU to Pia 
1 1 0 No function 
1 1 1 No function 

* These interpretations only apply if the device has been selected 

Z80 support devices also rely on exact Z80 CPU characteristics for interrupt processing. Specifically. Z80 support 
devices detect every instruction fetch. as identified by M 1 and RD simultaneously low: if a return from interrupt object 
code is fetched. then Z80 support devices respond to this object code by resetting internal interrupt priority logic. Ac­
counting for this end of interrupt logic in a non-Z80 system could be difficult. 

Because of the unique characteristics of the zao support devices, the zao PIO and CTC devices are described in 
this chapter. The zao DMA device is described in Volume 3, however. because this device is easily used in non-Z80 
configurations: moreover. its unique capabilities make it a highly desirable part to include in any ~icrocomputer 
system that has to move text or data strings. The zao SIO device is also described in Volume 3 because it is an ex­
ceptionally powerful device: in many cases the power of the Z80 SIO device will compensate for the additional logic it 
will demand in a non-Z80 microcomputer system. 

THE zao pARALLEL I/O INTERFACE (PIO) 
F' 

The zao PIO is Zilog's parallel interface device; it may be looked upon as a replacement for the a255 ppi, but it 
is equivalent to the PPI at a functional level only. No attempt has been made to make the zao PIO an upward 
compatible replacement for the a255 PPI. 

The zao PIO has 16 I/O pins, divided irito two a-bit I/O ports. Each I/O port has two associated controi liries. 
This makes the zao PIO more like, the Motorola MC6820 than the 8255 PPI. 

The two Z80 PIO I/O ports may be separately specified as input, output or control ports. When specified as.a 
control port; pins may be individually assigned to input or output. Port A may be used as a bidirectionai I/O port. 

The Z80 PIO also provides,a significant interrupt handling capability. This includes: 

- The ability to define conditions which will initiate an interrupt. 
- Interrupt priority arbitration 
- Vectored response to an interrupt acknowledge 

Figure 7-16 illustrates that part of our general microcomputer system logic which has been implemented on the 
Z80 PIO. 

7-45 



The Z80 PIO is packaged as a 40-pin DIP. It uses a single +5V powersupply. All inputs and outputs are TTL-level 
compatible. The device is fabricated using N-channel silicon gate depletion load technology. 

l09i9~O·. H.an.~'El 
,nt~rniPt •. ReqY!lsts 
;/it;(frorT)i>.· •. 
External Devices 

, .............. 

"i t l 
i i 

) i.··· .. ..•....... 

i i> 
'.' i. 

.... 

i r ( i. 
)i 

..... 
•...... 

I 

I/O Communication 
'~ Serial to Parallel 

Interface Logic 

, I Clock Logic 

Arithmetic and ..... _ ........ _ ..... 
Logic Unit 

Accumulator 
Registeris) 

Instruction Register ~ 
, ~ Data Counteris) 

~ Control Unit 

• 

11 

Bus Interface 
Logic 

ROM Addressing 
and 

Interface Logic 

,~ Stack Pointer 

~ Program Counter 

, 
System Bus 

I Programmable I I' Read Only I 
",,' __ Ti_m_e_rs_--,r ... 1 __ M_e_m_o_ry_--,I' 

.... /y ..•..••... } ..••••.••.••.. 

Figure 7-16, Logic Functions of the Z80 PIO 

zao PIO PINS AND SIGNALS 

Direct Memory 
Access Control ... 

Logic 

t 
~ 

J 
i 

RAM Addressing f 
and ... 

Interface Logic 

t 
I Read/W~ite r Memory 

Z80PI0 pins and signals are illustrated in Figure 7-17. Signals are very straightforward: therefore their functions 
will be summarized before we discuss device characteristics and operation. 

let us first consider the PIO CPU interface. 

All da'ta transfers between the PIO and the CPU occur via the Data Bus, ~,"hich 'connects to pins DO' - 07. 

For the PIO to be selected, a low input must be present at CEo There are two additional address lines. a/A SEl 
selects Port A if low and Port B if high. For the selected I/O port, C/O SEl selects a data buffer when low and a 
control buffer when high. Device select logic is summarized in Table 7-5. 

7-46 



Q 
w 

~ 
a: o 
0.. 
a: 
o 
CJ 
!: 
en 
w 

~ g 
en 
en 
c( 

o!I 
w 
Z 
a: 

·0 
CD 
en o 
~ 
c( 
Q 
c( 

@ 

Table 7-5. zao PIO Select Logic 

SIGNAL 
SELECTED LOCATION 

CE B/A SEL C/D SEL 

0 0 0 Port A data buffer 
0 0 1 Port A control buffer 
0 1 0 Port B data buffer 
0 1 1 Port B control buffer 
1 X X Device not selected 

zao PIO device control logic is not straightforward. Of the control signals output by the zao CPU. three are input to the 
PIO; M1. IORO. and RD. WR is not input to the PIO. Table 7-5 illustrates the way in which Z80 PIO interprets M1, 
lORQ and RO. Observe that RD is being treated as a signal with two active states: low RD specifies a read operation. 
whereas high AD specifies a write operation. This does not conform to the CPU. which treats RD and WR as signals 
with a low active state only. 

Let us now look at the PIO external logic interface. 

AO - A 7 represent the eight bidirectional I/O Port A lines; I/O Port A is supported by two control signals, A ROY 
and A STB. . 

Similarly, I/O Port B is implemented via the eight bidirectional lines BO - B7 and the two associated control lines 
B ROY and B STB. 

The I/O Port A and B control lines provide handshaking logic which we will describe shortly. 

Now consider interrupt control signals. 

lEI and lEO are standard daisy chain interrupt priority signals. When more than one PIO is present in a system. the 
highest priority PIO will have lEI tied to +5V and will connect its lEO to the lEI for the next highest priority PIO in the 
daisy chain: 

+5V No connection 

lEI lEO lEI lEO lEI lEO lEI lEO 

. PIO PIO PlO PIO 

2 3 n 

Highest Second Third Lowest 
(first) priority priority priority 

priority 

If you are unsure of daisy chain priority networks. refer to Volume 1 for clarification. 

INT is a standard interrupt request signal which is output by the zao PIO and must be connected as an input to the 
zao CPU interrUpt request. Observe that there is no interrupt acknowledge line. since M 1 and IORO simultaneously low 
constitute an interrupt acknowledge and will thus be decoded by the zao PIO. 

Clock, power, and ground signals are absolutely standard. The same clock signal is used by the PIO and the zao 
CPU. 

Observe that there is no Reset signal to the PIO. M 1 low with both RD and IORO high constitutes a reset. We will 
describe the effect of a zao PIO reset after discussing operating modes. 

7-47 



D2 

D7 

D6 

CE 

C/O SEL 

B/A SEL 

A7 

A6 

A5 

A4 

GND 

A3 
A2 

A1 

AO 

A STB 

"'i3Silf 
A RDY 

DO 

D1 

PIN NAME 

DO - D7 

CE 

B/A SEL 

C/O SEL 

M1 

IORO 

RD 

Ad - A7 

A RDY 

A STB 

BO - B7 

B RDY 

B STB 

lEI 

..!§Q.. 
INT 

.., 
..... 
-
.. 

<1>, + 5V,GND 

1 40 

2 39 

3 38 .. 4 37 

5 36 .. 6 35 

? 34 .. 8 33 
9 32 

10 Z80 31 
11 PIO 30 

12 29 

. 13 28 

14 27 

15 26 

'" 16 25 
17 24 

18 23 

19 22 

20 21 

DESCRIPTION 

Data Bus 

Device. Enable 

Select Port A or Port B 

Select Control or Data 

Instruction fetch machine cycle 

signal from CPU 

Input/Output request from CPU 

Read cycle status from CPU 

Port A Bus 

Register A Ready 

Port A strobe pulse. 

Port B Bus 

Register BReady 

Port B strobe pulse 

Interrupt enable in 

Interrupt enable out 

Interrupt request 

ciock. Power and Ground 

--
-
--

-
-
-... 

TYPE 

., 

-'" 

--'" 

,;, 

~ .. 
.. 

-'" 

D3 

D4 

D5 

M1 

iORci 
RD 

B7 

B6 

B5 

B4 

B3 
B2 

B1 

BO 

+5V 

<I> 
iEi 
iNT 
lEO 

B RDY 

Tristate. Bidirectional 

Input 

Input 

Input 

Input 

Input 

Input 

Tristate. Bidirectional 

Output 

Input 

Tristate. Bidirectional 

Output 

Input 

Input 

Output 

Output, Open-drain 

Figure 7-17. Z80 PIO Signals and Pin Assignments 

7-48 



c 
w 

~ 
a: 
o 
a. 
a: 
o 
(J 

~ 
en 
w 
~ 
U o 
CI) 
CI) 

« 
~ 
w 
Z 
a: 
o 
al 
CI) 

o 
~ « c « 
@ 

zao PIO OPERATING MODES 
To the programmer, a Z80 PIO will be accessed as four addressable locations: 

r----------, 
I I/O Port A logic I 

I/O Port A 

Data 

I/O Port A 
AO - A7 

r-~~--~~~~-------A~B 
t------~I I/O Port A 

L. __ ~co:n~tr~o~I __ ~t__,--------~ARDY 

I I L-, __________ ~ 
Data 8us /'0----...... " 

DO - D7 r----------, 
I I/O Port 8 logic I 

I/O Port 8 

l. __ ~c~o~n:tr~ol~ __ .t-,----~ .. 8RDY 

I/O Port 8 

Data 

I/O Port 8 
80 - 87 

By loading appropriate information into the Control regis~er you determine the mode in which the I/O port is to 
operate. . 

The Z80 PIO has operating modes which are equivalent to those of the 8255 PPI, plus an additional mode which 
the 8255 PPI" does not have. However. 8255 PPI Mode a provides 24 I/O lines. as against a maximum of 16 I/O lines 
available with the Z80 PIO. . 

Zilog literature uses Mode O. Mode 1. Mode 2. and Mode 3 to describe the ways in which the Z8P PIO can operate: in 
order to avoid confusion between mode designations as used by the Z80 PIO and the 8255 PPI. mode equivalences are 
given in Table 7-6. . 

Table 7-6. Z80 PIO And 8255 Mode Equivalences 

Z80 PIO 8255 PPI INTERPRETATION 

Mode 3* Mode a Simple input or output 
Mode a Mode i Output with handshaking 
Mode 1 Mode 1 Input with handshaking 
Mode 2 Mode 2 Bidirectional I/O with handshaking 
Mode 3 None Poi"! pins individually assigned as con-

trols 

*Sp'ecial case of Mode 3 

Let us now look at the Z80 PIO modes in more detail. 

Output mode (Mode 0) allows Port A and/or Pqrt B to be used as a conduit for transferring data to external logic. 
Figure 7-18 illustrates timing for Mode O. An output cycle is initiated when the CPU executes any Output instruction 
accessing the I/O port. The Z80 PIO does not receive the WR pulse from the CPU. therefore it derives an equivalent sig­
nal by ANDing RD • CE • C/D • 10RG. 

This pseudo write pu Ise (WR* in Figu re 7-18) is used to strobe data off the Data Bus and into the addressed I/O port's 
Output register. After the pseudo write pulse goes high. on the next high-to-Iow transition of the clock pulse <1>. the 
RDY control signal is output high to external logic. RDY remains high until external logic returns a low pulse on the STB 
acknowledge. On the following high-to-Iow clock pulse <I> transition. RDY returns low. The low-ta-high STB transition 
also generates an interrupt request. 

7-49 



WR* 

PORT OUTPUT 

(8 BITS) 

ROY 

STB 

INT 
--~'----

MODE 0 (OUTPUT) TIMING 

W~·= RD .'CE • C/O· iORQ 

Figure 7-18. Mode 0 (Output) Timing 

The ROY and STB signal transition logic has been designed to let ROY create STB.1f you connect these two signals. the 
ROY low-to-high transition becomes the STB low-to-high transition and ROY is strobed high for one clock pulse only. 
This may be illustrated as follows: 

ROY I 

STB 

Timing for input mode (Mode 1) is illustrated in Figure 7-19. External logic initiates an input cycle by pulsing STB 
low. This low pulse causes the Z80 Pia to load data from the I/O portpins into the port Input register. On the rising 
edge of the STB pulse an interrupt request will be triggered. 

On the falling edge of the <I> clock pulse which follows STB input high. ROY will be output low informing external logic 
that its data has been received but has not yet been read. ROY will remain low until the CPU has read the data. at which 
time ROY will be returned high .. 

It is up to external logic to ensure that data is not input to the.Z80 PIO while ROY is low. If external logic does in­
put data to the Z80 Pia while ROY is low. then the previous data will be overwritten and lost -and no error status will 
be reported. 

In bidirectional mode (Mode 2), the control lines supporting I/O Ports A and B are both applied to bidirectional 
data ~e~ng transferred via Port A; Port B must be set to bit control (Mode 3). 

Figure 7-20 illustrates timing for bidirectional data transfers. This figure is simply a combination of Figures 7-18 and 
7-19 where the A control lines apply to data output while the B control lines apply to data input. The only IJnique 
feature of Figure 7-20 is that bidirectional data being output via Port A is stable only for the duration of the A STB low 
pulse. This is necessary in bidirectional mode since the Port A pins must be ready to receive input data as soon as the 
output operation has been completed. ' 

Once again. it is up to external logic to make sure that it conforms with the ti~ing requirements of bidirectional mode 
operation. External logic must read output data while A STB is low. If external logic does not read data at this time. the 
data will not be read and the Z80 Pia will not report an error status to the CPU; there is no signal that external logic 
sends back to the ZBO Pia following a successful read. 

7-50 



Q 
w 

~ 
a: 
o 
Q.. 
a: 
o u 
~ 
en 
w 
~ 
g 
CI) 
CI) 

< 
call 
w 
Z 
a: 
o 
CD 
CI) 

o 
~ 
< 
Q 
< 
@ 

Also. it is up to external logic to make sure that it transmits data to Port A only while B ROY is high and A ROY is iow. If 
external logic tries to input data while the Z80 PIO is outputting data. input data will not be accepted. If external logic 
tries to input data before previously input data has been read. the previously input data will be lost and no error status 
will be reported. 

STB 

PORT INPUT 
(8 BITS) 

ROY 

INT 

Figure 7-19. Mode 1 (Input) Timing 

A ROY ________________ ~ 

ASTB 

PORT A 

DATA BUS 

INT 

'BsTB 

BRDY 

WR·= RD • CE • C76 • IORQ 

Figure 7-20. Port A. Mode 2 (Bidirectional) Timing 

Control mode (Mode 3)does not use control signals. You must define every pin of an 1/0 port in Mode 3 as an in­
put or an output pin. The section on programming the Z80 PIO explains how to do this. Timing associated with the ac­
tual transfer of data at a single pin is as illustrated in Figures 7-18 and 7-19. ignoring the RDY and STB signals. If all the 
pins of a single port are defined in the same direction. then that port can beused for simple parallel input or output 
(without handshaking). 

zao PIC INTERRUPT SERVICING 
The Z80 PIO ha's a single interrupt request line via which it transmits 'int~rruPt reque~ts to the CPU. 

An interrupt request can originate from 1/0 Port A logic, or from I/O' Port B logic. In the case of simultaneous in­
terrupt requests, 1/0 Port A logic has higher priority. . 

An interrupt request may be created in one of two ways. We have already seen in our discussion of Modes O. 1 and 2 
that appropriate control signal transitions will activate the interrupt request line; that is the first way in which an inter­
rupt request may occur. In Mode 3 you can program either liD port to generate an interrupt request based on the status 
of Signals at individual 110 port pins; you can specify which 110 port pins will contribute to interrupt request logic and 
what the pin states must be for the interrupt request to occur. In a microcomputer system that has more than one Z80 
PIO. interrupt priorities are arbitrated using daisy chain logic as we have already described. But there is a significant 
difference between priority arbitration within a Z80 system as compared to typical priority arbitration. Figure 7-21 il7 
lustrates interrupt acknowledge timing. 

7-51 



INT 

M1 

lEO 

lEI 

LAST T 

STATE 

} 

-IO-R-O AND Mi INDICATE 

,..-____ INTERRUPT ACKNOWLEDGE 

Figure 7-21. Int~rrupt Acknowledge Timing 

The zao PIO requires the CPU to execute an RETI instruction upon concluding an interrupt service routine. 
Following an interrupt. an acknowledged Z80 PIO continously~cans the Data Bus whenever M 1 is pu Ised low. Until an 
RETI instruction's object code is detected. the acknowledged Z80 PIO will continuously output lEO low. thus disabling 
all lower priority Z80 PIOs. As soon as an RETI instruction's object code is detected on the Data Bus. the Z80 PIO will 
output lEO high. thus 'enabling lower priority Z80 PIOs. What this means.is that interrupt priorities extend to the inter­
rupt service routine as well as the interrupt request arbitration logic. Once an interrupt has been acknowledged. all 
lower priority interrupt requests will be denied until the acknowledged interrupt service routine has completed execu­
tion and has executed an RETI instruction. However. higher priority interrupts can be acknowledged and in turn inter­
rupt an executing service routine. This .is identical to the priority arbitration logic which we described for the 8259 

. PICU. 

You can. if you wish. enable lower priority interrupts by executing an RETI instruction before an interrupt service 
routine has completed execution. But this requires that you execute an RETI instruction in order to return from a 
subroutine within the interrupted service routine. This instruction sequence may be illustrated as follows: 

;START OF INTERRUPT SERVICE ROUTINE 

CALL 

RET 
ENABLE RETI 

ENABLE ;ENABLE ALL INTERRUPTS AT PIO DEVICES 

;END OF INTERRUPT SERVICE ROUTINE 

If you simply executed an RETI instruction shortly after entering an interrupt service routine. you would make a hasty 
exit from the routine - before completing the tasks that have to be performed in response to the acknowledged inter­
rupt.. 

PROGRAMMING THE zao PIO 
You program the zao PIO by outputting a series of commands. 

Let us start by identifying command format. 

If the 0 bit of a command is low, then the receiving I/O port logic will interpret the command as an interrupt vec­
tor, with which it must respond to an interrupt acknowledge. assuming that the CPU is operating in interrupt Mode 2: 

7 6 5 4. 3 2 1 0 -----Bit No. 

I I I I· I 
'-, 

V 

t 
I 0 t----- Command Byte 

~""""""''''''''''-''''''''('''~---lnterrUPt vector specified 

"'-------- Output these eight bits when 
an interrupt request is acknowledged 

7-52 



Q 
w 

~ 
a: 
o 
Q. 
a: 
o 
(.) 

~ 
III 
w 
l­
e:( 

U o 
CI) 
CI) 
e:( 

ciS 
w 
Z 
a: 
o 
III 
CI) 

o 
::?! 
e:( 
Q 
e:( 

@ 

Do not confuse CPU interrupt modes with I/O port modes: they have nothing in common. 

In order to define an I/O port's mode you must output a Control code to the I/O port's Control buffer. This is the 
Control code format: 

7 6 5 4 3 2 1 0 ---- Bit No. 

Tr-rIX=~~~~~o~~:~coo, 
I ~--- Don't Care 

-------------00 Output, Mode 0 
01 Input, Mode 1 

10 Bidirectional, Mode2 

11 Control, Mode 3 

Observe that the same address, the I/O Port A or B Control buffer address, is used when outputting a Control code, an 
interrupt vector, or a mode select. The low-order four bits of the Control code determine the way in which the Control 
code will be interpreted. The following Control code will enable or disable interrupts: 

7 6 5 4 3 2 1 0 ~Bit No. 

..... 11-- Control Code 

~:t:=:o:~r:::-

------ Interrupt enable control 

---------- Don't Care 

'-__________ --( 0 Disable interrupts 

1 Enable interrupts 

If a Mode Select Control code is output specifying that an I/O port will operate in Mode 3·, then the next byte 
output is assumed to be a pin direction mask. 1 identifies an input pin, whereas 0 identifies an output pin. Here is a 
sample instruction sequence: 

LD 
LD 
OUT 
LD 
OUT 

C,(PORTAC) 
A,OCFH 
(Cl.A 
A.3AH 
(Cl.A 

:LOAD PORT A CONTROL ADDRESS INTO REGISTER C 
:LOAD MODE 3 SELECT INTO ACCUMULATOR 
:OUTPUT TO PORT A CONTROL REGISTER 
:DEFINE PINS 5, 4, 3 AND 1 AS INPUTS, 
:PINS 7, 6, 2 AND 0 AS OUTPUTS 

If you set an I/O port to Mode 3, th~n you can define the conditions which will cause an interrupt request; you 
do this by outputting the following interrupt Control code: 

7 6 5 ...... f----Bit No. 

........... --Control Code 

~~~--~--~--~ 

-------Interrupt control word

~ _______ -< 1 if interrupt select mask follows

7-53

o otherwise

1 high input on selected pins is active

o low input on selected pins is active

1 AND selected pins for interrupt

o OR selected pins for interrupt

1 Enable interrupts

o Disable interrupts

When you output an interrupt Control code. as illustrated above. if bit 4 is 1. Z80 PIO logic will assume that the next
Contr.ol code output is an interrupt mask. An interrupt mask selects the pins that will contribute .to interrupt request
logic. A 0 bit selects a pin. while a 1 bit deselects the pin. '. .

Combining the various Control codes that have been described we can now illustrate a typical sequence of instructions
for accessing a Z80 PIO. Assume that PIO 1/0 port addresses are:

Port A data 4
Port A command 5
Port B data 6
Port B command 7

We are going to set I/O Port B to Mode 3. with an interrupt request triggered by either pin 6. 3 or 2 high. Pins 6.3. 2
and 1 will be input pins. while pins 7. 5. 4 and 0 are outputs. The Port B interrupt vector will be 04. Port A will be a
bidirectional 1/0 port with an interrupt vector of 02. Here is th'e initialization instruction sequence:

LD A8FH ;SET PORT A TO MODE 2
OUT (5).A
LD A2 ;OUTPUT INTERRUPT VECTOR
OUT (5).A

.LD C.7 ;SET PORT B ADDRESS IN C
LD AOCFH ;SET PORT B TO MODE 3
OUT (Cl,A
LD AAEH ;OUTPUT PIN DIRECTION MASK
OUT (C).A
LD A4 ;OUTPUT INTERRUPT VECTOR
OUT (Cl.A
LD AOB7H ;OUTPUT INTERRUPT CONTROL WORD
OUT (Cl,A
LD AOB3H ;OUTPUT INTERRUPT MASK
OUT (C).A

THE zao CLOCK TIMER CIRCUIT ·(CTC)

The Z80 Clock Timer Circuit is a programmable device which contains four sets of timing logic. Each set of tim­
inglogiccan 'be programmed independently as an interval timer or an external event counter.

The master Z80 '~ystem clock is used by interval'timer logic. A time out may be ide'ntified b~a'n inte~ruPt request.

An external signal is used to trigger decrement logic when the timer is functioning as an event counter. An interrupt
may be requested when the predetermined number of evel!ts countout.

If you compare the Z80 CTC with the 8253 CounterlTimer described in Chapter 4. you will see that the Z80 CTC
has four sets of counter/timer logic as compared to the three sets of the 8253; however the 8253 has more pro­
grammable options. In addition to functioning as an event counter or an interval timer. the 8253 can be programmed to
generate a variety of square waves and pulse outputsignals.

The Z80 CTC is fabricated using N-channel depletion load technology. It is packaged as a 28-pin DIP. All pins are
TTL-level compatible.

zao eTC FUNCTIONAL ORGANIZATION
Before we examine pins, signals, and operating characterics of the Z80 CTC in detail, let us take an overall look
at device logic.

There are four counterltimer logic elements in a Z80 CTC; each is referred to as a "channel".

7-54

c
w

~
a:
0
Q.
a:
0
CJ
~
en
w
~.
g
en
en
~
o!I
w
z
a:
0
al
en
0

~
~
C
~

@

Each of the four counter/timer channels may be visualized as consisting of three a-bit registers and two control
signals. This may be illustrated as follows:

a-bit Channel 0 only

Control
Register

III
:::>
co
-I « a-bit z
a:

Time Constant w
t-
~ Register

ClK/TRG

a-bit
Down Counter

Register

Control logic

An initial counter or timer constant is loaded into the Time Constant register. The value in the Time Constant
register is maintained unaltered until you write a new value into this register.

The initial Timer Constant is loaded into the Down Counter register at the beginning of a counter or timer opera­
tion; the contents of the Down Counter register are decremented. You can at any time read the contents of the Down
Counter register in order to determine how far a time interval or event counting sequence has progressed.

The Channel Control register contains a Control code which defines the channel's programmable options. There
are four Control registers. one for each of the four channels. Thus one channel's operations in no way influence opera­
tions for any other channel.

There is an Interrupt Vector register which is addressed as though it were part of channel 0 logic. This register
contains the address which is transmitted by the zao CTC upon receiving an interrupt acknowledge. The Z80
CTC assumes that the Z80 CPU is operating in Interrupt mode 2 - in which mode the device requesting an interrupt
responds to an acknowledge by providing the second byte of a subroutine address which the CPU will Call. For details

. refer to our earlier discussion of the Z80 CPU.

zao CTC PINS AND SIGNALS
zao CTC pins and signals are illustrated in Figure 7-22.

DO - 07 is the bidirectional Data Bus via which parallel data is transferred between the CPU and any register of the
Z80 CTC.

CE is the master chip select signal for the Z80 CTC. This signal must be low for the device to be selected .

. ·7-55

While CE is low. eso and eS1 are used to select one of the four counter/timer logic channels as follows:

CS1

o
o
1
1

CSO

o
1
o
1

D4

D5

06

D7

GND

R5
ZC/TOO

ZC/T01

ZC/T02
iO'RQ

PIN NAME

DO-D7

lEO

INT

lEI

M1

CLK/TRGO,

} ClK/TR01.

ClK/TRG2.

ClK/TRG3.

ZC/TOO } ZC/T01

ZC/T02

Mi

iORQ
AD
RESET

lEI

lEO

iNT
CE
CSO. CS1

c1>. + 5V. GND

Channel

o
1
2
3

-

1 18
2 27
3 26
4 25
5 24
6 23 --Z80
7

CTC
8

9

10

11

12

13

14

DESCRIPTION

Data Bus

22

21

20

19

18

17

16

15

External Clock or timer trigger

Zero Count or timeout indicator

Instruction fetch machine cycle

signal from CPU

Input/Output request from CPU

Read cycle st<ltus from CPU

Device Reset

Interrupt enable in

Interrupt enable out

Interrupt request

Device enable

Register select

Clock. power and ground

.L

-

.. D3

D2
D1

DO

+5V

ClK/TRGO

ClK/TRG1

ClK/TRG2

CLK/TRG3

CS1

CSO
REsET
CE
<I>

TYPE

Bidirectional. tristate

Input

Output

Input

Input

Input

Input

Input

Output

Output. Open-drain

Input

Input

Figure 7-22. ZBO-CTC Signals and Pin"Assignments

7-56

Q
w

~
a:
o
Q.
a:
o
o
~
en
w

~
C3 o
en
en
ct
oil
w
Z
a:
o
III
en o
~
ct
Q
ct

@

CSO and CS 1 select registers associated with counterltimer logic. to be accessed by read and write operations. The ac­
tual register which will be accessed is determined as follows:

Write to Channel

J • • •

7 6 5 4 3 2

~
0 .. Bit No.

X Data written

0---....... X = O. channel = 0

Select Interrupt

Vector

~---~ X = 1. select Channel

Control register on

first access.

Read from channel

• • •

Down Counter

.... ----..... -If Y = 0 ~Select Time Constant register
on next write I..:' '.

If Y = 1 ~ Select Channel Control register

~gain on next write

(If Channel = O. select on next

write according to X.I

As the illustration above would imply. the Down Counter register is the only location of any channel whose contents
can be read. All other registers are write only locations.

When you write to a channel. bits 0 and 2 of the data byte being written determine the data destination as follows:

1) If bit 0 is 0 and you are selecting channel O. then ,the data is written to the Interrupt Vector register.

2) If bit 0 is 0 and you select channel 1. 2 or 3. the data destination is undefined.

3) If bit 0 is 1. then on the first access of any channel the data will be written to the Channel Control register.

4) If within the data byte written to a Channel Control register bit 0 is 1 and bit 2 is O. then the next data byte written
to this channel will be loaded into the Time Constant register. irrespective of whether bit 0 is 0 or 1. The data writ­
ten will be interpreted as a time constant; select logic will immediately revert to selecting the Channel Control
register or the Interrupt Vector register on the next write. depending on the condition of bit 0 of the next data byte.

M 1. IORG and RD are three control signals input to the l80 CTC. Combinations of these three control signals control
logic within the zao CTC. as described for the zao PIO. An exception is the device Reset. The l80 CTC has its
own RESET input. The PIO decodes a Reset when M 1 is low while IORO and RD are high. With the exception of the
RESET function. Table 7-4 defines the manner in which the l80 CTC interprets M1. IORO, and RD signals.

Interrupt logic has three associated signals: lEI. lEO and INT. These signals operate exactly as described for the
l80 PIO.

The l80 CTC requests an interrupt with a low INT output.

lEI and lEO are used to implement daisy chain priority interrupt logic as described for the PIO.

Each of the four counter/timer channels has a CLK/TRG input control. This signal can be used to trigger timer logic;
it is also used as a decrement control by counter logic.

Counterltimer logic channels O. 1 and 2 have a lC/TO output. This signal is pulsed high on a time out or a count out.

When a low input is applied to the RESET pin. the zao CTC is reset. At this time all counterltimer logic is stopped.
INT is output high. lEO is output at the lEI level and the Data Bus is floated. Register contents are not cleared during a
reset. '.,

zao CTC OPERATING MODES
The zao CTC is accessed by the CPU as four I/O ports or four memory locations. Timing for any CTC access con­
forms to descriptions given earlier in this chapter for the CPU.

Let us begin by looking at a counter/timer operating a~ a timer.

7-57

Using an appropriate Control code (described later) you select Timer mode for the channel and specify that an initial
time constant is to follow.

You load an initial constant into the Time Constant register, after which timer operations begin.

You have the option of using the CLKfTRG input to start the timer, in which case timer logic is initiated by external
logic. The alternative is to initiate the timer under program control. in which case the timer starts on the clock pulse
fo!lowing the Time Constant register being loaded.

When timer operations begin, the Time Constant register contents are transmitted to the Down Counter register. The
Down Counter register contents are decremented on every 16th system clock pu Ise, or On every 256th system clock
pulse. You make the selection via the Control code. Assuming a 500 nanosecond clock, therefore, the timer will decre­
ment the Down Counter register contents every 8 microseconds, or every 128 microseconds.

When timer logic decrements the Down Counter register contents from 1 to 0 a time out occurs. At this time ZC/TO is
pulsed high, the Time Constant register contents are reloaded into the Down Counter register and timer logic starts
again. Thus timer logic, is free running; once started, the timer will run continuously until stopped by an appropriate
Control code.

Here is a timing example for a timer started under progr.am control and decrer:nenting the Down Counter register on ev­
ery 16th clock pu Ise:

"1 2 3 .. 15 16 15 16 15 16 2
4>

ZC/TO

INT

Output Output Time Constant Decrement Down Counter Register
Control Initial to Down Counter Down Counter Decrements from 1 to O.
Code Time Register. Start Register Refoad Down Counter from

Constant Timer' Time Constant Register and

restart timer

Here is a timing example for a timer,whose operations are initiated by CLKfTRG, where the Down Counterregister con­
tents are decremented on every 256th clock pu IS8:

2 3 255 256 1 255 256 1 255 256

CLK/TRG

ZC/TO

INT

Output Output Time Decrement Down Counter Restart

Control initial Constant Down Counter Register decrements Timer

Code time to Down Register " from 1 to O.

constant Counter Reload Down

Register, Counter from

Start Time Constant

Timer register

7-58

Q
w

~
a:
o
Q.
a:
o
u
~
en
w

~
U o
II)
II)

ct
all
w
2
a:
o
In
II)

o
~
ct
Q
ct
@

Observe that every time out is marked by a ZCITO high pulse. iNf is also output low providing interrupt logic is enabled
at the channel.

In the illustra'tion above ClKITRG is shown as a high true signal. You can specify ClK/TRG as a low true signal via the
Channel Control code; the timer will be initiated as follows:

2

Itl/ \ I 2~ \ I \
CLK/TRG I

For exact timing requirements see the data sheets at the end of this chapter.

. You can at any time write new data into the Time Constant register. If you do this while the timer is running. nothing
happens until the next time out: at that time the new Time Constant register contents will be transferred' to the Down
Counter register and subsequent time intervals win be computed based on the new Time Constant register contents.

If you are unfortunate enough to output data to the Time Constant register while a time out is in progress and the Time
Constant register contents are being transferred to the Down Counter register. then an undefined value will be loaded
into the Down Counter register; however. following the next time out the new value in the Time Constant register will
apply; that is to say. there will only be one undefined time interval.

Let us now look at a counter/timer operating as a counter.

Using an appropriate Control code (described later) you se'lect Counter mode for the channel and specify that an initial
time constant is to follow.

.You load an initial constant into the Time Constant register. after which counter operations begin.

When counter operations begin. the Time Constant register contents are transmitted to the Down Counter register. The
Down Counter register contents are decremented every time the ClKITRG input makes an active transition. Counter
logic begins on the first active transition of ClKITRG following data being loaded into the Time Constant register. The
active transition of ClKITRG may be s~l~cted under program control as low-to-high or high-to-Iow.

When counter logic decrements the Down Counter register contents from 1 to O. a count out occurs. At this time the
ZCITO si.gnal is pulsed high; an interruPl request occurs. providing the channel's interrupt logic has been enabled. The
Time Constant register contents are reloaded into the Down Counter register and counter operations begin again. That
is to say. counter logic is free running and V'/ill continue to re-execute until specifically stopped by an appropriate Con­
trol code. Counter logic timing may be illustrated as follows:

~ .1\.J\JVl MA. ..
CLK/TRG

ZC/TO

Output Output Start Decrement Down Counter

Control Initial Counter Down Counter register

Code Time ~~gister • decrements

Constant from 1 to 0

7-59

Restart

Colinter

zao CTC INTERRUPT LOGIC
1

Every zao CTC channel has its own interrupt logic. A channel's interrupt logic generates an interrupt request
when the channel counts out or times out. All interrupt requests are transmitted to the CPU via the INT output.
This is true if one, or more than one channel is requesting an interrupt. If more than one channel is requesting an
interrupt, then priorities are arbitrated as follows: . '

Highest Priority Channel a
Channell
Channel 2

Lowest Priority Channel 3

Every channel's interrupt logic can be individually enabled or disabled under program control.

The zao CTC device's overall interrupt logic is identical to that which we have already described for the zao
PIO.

The interrupt request is transmitted to the CPU via a low INT signal.

The CPU acknowledges the interrupt by outputting M 1 and IORO low as illustrated in the data sheets at the end of this
chapter.

The device requesting an interrupt which is highest in the daisy chain acknowledges the interrupt. Presuming this is a
Z80 CTC, the CTC places its interrupt vector on the Data Bus; it is assumed that the CPU is operating in Interruptmode
2. The Z80 CTC immediately outputs lEO low, disabling all devices below it in the daisy chain.

When an RETI instruction is executed, Z80 CTC logic sets lEO high again.

For more information on Z80 interrupt logic refer to discussions of this subject given earlier in the chapter for the Z80
CPU and the PIO.

PROGRAMMING THE zao CTC
These ~re the steps required to program a zao CTC:

1) Output an interrupt "ector once, when initializing the zao CTC.
2i For each active counter/timer channel, output one or more Control codes. Control codes are used initially to

set counter/timer operating conditions and to load the Time Constant register. Subsequently Control codes
are used to start and stop the counter/timer, or to change the initial time conslant.

The interrupt vector is written to a counterltimer by outputting a byte of data to counterltimer channel a with a a in the
low order bit. The interrupt vector may be illustrated as fo'liows: .. :

O~BitNo.
r-~~~~~~~

7 6 5 4 2

~~-- Interrupt Vector'

~~=~,..
'----Must be 0 to identify Interrupt Vector

'------Ignored by zao CTC which substitutes

bits as follows:

o 0 for Channel 0 interrupt

o 1 for Channel 1 interrupt

1 0 for Channel 2 interrupt

1 1 for Channel 3 interrupt

...... --------- Address bits stored

7-60

c
w ...
ct·
a::
o
0..
a::
o
(J

~
en
w
~
g
CI)
CI)

ct
ciJ
w
Z
a::
o
1:0
CI)

o
~
ct
C
ct
@

The Control code which must be output to each active channel will be interpreted as illustrated in Figure 7-23.

7 6 5 " 3 2 1 0 ~ Bit No.

I I III 1 1 11: - Control code

., J , ~ ~ +
Must be 1 to identify data as a Control code

RESET 1 stops channel immediately or
o leaves it running

lOAD Next data output is a time constant to be loaded into

the Time Constant register. If counter/timer is not

running. do not start until time constant has been written.

o No time constant follows.

TRIGGER If timer is stopped. start on ClK/TRG l Timer Mode

f Only" o If timer is stopped. start on <l>
SLOPE 1 ClK/TRG positive edge triggered

o ClK/TRG negative edge triggered
1 Decrement Down counter every 256th <l> pulseol Timer M~de
o Decrement Down counter every 16th <l> pulse. r Only .

RANGE

MODE 1 Counter mode

o Timer mode

IE Enable channel interrupt

o Disable channel interrupt

Figure 7-23. Z80 CTC Control Code Interpretation

Bit 0 must be 1 to identify the data as a Control code. If bit 0 is O. then the data is interpreted as an interrupt vector -
providing Channel 0 is addressed: the data is undefined otherwise. .

Bitl is used to stop the channel when it is running. If bit 1 is O. then every time the channel times out the Down
Counter register is immediately reloaded from the Time Constant register contents and channel operations restart ac­
cording to current options. If bit 1 is 1. the channel stops immediatel'y: the ZC/TO output is inactive and channel inter­
rupt logic is di~abled. The channel must be restarted by outputting a new Control code.

Bit 2 is used to output time constants. If bit 2 is 1. then the next data output to the channel will be interpreted as a time
constant. If bit 2 is O. then the next data output to the channel will be interpreted as another Control code. or an inter­
rupt vector. depending on the pit 0 value.

Bit 3 applies to Timer mode only: assuming that the timer is not running. it determines whether timer operations will be
initiated by the system clock signal <1>. or by ClK/TRG.

If bit 3 is 0 then timer qperations are initiated by system clock signal <1>; the timer will start on the next leading edge of
<1>. unless the current Contrql code specifies (via bit 2) that a new time constant is to be output. in which case the timer
will start on the rising edge of <I> which immediately follows output of the time constant. Timing for thes'e two cases has
been illustrated ~arlief; . I

If bit 3 is 1. then the actiye tran~ition of the ClK/TRG signal initiates the timer. Once again. if bit 2 of the current Con­
trol code specifies that a 'new time constant is to be output then timer logic cannotbe started until this new time cons­
tant has been output. Tillling ha~ been illustrated earlier.

Bit 4 determines whether the low-to-high or the high-to-Iow transition of ClK/TRG is active. Assuming that bit 6 has
specified Timer mode and bit 3 has specified the timer will be triggered externally by ClK/TRG. the active transition of
ClK/TRG starts the timer. If bit.6 is not 0 or bit 3 is not 1. then the active transition of ClK/TRG decrements the counter.

If bit 4 specifies that a low-to-high transition of ClK/TRG will be active then ClK/TRG may be illustrated as follows:

CLK/TRG _____ ~---_r;.. -----..... \"" _____ ~---
If bit 4 specifies th~H the high-to-Iow transition of ClK/TRG will be active then ClK/TRG may be illustrated as follows:

--~ ClK/TRG -c)I. ________________ ..,1

7-61

Bit 5 applies to Timer mode only. If bit 5 is O. Down Counter register contents will be decremented every 16th system'
clock pulse (<1». If bit 5 is 1. the Down Counter register contents will be decremented every 256th system clock pulse
(<1».

Bit 6 determines whether the channel will be operated as a counter or a timer. If bit 6 is O. Timer mode is selected;
Counter mode is selected if bit 6 is 1.

Bit 7 is an interrupt enable/disable flag. If O. the channel's interrupt logic is disabled; if 1. the channel's interrupt logic
is enabled.

Let us now look at the programming example. Here are the assumed operating conditions for the Z~O CTC:

1) Channel 0 is operating as a counter with an ,initial time constant of 8016 and interrupt logic enabled.

2) Channel 1 is operating as a timer. It decrements on every 16th system clock pulse and has an initial time constant
of 4016; its interrupts are disabled and CLK/TRG starts the tiryler on its low-to-high transition.' .

3) Channel2 is operating as a timer. It decrements every 256th system clock pulse and has an initial time constant of
C816; its interrupts are enabled and the system clock starts the timer.

4) Channel 3 is inactive.

The CPU is operating with interrupt logic in Mode 2. CTC interrupt service routine starting addresses are stored at
memory locations 2C4016. 2C4216 and 2C4416. The CTC is accessed as I/O ports B816. B916. BA16. and BB16.

Here is the appropriate CTC initiation instruction sequence:

LD A.2CH
LD I.A
1M 2
LD A.40H
OUT (OB8H).A

;ST ART CHANNEL 0
LD ' A.OC5H
OUT (OB8Hl.A
LD A.80H
OUT (OB8H).A

;START CHANNEL 1
LD A.1DH
OUT (OB9Hl.A
LD A.40H
OUT (OB9Hl.A

;ST ART CHANNEL 2
LD A.OA5H
OUT (OBAHl.A
LD A.OC8H
OUT (OBAHl.A

;LOAD INTERRUPT VECTOR REGISTER OF CPU

;SELECT CPU INTERRUPT MODE 2
;OUTPUT INTERRUPT VECTOR TO
;CHANNEL 0

;OUTPUT THE CONTROL CODE TO CHANNEL 0

;OUTPUT THE INITIAL COUNT TO CHANNEL 0
;CHANNELO BEGINS OPERATING.

;OUTPUT THE CONTROL CODE TO CHANNEL 1

;OUTPUT THE INITIAL TIMER CONSTANT TO CHANNEL 1
;CHANNEL 1 BEGINS OPERATING. (IF TRANSITION OCCURS)

;OUTPUT THE CONTROL ~ODE TO CHANNEL 2

;OUTPUT THE INITIAL TIMER CONSTANT TO CHANNEL 2
;CHANNEL 2 BEGINS ORERATING

7-62

c
w

~
a:
o
0..
a:
o
CJ
~
en
w

~
g
en
en
c:(

c1J
w
Z
a:
o
al
en o
~
c:(
c
c:(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

Z80 and Z80A CPU
Z80 and Z80A PIO
Z80 and Z80A eTC

7-D1

ZBO-CPU
Absolute Maximum Ratings
Temperature Under Bias
Storage Temperature
Voltage On Any Pin

with Respect to Ground
Power Dissipation

Spedfied operating range.
-6S·C to + ISO·C
-{).3V to +7V

l.5W

Z80-CPU D.C. Characteristics
T A = o·C to 70·C. V cc = 5V t 5% unless otherwise specified

Symbol Parameter Min.

VILC Clock Input Low Vol .. ge -0.3

·Comment

Stresses above those listed under "Absolute
Maximum Rating" may cause permanent
damage to the device. This is a stress rating
only and functional operation of the device
at these or any other condition above those
indicated in the operational sections of this
specification is not implied. Exposure to
absolute maximum rating conditions for
extended periods may affect device reliability.

Typ. Max. Unit Test Condition

0.45 V

VIHC Cluck Input High Voltage
Vcc -.6 Vce+·3 V

VIL Input Low Voltage -0.3 0.8 V

VIH Input HIgh Voltage 2.0 Vcc V

VOL Output Low Voltage 0.4 V

VOH Output High Voltage ~.4 V IOH = -250iJA

ICC P~wer Supply Current 150 rnA

III Input Leakage ('urrent 10 iJA

I LOll Tri·State Output Leakage Current in Float 10 iJA

ILOL Tri·State Output Leakage Current in Float -10 iJA VOUT=O.4V

ILO Data Bus Leakage ('urrent in Input Mode tlO iJA

z8oA.cPU D.C. Characteristics
T A :; 0"'(, 1\1 700r. v \."\.' :; 5 V ! 5'; unl~~~ other" 1St:' ~P~(1 fled

Symbol Parameter Min. Typ. Max. Unit Test Condition

VIL(, P",k Input Luw V"lta~e -0.3 0.45 V

VIII(, Ch.,k Input Iltg,h V"ltJge
Vee -.6 Vec+·3 V

VIL Input L"" V"ltage -0.3 O.H V

VIII Inputlllgh VollJge ~.U V
((

V

VOl Output Lo" VoltJge 0.4 V IOL =I.~IIIA

VOII Outputll'g,1t V"ltJgc ~.4 V

1('(' PII"~r Supply ('lIITl'llt 90 200 iliA

III Inpul Lt';JkJgl' ('urrl'lll IU iJA

11.011 TU,SIJII' Output LI'JJ..Jgt:' ('urr1.'111 III FI\I;.t1 10 iJ/\

lUll. TrI·StJt" Outpul I.eakage Current III Float -10 iJA

11.1) IlJtJ ilu, Leakage ('urrent In Input Mode tlO iJA

NOle For lNO-CPU all AC and DC characterIStics remain Ihe
same for the mlllli:UY grade puts except Icc'

Capacitance
T A = 2Soc, f = 1 MHz,
unmeasured pins returned to ground

Symbol Parameler Max. Unit

('<I> Clock rapacltanee .~5 pF

CIN Input Capacllanee pF

COUT Output Capacitanee /0 pF

Z80-CPU
Ordering Information
C - Ceramic
P - Plastic
S - Standard 5V t5%0· to.70·C •
E - Extended 5V '5% -40 to 85 C
M - Military 5V ;10%-55· to 125·C

Capacitance
T A = 2S°e, f = I MHz.
unmca,urcd pins relurncd tll ground

Symbol Parameter Ma,.

(',~ CI"d .. ClpJl.lld1h.:l' 35

CI,- IIIPUI ('.lrJI,:IIJlh.:\.'
,

('01'1 OlllPlit l'Jp,II.:II.IIh:l' IU

Z80A-CPU

Unit

pl'

1'1

I'F

Ordering Information
(-Ceramic
P- Plastic
S - Standard 5V ±5% 0° to 70°C

We reprint data sheets on pages 7·02 through 7-013 by permission of Zilog. Incorporated.

7-02

c
w

~
a:
o
11.
a:
o
u
~
iii
w

~ g
en
en
ct
GIS
w
Z
a:
o
In
en
o
~
ct
C
ct
@

Z80-CPU
A.C. Characteristics

TA = oOe to 700e, Vee = +5V ± 5%, Unless Otherwise Noted.

Sianol

Ao-15

Symbol

I,

Iwl'I'1iI
Iw J<l>LJ
11,1

IDIADI
IFIADI
la~m
la":l

'~a
',,-a I

IDIDI
IF IDI
IS4>1D1
IS<PIDI
'd..:m
Id":l

I,dl

IDL<P (MR)
IOH>I> (MR)
IOH<P(MR)
Iw(MRL)
Iw(MRH)

10L>I>(1R)
10L<P(1R)
tDH>I>(1R)
tOH<P(1R)

IOL>I> (RO)
10L<P(RO)
10H>I> (RO)
IOH<P(RD)

10L>I> (WR)
IOL<P(WR)
I OH<P(WR)
Iw(WRL)

10L(MI)
IOH(MI)

10L(RF)
tOH(RF)

Is(WT)

to(HT)

INT t,(lT)

BUSRO t, (BO)

BUSAK 10L(BA)
tOil (BA)

Is(RS)

Parameltr

Cll~k Pl!'rtllJ

(,h",k Pulse Wldlh. (,"':k lligh
rlu..:k PuisI!' Width. Clo .. :k Luw
('Jo,k R". and Fall Tllne

Address Ouirul Delay
Dela) 10 Flual
Address Stable Pum 10 MRi'Q IMemmy ('ydel
Address Siable Pri,,, 10 JORO. RO or WR % (ydel
Add"ss SI.ble frum !!!i. ~ I'O'RO or ~
Addn'ss Stable- FhHIl RD nr WR DUling Fluat

Oala OUlpul Delay
Dela)· 10 Flual During Wrile ()'de
Da," S<tup Tlln. lu R"lIlg tdge of ('Jo,k During M I (yde
Data SelUp Time 10 Falling Edge uf C1o..:k DUring M11u M5
Oal. Siable Prior 10 WR IMemory Cycle I
[}dI. Siable Priur lu WR (I/O (yde I
Dala Siable Frum WR

Any Hold Time fur Setup Time

MREO Delay Frum Falling Edge uf('Jo<k. MREO Luw
MREO Delay From Rising Edge of ('Ju,k. MREO High
MREO Delay From Falling Edge of ('Ju'k. MRE'i Higli
Pulse Wldlh. MREO Low
Pulse Width. MREO High

10RO Delay From Rising Edge of ('Joek.IORO Low
10RO Delay From Falling Edge of Clock. 10RO Low
IORO Delay From Rising Edge of Clock ,I ORO High
IORO Delay From Falling Edge of Clock. IORO High

. Ro Delay From Rising Edge of Clock. RD Low
jill Delay From Falling Edge of Clock.iP Low
RO Delay From Rising Edge of Clock. RO High
RD Delay From Falling Edge of Clock. RD High

WR Delay From Rising Edge of Clock. WR Low
WR Delay From Falling Edge of Clock, WR Low
WR Delay From Falling Edge of Clock. WR High
Pulse Width, Wit Low

Mi Delay From Rising Edge of Clock. Mi Low
Mi Delay From Rising Edge of Clock. Mi High

RFSH Delay From Rising Edge of Clock. RFSH Low
RFSii Delay From Rising Edge of Clock. ffiii lIigh

WAIT Setup Time 10 Falling Edge of Clock

HALT Delay Time From Falling Edge uf Cluck

iNT Selup Time lu Rising Edge of ('Jock

Pulse Width, NMI Low

BUSRO Setup Time 10 Rising Edge of Clock

BUSAK Delay From Rising Edge of Clock, BUSAK Low
BUSAK Delay From Falling Edge of ('Jock, BUSAK High

RESET Selup Time 10 RiSing Edge of ('Jock

IF (C) Delay to Float (MREO. 10RO, Ro and Wih

tmr Mi Stable Priur tu IORO (lnterrupl Ack.)

NOTES:

Min

.4
180
180

III
III
IJ.
141

;u
ou
I~

6
(71

IHI

191

1101

70

80

80

80

90

I1I1

A. Data should bt eniibled t~U the ~data hus when RD IS a~tlve. DUring interrupt acknowledge data
should be enaobled when M I and IORO are both aocllve.

B. All (ontrol !llgnals are mternally synl.."hruI1lLCd.)() they may be totally asynchronous with re!lpel.."l
h) the duck.

C The Rl:.SET Signal mU!ll be al.."llv(for it nUllllnum of l dock (ydes.
O. Output lXlay V), Luaded ('apa(llan~e

TA = 70°C Vce = +5V ±57<

Max Unit

II ~I J.JSCI.:

lEI
~OOO

30

145
110

230
w

100
100
100

90
Ilu
IOU
IIU

100
130
IOU
IIU

80
9u

IOU

130
130

180
150

300

120
110

100

Add 10nsec delay for each 50pf increase in load up 10 a maximum of 200pf for Ihe dala bus & I OOpf for
address & conlrollines .

1'.. Although \Iall, hy deSign. t("sllng guarantee!l 1w(~H) of ~OO IoIst' maoxlmum

7-03

Test Condition

1121 Ie· Iw(>I>II) + Iw(4)L) + Ir + If

CL = 50pF fli la<m = 1~>I>1Il + If-75

121 laci z: Ie -XO

PI lea = t~'~L) + Ir - 40

141 leaf = Iw(>I>L) + Ir - 00

151 Idem = Ie - 210

161 Idci = 1w(4)L) + Ir - 210

171 Icdf = Iw(4>L) + Ir -80

CL = 50pF

181 Iw (MRL) = Ie - 40

191 I~MRH) = 1~>I>I1) + If- 30

CL = 50pF

CL = 50pF

CL = 50pF

C
L

= 50pF

CL = 50pF

1II1 Imr = ~Ie + I~>I>H) + tf- 80

"1-""0

Load circuit for Output

Z80A-CPU
A.C. Characteristics

T A = oOe to 70°C. Vee = +5V ± 5%. Unless Otherwise Noted.

SianaJ Symbol Pan_t .. Min

Ie Clock Period .25

<I> Iw(<I>H) Clock Pulse Widlh, Clock High 110
Iw(<I>L) Clock Pulse Widlh, Clock Low 110
Ir,r Clock Rise and Fall Time

10(AO) Addre .. OulpUI Delay
IF(AO) Delay 10 Float

Ao-IS
lacm Addre .. Slab Ie Prior 10 MREQ (Memory Cycle) JII
tltci Address Siable Prior 10 ~, 1m or WR (I/O Cycle)
lea Address Siable from im. WR. 10RO or JJIrnO IJJ
leaf Addre .. Stable From Ro or WR During Floal Iql

10(0) Dala OuIPUI Delay
IF(O) Delay 10 Floal During Wrile Cycle
IS<I>(O) Dala Selup Time to Rising Edge of Clock ,During M I Cycle lS

0
0

_
7 ISi'(O) Dala Selup Time 10 Failing Edge of Clock Ouring M~ 10 MS SO

Idem Data Slable Prior 10 WR (Memory Cycle) . 1'1

Idei Dala Slab Ie Prior 10 WIl. (1/0 Cycle) 6
ledf Data Slab Ie From WR 171

IH Any Hold Time for Selup Time

10Li'(MR) MREQ Delay From Falling Edge of Clock, MREQ Low

JlrnJ
10H<I> (MR) MREQ Delay From Rising Edge of Clock, MREQ High
10Hi'(MR) mtm Delay From FaUing Edge of Clock, M REO High
Iw(MRL) Pulse Widlh, MREQ Low I~I

Iw(MRH) Pulse Widlh, MREQ High I~I

10L<I>(lR) 10RQ Delay From Rising Edge of Clock, 10RQ Low

iORO 10Li(IR) 10RQ Delay From Falling Edge of Clock, 10RQ Low
IDH<I>(IR) 10RQ Delay From RiSing Edge of Clock, 10RQ High
10Hi'(IR) 10RQ DeIlY From Falling Edge of Clock, 10RQ High

10L<I> (RO) ~ Delay From Rising Edge of Clock, ~Low

iW 10Li(RO) B!? Delay From Falling Edge of Clock.lID Low
10H<I> (RO) RO Delay From Rising Edge of Clock, RO High
10Hi'(RO) Ro Deloy From Falling Edge of Clock, Ro High

10L<I> (WR) ~ Delay From Rising Edge of Clock, ~ Low

WR 10Li'(WR) WR Delay From Falling Edge of Clock, WR Low
10Hi'(WR) WR Delay Fr~ Falling Edge of Clock, WR High
Iw{WRL) Pulse Widlh, WR Low 1101

Mi 10L(MI) MI Delay From Rising Edge of Clock, MI Low
10H(MI) Mi Delay From Rising Edge of Clock, Mi High

RFSH 10L(RF) ~ Delay From Rising Edge of Clock. ~ Low
10H(RF) RFSH Delay From Rising Edge of Clock. RFSH High

WAIT Is(WT) WAIT SelUp Time 10 Falling Edge of Clock 70

HALT 10 (HT) HALT Delay Time From Falling Edge of Clock

INT IS (IT) iNT Selup Time 10 Rising Edge of Clock 80

NMT Iw(NML) Pulse Widlh, NMI Low 80

BUSRQ IS (BQ) BUSRQ Selup Time 10 Rising Edge of Clock SO

BiJSAK 10L(BA) BUSAK Delay From Rising Edge of Clock. BiJSAK Low
10H(BA) liiiSAK Delay From Falling Edge of Clock, BUSAK High

RESET I,(RS) RESET SelUp Time 10 Rising Edge of Clock 60

IF(C) Delay 10 F10al (MREQ. IORQ, RD and WR)

Imr "'I Siable Prior 10 IORQ (lnlerrupl Ack.) IIII

NOTES:

A. Dala should be enabled onlo Ihe CPU data bus when RIi is aClive. During inlerrupl acknowledge dala
should be enabled when lIT and ~ are bOlh aclive.

B. All conlrol signals are inlernally synchronized, so Ihey may be 10lally asynchronous wilh respecI
10 Ihe dock.

C. The mrr signal must be aClive for a minimum of 3 clock cycles.
D. OUlPUI Delay vs. Loaded Capacilance

TA = 70°C Vee = +5V t5%

Mill

II ~I
IE]
2000

.\()

110
90

ISO

90

0

85
l!5
85

75
85
85
85

85
9S
85
85

65
80
80

100
100

130
120

300

100
100

80

Add IOnsec delay for each 50pf increase in load up to maximum of 200pf for data bus and 100pf for
address & control lines.

E. Although Sialic by design. lesling guaranlees 1w(<I>H) of 200 "sec maximum

7-D4

Unit r .. t Condition

~sec (12) Ic = Iw(<I>H) + tw(<I>L) + Ir + tf
nSte
nsec
nsec

nstl.:

nsec
nsec

CL '50pF nsec (I) lacm c tw(<I>H) + If - 65
nstc
nsec (2) laci' Ie -70

nsec
nsec

(3) lea = 1w(<I>L) + Ir - SO

nsec
"sec CL = 50pf
nsec

(4) Icaf = 1w(<I>L) + Ir - 45

(5) Idcm = Ic -170
nsec

(6) tdci = tw(<I>L) + tr - 170

nsec (7) tcdf = tw(<I>L) + tr - 70

nstc
"sec
nstc r L • SOpF
nsec (8) Iw (MRL) C Ie - 30
nsec

(9) Iw(MRH) = 1w(<I>H) + If - 20
nsec
nsec

CL ' SOpF
nsec
nsec

nsec
nsec

CL = 50pF nsec
nsec

nsec
nsec CL = SOpF
nsec
nsec

nsec CL = 50pF
nsec

n~c CL = 50pF nsec

nsec

nsec C
L

= 50pF

nsec

nsec

nstc

nsec
C L = 50pF nstc

nsec

nsec

nsec

Load eireuil for OUlPUI

c
w

~
a:
o
c.
a:
o
u
~
ui
w

~
g
(I)
(I)

~
all
w
Z
a:
o en
(I)

o
~
~
c
~

@

zao-cpu
A.C. Timing Diagram

Timing measurements are made at the following
voltages, unless otherwise specified:

AO-A15

CLOCK
OU1l'UT
.NPUT
FLOAT

"." "0"

Vee -.6V .4SV
2.0V .8 V
2.0V .8 V
f:.V to.S V

IF (0)

_r--

7-05

ZSO-PIO

Absolute Maximum Ratings

Temperature Under Bias Specified operating range.
Storage Temperature _05 0 C to + 1500 C
Voltage On Any Pin With

Respect To Ground -0 . .1 V to +7 V
Power Dissipation .6 W

Z80-PIO and Z80A-PIO
D.C. Characteristics
TA = 00 C to70° C. Vee = 5 V ± 5':; UIlIeSS otherwise specified

Symbol Parameter

VILC Clock Input Low Voltage

VIHC Clock Input High Voltage

VIL Illput Low Voltage

VIII Input High Voltage

VOL Output Low Voltage

VOH Output High Voltage

ICC Power Supply Current

III Input Leakage Current

ILOH Tri·State Output Leakage Current in Float

ILOL Tri·State Output Leakage Current ill Float

ILD Data Bus Leakage Current in Input Mode

10HD Darlington Drive ('urrent

Min. Max.

-0 . .1 .45

Vcc-.6 Vcc+.3

-0 . .1 O.X

2.0 Vl'l'

0.4

2.4

70

10

10

-10

±IO

-1.5 .l.X

7-06

Unit

V

V

V

V

V

V

mA

J.lA

J.lA

J.lA

J.lA

mA

·Comment
Stresses above those listed under --Absolute Maximum
Raling" may cause permanent damage to the device.
This is a stress rating only and runctional operation or
the device at these or any other condition above those
indicated in the operational sections or this specifica·
tion is not impl;ed. Exposure to absolute maximum
rating conditions for extended periods may arrect
device reliability.

Note: All AC and DC characteristics remain the-same for
the military grade parts except Icc'

Test Condition

10L = ~.O mA

1011 • -250 ~A

VIN = 0 to Vee

VOUT = 2.4 to Vec

VOUT = 0.4 V

O';;V IN ';;Vcc

VOH - I.S V

REXT = JQO n
Port B Only

Icc = 130mA.

C
W

~
IX:
0
a..
IX:
0
(J

~
u)
W
~
~
(3
0
(/)
(/)

~

o!I
W
Z
IX:
0
al
(/)
0

~
~
C
~

@

Z80-PIO
A.C. Characteristics

TA = 00
C to 70

0
C, Vcc = +5 V ± 5%, unless otherwise noted

SIGNAL SYMBOL PARAMETER

Ic Clock P~riod

~. IW(</>HI Clock Pulse Widlh. Clock High

IW (<I'LI Clock Pulse Widlh. Clock Low

Ir·lf Clock Rise ond Fall Times

tH Any Hold !ime for Specified Set·Up Time

CS. CE tS</> (CS! Control Signal Set·Up Time to Rising Edge of I~ During Reid
ETC. orWrileCycie

lOR (01 Data Outpul Delay from Falling Edge of Ro
IS<1>(DI Data Set·Up Time to Rising Edge of IJlOuring Write or M1

00.0 7 Cycle

101 (01 Dala OulPUI Delay from Falling Edge aflORa During INTA
Cycle.

IF (01 Delay to Flailing Bus (Ouipul Buller Disable Timel

lEI IS (lEII lEI SeI'Up Time 10 Falling Edge aflORa During INTA Cycle

IDH(lOI IEO'Delay Time from Rising Edge of lEI
lEO IDL(lOI lEO Delay Time from Falling Edge of lEI

10M (101 lEO Del~y..'rom Falling Edge of Mi (lnlerruPI Occurring Jusl
Prior 10 Mil See Nole A.

lORa tS<I> (lRI lORa Set·Up Time to Rising Edge of <I> During Read or Writ~
Cycle

Ml tSol>(MlI Ml Set·Up Time to Rising Edge of <I> During INTA or Mi
Cycle. See Note B.

RD IS<!> (RDI AD Set·Up Time 10 Rising Edge of <I> During Read or Mi
Cycle

ts (POI Port Data Set·Up Time to Rising Edge of STROBE (Mode 11

tDS (POI Port Doto Output Delay from Falling Edge of STROBE

Ao·A7· I'~ '):
(Mode 21

BO·B7 tF l~~1 Oelay to Flolting Port Dati Bus from Rising Edge of
S'i'iiOBE (Mode 21 .

tDI(PDI Port Data Stable from Rising Edge of iORQ During WR
Cycle (Mode 01

ASTB. tw (ST! Pulse Width. STROBE
BSTB

iNf to (IT! INT Delay Time from Rising Edge of STROBE

to (lT31 I NT Delay Time from Data Match During Mode 3 Operation

ARDY. tDH (RYI Ready Response Time from Rising Edge aflORa
BRDY

tDL (RYI Reidy Response Time from Rising Edge of STROBE

NOTES;'

A. 2.5 Ie >(N·21 tDL (101 + tOM (101 + IS (lEI) + TTL Buller Delay. if any

B. M1 must be active for. minimum of 2 clock periods to reset the PIO.

Outpuf loa~ circuit.

MIN

400
170
176

2BO

50

140

250

210

240

260

150

(41

MAX UNIT COMMENTS

(I)

2000
2000
30

430 (2)

CL' 50pF
340 (31

160

210 (51

190 (51 CL' 50pF
300 (51

230 (51

200 n~ec CL • 50 pF

200 (5)

490
420

tc+ (51

~60 CL' 50 pF

Ie+ 151
400

(11 te ".IW (<I>HI + tw (<I>LI + t, + tf

(2) r~~r~ase tOR (Q) by'10 nsec for e-.ch ~O pF increase in loading up to 200 pF max.

(31 incre.se 101 (01 by 10 'nsec for e.ch 50 pF increase in loading up to 200 pFm.x.

(41 For Mode 2: tw (ST!>IS (POI

l~J Increase these valut:s by ~ n'sec for each 10 pF increase in loading up to 100 pF max,

CR l - CR4 lN9l4 OR EOUIVALENT
C L z 50 pF ON 00.0 7

= ~O pF ON' ALL OTHERS

Capacitance

Symbol Parameter Max. Unit Test Conditiof)

e<l> Clock: Capacitance 10 pF Unme~sure~ Pins

(IN Input Ca~acitance 5 pF Returned to Ground

COUT O(lIput Capacitance 10 pF

7-07

Z80A-PIO

A.C. Characteristics

TA = 00 C to 700 C; Vcc = +5 V ± 5%, unless otherwise noted

SIGNAL SYMBOL PARAMETER

tc Clock Period

<I> IW(<l>HI Clock Pulse Width, Clock High

IW(<l>LI Clock Pulse Widlh, Clock Low

tr,lf Clock Rise and Fall Times

Ih Any Hold Time for Specified Set-Up Time

CS,C£ tS<l> (CSI Control Signal Set-Up Time to Rising Edge of (~ O~ring
ETC. Read or Write Cycle

tOR (D) Dala Output Delay From Falling Edge of RD

tS<I> (01 Data Set-Up Time to Rising Edge of (I' During Write or

00.0 7 MI Cycle

101 (D) Data OUIPut Delay' from Falling Edge of iCiR'Q DU'ingINTA
Cycle

tF (D) Delay to Floating Bus (Output Buffer Disable Time)

lEI ts (lEI) lEI Sel·Up Time to Falling edge of lORa DuringlNTA Cycle

IDH (101 lEO Delay Time from Rising Edge of lEI

tDL (101 lEO Delay Time from Falling Edge of lEI
lEO 10M (10) lEO Delay from Falling Edge of Mi (lnlerrupt Occurring Just

Prior 10 Mi I See Note A.

lORa tS<I> (lRI i'O"RO Set-Up Time to Rising Edge of <I> During Read or

Write Cycle.

Mi tS<l> (Mil Mi Set·Up Time to Rising Edge of <l> During INTA or Mi
Cycle See Note B

AD tS</> (RDI RD Set·Up Timeto Rising Edge of <I> During R.ad or Ml
Cycle

ts (POI Port Data Set·Up Tim. to Ri.ing Edge of STROBE (Mode 1)

tDS (POI Port Data Ourput Delay from f.!linog Edge of ~

AO·A7· (Mode 21

BO·B7 tF (POI Delay to Floating PorI O.ta Bus from Rising Edge of STROliE
(Mode 2)

tDI (POI Port Data Stable from Rising Edge of lORa During WR
Cycll (Mode 01

ASTB. tWIST) Pulse Width, STROBE
1i'ffi

iNT to (lTi i"N'T Delay time-from Rising Edge of STROBE

to (lTJI iNf Delay Time from Data Match During Mode 3 Operation

ARDY, tDH (RY) Ready Response Time fro~ Rising Edge'of j"Q"R'Q
BRDY

tDL (RYI Ready Response Time from Rising Edge of STROBE

NOTES:

A. 2.5 tc>(N.21 tDL (10). tOM (10). ts (lEI). TTL Buffer Delav, if any

B. MT must be active for a minimum of 2 clock periods to reset the PIO.

MIN

250
105
lOS

145

50

140

115

90

115

230

150
(4J

MAX

(1(
2000
2000
30

380

250

110

160
130
190

210

IBO

lBO

440
3BO

UNIT

nsec

COMMENTS

(2J

CL' 50pF
(3J

[5J
(5J CL' 50pF
[5J

(51

(5(

tc. (5J
410 CL=50pF
tc+ nsec' (5J
360

(lJ tc=tW('~HI.tW('~Ll.tr.tf
{2J Increase tOR (0) by 10 nsec for each 50 pFincrease in loading up to 200 pFmax.

(3) Increase tOI (O) by 10 nsec for each 50 pF increase in loading up to 200 pFmax.

(4J For Mode 2: tw (STI>ts (POI

IS) Increase these values by 2 nsec for each 10pF increase in loading up to 100 pFmax.

'7-08

Q
w

!t
a: o
Q.
a:
o
(,)

~
en w
!t
g
(I)
(I)
c(

o!I
w
Z
a:
o
CD
(I)

o
~
c(
Q
c(

@

ZBO-PIO

A.C. Timing Diagram

Timing measuremenU are made It the following voltlgeS, unless otherwise specified:

lEI

lEO

REAOY
(AROYOR
BROYI

mwlfE
(A STB OR liSfB)

(MODE 2)

(MODE 1)

MODE 3)

7-09

"'" "0"

CLOCK Vee-.S .45V
OUTPUT 2.0V O.BV

INPUT 2.0V O.BV

FLqAT ~V . <Q.5V
I'

------j:
--IOI(POI~ ----:;...---

I f.··~.· -IO.L(RYI - ,,,,,,, -J

-IO(IT)_

zaO-CTC

Absolute Maximum Ratings

Temperature Under Bias
Storage Temperature
Voltage pn Any Pin Wilh

Respe((.To Ground
Power D!ssipation

0° (" to 70° ("
_65° (" to + 150° ("

-0.3 V 10 + 7 V
0.8W

D.C. Ch~racteristics

·Comment
Slresse~above those listed under "Absolute Maximum
Rating"'may(ause permanent damage to the devi(e.
This is a stress rating'only an~ '"tlnctional operation of
Ihe devl(e at these or any othr! (ond,t,on above those
indi"ted in Ihe operalional se(tions of this specifica·
tion is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect
devi(e reliabilIty. .

TA = 0° C to 70° r. V" = 5 V ± 57. lin less olherwise 'pe(ified

zaO-CTC

Symbol Parameter

VILC Clock Input Low Voltage

VIHC Clock Input High Voltage [1]

VIL' Input Low Voltage

VIH Input High Voltage

VOL Output Low Voltage

VOH OutPut High Voltage

ICC ~ower Supply Current

III Input Leakage Current

ILOH Tri-State'Output Leakage Current in Float

ILOL Tri-State Output Leakage Current in Float

IOHD Darlington Drive Current

zaOA-CTC

Symbol Parameter

VILC Clock Input La"w Voltage

VIHC Clock Input High Voltage [1]

VIL Input Low Voltage

VIH Input High Voltag~

VOL Output Low Voltage

VOH Output High Vpltage

ICC Power Supply Cu'rrent ."

III Input Leakage Current _.

ILOH Tri-State OutPu~ Leakage Current in Float

ILOL Tri-State Output Leakage ~urrent in Float

IOHD Darlington Drive ~urrerit

.-

Capacitance
TA=2SoC,f=lMHz

Symbol Parameter Max.

C<I> Clock Capacitance 20

CIN Input Capacitance 5

COUT Output Capacitance 10

Min

-0.3

VCC -.6

-0.3

2.0

2.4

-1.5

Min

-0.3

VCC -.6

-0.3

2.0

2.4

-1.5

7-D10

Max Unit Test Condition

.45 V

VCC +.3 V

0.8 V

VCC V

0.4 V IOL = 2 mA

V IOH = -250.uA

120 mA TC = 400 nsec

10 .uA VII\i = 0 to'VCC

10 .uA VOUT = 2.4 to VCC

-10 .uA VOUT = O.4V

mA VOH = 1.5V

REXT = 390n.

Max Unit Test Condition

.45 V

VCC +.3 V

0.8 V

VCC V

0.4 V IOL = 2 mA

V IOH = -250.uA

120 mA TC = 250 nsec

10 .uA VIN = 0 to VCC

10 IJA VOUT = 2.4 to VCC

-10 .uA VOUT = O.4V

mA VOH = 1.5V

REXT = 390n.

Unit Test Condition

pF Unmeasured Pins

pF Returned to Ground

pF

c
w

!i
a: o
Q.
a:
o
(J

~
en
w

!i o o
(/)
(/)

ct
all
w
Z
a:
o
m
(/)

o
:!:
ct
c
ct
@

Z80-CTC
A.C. Characteristics

TA = 0° C to 70° C, Vee = +5 V ± 5%, unless otherwise noted

Signal Symbol Parameter Min Max Unit Comments

tc Clock Period 400 [11 ns

<I>
tW(<I>H) Clock Pulse Width, Clock High 170 2000 ns

tW(<I>l) Clock Pulse Width, Clock low 170 2000 ns

tptf Clock Rise and Fall Times 30 ns

tH Any Hold Time for Specified Setup Time 0 ns

CS, CE, etc.
tS<I>(CS) Control Signal Setup Time to Rising Edge of <I> During Read 160 ns

or Write Cycle

tDR(D) Data Output Delay from Rising Edge of RD During Read 480 ns [2)
Cycle 1

tS<I>(D) Data Setup Time to Rising Edge of <I> During Write or M1 60 ns

DO-D7
Cycle

tDI(D) Data Output Delay from Falling Edge of IORO During 340 ns (2)
INTA Cycle

tF(D) belay to Floating Bus (Output Buffer Disable Time) 230 ns

lEI
tSOEI) lEI Setup Time to Falling Edge of IORO During INTA 200 ns

Cycle

tDHOO) lEO Delay Time from Rising Edge of lEI 220 ns [3)

lEG
tDlOO) lEO Delay Time from Falling Edge of lEI 190 ns [3]

tDMOO) lEO Delay from Falling Edge of M1 Onterrupt Occurring 300 ns [3)
just Prior to. M1)

'i'6'Ra tS<I>OR) IORO Setup Time to Rising Edge of <I> During Read or 250 ns
Write Cycle

M1
tS<I>(M1) M1 Setup Time to Rising Edge of <I> During INTA or M1 210 ns

Cycle

RD
tS<I>IRD) RD Setup Time to Rising Edge of <I> During Read or M1 240 ns

Cycle

INT
tDCKOT) INT Delay Time from Risihg Edge tJf ClK/TRG 2tcl<I» + 200 Counter Mode

tD<I>OT) INT Delay Time from Rising Edge of <I> tcl<I» + 200 Timer Mode

tCICK) Clock Period ,I 2tcI<I>l Counter Mode

tr,tf Clock and Trigger Rise and Fall Times 50

tSICKI Clock Setup Time to Rising Edge of <I> for Immediate Count 210 Counter Mode

tSITRI Trigger Setup Time to Rising Edge of <I> for Enabling of 210 Timer Mode
ClK/TRGO_3 Prescaler on Following RiSing Edge of <I>

tWICTH) Clock and Trigger High Pulse Width 200 Counter and
Timer Modes

tWICTll Clock ~nd Trigger low Pulse Width 200 Counter and
Timer Modes

tDHIZC) ZC/TO Delay Time from Rising Ed~~ of <1>, ZC/TO High 190 Counter and

ZC/TOO_2
Timer Modes

tDlIZCI ZC/TO Delay Time from Failing Edge of <1>: ZC/TO low 190 Counter and
Timer Modes

Notes: [1) tc = twl<I>H) + tW(<I>ll + tr + tf.
[2) Increase delay by 10 nsec for each 50 pF increase in loading, 200 pF maximum for data lines and 100 pF for control lines.
[3) Increase delay by 2 nsec for each 10 pF increase in loading, 100 pF maximum
[4] RESET must be active for a minimum of 3 clock cycles.

OUTPUT LOAD CIRCUIT

CR l - CR4 lN9l4 OR EQUIVALENT
CL = 50 pF ON ALL PINS

:-. 7-011

Z80A-CTC
A.C. Characteristics

TA = 0° C to 70° C, Vee = +5 V ± 5%, u~less otherwise noted

Signal Symbol Parameter Min Max Unit Comments

tc Clock Period 250 [1] ns

<I>
tWI<I>H) Clock Pulse Width, Clock High 105 ,2000 OS

twl<I>l) Clock Pulse Width, Clock lo~ 105 2000 ns

tr;tf Clock Rise and Fall Times 30 ns

tH Any Hold Time for Specifi~d Setup Ti:T,e', 0 ns

CS, CE,etc tS<I>ICS) Control Signal Setup Time to Rising edge of <I> During Read 60 'ns
or Write Cycle

tDR([») Data Output Delay from Falling Edge of RD During Read 380 ns (2)

Cycle

tS<I>ID) Data Setup Time to Rising Edge of <I> During Write or Ml 50 ns
00-0 7 Cycle

tDlID) Data Output Delay from Falling Edge bf IORG During 160 ns (2)

INTA Cycle

tFID) Delay to Floating Bus IOutput Buffer Disable .Time) 110 ns

lEI tsIIEII lEI Setup Time to Falling Edge of lORa During INTA 140 " ns

-'
Cycle

tDH(lO) lEO Delay Time from Rising Edge of lEI 160 ns [3]

lEO
tDl(lO) lEO Delay Time from Falling Edge of lEI 130 ns [3]
tDM(lO) lEO Delay from Falling Edge of M1 (Interrupt Occurring 190 ns [3]

just Prior to M1)

iO'RQ tsci>(lR) lORa Setup Time to Rising Edge of <I> During Read or 115 ns
Write Cycle

M1 tS<I>(Ml) Ml Setup Time to Rising Edge of <I> During INTA or Ml 90 ns
Cycle

Ri5 tS<I>IRD) RD Setup Time to Rising Edge of <I> During Re~d or Ml 115 ns
Cycle

iNf tOCK(lT) INT Delay Time from Rising Edge of ClK/TRG 2tcl<I» + 140 Counter Mode

tD<I>(lT) INT DelayTime from Rising Edge of <I> . tcl<I» + 140 Timer Mode

tCICK) Clock Period 2tC(<I» Counter Mode'

trotf Clock and Trigger Rise and Fall Times 30
tS(CK) Clock Setup Time to Rising Edge of <I> for Immediate Count 130 Counter Mode
tS(TR) Trigger Setup Time to Rising Edge of <I> for enabiing of 130' Timer Mode

CLK/TRGO_3 "Prescaler on Following Rising Edge of <I>

twICTH) Clock and Trigger High Pulse Width 120 Counter and
Timer Modes

tW(CTLI Clock and Trigger low Pulse Width 120 Counter and
Timer Modes

tDHIZC) 'ZC/TO Delay Time'from Rising Edge of <1>, ZC/TO High 120 Counter and

ZC/TOO_2
Timer Modes

tDlIZC) ZC/TO Delay Time from Rising Edge of <1>, ZC/TO low 120 Counter and
Timer Modes

Notes: [1] tc = twl<I>H) + twl<I>L1 + tr + tf. • ' , '
[2] Increase delay by 10 nsec for each 50 pF increase in loading, 200 pF maximum for data lines and 100 pF for control lines.
[3] Increase delay by 2 nsec for each 10 pF increase in loading, 100 'pF maxirnum.
[4] 'i"i'E'S"E'T must be active for a minimum of 3 clock cycles.

OUTPUT LOAD CIRCUIT

CR1 - CR4 lN914 OR EOUIVALENT
CR

2
" CL = 50 pF ON ALL PINS

CR3

CR4

zaO-CTC
A.C. Timing Diagram

CLOCK

OUTPUT
Timing measurementS'are made at the following voltages, unless otherwise specified: INPUT

lEI

EIO

eLKI
TRG0-3

ZC/TOO_2

FLOAT

� ... --t----tC(CK)I-+------i~1

(COUNTER MODE)

(TIMER MODE)

7-013

"'" "0"

VCC - .6V .45V

2.0V .SV

2.0V .SV

AV ±0.5V

Chapter 8
THE ZILOG Z8

This chapter will be provided at a later date as an update.

8-1

c
w

~
IX:
o
a..
IX:
o
CJ
~
en
w

~ g
VJ
VJ
ct
clJ
w
Z
IX:
o
al
VJ o
:!:
ct o
ct

@

Chapter 9
THE MOTOROLA MC6BOO

The MC6800 was developed by Motorola as an enhancement of the Intel 8008, at the same time that Intel was
developing the 8080A, also as an enhancement of the 8008.

When comparing the MC6800 to the 8080A, the most Important feature of the MC6800 is its relative
simplicity. Here are a few superficial, but illustrative comparisons between the two products:

1) As compared to the 8080A. MC6800 timing is very simple. MC6800 instructions execute in two or more machine
cycles. all of which are identical in length. In contrast to the 8080A. which we described in Chapter 4. note that an
MC6800 machine cycle and clock period are one and the same thing - each MC6800 machine cycle has a single
clock period.

2) Whereas the 8080A has separate I/O instructions. the MC6800 includes memory and I/O within a single address
space. Thus all I/O devices are accessed as memory locations.

3) The MC6800 has a simpler set of control signals. therefore it does not mu Itiplex the Data Bus ~ and does not need
any device equivalent to the 8228 System Controller.

4) Whereas the 8080A requires three levels of power supply. the MC6800 uses just one - +5V.

5) The instruction set of the MC6800 is much easier to comprehend than that of the 8080A. The MC6800 has fewer
basic instruction types. with more memory addressing options: the 8080A. by way o(contrast. has a large number
of special. one-of-a-kind instructions.

It is very informative to extend the five comparisons above with the enhancements that Intel has made to the
8080A in order to come up with the 8085; Let us take the five pofnts one at a time.

1) 8085 instruction execution timing is far simpler than the 8080A. But MC6800 timing is still far simpler than the
8085.

2) The 8085 retains the separate memory and I/O spaces of the 8080A.

3) The 8085 has separate control signals which do not need to be demultiplexed off the Data Bus. as required by the
8080A. The price paid by the 8085 is a multiplexed Data and Address Bus. Neither the MC6800 nor the 8085 need
any device equivalent to the 8228 System Controller: however. the 8085 will need a bus demultiplexer in con­
figurations that do not use the standard 8085 support devices.

4) The 8085. like the MC6800. has gone to a single +5V power supply.

5) The 8085 instruction set is almost identical to that of the 8080A.

An additional point worth noting is that the 8085 includes clock logic on the CPU chip. The MC6800 requires a sepa­
rate clock logic chip.

Looking at the 8085, there are grounds for arguing that Intel has acknowledged that the MC6800 has some
desirable characteristics not present in the 8080A. In order to compete with the 8085, therefore, Motorola will
not be required to make MC6800 enhancements of the same magnitude as Intel made going from the 8080A to
the 8085. Specifically, these are the MC6800 characteristics which remain to be addressed by any MC6800
enhancement:

1) Clock logic must be moved on to the CPU chip.

2) Multifunction CPU and support devices must be developed so that Motorola can offer low chip count microcom­
puters.

Additional weaknesses of the MC6800 that have manifested themselves include:

1) An instruction set that makes excessive use of memory as a result of too few Index registers and a lack of data
mobility between registers of the CPU. This is a weakness that was identified in the first version of this book.

2) The synchronizing E signal. required by support devices of the MC6800. render these support devices useless in
any microcomputer system other than the MC6800. In contrast. 8080A support devices can be used widely in
microcomputer systems not based on the 8080A CPU.

9-1

Future Motorola plans address many of the points raised above. The MC6802. described in this chapter. is the first step
towards reducing chip counts in MC6800-based microcomputer systems. The MC6809 will be the new enhanced
MC6800. to compete with the 8085. The MC6809 will provide additional Index registers. plus instructions that move
data between Accumulators and Index registers. The MC6809 will have clock logic on the CPU chip.

MC6800 and MCS6500 support devices are interchangeable: that is to say. you can use MC6800 support devices (de­
scribed in this chapter) with the MCS6500 microprocessor (described in Chapter 10) and you can use MCS6500 sup­
port devices (described in Chapter 10) with the MC6800 CPU.

Although MC6800 and MCS6500 support devices are interchangeable. they should not be used with other
microprocessors. with the exception of parts described in Volume 3.

These are the devices described in this chapter:

• The MC6800 CPU
• The MC6802 CPU with RAM
• The MC6870 series Clocks
• The MC6820 Peripheral Interface Adapter (PIA)
• The MC6850 Asynchronous Communications Interface Adapter (ACIA)
• The XC6852 Synchronous Serial Data Adapter (SSDA)
• The MC6828 Priority Interrupt Controller (PIC)
• The MC6840 Programmable CounterlTimer
• The MC6844 Direct Memory Access Controller
• The MC6846 Multifunction device - the second part in an MC6802-based two-chip microcomputer.

Devices described in Volume 3 include the MC6845 CRT controller, the MC6843 Floppy Disk controller and the
MC68488 General Purpose Interface Adapter.

Two new series of MC6800 parts offer higher speeds. Standard MC6800 parts use a 1 MHz
clock signal. "A" parts use a 1.5 MHz clock signal. while "B" parts use a 2 MHz clock signal. There
is. in addition. an MC6821 PIA which is identical to the MC6820 in operating characteristics. but
has different physical characteristics.

The principal MC6800 manufacturer is:

The second sources are:

MOTOROLA INCORPORATED
Semiconductor Products Division
3501 Ed Bluestein Boulevard
Austin. TX 78721

AMERICAN MICROSYSTEMS
3800 Homestead Road
Santa Clara. California 95051

FAIRCHILD SEMICONDUCTOR
464 Ellis Street
Mountain View. California 94040

HITACHI
Semiconductors And Integrated
Circuits Division of Hitachi LTD
1450 Josuihan-Cho-Kodaira-Shi
Tokyo. Japan

SESCOSEM
Thompson CSF
173 Haussmann Blvd.
Paris. France 75008

MOTOROLA
AAND B
SERIES PARTS

The MC6800 devices use a single +5V power supply. Using a one microsecond clock, instruction execution
times range from 2 to 12 microseconds. A one microsecond clock is the standard for MC6800 microcomputer
systems. 667 nanosecond clocks are standard for the 68AOO series while 500 nanosecond clocks are standard
for the 68BOO series.

All MC6800 devices have TTL compatible signals.

N-channel silicon gate, depletion load MOS technology is used for the MC6800.

9-2

c
w

~
a:
o
a..
a:
o
(J

~
en
w
~
U o
CI)
CI)

ct
ci/:I
w
Z
a:
o
IX!
CI)

o
~
ct
C
ct
@

THE MC6800 CPU

Functions implemented on the MC6800 CPU are illustrated in Figure 9-1; they represent typical CPU logic. As
compared to other microprocessors described in this book. the MC6800 might be considered deficient in requiring ex­
ternal clock logic; however. its principal competitor. the 8080A. requires external clock logic and Data 8us
demultiplexing logic.

The need for external clock logic simply reflects the fact that the MC6800 is one of the earlier microprocessors.

THE MC6S00 PROGRAMMABLE REGISTERS
The MC6800 has two Accumulators, a Status register, an Index register, a Stack Pointer and a Program
Counter. These may be illustrated as follows:

8 bits Accumulator A

8 bits Accumulator B

16 bits Index Register X

16 bits Program Counter PC

16 bits Stack Pointer SP

8 bits Status Register

The two Accumulators, A and 8, are both primary Accumulators. The only instructions which apply to one Ac­
cumulator. but not the other. are the instructions which move statuses between Accumulator A and the Status register
and the DAA (Decimal Adjust) instruction. /,i,.:

. /" ~ ". I~.

The Index register is a typical microcomputer Index register, as described in Volume 1.

The MC6800 has a Stack implemented in;memory and indexed by the Stack Pointer, as described in Volume 1.
8ecause 'of the nature of the MC6800 instrucUon set. it is more realistic to look upon the MC6800 Stack Pointer as a
cross between a Stack Pointer and a Data Counter. Memory reference instructions make it very easy to store the con­
tents of either the Stack Pointer or the Index r~gister in read/write memory; by maintaining a number of base page
memory locations as storage for these two Address registers. each can be put to multiple use.

The Program Counter is a typical Pr()~ram Counter, as described in Volume 1.

MC6S00 MEMORY ADDRESSING MODES
MC6800 memory reference instructions use direct addressing and indexed addressing. ,. .
The MC6800 has an unusually large variety of three-byte memory referencing inst~uctions; a 16-bit direct ad­
dress is provided by the second and third bytes of the instruction. Therefore, 65,536 bytes of memory can be
directly addressed. The commonly used memory reference instructions also have a base page, direct addressing
option; tHis is a two-byte instruction, with a one~byte address which can directly address anyone of the first
256 bytes ,:>f memory. ,.

All memory reference instructions are available with indexed addressing. Indexed addressing on the MC6800
differs from indexed addressing as described in Voiume 1. in that the one-byte displacement provided by the memory
reference instruction is added to the Index register as an unsigned 8-bit value:

Byte 1 Byte 2

..... __ o_p_c_o_de_, __ ___ x_x ___ llnstruction

________ p_pq_q ______ ---'llndex Register
Effective Address = ppqq + OOxx
P. q. and x represent any hexadecimal digits

MC6800 programs can use the Stack Pointer as an Address register. but two bytes of read/write memory must be
reserved for the current top of Stack address and interrupts mustoe disabled while the Stack Pointer is being used to
address data memory. A single instruction allows an address to be ioaded into the Stack Pointer; another single instruc­
tion allows the Stack Pointer contents to be stored in read/write memory. In most programs. the Stack is unused for
much of the time; therefore. given the low MC6800 overhead involved with swapping addresses between the Stack
Pointer and read/write memory. making dual use of the Stack Pointer is advisable.

9-3

Clock Logic I.

) (...... i i i
Logic to Handle L :C •• j<':'

...... { .. Interrupt Requests c··· • :
... from Ii .c:.

••••••

. ... External Devices I·'· , '.{

~
' •... :c:;~>

>""'.
. , /..........

Ii>i
(

Ip~tr~stl?~flegl~!~~ r- ...) .·.·i ...
[J :iii<

...... C
.

........,
···i

'"
i ·····.·· .. t:

.>
~ .. ' •• or 1\

.......
t ...

..........
Direct Memory

Interrupt Priority
i·.· .. ··// I

.... ;~ al "lJ lltl , Access Control ~ Arbitration> > Logic I
••••••

... ~ t ,

~ System Bus 1
j t t

I/O Communication ROM Addressing
I/O Ports

RAM Addressing .. Serial to Para"el and
Interface Logic

and ~
Interface Logic Interface Logic Interface Logic

t 1
Programmable

~
Read Only

I/O Ports
Read/Write

~ Timers Memory Memory

t ,
Figure 9-1. Logic of the MC6800 CPU Device

Branch and Branch-on-Condition instructions use program relative, direct addressing; a single byte displacement
is treated as a signed binary number which is added to the Program Counter, after Program Counter contents have
been incremented to address the next sequential instruction. This allows displacements in the range + 129 to -126
bytes.

One note of caution: Motorola's MC6800 literature uses the term "implied addressing" to describe instructions that
identify one of the programmable registers. The closest thing the MC6800 has to implied addressing, as the term
is used in this book, is indexed addressing with a zero displacement.

9-4

Q
w
I-
< a::
0
Q.
a::
0
u
~
en
w
I-
< g
en
en
<
GIS
w
Z
a::
0
CD
en
0

~
<
Q
<
@

~ 1
HALT ... 2

<Ill ... 3 ~

iiffi .. 4
VMA - 5 -NMi .. 6 -

SA - 7

VCC 8
AO - 9 --Al

A2
10 - MC6800
11 -

A3 - 12'

A4 - 13

A5 -- 14

A6 - 15 -
A7

A8

16 : 17 -
A9 - 18 -

Al0 - 19 -
All - 20 -

PIN NAME DESCRIPTION

·AO - A15 Address L:nes
·00 - 07 Data Bus Unes
·HALT Halt
·TSC Three State Control
·R/W Read/Write
·VMA valid Memory Address
·OBE Data Bus ,Enable
·BA Bus Avail~ble
·iFffi Interrupt Request
RESET Reset
NMi Non-Maskable Interrupt

<Ill. <Il2 Clock Signals

VSS' VCC Power

·These signals connect to the System Bus.

40 -
39 --
38
37 --
36 --
35
34
33 -
32 '---
31 --
30 -
29 -
28 --
27 -
26 --
25 '""-

24
23
22
21

.. ..
:.
.. . ..
.. ---,0;.
~ ---... .

TYPE

RESET,
TSC

<Il2

DBE

R/W

00
01
D2
D3

D4
D5
D6
D7
A15
A14

A13
A12

Vss

Tristate. Output
Tristate. Bidirectional
Input
Input,

Tristate. Output
Output
Input

Output

Input
Input
Input

Input

Figure 9-2. MC6800 CPU Signals and Pin Assignments

MC6800 STATUS FLAGS
The MC6800 has a Status register which maintains five status flags anetan interrupt control bit. These are the
five status flags:

Carry (C)
Overflow (0)
Sign (S)
Zero (Z)
Auxiliary ~arry (AC)

Statuses are assigned bit positions within the Status register as follows:

7 6 5 4 3 2 1 O.~Bit No.

11 11 lAC I S z I 0 I C J.--status Register

+ ... -f ... -------------These unassigned bits are permanently set to 1

9-5

The Carry status is standard for all additions and shift operations; however. Borrow logic sets the Carry status to 1
when there is no carry out of the high-order bit during a subtract operation. while the carry status is reset to 0 if there is
a carry out of the high-order bit during a subtract operation. For a discussion of Carry status logic during subtract

. operations. see the Status flag section of Chapter 4.

I is the external interrupt enable/disable flag. When it is 1. interrupts via IRO are disabled; when it is O. interrupts via
IRO are enabled.

MC6800 literature refers to the Sign bit as a negative bit. given the symbol N; the Overflow bit is given the symbol V.
The Intermediate Carry bit represents the standard Carty out of bit 3 and is referred to as the Half Carry bit. given the
symbol H. Statuses are nevertheless set and reset as described for our hypothetical microcomputer in Volume 1.

MC6800 CPU PINS AND SIGNALS.
The MC6800 CPU pins and signals are illustrated i.n Figure 9-2. ~ description of these signals is useful as a guide
to the way in which the MC6800 microcomputer. system works.

The Address Bus is a tristate bus; it is 16 bits wide and is used to address all types of memory and external
devices.

The Data Blls is also a tristate bus; it is an 8-bit bidirectional bus via which data is transmitted between memory
and all MC6800 microcomputer system de\(ices.

Control signals on the MC6800 Control Bus may be divided into bus state controls, bus data identification, and
interrupt processing.

T~ese are the bus state control signals:

Three State Control (TSC). This input is used to float the Address Bus and the read/write control
output.

Data Bus Enable (DBE). This signal is input low in order to float the Data Bus. When the Data

MC6800
BUS STATE
CONTROLS

Bus. the Address Bus and the read/write control output have all been floated. Direct Memory Access operations may be
performed by external logic. DBE is frequently tied to the <1>2 clock input. in which case <1>2 and DBE are identical sig­
nals.

HALT. When this signal is input low. the CPU ceases execution at the end of the present instruction execution and
floats the entire System Bus.

Bus Available (BA). This line is output high when the Data and Address Busses have been floated following a HALT in­
put only. When BA is low, the CPU is controlling the Data and Address Busses; information on these busses is
identified by the following two control signals:

Read/Write (R/W). Whl3n high. this signal indicates that the CPU wishes to read data off the Data Bus; when low. this
signal indicates that the CPU is outputting data on the Data Bus. The normal standby state for this Signal is "read"
(high).

Valid Memory Address (VMA). This Signal is output high whenever a valid address has been output on the Address
Bus.

THere are three interrUpt processing signals as follows:

IRQ. This signal is used to request an interrupt. If interrupts have been enabled and the CPU is not in the Halt state.
then it will ~cknowledge the interrupt at the end of the currently executing instruction.

Non-Maskable Interrupt (NMJ). This signal differs from IRO in that it cannot be inhibited. Typically. this input is used
for catastrophic iriterrupts such as power fail.

iiES"E'T. Thi? is a typical reset signal.

Note that a number of control signals output by the MC6800 are only capable of driving one standard TTL load. Some
form of signal buffering and amplification will therefore b.e required in most systems.

9-6

Q
w

~
a:
o
a.
a:
o
(J

~
en
w

~
C3 o
en
en
c:(

01:1
w
Z
a:
o
to
en o
~
c:(
Q
c:(

@

MC6800 TIMING AND INSTRUCTION EXECUTION

The MC6S00 uses a relatively simple combination of two clock signals to time events within
the microprocessor CPU and the microcomputer system in general. These two clock signals may
be illustrated as follows:

<1>1 ____ I \ ___ "..,1

(1)2 \ I \

Observe that clock signals <111 and <112 both have high pulses which occur within the width of the
other clock signal's low pulse.

\

MC6S00
CLOCK
SIGNALS

I

A further timing signal, given the symbol E, is used by support devices within an MC6S00 microcomputer
system. <111, <112 and E timing signals are generated by the clock logic devices described later in this chapter.

Each repeating pattern of <111 and <112 signals constitutes a single machine cycle:

~ One Machine
Cycle -I ... One, Machine --..f

Cycle
I I I

<1>1 1 \ I' \ ~I
I

\ , I

I \: <1>2 \1
I I
I I

MG6S00
MACHINE
CYCLE

\

I
MC6800 instructions require between two and eight machine cycles to execute. Interrupt instructions are an excep-
tion. requiring longer instruction execution times. '

So far as external logic is concerned, there are only three types of machine cycles which can
occur during an instruction's execution:

1) A read operation during which a byte of data must be input to the CPU.

2) A write operation during which a byte of data is output by the CPU.

3) An internal operation during which no activity occurs on the System Bus.

MC6S00
MACHINE
CYCLE
TYPES

All MC6S00 instructions have timing which is a simple concatenation of the three basic machine cycle types ..

Let us therefore begin by ,looking at these three basic machine cycles.

Figure 9-3 illustrates timing for a standard read machine cycle. Observe that in the normal
course of events. neither the Address nor the Data Busses are available for DMA operations. The
address output is stable for most of the machine cycle. Data needs to be stable for a short interval
of time late in the machine cycle. Exact timing is given in MC6800 data sheets at the end of this
chapter.

9-7

MC6S00
READ
MACHINE
CYCLE

<1>1

<1>2

R/iii

VMA

, AO - A15 Address Out

DO-D7 ________________________________ ~
Data In '--____ .1

Figure 9-3. A Standard MC6800 Read Machine Cycle

Figure 9-4 illustrates a standard MC6800 write machine cycle. This machine cycle is not as
straightforward as the read. The address to which data is being written is stable on the Address
Bus for the duration of the machine cycles; however. the data being written is stable for a period
within the high DBE pulse. While DBE is low .. the Data Bus is floated.

<1>1

<1>2

R/W

VMA

AO-A16------~----~

DBE

DO - D7

~ ________________________ ~J

Data Bus

floated

Data Out

Figure 9-4. A Standard MC6800 Write Machine Cycle

9-8

MC6800
WRITE
MACHINE
CYCLE

Q
w

~
a: o
C1.
a:
o
CJ
~
u)
w

~
g
C/)
C/)
c(

all
w
Z
a:
o
CD
C/)

o
~
c(
Q
c(

@

Under normal circumstances, DBE is identical to <1>2:

37

~
2

DBE
36

<P2 or DBE \ _______ 1 \

If the high <1>2 pulse is too short for external logic to respond to the write. the slow external
logic can be accommodated in two ways. You can input a DBE signal to the CPU that has a
shorter low pulse and a longer high pulse. DBE and <1>2 are no longer identical signals:

I

MC6800 WAIT
STATE WITH
SLOW
MEMORY

<P2 \ ... ____ ... 1 \ ... ____ ... 1
DBE LJ .LJ

There is some minimum time during which DBE must be low. since the CPU itself requires time to
perform internal operations. This minimum time is given in the MC6800 data sheets at the end of ' this chapter.

You can also accommodate slow memories by stretching the system clocks; this may be illustrated as follows:

<Pl

<P2\ ... __ ... 1 \ I
Stretched clock

signals accommodat~

. slow memories

\ _ r
I
I
I
I
I

The standard clock devices. described later in this chapter. provide clock stretching logic. During a clock stretch. <1>1
and <1>2 cannot be held constant for more than 9.5 Ilsec; the MC6800 is a dynamic device. and longer static clock
periods can result in loss of internal data.

During an internal operation's machine cycle, there is no activity on the System Bus. R/W is
in its normal high state and VMA is low.

Table 9-2 defines the way in which individual MC6800 instructions concatenate machine
cycles and use the System Bus during the course of instruction execution.

The VMA and DBE signals require special mention, because their significance can easily be
missed. External logic uses VMA as a signal identifying the address on the Address Bus as having

MC6800
INTERNAL
OPERATIONS
MACHINE
CYCLE

been placed there by the CPU. DBE similarly identifies that portion of a machine cycle when the CPU is active at one
end of the Data Bus. either transmitting or receiving data. And this is why these signals are so important: MC6800
microcomputer systems rely heavily on clock signal manipulation as a means of accommodating slow memories. imple­
menting Direct Memory Access. or refreshing dynamic memory. On the next few pages we are going to see examples
of how this is done. So long as you understand that the VMA and DBE signals identify the unmanipulated portions of a
standard machine cycle. you will have no trouble'locating the time slices within which special operations such as
Direct Memory Access or dynamic memory refresh are occurring. .

9-9

THE HOLD STATE, THE HALT STATE AND DIRECT MEMORY ACCESS
The H~ld state typically describes a CPU condition during which System Busses are floated, so that external
logic can perform Dire.ct Memory Access operations.

ThoughtheMC6Sd6 iiterature does not talk about a Hold state, this microprocessor does indeed have two
equivalent conditions.

You can fioatthe Address and Data Busses separately, using the TSC and DBE signals.

You can enter an MC6S00 Halt state, which is equivalent to our definition of a Hold state.

Let us begin by looking at the use of TSC and DBE signals.

The Three State Control signal (TSCl. if input high, will float the Address Bus and R/W line. VMA and BA are forced
low. The .unusual feature of the Three State .Control input is that when this signal is input high. you must
si'multaneously stop the clock by holding <1>1 high and <1>2 low. Timing is illustrated in Figure 9-5. Now the MC6800.
being a dynamic device. will lose its data contents if the clock is stopped for more than 9.5 jl.sec. You must therefore
float the Address Bus just long enough to perform a single Direct Memory Access.

<1>1

<1>2

TSC

AO - A15

Addre,ss Bus.

A/Wand VMA
floated

Figure 9-5. TSC Floating the Address Bus

Just as the Three State Control input floats the Address Bus. so the Data Bus Enable input (DBE) floats the Data Bus.
When DBE is input low. the Data Bus is floated.

The clock devices. which are described later in this chapter. provide all necessary clock stretching logic.

There are two very important points to note regarding the use of Three State Control (TSC) and Data Bus Enable (DBE)
signals. .

First of all. note carefully that the Bus Available (BA) Signal is held low when the busses are floated by the Three State
Control (TSC) and Data Bus Enable (DBE) signals. The purpose of the Bus Available signal is to indicate that the System
Bus is available during a Halt or Wait state. both of which we have yet to describe.

The second important feature of the Three State Control (TSC) and Data Bus Enable (DBE) signals is that they do indeed
float the System Bus in two halves. Now in many MC6800 systems <1>2 and DBE are the same signal: in such a con­
figuration you will automatically float the Data Bus whenever you float the Address Bus. as illustrated in Figure 9-6.

Now consider the MC6S00 Halt state.

The Halt state of the MC6S00 is equivalent to the Hold state of the SOSOA. If a low HALT is input to the MC6800.
then upon conclusion of the current instruction's execution. the System Bus is floated. Timing is illustrated in Figure
9-7. Observe that the Bus Available Signal. BA. is output high: VMA is output low. The Address and Data Busses. and
the R/W control are floated.

In summary, the MC6S00 provides two means of performing Direct Memory Access operations. You can.use
the TSC and DBE inputs to gain control of the System Bus for as long as it takes to perform a single DMA ac­
cess,or you can use the HALT input, following which external logic can gain control of the System Bus for as
long as you wish.

9-10

Q
w
l-
e(
a:
0
Q.
a:
0
u
~
en
w
l-
e(

g
(I)
(I)
e(

!Ill
w
Z
a:
0
CD
(I)

0

~
e(
Q
e(

@

Ill1

!l>2

TSC

AO - A15

Address Bus.

R/W and VMA

floated

DBE,·!l>2

DO - D7

Data Bus

floated

Figure 9-6. TSC Floating the Address and Data Busses When DBE Is Tied to <1>2

Conceptually, the MC6800 scheme for implementing Direct Memory Access or dynamic memory refresh. is very
elegant. If you stretch the <1>1 and <1>2 clock signals, then you can transfer the normal CPU generated address,
and an extraneous address within one machine cycle. VMA identifies the CPU generated address. Within the
one machine cycle can perform two Data Bus transfers; the first is in response to the external address, while
the second is in response to the CPU address. Now DBE identifies the CPU response. This scheme may be illustr­
ated as follows:

!l>1 (Stretched) I \ ,
!l>2 (Stretchedi ., I \

AO - A 15 ~ DMA Address) (Normal Address)

VMA I \
00- 07 (DMA Data· 1 (Normal Data .)

DBE\ I \
From this conceptually elegant beginning, some very complex design considerations can arise. Complexities
disappear, however, when standard 6800 support devices are used to implement direct memory access logic.
Specifically, you should use the Me6875 clock device in conjunction with the 6844 Direct Memory Access
controller.

9-11

Last

machine

cycle of

instruction I
execution :

Halt state during

which System Bus

is floated

Figure 9-7. System Bus Floating During the Halt State

INTERRUPT PROCESSING, RESET AND THE WAIT STATE

Next

instruction

fetch

MC6800 microcomputer system interrupt logic. as implemented within the 6800 CPU. is based on polling
rather than vectoring. The MC6828 Priority Interrupt Control device. described later in this chapter. extends
CPU interrupt logic to provide vectored interrupt response. All normal interrupt requests. when acknowledged.
result in an indirect addressing Call to a single high memory address. If more than one device can request an interrupt.
then the basic assumption made is that the interrupt service routine will initially read the Status register contents of ev­
ery device that might be requesting an interrupt and by testing appropriate status bits. the interrupt service routine
will determine which interrupt requests are active. If more than one interrupt request is active. interrupt service routine
logic must decide the .order in which interrupt requests will be acknowledged.

But be warned: this type of polling quickly becomes untenable as a means of controlling microcomputer systems
with multiple random interrupts. If you have more than two or three competing external interrupts. the time taken to
read Status register contents and arbitrate priority will become excessive. If your application demands numerous exter­
nal interrupts. then you must resort to external hardware which implements interrupt vectoring. We will describe ways
in which this can be done.

If you casually look at a description of MC6800 interrupt logic. you may at first believe that some level of interrupt vec­
toring is provided. In reality. that is not the case.

9-12 '

c
w

~
a:
o
0-
a:
o
o
~
u)
w

~
g
C/)
C/)

ct
a!I
w
Z
a:
o
III
C/)

o
~
ct c
ct

@

The MC6800 sets aside the eight highest addressable memory locations for interrupt processing purposes. Four
16-bit addresses are stored in these eight memory locations, identifying the interrupt service routine's starting
address for the four possible sources of interrupt. This is how the eight memory locations are used:

FFFS and FFF9 Normal external interrupt
FFFA and FFFB Software interrupt
FFFC and FFFD Non-maskable interrupt
FFFE and FFFF Reset (or restart)

The lower address (FFFS. FFFA. FFFC. FFFE) holds the high order byte of the starting address.

In the event of simultaneous interrupt requests. this is the priority sequence during the
acknowledge process:

Highest (1) Restart
(2) Non-maskable interrupt
(3) Software interrupt

Lowest (4) Normal external interrupt

MC6800
INTERRUPT
PRIORITIES

Only the lowest priority interrupt is normally used by the typical support device that is capable of requesting interrupt
service. The three higher priority interrupt levels represent special conditions and cannot be accessed by the standard

. external interrupt request.

We will begin our discussion of MC6800 interrupt processing by describing the four interrupts.

The normal external interrupt request is the standard interrupt present on all
microprocessors that support interrupts; it is equivalent to the SOSOA INT input. In very simple
systems. the addresses FFFS16' and FFF916 may indeed access real memory locations: in the
multiple interrupt MC6S00 microcomputer systems. FFF916 is more likely to select an S-bit buffer
within which an address vector is stored identifying the interrupting source. This is essentially
how the MC6S2S Priority Interrupt Controller (PIC) works.

A software interrupt is initiated by the execution of the SWI instruction. What theSWI in­
struction does is cause the MC6S00 to go through the complete logic of an interrupt request and
acknowledge. even though the interrupting source is within the CPU. Software interrupts are
typically used as a response to fatal errors occurring within program logic. Whenever your pro­
gram logic encounters a situation that must not. or should not exist. the error condition is trapped
by executing an SWI instruction: this causes a call to some general purpose. error recovery pro­
gram.

The non-maskable interrupt cannot be disabled. Otherwise it is identical to the normal ex­
ternal interrupt request. Note that the SOSOA has no non-maskable interrupt: however. the
Zilog ZSO and the SOS5 have incorporated this feature.

A Reset is treated as the highest priority interrupt in an MC6S00. How does the Reset differ from
the non-maskable interrupt? Conceptually. the non-maskable interrupt is going to be triggered by
a termination condition such as power failure. while the Reset is going to be triggered by an in­
itiating condition such as power being turned on.

MC6800
NORMAL
EXTERNAL
INTERRUPTS

MC6800
SOFTWARE
INTERRUPT

MC6800
SWI
INSTRUCTION

MC6800
NON-MASKABLE
INTERRUPT

There are. some differences between the MC6800's response to a Reset as compared to any other interrupt re-
quest~ .

To contrast the two. we will look at the normal interrupt acknowledge sequence. and then we will look at a reset. Figure
9-S illustrates MC6800 response to a normal external interrupt, a software interrupt, or a non-maskable inter­
rupt.ln each case. the interrupt request will be acknowledged upon completion of an instruction's execution. A normal
external interrupt will only be acknowledged providing interrupts have been enabled.

If more than one interrupt request exists. then the highest priority interrupt will be acknowledged.

Following the interrupt acknowledge. normal interrupts are disabled by the CPU. which then pushes onto the Stack the
contents of all internal registers. This process is illustrain Figure 9-S. The Program Counter is then loaded with the ap­
propriate interrupt service routine starting address. which will be fetched from memory locations FFFS16 and FFF916.
FFFA16 and FFFB16 or FFFC16 and FFFD16.

9-13

----------------il This is the last,m8chi~e cycle for executio~ of the instruction during which .

,
__________ ~ ;.~;~~st~~~;~U:~~~;~;~:~~: ~~t:;~~:~~~;:~~~s;:~~:~~~~i~~~::UCC;~~ L

the interrupt was requested. . .

pleted execution. '. . ..

IC;~~I #21 #3 #4 #5 #6 #7 #8 #9 #10 ,I' #11 1 #12 1 #13 1 #14 1 #15

Address ,....----...... --...... '--'r-
BUI

IRQ or
NMi

Interrupt

Muk ------------------------------+----~
Data Bul ___ J~ __ ~ ___ ~ _ _n ___ _A __ J~ __ ~ ___ ~ __ J~ __ ~~-~-----A-~~ __ ~ __ _N

VMA

Figure 9-S. MC6S00 Interrupt Acknowledge Sequence

Referring to Figure 9-S. note thatan interrupt is acknowledged following the last machine cycle for the instruction dur­
ing which the interrupt request occurred. During the first two machine cycles following the interrupt acknowledge. an
instru'ction fetch is executed. as it would have been had the interrupt not occurred. This instruction fetch is aborted
and will reoccur after the interrupt service routine has completed execution. Two machine cycles are expended per­
forming this aborted instruction fetch.

Following the aborted instruction fetch. CPU registers' contents are pushed onto the Stack in the following order:,

• Lower half of ProgramCounter
• Upper half of Program Counter
• Lower half of Index register
• Upper half of Index register
• Accumulator A
• Accumulator B
• Status register

When the SOSOA acknowledges an interrupt. if CPU registers' contents are going to be saved on the Stack. you must
execute individual instructions 'to perform the operations which the MC6S00 performs automatically. The advantage of
the MC6S00's scheme is that it saves instruction execution time. The disadvantage of this scheme is that there are o"c­
cas ions when you do not need to bother saving registers' contents.

After all CPU registers' contents have been saved on the Stcick. the next two machine cycles are used to fetch an ad­
dress from the appropriate two high memory bytes. This address is loaded into theProgram Counter. causing a branch
to the appropriate interrupt service routine. '

'9-14

c
w

~
a:
o
fl.
a:
o
(,J

!:
en
w

~ g
en
en
~

~
w
Z
a:
o
al
en o
~
~
c
~

@

I
~2JLJLJl;

;:~~h On J if

n I n + 1 I n + 21 n + 31 n + 4 I n + 51 m 1m + 11m ~ 21m + 3

Pow. ---n-5._25 __ V ______ ~~--------------------------I~----~------------------~~------~--_;
SUPPlY. -f 4. 75 V If

-l
~ . /iri~-----------------

II lr----:::;:r f.- 'PC,

~~:,oss \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1rms\\\\S\\\\\\\\\\\\\\\\\N\\\\\\\\\\\\\\\\\\\\~~d~";"'. ~=~",=",d~-.".,('---J\---...A..--...A.."..,.,=,,=..d
Am _\\\\\\\\\\.\\\\\lm\\\\~~\\\i\\\\\\\l\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\1 FFF~ :' FFFE FFFE FFFE FFFF Now PC FFFE FFF

VMA ~~\\~%\\\\\\\\\\~5\\\~~\\\\\\\\\\\\"@\X\\\\\\\~ .

0 ••• Bus ®\\\\\\\\\\\\\\\\\\\\\\\\\\\\SfMs\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ms~=I-· J'-__ J'-__ ...J"-__ -I
PC 8-15 PC 0-7 Firs.

. Instruction

B A :fI&:n\\tt'\ \ \m\ \:n\ \tt'\\\m\\:n\ \n'\\\m\ \:n\\n'\\\m\\:n\\~\t~m\ \:n\\n'\\\m\ \:n\ \n'\ \ \m\ \:n\\n'\\\m\ \:n\\n'\ \ \m\ \:n\ \n'\\ \tmI\ \ \\ ((

~ "" IndeterminatB

Figure 9-9. The Reset Sequence

We will now examine the MC6800 Reset operation.

Figure 9-9 illustrates Reset timing. First of all. note that RESET must be held low for at least
eight machine cycles to give the CPU sufficient response time. On thehigh-to-Iow transition of
RESET the CPU outputs VMA and SA low and R/W is high. On the subsequent low-to-high transi-

The MC6800
RESET
OPERATION

tion of RESET. maskable interrupts are disabled. then the contents of memory locations FFFE16 and FFFF16 are fetched
and loaded into the Program Counter. If RESET is not held low for a minimum of eight machine cycles. then when
RESET is input high again. indeterminate program execution may follow.

It is absolutely vital that the iiESET rise time is less than 100 nanoseconds on the low-to-high transition of
RESET.

We stated that the difference between a Reset and a non-maskable interrupt is that the Reset represents initiation con­
ditions. This is illustrated in Figure 9-9. which includes the power supply level. When power is first turned on. the
MC6S00 will automatically trigger a Reset when power increases above +4.75 volts: this is in response to the normal
powering up sequence. The fact that Reset represents initiation conditions also explains why no CPU registers' con­
tents are saved. as occurs with any other interrupt. Clearly. if we are initiating operations. there can be no prior
registers' contents to be saved. Therefore pushing registers' contents on the Stack would be pointless an'd impossi­
ble: it would be pointless because there is nothing to save: it would be impossible because when powering up. we
have no idea what the Stack Pointer contains. .

Powering up an MC6800 microcomputer system represents a special Reset case. Those
MC6S00 microcomputer system devices that have an external Reset input control. expect this
control to be· '1eld low while power is being turned on for the first eight clock cycles following
power-up. When designing Reset logic be sure to keep this in mind.

MC6S00 configurations using SOSOA s~pport devices are easy to design and commonly seen.

MC6800
RESET
bURING
POWER UP

Necessary system bus logic is described later in this chapter. But if you have such a mixed configuration. be sure to
satisfy the separate and distinct Reset requirements of the MC6S00 CPU as against the SOSOA support devices.

9-15

Cycle
#1 I #2 I ~ 1 ~4 1 #5 I #6 I #7 1 #8 1 #91 #10 1 1 n" 1 n+2 1 n+3 1 n+4 I n+5 I

cP2

Address --.,-""""'\. roo---. ,-"""""'\.,----. ,----..,--"""1
Bus

R/W

VMA

Interrupt

Mask ------------------------if-tff-----;.-----'
IRQ 0' -------:..--------------------4..
NMI ~r~---~--------4_~

Data Bus ==)C=:::x=:::x==>C=::::x==)C=:)(::::=x:=J::::}-~~f------.:.1C=::::x==x:::=:J(~=)4
BA· _________________________ LJ

System

Bus

Floated

Figure 9-10. MC6S00 Wait Instruction Execution Sequence

We complete our discussion of the MC6800 interrupt logic with a discussion of the WAI
instruction, which puts the MC6800 into a "Wait-for-interrupt" state.

A WAI instruction is executed when the CPU has nothing to do except wait for an inter­
rupt. Rather than pushing registers' contents onto the Stack following the interrupt
acknowledge. as illustrated in Figure 9-S. the WAI instruction pushes registers' contents onto
the Stack while waiting for the interrupt. as illustrated in Figure 9-10. Thus some execution
time is saved.

MC6800
WAIT STATE

MC6800
WAI
INSTRUCTION

Once all registers' contents have been pushed onto the Stack. the MC6S00 floats the System Bus in the Wait state.

This gives rise to another frequent use of the WAI instruction: block data transfers under DMA control.

Consider again the sequence of events which follows the WAI instruction execution:

1) All registers' contents are pushed onto the Stack.

2) The System Bus is floated.

MC6800
USE OF
WAIT FOR
DMA

This is very convenient if you are going to transfer a large block of data via DMA. because you will announce the end of
the DMA transfer with· an interrupt request. This method of handling block DMA transfers has been discussed in
Volume I. Now when using an MC6S00 microcomputer system. all you need to do is initiate the actual DMA transfer by
executing a WAI instruction; knowing that once the DMA transfer has been completed. an interrupt will be requested
and program execution can continue.

THE MC6800 INSTRUCTION SET
. Table 9-1 summarizes the MC6800 instruction set; this instruction set is characterized by a heavy use of read/write
memory and a rich variety of instructions that are able to manipulate the contents of memory locations as though they
were programmable registers. Whereas the primary memory reference instructions offer base page direct addressing .

. extended direct addressing or indexed addressing. secondary memory reference instructions offer extended direct ad­
dressing and indexed addressing only. This simply means that secondary memory reference instructions use three-byte
direct addressing even when a base page byte must be accessed.

9-16

Q
w

~
II: o
Q.
II:
o
CJ
~
en
w

~ g
(I)
(I)

~
all
w
Z
II:
o
III
(I)

o
~
~
Q
~

@

Of the microcomputers described in this chapter, the MC6S00 has one of the largest varieties of Branch-on­
Condition instructions. Note that these and the unconditional Branch instructions are the only MC6800 instructions
which use program relative direct addressing.

When comparing the MC6S00 and SOSOA instruction sets, the conclusion we must draw is that the MC6800 is
going to have to rely on a large number of memory reference instructions. You are going to have to set up programs
with this in mind. As a result. relatively simple programs will make the MC6800 look better than the 8080A. because
the MC6800 has such a diverse variety of memory reference instructions. The moment a program starts to become
complicated. the large number of 8080A registers is quickly going to become an advantage. since the MC6800 will be
forced to execute memory reference instructions where the 8080A can use register-register instructions.

The SWI and WAI instructions within the interrupt instruction group are relatively unusual within microcom­
puter systems.

The SWI instruction initiates a normal interrupt sequence. taking the interrupt service routine's starting address from
memory locations FFFA16 and FFFB16.

The WAI instruction prepares for an interrupt by saving the contents of all registers and status on the Stack: the
System Bus is then floated while the CPU waits for an interrupt request to occur.

We have described both the SWI and WAI instructions in some detail earlier In this chapter.

The one set of instructions which are missing. and which would greatly enhance the MC6800 instruction set. are in­
structions that move data between the Accumulator and the Index register. or allow Accumulator contents to be added
to the Index register.

THE BENCHMARK PROGRAM
The benchmark program is coded for the MC6S00 as follows:

STS SSP SAVE STACK POINTER CONTENTS IN MEMORY
LDX #T ABLE LOAD TABLE BASE ADDRESS INTO INDEX REGISTER
LDX O.X LOAD ADDRESS OF FIRST FREE TABLE BYTE
LDS #IOBUF LOAD I/O BUFFER STARTING ADDRESS

LOOP PULL A LOAD NEXT BYTE INTO A
STAA O.X STORE IN NEXT FREE TABLE BYTE
INX INCREMENT INDEX REGISTER
DEC 10CNT DECREMENT I/O BYTE COUNT IN MEMORY
BNE LOOP RETURN FOR MORE BYTES
STX TABLE STORE NEW ADDRESS FOR FIRST FREE TABLE BYTE
LDS SSP RELOAD ~TACK POINTER

The memory initialization for the MC6800 interpretation of the benchmark program is identical to the memory initializa­
tion for the 8080A benchmark program. The MC6800 assumes that there is some memory location in which the current
real Stack address can be stored. so that the Stack Pointer may be used as a Data Counter.

In Table 9-1. symbols are used as follows:

ACX Either Accumulator A or Accumulator B

The registers:
A.B Accumulator

Index register
Program Counter
Stack Pointer
Status register

X
PC
SP
SR

Statuses shown:
C Carry status
Z Zero status
S Sign status
o Overflow status
I Interrupt status

AC Auxiliary Carry status

Symbols in the STATUSES column:
(blank) operation does not affect status

X operation affects status
o flag is cleared by the operation
1 flag is set by the operation

9-17

ADRS

ADR16

B2

B3

DATA

DATA16

DISP

xx(HI)

xx(LO)
[]

[[]]

[MEM]

An S-bit (l-byte) quantity which may be used to directly address the first 256 locations in memory. or may
be ah,S-bit unsigned displacement to be added to the Index register.

A 16-bit memory address

Instruction Byte 2

I nstruction Byte 3

An S-bit binary data unit

A 16-bit binary data unit

An S-bit signed binary address displacement

The high order S bits of the 16-bit quantity xx; for example. SP(HI) mean~ bits 15 - S of the Stack Pointer.

The low order S bits of the 16-bit quantity xx; for example. PC(LO) means bits 7 - 0 of the Program Counter.

Contents of location enclosed within brackets.

Implied memory addressing; the contents of the memory location designated by the contents of a register.

Symbol for memory location indicated by base page direct. extended direct. or indexed addressing.

That is:
[MEM] = [ADRS]

or
[ADR16]

or
[[X]+ADRS]

[M] Symbol for memory location indicated by extended direct or indexed addressing. That is:
[M]=[ADR16]

or
[[X]+ADRS]

A Logical. AND

V Logical OR

¥ Logical Exclusive-OR

Data is transferred in the direction of the arrow.

9-18

© AD~M OSBORNE:& ASSOCIATES, INCORPORATED

Table 9-1. A Summary of the MC6800 Instruction Set

STATUS
TYPE MNEMONIC OPERAND(S) _BYTES OPERATION PERFORMED

C Z S 0 AC I

LOA ACX,ADRS 2 X X ° [ACX]-[MEM]
g ACX;ADR16 3 Load A or B using base page direct. extended direct. or indexed-addressing.
0 STA ACX;ADRB 2 X X ° [MEM]-[ACX] z

"" -ACX.ADR16 3· Store A or B using direct. extended. or indexed addressing.
UI

LOX ~ ADRB 2 X X ° [X(HIIJ-[MEMJ. [X(LplJ-[MEM+ 1) U
Z ADR16 3 Load Index register using direct. extended. or indexed addressing. Sign status reflects Index UI ec

register bit 15. UI
II.

ADRB -[MEM]-[X(HlIl [MEM+ 1]-[X(LO)) UI - STX 2 X X 0 ec
> ADR16 3 -Store contents of Index register using direct. extended. or. index8ct addressing: Sign status
ec reflects Index register bit 15. 0
:IE LOS
UI

ADRB 2 X X ° [SPlHII]-[MEMJ. [SPlLOIJ-[MEM+ 11

:IE AOR16 3 . load Stack Pointer using direct. extended. or indexed addressing. Sign status reflects Stack
> Pointer bit 15. ec

"" STS ADRB 2 X X ° [MEM]-[SPlHIIJ. [MEM + 11-[SPlLOIJ
:IE

ADR16 3 Store contents of Stack Pointer using direct. extended. or indexed addressing. Sign status a:
A. reflects Stack Pointer bit 15.

ADD ACX.ADRS 2 X X -X X X [ACX]-[ACX]+ [MEM]

ACX.ADR16 3 Add to Accumulator A or B using base page direct. extended direct. or indexed addressing.

ADC ACX.ADRS 2 X X X X X [ACX]-[ACX1+ [MEM]+C

Q ACX.ADR16 3 Add with carry to Accumulator A or B using direct. extended. or indexed addressing.

I- AND ACX.ADRB 2 X X ° [ACX]-[ACX] 1\ [MEM]

~ ACX.ADR16 3 AND with Accumulator A or B using direct. extended. or indexed addressing.
UI
A. BIT ACX.ADRB 2 X X ° [ACX] 1\ [MEM]
0
> ACX.ADR16 3 AND with Accumulator A or B. but only Status register is affected.
ec CMP ACX.ADRB 2 X .X)(X [ACX] - [MEM] 0
:IE ACX.ADR16 3 Compare with Accumulator A or B (only Status register is affected).
UI

EOR [ACX]-[ACX]¥ [MEM] ~ ACC.ADRB 2 X X 0
UI ACX.ADR16 3 Exclusive-OR with Accumulator A or B using direct. extended. or indexed addressing.
U

ORA ACX.ADRS 2 X X ° [ACX]-[ACX] V [MEM] z
UI

ACX.AOR16 3 OR with Accumulator A or B uaing direct. extended. or-indexed addressing. ec
~- SUB ACX.ADRS 2 X X X X [ACX]-[ACX] - [MEM]
UI

Subtract from Accumulator A- or B using direct, extanded. or indexed addressing. ec ACX,ADR16 3
> SBC ACX.ADRS 2 X X X X [ACX]-[ACX] - [MEMl- C ec
0 ACX.ADR16 3 Subtract with carry from Accumulator A or B using direct. extended. or indexed addressing. :E
UI CPX ACRS 2 X X X [X(HII] - [MEMJ. [X(LO)) - [MEM+ 1]
:IE

ADR16 - Compare with contents of Index register (only Status register is affeeted). Sign and Overflow > 3
ec statuses reflect result on most significant byte. c(
0 CLR ADRS 2 0 l 0 ° IM]-OO .. z
0 ADR1S 3 Clear !!!!,mory location using extended or indexed addressing.
u
UI COM ADRB 2 1 X X ° [M]-[M]
III

ADR1S 3 Complement contents of memory locltion (ones complement).

NEG ADRB 2 X X X X IM]-:-OO,.- 1M]
ADR16 3 Negete contents of memory location (twos complement). Carry stltus is set if result is 00 .. Ind

. reset otherwise. Overflow stltus is set if result is SO,. and reset otherwise.

STATUS
TYPE MNEMONIC OPERAND IS) BYTES OPERATION PERFORMED

C Z S 0 AC I

DEC ADRB 2 X X X [M]-[M]-1

ADR16 3 Decrement content$. of. memory location. using extended or indexed addressing. Overflow

status is set if .operand was BO,. before execution. and cleared otherwise.

INC ADRB 2 X X X [M]-[M]+1

ADR16 3 Increment contents of memory location. using extended or indexed addressing. Overflow status
iii is set if operand was 7F 1. before exec\Jtion. and clearect otherwise. l-
e(
=

~7~ 0j41 .O-S¥C
1&1
A.

ROL ADRB X X X 0 2 X
> ADR16
= 3 [M]
0

Rotate contents of memory location left through carry. ~
1&1

~
cm=;:t7 ot;J.o-s"o"C

~c ROR ADRB 2 X X X X, • Zl&l ADR16 3 [M] 1&1::)
=Z Rotate contents of memory location right through carry. ~;::::
I&IZ
=0

~7 ot.- O. >u ASL ADRB 2 X X· X X .. o --S¥C
=
0 ADR16. 3 [M]
~
1&1 Arithmetic shift left. Bit 0 is set to 0,
~ .'q; >

~ ot---.{]] = ASR ADRB 2 X X X X o --S¥C
e(
0 ADR16 ~ [M] Z
0

Arithmetic shift right. Bit 7 stays the same. U
1&1
en

0---47 ~ (}t---.{I] LSR ~DRB 2 X X 0 X O-S¥C

ADR16 3

~ogical shift right. Bit 7' is set to O.

TST ADRB 2 0 X X 0 [M]-OO,.

Ab~16 3 Test contents of memory location for zero or negative value.

'LOA ACX.DATA 2 X X 0 [ACX]-DATA
1&1
I- Load A or B immediate.
e(

Q .LDX DATA 16 3 X X 0 [X(HIl]-[B21. [X(LOI1-[B3]
1&1 Load Index register immediate. Sign status reflects Index register bit 15.
~
~, LOS DATA16 3 X X 0 [SP(HIl]-[B21. [X(LO)]-[B3]

Load Stack Pointer immediate. Sign status reflects Stack Pointer bit 15.

ADD ACX.DATA 2 X X X X X [ACX]-[ACX] + DATA
1&1 Add immediate to Accumulator A or B.
I- 1&1
e(I- ADC ACX.DATA 2 X X X X X [ACX]-[ACX] + DATA + C
Q e(

= Add immediate with carry to Accumulator A or B. 1&1' 1&1
~ A. AND ACX.DATA 2 X X 0 [ACX]-[ACX] II DATA
~ 0

AND immediate with Accumulator A or B.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 9-1. A Summary of the MC6800 Instruction Set (Continued)

STATUS
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

C Z S 0 AC I

BIT ACX,DATA 2 X X 0 [ACX] A DATA
AND immediate with Acc~mulator A or B,.but only the Status register is affecttld.

CMP ACX,DATA 2 X X X X [ACX1-DATA .

w Compare immediate with Accumulator A or B (only the Status register is affected).
~ EOR ACX, DATA 2 X X 0 [ACX]-[ACX]"'t'-DATA
~-wQ Exclusive-OR immediate with Accumulator A or B.
~w

ORA ACX,DATA 2 X X 0 [ACX]-[ACX] V DATA oj

w!!: OR immediate with Accumulator A or B. ~~
c(Z SUB ACX,DATA 2 X X X X [ACX]-[ACX]-DATA -0
~g Subtract immediate from Accumulator A or B.
~ SBC ACX,DATA 2 X X X X [ACX]-[ACX] - DATA - C
~ Subtract immediate with carry from Accumulator A or B.

CPX DATA16 3 X X X [X(HII] - [B21. [X(lO)] - [B3]

Compare immediate with contents of Index register (only the Status register is affected). Sign
and Overflow status reflect result on most significant byte.

JMP ADRB 2 [PC]-[X] +ADRB or

ADR16 3 [PC{HII]-[B21. [PC{lO)]-[B3]

Jump to indexed or extended address.
JSR ADR8 2 [[SP]F-[PC{lO)1. [[SP]-ll-[PC{HII], [SP]-[SP]-2

ADR16 3 [PC]-[X] +AOR8 or.
~ [PC{HIll-[B21. [PC{lO)]-[B3] ~
j Jump to subroutine (indexed or extended addressing).
~

BRA DISP 2 [pc]-[PC] + DISP + 2

Unconditional branch relative to present Program Counter contents.
BSR DISP 2 [[SP]]-[PC{lO)J. [[SP]-ll-[PC{HIIJ. [SP]-[SP]-2,

[PC]-[PC] +DISP+ 2

Unconditional branch to subroutine located relative to present Program Counter contents.

BCC DI5P 2 [pc]-[PCl+ DI5P + 2 if the given condition is true:

8CS DISP 2 C = 0 (Branch if carry clear)
BEQ DISP 2 C·= 1 (Branch if carry set)
BGE DISP 2 Z = 1 (Branch if equal to zero)

Z
BGT DI5P 2 S J.l-O = 0 (Branch if greater than or equal to zero) 0

E BHI DISP 2 Z V (5 J.l-O) = 0 (Branch if greater than zero)
Q

BLE DI5P 2 C V Z = 0 (Branch if Accumulator contents higher than comparand) Z
0 BLS DI5P 2 Z V (5 J.l-O) = 1 (Branch if less than or equal to zero) U
Z BlT DISP 2 C V Z .= 1 (Branch if Accumulator contents less than or same as comparand)
0

BMI DISP 2 S J.l-O = 1 (Branch if less than zero) '%
U BNE DISP 2 5 = 1 (Branch if minus) Z
c(BVC DISP 2 Z = 0 (Branch if not equal to zero)
II:
CD BVS DISP 2 o = 0 (Branch if overflow clear)

BPl DI5P 2 o = 1 (Branch if overflow set)

5 = 0 (Branch if plus)

Table 9:'1.A Summary of the MC6800 Instruction Set (Continued)

STATUS
TYPE MNEMONIC OPERAND IS) , BYTES OPERATION PERFORMED

C Z S 0 AC I

a: TAB 1 X X 0 [B]-'[A]
.~ . Move Accumulator A contents to Accumulator B.
!! TBA 1 X X 0 [A]-[B] c:J w ,w Move Accumulator B contents to Accumulator A. a: > Ii: 0 tis 1 [SP]-[Xi-l
~ ::E Move Index register contents to Stack, Pointer and decrement. en
S TSX 1 [X]-[SP]+1
w

Move Stack Pointer contents to Index regiiter and increment. a:,

ABA 1 X X X X X [A]-[Ah[B]

;;5 Add content. of Accumulators A and B.

CBA 1 X X X X [A]- [B)
encn

Compare contents of Accumulators A and B. Only'the Status regi.ter i. affected. SSw ww Do
SBA 1 X X X X [A]-[A] - (B) a:a:O

Subtract content. of Accumulator B from tho~ of Accumulator A.

CLR ACX 1 0 1 P 0 (ACX) -00,.

Clellr A~ator A or B.

COM ACX 1 , X X 0 (ACX)-(ACX)

, Complement cOlltent~ of Accumulator A or B lones complement!.

NEG ACX 1 X X X X (ACX) -00,. - (ACX)

Negate cQntents of Accumulator A or B Itwos complement!. Carry'status is set if result is 00,.
and reset otherwise. Overflow status.is set if result is 'SO,. and reset otherwise.

DAA :1 X X .X X Decimal adjust A. Convert contents of A (the binary sun:' of BCD operands) to BCD format. Carry
status is set if value of upper four bits is greater than 9, but not cleared if previouslY set.

DEC ACX 1 X ,X X [ACX)-(ACX) - 1

Decr~ment contents of Accumulator A or B. OV,erflow status is set if operand was SO,. before

w execution,and cleared otherwise,
t-

DEX 1 X (X)....:.(X) -! < a: Decrement contents of Index register. w
Do

DES (SP)~(SP) - 1 0 1
iI:: Decrement contents of Stack Pointer. w
t- INC ACX 1 X X X (ACX)-[ACX) + 1 en a Increme~t 'contents of Accumulator A or B. Overflow status is set if operand was 7F,. before ex-
w.
a: ecution, and cleared otherwise.

INX 1 X [X)-(X)+1

Increment contents of Index register.

INS 1 (SP)--(SP) + 1

Increment contents of Stack Pointer.

ROL ACX 1 X X X 'X L{tJ:;47 ~ oj;] o --S¥C

(ACX)
Rotate Accumulator A or B left through carTy.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 9-1. A Summary of the MC6800 Instruction Set (Continued)

STATUS
TYPE MNEMONIC OPERAND IS) BYTES OPERATION PERFORMED

C Z S 0 I.e I

ROR ACX 1 X X X X L+{D+I7 • oj:;) o-S¥C

S [ACX]

'" ~ Rotate Accumulator A or B right through carry.
Z

[J.-t7 4 o~o. j: o --s¥c
Z ASL ACX 1 X X X X
0 [ACX]
Y Arithmetic shift .left. Bit 0 is set 'to O.

'" !c 41 ~o~. a: ASR ACX 1 X X X o --S"V"C

'"
X

A. [ACX)
0
a: Arithmetic shift right. Bit 7 stays the same.

~
0--47 ~O~ O-S"rC C/)

LSR ACX 1 X X 0 X C;

'" Logical shift right .. Bit 7 is set to O. a:
TST ACX 1 0 X X 0 , [ACX] - 001,

Test con.tents of Accumulator' A or B for zero or negative value.

PSH ACX 1 [[SP))-[ACX]

[SP]-[SP] - 1

:It
Push contents of Accumulator A or B onto top of Stack and decremimt Stack Pointer.

U PUL ACX 1 [SP]-[SP] + 1
c [ACX]-[[SP)) ...
C/)

. Increment Stack Pointer and pull Accumulator A or B from top of Stack.

RTS 1 [PC(HI)]-[[SP]+ 11. [PC(LO)]-[[SP}+2]. [SP]-[SP]+2

Return from subroutine. Pull PC from top of Stack and increment Stack Pointer.

CLI 1 0 1-0

Clear interrupt mask to enable interrupts.

SEI 1 1 1":'"
Set interrupt mask to disabl~ interrupts.

RTI 1 X X X X X X [SR]-[[SP]+ 11.

lB] - [[SP] + 2].
[A]-[[SP] + 3].

... [X(HI)]-[[SP] + 41 •
A. [X(LO)]-[[SP] + 51. ~ a: [F'CtHI)]-[[SP] + 61. a:
'" [PC(LO)]-[[SP] + 71 • ...
!' [SP]-[SP]+7

Return from interrupt. Pull registers from Stack and increment Stack Pointer.

Table 9-1. A Summary of the MC6800 Instruction Set (Continued)

STATUS
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFOR~ED

C Z S 0 AC I

SWI 1 1 [[sp]]-[pcilO)).
[[SP]-l]-[PC(HIl1.
[[SP]-2] - [X(lO)).
[[SP]-3]-[X(HIl1.
[[SP]-4]-[A1.
[[SP]-5]-[B1.
[[SP]-6]-[SR1.

C [SP]-[SP]-7.
u.I [PC(HIl]-[FFFA ..] ::I z [PC(LO))-[FFFB,~) i=
Z Software Interrupt: push registers onto Stack. decrement Stack Pointer. and jump to interrupt
0
9 subroutine.
I- WAI 1 1 [[SP]]-[PC(lO)).
a.

[[SP]-l]-[PC(HIl1. ::I
a:

[[SP]-2] - [X(lO)). a:
u.I
I- [[SP]-3]-[X(HIl1.
~ [[SP]-4)-[A1.

[[SP]-5)-[B1.
[[SP]-6)-[SR1.
[SP]-[SP]-7

Push registers onto Stack. decrement Stack Pointer. and wiat for interrupt. If [I) =1 when WAI is
executed. a non-maskable interrupt is required to exit the Wait state. Otherwise. [I] - 1 when
the interrupt occurs.

CLC 1 0 C-O
Clear carry

SEC 1 1 C-l
Set carry

CLV 1 0 0-0
e/)

::I Clear overflow status bit
I-

'" SEV 1 1 0-1
l-
e/) Set overflow status bit

TAP 1 X X X X X X [SR]-[A]
Transfer contents of Accumulator A to Status register.

TPA 1 [A]-[SR]

Transfer contents of Status register to Accumulator A.

NOP 1 No Operation

c
w

~
a:
o
c..
a:
o
(,J

~
en
w

~
g
CI)
CI)

oct
oIS
w
Z
a:
o
ell
CI)

o
~
oct
C
oct

@

MC6800 SUMMARY OF CYCLE BY CYCLE OPERATION
This table provides a detailed description of the information present on the Address Bus. Data Bus. Valid Memory Ad­
dress line (VMA). and the Read/Write line (R/W) during each cycle for each instruction.

This information is useful in comparing actual with expected results during debug of both software and hardware as
the control program is executed. The information is categorized in groups according to Addressing Mode and Number
of Cycles per instruction. (In general. instructions with the same Addressing Mode and Number of Cycles execute in the
same manner; exceptions are indicated in the table.)

9-25

Table 9-2. Operation Summary

ADDRESS MODE
RIW'

AND CYCLES CYCLE VMA
ADDRESS BUS DATA BUS NO. LINE LINE

INSTRUCTIONS

ADe EOR 1 1 Dp Code Addren 1 OpCode
w ADD LOA 2 1 Op Code Addren + 1 1 Dperlnd Dlta
~ AND ORA 2
<t: BIT SBC
0 CMP SUB
W

1 1 1 ~ CPX Op Code Addre .. OpCode

~
LOS 3 2 1 Op Code Addren + 1 1 Operond Data (High Order Bytel
LOX

3 1 Op Codl Addren + 2 1 Operond Dltl (Low Order Bytl)

ADC EOR 1 1 Op Codo Addren 1 OpCodo
ADD LOA 2 1 Op Code Addren + 1 1 Addren of Operand AND ORA 3
BIT SBC 3 1 Addre .. of Operend 1 Operlnd DatI
CMP SUB

ax 1 1 Op Code Addren 1 OpCode
LOS

2 1 Op Code Addre .. + 1 1 Addr ... of Operlnd LOX 4
3 1 Addross of Operlnd 1 Operlnd Data (High Order Bytl)

~ 4 1 Operlnd Addren + 1 1 Operlnd Data (Low Order Bytl)
U w sTA 1 1 Op Codo Addrns 1 OpCode a:
. 0 4

2 1 Op Code Addr ... + 1 1 Dlstlnetion Addr ...

3 0 Dostlnltlon Addr ... l' I"ollvont Dlta (Notlll

4 1 Destination Addr ... 0 Dota from Accumulltor

STS 1 1 Op Code Add" .. 1 OpCode
STX

2 1 Op Code Addr ... + 1 , Addr ... of Operond

5 3 0 Address of Operlnd 1 I"ellvont Dotl (Notl 1)

4 1 Addro .. of Operend 0 Reglstor Oltl (High Order Byte)

5 1 Addr ... of Operand + 1 0 Register Dlta (Low Order Bytl)

JMP 1 1 OpCodeAdd 1 OpCode

4
2 1 Op Code Addr ... + 1 1 Off.t

3 0 Index Register , I"olovont DatI (Noto 11

4 0 Indlx Register Plus Offllt (w/o Ca"Y) 1 I ,,"llVOnt Dlta (Note 11

ADC EOR 1 1 Op Code Addren 1 OpCode
ADD LOA

2 1 Op Code Addross + 1 1 Off.t AND ORA
BIT SBC 5 3-, 0 Index Register 1 1,,"levont Olta (Nota·')
CMP SUB

4 0 Index Register Plus Offllt (w/o Ca"y) 1 I"elevont Dota (Notl 1)

5 1 Index Register Plul Offllt 1 Operand Dltl

ax 1 1 Op Codl Address 1 OpCodI
LOS

2 1 Op Code Addren + 1 1 Off.t LOX

6
3 0 Index Reglltor 1 1,,"levont Oltl (Nota 11

4 0 Index Regilter Plul Offllt (w/o Ca"Y) 1 1,,"I_t Dota (Note')

5 1 I x Registor Plul Offllt 1 Operond' Doota !HIgI\ Orifeir 11';18)

6 1 Index Regilter Plus Offllt + 1 , Oporlnd Dota (Low Order Bytl)

STA , , Op Code Addre .. , OpCode

2 , Op Codl Addr ... + , , Offllt

6
3 0 Index Register 1 I "elovont Dlta (Nota')

4 0 Index Regllter Plul Offllt (w/o Car,.,) , I"elevont Dlta (Notl ,)

5' 0 Index Reglstor Plul Offllt , I"olovont Dlta (Note')
C 6 , Indox 'Reglster Plul Off.t 0 Operlnd 01_1
W
)(

ASL LSR 1 1 Op Code Addr_ , OpCode W
C ASR NEG 2 , Op Code Addren + 1 1 Offllt
! CLR .ROL

COM ROR 3 0 Index Regllter , I"ollvont Dlta (Notl 11
DEC TST 4 0 Index Register Plul Offset (w/o CI"Y) , I"elevont Detl (Notl 11 INC 7

5 , Index Regiltor Plul Offllt , Current Operend Dlte

6 0 Index heglster Plul Offllt , I"elevent Deta (Notl 1)

7 1/0
(Noto

Index Register Plul Offset 0 New Operend Dlta (Nota 3)

3)

STS 1 1 Op Code Addren 1 OpCode
STX 2 1 Op Codl Addr ... + 1 1 Offset

3 0 Index Register 1 1,,"levont Dlta (Notl 1)

7 4 0 I~x Register Plul Offllt (w/o Carry)' , 1,,"llvont Dlta (Notl 1)

5 0 Indox Register Plul Offllt , 1,,"llvont Dlte (Note 1)

6 1 Index Register Plul Offllt 0 Operond Dlte (HIgh Order Bytl)

7 , Index Register Plul Offllt '+ 1 0 Oporend Dlte (Low Order Byte)

JSR 1 1 Op Codl Addr_ , OpCode

2 , Op Code Addr ... + 1 1 Off.t

3 0 Index Register 1 I"elevont Dlta (Notl 1)

8 4 1 Stack Pointer 0 Rlturn Addr ... (Low Order Bytl)

5 1 Stack Pointer - 1 0 Return Addr ... (High Order Byta)

6 0 StIck Pointer - 2 , I,,"levont Data (Note 1)

7 0 Index Register 1 l"ellVOnt Date (Notl 1)

8 0 Index Regllter Plul Offllt (w/o Ca"Y) 1 I"elevont Data (Note 1)

9-26

c
w

~
a: o
0.
a:
o
o
~
en
w

~ g
CI)
CI)
c(

011
w
Z
a:
o
CD
CI)

o
:!:
c(
c
ct

@

C
w
0
Z
w
~
)(
w

er

~
ffi
er
rI:
~
(3
w er

ADDRESS MODE
AND CYCLES

INSTRUCTIONS

JMP

3

AOC EOR
ADD LOA
AND ORA 4
BIT SBC
CMP SUB

Cl'X
LOS
LOX

15

STAA
STAB

15

ASL: LSR
ASR NEG
CLR ROL
COM ROR
DEC TST 6 INC

STS
STX

6

JSR

9

ABA OAA SEC
ASL DEC SEI
ASR INC SEV
C8A LSR TAB
CLC NEG TAP 2
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA

DES
OEX
INS 4
INX

PSH

4

PUL

4

TSX

4

TXS

4

Table 9-2. Operation Summary (Continued)

CYCLE VMA RIW
NO. LINE ADDRESS BUS LINE DATA BUS

, , Op Code Addr_ , OpCode

.2 1 Op Code Addre .. + 1 1 Jump Addr_ (High Order By tel

3 1 Op Code Addr_ + 2 1 Jump Addr_ (LoW Order By tel

1 1 Op Code Addr ... 1 OpCode

2 1 Op Code Addr ... + 1 1 Addr_ of Operand (High Order By tel

3 1 Op Code Addr_ + 2 1 Addr ... of Operend (Low Ord.er Byte'

4 1 Add of Operlnd 1 Operand Date

1 1 01> Code Addr_ 1 OpCode
2 1 Op~Addr ... +l 1 Addre .. of Operand (High Order By tel

3 1 Op cOde Addre .. + 2 1 Addra .. of Operand (Low Order Bylel
4 1 Addra .. of Operand 1 Operand Date (High Order Bylel
15 . 1 Addre .. of Operend + 1 1 Operlnd Oete (Low Order By tel

1 1 Op Cod. Addr_ 1 OpCode

2 1 Op Code Addr ... + 1 1 Destination Addr_ (High Order By tel

3 1 Op Code Addr ... + 2 1 Destination Addr ... (Low Order Bytel
4 0 Operend OOl1lnatlon Addr_ 1 Irrlll""nt OIW (Notl 11

15 1 Operand Oel1lnatlon Addr_ a Daw from Accumulator

l' 1 Op Code Addra .. 1 OpCode

2 1 Op Code Addr ... + 1 1 Addr ... of Operand (High Order By tel

3 1 Op Code Addrl .. + 2 1 Addr_ of Operand (Low Order By til

4 1 .Addrl" of Operand 1 Currant Operand Oem

Ii a Addr_ of Operand 1 Irrelevant Oaw (Notl 11

6 I/O
(Notl

Addr_ of Operand a Naw Ope .. nd Oltl (Note 31

31

1 1 Op Code Add 1 OpCode

2 1 Op Code Add + 1 1 Addrl .. of Operlnd (High Order Bylil

3 1 Op Code Add + 2 1 Addr_ of Ope .. nd (Low Order Bylil

4 a AddraII of O~nd 1 Irralo""nt OIW (NOli 11

6 1 Add of Operand 0 Operand Dati (High Order By til

6 1 Add of Operand + 1 0 Operand Olta (Low Order By til , 1 Op Code Add 1 OpCodl

2 1 Op Code Add + 1 1 Addre .. of Subroutine (High Order By til

3 1 Op Code Add + 2 1 Addrl .. of Subroutlnl (Low Ordlr Bylil

4 1 SubroutlneSwrtlng Addr ... 1 Op'Code of Next Inl1ructlon

6 1 Stack Pointer a . Return Add (Low Order By til

6 1 Steck Pointer - 1 a Raturn Addrl .. (High Order Byltl

7 a Steck Pointer - 2 1 Irrelevant Ooto (Note 11

8 a. Op Code Addr_ + 2 1 Irrolavlnt Oato (Notl 11

9 1 OP. Coda Addr_ + 2 1 Addre .. of Subroutine (Low Order Byte'

1 1 Op Code Addr ... 1 OpCode

2 1 Op Code ·Addr ... + 1 1 Op Cod. of N.xt Inl1ructlon

1 1 Op Code Addr ... 1 OpCode

2 1 Op Code Addr ... + 1 1 Op Code of NlXt I nl1ructlon

3 0 Previous Regll1er Contenll 1. Irrelevant Oltl (Note 11

4 a New Regll1~r Contenll 1 Irrelavlnt Dote (Note 11

1 1 Op Code Addr_ 1 OpCode

2 1 Op Code Addr ... + 1 . 1 Op Code of Next Inl1ructlo\'l

3 1 Stack Pointer a Accumulator Oall

4 a Stack Pointer·- 1 1 Accu";ulotor Dati

1 1 Op Code Addr_ 1 OpCode

2 1 Op Code Addr_ + 1 '1 Op Code of Next Inl1ructlon

3 0 Stack Pointer 1 Irrelevant Data (Note 11

4 1 StICk Pointer + 1 1 Operond Data from Stack

1 1 Op Code Addro .. 1 OpCode

2 1 Op Codl Addr_ + 1 1 Op Code of Next Inl1ructlon

3 a Stack Pointer 1 Irralevlnt Oato (Notl 1)

4 a New Index Regil1ar 1 . Irrelevant Olta (Noto 1)

1 1 O!'CodeAdd 1 OpCode

2 1 Op Code Add + 1 1 Op Cod~ of Next Inl1ructlon

3 a Index Regil1ar 1 Irralevant Data

4 a New Stack Pointer 1 ,rrelevant Data
~ I,:,

9-27

.

c
w
:)

Z
i=
Z
0
.!=!
a:
w
~
Vl
5
w
a:
r.i:
w
~
Vl
5
w
a:

w
>
i= «
-I
W
a:

ADDRESS MODE

AND

INSTRUCTIONS

ATS

WAI

ATI

SWI

BCC BHI BNE
BCS BLE BPL
BEC BLS BRA
BGE BLT BVC
BGT BMI BVS

BSR

10

12

Table 9-2. Operation Summary (Continued)

10

10

11

12

VMA
LINE ADDRESS BUS

Op Code Addr

Op Code Address + 1

Steck Pointer

Stack Poimer + 1

Steck Pointer + 2

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer - 1

Stack Point~r - 2

Stack Pointer - 3

Stack Pointer - 4

Stack Pointer - 5

Stack Pointer - 6 (Note 41

Op Code Address

Op Code Address + 1

Stack Pointer

Stack Pointer + 1

Stack Pointer + 2

Stack Pointe, + 3

Stack Pointer + 4

Stack Pointer + 5

Stack Pointer + 6

Stack Pointer + 7

Op Code Address

Op Code Address +. 1

Stack Pointer

Stack Pointer - 1

Stack Pointer - 2

Stack Pointer - 3

Stack Pointer - 4

Stack Pointer - 5

Stack Pointer - 6

Stack' Pointer - 7

Vector Address FFFA (He~1

Vector Address FFFB (He~1

Op Code Address

Op Code Address + 1

Op Code Addre .. + 2

Branch Address

o p Code Address

Op Code Address + 1

Return Address of Main Program

Stack ·Pointer

Stack Pointer - 1

Stack Pointer - 2

Return Address of Main Program

Subroutine Address

RIW
LINE DATA BUS

OpCode

Irrelevant Data (Note 21

Irrelevant Data ,(Note 11
Address of Ne~t Inrtruction (High
Order By tel

Address of Next Instruction (Low
Order By tel

Op Code

Op Code of Next Instruction

Return Addre .. (Low Order By tel

Return Addre .. (High Order By tel

Index Register (Low Order'Bytel

Index Register (High Order By tel

Contents of Accumulator A

Contents of Accumulator B

Contents of Condo Code Register

Op Code

Irrelevant Data (Note 21

Irrelevant Data INote 11
Contents of Condo Cod. Regilter from
Stack

Contents of Accumulator B from Steck

Contents of Accu ... ",lator A from Stack

Index Register from Stack (High Order
.Bytel

Inde~ Register from Stack (Low Order
By tel

Ne~t I nstruction Address from Stack
(High Order By tel

Ne~t lAst ruction Addre .. from Stack
(Low Order By tel

OpCode

Irrelevant Data (Note 11
Return Address (Low Order By tel

Return Address (High Order By tel

Inde~ Register (Low Order By tel

Inde~ Register (High Order By tel

Contents of Accumulator A

Contents of Accumulator B

Contents of Condo Code Register

Irrelevant Data (Note 11
Address of Subroutine (High Order
By tel

Address of Subroutine (Low Order
By tel

OpCode

Branch Offset

Irrelevant Data (Note 11

Irrelevant Data (Note II'

Op Code

Branch Offset

Irrelevant Data (Note 11

Return Address (Low Order By tel

Return Address (High Order By tel

Irrelevant Data (Note 11

Irrelevant Data (Note 11

Irrelevant Data (Note 11

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the! high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. Data il ignored by the MPU.

Note 3. For TST, VMA· 0 and Operand data doel,not change.

Note 4. While the MPU il waiting for the Interrupt, BUI Available will go high indicating the following states of the control lin.l: VMA il
low; Addresl BUI, RIW, and Data BUlare all in the high impedance Itlte.

9-28

The following codes a~e used in Table 9-3:

aa two bits choosing the address mode:
00 immediate data
01 base page direct addressing
10 indexed addressing

ffi 11 extended direct addressing
~ pp the second byte of a two- or three-byte instruction.

:5 qq the third byte of a three-byte instruction.
Q. :5 x one bit choosing the Accumulator:
o 0 Accumulator A
~ 1 Accumulator B

yy two bits choosing the address mode:
00 (inherent addressing) Accumulator A
01 (inherent addressing) Accumulator B
10 indexed addressing
11 extended direct addressing

y one bit choosing the address mode:
o indexed addressing
1 extended direct addressing

Two numbers in the "Machine Cycles" column (for example. 2 - 5) indicate that execution time depends on the ad­
dressing mode.

9-29

Table 9-3, MC6800 Instruction Set Object Codes

OBJECT MACHINE OBJECT MACHINE
MNEMONIC OPERANO(S)

CODE BYTE
CYCLES

MNEMONIC OPERAND(S)
CODE BYTE

CYCLES

ABA lB 1 2 JMP 011v1l 10
ADC ACX, lxaal00l ADR8 pp 2 4

ADR8 or DATA pp 2 2-5 ADR16 qq 3 3
ADR16 qq 3 4 JSR 101V11 01

ADD ACX, lxaal0ll ADR8 pp 2 8
ADR8 or DATA pp 2 2-5 ADR16 qq 3 9

ADR16 qq 3 4 LDA ACX, lxaaOll0
AND ACX, lxaaOl00 ADR8 or DATA pp 2 2-5

ADR8 or DATA pp 2 2-5 ADR16 qq 3 4
ADR16 qq 3 4 LDS lOaall10

ASL ACX 01yyl000 1 2 ADR8 pp 2 3-5

ADR8 pp 2 7 ADR16 or DATA16 qq 3 4-6

ADR16 qq 3 6 LDX llaalll0
ASR ACX 01yyOlll 1 2 ADR8 pp 2 3-5

ADR8 pp 2 7 ADR16 or DATA16 qq 3 4-6

ADR16 qq 3 6 LSR ACX 01yyOl00 1 2
BCC DISP 24 pp 2 4 ADR8 pp 2 7
BeS DISP 25 pp 2 4 ADR16 qq 3 6
BEQ DISP 27 pp 2 4 NEG ACX 01yyOOOO 1 2
BGE DISr 2C pp 2 4 ADR8 pp 2 7
BGT DISP 2E Pfl 2 4 ADR16 qq 3 6
BHI DISP 22 pp 2 4 NOP 01 1 2
BIT ACX, lxaaOl0l ORA ~CX, lxaal0l0

ADR8 or DATA PP 2 2-5 "OR8 or DATA PP 2 2-5
ADR16 qq 3 4 ADR16 qq 3 4

BLE DISP 2F PP 2 4 PSH ACX 0011011x 1 4
BLS DISP 23 PP 2 4 PUL ACX 00ll00lx 1 4
BLT DISP 2D PP 2 4 ROL ACX 01yyl00l 1 2
BMI DISP 2B PP 2 4 ADR8 PP 2 7
BNE DISP 26 PP i 4 ADR16 qq 3 6
BPL DISP 2A PP 2 4 ROR ACX 01yyOll0 1 2
B~A DISP 20 PP 2 4 ADR8 PP 2 7
BSR DISP 8D pp 2 8 ADR16 qq 3 6
BVC DISP 28 PP 2 4 Rn 3B 1 10
BVS DISP 29 PP 2 4 RTS 39 1 5
CBA 11 1 2 SSA 10 1 2
CLC OC 1 2 SBC ACX, lxaa0010
CLI oe 1 2 ADR8 or DATA PP 2 2-5
CLR ACX 01yyllll 1 2 ADR16 qq 3 4

ADR8 pp 2 7 SEC OD 1 2
ADR16 qq 3 6 SEI OF 1 2

CLV OA 1 2 SEV OB 1 2
CMP ACX, lxaaOOOl STA ~CX, lxaaOlll · ADR8 or DATA pp 2 2-5 ~DR8 PP 2 4-6

ADR16 qq 3 4 ADR16 qq 3 5
COM ACX 01yyOOll 1 2 STS lOaallll · ADR8 PP 2 7 ADR8 PP 2 5-7

ADR16 qq 3 6 ADR16 qq 3 6
CPX lOaall00 STX llaallll · ADR8 PP 2 4-6 ADR8 PP 2 5-7

ADR16 or DATA16 qq 3 3-5 ADRl6 qq 3 6
DAA 19 1 2 SUB ACX, lxaaOOOO

DEC ACX 01yyl0l0 1 2 ADR8 or DATA PP 2 2-5
ADR8 pp 2 7 ADR16 qq 3 4
ADR16 qq 3 6 SWI 3F 1 12

DES 34 1 4 TAB 16 1 2
DEX 09 1 4 TAP 06 1 2

'i
EOR ACX, lxaal000 TBA 17 1 2

ADR8 or DATA PP 2 2-5 TPA 07 1 2
ADR16 qq 3 4 TST ACX 01yyll0l 1 2

INC ACX 01yyll00 '1 2 ADR8 PP 2 7
ADR8 PP 2 7 ADR16 qq 3 6
AD~16 qq 3 6 TSX 30 1 4

INS 31 1 4 TXS 35 1 4
INX 08 1 4 WAI 3E 1 9

·aa = 00 is not permitted,

9-30

c
w

~
a:
o
a..
a:
o
(J

~
en
w
I­
oCt
C3 o
CI)
CI)

oCt
011
w
Z
a:
o
III
CI)

o
~
oCt
C
oCt

@

SUPPORT DEVICES THAT MAY BE USED WITH THE MC6800

Using 8080A support devices with the MC6800 is very straightforward in terms of control signals generated.
You must break out the single MC6800 R/W' control signal into separate RD and WR control signals. Other signal
interconnections are self-evident. Here is appropriate logic:

R/W ---II~""'-------

-Et>O g : AD

WR
<1J2 (TIll----+--------.

MC6800
HALT

Signals
rt>o : . BuSEN

.. 8080A
HOLD Signals

IRQ .. o<J !NT

Decode FFF9 on

Address Bus

VMA roD .. INTA

Signals illustrated above apply to communications between the MC6S00 CPU and SOSOA support devices. Exte·rnal
memory will communicate with the MC6S00 CPU using standard MC6S00 timing.

There are some limitations imposed on communications between the MC6800 CPU and SQSOA support devices.

As illustrated above. you must create an interrupt acknowledge control signal by decoding the second interrupt
acknowledge address. FFF916. appearing on the Address Bus. Similarly. if you wish to create specific I/O read and
write control signals. then you must decode off the Address Bus those memory addresses which you have assigned to
I/O devices.

If you wish to extend instruction execution cycles for slow S080A support devices. then you must use the MC6S00
clock stretching logic for this purpose. Clearly the 80S0A support devices cannot use Wait slate logic since the
MC6800 has no such logic.

You can generate an 8080A compatible system clock from the <1>2 (TTL) 6870 series clocl< a~ follows:

<1J2(TIL)
ClR

B

A

Q ClK (8080AI

74lS123

9-31

RESET------------------------~--------~

..-----------.... ,''1 NMOS

MC6800
CPU

AODRESS
DECODE
CIRCUIT

A11---------..... A1

AO AO

R/W

~2NMOS~ __________ ~

<1>2 TTL

+ 5V. 100pF 5.6KU

...... .. "-('l'--~""v--+ 5V
MC6870

or

MC6871 220 ns < tw < 300 ns

RESET

8251
or

8253
or

8255

ClK·

or

ClR

B QI---------------__________ --J

MC6875

CLOCK

74LS123

Figure 9-11. Use of 8080A Support Devices With MC6800 CPU

·8251 ONLY

Figure 9-11 illustrates the interface for an 8251, an 8253 or an 8255 device connected to an MC6800 CPU.
Figure 9-12 provides the timing for 8080A support devices used with an MC6800 CPU.

The 8257 DMA device and the 8259 PICU should not be used in an MC6800 since MC6800 DMA and interrupt logic
are not compatible with these devices.

8085 support devices could be used with an MC6800 but would require that you multiplex the Data Bus and low
order eight Address Bus lines, as required by the 8155, 8355, and 8755. Extra logic needed to perform this bus
multiplexing would probably destroy the cost effectiveness of the 8085 support devices in an MC6800 system.

The only Z80 support device that is practical in an MC6800 system is the Z80 DMA devlce. This is because the
other Z80 support devices decode a Write state from a combination of the M1, INT, and RD control signals. The Z80
DMA device uses separate read and write control inputs: therefore it mqy be used with an MC6800 CPU. The logic
needed to create Z80 DMA control inputs from MC6800 con'trol signals is identical to the 8080A control signal logic il­
lustrated above. The Z80 SIO device will probab!, not be effective in an MC6800 system: in preference, use specific
MC6800 serial 110 devices.

9.:.32

Q
w

~
a:
o
a..
a:
o
(J

~
en
w
l­
e(

U o
(J)
(J)
e(

c1J
w
Z
a:
o
m
(J)

o
~
e(
Q
e(

@

ct>1 NMOS I \ I

<1)2 NMOS \ I \

'1'2 TIL \ ~ 1
R/W. ADDR • \ I } VMA 6800 ,

DATA IN r1 ~
6800 ~ ~

DATA OUT I I \ } 6800 ,/
II

R5 ORWR TO
\,

{ 1 8251. 8253. 8255

Figure 9-12. Timing for 8080A Support Devices Used With an MC6800 CPU

When using non-MC6800 support devices with the MC6800 CPU, remember that there is a particularly per­
nicious problem associated with MC6800 Reset logic on power-up. As discussed earlier in this chapter. the
MC6800 does not internally disable interrupt requests until the trailing low-to-high transition of the RESET signal. Thus
external devices capable of requesting an interrupt may randomly do so during the power on Reset sequence; and this
may result in an interrupt being acknowledged following the initial system Reset. rather than the expected system in­
itialization program getting executed. You must make certain that all support devices capable of requesting an inter-.
rupt are disabled by the leading high-to-Iow transition of RESET during the power-up sequence.

THE MC6B02 CPU WITH READIWRITE MEMORY

The MC6802 is a combination of the MC6800 CPU, clock logic, and 128 bytes of read/write memory. Figure
9-13 illustrates logic of the MC6802 CPU device.

The actual CPU architecture and the instruction set of the MC6802 are identical to the MC6800 which we have already
described.

The 128 bytes of read/write memory which are present on the MC6802 chip are accessed by memory addresses
000016 through 007F16. The first 32 bytes of this read/write memory maybe protected during power down by a
special low power standby input.

MC6802 CPU pins and signals are illustrated in Figure 9-14. Pins and signals which differ from the MC6800 il­
lustrated in Figure 9-2 are shaded. We will examine these new signals only.

Since clock logic is on the MC6802 chip. three pins are needed for this specific purpose. Normally a crystal will be
connected across XTAL 1 and XTAL2. A 4 MHz crystal should be used since the MC6802 has internal divide-by-four
logic to create a 1 MHz. system clock signal. (An inexpensive 3.58 MHz color burst crystal may also be used.) A TTL
level system clock signal is output via <1>2 (TTL).

You can. if you wish. drive the MC6802 using an external clock signal; this signal is input via XTAL2; it must not be
faster than 4 MHz. XTAL 1 should be left unconnected in this mode.

9-33

Logic to Handle
____ Interrupt Requests
---- from

External Devices

Interrupt Priority
Arbitration

I/O Communication
~ Serial to Parallel

Interface Logic

Programmable
Timers

(,< I·'··

(, ".

"............. i i.i.ii .···1 "if('sIt
/i'..'·\ .. ,\,.)
?? '>' .. \

ROM Aejdressing
and

Interface Logic

Read"Only
Memory

System Bus

.. \\....,','

... ,,:'.

I/O Ports
Interface Logic

I/O Ports

t ,
Figure 9-13. Logic of the MC6802 CPU Device

Direct Memory
Access Control ~

Logic , ,
\ ' ... \.\"" / ~

.&

,
•• •••• ··.~~~)~~dressing

•••••••••• 1~:lri4it:;: Logic ~
·""·""'·"'·\\/\·1 ,
' ?t,·j'·· i.·'.·' .. '

I,.'.'{·.'.'.,. ~,e. ad .. . 1 .. Write
, j it) Memory
C(i.ii

.,.,.

In order to provide the clock stretching logic that is a standard part of MC6800 microcomputer system, a Memory
Ready (MR) signal is present. MR is normally high. In order to stretch <1>2, MR must make a high-to-Iow transition
while <1>2 is high: <1>2 then remains high untilMR makes a low-to-high transition. Timing may be illustrated as follows:

x·

<1>2

MR

, I I
I I

I
I
I I
I 200ns I

I" ~I

9-34

1
I

I I
I 300ns I

I" ~I

c
w
~
a:
o
Q.

a:
o
o
~
u)
w

~ g
CI)
CI)

ct
o!I
w
z
a: o
m
CI)

o
~
ct
C
ct
@

Vss
HALT

MR
IRQ

VMA

NMI

BA

VCC
AO

Al

A2

A3

A4

A5

A6
A7

A8

A9

Al0
All

-

PIN NAME

·AO - A15
·00 - 07
·HALT
·MR
·RE
·R!W
·VMA
·BA
·IRQ
RESET
NMI
XTAL1.XTAL2
E

VSS.VCC
VCC (ST)

1 40 ...
2 39 .. 3 38 -.

- 4 37
5 36 - 6 35
7 34
8 33
9 32

10 31 MC6802
11 30
12 29
13 28
14 27
15 26
16 25
17 24
18 . 23
19 22
20 21

DESCRIPTION

Address Lines
Data Bus Lines
Halt
Memory Ready
RAM Enable
Read/Write
Valid Memory Address
Bus Available
Interrupt Request
Reset
Non-Maskable Interrupt
Crystal/Clock Connections
Enable
Power
Standby Power

·These signals connect to the System Bus.

-~ ---
-- 'a ---

.. -- .. - --- -- -- --- --- -- .. - --- - -- ' .. - -.. -.. -.. -...

TYPE

Output

RESET

XTAL1

XTAL2
E
RE

YCC(~!J
R/W .

DO

01
02

03

04

05

06

07

A15

A14

A13

A12

Vss

Tristate. Bidirectional
Input
Input
Input
Output
Output
Output
Input

' Input
Input
Input
Output

Figure 9-14. MC6802 CPU Signals and Pin Assignments

Two signals have been added to support the on-chip read/write memroy. RE is an enable signal for the on-chip
memory. RE must be input high for the on-chip memory to be accessed. If RE is low. on-chip memory cannot be written
into or read. While on-chip memory is disabled its address space is also disabled. and addresses in the range 000016
through 007F16 are deflected to external memory. Thus the address space 000016 through 007F16 is duplicated:
it accesses on-chip RAM when RE is high. but it accesses external RAM when RE is low. .

The first 32 on-chip read/write memory bytes (with addresses 0000 through 001 F) can have the contents preserved by
applying +5V at the V CC standby pin when power is down on the MC6802. But to be of anY value. we must guarantee
that the contents of. these 32 read/write memory' locations are not destroyed during any power down sequence: in
other words. we must anticipate any power down. In order to preserve the contents of the 32 low-order read/write
memory bytes.RE must be input low at least three clock periods before power drops below +4.75V. This is easy
enough to dofor a scheduled power down: however. it is impossible during a non-scheduled power down - such as
might occur as the result of a power failure - unless power-down-interrupt circuitry is provided.

MC6800 signals which have been removed, going to the MC6802. include the clock inputs <1»1 and <1»2, plus the
bus control signals TSC and DBE.

Obviously. the clock inputs must be removed since clock logic is now on the CPU chip.

9-35

· ".

Removal of the System Bus control signals TSC and DBE reflects the fact that if you are going to need direct memory
access. you are not going to use the MC6802. Only larger microcomputer systems need direct memory access; for such
systems the MC6800 is available. The MC6802 is intended as half of a two-chip 6800 configuration. witr.in which
direct memory access would be meaningless.

If DMA is necessary with a 6802-based system. then the use of external tristate bus drivers will be necessary. Bus
Available (SA) and HALT are available on the 6802 for this purpose.

The MC6846 multi-function device is the other half of the two-chip microcomputer system. However, the
MC6846 can be used with the MC6800 CPU or the MC6802 CPU; therefore it is described later in this chapter
along with other 6800 support devices.

When HALT is input low, the MC6802 enters the Halt state at the end of the current instruction's execution. In the
Halt state the Data Bus is floated. Bus Available (BA) is output high. and 'valid memory address (VMA) is output low.
The Address Bus outputs the address of the instruction which will be executed when the halt condition ends. Timing
may be illustrated dS follows:

<1>2

HALT

BA

VMA

00 - 07

AO - A15

~One machine ,
I

I

Instruction
execution
ends here

The HALT input signal is level sensitive. The level of HALT is sensed 250 nanoseconds before the end of a machine cy­
cle. If HALT is low at this time. then the low level is detected. If HALT makes a high-to-Iow transition within the last 250
nanoseconds ofa machine cycle. then it may not be detected. This may be illustrated as follows:

I
I

<1>2 --.J \ I
I

HALT

HALT low not
detected here

9-36

I
I

\
I

,--.-;..---\ .

------1 ... ---,
I
I ,
I

1~50=-1
Halt low

detected here

I
I
I

I
I

~I
250 ns

c
w
!;t
II: o
D..
II: o
CJ
~
en
w
!;t
g
CI).
CI)
c:(

~
w
Z
II:
o
al
CI)

o
~
c:(
c
c:(

@

Once a Halt has been detected. the current instruction completes execution before the Halt condition starts. In the
simplest case this may be illustrated as follows:

I "
I I I

~2-1---~\~ __ ~/~~~\~ __ ~/~--~\~ __ ~
HALT \

I
I
I
I

~.·250ns
I .

. End. ot! HALT begin~
instruction I

If a Halt transition occurs within the last 250 nanoseconds of a machine cycle. then the HALT will probably not be
detected until the next machine cycle. Assuming that the next machine cycle terminates an instruction's exeuction.
the Halt condition will begin as follows:

I
I

~2 ~ \ I
I

HALT I
I

250ns~

HALT low
: not detected
I here

I
I

} I

~ ~
HALT low
detected

here

I
I

\ I
I

I

~ 250ns

End of
instruction

I ,..... ,."'\ '
------, \1:j

I
I
I

The next machine cycle could be the first of a multi-machine cycle instruction. Now the Halt condition will begin as
follows:

~2

HALT

here

I Next instruction :1~;~~j,~i[~;~~llmlllllll
End of I, ---executes in three ---__ .t!IHI~Ll~bElaln,s}.i.

instruction : machine cycles

Note that if the HALT transition had occurred a little earlier. the HALT condition would have begun a whole instruction
exeuction time sooner - three machine cycles sooner in the illustration above.

9-37

The HALT condition terminates on the machine cycle that follows HALT going high again. Once again the HALT signal
is sampled 250 nanoseconds before the end of the machine cycle. Thus the HALT may terminate within the machine
cycle where the HALT signal makes a low-to-high transition:

\

I

I

But the HALT 'cpndition hlay terminate one machine cycle later if the HALT signal makes its low~to-high transition
within the last 250 nanoseconds of a machine cYGle. This may be illustrated as follows:

""'.,
.),

<1>2

HALT

.'."·,··,i

,

'"''
iA Start next instruction's

Al<A""tinn

I
I

\
I

I

Observe that it is possible for a low HALT pulse to be completely missed if it is less than one machine cycle long
and transitions are not properly synchronized. If, for example, the high-to-Iow transition occurs within the last 250

. nanoseconds of a machine cycle and the subsequent low-to-high transition occurs correctly in the next machine cycle,'
the HALT pulse will be completely missed. This may be illustrated as follows:

<1>2

I
I

HALT \ I I I ~I ___ ~ ___ •

Th" h;gh-to-~w :::,::.:Y r-Th;, J",.;,
occurring too late, is I I never detected

not detected I I

I
I

~ ~250ns
I
I
I

During the HALT condition no interrupts will be acknowledged. If any interrupt requests oc­
cur during a HALT condition, they simply stack up waiting for the end of the HALT condition.

There are also some differences in MC6802 interrupt and reset logic as compared to the
MC6800.

INTERRUPTS
DURING AN
MC6802 HALT

Motorola literature recommends that interrupt request inputs IRQ and MNI have a 3K ohm external resistor to Vee.
This may be illustrated as follows:

Vee

6802 3.0Kfl

IRQ or NMI t--t~--

9-38

The MC6802 RESET input may be a stand-alone input or it may be tied to the RAM enable input (RE). Timing for the
RESET signal rise and fall differs in the two cases. as defined in the·9p.t~ sheets at the end of this chapter. Note that by
tying RESET to RE you cause the on-chip RAM to be enabled whenever the MC6802 is receiving power.

The MC~802, like the MC6800, does not disable interrupts until clo~e to the end of the reset sequence. Thus. if
you have non-6800 support devices connected to an MC6802. you must make certain that you have included logic that

~ prevents these !3Upport devices from requesting an interrupt until after the reset operation has gone to completion. If
~ you do not take this precaution. then following RESET you mClY vector to a support deyice's interrupt service routine
~ rather than ex~cuting the intended system initialization program.
Q.
a:
o
~ THE MC6870 TWO PHASE CLOCKS
en
~ Four clock logic:: devices supporting the MC6800 CPU are described. The MC6802 does not need any external
§ clock logic device~

CI) The MC6~70A is' a very elementary device providing minimum clock signal~ needed with an MC6800
~ microcompute'r system. Its pin assignments are illustrated in Figure 9-15.
all
w
Z
a:
o m
CI)

o
~
ct
C
ct
@

GND

--ct>2 (TTL)

Vee (+ 5V)

--(iJ2 (NMOS)

Pin Name

<1>1 (NMOS)

<1>2 (NMOS)

ct>2 (TTLl

Vee. GND

1

3

5

7

12

24

22

20

MC6870A
18

13

Description

(1)1 Clock to MC6800

(1)2 Clock to MC6800

ct>2 Clock to microcomputer

system

Power and Ground

.. -

GND

ct>1 (NMOS)

Type

Output

Output.

Output

Figure 9-15. MC6870A Clock Device Pins and Signals

9-39

The first enhancement is provided by the Me6S71 A, illustrated in Figure 9-16, which adds clock signal stretch­
ing capabilities and a twice frequency clock output.

GND

--MEMORY CLOCK

<1>2 (TTL) --
Vcc (+ 5V)

--<1>2 (NMOS)

Pin Name

<1>1 (NMOS)

<1>2 (NMOS)

<1>~ (TIL)

MEMORY CLOCK

2xfc

'HOL5i
MEMORY READY

Vcc,GND

1

3

5

7

12

24 ...
22

20

. MC6871A
18

13

Description

<1> 1 Clock to MC6800

<1>2 Clock to MC6800

.:..
~

~

<1>2 Clock to microcomputer

system

Select to memory devices

Twice frequency clock

Stretch <1>1 high control

Stretch <1>1 low control

Power and Ground

-

2xfc

MEMORY READY

GND

<1>1 (NMOS)

Type

Output

Output

Output

Output

Output

Input

Input

. ,~Figure 9-16. MC6871A Clock Device Pins and Signals

The Me6S71 B, iIIustr'~.tY~Figure 9~17, is a. varia. tion of the Me6S71 A . . ~
GND

--<1>2 (TTL) UNGATED

) --<1>2 (TTL

Vcc (+ 5V)

<1>2 (NMOS) -
Pin Name

<1>1 (NMOS)

<1>2 (NMOS)

<1>2 (TTL)

<1>2 (TTL) UNGATED

2xfc

HOL51
HOL5'i
Vcc. GND

1

3

5

7

12

24 . -
22 ~

20 --
MC68718

18

13 ------
Description

<1>1 Clock to MC6800

<1>2 Clock to MC6800

<1>2 Clock to microcomputer

system

Free-run~ing <1>2 (TTL)

Twice frequency clock

Stretch <1>1 high control

Stretch <1>1 low control

Power and Ground

2xfc

GND

<1>1 (NMOS)

Type

Output

Output

Output

Output

Output

Input

Input

Figure 9-17. MC6871 B Clock Device Pins and Signals

9-40

c
w
!i
II:
o
0.
II:
o
U
~
iii
w

!i
t3 o
(/)
(/)
c:(

ciJ
w
Z
II:
o
al
(/)

o
~
c:(
c
c:(

@

X1 ...
1 16 Vcc (+5V)

X2 -- 2 15 - '1>1 (NMOS) --..
EXT IN ..

3 14
... RESET

4xfc -- 4
MC6875

13 -- '1>2 (NMOS)

2xfc
.- SYs REs - 5 12 :-

MEM READY .. 6 11 - REF GRANT

'1>2 (TTL) -- 7 10 leG- DMA/REF REO

GND 8 9 ~ MEMORY CLOCK

Pin Name Description Type

e1>1 (NMOS) ct>1 Clock to MC6800 Output

'1>2 (NMOS) ct>2 Clock to MC6800 Output

el>2 (TTL) ct>2 Clock to micro~om- Output

puter system

MEMORY CLOCK Free-running ct>2 (TTL) Output

2xfc Twice frequency clock Output

4xfc Four Times frequency clock Output

DMA/REF REO Stretch ct>1 high control Input

REF GRANT Stretch ct>1 high, acknowledge Output

MEM READY Stretch ct>1 low control Input

SvS"RES Asynchronous system reset control Input

RESET Synchronous reset control Output
EXT IN External synchronization control Input

X1. X2 External crystal connections

Vcc. GND Power and Ground

Figure 9-18. MC6875 Clock Device Pins and Signals

The MC6875 is the most versatile of the clock devices provided for the MC6800. It is illustrated in Figure 9-18.

Since these various clock logic devices represent essentially the same capabilities, but with increasing enhan­
cements, we will describe logic and capabilities in the order of the device illustrations.

Much of the clock device logic we are going to describe stretches the <1>1 (NMOS) and <1>2 (NMOS) clock sig­
nals. But recall that stretching <1>1 (NMOS) and <1>2 (NMOS), in itself, is only half of the logic needed to stretch
the entire System Bus. Additionally, the MC6800 needs a high TSC input to float ,the Address and RIW Bus lines
while <1>1 (NMOS) is high. DBE must be input low in order to float the Data Bus lines while the clock is being
stretched with <1>1 (NMOS) low.

THE MCG870A CLOCK DEVICE
This is a minimum clock device; it outputs <1>1 (NMOS) and <1>2 (NMOS), the two clock signals required by an
MC6800 CPU.

<1>2 (TTL) is also generated. <1>2 (TTL) is used to synchronize support devices; it has sufficient load capacity to
drive five devices without signal buffering.

The MC6870A contains an internal crystal and oscillator: in its standard form clock Signals with a 1 MHz frequency are
generated. A variety of other clock frequencies can also be ordered.

THE MCG871 A CLOCK DEVICE
In addition to the standard signals output by the MC6870A. the MC6871 A provides two additional TTL output clock
signals and externally controlled pulse stretching capabilities.

9-41

HOLD1 is used to stretch the standard clock signals: <1>1 (NMOS), '<1>2 (NMOS) and <1>2 (TTP, which we de­
scribed for the MC6870A Timing may be illustrated as follows:

<1>2 (NMOS) and <1>2 TTL

It is very important that HOLD 1 makes its active highcto-Iow transition during a <1>1 (NMOS) high state, Subsequently.
<1>1 (NMOS). <1>2 TTL clocks will be stretched until HOLD1 makes a I()w-to-high trahsition within the contraints de-
sc~ibed below. . . ".

r.-----~
As illustrated above. HOLD1 stretches clocks with <1>1 (NMOS) high. If you refer back to our dis-MC6800
cussion of the MC6800. you will see that these clock levels identify the portion of a machine cycle STRETCHING
when an address is being output. Typically. the clock will be stretched so that two addresses can ADDRESS
be output: the first for a Direct Memory Access or dynamic memory r!3fresh operation:' the second TIMING
for the normal address output which is required when any :instruction is executed. Device select
logic must discriminate between the two addresses being output: DMA or dynamic memory refresh logic must receive
the first address only. while memory or I/O devices receive the second address only. . ,

Two additional clock signals are output by the MC6871A: 2xfc and MEMORY..Qb.Q£.K: they are not part of normal
memory addressing logic. therefore these two clock signals are not stretched by HOLD1.

2xfc is it twice frequency clock signal which can be used for various synchronization logic around an MC6800
microcomputer system.

MEMqRY CLOCK is identical in waveform to <1>2 TTL e~cept MEMORY CLOCK is not stretched by HOLD1.

HOLD1 must make its high-to-Iow transition while <1>1 (NMOS) is high. HOLD1 must subsequently make its low-to-high
transition 'while <1>1 (NMOS) would have been high. had it not been stretched. An asynchronous HQ~D~ request must
therefore be synchronized with <1>1 (NMOS) in order to' generate a valid HOLD1 clock input. This is asjmple logic
operation: here !s one pgsSi~ility:

+5V

Asynchronous ~ _______ --I
HOLD reque~t 10

1
QLHOL01 rR .

7402
MEMORY CLOCK -----01--

2xfc

1/274LS74

c~

+5V

9-42

OMA or Refresh
Acknowledge

c
w

~
a:
o
a..
a:
o
o
~
iii
w

~
(3
o
In
In
ct
o!I
w
Z
a:
o
In
In
o
~
ct c
ct
@

This circuit synchronizes the high-to-Iow and the low-to-high transition of HOLD1. The low-to-high clock transition oc­
curs only during .eIl1 (NMOS) high time:

(1)1 (NMOS)

MEMORY CLOCK

2xfc

Observe that synchronization logic can create a time delay of up to one half clock cycle between the unsynchronized
and the synchronized HOLD signals changing state.

MEMORY READY also stretches clock l:Iignais. Timing may be illustrated as follows:

ct>1 (NMOS)

(1)2 (NMOS!. ct>2 TTL

MEMORY READY

2xfc

Clock signal stretching begins with eIl2 (NMOS) high following the MEMORY READY high-to-Iow transition. Clock
stretching ends with the falling edge of 2xfc following the MEMORY READY low-to-high transiiibn. Observe that
MEMORY READY stretches MEMORY CLOCK: which HOLD.1 does not do. 2xfc. however. is not stretched. either by
HOLD1 or by MEMORY READY Also note that MEMORY READY does not require input synchronization. as does
HOLD1.

If you refer back to the timing diagrams which illustrate MC6800 instructions' execution. you will see that MEMORY
READY stretches cloc~ signals during the data access portion of a machine cycle. This is the part of the machine cycle
during which external memory has to respond to a CPU access; therefore. this is the portion of the tnachlne cycle
which must be stretched for slow memories - which is why MEMORY READY can be visualized as the signal which
slow memories must input low in order to .9clin the access time tHt3y require.

The MC6871A contains an internal crystal oscillator. In its standard for~. clock signals with a 1 MHz frequency
are generated. A variety of other clock frequencies can also be ordered.

THE MC6871 B CLOCK DEVICE
This device differ~ ,from the MC687iA in two ways. MEMORY READY is replaced by HOLD2 and MEMORY
CLOCK is replaced by eIl2 (TTL) UNGATED. HOLD2 stretches clock signals with eIl1 (NMOS) low. just as MEMORY
READY did; however. like HOLD1. HOLD2 must have its active transitions synchronized with the clock output - in this
case with eIl2 high. eIl2(TTL) UNGATED. however. is not stretched. Timing may be illustrated as follows:

ct>2 TTL UNGA TED

\ I
9-43

THE MC6875 CLOCK DEVICE'
This is the most sophisticated of the clock devices offered with the MC6800 microcomputer system. Its prin­
cipal features are that it performs control input synchronization which must be handled externally by other
clock devices; also, the MC6875 allows external timing.

As we have already stated. clock signals are stretched with <1>1 and <1>2 low in order to allow a Direct Memory Access or
dynamic memory refresh address to be output The MC6875 DMA/REF REO input performs this clock stretching
operation, just as HOLD1 does, except that DMA/REF REO can be an asynchronous input. MC6875 internal logic
performs the synchronization operations wbich have to be handled externally for the MC6871 A and MC6871 B clocks.
In addition. the MC6875 outputs REF GRANT high while the clocks are being stretched with <1>1 (NMOS) high. External
DMA or dynamic memory refresh logic can use REF GRANT as an enable strobe:

MEMORY READY and MEMORY CLOCK are as described for the MC6871 A. MEMORY READY stretches clocks
with <1>1 (NMOS) low. MEMORY CLOCK fOllows <1>2 (NMOS) and is stretched by MEMORY READY but not by DMA/REF
REO. .

The MC6875 clock signal outputs <1>1 (NMOS) and <1>2 (NMOS) have sufficient capacity to drive two MC6800
CPUs. 4xfc is an additional oscillator running at four times the <1>1 and <1>2 clock rates.

X1, X2 and EXT IN are three signals which allow MC6875 clock rates to be controlled externally.

You can optionally attach a crystal oscillator or an RC network to Xl. X2 as follows:

CRYSTAL OPERATION RC OPERATION

You can also input an external clock signal to EXT IN, in which case the MC6875 will adopt the frequency of the
external signal. The external clock frequency must be four times the <1>1 and <1>2 clock frequency.

The MC6875 is able to take an asynchronous SYSTEM RESET input and convert it into a synchronous RESET,
which may be used throughout an MC6800 microcomputer system SYSTEM RESET can be any input Signal which is
processed through a Schmitt trigger to create a RESET output. as described for the 8224 clock device in Chapter 4.

SOME STANDARD CLOCK SIGNAL INTERFACE LOGIC
There are a number of very common ways in which MC6870 series clock signals are used within MC6800
microcomputer systems.

You will find that all of the support devices described in the rest of this chapter require an
enable synchronizing signal, given the symbol "E". This signal is usually generated as the
AND of the MC6800 VMA output and the <1>2 TTL clock output: .

<1>2 TTL ___,~u_· ___ E
'VMA ~

MC6800
ENABLE
SIGNAL
GENERATION

The purpose of ANDing <1>2 with VMA is to make sure that devices receiving signal E are inhibited while VMA is low­
at which time the CPU cannot be accessing the support device.

9-44

c
w

~
a:
o
a.
a:
o
o
~
u)
w

~
g
(/)
(/)

~

a1J
w
Z
a:
o
m
(/)

o
~
~ c
~

©

The HALT signal. which is used in MC6800 microcomputer systems to float the System Bus for
extended periods. must be a synchronous input. You can create a synchronous HALT from
an asynchronous HALT using <1>2 TTL as follows:

+5V

Asynchronous HALT -----t15

1/274LS74

<1>2 TTL 'X)---f)CK

+5V

Synchronous HALT

MC6800
SYNCHRONOUS
HALT
GENERATION

THE MC6820 AND MCS6520 PERIPHERAL INTERFACE ADAPTER
(PIA)

This part is manufactured as the MC6820 by the companies listed at the beginning of this chapter. MOS Tech­
nology and its second source companies (whose products are described in Chapter 10) manufacture the same
part, but call it the MCS6520.

The MC6820 PIA is a general purpose I/O device, designed for use within MC6800 microcomputer systems.

The MC6820 PIA provides 16 I/O pins, configured as two 8-bit I/O ports. We will refer to these as Port A and
Port B. Individual pins of each I/O port may be used separately as inputs or outputs. Each I/O port has two asso­
ciated control signals, one of which is input only, while the other is bidirectional. The only differences between
I/O Ports A and B are in their electrical characteristics, and in their handshaking control capabilities. But these are
very significant differences. as we will explain shortly.

Figure 9-19 illustrates that part of our general microcomputer system logic which has been implemented on the
MC6820 PIA.

The MC6820 PIA is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL
compatible.

The device is implemented using N-channel silicon gate MOS technology.

THE MC6820 PIA PINS AND SIGNALS
The MC6820 pins and signals are illustrated in Figure 9-20. We will summarize signal functions before describ­
ing PIA operations.

Consider first the various Data Busses.

DO - 07 represents the bidirectional Data Bus via which all communications between the CPU and the MC6820
occur.

PAO - PA7 and PBO - PB7represent Data Busses connecting the two 8-bit I/O Ports A and B with external logic .
. The 16 I/O port pins may be looked upJn as 16 individual signal lines. or two 8-bit I/O busses. Each I/O port pin can be
individually assigned to input or output. but an individual pin cannot support bidirectional data transfers.

These are the differences between I/O Port A and B pins:

1) Bits of I/O Port A may be set or reset at any time by voltage levels applied to associated pins. Irrespective of data
that may be in a bit position following a Read or Write operation. an I/O Port A bit will be reset to zero any time a
voltage of +O.8V or less is applied to a Port A pin. A 1 will be written into a Port A bit any time a voltage of +2V or
more is applied to the Port A pin. I/O Port B bit contents are not affected by voltage levels at I/O Port B pins. For ex­
ample. suppose that a 1 has been output to bit 2 of I/O Ports A and B. Subsequently suppose that pin 2 of I/O Ports
A and B are drained excessively. so that voltage levels transiently drop to +O.5V. I/O Port A bit 2 will become O. but
I/O Port B bit 2 will retain a level of 1.

2) As outputs. I/O Port B pins may be used as a source of up to 1 mA at +1.5V. to directly drive the base of a transistor
switch. This is not feasible using I/O Port A pins.

9-45

'/ ...

Logic to ~a9~1~

... 'nterru~:o~2;{f~j I· .. :::\ >·.-__ ~
External Devices

-

Clock Logic

Arithmetic and
Logic Unit --

Instruction Register ~

Control Unit
~

Accumulator
Registerlsl

Data Counterlsl

'-----r---'

I/O Communication
.. Serial.to Parallel

Interface Logic

Programmable
Timers

•

There are five device select pins.

II

Bus Interface
Logic

ROM Addressing
and

Interface Logic

Read Only
Memory

Stack Pointer

~ Program Counter

.,
System Bus

Figure 9-19. Logic of the MC6820 PIA.

Direct Memory
Access Control ...

Logic

t
.~

t
RAM Addressing

and ~
Interface Logic

t
Read/Write ..

Memory

CSO, CS1 and CS2 are three typical chip select signals. For an MC6820 device to be selected. CSO and CS 1 must
receive high inputs while CS2 simultaneously receives a low input. '

Providing CSO. CS1 and CS2 have selected an MC6820 device. RSO and RS1 address one offour memory locations.
Thus an MC6820 device will appear to a programmer as four memory locations.

Any of the standard schemes described in Volume I can be used to address an MC6820 PIA. There is nothing unusual
about the select logic with which you will assign four unique memory addresses to an MC6820.

The're are four timing and control signals which interface an MC6820 with external logic.

CA 1 and CA2 are control signals associated with I/O Port A. CA 1 is an input only signal and is usually used by ex­
ternal logic to request an interrupt. CA2 is a bidirectional control signal which is used to implement various types of
handshaking'logic.

CB1 and CB2 are the control signals which support I/O Port B .. These tw~ signals are analog'o~s to CA 1 and CA2.
although there are some differences in the handshaking logic associated with CB2 as compared to CA2.

9-46

0
w

~
II:
0
a..
II:
0
u
~
en
w
I-
ct
g
(I)
(I)

ct
all
w
Z
II:
0
In
(I)

0

~
ct
Q
ct
@

Vss

PAO -.. -PAl

PA2 -.. -PA3

PM -.. -PA5 .. -PA6

PA7 -
~ -PBO

PBl -.. -PB2
PBl -PB4 -
PB5 --PB6 -
PB7 -
CBl

---CB2

Vcc

Pin Name

00- 07

PAO - PA7

PBO - PB7

CSO. CSl. CS2
RSO. RSl

CAl

CA2

CBl

CB2

E

R/iii

iR'QA. IROB

RESeT
Vcc. Vss

1 40 ..
2 39 .. 3 38 -.. 4 37 --- 5 36 .. 6 35 --- 7 34 .. 8 33
9

MC6820
32

--- 10 31
PIA

11 30 - (MCS6520) .. 12 29 .. 13 28
14 27 .. 15 26 -.. 16 25 .. 17 24 .. 18 23 - 19 22
20 21

Description

Data Bus to CPU

Port A peripheral Data Bus

Port B peripheral Data Bus

Chip Select

Register Select

Interrupt input to Port A

Port A peripheral control

Interrupt input to Port B

Port B peripheral control

Device synchronization

Read/Write coritrol

Interrupt request

Reset

Power and Ground

- -..
-------"'"- .. -- -.--.. .. --- ..

- -
.. .. - ----.... -.. --------

CAl

CA2

iROA
IROB

RSO

RSl

RESET
00
01

02

03
04

05
06

D7

E

CSl

CS2

CSO

R/W

Type

Tristate. bidirectional

Input or Output

Tristate. Input or Output

Input

Input

Input

Input or .output

Input

Input or Output

Input

Input

Output

Input

Figure 9-20. MC6820 PIA Signals and Pin Assignments

There are two control signals associated with the MC6820 CPU interface.

E is the standard synchronization signal generated by the various MC6870 series clock devices. The trailing edge
of E pulses synchronizes all logic and timing within the MC6820. Manufacturer literature refers to E as a device enable
signal. but it is more accurately viewed as a device synchronization signal.

R/W is the standard RsadlWrite control signal output by the MC6800 CPU. When RIW is high. a Read operation is
specified; that is. data transfer from the MC6820 PIA. to the MC6800 CPU occurs. When R/W is low. a Write operation
is specified; that is. data transfer from the CPU to the PIA occurs.

There are two interrupt request signals, IROA and IROB. Under program control you can specify the conditions
under which an interrupt request can originate at logic associated with 1/0 Port A or 1/0 Port B. The actual interrupt re­
quest is transmitted to the MC6800 CPU via signallROA for 1/0 Port A logic. and via IROB for 1/0 Port B logic. Interrupt
requests originating at either signal will connect to the MC6800 IRO input. .

RESET is a standard Reset input. When it is input low. the contents of all MC6820·registers will be set to zero.

9-47

ffiQA38~~---------------------------------------i

DO 33
01 32
0231
0330
04 29

OS 28
D6 27
07 26

CSO 22
CS124
CSi 23
RSO 36
RS135

RJW21
ENABLE 25

RESET 34

DATA BUS
BUFFERS

(DBB)

BUS INPUT
REGISTER

(BIR)

CHIP
SELECT

AND

R/iN
CONTROL

OUTPUT BUS

OUTPUT
REGISTER A

(ORA)

OUTPUT

REGISTER B
(ORB)

INPUT BUS

ffiIoB37--~

INTERRUPT

STATUS
CONTROL A

INTERRUPT

STATUS
CONTROL B

Figure 9-21. Functional Block Diagram for the MC6820 PIA

MC6820 OPERATIONS

40 CAl

39 CA2

PAO
PAl

4 PA2
PA3
PM
PA5
PA6

9 PA7

10 PBO
11 PBl
12 PB2
13 PB3
14 PB4
15 PB5
111 PB6
i7 PB7

18 CBl

19 CB2

As compared to the 8255 PPI. the MC6820 PIA has less formalized operating modes. The MC6820-to-externallogic in­
terface consists of two I/O ports. each of which has two dedicated control lines. You have the option of assigning in­
dividual I/O port lines to input or output; as a completely separate operation you can use the two control lines to
perform a limited amount of handshaking and interrupt processing - or you can ignore the control lines, in
which case the I/O port is supporting simple input and/or output. Bidirectional I/O, equivalent to 8255 Mode 2,
is not available. Figure 9-21 generally represents MC6820 functional organization and Table 9-4 summarizes
the available operating modes.

9-48

c
w

~
a:
o
a..
a:
o
(J

21:
Iii
w

~ g
en
en
~

015
w
Z
a:
o
CD
en o
~
~ c
~

@

Table 9-4. MC6820 Operating Modes

OPERATING MODE MC6800 AVAILABILITY

Simple input I/O Port A or B
without handshaking

Simple output I/O Port A or B
without handshaking

Bidirectional I/O Not available. but individual pins of
without handshaking either I/O port may be separately

assigned to input or output

Input with I/O Port'A only
handshaking

Output with I/O Port B only
handshaking

Bidirectional I/O Not Available
with handshaking

Table 9-5. Addressing MC6820 Internal Registers

SELECT LINES
ADDRESSED LOCATION

RS1 RSO X

7 6 5 4 3 2 1 o ...--Bit No.

0 1 I I I I I I X I I I/O Port A Control register

J
f

0 0 0 I/O Port A DataDirection register

0 0 1 I/O Port A Data buffer

7 6 5 4 3 2 1 o ~BitNo.

1 1 I I I I I I X I I I/O Port B Control register

J
t

1 0 0 I/O Port B Data Direction register
1 0 1 I/O Port B Data buffer

There are six addressable locations within an MC6820 PIA; they are shaded in Figure 9-21.
Since there are only two register select lines. RSO and RS1. four unique addressable locations can
be identified within the MC6820. Table 9-5 summarizes the manner in which the MC6820 uses
four addresses to access six locations. Logic defined in Table 9-5 requires that you first output a

MC6820
REGISTERS
ADDRESSING

Control code to each I/O port Control register: next you access either the I/O port Data Direction register. or the I/O port
Data Buffer. You use the same memory address to access an I/O port Data Direction register and I/O port Data Buffer.
Which location you access is determined by bit 2 of the I/O port's Control register.

9-49

You must precede any 1/0 port Data Direction register. cjrData Buffer access with a Control code. written to the 1/0
port's Control register. Once you have written a Control code to an 1/0 port Control register: you do not have to write
another ,Control, code for addressing purposes until you, wish to switch from accessing the 1/0 port Data Direction
register to the Data Buffer. or from accessing the Data Buffer to the Data Direction register. .

To illustrate MC6820 addressing. suppose the four addresses C00016. C00116.C00216 and C00316 select an
MC6820. This is how addressable locations within the MC6820 would actually be selected if address line AO were con­
nected to RSO and A 1 to RS1:

Address Selected
, C00016 ' 1/0 Port A Data Direction register. if C00116CF1. bit 2 = 0

1/0 Port A Data buffer. if C00116. bit 2 = 1
C00116 1/0 Port A Control register
C00216 1/0 PortBData Direction register. if C00316. bit 2 = 0

1/0 Port B Data buffer. if C00316. bit ;2 = 1
C00316 1/0 Port B Control register

If you read from an 1/0 port data buffer. you input from the 1/0 port to the CPU; if you write to anllO port data buffer.
you output from the CPU to the 1/0 port.

The Data Direction registers identify each pin of an 1/0 port as being dedicated to either input or output. These are
write only registers. You must write a control word into each Data Direction register; a 0 in a bit position configures the
corresponding 1/0 port'pin as an input. While a 1'results in an output:

654 o "'-BitNo.

I/O Port
Pins

, Observe that 1/0 Ports A arid B will both be configured as 8-bit input ports when the MC6820 is reset. since RESET
clears all internal registers. " ' . - , -

9-50

C
w

~
0:
0
D-
o:
0
u
~
en
w ...
ct
U
0
en
en
ct
all
w
Z
0:
0
III
en
0

~
ct c
ct
@

Control register interpretation is quite complex.

The two high-order bits of each Control register are read only locations. which record the status of
interrupt requests which may originate from either of two control lines associated with an I/O
port:

Both interrupt requests are

~
output via iRciA

6 5 4 3 2 0 -4-BitNo.

I I I I.--control Register A

t
,

Status of interrupt requests originating at CA2 logic

Status of interrupt requests originating at CA 1 logic

Both interrupt requests are

J:: output via IROB

6 5 4 3 0--BitNo.

I I I ~ Control Register B

t
,

Status of interrupt requests originating at CB2 logic

Status of interrupt requests originating at CB 1 logic

MC6820
CONTROL
CODES

The remaining six control bits may be written into or read: they define the way in which the I/O port will operate.

Figures 9-22 and 9-23 describe the Control register interpretation for I/O Ports A and B respectively: since the two Con­
trol register interpretations are very similar. the points of difference are shaded so that they are easy to spot.

Let us clarify the functions enabled by the two Control registers.

Each I/O port has its own interrupt request signal: IROA for I/O Port A and IROB for I/O Port B. MC6820
Each interrupt request signal has two separate sets of request logic. based on an interrupt request INTERRUPT
originating with a CA 1 /CB 1 signal transition. or a CA2/CB2 signal transition. . LOGIC

Control register bit 0 enables or disables IROA/IROB. based on signal CA 1 /CB 1 transitions only. Ouite independently.
Control register bit 3 enables or disables IROA/IROB based on transitions of signal CA2/CB2. However. Control register
bit 3 has an alternative interpretation: the one we have just described only applies if Control register bit 5 is O.

Interrupt requests are triggered by the "active transitions" of a control signal. The active transitions of control signals
may be a high-to-Iow. or a low-to-high transition: For CA1/CB1. the active transition is selected by Control register bit
1. For CA2/CB2. the active transition is selected by Control register bitA. but only if Control register bit 5 is O.

Irrespective of whether interrupt request signals IROA and IROB have been enabled or disabled. Control register bits 6
and 7 will report the interrupt request as a status. that is to say. if a condition exists where CA 1 ICB 1 makes an interrupt
requesting active transition. then Control register bit 7 will be set to 1. Similarly. if control signal CA2/CB2 makes an in­
terrupt requesting transition. then Control register bit 6 will be set to 1. Once set. Control register bits 6 and 7 will re­
main set until a Read operation addresses the Control register: at that time Control register bits 6 and 7 will both be
reset to O. while other bits of the Control register are left unaltered.

If Control register bit 5 is 1. then Control register bits 4 and 3 take on a second interpretation. If Control register bits 5
and 4 are both 1. then control signal CA2/CB2 will be output at all times with the level of control bit 3.

9-51

6 4 2 o-BitNo.

I/O Port A Control register

....... --- 0 Disable IRMl
1 Enable IRQA1

'------ 0 Set bit 7 andIR%l(if enabled) on high-to-lowC~ltransition
1 Set bit 7 and IRQA 1 (if enabled) on low-to-high .CA 1.transition

1--______ 0 When RSO, RS1 =OO.select I/O PortA/Direction register
1 When RSO, RS1 =.00 select I/O Porth.Data buffer

o Disable IRM2 }

i:~~iig2~~:;g::: B;t 5 ~ 0
00 Selectinp~t interrupt handshaking }
01 Sele~tinputprogrammed handshaking Bit 5 = 1
1 X SetCA2to X

1--_____________ Status oflRQA2

'----------------- Status of IRM 1

Figure 9-22. I/O Port A Control Register Interpretation

6 4 3 o-BitNo.

I I I I I I I I I/O Port B Control register

.~~ ~~ ~~ ~ ~ ~~ ~ t
'----- 0 DisablelROB t

1 Enable IROB1

'------- 0 Set bit 7 andl~()~l(if enabled) on high-to-low<::i3ltransition
1 Set bit 7 andlROB1 (if enabled) on low-to-highCBltransition

'-------- 0 When RSO, RS1 =Cli select I/O Port~Direction register
1 When RSO, RS1 =.01 select I/O PortBData buffer

!:~~~:tl~~~~~:g::: } B" 5 ~ 0 -

1---4II _I--------1 .. ~ 00 Selecto~t~~t. interrupt handshaking }

01 Sele.c .. t o ... ~.tpytProgrammed handshaking Bit 5 = 1 ~
1 X SetC82 to X

'--------------- Status oflROB2
1--_______________ Status oflRClB1

Figure 9-23. I/O Port'S Control Register Interpretation

9-52 '

c
w

~
IX:
o
0..
IX:
o
o
~
en
w

~ g
CI)
CI)

oct
011
w
Z
IX:
o
CD
CI)

o
~
oct
C
oct
@

If Control register bits 5 and 4 are 1 and 0 respoctively, thon Control rogistor bit 3
specifies an automatic handshaking signal sequenco. Let us doscribo these signal se­
quences.

Input interrupt handshaking applies to I/O Port A only, and may be iIIustratod as follows:

E

R/W ----'
DO - 02

CA2

CAl

MC6820
AUTOMATIC
HANDSHAKING

Active

CAl
Transition

CA2 is output on the trailing edge of E. after the CPU has read the contents of the liD Port A data bllffer; this tells exter­
nal logic that previously input data has been read and new data may now be input. External logic· receives CA2 low.
and upon transmitting new data to liD Port A. must cause an active interrupt requesting transition of input control sig­
nal CA 1. What constitutes an active transition will be determined by liD Port A Control register bit 1. When external
logic requests an interrupt via signal CA 1. CA2 will be set high again.

Input programmed handshaking applies only to I/O Port A, and may be illustrated as follows:

E

cso·csl-CSi

A/iN

DO - 07

CA2

Once again control signal CA2 is output low when liD Port A data buffer contents are read by the CPU. This tells exter­
nal logic that previously input data has been read and new data may be input. External logic does not have to identify
newly transmitted data with an interrupt request; rather. CA2 will be resetas soon as the MC6820 is deselected. Using
programmed handshaking. external logic may use the CA2 low pulseas a Write strobe. causing new data to be input to
liD Port A.

9-53

Output interrupt handshaking applies only to 1/0 Port B, and may be illustrated as follows:

R/W

DO - 07

~
eB2

eBl

In this instance. control signal CB2 is outpUt Iowan the high-to-Iow transition of E following a Write to I/O Port A Data
buffer. In other words. CB2 tells external logic that new data has been output to.I/O Port B and is ready to be read. Ex­
ternallogic tells the MC6B20 that 110 Port B contents have been read by making an interrupt requesting active transi­
tion of the CB 1 signal. Once again. I/O Port B Control register bit 1 will determine what constitutes an active transition
of the CB 1 signal. Program logic can use an interrupt to branch to a program which outputs the next byte of data to I/O
Port B.

Output programmed handshaking applies only to 1/0 Port B, and may be illustrated as follows:

CSO ·cs 1-CS2

R/W

DO - 07

eB2

CB2 makes a high-to-Iow transition when data is written into the I/O Port B data buffer. just as occurred with output in­
terrupt handshaking. However. CB2 will automatically be set to 1 as soon as the MC6B20 is deselected. External logic
can use the CB2 low pulse asa strobe. causing it to read the contents of I/O Port B.

Many other handshaking protocols may be created under program control. The four automatic protocols described
above are simply four situations which can be specified. and which will subsequently occur without further program in­
tervention. But remember. you can modify the level of control signal CA2/CB2 any time by outputting a Control code
with bits 5 and 4 both set to 1: CA2/CB2 will then take the level of Control code bit 3. You can also determine the con­
ditions which will cause an interrupt request as a result of any control signal transition.

9-54

c
w

~
a:
o
Q.
a:
o
u
~
en
w
l­
e(

o o
CI)
CI)
e(

all
w
Z
a:
o
III
CI)

o
:!:
e(
c
e(

@

THE MC6850 ASYNCHRONOUS COMMUNICATIONS
INTERFACE ADAPTER (ACIA)

The MC6800 microcomputer system provides separate devices supporting synchronous .and asynchronous
serial I/O. The MC6850, which we are about to describe, provides asynchronous serial 110. The MC6852, which we will
describe next. supports synchronous serial liD.

Taken together; the MC6850 and MC6852 devices are approximately equivalent to the 8251 USART. The 8251
is a general purpose 8080 device that can be used with a variety of microcomputers. Refer to Volume 3 for a descrip­
tion of 8251' s.

Figure 9-24 illustrates that part of our general microcomputer system logic which is provided by the MC6850
and MC6852 devices.

Having separate synchronous and asynchronous serial I/O devices has advantages and disadvantages, when
compared to the 8251 USART which provides both sets of logic on a single device. In a microcomputer system that
uses either asynchronous or synchronous serial liD, but not both, separate devices are better, because they come in
smaller packages and require less space on a PC card. If your microcomputer system uses both synchronous and
asynchronous serial liD, then a single device will be more economical.

When comparing the MC6850 with tile 8251, you will find that the 8251 offers more asynchronous serial I/O
options, but it is harder to program. In fact. you must program the 8251 defensively: 8251 statuses and control sig­
nals simply prompt your program logic, but actually do nothing within the 8251 USART itself. When using the MC6850
and MC685,2, that is not the case: these two devices are much easier to program.

The MC6850 ACIA is packaged as a 24-pin DIP. It is fabricated using N-channel silicon gate technology.

A single +5V power supply is required.

In the discussion of the MC6850 that follows we will frequently refer to the 8251 USART description in Volume 3. If
you are unfamiliar with asynchronous sl:trial I/O devices in general, see Chapter 5 of Volume 1, then read the
description of the 8251 USART which is given in Volume 3.

THE MC6850 ACIA PINS AND SIGNALS
MC6850 ACIA pins and signals are illustrated in Figure 9-25. Signals may be divided into the following four
categories: .

1) CPU interface and control sign~is

2) Serial inpLit

3) Serial output

4) Modem control

We will first consider CPU interface and control signals.

DO - 07 constitutes an 8-bit bidiroctional Data Bus connecting the MC6850 with the CPU.

When data is output to the MC6850 by the CPU, either a byte of parallel data or a Control code will be transmitted.

A byte of paraliel data will be serialized and transmitted according to the protocol which has been selected under pro­
gram control.

Either data or status may be input from the MC6850 ACIA to the CPU via the Data Bus. Data consists of an 8-bit parallel
data unit extracted from the serial input data stream. Status consists of the contents of the ACIA Status register.

The Status register of the MC6850 ACIA is very important. because the MC6850 uses status flags where the 8251
uses control signals to monitor serial data transfer logic.

The MC6850 ACIA is accessed~the CPU as two memory locations. MC6850 select logic consists of the three chip
select signals CSO, CS1 and CS2; manufacturers' literature also refers to the enable signal E as being part of the
chip select logic; however, E is more accurately visualized as an internal synchronization signal.

For the MC6850 ACIA to be selected, CSO and CS1 must be input high while CS2 is simultaneously input low. Once
selected, the register select signal RS determines which of the two addressable locations within the MC6850
ACIA will be accessed. When RS is low, a Read will access the ACIA Status register, while a Write will access the
ACIA Control register. When RS is high, ACIA data buffers will be addressed.

While the MC6850 ACIA is selected, internal logic is synchronized on the trailing edge of the E signal. E is a standard
output of the various MC6870 clock devices used to synchronize support logic throughout an MC6800 microcorylputer
system.

9-55

Programmable
Timers

Clock Logic

, .. ~

Arithmetic ~nd
Logic Unit

Interface Logic

Read Only
Memory

System Bus

Accumulator
Registerisl'

Data Counterisl

Stack Pointer

Program Counter

I/O Ports
Interface Logic

I/O Ports

Figure 9-24. Logic of the MC6850 ACIA or MC6852 SSDA Devices

RIW is the control input which determines whether a Read or Write operation is In Ilrogress. When Riw is high.
the CPU is reading data out of the MC6850. When R/W is low. the CPU is writing data to the MC6850.

The MC6850 has no RESET input; a Control code is used as a master Reset. When power is first detected within
the MC6850. internal logic automatically initiates a Reset sequence. Subsequently. before initializing the MC6850 for
serial data transfer you should again reset the device by inputting a Reset Control code.

9':'56

c
w
~
a: o
0.
a:
o
(J

~
iii
w

~ g
en
en
oCt
o1J
w
Z
a:
o
cg
en o
~
oCt
C
oCt

@

Pin Name

DO - D7

VS.S--~

RxD--"'~

RxCLK --... ..
TxCLK --... ..

RTs~-~
TxD ~--t

rna t---I
CSO --.....
CS2-~~
CS1 --.......

RS ----! ..

VDD

2
3
4
5
6 MC6850

7 ACIA

8
9

10
11
12

Description

24
23
22

19

17
16
15
14
13

CSO, CS1, CS2
E

Data Bus to CPU

Chip Select

Internal synchronization

Register Select

Read/Write control

Transmit Oock

Transmit Data

RS

R/W
TxCLK
TxD

RxCLK

RxD

CTS
RTS

5a5
iRQ
VDD, Vss

Receive Oock

Receive Data

Clear To Send

Request To Send

Data Carrier Detect

Interrupt request

Power and Ground

CTS
0C5
DO
D1

D2
D3

D4
D5

D6

D7
E
R/W

Type

Tristate, bidirectional

Input

Input

Input

Input

Input

Output

Input

Input

Input

Output

Input

Output

Figure 9-25. MC6850 ACIA Signals and Pin Assignments

""C6850 DATA TRANSFER AND CONTROL OPERATIONS
There are a number of buffers through which data flows in and out of the MC6850 ACIA. These data flows may
be illustrated as follows:
I

Parallel

Data In

Parallel

Data Out

Data Address

Buffer

RA

Register

RB

Serial

data

input

Buffer

TA

Register

TB

Serial

data

output

9-57

Control

Code Status

Control

Register

Control/Status

Address

Status

Register

Buffer names in the illustration above conform with terminology used for the 8251 in Volume 3; this will make
it easier. for you to compare the two devices.

Like the 8251. the MC6850 has double buffered serial input and output logic. As described for the 8251. while a data
byte is being serialized and output from Buffer TB, you must simultaneously write the next data byte to Buffer
TA. Also, while a serial data byte is being assembled in Buffer RB, you must read the previously assenibled data
byte out of Buffer RA.

Unlike the 8251. the MC6850 has a separate Control register. You can therefore write Control codes and read status
at any time without fear of scrambling data waiting to be transmitted. .

As compared to the 8251. the MC6850 has very elementary serial I/O logic. MC6850

TxCLK is an externally provided clock signal which times the serial, asynchronous data
stream which is output via TxD. .

Similarly, RxCLK is an externally provided clock signal which times the serial, asynchronous
data stream which is input via RxD.

There are no control signals accompanying serial I/O data; rather. a single interrupt request

SERIAL I/O
DATA AND
CONTROL
SIGNALS

signal is shared by all transmit and receive conditions. You have to write an interrupt service routine which reads the
contents of the MC6850 Status register. and thus determine which one of the many serial data transfer interrupt re­
quest conditioris has occurred.

The fact that you must execute instructions to duplicate the logic which the 8251 provides with its TxRDY. RxRDY and
TxE signals will certainly make an MC6800 microcomputer system less attractive in an application that makes hi3avy
use of serial I/O. Conversely. the MC6800 system will appear more attractive in simple applications. since you have less
interface circuitry to be concerned with. .

Three modem control signals are provided: Clear To Send (CTS)' Request To Send (RTS),
and Data Carrier Detect (DCD). CTS and RTS are identical to the signals with the same names
described in Volume 1. Chapter 5 for the general case. and in Volume 3 for the 8251.

RTS is output by the MC6850 under program control when the MC6850 is ready to transmit data.
A full duplex line turns RTS around and sends it back as CTS; a half duplex line returns CTS after
line turnaround has occurred.

,...----...
MC6850
MODEM
CONTROL
SIGNALS

The MC6850 has no bata Set Ready (DSR) signal; this is the signal which many serial I/O devices tra~~mit to modems
or any external receiving logic when ready to commence with serial data communications. When using an MC6850.
RTS must serve double duty. additionally substituting for DSR.

Even though the MC6850 has only three of the normal four control signals, these signals work Hard within the
MC6850.

The DCD input must be low for serial transmit logic within the MC6850 to be enabled. This is true also of the equivalent
8251 DSR signal: however. if the DCD signal makes a low-to-high transition. the MC6850 will generate an interrupt re­
quest. thus effectively halting serial data output. A low-to-high DCD transition implies that the modem has. for sOr1)e
reason. disconnected itself; any further data transfer will be lost. In the case of the 8251. if a modem disconnects itself
and DSR goes high. this cOr;Jdition will be reflected in a Status register flag. but unless the CPU executes instructions to
read the Status register and test for this condition. the 8251 will continue transmitting data - even though the receiv­
ing end is dead.

The MC6850 uses CTS high to prevent the Status register from reporting a "Transmit Register Empty" condition. The
MC6800 CPU determines when to send another byte of data to the MC6850 by testing the Status register. and looking
for a "Transmit Register Empty" condition. If this condition never gets reported. no data will ever be uselessly transmit­
ted. Contrast this with 8251 logic. where a misprogrammed 8251 can and will continue to transmit data after CTS has
gone high.

9-58

c
w

~
a:
o
Il.
a:
o
(J

~
en
w
I­
ct
U o
(I)
(I)

ct
D!I
w
Z
a:
o
a:I
(I)

o
~
ct
c
ct
@

· MC6850 ACIA CONTROL CODES AND STATUS FLAGS
Let us now examine the way in which the MC6850 Control and Status registers are interpreted.

Here is the Control register interpretation:

7 6 4 3 o ~BitNo.

Control register

L..-___ 00 Isosynchronous,+l clock rate

01 -;-16 clock rate

10-:-64 clock rate

11 Master Reset

1...---------000 7 bits, even parity, 2 stop bits

001 7 bits, odd parity, 2 stop bits

010 7 bits, even parity, 1 stop bit

011 7 bits, odd parity, 1 stop bit

100 8 bits, no parity, 2 stop bits

101 8 bits, no parity, 1 stop bit

110 8 bits, even parity, 1 stop bit

111 8 bits, odd parity, 1 stop bit

L-------------OO RTS low, disable transmit interrupt logic

01 FITS low, enable transmit interrupt logic

10 RTS high,·disable transmit interrupt logic

----......

11 FiTS low, disable transmit interrupt logic, output break level

...... --------------0 Disable receive interrupt logic

1 Enable receive interrupt logic

The CPU neither sends nor receives the parity bit. The MC6850 adds the parity bit to transmitted data and strips or
resets the parity bit in received data before it goes to the CPU.

Control register bits 0 and 1 determine the data transfer clock rate. Recall that serial data is usually transmitted or
received at 1 116th or 1/64th of the clock rate, TxCLK or RxCLK. Transferring serial data at the exact clock rate is refer-
red 'to as isosynchronous data transfer. ..

The master reset Control code substitutes for the normal reset input signal. which the
MC6850 lacks. A master reset clears all MC6850 registers, with the exception of Status register
bit 3, which is unaltered.

Control register bits 2,3 and 4 identify data bit. stop bit and parity options. Compared to the 8251,

MC6850
SYSTEM
RESET

MC6850 options are somewhat limited: five and six data bits are not provided and you cannot select 1.5 stop bits.

Control register bits 5 and 6 are transmit logic control bits. Control register bit 7 is a receive
logic control bit.

Transmit logic consists of the RTS modem control and various transmit conditions that can cause
an interrupt request.

Receive control logic consists of various receive conditions that can cause an interrupt request.

Interrupt logic of the MC6850 is an integral part of status logic. Conditions that can result in
an interrupt request are therefore summarized below along with a definition of Status
register bits.'A "r is placed in those bit positions that can result in an interrupt request from
transmit logic. An "R". is placed in those bit positions that can result in an interrupt request from

MC6850
SERIAL 1/0
CONTROL
LOGIC

receive logic. Status register bit pos!tions that have neither a "r nor an "R" identify conditions that do not result in in­
terrupt requests.

In those bit positions containing a "r or an "R", a 1 causes an interrupt request to occur. OCO (bit 3) is an exception:
here it is the transition from 0 to 1 that causes an interrupt request. In each case, the interrupt request will only occur if
interrupt logic has been enabled. If you look back at the Control register, you will see that transmit and receive interrupt
logic can be enabled and disabled separately. Control register bits 5 and 6 determine whether transmit interrupt logic is
enabled, while Control register bit 7 determines whether receive interrupt logic is enabled, Note that the condition of
Status register bit 3 can also disable a TORE interrupt request.

9-59

When an interrupt request occurs. the requesting condition is clearedin various ways depending upon where the re-
quest originated. .' '.' . .

An RDRF interrupt requ~st will be cleared if the CPU re~dsdata fro~ the MC6850. or if a reset Control code is output. '. ' ., .. .

A TORE interrupt request will be cleared by writing data to the MC6850 or by issuing a reset Control code.

Interrupts requested by DCD or OVRN are cleared by reading the Status register after the error condition has occurred.
and then reading the Data register. A Master Reset will also clear these interrupt requests.

Let us now take a closer look at the Status register itself. This is how register bits are interpreted:

Status register

'-----RDRF. Receive Data register full

'------TDRE. Transmit Data register empty

L...-------DCD. Data Carrier Detect signal status

L-----'---'---CTS. Clear To Sendsign&1 status

....... ---------·FE. Framing Error

....... -----------OVRN. Receiver overrun error

L...-------------PE. Parity Error

L----------------IRQ. Interrupt request

(1 in a bit' position represents "true" condition for bits 7. 6,. 5. 4;'1 and 0.1

Status register bit 0, Receive Data Register Full, goes to 1 when a byte of assembled data is transferred from
Receive register RB to Receive register RA. Bit 0 is cleared as soon as the CPU reads the contents of Register RA. The
DCD modem control signal. when high. forces Status register bit 0 to stay low so that the CpU 'will not attempt to read
nonexistent data. . .

Status register bit 1, Transmit Data Register Empty~ goes from ° to .1 as soon as data is transferred from .Register TA
. to Register TB. This bit is reset to 0 as soon as the CPU writes another bit of data' into RegisterTA. '. '.

Status register bit 2, Data Carrier Detect, is used by the MC6800 to determine the status of external logic com­
municating with the MC6850. When DCD makes a low-to-high transition. an interrupt request is generated and Status
register bit 2 goes high. Bit 2 remains high until the Status register contents are read by the CPU after DCD has gone
low again. A Reset will also set Status register bit 2 to O. If the CPU reads the Status register while DCD .is' high. then
subsequently Status register bit 2 will track the DCD level; however. another interrupt will not be requested. It is the

. actuallow-to-high transition of the DCD signal which causes an interrupt request. not a high level of Status register bit 2.' ..

Status register bit 3, Clear To Send, tracks the CTS modem control input. MC6850 logic uses Status register bit 3 to
inhibit serial data transfer when external receiving logic is not ready to receive the serial data. When CTS is high.
Status register bit 1 will be' held low. A TORE interrupt request cannot occur. and program logic which :tests Status
register bit 1 will not transmit another data byte to Register TA until it detects a 1 in Status register bit 1. Thus. for as
long as'CTS is high. serial transmit logic will be inhibited. '

Status register bits'4, 5 and 6 report framing, overrun and parity errors, respectively. Recall that ~ framing error is
reported when start 'and sto'p bits do not correctly frame a data character; a fra'ming error refers to the data byte cur­
rently waiting to be read out of RA. An overrun error is reported if the CPU does not read Register RA contents before a
byte of data is transferred from Register RB to Register RA. A parity error is reported if parity has been:enabled by Con-
trol register bits 2. 3 and 4. but the wrong parity is detected, '

A framing or parity error is automatically reset as soon as the erroneous data is read out of Register RA. or is overwrit-
~n. '

An overrun error is cleared by reading data from the t'0C6850,

9-60

c
W

~
a:
o
Q.
a: o
CJ
:!::
en

'W

~ g
CI)
CI)

ct
o!I
w
Z
a:
o
In
CI)

o
~
ct'
C
ct

@

Status register bit 7, Interrupt Request, is 1 whenever there is an unacknowledged interrupt request pending at the
MC6850 device. One method that an MC6800 will use to determine the source of an interrupt request is to read device
Status registers. If the MC6850 has no other method of identifying itself to the CPU when requesting an interrupt. then
the CPU determines whether the MC6850 was the requesting device by reading the contents of the MC6850 Status
register and testing the condition of bit 7.

THE MC6852 SYNCHRONOUS SERIAL DATA
ADAPTER (SSDA)

The MC6852 SSDA provides MC6800 microcomputer systems with synchronous serial I/O logic.

The MC6852 SSDA may be looked upon as a companion device to the MC6850 ACIA which we have just de­
scribed. Taken together, these two devices provide MC6800 microcomputer systems with total serial I/O
capability.

Figure 9-24 illustrates that 'part of our general microcomputer system logic which is provided by the MC6850
and MC6852 devices.

The most striking difference between the MC6850 and the MC6852 is their respective capabilities. Whereas
the MC6850 offers fewer asynchronous serial I/O options than the 8251 USART (described in Volume 3), the
MC6852 offers significantly more synchronous serial I/O options. Moreover, the MC6852 provides additional
serial I/O options without the penalty of defensive programming which is demanded by the 8251 USART

The MC6852 SSDA is packaged as a 24-pin DIP. It is fabricated using N-channel silicon gate technology.

A single +5V power supply is required.

In the discussion of the MC6852 that follows, we will frequently refer to the 8251",U5ART description given in
Volume 3. If you are unfamiliar with synchronous serial I/O devices in general, see Chapter 5 of Volume 1, then
read the description of the'8251 USART which is given in Volume 3.

MC6852 SSDA PINS AND SIGNALS
MC6852 SSDA pins and signals are illustrated in Figure 9-26. Most of these signals are identical to those illustr­
ated in Figure 9-25 for the MC6850, therefore we will only describe four signals which differ.

The MC6852 has a master Reset input, which. when input low. logically resets the MC6852. We will define how a
Reset occurs after describing the MC6852 controls and status flags affected by a Reset.

The Data Carrier Detect (DCD) modem control inputperforms two functions. The normal function of DCD is to
serve as a control signal transmitted by an external data carrier which is ready to transmit serial data to the MC6852
SSDA. Both the high-to-Iow and the low-to-high transitions of DCD have additional significance. The high-to-Iow sig­
nal transition can optionally be used as an external synchronization indicator. while a subsequent low-to-high transi­
tion is an error indicator. signaling an unexpected disconnect:

RxCLK

RxD

Rising edge of RxCLK following falling edge of

0C0 can serve as external synchronization. mark­

ing the start of data bits incoming on RxD.

An untimely low-to-high transition of DCD

means the transmitter got disconnected unex­

pectedly.

Using the high-to-Iow DCD pulse for external synchronization is a programmable option. The error condition reported if
DCD makes an unexpected low-to-high transition is not a programmable option: it is a permanent part'of the MC6852
error detection logic.

9-61

Pin Name

DO - D7

Cs"
E
RS

R/W

TxCLK

TxD

RxCLK

RxD

REsET
DcD
ffi
SM/DTR

TUF
iRQ

Vss
RxD

RxCLK

TxCLK

SM/DTR

TxD

iiill
TUF

'RESET
CS
RS

VDD

VDD. Vss

1 .. 2 p .. 3 -.. 4 - 5

- 6 MC6852

-- 7

-- 8 .. 9 .. 10 -.. 11
12

Description

Data Bus to CPU

Chip Select

SSDA

Internal synchronization

Register Select

Read1Write control

Transmit Oock

Transmit Data

Receive Oock

Receive Data

Master Reset

Data Carrier Detect

Clear To Send

24
23
22
21
20
19
18
17

16
15
14
13

Sync Match/Data Terminal Ready

Transmitter Underflow

Interrupt request

Power and Ground

----- .. - .. - -- .. - p ... - .. - p - p - .. - ... --.. -

a=s
Dc5
DO
Dl

D2

D3

D4
D5
D6
D7

E
R/Vi

Type

Tristate. bidirectional

Input

Input'

Input

Input

Input

Output

Input

Input

Input

Input

Input

Output

Output

Output

Figure 9-26. MC6852 SSDA Signals and Pin Assignments

Clear To Send (CTS) is the modem control signal which is normally input by external receiving logiC. indicating that
the MC6852 may begin transmitting serial data. like DCD. the CTS high-to-Iow transition can be used to synchronize
the beginning of data transmission: the low-to-high transition of CTS is an error indicator. Once again. using the high­
to-low CTS pulse to provide external transmit synchronization is a programmable option. However. an untimely low-to­
bi9..tJ transition of CTS is an error indicator only if internal synchronization is being used. Therefore. if the high-to-Iow
CTS transition is active. then the low-to-high subsequent transition must be inactive: conversely. if the high-to-Iow
CTS transition is inactive. then a subsequent low-to-high transition will be active. This is because the high-to-Iow tran­
sition. if active. means that external synchronization has been selected - in which case the disconnect error logic is in­
active.

Note that whereas the CTS signal low-to-high transition is only active during internal synchronization operations. the
DCD low-to-high transition is active at all times, This means that external logic disconnecting itself during a serial
transmit operation will only cause an error to be indicated if external synchronization has been selected. On the
other hand, during a serial receive operation, if external logic disconnects itself, an error will be indicated
whether internal or external synchronization has been selected.

Since DCD and CTS can both be used for external synchronization. as we might expect. DTR also serves a double
function. Under normal circumstances. DTR will be output low by the MC6852 when it is ready either to transmit. or to
receive serial data. If the MC6852 has output DTR low before transmitting serial data. then the receiving data carrier
will turn DTR around and send back a high-to-Iow DCD pulse as we illustrated. If you have selected external syn­
chronization under program control. then you can additionally program DTR to output a single high pulse as soon as

9-62

Q
w

!t
a:
o
D..
a:
o
o
~
en
w
l­
e:(

(3
o
U)
U)
e:(

c1:I
w
Z
a:' o
III
U)

o
~
e:(
Q
e:(

@

synchronization has been detected. This may be illustrated as follows:

XC6852 wants to Data carrier says it is XC6852 says it has detected

ready to transmit data external synchronization

SM/DTR

RxCLK

RxD

Rising edge of RxCLK following falling edge of

DCD can serve as extemal synchronization, mark­

ing the start of data bits incoming on RxD.

An untimely low-to-high transition of DCD

means the transmitter got disconnected unex­

pectedly.

Because DTR also acts as a Sync Match acknowledge. it is referred to as SM/DTR.

When the MC6852 transmits serial data, it transmits the least significant bit first. The
MC6852 also expects to receive the least significant bit first when receiving serial data.

MC6852
SERIALIZATION
SEQUENCE

Transmitter Underflow (TUF) is the fourth unique MC6852 signal. This signal is output when an underflow condi­
tion occurs during serial synchronous data transmission. Recall.that during serial synchronous data transmission. if
serial transmit logic finds no data ready to be output. then in order to maintain synchronization. a break character or a
Sync characterwill be output. A break character is a continuous high level. equivalent to FF16. A Sync character will
have some predefined binary pattern. Providing you have programmed the MC6852 to output Sync characters when
no valid data is ready for serial transmission. the MC6852 will precede each Sync character with a high TUF pulse. Ex­
ternal receive logic can use a high TUF pu Ise as an indicator that the next received character is a Sync and can be dis­
carded.

MC6852 DATA TRANSFER AND CONTROL OPERATIONS
Like the MC6850, the MC6852 SSDA is accessed via two memory addr~sses; however, these two memory ad­
dresses are shared by seven locations within the MC6852, which results in a complex set of data flows, as il­
lustrated in Figure 9-27.

These are the seven addressable locations of the MC6852:

1) Data input - a read only location.

2) Data output - a write only location.

3) Status register - a read only location.

4) Sync Code register - a write only location.

5. 6. and 7) Three Control registers - all are write only locations.

Data input and data output are self-evident apart from being triple buffered - and we will discuss the implications of
triple buffering shortly - there is nothing unusual about MC6852 data input or output.

The Status register is absolutely standard.

The three 8-bit Control registers provide the MC6852 with a substantial variety of control options. as compared to
the MC6850. which was somewhat limited in this respect.

The Sync Code register stores the 8-bit synchronization character code: this is the character which must appear at
the beginning of any synchronous serial data stream and may also be transmitted when data is unavailable during a
normal transmit sequence.

9-63

Status
Out

Control
Code 1

Write
Data

Parallel
Data In

Lower Address' Higher Address

Status

Control
Code 1

6 5 4 3 2 0 Buffer

X X I I RA

'-v- ...
J-~--------" - XX=OO

Control
Code 2

Buffer
RT

· -

· ·

Control Buffer
Code 3 RB

Shift
Register

++
XX~I~ Sync

Code

,+
Byte to transmit _...:.. __ ...z.._

Buffer
TT

Buffer
TB

. Shift
Register

Byte to transmit

Serial
Data
Output

Figure 9-27. Data Flows Within an MC6852 SSDA

9-64

Byte Received

Byte Received

Serial
Data
input

c
w

!i
a: o
D.
a:
o u
~
en
w

!i g
en
en
ct
.a
w
Z
a:
o
III
en o
:E
ct c
ct

@

Of the seven addressable locations. two are read only. while five are write only. Each memory address can ac::cess
two locations, providing one is exclusively read only, while the other is exclusively write only. Since there are
just two read only locations. one is assigned to each memory address. Since there are five write only Idcations. one
(Control Code 1) is assigned to the lower address. which leaves four assigned to the higher address; the two high-order
bits of Control Code 1 are used to select one of the four write only locations assigned to the higher address. While this
may look like a complex scheme. in reality it is not: all it means is that you have to observe a rigid programming se­
quence when using an MC6852. In fact. understanding the MC6852 depends completely on understanding the Control
and Status registers; therefore we wiil describe these registers first. then look at data transfer sequences.

MC6852 STATUS REGISTER
The MC6862 Status register may be illustrated as follows:

MC6852 Status register

'----- RDA. Receive data available; read RA

L-----TDA. Transmit data register available; write to TA

'-------- DC~. Data Carrier Detect signal status

L-----....;.-.--CTS. Clear To Send signal status

'-----------TUF. Transmitter' 'Und~rflow error indicator

L-----------OVRN. Overrun error indicator

L-____________ ' PE. Parity Error indicator

L---------------IRQ. Interrupt request status

(1 in a bit position represents "true" condition for bits 7, 6. 5, 4. 1 and 0.)

Conditions that may generate interrupts are marked with letters In appropriate Status, register bit positions. An
interrupt request initiated by an error condition is represented by the letter E. Interrupt requests originating at transmit
or receive logic are represented by the letters T and R. respectively. .

Status register bit 0 (RDA) indicates when the MC6862 Status register has a byte of data
ready to be read. Similarly Status register bit 1 (TDA) indicates when the MC6862 is ready
to receive another byte of data which will be output as a serial data stream.

As indicated in Figure 9-27. MC6852 transmit and receive logic is triple buffered. This differs from
the MC6850 which uses double buffering .

MC6852
TRIPLE
DATA
BUFFERS

. You Ccln use the triple buffering of the MC6862 in one of two ways which you select using appropriate Control
register codes.

You can select a single byte option, in which case as soon as a single byte of data can be written to Buffer TA or read
from Buffer RA. the appropriate status flag will be set -and if interrupts are enabled. an interrupt request will be made
to the CPU. The program controlling MC6852 operation must respond by reading or writing a single byte of data. A
byte of data written to Buffer TA will automatically be rippled through Buffer TT to Buffer TB. whence it will output as a
serial data stream. Data arriving at Buffer RB will be rippled through Buffer RT to Buffer RA. whence it must be read by
the CPU.

if you select the two byte option under program control, then no status flags will be set. nor will interrupt requests
occur untiLtwo of the three 8-bit buffers are empty. Thus. status bit 0 will be set and a receive interrupt request will oc­
cur when Buffers RA and RT are both full. Under program control you must. at this time. read two bytes of data. So long
as a Single pulse of the timing E signal separates the two read commands. MC6852 logic will transfer Buffer RT con­
tents to Buffer RA so that the second read accesses what had been in Buffer RT. In fact. you should read RA contents.
then status. then RA contents again. If there are errors associated with the data byte in RT. they will not be reported un­
til RT contents have been transferred to RA.

9-65

· .

When using the tWo byte option with transmit logic, Status register bit 1 will not be set and the appropriate interrupt
request will not occur until Buffers TA and TT-are both empty. At this time the executing program must write two bytes
of data to the higher MC6852 address, while Control code 1, bits 7 and 6 are both 1. The first byte of data written to the
higher MC6852 addr'e.ss will store dat~ in BufferTf.. The next pulse of the E clock will transfer the content§ df BufferTA
to Buffer TT. The second write will again load Buffer TA whose previous contents are now in Buffer TT,

Status register bits 2 an~ 3 are associ&t,ed with signals DCDand CTS, respectively. If DCD or CTS makes a low-to­
high transition, then Its corresponding Status register bit will iatch high - that is, it will maintain a level of 1 until it is
reset by the CPU. Once bit ,2 (or 3) has. been reset. it will track DCD (or CTS) until the ne'xt low-to-high transition.

Note that in Sync mode; if Status register bit 3 is 1, then Status register bit 1 will be held at 0; this is how the
MC6852 suppresses subsequent transmit iogic.

Status register bits 4, 5 and 6 indicate Underflow, Overrun or Parity errors, respectively.

An Underflow error occurs when transmit logiC; does not have a byte of data ready to transmit and has to insert a Sync
character. The Underflow error is reported just before the SyhC character is transmitted. When Status register bit 4 is
set. the TUF signal is simultaneously pulsed;high.

An Overrun error occurs when a byte of data is written into BuffEd' RA before prior buffer contents have been read. An
Overrun error therefore indicates that a single byte of data has been lost.

A Parity error indicates that a Parity option has been selected, but the wrohg Parity was detected for the data byte cur­
rently in Buffer RA.

These three error conditions are completely standard;'however, the way they are handled within the MC6852
is not standard. When anyone of these error conditions occurs, the appropriate Status register bit will be set and
simultaneously an interrupt request will be generated, providing you have ehabled these three error interrupts.

An error status is not cleared automatically. To clear Status register bits 4,5 or 6, you have to read Status register con­
tents, then issue an appropriate Control code to reset the selected bit.

We can summarize the fUnctions performedtlY MC6852 Status register bits by looking at the manner in which
each bit is set or reset; then we can separately examine the way in which interrupt logic is assbciated with
each status bit position.

Table 9-6 summarizes the conditions which cause each bit to be set and then reset. Table 9-7 summarizes inter­
rupt requests associated with each status bit, indicating the way the interrupt is enabled or disabled and the way in
which an interrupt request occurs. You wili find Table 9-7 following the three Control registers' description, because in­
terruptlogic is equally dependent upon the Status register's contents and the three Control registers' contents.

THE MC6852 CONTROL REGISTERS
Now 'consider the three MC6852 Control registers.

, .

Control register 1 is normally the first to be ~ccessedand h'as to be written into in cirder to select any other write only
MC6852 location, Control register 1 format may be illustrated as fdllows:

6 4 3 2 o +-=-Bit No.
r-~~~--~~~~~

MC6852 Contr~1 Register 1

'-----RxRS. Reset and inhibit receive logic

L..------TxRS. Reset and inhibit transmit logic

'--------STSYNC. Strip SYNC characters when detected

I...---------CLSYNC. Inhibit all SYNC character logic

"-----------TIE. Enable transmit data interrupts

'-------------RIE. Enable receive data interrupts

00 Select Control Code 2 }
01 Select contr,ol Code 3 High address

10 Select Sync Code write

11 Select Transmit Buffer TA . select

(1 in a bit position represents "true" condition for bits 5, 4, 3, 2, 1 and 0.)

9-66'

o
w

~
a:
o
Q.
a:
o
u
~
iii
w
l­
e:(

g
(I)
(I)
e:(

all
w
Z
a:
o
CD
(I)

o
~
e:(
o
e:(

@

Control register 1, bits 0 and 1 reset and inhibit receive and transmit logic, respectively. You use these two Con­
trol reg!ster bits in order to disable transmit and receive logic while modifying the contents of any Control register or
the Sync register ..

Control register 1, bits 0 and 1 are very impc;»rtant. It is easy to miss the significance of these two control bits. If
you alw<;lYs inhibit transmit and receive logic before modifying the contents of Control or Sync register? you can make
sure that spurious data is n'e)!er transmitted or received. The 8251 USART described in Volume 3. does flOt have any in­
hibit logic of this type; and as a resl:llt. you have to adopt elaborate precautions to avoid data transmission errors.

While transmit and receive logic is inhibited. Status register bits 2 and 3 will still track the DCD and CTS signals;
however. no gat~ transfers will occur and interrupts associated with the inhibited logic will be disabled.

Using Control register 1. bits a and 1 to inhibit transmit and/or receive logic also affects Status register bits and inter-.
rupt requests. as summarized in Tables 9-6 and 9-7. ;

Table 9-6. MC6852 Status Register Bit Set/Reset Conditions

..
&TATUS SET RESET

'" 1) If Control register 2 bit 2 is 1. when 1) Write 1 in Control regis~er 1 bit O.

RDA - B!t 0
Buffer RA is full. 2) Read Buffer RA contents.

2) if Control register 2 bit 2 is O. when

Buffers RA and RT are full.

1) It' Contr.ol register ~ ~it 2 is 1 when 1) 1 occurs in Status register bit 5.

TDA- Bit 1
Buffer T A is empty. " together with 0 in Control register 3 bit O.

2) If Control register 2 bit 2 is 0 when 2) Write 1 in Control register 1 bit 1.

BHtfer:;; TA and TT are empty. 3) Write into Buffer T A.

A low-ta-high DCD input transition when 1) Head~tatus register. then read Buffer

Control register 1 bit 0 is O. RA. Status will subsequently go low

'Dc5 - Bit 2
when DcDinput goes low.

2) Write 1 into Control register 1 bit O.
Status will subsequently go low when

i5CD input goes low.

A low-to-high CTS input transition when 1) Write 1 to Control register 3 bit 2.

Control regi~ter 1 bit 1 is O. Status will subsequently go low when

CTs input goes low.
CTS - Bit 3 2) Write 1 into Control register bit 1.

Status will subsequently go low when

ffi input goes low.

TUF - Bit 4
Underflow when Control register 3 bit 0 is 0 1) Write 1 into Control register 3 bit 3.

'and Control register 2 bit 6 is 1. 2) Write 1 into Control register 1 bit 1.

Buffer RT contents is transferred to Buffer 1) Read'Status register. then read Buffer RA.
OVRN - Bit 5

RA before Bu~fer RA contents is read by CPU. 2) Write 1 imo Control register 1 bit O.

PE- Bit 6
Parity error for data in RA'. providing Control 1) Read data out of Buffer RA.

register 2 bits 3. 4 and 5 identify a parity option. 2) Write'1 into Control register 1 bit O.

IR,Q- Bit 7 Any interrupt request occurs. No active interrupt requests exist.

9-67

Table 9-7. MC6852 Interrupt Summary

INT~RRUPT ENABLE REQUEST

RDA - Read Buffer Control register 1 bits 0 and 5 must be Status register bit 0 = 1

RA or Buffers RA o and 1 respectively

and RT contents "

TDA - Write into Control' register 1 bits 1 and 4 must be Status register bit 1 = 1.
Buffer T A or flA o and 1 respectively. This will not occur if Status register
and IT " i?it 3 = 1.

DCD :-Transmitting . . Control register 2 bit 7 must be .1 On low-to-high transi1ion of PCD .
data carrier'
disconnected

CTS - Receiving Control register 2 bit 7 must be 1. On low-to-high transition of CTS.

external logic
disconnected :

TUF - Transmit Control register 2 bit 7 must be 1. Status register bit 4 = 1.

underflow has
occurred

OVRN - Receive Control register 2 bit 7 must be 1. St!ltus register bit 5 = 1.

overrun error

has occurred

~E - Parity Error Control register 2 bit 7 must be 1 . Status register bit 6 = 1.

Control register 1, bit 5 allows you to enable or disable receive data interrupt logic. Control register 1, bit 4
allows you to enable or disable tran~mit data interrupt logic.

There is no connection between Control register 1. bits a and 1. and Control register 1. bits 4 and 5. Obviously. if
transmit or receive logic has been inhibited. then it makes no difference whether interrupt logic has been enabled or
disabled; in either case an interrupt cannot occur. However. if transmit or receive logic is enabled. then interrupt logic
may be separately enabled or disabled. . .

Control register 1, bits 2 and 3 deter"1i(1e the way the Sync character will be handled. If Control register 1 bit 2 is
high. thEln all Sync characters in a serial receive data stream will be stripped. so that only non-Sync characters are read
by the CPU. If Control register 1 .. bit 2 is low. then the entire data stream will be transmitted to the CPU. including data
and ~ync characters. Note that the initial Sync character is always stripped:

Control register 1, bit ~ allows you to completely inhibit all Sync character logic. Now the Sync character will be
cleared. and the MC6852 must use external synchronization.

Control register bits 6 and 7 determine which write only location will be accessed when the CPU writes to the
~~gh'er memory location of the MC68~2 ..

9-68

Q
w
~
< a:
0
a.
a:
0
0
~
en
w
~
<
(3
0
II)
II)

<
ol:J
w
Z
a:
0
In
II)

0

~
<
Q
<
@

Now consider Control registers 2 an'd 3, which are best looked upon as a single 12-bit control unit. These two
Control. registers may be illustrated as follows:

--·-7 6 5 4 3 2 0 ~BitNo.

MC6852 Control Register 2 '

00 Output continuous high at SM/DTR

01 Output a high pulse at SM/DTR upon detecting a Sync match

10 Output continuous low at SM/DTR

11 Ou~put a continuous low at SM/DTR and inhibit Sync match",

o Read/Write data two bytes at a time

1 Read/Write data one byte at a time

000 Select 6 data bits plus even parity

001 Select 6 data bits plus odd parity

010 Select 7 data bits and no parity

. 011 Select 8 data bits and no parity,

100 Select 7 data bits and even parity

101' Select 7 data bits and odd parity

110 Select 8 data bits an'd even parity

111 Select 8 data bits and odd parity

o Transmit break code (all 1 bits) on underflow

1 Transmit Sync character on underflow

1'1. o Inhibit all error interrupt requests
1 Enable all error interrupt requests

j(

7 6 4 3 2 0 .-BitNo;

MC6852 Control Register 3

o Select internal Sync mode

1 Select external Sync mode

o Select two Sync characters

1 Select one Sync character

1 Clear CTS interrupt request

1 Clear transmitter underflow interrupt request

Unassigned

Control register 2, bits 0 and 1, and.Control register 3, bits 0, 1, 2 and 3 are used to define synchronization logic.

Control register 3 .• bit 0 is used to determine whether internal or external synchronization will be employed. If internal
synchronization is selected. then Control register 3. bit 1 determines whether one or two Sync characters must precede
a serial data stream for initial synchronization to occur.

Control register 2. bits 0 and 1 must now be set so that SM/DTR logic conforms to the synchronization options selected
by Control register 3. bits 0 and 1. You also use Control register 2. bits 0 and 1 to select the signal level that will be out­
put for a standard DTR modem control.

Control register 2, bits 2,- 3, 4, 5 and 6 define the data transfer options.

Recall that when the CPU reads received data. or writes data to be transmitted. data may be read and written one byte
at a time. or two bytes at a time. We discussed this option when describing Status register bits 0 and 1. You select the
one byte or two byte mode via Control register 2, bit 2.

Control register 2, bits 3, 4 and 5 allow you to define the number of data bits per word, and parity options. These
are standard selections which have been described in detail in Volume 1. Chapter 5. Notice that the MC6852 provides
a much wider variety of data and parity options than the MC6850.

9-69

Sontrol register 2. bit 6 determines the response of MC6852 transmit logic when no data is ready to be transmitted. If
Control register 2. bit 6 is O. then a break code will be output on underflow; if this bit is 1. then a Sync character code
will be output on underflow. Remember. an Underflow error will be reported in the Status register only if you transmit
Sync character codes on Underflow. Therefore. Control register 2. bit 6 must be 1 if Underflow errors are to be reported
in the Status register. Recall that an underflow error is reported before a Sync character is transmitted; also. the under­
flow error status is accompanied by a high TUF output signal pulse.

Along with Control register 1, bits 4 and 5, which we have already described, Control
register 2, bit 7 and Control register 3, bits 2 and 3 apply to MC6852 interrupt logic.
MC6852 interrupt logic is quite complex. There are a number of interrupt sources and no standard
procedure for enabling. disabling. acknowledging or processing different in'terrupt requests.

MC6852
INTERRUPT
lOGIC

Rather than describing the Control register bits that pertain to interrupts. therefore. various interrupt options pro­
vided by the MC6852 are summarized in Table '9-7.

PROGRAMMING THE MC6852
let us now look at the normal sequence of events when programming the MC6852.

First the MC6852 must be initialized. Initialization begins by resetting the MC6852 using the RESET control input.
When the MC6852 is reset this is what happens:

1) Control Register 1. bits 0 and 1 are set to 1. inhibiting transmit and receive logic.

2) Control register 2. bits 0 and 1 are reset to O. causing SM/OTR to be output high.

3) Control register 2. bit 7 is reset to O. disabling OCO andCTS interrupt requests. and all error
interrupt requests.

4) Control register 3. bit 0 is reset to O. selecting internal synchronous mode.

MC6852
RESET
OPERATION

5) Status register bit 1 is cleared and held low so that the CPU never reads a status that requests data be written to
the MC6852.

Control register bits affected by the RESET control input cannot be modified until RESET goes high again.

Following device Reset. you must load Control registers 1. 2 and 3 and the Sync Code register. The only caution con­
cerns Control register 1; remember. Control register 1. bits 6 and 7 must be modified so that you can access Control
registers 2 and 3 and the Sync Code register. When modifying Control register bits 6 and 7. be sure not to inadvertently
modify the remaining six bits of Control register 1.

Once the MC6852 has been initialized, you are ready to start transmitting or receiving data.

The only complications associated with transmitting or receiving data involve the way in which you select the pro­
grammable options of this device. There is nothing intrinSically different or complicated about the MC6852. as com­
pared to any other synchronous serial I/O device. These are the only rules to observe:

1) Always inhibit transmit and receive logic via Control register 1. bits 0 and 1 before modifying the contents of any
Control register or the Sync register.

2) Unless you have enabled error interrupts. always precede any data read or write operation by reading the contents
of the Status register and checking for errors ..

3) Remember, the MC6852 transmits serial data least significant bit first. This is the inverse of IBM format;
and it is up to you to invert the data stream when usinga~ MC6852 with external IBM protocol logic.

9-70

Q
ILl ...
c(
a:
0
Q.
a:
0
0
~
en
ILl ...
c(

g
CI)
CI)
c(

oil
ILl
Z
a:
0
10
CI)

0

~
c(
Q
c(

@

Interface Logic

Programmable
Timers

Clock Logic

Arithmetic and
Logic Unit

Interface Logic

Read Only
Memory

Accumulator
Register(s)

Data Counter(s)

Stack Pointer

Program Counter

I/O Ports
Interface Logic

I/O Ports

Figure 9-28. Logic of the MC6828 Priority Interrupt Controller

Direct Memory
Access Control

THE MCS607 (OR MC6S2S) PRIORITY INTERRUPT
CONTROLLER (PIC)

This Priority Interrupt Controller ha.s two part numbers, identifying the fact that it is a bipolar part, and also com­
patible with the NMOS family of the MC6800 microcomputer devices. We will use the part identification
MC6828 in the discussion that follows.

The MC6828 Priority Interrupt Controller processes up to eight external interrupt requests, creating a vectored
response to an interrupt acknowledge. Interrupt priorities are determined by pin connections, but under pro­
gram control you can set a priority I.evel below which all interrupts are inhibited.

Figure 9-28 illustrates that part of our general microcomputer system logic which is provided by the MC6828
PIC.

9-71

The MC6828 PIC canriot be compared to the 8259 PICU which is available with 8080A microcomputer
systems. The briefest inspection of the two devices will indicate that the 8259 offers a significantly wider range of op­
tions - which can be a good thing or a bad thing. As we have often stated. an excessive dependence on interrupt pro­
cessing in microcomputer .applications is hard to justify; in all probability the more limited capabilities of the MC6828
will adequately serve the needs of any reasonable microcomputer application.

The MC6828 is packaged as a 24-pin DIP. It is fabricated using bipolar LSI technology.

A single +5V power supply is required.

Me6828 PINS AND SIGNALS
MC6828 pins and signals are illustrated in Figure 9-29.

In order to understand this device, you must first look at the 'way in which it is used within an MC6800
microcomputer system.

Pin Name

A1 - A4

Zl - Z4
iNa-iN]
CSo. CS1

R/W

E

. CS1
STRETCH

cso
iNa
iN1
iN2
iN3
iN4
INS
iNS
iN7

GND

-..
-----. -.-.------

Description

1
2
3
4

5
6
7

8
9

10

11
12

24
23
22
21

MC8507 20

MC6828 19

PIC 18

17
16
15
14
13

.. --.. ------

-
.. --.. -

VCC
iRci
Z4

Z3

Z2
Zl

E
R/w
A1

A2

A3

A4

Termination of system Address Bus lines A 1-A4

Continuation of system Address bus lines A 1-A4

External interrupt requests
Device Select

Read/Write control
Device Enable

STRETCH
iFffi
VCC.GND

. Clock stretching signal

Interrupt request

Power and Ground

Figure 9-29. MC6828 Signals and Pin Assignments

Type

Input
Output

Input
Input

Input
Input

Output

Output

Recall that when any standard external interrupt is acknowledged by an MC6800 CPU. the CPU will fetch the starting
address for the interrupt service routine from memory locations FFF816 and FFF916. These two addresses may be il­
lustrated as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o '-BitNo.

o 0 I X I

9-72

t - -~-Address
.. 0 for FFF8

1 for FFF9

Q
w
!(
a:
0
0..
a:
0
(,)

~
en
w
!(
g
CI)
CI)

<
alJ
w
Z
a:
0
m
CI)

0

:!
<
Q

<
@

The MC6828 PIC is positioned serially, preceding the external memory device which is to be selected by the
addressesFFF816 and FFF916' Address lI.nesA1, A2, A3 and A4 terminate at the MC6828. Logic within the
MC6828 appropriately manipulates these four address lines and outputs some value which may differ from the
input value. This may be illustrated as follows:

Address
transmitted

by CPU

A15
A14

A13

A12
All

Ala

AS

A8

A7

A6

Address
received

by memory

A5 --~ 1 .
A4

A3 1
A2 a

. Al a
AO X

..... -
~ -MC6828

'---

Y} Address
Y lines

Y modified

Y by. MC6828
X·

Thus. what the MC6828 does is extend the two addresses FFF816 and FFF916 into 16 addresses. FFE816 through
FFF716· .

The CPU knows nothing about the address manipulation which istaking place within the MC6828. So far as the CPU is
concerned. upon acknowledging an external interrupt. it reads two bytes of data from memory locations FFF816 and
FFF916: the fact that there are eight possible responses to these two addresses is of no concern to the CPU. .

Conceptually. the MC6828 is acting as an 8-way switch. The CPU addresses the switch by its "stem". via a single ad­
dress. The actual conduit for the transfer of two bytes of data depends on the switch position at the time the CPU ac­
cesses the switch stem: and the switch position is going to be determined by the highest priority active interrupt re­
quest. This may be illustrated as follows:

-IN7:- .
IN6 :::

FFF8. FFF9

IN5 ,..
iN4~ - im~
iNi-=

. iNi:
TNO"'-N _

Let us now look at the device pins and signals.

A 1 - A4 represents the termination of System Address Bus lines A 1 - A4 at the MC6828.

The continuation of the four address lines is via pins Z1 - Z4.

FFF6. FFF7
FFF4. FFF5
FFF2. FFF3
FFFO. FFFl
FFEE. FFEF
FFEC. FFED
FFEA. FFEB
FFEB. FFE9

The eight external interrupt requests are connected to INO - IN7. Interrupt priorities are in ascending level, from
INO which has lowest priority through IN7 which has highest priority.

Device select logic consists of CSO and CS1. For this device to be selected. csa must be low while CS1 is high.
There are additional select requirements that depend on the operation being performed. as we will describe shortly.

9-73

RIW is the read/write control output by.the MC6800 CPU.

E is the standard enable signal required by all support devices of an MC6800 microcomputer system. You can
extend the response time available to the MC6828 by extending the E input.

A STRETCH output is created and can be connected directly to the clock device of the microcomputer system in
order to provide as much response time as needed by the MC6828.

The actual interrupt request which generates the entire response process occurs via the IRO output from the MC6828.
This output will normally be connected to the MC6800 IRO input.

THE INTERRUPT ACKNOWLEDGE PROCESS
When anyone of the eight interrupt request lines INO -IN7 is low, an interrupt request is generated via IRQ.
This interrupt request is passed on to the M,C6800 CPU.

As is normal. the MC6800. upon acknowledging the interrupt request. will perform two read operations; during these
read operations the contents of memory locations FFF816 and FFF916 are read. The MC6800 CPU interprets the con­
tents of these two memory locations as a 16-bit address. identifying the beginning of the interrupt service routine
which is to be executed following the acknowledge.

When the MC6800 CPU is reading the contents of memory locations FFF816 and FFF916, these are the signal
levels for the control and select inputs to the MC6828:

R/W
1

CSO
o

CS1
1

A4
1

A3
1

A2
o

A1
o

The MC6828 interprets the signal combination RIW·CSO·CS1·A1.A2.A3·A4, as a special select, causing it to
output binary data on the Z1, Z2, Z3 and Z4 pins representing the highest priority active interrupt request occu r­
ring on any of the interrupt request pins INO -IN7. Table 9-8 defines the binary data output corresponding to each in­
terru pt level.

If RIW is high, CSO is low and CS1 is high, but A 1, A2, A3, A4 are not 0011, then the MC6828 will simply out­
put, via Z1 - Z4, whatever is being input via A 1 - A4. Also, when the MC6828 is not selected, A 1 - A4 is simply
output via Z1 - Z4, whatever values are input via A 1 - A4: that is to say, 0011 input to A1- A4 will be output via
Z1 - Z4 if the MC6828 is not selected. Thus. the presence of the MC6828 on the A 1 - A4 address lines of the Ad­
dress Bus will be transparent until either the address FFF816 or the address FFF916 appears on the Address Bus.

In order to guarantee that the MC6828 remains synchronized with the rest of the MC6800 microcomputer system.
logic internal to the MC6828 uses the E synchronization signal as part of internal enable logic. The way in which
the E synchronization signal is used is of no particular concern to you. as an MC6828 user. Providing the E synchroniza­
tion Signal which drives the rest of the MC6800 microcomputer system also drives the MC6828. problems will not
arise.

Table 9-8. MC6828 Address Vectors Created for Eight Priority Interrupt Requests

PRIORITY PIN Z4 Z3 Z2 Z1 EFFECTIVE ADDRESSES

Highest 7 IN7 1 0 1 1 FFF6 and FFF7
6 IN6 1 0 1 0 FFF4 and FFF5
5 IN5 1 0 0 1 FFF2 and FFF3
4 IN4 1 0 0 0 FFFO and FFF1
3 IN3 0 1 1 1 FFEE and FFEF
2 IN2 0 l' 1 0 FFEC and FFED
1 TNT 0 1 0 1 FFEA and FFEB

Lowest 0 INO O· 1 0 0 FFE8 and FFE9

9-74

Q
w

~
a:
o
Il..
a:
o
CJ
~
en
w
~
(3
o
(I)
(I)

ct
all
w
Z
a:
o
CD
(I)

o
~
ct
Q
ct
@

INTERRUPT PRIORITIES
Table 9-8 defines the priorities that will be applied to simultaneous interrupt requests occurring at pins INO -
IN7. This table also indicates ~he exact memory addresses which will be created by the MC6828 in response to
each of the interrupt requests. In order to use the MC6828 PIC in an MC6800 microcomputer system. 16 bytes of
PROM or ROM. selected by the addresses given in Table 9-8 must be connected to the MC6828. Within these 16 bytes
of'PROM or ROM. you must store the starting addresses for the eight interrupt service routines which are going to be
executed following acknowledgement of each possible external interrupt request. For example. suppose that interrupt
req'uests arriving at the IN5 pin of the MC6828 must be serviced by an interrupt service routine whose first executable
instructi"on i~ stored in memory location 2E0016. The value 2E0016 must then be stored if! the two PROM or ROM bytE!s
select~d by memory addresses FFF216 and FFF316, Remember. the high-order byte of an address is always stored at
the lower address. Thus 2E16 will be storeg in memory location FFF216 while 0016 is stored in memory location
FFF31~· - .

In simple configurations the 16 bytes of PROM or ROM selected by the MC6828 will be part of the MC6800 address
space; the MC6828 simply sits on the Address Bus. Logic may be illustrated as follows:

A1S

AS
A4

Al
AO

VMA
R/W

<1>2 (E)
I~Q

INO

IN7

· · ·
· · ·

-

· · ·

...
'U'

,-.
...
-

.. · -· -.. · - A4

· · = Al

:.
~ =. -

CSO Z4 ~ .
Al Zl ~

A4
IRQ

MC6828
CSl

<1>2 (E)

R/W

.. + ~

Chip select logic generates CSO as the NAND of address lines A5 through A 15; thus. the MC6828 will be selected only
when these address lines are all high. VMA is used to generate select line CS 1. Since VMA is high only while a valid
memory address is being output. valid select logic is completed. Address lines A4 through A 1 physically terminate at
the MC6828. which re-generates them via the Z4 through Z1 outputs. Z4 through Z1 will exactly reflect A4 through
A 1. unless the MC6828 is selected and A4 through A 1 is 1100. Thus. the presence of the MC6828 will add a slight pro­
pagation delay on the Address Bus. but otherwise it will have no effect on addresses being transmitted until FFF816 or
FFF916 appear.

9-75

It is also possible to move the MC6828 PIC out of the main Address Bus path, in which case its 16 bytes of PROM
or ROM 'are 60t within the main microcomputer address space. This scheme may be illustrated as follows:

A15 · · A5 ·
A4
A3
A2
A1
AO

VMA
R/W

<1>2 (E) -IRQ -

..,
L,. CSO

- A1 .
'- A2 ..
- A3 ..

MC6828 - A4 --- CS1 ..
- <1>2 (E) ..
- Riw ..

IRQ

+ ~
INO~----------------------------~ .
IN7~'----------------------------------~

Z1

Z4

· -· · .
..
:

= .
:.
..

--
..
:. · .. ·

MC6800
SYSTEM
BUS

ROM
ENABLE SEPARATE

ROM
ENABLE

AO AND
A1 ADDRESS

LOGIC
A4

In the ah6ve'scheme it is only necessary that memory addresses FFF816 and FFF16 be reserved for the MC6828 PIC:
This is be~aus.e A4, A3, A2 and A1 contribute to CSO logic; they must be 1100 for CSO to be low. CS 1 is generated ,by
thehigh'VMA'pulse, Address Bus lines A 1, A2, A3 and A4 now branch to form a new five-line Address Bus -AO with,
Z1 thro~gh;Z4. This five-line Address Bus is input to a separate ROM or PROM which is enabled by the same logic'that'
enabIJS"the'MC6828. '

0
w
I-
ct
a:
0
Q.,
a:
0
u
~
en
w
I-
ct
U
0
(/)
(/)

ct
~
w
Z
a:
0
a:I
(/)

0

::!
ct
0
ct
@

If you move the MC6828 PIC out of the main Address Bus. then you can have more than one MC6828 device'within a
single MC6800 microcomputer system. Each MC6828 device must have its own 32 byte$ of PROM or ROM. and device
priority must be established by conditioning lower priority MC6828 select logic with higher priority interrupt request
logic. This may be illustrated as follows: :' .. · . -A15

· · . ..
:.
;, -

A5
M
A3

:-
:::

A2
Al
AD .. -VMA .. -IRQ

un ...
A

00' " r
t,

'r$
~-'. - :-- -

CSO } Highest priority
CSl MC6828 iRQ

t:1) ... -

- .--

~ If
"

CSO} Second highest
fS 1 priority MC6828

IRQ

Anyone interrupt request being true at a higher priority MC6828 PIC will suppress the high VMA pulse and automat­
ically prevent a lower priority MC6828 PIC from being selected.

INTERRUPT INHIBIT LOGIC
The Mf:6828 provides a very elementary level of interrupt inhibit logic. You can output a mask to the MC6828
identifying a priority level below which all interrupts will be inhibited.

Now the mask is written out to the MC6828 in a very unusual way.

Recall that the MC6828 requires memory addresses FFE816 through FFF916 to access PROM or ROM. Any attempt to
write into these memory addresses will be ignored. The MC6828 takes advantage of this fact by trapping attempts to
write into memory locations FFE816 through FFF916. That is to say. when R/W is low while CSO is low and CS 1, IS high.
the MC6828 considers itself selected. but it interprets the four address lines A 1. A2. A3. A4 as data. defining the mask
level below which interrupts will be inhibited, Table 9-9 defines the way in which the mask specified by address
lines' A 1, A2, A3 and A4 will be interpreted. ' , ' ,

9-77

Table 9-9. MC6828 Interrupt Masks - Their Creation and Interpretation

Write anything and Address Bus Which will inhibit
to this address: lines A 1-A4 will all interrupts. including

have this value: and below:

FFEO or FFE1 0000 All interrupts enabled
FFE2 or FFE3 0001 IN1
FFE4 or FFE5 0010 IN2
FFE6 or FFE7 0011 IN3
FFE8 or FFE9 0100 IN4
FFEA or FFEB 0101 IN5
FFE<:; of FFED 0110 IN6
FFEE or FFEF 0111 IN7

FFFO through· FFFF 1000 through 1111 All interrupts disabled

THE MC6840 PROGRAMMABLE COUNTER/TIMER

This is a programmable device which contains three sets of counter/timer logic. Each set of counter/timer logic
can be programmed independently to perform a vari9ty of time interval, pulse width measurement and signal
generation operations.

The MC6840 programmabie counter/timer is described in this chapter rather than in Volume 3 because, like
other 6800 support devi~es, it requires the enable clock signal as an input ..

The MC6840 is somewha.t more versatile than the 8253 programmable counter/timer, which was first developed
as an Intel 8080 support"aevice; the 8253 counterltimer is described in Volume 3. Within an MC6800 or MCS6500
microcomputer system. the 8253 is probably preferable to the MC6840; this is because capabilities of the MC6840 are
not sufficiently superior to the 8253 to compensate for the enable clock signal and its attendant synchronization prob-
lems .

The MC6840 is fabricated using N-channe! silicon gate depletion load technology; it is packaged as a 28-pin DIP.

THE MC6840 COUNTER/TIMER PINS AND SIGNALS
MC6840 counter/timer pins and signals are illustrated in Figure 9-30. These pins and signals are described in
conjunction with a general discussion of the MC6f;140 organization logic and capabilities.

• t'.'.. " !,.

Each of the three sets of timer logic has a 16-bit Counter, a 16-bit Latch and three control signals, illustrated as
follows:' .', .

IRQ~~--~---------------~--------------------------

Data In

C

Counter/ 0
Data Out Timer

Logic

G
<1>2 (E)

Data In l..-----------------------------:---,..',i.i(.· •.. re~Jist~~r/ iii

9-78

Clock (Decrement Control)

Output

Gate/Control

Shaded registers
are addressable

c
w

~
a:
0
a..
a:
0
CJ
~
en
w
I-
<
C3
0
C/)
C/)

<
o/l
w
Z
a:
0
ell
C/)

0

~
< c
<
@

(GND) Vss 28 Ci
G2 2 27 01

02 3 26 G1
C2 4 25 DO

G3 5 24 01

03 6 23 02

a 7 MC6840
22 03

RESET 8 21 04
IRQ 9 20 05

RSO 10 19 06

RS1 11 18 07

RS2 12 17 ,J:.: <1>2 (E)

R/W 13 16 CS1

VCC 14 15 CSO

PIN NAME DESCRIPTION TYPE

DO - 07 Data Bus Tristate, bidirectional
C1 Timer 1 clock Input
01 Timer 1 output Output
G1 Timer i gate Input
C2 Timer 2 clock Inp~t
02 Timer 2 output Output
G2 Timer 2 gate Input
C3 Timer 3 clock Input
03 Timer 3 output Output
G3 Timer 3 gate Input
RSO, RS1, RS2 Register select If'!put
CSO, CS1 Chip select Input
R/W Read/Write control Input
RESET System reset Input
IRQ Interrupt request Output
<1>2 (E) Clock input Input

VCC,VSS Power and Ground

Figure 9-30. MC6840 CounterlTirner Signals a~d Pin Assignments

When any counter or timer operation is initialized, the 16-bit Latch contents are loaded
into the associated 16-bit Counter. The Counter is then decremented either on high-to-Iow
transitions of the external clock signal (Cl. or on high-to-Iow transitions 'of the int~rnal <1>2
clock signal; selecting one or the other is a programmable option. Thisrnay be illustrated as
follows:

Initialize

<1>2 or C --1 i I \ I \
+ + 4

XXXX XXXX-1 XXXX-2
from in in
Latch Counter Co~~ter

to Counter

XXXX represents any initial 16-bit value.

MC6840
COUNTER/TIMER
INITIALIZATION

I L
+

XXXX-3
in

Counter

If the external clock signal is used to decrement the counter/timer, then it is being used as an event counter; if
the internal synchronization clock is used to decrement the counter/timer, the!" it is being used as a tim~r.

The external signals C and G are sampled on the trailing edge of <I>~. This has important synchronization conse­
quences.

9-79

Timing for external clock signal C or G may be illustrated 'as follows: MC6840
EXTERNAL
SIGI'IAL
TIMING

1
I I

<1>2 (E) _~-II""-------':\ I \
1 I~------

CorG

1 I

.y,: :i;;r.

~' ~' I' I

One machine cycle

. ' C must be stable low before start
of machine cycle, and must not
start returning high until after end
of machine cycle.

Thus. external clock signal frequencies may vary from Q (DC) to somewhere less than half of the internal <1>2 clock fre­
quency.

It is very important that external signal timing conform to the illustration above. If insufficient setup time is pro­
vided. MC6840 logic will possibly recognize the initial high-to-Iow signal transition twice: once assuming that the
setup time just made it. and again assuming that it did n~t;· this may be illustrated as follows: .

1 ,
<1>2 (E) I \ I 'I \

I

C orG \
~ C or G ~ detected :)

here or here

A similar problem may occur on the trailing edge of the external sign~i. This may result in clock pulses being missed.
This may be illustrated as follows: '

C or G ~ mllY be detected ' ~ or G. -l may be detected

<1>2 (E) ..J ___ \)'ffi O'~ffi ~/h'; 0' h'ffi =v I
1 1 ,I~------~ L
1 I

Actual C or G' -------.\ ,.....----------:"-----------

I -------

Some or all of
these four Cor G

interpretations !

are possibl~ /

1
1 -----l\
I·~ ______________ --J

I

I
I

------~\-------~--------­I
,I 1 I

I 1 ,
I

I I
I

I I

\ I

9-80

o
ILl

~
a:
o
Q.
a:
o
(J

~
en
ILl

~
U o
rJ)
rJ)
c(

all
ILl
Z
a:
o
a3
rJ)

o
:!:
c(
o
c(

@

Any transition of the C or G input signals is not recognized by internal MC6840 logic for four <lJ2 clock periods.
~his may be illustrated as follows:

. ,
Actual Cor G ~""" _____ JI

1

,.
I

Cor G as
internally

recognized

----~--~--~--~--~\ I
I·'-----..J

, ,
1
I'

One point can cause confusion when you are uSing the ·external clock (e) to decrement the counterltimer: it will still
take four internal clock pulses (<lJ2) to recognize each external clock pulse. as illustrated above. A common mistake.
when using this part. is to assume that internal clock recognition is simply delayed four clock pulses: the delay is four
internal clock pulses. .

The only significance of this delay is that there is indeed a delay. This delay has no effect on ~xternal clock signal fre­
quency or timing.

The gate input (G) is used variously to initiate or suspend timer operations.

Timer results can be output via the output signal b.A variet'y of continuous or one-shot wave forms may be generated
via the 0 output signals. ··Y .,\ 1 .

The programmer accesses an MC6840 counter/timer as ~ight contiguous memory locations. A memory locration' is
selected via two chip select i.nputs (CSOand CS1) plus three register select inputs (RSO. RS1 and RS2).

As is standard for MC6800 support devices. chip select logic should be conditioned by the valid memory address
(VMA) signal. Device select and addressing logic may be illustrated as follows: .'

VMA E>CSl

A15 :~ Select
~CSO

Logic·
A3

A2 ~RS2
Al ~RSl
AO ... RSO
~ --..-

Signals output Signals input to
by the MC6800 the MC6840
CPU Counter /Timer

Once the MC6840 has been selected. the level of the RIW signal determines whether a read (R/W high) or a write
(R/W low) operation is to occur. If R/W is low. the CPU will write into the selected MC6840 location: if R/W is high.
the contents of the selected MC6840 location will be read. .

Any data transferred to or from the MC6840 is transferred via the Data Bus. The MC6840 Data Bus connection is
three-state: when a read or a write operation is not in progress. the MC6840 disconnects itself from the Data Bus.

The MC6840 is reset by applying a low input signal to the RESET pin. Necessary reset tim- IMC6840 RESETI
ing may be illustrated as follows:

9-81

RESET signal timing requirements are the same as the C and G requirements which we just described. The RESET is
recognized by internal logic two clock pulses after a low level is ~e~ected.

Following a valid reset. all Latches are loaded with the value FF16. and this value is transferred to the Counter registers.
All Control registers are reset to O. with the exception of Control Register 1 bit O. which is set to 1. This is a system in­
itialization bit which we will describe later. The Status register is als6 cleared. Thus. following a reset. those program­
mable options which are selected by 0 bits in the Control registers will be enabled.

MC6840 ADDRESSING . .
Addressable locations within the MC6840 are all read-only or write-only locations. Table 9-10 identifies MC6840 ad­
d~essable ,locations.'

Table 9-10. MC6840 Addressable Locations

Register Selected Operations

RS2 RS1 RSO
Label R!W=O (Write) R/W'=1 (Read)

Address

0 0 0 DEV Write to Control Register 3 No operation
if Control Register 2. bit 0 is 0
Write to Control Register 1
if Control Register 2. bit 0 is 1

0 0 1 DEV+ 1 Write to Control Register 2 Read Status register

0 1 0 DEV+2 Write to MSB register Read Counter Register 1

0 1 1 DEV+3 Write to Latches 1 Read LSB register

1 0 0 DEV+4 Write to MSB register Read Counter Register 2

'.
1 0 1 DEV+5 Write to Latches 2 Read LSB register

1 1 0 DEV+6 Write to MSB register Read Counter Register 3

1 1 1 DEV+7 Write to Latches 3 Read LSB register

There are sgme nonobvious aspects to r'v1C6840 addressing. We will first look at write addresses.

If we number the three counterltimer logic elements 1. 2 and' 3. counterltimer logic element 2 has a unique write-only
a(jdress for its Control register. (I~ is address DEV+ 1). Counterltimer elements 1 and 3 share a single write-only address
(DEV) .. The level of Control register 2 bit o determines whether Control Register 1 or 3 will be selected by addr~ss DEV.
This may be illustrated as follows: " ' , .

7 6 5 4 3 2 o--BitNo.

Address DEV + 1 ~,,_.&.._ . ..&I_..a.. __ ~ _ -",I ___ J----. Control Register 2 ,
Address DEV ------------..;,.c--~;~---1:~ Co~trol Register 3

! - Control Register 1

9-82

c
w

~
a:
o
a..
a:
o
o
~
ui
w

~
g
CI)
CI)

oCt
all
w
Z
a:
o
en
CI)

o
~
oCt
C
oCt

@

Following a device reset. Control Register 2. bit 0 will be O. Therefore. initially Control Register 3 will be selected by ad­
dress DEV. Thus. you will normally access Control registers in the sequence 3. 2. 1. as follows:

1) Select address DEV. access Control Register 3.

2) Select address DEV+ 1. access Control Register 2. Set Control Register 2. bit 0 to 1.

3) Select address DEV. access Control Register 1.

Three write addresses select an "MSB" register. All three write addresses select the same temporary "Most Significant
Byte" buffer. This buffer allows 16 data bits to be written into anyone of the three 16-bit latches when a single 8-bit
write is executed. This may be illustrated as follows:

7

MSB buffer

O~ Bit No.

L/'I-----------y Write Address
'v----------~ DEV + 2, DEV + 4, DEV + 6 ----_--1

15 B 7

Latches 1 MSB

15

Latches 2 MSB

15 B 7

Latches 3 MSB

LSB

LSB

LSB

o .. Bit No.

L/'I---, Write Address
Iv-----"DEV+3

o .. Bit No.

1/'----, Write Address
'\r---~ DEV + 5

O~ Bit No.

1/,---.. Write Address
Iv--~DEV+7 ---_____ ~ __________ __J

MSB means Most Significant Byte
LSB means Least Significant Byte

9-83

The Most Significant Byte (MSB) buffer allows the MC6840 to be accessed by MC6800 16-bit write instructions. You
can. for example. use an STX or STS instruction to transfer the contents 'of the Index register or the Stack Pointer tathe
selected MC6840 location. There are three MC6840 locations which can receive a 16-bit data value: they are the three
counterltimer latches illustrated above as Latches 1. Latches 2 and Latches 3. You address these counter/timer latches
via their associated Most Significant Byte buffer address. Now when you output a 16-bit value (for example. from the
Index register). first the high-order byte is transferred to the Most Significant Byte (MSB) buffer. For Latches 2 this may
be illustrated as follows:

15 87 o

. STX DEV+4

MSB Buffer

8 7 O~BitNo.

Latches 1

DEV+3

15 8 7 o-..Bit No.

Latches 2

DEV+5

15 8 7 o ~BitNo.

Latches 3

DEV+7

9-84

c
w

!i
a:
0
fl.
a:
0
CJ
~
en
w ...
ct g
CI)
CI)

ct
.a
w
Z
a:
0
III
CI)

0

~
ct
C
ct
@

Then the low-order byte' is transferred to the low-order byte of the addressed counterltimer latches. while
simultaneously the Most Significant Byte (MSB) buffer contents are transferred to the high-order byte of the addressed
counterltimer latches. This may be illustrated as follows:

15 8 7 0

CPU "d., R.g'''.' I
STX DEV+4

MSB Buffer

8 7 o '--BitNo.

Latches 1

DEV+3

Latches 2

8 7 O...-BitNo.

Latches 3

DEV+7

9-85

You can. of course. access counterltimer latches using single byte instructions. You could. for example. transfer a 16-
bit value one byte at a time from Accumulator A. via the following instruction sequence:

LDA
STA
LDA
STA

A.#HI
A.DEV+4
A.#LO
A.DEV+5

LOAD ADDRESS HIGH-ORDER BYTE AS IMMEDIATE DATA
STORE IN MSB BUFFER
LOAD ADDRESS LOW-ORDER BYTE AS IMMEDIATE DATA
WRITE 11 DATA BITS TO LATCHES 2

This instruction sequence may be illustrated as follows:

MSB Buffer

Latches 1

Latches 3

7 O"--BitNo.

DEV + 2. DEV + 4
DEV+6

15 8 7

15 8 7

8 7

DEV+3

DEV+5

. DEV+ 7

9-86

O,--BitNo.

04--BitNo.

O~BitNo.

7

#HI
Memory

o

o

c
w
I-
< a: MSB Buffer 0
a.
a:
0
0
~
en B 7 o ..-.- Bit No.
w
I-
<
(;
0
CI) OEV+3
CI)

<
011 15 B 7 O~BitNo.
w
Z
a: Latches 2
0
III
CI)

0 OEV+5
:!:
< 15 8 7 o '--BitNo. c
<
@ Latches 3

OEV+7

Memory

0

LOA A.#LO

7 o-BitNo.

MSB Buffer

o .--Bit No.

Latches 1

OEV+3

0 ...-BitNo.
1)

Latches 2

OEV+5

o .--BitNo.

Latches 3

OEV+7

#LO Memory

9-87

7 o

MSB Buffer

O.--BitNo ..

p-------------~----------~
Latches 1

Latches 2

Latches 3

oev+ 7

Memory

As illustrated by the instruction sequence above. you must first transfer the high-order byte of data to the Most Signifi­
cant Byte (MSB) buffer. then you must transfer the low-order byte of data to the timer/counter Latches address: when
you write to the timer/counter Latches address. the data moves into the low-order byte of the timer/counter Latches.
while simultaneously the Most Significant Byte buffer contents are transferred to the high-order byte of the
timer/counter Latches.

There are seven read-only locations within the MC6840.

Address DEV does not select any read-only location.

Address DEV+1 reads the contents of a Status register: this register records time out and interrupt request status for
the three sets of counterltimer logic. The Status register is described later. .

9-88

0
w
~
II:
0
a..
II:
0
0
~
ui
w .-«
g
CI)
CI)

«
011
w
z
II:
0 m
CI)

0

~ « c «
@

The remaining six read-only addresses are used to read the contents of the counter/timer counters in a manner that is
analogous to the way in which you write into the cou~ter/timer latches. This m~y be i~lustr~Wd as folloyvs:

Bit No. ~7 0

LSB Buffer

BitNo.~:15 8 7 0

Counter 1

Adejress: DEV+2

Bit No.----' 15 . 8 7 0

Count~r 2

Address: ·DEV+.4

Bit No.----' 15 8 7 0

Counter 3

Address: DEV+6

?-89

The three addresses which select the Least Significant Byte (LSB) buffer once again address the Si3me location. Con­
sider the LDX' instruction which loads a 16-bit data value into the CPU Index register. When' this instruction addresses
an MC6840 counter/timer. you first read a Countj3r regi~lgr high-order byte into the Index register high-order byte
while simultaneously transferring the Counter register low-order by tEl into the Least Significant Byte (LSB) buffer. For
Counter 2 this may be illustrated as follows:

15 8 7 o

LSB Buffer

Bit No.--" 15 8 7

Co~nter 1

Address: DEY,;-':

Counter 2

Address:

Bit No.----" 15 8 7

Counter 3

Address: DEV'..:j.y

9-90

Q
w

~
II:
0
a.
II:
0
(J

~
en
w
~
~ g
CI)
CI)

~

oil
w
Z
II:
0
III
CI)
0

~
~
Q
~

~

The Least Significant Byte (LSB) buffer contents are then transferred to the low-order Index register byte:

15 8' 7 0

LSB Buffer

BitNo.~15 8.7

Counter 1

Address: DEV+2

Counter 2

Address:

Bit No.-.- 15

Counter 3

Address: DEV+6

You c~n. of course. read Counter register contents one byte at~ time. but you must make sure that you read the high­
order byte mst by addressing the counter itself: ,then you must ~ead the low-order byte by addressing the next ad­
dressable location. This may be illustrated for Counter 2 by the following instruction sequence: '

LOA A.DEV+4 LOAD dbuNTEA HIGHcdRDER BYTE TO ACCUMULATOR A
LOA B.DEV+5 LOAD COUNTER LOW-ORDER BYTE TO ACCUMULATOR B

ThEm! are some' ways of getting into tro~ble, whe~ acc~;sing the .MC6840.

As illustrated for Counter read and Latch write oper~tions. whe~ 'reading or writing to the MC6840 you must first s~lect
an even address location. and ,then address the next sequential lobation. If, you write first toah odd address; you will
transfer into the seiected latches eight bits of data plus whatever happens to be in the Most Significant Byte buffer.

If you read first from an odd address. you will read whatev~r happens ,to be in the Least Significant Byte (LSB) buffer.
You must never access the MC6840 with an instructiori that modifies the contents of a memory location; these instruc­
tions read the contents of the addressed memory location to the CPU. modify its contents. and then write the contents
back to the same. addressed memory location. For an increment memory instruction:,

INC bEV+4

9-91

this may be i1lust~ated as follows:

Step 1

MSB Buffer

LSB Buffer

Latches 1

Counter 1

Latches 2

Counter 2

Latches 3

Counter 3

DEV+2.DEV+4.
DEV+6

Bit No.

DEV+3. DEV+5
DEV+7.

DEV+3

Bit No.

Bit No.:

o Bit No.

~~----------~-------------

15

~it No.

O· Bit No.

To CPU and
increrneht

c
w

~
a:
o
a.
a:
o u
~
en
w

~
g
CI)
CI)

~

CI/:I
w
Z
a:
o m
CI)

o
~
~ c
<:
@

Step 2

MSB Buffer

LSB Buffer

Latches 1

Counter 1

Latches 2

Counter 2

Latches 3

Counter 3

Incremented
value from

CPU

15

15

15

15

DEV + 2. DEV + 4
DEV+6

DEV+4

Bit No

8 7

9-93

DEV + 3. DEV + 5
DEV+7

DEV+3

DEV+5

Bit No

Bit No

Bit No

o Bit No

Bit No

o Bit No

As illustrated above. the same address accesses different MC6840 locations on a read or write: you will read the con­
tents of one location. modify them. and write them back to a totally different location. Therefore. when accessing the
MC6840 under program control. you must be sure not to use instructions that modify memory: use only instructions
that read from memory or write to memory.

ivlC6840 COUNTER/TIMER PROGRAMMABLE OPTIONS
We will begin our discussion of the MC6840 counter/timer options by describing the Control code which must
be written into each Control register. Subsequently, the various operating modes will be discussed along with
appropriate examples.

This is the general format for the Control code:

6 3 2 o ,,--SitNo.

I I I I I I I I Control Register

.~ j ~ . • I~ I ~ . ~ I~

Control Register 1 - 0 No operation
1 Initialize all counter/timers

MC6840
CONTROL
REGISTERS

Control Register 2 - 0 Write address 0 selects Control Register 3
1 'Write address 0 selects Control Register 1

Control Register 3 - 0 No operation
1 Select +8 prescalar for Counter/Timer 3

o - Select external clock
1 - Select internal <1>2 clock

0- Select 16-bit counting mode
1 - Select 8-bit counting mode

o - Continuous or Single-shot mode

o - With programmed start
1 - Without programmed start

o - Select Continuous mode
1 - Select Single-shot mode

01 - Frequency Comparison mode
11 - Pulse width Comparison mode

o - Interrupt or Gate pulse shorter
1 - Interrupt on time out shorter

o - Disable interrupts
1 - Enable interrupts

o -: Disable Output signal
1 - Enable Output signal

Bits 0 of the three Control registers are unusual in that they have different interpretations for the three Control registers.

Control Register 1. bit 0 is a system initialization bit. System initialization is identical to a
system reset. with the exception that latches are not effective. Thus. as soon as a 1 is written
to Control Register 1. bit O. all three counterltimers are stopped. the contents of all three
Latches are transferred to their associated Counter registers. the Status register is cleared. and
all Control register bits (with the 'exception of Control Register 1 bit 0) are reset to O.

MC6840
PROGRAMMED
INITIALIZATION

Control Register 2. bit 0 is an addressing bit. When this bit is O. a write to the lowest MC6840 address (DEV) will access
Control Register 3: when this bit is 1. a write to address DEV will select Control Register 1. This was graphically illustr­
ated in our earlier discussion of MC6840 addressing.

9-94

c
w

~
a:
o
0.
a:
o
o
~
Iii
w

~ g
(I)
(I)

ct
ail
w
Z
a:
o
aI
(I)

o
:E
ct c
ct
@

Control Register 3. bit a is unique to counter/timer 3. When this bit is 1. every eighth clock pulse
will be active at cQunterltimer 3. This may be illustrated as follows:

Actual <1>2 or C

MC6840
DIVIDE-BY­
EIGHT CLOCK

I
I'

Effective <1>2 or C n' fL --------~--~--~------------------~~ I~------------~----~~----~
2 3 4 I 5 I 6 7 I 8 I 2 3 4 5 6 7

Control register bits 1 through 7 serve identical functions. but apply only to one set of counter/timer logic.
Each of the three counter/timer logic elements operates quite independently. and is in no way influenced by
conditions at either of the other counter/timer elements.

Control register bit 1 determines whether Counter register contents will be decremented by external clock sig­
nal (C) transitions., or by the internal <1>2 clock. In either case the counter,will be decremented on high-to-Iow clock
transitions.

Control register bit 2 determines the way in which the Counter register will decrement.
There are two options: 16-bit counting mode and 8-bit counting mode. In 16-bit counting
mode. the 16-bit counter contents are treated as a single 16-bit entity. Once an initial value has
been loaded into the counter. it decrements on each active clock transition. When the clock
decrements to O. a time out occurs. This may be illustrated as follows:

<l>20rC n n n 'J U' ~w ~ L _e •••• ____ eo_eo_e. ~

-......., V' ~

MC6840
16-BIT
COUNTING
MODE

Ilill.talize.
Load latches
contents into

Counter

Decrement Counter
on each clock

pulse

Decrement Counter on
each clock pulse. This
may occur automatically.
or following another initialization

Counter Reload
decrements Counter

to 0 with Latches
contents

~~ ~~~ ~~
This is a time out

There are a variety of ways in which you initialize a counter/timer. These are programmable options which depend on
the selected operating mode - which we will describe .Iater. '

A time out occurs after a Counter register decrernents toO. On the next clock pulse the Counter register is reloaded
with the contents of the latches. Under program control you can determine whether a time out will be marked by an in­
terrupt request. and whether the counter/timer will stop or run continuously.

9-95

In 8-bit counting mode the high-order and low-order bytes of the counter are treated as separate
entities. On each active clock transition the low-order counter byte is decremented; when the low­
order byte decrements from 1 to O. nothing happens. On the next active transition of the clock.
the low-order byte is reloaded from the low-order byte of the latch and the high-order byte is
decremented. This may be illustrated as follows:

Initialize. Load
latches contents

into Counter.

~,--------~~~--------~~
Decrement Counter low-
order byte on each clock
pulse

Counter low-order byte
decrements to 0

Decrement Counter high­
order byte and re-Ioad
Counter low-order byte from

latch

'-..... _-..... 'V,.---",/
Decrement Counter low­
order byte on each clock
pulse

Counter low-order byte
decrements to 0

Counter high-order byte
decrements to 0 last time

and now contains O. Reload
both Counter bytes from

latches

MC6840
8-BIT
COUNTING
MODE

~'-------~~~--------"'~ ,

This is a time out

Initialization logic. time out logic and programmable options are identical in 16-bit and 8~bit modes. What differs are
the events between initialization and time out. .

We can contrast 8-bit and 16-bit modes aecrement logic by looking at what happens after an initial value of 040A16
has been loaded into a counter/timer latch. In 16-bit mode a time out will occur after 101110 clock pulses. Assuming a
1 microsecond clock. a time out will occur every 1.011 milliseconds:

040A16 = 101010
Time out occurs one clock pulse later. that is. after 101110 pulses
101110 microseconds = 1.011 milliseconds' ,

In 8-bit mode a time out will occur after 55 clock pulses, With reference to the 8-bit mode illustrated above. let us see
how we derive this value.

The low-order Counter register byte contains OA16. which is equal to 1010, It takes 1010 clock pulses to decrement
the low-order byte to O. On th'e, 11 th clock pulse the high-order byte is decremented. while the low-order byte is
reloaded from the low-order byte of the latches. The high-order byte is therefore decremented once every N+1 clock
pulses. where N is the initial value which is loaded into the Counter register low-order byte.

The Counter register high-order byte decrements to O. On the next attempt to decrement the Counter register high­
order byte. if it already contains O. a time out occurs. Thus. the Counter register high-order byte is decremented M+1
times. where M is the initial Counter register high-order byte contents .. Thus. you can compute the number of clock
pulses until a time out occurs in 8-bit mode via the followin'g 'equatiqn: '"

(M+1) * (N+1)

where M is the initial Counter register high-order byte contents and N ,is the initial Counter register low-order byte con­
tents.

For each counter/timer you can selilct one of eight operating methods via Control registers bits 3, 4 and 5.

For any MC6840 operating mode, interrupts and/or the output signal (0) mayor may not be enabled.

If interrupts have been enabled (via Control register bit 6). then on every time out (and for certain
other special conditions) an interrupt request will be made to the CPU by outputting a low IRO sig­
nal. Simultaneously. appropriate Status flags are set in a Status register. If interrupts are disabled.
the Status register bit settings occur. but no interrupt request is output via IRO.

9-96

-----,
MC6840
INTERRUPT
ENABLE

Q
w

~
a:
o
Q.
a: o
u
~
en
w

~
g
en
en
c(

alS
w
Z
a:
o
m
en o
:!:
c(
Q
c(

@

If the output signal (0) is enabled. then during Continuous and Single Shot operating modes an
output signal is generated. The output signal (0) is not used in frequency comparison and pulse
width comparison operating modes.

The Status register of the MC6840 reports time outs and interrupt request status. Status
register bits are interpreted as follows:

6 5 4 3 2 o-BitNo.

Status Register

Counter/TImer 1} 1 = Interrupt or time
L--____ Counter/TImer 2 out condition

. 0 = No interrupt or
~------ Counter/Timer 3 time out condition.

L--__________ Not Assigned

~------------- 1 - Active interrupt pending
o - No active interrupt pending

MC6840
OUTPUT
SIGNAL
ENABLE

STATUS
REGISTER

The MC6840 Status register is a read-only location accessed via the address DEV+ 1. as shown in Table 9-10.

There are some nonobvious consequences of Status register organization. We will therefore describe the in-
dividual Status register bits and then the way in 'which they should be used. .

Status register bits 0, 1 and 2 will be set to 1 if an interrupt condition exists at counter/timer 1, 2 or 3, respec­
tively. This will occur whether or not interrupts have been enabled. For example. if a time out occurs at counterltimer
2. then Status register bit 1 will be set. irrespective of whether counterltimer 2 interrupts have or have not been
enabled via Control Register 2. bit 6. Thus. Status register bits O. 1 and 2 do not report an interrupt pending from a
counterltimer: rather. they report the existence of a condition capable of generating an interrupt request. Status
register bit 7 indicates the presence of a valid interrupt request. Status register bit 7 will be set to 1 if a valid inter­
rupt request has been generated by one or more of the counter/timers. That is to say. if Status register bit O. 1 or 2 he..:.
been set to 1 while the associated Control register bit 6 is 1. then Status register bit 7 will be set to 1. This may be il-
lustrated via the following logical equation: . ,

S7, = (SO. C16) + (S1 • C26) + (S2 • C36)

In theequation above. SO~ S 1. S2 and S7 represent Status register bit~ O. 1. 2 and 7. respectively. C 16. C26 and C36'
represent bit .6 of Control Registers 1. 2 and 3. respectively .• and + signs represent logical AND and OR operations.
respectively. '

Now. in an MC6800 microcomputer system that is using vectored interrupt acknowledge logic. Status register bit 7 is
useless. This is because the'vectoring logic associated with the interrupt acknowledge allows the executing program to
branch directly to an interrupt service routine dedicated to this particular MC6840 device. For example. in an MC6800
microcomputer system that includes an MC6828 Priority Interrupt Controller (PIC). the interrupt request line from the
MC6840 would terminate at one of the MC6828 interrupt request pins: the MC6840 interrupt service routine's start
address would be fetched by the MC6828 PIC following an interrupt acknowledge ..

Upon acknowledging the interrupt request. the MC6800 knows that this particular MC6840's interrupt has been
acknowledged: therefore the high-order Status register bit contains no useful information. In MC6800 microcomputer
systems that use polling logic following an interrupt acknowledge. the interrupt acknowledge process will begin with a
general purpose interrupt service routine that reads the contents of every device Status register - checking for devices
with an active interrupt request. Now Status register bit 7 of the MC6840 is useful. The initial general purpose interrupt
service routine will read the contents of the MC6840 Status register and check bit 7. If this bit is 1. then an active inter­
rupt request exists. Here is an appropriate instruction sequence:

LDA
BIT
BNE
LOA

A.DEV+1
A.#80H
MC6840
A.NEXT

READ STATUS REGISTER
TEST HIGH-ORDER BIT
IF NOT O. BRANCH TO SERVICE ROUTINE
READ NEXT DEVICE'S STATUS REGISTER

You cannot use the MC6800 Status register to create interrupt request priorities within the MC6840. One or
more counterltimer int~rrupts must be enabled via the Control register bit 6 for an interrupt request to be generated.
but if more than one counter/timer can generate an interrupt request. you have no way of determining which
counterltimer generated the interrupt request. Suppose. for example. that only counterltimer 1 has its interrupt re­
quest logic enabled via Control Register 1. bit 6. Now if a time out (or other condition capable of generating an interrupt

9-97

request) occurs at counterltimer 2, and then at counter/timer 3, and then at counter/timer 1, this is how Status register
bits will be set:

Event Status Register Comment

I 0 I I I 0 I I 0 I I 0 I Counter/Timer 2
0 0 0 1

Counter/Timer 2 interrupts are disabled so there is
times out no interrupt request and Status register bit 7 is 0,

I 0 I I I I I I I 0 I Counter /Timer 3 interrupts are disabled so there is Counter/Timer 3
0 0 0 0 1 1

times out no interrupt request and Status register bit 7 is O.

I I I 10 I I I I I Counter/Timer 1 1 0 0 0 1 1 1 Counter/Timer 1 interrupts are enabled so there is
times out an interrupt request and Status register bit 7 is 1.

An interrupt request is generated only after counterltimer 1 encounters an interrupt condition, but there is no way of
reading the Status register in order to find out what happened. All the Status register. says is .that all three
counterltimers have active interrupt conditions and at least one of them has its interrupt request logic enabled. Pro­
gram logic within the interrupt service routine must therefore take care of arbitrating priorities between the three
counter/timer elements of an MC6840 counter/timer. Therefore, use the MC6840 interrupt enable/disable logic to
select the counter/timers that can cause an interrupt request to occur, but make sure that your MC6840 inter­
rupt service routine uses program logic to arbitrate interrupt priorities between the three counter/timer ele­
ments.

Status register bits are reset to 0 by a reset operation (RESET is input low) or by a general initialization (Control Register
1 bit 0 is 1). Logic that resets individual Status register bits has been carefully designed to avoid missing interrupt re­
quests. In order to reset Status register bit 0, 1 or 2 to 0, you must read the Status register and then read the particular
counterltimer's Counter register. This may be illustrated for counterltimer 2 as follows:

LDA
LDX

A.DEV+1
DEV+4

READ STATUS REGISTER CONTENTS
READ COUNTER 2 CONTENTS AND RESET STATUS REGISTER BIT 1 TO 0

By reading the contents of one particular Counter register, you also identify the Status register bit to be reset. If all
Status register bits were reset when you read Status register contents. you might miss pending interrupts that you are
not currently processing.

You can also reset individual Status register bits by writing to a counterltimer's counter latches, providing the
counter/timer's Control register bit4 is 0 - which results in the counterltimer being initialized when data is written to
the counterltimer's latches.

Let us now look at each of the operating modes in turn. Options are defined by the Control register, whose bits
we have already described. Table 9-11 provides an options summary.

We will first examine Continuous mode.

9-98

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 9-11. A Summary ofMC6840 Options and Control Register Settings

Options

Control Code Options
Mode

Counter Initialize Output Interrupts Clock Special Conditions

16-Bit 8-Bit Gl+R Gl+W+R Enabled Disabled Enabled . Disabled Internal External

"
Continuous XXOXOOXX XXOX01XX XX010XXX XXOOOXXX 1XOXOXxx... OXOXOXXX .~ i;XlOXOXXX XOOXOXXX XXOXOX1X XXOXOXOX 8-bit counter with L=O generates 16-

bit waveform. N =0 generates square.
wave output with half clock frequency

One Shot XX1XOOXX XX1XOlXX . XX110XXX .. XX100XXX 1X1XOXXX . OX1XOXXX X11XOXXX X01XOXXX XX1XOX1X XX1XOXOX Land M=O in 8-bit mode or N=Oin 16-
bit mode disables output

Frequency. G pulse versus TO.· Output signal is not significant in these
Comparison.

Gless Gmore
modes. W is always part of initialization

XXX010XX XXX011XX NA NA XXOO1XXX . XX101XXX X1X01XXX XOX01XXX XXX01X1X XXX01XOX

Pulse Width
XXX110XX Comparison XXX111XX NA NA :XX011XXX XX111XXX X1X11XXX XOX11XXX XXX11X1X XXX11XOX

G 1 refers to --"L on G input

W refers to a write into counter/timer latches

N is the 16-bit value written into counter/timer latches; it has a high-order byte- 1M) and a low-order byte IL)
. NA means not applicable

Table 9-12, MC6844 DMAC Register Addresses

: Address
Accessed Location,

['",,4 r' A3 A2 A1 AO Label

, "

0 0 0 0 0 OEV Channel 0 Address register, high-order byte

, ,··O"'~;' 0 0 0 1 OEV+ 1 Channel 0 Address register, low-order byte

0 0 0 1 0 OEV+2 Channel 0 Byte Count register, high-order byte

0 : 0 0 1 1 OEV-I:3 Channel 0 Byte Count register, low-order byte

0 0 1 0 0 OEV+4 Channel 1 Address register, high-order byte

0 0 1 0 1 OEV+5 Channel 1 Address register, low-order byte

0 0 1 1 0 OEV+6 Channel 1 Byte Count register, high-order byte
'" ,

0 0 1 1 1 OEV+7 Channel 1 Byte Count register, low-order byte . ~ .
0 1 0 0 0 OEV+8 Channel 2 Address register, high-order byte

o ' 'I~i 1 0 0 1 OEV+9 Channel 2 Address register, low-order byte

0 1 0 1 0 OEV+A Channel 2 Byte Count register, high-order byte
t, () 1 0 1 1 OEV+B Channel 2 'BYte Count register, low-order byte

0 1 1 0 0 OEV+C 'Channel 3 Address register, high-order byte

0 1 1 0 1 OEV+O Channel 3 Address register, low-order byte

"t 0 1 1 1 0 OEV+E Channel 3 Byte Count register, high-order byte

\0 "
1 1 1 1 OEV+F Channel 3 Byte Count register, low-order byte

, 1 0 0 0 0 OEV+ 10 Channel 0 Control register

'·,1'1 0 0 0 1 OEV+ 11 Channel' 1 Control register
, 1 0 0 1 0 OEV+ 12 Ch~nnel 2 Control register

\"1 0 0 1 1 OEV+ 13 Channel 3 Control register

1 0 1 0 0 OEV+ 14 Priority Control register
, , i

1" 0 1 0 1 OEV+ 15 Interrupt Control register

1 0 1 1 0, OEV+ 16 Data Chain Control regist~r
",r., \",

' ,

In Continuous Operating mode with 16-bit counting. a time out will occur after N+1 active
clock transitions; recall that you may select the internal <1>2 clock, or the external clock (C): In each
case the high-to-Iow transition of the selected clock is an active transition, If the outpu't signal (0)
is disabled. then Continuous Operating mode with 16-bit counting simply generates a time out ev-

MC6840
CONTINUOUS
MODE

ery N+1 active clock transition, This may be illustrated as follows: .

2 3 N-1 N N+1

<1>2 or C J\J\..J1J\.. _____ J\.J1JVL __ _

! J +"!v +L 1
Initialize. Load N into

Counter register
Decrement· Counter Time

Out

If irter~u:Pts are enabled for the cQu.nter/timer wh~ch tin;es out. then ,the time out causes an interrupt request t~ be
transmitted to the CPU and appropriate Status register bits are set. If Interrupts are not enabled. then the appropriate
Stcitus.register bit is set. but no interrupt request is transmitted. to the CPU,

c
w

~
a: o
a..
a:
o
tJ
~
en
w

~
g
(I)
(I)

ct
alJ
w
Z
a:
o
aJ
(I)

o
~
ct
C
ct

@

In Continuous Operating mode with 16-bit counting. if the output signal (0) is enabled'.' then this signal will change
level on each time out. thus creating a square wave. Here is the exact waveform:

2

<I>20rc.nr\Jl._ ••

o

N N+l

~
lriiiialize. Decrement

Load N from Counter
latches into

Counter .
register

Time but
and

initialize
again

N N+l

__ .. .f\.J\.Jl._ ..

Decrement) Time out Decrement
Counter and initialize Counter
register again register

N N+l

Time out
and

initialize
again.

II') Continuous mode. observe that following each time out the value held in the counter latches (N in the illustration
above) is transferred to the Counter register. If the output signal 0 is enabled. therefore. the following square wave is
generated: .

0 J \ I \ I \ r
I I ' I I I I I
I I I I I I I

~P -1-- P _ I_ p _I_ p _I _ p -I'- P~
TO TO TO TO TO TO TO

TO identifies a time out. P represents the time interval between time outs; it is equal to (N+ 1)*t where N is the initial
16-bit value loaded irlto the Couhter register and t is the time interval between active transitions of the clock (<1>2 or C).

In Continuous Operating mode with 8-bit counting. the interval to time out is (N+1) * (M+1) clock transitions. where
M is the initial Counter register byte and N is the initial low-order Cpunter register byte. We have already described this
time out logic. If the output signal (0) is disabled. then a time out will occur after the appropriate number of active clock
transitions. When the time out occurs. an interrupt will be requested via IRQ if interrupts are enabled for this
counter/timer by setting its Control register bit 6 to 1. Simultaneously. appropriate Status register bits will beset. If in­
terrupts are disabled. then a Status register bit will be set. but rio interrupt request will occur. If the output signal (0) is
enabled. then it generates pulses as follows:

N ~ ~

+ + + +

~ ~ ~ ~ ~ ~
+ ,+ + + + +

2 3 N N+l N+2 N+3 ~ ~ ~ ~ ~ ~

<I>2orC '.1VVVl_.1VVVl.J\...JlJlll.
o

r u r .••• __ v--'\,.,- v~--.... ".~
Decrement Counter

register.
low-order byte

Decrement Counter
register in 8-bit

'mode

Decrement
Counter

Decrement Counter
register

low-order byte register in
Time out. 8-bit mode

Reload both Initialize.
Load MN

into Counter
register

Decrement
Counter register
high-order byte

and reload
low-order byte
from iatches

9-101

Decrement
Counter register
high-order byte.
It is O. Reload'
low-order byte
from latches

bytes of Counter
register from

latches

Thus. in 8-bit counting mode you use the low-order Counter register byte to define the pulse width. and you use the
high-order Counter register byte to define the interval between pulses. This may be illustrated as follows:

w w w

0 \ n n rL
I I I I
I I I I

, P _1 4 P ·i 4 P .,
TO TO TO TO

In the illustration above. TO identifies atime out.P represents the time interval between time outs. In 8-bit counting
mode P is equal to (M+ 1)* (N+ 1) * 1. where M is the initial value for the high-order byte of the Counter register. N is the
initial value for the low-order byte of the Counter register. and t is the time Interval between active transitions of the
clock (<1>2 of C). W represents the time interval of the high 0 pulse; it is equal to N * T. Suppose. for example. OAOC 16 is
the initial value loaded into the Counter register which is being operated in 8-bit counting mode. 0 will generate a
pulse output where the high pulse is 1210 clock periods long and the frequency is 14310 clock periods:

0\ ,
-\ I \ I l

TO I TO I
TO

I i
I I I
I ~I i I
I I
"-- v

There are some further options available to you when operating the MC6840 in Conti~uous mode.

Having loaded the counter latches by writing out data to the appropriate address,
there are two ways in which you can initialize the counter. A high-to-Iow transition of
the Gate (G) input will always start the counter:

MC6840 HARDWARE
INITIALIZATION

<1>2 or C , \ I

~
___ -", \

G

Initialize

9-102

c
w
!(
0::
o
a.
0::
o
(J

~
ui
w
l­
e:(

g
en
en
e:(

oil
w
Z
0::
o
rD
en o
:!:
e:('
c
e:(

@

You can always initialize any counterltimer via its Gate input (3) as illustrated above. Once a counterltimer has been in­
itialized via i.ts Gate input (G). G mUst remain low. If (3 goes high at any time this will stop the counterltimer im­
mediately. When IT subsequently makes a high-to-Iow transition. the counterltimer will be re-initialized. This may be il­
lustrated as follows:

<1>2 or C

G

Initialize. Assume OAOC16 is
loaded from latches into
Counter

Stop. Assume 020416 cur­
rently in Counter. This value is
lost

Initialize. Reload OAOC 16
from latches into Counter

Note carefully that the Gate signal (G) going high does not suspend counterltimer operations: it stops these operations.
then restarts them with are-initialization.

You can also initialize a counter/timer under program control. Programmed initialization is an option. whereas hard­
ware initialization via the Gate input (G) is always available. whether or not programmed initialization has been
selected. You select programmed initialization via bit 4 of the counterltimer element's Control register.

If Control register bit 4 is O. then the process of writing a 16-bit value to the counter/timer's latches will start the associ­
ated counter/timer logic. That is to say. as soon as the 16-bit value has been written to the latches. this value is
transferred to the 16-bit Counter register and the counter begins operation.

When using counter/timer 3 only, you can select a "divide by 8" mode; this is done by set­
ting Control Register 3. bit a to 1. Now every eighth active clock transition (of either the internal
<1>2 clock or the external clock) will be considered active. as illustrated earlier. All other options re­
main available when operating counterltimer 3 in "divide-by-S" mode. The clock has effectively
been slowed down by a factor of S - and that is all.

When operating in Continuous mode with 8-bit counting, two special options that de­
pend on the initial value loaded into the latches are available. If the low-order byte of the
initial counter value is O. then. as we might expect. there is no high output signal (0) pulse
(assuming that the output signal is enabled); however. on each time out the output signal
changes levels to create a square wave that is similar to a 16-bit counting. This may be illustr­
ated as follows:

MC6840
DIVIDE
BY 8 MODE

MC6840
CONTINUOUS
8-BIT COUNTING
SQUARE WAVE
OPTION

0 \ I \
I

~ ___ ~I
I I
I I I

1-- p "'1" p -I- p

TO TO TO

When operating in Continuous mode with either S-bit or 16-bit counting. if the initial value loaded
into the latches is O. then Counter registers are not decremented and a square wave is output with
half the clock frequency. This may be illustrated as follows:

<1>2 or C ---1 \ I \ I \

o --..J \
I I

I I

I
I
I
I

TO TO TO

9-103

I
I

--I
TO

MC6840
CONTINUOUS
MODE WITH
o INITIAL
VALUE

L

Time outs occur on every transition of O. Since interrupts could not possibly be serviced every other clock pulse. they
should be disabled (by having 0 in Control Registets 1 to 6) for any counter/timer element operating in the form illustr­
ated above.

Note again that in any operating mode, continuous or otherwise, when the external clock
(C) is selected, you are in fact counting events, Hot time. Although all of our illustrations show
a synchronous clock signal with all active transitions evenly spaced. in reality active transitions
could be quite rahdciin. This may be illustrated as fbllows:

C--1 n1~1

MC6840
EVENT
COUNTING

COUNT COUNT COUNT COUNT

If random timing is present on the external clock (C). then wave forms. if output via the output signal (0). will not be
uniform. This is something you may wish to use when counting external events. You could. for example. use con­
tinuous operating mode with 8-bit counting to count a fixed numbe~ of events. but to signal shortly before this fixed
number of events has occurred.

Suppose you wish to count 100 events. with a signal identifying the 90th event. This could be done loading 090916 as
the initial Counter register value:

TO TO
I

I

a \ I \ -------------~
+ ~ + +4

Event Numbers 0 90 100 90 100

The low-to-high 0 signal transition must now be used to generate an interrupt request. Time Out (TO) interrupt re­
quests mayor may not be disabled.

Note again that the three sets of counter/timer logic are totally independent of each other. The manner in which
you operate one set of counter/timer logic has no bearing whatsoever on the manner in which you operate
either' of the other two sets of counter/timer logic.

The primary difference between one shot mode and continuous mode is that following the
first time out the output signal (0), if enabled, is disabled. In single shot. 16-bit counting
mode. the output signal (0) docs not make its lo\'v-to-high transition until he end of the first clock
pulse. This may be illustrated as follows:

MC6840
ONE SHOT
MODE

<1>2 or C -----FU
r--------------~ a

Initialize Time out Re-initialize Time out

In single shot. 8-bit counting mode. the output ~ignal is simply disabled after the first time out. The counterltimer con­
tinues to run and time outs continue to be generated. but the output signal (0) remains disabled until the counterltimer
is re-initialized.

Another difference between One shot mode and continuous mode is that in one shot mode you do not stop the
counterltimer by inputting the Gate signal (G) high. Recall that in continuous mode. if the counter/timer has been in­
itialized by inputting a high-to-Iow Gate (G) pulse. you can stop the counterltimer at any time by inputting the Gate sig­
nal (G) high again. This property of the IT input applies only in continuous mode.

9-104

Q
w

~
II:
o
Il..
II:
o
CJ
~
en
w
I­
ct
(3
o
CI)
CI)

ct
call
w
Z
II:
o
In
CI)

o
:E
ct c
ct
@

Notice that the two special continuous mode conditions that result when the low-order Counter register byte is initially
o or the entire Counter register contents are initially 0 do not apply in one shot mode. This is because in continuous
mode nothing happens to the output signal until the end of the first time out. at which time in one shot mode the out­
put signal is disabled anyway.

MC6840 frequency comparison and pulse width measurement modes are almost identical;
they differ only in the active levels of the G input. The frequency comparison and pulse width
measurement modes both compare the time interval of a pulse. input via the IT signal. with the
time interval to a time out. In frequency comparison mode a highG pulse is measured.

You can select frequency comparison mode with Gate pulse by having 001 in control register
bits 5. 4. and 3 as described earlier; then an interrupt request will be generated if the G signal
makes a high-to-Iow transition before a time out occurs. This may be illustrated as follows:

MC6840
FREQUENCY
COMPARISON
AND PULSE
WIDTH
MEASUREMENT
MODE 5

<1>2 or C _J\.J\JL
G

Initialize Time out,
no interrupt

Re-initialize

--~

Request interrupt since time
out has not occurred

As illustrated above. if the G signal makes its high-to-Iow transition after the time out occurs.
then no interrupt is requested.

The Counter register is reloaded from the latches and continues to decrement. but time outs do cause interrupt re­
quests or Status register bit settings. Until the counter/timer is re-initialized by a high-to-Iow transition of the G input
signal. it continues to run freely as though it were in continuous mode. but time outs lose their significance. Once the
counterltimer is re-initialized by a high-to-Iow G transition. then frequency comparison logic begins again.

If following an initialization or re-initialization the G input does make a high-to-Iow transition before a time out occurs.
then an interrupt will be requested and the counterltimer logic is stopped; it cannot be re-initialized until the interrupt
has been cleared. Clearing interrupts is described in conjunction with our discussion of the Status register. Once an in­
terrupt has been cleared. then on the next high-to-Iow transition of the gate input. counterltimer logic will be re-in­
itialized.

In other words. between the time an interrupt request occurs and the interrupt is serviced. high-to-Iow transitions of
the IT input are ignored.

Observe that you can select either 8-bit or 16-bit counting modes in order to generate time outs when operating'the
MC6840 in frequency comparison or pulse width measurement modes.

You select frequency comparison mode with time out shorter by loading 101 into bits 5, 4, and 3 of the Control
register. Now an interrupt request will occur if the G input makes its high-to-Iow transition after the time out has oc­
curred. We can compare the previous illustration for frequency comparison mode with Gate pulse shorter. using the il­
lustration below for frequency comparison mode with time out shorter:

Time out

<1>2 or C

G

Initialize Request interrupt since time Re-initialize
out precedes Gate high-to-

low pulse

9-105

.JlJU
---j

Gate high-to-Iow pulse pre­
cedes time out. No interrupt

request occurred

Once again, if an interrupt occurs the counter/timer will stop, It cannot be restarted until the interrupt is cleared and
the G input makes a high-to-Iow transition,

Pulse width comparison modes are identical to frequency comparison modes, with the exception that once'a
counter/timer is operating, low-to-high transitions of the gate input are active. The frequency comparison
modes may ,therefore be reproduced for pulse width comparison equivalents, as follows.

First. here is pulse width comparison mode with Gate pulse shorter:

<1>2 or C

G

Initialize Time out,
no

interrupt

Next. here is pulse width comparison mode with time out shorter:

<1>2 or C

G

Re-initialize

Initialize Requ~st interrupt since time Re-initialize
out precedes Gate high-to-

low pulse

_nnJ

Request interrupt since time
out has not occurred

Gate high-to-Iow pulse pre­
cedes time out. No interrupt

request

Notice that in pulse, width comparison mode, initialization and re-initializatioh require a high-to-Iow G transition.
although the end of the G pulse is marke'(j by a low-to-high'G transition,

THE MC6844 DIRECT MEMORY ACCESS COf\JTROLLER'

The MC6844 Direct Memory Access controller provides MC6800-based microcomputer systems with logic to
support four direct memory access channels. This device has been designed to work with the unique timing
logic of MC6800 and MCS6500 microcomputer systems; it, should therefore be used with MC6800 and
MCS6500 microcomputer systems only. That is why, the MC6844 is described in this chapter rather than in
Volume 3.

From our discussion of the MC6800 CPU, recall that this microprocessor alloVlfs its system clock to be stretched
s,C? that direct memory access operations may be intermingled with normal instruction execution. Alternatively,
the MC6800 may be put into a Halt state during which the CPU disconnects itself from the system busses; ex­
ternallogic then accesses memory by mimicking CPU signals on the Address, Data and Control Busses. Logic of
the MC6844 DMA controller allows you to perform Direct Memory Access operations using either clock
stretching or Halt state techniques.

Two noteworthy features of the 8256 DMA controller, described in Chapter 4, are also available with the
MC6844 DMA controller. These noteworthy features are:

1) The ability to assign permanent priorities to the four DMA channels or to rotate priorities on a round-robin
basis.

2) By reducing the number of DMA channels to three, one DMA channel can be used for the recursive DMA
transfer of fixed length or chained records.

Figure 9-31 illustrates that part of our general microcomputer system logic which has been implemented on the
MC6844 DMA controller device.

9-106

Q
w
I-
e(
a:
0 n-
a:
0
0
~
u)
w
l-
e(

g
(/l
(/l
e(

G!I
w
Z
a:
0
ID
(/l

0

~
e(
Q
e(

@

Logic to Handle
Interrupt Requests

from
External Devices

Interrupt Priority
Arbitration

Interface Logic

. Programmable
Timers

Clock Logic

Interface Logic

Read Only
Memory

System Bus

Accumulator
Registens)

Data Countens)

Stack Pointer

Program Counter

I/O Ports
Interface Logic

I/O Ports

Figu re 9-31. Logic of the MC6844 DMA Controller

The MC6844 DMA controller chip is fabricated using N-channel silicon gate MOS technology. It is packaged as
a 40-pin ceramic or plastic DIP. All signals are TTL-compatible.

MC6844 DMA CONTROLLER PINS AND SIGNALS
Figure 9-32 summarizes MC6844 DMA pins and signals. Many of these signals have MC6800 counterparts;
therefore we will describe them within the context of a general MC6844 device discussion.

9-107

PIN NAME

DO - 07
AO - A4
A5 - A15
R/W
IRQ/DENO
ORQH
ORQT
DGRNT
CS/TxAKB
TxAKA
TxSTB
TxRQO - TxRQ3
<t>2DMA
RES

VSS' VOO

(GNO)VSS

CS/TxAKB

R/YV
AO

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A12

A13

A14

A15

VDD

-.... .. --

--
-~

.... ----.. ---.. -
DESCRIPTION

1 ..
2 -..
3 -..
4 ..
5 ..
6 -...
7 ..
8 -
9

10

11

12

13

14

15

16

17

18

19

20

Bidirectional Data Bus

MC6844
OMA

CONTROLLER

40
.---

39 ---
38 -
37

36

35

34

33

32 --
31 --
30 -
29 ---
28
27 --
26 --
25
24 --
23 --
22 --
21 --

--.
-.. -
..

.. . ----.

-.. -.. -_a

-

<t>2DMA

RES

DGRNT

ORQT

ORQH

TxAKA

TxSTB

IRQ/OENO
TxRQO

TxRQ1

TxRQ2

TxRQ3

DO

01

02

03

04

05

06

07

Four low-order Address Bus lines and Register Select lines
Address Bus lines
Read/Write Control
Interrupt request and end of OMA indicator
DMA Hold Request
DMA Clock Stretch Request
DMA Acknowledge
Chip Select and Device Acknowledge
Device Acknowledge
DMA I/O Device Strobe
OMA Service Request
Clock Input .
System Reset
Power and Ground

TYPE

Tristate, bidirectional
Tristate, bidirectional
Output
Bidirectional
Output
Output
Output
Input
Bidirectional
Output
Output
Input
Input
Input

Figure 9-32. MC6844 DMA Controller Signals and Pin Assignments

9-108

c
w

~
a:
o
Do
a:
o
o
!:
u)
w

~
g
U)
U)

«
all
w
Z
a:
o
a:I
U)

o
::!: «
c «
@

MC6844 ADDRESSABLE REGISTERS
Logic associated with each DMA channel consists of a 16-bit Address register, a 16-bit Byte Count register and
an 8-bit Control register. There are three additional registers which are shared by the four DMA channels. These
are a Priority Control register, an Interrupt Control register and a Data Chain Definition register. These may be il­
lustrated as follows:

These three
Control Registers

apply to all four
DMA channels

IS-bit Priority
~ ____ Control register

IS-bit Interrupt
______ Control register

IS-bit Data Chain
~ ____ --' Definition register

S-bit Control }

I 16-bit Byte Count Cha~nel 0
t---------------I- Registers

16-bit Address

~--------------------~

S-bit Control }

I 16-bit Byte Count Cha~nel 1
t---------------I. Registers

16-bit Address

~-------------------~

'1 S-bit Control }

I 16-bit Byte Count Cha~nel 2
....... -----------1- Registers

16-bit Address

---------------------~

S-bit Control }

I
16-bit Byte Count Cha~nel 3

t---------------I. Registers
16-bit Address

---------------------~
The transfer of any block of data via DMA begins with an initial memory address. byte count and DMA mode being
specified via the registers illustrated above. As each byte of data is'transferred. the method of data transfer is controlled
by options selected via the Control register. The Address register identifies the memory location which will be accessed
during the DMA transfer; Address register contents may either be incremented or decremented following each DMA
transfer. The Byte Count register contents are always decremented following each data transfer. and the DMA opera­
tion ends when the Byte Count register contents reach O.

The MC6844 DMA controller is accessed by the CPU under program control as 23 memory locations. Individual
memory locations are selected via address lines AO - A4, as defined in Table 9-12. When writing into or reading
out of 16-bit registers. you will usually use the LDX and STX instruction; that is to say. the most efficient method of
transferring 16-bit data between the CPU and MC6844 DMA controller is via the CPU Index register. r-------_
Note carefully that addresses given in Table 9-12 apply only when the CPU accesses the MC6844 DMAC
MC6844 DMAC under program control to initialize a DMA transfer or to monitor DMA DATA BUS
operations. These memory addresses have no significance to actual DMA logic. Furthermore. the MC6844 DMAC
Data Bus connection to the MC6844 DMA controller plays no part during a DMA operation. Data ADDRESS BUS
is transferred between the CPU and the MC6844 DMAC, via the Data Bus (DO - 07) only
while the CPU is accessing MC6844 addressable locations under program control. Actual
data transfers between an external device and memory occur via the microcomputer system Data Bus. completely
bypassing the Data Bus connection to the MC6844 DMA device. However. during DMA data transfers. addresses and
control signals are output from the MC6844 DMAC to the System Bus via the Address Bus lines AO - A 15 and appropri­
ate control Signal outputs. This is standard DMA logic. If you do not understand these DMA operations. see the discus­
sion of direct memory access given in Volume 1 before proceeding further with this description of the MC6844 DMAC
device.

The CPU may access the MC6844 DMAC under program control at any time by simply executing
an instruction which references one of the 23 memory addresses set aside for the MC6844 DMAC
device. The MC6844 DMAC is selected by a low CS pulse. This low pulse must be generated by
appropriately decoding Address Bus lines A5 through A 15. together with VMA. VMA must con­
tribute to MC6844 device select logic to guarantee that spurious selections do not occur during a

MC6844
DMAC
DEVICE
SELECT

DMA transfer or while the Address Bus is floated. In this context it is important that only a VMA Signal output by the

9-109

MC6800 CPU be used by MC6844 device select logic. During a DMA operation. the MC6844 DMAC generates its own
VMA equivalent via TxSTB. TxSTB must be excluded from MC6844 device select logic. Here is one possibility:

T~~! -------tlT~D .. ------ "System" VMA

MC6844. SELECT --------'
CONTRIBUTION

Depending on the number of active MC6844 DMA channels, CS may become a bidirectional signal; TxAKB is
output via the same pin as the CS input. In this case remember that CS must be generated as an open collector
gate output. .

We will discuss the individual MC6844 addressable locations and the way in which you will program them after
describing MC6844 operating modes.

MC6844DMA TRANSFER MODES
You can select, under program control, one of three modes via which DMA transfers will occur for each of the
four MC6844 DMA channels. You can mix and match' separate and distinct modes for each of the four channels
in any way since each channel has its own Control register.

We will begin our discussion of modes by looking at all three modes superficially before examining each one in detail.

First there is Three-State Control, Cycle Stealing mode. In this mode the MC6800 CPU clock is stretched with <1>2
low while the MC6844 device transfers a single byte of data via direct memory access. This may be illustrated as
follows:

<1>1

<1>2

<1>2 (DMA)

Normal program execution Transfer one
byte of data.

via DMA

Normal program execution

We have discussed clock stretching logic of the MC6800 microco'mputer earlier in this chapter.

The second and third MC6844 DMA transfer modes both force the MC6800 CPU into a Halt state which floats
the System Bus. The Halt state may last long enough for a single byte of data to be transferred via direct memory

9-110

c
w

~
a: o
Do
a:
o
CJ
~
iii
w

~ g
(I)
(I)
c(

"' w
Z
a:
o
III
(I)

o
~
c(
c
c(

@

access. in which case the mode is referred to as Halt, Steal mode. This may be illustrated as follows:

<1>1

<1>2

Normal program execution Halt long enough
to transfer one

byte of data
via DMA

Normal program execution

The Halt state may be maintained for as long as it takes to transfer an entire block of data; that is to say. until a chan­
nel's Byte Count register decrements to O. This is referred to as Halt Burst mode.

MC6844 DMAC THREE-STATE CONTROL, CYCLE STEALING MODE
Let us now look at the different DMA modes in detail beginning with the three-state control cycle stealing
mode. Timing for this mode is given in Figure 9-33 and appropriate pin connections are given in Figure 9~34.

<1>1

<1>2

<1>2 (DMA)

TxRQN

DROT

DGRNT

'iXSTB .

TxAKA.TxAKB

AO - A15

R/W

c C U

C - CPU operations machine cycle

U - Unused machine cycle

D - DMA machine cycle

D U c c c

Figure 9-33. Timing for Three State Control. Cycle Stealing Direct Memory Access wi!h the MC6844

9-111

c

---.
_. -

MC6800

CPU · · ·
HALT -

IRO ~
en en VMA
0 0 BA
~ ~ TSC -6 6 DBE ~ ~ ;e: N

0& R/W

~ .~

Ii
RESET

DMA/REF REO
DMA/REF REO --REF GRANT

'---", REF GRANT --
<1>2 (TTL)

MEMORY CLOCK_

MC6875

CLOCK

••

j~

,
A5

DEVICE SELECT~:
LOGIC r- .

A15
lit CS

+
j

ii CS/TxAKB

~ DROT AO
A4 -.

DGRNT .
A15

<1>2 (DMA) DO -.
MC6844

. .
07

.
DMAC R/W ~ -IRO/DEND

TxAKA
TxSTB

-.--
~ : -:.

• ;::
;;..
;;.

---:. .
. -..

.~

--
-.....

.~

----:..

REF
GRANT

bO-

DO

07
AO
Al
A2
A3
A4
A5

A15
HALT

BA

R/W

SYSTEM
VMA

TxAKB
TxAKA
TxSTB

DEND

TxRQO TxROO
TXR03 ... 14d------..,...------=---TXR03

Figure 9-34. An MC6844 DMAC Connected for Three State Control. Cycle Stealing Direct Memory Access

A DMA operation begins when an external device makes a DMA access request by inputting a MC6844 DMAC
high signal via one of the four inputs TxROO through TxR03. This input to the MC6844 DMAC TxRON, DQRT
may be asynchronous. The MC6844 responds by outputting DROT low. This low output must DGRNT SIGNALS
be connected to the MC6875 clock CMA/REF REO input. This connection causes the MC6875 MC6844 DMAC
clock device to stretch the <1>1 and <1>2 clocks at the end of the next machine cycle - with <1>1
high and <1>2 low. The onset of the stretched clocks is identified by the MC6875 device output-' <1>2 DMA CLOCK
ting REF GRANT high. This signal must be input to the MC6844 DGRNT pin. The DMA data
transfer now occurs. taking three machine cycles to transfer one byte of data. Machine cycles are timed by <1>2 DMA.
which is the memory clock output of the MC6875 device. Recall that when the MC6875 clock device receives a low in­
put via DMA/REF REO it does not stretch the memory clock output. The MC6844 DMAC needs a <1>2 DMA input only
while a DMA data transfer is in progress. <1>2 DMA is therefore frequently the AND of MEMORY CLOCK and REF
GRANT:

REFGRANT-----~~&_---------DGRNT

MEMORY CLOCK ------:--u-~ ------<1>2DMA

9-112

o
w

~
a: o
Q.
a:
o
o
~
u)
w
~ g
(/)
(/)
c(

ell
ILl
Z
a:
o
CD
(/)

o
:E
c(
o
c(

@

As soon as clock stretching begins. the MC6800 CPU must float the System Bus. This may be done by inputting the
REF GRANT signal to the MC6800 TSC pin as well as to the MC6844 DGRNT pin. Now REF GRANT input to TSC will
cause the MC6800 CPU to float its Address Bus and three-state control signals. If DBE is connected to <1>2. as is usually
the case. then the low <1>2 signal will automatically cause the MC6800 CPU to float the Data Bus. Now as soon as REF
GRANT goes high. the MC6800 CPU is disconnected from the System Bus and the MC6844 DMAC can become bus
master.

The MC6844 DMAC takes control of the System Bus for three machine cycles. during which it
transfers a single byte of data. The first and third machine cycles represent setup time. The actual
DMA transfer occurs during the second machine cycle. For the memory end of the DMA transfer.
the MC6844 DMAC outputs a memory address via the Address Bus. For the I/O device end of the
DMA transfer. the DMAC identifies the direct memory access channel being acknowledged via
the output signals TxAKA and TxAKB. as follows:

TxAKB TxAKA

o 0
o 1
1 0
1 1

Acknowledged

TxROO
TxROl
TxR02
TxR03

MC6844
DMAC
TxAKA AND
TxAKB
SIGNALS

Timing for signals output by the MC6844 DMAC conform to normal MC6800 System Bus timing for a memory read or
memory write operation.

The low TxSTB pulse substitutes for VMA at the memory and I/O device ends of the DMA. transfer.
: The direction of the DMA transfer is defined by the level of the R/W signal: the interpretation of
this signal conforms to normal memory read and write operations:

R/W low causes data to flow from the I/O device to memory.

RIW high causes data to flow from memory to the I/O device.

MC6844
DMAC
fiSTS
SIGNAL

Data may flow freely across the Data Bus during the direct memory access operation. since both the MC6800 CPU and
the MC6844 DMAC are disconnected from the Data Bus at this time.

As each byte of data is transferred. the Byte Count register contents for the selected DMA channel
are decremented; but the Address register contents may be either incremented or decremented.
depending on the Control register option selected. When the Byte Count register contents decre­
ment to O. a low pulse is output via IRO/DEND. This pulse can be used to generate an interrupt at
the MC6800 CPU and/or it may be used to tell the external device that the current data transfer
has gone to completion.

MC6844
DMAC
iRQ/DEND
SIGNAL

The interrupt request output IRO/DEND will pulse low when the Byte Count register decrements to 0 only if interrupts
have been enabled for this DMA channel via its Interrupt Control register. If interrupts have been enabled. it is a good
idea to guard against spurious interrupt requests by conditioning IRO/DEND with the DGRNT high pulse. The interrupt
request input to the MC6800 CPU should be an open collector signal generated as follows:

DGRNT ______ ~___' f------- IRQ
(open collector)

IRQ/DEND

The DEND signal output to I/O devices may be ANDed with REF GRANT or with TxSTB. An AND with TxSTB is illustr-
ated in Figure 9-34. .

Assuming that the acknowledged DMA channel is transferring data at less than maximum speed. it must use the low
TxSTB strobe to remove its TxRON high request. If the channel keeps its TxRON DMA request active. then the next
DMA transfer will occur during the next machine cycle. Using Three-State Control. cycle stealing direct memory ac­
cess. therefore. it is possible to transfer a byte of data during every machine cycle;. however. each machine cycle will
have its length increased by three machine cycles. Thus. any executing program will be reduced to executing at one
quarter of its normal execution speed.

MC6844 DMAC HALT MODES
The next DMA operating mode we are going to look at is the Halt Cycle Stealing mode. In this mode the CPU is
halted for three machine cycles. during which a single byte of data is transferred. Timing is illustrated in Figure 9-35
and appropriate pin connections are illustrated in Figure 9-36.

9-113

C C C U o U C C

<1>1

<1>2

TxRQN

BA-OGRNT

VMA

TxAKA,TxAKB

------------------------~~~--------~~~~--------------~

R/W

AO - A15

DO - 07

C - CPU operations machine cycle

U - Unused machine cycle,
o - OMA machine cycle

Figure 9-35. Timing for Halt. Cycle Stealing Direct Memory Access
with the MC6844

A DMA transfer is initiated by one of the four DMA request signals TxRO through TxR3 going high. MC6844 DMAC
These signals are sampled on the rising edge of <1>2. The MC6844 responds to a high DMA TxRO - TxR3
transfer request by outputting DROH low. In the Halt. Cycle Stealing mode, DROH must be input SIGNALS
as the MC6800 CPU halt request. As explained earlier in this chapter, when a low input occurs at MC6844 DMAC
HALT, the MC6800 CPU complet~s executing its current instruction, then enters a Halt state, Dur- DRQH SIGNAL
ing the Halt state, VMA is output low while the Address and Data Busses, along with the R/W
control signal. are floated. In Figure 9-35 the Halt state is shown beginning one full machine cycle
after DROH goes low.

The MC6800 CPU indicates the onset of the Halt state by outputting BA high. This output
becomes the DGRNT input to the MC6844. Once DGRNT goes high, the MC6844 assumes
control of the System Bus. TxSTB is pulsed low as a substitute for the VMA signal. The address
of the memory location to be accessed during the DMA transfer is output on the Address Bus
along with the R/W, which indicates the direction of the DMA data transfer (as described for

MC6844 DMAC
DGRNT, TxSTB,
TxAKA AND
TxAKB SIGNALS

three-state control cycle stealing mode). The DMA channel being acknowledged is identified via the TxAKA and TxAKB
signals, which are decoded as described earlier.

9-114

c
w
!;(
a:
o
c.
a:
o
o
~
en
w
!;(
(3
o
en
en
ct
olS
w
Z
a:
o
In
en o
:!:
ct c
ct
@

MC6800
CPU

Ii

CLOCK

--. . - . -
• __ DO

· • - 07
; -:. AO

;,;. A1
~----------------------~j~--~+----------------~~A2
~------------------------~--~+----------------~~A3
~------------------------~~~+----------------~"A4
~--------------------~~~j-4-+--------------.~ __ "A5
~~: ____________________ ~J~~~+-____________ ~.~~~ A15

DEVICE SELECT
LOGIC _. -'---...... ---' A 15

CS

SYSTEM
VMA

RESEft
e---------~~~~~--~~--------~.. TxAKB

-+--------~ TxAKA
O--------~~ TxSTB

I...-. oRQH

~ oGRNT

L---,-~ <1>2 (oMA)

CS/TxAKB

AO~.
A4 _.

A15 •
~O. _.

MC6844:-1-=-. ______ ~
oMAC 07 -

~oENo R/'iiiWJ 1oI_d---------...J
IRQ/oENo

TxAKA~--------------~
TxSTB~--------------~

TxRQO~~~:----------------------~:-- TxRQO
TxRQ3 _ TxRQ3

Figure 9-36. An MC6844 DMAC Connected for Halt. Cycle Stealing or Halt Burst
Direct Memory Access

The VMA signal used by the system must now be the OR of VMA and TxSTB. The external MC6844 DMAC
device whose DMA request has been acknowledged must detect the low TxSTB signal and use TxSTB SIGNAL
it to reset its DMA request. If the DMA request is still active after a single byte of data has been
transferred via DMA. then a single instruction will be executed before the next byte of data is transferred via direct
memory access. One instruction will be executed even if TxRON remains high. because in Halt Cycle Stealing mode the
MC6844 will return its DROH Signal high as soon as a single byte of data has been transferred via direct memory ac­
cess. This will free the CPU. to execute another instruction. and while this new instruction is being executed the whole
timing process illustrated in Figure 9-35 will begin again.

When the Byte Count register contents decrement to O. the IRO/DEND signal will output low. As was the case for
Three-State Control Cycle Stealing mode. this signal can be used to request an interrupt and/or to identify the end of a
data transfer block to external logic. It is a good idea to condition interrupt requests and DEND outputs with TxSTB in
order to avoid generating spurious signals. '

The third and last MC6844 DMA mode is the Halt Burst mode. This differs from Halt Cycle Stealing mode in that
once a Halt condition has been initiated. it is maintained while data is transferred via direct memory access until the
Byte Count register has decremented to O. Thus. Halt Burst mode timing will differ from Figure 9-35 only in that DROH
will remain low until the channel's Byte Count register decrements to O. This will happen irrespective of the level on the
DMA request line TxRON. Note that. as illustrated in Figure 9-35. one byte of data will be transferred via direct memory
access in three machine cycles. even when operating in Halt Burst mode. Pin connections for Halt Burst mode are as il-
lustrated in Figure 9-36. .

9-115

COMPARING MC6844 DMAC MODES
You will use Three-State Control. Cycle Stealing mode when program execution time is critical but data transfer rates
are not.

You will use Halt-Cycle Stealing mode when data transfer rates are not critical. program execution time is important
and you do not have an MC6875 clock device.

You will use Halt Burst mode when data transfer rates are criticai and program execution time is not.

Table 9-13 summarizes maximum data transfer rates for the three modes. A /-Lsec machine cycle time is assumed.

Table 9-13. MC6844 DMAC Modes' Response Times and Transfer Rates

Mode
Response Time Maximum Transfer Rate

(/-Lsec) KHz

TSC Steal 2.5 to 3.5 250
Halt Steal 3.5 to 15.5 200 - 67
Halt Burst 2.5 to 3.5 1000

USING AN MC6844 DMAC WITH MIXED MODES
If you are going to use Three-State Control and Halt modes with a single MC6S44 DMAC device. the only
special precaution ne~dedi~ to generate DGRNT as the OR of BA and REF GRANT.

The Three-State Control and Halt modes have separate DMA request lines. DROT and DROH. respectively: therefore no
special logic is needed to handle DMA requests using mixed modes.

THE MC6844 CONT~OL REGISTERS AND OPERATING OPTIONS·
As summarized in Table 9-12. the MC6S44 DMAChas a number of programmable Control registers. which are
used to select the DMA transfer modes which we have already described. plus additional operating options.

The best place to begin a discussion of Control registers is with the Enable/Priority Control
register. Bit settings for this register may be illustrated as follows:

654 3 o 4--BitNo.

Enable/Priority Control Register

Channel OJ

L........ ______ Channel 2 1 ~ Enable channel
L--____ Channel 1 f 0 - Disable Channel.

"----------Channel 3

'------------Unused

~------------- 0 - Fixed priority
1 - Rotating priority

'-M-C-6S"'44---'
ENABLE/
PRIORITY
CONTROL
REGISTER

Each DMA channel that is to be active must have a 1 placed in its enable bit within the Enable/Priority Control register.
A 0 in any channel's enable bit will disable the channel. It is important to understand that if a channel is disabled. this
simply means that DMA requests arriving via the associated TxRON input will be ignored. Disabling a DMA channel
has no effect on your ability to write into the channel's registers or read from the channel's registers.

If more than one DMA channel is enabled. then two or more DMA requests can occur
simultaneously. You arbitrate priority in one of two ways. If bit 7 of the Enable/Priority Control
register is O. the following fixed priorities will always be used:

Highest Priority: Channel 0
Channel 1
Channel 2

Lowest Priority: Channel 3

9-116

MC6S44
FIXED DMA
PRIORITY
ARBITRATION

c
UJ

~
0: o
n­
o: o
CJ
~

Rotating priority may be selected by writing a 1 into bit 7 of the Enable/Priority Control
register. Rotating priority initializes the four channels with the fixed priority illustrated above.
As soon as any DMA channel has been serviced. however. it becomes the lowest priority chan­
nel - and associated channels are rotated in a round-robin fashion. In order to illustrate rotat­
ing priority mode. let us assume that DMA Channel 2 is serviced and then DMA Channel 0 is
serviced. This is how priorities would be assigned:

Initial Priority:
Highest Priority: Channel 0

Channel 1
Channel 2

Lowest Priority: Channel 3

en Channel 2 is serviced. These are the new priorities:
UJ

~ Highest Priority: Channel 3
g Channel 0
en Channel 1
~ Lowest Priority: Channel 2
o!I
UJ
Z
0:
o
IX!
en o
~
c(
c
c(

@

Channel 0 is serviced. These are the new priorities:

Highest Priority: Channel 1
Channel 2
Channel 3

Lowest Priority: Channel 0

The next Control register we will look at is the Data Chaining Control register. because this also
contributes to channel enable logic. Data Chaining Control register bit assignments may be il­
lustrated as follows:

7 6 4 2 o -4--BitNo.

Data Chaining Control Register

'---- 0 - Disable data chaining function
1 - Enable data chaining function

~----- 00 - Chain Channel 3 to Channel 0
01 - Chain Channel 3 to Channell
10 - Chain Channel 3 to Channel 2
11 - Illegal

'---------- 0 - Select 2 channel mode
1 - Select 4 channel mode

'------------Unused

Bit 3 of the Data Chaining Control register is. in fact. an enable/disable bit for the TxAKB out­
put function associated with the CS/TxAKB signal. TxAKB is disabled if the Data Chaining
Control register bit 3 is O. This is referred to as Two-Channel mode. because with only TxAKA
enabled it is only possible to acknowledge DMA requests from channels 0 or 1. This may be il­
lustrated as follows:

TxSTB
TxAKA'

rt;;=D ______ SELECT 1

~ SELECT 0

9-117

MC6844
ROTATING
DATA
PRIORITY
ARBITRATION

MC6844
DATA
CHAINING
CONTROL
REGISTER

MC6844 DMAC
TWO-CHANNEL
MODE

If the Data Chaining Control register bit 3 is 1, then the TxAKB signal is active, allowing
anyone of the four DMA channels to be acknowledged. This is referred to as Four-Channel
mode, and may be illustrated as follows:

MC6844 DMAC
FOUR-CHANNEL
MODE

TxSTB-------------------------~~r--------------------------~

TxAKA---~~

CS/TxAKB~--_e~~

CS-------I
DGRNT----------~

(open collector
gate here)

A

B

C
YO SELECT 0

Y1 SELECT 1
74155

Y2 SELECT 2

Y3 SELECT 3
G

-
The logic above uses the TxSTB pu Ise as a strobe for a 2-to-4 decoder. The four decoder outputs become individual
select lines for the four devices capable of requesting DMA access.

In order to rotate CS/TxAKB requirements. chip select creation logic is shown. This logic has nothing to do with genera­
tionof the Select 0 through Select 3 lines: however. unless the chip select input portion of the CS/TxAKB signal is cor­
rectly generated. TxAKB will either be held at ground or pulled to a level of 1. in which case the four~channel select
logic will not work. .

It is very important to note that there is no direct connection between the logic of the Data Chaining Control register bit
3 and the Enable/Priority Control register bits 0 through 3. Whether you select Two-Channel mode or Four-Channel
mode via bit 3 of the Data Chaining Control register. you can independently enable or disable each of the individual
channels via Enable/Priority Control register bits 0 through 3. Clearly. there are certain combinations which are not
reasonable. Options may be illustrated as follows:

Data Chaining Enable/Priority Control Register
Control Register

Bit3 Bit 2 Bit 3 Bit 1 BitO

0 0 0 0 0 Select Two-Channel mode. but channels 0 and 1 are
disabled.

0 0 0 0 1 Select Two-Channel mode. but only channel 0 or
0 0 0 1 0 channel 1 is enabled.

0 0 0 1 1 Normal Two-Channel mode with both channels ac-
tive.

0 0 1 X X In Two-Channel mode you can enable channels 2 and
3. Their DMA requests will be accepted via TxR02

- and TxR03. but DMA requests will not· be
acknowledged via TxAKB. Channels 0 and/or 1 must

0 1 1 X X be enabled.

1 0 0 X X Four-Channel mode with channels 2 and 3 disabled
makes no sense. Use Two-Channel mode instead.

1 0 1 X X Four-Channel mode with channel 2 and/or 3 enabled.
and any enable/disable combination for channels 0
and 1 is alright.

1 1 1 X X

9-118

c
w

~
a:
o
a..
a:
o
CJ
~
ui
w

~
g
en
en
c:(

o!I
w
z
a:
o
en
en
o
~
c:(
c
c:(

@

If you enable data chaining by writing a 1 into the Data Chaining Control register bit 0, then
DMA operations at channel 0, 1 or 2 become continuous. Via bits 1 and 2 of the Data Chaining
Control register. you select channel O. 1 or 2 to operate in Chained mode.

Chained mode simply means that as soon as the selected channel's Byte Count register decre-

MC6844
DATA
CHAINING

ments to O. the selected channel's Byte Count and Address registers will be reloaded with values stored in the Channel
3 Byte Count and Address registers. Suppose. for example. you want to continuously transfer. via direct memory ac­
cess. 256 bytes of data. The data is to flow via Channel 0 to memory. with the data being loaded in memory locations
OA0016 through OAFF16. To perform this task you would store 00FF16 in the Channel 3 Byte Count register. and
OA0016 in the Channel 3 Address register. lyIJe assume that the Address register is going to be incremented.) Every
DMA transfer will begin with 00FF16 being loaded into the Channel 0 Byte Count register from the Channel 3 Byte
Count register. while OA0016 is loaded into the Channel 0 Address register from the Channel 3 Address register. This is
an automatic operation which requires no program intervention once data chaining has been enabled. Thus. DMA
transfer via Channel 0 will continue endlessly with the DMA transfer rate determined by the DMA mode selected.

It is important to note that a data chaining specification is to MC6844 DMAC logic an isolated event. The fact that data
chaining has been enabled does not automatically disable DMA Channel3 logic. You must do this by writing 0 into the
Enable/Priority Control register bit 3. Also. if you specify chaining. you in no way affect the manner in which registers
can be accessed. You can write into Channel 3 registers. or you can read the contents of Channel 3 registers. This can
be very useful. If 256 bytes of data are continuously bOeing read into memory locations OA0016 through OAFF16. it
wou Id take complex program logic to access all data that gets written into this buffer before the data gets overwritten
on the next DMA pass.

A better way would be to have two buffers: for example. the first from OA0016 through OAFF16 and the second from
OB0016 through OBFF16. Now. following each end of block interrupt. you would write the new address into the Chan-'
nel 3 Address register. This is illustrated in Figure 9-37.

There are some nonobvious aspects of Figure 9-37.

Observe that when you are initializing the MC6844 operating in Chained mode. you must load initial addresses and
byte counts in Channel 3 Address and Byte Count registers as well as in the Address and Byte Count register for the
chained channel. The actual chaining operating does not occur until the chained channel's Byte Count register decre­
ments to O. When you start the chained channel. the first DMA operation uses initial Byte Count and Address values
loaded into the chained channel's Byte Count and Address registers. After the first end-of-block interrupt. the byte
count and address values loaded into the Channel 3 registers will be transferred to the chained channel registers for
the next operation.

Let us now consider the Channel Control register which is associated with each DMA chan­
nel. Channel Control register bit assignments may be illustrated as follows:

7 6 5 4 3 2 o ~BitNo.

Channel Control register

L..-_______ 0 - Increment Address register

1 - Decrement Address register

'------------- Unused

0- DOne} .
1 _ Busy Read-only, Status bit

o - Not end of DMA block l Read-only, DEND
1 - End of DMA block f status bit

MC6844
CHANNEL
CONTROL
REGISTERS

Channel Control register bit 0 simply reflects the level which will be output on the RIW pin during DMA operations -
that is to say. while R/W is an output from the MC6844 DMAC. Channel Control register bit 0 has no effect on R/W
while the MC6800 CPU is accessing the MC6844 DMAC under program control. The level of the R/W Signal during a
DMA operation determines whether data will be transferred from the I/O device to memory (R/W is low). or from
memory to the I/O device (R/W is high). Since each DMA channel has its own Control register and therefore its own
Control register bit O. channels may be programmed independently to generate DMA transfers in either direction.

9-119

C Start) ,
Load 00FF16 into Channel 0 and Channel 3 Byte
Count registers ,
Load OAOO16 into Channel 0 Address register

t
Load 0800 16 into Channel 3 Address register ,
Start Channel 0

_ l
--""J

Channel 0 Interrupt. 080016 is transferred from
Channel 3 Address register to Channel 0 Address
register. OOFF16 is loaded from Channel 3 Byte
Count register to Channel 0 Byte Count register ,
Load OAOO16 into Channel 3 Address register

l
Process data in buffer OAOO16 through OAFF16

l
Channel 0 Interrupt. OAOO16 is transferred from
Channel 3 Address register to Channel 0 Address
register. OOFF16 is loaded from Channel 3 Byte
Count register to Channel 0 Byte Count register

+
Load 080016 into Channel 3 Address register

l
Process data in buffer 080016 through OBFF16

I

Figure 9-37, Logic for MC6844 DMAC with Channel 3 Chained to Channel'O and Data Flowing
into Alternate Memory Buffers

9-120

c
w

~
a: o
0.
a:
o
(J

~
iii
w

~ g
en
en
~
all
w
Z
a: o
cg
en o
~
~
c
~

@

Channel Control register bits 1 and 2 are used to select one of the three DMA transfer modes which we have just de­
scribed.

Channel Control register bit 3 determines whether the channel's Address register contents will be incremented or
decremented following each DMA transfer. Thus you can perform a DMA operation specifying the highest address or
the lowest address of a memory buffer as the starting address.·

Channel Control register bits 4 and 5 are unassigned.

Channel Control register bits 6 and.7 are read-only status bits which should be looked at in con­
junction with the Interrupt Control register. Interrupt Control register bits are assigned as
follows:

65432 ° -4--BitNo.

Interrupt Control register

...... ----Channel 1 ° -Disable interrupt request
ChannelO}

'-------- Channel 2 1 - Enable interrupt request

...... -------ChanneI3

...... ---------- Unused -------------° -No interrupt request pending
1 - Interrupt request pending

MC6844
INTERRUPT
CONTROL
REGISTER

You can. at any time. examine a DMA channel to find out if it is "busy" or if it is "done". If "busy". the channel is in the
middle of transferring a block of data. If "done". the channel is currently idle. You determine a channel's status by read­
ing the contents of the Channel Control register and examining the level of bit 6.

When you reach the end of a data block. that is. a DMA channel's Byte Count register decrements to O. the channel's
Control register bit 7 will be set to 1. If the channel's interrupt logic has been enabled via bit O. 1.2 or 3 of the Interrupt
Control register. then an interrupt request will occur via a low output at IRQ/DEND. This interrupt request will not occur
if thechannel's interrupt logic has been disabled within the Interrupt Control register.

If an interrupt request does occur. then bit 7 of the Interrupt Control register will be set to 1.

Irrespective of whether a channel's interrupt logic has or has not been disabled. the channel's Control register bit 7 Vfill
be set to 1 when the channel's Byte Count register decrements to O.

Bit 7 of the Channel Control register remains set to 1 until the CPU reads the contents of the Channel Control register.
The process of reading the Channel Control register contents automatically resets bit 7 to O.

The Interrupt Control register bit 7 is reset to 0 as soon as the Channel Control register for the DMA channel requesting
the interrupt is read by the CPU.

Suppose. for example. Channels 0 and 1 are active. with Channel 0 interrupts enabled and Channel 1 interrupts dis­
abled. Here are appropriate Interrupt Control register settings:

76543210

I ° I ° I ° I ° 10/110/11 01 1101 11
Channel °

Control
Register

011 means the bit may be 0 or 1.

76543210

10 I ° I ° I ° 101110/110/110/11
Channel 1

Control
Register

765432 °
,01010101010101

Interrupt
Control
Register

Now suppose Channel 1 becomes active. Its Control register Busy bit will be set:

6 5 4 3 2 1 ° 6 5 4 3 2 ° 6 5 4 3 2 °
I ° 1 ° 1 ° 1 ° 10/110/110/110/11 I ° I I ° I ° 10/110/110/110/11 10101010101 ° I ° I

Channel ° Channel 1 Interrupt
Control Control Control
Register Register Register

9-121

Next. suppo~e Channel a becomes active. The Channel a Busy bit will. also be set:

6.(0543 2 1 0

I 0 11}'1 0 1 0 10/110/110/110/11
Channel 0

Control
Register

6

o

5 4 3 2 1 0

Channel 1
Control
Register

6 4 3 2

101010 10 \0\0\0\
Interrupt
Control
Register

o

When the Ch~nnel , DMA operation ends. no interrupt request will occur. since the Channel' interrupt.logic has been
disabled. Thus. the Chclnnel 1 Control register Busy bit will be reset to a., the DEND bit will be set to' and the Interrupt
Control register will not change:

7 6'i5 4 3 2 1 0

10 11 J 0 10 \0/110/1101110/11
Channel 0

Control
Register,

765 4 32· 1 0

!i11'a;1 0 1 0 10/110/110/110/11
Channel 1

Control
Register

6 5 4 3 2 0

10101010101010 I·
Interrupt
Control
Register

As soon as toe CPU read~ the contents of the Channel , Con~rol registe'r, the Channell DEND bit (bit 7) will be reset to
a. . '

Suppose Channel a now reaches the end of a data block; it will request an interrupt. The Channel a Control register's
Busy bit will,be reset to O. the DEND bit will be set to 1.cwd the activ~ interrupt request bit of the Interrupt Control
register will ?Iso be set to:4': ,I .'

~-' ,; .
7 654 321 0

l)ll.Q:l,o I 0 10/110/110/110/g
·.Chann~1 o·

Control
Regist~r

7' 6 4 3 '. 2 1 '0

11:1 0 1 0 1 0 1 0 1 0 1 0 1
Interrupt
Control
Register

Reading the contents of the Cha,nriel a Control register ~illreset the' Ch~nnel 0 DEND bit (bit 7). Reading the Channel 0
Control regi$ter contents will also reset the Interrupt Control register bit 7. since the Channel 0' interrupt request
caused this bit to be set. Reading the Channel' Control register will have no effect on the I nterrupt Control register bit
7. since Cha!,mel , dld not cause the interrupt request to: be generateq. ',', .

If more than one active interrupt is present. then your program must arbi.trate priorities by examining the DENO status
of each channel's Control register. Also. bit 7 of the Interrupt Control register will be reset when you read the contents
of the Control register for the first channel to request an jnterrupt.· For example. suppose all channel interrupts have
been enabled. and Channel O. then Channel 2. then Channel' request .interrupts- before the CPU acknowledges an
interrupt. The CPU can determine which channels have requested interrupts by reading Control register contents for
Channels O. 1 and 2. But it is the act of reading Channel 0 Control register contents that will reset bit 7 of the Interrupt
Control register.

RESETTING THE MC6844 DMAC
The MC6844 DMAC is reset when a low signal is input at the Reset pin. When the MC6844 DMACis reset, all
Control registers have their contents reset to O. Address and Byte Count registers' contents, however, are not
altered.

PROGRAMMING THE MC6844 DMAC
Programming the MC6844 DMAC is quite straightforward.

The first step is initialization. If you have reset the MC6844. then all Control registers' contents will be 0 - in which
case all DMA requests and interrupt requests have been disabled. If,yOU have not reset the MC6844 DMAC. then you
should do so under program control by OU1Putti'ng 0 tQ the Enable/Ptiority Control register and the Interrupt Control
register.

Once the MC6844 DMAC has been disabled, then 100tlalize channe,1 Address and Byte Count registers by load-
ing appropri.ate initl~1 values into these registers. ;

Next, definEt the DMA operating modes by loading a~propriat~,.cQges into the channel Control registers for the
enabled cha~nels. and into the D~ta Chain Cpntrol register. .,:

9-122

c
w

~
a:
o
Q.
a:
o
(.)

~
ui
w
l­
e(

g
CI)
CI)
e(

011
w
Z
a:
o
III
CI)

o
:E
e(
c
e(

@

Initialization is now complete. You start OMA channels by outputting an appropriate code to the Interrupt Control
register and then to the Enable/Priority Control register.

Monitoring DMA operations while they are in progress is also quite straightforward. Normally you will wait until
the end of a OMA transfer is signaled by an interrupt request. at which time if more than one channel could have re­
quested the interrupt. the interrupt service routine arbitrates priorities by reading all active channel Control registers'
contents. The interrupt service routine must now respond to the active interrupt request according to the requirements
of your program logic. This mayor may not require restarting the same channel or another channel.

You can monitor DMA operations while they are in progress by reading the contents of Address and Byte Count
registers while a DMA operation is in progress. However. this is something you should only do while operating a
DMA channel in one of the Halt modes. If you read register contents on the fly while operating in Three-State
Control mode. you may read the wrong answer. and determining what the right reading should be is not easy. This
is because an instruction that reads 16 bits of data executes in two machine cycles. If this read operation occurs while a,
Three-State Control. Cycle Stealing OMA transfer is occurring. this is what happens: '

I I I I I
I I I I I

~2 JlJ1 Inn n,--_
I I I I I I

, I LDX I Increment I Read I Increment Read I Increment Next I
I instr. I 16 bits to I high- I 16 bits to low- I 16 bits to instr. I
I fetch I 032A16 I order I 032816 order I 032C16 f~tch I
I , I I byte I byte I I

I I I' ~. ,

03? ct ..
In the illustration above. an LOX instruction loads the contents of a 16-bit register (we will assume it is the Channel Ad­
dress register) into the Index register of the CPU. First the high-order byte of the Address register (03) is transferred to
the high-order byte of the Index register. At the end of this machine cycle. however. the Address register is incre­
mented. Now. you may say that this is no problem since you have read the valid Address register contents as they were
at the end of the LOX instruction's execution. But unfortunately there is a special case. Suppose the Address register
contained 020016 and was decrementing. Now you will read 02FF when 01 FF was the correct value:

I I I I I I I

~2JiJ1. ! r1 n !
II I I I I n---
I LDX I Decrement I Read I Decrement Read I Decrement I Next
I instr. I 16 bits to I high- I 16 bits to low- I 16 bits to I instr.
I fetch I 020016 I order I 01FF16 order I 01FE16 I fetch
I I I byte I byte I I

I I 4' I I

o. I=I)r.FF

I
I
I
I
I

The error illustrated above cannot occur when operating OMA in a Halt mode. since the OMA transfer occurs in bet­
ween instruction executions. Thus. the contents of any 16-bit registers within the MC6844 OMAC will not change
while an LOX instruction is being executed. because no OMA transfer can occur until the LOX instruction has com­
pleted execution.

You can. if you wish. write into any MC6844 OMAC register at any time. For example. you can write into an Address or
Byte Count register for a channel that is busy. Once again. you can get into trouble if you write into Address or Byte
Count registers for a channel that is operating in Three-State Control. Cycle Stealing mode. since you will write the low­
order byte. all 16 bits may be incremented or decremented. and then you will write the high-order byte; and who
knows what the results will be. Writing into registers on the fly will not cause error's if you are operating in one of the
Halt modes.

, 9-123

THE MC6846 MULTIFUNCTION SUPPORT DEVICE

The MC6846 multifunction support device is designed to work with the MC6802 as a two-chip microcomputer.
However, the MC6846 can be used just as easily in any other MC6800 microcomputer system.

Figure 9-38 illustrates that part of our microcomputer system logic which is implemented on the MC6846
multifunction device. This device provides 2048 bytes of read-only memory, a single 8-bit para"ell/O port with
handshaking control signals, and a counter/timer. '

The MC6846 multifunction device is packaged as a 40-pin DIP. It uses a single +5V power supply. A" inputs and
outputs are TTL-compatible.

The device is implemented using N-channel silicon gate depletion load technology.

MC6846 MULTIFUNCTION DEVICE PINS AND SIGNALS
MC6846 pins and signals are illustrated in Figure 9-39,

The device select lines CSO and CS1 work in two ways: they activate the MC6846, and they select which func­
tion is in use - ROM or I/O and counter/timer. The user specifies as a mask option two active combinations of
CSO and CS1 levels: one to enable the ROM and one to enable the I/O and counter/timer. For example. you might
wish to enable ROM when CS 1 is high and CSO is low. and enable the 1/0 and counterltimer when both select lines are
high, This combination would then disable the MC6846 when CS1 is low.

When ROM is' selected, the eleven lines AO - A 10 will address one of the 2048 bytes of read-only memory.
These 2048 memory bytes may be located anywhere in the memory space.

In addition to CSO and CS1. certain of the address lines are used to select the I/O and counter/timer functions.
Lines A5. A4. and A3 must be low to select the 1/0 and counterltimer operations. You select as a mask option what
level at line A6 enables I/O and the counterltimer. and whether or not one of the lines A 10. A9. A8. and A7 must be
high to enable these functions. Here is how address lines are used to select 1/0 and the counterltimer:

A 10 A9 A8 A7 A6 A5 A4 A3 A2 A 1 AO...- Address Lines

L...-____ Internal register address
(See Table 9-14)

L-_________ These three lines must be low to select I/O and counter/timer

'------------- User decides whether high or low selects I/O and
counter/timer

L-________________ All four "don't care" or user may assign one line on which a

high level selects I/O and the counter/timer

Once an MC6846 has been selected as an I/O device, address lines AO, A1, and A2 select one of seven
registers in eight I/O addressable locations. Table 9-14 ,identifies the locations accessed with each address. Note
that addresses 0 and 4 access the same location,

Table 9-14. MC6846 1/0 Addressable Locations

Address Line
Internal Register Selected

A2 A1 AO

0 0 0 Composite Status register
0 0 1 Peripheral Control register
0 1 0 Data Direction register
0 1 1 Peripheral Data register
1 0 0 Composite Status register
1 0 1 Timer Control register
1 1 0 Timer register (high-order byte)
1 1 1 Timer register (low-order byte)

9-124

c
w

~
IX:
o
a..
IX:
o
U
~
en
w

~
g
U)
U)

ct
oCS
w
Z
IX:
o
CD
U)

o
~
ct
C
ct

©

Logic to Handle
Interrupt Requests

from
External Devices

Interrupt Priority
Arbitration

Clock Logic

Accumulator
Registerts)

Data Counterts)

Stack Pointer

Program Counter

Figure 9-38. Logic of the MC6846 Multifunction Device

9-125

Direct Memory
Access Control

(GND) VSS

A7

A6

A5

A4
CSO

R/W
DO

Dl

D2

D3

D4

D5

D6

D7

CSl

CTG

CTC

CTO

E

PIN NAME

csa, CSl
AO - Al0
DO - D7
R/W
E
PPO - PP7
CPl
CP2
CTO
CTC
CTG
IRQ
RES

VCC, VSS

1 40 --- 2 39 -- 3 38 -- 4 37 --- 5 36 - 6 35 --- 7 34 -.. -- - 8 33 -.. -- ..
9 32 -- 10 31 - -.. MC6846 -~ -- -.. 11 30 -- - 12 29 - -.

~ .. 13 28

-- 14 27
- 15 26 .. - 16 25 --..

---I> 17 24

-
- 18 -- 19 - 20 --

DESCRIPTION

Device select
Address lines
Data lines
Read/Write
Device synchronization
I/O Port lines
Interrupt/Strobe
Peripheral Control
Counter/timer output

23
22

21

External clock for counter/timer
Counter/timer gate
Interrupt request
fleset
Power and Ground

.-

-.. ------

..

A8

A9

AlO
RES

IRQ

CP2

CPl

AO

Al

A2

A3

VCC
PP?
PP6
PP5

PP4

PP3

PP2

PPl

PPO

..

..
--. --.. -..
~

-
TYPE

Input
Input
Bidirectional
Input
Input
Bidirectional
Input
Input or Output
Output
Input
Input
Output
Input

Figure 9-39. MC6846 Multifunction Device Signals and Pin Assignments

9-126

c
w
!;(
IX:
o
a..
IX:
o
o
~
en
w
!;(
o o
(I)
(I)

oCt
a!I
w
Z
IX:
o
CD
(I)

o
~
oCt
C
oCt

©

All data transfers between the CPU and the MC6846 device occur via the bidirectional Data Bus (DO - 07). This
is a three-state Data Bus: when the device is not selected the MC6846 holds these lines in the high-impedance state.

The R/W control determines whether data will flow into the MC6846 (a Write operation with RtW low) or from
the MC6846 (a Read operation with RIW high).

E is the stand~rd synchronizing clock signal used throughout an MC6800 microcomputer system.

The 8-bit parallel 110 port of the MC6846 is very similar to I/O Port B of an MC6820 Peripheral Interface Adapter (PIAl.
Differences are described later. Lines PPO - PP7 constitute an 8-bit bidirectional parallel I/O port. Control lines CP1
and C~2 are the ~wo handshakin,g and interrupt control signals associated with the parallel I/O port.

The counter/timer of the MC6846 is very similar to counter/timer 3 of the MC6840 counterltimer, which has
been described earlier in this chapter. CTO is the output signal, CTC is the external clock and CT~ is the gato in-
put .

Interrupt requests originating from the parallel I/O logic of the counter/timer logic are output via IRQ.

The device is reset by inputting a low level at RES. The actual operation of the reset logic is described after the
registers which it affects have been discussed.

MC6846 COUNTER/TIMER LOGIC
Before reading this section. you should be familiar with the MC6840 counter/timer device described earlier in this
chapter. We are only going to examine the differences between counter/~jmer logic of the MC6846 and channel
3 of the MC6840. Note ttlat channel 3'of the MC6840, like the counter/timer logic of the MC6846, can be oper­
ated in divide-by-ejght mode.

The MC6846 counter/timer has its own Control register, Most Significant Byte register, and Least Significant
Byte register. As illustrated in Table 9-13. these three registers are accessed via addresses DEV+5. DEV+6. and
DEV+ 7 respectively. The counter/timer logic does not have its own Status register; this is shared with I/O port
logic.' .

The counterltimer Control register address is not the same as any of the three addresses set aside for Control registers
of the MC6840. The Most Significant Byte register and Least Significant Byte register addresses. however. are the same
as two addresses allocated to these two registers by the MC6840.

Bits of the MC6846 counterltimer Control register are not assigned in the same way as they are for any MC6840 Con­
trol register. Here are the counter/timer Control register bit assignmel'!ts for the MC6846:

65432 o ",-BitNo.

Counter/Timer Control register

'----- 0 Enable timer
1 I;'reset counter

'------- 0 Timer uses CTC as clock input
1 Timer uses E as clock input

1.-______ 0 Use input clock frequency

1 Use input frequency divided by 8

!----------- Select operating mode:
000 Continuous (program initiated)
00 1 Cascaded single-shot
010 Continuous
011 Normal single-shot

~ _____________ Frequency comparison:

100 CTG changes before counter times out
101 Counter times out before CTG changes

Pulse width comparison:
110 CTG changes before counter times out
111 Counter times out before CTG changes

~-------------- 0 Mask timer interrupt
1 Enable timer interrupt

o Set CTa low .' l except during cascaded
1 Enable coun~er ou~put r single-shot operation

9-127

BitO is the internal reset bit. This is the same as bit 0 of the Control register of MC6840 counterltimer logic 1.

Bit 1 determines whether the external clock (CTC) 'or the system clock (cI>2, viaE) will be the timing signal. This is the
same as in MC6840 Control registers.

Bit 2 enables or disables the divide-by-eight prescaler; bit 0 of counterltimer 3's Control register performs the same
task in the MC6840.

Bit 6 enables or disables interrupt logic, and bit 7 enables or disables the output signal for thecounterltimer as de­
scribed for the MC6840.

Control register bits 3, 4 and 5 determine the operating mode of the counterltimer. There is just one difference bet­
ween the interpretation of these three bits in the MC6846 as compared to the interpretation of these three bits in the
MC6840. The MC6846 has no program-initiated sillgle-shot mode. Only a high-to-Iow transition of the gate input will
initiate single-shot mode. This missing variation of'Single-shot mode is replaced by a cascade mode. In the cascade
mode, Control registElr bit 7 is connected to the output signal CTO. When Control register bit 7 is 0, the output signal is
set low on the next timeout;' when Control register bit 7 is 1, the next timeout sets the output signal high. This is called
a "cascade" mode because it allows you, under program 'control. to count timeouts which generate interrupt requests
in the usual way and then, under program control. to change'the level of the output based on the time interval com-
puted via timeouts. ' '

MC6846 I/O PORT LOGIC
Before reading this section, you should be familiar with the MC6820 PIA described earlier in this chapter. We are only
going to examine t~e differences between I/O port logic of the M~6846 and I/O Port B of the MC6820.

The MC6846 I/O Port can provide programmed handshaking on either input or output.
. . ,'I!

Any of the data lines PPO - PP7 can directly drive the base of a Darlin9t~n NP!'I transistor. The control line CP2
al~o has this capability. . ,

The MC6846 I/O Port has its own Control register, Data Direction regist~r, and Peripheral Data register. As il­
lustrated in Table 9-13, these three registers are accessed via addresses DEV+ 1, DEV+2, and DEV+3 respectively. The
I/O port logic does not have its own Status register; this is shared with the counter/timer logic. We will describe
the Composite Status register later on.

In the MC6846, the Data Direction register and the Peripl1eral Data register have separat~ addresses., Recall that
in the MC6820 PIA these two registers share one address, an'd Bit 2 of the Control register determines which location is
accessed by that address. " .,'

Bits of the MC6846 Peripheral Control register are not assigned in the ~ame way as they are for either of the MC6820
Control registers. Here are the Peripheral Control register bit assignmenls for the MC6846:

6 432 o--BitNo.

i I I I I I I I Peripheral Control register

j~ .~ j ~ .~ ~ ~~ ~ ,
o Disable CP1 interrupt

, 1 Enable CP1 interrl!pt

o CP1 high-to-Iow transition generates interrupt request
1 CP1 low-to-high trarisition generates interrupt request

000 not latch input data
1 Latch input data on active tram.ition of CP1

CP2I, '"pot } o Disable CP2 interrupt
1 Enable CP2 interrupt Bit 5 = 0 -

o CP2 high-to-Iow transition generates interrupt request
1 CP2 low-to-high transition generates interrupt request -- CP2 is output \ -- ~

f . • 00 CP2 serves as an interrupt acknowledge
01 CP2 serves as an input/outPUl acknowledge (Blt5=1~
1x set CP2 to x

Not used

o Normal 0 eration P
1 Reset I/O port

9-128

Q
w

~
a: o
B­
a:
o
(.)

!:
iii
w

~
g
en
en
c:(

all
w
Z
a:
o
CD
en o
~
c:(
Q
c:(

@

If Bit 0 is set to 1. then an active transition (as defined in Bit 1) at CP1 will set IRO low. Bits 0 and 1 are used in the same
way in the Control registers of the MC6820. .

Bit 2 selects the input latch function. When bit 2 is set. an active transition at CP1 will latch data input on lines PPO -
PP7. The MC6820 does not provide an input latch function.

Bits 3.4. and 5 control the CP2 line in the same way that MC6820 Control Register B bits 3.4. and 5 control line CB2 of
that device.

Bit 6 is not used in the MC6846.

Bit 7 serves as an internal reset for the I/O port. The CPU may set this bit by writing a 1 into it. but it will also be set au­
tomatically when the MC6846 receives a low level at the reset input. RES. You clear bit 7 by writing a 0 to it during a
CPU write to the Peripheral Control register. .

The interrupt flags for both the timer/counter and the I/O port appear in the Composite
Status register, which the CPU accesses via either of the addresses DEVor DEV+4. This register
is a read-only location.

Here are the bit assignments for the Composite Status register:

6 4 3 2 1 0 ~Bit No.

Composite Status register

""----- Timer interrupt

~---- CPl interrupt

""--------- CP2 interrupt
""--__________ Not Used

""--------------- Composite interrupt

Note that interrupt conditions will appear in bits O. 1. and 2 of the Composite Status register.
whether or not interrupts are enabled in the corresponding Control register.

MC6846
COMPOSITE
STATUS
REGISTER

A counter/timer interrupt will set bit 0 of the Composite Status register. Any of the following actions will reset the
counterltimer interrupt flag to 0:

• Timer reset' via either Timer Control register bit 7 or RES input

• Initializing ~he counter
• Writing to the timer latches in Frequency Comparison mode or Pulse Width Comparison mode

• Reading the Timer register after reading the Composite Status register while the timer interrupt bit was set. That is.
the following sequence resets bit 0 of the Composite Status register: bit 0 is set by the counterltimer interrupt: the
CPU reads the Composite Status register (location DEVor DEV+4): then the CPU reads the Timer register (locations
DEV+6 and DEV+ 7).

Interrupt transitions at CP1 and CP2 will set bits 1 and 2. respectively. of the Composite Status register. Each of these
bits will be reset to 0 by a Read or Write to the Peripheral Data register (location DEV+31. but only if the flag was
already set when the CPU last read the Composite Status register. This is analogous to the fourth counterltimer flag
reset condition described above.

Bit 7 yvill be set to 1 only when IRO is set low: that is. anyone of the three interrupt bits described above will set bit 7.
but only if that interrupt has been enabled in the appropriate Control register bit. Bit 7 will be 0 only when all three of
bits O. 1. and 2 are reset to O.

Bits 3. 4. and 5 of the Composite Status register are not used.

The Data Direction register and the Peripheral Data register work in the same way as those in the MC6820 do.

MC6846 DEVICE RESET
When the MC6846 receives a low level on RES, all the I/O and counterltimer logic enters the Reset state. I n ad­
dition. the I/O port and the counter/timer can be reset individually via the internal reset bits of their respective
Control registers - bit 0 of the Timer Control register and bit 7 of the Peripheral Control register.

9-129

These are the results of a counter/timer reset:

• The counter latches take on the maximum count (65.536). This occurs only during external reset (RES low).

• The counter clock is disabled.

• Bits 1 through 6 of the Timer Control register are reset to O. as are the output line CTa and the interrupt flag (bit 0 of
the Composite Status register).

The net effect is that the counter/timer becomes inactive until the CPU writes a 0 to bit 0 of the Timer Control
register.

These are the results of an I/O port reset:

• All bits of the Peripheral Data register and Data Direction register are reset to O. as are the interrupt flags (bits 1 and 2
of the Composite Status register) .

.• Bits 6 through 0 of the Peripheral Control register are reset to O.

The net effect is that the port is in input mode, and its interrupts are disabled.

9-130

c
w

~
0:
o
D­
o:
o u
~
en
w

~ g
en
en
c:(

alS
w
Z
0:
o
m
en o
~
c:(
C
c:(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• MC6800 CPU
• MC6802 CPU/RAM
• MC6870A Clock
• MC6871 A Clock
• MC6871 B Clock
• MC6820 PIA
• MC6850 ACIA
• MC6852 SSDA
• MC6840 PTM
• MC6844 DMAC
• MC6846 ROM-I/O-Timer

_ 9-01

MC6800 .

TABLE 1 - MAXIMUM RATINGS

Rating Symbol

Supply Voltage VCC

Input Voltage Vin

Operating Temperature Range-TL to TH TA
MC6800, MC68AOO, MC68BOO
MC6800C, MC68AOOC
MC6800BOCS, MC6800COCS

Storage Temperature Range TstQ

Thermal Resistance (}JA
Plastic Package

Ceram ic Package

Value

-0.3 to +7.0

-0.3 to +7.0

o to +70
-40 to +85
-55 to +125

-55 to +150

70
50

Unit

Vdc

Vdc

°c

°c
°C/W

This device contains circuitry to protect the
inputs against damage due to high static voltages
or electric fields; however, it is advised that
normal precautions be· taken to avoid appli­
cation of any voltage higher than maximum
rated voltages to this high impedance circuit.

TABLE 2 - ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, ± 5%, VSS = 0, TA = TL to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Input High Voltage Logic VIH VSS + 2.0 - VCC Vdc

¢1,<:>2 VIHC VCC -0.6 - VCC + 0.3

Input Low Voltage Logic VIL VSS - 0.3 - VSS + 0.8 Vdc

<:>1,<:>2 VILC Vss - 0.3 - Vss + 0.4

Input Leakage Current lin }JAdc

(Vin = 0 to 5.25 V, VCC = max) Logic· - 1.0 2.5
(V in = 0 to 5.25 V, VCC = 0.0 V) <1>1,<:>2 - - 100

Three·State (Off State) Input Current 00-07 ITSI - 2.0 10 }JAdc

(Vin = 0.4 to 2.4 V, VCC = max) AO-A15,R/W - - 100

Output High Voltage VOH Vdc

(ILoad = -205 }JAdc, VCC = min) 00-07 VSS + 2.4 - -
(ILoad = -145 }JAdc, VCC = min) AO-A15,R/W,VMA VSS + 2.4 - -
(I Load = -100 }JAdc, VCC = min) BA VSS + 2.4 - -

Output Low Voltage (I Load = 1.6 mAdc, V CC = min) VOL - - VSS + 0.4 Vdc

Power Dissipation Po - 0.5 1.0 W

Capacitance Cin pF

(Vin = 0, T A = 250 C, f = 1.0 MHz) <:>1 - 25 35
¢2 - 45 70

00-07 - 10 12.5
Logic Inputs - 6.5 10

AO-A15,R/W,VMA Cout - - 12 pF

TABLE 3 - CLOCK TIMING (VCC = 5.0 V, ± 5%, VSS = 0, TA = TL to TH unless otherwise noted)

Ch aracteristics Symbol Min Typ Max Unit

Frequency of Operation MC6800 f 0.1 - 1.0 MHz

MC68AOO 0.1 - 1.5
MC68BOO 0.1 - 2.0

Cycle Time (Figure 1) MC6800 teyc 1.000 - 10 }JS

MC68AOO 0.666 - 10
MC68BOO 0.500 - 10

Clock Pulse Width <:>1,¢2 - MC6800 PW¢H 400 - 9500 ns

(Measured at VCC - 0.6 V) ¢1,<:>2 - MC68AOO 230 - 9500
¢1,¢2 - MC68BOO 180 - 9500

Total ¢1 and <1>2 Up Time MC6800 tut 900 - - ns
MC68AOO 600 - -
MC68BOO 440 - -

Rise and Fall Times t¢r, t¢f - - 100 ns

(Measured between VSS + 0.4 and VCC - 0.6)

Delay Time or Clock Separation (Figure 1) td - 9100
ns

(Measured at VOV = VSS + 0.6 V @ tr = tf';; 100 ns) 0

(Measured at VOV = VSS + 1.0 V@ tr = tf';; 35 n5) 0 - 9100

® MOTOROLA Semiconductor Products Inc.
Data sheets on pages 9-D2 through 9-D30 reprinted by permission of Motorola Semiconductor Products, Inc.

9-D2

c
w

~
a:
o
Il.
a: o
CJ
~
en
w

~ g
C/)
C/)
c(

oil
w
2
a:
o
III
C/)
o
~
c(
C
c(

@

Me6S00

TABLE 4 - READ/WRITE TIMING (Reference Figures 2 through 6)

MC6S00 MC6SAOO MC6SBOO

Characteristic

Address Delay
C = 90 pF
C = 30 pF

Peripheral Read Access Time

tac = tut - (tAD + tDSR)

Data Setup Time (Read)

Input Data Hold Time

Output Data Hold Time

Address Hold Time
(Address. R/W. VMA)

Enable High Time for DBE Input

Data Delay Time (Write)

Processor Controls
Processor Control Setup Time
Processor Control Rise and

Fall Time
Bus Available Delay
Three-State Delay
Data Bus Enable Down Time

During <1>1 Up Time
Data Bus Enable Rise and

Fall Times

Aeference Tables 2 and 3

<1>1

<1>2

A/Vii

Address
From MPU

Symbol Min Typ Max Min Typ Max Min

tAD
- - 270 - - 180 -
- - 250 - - 165 -

tace - - 530 - - 360 -

tDSR 100 - - 60 - - 40

tH 10 - - 10 - - 10

tH 10 25 - 10 25 - 10

tAH 30 50 - 30 50 - 30

tEH 450 - - 280 - - 220

tDDW - - 225 - - 200 -

tpcs 200 - - 140 -', - 110

tPCr. tpC! - - 100 - - 100 -

tBA - - 250 - - 165 -
tTSD - - 270 - - 270 -
tDBE 150 - - 120 - - 75

tDBEr. tDBEf - - 25 - - 25 -

FIGURE 1 - CLOCK TIMING WAVEFORM

FIGURE 2 - READ DATA FROM MEMORY OR PERIPHERALS

,...., Start of Cycle

Data 2.0 V --:=~_====;,
From Memory ------------------:::::~\'

Typ

-
-
-

-
-
25

50

-

-

-
-

-
-
-

or Peripherals 0.8 V --="""i'""===;;:;;1~

K\\\\,§\i Data Not Valid

® MOTOROLA Semiconductor Products Inc.

9-03

Max

- 150
135

250

-
-
-
-

-
160

-
100

135
220

-

- 25

Uh~":
ns

ns

ns

ns

ns

ns

ns

ns

ns
ns

ns
ns
ns

ns

]
UJ
::;;
;::
> g

MC6800

600

. 500

400

300

200

, 100

FIGURE 3 - WRITE IN MEMORY OR PERIPHERALS

,-- Start of Cycle

~ _____________________ tCYC ____________________ ~

4>1

4>2

R/W

Address
FromMPU~~~~~~~~i-~ ______ ~ ________________________ -4~~

VMA _____ -I'""~

~----------tEH----------~~

DBE

Data
From MPU -----------------j--O:::::S~'" Data Valid

~~~ Data Not Valid 

FIGURE 4 - TYPICAL DATA BUS OUTPUT DELAY 
versus CAPACITIVE LOADING (TDDW) 

FIGURE 5 - TYPICAL READIWRITE. VMA. AND ADDRESS 
OUTPUT DELAY versus CAPACITIVE LOADING (TAD) 

10H =-205 jJA rnax@ 2.4 V 
10L = 1.6 rnA rnax@0.4V 
VCC=5.0V 
TA = 25°C 

.-f.;--

----k-I-" ---
CL includes stray capacitance 

100 200 300 400 

CL LOAD CAPACITANCE (pF) 

500 

600 

500 

vr 400 
UJ 
::;; 
;:: 

300 > g 
200 

100 

600 

10H =-145 jJA rnax@2.4 V 
10L = 1.6 rnA rnax@0.4 V 
VCC = 5.0 V 
TA = 25°C 

VMA 

---- I 

.-- - Address, RNI--f--......- V 

---
I-" --....-.---

CL includes stray capacitance 

100 200 300 400 500 600 

CL LOAD CAPACITANCE (pF) 

®. MOTOROLA Semiconductor Products·lnc .. 

9-04 



Q 
w 
~ 
II: o 
a.. 
II: 
o 
U 
~ 
ui 
w 
l­
e:( 

g 
CI) 
CI) 
e:( 

o!I 
w 
Z 
II: 
o 
CD 
CI) 

o 
~ 
e:( 
Q 
e:( 

@ 

M~OOO . 

FIGURE; 6 - BUS TIMING TE;ST LOADS 

Vee 

R L - 2.2 k 

Test Point o--...... _....---toI~t--. MMD6150 
, or Equiv. 

C'I' R 

C = 130 pF for 00-07, E 

MMD 7000 

~, or Equlv. 

- 90 pF for AO-A15, R/W, and VMA 

(Except tAD2) 

= 30 pF for AO-A 15, R/W, and VMA • 

(tAD2 only) 

= 30 pF for BA 

R= 11.7knforDO-D7 

= 16.5 kn for AO-A15, RIW, and VMA 

= 24 kn for BA 

9-05 

TEST CONDITIONS 

The dynam Ie test load for the Data Bus Is 
130 pF and one standard TTL load as shown. 
The Address, RIW, and VMA outputs are tested 
under two conditions to allow optimum opera· 
tlon in both buffered and unbuffered systems. 
The resistor (R) Is chosen to Insure specified 
load currents during VOH measurement. 

Notice that the Data Bus lines, the Address 
lines, the Interrupt Request line, and the DBE 
line are all specified and tested to guarantee 

0.4 V of dynamic noise immunity at both 
"1" and "0" logic levels. 



- v 

MC6800\ , 
I, 

FIGURE 12 - THREE STATE CONTROL TIMING 

Cycle 
#1 "2 #3 =4 =5 =6 :=7 =8 =9 

System 
cJ>1 

MPU ,/.1 

Address 
Bus 

RfW 

VMA 

Data 
Bus 

c,')2 - DBE 

.TSC 

--J f4"'- tTSE tTSE ~ 

FIGURE 13 - HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG 

I
lnst;uction I Instruction I 
Fetch Execute 

tSA 

BA __________________ -J! jJ \I:..... _____ -J( 

VMA ~-----l\-----~{ff---------'I 
R/Vil ~-------Iffl----------/,---..... X ....... __ ...... )-

Fetch. Execute 

~~~1(----'-------------~~-----------«Addr M+l)(~ ____ -J) Address 
Bus

Data ------1r-,,----y--~----------------~~----------------~
Bus

Inst
X

Note: Midrange waveform indicates
high impedance state.

Inst
y

® MOTOROLA Semiconductor Products Inc.

9-D6

c
w
~ a:
o
D..
a:
o
o
~
en
w
~
g
CI)
CI)

<
all
w
2
a:
o
m
CI)

o
~
<
C
<
@

MC6802 .' '.'

MAXIMUM RATINGS
Rating Symbol

Supply Voltage VCC

Input Voltage Vin

Operating Temperature Range TA

Storage Temperature Range Tstg
Thermal Resistance IJJA

Value

-0.3 to +7.0

-0.3 to +7.0

Oto+70

-55 to +150

70

Unit

Vdc

Vdc

°c

°c

°C/W

This device contains circuitry to protect the
inputs against damage due to high static volt·
ages or electric fields; however, it is advised that
normal precautions be taken to avoid applica·
tion of any. voltage higher than maximum rated
voltages to this high impedance circuit.

ELECTRICAL CHARACTERISTICS (VCC= 5.0 V ± 5%, VSS = 0, TA = 0 to 700 C unles otherwise noted.!

Characteristic Symbol Min Typ Max Unit

Input High Voltage Logic, EXtal VIH VSS + 2.0 . - VCC Vdc
'ReSet VSS + 4.0 - VCC

Input Low Voltage Logic, EXtal, I1eSet VIL VSS - 0.3 - VSS + 0.8 Vdc

I nput Leakage Current Logic· lin - 1.0 2.5 /lAdc
(Vin = 0 to 5.25 V, VCC = max)

Output High Voltage VOH Vdc

(I Load = -205/lAdc, VCC = min) 00·07 VSS + 2.4 - -
(I Load = -145/lAdc, VCC = min) AO·A 15, R/Vi, VMA, E VSS + 2.4 - -
(I Load = -100/lAdc, VCC = min) BA VSS + 2.4 - -

Output Low Voltage VOL - - VSS + 0.4 Vdc
(I Load = 1.6 mAdc, VCC = min)

Power Dissipation PO"" - 0.600 1.2 W

Capacitance # Cin pF
(V in = 0, TA = 250 C, f ='1.0 MHz) 00-07 - 10 12.5

Logic Inputs, EXtal - 6,5 10

AO-A15, R/Vi. VMA Cout - - 12 pF

Frequency of Operation (Input Clock 74) f 0.1 - 1.0 MHz

(Cry~tal Frequency) fXtal 1.0 - 4.0

Clock Timing
Cycle Time tcyc 1.0 - 10 /lS

Clock Pulse Width PWq,Hs 450 - 4500 ns
(Measured at 2.4 V) PWcpL

Fall Time tcp - - 25 ns
(Measured between VSS + 0.4 V and VSS - 2.4 V)

"Except IRQ and NMI, which require 3 kn pullup load resistors for wire-OR capability at optimum operation. Does not include EXtal and
Xtal, which are crystal inputs.

"In power·down mode, maximum power dissipation is less than 40 mW.

#Capacitances are periodically sampled rather than 100% tested.

READ/WRITE TIMING (Figures 2 through 6; Load Circuit of Figure 4)

Characteristic Symbol

Address Delay tAD

Peripheral Read Access Time tacc
tacc = tut - (tAD + tOSR)

Data Setup Time (Read) tOSR
Input Data Hold Time tH

Output Data Hold Time tH

Address Hold Time (Address, R/W, VMA) tAH

Data Delay Time (Write) toow
Processor Controls

Processor Control Setup Time tpcs
Processor Control Rise and Fall Time tPCr, tpCf

(Measured between 0.8 V and 2.0 V)

Min Typ

- -
- -

100 -
10 -
20 -
20 -
- 165

200 -
- -

® MOTOROLA ~ern;conductor Products Inc.

9-D7

Max Unit

270 ns

530 ns

- ns

- ns

- ns

- ns

225 ns

- ns
100 ns

MC6802 .

FIGURE 2 - READ DATA FROM MEMORY OR PERIPHERALS

Address

From MPU 2:!~~~~"":::"-""""'t-------------------4-~~-

Data 2.0 V ----::::::;;;;...J.-==='*'''-
From MPU --------------------------------c:~~~
or Peripherals O.B V --=~-=;=:::::;;;;;:;;;~~

t\\ \%\\'f Data Not Valid

FIGURE 3 - WRITE DATA IN MEMORY OR PERIPHERALS

R/Vi

Address

FromMPU~~~~~~~~~~-----+_--~-------~~~

Data 2.4 V __ .J.._-----H,
From MPU----------'--------------f--0-.4-V~~-~"~r_ _____ 1_f

~ ~ ~ Data Not Valid

FIGURE 4 - BUS TIMING TEST LOAD

c - 130 pF for 00-07, E
= 90 pF for AO·A15, RiW, and VMA
= 30 pF for BA

R = 11.7 kn for 00-07, E
= 16.5 kn for AO·A15, RiW, and VMA
= 24 kn for BA

4.75 V

Test Point 0-............. --1' -. MMD6150
" or Equiv.

c;~ R
V MMD7000

" or Equlv.

® MOTOROLA Serniconducf:or Producf:s Inc.

9-08

Q
w
~
a:
o
B­
a:
o
(,)

~
en
w

~ g
CI)
CI)

<
oC5
w
Z
a:
o
III
CI)

o
~
<
Q

<
@

r. • '.

MC6802 , '.

...
w
:Ii!
;::
>-g

FIGURE 5 - TYPICAL DATA BUS OUTPUT DELAY
versul CAPACITIVE LOADING

600

500

400

300

200

100

IOH 1=-20~ jJA m!x@2.14 V
IOL' 1.6 mA max@0.4V
VCC' 5.0 V
TA' 2S·C

-I--
I----I--

,.....

CL includes stray capacitance

100 200 300 400

CL LOAD CAPACITANCE (pF)

500 600

...
w
:Ii!
;::
>-g

FIGURE 6 - TYPICAL READIWRITE. VMA. AND
ADDRESS OUTPUT DELAY versulCAPACITIVE LOADING

600

500

IOH 1=_14S
l
jJA m!x @ 2.~ V

10 L • 1.6 mA max @ 0.4 V
VCC = 5.0 V
TA' 2S"C

400
Address. VMA

300 k-f--
_V

200 I--- --r-- RNi

~ -
100

CL includes stray capacitance

100 200 300 400 500 600

CL, LOAD CAPACITANCE (pF)

FIGURE 10 - POWER-UP AND RESET TIMING

Vee

E

~tPes >4.0V

,-------------~~------~1-~~-----1---
20ms
Min

Reset

20 ms
Min

Reset

II

rL'OV
0.8 V

RE --------)- tper";;100ns

VMA ---------,~
II

NOTE: If option 1 is chosen, Reset and RE pins can be tied together.

O.S V

Option 1
(See Note below)

: -=-------------I
I
I

Option 2

See Figure 11 for
Power Down condition

~~I-------------

_-----

® MOTOROLA Se,"iconduc1:or Produc1:s Inc.

9-09

MR

MC6802

F.IGURE 11 - POWER·DOWN SEQUENCE

VCC

tpCf 0;;;;100 ns

2.0 V
RE

FIGURE 13 - MEMORY READY CONTROL FUNCTION

A - SETUP

_____ 2_.~;r~--------------~1I
~ 0;;;;200n$

tPCf 0;;;;100 ns

B - RELEASE

\0.4V ;-
/2;;;'300n$

tPCr 0;;;;100 n$

® MOTOROLA Sernicond!.!cto~ P~ad!.!ete Ine.

9-010

c
w

~
0: o n­
o:
o
(J

~
en
w

~ g
en
en
ct
o!I
w
Z
0:
o
cg
en o
:;
ct
C
ct
@

MC6870A
limited function microprocessor clock
250 kHz to 2.5 MHz

DIMENSIONS

PIN II LOCATION

_~~;;;;;;:~~\ i" .t" ...
.221, .0'01 • u n n n 1fL.Q20~ .010

--015071(01." PINS)

'.100
,005

PIN

1

3

5

7

12

13

18

20

22

24

WAVEFORM TIMING

(ALL TIME IN NANOSECONDS I

TEST CIRCUIT

C·l. -MA,XCAPACITY50pF

CONNECTION

GND

Ne

0, TTL

v" (+5VDC)

0, NMOS

0, NMOS

GND

NC

NC

NC

R~ -122H1 SIMUL.ATES
f.l[A(PART or MPu

+5V DC ~ ~~ ~I NMOS MC6870A ~2 NMOS
GND L... ___ ---' ~2 TTL

specifications
Rating Symbol Value Unit

Supply Voltage V;, 5.00+5% Vdc
Operaling Temperalure Range T. 010 +70 'C
Siorage Temperalure Ttl9 -5510+125 'e
Power Supply Drain (max.) I .. 100 mA

ELECTRICAL CHARACTERISTICS (V" = 5.0 ::!: 5%, V" = O,T.
= O' 10 70'C, unless olherwise nOled)

Characterlltlc Symbol Min Typ Max Unit
Frequency
OperalinQ FreQuency I, .250 2.5 MHz

~;eC~~i~~;~;~al~',~%~~;'~tve ::!:.Ul V/o

+25'e, operaling lemperalure,
inpul vollage change, load
change, aging, shock and
vibralion)

NMOS Oulputl at 1.0 MHz Operation"
Pulse Widlh (meas. al Hl,H 430 ns
V,,= -.3V de level) T0,H 450 ns
Logic Levels VOLC V,,·.l - V .. +.3 Vde

VQt<c V,,-.3 - V,,+.l Vde
Rise and Fait Times I, 5 12 50 ns

I, 5 12 50 ns
• Overshool/Undershoot

Logic "I" V,,-.5 V,,+.5 Vde
Logic "0" Vo, V,,-.5 V,,+.5 Vdc

Pulse duralion 01 any over-
shool or undershool To, 40 ns
Period @ 0.3V de Level I,,, 1.00 us_
Edge Timing @ V,,=0.3V de Tx 940 ns
NMOS Relalionship I., 0
@ +0.5V dc Level I .. 0 8.0 us

TTLOulputl
In reI. 10 0, NMOS@ 0.3V de
0, TTL @ + lo4V de T. 15 30 45 ns

TH 10 25 40 ns

Logic Levell VOH 204 3.2 Vde
VOL .3 A Vdc

Rise and Fall Times
o4V and 204V I, 15 ns

204Vand o4V I, 15 ns
Logic "0" Sink (lGale) 10L -1.6 mA
Logic "1" Source (lGale) lOt< +40 uA
Currenl Oulpul Shorled I,e -18 -57 mA

Load
NMOS-Load Capacily 0" O, I eN"'" 80 120 -' 160 pI
TTL-No. 01 Loads I I I 5 III
TTL-Load Capacily I CIlL I I J 50 -'- pI

Into specIfied test load
··Apply the follOWing parameters for frequencies other than 1.0 MHz

. T",H=O.5 (P-140) ns

TO EXTERNAl
fREUUENCY
STANOAHO

To,H=O 5 (P-IOO) ns
Tx=(P·60) ns
where P=desHed period of operation 10 nanoseconds

'---------·@MOTOROLAINC.COMPONENTPROOUCTSOEPT.-----------'

9-011

MC6871 A
full function microprocessor clock
850 kHz to 2.5 MHz

specifications
R.tlng Symbol V.lu.

Supply Voltage V" 5.00+5%
Operating Temperature Range T, Oto +70
Storage Temperature TI19 -55 to +'25
Power Supply Drain (max.) I .. 100

Unit
Vdc
'C
'C
mA

ELECTRICAL CHARACTERISTICS (V" = 5.0 ::!: 5%, V .. = O,T,
- 0' to 70'C unless otherwise noted) -

Ch.r.cl.rlilic. Symbol Min Typ M.x
Frequency
Ooeratino Freouencv I, .850 2.5
Hequency stability (lncluslve £01
01 calibration tolerance at
+25'C, operating temperature,
input voltage change, load
change, aging, shock and
vibration)

NMOS Oulpuls 111,0 MHz Operltlon'"
Pulse Width (meas. at T0,H' 430
V,,- -.3V dc level) T0,H 450
Logic Levels VOLe V .. -.I - V .. +.3

VOHe V,,-.3 - V,,+.I
Rise and Fall Times t, 5 12 50

t. 5 12 50
• Overshoot/ Undershoot

Logic "1" V,,-.5 V,,+.5
Logic "0" Vos V .. -.5 V .. +.5

Pulse duration 01 any over-
shoot or undershoot Tos '40
Penod @ 0.3V dc Level teye 1.00
Edge Timing @ V,,_0.3V dc Tx 940
NMOS Relationship td' 0
@ +0.5V dc Level td' 0 8.0

TTL Oulpull
In reI. to 0, NMOS @ 0.3V dc
0, TTL T, 15 30 45
@ I.4Vdc ·TH 10 25 40
Memory Clock Te 30 50 70
@ I.4Vdc TJ 20 40 60
2xfc @ I.4Vdc T. 40 80 120

Logic Levels VOH 2.4 3.2
VOL .3 .4

Rise and Fall Times
.4Vand 2.4V t, 15

2.4Vand .4V t, IS
LogiC "0" Sink (IGate) tOL -1.6
LogiC "I" Source (IGate) 10H +40
Current Output Shorted tse -18 -57

LOld
NMOS-Load Capacity 0,,0, CNI.o4O!t 80 120 160 .
TTL-No. of Loads 5
TTL-Load Capacity em 50

Logic Inpuls" ("0" Level Applies HOLD or MEMORY READY)
Holds 0, NMOS 'High', 0, HOLD 1 -.2 +.4

NMOS 'Low', 0, TTL 'Low'
Holds 0, NMOS 'Low', 0, NMOS MEM- -.2 +.4

'High', 0, TTL 'High', and ORY
MEMORY CLOCK 'High' READY

·'nlo speCllled test load

··Must be externally held at' 1" level (2 4V min., 5 OV mal() If nol used
••• Apply the follOWing parameters for frequenCies other than 1 MHz

TOIH:O 5 (P-140) ns
T¢,H=O 5 (P"OOI ns
Tx=(P·60) ns
where P=deslred period 01 opera lion In nanoseconds

Unll

MHz
~

ns
ns

Vdc
Vdc
ns
ns

Vdc
Vdc

ns
us
ns

us

ns
ns
ns
ns
ns

Vdc
Vdc

ns
ns
mA
uA
mA

pI
ttl
pf

Vdc

Vdc

GND MC6871A . 0 , NMOS
0. NMOS
0. TIL

+5.oC ~ ~ 2",

f + MEMORY CLOCK
HOLD 1 MEMORY

READY

DIMENSIONS

PIN CONNECTION

I GND

3 MEMORY CLOCK

5 g,TTL

7 V,,(+5VDC)

12 0,NMOS

13 0, NMOS
i-I'"" .015-,021 OIA IPINSI

18

20

22

24

GND

HOLD 1

MEMORY READY

2xfc

WAVEFORM TIMING

(ALL TIME IN NANOSECONDS)

TEST CIRCUIT

,+-----'-+---0 TTL

'------< HQI,.QI

CIII -- MAX CAPACITY 50 pF

C,. ... O~ - ~22.fFL6A48 ~AI~A~~~t~~CfIFIED

~~~~~~~up~:~~~tE MOTOROLA 

'HOlD AND MEMORY READY MUST 
BE EXTERNALLY HElD AT "I 

~E~:~ ~O~V~iE~IN" 5 evDC MAX I 

Rs-j22H1 SIMULATES 
REALPARTOFMPU 

i-I ,'00----, 

. ! 

TO EXTERNAL 
FREOUENCY 
STANDARD 

L..-_______ @ MO,TOROLA INC. COMPONENT PRODUCTS DEPT. --______ ---J 

9-012 



o 
w 
!;( 
II: 

f 
II: o 
CJ 
~ 
en 
w 
!;( 
g 
CI) 
CI) 

cc 
.a 
w 
Z 
II: o 
ID 
CI) 

o 
~ 
CC o 
CC 

@ 

MC6871B 
alternate function microprocessor clock 
250 kHz to 2.5 MHz 

specifications 
Rating Symbol Value 

Supply Vollage V" 5.00±5% 
Operallng Temperalure Range T. 010 +70 
Siorage Temperature T,., -5510 +'25 
Power Supply Drain (max.) I .. 100 

Unit 
Vdc 
·C 
·C 
mA 

ELECTRICAL CHARACTERISTICS (V" = 5.0 ± 5%, V .. = O,T. = O· 10 70'C, unless olherwise nOled) 

Characterl.tlc !Symbol Min Typ Mall 
Frequency 
Operallng Frequency I, .250 2.5 
Frequency siabilily (inclusive ±.01 
01 callbrallon lolerance al 
+25'C, operallng lemperalure, 
Inpul vollage change, load 
chal1ge, aging, shock and 
vibration) 

NMOS Outputs at 1.0 MHz Operation'" 
Pulse W,dlh (meas. al T0,H 430 
V .. = -.3V dc level) T0,H 450 
LogiC Levels VOLe V .. ·.l - V .. +.3 

V""c V,,·.3 - V,,+.1 
Rise and Fall Times I, 5 12 50 

I, 5 12 50 
• Overshool/ Unders hool 

Logic "1" V,,-.5 V,,+5 
Logic "0" Vos V .. -.5 V .. +.5 

Pulse durallon 01 any over-
shool or undershool To. 40 
PerIOd @ 0.3V dc Level I", 1.00 
Edge Timing @ V .. -0.3V dc Tx 940 
NMOS Relallonship I" 0 
@ +0.5Vdc 1.0, 0 8.0 

TTL Output. 
In rei. 10 0, NMOS @ 0.3V de 
0, TTL @ I.4V dc T. 15 30 45 

TH 10 25 40 
8, Ungaled @ I.4V dc Tc 30 50 70 

T, 20 40 60 
2xlc @ 1.4V dc T, 40 80 120 

Logic Level. VOH 2.4 3.2 
VOL .3 .4 

Rise and Fall Times 
.4V and 2.4V I, ·15 

2.4Vand .4V I, 15 
LogiC "0" Sink (lGale) Ioc -1.6 
Logic "I" Source (lGate) 10H +40 
Currenl Oulpul Shorted Is< -18 -57 

Load 
NMOS-Load Capacity 0 •. 0. I C."",. I 80 1120 1 160 I 
TTL-No. 01 Loads I I I I 5 I 
TTL-Load Capacity I CIIl I I 50 I 
Logic Input." ("0" Levelapplle. HOLD) 

Holds ~M~~'?Eo~.I.g~:·T~t 'Low' HOLl) 1 -.2 +.4 

Holds ~i~~.00~ NtH~'h~MOS HOLD 2 -.2 +.4 

InfO spec.lled lesl load 

"Musl be eltternally held at "'" level (2 4V min. S OV mall, lit nol used 
···Apply the tollowlng parameters for freQuenCies other Ihan 1 MHz 

ro,H=O 5 (P.140) ns . 
T02H=O 5 (P.IOD) ns 
h:(P'60) ns 
where P=desl1ed period of operation In nanoseconds 

Unit 

MHz 
% 

ns 
ns· 

Vdc 
Vdc 
ns 
ns 

Vdc 
Vdc 

ns 
us 
ns 

us 

ns 
ns 
ns 
ns 
ns 

Vdc 
Vdc 

ns 
ns 
mA 
uA 
mA 

pi 
ttl 
pi 

Vdc 

Vdc 

GND MC6~ 0 , NMOS +5VDC 8$1 ~ 2>" 
~:~~O~ 

-"l --±..:: 0 1 UNGATED 
HOLD 1 HOLD2 

DIMENSIONS 

PIN CONNECTION 

1 GND 

3 0, TTL UNGATED 

5 0,TIL 

7 V,,(+5VDC) 

12 0,NMOS 

13 0, NMOS 

18 GND 

20 HOLD 1 

PIN" LOCATION 
~ ,r----""';;J K3 MAX 

.",ot.OlOrlflflflf UL.020ot.OIO 
f- ,015·,021 OIA IPINS) 

1.100 

22 HOLD2 

24 2xlc 

Noll: 4xfc Ivailable on request 

NOle. A.II dlmenSlon •• re In Inches 

WAVEFORM TIMING • 
ALL TIME IN NANOSECONDS. 

TEST DIAGRAM 

L------(H5Lo1 
'-------(HOLD2 

CIIL - M.4.)(CAPACITY50pF 

C,.MQ~ - ~22fFl6A48 ~A~ ... ~~i;~~~IFIED 
THAT SIMULATES THE MOTOROLA 
Me6S00 MPU INPuT 

·~~:l~~ ~~~g !TM.UIS\~~El 
~~~~~~i~s~g"DC MAX I 

Rs-(22n) SIMULATES
REAL PART Of MPU

MOTOROLA INC. COMPONENT PRODUCTS DEPT.
2553 N. Edgington Franklin Park, III. 60131 312/451-1000

9-013

.1 MC6820

ELECTRICAL CHARACTERISTICS (Vcc = 5 0 V ±5% vss = 0 T A = 0 to 700 C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Input High Voltage Enable VIH VSS + 2.4 - VCC Vdc
Other Inputs VSS + 2.0 - VCC

Input Low Voltage Enable VIL VSS -0.3 - VSS + 0.4 Vdc
Other Inputs VSS -0.3 - V!;!; + 0.8

Input Leakage Current R/W,Reset, RSO, RS1, CSO, CS1, CS2, CAl, lin - 1.0 2.5 I'Adc

(Vin = 0 to 5.25 Vdc) CB1, Enable

Three·State (Off State) Input Current 00·07, PBO·PB7, CB2 'TSI - 2.0 10 I'Adc
(Vin = 0.4 to 2.4 Vdc)

Input High Current PAO·PA7, CA2 I'H -100 -250 - I'Adc
(V,H = 2.4 Vdc)

Input Low Current PAO·PA7, CA2 I,L - -1.0 -1.6 mAdc
(VIL = 0.4 Vdcl

Output High Voltage VOH Vdc
(I Load - -205 I'Adc, Enable Pulse Width < 25 I's) 00·07 VSS + 2.4 - -
(I Load = -100 /JAdc, Enable Pulse Width <25I's) Other Outputs VSS + 2.4 - -

Output Low Voltage VOL - - VSS + 0.4 Vdc
(I Load = 1.6 mAdc, Enable Pulse Width < 25 /Js)

Output High Current (Sourcing) IOH
(VOH = 2.4 Vdc) 00·07 -205 - - /JAdc

Other Outputs -100 - - /JAdc
(VO = 1.5 Vdc, the current for driving other than TTL, e.g.,
Darlington Base) PBO·PB7, CB2 -1.0 -2.5 -10 mAdc

Output Low Current (Sinking) IOL 1.6 - - mAdc
(VOL = 0.4 Vdc)

Output Leakage Current (Off State) IROA,IROB ILOH - 1.0 10 /JAdc
(VOH = 2.4 Vdc)

Power Dissipation Po - - 650 mW

Input Capacitance Enable Cin - - 20 pF
(Vin = 0, TA = 250 C, f = 1.0 MHz) 00·07 - - 12.5

PAO·PA7, PBO·PB7, CA2, CB2 - - 10
P./W, Reset, RSO, RS1, CSO, CS1, CS2, CAl, CBl - - 7.5

Output Capacitance IROA,IROB Cout - - 5.0 pF
(V in = 0, TA = 250 C, f = 1.0 MHz) PBO·PB7 - - 10

Peripheral Data Setup Time (F igure 1) tPDSU 200 - - ns

Delay Time, Enable negative transition to CA2 negative transition tCA2 - - 1.0 /JS
(Figure 2, 3)

Delay Time, Enable negative transition to CA2 positive transition tRSl - - 1.0 /JS
(Figure 2)

Rise and Fall Times for CA 1 and CA2 input signals (Figure 3) tr,tf - - 1.0 I'S
Delay Time from CA 1 active transition to CA2 positive transition tRS2 - - 2.0 I'S

(Figure 3)

Delay Time, Enable negative transition to Peripheral Data valid tpDW - - 1.0 I'S
(Figures 4, 5)

Delay Time, Enable negative transition to Peripheral CMOS Data Valid tCMOS - - 2.0 I'S
(VCC - 30% VCC, Figure 4; Figure 12 Load C) PAO·PA7, CA2

Delay Time, Enable positive transition to CB2 negative transition tCB2 - - 1.0 I'S
(Figure 6, 7)

Delay Time, Peripheral Data valid to CB2 negative transition tDC 20 - - ns
(Figure 5)

Delay Time, Enable positive transition to CB2 positive transition tRSl - - 1.0 I'S
(Figure 6)

Rise and Fall Time for CBl and CB2 input signals (Figure 7) tr,tf - - 1.0 I'S
Delay Time, CB 1 active transition to CB2 positive transition tRS2 - - 2.0 I'S

(Figure 7)

Interrupt Release Time, TFiQA and IROB (Figure 8) tlR - - 1.6 /JS
Reset Low Time· (Figure 9) tRL 2.0 - - I'S

·The Reset line must be high a minimum of 1.0 I'S before addressing the FlA.

@ MOTOROLA Semiconductor Products Inc. _______J

9-014

Q
w

~
a: o
Q.
a:
o
u
~
en
w

~ g
(I)
(I)

ct
o!I
w
Z
a:
o
CO
(I)

o
~
ct
Q
ct

@

MC6820

MAXIMUM RATINGS
Rating

Supply Voltage

Input Voltage

Operating Temperature Range

Storage Temperature Range

Thermal Resistance

BUS TIMING CHARACTERISTICS
READ (Figures 10 and 12)

Characteristic

Enable Cycle Time

Enable Pulse Width, High

Enable Pulse Width, Low

Symbol

VCC

Vin

TA
Tstg

°JA

Setup Time, Address and R!W valid to Enable positive transition

Data Delay Time

Data Hold Time

Address Hold Time

Rise and Fall Time for Enable input

WRITE (Figures 11 and 12)

Enable Cycle Time

Enable Pulse Width, High

Enable Pulse Width, Low

Setup Time, Address and R!W valid to Enable positive transition

Data Setup Time

Data Hold Time

Address Hold Time

Rise and Fall Time for Enable input

FIGURE 1 - PERIPHERAL DATA SETUP TIME
(Read Mode)

PAO-PA7=12.0 V
PBO-PB7 - ._...;;0.;.;.8;...V.;....-______ _

. . tPDSUt:

/
'-'2-.4-V---L

Enable . ____ ----I

Value Unit This device contains circuitry to protect the
-0.3 to +7.0 Vdc inputs against c.amage due to high static volt-

-0.3 to +7.0 Vdc ages or electric fields; however, it is advised that

o to +70 °c
normal precautions be taken to avoid applica-
tion of any voltage higher than maximum rated

-55 to +150 °c voltages to this high impedance circuit.

82.5 °C/W

Symbol Min Typ Max Unit

leycE 1.0 - - ,",s

PWEH 0.45 - 25 ,",s

PWEL 0.43 - - ,",S

tAS 160 - - ns

tDDR - - 320 ns

tH 10 - - ns

tAH 10 - - ns

tEr, tEt - - 25 ns

leycE 1.0 - - ,",s

PWEH 0.45 - 25 ,",s

PWEL 0.43 - - ,",s

tAS 160 - - ns

tDSW 195 - - ns

tH 10 - - ns

tAH 10 - - ns

tEr, tEf - - 25 ns

FIGURE 2 - CA2 DELAY TIME
(Read Mode; CRA·5 = CRA·3 = I:CRA-4 = 0)

Enable 0.4 V

CA2

tCA2

{v P' 2.4 V

.• Assumes part was deselected during
the previous E pulse.

FIGURE 3 - CA2 DELAY TIME
(Read Mode; CRA-5 = 1, CRA-3 = CRA-4 = 0)

Enable 0.4 V

CA1
" M2.0V.

N ft~0';...8_V __ _

____ --_t_C_A 2L~RS2 1
2
.4V

CA2
0.4 V

@ MOTORO.LA Semiconductor Products Inc. --------'

9-015

MC6820

FIGURE 4 - PERIPHERAL CMOS DATA DELAY TIMES
(Write Mode; CRA·5 = CRA·3 ~ 1, CRA-4 g 01

CB2

FIGURE 6 - CB2 DELAY TIME
(Write Mode; CRB·5" CRB·3" 1, CRB-4" 01

v~· 2.4J!
l--------'

"Assumes part was deselected during the
previous E pulse.

FIGURE 8 - iRa RELEASE TIME

~
'4V

Enable

tlRF _ .2.4 V

IRQ _______ -J

FIGURE 10 - BUS READ TIMING CHARACTERISTICS
(Read Information from PIAl

FIGURE 5 - PERIPHERAL DATA AND CB2 DELAY TIMES
(Write Mode; CRB-5 .. CRB·3 ,. 1, CRB-4 ·01

Enable

PBO·PB7

CBl

tDC-j

CB2 2.
4V'L.-

CB2 Note: CB2 goes low as a result of the
positive transition of Enable.

FIGURE 7 - CB2 DELAY TIME
(Write Mode; CRB·5" 1, CRB·3" CRB-4 ,. 01

' 2.4 V ~
tCB2 27--RS.2". "",

CB2 ' ,
0.4 V

"Assumes part was deselected during
any previous E pulse.

FIGURE 9 - RE'SEf LOW TIME

---.. r---tRL~ r-
Reset ~

"The Reset line must be a VIH for a minimum of
1.0 IlS before addressing the PIA.

FIGURE 11 - BUS WRITE TIMING CHARACTERISTICS
(Write Information into PIA)

'-------- @ MOTOROLA SenJiconductor Products Inc. ---------'

9-016

c
w

~
a:
o
a..
a:
o
(J

~
en
w

~ g
CI)
CI)

ct
olI
w
Z
a:
o
m
CI)

o
~
ct c
ct

@

MC6850

MAXIMUM RATINGS
R~lng . Symbol

Supply Voltage VCC

Input Voltage Vln

OperatinCl Temperature Range TA

Storage Temperature Range TstQ

Thermal Resistance liJA

Valua

-0.3 to +7.0

-0.3 to +7.0

o to +70

-55 to +150

82.5

. Unit

Vdc

Vdc

°c
°c

'!C/W

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields; however, it is ad·
vised that normal precautions be taken to
avoid application of any voltage higher
than maximum rated voltages to this high­
impedance circuit.

ELECTRICAL CHARACTERISTICS (VCC - 5 0 V 15% VSS a 0 T A - 0 to 700 C unless otherwise noted,)

Characteristic Symbol Min Typ Max Unit

Input High Voltage VIH VSS + 2.0 - VCC Vdc

Input Low Voltage VIL VSS -0.3 - VSS + 0.8 Vdc

Input Leakage Current R/W,CSO,CS 1,CS2,Enabie lin - 1.0 2.5 IlAdc

(V in = 0 to 5.25 Vdc)

Three-State (Off State) Input Current 00-07 ITSI - 2.0 10 IlAdc

(Vin a 0.4 to 2.4 Vdc)

Output High Voltage 00-07 VOH Vdc

(I Load - -205 IlAdc, Enable Pulse Width <25 IlS) VSS + 2.4 - -
(I Load a -100 IlAdc, Enable Pulse Width <25Ils) Tx Data, RTS VSS + 2.4 - -

Output Low Voltage VOL - VSS + 0.4 Vdc

(I Load = 1.6 mAdc, Enable Pulse Width <25 IlS)

Output Leakage Current (Off State) IRQ ILOH - 1.0 10 IlAdc

(VOH = 2.4 Vdc)

Power Dissipation Po - 300 525 mW

Input Capacitance Cin pF

(Vin = 0, T A = 250 C, f = 1.0 MHz) 00-07 - 10 12.5

E Tx Clk. Rx Clk, R/W, RS, Rx Data, CSO, CS1, CS2, CTS. DCD - 7.0 7.5

Output Capacitance RTS, Tx Data Cout - - 10 pF

(Vin = 0, TA = 250 C, f = 1.0 MHz) IRQ - - 5.0

Minimum Clock Pulse Width, Low (Figure 1) +16, +64 Modes PWCL 600 .:... - ns

Minimum Clock Pulse Width, High (Figure 2) +16, +64 Modes PWCH 600 - - ns

Clock Frequency +1 Mode fC - - 500 kHz

+16, +64 Modes - - 800

Clock-to-Data Delay for Transmitter (Figure 3) tTDD - - 1.0 IlS

Receive Data Setup Time (Figure 4) +1 Mode tRDSU 500 - - ns

Receive Data Hold Time (Figure 5) +1 Mode tRDH 500 - - ns

Interrupt Request Release Time (Figure 6) tlR - - 1.2 IlS

Request-to-Send Delay Time (Figure 6) tRTS - - 1.0 IlS

Input Transition Times (ExcePt Enable) tr,tf - - 1.0" IlS

"1.0 IlS or 10% of the pulse width. whichever is smaller.

BUS TIMING CHARACTERISTICS
READ (Figures 7 and 9)

Characteristic Symbol Min Typ Max Unit

Enabhi Cycle Time tcycE 1.0 - - IlS

Enable Pulse Width, High PWEH 0.45 - :lb IlS

Enable Pulse Width, Low PWEL 0.43 - - IlS

Setup Time, Address and R/W valid to Enable positive transition tAS 160 - - ns

Data Delay Time tDDR - - 320 ns

Data Hold Time tH 10 - ns

Address Hold Time tAH 10 - ns

Rise and Fall Time for Enable input . tEr, tEf - - 25 ns

WRITE (Figure 8 and 9)

Enable Cycle Time tcycE 1.0 - IlS

Enable Pulse Width, High PWEH 0.45 25 IlS

Enable Pulse Width, Low PWEL 0.43 - - IlS

Setup Time, Address and R/W valid to Enable positive transition tAS 160 - - ns

Data Setup Time tDSW 195 ns

Data Hold Time tH 10 - - ns

Address Hold Time tAH 10 - - ns

RiSe and Fall Time for Enable input tEr, tEf - - 25 ns

@ MOTOROLA SenJiconduct:or Product:s Inc. _______1

9-017

MC6850

FIGURE 1 - CLOCK PULSE WIDTH. LOW·STATE

Tx Clk
or

Ax Clk

FIGURE 3 - TR"ANSMIT DATA OUTPUT DELAY

TxClk ~ 0.8 V /

~
Tx Data --------..~ro-2:-;-:-----

FIGURE 5 - RECEIVE DATA HOLD TIME
(+1 Mode)

FIGURE 7 - BUS READ TIMING CHARACTERISTICS
(Read information from ACIA)

Enable

AS,CS,A/W

Data Bus

FIGURE 2 - CLOCK PULSE WIDTH. HIGH·STATE

Tx Clk

Ax Clk

FIGURE 4 - RECEIVE DATA SETUP TIME
(+1 Mode)

AXDat~2'OV
0.8V --------------------r::: 'RD'"

Ax Clock
____ ¥0.8V

FIGURE 6 - REQUEST·TO·SEND DELAY AND
INTERRUPT·REQUEST RELEASE TIMES

Enable

ATS

IRQ

tlA-L

________ ~ _ ___Jj2 2.4.4 V V

FIGURE 8 - BUS WRITE TIMING CHARACTERISTICS
(Write information into ACIA)

@ MOTOROLA Setniconductor Products Inc. _______ ..J

9-018

0'
w
~,
0::'
o
a.
0::
o
U
~
iii
w

~
g
en
en
c(

all
w
Z
0::
o
m
en o
~
c(
o
c(

@

, . ~ ,

MC6852 . '..',

MAXIMUM RATINGS
Rating Symbol V.lu. Unit This device contains circuitry to protect

Supply Voltage VCC -0.3 to +7.0 Vdc the inputt against damage due to high

Input Voltage Yin -0.3 to +7.0 Vdc static voltages or electric fields; however,

Operating Temperature Range TA o to +70 °C
is is advised that normal precautions be
taken to avoid epplicatlon of any voltage

Storage Temperature Range Tstg -55 to +150 OC higher than maximum ratad voltages to
Thermal Resistance ()JA 70 Ocm this hlgh-Impedanca circuit.

ELECTRICAL CHARACTERISTICS (VCC = 5.0 V ±5%, VSS = 0, T A = 0 to 700 C unless otherwise noted.l

Characteristic Symbol Min Typ Max Unit

Input High Voltage VIH VSS + 2.0 - - Vdc

Input Low Voltage VIL - - VSS + 0.8 Vdc

Input Leakage Current Tx Clk, Rx Clk, Rx Data, Enable, lin - 1.0 2.5 SlAde
(Vin = 0 to 5.25 Vdc) Reset, RS, RIW, CS, OCD, CTS

Three-State (Off State) Input Current 00-07 ITSI - 2.0 10 SlAde'
(Vin = 0.4 to 2.4 Vck, VCC = 5.25 Vdc)

Output High Voltage VOH Vdc
il Load = -205 SlAdc, Enable Pulse Width <25/As) 00-07 VSS + 2.4 - -
ULoad = -100 SlAdc, Enable Pulse Width <25/As) __

Tx Data, OTR, TUF VSS + 2.4 - -
Output Low Voltage VOL - - VSS+0.4 Vdc

(lLn..n = 1.6 mAdc, Enable Pulse Width <25/As)

Output Leakage Current (Off State) IRQ ILOH - 1.0 10 SlAdc
(VOH = 2.4 Vdc)

Power Dissipation Po - 300 525 mW

I nput Capacitance Cin pF
(Vin = 0, T A = 250 C, f = 1.0 MHz) 00-07 - - 12.5

All Other Inputs - - 7.5

Output Capacitance Tx Data, SM/OTR, TUF Cout - - 10 pF
(Vin = 0, TA = 250 C, f = 1.0 MHz) IRQ 5.0

Minimum Clock Pulse Width, Low (Figure 1) PWCL 700 - - ns

Minimum Clock Pulse Width, High (Figure 2) PWCH 700 - - ns

Clock Frequency fC - - 600 kHz

Recaive Data Setup Time (Figure 3, 7) tROSU 350 - - ns

Receive Data Hold Time (Figure 3) tROH 350 - - ns

Sync Match Delay Time (Figure 3) tSM - - 1.0 /AS
Clock-to-Oata Delay for Transmitter (Figure 4) tTOO - - 1.0 /AS
Transmitter Underflow (Figure 4,6) tTUF - - 1.0 /AS
OTR Delay Time (Figure 5) tOTR - - 1.0 /AS

Interrupt Request Release Time (Figure 5) IIR - - 1.2 /AS

Reset Minimum Pulse Width tR ... 1.0 - - /AS

CTS Setup Time (Figure 6) tCTS - - 200 ns

OCO Setup Time (Figure 7) toco - - 500 ns

Input Rise and Fall Times (except Enable) tr.tf - - 1.0' /AS
(0.8 V to 2.0 V)

'1.0 SlS or 10",(, of the pulse width, whichever is smaller.

FIGURE 1 - CLOCK PULSE WIDTH, LOW-STATE FIGURE 2 - CLOCK PULSE WIDTH. HIGH-STATE

-PWCL-

TXClk~ V- TXClk~ 2.0V ~L or ' or '

Rx Clk O.BV Rx Clk

-PWCH-

MOTOROLA Semiconductor Products Inc.

9-019

MC6852 '. .
. . .

BUS TIMING CHARACTERISTICS
READ IF' Igures 8 d 101 an

Characteristic Symbol Min Typ Max Unit

Enable Cyele Time teyeE 1.0 - - IlS

Enable Pulse Width, High PWEH 0.45 - 25 Ils

En~ble Pulse Width, Low PWEL 0.43 - - IlS

Setup Time, Address and R/W valid to Enable positive transition tAS 160 - - ns

Data Delay Time tDDR - - 320 ns

Data Hold Time tH 10 - - ns

Address Hold Time tAH 10 - - ns

Rise and Fall Time for Enable input tEr, tEf - - 25 ns

WRITE (Figures 9 and 101

Enable Cycle Time teyeE 1.0 - - ,IlS

Enable Pulse Width, High PWEH 0.45 - 25 IlS

Enable Pulse Width, Low PWEL 0.43 - - I'S

Setup Time, Address and R/W valid to Enable positive transition tAS 160 - - ns

Data S!ltup lime tDSW 195 - - ns

Data Hold lime tH 10 - - ns

Address Hold Time tAH 10 - - ns

Rise and Fall Time for Enable input tEr, tEf - - 25 ns

FIGURE 3 - RECEIVE DATA SETUP'AND HOLD TIMES AND SYNC MATCH DELAY TIME

Rx Clk

Rx Data

Number of bits in character

~ = Don't care

DO

Sync Match 0.4 V

FIGURE 4 - TRANSMIT DATA OUTPUT DELAY AND
TRANSMITTER UNDERFLOW DELAY TIME

TUF _______________ -J

n = Number of bits in character

t-----~ ~e~l~dClk--_~

FIGURE 5 - DATA TERMINAL READY AND INTERRUPT
REQUEST RELEASE TIMES

Enable

2.0 V

tlR ---J}--­
_________ ~__' 2.4 V

® MOTOROLA Semiconductor Products Inc.

9-020

c
w

!i
a:
o
0.
a:
o
(.)

~
ui
w

!i
C3 o
C/)
C/)

«
olJ
w
Z
a:
o
III
C/)

o
~ « c «
@

. ,

, MC6852.
• • ~ 'f ,\ I

FIGURE 6 CLEAR-TO-5END SETUP TIME

O.B V
Tx elk

Tx oata ___________ --Ir DO

FIGURE 8 - BUS READ TIMING CHARACTERISTICS
(Read information from SSDAI

Enabl.

Data BUI

FIGURE 7 - DATA CARRIER DETECT SETUP TIME

Rx elk

)fUlV
Rx Data _______ '~ V DO

FIGURE 9 - BUS WRITE TIMING CHARACTERISTICS
(Write information..,into SSDAI

FIGURE 10 - BUS TIMING TEST LOADS

Load A
(00-07, OTR, Tx Data, TUF)

5.0 V

R L = 2.5 k

Test Point 0-:.. _--I0Il -+ MMD6150
... ~, or Equiv.

R

e a 130 pF for 00-07

~, MM07000

~, or Equiv.

~ 30 pF for OTR, Tx Data, and TUF

Load B
(IRQ Onlvl

~
5'OV

3 k

Test Point .

roo"
R = 11.7 k!1 for 00-07

= 24 k!1 for OTR, Tx'Oata, and TUF

® MOTOROLA Semiconductor Products Inc.

9-D21

MC6840

MAXIMUM RATINGS

Rating Symbol

Supply Voltage VCC
Input Voltage Vin
Operating Temperature Range TA

Storage Temperature Range Tstg
Thermal Resistance liJA

Value

-0.3 to +7.0

-0.3 to +7.0

o to +70

-55to+150

82.5

Unit

Vdc

Vdc

°c

°c

°C/W

This device contains. circitry to protect
the inputs against damage due to high static
voltages or electric fields; however, it is advised
that normal precautions be taken to avoid
application of any voltage higher than maximum
rated voltages to this high-impedance circuit.

. ELECTRICAL CHARACTERISTICS (Vee = 5.0 V ±5%, VSS = 0, TA = 0 to 700 e unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Input High Voltage VIH VSS +2.0 - VCC Vdc

Input Low Voltage VIL VSS -0.3 - VSS +0.8

Input Leakage Current lin - 1.0 2.5 J..tAdc
(Vin = 0 to 5.25 V)

Three-State (Off State) Input Current 00-07 ITSI - 2.0 10 J..tAdc
(Vin = 0.4 to 2.4 V)

Output High Voltage VOH Vdc

(I'oad = -205 J..tA) 00-07 VSS +2.4 - -
(I'oad = -200 J..tA) . Other Outputs VSS +2.4 - -

Output Low Voltage VOL Vdc

(I load = 1.6 mAl 00-07 - - VSS +0.4
(I load = 3.2 mAl 01-03,IRQ - - VSS+0.4

Output Leakage Current (Off State) IRQ ILOH - 1.0 10 J..tAdc
(VOH = 2.4 Vdc)

Power Dissipation Po - - 550 mW

Input Capacitance Cin pF

(V in = 0, TA = 250 C, f = 1.0 MHz) 00-07 - - 12.5
All others - - 7.5

Output Capacitance Cout pF

(V in = 0, TA = 250 C, f = 1.0 MHz) IRQ - - 5.0

01,02,03 - -. 10

BUSTIMINGCHARACTERISTICS

Characteristic Symbol Min Max Unit

READ (See Figures 2 and 8)

Enable Cycle Time tcycE 1.0 10 J..ts
Enable Pulse Width, High PWEH 0.45 4.5 J..ts
Enable Pulse Width, Low PWEL 0.43 - J..ts
Setup Time, Address and R/W valid to enable positive transition tAS 160 - ns
Data Delay Time to DR - 320 ns
Data Hold Time tH 10 - ns

Address~old Time tAH 10 - ns

Rise and Fall Time for Enable input tEr, tEf - 25 ns

WRITE (See Figures 3 and 8)

Enable Cycle Time tcycE 1.0 10 J..ts
Enable Pulse Width, High PWEH 0.45 4.5 J..ts
Enable Pulse Width, Low PWEL . 0.43 - J..ts

Setup Time, Address and R/W valid to enable positive transition tAS 160 - ns

Data Setup"Time tDSW 195 - ns

Data Hold Time tH 10 - ns

Address Hold Time tAH 10 - ns

Rise and Fall Time for Enable input tEr, TEf - 25 ns

® MOTOROLA Serniconducf:or.Producf:s In~.·

9-022

c
w

~
a:
o
Q.
a:
o
u
~
u)
w

~ g
en
en
c:(

o!I
w
2:
a:
o
IJl
en o
:E
c:(
c
c:(

@

MC6840 ' '" - . .
.... t _ ... "" ___ "". ~, " .!." ''''' _ "'".. • " , • •

AC OPERATING CHARACTERISTICS

Characteristic

Input Rise and Fall Times C, G and Reset
Input Pulse Width Low (Figure 4) e, G and Reset

Input Pulse Width High (Figure 5) e,G
Input Setup Time (Figure 6) e, G and Reset

(Synchronous Mode) - C3 (-;-8 Prescaler Mode only)

Input Hold Time (Figure 6) e, G and Reset -
(Synchronous Mode) C3 (+8 Prescaler Mode only)

Output Delay, 01-03 (Figure 7)
(VOH = 2.4 V, Load A) TTL
(VOH = 2.4 V, Load C) MOS
(VOH = 0.7 VDD, Load C) CMOS

Interrupt Release Time

'tr and tf .; 1 x Pulse Width or 1.0 IlS, whichever is smaller.

FIGURE 2 - BUS READ TIMING CHARACTERISTICS
(Read Information from PTM)

FIGURE 4 - INPUT PULSE WIDTH LOW

C1-C3
G1-G3

Reset

Symbol

tr,tf

PWL

PWH

tsu

thd

tco
tcm

tcmos

tlR

Min Max Unit

~ 1.0' IlS

tcycE + tsu + thd - ns

tcycE + tSi . + thd - ns

200 - ns
- -

50 - ns
- -

- 700 ns

- 450 ns
- 2.0 IlS

- 1.6 IlS

FIGURE 3 - BUS WRITE TIMING CHARACTERISTICS
(Write Information into PTM)

FIGURE 5 - INPUT PULSE WIDTH HIGH

C1-C3
Gi-G3

® MOTOROLA Serniconduc-tor Produc-ts' Inc.

9-023

MC6840

FIGURE 6 - INPUT SETUP AND HOLD TIMES

C1-C3, G1-G3,

RESE'f

Enable

FIGURE 8 - IRQ RELEASE TIME

FIGURE 7 - OUTPUT DELAY

,",,,·t.,"~,
_
________ ---J 2.4 V

TAO _

FIGURE 9 - BUS TIMING TEST LOADS

Load A Load B
(00-07) (01,02,03)

5.0 V VCC of device under test

RL= 2.5 k
RL= 1.25 k

Test Point MM06150
Test Point MM06150

~, or Equiv.
~, or Equiv.

130 pF;;;;; . 11.7 k ~ 40 pF 11.7 k ,
MMO 7000

I
MM07000 , or Equiv. or Equiv.

~ ~

-= ":::- -=

Load C

(IRQ Only)

5.0 V

Load 0
(CMOS Load) d" Test Point Test Point 1

,,,,, I r"
® MOTOROLA Semiconductor Products Inc.

9-024

c
w

!i
a:
o
0.
a:
o
o
~
en
w

!i
g
CI)
CI)
c(

o!I
w
Z
a:
o
a:I
CI)

o
~
c(
c
c(

@

MC6844 '.'-, '··-'V". .. ,,';. '.. " ... ' ~.', " ',- " 0 '. "'" •• • ",.

MAXIMUM RATINGS

Rating Symbol

Supply Voltage VCC·

Input Voltage Vin'

Operating Temperature Range TA

Storage Temperature Range Tstg

Thermal Resistance ROJA

'In respect to Vss.

RECOMMENDED OPERATING CONDITIONS

Rating Symbol

Power Supply Voltage VCC

Input Voltage VIL
VIH

Operating Ambient Temperature Range TA

Value

-0.3 to +7.0

-0.3 to +7.0

o to +70

-55 to +150

82.5

Value

+4.75 to +5.25

-0.3 to +0.8

2.0 to VCC

o to +70

Unit

Vdc

Vdc

°c

uc

uC/W

Unit

Vdc

Vdc

uC

Permanent device damage may occur
if ABSOLUTE MAXIMUM RATINGS are
exceeded. Functional operation should
be reuricted to RECOMMENDED
OPERATING CONDITIONS. Exposure to
higher than recommended voltages for
extended periods of time could affect
device reliability.

ELE.CTRICAL CHARACTERISTICS (VCC - 5.0 V ± 5%, VSS = 0, TA = -20 to +750 C unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Input High Voltage VIH VSS +2.0 - VCC Vdc

Input Low Voltage VIL VSS -0.3 - VSS +0.8 Vdc

Input Leakage Current TXIRQO-3,<I>2 DMA, RES, DGRNT lin - - 2.5 /JAde
(Vin = 0 to 5.25 V)

Three-State Leakage Current AO-A15, RIW ITSI -10 - 10 /JAde
(Vin ~ 0,4 to 2.4 V) 00-07

Output High Voltage VOH Vdc

(I Load = -205 /JAde) 00-07 VSS +2.4 - -
(I Load = -145 /JAde) AO-15, R/Vii VSS +2.4 - -
(lLoad = -100 /JAde) All Others VSS +2.4 - -

Output Low Voltage VOL - - VSS +0.4 Vdc

(lLoad = 1.6 mAde)

Source Current ICSS - 10 -
(Vin = 0 Vdc, Figure 10) Cs/Tx AKB

Power Dissipation Po - 500 - mW

Capacitance Cin pF

(V in ~O, TA = 250 C, f = 1.0 MHz) <l>2DMA - - 20
00-07, Cs, AO-A4, R/Vii - - 12.5

All Others - - 10

Cout - - 12 pF

® MOTOROLA Semiconductor Products Inc.

9-D25

MC6844 . . . \ . "', .- ~ " . . _, .

BUS TIMING CHARACTERISTICS (Load Condition Figure 11)

Characteristic ·1 Symbol Min Max Unit

READ TIMING (Figure 4)

Address Setup Time AO-A4~RIW,CS tAS 160 - ns

Address Input Hold Time AO-A4, RIW, CS tAHI 10 - ns

Data Delay Time' 00-07 tOOR - 320 ns

Data Access Time 00-07 tACC - 480 ns

Data Output Hold Time 00-07 tOHR 10 - ns

WRITE TIMING (Figure 4)

Address Setup Time AO-A4,RIW,CS tAS 160 - ns

Address Input Hold Time AO-A4, RIW,CS tAHI 10 - ns

Data Setup Time 00-07 tosw 195 - ns -.

Data Input Hold Time 00-07 tOHW 10 - ns

CLOCK TIMING

Characteristic Symbol' Min Max Unit

¢2 OMA (See Figure 4)

Cycle Time tCYC 1000 - ns

Pulse Width-High PWH 450 - ns
Low PWL 430 -

Rise and Fall Time t¢r,t¢f - 25 ns

OMA TIMING (Load Condition Figure 11)

Tx RQ Setup Time (Figure 5) ns
¢2 OMA Rising Edge tTQSl 120 -
¢2 OMA Falling Edge tTQS2 210 -

Tx RQ Hold Time (Figure 5) ns
¢2 OMA Rising Edge tTQHl 20 -
¢2 OMA Falling Edge tTQS2 20 -

OGRNT Setup Time (Figure 6) tOGS 155 - ns

OGRNT Hold Time (Figure 6) tOGH 10 - ns

Address Output Delay Time (Figure 15) AO-A15, RIW, Tx STB tAD - 270 ns

Address Output Hold Time (Figure 15) AO-15, R/W tAHO 30 - ns
Tx STB 35 -

Address Three-State Delay Time (Figure 8) AO-A15, RIW tATSO - 700 ns

Address Three-State Recovery Time (Figure 8) tATSR - 400 ns

Delay Time (Figure 7) ORQH,ORQT tOQO - 375 ns

Tx AK Delay Time ns
¢2 OMA Rising Edge (Figure 7) tTKOl - 400
OGRNT Rising Edge (Figure 10) tTK02 - 190

IRQ/DENO Delay Time ns
¢2 OMA Falling Edge (Figure 8) tOEOl - 300
OGRNT Rising Edge (Figure 10) tOE02 - 190

® MOTOROLA, Semiconductor Products Inc. ,

9-026

c
w
~ a:
o
A­
a: o
CJ
~
en
w

~ g
U)
U)
ct
011
w
Z a:
o
CD
U)
o
:IE
ct c
ct

@

MC6844 . '" • .• ..' , '"

FIGURE 4 - READ/WRITE OPERATION SEQUENCE

tJ>2DMA

AO-A4 (Input)

R/ON (Input)

Cs (Input)

(Write Operation)

FIGURE 5 - Tx RQ INPUT TIMING

FIGURE 6 - DGRNT INPUT TIMING

Satup Timing

tJ>2DMA~ ._ ~

F::: ~~l-tDGS
DGRNT

Hold Timing

tJ>2DMA

DGRNT

jO.8V
'DGH K=

2.0 V
0.8 V

0.8 V

FIGURE 7 - DiffiH. DRQT. TxAK OUTPUT TIMING

tJ>2DMA

TxAKA
CS/Tx AKB (Output) _____J -,:.;:;.;...;.....;.... ___ _

FIGURE 8 - ADDRESS. IRO/DEND OUTPUT TIMING

AO-A15 (Output)

R/ON (Output), Tx STB __ +-J .,.~~-------r

FIGURE 9 - ADDRESS THREE·STATE TIMING

tJ>2DMA
(or DGRNT)

AO-A15, RM

tJ>2DMA
(or DGRNT)

AO-A15, R/ON

tATSD~ ---------2- 2.4 V

______JI 0.4 V

FIGURE 10 - Tx AKB, IRO/DEND
OUTPUT TIMING FROM DGRNT INPUT

DGRNT

CS/Tx AKB (Output)

® MOTOROLA Semiconductor Products Inc.

9-027

MC6844 ' ..,.. •. . • . . . , . . '-

FIGURE 11 - TEST LOADS

5.0 V

2.5 k

01
Test Point o-.... _-~I_

02

e R 03

04

Test Pin C=pF

00-07 130

AO-A15, R/W 90

eS/Tx AKB 50

Others 30

Rckn

11.7

16.5

24

24

FIGURE 12 - Cs/TxAKB
SOURCE CURRENT TEST CIRCUIT

1---------------,
.Vee I

~
I

TxAKB

Enable Vss

es Input
L- ____________ ..J

9-028

Meter

Q
w

~
a: o
Q.
a:
o
o
~
en
w

~ g
CI)
CI)

~

ai:S
w
Z
a:
o
a:I
CI)

o
~
~
Q
~

@

MC6846
.... A'. • __ _."!,. ,I ~" _

MAXIMUM RATINGS
Rating Symbol

SupplV Voltage VCC
Input Voltage Vin
Operating Tempera!uni Range TA
Storage Temperature Range Tstg
Thermal Resistance °JA

Value

-0.3 to +7.0

-0.3 to +7.0

o to +70

-55 to +150

70

Unit

Vdc

Vdc

°C
oC

9C/W

This device contains circuitry to protect
the inputs against damage due to high
static voltages or electric fields; however,
is is advised that normal precautions be
taken to avoid application of any voltage
higher than maximum rated voltages to
this high·impedance circuit.

ELECTRICAL CHARACTERISTICS (VCC = 5.0 V ± 5%, VSS = 0, TA = 0 to 700 C unless otherwise noted.l

Characteristic Svmbol Min TVp Max Unit

Input High Voltage All Inputs VIH VSS + 2.0 - VCC Vdc

Input Low Voltage All Inputs VIL VSS -0.3 - VSS + O.B Vdc

Clock Overshoot/Undershoot - Input High Level VOS VCC -0.5 - VCC + 0.5 Vdc

- Input Low Level VSS -0.5 - VSS + 0.5
Input Leakage Current RlW, Reset, CSO, CSl lin - 1.0 2.5 !lAdc

(Vin = 0 to 5.25 Vdc) CP1, CTG, CTC. E. AO-Al0

Three-State (Off State) Input Current 00-07 ITSI - 2_0 10 !lAdc
(Vin 004 to 204 Vdc) PPO-PP7. CP2

Output High Voltage VOH Vdc
(I Load = -205 !lAde.) 00-07 VSS + 204 - -
(I Load = -200 !lAdc) Other Outputs VSS + 204 - -

Output Low Voltage VOL Vdc
(I Load = 1.6 mAde) 00-07 - - VSS + 004
(I Load = 3_2 mAde) Other Outputs - - VSS + 004

Output High Current (Sourcing) IOH /lAde
(VOH = 204 Vdc) 00-07 -205 - -

Other Outputs -200 - -
(VO = 1.5 Vdc, the current for driving other than TTL, e.g .•
Darlington Base) CP2. PPO-PP7 -1.0 - -10 mAde

Output Low Current (Sinking) IOL mAdc
(VOL = 004 Vdc) 00-07 1.6 - -

Other Outputs 3.2 - -
Output Leakage Current (Off State) IRQ ILOH - - 10 /lAde

(VOH = 204 Vdc)

Power Dissipation Po - - 1000 mW

Capacitance Cin - - 20 pF
(Vin = O. TA = 250 C. f = 1.0 MHz) 00-07 - - 12.5

PPO-PP7. CP2 - - 10
AO-Al0. RiW. Reset. CSO. CS1. CPl. CTC. CTG - - 7.5

IRQ
PPO-PP7. CP2. CTO Cout - 5.0 pF

- 10

Frequencv of Operation f 0.1 - 1.0 MHz

Clock Timing
Cvcle Time "leveE 1.0 - - !lS

Reset Low Time tRL 2 - - !lS

Interrupt Release tlR - - 1.6 !lS

® MOTOROLA Semiconductor Products Inc.

9-029

MC6846

READ/WRITETIMING (Figures 3 and 4)

Characteristic

Enable Pulse Width, Low

Enable Pulse Width, High

Set Up Time (Address eso, CS1, Rm)

Data Delay Time

Data Hold Time

Address Hold Time

Rise and Fall Time

Data Set Up Time

BUS TIMING
Peripheral 1/0 LInes

Peripheral Data Setup

"

Rise and Fall Times CP1, CP2

Delay Time E to CP2 Fall

Delay Tme 1/0 Data CP2 Fall

Delay Time E to CP2 Rise

,Delay Time CPl to CP2 Rise

Peripheral Data Delay

Characteristic

Peripheral Data Setup Time for Latch

Peripheral Data Hold Time for Latch

Timer-Counter Lines

Input Rise and Fall Time

,!nput Pulse Width High
(Asynchronous Mode)

Input Pulse Width Low
(Asychronous Mode)

Input Setup Time
(Synchronous Mode)

Input Hold Time
(Synchronous Mode)

Output Delay

Aiw,A,CS

Data Bu.

FIGURE 3 - BUS READ TIMING
Read Information from MC6846)

CTC and CTG

Symbol

PWEL

PWEH

tAS

tDDR

tH

tAH

tEf,tEr

tDSW

Symbol

tPDSU

tPr' tpc

tCP2

tDC

tRSl

tRS2

tPDW

tpsu

tPDH

tCR, tCF

tPWH

tPWL

tsu

thd

tCTO

Am, A, CS

Data Bus

Min Typ Max

430 - -
430 - -
160 - -
- - 320

10 - -
10 - -
- - 25

195 - -

Min Typ Max

200 - -
- - 1.0

- - 1.0

20 - -
- - 1.0

- - 2.0

- - 1.0

100 - -
15 - -

- - 100

!eyc + 250 - -

tcyc + 250 - -

200 - -
60 - -
- - 1.0

FIGURE 4 - BUS WRITE TIMING
(Write Information from MPU)

Unit

ns

ns

ns

ns

ns,

ns

ns

ns

Unit

ns

IlS

IlS

ns

IlS

IlS

IlS

ns

ns

ns

ns

ns

ns

ns

IlS

FIGURE 5 - PERIPHERAL PORT LATCH SETUP AND HOLD TIME

PPO·PP7

2.0 V
CPl

0.8 V

L-~'--:"; ___ ® MOTOROLA Semiconductor Products Inc.

9-D30

c
w

~
a:
o
0.
a:
o
o
!:
u)
w

~
U o
CI)
CI)

ct
o!I
w
Z
a:
o
10
CI)

o
~
ct
C
ct

@

Chapter 10
THE MOS TECHNOLOGY MCS6500

In many ways the MCS6500 microcomputer systems can be compared to the Zilog zao, which we described in
Chapter 7. Just as the zao is an enhancement of the aOaOA, which is described in Chapter 4, so MOS Tech­
nology's products are enhancements of the MC6aOO, which we described in Chapter 9.

But there are some interesting conceptual differences between the way MOS Technology went about enhanc­
ing the MC6aOO, as compared to the product enhancement philosophy adopted by Zilog.

The zao is indeed an enhancement of the aOaOA, but only to the extent that the aOabA instruction set is a
subset of the zao instruction set; there are architectural similarities between the zao and the aOaOA, but
System Bus philosophies are markedly different. It would be hard to look upon the zao as simply another mem~
ber of the aOaOA ,family of microcomputer devices.

The MCS6500 product line, by way of contrast, can be looked upon as a CPU whose philosophical concepts
agree closely with the MC6aOO product line -without being in any way compatible, either in terms of instruc­
tion set or System Bus philosophy. While on the surface it may appear as though MCS6500 CPUs represent some
form of an MC6800 superset. this is not the case. System Busses are sufficiently different that you could not consider
replacing an MC6800 CPU with an MCS6500 equivalent. leaving other logic unaltered. Instruction sets are similar. but
deceptively so. In reality. the instruction sets are sufficiently different that converting an MC6800 source program to its
MCS6500 equivalent is nosimple task. It would be completely impossible to take an MC6800 program ROM and use it
to drive an MCS6500 CPU. Recall that you can take an 8080A program ROM and use it to drive a Z80 CPU.

Since this chapter is devoted to the MOS Technology product line, let us begin by summarizing the components
of this product line, and the principal CPU enhancements that have been made.

The MaS Technology devices described in this chapter consist of nine CPUs. plus two support circuits. A third support
circuit is described in Chapter 9.

The nine CPUs share the same instruction set and addressing modes. but have minor differences in packaging and
system interface. Table 10-1 summarizes the nine CPUs.

The two support circuits which are described in this chapter are the MCS6522 Peripheral Interface Adapter and the
MCS6530 combination logic device. Another PIA. the MCS6520 PIA. is identical to the MC6852 PIA; for a description
of this device see Chapter 9.

MCS6500 support devices are described in this chapter rather than in Volume 3, because, like the MC6aOO, the
MCS6500 relies on a synchronizing clock signal. While it would be possible to use MCS6500 support devices
with other microprocessors, the extra 'Iogic needed in order to create MCS6500 compatible bus interfaces
would not be sufficiently rewarded by the specific capabilities of the support parts themselves. MCS6500 sup­
port devices can be used with MC6800 microprocessors and. conversely. MC6800 support devices can be used with
the MCS6500 CPU.

In order to enhance the MC6aOO CPU, MOS Technology made a number of useful yet obvious instruction set
changes; they also made a number of subjective architectural changes which might have significant impact in
particular applications, but which in general result in products that adhere quite closely to MC6aOO philosophy.

The most important enhancement that MOS Technology has made is to develop a whole family of CPU devices.

The second most important feature of the MCS6500 line of CPU devices is the fact that the MCS650X series
CPUs contain on-chip clock logic; therefore. when using these CPUs.you do not need an MC6870 series clock device.
However. you will need an external crystal oscillator or RC network - which is typical of any microprocessor with on­
chip clock logic.

Another important feature of all MCS6500 series CPUs is that you cannot float the Address and Data Busses
separately during <1>1 high and <1>1 low clock pulses, and there is no HALT condition. Also, you cannot stretch
clock pulses. Slow memories are accommodated in the more traditional manner. by allowing you to insert extra
machine cycles. equivalent to 8080A Wait states.

10-1

If you are making extensive use of clock stretching. or DMA data transfers during Halt states. in an MC6800 microcom­
puter system. switching to an MCS6500 CPU will require considerable system redesign.

In order to refresh dynamic memory in an MCS6500 system, you must "steal" machine cycles by inserting Wait
states, as you would for slow memories.

MOS Technology, the principal manufacturer of the MCS6500 product line, is located at:

Second sources are:

MOS TECHNOLOGY. INC.
950 Rittenhouse Road
Norristown. PA 19401

SYNERTEK. INC.
1901 Old Middlefield Way

Mountain View. CA 94043

ROCKWELL INTERNATIONAL
Microcomputer Division
337 Miraloma Avenue
Anaheim. CA 92803

The MCS6S00 devices use a single +5V power supply. Using a 1 microsecond clock, instruction execution
times range from 2 to 12 microseconds.

All MCS6500 devices have TTL compatible signals.

N-channel, silicon gate, depletion load MOS technology is used for MCS6500 devices.

THE MCS6500 SERIES CPUs

Functions implemented on each of the MCS6500 CPUs are illustrated in Figure 10-1. As this figure would imply,
capabilities offered by the various MCS6500 CPUs differ in scope rather than function.

Table 10-1. A Comparison of MCS6500 Series and the MC6800 CPU Devices

, CPU PINS 'AND SIGNAls

III
::I ..

I~
cg

III
!a ~ COMMENTS
w a: « u

it c ~ ~ i~
z ~ I~ w III

C i e; ~ ~ ~
cg z

u « c a: a: c !:

6502 AO-A15 00-07 I 0 0 I I I 0 I I 0 40 This is the on-chip-clock version of the 6512.
6503 AO-All 00-07 I 0 I I i 0 28 This is the on-chip-clock version of the 6513.
6504 AO-A12 00-07 I 0 I I I 0 28 This is the on-chip-clock version of the 6514.
6505 AO-All 00-07 I 0 I I

01

I 0 28 This is the on-chip-clock version of the 6515.
6506 AO-All 00-07 I 0 0 I I 0 28 On-chip-clock version. 4K memory. iRcl .. <Ill (out! and <Il2 (out!.
6512 AO-A15 00-07 I I/O I I I I I 0 I 40 This CPU is most like the MC6800. The HALT. VMA. TSC and SA signals

are not prasent. SYNC. SO. <Il2 (out! and ROY are added.
I

6513 AO-All 00-07 I ! I I I I 0 28 .4K memory with iRa: and NMi.
6514 AO-All 00-07 I I I I 0, 2~ 8K memory with iRci.
6515 AO-All 00-07 I I I I I 0: 28 4K memory with iRQ and ROY.

MC6800 AO-A15 00-07 I, I I I I 0 I 40 The MC6800 TSC. VMA. SA and HALT signals are not implemented on
any MCS6500 CPU.

·The second name is the name used by MC6800 literature for the same signal. -
Within CPU PINS AND SIGNALS columns, I identifies an input signal present, 0 identifies an output signal present, I/O identifies a signal
that appears twice, at two pins, one as an input, the other as an output.

10-2

c
w
~
a:
o
11.
a:
o
u
~
en
w

~
(j
o
en
en
ct
~
w
Z
a:
o
!Xl
en o
~
ct
C
ct
@

Logic to Handle
Interrupt Requests

from
External Devices

Interrupt Priority
Arbitration

Interface Logic

Programmable
Timers

Arithmetic and
Logic Unit

Interface Logic

Read Only
Memory

System Bus

I/O Ports
Interface Logic

I/O Ports

Figure 10-1. Logic of MCS6500 Series CPU Devices

MCS6500 SERIES CPU PROGRAMMABLE REGISTERS

~ 650X Devices On IV

I' , I All Devices

The MCS6500 series CPUs all have the same programmable registers; they may be illustrated as follows:

15 7 0

I Accumulator A

I Index Register X

J Index Register Y

I Program Counter PC

I Stack Pointer SP

I Status Register

The MC6800 has two Accumulators; the MCS6500 has just one.

The Index register represents a significant departure from the MC6800. The MCS6500 breaks one 16-bit Index
register into two 8-bit Index registers. '

The MCS6500 Stack Pointer also represents a significant departure frRm MC6800 architecture. The MC6800 Stack
Pointer is 16 bits wide. which means that the Stack may be located anywhere in memory. and may be of any length.

10-3

The MCS6500 Stack Pointer is S bits wide, which means that maximum Stack length is 256 bytes. The CPU al­
ways inserts 0116 as the high-order byte of any Stack address. which means that memory locations 010016 through
01 FF16 are permanently assigned to the Stack:

L.~SP
+

l
01 XX is the Stack address

There is nothing very significant about the shorter MCS6500 Stack Pointer if you are using this CPU as a stand­
alone product. A 256-byte Stack is usually sufficient for any typical microcomputer application: and its location in
early memory simply means that low memory addresses must be implemented as read/write memory. If you are
transferring from an MC6S00 to an MCS6500, however, there are two very important consequences of the
shorter MCS6500 Stack Pointer. '

The first and most important consequence is that you are unlikely to be so lucky as to have implemented the MC6800
Stack within the address space that the MCS6500 requires. Therefore. you will have to reassemble MC6800 programs.
repartitioning memory in order to run the same programs in an MCS6500 microcomputer system.

A less obvious consequence of a shorter MCS6500 Stack Pointer is the fact that many MC6800 programs use the Stack
Pointer as an alternate Index register. If you have used the Stack Pointer in this way when writing programs for an
MC6800 microcomputer system. the program conversion. when going to 'an MCS6500 system. could be significant.

The MCS6500 Program Counter is a typical program counter, identical to the MC6S00 implementation.

MCS6500 MEMORY ADDRESSING MODES
MCS6500 memory reference instructions use direct addressing, indexed addressing, and indirect addressing.
The ~C6S00 has no indirect addressing and different indexed addressing.

The MC~~OOand MCS6500 have identical direct addressing. Three-byte instructions use the second and third
bytes of 'the object code to provide a direct. 16-bit address: therefore. '65.536 bytes of memory can be addressed
directly. The commonly used memory reference instructions also have a two-byte object code variation. where the sec­
ond byte directly addresses one of the first 256 bytes of memory.

MCS6500 direct indexed addressing differs markedly from MC6S00 indexed addressing.

The MCS6500 offers base page, indexed addressing. In this case. the instruction has two bytes of object code. The
contents of either the X or Y Index registers are added to the second object code byte in order to compute a memory
address: This may be illustrated as follows:

PROGRAM

MEMORY

XorYlndex ~ register 9=l f ,0, P l T~o-byte instruction

~--.. ___ J'----i P P r object code

+--

l
Effective address := XX + pp

10-4 '

Q
w

~
a: o
D.
a:
o
(J

:!::
ui
w

~ g
(I)
(I)

<
alJ
w
Z
a:
o
III
(I)

o
~
<
Q

<
@

Base page, indexed addressing, as illustrated above, is wraparound - which means that there is no carry. If the sum of
the Index register and second object code byte contents is more than FF16, the carry bit will be discarded. This may be
illustrated as follows:

PP .: A3

xx =~
130

D""""J "'.=";"0 .. Carry

Absolute indexed addressing is also provided. In this case, the contents of either the X or the Y Index register are ad­
ded to a 16-bit direct address provided by the second and third bytes of an instruction's object code. This may be il­
lustrated as follows:

PROGRAM
MEMORY

XorYlndex ~
register p CFJ, I ',~ p } ~ee-byte instruction

~' I"---~ aa obj8Ct ode .

+ 4

l
Effective address = PPOQ + XX

Indirect addressing represents a feature of the MCS6500 which the MC6800 does not have. Instructions that
use simple indirect addressing have three bytes of object code. The second and third object code bytes provide a
16-bit address; therefore, the indirect address can be located anywhere in memory. This is straightforward indirect ad­
dressing, as described in Volume 1: Chapter 6.

MCS6500 indirect, indexed addressing comes in two forms: there is pre-indexed indirect addressing and there
Is post-indexed indirect addressing.

In each case the instruction object code is two bytes long and the second object code byte provides an 8-bit address.

Instructions with pre-indexed indirect addressing add the contents of the X Index register and the second ob­
ject code byte to access a memory location in the first 256 bytes of memory, where the indirect address will be found:

DATA-
MEMORY

(in base page)

t~ag,~ac::r""'-~ Effective address = QQRR ---{ R R

,-----.... +

"I -, I ·PROGRAM "
I MEMORY I

~ __ --1t:jO~P:' :'j' l Two-bytll instruction
~ p p f object code

10-5

When using pre-indexed indirect addressing, once again wraparound addition is used, which means that when the X
Index register contents are added to the second object code byte, any carry will be discarded. Note that only the X In­
dex register can be used with pre-indexed indirect addressing.

The Y Index r.egister is used for post-indexed indirect addressing; now the second object code byte identifies a
location in the first 256 bytes of memory where an indirect address will be found. The contents of the Y Index register
are added to this indirect address. This may be illustrated as follows:

Y Index

register

QQRR+ OOYV

is the effective

address

I

:
; • I

=

DATA

MEMORY

(in base page)

QQ

RR

•
PROGRAM!

MEMORY i

Op
pp

PP-2

PP-l

PP

PP+ 1

PP+2

} Two-byte in
object code

struction

Note that only the Y Index register can be used with post-indexed indirect addressing.

MCS6500 Branch and Branch-on-Condition instructions use program relative. direct addressing as described for
tHe MC6800. These instructibns have two bytes of object code. The second object code byte is treated as an 8-bit.
signe~ binary number. which is added to the Program Counter after the Program Counter contents have been incre­
merited to address the next sequential instruction. This allows displacements in the range + 127 through -128 bytes
from the nexl instruction. .

The MCS6500 literature uses the term implied addressing, as Motorola's MC6800 literature does, to describe instruc­
tions that identify one of the programmable registers. The MCS6500 does not have implied addressing as the term
is used in this book.

MCS6500 STATUS FLAGS
The MCS6500 has a Status register which maintains six status flags and a master interrupt control bit. These
are the six status flags: . .

Carry (C)
Zero (Z)
Overflow (0)
Sign (S)
Decimal Mode (D)
Break (B)

Statuses are assigned bit positions within the Status register as follows:

7 6 5 -4 3 2 1 0 ~Bit No.

Is 10 I I B lol·llzl c ~ Status Register MCS6500

7 6 5 " 3 2 1 0 ~BitNci.

I I 1.Ac1' I s I z I 0 I C ~Status Register MC6800

10-6

c
w

~ a::
o
Il..
a::
o
(J

~
en
w

~
g
en
en
~
all
w
Z
a::
o
CD
en o
~
~ c «
@

In the illustration above. MCS6500 statuses and status bit assignments that differ from MC6800 equivalents have been
shaded.

The Carry. Zero and Sign statuses are standard and are identical in function to those of the MC6800.

Carry represents any carry out of bit 7 during arithmetic or logical operations.

Zero is set to 1 when any arithmetic or logical operation results in a 0 value. Zero is set to 0 otherwise.

The Sign status will acquire the value of the high-order (Sign) bit of any arithmetic operation result. Thus. a Sign status
value of 1 identifies a negative result and a Sign status of 0 identifies a positive result. The Sign status will be set or
reset on the assumption that you are using signed binary arithmetic. If you are not using signed binary arithmetic. you
can ignore the Sign status. or you can use it to identify the vallie of the high-order result bit.

The Decimal Mode and Break statuses have no MC6800 equivalent.

The Decimal Mode status, when set, causes the Add-with-Carry and Subtract-with-Carry instructions to per­
form BCD operations. Thus. when the Decimal Mode status is set and an Add-with-Carry or Subtract-with-Carry in­
struction is executed. 'CPU logic assumes that both source 8-bit values are valid BCD numbers -and the result gener­
ated will also be a valid BCD number. Because MCS6500 CPUs perform decimal addition and subtraction. there is no
need for an Intermediate Carry status. This status is used for decimal adjust operations only. as described in Volume 1.

The Break status pertains to software interrupts. MCS6500 supports software interrupts. just as the MC6800 does.
When a software interrupt is executed. however. MCS6500 CPU logic will set the Break status flag.

I is a standard master interrupt enable/disable flag. When I equals 1. interrupts are disabled; when I equals O. inter­
rupts are enabled.

The Overflow status is a typical overflow, except that it can also be used as a control input. Recall that an Over­
flow status represents a carry when performing signed binary arithmetic. The Overflow status has been discussed in
detail in Volume 1; it equals the exclusive-OR of carries out of bits 6 and 7 when performing arithmetic operations.
Some MCS6500 CPUs allo~ external logic to set or reset the Overflow status. in which case it can be used subse­
quently as a general logic indicator; you must be very careful when using the Overflow status in this way. since the
same status flag will be modified by arithmetic instructions. It is up to you. as a programmer. to make sure that an in­
struction which modifies the Overflow status is not executed in between the time external logic sets or resets this
status. and subsequent program logic tests it.

MCS6500 CPU PINS AND SIGNALS
Figures 10-2 through 10-10 illustrate pins and signals for the nine CPUs of the MCS6500 family. Shaded pins in
Figures 10-2 and 10-7 identify signals which are identical to the MC6800, both in pin location and signal type.
Most of the 28-pin MCS6500 series CPUs have signals which are identical to those of the MC6800; however,
between a 40-pin DIP and a 28-pin DIP, it is impossible to talk about pin compatibility.

MCS6500 signals may be divided between those that have MC6800 equivalents and those that do not. We are going to
describe all of the MCS6500 series signals. as a group. In order to determine which signals are available on the
different MCS6500 CPUs, see Table 10-1.

Let us begin with the signals which are direct reproductions of MC6800 signals.

10-7

Pin Name

R/iN
iRQ

NMi
ReSET .
<Il()

<1>1. <1>2

DBO - DB7

ABO- AB15

ROY

SO
SYNC

VCC.VSS

10
MCS6502

11

12
13

14

15

16

17

18

Description

Read/Write control

Interrupt request

Non-;"askable interrupt

Reset

CPU clock
. System clocks

Data Bus

Address Bus

Singl~ cycle contr~1
Set Overflow flag

Identify op code fetch cycle

Power and Ground

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

Type

Output

Input
'. Input

Input

Input

Output

Tristate. bidirectional

Output

Input

Input

Output

Figure 1 0-2. MCS~502 Signals and Pin Assignments

RESET .28 <1>2

Vss 27 <Il()

rna 26 R/iii
NMi 25 DBO

VCC 24 OBI

ABO 23 DB2

ABI 22 DB3

AB2 8
MCS6503

21 DB4

AB3 9 20 DB5

AB4 10 19 DB6

AB5 11 18 DB7

AB6 12 17 ABll

AB7 13 16 ASl0

AB8 14 15 AB9

Pin Name Description Type

R/iiI Read/Write control Output

rna Interrupt request Input

NMi Non-maskable interrupt Input

RESET Reset Input

<Il() CPU clock Input

<1>2 System clock Output

DBO- DB7 Data Bus Tristate. bidirectional

ABO-ABll Address Bus Output

Vcc. Vss Power and Ground

Figure 10-3. MCS6503 Signals and Pin Assignments

10-8

RESET 28 <1>2

Vss 27 <1>0
rna 26 R/W

Vee 4 25 000
ABO 5 24 DBl

Q AB1 6 23 DB2 w
~ AB2 7

MCS6504
22 DB3

a: AB3 8 21 DB4
0 AB4 20 DB5 a.
a: ABS 10 19 000 0
0 AB6 11 18 DB7
~ AB7 12 17 AB12
u) AB8 13 16 AB11 w

AB9 14 15 AB10 ...
4(

g
Pin Name Description Type CI)

CI)
4(R/W Read/Write control Output
GIS iRa Interrupt request Input
W RESeT Reset Input Z
a: <1>0 CPU clock Input
0
III <1>2 System clock Output
CI)

DBO~DB7 Data Bus Tristate. bidirectional 0

~ ABO-AB12 Address Bus Output
4(
Q

VCe. Vss Power and Ground

4(

@ Figure 10-4. MCS6504 Signals and Pin Assignments

ReSET 28 '<1>2

Vss 27 <1>0

ROY 3 26 R/W

IRQ 4 25 000

VCC 5 24 DBl

ABO 6 23 DB2

AB1 22 DB3
MCS6505

AB2 ·21 DB4

·AB3 9 .20 DB5

AB4 10 19 DB6

ABS 11 18 DB7

AB6 12 17 AB11

·AB7 13 16 AB10

ABS 14 15 AB9

Pin Name Description Type

R/W Read/Write control Output

iRci Interrupt request Input

RESET Reset Input

<1>0 CPU clock Input

<1>2 System clock Output

DBO - DB7 Data Bus Tristate •. bidirectional

ABO-AB11 Address Bus Output

ROY ::;ingle cycle control Input

VCC. Vss Power and Ground

Figure 10-5. MCS6505 Signals and Pin Assignments

10-9

· R'ESEi' <1>2

Vss 27 c1JO
<1>1 26 R/Vii

IRQ 25 DBO

VCC 24 OBI
ABO 23 DB2
ABI 22 DB3
AB2

MCS6506
21 DB4

AB3 20 DB5
AB4 10 19 ·DB6

AB5 11 18 DB7
AB6 12 17 ABll

AB7 16 AB10

AB8 14 15 AB9

Pin Name Description Type

R/Vii Read/Write control Output

iRci Interrupt request Input

RESET Reset Input

c1JO CPU clock Input

<1>1. <1>2 System clocks Output

OBO - DB7 Data Bus Tristate. bidirectional

ABO - ABll Address Bus Output

VCC.VSS Power and Ground

Figure 10-6. MCS6506 Signals and Pin Assignments

Pin Name

DBE

R/Vii

IRQ

NMi
RESET
<1>1. <1>2
<1>2 (OUT)

DBO- DB7

ABO-ABI5

ROY

SO
SYNC

VCC.VSS

1

2

3

4
5

6

7

8

9

10

11
MCS6512

12

13

14

15

16

17

18

19

20

Description

Data Bus Enable

Read/Write control

Interrupt request

Non.maskable interrupt

Reset

CPU clocks

System clock

Data Bus

Address Bus

Single cycle control

Set Overflow flag

Identify op code fetch cycle

Power and Ground

40

39

38

37

36

35

34

33

32

31

30

29

28

27

2~

25

24

23

22

21

Type

Input

Output
Input

Input

Input

Input

Output

Tristate. bidirectional

Output

Input

Input

Output

Figure 10-7. MCS6512 Signals and Pin Assignments

10-10

Vss 28 RESET
<Ill 27 <Il2

iRa 3 26 R/W
NMi 4 25 OBO

VCC 24 OBl
C ABO 6 23 OB2
w

ABl 0B3 ~ 7 22
AB2 MCS6513

21 0B4 II:
0 AB3 20 OBS Q.
II: AB4 10 19 006
0 AB5 18 OB7 lJ 11
~ ABS 17 ABll

u) AB7 16 AB10
w AB8 14 15 AB9 ~ «
C3
0 Pin Name Description Type
CI)
CI)

R/W Read/Write control Output «
call iRQ Interrup.t request Input
w NMi Non-maskable interrupt Input
Z REsET Reset Input II:
0 <Ill. <Il2 CPU clocks Input
CD
CI) DBO- DB7 Data Bus Tristate. bidirectional
0

ABO - AB11 Address Bus Output
~ « VCC •. Vss Power and Ground
C «
@ Figure 10-8. MCS6513 Signals and Pin As~ignments

Vss 28 RESET
<Ill 27 <Il2

rna 26 Riw

Vce 25 000
ABO 24 DBl
ABl 23 DB2
AB2. 7

MCS6514
22 DB3

AB3 8 21 DB4
AB4 9 20 Da5
AB5 10 19 .0B6
AB6 11 18 087
AB7 12 17 AB12
AB8 13 16 ABll
AB9 14 15 AB10

Pin Name Description Type

Riw Read/Write control Output

iRcl Interrupt request Input

RE5Ei' Reset Input

<Ill. <Il2 CPU clocks Input

DBO- DB7 Data Bus Tristate. bidirectional

ABO- AB12 Address Bus Output

Vee. Vss Power 'and Ground

Figure 10-9. MCS6514 Signals and Pin Assignments

10-11

Vss RESeT
ROY «1>2

«1>1 R/W

rna 4 DBO
Vce 5 OBI
ABO 6 OB2
AB1 7 OBJ

AB2
MCS6515

0B4
ABJ OBS

AB4 10 OB6

AB5 11 OB7
AB6 12 AB11

AB7 13 AB10

ABS 14 AB9

Pin Name Description TVpe

R/W Read/Write control Output
iRa Intemipt request Input

RESET Reset Inp.ut
«1>1. «1>2 CPU clockS • Input

OBO - OB7' Data Bus . Tristate •. bidirectional
ABO-AB11 Address B'us Output
ROY Single cycle control Input

VCC.VSS Power and Ground

Figure 10-10. MCS6515 Signals and Pin Assignments

DATA BUS ENABLE (DBE). Only the MCS6512 CPU supports this signal. This signal is input low in order to float the
Data Bus. DBE is frequently tied to the <1>2 clock input. in which case <1>2 and DBE are identical signals.

READIWRITE (R/W). When high. this signal indicates that the CPU wishes to read data off the Data Bus: when low.
this signal indicates that the CPU is outputting data on the Data Bus. Thencirrrial standby state for this signal is "read"
(high). .

INTERRUPT REQUEST (IRQ). This signal is used by external logic to request an interrupt. If interrupts have been
enabled. then the CPU will acknowledge an interrupt at the end of the currently executing instruction. There is a small
difference between MCS6500 and MC6800 interrupt acknowledge logic. The MC6S00 cannot acknowledge an in­
terrupt while it is in the Halt state. The MCS6500 has no Halt state, therefore this situation cannot arise.

NONMASKABLE INTERRUPT (i"iviJ). This signal differs from IRQ in that it cannot be inhibited. Typically this input is
used for catastrophic interrupts such as power failure. ..

RESET. This is a typical RESET signal. Reset logic within an MCS6500 microcomputer system is identical to Reset logic
within an MC6800 microcomputer system.

Next consider MC6S00 signals which are the same on some MCS6500 CPUs, but not on others.

The clock signals <1>1 and <1>2 are identical to MC6S00 clock signals for the MCS651X series CPUs. These CPUs
require external clock signals whose waveforms are identical to the MC6800. The MCS650X series CPUs have clock·
logic on the CPU chip; these CPUs output <1>2; the MCS6502 and the MCS6506 output <1>1 as well.

The Data Bus of the MCS6500 series CPUs is identical to that of the MC6S00. The' Data Bus is a tristate. 8-bit
bidirectional bus via which data is transferred between memory and all MCS6500 microcomputer system devices.
However, only the MCS6512 has a DBE input for external control of the bus. On MCS6500 CPUs other than the
MCS6512. an internal Data Bus Enable is connected to <1>2; in these devices the Data Bus is always floated during the
first part of a machine cycle. .

We will now look at the CPU signals which are unique to the MCS6500 microcomputer system.

The Address Bus in MCS6500 microcomputer systems is not a tristate bus and cannot be floated. Also. the 28-pin
MCS6500 series CPUs have either 12 or 13 Address Bus lines. allowing a total memory space of either 4K or 8K bytes.
The Address Bus is used in the normal way by the CPU to output memory addresses.

READY (RDY) is an input control signal which. in MCS6500 microcomputer systems. performs the task of MC6800
TSC. DBE and HALT signals. The RDY input causes the equivalent of a Wait machine cycle to be inserted within the
normal machine cycle sequence. In order to generate a Wait machine cycle. RDY must make a high-to-Iow transition

10-12

Q
w

~
a: o
D.
a:
o
CJ
~
en w
~ g
en
en
ct
~
w
Z
a:
o
III
en o
~
ct
Q
ct
@

during a ~1 high clock pulse in any machine cycle other than a write. We will illustrate the use of the ROY signal. and
discuss a number of its non-obvious ramifications. following this summary description of MCS6500 signals.

The Set Overflow flag (SO) signal can be used to set to 1 the Overflow bit of the Status register. When the SO in­
put makes a high-to-Iow transition. the Overflow status is set to 1. The SO input can make a high-to-Iow transition at
any time: this is an asynchronous input.

You cannot use the SO input signql to reset the Overflow bit of the Status register to O.

The SYNC signal is used to identify instruction fetch machine cycles. There are a number of important uses for this
signal. which we will discuss along with general instruction timing.

MCS65QP TIMII"G AND INSTRUCTION EXECUTION

MCS6500 CPUs execute instructions using exactly the same clock signals, machine cycles and machine cycle
types as described for the MC6800 in Chapter 8.'

Recall that the two clock signal~'; ~1 and ~2, define machine cycles as follows:

I I I 1

4>1 n· h ·h h-
I , I

n I n I n n 4>2 I I

I I
I Machine 1 Machine Machine
I Cycle 1 1 Cycle 2 Cycle 3 '1 I

So far as external logic is concerned, there are only three types of machine cycles which can occur during an in-
struction's execution: .' ~":

1) A read operation during which a byte of data must be input to the CPU.

2) A write operation during which a byte of data is output by the CPU.

3) An internal operation during which no activ~ty ~ccurs on the Sy§tem ~us.

As was the case with the MC6800, all MCS6500 instructions have timing which is a simple concatenation of
the three basic machine cycle types. See Figures 9-3 and 9-4 and the accompanying text in Chapter 9 for a
description of these three basic machine cycles. '

Instruction execution differences between the MC6800 and MCS6500 arise only when we depart from simple instruc­
tion execution logic. The MCS6500 SYNC signal is'also a difference to be noted: the SYNC signal identifies MCS6500
machine cycles during which any instruction object code is being fetGhed. SYNC timing may be illustrated as follows:

<1>1

4>2

SYNC

Instruction

fetch machine

cycle

MCS6500 CPUs do not allow the ~1 and ~2 clocks to be stretched. nor do they allow the Address Bus to be floated:
some MCS6500 CPU versions do not allow the Data Bus to be floated. Also. there is no Halt state. The single ROY sig­
nal is used to interface slow memories, to refresh dynamic memories or to perform Direct Memory Access
operations.

10-13

What the ROY input signal does is allow you to insert one or more Wait machine cycles in
between two normal instruction execution machine cycles:

<PI

Machine

Cycle N

I

.... ~

WAIT Machine

CycleN+I

MCS6500
WAIT
STATE

The ROY input allows WCjir machine cycles to be inserted within any instruction's normal sequence of machine cycles.
For Wait machine cycles to qccur, the ROY input must make a high-to-Iow transition during a <1>1 high clock pulse. This
transition may occur during any nonwrite machine cycle. Timing may be illustrated as follows:

<PI

<P2

ROY

Machine

Cycle N
WAIT WAIT Machine

I CycleN+I

Wait machine cycles will be inserted until ROY is sensed high during a <1>2 high pulse.

If a ROY high-to-Iow transition occurs during a write machine cycle, then the Wait states will still be inserted, but the
insertion will occur following the next nonwrite machine cycle.

A non-obvious feature of the MCS6500 ROY signal is the fact that there is no acknowledge response from the
CPU to external logic. This can be a problem. To guarantee that the machine cycle following'the ROY high-to-Iow
transition will be a Wait. you must make sure that ROY never makes a high-to-Iow transition during a write cycle. For­
tun.ately, yo~ pan use the R/Wo!.lip~t t9 detect write cycles and thus Q~nerate a safe ROY input. Here is simple sample
logic: ," ,

ROY----11

(MCS6512) --{>o- t
(MCS6502) ~

+5V

PRE
0

7474

C
CLR

+5V

10-14

Q

Q
ROY to cPU

R/W

Q
w

~
a: o
c.
a:
o
(J

~
en
w

~
U o
UJ
UJ
ct
coli
w
z
a:
o
m
UJ o
::i:
ct
Q
ct
@

Since the same cI>2 clock pulse that triggers the 7474 flip-flop also triggers any change in RIW signal level. RIW is
NAN Oed with IT after taking the 7474 settling delay -which also gives R/W time to acquire its new level.

If you are interfacing slow memories. performing Direct Memory Access or refreshing dynamic memories. in each case
the extra time provided for the secondary operation is the Wait state generated via the ROY input. as we have just de­
scribed.

When interfacing slow memories, the logic of the Wait state is self-evident. The slow memo­
ry simply has additional machine cycles in which to respond to the memory access. and
memory select logic holds ROY low for any required time delay.

When using a Wait state to perform Direct Memory Access or dynamic memory refresh

·MCS6500
SLOW MEMORY
~NT~RFACE

operations, there is a further complication. During the Wait state. the Data and Address Busses are not floated. Alter­
nate Data and Address Busses must therefore be provided. connected via a tristate buffer to any memory device which
is being accessed.

INTERRUPT PROCESSING AND SYSTEM RESET
The MCS6500 microcomputer system handles interrupts and resets exactly as the MC6800. For a discussion of
this subject, therefore, see Chapter 9 - with the following provisos: ~

1) Neither the MCS6500 nor the MC6800 will acknowledge an interrupt if the interrupt enable status bit has been se~
to 1. Additionally. the MC6800 will not acknowledge an interrupt while in the Halt state. The MCS6500 has no Halt
state. but Wait states induced by the ROY line may be looked upon as equivalent. If an interrupt request occurs
while Wait states are being created by an MCS6500 CPU in response to the ROY control input. the'n thEil interrupt
acknowledge process will begin with the first non-Wait machine cycle.

2) When the MCS6500 executes a software interrupt. the Break status is set. The MC6800 has no such status flag.

3) The MCS6500 Stack is 256 bytes long and is implemented in memory locations 010016 through 01 FF16. The
MC6800 Stack can have any length within the allowed memory space. and can be located anywhere i~ memory.

The MCS6500 series microcomputers have no interrupt acknowledge signal. You must create this signal by
decoding off the Address Bus the interrupt acknowledge address FFF916. which is the second address to be output
during theinterrupt acknowledge sequence. Creating an interrupt acknowledge signal in this fashion is descriq~d later
in this chapter.

MCS6500 CPU CLOCK LOGIC
Clock logic required by the MCS651X series of CPUs is identical to that which has already been des~rilJed for
the MC6800 in Chapter 9. Indeed, you can use any of the MC6870 series clock devices in order to create timing
inputs. . . .

The MCS650X series CPUs have on-chip logic; all they need is an external crystal or RC network. A number of
possible circui~s, described in MOS Technology literature, are reproduced in Figure 10-11. .

MCS6500 CPU INTERFACE LOGIC
Look again at Table 10-1 and you will see that the 28-pin CPUs are remarkable in that they output so few control sig­
nals: in fact. the MCS6513. MCS6514. and MCS6515 output just one control signal: RIW. The remaining 28-pin CPUs
additionally output clock signals only. There is no interrupt acknowledge. no synchronization output. nor any control
signal which external logic can use to determine what is going on within the CPU. Of all the microprocessors (fe­
scribed in thi~ book, none provides so few control output signals. So long as you are building relatively straightfor­
ward microcomputer systems. this does not present a problem. The Address and Data Busses are never floated by 28-
pin CPUs: therefore. external logic. upon detecting a select address on the Address Bus. will simply respond by reading
or writing - depending upon the level of the R/W signal. The fact that this signal is high in its idle state. indicating a
read. simply means that selected external logic will place the contents of its addressed memory location on the Data
Bus. If the R/iN signal is really in its standby state. then the CPU will ignore the Data Bus contents and no harm is done.
Thus. for simple microcomputer systems. the MCS6500 series CPUs are remarkably simple devices to work with. If a
microcomputer system becomes complex. however. problems may arise. DMA logic must account for the fact that
there is no detectable standby' state for memory or 1/0 devices to detect; any device selected by the address of
the Address Bus is continuously ~esponding to a read or write command.

10-15

X 1-------........ :>e:l-_('lII ~--.... SYSTEM <1>2

o CRYSTAL

PIN
X <1>0 (IN)

Y <l>2/0UT) --VCC

A) Parallel Mode Crystal Controlled Oscillator

XI-------~~ ~)-....(:'II ~~-....... __ SYSTEM <1>2

CRYSTAL PIN

X <I>O(lN)

Y <1>2 (OUT)
VCC

B) Series Mode Crystal Cornrolled Oscillator

I ·:I~ u PIN
X <1>0 (IN)

Y <1>2 (OUT)

C) Time Base Generator - RC Network

X is pin 39 for the MCS6502. or pin 28 .

for any other MCS650X CPU

Y is pin 37 for the MCS6502. or pin 27

for any other r,t1CS650X CPU

Figure 10-11. Time Base Generation for MCS650X CPU Input Clocks

10-16

c
w

~
a:
o
Q.
a:
o
o
~
en
w

~ g
(I)
(I)

~

all
w
Z
a:
o
IX!
(I)

o
~
~
c
~

@

When designing microcomputer systems around an MCS6500 CPU, if you are going to share the System Bus in
any way, you must be very cautious about ensuring that you have accounted for the passive role of support
logic surrounding the CPU.

Despite the paucity of control signals on the MCS6500 bus. you can. in fact. do anything that you could do on any
other bus. Using the MCS6500. it is simply going to take a little more logic. Some suggestions are given later in this
chapter. when we explain how you can use non-6500 support devices !in particular 8080A support devices) with a
6500 CPU.

THE MCS6500 INSTRUCTION SET
Table 10-2 summarizes the MCS6500 instruction set. This instruction set follows the philosophy of the MC6800
very closely.

THE BENCHMARK PROGRAM
The benchmark program is coded for the MCS6500 as follows:

LOY 10CNT LOAD BUFFER LENGTH INTO Y INDEX
LOOP LOA (lOBUF).Y LOAD NEXT SOURCE BYTE

STA (TABLE).Y STORE IN NEXT DESTINATION BYTE
DEY DECREMENT Y
BNE LOOP RETURN FOR MORE BYTES
LOA 10CNT AT END ADD NUMBER OF BYTES
CLC TO CURRENT TABLE BASE ADDRESS
ADC TABLE+1
STA TABLE+1

This is the memory map assumed:

Number of bytes -----Source table base address ~
Destination ta

free' byte
ble first ~
address

Start of source table

Start of destination table

First free destination table byte

DATA

MEMORY

pp

00
RR
55

IOCNT}
.IOBUF ...

. Page 0
TABLE

The programming example illustrated above makes use of indirect addressing. Somewhere in the first 256 bytes of
memory we store the number of bytes to be transferred. the beginning address for the source table. and the address for
the first free destination table byte. By loading the byte count into the Y Index register. we can use this register both as
an index for moving data from source to destination. and as a counter.

10-17

After moving the block of data. we must add the number of moved data bytes to the destination table first free byte ad­
dress; this accounts for the fact that the destination table has been incrementally filled.

When comparing the MCS6500 with the MC6800, we see that we have indeed reduced the number of instruc­
tions from 11 to 9; the number of instructions within the iterative loop has been reduced from 5 to 4. We cannot make
a more substantial reduction in the number of instructions because the fYlC6800 program uses the Stack Pointer as an
Index register - which is not an option with the MCS6500. We might argue that the MCS6500 has an advantage by
not immobilizing the Stack while the instruction sequence is executed; hqwever. the MCS6500 has the disadvantage
of requiring both the source and destination, tables to have a maximUr1ne'lgth of 256 bytes; the MC6800 program
makes no such demand. '

Symbols are used in Table 10-2 as follows:

Registers: A Accumulator
X Index Register X
Y Index Register Y

PC Program Counter
SP Stack Pointer
SR Status register. with bits assigned as follows:

7 6 5 .. 3 2 1 0 ~ Bit No.

Islal IBlol' Izlc'
+ Reserved for expansion

{unused at this time}

Statuses: S Sign status
Z Zero status
C Carry status
a Overflow status

Symbols in the column labeled STATUSES:

ADR

ADR16

a8

a16

B

D

DATA

DISP

lABEL
M()

PC(Hi)

PC(lO)

[]

(blank) operation does not affect status
X operation affects status
o operation clears status
1 operation sets status
6 status reflects bit 6 of memory location
7 status reflects bit 7 of memory location

8 bits of immediate or base address

16 bits of immediate or base address

Any of the following operands and addressing modes:
ADR Base Page Direct

ADR.X Base Page Indexed via Register X
(ADR.X) Pre-Indexed Indirect
(ADRl.Y Post-Indexed Indirect

Any of the following operands and addressing modes:
ADR16 Extended Direct

ADR16.X Absolute Indexed via Register X
ADR16.Y Absolute Indexed via Register Y

Break status

Decimal Mode status

8 bits of immediate data

An 8-bit. signed address displacement

Interrupt disable status

16-bit immediate address. destination of Jump-on-Subroutine call

The memory location addressed via the mode specified in parenthesis

The most significant 8 bits of the Program Counter

The least Significant 8 bits of the Program Counter

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets.
then the designated register's contents are specified. If a memory address is enclosed within the
brackets. then the contents of the addressed memory location are specified.

10-18

o
w
l-
e:(
a:
0
a.
a:
0
tJ
a:
en
w
l-
e:(

C3
0
(I)
(I)
e:(

olI
w
Z
a:
0
!Xl
(I)

0

~
e:(
0
e:(

@

[[]]

A
V
Y-

Implied memory addressing; the contents of the memory location designated by the contents of a
register or address calculation.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow

Data is exchanged between the two locations designated on either side of the arrow

10-19

?
N o

TVPE

w
(J
2
w
II:
w
u.
w
II:

>
II:
0
~
w
~
>
II:
<
~ a:
IL

C
2
<
g

w ...
<
II:
w
IL
0
> a:
0
~
w
~

MNEMONIC

LOA

STA

LDX

STX

LDV

STY

ADC

AND

BIT

OPERAND(SI

AOR ~ ADR.X a8
(ADR.XI
(ADRI.V.

ADR16 }
ADRI6.X a16

ADR16.V

a8
a16

ADR or ADR.V

ADR16 or ADR16.V

ADR or ADR.V
ADR16

ADR or ADR.X
ADR16 or ADR16.X

ADR or ADR.X
ADR16

a8

a16

a8

a16

ADIl8
ADR16

Table 10-2. A Summary of the MCS6500 Microcomputer Instruction Set

STATUSES
BVTES OPERATION PERFORMED

S Z C 0

2 X x [A]-[ADR] or

2 [A]-[[X] +ADR] or

2 [A]-[[[X]+ADR)) or

2 [A]-[[ADR + I.ADR] + [V)) or

3 [A]-[ADRI6) or

3 [A)-[ADR16+ [X)) or

3 [Al-[ADR16+ [V))

Load Accumulator from memory using any of the following addressing modes:

Base page direct
Base page index.ed (X register I

Pre-index.ed indirect
Post-index.ed indirect
Ex.tended direct
Absolute'indexed (Register X or Register VI

2 Mla81-[A] or Mla161-[A]

3 Store Accumulator to memory using any of the addressing modes permitted with LDA.

2 X X [X]-[ADR) or [X]-[ADR16].or

3 [X]-[[V] +ADR] or [X]-[ADR16+ [V]

Load Index Register X from memory using direct. extended. base page indexed or absolute in-

dexed addressing. indexing through Register V.

2 [ADR]-[X] or [ADR16]-[X] or {
3 [[V]+ADR]-[X]

Store Index Register X to memory using direct. extended or base page indexed addressing. in-
dexing through Register V.

2 X X [V)-[ADR] or [V]-[ADR16) or

3 [V]-[[X]+ADR] or [V]-[ADR16+ [X))

Load Index Register V from memory using direct. extended. base page indexed or absolute in-

dexed addressing. indexing through Register V.

2 [ADR]-[V] or [ADR16]-[V] or

[[X] +ADR]-[V]

Store Index Register V to memory using direct. extended. or base page indexed addressing. in-
dexing through Register X

2 X X X X [A]-[A] + Mla81+ Cor

3 [A]-[A] + Mla161+C

Add contents of memory location. with carry. to those of Accumulator. using any of the ad-
dressing modes permitted with LDA. Zero flag is not valid in Decimal Mode. .

2 X X [A]-[A] A M(a81 or [A]-[A] A Mla161

3 AND contents of Accumulator with those of memory location addressed via any of the modes

permitted with LDA.

2 7 X 6 [A] A [ADR8] or [A] A [ADR16]

3 AND contents of Accumulator with those of memory location. Only the status bits are affected.

Direct or extended addressing modes may be ~sed.

© ADAM OSBORNE & ASSOCIATES,INCORPORATED

Table 10-2. A Summary of the MCS6500 Microcomputer Instruction Set (Continued)

:STATUSES
TYPE MNEMONIC . OPERAND(S) BYTES OPERATION PERFORMED

- -
S Z C 0

CMP a8 2 X X x [A] - Mla8) or [A] - Mlat6)

at6 3 Compare contents of,Accumulator with those of memory location, affecting statiJs bit only. Any
_ of the addressing modes permitted with LOA may be used.

EOR a8 2 X X [A]-[A]-Y-Mla8) or [A]-[A]-Y-Mlat6)

at6 3 Exclusive-OR contents of Accumulator with those of memory location, using any of the ad-,

dressing modes permitted with LOA.

ORA a8 2 X X [A]-[A]VM(a8)or [A]-[A]VM(at6)

at6 3 OR contents of Accumulator with those of memory location, using any of the addreSsing modeS

permitted with L[)A.

sse a8 2 X 'X' X' X [A]-[A] - MIaS) - Cor [A]-[A] - Mlat6) - C
iii at6 3 Subtract contents of memory location, with borrow, from contents of Accumulator. Any ad-
'~

dr~ssing mode permitted with LOA may be used. Note that carry reflects the complement of the < a:
w borrow.
D..
0

[ADR]-[ADR]+ tor [ADRt6]-[ADRt61+ tor > IN~ ADR8 or AD~,X 2 X ,x
a: ADRt6 or ADRt6,X 3 [(X1+ADR]-[[X]+ADR]+ tor 0
~ [ADRt6+ [X]]-[ADR16+ [X]]+ t
w
~ Increment contents of memory location using direct, extended, base page indexed or'absolute

?
N

w C indexed addressing, indexing through Register X.
u ADR or ADR,X [ADR]-[ADR] - t or [ADRt6]-[ADRt6] - t or Z w DEC 2 'X ,X
w :J

ADRt6 or ADRt6.X 3 [(X]+ADR]-[[X]+ADR]-t or a: Z
w ~ [ADRt6 + [X]]-[ADRt6 + [X]] - t u.
w Z
a: 0 Decrement contents of memory location using direct, extended, base page indexed or absolute
> g

indexed addressing, indexing through Register X. a:
0 CPX ADR 2 'X X [X] - [ADR] or [X] - [ADRt6] ~. X
w ADRt6 3 Compare contents of X register with those of memory location, using direct or extended ad-
~

dressing. Only the status flags are affected. > a: CPV ADR 2 X X X [V] - [ADR] or[Y] - [ADRt6] < c ADRt6 3 Compare contents of V register with those of memory location using direct or extended ed-
Z ,

dressing. Only the status flags are affected. 0
u [ADR) or [ADRt6) or w

r::m:=I7 oj;] en
[[X1+ ADR] or ROL ADR or ADR,X 2 X X X ~

ADR16 or ADR1S.X 3 [ADRt6+ [X]]
Rotate contents of memory location left through Carry, using direct, extended, base

page indexed or absolute indexed addressing, indexing thro!Jgh Register X.

ASL ADR or ADR,X 2 X X X []].-I 7 01(01+--0
[ADR] or [ADRtS] or
[[X1+ADR] or [ADRtS+ [X]]

ADRtS or ADRtS,X 3
Arithmetic shift left contents of 'memory location using direct, extended, base page indexed or

absolut~ indexed addressing, indexing through Register X.

LSR ADR or ADR,X 2 0 X X 0~7 ~ oJ.---+l]] [ADR] or [ADRt6) or

ADRt6 or ADRtS',X 3 [(X)+ADR) or [ADRt6+ [X))
Logical shift right cqlltents of memory,location, using direct, extended, base page indexed or

absolute 'indexed addressing. indexing through Register X.

?
N
N

TYPE

w ...
<I:
is
w
:=!:
~

w ...
<I:
Il:
w n-
O
w ...
<I:
is
w
:=!:
~

no
:=!:
;:) .,

Z
0
j:::
is
Z
0
U
Z
0
::z::
u
Z
<I:
Il:
III

MNEMONIC

LOA

LOX

LOY

ADC

AND

CMP

EOR

ORA

SBC

CPX

CPY

JMP

JSR

BCC

BCS

BEQ

BMI

BNE

BPL

evc

OPERAND(S)

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

LABEL
(LABEL)

LABEL

DISP

DISP

OISP

DISP

DISP

DISP

DISP

Table 10-2. A Summary of the MCS6500 Microcomputer Instruction Set (Continued)

STATUSES

BYTES OPERATION PERFORMED
S Z C 0

2 X X [A)-DATA

Load Accumulator with immediate data.

2 X X [X]-DATA

Load Index Register X with immediate data.

2 X X [Y]-DATA

Load Index Register Y with immediate data.

2 X X X X [A]-[A]+DATA+C

Add immediate. with . Carry, to Accumulator. The Zero flag is not valid in Decimal Mode.

2 X X [A]-[A] A DATA

AND immediate with Accumulator.

2 X X X [A)-DATA

Compare immediate with Accumulator. Only the status flags are affected.

2 X X [A]-[A] -Y-DATA

Exclusive-OR immedillte with Accumulator.

2 X X [A]-[A] V DATA

OR immediate with .Accumulator.

2 X X X X [Al-[A] - DATA - C
Subtract immediate. with borrow. from Accumulator. Note that Carry reflects the complement

of the borrow.

2 X X X [X]-DATA

Compare immediate with Index Register X. Only the status flags are affected.

2 X X X [V] - DATA

Comoare immediate with Index Register Y. Only the status flags are affected.

3 [Pc]-LABEL or [PC]-HABEL]

Jump to new location. using extended or indirect addressing.

3 [[SP]]-[PC(HIIl

[[SP]-l1- [PelLO)).
[SP]-[SP]-2.
[PC]-LABEL

Jump to subroutine beginning ilt address given in bytes 2 and 3 of the instruction.

2 If C = O. then [pc]-[pc] + ; + DISP

Branch relative if Carry flag is cleared.

2 If C = 1. then [PC]-[PC] + 1 + DISP

Branch relative if Carry flag is set.

2 If Z = 1, then [PC]-[PC] + 1+ DISP.
Branch relative if result is equal to zero.

2 If S = 1. then [PC]-[PC] + 1 + DISP
Branch relative if result is negative.

2 If Z = 0, then [PC]-[pc] + 1 + DISP

Branch relative if result is not zero.

2 If S' = 0, then [PC]-[Pc] + 1 + DISP

Branch relative if result is positive.

2 If 0 = 0; then [pc]-[pc] + 1 +·DISP

Branch relative if Overflow flag is cleared.

?
N
W

. TYPE

Z zc o· 0 111
:%: - :l
u !::z

0-Z Z l-e(OZ II: u~ ID

III
>
0
~
II:
III
I-
(/)

c;
III
II:
ci::
III
I-
(/)

c;
III
II:

III
I-
e(
II:
III
Q.

0
II:
III
I-
m
c;
III
II:

:.=:
(.)
e(
I-m

MNEMONIC OPERAND(S)

BVS DISP

TAX

TXA

TAY.

TVA

TSX

TXS

DEX

DEY

INX·

INY

ROL A

ASL A

LSR A

PHA

PLA

PHP

© AD~M OSBORNE & ASSOCIATES. INCORPORATED

Table 10-2. A Summary of the MCS6500 Microcomputer Instruction Set (Continued)

BYTES
STATUSES

OPERATION PERFORMED

S Z C 0

2 If 0 = 1. then [PC]-[pc] + 1 + DISP

Branch.relativeif Overflow flag is set.

1 X X [A]-[X]

Move Accumuiator ·contents to Index Register X.

1 X X [X]-[A]

Move contents of Index Register X to Accumulator.

1 X X [A]-[Y]

Move Accumulator contents to Index Register Y.

1 X X [Y]-[A]

Move contents of Index Register Y to Accumulator.

1 X X [SP]-[X]

Move contents of Stack Pointer to Index Register X.

1 [X]-[SP]

Move contents of Index Register X to Stack Pointer.

1 X X [X]-[X]-1

Decrement contents of Index Register X.

1 X X [Y]-[Y]-1

Decrement contents of Index Register Y.

1 X X [X]-[X]+l

Increment contents of Index Register X.

1 X X [Y]-[Y]+l

Increment contents of Index Register Y.

1 X X X ~7~ oi+J
[A]

Rotate contents of Accumulator left through Carry.

1 X X X ~7 4 o I-f-o
[A]

Arithmetic shift left contents of Accumulator.

1 0 X X O~7)to~
[A]

. Logical shift right contents of ~ccumulator.

1 [[SP]]-[A1. [SP]-[SP]-l

Push Accumulator contents onto Stack.

1 X X [A]-[[SP] + 11. [SP]-[SP] + 1

Load Accumulator from top of Stack (PULL).

1 [[SP)]-[SR1. [SP)-[SP)-l

Push Status register contents onto Stack.

Table 10-2. A Summary of the MCS6500 Microcomputer Instruction Set (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

S Z C 0

PLP 1 X X X x [SR]-[[SP] + 11. [SP]-[SP] + 1

C Load Status register from top of Stack (PULL).

~
w

RTS 1 [PC(LOI]-[[SP] + 11 :J
0 Z [PC(Hil]-[[SP] + 21. « i= ~

[SP]-[SP] + 2. (/) z
0

[PC]-[PC]+ 1 ~
Return from' subroutine.

CLI 1 1-0

Enable interrupts by clearing interrupt disable bit of Status register.

SEI 1 1-1

Disable interrupts.

RTI 1 X X X X [SR]-[[SP] + 11.

[PC(LO)]-[[SP] + 21.
~ [PC(Hil]-[[SP] + 3]. 11-
:J

[SP]-[SP]+3. cc
cc

[PC]-[PC]+ 1 w
~

~ Return from interrupt; restore Status register and Program Counter from top of Stack.

BRK 1 [[SP]]-[pC(Hil1.

[[SP]-I1-[PC(LOI1.

[[SP]-2]-[SR1.

[SP]-[SP]-3.

[PC(LO)]-[FFFE1. [PC(HI)]-[FFFFJ.

l-l.B-l

Programmed interrupt. BRK cannot be disabled.

CLC 1 0 C-O

Clear Carry flag.

SEC 1 1 C-l

en Set Carry flag.
:J
~ CLD 1 D-O «
~
(/)

Clear Decimal Mode.

SED 1 D-l

Set Decimal Mode.

CLV 1 0 0-0

Clear Overflow flag.

NOP 1 No Operation.

Q
W

~
II:
0
no
II:
0
(J

~
en

'W
~
<
U
0
en
en
<
GiS
w
z
II:
0
al
en
0

~
<
Q
<
@

The following symbols are used in the object codes in Table 10-3.

Address mode selection:
aaa

000 pre-indexed indirect - (ADR.X)
001 direct -, ADR
010 immediate - DATA
011 extended direct - ADR16
100 post-indexed indirect - (ADR).Y
101 base page indexed - ADR.X
110 absolute indexed -ADR16.Y
111 absolute indexed - ADR16.X

bb
00 direct-ADR
01 extended direct-ADR16
10 base page indexed - ADR.X
11 absolute indexed - ADR 16.X

bbb
001 direct-ADR
010 accumulator -A
011 extended direct-ADR16
101 base page indexed - ADR.X
111 absolute indexed - ADR16.X

cc
00 immediate-DATA
01 direct-ADR
11 extended direct - ADR 16

ddd
000 immediflte - DATA
001 direct-ADR
011· ext~nded direct - ADR16
101 base page indexed - ADR. Y in LDX; ADR.X in LDY
111 ab~olute indexed-ADR16.Y in LDX; ADR16.X in LDY

pp the second bYtr of a two- or three-byte instruction.
qq the thir~ byte of a three-byte instruction.
x one bit choosing the address mode.

Two numbers in the "Machine Cycles" column (for example. 2 - 6) indicate that execution time depends on the ad­
dressing moge.

10-25

l'
N
en

MNEMONIC

ADC

AND

ASL

BCC

BCS

BEQ

BIT

BMI

BMI

BNE

BPl

BRK

BVC

BVS

ClC

CLD

CLI

ClV

CMP

CPX

CPY

DEC

DEX

DEY

EOR

INC

INX
-INY

OPERAND(S)

DATA or a8

a16

DATA or a8

a16

A

ADR or ADR.X

ADR16 or ADRl6.X

DISP

DISP

DISP

ADR (x~~O)

ADR16 (x~l)

DISP

DISP

DISP

DISP

DISP

DISP

DATA or a8

a16

DATA or ADR

ADR16

DATA or ADR

ADR16

ADR or ADR.X

. ADR16 or ADR16.'\(

DATA or a8

a16

ADR or ADR.X

ADR16 or ADR16.X

OBJECT

CODE

011aaaOl

PP
qq

oolaaaOl

pp

qq

OoobbblO

pp

qq

90 pp

BO pp

FO pp

0010xloo

pp

qq

30 pp

30 pp

DO pp

10 PI)

00

50 pp

70 pp

18

08

58

B8

110aaaOl

pp

qq

1110ccoo

pp

qq

l100ccoo

pp

qq

110bbll0

pp

qq

CA

88

01OaaaOl

pp

qq

lllbbllO

pp

qq

E8
C8

Table 10-3. Summary of MCS6500 Object Codes. with MC6800 Mnemonics

MACHINE MCSSOO OBJECT

BYTES CYCLES INSTRUCTION . MNEMONIC OPERAND(S) CODE

ADCA
JMP LABEL (x· 0) . 01xOlloo

2 2-6 ADR8 or DATA or (LABELXx . 1) ppqq
3 4 ADR16 LABEL 20 JSR ppqq

ANDA
LOA 101aaaOl

2 2-6 ADR8 or DATA • DATA or a8 pp
3 4 ADR16 a16 qq
1 2 ASL A LOX DATA or 101dddl0
2 5-6 ADR8 • ADR or ADR. Y pp
3 6-7 ADR16 ADR16 or ADR16.Y qq
2 2 BCC DISP _DY DATA or 101dddoo
2 2 BCS DISP ADR or ADR.X pp
2 2 BEQ DISP ADR16 or ADR16.Y qq

BITA lSR A 010bbbl0
2 3 ADR8 or DATA ADR or ADR.X pp
3 4 ADR16 ADR16 or ADR16.X qq
2 2 BMI DISP NOP EA
2 2 BMI DISP ORA oooaaa01

2 2 BNE DISP DATA or a8 pp

2 2 BPl DISP a16 qq

1 7 (SWn PHA 48

2 2 BVC DISP PHP 08

2 2 BVS DISP PLA 68

1 2 ClC PlP 28
ROl A oolbbbl0

1 2
ADR or ADR.X pp

1 2 CLI ADR16 or ADR16.X qq
1 2 ClV RTI 40

CMPA RTS 60
2 2-6 ADR80r DATA SBC lllaaaOl
3 4 ADR16 DATA or a8 pp

CPX a16 qq
2 2-3 ADR8 SEC 38
3 4 DATA 16 or ADR16 SED F8

SEI 78
2 2-3 STA (aaa ~·010) -l00aaaOl
3 4 a8

DEC a16
2 5-6 ADR8 STX ADR(bb~~oo) l00bbll0
3 6-7 ADR16 or ADR.Y(bb~~10)
1 2 _DEX ADR16 (bb=Ol)
1 .2 - STY ADR (bb ~·OO) l00bbl00

EORA or ADR.X (bb~10) pp
2 2-6 ADR8 or DATA ADR16 (bb~·Oll qq
3 4 ADR16 TAX __ AA

INC TAY A8

2 5-6 ADR8 TSX BA

3 6-7 ADR16
TXA SA
TXS 9A 1 2 lNX

1 2 TYA - - 98 --

MACHINE Messoo

BYTES . CYCLES INSTRUCTION

3 3-5 JMP ADR16

3 6 JSR ADR16

LDAA

2 2-6 ADR8 or DATA

3 4 ADR16
lOX

2 2-4 ADR8

3 4 ADR16 or DATA16

2 2-4

3 4

1 2 LSR A

2 5-6 ADR8

3 6-7 ADR16

1 2 NOP
ORA

2 2-6 ·ADR8 or DATA

3 4 ADR16

1 3 PSHA

1 3

1 4 PULA

1 4
1 2 ROl A

2 5-6 'ADA8

3 6-7 ADR16

1 6 RTI

1 6 RTS

SBCA

2 2-6 ADR8 or DATA

3 4 ADR16

1 2 SEC

1 2

1 2 SEI
STAA

2 3-6 ADR8

3 4-5 ADR16

STX

2 3-4 ADR8

3 4 ADR16

2 3-4

3 4

1 2
1 2

1 2 TSX
1 2

T 2 TXS

1 2

c
w

~
a: o
D..
a:
o
o
~
en
w

~
U o
en
en
oCt
all
w
Z
a:
o
en
en o
~
oCt o
oCt

@

SUPPORT DEVICES THAT MAY BE USED WITH THE MCS6500
SERIES MICROPROCESSORS

The MCS6500 and MC6S00 microprocessors are similar enough for MC6S00 support devices to be used with
an MCS6500 series central processing unit.

The similarities between the MC6S00 and MCS6500 extend also to the way in which you use other support
devices with these two microprocessors. Therefore, you should read the MC6S00 section in Chapter 9 that de­
scribes using the MC6S00 CPU with other support devices before you read this text. Comments regarding
SOSOA and ZSO support devices being used with the MC6S00 apply for the most part to the MCS6500.

But the MCS6500 does' have some limitations. The most prominent limitation is the fact that no MCS6500
microprocessor floats its System Bus. Only the MCS6512 has any bus floating capability at all; you can float its Data
Bus. Within an MCS6500 microcomputer system. if you wish to float the System Bus or perform direct memory ac­
cess operations, you must have an external tristate buffer. This tristate buffer receives as inputs the System Bus
from the MCS6500; it creates as outputs the System Bus which will be used by support devices. This may be illustrated
as follows:

t
Address Bus ..

,

Data Bus ..
MCS65XX

Tristate .. r Buffer

... Control Bus ..
r

Address Bus
) ,

A Data Bus ...
)

'" r

A Control Bus ...
)

'" r

Tristate System Bus

Float control from

external logic

equivalent to

8080A BUSEN

If you are going to use an MCS6500 CPU with support devices from other microprocessor families, you will in all
probability use the MCS6502 or the MCS6512. It would make little sense to begin with the limitations of a 2S-pin 6500
CPU and then expand it to interface with non-6500 support devices. We will therefore consider only MCS6502 and
MCS6512 busses expanded to generate SOSOA compatible interfaces. Logic may be illustrated as follows:

MCS6502 or
MCS6512 Bus

R/W

<1>2 (TTL)

ROY
(Asynchronous)

+5V

PRF

"'-+--4~""D 0
7474
(A)

.... -+---IC
CLR

+5V

ROY to MCS65XX CPU t----it---------'t------'

IRO

Decode FFF9 on
Address Bus

10-27

8080A Bus

+5V

PRF

o 7474 01

(B)

C IT HOLD

CLR

+5V

INT

The logic illustrated above is quite similar tb thilt which we described for the MC6800 in Chapter 9. The Read (RD) and
Write (WR) control signals are generated by separating out R/W via two NAND gates that are conditioned by <1>2 (TTL).
This is the same logic that we illustrated for the MC6800.

HOLD and Bus Enable (BUSEN) signals require more complex generation out of an MCS6500 bus - but still the logic is
quite simple. Since the MCS6500 has no Hold condition. we must use the Wait State created in response to a RDY in­
put. The 7474 D-type flip-flop marked (A) synchronizes an asynchronous RDY input to ensure that it makes a high-to­
low transition while <1>1 is high. as is required by MCS6500 lOgic. To ensure that the synchronous Ready output does
not.occur during a Write cycle. the (A) flip-flop output is NAN bed with R/Vii to create a valid MCS6500 RDY input. We
use thenext high-to-Iow transition of <1>2 (TtU to identify the beginning of the Wait State. Timing may be illustrated as
follows:

<1>1

<1>2

ROY

R/W

Q(A)

D(S)

HOLD

WAIT STATE I .

As iliustrated by the timing ab~ve. the ~bLD and BUSEN Signals will accurately identify time intervals when the
MCS6500 CPU is in aWait State. But remember. busses are not floated by the MCS6500 CPU While it is in the Wait
State. You must therefore use either the HOLD or BUSEN signal as a float control strobe on a tristate buffer (as
illustrated earlier!.

If we look at the interrupt request and acknowledge signals of the 8080A bus. the interrupt request represents no prob­
lem; we simply invert INT to' create IRO. Generating an int~rrupt acknowledge is not so straightforward. We must
decode the second address byte.of the interrupt atknowledge sequence (FFF916) off the Address Bus. without the
comfort of.a valid memory address (VMA) signal. The logiC shown uses the combination of R/W high. indicating a
necessary read condition. together with the initial asynchronous RDY high. indicating no Wait request. to validate the
FFF916 address on the Address Bus.

Thus. a 7474 D-type flip-flop together with four NAND gates and two inverters will create an 8080A-compatible
System Bus for an MCS6502 or MCS6512 CPU.

You can generate an 8080A-compatible system clock from tP2 (TTL) as follows:
+5V 100 pF 5.6 Kn

+5V

CLR

11>2 (TIll B Q CLK

74LS123

A

--
10-28

Q
w

~
a:
o n­
a:
o
o
~
en
w
I­
oCt
(3
o
en
en
oCt
all
w
Z
a:
o
III
en o
:E
oCt
Q
oCt

@

The clock logic illustrated above is identical to that which we described for the MC6800.

THE MCS6522 PERIPHERAL INTERFACE ADAPTER

The MCS6522 PIA is an enhanced version of the MC6820, which is also manufactured by MOS Technology as
the MCS6520. Peripheral Interface Adapter. As such, the MCS6522 PIA can be used interchangeably in
MC6800 or MCS6500 microcomputer systems.

This description of the MCS6522 will concentrate on highlighting device enhancements, relying on the discus­
sion of the MC6820, given in Chapter 9, for a detailed explanation of functions common to both parts.

The MCS6522 PIA is a general purpose I/O device which, like the MC6820 PIA provides 16 I/O pins, configured
as two 8-bit I/O ports. As compared to the MC6820 PIA the MCS6522 provides more handshaking logic associ­
ated with parallel data transfers occurring via I/O Port A. Counter/timer and elementary serial I/O logic have
been added to MCS6522 Port B.

Figure 10-12 illustrates that part of our general purpose microcomputer system logic which has been imple­
mented on the MCS6522 PIA.

Clock Logic

Logic to Handle
Arithmetic and Accumulator .. Interrupt Requests

ri> .. _ ...
from Logic Unit - - Registerts)

External Devices

j

Instruction Register ~
~ Data Counterts)

l..t> Control Unit

•

f<H> Stack Pointer

7 11

Interrupt Priority Bus Interface
Direct Memory

~ Program Counter Access Control <2-t>
Arbitration Logic

Logic

7

* $ System Bus ~
i·~ e t

I/O Communication ROM Addressing
I/O Ports

RAM Addressing ... Serial to Parallel and
Interface Logic

and ~
Interface Logic Interface Logic Interface Logic

*
t

Programmable
~

Read Only
I/O Ports

Read/Write ~ Timers Memory Memory

~
Figure 10-12. Logic of the MCS6522 PIA

10-29

The MCS6522 PIA is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are
TTL compatible. I/O Port A and B pins are also CMOS logic compatible. I/O Port B pins may be used as a power
source to directly drive the base of a transistor switch.

The device is implemented using N-channel, silicon gate MOS technology.

THE MCS6522 PIA PINS AND SIGNALS
The MCS6522 PIA pins and signals are illustrated in Figure 10-13. Signals which are identical to the MC6820,
both in function and pin assignment, are shaded.

We will summarize all signal functions, those which are unique to the MCS6522 as well as those which are
common to the MC6820, before describing the various MCS6522 PIA operations which can be performed.

Consider first the various Data Busses.

DO - 07 represents the bidirectional Data Bus via which all communications between the CPU and the MCS6522 oc­
cur. This Data Bus is identical to that of the MC6820. When the MCS6522 is not selected. the Data Bus buffer is
placed in a high impedance state - which is absolutely necessary. since MCS6500 CPUs (with the exception of the
MCS6512) cannot float the System Data Bus.

PAO - PA7 and PBO - PB7 represent Data Busses connecting I/O Ports A and B with external logic. In terms of
simple data transfers, these two I/O ports are identical on the MCS6522 and MC6820 devices. In each case the
16 110 port pins may be looked upon as 16 individual signal lines. or as two 8-bit I/O busses. Each I/O port pin can be
individually assigned to input or output. but an individual pin cannot support bidirectional data transfers.

There are differences between I/O Ports A and B. Some of these differences are found in MC6800 I/O ports;
others represent enhancements of the MCS6522. Let us first look at I/O port differences which are connom to
the MC6820 as well as the MCS6522:

1) An I/O Port B pin which has been assigned to output will enter a tristate condition during an input operation. this is
not the case for an I/O Port A pin. This means that loads placed on I/O Port B pins will not modify data waiting to be
read by the CPU.

2) I/O Port A pins will register logical 1 when +2V or more are input: logical 0 results from an input of +OAV or less.
I/O Port B pins will register logical 1 when power levels below +2V are input.

3) As outputs. I/O Port B pins may be used as a source of up to a milliampere. at +1.5V. to directly drive the base of a
transistor switch. This is not feasible using I/O Port A pins.

The different I/O Port A and B characteristics are a function of port pin design.

I/O Port A pins contain "passive" pullups which are resistive and allow the output voltage to go to +5V for logic 1 :

+5V

)LPA
---f:

1
The PA pins can drive two standard TTL loads.

I/O Port B pins are push-pull devices; the pullup is switched "off" in the a state and "on" for a logic 1:

+5V

10-30

Q
w

~
III: o
D.
III: o u
:!:
en
w

~
g
en
en
ct
III
w
Z
III:
o
CD
en o
~
ct
Q
ct

@

The pullup can source up to 3 ma at 1.5V: that is why an I/O Port B pin can drive a diode. LED or similar device.

Pin Name

DO-07
PAO- PA7
PBO - PB7
CSI. CS2
RSO - RS3
CAl
CA2
CBl
CB2
$2
R/W
iRQ
RESET
VOO.vss

Vss
'PAQ­
PAl

,'PA2
PA3
PM
PAS

·"PAS
, PA7

PBO
Pel

,PSi
Pal

, PB4
"PBS

P86
PB1
CSI

C82
'VOD

" ..

... ..
:

- -
-

-. ~
'...-

..

Description

Data Bus to CPU

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Port A Peripheral Data Bus
Port B Peripheral Data Bus

Chip Select
Register Select

Interrupt input to Port A

MCS6522
PIA

Interrupt input/Peripheral.control output

Interrupt input/Shift register access

",

40
39 ',. , ..
38
37
36
35
34
33 ,-. ..'
32
31

~

30

29
28
27
26
25
24
23
22
21 --

lilterrupt input/Peripheral control/Shift register access
Device synchronization

Read/Write control'
Interrupt request

Reset
Power and Ground

CA1 ,
CAl
RSO
RSI

RS2
RS3
RESET
DO
01

02 "
03
D4
OS'

06
07
«P2.
CS1
.W2
R/W
iRQ

Type

Tristate. bidirectional
Input or Output

Tristate. Input or Output

Input
Input
Input
Input or Output
Input or Output

Input or Output

Input
Input

Output

Inp'Jt·

Figure 10-13. MCS6522 PIA Signals and Pin Assignments

Let us now look at differences between MCS6522 I/O Port A and B pins which are the result of MCS6522 logic
enhancements:

1) There are two programmable counters connected to I/O Port B logic. The MC6820 has no counter logic.

2) There is an 8-bit Shift register associated with I/O Port B logic. The Shift register provides an elementary serial I/O
capability which may be adequate for certain types of control logic. but falls short of what is needed to support
serial data communications. The MC6820 has no serial I/O capability whatsoever.

3) I/O Port A provides CA2 as an output control signal when the CPU reads or writes data. I/O Port B provides CB2 as
an output control signal when the CPU writes data only.

The MCS6522 PIA has six device select pins.

CS1 and CS2 are two typical select signals, exactly equivalent to MC6820 signals bearing the same names.
Note that the MCS6522 has no CSO select. For the MCS6522 device to be selected. CS1 must receive a high input
while CS2 simultaneously receives a low input.

RSQ, RS1, RS2 and RS3 address one of 16 locations within the MCS6522. Thus an MCS6522 device will appear to
a programmer as 16 memory locations. Note that the MC6820 has only two address lines. RSO and RS 1. and appears
to a programmer as four memory locations.

Addressing logic associated with the MCS6522 is. in fact. quite simple. Combining the two chip MCS6522
select signals. CS 1 and CS2. with the four address select Signals. RO. R1. R2 and R3. simply means ADDRESSING
that total device logic will be derived from six of the 16 Address Bus lines - and to the program-
mer, the MCS6522 PIA will appear as 16 contiguous memory locations. Table 10-4 identifies the 16 addressable

10-31

locations of the MCS6522. For the moment it is not important that you understand the nature of these addressable
locations; rather. let us concentrate on the select lines RSO - RS3. Throughout this description of the MCS6522. we are
going to identify addressable locations by a label and a "select code".The "select code" consists of the signal levels
given in the left-hand column of Table 1 0-4. To a programmer. a "select code" will simply become some index which
must be added to a base address. Suppose. for example. that your interfacing logic will cause an MCS6522 to consider
itself selected when any address is output in the range C00016 through COOF16. Select code 00002 now corresponds
to memory add ress COOO 16; select code a 1112 now corresponds. to memory address C00716. That ·is the relationship
between select code and memory address.

There are four timing and control signals which interface an MCS6522 with external logic. These four signals
are CA 1, CA2, CB1 and CB2. Superficially, these four signals are identical to their MC6820 equivalents. But
there are some secondary differences.

CA 1 and CA2 are control signals associated with 1/0 Port A. CA 1 is an input signal whereas CA2 is bidirectional. CBl
and CB2 are equivalent signals associated with 1/0 Port B. however. CB 1 is bidirectional. although it is used as an input
by Shift register logic only.

There are two control signals associated with the MCS6522 CPU interface.

<1>2 is the phase two clock which is output by any of the MCS6500 CPUs. The MCS6522 uses <1>2 as a standard syn­
chronization signal, equivalent to the E signal used by the MC6820. The trailing edge of each <1>2 pulse synchron­
izes all logic and timing within the MCS6522. <1>2 is used optionally by Shift register logic to clock serial input or output
data.

RIW is the standard read/write control signal output by all MCS6500 CPUs. This signal is identical to that on the
MC6820. Recall that when RIW is high. a read operation is specified and data transfer from the MCS6522 PIA to the
CPU will occur. When RiW is low. a write operation is specified and data transfer from the CPU to the PIA will occur.

The MCS6522 has a single interrupt request signal IRa. In contrast, the MC6820 has two interrupt requests
IRaA and IRaB. If you are simply going to wire-OR interrupt requests and connect them to the CPU IRO pin. then hav­
ing two requests. IROA and IROB. makes no sense; combining them is preferable: On the other hand. if you are going to
include any type of interrupt priority arbitration logic. such as the MC6828. then by combining IROA and IROB into a
single interrupt request. you can no longer vector separately to interrupt requests arising at either I/O Port A or I/O Port
B logic. You must vector a single interrupt request. arising fromeither of these ports; then you must execute instruc­
tions to test status bits and determine the exact interrupt source.

Table 10-4. Addressing MCS6522 Internal Registers

LABEL SELECT LINES
RS3. RS2. RS1. RSO ADDRESSED LOCATION

DEV 0000 Output register for 1/0 Port B
DEV+1 0001 Output register for 1/0 Port A. with handshaking
DEV+2 0010 1/0 Port B Data Direction register
DEV+3 0011 1/0 Port A Data Direction register.
DEV+4 0100 Read Timer 1 Counter low-order byte

Write to Timer 1 Latch low-order byte
DEV+5 0101 Read Timer 1 Counter high-order byte

Write to Timer 1 Latch high-order byte and
initiate count

DEV+6 0110 Access Timer 1 Latch low-order byte
DEV+7 0111 Access Timer 1 Latch high-order byte
DEV+8 1000 Read low-order byte of Timer 2 and reset

Counter interrupt
Write to low-order byte of Timer 2 but do not
reset interru pt

DEV+9 1001 Access high-order byte of Timer 2; reset
Counter interrupt on write

DEV+A 1010 Serial 1/0 Shift register
DEV+B 1011 AuxiliaryControl register
DEV+C 1100 Peripheral Control register
DEV+D 1101 Interrupt Flag register
DEV+E 1110 Interrupt Enable register
DEV+F 1111 Output register for 1/0 Port A. without handshaking

10-32

Q
w

~
a: o
a.
a:
o u
~
en
w

~ g
CI)
CI)

ct
~
w
z
a:
o
CD
CI)

o
~
ct
Q
ct
@

RESET is a standard Reset input. When input low. the contents of all MCS6522 registers will be set to O. Reset logic
of the MCS6522 and MC6820 is identical.

MCS6522 PARALLEL DATA TRANSFER OPERATIONS
Because there are significant differences between the logic associated with MCS6522 I/O Ports A and B, we
will begin by examining I/O Port A operations.

When you examine 110 Port A operations. the first addressable location to look at is 0011 MCS6522
(DEV+3) -the I/O Port A Data Direction register. You must load a mask into this register I/O PORT A
in order to assign individual 110 port pins to input or output. A 0 in any bit of the Data Direction DATA TRANSFER
register will cause tQe corresponding I/O Port A pin to input data only. A.1 in any bit position
will cause the corresponding I/O Port A pin to output data only. .

You access I/O Port A. either to read or write data. via select code 00012 (DEV+1) or 11112 (DEV+Fl.

But before we discuss why I/O Port A has two select codes. we must describe the way in which read and write
operations occur in conjunction with pins having been assigned to input or output. Read and write logic is best il-
lustrated as follows: .

-{

I/O

CPU writes data·. Output
Buffer

Eight

I/O Port A
Pins

------------ CAl latches data

Data being output is written to the I/O Output buffer: signal levels are created immediately at those I/O pins which
have been declared as output pins. I/O pins which have been declared as input pins are. in effect. disconnected from
the 110 Output buffer - and are in no way affected by I/O Output buffer contents.

I/O Input latches will reflect the signallevelof every I/O Port A pin. whether it has been assigned to input or output: I/O
Input latches will acquire I/O Port A pin levels when latched by an active transition of the CA 1 control input.

For the most part. this scheme is inconsequential toyou as an MCS6522 user. since whatever you write to output pins
will be output.·and you will read whatever external logic inputs to input pins. The only caution is that you cannot read
back what you write to output pins. Latch timing and transient signal levels at output pins can modify data as it travels
from I/O Output buffers to I/O Input latches.

Irrespective of whether I/O Port A pins havebeen assigned to input or output. control signals CA 1 and CA2 can be
used to provide handshaking. External logic uses CA 1 to communicate with the microcomputer system: CA2 may be a
control input or a control output signal.

First you must enable I/O Port A by writing a 1 into bit 0 of the Auxiliary Control register (select code 1011 or
location DEV+B), which is illustrated in Figure 10-14. Next you select your CA1 and CA2 control options by
writing appropriate codes into bits 0 - 3 of the Peripheral Control register, which is illustrated in Figure 10-15.

When you access I/O Port A via select code 00012 (DEV+ 1l. then as soon as data is written into the I/O Port A buffer ..
the CA2 signal may output low. or it may pulse low; you determine how CA2 will respond by the code you load into the
Peripheral Control register. Bits 1. 2 and 3 of the Peripheral Control register determine the way in which control signal
CA2 will function. If these three bits are 100. then when you address I/O Port A via select code 00012. CA2 will go low
as soon as the I/O port is accessed:

10-33

7 6 5,"

CAl rcpu '"" re'" f~m. ~ ~" "
I/O Port A via select code 0001 2

7 6 5 " 3 2 1 0 ... Bit No.

I I I I I I I I I -.-......-...
+ ,

Auxiliary Control register

o Disable inputs at I/O Port A

1 Enable inputs at I/O Port A

o Disable inputs at I/O Port B

1 Enable inputs at I/O Port B

000 Disable Shift register

001 Shift in a.t Counter 2 rate

010 Shift in at <1>2 clock rate

011 Shift in at external clock rate

100 Free-running output at Counter 2 rate
101 Shift out at Counter 2 rate

110 Shift out at <1>2 clock rate

111 Shift out at external clock rate

o Decrement Counter 2 on <1>2 clock, in one-shot mode

1 Decrement Counter 2 on external pulses input via PB6

o Disable output via PB7}
1 Enable output via PB7

Counter 1 controls o One-shot mode

1 Free-running mode

Figure 10-14. Auxiliary Control Register Bit Assignments

3 2 1 o ~BitNo.
I ,

"" , I I Peripheral Control register --L 0 _"""" ;moo'" 00 higIHo-l~ }
transition of CA 1 On interrupt request set

. ,1 Request interrupt on low-to-high Interrupt Flag register bit 1
transition of CA 1 ,

,"000 CA' 'op", mod. } _,,~I ,,,,,,,,,, ,00 } Do 'o"~,,
001 CA2 'independent input mode high'-to-Iow CA2 transition request set

010 CA2 input 'mode' '.. Request interrupt on Interrupt Rag

011 CA2 independent input mode } low-to-high CA2 transition register bit 0

100 CA2 output low on CPU read or write

101 CA2 output low pulse on CPU read or write
, 110 Output CA2 low

111 Output CA2, high

0_",,,, 'm"Np' 00 h'9h_"_I~}
. transition of CB 1 On interrupt request set

1 Request interrupt on low-to-high Interrupt Flag register bit 4

transition of CB 1

000 CB2 lop", modo } _"""" '0"""" 00 } Do 'moo,,,
001 CB2 independent input mode high-to-Iow CB2 transition request set
010 CB2 input mode Request interrupt on ' Interrupt Flag

011 CB2 independent input mode } low-to-high CB2 transition register bit 3

100 CB2 output low on CPU write

101 CB2 output low pulse on CPU write

110 Output CB2 low
111 Output CB2 high

Figure 10-15. Peripheral Control Register Bit Assignments

10-34

c
w
~
a:
o
0.
a:
o
(J

~
en
w

~
U o
(I)
(I)

ct
all
w
Z
a:
o
aI
(I)

o
~
ct c
ct
@

If bits 3. 2 and 1 of the Peripheral Control register contain 101. then CA2 will pulse low for one clock period when you
access the I/O Port via the select code 00012:

<1>2

CA2 " I ~ CPU just read from. or wrote to

I/O Port A via select code 0001.

If bits 3. 2 and 1 of the Peripheral.Control register contain any other values. CA2 will not be affected by the CPU access­
ing I/O Port A via select code 00012 (DEV+1).

If CA2 makes an active transition when you access 1/0 Port A, then any interrupts pending for CA 1 or CA2 will
be cleared.

If you access I/O Port A via the select code 11112 (DEV+Fl. then CA2 is unaffected. whatever Peripherai Control
register bits 3. 2 and 1 contain.

Notice that bits 3. 2 and 1 of the Peripheral Control register primarily determine whether control signal CA2 will be an
input or an output control. We have seen two of the output control options. The remaining two output options force
CA2 to be either output high or low.

Let us look at the CA2 input options. which are also specified via Peripheral Control register bits 3. 2 and 1. If any input
option has been specified. then it makes no difference whether you access I/O Port A via the select code 00012
(DEV+1) or 11112 (DEV+F); since CA2 has been specified as input control. it cannot be output low or pulsed low when
you access I/O Port A. .

The CA2 input options available to you are as follows:

1) You can specify that a CA2 input high-to-Iow. or low-to-high transition will generate an interrupt request.

2) You can specify that any interrupt pending from a CA2 active transition will. or will not be cleared when I/O Port A
is accessed via the select code 00012 (DEV+1). Accessing I/O Port A via the select code 11112 (DEV+F) will never
affect any pending interrupt statuses. In Figure 10-15, CA2 "input mode" means prior CA2 active transition
interrupt requests are cleared when you access 1/0 Port A via select code 00012 (DEV+1); no such inter­
rupt reset occurs in "independent input" mode.

Peripheral Controi register bit 0 determines whether input control signal CA 1 will generate an interrupt request on a
hig h-to-Iow. or a low-to-high transition. One or the other transition will always cause an interrupt - and the only way
of ignoring CA 1 interrupts is to individually disable them. We will describe how this is done later when we discuss in­
terrupt logic in general.

If you access 110 Port A via the select code 00012 (DEV+11. and you cause CA2 to output low by storing 100 in bits 3.2
and1 of the Peripheral Control register. then CA2 will return high again when CA 1 makes its active transition. This may
be illustrated as follows:

CAl

-----.)1---------,.'(. CA2

CPU accesses External logic acknowledges
I/O Port A with active CA I transition

While handshaking options available with 1/0 Port A may seem complex, in reality they are quite simple. For
easy reference, options are summarized in Table 10-5.

Next, consider 1/0 Port B.

If you look upon 1/0 Port B simply as a data transfer conduit, then it is very similar to 1/0 MCS6522
Port A, simply lacking a few 1/0 Port A features. I/O PORT B

Like I/O Port A. I/O Port B has a Data Direction register (select code 00102 or label DEV+21. DATA TRANSFER
which you use to identify input and output pins. You must load a mask into this register in
order to assign individual I/O port pins to input or output. A 0 in any bit of the Data Direction register will cause the cor­
responding I/O Port B pin to input data only. A 1 in any bit position will cause the corresponding I/O Port B pin to out­
put data only.

10-35

Table 10-5. Summary of I/O Port A Handshaking Control Signals

I/O Port A
. Peripheral

Select
Control Interrupt CONTROL SIGNALS

Code'
Regilter Reset

(Binery)
Bits

3 2 1 0

,CD On 0001
0001 CA1.- select code

or "

0 0 0 0 ,0 eccess or
1111 CA2~ programmed

reset

0, On 0001
0001 0 0 0·1 CA1~ select code
or· ,CD access or

1111 CA2~ programmed
reset

0001 0 0 1 0 CAl ...- \CD Programmed
or \CD reset only

1111 CA2 ~

'CD 0001 0 0 1 1 CA1~ Programmed
or CD reset only

1111 CA2.- \

CD On 0001
0001 0 1 0 0 CA1...- \ 'select code

or
(]),

access or
1111 CA2·...- programmed

reset

(])/
On'OOOI

0001 0 1 0 1 CA1...- select code
or (j), access or

1111 CA2 .- . programmed .
reset

,(])
0001 0 1 1 0 CAl -4- ,

Programmed
or

(]), reset only
1)11 CA2..-.

'CD
0001 0 1 1 1 CA1~

,
Programmed

or (]) reset only
1111 CA2.- I

CD At@or 0001 1 0 0 0 CA1.-

~ CA2~\0
programmed
reset

.(])
1111 1 0 0 0 CA1...-

~
Programmed
reset only

CA2~

10-36

Q
w

~
a:
o
a.
a:
o
o
~
en
w

~
g
(I)
(I)

<
ciI
w
Z
a:
o
m
(I)

o
~
<
Q

<
@

Table 10-5. Summary of 1/0 Port A Handshaking Control Signals (Continued)

I/O Port A
Perlpherat

Control
Select

Regl.ter Interrup1
Code CONTROL SIGNALS

Blta Re.et
(Binary)

3 2 1 0

0001 1 0 0 1 CAt~

.~
At@or

CA2-...,0
programmed
reset

1111 1 0 0 1 CAl~· ;:cr Programmed

CA2~
reset only

CD At@or 0001' 1 0 1 0 CAl~ l::.-
CA2-+~

Programmed
reset

CD
1111 1 0 1 0 CA1~ L- Programmed

CA2-. unaffected
reset only

0001 1 0 1 1 CAl~ <. CDr- At@or

CA2~--@J
programmed
reset

1111 1 0 1 1 CAl~ CDr-
Programmed

CA2~ unaffected
reset only

, 0001 CAl.~ \ CD On 0001

or select code

1111 1 1 0 0 CA2 -.-----------'He�dlow) access or

programmec;l
reset

<D ~0001 0001 CAl~ I
or select code

1111 1 1 0 1 -- - - - - -- - - -- iHeld low)
access or CA2 -. programmed
reset

CD On 0001

0001 CAl~ \ select cOde

or access or

1111 1 ,I 1 0 CA2~ ____________ ~eldhigh) programmed

reset

CD On 0001

0001 CAl~ I select code
access or

or
1111 1 1 1 1 CA2~ _____________ !'eld high programmed

reset

J)lnterrupt request @CPUaccess

10-37

You must enable I/O Port B by loading a 1 into bit 1 of the Auxiliary Control register. just as you had to enable I/O Port
A.

Subsequently. you access I/O Port B via the single select code 00002.

You have to load an appropriate code into bits 4 - 7 of the Peripheral Control register to define the way in which control
signals CB1 and CB2 will operate. just as you had to load a code into bits 3 - 0 of the Peripheral Control register to
define control signal CA 1 and CA2 operations. The only difference between control signals CB 1 and CB2. as compared
to control signals CA 1 and CA2. pertains to codes 100 and 101 in bits 7.6.5 or 3.2. 1 of the Peripheral Control register.
Code 100 causes CA2 or CB2 to output low when appropriate conditions exist. while code 101 causes the signal to
pulse. For I/O Port A. "appropriate conditions" consist of the CPU reading or writing. while selecting I/O Port A via the
select code 00012 (DEV+ll. For I/O Port B. "appropriate conditions" consist of the CPU writing. but not reading. ac­
cessing I/O Port B via the select code 00002 (DEV) - the only select code available for I/O Port B.

I/O Port B also has a simpler interface with the CPU Data Bus. Rather than having separate output buffer and input
latches. there is a single output buffer. which is accessed by the CPU when reading from. or writing to I/O Port B.
Coupled with the different pin configuration. which we have already described for I/O Port B. you can guarantee that
bit levels written to I/O Port B output pins will subsequently be read back accurately.

The more limited capabilities of I/O Port B reflect the fact that pins 7 and 6 of this I/O port may be used by Interval
Timer logic. Thus. the MCS6522 will frequently be configured with I/O Port A providing parallel I/O. while I/O Port B
provides various types of control dialogue.

MCS6522 INTERVAL TIMER LOGIC
The most important point to note regarding the additional functions associated with I/O Port B is that they have
logical priority over simple data transfers; what this means is that the Interval Timers and Shift register may. under
some circumstances. use I/O Port B pins. control signals and interrupt logic. When Interval Timer or Shift register re­
quirements are in conflict with simple data transfer. then Interval Timer or Shift register requirements will. prevail.

Let us look at a specific example; pins of I/O Port B are used by Interval Timer logic as follows:

1

L2J

Interval Timer 1 outputs or

Interval Timer 2 inputs

Suppose you have identified I/O Port B pin 7; via the Data Direction register. as.an input pin; Interval Timer 1 uses this
pin to output pulses or square waves and will override the Data Direction register.

Ii is a good idea not to use I/O Port B for parallel data transfer while you are using Interval Timer or Shift register
logic. Also, exercise caution when using both Interval Timers, or when using the Serial Shift register in conjunc­
tion with Interval Timers.

10-38

c
w

~
a:
o
no
a:
o
CJ
~
en
w

~ g
fI)
fI)

~

olI
w
Z
a:
o
CD
fI)

o
:;:
~
c
~

@

Let us first examine Interval Timer 1. This is the more versatile of the two ivlCS6522 Inter- MCS6522
val Timers; it is most easily understood if visualized as follows: INTERVAL

16-Bit Latch registe~
~", ____ ,_._.",.A ·_ ... -_-.":",, ,

High.Order

Latch Byte

Low-Order

Latch Byte

,"

~,.. ______ ' ' 1 Coo",,,,"" ,"'bI': ACR b" 1 -I

High-Order
Counter Byte

Low-Order
Counter Byte

Connection }-;;. . :0"" 1

'------.. enabled

'-.... -------.....'r,..--------..... ~ byACR
16-Bit Counter register bit 6 = 1

TIMER 1

You select from among its many functions by appropriately loading bits 7 and 6 of the Auxiliary Control register
(ACR).· ,

Interval Timer 1 addressing via select codes may be illustrated as follows:

Select
Code

DEV+5

Select
Code
0111

DEV+7

r010ll
ead Write

~
High.order

Latch byte

1
High-order

Counter byte

Select
Code

0110,
DEV+6

"

Low-order

r
Write

~
Latch byte

(
Low. order

Counter byte .
,-,'

Select

Code

DEV+4
0;00 l

Rea

'.

d

Select codes 01102 (DEV+6) and 01112 (DEV+ 7) are quite straightforward, The former accesses the low order Latch
byte to read or wtite:the latter accesses the high order Latch byte t~ read or write, "

Select codes en 002 (DEV+4) and 01012 (DEV+5) are not so straightforWard, If you access the MCS6522 PIA with
select code 01 002 (DEV+41. you will write into the low-order Latch byte, but you will read the contents of the low-order
Counter byte.

If you access the MCS6522 PIA with select code 01012 (DEV+51. you will read the contents of the high-order Counter
byte: but upon writing, you will access the high-order Latch byte a,nd the high' order Counter byte, while
simultaneously transferring the low-order Latch byte contents to the low-order Counter byte. This allows a clean
method of loading 16 bits of data into the Counter byte follciwing the execution of a single instruction.

Writing to select code 01012 (DEV+5) will also initiate a new Timer interval.

10-39

The two Counter registers constitute a 16-bit entity which is decremented on the trailing edges of the <1>2 clock pulse.
The initial value loaded into the Counter' registers identifies the interval of the Counter. An active time-out of the
Counter is' marked by an interrupt request. . .

If the Counter is connected to pin 7 of 1/0 Port B. then an active time-out will also cause the signal output at pin 7 of 1/0
Port B to invert or pulse low. depending on the mode in which the Interval Timer is operating.

A 1 in bit 6 of the Auxiliary Control register will connect Counter logic to pin 7 of 1/0 Port B. A 0 in bit 6 of the Auxiliary
Control register disconnects Counter logic from pin 7.

Via bit 7 of the Auxiliary Control register. you can connect or disconnect Counter and Latch logic. A 0 in bit 7 of the
Auxiliary Control register is a disconnect. whereas a 1 is a connect. .

Referring to Figure 10-14. "One-Shot Mode" refers to disconnected Latch and Counter logic. while "Free RJn­
ning Mode" refers to connected Latch and Counter logic.

If Counter logic is disconnected from the Latch registers. then following Counter initiation there will be oneactive time­
out. after which the Counter will continuously redecrement from 000016. through FFFF16. and back to 000016. Subse­
quent counts are inactive - which means that no interrupt will be requested. and if connected to pin 7 of 1/0 Port B.
no signal changes will be output.

If Counter logic is connected to the two Latch registers. then. every time the Counter times out. it is immediately
reloaded wi'th the contents of the Latch registers - and begins another active time out. Under these circumstances.
every Counter time out is active - and will be marked by an interrupt request. plus a signal level change at pin 7 of 1/0
Port B. if this pin is connected to Counter logic.

While the Interval Timer 1 options may appear complicated. in fact they are very simple.

To you. as a programmer. there is only one option that you must define when using Interval Timer 1 of the
MCS6522: do you want the Interval Timer to operate in one-shot or. free running mode? .

Let us first c~nsi~er One-Shot Mode. which is selected by having ~ 0 in bit 7 of the Auxiliary' MCS6522
Control register. INTERVAL

TIMER 1
ONE-SHOT
MODE'

Recail that in One-Shot Mode the Counter is disconnected from the Latch registers. For practical
reasons. however. this disconnection is not complete: you have to initiate a time out by loading an
initial value into the high-order and low-order Counter bytes; but the Counter is continuously run­
ning. Were you to load the low-order byte. and then the high-order byte to the Cou nter register.
problems could arise. because the. low-order byte wou Id start decrementing before you had completed loading the
high-order byte. To resolve this problem. you initially load the lowcorder Counter register byte value into the low-order
Latch register byte: then you directly load the high-order Counter register byte. You do this by writing into the memory
addresses associated with select codes 01002 (DEV+4) and 01012 (DEV+51. When you write into select code 01002
(DEV+41. you load the low-order byte of the initial Counter valueinto the low-order Latch register byte. When you write
into select code 01012 (DEV+51. you load the high-order Latch register byte. but immediately the 16 Latch register bits
are loaded into the Counter. which starts decrementing. As soon as the Counter times out. an interrupt is requested:
and if. via Auxiliary Control register bit 6. you have connected 1/0 port pin 7 to the Counter. then a low pulse will be
output via pin 7. the low pulse will have a width of one <1>2 clock period:

<1>2

Pin 7

Initiate a
Line interval

Time out

Note that when using an MCS6522. the onuS is upon you to make su re that all programmable signal levels are at their
correct level. In the illustration above. <1>2 is not a programmable signal. so you can ignore it. The pin 7 level is program­
mable: it is up to you to make sure that a high level is being output at pin 7. or else a low pulse will not occur.

Whatwe are saying is that Interval Timer 1 logic will not insure that pinTis normally outputting a high level. You must
firstdefinepin 7 as an output by writing a 0 into bit 7 of the 1/0 Port B Data Direction register. Then you must output a
1 to bit 7 of 1/0 Port B. Having thus established acontiHuous high level being output at pin 7; you can be sure of a low
pulse marking an active time out. .

10-40

Q
w

~
a: o
Il.
a:
o
o
~
en
w

~
g
CI)
CI)

ct
IIi:I
w
2
a:
o
III
CI)

o
~
ct
Q
ct
@

Following a time out in the One-Shot Mode. the Counter decrements continuously via FFFF16 to 000016. On subse­
quent time outs no interrupt request occurs and no low pulse is output via pin 7 of liD Port 8.

If you have specified the free running mode by loading 1 into bit 7 of the Auxiliary Con-
trol register, then as soon as the Counter times out. Latch register contents are immediately
transferred to the Counter register. which again decrements to an active time out. Thus a se­
quence of interrupt requests. with optional signal output via pin 7 of liD Port 8 will occur-
but there are some differences.

p---------~--~

MCS6522
INTERVAL
TIMER 1 FREE
RUNNING MODE

When using Interval Timer 1 in free running mode. you initialize exactly as you do for the one-shot mode; you load the
low-order and high-order Counter bytes via select codes 01 002 (DEV+4) and 01012 (DEV+5). As soon as you write into
select code 01012. the Latch contents are transferred to the Counter. which starts decrementing. While the Counter is
decrementing you can reset the next Counter initial value by writing into the Latch register using select codes 01102
(DEV+6) and 01112 (DEV+ 7). Now as soon as the Counter times out. the new value you have loaded into the Latch
register becomes the next initial Counter value.

If you have connected I/O Port 8 pin 7 to the Counter by storing 1 in Auxiliary Control register bit 6. then each time the
Counter times out. the signal output via pin 1 of liD Port 8 is inverted. generating a square wave; this may be illustrated
as follows:

I/O Port B Pin 7: (,
TmeOut 1 Time Out 2 Time Out 3 Time Out 4 etc

Remember. you can. at any time. read the contents of Interval Timer 1 Counter or Latch registers. This gives you a com­
plete ability to test and modify Timer intervals in any way. under program control. while Interval Timer 1 is operating.

Now consider Interval Timer 2.

MCS6522 Interval Timer 2 has logic which is markedly different from Interval Timer 1, MCS6522
which we have just described. Interval Timer 2 offers two modes of operation: INTERVAL

1) One-shot mode with no signal output. TIMER 2

2) Pulse counting mode.

You select one of the two Interval Timer 2 options by appropriately setting bit 5 of the Auxiliary Control register. as il-
lustrated in Figure 10-14. ,/

One-shot mode. with no signal output. is identical in operation to one-shot mode with no signal output. as described for
Interval Timer 1.

Pul.se counting mode is an alternative one-shot mode; the Interval Timer 2 Counter decrements onhigh-to-Iow transi­
tions of signal input via pin 6 of liD Port B. Thus. in the pulse count mode. Interval Timer 2 will count out after the num­
ber of high-to-Iow transitions specified by the initial Counter value. For example. if you initially load 200016 into the In­
terval Timer 2 Counter. then after 8192 high-to-Iow transitions of the signal input via pin 6. an active time out will oc­
cur.

Following an active time out. an interrupt is requested. Subsequently. Interval Timer 2 continues to decrement con­
tinuously from 000016 through FFFF16 and back to 000016; on subsequent time outs however. no interrupt request is
generated. Subsequent time outs are passive.

Since the logic capabilities of Interval Timer 2 differ from Interval Timer 1. as we might expect. the register organization
and addressing logic associated with Interval Timer 2 also differs. It may be illustrated as follows:

Hig!).Order

Counter Byte

Low-Order

Latch Byte

Permanent

Low-Order

Counter Byte

, 'r~--""----~~
16-Bit Counter register

·10-41

connection

~:[r
Connection enabled

by selecting

Pulse Counting Mode

Interval Timer 2 is accessed via two select codes. 10002 (DEV+8) and 10012 (DEV+9);addressing may be illustrated
as follows:

Select

,-Code~
I 1001 I

Read Write

High-Order
Counter Byte

Select

Low-Order
Latch Byte

Low-Order
Counter Byte

Since Interval Timer 2 has no free running option. there is no need for a high order Latch register byte; the sole purpose
of such a location is to store a high-order CoUnter byte. waiting to be loaded into the Counter register when it times out.
You do need a low-order Latch register byte. because when loading the Counter register. you still have to make two ac­
cesses. You cannot load the low-order Counter byte. and then load the high-order Counter byte; the Counter is con­
tinuously decrementing and would start decrementing the low-order Counter byte while you were loading the high­
order Counter byte.

The initiation procedure for Interval Timer 2. whether you are in one-shot mode or pulse counting mode. is to write the
low-order Counter byte to select code .10002 (DEV+8L then the high-order Counter byte to select code 10012
(DEV+9). As soon as you write the high-order Counter byte to select code 1 0012 (DEV+91. Interval Timer 2 logic
transfers the contents of the low-order Latch byte to the low-order Counter byte - and initiates decrementing.

If you are in one-shot mode. the Counter register is decremented on each high-to-Iow transition of the <t>2 clock pulse.

If you are in pulse counting mode. the Counter decrements on each high-to-Iow transition of a signal input via pin 6 of
I/O Port B.

That is the orily difference between the two modes.

MCS6522 SHIFTER LOGIC
MCS6522 Shifter logic may be illustrated as follows:

Interval Timer 2
active time out

..P Strobe
CB"

=~ssi~e ./ . - ~
sources for Shift Serial d~ta in~

Enable Strobe or out via CB2

Shifter

As illustrated above, serial data may be shifted into bit 0 or out of the Shift register bit 7. Serial data is transfer­
red via controi signal CB2.

When you shift into bit 0 the data transfer is accompanied by a one-bit left shift of the Shifter contents. When you shift
out of bit 7. the data transfer is accompanied by a one-bit left rotate of the Shifter contents.

,10-42

c
w

~
a: o
a..
a:
o
u
~
en
w
I­
ct g
(I)
(I)

ct
all
w
Z
a:
o
!XI
(I)

o
~
ct
C
ct

@

Every serial bit data transfer is enabled by a strobe signal. The strobe may be derived from:

1) A signal input by external logic via CB1.

2) The <1>2 clock signal.

3) Interval Timer 2 active time-outs.

If the enable strobe is derived from external logic via CBl or from <1>2. then the high-to-Iow transition of either signal
triggers the enable strobe.

If the shift enable strobe is derived from Interval Timer 2. then only the low-order eight Counter bits for Interval Timer 2
are decremented.

There are seven modos in which the Shifter can be operated; three are input modes and four are output modes.
You select an appropriate mode by the code loaded into bits 5. 4 and 3 of the Auxiliary Control register. Let us examine
the response of Shifter logic to the eight possible Auxiliary Control register bit combinations.

Mode 000; disable Shift register. When Auxiliary Control register bits 5. 4 and 3 are 000. the Shift register is dis­
abled. Control signals CB 1 and CB2 respond as defined by bits 7. 6 and 5 of the Peripheral Control register. While the
Shift register is disabled. the CPU can still write into it and read from it: you. as a programmer. can therefore use it as a
storage location for a single data byte.

Mode 001; input under Interval Timer 2 strobe. Auxiliary Control register bits 5. 4 and 3 set to 001 specify serial
data shifted in. as timed by Interval Timer 2. However. only the low-order byte of Interval Timer 2 is active. which
means that 256 is the maximum initial Interval Timer 2 count which can be used. A low pulse with a width of one <1>2
clock is output via CBl on each Interval Timer 2 time-out. as a signal that external logic must provide the next serial
data bit to be input. Interrupts are generated. as usual. following each time-out: an additional interrupt is generated
after eight bits in the Shift register have been serially output.

When Interval Timer 2 is being used to strobe the Shift register in Mode 001. then it operates in a unique mode which
is not available at any 'other time.

Whenever Interval Timer 2 times-out. the contents of the low-order Latch byte are immediately transferred to the low­
order Counter byte - and decrementing resumes. Thus. Interval Timer 2 is operating in a free-running mode. with only
the low-order Counter byte active. As this would imply. you must initiate Interval Timer 2 by loading the appropriate in­
itial count into the low-order Timer 2 Latch byte - before enabling the Shift register in Mode 001. Followinga time-out
you can. of course. reload the Interval Timer 2 low-order Latch byte to modify the next time interval. Timing may be il­
lustrated as follows:

Interval Timer 2 time-outs strobe shifter

1,1 l,! til I I I J
CB2 Shift

o
Shift Shift Shift

1 2

Shift Shift

5
Shift

6
Shift

7 ,
Interrupt
request

CPU must read shifter contents ___ -
within this time interval

Shift

8 or
next shift

Note that it is your responsibility as a programmer to ensure that all logic needed by the Shifter has been appropriately
set for operations illustrated above. This means that you must program Interval Timer 2 to redecrement following each
time-out by writing a a into select code 10012 (DEV+9). the high-order Timer 2 Counter byte.

Since control signals CBl and CB2 are being used by the Shift register in this mode of operation. Shift register require­
ments will override any CBl and CB2 control Signal specifications that have been made via bits 7. 6. 5. and 4 of the Pe­
ripheral Control register.

10-43

Mode 010; input under <1>2 clock strobe. This mode is specified by 010 in bits 5. 4 and 3 of the Auxiliary Control
register.

In Mode 010. and in all other Shift register modes that are clocked by <1>2. shifting stops on the eighth shift - which is
marked by an interrupt request. Timing may be illustrated as follows:

Shifting stops ,
<1>2

.CB2

Shift register bit 0 0 0 0 0
at final interrupt: 4 3 0 ,

. Interrupt

request

Mode 011; input under external pulse strobe. This mode is specified by 011 in bits 5. 4 and 3 of the Auxiliary Con­
trol register. This mode is equivalent to the standard serial input found in most serial I/O devices. where external logic
provides the clocking signal which is used to time in serial data. In this case. external logic provides a clocking signal
via CB1; a high-to-Iow transition of CBl is interpreted by the Shift register as a strobe to input the next serial data bit
from CB2. . .

Timing may be illustrated as follows:

.. ,

m'~~ ,-'

Shift 6 Shift 7 Shift 0 Shift 1 Shift 2 ---

~
Interrupt
request

As was the case with Mode 001. shifting is continuous. So far as external logic is concerned it is shifting in an endless
stream of serial data bits. Shifter logic generates an interrupt request every eighth shift so that the CPU will know when
to read the contents of the Shifter. The CPU has the time interval between a Shifter interrupt and the next high-to-Iow
transition of CB 1 within which to read Shifter register contents. If the CPU does not read Shifter register contents in this
time interval then an error will occur but no error status will be reported.

Shift register use of control signals CBl and CB2 overrides specifications made for these Signals via bits 7. 6.5 and 4 of
the Peripheral Control register; however. the policy of overriding adopted by the designers of the MCS6522 is some­
what subtle. Since control Signal CB2 is used as a serial data input signal. any specifications made fei this Signal via the
Peripheral Control register are totally ignored. Specifications made for control signal CB 1. however; remain. If you have
enabled I/O Port B via bit 1 of the Auxiliary Control register. then the active transition for control signal CB 1 which is

10-44

Q
w

~
a: o
0..
a:
o
o
~
en
w

~
g
(I)
(I)

ct
cIS
w
z
a:
o
a:I
(I)

o
~
ct
Q
ct
@

specified by bit 4 of the Peripheral Control register will apply. Thus you will generate an interrupt whenever CB 1 makes
an active transition in the process of clocking in serial data. The two possibilities may be illustrated as follows:

CBI

CB2

Interrupt Data Interrupt Data
request Read request Read

Data read and interrupt request

You can disable interrupts occurring as a result of active CBl transitions via the Interrupt Enable register. which we
have yet to describe.

Let us now look at the output modes of the Shift register. In all output modes. the Shift register transfers the con­
tents of bit 7 to control signal CB2. Simultaneously.bit 7 contents are shifted back into bit O. This may be illustrated as
follows:

7 6 5 ... 3 2 1 0 ~ Bit No.

fEll 1 1 1 I ...) Shi""

Out to CB2

Depending upon the serial output option you choose. CBl mayor may not be used as a companion control signal.

Mode 100; free-running output under Interval Timer 2 strobe. This mode is selected via 100 in bits 5.4 and 3 of the
Auxiliary Control register. Data is shifted out of Shift register bit 7. clocked by Interval Timer 2. as described for input
mode 001. Data shifted out appears on' CB2. Shifting is continuous. which means that the bit pattern in the Shift
register will output endlessly. . .

Mode 101; output under Interval Timer 2 strobe. This mode is specified by 101 in bits 5. 4 and 3 of the Auxiliary
Control register. It differs from Mode 100. which we have just described. in that once eight bits have been shifted out of
the Shifter. an interrupt is requested and shifting halts.

You can output continuously under Mode 101 by making appropriate use of Shift register interrupts and Interval Timer
2. The Shift register interrupt occurs on the eighth shift out of the Shifter; but within the time it takes for Interval Timer
2 to again time-out. you can reload the Shifter. If you reload the Shifter during this time interval. then on the next time­
out of Interval Timer 2. shifting will begin again. and thus become an uninterrupted bit stream on signal CB2.

Mode 110; shift out under <1>2 pulse. This mode is selected via 110 in bits 5. 4 and 3 of the Auxiliary Control register.
In this mode eight bits are shifted out of the Shift register. clocked by <1>2. Then shifting ceases.

These are the steps you must adopt when using the Shifter in Mode 110:

1) Disable the Shifter by loading 000 into bits' 5. 4 and -3 of the Auxiliary Control register.

2) Load a byte of data into the Shifter. Remember the data you load will be shifted high-order bit first.

3) Enable the Shifter by loading 110 into bits 5. 4 and 3 of the Auxiliary Control register.
4) Again disable the Shifter by loading 000 into bits 5. 4 and 3 of the Auxiliary Control register.

In Mode 110. data will be Shifted out on every high-to-Iow transition ofthe <1>2 clock pulse. Thus the entire shift opera-
tion will be completed in eight clock pulses. ' .

Mode 111; shift out under external pulse strobe. This mode is identical to Mode 101. except that instead of output
being timed by Interval Timer 2. external logic provides the output timing pulse via control signal CB 1. As was the case
for input mode 011. the high-to-Iowtransition of the external timing signal input via CB 1 causes serial data to be
shifted out of the Shift register. Once again. unless you have disabled CB 1 interrupts via the Interrupt Enable register.
the condition of bit 4 in the Peripheral Control register will cause the interrupts to be requested each time control Signal
CBl makes a high-to-Iow or a low-to-high transition. . ,.

10-45

MCS6522 INTERRUPT LOGIC
Interrupt logic is one of the first things you must initialize when starting to use an MCS6522. It is the last subject we
describe. because in 'order to understand MCS6522 interrupts. you must first be aware of the numerous ways in which
interrupt requests may originate within this device.

There are two addressable locations within the MCS6522 dedicated to interrupt logic:

1) The Interrupt Flag register. selected by 11012 (DEV+D).

2) The Interrupt Enable register. selected by 11102 (DEV+E).

These two registers have individual bits assigned to the different interrupt requesting sources as follows:

7 6 5 ... 3 2 1 0 ~ Bit No.

Interrupt Flag register

Interrupt Enable register

'-----Active transition of CA2

'------Active transition of CA 1

'------- Active transition of CB2

'-------- Active transition of CB 1

'--------- Shift register eighth shift

'--------- Interval Timer 2 time-out

'--------- Interval Timer 1 time-out

'--------------- Enable/disable specification

..... -------------- Any active interrupt request

The Interrupt Flag register identifies those interrupts which are active. A1 in any bit position indicates an active
interrupt. whereas a 0 indicates an. inactive interrupt.

You can selectively enable or disable individual interrupts via the Interrupt Enable register. You enable individual
interrupts by writing to the Interrupt Enable register with a 1in bit 7. Thus you could enable "time-out for Timer 1" and
"active transitions of signal CB1" by outputting C816 to the Interrupt Enable register: .

7 6 5 .~ 3 2 1 0 ~Bit No.

11 I] I 0 I 0 11 I 0 I 0 10 J...--Interrupt Enable Register

f l' '" 3, "'Ne "' ... "" of CS
1

'-----------Blt 6. Interval Timer 1 time-out

'------------Enable specified

You selectively disable interrupts by writing to the Interrupt Enable register with bit 7 set to O. Thus you would disable
time-outs from Timer 1 and active transitions of signal CB 1 by outputting 4816 to the Interrupt Enable register.

If an active interrupt exists in the Interrupt Flag register for an interrupt which has been enabled via the Interrupt Ena­
ble register. then bit 7 of the Interrupt Flag register will be set -.:. and an interrupt request will be passed on to the CPU
by setting IRO low. The interrupt service routine executed in response to an interrupt request from the MCS6522 must
read the contents of the Interrupt Flag register in order to determinethe source of the interrupt. and thus the manner in
which the interrupt must be serviced.

You can clear any bit in the Interrupt Flag register. except bit 7. by writing a 1 to that bit. Writing a 0 to a bit has 'no
effect. Thus. if interrupt requests were being made from time-out of Timer 1 and an active transition on CA 1:

7 6 5 4 3 2 1 0 ~ Bit No.

11'1110 I 01010 Il.IO~lnterruPt Flag register

Writing either 8216 or 021 6 (DEV+D) to select code 11012 (DEV+D) would 'clear the interrupt due to' an act"ive trans.i­
tion on CA 1 (bit 1); however. bits 7 and 6 wou Id remain set. . .

There are a number of ways in which interrupt requests are automatically cleared. and the corresponding Interrupt Flag
register bits get reset. These are summarized in Table 10-6.

10-46

Q
w

~
I%:
o
Il..
I%:
o
Co)

~
en
w
l­
e:(
c::;
o
CI)
CI)
e:(

~
w
Z
I%:
o
CD
CI)

o
~
e:(
Q
e:(

@

Table 10-6. A Summary of MCS6522 Interrupt Setting and Resetting

SET CLEARED BY

6 Time-out of Timer 1 Reading Timer 1 Low Order Counter
or writing Tl . High Order Latch

5 Time-out of Timer 2 Reading Timer 2 Low Order Counter
or writing T2 High Order Counter

4 Completion' of eight shifts Reading or writing the Shift register

3 Active transition of the Reading from or writing to I/O Port B
signal on CBl

2 Active .transition of the Reading from or writing to I/O Port B
signal on CB2 (input mode). in input mode only

1 Active transition of the Reading from or writing to I/O' Port A
signal on CA 1 using address 00011

0 Active transition of the Reading from or writing to I/O Port A
Signal on CA2 (input mode) Output register (ORA) using

address 0001, in input mode only
"

THE MCS6530 ,MULTIFUNCTION SUPPORT LOGIC DEVICE

This is a device which appears to have been designed by MOS Technology as an answer to one-chip microcom­
puters.

In order to compete inlow-end: high volume. price sensitive markets. MOS Technology came up with the MCS65'30.
which provides 1 K bytes of ROM. 64 bytes of RAM. two I/O ports. a Programmable Interval Timer and interrupt logic.
The realities of the MCS6530 are such that if you use the Interval Timer and interrupt logic. one of the I/O pdrts is only
partially functional. Nevertheless. an MCS6530 multifunction support device. together with an MCS6500 series CPU.
can compete effectively with the two-chip microcomputers described in this book.

If we look at the MCS6530 simply as a member of the MCS6500 microcomputer family of devices. it is best visualized
as a memory device which. in addition. provides a significant subset of the MCS6522 logic capabilities.

Figure 10-16 illustrates that part of our general purpose microcomputer logic which has been implemented on the
MCS6530 multifunction logic device. Figure 10-16 also applies to the MCS6532. which we will describe next. .

The MCS6530 is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL
compatible. 1/0 Port A and B pins are also CMOS compatible. PAO and PBO may be used as a power source to
directly drive the base of a transistor switch.

The devices are implemented using N-channel silicon gate MOS technology.

Figure 10-17 illustrates the logic provided by an MCS6530 multifunction logic device.

THE MCS6530 MULTIFUNCTION DEVICE PINS. AND SIGNALS
The MCS6530 multifunction device pins and signals are illustrated in Figure 10-18.

These signals are identical to signals with the same names which we have already described for the MCS6522:

DO - 07 the bidirectional Data Bus
<1>2 the system clock input
RiW' the Read/Write control output by the CPU
RESET which is a standard reset input

I/O port pins PAO - PA7 and PBO - PB7 are functionally similar to equivalent I/O port pins of the MCS6522, but
there are some differences.

Pin 17 may be specified, when you order the MCS6530. as IRQ only, PB7 only, or as the programmable dual func­
tion pin IRQ/PB7;

10-47

Electrical characteristics of all 16 MGS6530 I/O port pins are equivalent to MCS6522 I/O Port B pins, rather than I/O
Port A pins.

MCS6530 pins '18 and 19 may implement I/O Port B pins PB6 and PB5. or they may serve as chip select pins.
Note carefully that these are not programmable dual function pins. Each pin will either have one function or the other;
and when ordering the part. you must indicate which function the pin is to serve. Pins 18 and 19 are logically indepen­
dent. and the function assigned to one in no way restricts the choices available to you when assigning functions to the
other pins. .

If pins 18 and/or 19 have been assigned to chip select logic, then they contribute to device addressing in a uni­
que way.

The MCS6530 has ten address lines. AO - A9; this is sufficient to address 1024 bytes of ROM. MCS6530
In addition, the MCS6530 has 64 bytes of RAM plus assorted I/O and Interval Timer logic which ADDRESSING
needs to be addre'ssed. RSO, CS 1 and CS2 are used to discriminate between ROM addresses, RAM LOGIC
addresses and additional logic addresses. But there is no predefined way in which the different ------..
addressable locations of the MCS6530 will be accessed - which is only to be expected since CS 1 and CS2 are not per­
manent features of every MCS6530 device. When RSO is high, ROM will always be selected. When RSO is low,
RAM or additional logic may be accessed- and 'the way in which the access works is entirely up to you.

Logic to Handle
... Interru~:o~qUests ~

External Devicesf

jii.i.

Clock Logic

Arithmetic and
. Logic Unit - Accumulator

Registerisl

Instruction Register ~

~ Data Counterisl
~ Control Unit

,
Interrupt Priority

Arbitration

ji.· ··· ... ···.· .. ·····. ..\\ ..

I/O Communication
... Serial to Parallel

Interface Logic

I

Bus Interface
Logic

r··· ."

~ Stack Pointer

~ Program Counter

,
System Bus ,

;(X/ •. IJ..i../

> ihF< ii.// i<.\
.ebr ;~Ij ...•••..•••••••••••••.

". :
......

...
.............

~ MCS6530 Only

Direct Memory
Access Control ~

Logic

.."'.-':." •

iii, l< <F< .•••••••
.•. ,</ •... i

/2·····1;<;.:;;,~t.···· •. ·• ••••. •.•....•
. c':j\.cc" _

i.;;\.;7~ l.>i.>

Figure 10-16. Logic of the MCS6530 and MCS6532 Multifunction Support Devices

10:'48

Q
w

~
a:
o
Il..
a:
o
u
~
en
w

~
g
en
en
ct
ail
w
Z
a:
o en
en o
~
ct
Q
ct
@

o
~ ~
c.. c..

I/O Port A 1-4- ~

I/O Port A
Data Direction ~ ~

register

8 2i

Data
Buffer

,

64 Bytes
of ~ -

RAM

g ••• ~
c.. c..

~
I/O Port B

I/O Port B
Data Direction

register

Interval

Timer

. Data

1024 Bytes
of

ROM

.....
Cl c..

~

~

;

Control

and
Select logic

f
~ ~

Figure 10-17. Logic Provided by the MCS6530 Multifunction Device

RAM and additional logic each have an internal master select: and what you specify is the way in which these master
selects will be derived. As you will see upon examining Table 10-7. master selects for RAM and additional logic each
will consist of the following:

1) RSO set to O.

2) Address lines A4 - A9 with specific values which you define.

3) CS 1 and CS2. if implemented. with specific values which you define.

As seen by a programmer. the address space of an MCS6530 can be divided in many flexible ways.

10-49

Vss
'PAO

<1>2

RSO
A9

A8

A7

A6

R/W
A5

A4

A3

A2

Al

AO

RESET
iRa/PB7

·CS1/PB6

·CS2/PB5

VCC

Pin Name

DO - 07

<1>2

R/W
RESET

PAO- PA7

PBO - PB7

iRa

CSl, CS2

AO-A9

RSO

VCC, Vss

10
MCS6530

11

12

;3

14

15

16

17

18

19

20

Description

Data. Bus to CPU

System Clock

Read/Write control

Reset

"Port A Peripheral Data Bus

40

39

38

37

36

35

34

33

32

31-

30

29

28

27

26

25

24

23

22

21

. Port B Peripheral Data Bus

Interrupt from Interval Timer;

special function of input pin PB7

Chip Select

Address lines

ROM Select

.Power and Ground

.... II-.... ~PAI

.............. ~ PA2

.... --..... ~ PA3

.... ---.- PA4·

.... 1f-..... ~PA5

.... 11--.- PA6

..... Il-.... ~ PA7

..... I-..... ~ DO
01

.... 1-......... 02

.... II-..... ~ 03

.... 1-.... ~04

................ 05

.... l'-.... ~ 06

07

PBO

.... I-..... ~ PBl

.... .-..... ~ PB2

.... 11-...... PB3

................ PB4

Tristate, bidirectional

Input

. Input
Input

Tristate, Input or Output

Tristate, Input or Output

Input

Input

Input

Input

·Mutually exclusive functi!:lns. One or ,he other must be specified whim the chip is ordered .
. f

Figure 10-i 8. MCS6530 Multifunction Device Signals and Pin Assignments

Usually RSO will be connected to a high-order address line: let uS assume it is A 10, so that we can develop real exam­
ples. Now ROM .v,.'ill be accessed by addresses in the range 040016 through 07FF16.

A 15 A 14 A 13 A 12 A 11 Al 0 A9 A8 A 7 A6 A5 A4 A3 A2 Al AO
~...... V' ~

RSO A9 - AO 1 _~ ______ ~~~ ______ ~,
l - "-

o 000 O· 10000000000
~~

o 4 0 0

~
0000011111111111

~~
o

lower ROM limit

Upper ROM limit

RAM may respond to any 64 contiguous addresses in the range 000016 through 03FF16·

Similarly, 1/0 and timer logic will be selected by 16 contiguous memory addresses in the same address space.

10-50

Q
w

!i
II:
o
0.
II:
o
o
~
en
w

!i
g
(fJ
(fJ
c(

all
w
Z
II:
o
CD
(fJ

o
:!:
c(
Q
c(

@

In summary. we may illustrate addressing and select options as follows:

~15A~¥.~;A11A11A9 ASA' A6(', A::,:;;~T' ~2
these address: ~:

lines I RA~ address II

I '
I I
I Gener~te RAM :
I select and I

: I/O Tomer select :

\"" V ~
ROM address

There are a number of Clspects to MC56530 addressing which need clarification.

First of all. you may ~ell ask why pins 18 and 19 can optionally be assigned as additional chip select inputs. After all.
with RSO low. you have more than enough address lines to access RAM plus I/O and timer logic. The purpose of having
CS1 and CS2. as additional chip selects. is to allow a number of MCS6530 devices to interface with a single CPU­
without requiring complex device select logic. If the additional chip select signals CS1 and CS2 are not available. you
can still have more than one MCS6530 connected to a CPU. but additional support logic must selectively suppress <1>2
for all but' one MCS6530 device. Remember. RSO. R/W and the Addre~s Bus are all'signals with two active and no
passive states. These signals are always selecting some MCS6530 location.

Since the whole purpose of the MCS6530 is to support very low cost. simple microcomputer configurations. the ability
to minirrlize device select logic becqmes very important. ' ,

Observe that address logic is used n()t only to access individual addressable locations within the MCS6530. but also to
perform certain programming functions, We will describe these programming functions in greater detail I?lter. It is in­
teresting ~o note that both the MC6800 and MCS6500 microcompu~er devices use address logic to provide control
functions in support devices. In contrast. 8080Adevices will be very spartan when it comes to device addressing. fre­
quently having two I/O or memory addrEjsses to access numerous 'differ~nt locations - with complex sequencing
schemes determining how locations will be accessed. " '

MCS653()' PARALLEL DATA TRANSFER OPERATIONS
. ,'. . :',.

Parallel data transfer operations. when using the MCS6~3Q are e~ac~ly as described for the MCS6522 I/O Port B.

Each I/O port of the MCS6530 has a Data Direction register. Into this register you load a mask which ~as a 1 in every bit
position corresponding to an output I/O portpin and a 0 corresponding to an inpu~ I/O port pin. Subsequently the CPU
reads and writes data' by accessing the assigned I/O port address. . ,

MCS6530 INTERVAL TIMER AND INTERRUPT LOGIC
MCS6530 Interval Timer logic differs significantly from MCS6522 logic. The MCS6530 Interval Timer is a single 8-bit
registerwhic'h can be loaded w'ith any initial value, The (nitial value decrements on high-to-Iow transitions of the <1>2
clock ·pulse. or multiples of the <1>2 clock pulse: and on decrementing to O. an interrupt request is generated. Thus the
larQest time interval in generated by loading 0 into t~e Interval Timer register. '

10-51

Table 10-7. Addressing the MCS6530 Multifunction Support Logic Device.

PRIMARY SELECT

RAM I/O TIMER ACCESSED LOCATIONS

RSO SELECT" SELECT"

1 X X AO - A9 directly address one of 1024 ROM bytes

0 1 0 AO - AS directly address one of 64 RAM bytes

SECONDARY

SELECT INTERPRETATION

, A3 A2 A1 AO

0 0 1 X 0 0 0 Access I/O Port A

0 0 1 X 0 0 1 Access I/O Port A Data Direction register

0 0 1 X 0 1 0 Access f/O Port B

0 0 1 X 0 1 1 Access.!L2. Port B Data Direction register

0 0 1W 0 1 X X Disable IRQ

0 0 1W 1 1 X X Enable iRQ
0 0 1W .X 1 0 ,.,0 ,Write to timer,then'decrement every <1>2 pulse

0 0 1W X 1 0 1 Write to timer, then decrement every 8 <1>2 pulses

0 0 1W X 1 1 0 Write to timer, then decrement every 64 <1>2 pulses

'0 0 lW X 1 1 1 Write to timer, then decrement every 1024 4>2 pulses

0 o " 1R X 1 X 0 Read timer

0 0 1R X 1 X 1 Read interrupt flag

• RAM select and I/O select are "true" if 1 ,or "false" if 0; true and false are functions of your specifica-,'
tion. You specify the combination of address lines that create a "true" line condition. '

X represents "don't care". Bits may be 0 0'" '1:
1 R represents Select during a read.
1W represents Select during a write.

As defined in Table 10-7, the IntervalTimer has four addresses which you can usewhen loading an initial timer value.
Each address specifies a. different decrement interval. The four decrement intervals are 1, 8, 64 Or 1024 <1>2 clock
pulses. ' , . , "

Suppose the MCS6500 microcomputer system is being driven by a 500 nanosecond clock. The four decrement options
mean that the I nterval Timer may be decremented once every 1/2, 4, 32 or 512 microseconds. The timeout will occur
anywhere from 1 to 256 decrements following the write into the Interval Timer.

Following a timeout. an interrupt will be requested. When an interrupt request occurs, the interrupt flag will be set..
Thisflag ma,y be read by the CPU using the address shown in Table 10-7.

T~e interr~pt request wHI appear as a low level on pin17 if the following conditions are met:

1 i, Address lineA3 is 1 when reading from or writing to the timer.

2) PB7 has been programmed as an input by loading a 0 into bit 7 of the I/O Port B Data Direction register. (This is not
necessary if the pin is factory masked to be IBO only.)

The interrupt to pin 17 is disabled when address line A3is 0 on,a timer read or write.

The !!1terrupt request is cleared (that is, IRO returns high) the next time the timer is written or read.

Once the Interval Timer has timed out. it will decrement once mor~, from 0 back to O. Then it will stop, Post-interrupt
decrementing occurs on every <1>2 clock cycle, regardless of whether pre-interrupt decrements occurred every 1,8.64
or 1024 <1>2 clock cycles.

10-52

c
w

!i
a:
o
D.
a:
o
o
~
en w
!i
(j
o
U)
U)

<t:
all
w
Z
a:
o
III
U)

o
~
<t:
C
<t:

@

o « .•••.••• «
CI. CI.

I/O Port A

I/O Port A
Data Direction

Register

Data

Buffer

8·· ... ····0

t
f4-

~

I~

Interrupt Logic

Interval

Timer

Data

,
128 Bytes

of
RAM

o IE •••••••• IE

~ I/O Port B

I/O Port B

4~ Data Direction

Register

Control

and

Select Logic

~ ~

Figure 10-19. Logic Provided by the MCS6532 Multifunction Device

THE MCS6532 MULTIFUNCTION SUPPORT LOGIC DEVICE

This device is a variation of the MCS6530 which we have just described.

The MCS6532 provides no ROM memory. but twice the RAM - 128 bytes.

External logic can request an interrupt via the MCS6532 using a control signal which may be likened to theMCS6522
CA 1 or CB 1. control input.

The mask defined addressing options of the MCS6530 have been removed from the MCS6532; otherwise the balance
of logic on the two devices is identical.

Figure 10-16 also illustrates that part of our general purpose microcomputer system logic which has been imple­
mented on the MCS6532 multifunction device. Figure 10-19 illustrates the logic functions provided by the
MCS6532.

The MCS6532 multifunction device is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs
and outputs are TTL compatible. I/O Port A and B pins are also CMOS logic compatible. Pins of I/O Port B may be
used as a power source to directly drive the base of a transistor switch. .

The device is implemented using N-channel silicon gate MOS technology.

10-53

Pin Name

DBO - DB7

ct>2
Riw
RESET

PAO - PA7

PBO - PB7

iRa
CS1.Cs2.RS

AO-A6

VCC. Vss

vss
A5

A4

A3

A2

Al

AO

PAO

PAl

PA2

PA3

PA4

PB7

PB6

PB5

PB4

VCC

4

5

Description

MCS6532

Data Bus to CPU

System Clock

Read/Write control

Reset

Port A Peripheral Data Bus

Port B Peripheral Data Bus

Interrupt Request

40

39
38
37
36

35

34
33

32
31

30
29
28

27

26
25
24

23
22

21

Device or internal register select

Address lines

Power and Ground

A6
(1)2

CSI

CS2
As

.... F---R/W
RESET

.... -~DBO

DBI

DB2
.... t--~ DB3

DB4
..... ~~DB5

DB6

DB7

Fa
PBO

..... !-~PB1.

PB2

PB3

Type

Tristate. Bidirectional

Input

Input

Input

Tristate. Input or Output

Tristate. Input or Output

Output

Input

Input

Figure 10-20. MCS6532 Multifunction Device Signals and Pin Assignments

MCS6532 MULTIFUNCTION DEVICE PINS AND SIGNALS
The MCS6532 multifunction device pins and signals are illustrated in Figure 10-20. These are the only differences bet-
ween MCS6532 and MCS6530 signals: .'

1) IRQ. CS1 and CS2 are assigned. unique pins by the MCS6532: the MCS6530 requires you to choose individually
between these three Signals and the three high order bits of 1/0 Port B.

2) For the MCS6532 to beselected. RS and CS2 must be low while CS 1 is high. Recall that with the MCS6530. RSO is
a signal which discriminates between ROM and other addressable locations: you define the way in which CS1 and
CS2. if present. will function when you order an MCS6530 part.

Addressing the MCS6532 is a good deal simpler than addressing the MCS6530. since the MCS6532
MCS6532 has no ROM present. 'and it has separate Chip Select signals. You still must define RAM ADDRESSING
select and 1/0 timer select as a function of RS. CS1 and CS2 and address lines AO - A6. By con-
necting RS. CS1 and CS2 to higher address lines. you can assign RAM or 1/0 timer logic various address spaces. This
ability to define RAM and 1/0 Timer select as a mask option is a convenience. where with the MCS6530 it was fre­
quently a necessity. With the MCS6532 you can accept whatever standard "off-the-shelf" option is being provided.
and still have enough flexibility using RS. CS1 and CS2 to include a number of MCS6532 devices in a microcomputer
config u ration.

10-54

c
w
~
a:
o
Do
a:
o
o
~
en
w

~ g
CI)
CI)

~
ciS
w
z
a:
o
aI
CI)

o
::!l
~ c
~

@

Table 10-8, Addressing the MCS6532 Multifunction Support Logic Device

PRIMARY SELECT SECONDARY SELECT

RAM I/O TIMER INTERPRETATION

SELECT SELECT A4 A3 A2 . Al AO

1 0 X X X X X AO - A6 directly addresses one of 128 RAM byt~,

0 1 X' X ·0 0 0 Access I/O Port A ..

0 1 X X 0 O' 1 Access I/O Port A Data Direction·register

0 1 X X 0 1 0 Access I/O Port B:

0 1 X 'X 0 1 1 . Access I/O Port B Data Direction register

0 IW 1 0 1 X X Disable rna .
0 lW 1 1 1 X X Enablema

0 IW 1 X 1 0 0 Write to timer, then decrement every 412 pulse

0 lW 1 X 1 0 1 Write to. timer, then decrement' every 8 412 pulses

0 IW 1 X 1 1 0 Write to timer,then decrement every 64 412 pulses

0 IW 1 X 1 1 1 Write. to timer, then decrement every 1024 412 pulses

0 IR X X 1 X 0 Read timer

0 IR X X 1 X 1 Read interrupt flags
0 'IW 0 X 1 X 0 Request interrupt on high-to-Iow PA7 transition

0 lW~ 0 X 1 X 1 Request interrupt onJow-to-high PA7 transition
O. lW 0 X 1 0 X Enable PA7 interrupt request

0 IW 0 X 1 I. X Disable PA7 interrupt request

X represents "don't care", Bits may be .0 or 1.

1 R represents Read access. 1 W represents Write· access,

MCS6532 LOGIC FUNCTIONS
Table 10-8 summarizes the way in which addressing is used both to access locations within the MCS6532 and to pro­
vide various logic functions.

The only logic of the MCS6532 which differs from the MCS6530 and needs to be described is the external interrupt re­
quest capability.

External logic requests interrupts via I/O Port A pin PA7. I/O Port A pin PA7 must be declared an input pin by loading 0
into bit 7 of the I/O Port A Data Direction register, Data Direction registers have been described in conjunction with the
MCS6522. A low-to-high or high-to-Iow transition on a signal input to PA7 will generate the interrupt request. An inter­
rupt request will be accompanied by bit 6 of the Interrupt Flag register being set. Table 10-8 defines the way in which
you select interrupt options,

MCS6532 interrupt acknowledge logic requires the CPU to read the Interrupt Flags register. This read operation resets
MCS6532 interrupt logic.

10-55

Q
w
~
a: o
a.
a:
o
(J

~
ui
w

~ g
en
en
c(

011
w
Z
a: o
CO
en o
~
c(
Q
c(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• MCS6500 Series CPUs
• MCS6530 Multifunction Device

10-01

MCS65XX Microprocessors

MAXIMUM RATINGS

RATING I SYMBOL

SUPPLY VOLTAGE Vcc

INPUT VOLTAGE Vin

OPERATING TEMPERATURE T
A

STORAGE TEMPERATURE TSTG

ICOMMON CHARACTERISTICS I

I VALUE

-0.3 to +7.0

-0.3 to +7.0

0 to +70

-55 to +150

I UNIT

Vdc

Vdc

·C

·C

This devicE' contains in-
put protect ion against
damage due to high st at ic
voltages or elect ric fields;
however, precaut ions should
be taken to avoid applica-
t ion of voltages higher
than the maximum rat ing.

ELECTRICAL CHARACTERISTICS (Vee = 5.DV ± 5%, Vss = 0, TA = 25° C)

~l' ~2 applies to MCS6512, 13, 14, 15, ~o (in) applies to MCS6502, 03, 04, 05 and 06

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT

Input High Voltage VIH Vdc

LogiC,00 (in) Vss + 2.4 - Vee
01,02 Vee - 0.2 - Vee + 0.25

Input Low Voltage VIL
Vde

Logic ,0
0

(in) Vss - 0.3 - Vss + 0.4
01,02 Vss - 0.3 - Vss + 0.2

Input High Threshold Voltage V
IHT

RES ,NMI ,RDY, IRQ ,Data,
S.O. Vss + 2.0 - - Vde

Input Low Threshold Voltage V
ILT

RES ,NMI ,RDY, IRQ ,Data,
S.O. - - Vss + 0.8 Vde

Input Leakage Current lin
(V in - 0 to 5. 25V, Vee = 0)

Logic (Exel.RDY,S.O.) - - 2.5 IJA
01,02 - - 100 uA

00 (1n) - - 10.0 uA

Three-State (Off State) Input Current I
TSI

uA
(V in c 0.4 to 2.4V, Vee = 5.25V)

Data Lines - - 10

Output High Voltage VOH
(ILOAD • -lOOuAde, Vee· 4.75V)

SYNC, Da ta, AO-Al5, R/W Vss + 2.4 - - Vde

Output Low Voltage VOL
(I LOAD • 1.6mAde, Vee = 4.75V)

SYNC,Data,AO-A15, R/W - - Vss + 0.4 Vde

Power Dissipation PD - .25 .70 W

Capaei tanee C pF
(V

in
• 0, T = 25

0
C, f = lMHz)

A
Logic Cin - - 10

Data - - 15
AO-A15,R/W,SYNC Cout - - 12

00 (in) C0O (in)
- - 15

0 1 C"1
- 30 50

02 C"2 - 50 80

~nte: I RQ and NMI require 3K pull·up resistors.

Data sheets on pages 10-02 through 10-07 reprinted by permission of MOS Technology. Inc.

10-02

o
b w

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

MCS65XX Microprocessors COMMON CHARACTERISTICS_

00(IN) ~"" 1;:::_0 \"--_ ~~~:v_
0.4V- - - ~-P-W-H-"-O-L----' .. I~ PWH00W----J

j-I.5V=\. __ ;------1.- PWH01-...j"

0z(OUT) ~5V /i'-L5V -\
~[.~.4~:-E-F-"-A-"----·-4-V~I~F:::02~ --------

-Clock Timing ~ MCS6502, 03, 04, OS, 06

_ REF "A"
Ten:

"

-REF"B"
Clock Timing - MCS6512, 13, 14, 15

Note:· "REF.1l means Reference Points on clocks.

R/W

ADDRESS FROM
. MPU

DATA FROM
MEMORY

RDY,S.O

SYNC

R/W

ADDRESS FROM
MPU

DATA FROM
MPU

-REF"B"

TSYNC

Timing for Reading Data from Memory or Peripherals

- REF "B"
.4V

Timing for Writing Data to Memory or Peripherals

.4V

o
6
~

MCS65XX Microprocessors

1 MHz TIMING

, Clock Timing - MCS6512, 13, 14, 15

CHARACTE R I S TI C

\:yc1e Time

Clock Pulse Width 01
(Measured at Vee - O.2v) 02

fall Time
(He3sured from O.2v to Vee - O.2v)

De: a.v Time between Clocks
(Measured at O.2v)

CLOCK TIl'.INr. -MCS6S02, 03, 04, 05, 06

CHARACTERISTIC

Cycle Time

~o(IN) Pulse Width (measured at 1.5V)

~o(IN) Rise, Fall Time

Delay Time Between Clocks (measured
at 1.5V)

S\"!1BOL

PI.'H 01
PI.'H 02

SYMBOL

PWH~o

¢\ (OUT) Pulse Width (measured at 1.5V) PI.'H~\.

4>2 (OUT) Pulse Width (measured at 1.5V) PWH~2

READ/WRITE TINING

CHARACTERISTIC SYMBOL

Read/Write Setup Time from MCS6500

Address Setup Time from MCS6500·

Memory Read Access Tirr.E" T ACC

Data ~tabil tty Time Period Tnsu

Data Hold Time - Read THR

MIS.

1000

430
470

MIN.

1000

460

MIN.

100

10

TYP.

TYP.

TYP.

100

100

L"NlT

nsec

2;

!-lAX. UNITS

520

10

PI.'H~oL

.25

MAX. UNITS

300

300

575

Da ta Setur Time from MCS6500 ______ --I--T..!.r-'D~S ____ +-______ +1._5_0 -+ __ 2_0_0 ---t-----j
RDY, 5.0. Setup TimE' TRDy 100

SYNC Setup Time from MCS6500 T SY~C 350 ns
~A-d~d-re-s-s-H~O~1~d~T~i-m-e--------·--------~TH~A~---4--~3~0---r~6~0~~--'-'-~

R/W Hold Time T,m'~ 30 60

2 MHz TIMING

Clock Timing -'- MCS6512, 13, 14, 15,,16

CHARACTERISTIC S\"!1BOL Mrs.

~yc1e Time 500

~.----------------------~--------+-------~----~-----+------~

(10~~~:~~~:d~~~t~C(: '_ O.2v) :~

Fall Time
(Measured from O.2v to Vn' - O~2v)

D.,.!a ... Timp betwe~n' Clo~ks
(Measured at O.2v)

CLOCK TIl'.INr. - MCS6502, 03. 04, 05. 06

CHARACTERISTIC

PI," 01
PI.'H 02

·215
235

SYMBOL MIN.

Cycle Time TCYC 500

'nsee

12

TYP. MAX. UNITS

~ 0 (IN) Pul s e Wid t h (measu,_r_e_d _a_t_I_._5_V_) -1-' _PWH __ ~:::..o __ -+ ___ 2_4_0 __ -1-__ _+--2....,:-=~---+------l
~ 0 (IN) Rise, Fall Time TR~ 0' TF~ 0

Delay Time Between Clocks (measured TD
at J.5V)

¢\ (OUT) Pulse Width (measured at 1.5V) PWH~\ PI.'II~oL

4>2 (OllT) Pulse width (measured at 1.5V) PWH4>2

25

READ/WRITETINING
,...--'

CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNITS

Read/Write Setup Time from MCS6500A T
RWS

100 .150

Address Setup Time -from MCS6500A -·--I--T...!'A:!!.D"'-S----+---------I--I-00--+--1-50.,----+-----1

Memory Read Access Tirr.e T
ACC

300'

Data Stabil tty Time Period T
DSU 50

Data Hold Time - Read THR 10

Data Hold Time - Write T
HW 10 60

Data Setur Time from MCS6500A Tr-'DS

""RDY,'S:O:set~Tim-e---'-· ----.J........'T R~n~Y-
75 100

50

SYNC Setup Time from MCS650_0.A _______ .l-T5!..SY~r-;~C'___ __ I_------+_--_+_--17-5---..,..t_--__l

Address Hold Time THA 30 60
R/W Ho ld Time ------. -. ---------II-T..!Il~R-'~----+----30----I1--6-0 -+-------+-----l

ns

c
w
!;i
a: o
D.
a:
o
o
~
u)
w
!;i
g
en en
c(

olI
w
Z
a:
o
a:I
en o
~
c(
C
c(

@

MCS662X and MCS663X

MAXIMUM RATINGS

RATING SYMBOL VOLTAGE UNIT

Supply Voltage VCC -.3 to +7.0 V

Input/Output Voltage VIN -.3 to +7.0 V

Operating Temperature Range Top 0 to 70 °c
Storage Temperature Range TSTG -55 to +150 °c

All inputs contain protection circuitry toprevent.damage due to high
static charges. Care should be exercised to prevent unnecessary,. application
of voltage outside t~e specification range. .

ELECTRICAL CHARACTERISTIC~ (VCC = 5.0v ± 5%, VSS = Ov, TA = 25° C)

CHARACTERISTIC SYMBOL MIN. TYP . MAX. UNIT

Input High .Vol~age

Input Low Voltage

Input Leakage C~rrent; VIN = VSS + 5v

A0-A9, RS, R/W, RES, 02,PB6*, PB5*
Input Leakage Current for High Impedance State

(Three State); VIN = .4v to 2.4v; D0-D7

Input High Current; VIN = 2.4v IIH
PA0-PA7, PB0-PB7 ·
Input Low Current; VIN = .4v IlL
PA0-PA7. PB0';"'PB7 ...
Output High Voltage VOR
VCC =. MIN, I LOAD -:. ~100u~(PA0-PA7 ,PB0-PB7 ,D0-D7).

ILOAD ~ -3 MA (PA0,PB0)

Output Low Vol~age
VCC = MIN, I LOAD .2 1.6MA VOL

Output High Current (Sour~ing);· lOR
VOH :: 2. 4v (PA0~PA7, PB0:""PB7 ,D0-n7)

:: 1.5v Available for other. than TTL
(Darlingtons) (P40,PB0)

Output Low Current ·(Sinking); VOL 2 .4v~~~~:~~~~ IOL

Clock Input Capacitance ~Clk

Input Capacitance C
IN

Output Capacitance

Power Dissipation

*When programmed as address pins
All values are D.C. readings

10-05

VCC V

2.5 llA

±1.0 ±10.0 llA

-100. -300. llA

VSS+2.4
VSS+1. 5

-1.0 ~1.6 MA

V

VSS+.4 V

-100 -1000 llA
-3.0 -5.0 MA

1.6 MA

30 pf

10pf

10 pf

500 1000 MW

MCS652?- end MCS6536
~ • .. c')' ,

WRITE TIMING CHARACTERISTICS

CHARACTERISTIC SYMBOL
"

C+ock Period TCYC

Rise & Fali Tifues TR, TF ...
Clock Pulse , . , .

Width TC
,. '

R/W va+id before positive transition of clock TWCW

Addie~'s val~d before positive transition of clock TACW

Data Bus valid before negative transition of clock TDCW
"

Data Bus Hold Time 11IW
r

~er~pheraldlita' valid after negative transition TCPV!
of clock

~ . • I

Peripheral data valid after negative transition TCMOS
of clock driving CMOS (Level=VCC-30%)

, READ TIMING CHARACTERISTICS

CHARACTERISTIC

R/W valid before positive transition of clock

Address v'alid befo~epositive transition of clocl5-
',"'1 ',.,

, Pe~ipherq.r data valid before positive transition . ~ ,

of clock : ~
; " "

; ';".

Dat'a :Bus
~

valid after positive transition of clock
"

"

Data Bus Hold Time

IRQ' (Interyal Timer Interrupt) valid before
·p.os~tive . trans~tion of,clock

,

Loading = 30 pf + 1 TTL load for PA~-PA7, Ea~-PB7

=130 pf + 1 TTL load for D0-D7

10-06

SYMBOL

TWCR

TACR

TPCR

TCDR

THR

TIC

MIN. TYP. MAX. UNIT
"

1 10)JS

25 NS

470 NS

180 NS

1~0 NS

300 NS

10 NS

1)JS

2)JS

MIN. TYP. MAX. UNIT
'"

180 NS

n~o NS

300 NS
~.1

395 NS

10 NS

200 NS

Q
w

~
a::
o
Q.
a::
o
u
~
ui
w

~
g
II)
II)
c(

all
w
Z
a::
o
10
II)

o
~
c(
Q
c(

@

MCS662X and MCSI!63~R--Ji: Tc j ~~;c l
CLOCK INPUT M204V Oo4~ Y

R/W

ADDRESS

DATA BUS

PERIPHERAL
DATA

CLOCK INPUT

R/W

ADDRESS

PERIPHERAL
DATA

DATA BUS

PB7(TRQ)

_---------- 2.4V

O.4V

_----------2.4 V

~----------------O.4V

--------------------- 2.4 V

'------------------- 0.4 V

Tcpw
TDCW--~--~~--~~

_______ Vc.:.._-30%

J~~~-------------2.4V

'-+~~------- O. 4 V

WRITE TIMING CHARACTERISTICS
Figure 2

.4V

-----+----------O.4V

,.~~------~-----------+----------2.4V

---~------~--------r-------------O.4V

~~--~--------~----------r------------2.4V

-----+--------4--------~-----------O.4V

2.4V

O.4V

______________________ ~~T_I_C _______________ 2.4V

- O.4V

READ TIMING CHARACTERISTICS

Figure 3

10-07

o
w

~
a::
o
Il.
a::
o
(J

~
en
w
I­
<
U o
CI)
CI)

<
all
w
Z
a::
o
m
CI)

o
:!:
< o
<
@

Chapter 11
THE SIGNETICS 2660A

The 2650A is functionally identical to the 2650 microprocessor which has been described in previous editions
of this book; The 2650A is a, redesigned chip that is smaller and cheaper to produce than the old 2650.,

The 2650A-1. is a new higher-speed version of the 2650A.

Within· the frame of reference of the microcomputers being described in this book, the Signetics 2650A is a
very minic:;omputer-like device.

The Signetics 2650A has a wealth of memory addressing modes; a large number of CPU-generated control sig­
nals are ·aimed at allowing TTL logic to surround the microcomputer device itself, rather than requiring a family
of support devices, as do most products described in this book. However. you will have very little trouble using sup­
port devices of the SOSOA with the Signetics 2650A CPU. MC6S00 support devices can be used with the Signetics
2650A - but with more difficulty.

There are two support devices designed by Signetics specifically for the 2650A. They are:

1) The 2656 System Memory Interface (SMI). This is a mu Itifunction support device that provides read-only
memory. rea,d/write memory and parallel I/O logic on a single chip.

2) ,The 2651 Programmable Communications Interface (PCI). This is a universal synchronous/asynchronous data
communications controller.

The 2656 and 2651 are both described in Volume 3. This is because the two devices can be used as easily with a
2650A. or with any other microprocessor.

Interesting features of the 2650A, which are described on the following pages, are the imaginative use of
status flags, a rich variety of very informative control signals, and the use of the second object code byte, in
multibyte instructions, to encode memory addressing options. '

Figure 11-1 illustrates the logical functions implemented on the 2650A CPU chip. Memory and other external
logic will connect directly to the 2650A address, data and control lines, without need for interface devices
(other than buffer amplifiers needed to meet signal loads).

The 2650A uses a single +5V power supply.

Using a clock with a O.S microsecond period. 2650Ainstruction execution times vary between 4.S and 9.6 microse­
conds. Using a clock with a 0.5 microsecond period. instruction execution times vary between 3.0 and 6.0 microse­
conds ..

All 2650A signals are TTL compatible.

Signetics has a second sourcing agreement with National Semiconductor. whereby National Semiconductor is sup­
posed to second source the 2650A. At the present time it does not look as though National Semiconductor will exercise
this second source option.

THE 2650A CPU LOGIC
The 2650A CPU has a typical microcomputer organization. The Arithmetic and Logic Unit, the Control Unit and
programmable registers are all implemented on the 2650A CPU.

The additions and omissions shown in Figure 11-1, as compared to typical CPU logic, need some preliminary ex­
planation.

Although the 2650A has just one interrupt request line and one interrupt acknowledge line. CPU logic allows every in­
terrupting device to force a vectored branch to its own unique interrupt service routine: for this reason. logic to handle
interrupt requests is shown as an integral part of CPU chip logic.

11-1

{

Interrupt Priority
Arbitration

I/O Communication
~ Serial to Parallel

Interface Logic

Programmable
Timers

Ii
I

Clock Logic

~9~~d~res~,;js

.,~i~.~~~~~~i~ i

Read Only
Memory

System Bus

Interface Logic

I/O Ports

! ,

Figure 11-1. Logic of the 2650A Microcomputer CPU

Direct Memory
Access Control

Logic

Read/Write
Memory

Standard ROM and RAM devices can be connected directly to 2650A bus lines: therefore. the 2650A is shown as pro­
viding complete memory interface logic. Note. however. that TTL load levels will almost certainly require that signal
buffer amplifiers interface memory devices to the 2650A CPU.

I/O port interface logic is shown as only partially implemented on the 2650A CPU chip. A 2650A-based microcomputer
system with one or two I/O ports will require no special I/O port logic: control signals allow the Data Bus to be used
either as a conduit to external devices or to memory. But if a 2650A-based microcomputer system has more than two
separately addressable I/O ports. external I/O port select logic must be added.

Figure 11-1 excludes clock logic from the CPU chip. The 2650A CPU does indeed require external logic to create its
clock signal; however. a single TTL level clock signal with relatively lax tolerances is required. Therefore. external
generation of the clock signal will be both inexpensive and free of problems.

11-2

c
w

!i
a: o
a.
a:
o
o
~
en
w

!i
g
CI)
CI)
c:(

CI/l
w
Z
a:
o
In
CI)

o
~
c:(
c
oCt

@

2660A PROGRAMMABLE REGISTERS
In addition to a 16-bit Program Counter, the 2660A has seven 8-bit programmable registers which may be il­
lustrated as follows:

B Register A Register
Bank selected Bank selected ,,-,,, , -

Primary Accumulator , -:::. ~ ... ~ • .

""" I ~ ~its """l~o'':' 4, .. ,~ ('-,
..... '- -:::::-'::..:::. '

........... , , .
..... a bits·· R1A a bits

...... :al:!its "- R2A a bits .. ··

...... a·bits.' R3A a bits

Register Register
Bank A Bank B

R1B

R2B

R3B

J \. '-__________________________ ~y~---------------------------J
Six Secondary Accumulators/Index Registers

Provided by Register Banks A and B

RO is a primary Accumulator. This register is always accessible.

The remaining six 8-bit registers form two 3-register banks. A status bit (which will be de­
scribed lat~r) is used to identify one of the two register banks as accessible at any given time.
Thus. depending on the status bit setting. Registers RO. R1 A. R2A and R3A may be accessible.
or else Registers RO. R1 B. R2B and R3B may be accessible.

The six secondary registers serve as both secondary Accumulators and Index registers.

2660A
ACCUMULATOR

2650A INDEX
REGISTERS

The 2650A has no Data Counters. as do most microcomputers; rather. it uses the minicomputer philosophy of adding
an index. out of an Index register. to a memory address which is computed from information provided by every Memory
Reference instruction.

The Program Counter is 15 bits wide: therefore up to 32.768 bytes of memory may be ad­
dressed in the normal course of events.

The two high-order bits of the Program Counter represent page select bits. 2650A memo­
ry is divided into four pages with 8192 bytes of memory per page; this scheme is illustrated as
follows:

Program Counter

14 13 12 11 10 9 8 7 6 5 .. 3 2 1 0 ~ Bit No.

I I I I I I I I I I I I I I I
"- - ./

MEMORY

-
J------- ----- ---- ---

.. J
\ - \

- f -------------~--·f

- \ - t
] ------------------

f .. - t - \

... j f
Page Select \ Address within page \ ------------- -----

11-3

2650A PROGRAM
COUNTER

2650A
MEMORY
PAGES

Memory
Address

0000

lFFF

2000

3FFF

4000

5FFF

6000

7FFF

Pages are selected by Branch instructions, but we will defer to the discussion of addressing modes a description 'of
how this is done.

The 2650A has a primitive Stack, implemented on the CPU chip; this Stack is eight addresses I 2650A STACK I
deep, and its use is limited to storing subroutine return addresses and interrupt return addresses.
Subroutines and interrupts may therefore be combined to a nested level of eight. There are no Push and Pop type in­
structions, and the Stack is indexed via three bits of a Status register.

THE 2650A MEMORY ADDRESSING MODES
The 2650A has an extensive and versatile range of memory addressing modes.

Primary and secondary memory referencing instructions each provide two sets of addressing options, one based
on program relative addressing and a two-byte instruction code, the other based on direct addressing and a
three-byte instruction code. These options are referred to in Table 11-1 as the program relative addressing op-
tions and the extended addressing options. ' .-------------------.
Instructions with program relative addressing options have the following object
code:

2660A PROGRAM
RELATIVE ADDRESSING
OPTIONS

o
r A ~
76543210

I I I I I I I I
'-. _..,

j

~ByteNo.

r' ~~~ ~,
7 6 5 4 3 2 1 0 ~Bit No.

•
7-bit, signed binary displacement (-64 to

+ 63) which i~ added to PC contents

'-------------Indirect bit. If 1, program relative,

indirect addressing is specified; if 0,

direct program relative addressing is

specified.

~--------------One of four registers selected as

source or destination of 'memory

reference operation. The four registers are

RO, R1A or R1B"R3A or R3B.
"-___________________ Instruction operation code.

In the above illustration, the second byte of the instruction code provides a program relative displacement in the range
+63 to -64. The displacement is provided as a 7-bit signed binary number; bit 6 is treated as the ·sign bit. The high­
order bit of the displacement byte specifies direct or indirect addressing.

If direct. program relative addressing is specified, then the effective memory address is created by adding the 7-bit
signed binary displacement to the Program Counter contents ~after the Program Counter contents have been incre­
mented. Direct and indirect program relative addressing have been described in Volume I, Chapter 6; 2650A program
relative addressing differs only in the shorter displacement which is allowed.

If we are to relate the 2650A to our hypothetical microcomputer of Volume I. Chapter 7, or to any of the other
microcomputers described in this book, then the task of specifying direct or indirect addressing should fall to a bit with­
in the first object program byte. The fact that the 2650A uses a bit of the displacement byte to specify direct or indirect
addressing means that. in effect. the 2650A instruction set has more than 256 object code options available to it. This
feature of the 2650A allows it to have a much more powerful instruction set - in the minicomputer sense of the
word - than any of the other devices described in this chapter. The price paid is that most instructions generate two or
three bytes of object ·code. There are very few one-byte object codes. Consequently, memory utilization is not as effi­
cient as it might initially appear to be.

11-4

o
w

~
a: o
a.
a:
o
o
~
ui
w

~
8
(I)
(I)
c(

oil
w
Z
a:
o c:a
(I)
o
~
c(
o
c(

@

In all probability. indirect program relative addressing will be more commonly used than direct. program relative ad­
dressing. This is because microcomputer programs usually reside in read-only memory. If direct. program relative ad­
dressing is used. then data bytes must be located within 64 bytes of the memory reference instruction. That excludes
having instructions in ROM and data in RAM: therefore. only unalterable constants can be addressed using program
relative direct addressing.

Addressing range. all likely

to be within one ROM chip

XXXX-40 16

XXXX

XXXX+3F16

PROGRAM

MEMORY

§
: I · . • •

1-----41 l Program relative. memory r reference instruction here

>-t------I · .

I'~
Indirect. program relative addressing. on the other hand. only requires memory addresses to be pOSitioned within 64
bytes of the memory reference instruction: this is illustrated as follows. using arbitrary memory addresses to make the
illustration easier to understand:

ROM

RAM

Memory

Add~;; 8 M.m",v ",,,,n,, 'n"ruorion ood.
0412 t:::::::::J Displacement = + 2A 16

E~~ I 21 I
l
O.,3 + 002A =043D)

043E

043F

7A ~

2178

2179

217A

2178

217C

11-5

• : = • .
~

Extended addressing options of the 2650A microcomputer may be illustrated as
follows:

2650A EXTENDED·
ADDRESSING OPTIONS

o
r~"""~~'''''''' "" r A

"" 7 6 5 .. 3 2 1 0 7 6 5 .. 3 2 0

I I I I I I I ""--
'T~ . ~

r
7 6 5 ..
I I I
l

2 .. Byte No.

.A

"" 3 2 1 0 .. Bit No.

I
/

13 -bit direct address

00 No indexed addressing

01 Index with auto-increment

10 Index with auto-decrement

11 Simple indexed addressing

'---------------- 0 Direct addressing
1 Indirect addressing

If indexing is specified. post­

indexed. indirect addressing occurs

L-_________________ 00 Register RO

01 Register R1A or R1B

10 Register R2A or R2B

11 Register R3A or R3B

This is the source/destination register.

if direct addressing is specified.

This is the Index register. and RO is the

source/ destination. if indexed

addressing is specified.

'-------------------------Instruction operation code

All of the addressing options illustrated above have been described in Volume I, Chapter 6. To summarize,
however, these are the addressing combinations which are allowed:

1) Direct addressing (absolute or program relative)
2) Direct indexed addressing
3) Direct indexed addressing with auto-increment
4) Direct indexed addressing with auto-decrement
5) Indirect addressing
6) Indirect addressing with post-index
7) Indirect addressing with post-index and auto-increment
8) Indirect addressing with post-index and auto-decrement

There is a small difference between indexed addressing as described in Volume I, Chapter 6, and indexed ad­
dressing as implemented by the 2650A. The 2650A memory reference instructions provide a 13-bit absolute ad­
dress. which represents the full addressing range of any memory bank; an 8-bit index value is added to this displace­
ment. as follows:

12 11 10 9 8 7 6 5 .. 3 2 1 0 ~Bit No.

·, ... I-.. I ,~I I~I ,-.. , ... I-I I-.. 1 ... ~Address Provided By Instruction

7 6 5 .. 3 2 1 0 ~Bit No.

I I I I I I I I.. Index register

Effective address = 13-bit absolute address + 8-bit index.

11-6

If you are not clear on the difference between pre-indexed. indirect addressing and post-indexed. indirect addressing.
refer again to Volume I. Chapter 6. before proceeding with this discussion of the 2650A microcomputer.

The fact that the 2650A has a 13-bit absolute address and an 8-bit index means that post-indexed. indirect addressing
is very viable. The 13-bit absolute address identifies the memory location. anywhere within an 8192-byte program
page. where an indirect address will be found. The indirect address becomes the base of a 256-byte table. which may

~ be indexed via anY'one of the six Index registers. The Index register contents are treated as an unsigned binary number.

~ Now look again at indexed addressing the way it is in most microcomputers. and the way it is described in Volume I.
~ Chapter 6. A 16-bit Index register indexes tables that are up to q5.536 bytes in length. and that is clearly ridiculous in
~ microcomputers. The usual programming procedure. when using microcomputers that have a 16-bit Index register. is
o to use only the low-order byte of the Index register for indexing. The base address is created out of the high-order byte
~ of the Index register. plus the displacement: .
en
w

~ Index
U o
(/)
(/)

ct
ciS
w
Z
IX:
o
III
(/)
o
~
ct
Q
ct
@

I I I Index register

Displacement

-------------------- Base Address

If the base address is created half out of an Index register and half out of a displacement. then clearly post-indexed. in-
direct addressing is impossible. .

Any minicomputer programmer will attest to the fact that post-indexed. indirect addressing is far more usefu I than pre­
indexed. indirect addressing.

The 2650A has a wide variety of Branch and Branch-on-Condition instructions, which have
the following object code and format:

2650A
BRANCH
INSTRUCTION
ADDRESSING

r
7 6 5

I I

0
A
~

4 3 2 1

I 1 1 1 1

~ByteNo.

"'- r A

"'- r A "'"
0 7 6 5 4 3 2 1 0 7 6 5 .. 3 2 1 0 ~Bit No.

I It (2
I I 1 ~ I I I I 1 11)

L 15-b;1 d;ceot ,dd,."
1..-___________ 0 Direct addressing

1 Indirect addressing

L... ______________ Absolute Branch and Jump instructions interpret

these two bits as identifying an Index register. as
described for bits 5 and 6. Byte l' of Extended
Memory Reference instruction addressing. Con­
ditional Branch and Jump instructions interpret
these two bits as identifying the test conditions.

'---------------------Instruction operation code

11-7

Most 2650A Jump and Branch instructions are conditional; that means that only direct or indirect addressing
may be used.

Notice that the branch direct address is 15 bits wide. Therefore, a Branch instruction may reference any byte
within the maximum 32K-byte memory allowed by the 2650A.

Branch instructions are, in fact, the means provided by the 2650A microcomputer to select.
a page of memory. The two high-order bits of a Branch instruction's direct address select an 8K­
byte memory bank, which remains selected until another Branch instruction modifies the selec­
tion.

The 2650A has two unconditional Branch instructions. These nstructions also have a 15-bit direct

2650A
MEMORY
PAGE
SELECTION

address: therefore, they also select a memory page. In addition to allowing direct or indirect addressing. these two in­
structions allow indexed addressing to be specified. as described for the extended addressing options.

Since Branch instructions specify a 15-bit direct address, in the vast majority of cases simple direct addressing will be
used. Indexed addressing will be valuable only in special logic sequences, such as branch tables. Branch instructions
with indirect addressing will rarely have any justifiable value.

Conditional Branch instructions use bits 0 and 1 of byte 0 to determine if a test condition has been met. The way in
which these two bits are used is discussed beiow. along with the description of 2650A Status registers.

THE 2650A STATUS FLAGS
The 2650A microcomputer has two a-bit Status registers as follows:

7 6 5 " 3 2 '0 ~BitNo.

S F I 1\ I><I><I SP2 I SPl I SPO f..-- Upper Program Status Word (PSUI

7 6 5 .- 3 2 1 0 ~BitNo.

I CCl I cco I IDC RS I wc I 0 I COM I C 1-- Lower Program Status Word (PSL)

Sand F represent a Sense Input bit and a Flag Output bit, both of which are connected directly to two CPU device
pins. These two bits allow one input and one output signal to directly interface external devices to the CPU. under pro­
gram control.

The Interrupt Inhibit bit is the master interrupt disable flag for the 2650A microcomputer system.

SPO, SP1 and SP2 constitute a 3-bit Stack Pointer. Recall that the 2650A has a Stack eight addresses deep: the cur­
rent top-of-SHlck is nddressed by this 3-bit Stack Pointer.

The two Condition Codes CCO and CC1 report the condition of a data byte as zero, positive or negative. The zero
condition represents a byte containing eight binary zeros. The positive condition represents a byte with 0 in the high­
order bit. The negative condition represents a byte with 1 in the high-order bit. These Condition Codes are set following
the execution of any instruction which loads a byte of data into a register or modifies the register's contents. These two
Condition bits represent a minor variation of the more common technique, in which a conditional in'struction tests a
register's contents directly. at the time the conditional instruction is executed.

The CCO and CCl flags should be interpreted as follows:

CC1 CCO Interpretation

0 0 Zero result: 00000000

0 1 Positive result: OXXXXXXX

1 0 Negative result: lXXXXXXX

1 1 Not significant

For Compare instructions: CC 1 and CCO should be interpreted as follows:

CC1 CCO Register-Register Compare Register-Memory Compare

0 0 Register 0 = Register X Register X = Memory

0 1 Reg iste r 0 > Reg ister X Register X > Memory

1 0 Register 0 < Register X Register X < Memory

11-8

Q
w
t-
< a:
0
a.
a:
0
CJ
:!!:
en
w
t-
< g
(I)
(I)

<
c/J
w
Z
a:
0
al
(I)

0

:E
< c
<
©

IDC is a standard intermediate Carry bit, reflecting the carry' out of bit 3.

0, the Overflow bit, and C, the Carry/Borrow bit, are standard Overflow and Carry statuses as described in
Volume I, Chapter 2. .

SENSE 40 FLAG

A12 39 VCC
All 3 38 CLOCK
A10 4 37 PAUSE
A9 5 .36 OPACK

AS 6 35 RUN/WAIT

A7 7 34 INT~CK

A6 8 33 DO

A5 9 32 01

A4 10 2650A 31 02

A3 11 30 03

A2 12 29 04

Al 13 28 05

AO 14 06

AOREN 15 26 07

RESET 16 25 OBUSEN
iNi'REQ 17 24 OPf,lEQ

A14-0/C 18 23 Fi./w
A 13-E/NE 19 22 WRP

M/iO 20 21 GNO

Pin Name Description Type

*AO-A12 Address Bus lines Output
*A13-A14 Page Select lines Output
*00-07 Data Bus lines Bidirectional
*SENSE Control input Input
* FLAG Control output Output
*AOREN Address Bus float Input
*i5iillSEN Data Bus florlt Input
*RESET Reset Input
*O/C Oata/Controi output Output
*M/iO Memory /10 Reference Output
·R/W Read/Write Output
*OPREO Operation Request Output
*OPACK Operation Acknowledge Input
*E/NE I/O Instruction length Output
*WRP Write Pulse Output
*INTREQ Interrupt Request Input
*INTACK Interrupt Acknowledge Output
*RUN/WAIT Run status Output
*PAUSE Wait Input
CLOCK Timing Input
VCC.GNO Power and Ground

*These signals become the System Bus.

Figure 11-2. 2650A CPU Signals and Pin Assignments

RS, the Register Bank Select bit, specifies the current bank of Accumulator/Index registers: either R 1 A. R2A
and R3A or R1 B. R2B and R3B.

Recall that addition. subtraction. shift and rotate instructions optionally mayor may not include the Carry status; in
other words. a microcomputer may have an Add-with-Carry or an Add-without-Carry instruction; it may have a Rotate­
simple or a Rotate-through-Carry instruction. The WC bit specifies whether the Carry will or will not be included in
2650A instructions of this type. If the C status is included in a rotate, the IDC status will also be included, operat­
ing as a branch carry out of bit 3. This is a unique 2650A feature.

11-9

The Compare status determines whether Compare instructions will treat data as signed or unsigned binary num­
bers. Consider an instruction which compares the contents of Register RO with the contents of a memory byte. Clearly
the result of the comparison vilill differ significantly, depending on whether the high-order bit of each byte is beiflg in­
terpreted as a ~ign bit or whether positive numbers only are being compared. If the COM status flag is set to 1, the two
bytes are assumed to be positive numbers. If the COM status is set to 0, the two bytes ~re assumed to contain signed
binary numbers.

The WC .and COM statuses of the 2650A microcomputer are very powerful features; their significance is that
they double the available number of Arithmetic and Compare instructions. respectively. without increasing the
number of in~fr!-lction object codes.' . - . .

THE 2650A CPU PINS AND SIGN~LS
The 2650A CPU p!ns and signals are illustrated in Figure 11-2. A description of these signals will highlight the
underlying philosophy of the 2650A chip design: that this device can be used with standard off-the-shelf TTL
logic. rather than tequiring a family of support devices. There are applications where the Sigll f3 tics philosophy is
viable· and will work; there are other applications "\Ihere the specialized devices providect by Signetics and
other microcomput~r manufacturers cannot be repro~!Jced at equiv~lently low. co~t.

The Address Bus is 13 lines wide; it is used to address a single byte .within 8192 bytes of memory. The low-order
eight address lines may also be used to address an external device. "

A13 and A 14 are page select lines. As described in the discussion of addressing modes, only Branch instructions pro­
vide 15-bit memory addresses. When a Branch instruction is executed, the two high-order bits of the address, output
on pins 1 Band 19, are used by external memory to select or peselect 8K memory pages. Subsequent memory reference
instructions that provide only a 13-bit memory address will refere~ce the most recently selected 8K memory bank. This
may be illustrated as follows: .

A12.-----------------------------------,
A11.-----------------------------------
A10.-____ ~--------------------~------A9.-________________________________ ____
AB.-________________________________ __
A7.-______________________ ~---------
A6 .-________________________________ __

A5 .-----------________ ~----------------A4.-____ ~ __________________________ ____

A3.----------------------------------
A2 .---------________________________ ____

A1 .---~--------~------------------~
AO~----------------~----------~----)

A14 t-~"'-I

A 13 I-__ -+--I ~K>-"'HL
Page 0 select

Page 1 select

Page 2 select

Page 3 select

General
Address
Bus

These selects must be latched
since the A 13 and A 14 pins are
shared with control signals

Control lines of the 2650A microcomputer may be grouped into categories as follows:

1) CPU execution control
2) Data and Address Bus access control
3) Data and Address Bus contents identification
4) Interrup,t processing

5) Direct. external device interface

11-10

Q
w

~
a: o
Q.
a:
o
u
~
ui
w

~ g
en
en
c:(

Cio:I

w
Z
a:
o
III
en o
~
c:(
o
c:(

@

CPU execution control signals, being of primary importance, will be discussed first.

CLOCK is the master timing signal required by the 2660A CPU. Depending upon the way in
which external logic is implemented. CLOCK mayor may not be needed by other devices that sur­
round the 2650A; in most cases CLOCK will not be needed by other devices. since system control
will normally be handled by 2650A control iHputs and outputs.

2650A CPU
EXECUTION
CONTROL
SIGNALS

RESET is the master raset input which every microcomputer has. As is standard for most microcomputers. when
the CPU is reset. the Program Counter is cleared. with the result that the instruction stored in memory location a Is ex­
ecuted. The CPU will typi,cally be reset when first powered up.

PAUSE causes the CPU to enter a Wait state. PAUSE is an input signal which may be used by external direct memo­
ry access logic to stop the CPU while memory is being accessed. The Halt instruction also causes the CPU to enter the
Wait state. A Wait state will be .terminate,d by a Reset or by external logic removing its PAUSE input. '
.' , '.~,; , --- . -------.

There are two bus access control signals on the 2650A: DBUSEN and ADREN. These two 26.50A BUS
signals float the Data and Address Busses, respectively. On the Address Bus, only the 13 Ad- ACCESS
dress Bus lines AO - A 12 are floated: the, two page select lines A 13 and A 14 are not floated. CONTROL

The most interesting feature of 2660A control signals is the scheme employed for iden­
tifying events on the Data and Address Busses.

The inception" of any operation which will involve external devices is identified by
OPREQ going high.

SIGNAlS
2650A BUS
CONTENTS .'
IDENTIFICATION
SIGNALS

Normally.' the first step in any operation that involves axternal,logic is for an address to be output on'the Address Bus. If
memory is being accessed, then M/ffi is output hi~h. RIW is output high to identify a write operation or low to
identify a read operation. As soon as memory has responded to the memory read or write operation. it inputs OPACK
low. If OPACK low does not arrive in time for the e~L.J to conti!lue proces~he current instruction at the next clock
cycle. then the CPU temporarily enters the Wait state and outputs RUN/WAIT low to indicate this condition. Now as
soon as OPACK is input low. the Wait state will end and the CPU will continue execution.

The CPU will also output a write strobe, WRP, when writing to memory. This strobe is output wh~n data is
steady on the Data Bus.

When an 1/0 deyice is being accessed by one of the I/O instructions, M/iO is output low. You will see in Table
11-1 that the 2650A instruction set includes two sets of I/d instructions; one set does not identify an I/O port. and has
a one-byte object code; the other set identifies an I/O port via a second byte of object code. Let us assume that the
short I/O instructions will always reference I/O Port O.while the long I/O instructions will specify one of 256 I/O ports.
The E/NE signal, if low. identifies a short I/O instruction. therefore an instruction which accesses I/O Port 0; if high, this
signal indi.catE!s that the current contents of the low-9~der eight address lines contain an I/O port address. and should
be so decoded. In fact. the I/O port which is selected:by a short I/O instruction can be defined by you. You can look
upon E/NE as a signal which. when low. is a unique select line. When high. E/NEidentifies the low-order eight Address
Bus lines as providing the I/O port address. Thus. you can generate I/O port select logic as follows:

.. - Select
Logic

A7 ... (low true)

tHigh
enable

E/NE

...

.. -

}

Individual
I/O select lines
(low true)

Single I/O select line (low true)

Once an 1/0 port has been selec~ed, and external logic knows from the MIlO and EINE controls whic'h 1/0 port is
selected, I/O logic needs to know whether an input or output I/O operation is to occur, and whether data or con­
trol/status information is to be transmitted. (Volume I. Chapter 5 discusses at length the difference between data, con­
trols and status.) The'R/W control indicates whether data Is being transmitted from the CPU to external devices, or
whether external devices are supposed to transmit data to the CPU; then D/e identifies the output as either data or
control Information. Conversely. when Ff/w identifies the CPU as requiring input from an I/O device. o/e indicates
whether the input should be data or status~

11-11

When' external. device logic responds to the I/O request, it concludes by inputting OPACK low. Figu re .11-3 illustr­
ates how control signals may be used to interpret events on the Address and Data Busses.

2650A iriterrupt ha'ndling is very straightforward. An interrupt is requested by setting
INTREQ low. The interrupt is acknowledged by the CPU outputting INTACK high. .

The SENSE and FLAG signal~ allow the 2650A to directly control external devices. The con­
dition of a SENSE input is ir.lmediately translated into a 0 or 1 within the Sense bit of the 2650A
Status register. A 0 or 1 in the Flag bit of the 2650A Status register is immediately reflected by a
low or high signal output at the Flag pin.

INTERFACING MEMORY TO THE 2650A MICROCOMPUTER

2650A.
INTERRUPT
CONTROL
SIGNALS

2650A
EXTERNAL
DEVICE
CONTROL
SIGNALS

Given the wealth of control signals provided by the 2650A microcomputer, mosttypes of memory can be inter­
faced with very little difficulty. The only peculiarity of the 2650A which external logic must be able to cope with is
the fact that memory is paged into 8192-byte pages. Any memory device whose addressing range is smaller than a
page must have select logic which takes into account not only high-order address lines on the 13-line Address Bus but.
in addition. the two page select lines. The two page select lines change status occasionally when a new page is being
selected; therefore, 'page select must be stored in an external buffer.

The 2650A CPU also expects to receive an OPACK acknowledgement from memory. If memory can respond to an ac­
cess within the allowed time,then you can simply tie OPACK to ground for all memory accesses. 110 accesses must still
be able to respond with a high or low OPACK, depending upon prevailing conditions. Here is appropriate logic:

I/O OPACK
(norm~lIy low) ~-----cr-""r::)-__ OPACK to CPU

Memory
OPACK

lio OPACK is normally low. 110 logic drives OPACK high at the beginning of an 1/0 access if the 1/0 device requires ex­
tra time to respond to OPREO.

The OPACK input during memoryaccess operations is equivaient to the 8080A READY input. You should refer to the
extensive discussion of the 8080A READY input given in Chapter 4 in order to find ways of using OPACK logic in a
2650A microcomputer system.

INTERFACING I/O DEVICES TO THE 2650A MICROCOMPUTER
The simplest way of interfacing exter~al devices to the 2650A rriicro~omputer is to use the microcomputer's
I/O instructions, plus the control signals which identify I/O operations.

A very small microcomputer system may only have one 1/0 port. in this case the 1/0 port can connect directly to the
Data Bus and can always consider itself selected. A larger system may have up to 257 8-bit ports, with select lines that
simply connect to the Data Bus and use EINE as a select enable signal.

THE 2650A MICROCOMPUTER INTERRUPT PROCESS
The 2650A has a single interrupt request line and a single interrupt acknowledge line. Interrupt priorities will
therefore be handled via a daisy chain ..

When the CPU acknowledges an interrupt, first it disables all further interrupts. Next, it pushes the contents of
the Program Counter onto the address Stack and zeros the Program Counter.

The CPU will now insert the first byte of a ZBSR instruction code into the Instruction register; this instruction
code is a Branch-to-Subroutine using program relative addressing. The interrupting device must submit a byte
of data on the Data Bus, which will be interpreted as the second byte of the ZBSR instruction.·

11-12

c
w

~
a::
o
D.
a::
o
(.)

~
en
w

~
U o
CI)
CI)

ct
all
w
Z
a::
o
III
CI)

o
~
ct c
ct
@

OPREQ = 1

The next two clock

periods require

memory or 1/0 access

I
MilO =1

Memory is referenced

A memory address is

on the Address Bus

R/W =0
Transmit data

on the Data Bus

to the CPU

R/W =1
Write data on

Data Bus into

memory

E/NE == 0

M/iO =0
An 1/0 device

is referenced

E/NE = 1
A one-byte liD Read 1/0 port number

off the low order eight

Address Bus lines

instruction

-.........

1
R/W=O

Transmit a byte

on the Data Bus

to the CPU

V
D/<:=O
Transmit

Status

D/e= 1

Tra.nsmit

Data

ii,

1"

R/W=1
Receive a byte

output by the CPU

on the Data Bus

D/C= 0
Receive

Control

DIC =1
Receive

Data'

'-----... __ ~~ At conclusion of oper­
jation input OPACK low;
otherwise CPU will enter

'-_______________ a WAIT state and output _
• RUN/~ 0 .. -~~~~~~~~

Figure 11-3. How Control Signals Identify Address' and Data Bus
Use for the 2650A Microcomputer

Look again at the discussion of 2650A addressing modes and you will see that with the Program Counter set to 0, the
byte of data input by the interrupting device becomes a displacement vector.

11-13

Assume that each,external device has the beginning address of its interrupt service routine st'ored somewhere within
the first 64 bytes of the zero memory page. The interrupting device must input the following byte of data:

. 7 6 5 .. 3 2 1 0 ~Bit No.

o

'--------Slx·blt device select code: must be twice the device number.

since two bytes will be needed for each device address .

..... ----------Must be 0 since only positive displacements from memory loca­

tion 0 are being used. (Negative values. with addressing the top

64 bytes of memory also feasible.) .

'-------------Indirect addressing must be specified

This byte of data causes an indirect program relative jump to the interrupting device's interrupt service routine. as
follows:

5 .. 3 O.~BitNo.
....... -.. """"1"" ..

Indirect. addressing

specified

Displacement of

1 A 16 is specified

Program execution continues

with instruction stored in

memory location OA4A 16

2650A MICROCOMPUTER DIRECT MEMORY ACCESS

I

Memory PROGRAM

Address MEMORY

:l::::::::j
~2t===:1

E i
oolA OA
oolB .. A
oolC

0010

00lE

oolF

Direct memory access .ina 2650A system is left up to external logic. Two schemes are possible.

External iogic may stop' the CPU, using the PAUSE input; while the CPU is disabled, external logic may take
control of Data and Address Busses to access memory in any way.

Alternatively, DMA logic may be implemented to operate in parallel with the CPU. The 2650A has periods when
both the Data Bus and the, Address Bus are floated. Handling DMA in parallel with normal instruction execution is
made possible if Y0L! combine the OPREQ and OPACK handshake signals with normal timing sequences.

The only economical way of handling direct memory access in a 2650A microcomputer system is to use one of
the direct memory access control devices described in Volume 3. Timing requirements are given with the discus­
sions of these devices. The flexibility of the 2650A System Bus is such that you will have very'little difficulty generating
an interface with any of these direct memory access control parts.

THE 2650A MICROCOMPUTER INSTRUCTION SET
The 2650A microcomputer instruction set is the most minicomputer-like of the microcomputers discussed in
this book. It is particularly rich in addressing modes and memory reference instructions. The instruction set is
listed in Table 11-1.

Memory reference instructions are shown as offering program relative addressing options or extended addressing op­
tions. See the discussion of 2650A addressing options for a definition of these terms.

Note that in the statuses coiumn. CC identifie~ the cco and CC 1 statuses. These two statuses are ~sed to test for a
zero. positive or negative branch condition: these two statuses are described along with the· 2650A Status registers.

11-14

c
w

~
II: o
c..
II:
o
o
~
en
w

~ g
en
en
c(

II/J
w
Z
II:
o
a:I
en o
:!:
c(
c
c(

@

The TMI Immediate Operate instruction compares a register's contents with a mask provided by the instruction
operand. This instruction allows any bit combination to be tested for. in any CPU register.

The Decimal Adjust (DAR) instruction of the 2650A differs from the instructions with the same name as implemented
on a number of other microcomputers. The Decimal Adjust instruction can be used to perform binary decimal
arithmetic. Referring to. the discussion of binary decimal arithmetic given in Volume I. the 2650A DAR instruction per­
forms Step 3 of the binary-coded-decimal addition operation described in Chapter 3.

THE 2650A BENCHMARK PROGRAM
This is how the 2660A may implement our benchmark program:

LODA.R1 TLENGTH LOAD DISPLACEMENT TO FIRST FREE TABLE BYTE
LODA.R2 10BFL LOAD I/O BUFFER FILLED LENGTH

LOOP LODA.RO *IOBUF.R2 LOAD NEXT I/O BUFFER BYTE
STRA.RO *TABLE.R1.+ STORE IN TABLE. AUTO-INCREMENT R1
BDRR.R2 LOOP DECREMENT R2. RETURN TO LOOP ON NON-ZERO
STRA.R1 TLENGTH AT END. RESTORE NEW TABLE LENGTH

The benchmark program. as illustrated for the 2650A. assumes that both the data table and the I/O buffer have max­
imum lengths of 256 bytes.

The displacement to the first free byte of the data table is stored in a memory location identified by the label TLENGTH.

The number of filled I/O buffer bytes is stored in a memory location identified by the labellOBFL. It is assumed that the
I/O buffer can be read backwards: in other words. the last I/O buffer byte becomes the first byte stored in the perma­
nent data table.

The instruction with label LOOP begins by loading the last byte in the I/O buffer. using indirect. indexed addressing
without auto-increment or auto-decrement. Subsequently. Index Register R2 is decremented: if it does not decrement
to O. execution returns to the instruction labeled LOOP.·

The instruction which stores data in TABLE uses indirect. post-indexed addressing. with the contents of Index Register
R1 auto-incremented. Thus. at the conclusion of data movement. Index Register R1 contains the displacement to the
next free byte of TABLE.

Comparing the 2650A benchmark program with other benchmark programs shown in this book might suggest that the
2650A has the shortest. and therefore the fastest and most efficient benchmark program. This is not necessarily the
case. Certainly the 2650A instruction set provides a source program which is likely to be shorter than any other
microcomputer's source program. but that is because instructions are very minicomputer-like. The number of bytes re­
quired to implement the 2650A object program. and the time taken to execute the program. may bear no relationship
to the length of the source program. For example. the program loop. although it contains only three instructions (LODA.
STRA and BDRR). will require eight bytes of object program.

Once ~gain. we caution against drawing fast conclusions from benchmark programs.

The following symbols are used in Table 11-1:

,* ADDR(X) 16-bit extended addressing mode:

*BADD

C

(X)

ADDR

'·1 I I I ., ·1 1
~--...... ~ V

(X)

1 for indirection

00 for non-indexed

.ADDR

01 for indexed with auto-increment
10 for indexed with auto-decrement
11 for indexed only

13-bit absolute address

16-bit absolute addressing mode:

1 1 I I
~

1 1 1 1 1 1 .. I 1&.."""1_· ""-...... ""-... 1 ~I
~~ ~~'vr~--.......... ,~

BADD

1 for indirection
BADD 15-bit absolute address

Carry status

11-15

CC The two Condition Code bits CC1 and CCO

CC1 CO CCO

CIDC The Carry and Inter-Digit Carry

C.CO IDC

dataNE The non-extended data port

DATA2 2-bit data unit

DATA8 8-bit data unit

*DISP 8-bit relative addressing mode:

I 1 1 ·1 1 1 1 1 I
--~

DISP

1 for indirection

DISP 7-bit signed displacement

EAA Effective address generated by *BADD

EAD Effective address generated by *ADDR(X)

EAR PC relative address generated by *DISP

IDC Inter-Digit Carry status

o Overflow status

P An 8-bit port number

PC Program Counter

PSU Upper byte of Program Status Word

PSL Lower byte of Program Status Word

One of the seven CPU registers

RAS(SP) The Return Address Stack location indicated by the Stack Pointer

RO Accumulator

SP Stack Pointer

status NE The Non-Extended status port

ZEA A zero page relative address generated by DISP

x<y,z> Bits y through z of the quantity x; for example, RO<3,O> represents the lower 4 bits of the Accumulator.

[] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets,
then the designated register's contents are specified. If an I/O port number is enclosed within the
brackets, then the I/O contents are specified. If a memory address is enclosed within the brackets, then
the contents of the addressed memory location are specified.

[[]] 'Implied memory addressing; the contents of the memory location designated by the. contents of a
register.

A .Logical AND

V Logical OR

4/- Logical Exclusive-OR

Data is transferred in the direction of the arrow

Data is exchanged between the two locations designated on either side of the arrow.

Under the heading of STATUSES in Table 11-1, an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X, it means that the status maintains the value it had before the instruction was ex­
ecuted.

11-16

© ADAM OSBORNE 8t ASSOCIATES. INCORPORATED

Table 11-1. Summary of Signetics 2650A Instruction Set

TYPE MNEMONIC OPERAN'D(si
STATUSES

BYTES OPERATION PERFORMED
C 0 IDC cc

REDO .r 1 X [r]-[dataNE]

Read data at non-exteridad port Into sp8clfied register.

REDC .r 1 X t r] ~ [stlitusNE]

Read non-extended status into specified register.
REDE . ,r P 2 X [r]-[P] g Read into specified register from Port P.

WRTD .r 1 [dataNE]-[r]

Write specified register contents to non-extended data port.

WRTC .r 1 [statusNE] - [rJ
Write specified register contents to non-extended status port.

WRTE .r P 2 [P]-[r]

Write specified register contents to Port P.

> LODR .,r ,eDISP 2 X [rJ-[EAR]
It
0 w I Load sp8cifled register from relative location.
::E CJ LODA .r eADDR(X) 3 X [r]-[EAD] w Z
~ w Loacl specified register from extended iocation.
> It

STRR 2 w ,r eDISP [EAR]-[r] It u..
< w Store specified register contents in relative location.
~

,It

a: STRA .r eADDR(X) 3 [EAD]-[r]
~ Store Specified register contents in extended ioca1ion.

AD DR .r eDISP 2 X X X X [rJ-[r]+ [EAR]

Add contents of relative location to specified register.

ADDA .r eADDR(X) 3 X X X X [r]-[r] + [EAD]

Add contents of extended location to specified register.

SUBR ,r eDISP 2 X X X X [r]-[r] - [EAR]
w _: Subtract contents of relative location from specified register. CJ ~,

> ffi~ SUBA .r eADDR(X) 3 X X X X [r]-[r) - [.EAD)
It ffi w' Subtrect contents of extended location from specified register. < u.. ~ Q w 0 ,r eDISP [r)~[rJ A [EAR]
~ It > ANDR 2 X

(J)0 It AND contents of relative location with those of specifaed register.
w It 0 ANDA ,r eADDR/X) X [r]-[r] A [EAD] II) o ~ 3

~ w· AND contents of extended loc.ation with those of specified register. w ~
~- IORR ,r eDISP 2 X [r]-[r]V [EAR]

OR contents of relative location with those of specified register.
lORA ,r eADDR(X) 3 X llr]-[r]V [EAD]

OR contents of extended location with those of specified register.

. EORR ,r eDISP 2 X [r]-[r]-Y-[EAR]

Exclusive-OR contents of relative location with those of ,specified register.

EORA ,r eADDR(X) 3 X [rJ-[r]¥ [~D]

Exclusive-OR contents of extended location with those of specified register.

I

co

TYPE

> > S
II: II: W
0 0 ;:)

:E :E z
w w i=
:E ~ z
> 0

w g .11: u

" z W 0 w I-Z II: " 0 W II:
U II.. W w w Q.
III II: 0

w
I-

" C
w
:E
~

w
I-

" 11:.
w
Q.

0
w
I-

" C
w
:E
~

Q.

~
;:) ..,.

MNEMONIC OPERAND(S)

COMR ,r ·DISP

COMA ,r. *ADDR(X)

LODI ,r DATAB

AQPI ,r DATAB

SUBI ,r DATAB

'A~DI ,r DATAB

IORI ,r DATAB

EaRl ,r DATAB

COMI ,r DATAB

TMI /DATAB

ZBRR ·DISP

BXA ·BADD

ZBSR ·DISP

BSXA "BADD

Table 11-1. Summary of Signetics 2650A Instruction Set (Continued)

STATUSES
BYTES OPERATION PERFORMED

C 0 IDC CC

2 X If [rJ > [EAR]; then CC =01
If [rl = [EAR]; then CC =00
If [r] < [EAR]; then CC = 1()

Compare contents of relative location with those of specified register; set the CC accordingly.

3 X If [r] > [EAD]; then CC =01
If [rl = [EAD]; then CC = 00

If [rJ < [EAD]; then CC = 10
Compare contents of extended location with those of specified register; set the CC accordingly.

2 X [r]-DATAB

Load immediate into specified register.

2 X X X X [rJ-[r] + DATAB

Add immediate to specified register contents.

2 X X X X [rJ-[rJ- DATAB

Subtract immediate from specified registers contents.

2 X [rJ-[rl A DATAB
AND immediate with specified register contents.

2 X [rl-[r]VDATA8
OR immediate with specified register contents.

2 X [r]-[r]] VDATAB

Exclusive-OR immediate with specified register contents.

2 X If [r] > DATAB; [CC]-01.

If [rJ =DATAB; [CC]-OO

If [rl < DATAB; [CC]-10

Compare immediate· with specified register; set the CC accordingly.
2 X If all selected bits are set, CC = 00; otherwise CC = 10

Test bits in specified register corresponding to Is in immediate data. If all tested bits are IS set

CC accordingly.

2 [PC]-ZE.A

Branch to zero page address.

3 [PC]-EAA

Branch to extended address.

2 [SP]-[SP] + 1
[RAS(SP)]-[PC] + 2
[PC]-ZEA

Call zero page subroutine.

3 [SP]-[SP] + 1
[RAS(SP)]-[PC}+ 3

[PC]-EAA

Call extended subroutine.

I

CD

TYPE

Z
0
~
is
Z
0
CJ
Z
9
::t
CJ
Z
c(
a:
III

::t
CJ
Z
c(
a:
III

W
z
~
::l
0
a:
III
::l
ell

..:i
c(
Z
0
~
is
z
0
CJ

MNEMONIC

BCTR'

BCTA

BCFR

BCFA

BIRR

BIRA

BDRR

BORA

BRNR

BRNA

BSTR

BSTA

BSFR

BSFA

OPERAND(S)

,DATA2 eDISP

,DATA2 eDISP

,DATA2 eDISP

,DATA2 eBADD

,r eDISP

,r eBADD

,r eDISP

,r eBADD

,r eDISP

,r eBADD

,DATA2,eDISP

,DATA2 eBADD

,DATA2 eDISP

,DATA2 eBADD

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 11-1. Summary of Signetics 2650A Instruction Set (Continued)

STATUSES
BYTES OPERATION F!ERFORMED

C 0 IDC CC

2 If DATA2 =CC, then [PC]-EAR

Branch relative if DA T A2 equals CC.

3 If DATA2 =CC, then [PC]-EAA

Branch absolute if OAT A2 equals CC.
2 If DATA2 ~CC, then [PC]-EAR

Branch relative if OAT A2 is not equal to CC.
3 If DATA2 'ICC, then [PC]-EAA

Branch absolute if OAT A2 is not equal to CC.
·2 [r]-[r]+l

If [r] ~O, [PC]-EAR

Increment specified register. If nonzero rasult, branch relative.
3 [r]-[r]+ 1

If [r] ,lO, then [PC]-EAA

Increment specified register. If nonzero result, branch absolute.
2 [r]-[r] -1

If [r] ,l.O, then [PC]-EAR

Decrement specified register. If nonzero result, branch relative.
3 [r]-[r]-l

If [r] # 0;" then [PC]-EAA

Decrament specified register. If nonzero result, branch absolute.
2 If [r] ~O; then [PC]-EAR

If specified reglstertis nonzero, branch relative.

3 If [r] #0; then [PC]-EAA

If specified register is nonzero, branch absolute.

2 If DATA2 = CC; then [SP]-[SP] + 1
[RAS(SP)]-[PC] + 2
[PC]-EAR

if DA TA2 equals CC, then call subroutine at ralative addrass.

3 If DATA2 = CC; then [SP]-[SP] + 1
[RAS(SP)]-[pc] + 3

[PC]-EAA

If DAT A2 equals CC, then call subroutine at absolute addrass.
·2 If DATA2 ,lCC; then [SP]-[SP] + 1

[RA5(SP)]-[PC] + 2
[PC]-EAR

If OAT A2 not equal to CC, then call subroutine at relative address.
3 If DATA2 ~CC; then [SP]-[SP]+ 1

[RAS(SP)]-[PC] + 3
[PC]-EAA

If DATA2 riot equal to CC, call subroutine at absolute address.

I
N
o

TYPE

w-

~ C
::I w
o ::I
a: Z
ID ~
::I Z
CI) 0
:.#. 9
Z :z:
o CJ
~ Z
is ~
Z ID
o
CJ

w

5
w
A.
o
a:
w
I­
CI)

S
w
a:
ri:
w
Iii s
w
a:

w
I­cs:
a:
w
A.
o
a:
w
Iii
S
w
II!

MNEMONIC OPERAND(S)

BSNR ,r °DISP

BSNA ,r °BADD

RETC ,DATA2

LODZ

STRZ

ADDZ ,r

SUBZ ,r

ANDZ ,r

IORZ ,r

EORZ ,r

COMZ ,r

RRL ,r

Table 11-1. Summary of Signetics 2650A Instruction Set (Continued)

STATUSES
BYTES~--~---r---r--~--~--~

C 0 IDC CC

x

x

x x x x

x x x

x

x

x

x x x x

OPERATION PERFORMED

If'[rJ ~ 0; then [SP]-[SP] + 1
[RAS(SPI1-[PC] + 2
[PC]-EAR

If specified register is nonzero, call subroutine at relative address.
If [r] 10; then [SP]-[SP]+ 1

[RAS(SPI1-[PC] + 3
[PC]-EAA

If specified register is nonzero, call subroutine at absolute address.
If DATA2 =CC, then [PC]-[RAS(SPI1

[SP]-[SP] - 1

If DATA2 equals CC, then return from subroutine.

[RO]-[r]

Load Accumulator (Register 0) with specified register contents.
[r]-[RO]

Store contents of Accurnulat9r (Register 0) into specified register.

[RO]-[RO]+ [r]

Add specified register to Register O.
[RO]-[RO] - [r]

$ubtract specified register from Register O.
[RO]-[RO] A [r]

AND specified register with Register O.
[RO]-[RO]V [r]

OR specified- register with Register O.
[RO]-[RO] [r] -

Exclusive-OR specified register with Register O.
If [RO] > [r]; then ec = 01
If [RO] = [r]; then ec =00
If-[RO] < [r]; then ee = 10

Compare specified register with Register,o; set the ec- accordingly.

-l IDC J e -_ 7 0 0

o -I=tJiJi4i I
Or

WC=o

If WC is 0, rotate the specified register left. If we is 1, rotate through Carry and Intermediate Ca­

rry.

I
N

TYPE

Ci
1&1
::I
z
i= z
0
g
1&1
I-
ct
II:
1&1
A.
0
11:-
1&1
I-
til
C5
1&1
_II:

I-
A.
::I
II:
II:
1&1
I-
~

til

~
'" I-
en

MNEMONIC

RRR

DAR

RETE

LPSU

LPSl.

SPS~

SPSL

PPSU

PPSL

CPSU

CPSL

TPSU

TPSL

NOP

HALT

OPERAND IS)

,r

,r

,DATA2

DATAS,

DATAS'··

DATA8

DATA8

DATA8

DATA8'

© ADAM OSBORNE & ASSOCIATES, INCORPORATED

Table.11-1. Summary of Signetics 2650A Instruction Set (Continued)

STATUSES
BVTES OPERATION PERFORMED

C 0 IDC C~

- ~-
IDC

C - ~ 7 O· _ 0 oL, t£tf"ff'fIJ 1 X X X x .wc =0

Or

- ~ -
~ 7 - 0 0

0--1 fgrliib;tlJ .-

We"l

If WC is O,rotate the:specified register right. If we is 1, rotate through Carry and Intermediate
Carry.

1 Decimal adjust the specifoed register.

1 If DATA2'=CC; then [PC)-[RAS(SPI1
[SP)-[SP) - 1

. Enable interrupts

If DA T A2- equals CC, then retum from subroutine and enable interrupts.

1 [PSU)-[RO)

Load Register 0 into·PSU.

1 ~PSL1-[RO)

Load ~egister 0 into PSL.
1 [RO)~[PSU)

Load PSU into Register 0:

1 [RO)-[PSL)'

Load PSL into Register 0: .
2 If [DATA8<i»=1; then.[PSU<i»-l

Set bits in PSU which correspond to 18 in immediate:data.
2 If [DATA8<1»=1; then- [PSL<L»--:l

Set bits in PSL which correspond to ls in immediate data.
2 If [DATA8<i»=1 then [PSU<i»-O

Clear bits of PSUWhich correspond.to 1s.;nimmediate data.
2

I:' If [DATA8<i»=1 then [PSL<i»-O
Clear bits of PSL which correspond to ls in immediate data.

2 X . If DATA8 = [PSU),then CC =00; else CC;= 10-
Compare immediate,with PSU; set CC accordingly.

2 X. If DATA8 = [PSL], then'Ce =00:1IIse CC = 10
Compare immediate withPSL;_ setC~ accordingly.

1 No OperatiOn.

1 Processor enters Wait. state.

Table 11-2. Signetics 2650A I nstruction Object Codes

OBJECT CODE
MACHINE

INSTRUCTION OBJECT CODE BYTES
MACHINE

INSTRUCTION BYT~S
CYCLES CYCLES

ADDA.r "ADDR(X) l000llaa 3 4 COMA.r ·ADDR(X) 111011aa 3 4
bccq<l<lqq bccqqqqq

QQ QQ
ADDI.r DATA8 l0000laa 2 2 COMI.r DATA8 ;llOOlaa 2 2

pp PP
ADDR.r "DISP ioo0108~ 2 3 COMR.r ·DISP 111010aa 2 3

beeeeeee beeeeeee
ADDZ.r l00000ea 1 2 COMZ.r l11000aa 1 2
ANDA.r ·ADDR(X) 0100,11aa 3 4 CPSL DATAl! 75 2 3

bccqqqqq pp
QQ CPSU DATA8 74 2 :)

ANDI.r DATA8 Oiopolaa 2 2 pp
,pp

DAR.r loo101aa 1 3
AIIIDR.r -"Dlsp 01001088 2 3 EORA.r "ADDR(X) oo1011aa 3 4

b8eeeeee bccqqqqq
ANDZ.r 010000aa 1 2 00
BcFA.DATA2 ·BADD loolllff 3 3 EORI.r DATA8 ooloolaa 2 2

bqqqqqqq pp
QQ EORR.r ·DISP oo1010aa 2 3

BCr=R.bATA2 "DISP l00llOff 2 3 beeeeeee
beeeeeee EORZ.r ool000aa 1 2 '1;

BCTA.DATA2 ·BADD 000lllff 3 3 HALT _ 40 1 2
bqqqqqqq IORA.r- ·ADDR(X) 011011a~ 3 4

QQ. bccqqqqq-
BCTR.DATA2."DISP 000llOff 2 3 QQ

~ IORI.r DATA8 Olloolaa 2 2
BORA,r "BAOt> llllllaa 3 3 pp

I1qqqqqqq IORR.r ·DISP· 0110108a 2 3
QQ beeeeeee

"

BORR,r tDISP lllllOaa 2 3'
011000aa beeeeeee IORZ.r 1 2

1101-l,laa LODA.r ·ADDR(X) 0000llaa 3 4 81M,r ·BADD 3 3
bccqqqqq

bqqqqqqq
QQ QQ

sI~R,r "DISP 110110aa ~ODI.r DATA8 00000laa 2 2
2 3

-beatiMee PP

"BADD 010111a8 3 3 LODR.r ·DISP 0000108a 2 3
BRNA.r

bqqqqqqq
baeeeeee

LOD!.r OOOOOOS!I 1 2 QQ
LPSL 93 2

BRNFl.r "DISP 010110a8 2 3 1
LPSU 92 1 2 beeeeeee
NOP co 2

BSFA.DATA2 "BADD 101111ff 3 3 1
PPSL DATA8 77 1 3 bqqqqqqq

PP
.,- 00

PPSU DATA8 76 3
BSFR,DATA2 "DISP 10111~ 2 3 2

pp
beeeeeee

REDC.r oo11ooaa 2
BSNA.r ·BADD 011,111aa 3 3 1

REDD.r 011100aa 1 2 bqqqqqqq
REDE.r P 010101aa 2 3 QQ

2 3 PP
BSNR.r "DISP 0111108a

beeeeeee
RETC.DATA2 000101ff 1 3

3 3 RETE.DATA2 ool101ff 1 3
BSTA.DATA2 "BADO ool111ff

bqqqqqqq RRL.r, 110100aa 1 2

QQ R~R.r 010100aa 1 2

BSTR.DATA2 "DISP oo1110ff 2 3 SPSL 13 1 2

beeeeeee SPSU 12 ; 2

STRA.r "ADDR(X) 11oo11aa 3 4
BSXA -"BADD BF ;3 3

bccqqqqq
bqqqqqqq QQ

QQ
STAR.r "DISP l1oo108a 2 3

BXA "BADD 9F 3 3
beeeeeee

bqqqqqqq
STRZ.r ll0000aa 1 2

QQ

11-22

c
w

~
II:
o
Il.
II:
o
(.)

~
en
w

~ g
(I)

INSTRUCTION

SUBA.r ·ADDR(X)

SUBl.r . DATAB

SUBR.r ·DISP

SUBZ.r

TMI.r DATAB

TPSL DATAB

Table 11-2. Signetics 2650A Instruction Object Codes (Continued)

MACHINE MACHINE
OBJECT CODE BYTES

CYCLES
INSTRUCTION OBJECT CODE BYTES

CYCLES.

10101188 3 4 TPSU DATAB B4 2 3
bccqqqqq PP

00 WATC.r 1011008a 1 2
10100laa 2 2 WRTD.r llll00aa 1 2

pp WATE.' P 11010188 2 3
10101088 2 3 pp

beeeeeee ZBRR ·DISP 9B 2 3
10100088 1 2 beeeeeee
11110188 2 3 ZBSR ·DISP BB 2 3

PP beeeeeee
B5 2 3
PP

~ The following symbols are used in Table 11-2:
alJ
w
Z
II:
o en
(I)

o
:!: « c «
@

aa

b

cc

eeeeeee

ff

PP

q

o

Two bits which. in conjunction with the Register Bank Select bit in the PSL. choose the register

One bit selecting the indirection option

Two bits choosing the indexing mode:
00 No indexing
01 Indexing with auto-increment
10 Indexing with auto-decrement
11 Indexing only

7-bit signed address displacement

2-bit test value

eight bits of immediate data

One bit of absolute or extended address

One byte (eight bits) of absolute or extended address

SUPPORT DEVICES THAT MAY BE USED WITH THE 2650A MICROPROCESSOR
Interfacing the 2650A with 8080A support devices is very straightforward. Figure 11-4 shows how 8080A con­

, trol signals may be generated from 2650A control signals. Figure 1 i -5 provides the same information for the
, MC6800.

But there are some ambiguities not immediately apparent when you look at Figure 11-4. To begin with. the
2650A uses a request/acknowledge handshaking control protocol which is alien to an 8080A-based . system. Thus
OPACK. which is shown creating RDYIN in Figure 11-4. may well be grounded in a.cibnfiguration that is not going to in­
sert Wait states into 2650A instruction execution cycles. OPREO will be used as a ctintributor to the chip select logic of
8080A support devices. M/iO. which is shown discriminating between memory and I/O control signals in Figure .11~4.
may alternatively be used as a contributor'to chip select logic. Figures 11-6 through 11-9 illustrate 8251 and 8255
devices connected to a 2650A CPU, being selected within memory or 1/0 spaces. Note that where devices are
selected within the 2650A I/O space. C/O could be generated from the 2650A C/O control output rather than using
address line ADRO.

, . '

Figure 11-10 shows how 2650A prio'rity interrupts may be generated UShlg an 8214 Priority Interrupt Control
Unit.

" "

Interfacing MC6800 support devices to a 2650A CPU is again "complicated by the synchronizing signal required
by MC6800 support devices. But the 2650A is flexible enough to make, ~his.interface possible.

"', We must use OPREO in order to generate the synchronizing enable signal for MC6800 support devices. Unfortunately.
there is a significant variation In the leading edge of OPREO. Therefore. logic to create an ENABLE synchronizing sig­
nal must have the following three parts:

1) Create a continuous clock signal to substitute for the MC6800 ENABLE synchronizing signal.

2) Make sure tha"t during a write cycle MC6800 device select logic is true across one pulse of the ENABLE signal. Chip
select logic must be true from shortly before thebeginning ofthe ENABLE signal positive transition until shortly
after the end of the negative transition. "

11-23

3) During a read cycle. again make sure that chip select logic for the MC6S00 support device is valid for one ENABLE
cycle only; but this time stretch the ENABLE true pulse so that the 2650ACPU can latch the data on the negative
transition of OPREQ before ENABLE goes low.

Timing for the above three conditions is illustrated in Figure 11-11. But note that since the minimum cycle time for
MC6S00 support devices is 1 microsecond. the 2659A CPU must also operate at this frequency - rather than using a
O.S microsecond clock. which is the fastest allowed. .

Figure 11-12 illustrates a' 2650A-6850 ACIA interface. Figure 11-13 illustrates a 2650A-6820 PIA interface.

Important aspects of 2650A interface timing are defined in Figure 11-14.

l : BUs'EN

[>0 HOLD ~---------~~

~-------------~ [>0 ~ INT

INTACK ... rf!e---------o<J iNTA

[>0 RESET------------ .. RESiN

OPACK------------~ [>0 ... RDYIN

o<d RUN/~ ~------------ WAIT

R/WR-----------~_ca r>----------__ ~

M/iO-------++-<lII ~---------~ IIOR

~---------~ MEMW
WRP---------~~+_~L__J

~---------~ I/O'vV
2650A

Signals
'-------L_, 8080A

Figure 11-4. 2650A-SOSOASighal Equivalents

3-chip CPU
Signals

PAuSE -----------------------~-~ .. ~ HALT

ADREN ------------------[>0 .. TSC

~-.-------------[>0 lit DBE

.. OPREQ-----~---------------__ ~ VMA

Riw----------~ [>0, .. R/Vi

Ii-RESET-------------------~ RESET

~-----------------------~ .. IRQ
2650A MC6800
Signals Signals

Figure 11-5. 2650A-MC6S00 Signal Equivalents

'11-24

Q
w
~
a:
0
11.
a:
0
0
~
iii w
l-
e(

g
en
CIl
e(

O!I
w
Z
a:
0
co
en
0

:E
e(
Q
e(

@

ADRO

OPREO
ADR13-E/NE

M/iO

2650A

R/WR

WRP

~------------------------------~~C/D

&>----...... Cs'

Logic

~------~--------------------------... ~RD

~----...... WR

1'\..I,...... ____________________ ____ oI'lOO-07

SYSTEM
CLOCK

8251

Figure 11-6. An 8251 US,A.RT Accessed by a 2650A as an I/O Device

ADRO.------------------------~~C/D

OPREO 1-----------......

2650A

M/Io~---------~
Address

Decoding
Logic

K>----__ ooICS

'R/WR t----.. ~-----------__!J ... Ro

WRP~---------------_4
D----...... WR

DBUSO- U'l --------------------.... -~'_I 00-07

DBUS71~~------------------~-~~.

SYSTEM
CLOCK

8251

Figure 11-7. An 8251 USART Accessed by a 2650A as a Memory Device

11-25

AORO AO

AORl Al

OPREQ

AOR13-E/NE

M/iO
CS

2650A 8255

CPU PPI

'R/WR AD

\iVA
WRP

OBUSO-
00-07

OBUS7

OPACK

-=-

Figure i 1-8. An 8255 PPI Accessed by a 2650A as an I/O Device

I
ADROI

0:: : I:~
M/iO CS

Address

2650A Decoding 8255

CPU Logic PPI

R/WR AD

WR.
WRP

OBUSO- 00-07
OBUS7

Figu re 11-9. An 8255 PPI Accessed by a 2650A as a Memory Device

11-26

Q
w

~
a: o
Q.
a:
o
u
~
en
w

~
g
(I)
(I)

~

ail
w
Z
a:
o
to
(I)

o
:!:
~
Q
~

@

DBUSO -
· -· --: · -· -· -· : · · -

, DBUS7 ~

1

fP.
(Inverting

'OPAEO G1
bus driver)

INTACK .-.

81LS95

G2

~ ,- VCC - Jl j~ j 4.7K
2650A ..

VCC
... 'V v ..

'v .. v .. v

> .. v .. "
~ 4.7K

"vv ..
. ' .. ~

A2 Al AD

INTREO - INT SGS --

'r+- CLK Bi -
L£>o-

..
SYSTEM 8214 B1 --CLOCK PlCU

"filw 00 -

D-- -ole ECS
WRP ElR i1 M/iO

~
AD.· •••••• R7

E/Ne
~ j ,I J all'

OPACKrJ. ~
INTERRUPTING -- DEVICES

Figure 11-10. Vectored Interrupt Using the 8214 PICU with a 2650A CPU

11-27

... ,
.. I
~ ..

-=.. -)

I ..
~ - ,

2 MHz
(50% DUTY)

-
r--

D

CK

<1>1

Q

74LS74

Q q;;-

2650A CLOCK IS DRIVEN FROM <1>1

D Q .. - <1>2

- CK 74LS74

Q -

OPREQ ~------------------~--------------~J Q I---__ ~ LOR

<1>2 74LS107

R/W ~~'---------------~--------------~K
CLR

J QI--__ ~ EN

CK 74LS107

D------t K

L--------------------~R/W

Figure 11-11. Synchronization Circuits in a 2650A-MC68XX Interface

11-28

c
w

~
a:
o
0.
a:
o
(.)

~
iii
w

~ g
CI)
CI)

~

"' w
Z
a:
o
a:I
CI)

o
~
~
c
~

@

VCC

4.7K

i'N'T'REQ iRa
8

00-07

AORO RS

2650A Address 6850

CPU Decoding ACIA

Logic CS2
AOR13-E/NE

M/iO
CS1

INTACK

Riw To

OPREQ
} Interface

From {LOA CSO Circuitry
Interface EN ENABLE

ct>1 From Circuitry R/W R/W

Interface

Circuitry (See Figure 11-11) --
Figure 11-12. An MC6850 ACIA Connected to a 2650A

iNTREo i"R'QA
4.7K

vcc iiffiB
8

DBUSO-7 00-07

ADRO RSO
ADR1 RS1

2650A
Address 6820

CPU
Decoding PIA

Logic CS2
ADR13-E/NE

M/iO
CS1

INTACK

To
Riw } Interface

OPREQ From {LOA CSO Circuitry
Interface EN ENABLE

ct>1 From Circuitry R/W P,/W
Interface

Circuitry (See Figure 11-11) -•
Figu re 11-13. An MC6820 PIA Connected to a 2650A

11-29

2MHz

4>1

4>2

PROCESSOR WRITE

OPREQ

LOR

EN

PROCESSOR READ

OPREQ

LOR

EN

I

I

1) MC68XX latches data internaliy on negative transition.

\1 ,---.. _r...-____ ~,

2) Processor latches data on the negative t'ransition of OPREO; thereafter LOR and EN go to zero (but NOT before).

·OPREO can make a transition any time within this 600 nsec. region.

Figure 11-14. Important T'iming Con~iderations When Interfacing a 2650A C;:PU with MC68XX Ser'ies Devices

11-30

c
w
~
a:
o
D.
a:
o u
~
en
w

~
g
en
en
c(

~
w
Z
a:
o
CD
en o
~
c(
c
c(

@

DATA SHEETS

This section contains specific electrical and timing data for the 2650A.

11-01

2650A, 2650A-1
PRELIMINARY SPECIFICATION

ABSOLUTE MAXIMUM RATINGS1

PARAMETER RATING UNIT

TA Operating temperature o to 70 °C
TSTG Storage temperature -65 to +150 °C
Po Package power dissipation2 1.6 W

All input. output. and supply -.5 to +6 V
voltages with respect to GND3

DC ELECTRICAL CHARACTERISTICS TA = O°C to 70°C. Vee = 5V ± 5%.

PARAMETER TEST CONDITIONS

Current
ilL Input load Y,N = 0 to 5.25V
ILOH Output high leakage ADREN. DBUSEN = 2.2V VOUT = 4V
ILOL Output low leakage ADREN. DBUSEN = 2.2V VOUT = 0.45V

Voltage levels
V,H Input high
V,L Input low
VOH Output high IOH = -1001J.A
VOL Output low IOL = 1.6ma
Icc Power supply current Vee = 5.25V TA = O°C

Capacitance

C'N Input
. COUT Output

NOTES
1. Stresses above those listed under "Absolule Maximum Ratings" may cause

permanent damage to the device. This is a stress rating only and functional operation
of the device at these or at any other condition above those indicated in the operation
sections of this specification is not implied.

2. For operating at elevated temperatures the device must be derated based on +150'e
maximum junction temperature and thermal resistance of 50° CIW junction to ambient
140 pin IW package!.

3. This product includes circuitry specifically designed for the protection of its internal
devices from the damaging effects of excessive static charge. However. it is suggested
that conventional precautions be taken to avoid applying any voltages larger than the
rated maxima. '

4. Parameters valid over operating temperature range unless otherwise specified.
5. All voltage measurements are referenced to ground.
8. Preliminary specification
7. Manufacturer reserves the right to make design and process changes and

improvements.

Y,N = OV
VOUT = OV

MIn

2.2
-0.5
2.4
0.0

We reprint data sheets on pages 11-02 through 11-06 by permission of Signetics Corporation.

11-02

LIMITS

Typ Max
UNIT

IJ.A
10
10
10

V
Vee
0.8

0.45
150 mA

pf
10
10

c
w

~
a:
o
Il.
a:
o
(J

~
en
w

~
g
en
en
<
oil
w
z
a:
o
en
en o
:iE
< c
<
@

2650A, 2650A-1
PRELIMINARY SPECIFICATION

AC ELECTRICAL CHARACTERISTICS TA = O°C to +70°C, VCC = +5V ± 5%.

PARAMETER

TAH Address hold 2650A-l
2650A

TAS Address stable

TABO Address bus delay

TOH Data out hold 2650A-l
2650A

TOls Data in stable

Tos Data stable

TOIH Data in hold

TOBO Data bus delay

2650A-l
TCH Clock high phase

2650A

TCl Clock low phase 2650A-l
2650A

Tcp Clock period .. 2650A-l
2650A

TpC(5) Processor cycle time 2650A-l
2650A

TOR OPREQ pulse width7

·2650A-l
TCOR Clock to OPREQ time

2650A
Toso OPREQ signal delay

TOAD OPACK delay time

TOAS OPACK setup time

TOAH OPACK hold time

Tcss Control signal stable 2650A-l
2650A

TCSA Control signal available

Twpo Write pulse delay
2650A-l·
2650A

Twpo Write pulse from OPREQ

Twpw Write pulse width7

TIRS INTREQ set up time

T~H INTREQ hold time

Tcso Control signal delay

NOTES

1. Input levels swing between 0.80 and 2.2 volts.
2. Input signal transition times are 20ns.
3. Timing reference level Is 1.5 volts.
4. Output load is -100 p.A at 100pf and 1 TTL load.
5. Processor cycle time consists of three clock periods.
6. Output buller rise time is 1 SOns maximum.
7. These values assume that OPACK is returned in time to not cause the processor to

idle. Otherwise, the specified maximum will increase by an internal number of clock
cycles.

11-03

LIMITS

Min Ma~

180
220

50 -
- 180

160
200

- 2TcH +TCl -200

50 -
50 -
- 150

250 -
400 -
250 -
400 -
500 -
800 -
1500 -
2400 -

2 TCH + TCl 2TcH+Tcl+ 100
100 200
150 300

- 230

0 -
50 -
50 -
100 .400
100 500

200 -
100 200
100 300

TCH - 100 TCH + 150

TCH - 75 TCH

- 150

0 -
- 180

UNIT

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns
ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

2650A. 2650A-1
PRELIMINARY SPEciFICATION

MEMORY READ SEQUENCE

'1-·, _TC~_T;_P _TCL~
T, .----T.--L..... ___ I. T. ' TO /.

I-rcOR-f-----T!R-------

OPREO

. ADRO·ADR 14

i-__ -+ ___ --..,;._-I-______;.,_-I-__ T_C~;.;.S_.___,·: 1 _____ _

MiiO ._-----

~--' --------
. ~w _ ...:..:... _.~ ____ L-__ -+ _____ -+-_____________ _____ _

DATA IN " ---------- ------'---- ---.------'~~--=-~'''"~ --..:.----___ 0_·_' _'~_. _ .. _,.'
TOAS TOAH I

~------------------------~------------~

11-04

c
w

~
a: o
D.
a:
o
o
~
en
w

~
g
CI)
CI)

~

IllS
w
Z
a:
o
CD
CI)

o
~
~
c
~

@

2650A, 2~60A-1
PRELIMINARY SPECIFICATION . .

T.

OPRfO

MEMORY WRITE SEQUENCE

T. T,

-1 TCOR 1----'. _TOR---I

l

T.

-. -I TAS - ~T~H-I =.=,.-- - - -Ir--+--+-------------+----~----;J - - -_______ L.-.........;_-+ ___ "'"""':'" ______ -+-__ ~-..:..----I __ _

~TCSA- ~ T'CSS -I
- - - - -.--,...---+---+-------------4-----...; -- - -- -
-~.~---~ I~~_--~

TCSS --I

_--~/W.-==- _I -~-TWPO _. TCSS-jl== ."-.

_TCSA- _TwPO ~Twpw-l .

WRP _ ' .= ~ -I 1 I 1;-----
~I TOS ~ f- TDH -1

DBUSO·7 = = ' = -L_-:-+-____ ~---_:_---------.... I = . = = __
OPACK ~TOAD__rTOASl-. -I TO.,AH

-----------------~~I II ~ --------~-------------

11-05

2650A, 2650A-1
PRELIMINARY SPECIFICATION

INTERRUPT TIMING

CLOCK

OPREO

_Tcss_1
R/W

TCSS

E/NE

L-..-+-------t---..... - - ---
-jTCSA _ TCSS

I~ ___ -
L-..-+ __________ ______ _

'NTACK

-'". i'""r-
-----D-------
- -- - - - t - -;TE=Y;:R-- -- --

DATA 'N

TRI-STATE TIMING

I-TABOI -TIoOO-1
-.-""7"--,-.--,----------------1-------.-------

=_~s~ ____ I'--____ S_'G_N_AL_S_YA_L_'O _________ +-___JI ____ T~A~ __ _

~TCSO-I
CONTROL ~NALS _- TS -_ 1"'1 ~---S-'G-NA-L-S-YA-Ll-O---------T"L----.,I- -;;;;;A-;;- - --

I-Toso-I l=,"."~~----
-OP-RE-a -- - ---- ---Ir---S-,G-N-A-LS-Y-AL-,O------------~-----,I------
________ I... ___________________ --' •• ________ ,_

NOTE

Toso ALWAYS> Tcso, TABO or TOBO

OBUSENI !-________ ~------------~I
I-ToBo-1 I-TOBOt

::S- -:;:s;:;--- - Ir----S-'G-N-AL-S-Y-AL-'O---------------il-- '-TR;:;;;TE- ----

11-06

c
w
!i
a:
o
D­
a:
o
o
~
ui
w

!i
g
CI)
CI)

-t
a15
w
Z
a:
o
en
CI)

o
~
-t
C
-t
@

Chapter 12
THE RCA COSMAC

We are going to describe the single-chip CPU referred to as the CDP1802. This is a one-chip implementation of
the previous two~chip CPU, consisting of the CDP1801 and CDP18101.

COS MAC is a "low end" microprocessor: it is well suited to simple. high-volume applications with limited program­
ming needs. As compared to many other microprocessors described in this book. COSMAC is a poor choice for low­
volume. program intensive applications: this is because COS MAC is relatively difficult to program optimally.

But where does the transition from a simple application to a complex application occur? For COSMAC. it is sudden -
an application either is or is not suited to COSMAC. with very little grey area. '

The principal advantage of COSMAC is that it requires very little power, since it is fabricated using CMOS tech­
nology. If your application is going to be battery powered for any length of time, CMOS logic is strongly favored.
In addition. if speed is not essential in your application. then power consumption can be further reduced by using a
lower clock frequency. The advent of one-chip microcomputers has clouded the previously clear-cut power supply ad­
vantage associated with CMOS technology. There are occasions when a multi-chip COS MAC (or IM6100)
microcomputer system, even though it is all CMOS, will use approximately the same amount of power as a
single-chip NMOS microcomputer; the single-chip microcomputer will be capable of doing the same job. Before im­
mediately assuming that your application demands CMOS technology for power supply purposes, it is worth
checking the power supply requirements of an equivalent NMOS one-chip microcomputer.

Both the power and the inflexibility of COSMAC are based on a subtly clever use of CPU logic, coupled with a
somewhat primitive interface between CPU and external memory. Providing you can accommodate all "pro­
gram housekeeping" using CPU registers for your read/write memory, COSMAC is a superb microprocessor.
"Program housekeeping" includes maintaining the program and data memory address required by subroutines,
interrupts, and data accesses in general. A large class of microprocessor applications fit these restrictions and are
well suited to COSMAC.

Devices described in this chapter include the CDP1B02Centrai Processing Unit and the CDP1852 8-bit input/output
port. There is also a CMOS Universal Asynchronous ReceiverlTransmitter (UART) - the CDP1854 device. This part is
described in Volume 3.

COSMAC is fabricated using CMOS technology. It operates with a single power supply and is very insensitive to noise.
The power supply can vary between +3V and +12V.

CMOS technology also results in COSMAC 'having a very low power consumption and a broad operating temperature
range. It is one of the few products described in this book that operates within the full military specification tem­
perature range of -55°C to +125°C.

You should be cautious with your power supply when using COSMAC. CMOS is indeed immune to noise in the
power supply: the power supply can swing wildly between +3V and +12V without affecting the 1 and 0 levels at in­
dividual gates. However. timing swings accompany power supply swings. This would not be a problem if all signals
changed frequency together: however. as we will discuss later in this chapter. signals do not change in unison. Thus. it
is quite possible that a COS MAC system which works perfectly well with a +5V power supply is inoperable
with a +8V power supply, because signal transitions have shifted sufficiently for +5V logic to no longer apply.

Using a +10V power supply. a 155 nanosecond clock results in instruction execution times of 2.5 or 3.75 microse­
conds. In reality. a 200 nanosecond (or slower) clock should be used. Even though faster clocks are allowed. users have
experienced design problems when attempting to run COS MAC microcomputer systems with clocks that are
faster than 200 nanoseconds.

The principal manufacturer for the COS MAC is:

RCA SOLID STATE DIVISION
P.O. Box 3200

SomerVille. N.J. 08876

12-1

The second sources are:

HUGHES AIRCRAFT INC.
Industrial Electronics Group

500 Superior Avenue
Newport Beach. CA 92663

SOLID STATE SCIENTIFIC INC.
Montgomeryville Industrial Park

Montgomeryville. PA 18936

THE COS MAC CPU

Functions imple!llented on the COP1802 CPU are illustrated in Figure 12-1.
. .

Logic to handle an external interrupt request is provided by the COSMAC CPU; along with an elementary ability to han­
dle interrupt priority arbitration.

An unusual feature 'of COSMAC. as compared to other CPUs described in this book. is the fact that COSMAC provides
an elementary DMA capability u~ing CPU logic.

COSMAC PROGRAMMABLE REGISTERS
These 'are t~e ~rograri1ma~leregisters of the COSMAC CPU:

16 Bits
r ... A-_ ... ,

• 8 Bits 8 Bits
~~

4-bit. Program count. er, pOin. ter~.
4-bit. Data Counter Pointer X

8-bit buffer for P and X T

R(O).l R(O).O

R(l).l R(1).O

R(2).1 " R(2).O

R(3).1 R(3).O

R(4).1 R(4).O

R(5).1 R(5).O

R(6).1 R(6).O

R(7).1. R(7).O

R(8).1 R(8).O

R(9).1 R(9).O

R(A).l R(A).O

R(B).1 R(B).O

R(C).l R(C).O

R(D).l R(D).O

R(E).1 R(E).O

R(F).1 R(F).O

'\

i

I)

Sixteen 16-bit Address registers or thirty­
two 8-bit Data registers. No permanently
assigned Data Counters or Program Coun-·
ters.

o . 8-bit Primary Accumulator

The 0 register functions as a primary Accumulator.

The sixteen 16-bit registers may serve as Program Counters, Data Counters, or scratchpad memory.

As scratchpad me~o~. each 16-bit register consists of two 8-bit registers whose contents can be transferred to or from
the primary Accurriulatqr (D register).

The nomen~lature RN is used to define a 16-bit general purpose register. N may be any number in the range 0 - 15.
When general purp<?se registers are being treated as 8-bit datastorage units. R(N1.1 is used to identify the high-order
byte of G(;lneral Purpose Register RN and R(N).O is used to identify the low-order byte of General Purpose Register RN.
F()r example. R6 identifies the seventh 16-bit general purpose register. This general purpose register contains a high­
order byte. identified as R(6).1 and a !ow-order byte. identified as R(6).0.

12-2

c
w

~
a:
o
0..
a:
o
(.)

~
en
w

~
U o
(/)
(/)
c(

CI/I
w
Z
a:
o
en
(/)

o
~
c(
c
c(

@

Interface Logic

Programmable
Timers

Interface Logic

Read Only
Memory

I/O Ports

CDP1852 I/O Port

Figure 12-1. Logic of the CDP1802 COSMAC CPU and the CDP1852 I/O Port

The 4-bit P register identifies the 16-bit register which at any point in time is functioning as the Program
Counter.

The 4-bit X register identifies the 16-bit register which at any point in time is functioning as the Data Counter.

The T register is a simple, a-bit buffer within which X and P register contents are stored following an interrupt.

COS MAC literature identifies a third 4-bit register, called the N register. On first reading. the N register may look
like the X register. but in reality. the N register represents the low.-order four bits of the Instruction register. The N
register is not a programmable register as we define it.

The first three 16-bit registers have dedicated functions.

Register RO is the Memory Address register used by the DMA logic of COS MAC.

Following an interrupt acknowledge, Register R1 is assumed to contain the beginning address for the interrupt
service routine; General Purpose Register R2 serves as a primitive Stack Pointer. A single instructiOn allows you
to push the contents of the T register into the memory location addressed by General Purpose Register R2. Another
single instruction loads P and X with the contents of the memory location addressed by General Purpose Register R2.

12-3

COSMAC MEMORY ADDRESSING MODES
COS MAC offers implied addressing of data memory and direct addressing of program memory.

Any COSMAC instruction that accesses data memory indicates one of the sixteen General Purpose registers as provid­
ing the required memory address. Implied memory addressing with auto-increment or auto-decrement is also available
in a limited number of cases.

An instruction that accesses data memory may directly identify the general purpose register wherein the implied data
memory address will be found:

a-Bit Object
Code J-1

General Purpose
Register

I

LI __ ll __ -L __ ~J~jI----.~~ J~==p=p==:==q=q=,=:
~'-v-' J+1

Four Four
instruction register

bits identify
bits

This memory ,location accessed

ppqq-1 .. ppqq -
ppqq + 1

ppqq + 2

ppqq + 3

Data
Memory

~

Alternatively. an instruction may specify that the X register points to the general purpose register which is to be used
as a Data Counter:

a-Bit Object
Code

I I
~

Eight
instruction r- bits

~ X register r""a ---..... ----'

General Purpose
Register

I

J-1
t-----+---~

J t--p;...p--+---q;..;q--I
J+1

t----+---~

This memory location accessed

ppqq-1 - ppqq

ppqq + 1

ppqq +2

ppqq + 3

Data
Memory

~

Branch instructions use direct memory addressing. COSMAC has two-byte and three-byte Branch instructions. A two­
byte Branch instruction uses paged. direct addressing; the second byte of object code replaces the low-order byte of
the 16-bit general purpose register currently serving as Program Counter:

P register,m--. RJ

General Purpose
Register

i
I

I
I

Program
Memory

I

I
I ..
;

!
Two-byte Branch instruction ______ ~_-_-_K~K~~~-I,_'l _ __'

In the illustration above. the P register contains a hexadecimal digit represented by J. General Purpose Register RJ is
therefore currently serving as the Program Counter. A two-byte Branch instruction contains an 8-bit value. represented
by KK. in the second object program byte. When a branch is executed. KK is loaded into R(J).O. the low-order byte of
General Purpose Register RJ. This represents straightforward. absolute paged direct addressing as described in Volume
1.

12-4

c
w
~ a::
o a.
a: o u
~
en w
~
g
CI)
CI)
0(

all
w
Z
a::
o
a:I
CI)

o
~
0(
c
0(

@

The second and third object code bytes of a three-byte Branch instruction provide a 16-bit address which replaces the
entire contents of the general purpose register currently serving as Program Counter. This is equivalent to simple non­
paged direct addressing as described in Volume 1. When a 16-bit address is stored in memory. the high-order address
'byte precedes the low-order address byte as follows:

General Purpose
Register

I

-i--
XX I yy

I

I

i

... -r--. --

Data
Memory

XX

yy

Program and data memory in a COS MAC microcomputer system may be common or separate. Because COS MAC
has a wealth of control signals. it is almost as easy to implement program and data memory with duplicated memory
addresses and address spaces as it is to implement program and data memory with separate addresses and address
spaces. Thus COSMAC can have separate program and data memories. as described for the SMS300. or it can have a
shared address space. as is the case for all other microcomputers described in this book.

COS MAC STATUS FLAGS
COSMAC has no Status register, but it does have seven flags which, in a rather unusual way, provide status in­
formation.

Two of the seven status flags are orthodox:

There is the Data Flag (OF), which is equivalent to the Carry status as we describe it.

There is an Interrupt Enable flag which must be set to 1 if interrupts are enabled: this flag is reset to 0 in order to disa­
ble interrupts.

Five of the seven statu~flags are direct logic control statuses.

There are four I/O flags (EF1 - EF4) which are connected through inverters to CPU input pins. External logic can
input high or low signals at these four pins. Subsequently. COS MAC Branch-on-Condition instructions can test any
one of these four pins. then branch or not branch. depending on the status of the pin.

The fifth condition status is referred to as the Q status. This status can be set or reset directly by appropriate COS­
MAC instructions. Subsequent Branch-on-Condition instructions will test the Q status in order to determine whether
or not the branch will occur. In addition. the Q status is output to a pin which external logic can use in any way.

We may summarize the I/O and Q statuses as follows:

r-------1.~ CPU may read these status
bits. but not write into them

CPU may read or write
into this status bit

Status levels Status
set by input level

signals output

. In addition. there are three I/O control signals output by COSMAC (NO. N1. and N2). These three signals can be used as
control/status outputs to external logic. These three signals are described below. together with other COSMAC signals.

COSMAC CPU PINS AND SIGNALS
COS MAC CPU pins and signals are illustrated in Figure 12-2. A description of these signals is useful as a guide
to the way in which the COSMAC microprocessor works. Signal names in Figure 12-2 conform with those used
by COSMAC literature.

12-5

BUSO- BUS7 is a standard bidirectional parallel Data Bus; usually called DO - 07 for other microprocessors de­
scribed in this book. All parallel data communications between the COSMAC CPU and external logic, memory,
or 1/0 occur via this Data Bus.

MAO - MA 7 represent an 8-bit Address Bus. Most other microprocessors described in this book use the sym­
bols AO - A7 for equivalent Address Bus lines. The fact that COSMAC has only eight address lines is very important.
On the one hand. it frees up eight CPU DIP pins. which are used to provide extra control signals. The disadvantage of
having just eight Address Bus lines is that all addresses must be multiplexed; the high-order address byte is output.
followed by the low-order address byt&. RCA provides memory devices that include address decode logic. An addi­
tional advantage of multiplexed address lines is that ROMs of varying sizes but identical pinouts can be constructed to
recognize their own address space. thus giving users extra flexibility in constructing custom products.

The remaining signals may be divided into timing, status, and control signals.

The timing signals are CLOCK, XT AL, TPA, and TPB.

Pin Name

CLOCK

WAIT

CLEAR
Q

SCl

SCO

MRD

BUS7

BUS6

BUS5

BUS4

BUS3

BUS2

BUSl

BUSO

VCC
N2

Nl

NO

Vss

BUSO - BUS7
MAO- MA7
CLOCK
XTAL
TPA. TPB
EFT-EF4
Q

SCO. SCl
MWR
MRD
NO - N2
WAIT. CLEAR
DMA-IN. -=D-=-M:-:A~--=O""'U=T

INT

VDD
VCC
VSS

---.. ------------------

- 1 40 ..
2 39 -- -..
3 38 ..' -
4 37 ~.
5

6

7 ,- 8 ..
9 - 10 CDP1802 - 11 - 12 ..

13 -.... 14 -- 15 -
16
17 .

18

19

20

Description

Parallel Data Bus
Address Bus

36

35

34

33

32

31

30

29

28

27

26

25
'24

23

22

21

Externally generated clock
External crystal connection
Timing pulses
External flags
Q status
State Code lines
Write pulse
Read level
I/O command
Control lines
Direct memory access control
Interrupt request
Internal voltage supply

-- ...
.. ,-

'--' -.. --.. -... .. -----..
": - ,. --

::

Input/Output voltage supply; logic'1 '
Ground; logic 0

VDD
XTAL

DMA-IN

DMA-OUT

INT

MWR

.rPA

TPB

MA7

MA6

MA5

MA4
MA3
MA2

MAl

MAO
EFT
EF2

EF3

EF4

Type

Bidirectional
Output
Input
Input
Output
Input
Output
Output
Output
Output
Output
Input
Input
Input

Figure 12-2. CDP1802COSMAC CPU Signals and Pin Assignments

CLOCK is the principal timing signal input by external clock logic. Any freq~en~y up t06.4 MHz. when usin~' ~+1 OV
power supply. is advertised. but frequencies'above 5 MHz are not recommended.' .

If you are using the o~-chip clock logic. then you must connect an external c~stal. with a parallel resistbr. tothe XT AL
and CLOCK pins. .

12-6

Q
w

~
II: o
a..
II:
o
o
z
en
w

~ g
en
en
c:(

oIS
w
Z
II:
o
en
en o
~
c:(
Q
c:(

@

TPA and TPB are timing pulses output by the CPU to control external logic.

Cq)CK, TPA, and TPB timing is illustrated in Figure 12-3.

The status signals are EF1 - EF4, Q, and SCO - SC1.

We have already encountered signals EF1 - EF4. These are four signals which external logic can input high or low:
they are tested by conditional Branch instructions.

Q is output continuously, reflecting the level of the Q status flag, which you can set or reset by executing appropri-
ate COS MAC instructions. External logic can use the Q output signal in any way. .

The two state' signals SCO and SC1 are output by the CPU to identify the type of machine cycle which is in
progress. SCO and SC1 are output as follows: "

SC 1 SCO Machine Cycle Operation

o 0 Instruction Fetch
o 1 Instruction Execute
1 0 DMA Access
1 1 Interrupt Acknowledge

Typically. external logic will use the SCO and SC1 signals as an integral part of device select logic in order to ensure
that no dev!ce considers itself selected inappropriately. '

Remaining signals may be, classified generally as, controls.

A low M~R pulse identifies a memory write operation, an I/O data input operation, or the two operations occur-
, ring simultaneously.

MRD low identifies a memory read operation, an I/O data output operation, or the two operations occurring
simultaneo~sly. '

You should always keep in mind the possibility of using the high MWR and MRD signal levels in a COSMAC microcom­
pute'r system. This ,is because' the delays between signal transitions can vary markedly with clock frequency. Some­
times you will find,iteasier to use the NOT MWR or the NOT MRD condition to generate a strobe. rather than relying on
the low pu Is8., "

When an Input or 0lJtput instruction is executed, as against a Memory Reference instruction, a nonzero value is
output via the three I/O command pins NO, N1, and N2.lf all three pins are low. no I/O operation is in progress. How
you use the three'!fO command pins is up to you. They can. if you wish. identify an I/O port. in which case you can im­
media'tely address up to seven I/O ports. Alternatively. you can use these pins to distinguish between command. status
or data. ' ' ,

'External logic can control the CPU via the WAIT and CLEAR inputs. These two inputs combine to force the CPU
into the following states: ..

CLEAR WAIT CPU State

0 0 Load
0 1 Reset
1 0 Pause'
1 1 Run

In the Load state, the CPU is idled and external logic can load memory directly. using the direct memory access logic
p'rovided by the CPU itself. That is to say. no instructions are executed and output signals are inactive; however. if
DMA·IN is input low. then a DMA-IN machine cycle will be executed. as described later in this chapter.' . , .
The Reset state is <I typical reset. During a reset. the Instruction register. the X and Pregisters. RO. pnd the Q status
are all reset to zero. l'h,e Reset state must last for at least nine clock pulses. You should end the Reset state by entering
the Run state. Thus. 'you may look upon WAIT as a signal which is maintained high during a normal sequence of Run
and Reset states;'CLEARthen becomes equivalent to the single RESET signal provided by other microproces~ors .

. "

When you enter the Rl!n state following a Reset. the P register will contain 0; therefore. General purpose Regist~r RO
acts as a Program Counter.' General Purpose Register RO contains 0000; therefore. the first instruction fetched follow­
ing a Reset will have its object code stored in memory location 0000. When. th~ COSMAC CPU is reset. interrupts are
enabled. You must therefore disable interrupts with th9 first instruction of your bootstrap program. If,you do not
do this. any stray interrupts will be acknowledged with unpredictable results.

The Pause mode stops all internal CPU operations other than the CLOCK signal. Note that COS MAC is a static
device. CPU operations can halt for any length of time with no loss of data.

The Run mode is the condition in which'the CPU will normally operate.

12-7

DMA-IN'and DMA-OUT are control signals input by external logic in order to perform direct memory access operations,
DMA-IN requests a data transfer from external logic to memory; DMA-OUT requests a data transfer from memory to ex­
ternal logic, In each case. memory is addressed by General Purpose Register RD. External logic is implicitly identified -
it is the source of the DMA-IN and DMA-OUT signals. Following a DMA transfer. General Purpose Register RO contents
are incremented.

INT is a standard interrupt request input.

CLOCK

TPA

TPB

SCO. SCl

'5'M'A-TN or
DMA-OUT or INT

�
...... ----------------one Machine Cyc'e---------------I .. ~I

TO Tl T2 T3 T4 T5' : ' T6 T7 "

I

____ ~----------~-----------------------------------J

____ -A __________ ~~--~----~

Figure 12-3. COSMAC Machine Cycle Timing

DMA or INT request sampled (ex­
cept during an instruction fetch

machine cycle)

COS MAC TIMING AND INSTRUCTION EXECUTION

COS MAC signal timing varies with the frequency of the clock signal. Variations are non-linear. In the data
sheets at the end of this chapter, delays are given for various clock frequencies. We recommend that you use
one of the clock frequencies shown in the data sheets; you cannot accurately predict delays for other clock fre­
quencies by interpolation or extrapolation. If you are using a clock frequency that is not shown in the data
sheets, you should create your own' data sheets by viewing waveforms on an oscilloscope ,and measuring
delays experimentally.

In the timing diagrams which follow, we have made some attempt to highlight the wide
variations in timing that can separate a trigger signal transition and a subsequent dependent
signal transition. In an NMOS device we might show a control pulse dependent on a clock signal
as follows:

CLOCK

SIGNAL~~

12-8

COSMAC
TIMING
VARIATIONS

o
w
~
a:
o
D.
a:
o
(.)

~
iii
w

~
U o
(/)
(/)

«
oil
w
Z
a:
o
III
(/)

o
:E «
o «
@

The same clock pulse might be more accurately illustrated for COStv1AC as follows:

CLOCK1.--.J ~I'I"'-. ___ L_
SIGNAL

CLOCK2

SIGNAL

All COS MAC instructions are executed as a sequence of machine cycles. Each machine cy­
cle has eight clock periods, as illustrated in Figure 12-3. Two timing signals, TPA and TPB, are
output as an integral part of every machine cycle'stiming.

COSMAC
INSTRUCTION
MACHINE
CYCLE

Most COSMAC instructions execute in two machine cycles: an instruction fetch machine cycle and an instruction ex­
ecute machine cycle. A few three-byte instructions execute in three machine cycles.

For any memory reference instruction, a 16-bit memory address is output, one byte at a time, on the a-bit Ad­
dress Bus, ~s illustrated in Figure 12-4. The high-order address byte appears first and should be read on the trailing
edge of TPA. The low-order address byte is read with the accompanying data strobe.

When using certain clock frequencies, the high-order address byte does not appear on the
Address Bus until some time after the trailing edge of TPA. This is identified in the data
sheets by a negative set-up time, which may be illustrated as follows:

I I

TO T1 I T2 T3:
I I \.

I I ! I \

c:~
. - . 1 .. --------

. I
I

MAO- MA7' y
\

~~ Positi~e setup time
\

12-9

COSMAC
NEGATIVE
SET-UP
TIME'

CL:::

MAO- MA7

TO, .Tl T2

CLOCK

TPA __ rJ

SCO

i' I
TO T1 I T2 T3 I

I 1 I
I I I, I 1

, :,j ,
, I '

I
1

~tsu
I

Negative setup time

In'struction Fetch Memory Read

, I

T3 T4 T5 T6 T7 TO Tl T2 T3 T4 T5 .T6 T7

SCl ~-------4--+~----------~~--~--------~--~-----------------+~

BUSO-BUS7------------~----------~--~

Latch high­
order address

byte '

CPU latches
data in

Latch high­
order address

byte

Figure 12-4, COS MAC Memory Read Instruction Timing

If your clock frttquency results in negative set-up times, then you must be sure to include

data in

extra logic that accounts for this fact. 'Note carefully that negative set-up times occ!Jr in a number of different
places within any mac;hine cycle.

,r,.:

12-10

c
w

!i
II:
o
a..
II:
o
CJ
~
ui
w

!i
g
(/)
(/)
c(

o1J
w
Z
II:
o
aI
(/)

o
~
c(
c
c(

@

COS MAC MEMORY READ TIMING
Figure 12-4 illustrates timing for a two-machine cycle memory read instruction's execution. An instruction fetch
operation occurs in'the first machine cycle and a memory read operation occurs in the second machine cycle. The only
difference between these two machine cycles is the level of the SCQ control output and the source of the memory ad­
dress which appears on the Address ~us.

The trailing edge of TPA is normally used as the high-order address byte strobe. When there is a negative set-up time ..
the trailing edge of TPA occurs before the high-order address byte is stable on the Address Bus. You will now have to
use some clock signal transition occurrin~ after TPA as your high-order address byte strobe.

MRD low occurs early on in a memory read or instruction fetch machine cycle. Therefore. as soon as the low-order ad­
dress byte has been read by a memory device. it can immediately respond to a read request. The combination of MRD
low and some appropriate clock si9ral transition must be used to generate a low-order address byte strobe. This strobe
logic will be highly dependent on you'rclock frequency. The CPU reads data off the Data Bus on the rising edge of the
T7 clock pulse. At this time. data on the Data Bus must be stable.

COSMAC·MEMORY WRITE INSTRUCTION TIMING
A two-machine-cycle memory write jnstruction's timing is illustrated in Figure 12-5. Memory strobes the high­
order address byte exactly as it would for a memory read. A low MWR pulse acts as the low-order address byte strobe
and a data output strobe. The CPU has valid data on the Data Bus before the high-order address byte output is com­
plete: since the low-order address byte is stable on the Address Bus for a considerable time. there are no timing prob-
lems associated with the low-order address byte or data output. .

Instruction Fetch

TO T1 T2 T3 T4 T5 T6 T7 TO T1

CLOCK

TPA

TPB

SCO

----------~~~------------~--~~~

SC1

BUSO-BUS7--------------+-----~~~~~

Latch high­
order address

byte

CPU latches
data in

T2

Memory Write

T3 T4 T5 T6

DATA OUT

Low-order
address byte

and data
output strobe

Figure 12-5. COSM~C ~emory Write Instruction Timing

12-11

T7

COSMAC DATA 'N~UT, DATA OUTPUT, AND DIRECT MEMORY ACCESS
COSMAC DMA and !/O logic are combined. We will therefore describe them together, beginning with direct
memory aqcess.

External logic initiates a DMA-IN or DMA-OUT operation by inputting the appropriate DMA control signal low.
As illustrated in FrgWe 12-3. the CPU samples the DMA-IN and DMA-OUT lines at the end of T6 in non-instruction
fetch machine cycles. Upon detecting one or the other of these two signals low. the CPU performs a direct memory ac­
cess ~peration duri'ng the next machine cycle. Figure 12-6 illustrates timing for a DMA-IN machine cycle; Figure
12-7 illustrates timing for a DMA-OUT machine cycle. As illustrated in these two figures. a DMA machine cycle
consists of a simultalleous memory and I/O access. .

Consider first the DMA-IN machine cycle illustrated in Figure 12-6. As "DMA-IN" would imply. data is to flow from
an extern~1 device to memory. The external device is implicitly identified: it is the device which drove the DMA-IN con­
trol signal low in the previous machine cycle. The memory location to be accessed is addressed by Register RO. A DMA­
IN machine cycle therefore consists of a data input machine cycle superimposed on a memory yvrite machine cycle. In
many microprocessors. superimposing these two operations within a single machine cycle would be impossible. since
the Address Bus is used to identify memory locations and I/O devices: also. memory and I/O accesses occur during the
same part of a machine cycle. In the case of COSMAC. the two operations can occur within a single machine cycle.
The memory location to bf3 accessed is identified in the usual way by outputting a memory address on the 8-bit Ad­
dress Bus. Memory interface logic selects a memory location and writes into itas it would for any memory write
machine cycle. Timing is illustrated in Figure 12-5. The external device which requested the DMA-IN can use the com­
bination of a high TPA pulse together with SCO low. SC1 high. and MRD high as a control signal forcing data onto the
Data Bus. By the time TPA is high. MRD will have been driven low for a data out machine cycle. The DMA machine cy­
cle is itself identified by SCO low and SC1 high.

TO T1

MAO- MA7

T2 T3 T4 T5 T6

Strobe data input
from I/O device

to addressed
memory location

Figure 12-6. COSMAC DMA-IN Machine Cycle

12-12

T7

Q
w

~
a:
0
a..
a:
0 u
~
ui
w

~ g
en
en
c(

ail
w
Z
a:
0
CO
en
0

:!:
c(
Q
c(

@

TO T1

TPA

TPB

SCO

SC1

. MWR

MRD

BUSO - BUS7

MAO- MA7

T2 T3 T4 T5

MEMORY ADDRESS

H.O. BYTE

Figure 12-7. COSMAC DMA-OUT Machine Cycle

T6 n

MEMORY ADDRESS

L.O. BYTE

Strobe data output
from addressed
memory location

to I/O device

For the DMA-OUT machine cycle, illustrated in Figure 12-7, the memory access portion of the machine cycle
does not differ from a memory read, as illustrated in Figure 12-4. The signal causing the addressed memory loca­
tion to place data on the Data Bus will be generated. as shown in Figure 12-7. from the combination of MRD low and
some appropriate clock transition; the appropriate clock transition will depend on the clock frequency you are using.
The I/O device requesting the DMA-OUT machine cycle can use the high TPB pulse as a strobe to read data off the
Data Bus. '

External logic may know whether a DMA-IN or a DMA-OUT operation is being performed. since the I/O device gener­
ated the initial DMA request. In this case. external logic does need a CPU control signal identifying the direction of the
DMA transfer. In Figure 12-6 we cou Id show input data appearing on the Data Bus soon after the beginning of the
DMA-INmachine cycle. as identified by sca low and SC 1 high. It is only necessary for the data to be stable on the Data
Bus while the MWR pulse is low. since this is the memory write strobe which will cause the input data to be written
into memory,

During any DMA machine cycle, the address output on the Address Bus comes from Register RO, which is then
incremented so as to point to the next memory location; this is in anticipation of a data block being transferred via
direct memory access.

If more than one device is capable of generating a DMA request, the CPU does nothing to help you resolve
priority conflicts. In every DMA machine cycle. the CPU assumes that only one external device is requesting direct
memory access. and that this device can uniquely identify itself. If more than one device is capable of requesting direct

12-13

memory access. then you must have your own external DMA arbitration logic. You must also be sure that the program
has placed the correct value in the single DMA Address register (Ra). Some variation of daisy-chaining is the simplest
and most obvious scheme: it may be illustrated as follows:

~ ________________ ~ ________________ ~ ________________ ~ ________ ~~DMARQ

to CPU

DMARQ3 DMACK3 DMARQ2 DMACK2 DMARQ1 DMACK1 DMARQO

In the primitive logic illustrated above. DMARO may be the DMA-IN or the DMA-OUT request line. In each case. the sig­
nal input to the CPU is simply the wire-OR of all DMA requests from external devices. Thus. if one or more devices is re­
questing DMA access. a high DMAROn input will cause a low DMA-IN or DMA-OUT to occur at the CPU.

Device a is considered to have highest priority. This device has no DMA acknowledge input. If Device a is requesting
DMA access. it will assume that it is being serviced by the next DMA machine cycle. Lower priority devices require a
DMA acknowledge signal. This signal can be the NOR of all higher priority DMA requests. Providing all higher priority
DMA requests are low. no higher priority device is requesting DMA service: therefore the DMA acknowledge will be
true.

One problem can arise with the scheme illustrated above. If a DMA-IN and a DMA-OUT request occur simultaneously.
the CPU gives the DMA-IN request priority over the DMA-OUT request. You must therefore couple the DMA-IN and
DMA-OUT requests in order to generate the DMA acknowledge signals returned to lower priority devices. You have two
options. In the simpler case. DMA-IN requests from all devices can have priority over DMA-OUT requests from any
device: that' is to say; Device 3 51ViA-TN requests will have priority over Device a DMA-OUT requests. Here is appropri-
ate logic: '

DMA IN3 DMINAK3 DMA IN2 DMINAK2 DMA IN1 DMA INO

~

~----r-----------e-----------------~-----------------e--------~~DMA1NtoCPU

~--------------~ __ ----------------~----------------__ -----+----~~toCPU

DMA OUT3 DMOUTAK3 DMA OUT2 DMOUTAK2 DMA OUT1 DMOUTAK1, DMA OUTO DMOUTAKO

12-14

Q
w
~
a:
o
Il..
a:
o
u
~
en w
~ g
II)
II)

<
o!I
w
Z
a:
o
III
II)

o
~
<
Q

<
@

A more reasonable scheme would be to give Device 0 DMA-IN and DMA-OUT requests priority over Device 1 DMA-IN
and DMA-OUT requests, and so on. This can be accomplished as follows:

DMA IN3 DMACK3 DMA IN2 DMACK2 DMA IN 1 DMACK 1 DMA INO

~--~--------~--~---+--------~~~--~----------+--G~--------~DMAINtoCPU

~--4----------+--~---r--------~~~---;----------+--O----------~DMAOUTtoCPU

DMA OUT3 DMACK3

TO T1

CLOCK

TPA

TPB

SCO

SC1

,'-

MAO- MA7

DMA OUT2 DMACK2

Instruction Fetch

T2 T3
I

T4 I T5
I

DMA OUT1 DMACK1

T6 T7 TO

BUSO-BUS7 ----------------------------~

DMA aUTO

I
T1 I'T2

I

Data Input

T3 T4 T5 T6

ADDRESS L.a. BYTE

I/O DATA IN

T7

NO,N1,N2 __ ~ ____________________________ ~

Figure 12-8. COSMAC I/O Data Input Instruction Execution Timing

12-15

Instruction Fetch Data Output

TO T1 T2 T3 T4 T5 T6 T1 TO T1 T2 T3 T4 T5 T6 T1

CLOCK

TPA

TPB

SCO

----------~----------------~--

SC1

MAO- MA7
______ -J~~~ __ A_ __ ~ ________ _A~----A-~~--A-----~------~

BUSO-BUS7--------------------------~

NO.N1.N2--~~----------------------------~

Figure 12-9. COSMAC I/O Data Output Instruction Execution Timing

I/O instruction execution timing is illustrated in Figures 12-8 and 12-9. I/O machine cycles do have one addi­
tional piece of logic not present in a DMA machine cycle: the NO, N1, and N2 signals identify the I/O machine
cycle, and the I/O device being accessed. During any I/O machine cycle. one or more of these three signals will be
high; thus. seven I/O devices may be identified. If you have fewer than seven I/O devices. then you can use the three
signals NO. N1. and N2 to differentiate between data and control information. For a COSMAC system with three I/O
devices. here is one possibility:

N2 N1 NO

"----- 00 - Memory access
01 - I/O device 1 select
10 - I/O device 2 select
11 - I/O device 3 select

'--------0 - Data
1 - Control/Status

12-16

Q
w
!;(
a:
o
a..
a:
o
o
~
iii
w
!;(
g
CI)
CI)
c(

cil
w
Z
a:
o
CD
CI)

o
~
c(
Q
c(

©

The fact that I/O operations are in reality half of a DMA operation results in an anomaly. The MRD and MWR con­
trol signals are logically inv'erted during an I/O operation if you think of them as I/O control signals, MRD low. which
signals a memory read operation. identifies an I/O output operation, MWR low. which signals a memory write opera­
tion. identifies an I/O input operation.

When an output instr.uction is executed, the Data Counter is incremented. The Data Counter is not affected
when an input instruction is executed. The programming ramifications of COSMAC I/O instructions are discussed in
more detail later in this chapter.

A SUMMARY OF COSMAC INTERRUPT PROCESSING
External logic can. at any time. request an interrupt by inputting a low Signal at INT. INT signal timing is given in Figure
12-3. Providing interrupts are enabled. following execution of the current instruction the CPU will respond to the in­
terrupt request with these three steps:

1) The contents of the X and P registers are moved to the T register.

2) 1 is loaded into the P register and 2 is loaded into the X register.

3) Interrupts are disabled.

Steps 1 and 2 may be illustrated as follows:

p x

T

The interrupt service routine now begins executing with the instruction addressed by General Purpose Register R1. Any
data accessed by the interrupt service routine must be addressed by General Purpose Register R2.

In the event that an interrupt service routine may itself be interrupted. you can store the T register contents in memory.
at the location addressed by General Purpose Register R2 (which is now pointed to by X).

The four input signals, EF1 - EF4, are the only means directly available for external logic to identify itself when
more than one external device can request an interrupt. Use of these external flag signals means that the interrupt
service routine must begin with a number of Branch-on-Condition instructions that test the input flags to determine
which is high.

More complex interrupt priority arbitration schemes must rely upon external logic to create an identifying code for the
CPU to read out of an I/O port.

THE COSMAC INSTRUCTION SET
Table 12-1 summarizes the COSMAC instruction set.

You should allow for some anomalies in the COS MAC instruction set before starting to write programs.

There are four instructions which access the Data Counter. They are:

1) LOX - transfer the contents of the memory location addressed by the Data Counter to the CPU Accumulator (0
register).

2) LOX A - same as LOX. but post-increment the Data Counter.

3) IRX - increment the Data Counter.

4) STXD - store the CPU Accumulator (0 register) contents in the memory location addressed by the Data Counter.
then post-decrement the Data Counter.

These four instructions are sometimes difficult to use. Usually. a pair of instructions that increment and decrement
a memory address will pre-increment and post-decrement. or post-increment and pre-decrement. In either case you
can use the Data Counter as a Stack Pointer. Post-increment and post-decrement logic simply makes programming
more difficult. The problem is further compounded by the fact that there is an LOX instruction. but no STX instruction:

12-17

also. there is an Increment Data Counter (IRX) instruction. but no' Decrement Data Counterinstructi~n. The fact that
there is no Decrement Data Counter instruction is annoying. since every output instruction increments' the Data
Counter - something you don't always wish to do. '

COS MAC has no Jump-to-Subroutine instructions. You must maintain a separate Program Counter within the
CPU regi'sters in order to address subroutines. Invery simple programs, this is a perfectly workable scheme;
what it means is that all subroutines are single level {that is to say. a subroutine will be called by a main.program and
never by another subroutine).

Consider the following register/memory scheme in a small COSMAC microcori"lputer system:

DMA Memory Address
Interrupt Program Counter

Interrupt Data Courlter
Main Program Counter

{ Program Counters
for six subroutines

I
Data Counters for
four data buffers

,Four secondary
Accumulator data bytes

, Memory

Interrupt
service
routine

Main
Program

Subroutine 1

Subroutine 2

Subroutine 3

Subroutine 4

Subroutine 5

Subroutine 6

Interrupt
Data Area

Data buffer 1

Data buffer 2

Data buffer 3

Data buffer 4

)

J

Programs
in ROM

Data RAM

The scheme illustrated above shows data memory being divided into four stacks. each of which has its 'own Data
Counter. The program consists of a main program and six subroutines. The main program has a Program Counter. and
each subroutine has its own Program Counter. In order to call a subroutine. you simply switch from the main Program
Counter to a subroutine Program Counter. In order to return from a subroutine. you simply switch from the subroutine
Program Counter to the main Program Counter. This may be illustrated as follows:

.. MAIN PROGRAM. IT USES DATA BUFFER 1.

SETP 5 .. CALL SUBROUTINE 2
.. SUBROUTINE 2 RETURNS, HERE

.. SUBROUTINE 2 BEGINS AT INSTRUCTION START

12-18

c
w
~
a: o
D.
a:
o
(.)

~
en
w

~
g
(I)
(I)
c(

ell
w
Z
a:
o
CD
(I)
o
~
c(
c
c(

@

RET SETP
START SETX

SETX
BR

3
i 1

10
RET

.. RETURN TO MAIN PROGRAM

.. SUBROUTINE 2 USES DATA BUFFE~ 2

.. RESTORE MAIN PROGRAM DATA COUNTER

.. BRANCH TO RETURN INSTRUCTION

Subroutine 2 program logic illustrated above is self-evident. except for the return procedure.

Initially. Register 5 holds the address of the subroutine 2 instruction labeled START !that is. the SETX 11 instruction).
Therefore. when the SETP 5 instruction is executed in the main program. execution branches to instruction START
within subroutine 2. This instruction selects Register 11 as the Data Counter for subroutine 2. After the body of
subroutine 2 has been executed. the return procedure begins with the SETX 10 instruction. which restores the Data
Counter pointer required by the main program. This is assumed to be Register 10. The next instruction branches to RET.
which is the instruction preceding the start of subroutine 2. This instruction loads the value 3 into the P register. thus
selecting Register R3 as the next Program Counter - this causes execution to return to the main program. But notice
that Register R5. which was the Progr~m Counter for subroutine 2. is left addressing START. since R5 will have been in­
cremented while executing instruction RET. Thus. the next time the main program calls subroutine 2.,Register R5 will
be pointing to START. which is the correct entry point for subroutine 2. The instruction execution path may now be il~
lustrated as follows:' ,

.. MAIN PROGRAM. IT USES DATA BUFFER 1.

5 .. CALL SUBROUTINE 2 n .. SUBROUTINE 2 RETURNS HERE

I l~~~NE 2 BEGINS AT INSTRUCTION START
LRE'f--SET?----8 .. RETURN TO MAIN PROGRAM

START-SETX 11 .. SUBROUTINE 2 USES DATA BUFFER 2

~~TX 10
RE

.. RESTORE MAIN PROGRAM DATA COUNTER

.. BRANCH TO ~ETURN INSTRUCTION

Note that when the SETP 5 instruction is executed. Register 3 is left pointing at the next memory location. If desired, a
list of parameters can be stored following the SETP 5 instruction and then picked up by the subroutine via LOA 3 in-
structions. For example,· .

SETP
06
'S'
'I'
'G'
'N'
'C'
'N'

RET SETP
START LOA

PLO
SETX

LOOP OUT
DEC
GLO
BNZ
BR

5

3
3
6

.. NUMBER OF BYTES

.. ASCII MESSAGE

3
PORT$NUMBER
6
6
LOOP
RET

12-19

, By keeping a number of short subroutines on a single 256-byte page of memory, you can increase the number of
addressable subroutines. Consider the following scheme: '

R5 accesses I ; F XX
seven subroutines ______ i.-____

Program
Memory

Subroutine 2.1

Subroutine 2.2

Subroutine 2.3

Subroutine 2.4

Subroutine 2.5

Subroutine 2.6

Subroutine 2.7

Arbitrary
Memory
Address

lFOO

lF40

lF60

lFBO

lFBO

lFCO

lFEO

In order to call one of the seven subroutines held on Page 1 F16. you must load the correct subroutine starting address
into the low-order byte of Register R5 prior to calling the subroutine. This may be illustrated as follows:

.. MAIN PROGRAM. ITUSE;S DATA BUFFER 1 .

LDI
PLO
SETP

61H
5
5

.. INITIALIZE R(5).O FOR SUBROUTINE 2.3

,.CALL SUBROUTINE 2.3
.. SUBROUTINE 2.3 RETURNS HERE

.. SUBROUTINE 2.3 IS ORIGINED AT 1F61H
ORG 1F60H

RET SETP 3
START SETX 11

SETX
BR

10
RET

.. RETURN TO MAIN PROGRAM

.. SUBROUTINE 2.3 USES DATA BUFFER 2

.. RESTORE MAIN PROGRAM DATA COUNTER

.. BRANCH TO RETURN INSTRUCTION

12-20

c
w

~
0:
o
Q.
0:.
o
(,J

~
en
w

~ g
CI)
CI)
c(

aI:I
w
Z
0:
o
en
CI)

o
~
c(
c
c(

@

You can use a similar scheme to increase the number of addressable data buffers. For ex~rnple. you could have a large
number of short data buffers on a single 256-byte page of data memory. This may be illustrated as follows:

R5 accesses 7
subroutines

R 11 accesses 7
data buffers

1F

04

xx

xx

12-21

Program
Memory

Subroutine 2.2

Subroutine ~.3

Subroutine 2.4

Subroutine 2.5

Subroutine 2.B

Subroutine 2.7

t.

Data Buffer 2.1

. Data Buffer 2.2

Data Buffer 2.3

Data Buffer 2.4

Da~a Buffer 2.5

Data Buffer 2.B

Data Buffer 2.7

Arbitrary
Memory
Address

1FOO

1F40

1FBO

1F80

1FBO

1FCO

1FEO

0400

0420

0430

0450

0470

04AO

04BO

04FQ

We must now modify our instruction sequence as follows:

.. MAIN PROGRAM. IT USES DATA BUFFER 1

LDI
PLO
SETP

.. INITIALIZE R(5).0 FOR SUBROUTINE 2.3

.. CALL SUBROUTINE 2.3

.. SUBROUTINE 2.3 RETURNS HERE

.. SUBROUTINE 2.3 IS ORIGINED AT 1 F61 H. IT USES DATA BUFFER 2.3
ORG 1F60H

~ET SETP 3
START LDI -, 30H ,

PLO 11
SETX 11

SETX
SR

10
RET

.. RETURN TO MAIN PROGRAM

.. INITIALIZE R(11).0 FOR DATACOUNTER

.. RESTORE MAIN PROGRAM DATA COUNTER

.. BRANCH TO RETURN INSTRUCTION

There is no simple way of handling nested subroutines using the COS MAC instruction set. COSMAC
The problem is that if a subroutine can' be called by another subroutine. then you have no obvious NESTED
return logic. Suppose. for example. that subroutine X can be called by subroutine A. B. or C. or by SUBROUTINE
the main program. If subroutines A. 13. and C each have their own Program Counter. then how is . .
subroutine X going to know which Program Counter to select when returning? In order to resolve this problem. you will
need a special subroutine to call s'u~iroutines. with another special subroutine to return from subroutines. Consider the
following register assignments: . .

, RO

Rl

R2

R3

R4

R5

R6

R7

RS

.'

R9

R10

Rll

R12

R13

R14

Fi15

DMA memory address

Interrupt Program Counter

Interrupt Data Counter

Main Program Counter

Call subroutine Program Counter

Return sub~outine Program Counter

Stack Pointer

Every time a subroutine is called. Register R4 must be select~d as the new Program Counter. Register R4 switches to a
special subroutine whose only purpose is to save the contents of Register R3 in an external stack. which is addressed
by RE>. If additional registers are dedicated to serving as Data Counters. then the contents of these reciisters may also
have to be saved on the external stack. Afterregister contents have been appropriately saved. the' CALL subroutine
must select the required subroutine. T~ere are many ways in which you can identify the required subroutine: one tech­
nique would be to use an additional register as a pointer tp a data table within which all subroutine :addresses are

12-2'2

c
w
~
a:
o
Q.
a: ,
o
CJ
~
en
w

~ g
II)
II)

~

ail
w
Z
a:
o
CO
II)

o
~
~ c
~

@

stored. For example. R7 might point to such a data table. Now the calling program must load into R7 the address of the
location in the cjata table where the required subroutine address is'stored. Now the CALL subroutine will use R7 as a
pointer to two bytes of data. which,must be loaded into R3 before the CALL subroutine terminates execution by select­
ing R3 as the next Prog~am Counter.

When a subroutine completesexecution. it returns by selecting Register R5 as the Program Counter in order to call a
RETURN subroutine. The RETURN subroutine must r~load R3. and any dedicated Data Counter registe~s' contents from
the external stack. 'which is addressed by R6. Having done this. the RETURN subroutine selects R3 as tHe next Program
Counter. ~hus affecting a return from subroutine.

It takes' 128 microseconds to execute a well-:....,~itten CALL' subroutine. It takes 1 i 2 microseconds to execute 'a well-writ­
ten RETURN subroutine. These times assume a 2 MHz Clock.

RCA:s COSMAC Programming Manual describes some additional techniques for handling nested subroutines.
':. , . .," . ,

Programming interrupt service, routin~s is, quite simple - provi~ing you do not use cds MAC.
subroutines within ,the, interrupt service routine. Remember. as soon as an interrupt is INTERRUPT
acknowledged. R1 becomes the Program Counter and R2 becomes the b,ata Counter: the previous SERVICE,
Program Counter and, Data Counter pointers are stored in the memory location which was ad- ROUTINE.
dressed by the Data Counter when the interrupt occurred. Now. providing there are no PROGRAMS
subroutines in the interrupt service routine. you can simply execute a program which is addressed
by R1. while using R2 to access data m'emory. If you do execute subroutines, you must consider,all althe problems
associated with using subroutin,es in a main program, but you must add Ii new complication: R1 is now the, main
Program Counter. You must either have special subroutines,that are called only by the interrupt service routine. or you
must write some type of instruction sequence ,which switches to using the main Program Counter register,within the
interrupt service routine befor~ you start calling subroutines.

COS MAC I/O instructions are quite unusual. The most unusual (and useful) aspect of COS- COS MAC
MAC I/O instructions Is the fact that th~y transfer data between memory and an I/O device. INPUT/
Most microprocessors transfer data between the ~PU and I/O devices. When you are inputting or OUTPUT
outputting one byte of data at a time. it makes more sense for the data transfer to occur between PROGRAMS
the CPU and the I/O device. since the single byte of data is likely to be generated inthe CPU. for an .,
output operation. or is likely to be ope'rated on by the CPU after being input. When blocks of data are being, inputor
output. it makes more sense for the data transfer to occur between memory and an I/O device. since the block of data
must be held in a memory buffer.

COSMAC input instructions transfer the d~Ha to the'CPU Accumulator and the memory location addressed'by the Data
Counter. t~Lisgiving you the benefit of both possibilities. If your program is in read-only memory. you can avoid input
data being writt~ninto memory by selecting the'same' register to act as Program Counter and DataCounter. Now the
input data will be stored in the Accumulator (D register!. but the attempt to write the input byte into memory wili be th-
warted. since the selected mem~ry location will be a read-only memory location. . '

COSMAC,output instructions increment the Data Counter after performing the output operation. This makes it easy to
output a block of data from data ,memorY: ' ' . . .

r, • " " . " I

If you select the s<jme register to act as Program Counter and Data Counter during an output operation. then the Pro­
gram Counter will be incremented twice: once for the normal instruction fetch increment. and a second time for the

. datao,utput. This allows you. to perform immediate output operations. ' '

THE BENCHMARK PROGRAM
No~ consider our benchmark program; ~or COSMAC it looks like this:

LOOP:

LDi ' TABHI ... LOAD TABLE BASE ADDRESS HIGH ORDER BYTE
PHI R15 .. INTO R15 AND R13
PHI R13 .. R15 POINTS TO NEXT FREE TABLE BYTE
LDI 00
PLO Rq
PLO R14
LDN R13
PLO R15
LDI 10BFHI
PHI R14
LDN R14
PLO R14
LDN R14
STR R15

.. R13 POINTS TO FIRST BYTE IN T.ABLE

.. ASSUME THAT DISPLACEMENT TO FIRST

.. FREE BYTE IS STORED IN FIRST TABLE BYTE

.. LOAD 10BUF START ADDRESS INTO R14

.. LOAD DISPLACEMENT TO END OF FILLED 10BUF

.. LOAD NEXT BYTE FROM 10BUF

.. STORE IN NEXT FREE TABLE BYTE

12-23.

INC
DEC
GLO
BNZ
GLO

, STR

R15
R14
R14
LOOP
R15
R13

; .. INCREMENT R15
.. DECREMENT R14
.. TEST LOW ORDER BYTE OF R14
.. iF NOT ZERO RETURN TO LOOP
.. AT END .RESET FIRST BYTE OF
.. TABLE TO NEW FIRST FREE BYTE ADDRESS

This is the memory map assumed by the benchmark program above:

IOBUF

I---P_P--I XXOO

I I
I I

EM of n~ d.ta-8xxPP
I . I
,I

•

TABLE

I--_Q....;Q~-I YYOO

I I

§ YYQQ F;,,' hee byte

Tables IOBUF and TABLE are both origined on page boundaries: that is to say. the low-ord~r eight bits of the origin ,ad­
dress are zeros. Dat~ in table IOBUF is stored backwards. The first byte of data to be moved from IOBUF to TABLE is'
stored ,at the highest memory address ofIOBUF. ThiS highest memory address. illustrated above!;>yXXPP. is ,derived by
adding thecontents of the fIrst ,IOBUF table byte to the origin address, Thus. the first byte of IOBUF siores that length of
table IOBUF which is currently filled. COSMAC program logic can now decrement the initiallOBUF address from XXPP
and. upon testing the low-order byte equal to zero. logic knows that all data has been transferred.

The destmation table stores the displacement to the first free table byte in the first byte of TABLE. Thus the address of
the first free byte equals the origin plus the contents of the first TABLE byte. .

Since the displacement to the first free byte of TABLE is stored in a single' da'ta byte. clearly TABLE cannot be more
than 256 bytes long. Thus. IOBUF mustcontnin less than 256 bytes at any time.

, '

If you look at the COSMAC program. it appears rather long. The instruction loop itself contains only six instructions.
which compares well with many other benchmark programs. What is deceptive about the benchmark program is the'
fact that we have taken a large number of instructions in order to ioad initial addresses into general purpose registers.
Remember. COSMAC has sixteen such general purpose 'registers. and the' whole programming philosophy of this
microcomputer is that you load addresses into general purpose registers once.at the beginning of the program. and
never again. In fact. the benchmark program points up both the strength and the weakness of the COSMAC instruction
set. Its strength is that large numbers of addresses can be permanently stored within CPU registers. thence memory ac­
cess becomes a trivial task. Its weakness is that it takes a lot of instructions to get memory addresses into general pur­
pose registers in the first place ~and that becomes a liability if you have to re~use the same general pUrpose register in
a number of different ways within one program

The following symbols are used in Table 12-1:

ADR8 8-bit address

ADR16 16-bitaddress

D

DATA8

DEV

D reg!ster

8-bit data unit

3-bit code: 1 through 7

DF Data Flag or Carry

EFn Pin statUs: EF1. EF2. EF3. or EF4

IE interrupt Enable bit

12-24

c
w

~
a: o
11.
a:
o
u
~
en
w

~
g
fI)
fI)

ct
~
w
z
a:
o
m
fI)

o
~
ct
C
ct
@

n One of the numbers 1. 2. 3. 4

N 4-bit register select unit

N210 Three output pins. N2. Nt NO

P 4-bit Program Counter Pointer register

Q Q status output flip-flop

R{z) Specifies a register:
if z is N the instruction operand specifies the register

P the contents of the P register specify the register
X the contents of the X register specify the register

T ! register

X 4-bit Data Counter Pointer register

x<y.z> Bits y through z of a register or memory location. For example. T <7.4> represents the high-order four bits of
the T register.

[] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. then
the designated register's contents are specified. If an I/O port number is enclosed within the brackets. then
the I/O port contents are specified. If a memory address. is enclosed within the brackets. then the contents of
the addressed memory location are specified. . .

[[]] Implied memory addressing: the contents of the memory location designated by the contents of a register.

A Logical AND

V Logical OR

¥ Logical Exclusive-OR

Data is transferred in the direction of the arrow.

Under the heading of STATUSES in Table 12-1. an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X. it means that the status maintains the value it had before the instruction was ex­
ecuted.

12-25

Table 12-1. COSMAC Instruction Set Summary

STATUSES
TYPE MNEMONIC. OPERAND(S) BYTES, OPERATION PERFORMED

. OF IE;

INP OEV 1 [[R(X)))-[D]- BUS

N210-[N<2.0>]

Input data from Bus to Register D and memory. Output device number (DEV) at pins N2. Nl. NO.

g
OUT OEV 1 BUS - [[R(x)11. I R(X)) -'- I R{X)) + 1

N210-[N<2.0>] .

[R{X))-[R(X)) +: 1

Output memory to Bus; output device number (DEV) at pins N2. Nl. NO; increment Data Counter.

LON N 1 [O]-[[R(N)))

w· Load 0 register via specified register. N may not be O.
Co)

LDA N 1 [D]-[[R(N))) z
W [R{N)) - [R(N)) +'1
II:
W " Load·O register via specified register. Increment specified register. u.
W " [[.RIN}]] - [D) II: STR N 1
> Store 0 register via specified register.
II:
0 LOX 1 [D F- [[R(X)))
~
W Load 0 register using implied addressing;
:::E LOXA. 1 [O]-[[R{X)))
>'
II: [R(X))-[R(X)) + 1
~.

Load 0 register using implied addressing. Increment Data Counter. :::E
a: STXD 1 [[R{X)])-[O]
II.

[R{X)]-[R{X))-1

Store D register using implied addressing. Decrement Data Counter.

OR 1 [D1-[[R(X))) V [D)

OR with 0 register using implied addressing.

XOR 1 [0]-[[R(Xlll [D]
W
Co) Exclusive-OR with D register using implied addressing.
Z
W AND 1 [O]-[[R(X))) A [D)
II:
W AND with 0 register using implied addressing. u. W
w ... ADD 1 X [O]-[[R(X)))+ [0] II:~
>11: Add to 0 register using implied addressing. a!w
011. AOC 1 X [O]-[[R(X)))+ [0]+ [OF]
:::EO
w > Add with Carry to 0 register using implied addressing.
:::E~ SO 1 X [O]-[(R(X)))-[O] .
>:::E Subtract 0 from memory using implied addressing. II: w
~:::E SOB 1 X [0]"";'[[R(X)))"'[O]+[OF]
Z Subtract with borrow from memory using implied addressing. 0
Co) SM 1 X" [01-[0]- [[R(X))) w
(/) Subtract memory from 0 using implied addressing.

5MB 1 X [0]-[0]- [[R(X)])_·[OF]

," SiJbtract memory with borrow from O"using implied addressing.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 12-1. COS MAC Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND!S) BYTES OPERATION PERFORMED

OF IE

w
~
< LDI OATAB 2 [O]-OATAB 0
w Load immediate tD 0 register.
~

~

ORI OATA8 2 [O]-OATABV [D)

OR immediate with 0 register.
XRI OATAB 2 [0]- OATAB¥ [D)

Exclusive-OR immediate with 0 register.

ANI OATAB 2 [O]-OATAB A [D)

AND immediate with 0 register.

AOI OATAB 2 X [O]-OATA8+ [D)
w w Add immediate tD 0 register. ~
< ~ [O]-DATAB+ [0]+ [OF] 0 < AOCI DATAB 2 X a: w w Add immediate with Carry to D register.
:i! Q.

~
0 SOl OATAB 2 X [O]-OATA8-[D]

Subtract 0 register from immediate data.

SOBI OATAB 2 X [0]- OATAB- [0]- [OF]

Subtract D register with borrow from immediate data.

SMI DATAB 2 X [O]-[D]-OATAB

Subtract immediate from 0 register.

5MBI DATAB 2 X [0]-[D]-OATAB- [OF]

Subtract immediate with borrow from 0 r.egister.

BR ADRB 2 [R(P)<7,O>]- AORB

Q. Branch within same page to given address.
~ LBR AOR16 3 [R(P))-ADRI6 (/)

Q Branch to given address
Z SKP ,

[R(P))-[R(P)) +' <
:I: Skip next byte,
U LSKP , [R(P))-[R(P)) + 2 z
< Skip next two bytes. a:
III NBR AORB 2 Same as SKIP

NLBR ADR'6 3 Same esLSKP

Q. BZ ADRB 2 If [0]=0; then [R(P)<7,O>]-AORB
~ z Branch within same page on 0 register zero.
(/) 0

If [D)#(); then [R(P)<7,O>]-AOR8 Q i= BNZ AOR8 2
z 0 Branch within same page on 0 register nonz.ero. < z·

BDF AOR8 2 If [DF]='; then [R(P)<7,O>]-AOR8 :I: 0
U U

Branch within same page on Carry set. Z Z < a: 0
III

Table 12-1. COSMAC Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

OF IE

BNF AORB 2 If [OF]=O; then [R(P)<7,O>]-AORB

Branch within same page on Carry reset.

BO AORB 2 If 0=1; then [R(P)<7,O>]-AORB

Branch within same page on output flip-flop set.

BNO AORB 2 If 0=0; then [R(P)<7,O>]-AORB

Branch within same page on output flip-flop reset.

Bn AORB 2 If EFn=l; then [R(P)<7,O>]-AORB

Branch within same page on specified external flag set.

BNn AORB 2 If EFn =0; then [R(P) < 7,0>] - AORB

Branch within same page on specified external flag reset.

LBZ AOR16 3 If [0]=0; then [R(P)]-AOR16

Branch absolute on 0 register zero.

Z LBNZ AOR16 3 If [0] olO; then [R(P)]- AOR16
e Branch absolute on 0 register nonzero.
~
C LBOF AOR16 3 If [OF]=l; then [R(P)]-AOR16
Z Branch absolute on Carry set. e
CJ LBNF AOR16 3 If [OF]=O; then [R(P))-AOR16
z C Branch absolute on Carry reset. e LIJ
II. ::;) LBO AOR16 3 If [0]=1; then [R(P))-AOR16
i2 z

Branch absolute on output flip-flop set. (/) ~
C Z LBNO AOR16 3 If [0]=0; then [R(P)]-AOR16
z e
< ~ Branch absolute on output flip-flop reset.
l: LSZ 1 If [0]=0; then [R(P)]-[R(P)) + 2
CJ
Z Skip two bytes if 0 register zero.
<
II: LSNZ 1 If [O]~O; then [R(P)]-[R(P)) + 2
!XI

Skip two bytes if 0 register nonzero.

LSOF 1 If [OF]=l; then [R(P))-[R(P)]+2

Skip two bytes if Carry set.

LSNF 1 If [OF]=O; then [R(P)]-[R(P)]+2

Skip two bytes if Carry reset.

LSO 1 If [0]=1; then [RlP))-[RlP))+2

Skip two bytes if output flip-flop set.

LSNO 1 If [0]=0; then [RlP)]-[RlP)]+2

Skip two bytes if output flip-flop reset.

LSIE 1 If [IE]=l; then [RlP))-[RIP)] + 2

Skip two bytes if interrupts are enabled.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 12-1. COSMAC Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OP'ERAND(S) BYTES OPERATION PERFORMED

OF IE

GlO N 1 [D]-[R(N)<7.0>]
1&1 load D with low byte of.specifled register. >

Ii: 0 GHI N 1 [O]-[RlN)<15.8>]
1&1 :E load D with high byte of specified register II: CIl
C; 1&1 PlO N 1 [R(N)<7.0>]-[O] ...
1&1 CIl Store 0 to low byte of specified register. II: C;

1&1 PHI N 1 [R(N)<15.8>]-[O]
II:

Store 0 to high byte of specified register.

INC N 1 [R(N))-[R(N))+ 1

Increment specified register.
DEC N 1 [R(N)) - [RlN))-l

Decrement specified register.
IRX [R(X))-[R(X))+ 1

Increment Data Counter.

7 0 OF
SHR 1 X 0..-1 tft-&tktl~O

Shift 0 register right one bit. Shift bit 0 into Carry; reset bit 7.

1&1 l,);;nml~DJ ...
ct
II: SHRC 1 X 1&1
A.
0 Shift 0 register right one bit through Carry.
II:
1&1 ...
CIl a OF 7 0
1&1

D~ 1 f.Ji.J4";J.4" I~o II:

SHL 1 X

Shift 0 register left one bit. Shift bit 7 into Carry; reset bit O.

SHLC 1 X LD~'m4±4f IJ
Shift 0 register left one bit through Carry.

~ w
o

TYP!

~
u
~
I-
I/)

I/)
::;)
I-
~
l-
I/)

MNEMONI~

SAV

MARK

RET

DIS

SEP

SEX

SE~

REO

IDL

NOP

OPERAND(S) BYTES

1

1

1

1

N 1

N 1

1

1

1

1

· Table 12-1. COSMAC Instruction Set Summary (Continued)

STATUSES
OPERATION PERFORMED

OF IE

[(R(X)]]-[T]

Save T register in memory.
[T<7,4>]-[X]
[T<3.0>]-[p]
[[R(2)]]-[T]

[R(2)]-[R(2))-1
[X]-[P]

Save X and P i~ T; then push onto Stack via R8gister 2. Decrement Register 2. Move P to X.

[X]-[[R(X)) <7.4>]
[P]~[[R(X)) <3.0>]
[R(X))-[R(X)) + 1
[IE]-l

Pop memory into X and P using implied addressing. Increment Data Counter. Enable interrupts.

[X]-[[R(X)) <7.4>]

[P]-[[R(X)) <3.0>]
[R(X))-[R(X(] + 1
[IE]-O

Pop memory into X and P using implied addressing. Increment Data Counter. Disable interrupts.

[P]-N

Sat P register to N.
[X]-N

Sat X register to N.
[0]-1

Set output flip-flop.
[0]-0

Reset output flip-flop.

Idle CPU. Wait for Interrupt/DMA-IN/DMA.OUT.

No Operation

c
w

~
a:
o
11.
a:
o
(J

~
en
w

~ g
en
en
~
01:1
w
Z
a:
o
III
en o
~
~
c
~

@

The following symbols are used in Table 12-2:

aaaa 4 bits selecting one of the 16 registers

bbb 3-bit' data unit output to N2. N 1. NO lines
pp

00
XX

8-bitaddress

Second 8 bits of a 16-bit address

8-bit immediate data unit

Table 12-2. COSMAC Instruction Set Object Codes

MACHINE

INSTRUCTION OBJECT CODE BYTES, CYCLES INSTRUCTION OBJECT CODE

ADC 74 1 2 lBNF ADR16 C3

ADCI DATA8 7C 2 2 pp

XX 00

ADD F4 1 2 LBNO ADR16 C9

ADI OATA8 FC 2 2
pp

XX 00

AND F2 1 2 lBNZ AOR16 CA

ANI OATA8 FA 2 2 pp

XX 00

BDF AOR8 33 2 2 lBO ADR16 Cl

pp pp

BNF ADR8 3B 2 2 00
pp lBR ADR16 CO

BNO ADR8 39 2 2 pp

PP. 00

BNZ AOR8 3A 2 2 LBZ ADR16 C2

PP PP

BNI AORe 3C 2 2 00

PP LOA N 0100aaaa

BNZ AOR8 3D 2 2 ,lDI DATA8 F8

PP XX

BN3 AOR8 3E 2 2 lON N OOOOaaaa

PP LOX FO

BN4 AOR8 3F 2 2 lOXA 72

PP
sa AORB 31 2 2 LSOF CF

PP LSIE CC

BR ADR8 30 2 2 LSNF C7

pp LSNO C5

Eiz AOR8 32 2 2

PP lSNZ C6

Bl ADR8. 34 2 2 LSO CD

PP LSKP C8

B2 AOR8 35 2 2 LSZ CF

PP MARK 79

B3 AOR8 36 2. 2 NBR 38
pp NlBR C8

B4 ADR8 37 2 2 NOP C4

PP OR Fl

OEC N 0010aaaa 1 2 ORI DATA8 F9

'015 71 1 2 XX

GHr 'N l00laaaa 1 2 ' OUT P 01100bbb

GlO N 'l000a88a . 1 2 PHI N 1011aaaa

IOL 00 1 2 PlO N 1010aaaa

INC N 000laaaa 1 2 REO 7B

INP P 01101bbb 1 2 RET 70

IRX 60 1 2 SAV 78

LBOF AOR16 C3 3 3- SE~ 7A

PP SEP N 1101aaaa

00 SEX N 1110aaaa

12-31

MACHINE

BYTES CYCLES

3 3

3 3

3 3.

3 3

3 3

3 3

1 2

2 2

1 2

1 2

1 2

1 3

1 3

1 3

1 3

J 3

1 3
1 3

1: 3
2

2 2
3 3

1 3

1 2
2 2

1 2
1 2
1 2
1 2
1 2
1 2 , 2
1 2
1 2

Table 12-2. COSMAC Instruction Set Object Codes (Continued)

MACHINE MACHINE

INSTRUCTION OBJECT CODE BYTES CYCLES INSTRUCTION OBJECT CODE BYTES CYCLES

so F5 1 2 SM F7 1 2
SOB 75 1 2 5MB 77 1 2

SOBI OATA8 70 2 2 5MB! DATA8 7F 2 2
XX XX

'"
SOl OATA8 FD 2 2 SMI FF .2 2

XX XX

SHL FE . 1 2 STR N 01018888 1 2
SHLC 7E 1 2 STXD 73 1 2

SHA F6 1 2 XOR F3 1 ' 2

SHAC 76 1 2 XRI DATA8 FB ·2 2

SKP 38 1 2 XX

USING COS MAC WITH OTHER MICROPROCESSOR SUPPORT DEVICES
Using the COS MAC microprocessor with other microprocessor support devices will rarely make econom­
ic sense. We are therefore not going to describe how other microprocessor system busses can be gener­
ated from the COS MAC System Bus.

The principal advantage of COSMAC is its CMOS technology. The architecture. instruction set. and signal tim­
ing of COSMAC are not in themselves attractive enough to warrant selecting this CPU. as compared to many
other popu lar 8-bit microprocessors described in 'this book. Thus. the principal reason for describing bus-to-bus
conversion logic does not exist in this case. If you are going to use 8080A or 6800 support devices in your
microcomputer application. you will almost certainly want to use the 8080A or 6800 CPU in preference to COS-
MAC. ' ,

The one ~ther CMOS microprocessor described in this book. the IM61 00. has support devices which are very de­
pendent on the pecu lia rities of the IM61 00; therefore. they are not usefu I in a COS MAC microcomputer system.

CS1
MODE

010
000
011

001
012

002

Pin Name

010 - 017
000- 007
MODE
CS1. CS2
ClK
SR/SR
CLEAR
VOO, VSS

013
003
ClK
VSS

. 1 ... - 2 . 3 .. - .4 - ...
5 ..
6 - 7

~ 8 - '- 9 - . 10 - -- 11
12

Description

Data Input
Data Output

COP1852

Input or Output mode select
Device Select

24
23
22
21
20
19
18
17
16
15
14
13

External logic data input strobe
Service Request
Master Reset
Power, Ground

-
--
~ -
-
--

--..

·

-..
· ---
· --

Type

Voo
SR/SR
017
007
016
006
015
005
014
004
CLEAR
CS2

Input or high impedance
Output or high impedance
Input
Input
Input
Output
Input

Figure 12-10. CDP1852 I/O Port Pins and Signals

12-32

c
w

~
a:
o
Q.
a:
o
(J

~
en
w

~
g
en
en
c(

oil
w
Z
a:
o
en
en o
~
c(
c
c(

@

THE CDP1852 PARALLEL 1/0 PORT

The CDP1852 parallel I/O port provides a COSMAC microcomputer system with bidirectional parallel I/O
logic. Although we classify the device as bidirectional, it must be operated in input mode or output mode
at any given time.

Figure 12-1 illustrates that part of our general microcomputer functional logic which is implemented by
the CDP1852 device.

The CDP1852 is fabricated using CMOS technology; it is packaged as a 24-pin DIP.

There are two versions of the CDP1852 I/O port, differentiated by their power supplies. The CDP1852D
will operate with power supplies ranging between +3 and +12 volts. The CDP1852CD requires a power
supply ranging between +4 and +6 volts.

CDP1852 PINS AND SIGNALS
CDP1852 I/O port pins and signals are illustrated in Figure 12-10.

There are two Data Busses. Data is input to the CDP1852 device via DI0-DI7; data output occurs at DOO­
D07.lf the COP1852 device is operating in input mode. then 000-007 will be connected to the CPU Data Bus
(BUSO-BUS7). If the COP1852 device is operating in output mode. then 010-017 will be connected to the CPU
Data Bus (BUSO-BUS71.

The mode of the CDP1852. devic,e is determined by the MODE input. If MODE is low. then the COP 1852
device is operating in input mode. In this mode. data will be transferred from external logic to the COP1852
device via the 010-017 signals; this data will be read by the CPU via the 000-007 signals, When MODE is high.
the COP1852 device is operating in output mode. In output mode data will flow from the CPU to the COP1852
device via the 010-017 signals. while external logic will read this data via the 000-007 signals.

External logic strobes data into the CDP1852 device via a high-to-Iow transition of the ClK signal in in­
put mode. ClK high is a prerequisite for data input when the CDP1852 device is operated in output mode.

CS1 and CS2 are select signals used by the CPU to access a CDP1852 device. CS 1 is high true in input
mode and low true in output mode. CS2 is always high true.

SR/SR is a handshaking control signal; in input mode SRis used by the CPU. while in output mode SR isused
by external logic.

CLEAR is a master reset input. When input low. it resets all data bits within the COP1852 to 0 and it outputs
SR low.

CDP1852 OPERATIONS OVERVIEW
The CDP1852 I/O port can operate in input mode or output mode. Input mode is specified by a low MODE in­
put and output is specified by a high MODE input.

In input mode. external logic transmits data to the COP1852 I/O port via 010-017. External logic uses ClK to
strobe data into the I/O port. Data is output via 000-007. which holds valid data whenever CS1 and CS2 are
both high, In the general case, input mode timing may be illustrated as follows:

DATA IN

ClK

SR

CSl

CS2

DATAOUT--~

12-33

SR is an acknowledge signal sent ba~k to external·logic. SR goes low as soon as external logic provides a high­
to-low ClK transition. SR returns high as soon as the COP 1852 I/O port ceases to be selected via CS 1 and CS2.
Thus, external logic can look upon SR low as a "device busy" signal. and the low-to-high SR transition as an in-
put ackn<?Wledge. .

When the CDP1852 I/O port is operated in output mode. the CPU Oata Bus is ~onnected to 010-017. The
combination of CS1 low, CS2 high, and ClK high latches data input into the COP1852I/O port. The output lines
000-007 are always enabled; therefore, as soon as new data is latched into the I/O port. this data appears at
the output pins. Timing may be iliustrated as follows:

DATA IN ----------f
ClK

CSl

CS2

SR

DATA OUT DATA

SR Is pulsed high in output mode. SR goes high as soon as new data is strobed into the COP1852 I/O port. and
remains high until the next high-to-Iow ClK transition. External logic can use the SR high pulse as a data input
strobe. .

f.

CDP1852 INPUT OPERATIONS
The CDP1852 can be operated as an input port using programmed input or DMA input. We will first ex-
anii!1e programmed input. .

Figure 12-11 illustrates the CDP1852 I/O port operati~g in input ~ode with programmed input. Before
examining this figure. you should be familiar with Figure.12-8 and its associated text.

The logic in Figure 12-11. assumes that external logic uses the eight data input lines' 010-017 and two control
lines ClK andSR.

When external logic has new data available; it will place the data on 010-D17 and pulse .ClK high. This latches
the data into the COP1852 I/O port and simultaneously sets SA low. External logic Will not attempt to input more
data until SR is no longer low.

Since the SR signal is connected to one of the flag inputs EF1-EF4 of the CPU, program logic can monitor the SR
signal by testing the proper status flag. When an input instruction is executed by the COSMAC CPU, the
CDP1852 I/O port will respond by gating data onto the CPU Data Bus. This gating is controlled by the two chip

. select inputs CS 1 and CS2. The CPU reads this data on the low MWR strobe. External logic can use the low SR
pulse as its acknowledge and "device busy" signal; SA is pulsed low from the time that the external logic data is
strobed into the COP1852 I/O p0..!:.U:!ntil the time that this I/O port ceases to be selected after being selected for
an input operation. Thus, when SR goes high again, external logic knows that its data has been input to the
CPU.

12':'34

w
Z

TO T1

Instruction Fetch

T2 T3 T4 T5 T~ T7 TO

~ 000-007 ____________________________ ~

ffi (=BUS) ~ ______ J

o

T1

Data Input

I
T2 I T3

,'1
T4 T5 T6 T7

~ CS2
~ (=NO.N1.N2) ______________________________________ .. __________________________ +-__ ~~

@

SA. __ +-____ -JI

COP 1802
CPU

EFn

+

BUSO -.
_ : BUS7

-
~.Mfm
NO
N1 :'1
N2 :'J SELECT

•

000

007

CS1 .. - COP 1852

CS2._
lio PORT

--. . _. ---
MODE

-

-

Data input
to memory

and CPU

010

017

ClK

SR

Figure 12-11. CDP1852 I/O Port in Input Mode with Programmed Input

12-35

Interface with
external logic

CDP1852 input mode With DMA openition is illustrated in Figure 12-12. This figure is a variation of the
DMA-IN machine cycle timing illustrated in Figure 12-6. You should be familiar with Figure 12-6 before
looking at Figure 12-12 and the text below.

OMA-IN Machine Cycle

T6 T7 TO T1 T2 T3 T4 T5 I T6 I T7

CLOCK

010-017

ClK

SR

SC1 (=CS2)
________________________ ~~----J

000-007
(=BUS)

COP1802
CPU

Data input by external logic

Data from I/O
port written into
memory location
addressed by RO

BUSO 000
010 . ~.

BUS7 007

SC1 CS2 COP1852
ClK

I/O PORT Interface with
SCO CS1 external logic

MODE
SR

-
~------------------------~ .. ACK

Figure 12-12. CDP1852 1/0 Port in Input Mode with DMA Input

12-36

c
w

~
a: o n­
a:
o
u
~
u)
w

~ g
en
en
oCt
~
w
Z
a:
o m
en o
:!:
oCt
c
oCt

@

External logic initiates a data input operation by placing data at the D10-D17 pins of the CDP1852 device and ap­
plying the ClK strobe. On the trailing edge of the ClK strobe. data is latched into the CDP 1852 I/O port andSR
is output low.

The DMA-IN signal is input low when SA goes low. But we only want one DMA-IN. machine cycle to occur at a
time. If you examine Figure 12-3. you will see that the DMA-IN signal is sampled at the end of the T6 clock pulse
in all non-instruction fetch machine cycles. In addition. we now want to suppress DMA-IN during a DMA
machine cycle. We therefore create DMA-IN as the NAND of SR and SCO. seo will be low only for instruction
fetch and DMA machine cycles. Since DMA is not sampled during instruction fetch. the' net effect of our logic is
to disable DMA-IN during a DMA machine cycle. Thus. in Figure 12-12. 'D'1\ii'A-TN will be sampled low at the end
of T6. which means that the next machine cycle becomes a DMA-IN machine cycle. During this machine cycle
SR remains low; however. DfViA:lN goes high shortly .after SCO goes low. '

We use seo and SC1 to create the CDP1852 select inputs. SC 1 is tied directly to eS2. while eso is inverted and
then becomes SC 1. Therefore. shortly after the beginning of the DMA-IN machine cycle. the data that was input
via D10-D17 appears at DOO-D07. which are connected to the COSMAC Data Bus (BUSO-BUS7). Data remains
stable on the bus for almost the entire DMA-IN machine cycle. The MWR low pulse. when it appears. strobes the
data from the Data Bus into the memory location addressed by Register RO.

External logic can use SA as its handshaking signal. When SR goes low. external logic knows that the CPU has
been informed of data present at the CDP1852 I/O port. When SA goes high again. external logic knows that the
DMA-IN machine cycle is complete; therefore. external logic is free to input the next byte of data.

CDP1852' OUTPUT OPERATIONS
Now consider a CDP1852 device operating in output mode.

There are two ways in which it would make sense to operate the CDP1852 device in output mode: the
CPU could initiate the operation by executing an output instruction, or external logic could initiate the
operation by applying a low signal at DMA-OUT. Figure 12-13 provides timing and signal connections for
the CPU initiating the output operation with an output instruction~ Figure 12-14 provides timing and sig­
nal connections for external logic initiating the output operation by applying a low signal at DMA-OUT.

12-37

Data Output Next Instruction Fetch

TO Tl T2 T3 T4 T5 T6 T7 TO
I·

Tl I T2 T3 T4 T5 T6 T7
I

ClK (=TPB

n~--------~----------------~
CS2

(=NO,Nl,N2)~~~ __ -+ ____________________ ~~~~ ____ ~ ______________________ ~~

010-017 -----"!"-----------t
(=BUS)

SR ..

--~----------------------~~

000-007

BUSO .
BUS7:

TPB
COP1802

CPU NO -Nl -N2 -
MRO

Select

Data strobed
into COP1852

I/O Port

010 _ . -
017: _

ClK -- COP1852
I/O PORT

CS2 -
CSl -

Data to I/O Device

000)
007

::J
.. · -· · .. -
-

MODE -

Figure 12-13. COP1852 I/O Port in Output Mode with Programmed Output

Interface with
external logic

First consider the CDP1852 I/O port operating in output mode with programmed output, a~ illustrated in
Fi,gure12-13. Before looking at this figure in detail, you should be familiar with Figure 12-9 and its associ­
ated text.

When a COP1852 110 port is being operated in output mode. the output lines 000-007 are always active. out­
putting the contents

When a COP1852 I/O port is being operated in output mode. the output lines 000-007 are always active. out­
putting the contents of the I/O port. Data input via 010-017 is latched into the I/O port by the combination of
CLK high. CS2 high. and CS1 lo~. In Figure 12-13 we connect CLK to TPB; this becomes the actual data strobe.
This data strobe is conditioned by CS2 being high and CS 1 being low. CS 1 is tied to the memory read control
signal MRO, which must be low during an output operation. CS2 is connected to the I/O select lines NO, N1, and
N2, thus creating the required device select when more than one COP1852 I/O port is present. As soon as the

12-38

c
w

~ a:: o
0. a::
o
o
~
u)
w
~
g
en
en
<
0/1
w
Z a::
o
III
en o
~
< c
<
@

data input is strobed into the COP1852 I/O port. it is output via 000-007. and the service request signal SR
goes high. SR is held high until the falling edge of TPB during the next machine cycle. which will be an instruc­
tion fetch. The fact that the next machine cycle is an instruction fetch is not relevant to external logic. which
simply knows that it is going to receive a signal pulsed high for one machine cycle to identify the presence of
new output data.

There are certain frequencies of operation where TPB is not pulsed high while the CPU is outputting stable data
on the Data Bus. Under these circumstances. you will have to use some alternative logic to generate ClK.

Figure 12-14 illustrates CDP1852 output mode operation using the CPU direct memory access logic.
Before looking at this figure, you should be familiar with Figure 12-7 and associated discussion.

Instruction
Execute

OMA Out Instruction Fetch

T4 T5 T6 T7 TO Tl T2 T3 T4 T5 T6 T7 TO Tl T2 T3

CLOCK

ClK (=TPB)

{

=SCO}

CS2

=SCl

CSl (=MRD)

010-017 -----+------+--------...... --.-..c (=BUS) L...._~~_~

000-007 __ ------~------_+----------------------~n-----------------~
SR

OMA OUT

COP1802
CPU

f

BUSO 010~

: · . · · BUS7 017_ -
TPB ClK_
MRO CS1: -
SCO

SCt
CS2.

"'- -/ 1
...,

Strobe data output
from addressed
memory location

to I/O device

COP1852
I/O PORT

MODE -

--· · · · ... -
.. -

--
OM

000

007

SR

VCC

OMACK
A OUT

Figure 12-14. COP1852 I/O Port in Output Mode with DMA Output

12-39

Interface
with

external
logic

External logic initiates the data output in Figure 12-14 by inputting a Io"w signal viat5MA-OUT. This signal must
be low at the end of T6 in a non-instruction fetch machine cycle. TheDMA-OUT machine cycle is identified by
SCO high and SC1 low; this combination is sent back to external logic as a OMA acknowledge. External logic
must use this OMA acknowledge in order to set OMA-OUT high again. If OMA-OUT remains low for the OMA­
OUT machine cycle. then a number of OMA-OUT machine cycles will be executed.

During the OMA-OUT machine cycle. valid data is output from the memory location addressed by RD. The pre­
sence of valid data on the Data Bus is identified by the TPB high pulse with MRO low. The CPU Data Bus is con­
nected to the COP1852 010-017 input lines. This data input is clocked into the COP1.852 device byClK high.
CS2 high. and CS110w. In order to achieve these conditions. we once again conn'ect ClK to TPB and CS1 to
MRO. CS2. which w'as generated from NO. N1. and N2 in Figure 12-13. is now generated fromSCOand SC1.
When these two signals identify a OMA machine cycle. CS2 is true. CS2 also becomes the OMA ac~nowledge
signal which is sent backto external logic.

As soon as ClK is high. SCO is high. and SC 1 is low. data input via 010-017 is strobed into the COP,185'2 I/O port.
This data immediately appears at 000-007. and SR is output high. As illustrated in Figure 12-13. SR will remain
high until the next high-to-Iow transition of ClK - which will,occur at the end of the next machine cycle. . , .
As seen by external logic.' the output operation illustrated in Figure 12-14 begins when external'logic inputs
OMA-OUT low. Upon receiving OMACK high. external logic must set OMA-OUT high again, When SR subse­
quently is output high. external logic knows that new data has been output and'must be read.

12-40

c
w

!i
a::
o
a..
a::
o
(J

~
en
w

!i
g
rn
rn
ct
oil
w
Z
a::
o
III
rn o
~
ct
C
ct
@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• COSMAC CDP1802
• COSMAC CDP1852

12-D1

CDP1802

RECOMMENDED OPERATING CONDITIONS

CHARACTE R ISTIC

Supply-Voltage Range

Input Voltage Range

Maximum Clock Input Rise or
Fall Time, tr or tf

Instruction Tlme2

Maximum DMA Transfer Rate

Maximum Clock Input Frequency,
fCl3

NOTES:

CONDITIONS

VCC1 VDD
(V) (V)

- -
- -

4-12 4-12

5 5

5 10

10 10

5 5

5 10

10 10

5 5

5 10

10 10

1. VCC '" VDD: for CDP1802CD VCC" VD D = 5 volts.

LIMITS AT 25°C

CDP1802D CDP1802CD UNITS

4 to 12 4 to 6 V

VSS to vcc vss to VCC V

1 1 IlS

5 5

4 -
2.5 -

400 400

500 - KBytes/sec

800 -
DC -3.2 DC -3.2

DC-4 - MHz

DC -6.4 -

2. Equals 2 machine cycles-one Fetch and one Execute operation for all instructions except Long Branch and Long Skip,
which require 3 machine cycles-one Fetch and two Execute operations.

3. Load Capacitance (Cll" 50 pF.

LOAD CAPACITANCE (ClI·lIO pF

211 311 411 lIli 611 75 85 911 lOll 115
S~C. AM81ENT TEMPERATURE (TAI-OC

\AllLUE
AT 50pF

COP 1802
TyplCIII mllxlmum clock frsquflncy flSII function
of tflmpBrsturs.

1211
0.01

2 4 S 8 1 2 4 6 8 I.
0.1 I

CLOCK INPUT FREQUENCY (fC~-MHz

COP 1802
Typicsl powflr dllllpBtion liS II function of clock
frsquflncy for BRANCH Instruction lind IDLE
Instruction for CDP1S02D.

Oata sheets on pages 12-02 through 12-05 reprinted by permission of RCA Corporation.

12-D2

4 6 •
10

c
w
~
ex:
o
Q.
ex:
o
u
~
en
w

~ g
fI)
fI)
c(

all
w
Z
ex:
o
al
fI)

o
~
c(
c
c(

@

COP 1802

ELECTRICAL CHARACTERISTics
Static

CONDITIONS LIMITS AT INDICATED TEMPERATURES (OC)

CHARACTER· VCC.
ISTIC Vo VIN VDD VALUES +25

(V) (V) (V) -55 -40 +85 +125 Min; Typ. Max.

Quiescent Device - - 5 - - - - - 1 100
CUrrent, IL Max. - - 10 - - - - - 10 500

CDP1802D 15 1000 - - - - - - -- -
CDP1802CD - - 5 - - . - - - - 500

Output Low Drive
(Sink) Current, 0.4 0,5 5 1.98 1.89 1:14 0.90 1.5 2.2 -
IOLMin.
(Except XTAL) 0.5 0,10 10 3.70 3.53 2.13 1.68 2.8- 5.2 -
XTAL Output

0.4 5 5 132 126 76 . 60 100 - -.!"OL Min.

Output High Drive
(Source Current!

4.6 0,5 5 -0.46 '-0.44 -o.ii -0.21 -0.35 -0.51 -
IOHMin_. _ 9.5 0,10 10 -1.12 -1.07 -0.65 -0.51 -0.85 -1.3 -
(Except XTAL)

XTAL Output
4.6 0 5 66 63 38 30 -50 - -

IOH Min.

Output Voltage - 0,5 5 0.00 - 0 0.05
Low·Level

0,10 10 0.05 0 0.05
'VOL Max. - -

Output Voltage - 0,5 5 4.95 4.95 5 -
High Level, - 0,10 10 9.95 9.95 10 -VOH Min.

Input Low 0.5,4.5 - 5 1.5 - - 1.5
Voltage

0.5,4.5 - 5,10 1 - - 1
VIL Max.

1,9 - 10 3 - - 3

Input High 0.5,4.5 - 5 3.5 3.5 - -
Voltage

0.5,4.5 - 5,10 4 4 - -VILMax.
1,9 - 10 7 7 - -

12-03

UNITS

p.A

rnA

p.A

rnA

p.A

V

V

COP 1802

CDP1802
Timing
Dia'gram TPA

TPB

MEMORY
ADDRESS

DATA FROM
CPU TO BUS

DATA FROM
BUS TO CPU

DMA
REQUEST

~
REQUEST

EFI-4

1

I 1 I' 1

'I 'I 1 I

~ ~----~~~~~~------~------~I ,I I

I 1

L

I INTERRUPT 'SU 'H
SAMPLED (SI,S2) I

I I \ I
'I FLAG LINES I ~

~_E_D_(l_N_S~'i ___________________________ I ___ I ________ __

, ' I' '. I ANY NEGATIVE

~~w_'_SU_.~_T_R_A_N_S_IT_IO_N ______________________________ _

, NOTES: <'

I. THIS TIMING DIAGRAM IS USED TO SHOW SIGNAL RELATIONSHIPS
ONLY AND DOES NOT REPRESENT ANY SPECIFIC MACHINE CYCLE

2, ALL MEASUREMENTS ARE REFERENCED TO 50"1. POINT OF THE
WAVEFORMS

3.-SHADED AREAS INDICATE "DON'T CARE" OR UNDEFINED STATE;
MULTIPLE TRANSITIONS MAY OCCUR DURING THIS PERIOD

CDPI802 INSTRUCTION EXECUTION TIMES 2·Byte instructions also require 2 Machine Cycles: I Fetch,
I Execute.

I-Byte instructions require 2 Machine Cycles: I Fetch,
I Execute.

Bytes of
Op. Code

INSTRUCTION SIZE

Bytes of Address
or Data

o

2

Average Instruction
Execution Time

Total Bytes
of Memory

2

3·Byte instructions require 3 Machine Cycles: I Fetch,
2 Executes.

% OF TOTAL
INSTRUCTION TIME @ f =

REPERTOIRE
6.4 MHz 3.2 MHz 2MHz

93 2.51's 51'S 8 ",I

7 3.751'5 7.5 "'S 12.11"

2.6"'1 5.21's 8.3 ",S

, 12-04

o
w

~
a: o
D.
a:
o
o
~
en
w

~
g
CI)
CI)

~

011
w
Z
a:
o
CD
CI)

o
:!
~
o
~

@

COP 1852

8-Bit Byte I/O Port N·Bit Decoder .
CDP1852 CDP1853

CSI/c!!l. I t-l4!1t/SR· r-----4 OUT 0

"va~ r--- ~O~TI SELECT LOGIC
NO~ CS2 13

OECOOE ~OF-8 OUTPUT ~ OUT 2 I-
NI~ INPUT

~
MODE 2 T VOO024 BUFFERS DECODER ,.. BUFFERS ;---4 OUT 3

VSS o l2 N2 JL-. ~OUT4
CLOCK II f--1!+ OUT S ~14 '---

1 ~OUT6
l f----4 OUT 7

DIO~ ENABLE ~OOO

T
'----

OII~ ~OOI
OI2~

8-BIT THREE- 002
OI3...L. DATA STATE f-!4003

CE 13 0I4~ REGISTER OUTPUT ~004 TIMING VSS 08
OI5~

DRIVERS
~005 AND CLOCK I Voo 016

OI6~ ~006 (TPAI CHIP
SELECT

DI;.l4 f-14.007 CLOCK IS LOGIC
(TPBI

• POLARITY DEPENDS ON MODE

• 8-bit data latch • Clear input • Allows easy expansion • Ties directly to "N"
• Directly interfaces • Designed for use in of I/O systems . iines· ()n CDP1802

with CDP1802 8-bit microprocessor • Buffered inputs and • Stro~~doutputs fO,r
• Industry standard systems outputs spike-free decoding

24-pin packages • Fully static • Functions at full • Low power dissipation
• 3-state outputs • Mode selectable microprocessor speed • Provides control of Up

to 14 I/O devices

RECOMMENDED OPERATING CONDITIONS

CONDITIONS liMITS

CHARACTERISTIC VOO Non-"C" Types "C"Types UNITS

(V) Min. Max. Min. Max.

SupplyoV<>ltage Range - 4 12 4 6 V

Input Voltage Range - VSS VDD VSS VDD V

ELECTRICAL CHARACTERISTICS
TEST TYPiCAL VALUES AT TA = 25°C

CONDITIONS
CHARACTERISTIC

Vo VOO
UNITS

COP- COP- COP- COP-
(V) (V) 18520 1852CO 18530 18~~0

Static

Quiescent Device Current. - 5 50 100 50 100
- 10 100 - 100 - p.A

Il Max. - 15 500 - 500 -
Output low (Sink)

Any Output
0.4 5 1.6 1.6 1.6 1.6

Current. IOl Min. 0.5 10 3.6 - 3.6 -
rnA

Output High (Source)
Any Output

4.6 5 -1.6 -1.6 -1.6 -1.6
Current. IOH Min. 9.5 10 -3.6 - -3.6 -

Dynamic: t,. tf-10 nl. CL~100 pF

Propagation Delay Time: - 5 200 200 - -
Output from CS. teA - 10 100 - - - ns

Data to Output. too - 5 200 200 - -
nis - 10 100 - - -

CE to Output. tEOH. - 5 - - 200 200
ns

tEOl - 10 - - 100 -
N to Outputs. tNOH. - 5 - - 250 120

ns
tNOl - 10 - - 120 -

12-05

Q
w

~
a:
o
D..
a:
o
(J

~
en
w
~
g
II)
II)

«
oil
w
Z
a:
o
al
II)

o
~ « o «
@

Chapter 13'
IM6100 MICROCOMPUTER DEVICES

The IM6100 'S an almost exact reproduction of the PDP-SE minicompu~er. The IM6100 has the same instruction
set as the PDP-8E; however. there are differences in direct memory access logic. Also. the IM6100 cannot use the
PDP-8E exten~ed arithmetic element or user flag options, .

Rather than concentrating on differences between the IM6100 and the PDP-8E. we will in this chapter relate the
IM6100 to other microprocessors described in this book, This reflects the fact that minicomputer concepts are simply
not viable in the microcomputer world. The PDP-8E was developed at a time when Central Processing Units were very
expensive and it was reasonable to demand that controllers surrounding the Central Processing Unit contain a lot of in­
ternal intelligence. This intelligence. in turn. demanded complex System Bus signals that identified the state of the
CPU as it progressed through an instruction's execution, Microcomputers a're inexpensive. and their low cost is defe­
ated if they have to be surrounded by expensive device controllers. Therefore. it will be more valuable in this chapter to
show how the IM61 00 can be used in a microcomputer system with a simple bus and standard microcomputer support
devices. rather than comparing it with the PDP-8E minicomputer.

The PDP-S is a 12-bit minicomputer, therefore the IM6100 is a 12-bit microcomputer.

The very existence of the IM6100 is testimony to one of the less well understood aspects of minicomputers versus
microcomputers: people tend to place too much emphasis on "creeping featurism". The majority of applications that
are going to use a microcomputer could be impleme.nted with almost any microcomputer described in this book. The
economics of exact chip counts and product development expense is worth exploring. but in most cases detailed com­
parative evaluations of instruction sets and addressing modes are a waste of time and money; enhancement of one pro­
duct as compared to another will r~rely have any significant ecof1omic impact. This is true of microcomputers today.
and it was also true of minicomputers yesterday. The PDP-8 was the first popular minicomputer. Compared to nearly
any other minicomputer on the market today. the PDP-8 is a very primitive device. Yet there are more PDP-8s in the
world than any other minicomputer. Despit~ the large number of new. more powerful minicomputers that are available.
the PDP~8 continues. from year to year. to rank among the leaders in minicomputer sales volume.

It is this popularity of the PDP-~. for all its shortcomings as a minicomputer. that has given birth to the IM6100. Many
design features of the IM6100 are dubious. when looked upon from the microcomputer user's point of view. It is safe to
say that no microcomputer deSigner wo'uld have seen fit to develop a product even remotely like the IM6100. but for
the predecessor PDP-8. The IM6100 exists to participate in the continuing sales volume of PDP-8. and' to take advan­
tage of the huge library of PQP-8 software which is available - much of it at no cost.

You must look at the IM6100 (and the microNOVA) from a totally different perspective. as compared to any other
microcomputer described in'this book; do not look for justification of IM6ioo design features in terms of a microcom­
puter application's needs; rather. accept the IM61 00 for what it is - a very low-cost reproduction of something which
already exists; a' product whose existence is justified by a large established product market and a prior base of existing
software. ' .

In addition to the IM61 00 CPU, we are going to describe the IM61 01 Parallel Interface Element anC;i the IM61 02
MEDIC multifunction s~pport device. The IM6402 UART is also available: it is described in Volume 3.

AIIIM6100 microcorpputer devices !Jse a single power supply which may range between +4V and +11V.

Using a 250 nanosecond c!ock inPl!t. instruction execution times range from 5 to 11 microseconds.

AIIIM6100 microcomputer devices use CMOS technology. which means that they are highly imml,Jne to noise in the
power supply and they'consume very little power. Recall that COS MAC is the only other microprocessor described in
this book that offers CMOS technology~

The principal manufacturer of the IM6100 is:

INTERSIL. INC.
10900 North Tantau Avenue

Cupertino. CA 95014

13-1

The second source is:

HARRIS SEMICONDUCTOR DIVISION
, P.O. Box 883

Melbourne. FLA 32901

THE IM6100 CPU

Functions implemented on the IM6100 CPU are illustrated in Figure 13-1. IM6101 Parallel Interface Element
logic is also shown. .

Interface Logic

Programmable
Timers

Clock Logic

Arithmetic and
Logic Unit

Interface Logic

IRead.Only
Memory

Accumulator
Registerlsl

Data Counterlsl

Stack Pointer

Program Counter

I/O Ports
Interface Logic

Fig~re 13-1. Logic of the IM6100 CPU and the IM6101
Parallel Interface Element

D IM6100CPU

~ IM6101PIE

Bus interface logic is shown as implemented by the IM61 01. This is because the bus control signals input to and output
by the CPU do not conform with the standard PDP-8 bus. or with typical microcomputer busses. You are going to need
additional logic either to create a PDP 78 bus equivalent. or to reduce IM61 00 control signals to manageable microcom­
puter bus proportions. The IM61 01 creates a microcomputer type of System Bus.

Direct memory access control logic is shown as absent. The CPU has logic which will respond to a DMA request by
floating the System Bus: however. the actual DMA transfer. including creation of memory addresses. is the respon­
sibility of external logic.

Observe that clock logic is provided on the CPU chip.

13-2

c
w
!;i
a: o
0..
a:
o
(.)

~
u)
w
!;i
(j
o
(/)
(/)
c(

all
w
Z
a:
o
to
(/)

o
~
c(
c
c(

@

IM6100 PROGRAMMABLE REGISTERS
The IM61 00 has just three programmable registers as we define them: an Accumulator, a Program Counter and
the MQ register. All three registers are twelve bits wide.

The Accumulator is a typical primary Accumulator. With a single exception. it is the only source or destination with-
in the CPU for data being operated on. .

The MQ register is a simple buffer for the Accumulator. The only operation you can perform on the MO register con­
tents is to OR them with the Accumulator contents; the result is returned to the Accumulator. You may also exchange
the contents of the Accumulator and the MO register.

The Program Counter, being 12 bits wide, limits .the IM6100 to an address space of 4096 memory words. The
IM6102 allows this address space to be expanded to 32.768 memory wor~s.

Intersilliterature describ!,!s additional registers, but these are not programmable registers as we define them.

The IM61 00 has no Data Counter. There is a Memory Address register within the CPU. but you have no direct access to
this register. It is a simple depository for addresses which are automatically computed by CPU logic during the execu­
tion of memory reference instructions.

IM6100 MEMORY SPACE
Memory addressing modes that we are about to describe apply to a single 4096-word memory bank. If you have more
than one such memory bank. then each one must be considered as a separate and distinct entity. This is important.
because the nature of the IM6100 demands that ifprogram memory is in ROM. then both ROM and RAM must be pre­
sent in external memory. Thus. if you have more than one bank. each memory bank must include ROM and RAM.

IM6100 MEMORY ADDRESSING MODES
IM6100 memory reference instructions use absolute, paged, direct addressing and indirect addressing.

AIIIM6100 instruction object codes occupy a single 12-bit word. There are no two-word or three-word object codes. All
memory reference instructions have the following object code format:

11 10 9 8 7 6 5 4 3 2 1 Q4-Bit No. .

I 1 I I 1 1 1 I 1 I I, I 'I Memory reference instruction object code

~ 1 ___ • _t_ Address

1 = Address current page

o = Address Page 0

1 = Indirect address

o = Direct address

Instruction operation code

A memory reference instruction that uses direct addressing has seven address bits; thus memory is divided into
128-word pages. The memory page bit gives you the option of directly addressing a memory word on Page 0, or
within the instruction's page:

I I I I Ixl I I I I I
Address'

=PP
II

This object code

resides in Page N

13-3

pp{ 8. } Page 0 (Base Page)

. ,}page1

• •
}pageN

} PageN + l'

This is standard. absolute paged direct addressing. ~s described in Volume 1. C~apter 6.

A memory reference instruction with indirect addressing simply takes the 12·bit word accessed by the direct memory
address and interprets this 12·bit word's contents as the effectiv'e memory address. This is standard indirect address­
ing. In the case of the IM61 00. a memory reference instruc~ion can access an indirect memory address either on
the base page or on the instruction's current page.

You· can use indirect addressing to create the equivalent of a two-word, nonpaged direct addressing Jump in-
struction. . '.'

To do ~his. store the 12-bit absolute direct address directly following the jump Indirect instruction. This may be illustr-
ated as follows: '

~~~~~+ 
AOOR ~' 'Jump ooouos 10 Ih;, momo"! worn 

which may be anYwhere within 

4096-word memory 

You cannot use this technique with any memory reference instruction other than a JU!'T1P. That is because any other in­
struction would leave the Program Counter pointing to the indirect address as the next object code to be executed. 

For memory reference instructions other than a Jump. reserve a few memory words at the end of the current page to 
store indi~ect addresses. This may be illustrated as follows:' " 

Arbitrary 

Memory 

Address 

New Page 

31A §to TAD I 7D 318 . . 

31C 

310 
. . 

Access memory location AOOR 1 

• - JMP 1+ 1 Jump indirect via next word. i.e .• to New Page 

37C 

370 

37E 

37F 

380 

AOORl } AOOR2 
ADDR3 

Store addresses at end of page 

380 

381 

382 

The IM6100 also has auto-indexed indirect addressing. If you store an indirect address in anyone of the eight 
memory words with addresses 00816 through 00F16 then. when the IM61 00 CPU fetches this address. it will also in­
crement and r~turn it. 

For example. you can store the beginning address of a table in mem'ory location 00816. You can subsequently read se­
quential table words by indirectly accessing the table. The IM61 00 benchmark program illustrates this use of auto-in-
dexing: . 

It is ju~t as well that the IM61 00 has indirect addressing with auto-increment. because it has no Data Counter or im­
plied memory addressing. Volume J. Chapter 6 discusses the' problems that result from using direct addressing to ac-
cess sequential memory loc~tions when programs are stored in read-only memory. . 

Note that t~e IM6100 makes no distincti~n between program and data memory. Thus Jump instructions use ex­
actiy. the same memory addressing options as memory read or write instructions. The concept of separate program and 

13-4 



c 
w 

~ 
a: o 
D. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 
fI) 
fI) 
c:( 

ail 
w 
Z 
a: 
o ca 
fI) 

o 
~ 
c:( 
c 
c:( 

@ 

data memory is a microcomputer phenomenon. because it was only with the advent of the microcomputer that pro­
grams started to be stored in read-only memory. Minicomputers use read/write memory for programs and data - and 
frequently a minicomputer will make no clear separation between the memory spaces that will be assigned to programs 
as against data. 

The way in which the IM6100 handles subroutine calls represents an excellent illustration of the fact that 
minicomputer concepts can run into trouble in the world of microcomputers. 

When a JMS instruction is executed, the return addross is stored in the first word of the 
subroutine's object code. 

The scheme certainly made sense to the PDP-8 designers: they visualized memory as a general 
read/write depository for programs and data. This scheme is nonviable when programs are stored 
in read-only memory. since you cannot write a return address in read-only memory. In order to use 

IM6100 
SUBROUTINES 
IN READ-ONLY 
MEMORY 

subroutines with an IM6100. you must origin all subroutines in read/write memory. then jump to a program sequence 
stored in read-only memory. This may be illustrated as follows: 

/BASE PAGE STARTS HERE 

SUBA o 
JMPI 
PPO 

·PPO 

·+1 
/FIRST WORD OF SUBROUTINE SUBA 
/JUMP INDIRECT TO SUBROUTINE IN ROM 
/PPO REPRESENTS THE STARTING ADDRESS IN ROM 

/SUBROUTINE ORIGIN IN ROM 

JMP I SUBA /LAST INSTRUCTION OF SUBROUTINE IN ROM 
/MAIN PROGRAM WHICH CALLS SUBROUTINE SUBA 

JMS 
DCA 

. SUBA 
DATA 

/SUBROUTINE CALL 
/EVENTUAL SUBROUTINE RETURN 

Let us examine the path of instruction execution illustrated above. 

Begin by looking at the JMS SUBA instruction in the main program which calls subroutine SUBA. SUBA is a label repre­
senting a location in the base page of memory. When the JMS SUBA instruction is executed. the address of the next in­
struction. arbitrarily illustrated above as a DCA instruction. will be stored in the memory word with label SUBA. The 
first instruction executed following the Jump-to-Subroutine is the instruction stored in the memory location following 
SUBA: this is the JMP I .+1 instruction. This instruction jumps indirect via the address stored in the next memory loca­
tion: we represent this memory location's contents with PPO. PPO is the address of the first instruction to be executed 
within the subroutine. This instruction. and all subsequent subroutine instructions are stored in read-only memory. The 
last instruction executed by the subroutine in read-only memory is the JMP I SUBA instruction. This instruction per-

13-5 



forms an indirect jump via the address stored at SUBA. This is the address of the DCA DATA instruction. This execution 
sequence may be illustrated as follows: 

/BASE'PAGE STARTS HERE 

/FIRST WORD OF SUBROUTINE SUBA 
/JUMP INDIRECT TO SUBROUTINE IN ROM 
/PPO REPRESENTS THE STARTING ADDRESS IN ROM 

/SUBROUTINE ORIGIN IN ROM 

JI'iI1P'I-S BA /LAST INSTRUCTION OF SUBROUTINE IN ROM 
/MAIN PROGRAM WHICH CALLS SUBROUTINE SUBA 

/SUBROUTINE CALL -----1 r SUBA 
DATA /EVENTUAL SUBROUTINE RETURN 

Handling subroutine calls through RAM has some non-obvious repercussions. 

First of all. at least the first page of every 4096-word memory bank must be read/write memory; this is due to the way 
the IM6l00 handles interrupts. which we will discuss later. In all probability. there will be more than one page of 
read/write memory. ' , ' 

Next. if you are going to initiate subroutines in Page 0 RAM. then when you power up the system. you must load this 
RAM from ROM. This is because RAM will lose its contents when powered down. Thus. every restart or reset procedure 
must include the execution of an instruction sequence which moves a block of data from ROM to Page 0 RAM. 

Possibly the most serious problem associated with calling subroutines through Page 0 RAM is the fact that. apart from 
interrupt handling. existing PDP-8 software does not do that. Thus. if you are going to implement programs in read­
only memory. the existing PDP-8 software base is not available to you - and that is one of the principal reasons for the 
.IM6100·s existence. Converting existing PDP-8 programs. so that subroutines are called·through Page 0 RAM. is not a 
simple task. If you look again atthe discussion of direct. paged addressing given in Volume 1. Chapter 6. you 'will see 
that there are very significant problems associated with memory, mapping. Programs 'cannot lie ,across page bound-
aries; therefore. the addition of a few instructions to anyone program can have serious consequences. In some cases it 
may be possible to generate special assemblers and compilers that convert existing source programs into object pro­
grams which partition memory into ROM for programs and RAM for data, allowing subroutinesto be called via the base 
page - but that a~sumes the ~ase page has free space available for this purpose. 

There is a hardware solution to the IM6100 Jump-to-Subroutine problem. This solution uses an external 
read/write memory Stack to store subroutine return addresses in the manner of a conventional stack. Necessary logic 
and minor programming ramifications are described later in this chapter. 

IM6100 STATUS FLAGS 
The IM6100 has a single Carry status; it is called the Link or L status in PDP-8 and IM6100 literature. 

IM6100 CPU PINS AND SIGNALS 
IM6100 CPU pins and signals are illustrated in Figure 13-2. Once again, the minicomputer ancestry of the IM6100 
is evident from the complex control signals input and output by the CPU. Minicomputer designers favor a rich variety of 
control signals on a System Bus because that makes the job ,of designing peripheral device controllers easier. 
Microcomputers rely on low-cost support devices. and complex System Busses simply increase the complexity and 
cost of surrounding the CPU with support logic. After reading this summary of IM6100 pins and signals, compare it to 
the 80BOA described in Chapter 4; then compare it with the MCS6500 described in Chapter 10. The MCS6500 repre­
sents the ultimate in simplicity. 

13-6 



Q 
w 

~ 
0:: 
0 
D-
o:: 
0 
0 
~ 
u) 
w ... 
c( 

g 
(I) 
(I) 
c( 

oIJ 
w 
2 
0:: 
0 
m 
(I) 
0 

:E 
c( 
Q 
c( 

@ 
Pin Name 

VCC 1 ... 
2 --RUN 

... 3 --DMAGNT .. 
4 -~ 

cmm .. 
5 

RUN/HLT .. 6 
mET ... 7 .. 8 -INTREQ 

XTA 9 ... 10 IM6100 -LXMAR 

WAIT - 11 CPU - 12. -XTB 

XTC - 13 .. 14 -OSC OUT .. 15 -OSCIN 
... .. 16 -(DX11) DXO - ... 17 -(DX10) DX1 .. -18 -- -(DX9) DX2 

-- .. 19 - -(DX8) DX3 .. 20 - -(DX7) DX4 

Description 

Data and Address Bus 
Crystal or extemal clock 

40 

39 

38 
37 

36 

35 
34 

33 

32 
31 

30 

29 

28 
27 

26 
25 
24 

23 
22 

21 

DXO - DX11 
OSC OUT 
OSCIN 
XTA.XTB.XTC 
LXMAR 
DEVSEL 

Crystal in or extemal clock ground 
Machine cycle timing 
External memory address strobe 
I/O device select strobe 

... -

... --

--... -
---
--

Instruction Fetch machine cycle identifier 
Memory select strobe 

... -.. .. .. -

.. -

.. -... 
-... 

-.. -.. -

DATAF 
INTGNT 

CPSEL 
MEMSEL 
IFETCH 

SKP 

C2 
cr 
CO 
SWSEL 

DEVSEL 
LINK 
DX11 (DXO) 

DX10(DX1) 

GND 
DX9 (DX2) 

DX8 (DX3) 

DX7 (DX4) 

DX6 (DX5) 

DX5 (DX6) 

Type 

Bidirectional 
Input 

IFETCH 
MEMSEL 
DATAF 
LINK 

Execution phase of indirect addressing instruction 
Link status 

Input 
Output 
Output 
Output 
Output 
Output 
Output 
Output 
Input 
Output 
Input 

RUN/HLT 
RUN 
RESET 
WAIT 
CO. C1. C2. SKP 
DMAREQ 
DMAGNT 
iNTREQ 
INTGNT 
CPREQ 
CPSEL 
SWSEt 
VCC.GND· 

Run/Halt control 
CPU running status 
Reset 
Wait state control 
CPU control during I/O operation 
DMA request 
DMA grant 
Interrupt request 
Interrupt grant 
Control panE!! interrupt request 
Con~rol panel memory select 
Switch register select 
Power and Ground 

Input 
Input 
Input 
Output 
Input 
Output 
Input 
Output 
Output 

Figure 13-2. IM6100 CPU Signals and Pin Assignm-ents 

The IM6100 has a single 12-bit multiplexed Data and Address Bus, represented by pins DXO - DX11. Memory 
and I/O interface logic must use appropriate control signals in order to demultiplex data and addresses ·off this single 
bus. . 

Intersil literature numbe·rs the bits of registers and memory words from left to right; that is to say. 
with the 0 bit representing the high-order bit. In this book we consistently number bits of registers 
and words from right to left that is to say. with .the low-order bit represented by the. 0 bit 
Data/Address Bus lines are confusing when you compare the discussion in this chapter with Intersilliterature. In Figure 
13-2! DXO - OX 11 signals are identified first wit~ .Iabels that conform tol~tersil literature; the bracketed labels that 

13-7 



follow show the signal name that agrees with bit numbering as used in this book. The two bit-numbering and signal­
naming systems may be compared as follows: 

o x X o o 

0 X X 
0 0 

+ 
High 
order 

bit 

en co .,..... 
x x x 
000 

N M '<t 
X X X 
0 0 0 

co 
X 
o 

It) 

X 
0 

It) 

x 
o 

co 
X 
0 

'<t M N 
X X X o 0 0 

,..... co en 
X X X 
0 0 0 

x 
o 

0 

X 
0 

o 
X o 

X 
0 

+ 
Low 
order 

bit 

Line numbering in this book 

Datal Address Bus 

Intersi! line numbering 

The remaining signals can be divided into timing. bus control. CPU control. DMA and interrupt control. 

Let us consider timing signals first. 

OSC IN and OSC OUT are clock signal pins. If you are using the internal clock logic. then a crystal must be connected 
across these two pins. If you are using an externally generated clock signal. then it must be input via OSC OUT - osc 
It\! must be grounded. 

XTA. XTB and XTC are three timing signals which are output for external logic to identify the state of an in­
struction's execution. Timing and states are illustrated in Figure 13-3 .. 

One Instruction Cycle 

CLOCK 

XTA 

XTB 

XTC 

Figure 13-3. IM6100 Machine Cycles and Clock Periods 

Let us now look at the signals output by the CPU to define events on the System Bus. 

Optional 
Clock Period' 
~ 

LXMAR is output as a high pulse which external logic can use to strobe an address off the Data/Address Bus. 

i5EVSEI is output as a low pulse when information on the Address/Data Bus must be interpreted by I/O devices as 
device identification or I/O operation control. . 

IFETCH is output high for the duration of an instruction fetch machine cycle. IFETCH may be used as a synchronization 
signal identifying the beginning of a new instruction cycle. . 

"'IEMSEL is output as a low pulse during a memory reference operation. Memory interface logic determines whether a 
memory read or a memory write is in progress via the condition of the XTA. XTB and XTC signals. (Only XTB is really 
necessary for this purpose.) 

13-8 



Q 
w 
!i 
a: 
o c.. 
a: 
o 
u 
~ 
en 
w 

!i g 
(I) 
(I) 

oct 
~ 
w 
Z 
a: 
o 
CO 
(I) 

o 
~ 
oct 
Q 
oct 

@ 

DATAF is a signal output high during the execute phase of an instruction that uses indirect addressing. 

LINK is a signal output at all times to represent the level of the Link status. We include this signal among control out­
puts because you can use it as a direct external logic control signal. By executing instructions to set or reset the Link 
status you can modify the level of thi~ control signal on a real time pasis. 

Let us now consider the control signals input by ex~ernal logic to control CPU operations. 

RUN/HLT is a control input which allows external logic to halt the CPU. This signal is similar to the Halt input which 
some 8-bit microcomputers have, but its purpose in the IM61 00 is to give control panel logic some means of executing 
program instructions one at a time. T~is helps (n debugging. . 

RUN is output high when the CPU is running; it is'output low when the CPU has been halted. 

RESET is a typical reset input. When inplJt low, it clears all CPU registers except the Program Counter, which is loaded 
with FFF16· 

WAif is used by slow external logic which needs to acquire more time to respond to a memory or I/O access. As long 
as WAIT is input low, the CPU will maintain ~egiste~ and signal levels, but not advance the state of an instruction's ex­
ecution. 

CO, C1, C2 and SKP are very unusual input control signals. During an I/O operation (that is, while an lOT instruction 
is being executed!. external logic can use these four control signals in order to determine CPU operations. 

Control signals co. CT and C2 are interpreted by the CPU as follows:' 

C2 CT 
L L 
L H 
H L 
H L 
H H 
H H 

CO 

X 
X 
L 
H 
L 
H 

Transfer data from DXO - DX11 to Program Counter (execute an absolute jump) 
Add data on DXO - DX11 to Program Counter (execute a program relative jump)' 
Load data from DXO- DX11 to Accumulator 
OR data'from DXO - DX11 with Accumulator 
Transfer Accumulator contents to DXO - OX 11, then clear Accumulator 
Transfer Accumulator contents to DXO - DX11 but do not clear Accumulator 

X represents "don't care"; CO may be low or high. 

If external logic inputs SKP low during an lOT instruction, then the CPU will skip the instruction which im­
mediately follows the lOT. SKP logic is separate and distinct from CO, CT and C2 logic. 

Two signals support DMA operation. External logic requests DMA access by inputting a low signal via DMAREQ. 
As soon as the current instruction has completed execution, the CPU responds by outputting DMAGNT high. At this 
point the Data/Address Bus is floated. External logic must provide all DMA transfer signals: the only thing the CPU 
does in response to a DMA request is float t~e Data/AddressBus for a sinQle instruction cycle. The busis floated for as 
long as DMAREO is held low. DMAREO and DMAGNT are rarely used. The IMq1 02 provides simultaneous DMA logic, 
which is preferred. . 

Interrupt logic reflects the IM6100's minicomputer heritage. Normal inter~upts are requested via INTREQ being in­
put low. Upon acknowledging an interrupt, the CPU will output INTGNT high. Microcomputers are no different: 
but an IM61 00 control panel interrupt request has its own dedicated CPREO signal. Microcomputers do not assume the 
possible presence of a control panel. . . 

Two additional control signals are provided to support the presence of a control panel. The IM61 00 control panel will 
have its own memory in order to support logic required by switches and indicators of the control panel. Following a 
control panel interrupt, CPSEL is output low instead of MEMSEL, so that programs can be executed out of con-
trol panel memory, rather than out of main memory. . 

There is also an instruction which reads the contents of control panel switches and GRs them with the contents of the 
Accumulator. SWSEL is output low in order to inform control panel logic that switch levels must be returned as 
data on the qata/ Address Bus. 

IM6100 TIMING AND INSTRUCTION E~ECUTIQN 

An IM6100 instruction's execution is timed by a sequence of machine cycles, each of which is subdivided into 
clock periods. A machine cycle may have five or six clock periods. Machine cycles and clock periods are identified by 
the CLOCK, XTA, XTB, and XTC signals, as illustrated in Figure 13-3. Note that each clock perioq consists of two ex-
ternal clock cycles.' ' 

IM6100 machine cycles, like those of almost any other microcomputer, consist of memory or I/O read cycles, 

13-9 



memory or 1/0 write cycles and CPU operation cycles. Specific events occur,only during specific clock periods 
of a machine cycle. 

A memory or I/O device address is output during T1., 

Data is input during T2. The I/O control input lines CO. C1. C2 and SKP must be input duringT2. 
with timing conforming to data input. 

Internal CPU operations occur during T3. T4 and T5. 

Data is output du'i-ing T6. 

IM6100 
CLOCK 
PERIOD 
ASSIGNMENTS 

In order to best understand the nature of different IM61 00 machine cycles, we will begin by looking at the basic 
data input, data output and no operation machine cycles. Then we will look at specific interpretations of these 
machine cycles for var,ious types of instruction execution. ' , 

IM6100 NO OPERATION MACHINE CYCLE 
An' IM61 00 "no operation" mach-ine cycle may' have five or six clock periods. Only the XT A. XTB and XTC signals 
change levels during a no operation machine cycle. therefore Figure 13-3 (excluding the sixth clock period) illustrates 
a no operation machine cycle. 

IM61 00 ;DA.TA INPUT MACHINE CYCLE 
Data input machine cycle timing is illustrated in Figure 13-4. Observe that there are four different sources for data 
being input to the CPU. The four different sources are identified by individual select lines. 

IM6100 DATA ,OUTPUT MACHINE CYCLE 
Data output machine cycle timing is illustrated in Figure 13-5. Data output occurs during the T6 clock period of the 
machine aycle. and is identjfied by a low Select pulse: otherwise. timing is the same as illustrated in Figure.13-4. 

, CLOCK 

XTA 

XTB 

XTC 

LXMAR 

·Select 

OXO - OX11 

T1 T2 

·Select will be MEMSEL for a memory read 

I­
I 
I 
I 

T3 

CPU samples 
data here 

OEVSEL for input from an I/O device 
SWSEL for input from panel switches ' 
CPSEL , for a control panel memory read 

I 
I 

,I 
I 

T4 

Figure}~~4. ,IM61,OOData Input Machine Cycle Timing 

13-10 

T5 



C 
w 

~ 
a: 
0 
D. 
a: 
0 
0 
~ 
en 
w 

~ 
g 
fI) 
fI) 

< 
call 
w 
Z 
a: 
0 
III 
fI) 
0 

::E 
< c 
< 
@ 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

·Select 

OXO - OX11 

1 
'I T1 T2' T3 

·Select will be MEMSEL for a memory write 
DEVSEL for an output to an I/O device 
C'PSE'L for a control panel memory write 

T4 T5 

Figure 13-5. IM6100 Data Output Machine Cycle Timing 

IM6100 ADDRESS DEMUL TIPLEXING 

T6 

The minicomputer flavor of the IMQ 100 can cause some initial confusion when you try to interface devices to its' 
System Bus. Normally, if we encounter a multiplexed Data and Address Bus, we immediately demultiplex the 
bus to create' separate Data an~ Aci'dress Busses. Indeed. this is easy enough to do when ~orking with the 
IM6100, but it is not necessary. Providing the address stable time on the Data/Address Bus"is satisfactory. memory 
and I/O devices can simultaneously use the LX MAR high pulse as an address or device select strobe. Since there are 
separate subsequent'control strobes for memory. I/O devices and control panel logic. the fact that an ambiguous ad­
dress appeared earlier is irrelev~rf- Wit'hout the subsequent control strobe. a memory device that was spuriously 
selected by an I/O instruCtion. for'~)(ampl~: will not perform a read or write operation. Moreover. the IM61 01 Parallel In­
terface Element creates unique sel~c! strobes for individual 110 devices. as we will see later in this chapter. The only 
occasion when you will almost certainly want to demultiplex the IM6100 Data/Address Bus is if you are creat­
ing a System Bus which is compiJtible with some other microcomputer - for example, the 8080A. 

'·.i '. 

13-11 



Tl T2 T3 T4 T5 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

DXO-DX11 __________ -J~ __ ~~ ______ J\ ________ ,\_ ______________________________________ ~ 

Figure 13-6. IM6100 Memory Read Machine Cycle Timing 

Tl T2 T3 T4 T5 

Figure 13-7. IM6100 Instruction Fetch Machine Cycle 

13-12 



Q 
w 
t-
ct 
IX: 
0 
D. 
IX: 
0 
CJ 
~ 
ui 
w 
t-
ct g 
en 
en 
ct 
oil 
w 
Z 
IX: 
0 
In 
en 
0 

~ 
ct 
Q 
ct 
@ 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

MEMSEL 

DXO - DXll 

DATAF 

T1 T2 

Indirect address. was 
DATA IN on previous 
machine cycle 

T3 T4 T5 

Figure 13-8. Machine Cycle Timing for Memo.ry Read from Indirectly Addressed Location 

IM6100 MEMORY READ MACHINE CYCLE TIMING' 
Figure 13-6 represents the memory read variation of Figure 13-4. -:-M:-:=E:-:-M':":'S~E'-;-L is pu Ised low for a select. but otherwise 
the two figures are identical. ' 

Logically there is no difference between an instruction fetch machine cycle and a memory 
read machine cycle; however. the IM6100 outputs IFETCH high for the duration of the in­
struction fetch, memory read machine cycle. Timing is illustrated in Figure 13-7. 

There is one additional memory read machine cycle which ,is specifically identified via its own 
signal. Memory reference instructions AND. TAD. and ISZ. if they specify indirect addressing. 
output DATAF high for the duration of the machine cycle that carries the indirect address as 
an address. rather than data. Figure 13-8 illustrates timing' for a machine cycle during 
which the CPU reads from an indirectly addressed memor.y location. DATAF is not output 
high when JMP or JMS instructions specifying indirect addressing 'are executed. 

The IM6100 has two instructions that read data from memory to the Accumulator: the AND 
and TAD instructions. Without indirect addressing. each of these instructions will be executed 

IM6100 
INSTRUCTION 
FETCH MACHINE 
CYCLE 

IM6100 
INDIRECTLY 
ADDRES~ED 
MEMORY 
READ CYCLE 

in two machine cycles; the first machine cycle will be an instruction fetch. as illustrated in Figure 13-7. while the sec­
ond machine cycle will be a memory read. as illustrated in Figure 13-6. If either of these instructions specifies indirect 
addressing. then the instruction will be executed in three machine cycles. The first machine cycle will be a simple in­
struction fetch. as illustrated in Figure 13-7. The seco[1d machine cycle will be a simple memory read. as illustrated in 
Figure 13-6; however. during this machine cycle the effective memory address will be read as data. The third machine 
cycle will be an indirect addressing memory read. as illustrated in Figure 13-8. The data input during the second 
machine cycle will be output as an address during the third machine cycle. 

The ISZ instruction reads from memory. increments the data just read. and writes it back. The sequence of machine cy­
cles used to execute ISZ is almost the same as sequences for AND and TAD; the only difference is that. for ISZ. a 

13-13 



memory write cycle follows the last memory read cycle. Thus. the CPU exec;ut~s ar ISZ without indirection in three 
machine cycles: an instruction fetch. a memory read. and a memory write. If indirect addressing has been specified. 
there will be four machine cycles: an instruction fetch followed by a memory read. an indirect addressing memory read. 
and a memory write. Figure 13-9. shows ordinary memory write timing. 

T1 T2 T3 T4 T5 T6 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

DXO - PX11 

Figure 13-9: IM6100 Memory ~riteMachine Cycle Timin'g 

IM6100 MEMORY WRITE MACI1INE ~YCLE 
A simple IM61 00 memory write machine cycle is illustrated in Figure 13-9. This figure is identical to Figure 13-5. 
except that MEKiiSIT is shown generating a low strobe in T6. . 

The IM61 00 has two instructions that write to memory: the DCA and the ISZ instructions. Also; any memory reference 
instruction that specifies indirect addressing with auto-increment must write into memory. This is because when auto­
increment addressing is specified. the indirect address which' is fetched from one of the memory locations 0816 
through OF16 is incremented. then written back to the same memory location. 

A simple memory write machine cycle with indirect addressing will have timing identical 
to Figure 13-9. except that DATAF will pulse highforthe duration of the machihe cycle. as il­
histrated in Figure 13-10. The memory address. output during this indirect addressing. 
memory write machine cycle will have been input as qa.ta during the previous macnine cycle. 
which will be a simple memory read machine cycle with liming as illustrated in Figure 13-6. 

Any memory reference instruction that specifies indirect addressing with auto-increment 
will insert a write during T6 of the second m~chi'ne cycle. During this machine cycle. the in­
direct address will be fetched from one of the 1T1~IT1p'ry,locations with addresses 0816 through 
OF16. During the T6 clock period this address. having been incremented. is w.ritten back to the 
same memory location. During a third machine cycle.'the memory read or write reqllired by the in­
struction will occur. Figure ,13-11 illustrates timing for an indirect addressing with auto-incre­
ment machine cycle. Observe that a memory reCjq :'and a memory write occur In .this single 
machine cycle. albeit to and from the same memory location. 

13-14 

IM6100 
INDIRECTLY 
ADDRESSED 
MEMORY 
WRITE CYCLE. 

IM6100 
INDIRECT 
ADDRESSING 
WITH AUTO­
INCREMENT 
TIMING' 



c 
w 

~ 
II: o 
Q. 
II: 
o 
(J 

~ 
en 
w 

~ g 
en 
en 
c( 

o!I 
w 
Z 
II: 
o 
III 
en o 
~ 
c( 
c 
c( 

@ 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

OXO - OXll 

OATAF 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

OXO - OXll 

Tl T2 T3 T4 T5 T6 

Figure 13-10. Machine Cycle Timing for Memory Write to Indirectly Addressed Location 

Tl T2. T3 T4 

incremented. then output 

back to the same memo­

ry location. in the same 

machine cycle . 

T5 T6 

. Figure 13-11. Auto-Increment Machine Cycle for an IM6100 Memory Reference Instruction 
that Specifies Indirect Addressing with Auto-Increment 

13-15 



~ 
en 

IFETCH INDIRECT 

T1 T2 T3 T4 T5 Tl T2 T3 T4 T5 

CLOCK 

XTA ~ 
XTB 

XTC '---1 \ 
LXMAR~ 

MEMSEC \ I 
DATAF ____________________________________________________________ -' 

IFETCH~ 

DXO-DX"~ 

Instruction address (from 
PC) 

Instruction object code 
input 

Tl 

Figure 13-12. IM6100 DCA Instruction Timing with Indirect Addressing 

DCA 

T2 T3 T4 I5 T6 

Data output to indirectly 
addressed memory loca­
tion 



IFETCH 

CLOCK 

XTA ____ ..I 

XTB 

XTC 

LXMAR 

DATAF 

IFETCH 

DXO - DXll 

Instruction address (from 
PC) 

Instructicn object 
input 

© ADAM OSBORNE & ASSOCIATES, INCORPORATED 

INDIRECT 
WITH AUTO-INCREMENT 

\ 

~ Cont~nts of direct ad-
dressed memory loca­
tion, input as data,· The 

.. incremented address is 

code Direct address computed output back to the same 
from instruction object memory location. The 
code un-incremented address 

is output as the next ad­
dress 

DCA 

Data output to indirectly 
addressed memory loca­
tion 

Figure 13-13. IM6100 DCA Instruction Timing with Indirect Addressing and Auto-Increment 



co. C 1. IT and SKP must 
be input with Data in 

. Data output if specified 
by CO. CT and C2 control . 
inputs 

Figure 13-14. IM6100 I/O Data Input MachirieCycle: 

Timing for execution of a DCA instruction with indirect addressing is given in Figure 13-12. Timing for this same 
instruction with indirect ~ddressing and auto-increment is given in Figure 13-13. 

IM6100 INPUT/OUTPUT TIMING 
A peculiarity of IM6100 input/output instructions is that they are undefined. The instruction object code's three 
high-order bits identify the instruction as an I/O instruction, but they do not identify the type of I/O instruction. 
By convention, six object code bits constitute an I/O device code, and the three remaining bits are interpreted 
as a control code (this is illustrated later). In reality, the I/O instruction object code must contain 110 inthe 
three high-order bits, but the manner in which the remaining nine bits are interpreted is entirely up to external 
logic, which mayor may not divide these nine bits into six device select bits and three I/O operation control 
bits. As far as the CPU is concerned, when it executes an I/O instruction, it outputs DEVSEL low instead of out­
putting MEMSEL low, but otherwise the CPU has no idea what is. going to happen in the course of the I/O in­
struction's execution. The external device which considers itself selected by the I/O instruction object code 
determines the I/O operations which are to occur by appropriately inputting to the CPU the control signals CO, 
C1, C2 and SKP. . . 

If you are familiar with standard microprocessors such as the 8080A. this IM61 00 I/O logic will appear very strange. 
The I/O device must tell the CPU what is to happen during the course of the I/O instruction's execution. All the CPU 
knows is that an I/O operation is in progress. 

13-18 



Q 
w 

~ 
ex: 
o 
0.. 
ex: 
o 
o 
~ 
en 
w 

~ 
g 
rn 
rn 
< 
IllS 
w 
Z 
ex: 
o 
II:! 
rn o 
~ 
< 
Q 

< 
@) 

T1 T2 T3 T4 T5 T6 

CO.~.C2.SKP ____________________ -A __ ~~ __ ~ ______________________________________ ~ 

co. C 1. C2 and SKP must 
be input with timing of 
data in 

Figure 13-15. IM6100 I/O Data Output Machine Cycle 

Every IM6100 I/O instruction executes in three machine cycles. 

The first machine cycle is a standard instruction fetch, as illustrated in Figure 13- j;. 

The second machine cycle is a variation of the data input or data output machine cycle, as illustrated in Figures 
13-14 and 13-15. 

The third I/O instruction machine cycle is a "no operation" machine cycle. The no operation machine cycle has 
six clock periods. The clock. XTA. XTB. XTC. and LXMAR signals are active. but the Select lines and the Data/Address 
Bus are not. 

The most important difference between the I/O input and output machine cycles illustrated in Figures 13-14 and 
13-15. as against the standard input and output machine cycles illustrated in Figures 13-5 and 13-6. is the fact that the 
control inputs CO. CT. C2 and SKP must be accounted for. Timing for these four signals. as inputs. must conform to 
data input timing. Thus. every I/O machine cycle must include a DEVSEL low pulse at read time so that the selected I/O 
device knows when to input the four control signals. The CPU uses these control inputs to determine whether a data in­
put or a data output is to occur. I/O logic will normally hold C1 and C2 high in between I/O operations so the 
default lac instruction is a data output. This is necessary since there is very little time separating the LXMAR high 
pu-lse and data output. CO may normally be held low or high. depending on whether the Accumulator is to be cleared or 
not following data output. 

The I/O instruction object code. rather than an address. is output on the Data/Address Bus during T1 of any I/O instruc­
tion's second machine cycle. 

13-19 



By PDP-8E convention, the I/O instruction object code has the following format: 

11 10 9 8 6 5 4 3 o ....--BitNo. 

0 I I I I· I I ,I/O instruction object code 

'\,." 

t - t~ Control code 

I/O device code 

The interpretation of bits 0 through 8 is, in reality, undefined. The illustration above shows standard PDP-8E format 
using this convention: I/O devices must decode lines 3 through 8 to determine if they have been selected: lines 0, 1 
and 2 identify operations which must be performed by the selected I/O device. The operations which the selected I/O 
device must perform include returning CO, CT, C2 and SKP levels, which determine the nature of the I/O instruction for 
the CPU and for the selected I/O device. 

A complete I/O instruction's timing is given in Figure 13-16. 

13-20 



T1 T2 

CLOCK 

.XTA 

XTB 

'XTC 

LXMAR 

Cf 
MEMSEL N 

DEVSEL 

DXO - DX11 

Co,C1;C2,SKP 

INTGNT 

'INSTRUCTION 
FETCH 

T3 T4 T5 

'Instruction object· code, 
. input as data,. then out­

put in second' machine 
cycle as an: address 

IOTA 

T1 T2 T3 

Data is input here 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

T4 T5 T6 

For' any I/O instruction, 
control signals may op­
tionally be input here 

T1 

Data.is·output here 

IOTB 

T2 T3 

The interrupt grant out­
put signal INTGNT, if 
high, is reset low at the 
end of IOTA when any 
'I/O' instruction is ex­
ecuted 

T4 T5 

Figure 13-16. IM6100 liD Instruction Timing 

T6 



THE IM6100 WAIT STATE 
External logic may insert Wait states within a data input or data output machine cycle. In each case. external logic 
requests the Wait state via a low 'WAif input. The Wait state will generate additional T2 clock periods during a data in­
put operation. Timing is illustrated in Figure '13-17. Additional T6 cloCk periods will be generated during a data output 
operation. as illustrated in Figure 13-18 . 

CLOCK 

·XTA 

XTB 

XTC 

LXMAR 

OXO - OXll 

.. I· 
I 
I 
I 

Tl T2 T2 
WAIT 

·Select will be MEMSEL for a memory read 
DEVSELfor input from an I/O device 
SWSEL for input from panel switches 
CPSEL for a control panel memory re.ad 

T2 
WAIT 

T3 T4 

Figure 13-17. Wait States within an IM6100 Data Input Machine Cycle 

13-22 

T5 



Q 
w 

~ 
a: 
o 
D. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
en 
en 
ct 
olJ 
w 
Z 
a: 
o 
In 
en o 
~ 
ct 
Q 
ct 
@ 

T1 T2 T3 T4 

-Select will be Mrnm for a memory write 
DEVSEL for output to an I/O device 
CPSE[ for a control panel memory write 

T5 T6 T6 
WAIT 

Figure 13-18. Wait States within an IM6100 Data Output Machine Cycle 

T6 
WAIT 

T1 

In Chapter 4. we described ways in which READY input signals can be generated in order to create Wait states of one. 
or of a few clock periods. Although the Chapter 4 discussion is for the 8080A microprocessor. the logic applies equally 
well for the IM6100. 

IM6100 HOLD AND HALT CONDITIONS 
The IM6100 has a single Halt state which is equivalent to the Hold and Halt conditions of other 
microprocessors. The Halt state can be initiated by executing a Halt instruction, or by inputting a low signal via 
RUN/HLT.· . . . 

The IM6100 has two control signals associated with its Halt state. RUN/HL T is an input which can be used to 
initiate and terminate Halt states. What is unusual about the RUN/HL T control input is that the low-to-high transi­
tion of t~is signal is active. This may be illustrated as follows: 

RUN/::N _____ ~_~----------R~-N-----------~~--------____ \~~~~~~~~~~~:---R-U-N-
HALT HALT 

13-:23 



T1 T2 

CLOCK 

XTA 

XTB 

XTC 

'{' 
LXMAR N 

~ 

M'EMSE[ 

OXO - OX11 

RUN 

Instruction address 

IFETCH 

T3 T4 T5 

HL T instruction object 
code 

T1 T2 

HLT 
EXECUTE 

T3 T4 T5 

HALT 

T1 T2 T3 

Figure 13-19. An IM6100 Halt State Initiated by Execution 
of a HL T Instruction 

HALT 

T4 T5 T1 T2 T3 I T4 T5 



IFETCH 

T1 T2 T3 T4 T5 T1 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

MEMSEL 

'f 
N 
01 OXO - OX!! 

RUN/HlT 

RUNFF 

RUN 

OMAGNT 

© ADAM OSBORNE &- ASSOCIATES. INCORPORATED 

T2 

INSTRUCTION 
EXECUTE 

T3 T4 T5 T! 

HALT 

T2 T3 T4 

., 
I 

Figure 13-20. An IM6100 Halt State Initiated and 
Terminated by the RUN/HL T Input 

HALT 

T5 T! T2 T3 T4 T5 T! 

NEXT 
IFETCH 

T2 



The RUN output signal always indicates whether the CPU is running or has been halted. RUN is output high while 
the CPU is running; RUN is output low when the CPU has halted. Figures 13-19 and 13-20 illustrate Halt state tim­
ing. Note that once a Halt state has been initiated .. either by executing the Halt instruction or by inputting RUN/HL T 
low. the Halt state will last some integral number of five-clock-period machine cycles. 

If a Halt state is initiated by the RUN/AIr input. then as soon,.as this input makes a low-to-high transition. an internal 
Run flip-flop is reset to O. This internal flip-flop is sampled in the middle of the first clock period during the last machine 
cycle of the cLirrently executing instruction. If the internal flip-flop is reset at this time. then a Halt state will begin with 
the next machine cycle. This internal flip-flop remains reset until the next low-to-high transition of the RUN/HL T input. 
During eveiy Halt machine cycle the internal Halt flip-flop is~ampled in the middle of the first Halt machine cycle clock 
period. As soon as the internal flip-flop is detected high again. the Halt state terminates at the end of the current Halt 
machine cycle with a "transition" Halt cycle. during which DMAGNT is held high. Program execution then continues 
with an instruction fetch on the next machine cycle. Figme 13-20 shows Halt state termination timing. 

Observe that the three clock signals XTA, XTB; and XTC continue to be output in the normal way during Halt 
machine cycles. . 

IM6100 DIRECT MEMORY ACCESS 
There are two ways in which direct memory access operations can be performed in an IM6100 microcomputer 
system. 

You can put the IM6100 CPU into a Hold state, during which DMA operations are being performed. In this case the 
CPU will slow down in order to accommodate direct memory access. 

Alternatively, direct memory access operations may occur in parallel with instruction execution by exploiting 
clock periods T3. T4 and T5 of machine cycles within which no write operation occurs. This type of parallel direct 
memory access 90es not slow down the CPU. 

The IM6102 MEDIC device. described later in this chapter. enables parallel direct memory access in an IM6100 
microcomputer system. For a discussion of this type of direct memory access. refer to the IM6.1 02 device description. In 
the text below we will consider only the use of the Hold state to implement direct memory access operations. 

Note that parallel direct memory access using the IM6102 MEDIC is definitely preferred. 

IM6100 Hold state DMA logic is similar to that which we have described for the 8080A in Chapter 4. External logic 
that wishes to take control of the System Bus makes a DMA request by inputting DMAREQ iow. The CPU sam­
ples DMAREO in the. [Tliddle of the first clock period of a machine cycle. Upon sensing DMAREO low. the CPU 
acknowledges the DMA request at the end of the currently executing instruction. providing no higher priority control 
input exists. Table 13-1 and associated text summarize control priorities. When the CPU acknowledges a DMA re­
quest. it outputs DMAGNT high and suspends program execution. The Data/Address Bus is floated and all select 
lines are output high; the clock signals XTA. XTB and XTC continue to function. clocking five-clock-period machine cy­
cles. External logic must now use the System Bus to perform all DMA transfers. Figures 13-21 and 13-22 illustrate 
DMA initiation and termination timing, respectively. 

DMAREO is sampled in the middle of the first clock period of every DMA machine cycle. Upon sensing DMAREO high. 
the CPU will terminate DMA operations at the conclusion of the current DMA machine cycle. and will then proceed 
with the next scheduled instruction fetch. 

External DMA logic is responsible for all events associated with the DMA transfer. This includes having special 
device select lines. The device select lines output by the CPU cannot be used. since these are held high during a DMA 
transfer. This is not a significant problem; you can simply AND the DMA Select with the CPU Select in order to gener­
ate a valid memory or I/O device Select. This is possible since the inactive select input will always be held high while 
the active select input is pulsed low. You will have a negative-logic OR: 

DMASelect ~ 
CPU Select _____ ._oL/'----MemOry or I/O Select 

the select line will be active (that is. low) if either the DMA Select line or the CPU Select line is active. 

Since all DMA machine cycles have five clock periods, memory write timing during a DMA transfer cannot 
agree exactly with memory write timing during normal program execution. This is not a problem. since there is 
sufficient time within a machine cycle to execute a memory write. Logic beyond the IM6100 does not know the 
difference between one clock period and another. therefore the DMA memory write can occur at any time within the 
DMA machine cycle. 

13-26 



XTA 

Cf XTB 
N 

" 
XTC 

i5MAREo 

DMAGNT 

, T1 

INSTRUCTION 
EXECUTE 

I 
T2 I' T3 

I 

©'ADAM OSBORNE & ASSOCIATES. INCORPORATED 

T4 T5 T1 

INSTRUCTION 
EXECUTE 

(Last machine cycle). 

T2 T3 T4 

Figure'13-21, IM6100 DMA Initiation Timing 

DMA 

T5 _ T1 T2 T3 T4 T5 



END OF DMA 
DMA DMA INSTRUCTION . 

FETCH 

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T1 T2 • I 
I T3 

I' 
T4 ' T5 

I 

CLOCK 

XTA ______ ~r--\~ _____________ ~ 

XTB' \ 
Cf 
N 
co 

XTC 

DMAREQ I 
DMAGNT 

Figure 13-22, IM6100 DMA Termination Timing 



Q 
w 

~ 
a: o 
a.. 
a: 
o 
u 
~ 
en 
w 
I­
< g 
en 
en 
< 
oIS 
w 
Z 
a: 
o 
IXI 
en o 
::! 
< 
Q 
< 
@ 

The Halt state has priority over the DMA state. Thus. a DMA request will not be acknowledged while the CPU is in a 
Halt state; however. while the CPU has acknowledged a DMA request and is executing DMA machine cycles. it will res­
pond to a Halt request generated by a low-to-high transition of the RUNIHIf input. In the Halt state the Data/Address 
Bus is not floated. therefore you must make sure that RUN/HIT does not pulse low while the CPU is acknowledg­
ing a DMA request. This is simple enough to do. Here is appropriate logic: 

RuN/HLT------------D I~ CPU DMAGNT _ ~---------RUN HL I to 

Table 13-1 summarizes operation priorities within IM6100 CPU logic. 

You will have no trouble using the DMA control devices described in Volume 3 in order to implement direct 
memory access in an IM6100 microcomputer system; however. the IM61 02 is preferred in IM61 00 microcomputer 
systems. The DMA control devices described in Volume 3 are all NMOS devices. therefore you will need CMOS-to­
NMOS bidirectional drivers. These drivers may buffer the CPU from the rest of the system. or. if most of the system is 
implemented using CMOS technology. these buffers will isolate the DMA logic from the rest of the system. 

THE IM6100 RESET 
You must input the "RESET signal low in order to reset the IM61 00 CPU. The CPU samples this signal in the middle 
of the first clock period during the last machine cycle of an instruction's execution. Upon detecting RESET low. the CPU 
enters a Reset condition beginning with the next machine cycle. The Reset condition is maintained for an exact number 
of five-clock-period machine cycles while the RESET input is low. When the CPU detects RESET high in the middle of 
the first clock period of a Reset machine cycle. the processor will begin program execution at the end of that Reset 
machine cycle. thus terminating the Reset state. . 

Timing for the initiation and termination of a Reset condition is identical to timing for DMA initiation and ter~ 
mination, as illustrated in Figures 13-21 and 13-22. In these two figures, by substituting RESET for DMAREQ, 
and by eliminating the DMAGNT signal, you create Reset initiation and termination timing. 

During a Reset condition the following events occur: 

1) The Program Counter is set to FFF16. 

2) The Accumulator and Link flag a're cleared. 

3) The Data/Address Bus is floated. 

4) All Select lines are output high. 

5) The three clock signals. XT A. XTB. and XTC. continue to output. timing five-clock-period machine cycles. 

The only differenc'e between a Reset condition and a DMA condition is the fact that during the Reset condition the Ac­
cumulator and flagsare cleared and the Program Counter is set to FFF16. You will normally initiate a bootstrap loader 
program at memory location FFF16 in order to restart the microcomputer system following a reset. 

IM6100 INTERRUPT LOGIC 
The IM61 00 has two separate and distinct interrupt requests, one for the control panel and another for external 
devices in general. We will now discuss external devices' interrupt request logic, leaving control panel interrupt 
request logic to the control panel discussion which follows. 

Any external device wishing to request an interrupt does so by inputting a low signal via INTREQ. The CPU sam­
ples this signal in the middle of the first clock period. during the last machine cycle of the current instruction's execu­
tion. Upon detecting INTREQ low. the CPU will acknowledge the interrupt at the conclusion of the current instruction's 
execution. providing no high priority control input exists. Priorities are summarized in Table 13-1. Upon acknowledg­
ing a valid interrupt request, the IM6100 CPU goes through these steps: 

1) The interrupt grant signal INTGNT is output high. 

2) Interrupt acknowledge logic is disabled. 

3) Program Counter contents are stored in memory location 000. 

4) An instruction fetch machine cycle is executed. with the next instruction's object code fetched from memory loca-
tion 001. . 

Timing is illustrated in Figure 13-22a. 

IM6100 interrupt logic is, by microprocessor standards, quite primitive. A single interrupt service routine. origined 
at memory location 001. must be executed in response to every external interrupt request. 

13-29 



C{' 
w 
o 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

DXO - DX11 

T1 

LAST MACHINE 
CYCLE OF INSTRUCTION 

EXECUTION 

T2 T3 T4 

.;..- ---- -------------

Address 000 output 

. - - . 
. -. .." ' . 

I· 
T5 

. Q).MEMSEL puIS~~ low but no dat~ input occurs 

T1 T2 

INTERRUPT 
ACKNOWLEDGE 

I. 
T3 I T4 T5 

Program Counterccin­
tents to' be stored . in 
memory' location 000, 
output as data 

Figure 13-2~a. IM61 00 Inte~upt Acknowledge Timing 

T6 T1 . T2 

Address 001 output' 

INSTRUCTION 
FETCH 

T3 T4 T5 

Contents of. memory' 
location 001 input as' 
data and loaded into the· 
Program Counter 



c 
w 

~ 
II: o 
a. 
II: 
o 
U 
~ 
en 
w 

~ g 
en 
en 
< 
all 
w 
Z 
II: 
o 
III 
en o 
::E 
< c 
< 
@ 

There is a group of eight i/o instructions whi~h are treated as interrupt processing in.­
structions. These are: 

SKON 
ION 
10F 
SRO 
GTF 
RTF 
SGT 
CAF 

- Skip if interrupt On 
- Enable interrupts 
- Disable interrupts 
- Skip if there is an active interrupt request 
- Get flags 
- Return flags 
- Undefined I/O operation 
- Clear all flags 

. . . 

Figure 13-16 illustrates instruction execution timing for these eight instructions. 

IM6100 
INTERRUPT 
PROCESSING 
INSTRUCTIONS 

When any I/O instruction, including the eight instructions above. is executed, the INTGNT signal is reset low. 
INTGNT reset timing is illustrated in Figure 13-16. 

In the simplest case. here is an approp~iate interrupt service routine that can be used to determine device priorities: 

INTS 

·001 
JMPI 

'INTS 

lOT 
JMPI 
lOT 
JMPI 
lOT 
JMPI 

etc 
DEV1A ADDR1 
DEV2A . ADDR2' 
DEV3A ADDR3 

·+1 

DEV1.INT 
DEV1A 
DEV2.INT 
DEV2A 
DEV3.INT 
DEV3A 

IINTERRUPT SERVICE ROUTINE ORIGINED AT 001 
IJUMP INDIRECT VIA ADDRESS IN NEXT WORD 
IlABEl OF INTERRUPT SERVICE ROUTINE 

IACTUAl INTERRUPT SERVICE ROUTINE ORIGIN 

The instruction sequence above begins (at memory location 1) with a Jump Indirect instruction that holds the start of 
the interrupt service. routine in memory location 2. This interrupt service routine origin is identified by the.labeIINTS. 
INTS may be anywhere in program memory. 

The instruction sequence beginning at INTS is a sequence of I/O and Jump Indirect instructions. The 1/0 instructions 
identify, sequentially. the devices that can request an interrupt. Each identified device is provided with a control code 
given the label INT. This control code must be interpreted by the addressed device as a command to return a low pulse 
via SKP during' I/o data input time. if the device is not requesting an interrupt. Thus. the next instruction. which is a 
Jump Indirect instruction. will be skipped if the device is not requesting an interrupt. The lOT instruction may thus be 
illustrated as follows: 

lOT 

---r 
11. 10 9 8 

11 .1 1'0 I 

DEVX 
A 

6 5 4 

I 

INT 

,-----
3 2 1 0 .....-SitNo. 

I I I -
+L..-----I/O device. if selected. must interpret these three 

bits (whose contents are not specified here. but 
must be specified in a real situation) to generate 
SKP low when DEVSEL is low if there is no pending 
interrupt request. 

'-------------These bits identify the I/O devices 

13-31 



Thus. the first device in the program chain which has an active interrupt request will return SKP high. which means 
that the next Jump Indirect instruction will be executed. 

All of the Jump Indirect instructions identify a location which must be on the same page of memory. Within this loca­
tion the actual address of the interrupt service routine for the selected device is stored. 

The problem with the polling scheme described above is that it demands a certain amount of intelligence from the pe­
ripheral controller. We could eliminate this intelligence by reading the contents of a device Status register. then jump­
ing or not jumping. based upon a particular bit setting within the status register. 

But remember. as the interrupt service routine increases in length. interrupt response time also goes up . ..... -----...... 
You can implement a vectored interrupt acknowledge using daisy chain logic, as illustrated IM6100 
for the 8048 microcomputer in Chapter 6. Consider Figure 6-14. Eight separate interrupt VECTORED 
acknowledge signals are g~nerated together with a three-bit code identifying the acknow'iedged INTERRUPT 
device - which is the highest priority device requesting an interrupt. This three-bit code could be ACKNOWLEDGE 
held in a 12-bit buffer. which the CPU reads as an 1/0 port. If logic associated with this 1/0 port. 
upon being accessed. inputs control signals C2 low and C1 high. then the three-bit code (shifted left appropriately to 
meet the needs of Branch logic) will be added to the Program Counter. This implements a program relative jump. and 
then a vectored branch, Figure 13-23 illustrates an appropriate instruction sequence. 

ORG 

JMPI NEXT / JUMP INDIRECT TO INTERRUPT SERVICE ROUTINE 

NEXT DA INTS /STORE INTERRUPT SERVICE ROUTINE ADDRESS HERE 

, 
ORG .NTS /INTERRUPT SERVICE ROUTINE ORIGIN 

Input contents of 
buffer IOBUF 

- - - -- - - - - - - lOT IBUF.IN /INPUT INTERRUPT VECTOR PLUS C2=O. Cl=l and add to 
Program Counter 

JMPI DEVl / JUMP INDIRECT TO DEVICE 1 INTERRUPT SERVICE 

"'-DEVl DA ADRl /ROUTINE, WHICH IS ORIGINED AT ADRl 

JMPI DEV2 /JUMP INDIRECT TO DEVICE 2 INTERRUPT SERVICE 

.,.DEV2 DA ADR2 /ROUTINE, WHICH IS ORIGINED AT ADR2 

JMPI DEV3 /JUMP INDIRECT TO DEVICE 3 INTERRUPT 

04-DEV3 DA ADR3 /SERVICE ROUTINE, WHICH IS ORIGINED AT ADR3 

etc etc 

Figure 13-23, Logic and Instruction Sequence for an IM6100 Vectored Interrupt Acknowledge 

13-32 



c 
w 

~ 
a: o 
0. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 
II) 
II) 

oCt 
011 
w 
Z 
a: 
o en 
II) 

o 
:!: 
oCt c 
oCt 

@ 

Let us exami~e Figure 13-23. 

When the interrupt is acknowledged. the Indirect Jump instruction stored in memory location 1 is fetched. This in­
struction causes program execution to jump to the memory location whose address is stored in the next memory word. 
which is assigned the label NEXT. but is location 2. The address stored in location 2 is referred to by the label INTS. 

The main int;rrupt service routine is stored in memory. origined at INTS. The first instruction t~ be executed is an lOT 
instruction. which inputs data from a location identified by the labellBUF. IBUF is assumed to be the label of the 12-bit 
buffer which has the 3-bit device vector stored in bits 1.2 and 3. During the IOTA machine cyCle. this buffer's contents 
will be transmitted to the CPU. Simultaneously. C2 is input low while C1 is input high; therefore. t~e buffer contents 
will be added to the Program Counter. Adding the buffer contents to the Program Counter will cause one of eight in­
structions to be executed next. These eight instructions are all Indirect Jump instructions. which are immediately 
followed by the address to be jumped to indirectly. Thus. one of eight routines origined at ADR1 through ADR8 will be 
executed. 

Although INTqNT is reset low with the first I/O instruction executed within an interrupt service routine. note that once 
you acknowledge an interrupt. all further interrupts are disabled until you execute an ION instruction. The ION instruc­
tion re-enables interrupts. but not until the conclusion of the instruction fetch for the next instruction to be executed. 
You will therefore normally leave interrupts disabled for the duration of an interrupt service routine. re-enabling the in­
terrupts by executing an ION instruction directly before you exit the interrupt service routine via a Jump Indirect in­
struction. Thus the following two instructions will normally conclude an interrupt service routine: 

ION 
JMPI o 

IRE-ENABLE INTERRUPTS 
IRETURN FROM INTERRUPT SERVICE ROUTINE 

Since interrupts will not be re-enabled until after the Jump Indirect instruction object code has been fetched. you will 
succeed in retur~ing from the interrupt before another interrupt request gets acknowledged. if pending. 

You can, if you wish, re-enable interrupts within an interrupt service routine in order to accommodate nested in­
terrupts. If you do this. then prior to re-enablihg interrupts within the interrupt service routine. you must save the 
return address. which is stored in memory location O. in a software stack. But remember. nested interrupts rarely make 
sense in a microcomputer system. The low cqst of microprocessor Central Processing Units invariably makes it more 
economical to generat~ rh~lti-CPU cOr')figurations in preference to time sharing a single CPU with nested interrupts. 

The preferred method of handling multiple interrupts in an IM61 00 microcomputer system is to use the IM61 02 
.MEDIC, together with IIvi6101 PIE devices. These devices automatically implement daisy-chain interrupt priorities 
with vectored interrupt logic. That is to say. you obtain the same result illustrated in Figure 13-23. but without any of 
the complexities associated wlt~ special logic of the type illustrated in Figure 6-14. 

IM6100 CONTROL PANEL LOGIC 
Since the IM6100 reproduces the logic of a microcomputer, the possible presence of a minicomputer control 
panel is assumed. Control panel logic for a minicomputer can be quite complex; given the limitations of the iM61 00 
CPU. this could present problems. These problems are resolved. however. by allowing the control panel to have its own 
memory. Control panel memory is used to store programs that implement control panel logic. Control panel memory is 
separate and distinct from main memory. Control panel memory addresses can (and usually do) overlap with 
main memory addresses. External logic can discriminate between a main memory location and a control panel 
memory location with the same address because control panel memory locations are selected by the CPSEL 
strobe, whereas main memory locations are selected by the MEMSEL strobe. Timing for control panel memory 
and main memory accesses are identical, with the exception of the different select strobesr-' ----"'I 
There is a' single instruction, the OSR instruction, which accesses a control panel switch 
register. The switch register is assumed to be a 12-bit register holding data that is input via con­
trol panel switches. The OSR instruction reads the switch register contents and ORs this data on a 
bit-by-bit basis with the contents of the CPU Accumulator. When the OSR instruction is ex­
ecuted. timing is a variation of a memory read instruction with direct addressing. Timing is illustr­
ated in Figure 13-24. 

13-33 

IM6100 
CONTROL 
PANEL 
SWITCH 
REGISTER 



Cf 
w 
~ 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

MEMSEL 

INSTRUCTION 
FETCH 

________ ~r--\~ _______ ~ ____ ~ 

\~------~ 

__ ~f\~ ____________ ~ 

\ l 

DXO_DX"ff 
SWSEL . . 

Instruction memory ad- Instruction object code 
dress. 

NO 01 

Figure 13-24. IM6100 OSR Instruction Timing 

READ SWITCHES 

Switch buffer data input 



c 
w 

~ 
II: o 
a. 
II: 
o 
o 
~ 
en 
w 
I­
oCt 
(3 
o 
en 
en 
oCt 
o!I 
w 
Z 
II: 
o 
al 
en o 
~ 
oCt c 
oCt 

@ 

There is nothing very complex about accessihg the Switch register; it is a single location. accessible via a single in­
struction. The same is not true for control panel memory. whJchcan be accessed by any memory reference instruction. 
although its address space is parallel with main memory. (L~ .. control panel memory and main memory use the same 
memory addresses). You must therefore execute a speciai cohtrol panel interrupt request in order to initiate ex­
ecution of any program that is stored in control panel memory: 

Following a control panel interrupt request. all direct memory accesses are identified by a low CPSEL pulse instead of a 
low MEMSEL pulse. This means that all instruction fetch machine cycles will fetch an instruction object code out of 
control panel memory. not out of main memory. Thus as soon as a control panel interr\Jpt request has been 
acknowledged. a program stored in control panel memory will be executed. Furthermore. all direct memory reference 
instructions contained within this program will also access data locations within control panel memory. not within 
main memory. 

You request a control panel interrupt by inputting a low signal via CPREQ. Timing for the requ~st acknoWlbdge 
sequence is identical to the general interrupt timing given in Figure 13-22a, providing you sbstitute CPREQ for 
INTREQ. 

A control panel interrupt request is a higher priority interrupt request than the general external interrupt request. (See 
Table 13-1 for a summary of priorities). If the two interrupt requests occur simultaneously. the control panel interrupt 
request will be acknowledged. while the external interrupt request will not be acknowledged. in. f~ct. only a Reset has 
higher priority than a control panel interrupt request. therefore no INTGNT output occurs following a control panel 
interrupt request. . , 

A control panel interrupt request has higher priority tha~ Halt or DMA. therefore the control panel interrupt request 
will be acknowledged while the CPU is halted. The Halt condition will be terminated and the CPU will enter a run 
condition as soon as the control panel interrupt request is acknowledged. At the end of the control panel interrupt ser­
vice routine the CPU will return to the Halt state. 

The control panel interrupt's priority over external interrupts extends for the duration of the external inte~rupt service 
routine. A control panel interrupt request will be acknowledged even if it occurs while an external interrupt ser­
vice routine is being executed. That is to say. if you disable extern~1 interrupts. this has no effect on control panel in­
terrupt logic; a control panel interrupt request will. nonetheless. be acknowledged. 

When a control panel interrupt request is acknowledged, the following events occur: 

1) Program Counter contents are stored in control panel memory location O. This is not the same as main memory 
location 0;. therefore. if a control panel interrupt request is acknowledged while an external interrupt service 
routine is being executed. no harm is done. A control panel interrupt can be nested within an external interrupt. 

2) All interrupts are disabled. External interrupts and further control panel interrupts will be ignored. 

3) The Program Counter is set to FFF16. Thus the control panel interrupt service routine must be origined at control 
panel memory location FFF16. . 

4) The CPU will output 'CPSIT instead of MEMSEL for all memory accesses' (except as explained below!' 

When an AND, TAD, ISZ or DCA instruction is executed within a control panel interrupt service routine, if in­
direct addressing is specified; then control panel memory is accessed for the direct addressing machine cycle; 
however, main memory is accessed for the indirect addressing machine cycle - that is, for the machine cycle 
during which DATAF is high. We can reproduce Figure 13-12 for execution of an indirect addressing DCA in­
struction within a control panel interrupt service routine, as shown in Figure 13-25. Thus. you cannot indirectly 
address control panel memory. If you are going to indirectly access data within a control panel interrupt service routine. 
the address of the data can be held in control panel memory. but the data itself must be. held in main men-lOry. 

13-35 



IFETCH INDIRECT DCA 

Tl I, T2 T3 T4 T5 Tl T2 T3. T4 T5 T1 T2 T3 T4 T5 T6 

XTA ____________ ~~~ __________ , __________ _J 

LXMAR~~ ____________________ , __ __J 

\ I 
DATAF 

IFETCH--i 

DXO-DX,,~~ ____________ • _____ ~ __ ~-n~~~~ ______________ ~~ __ ~~ ______________ ~ ______ ~~~~ 

Instruction 'address (from ~ Instruction object code 
PC) input from control panel 

memory code 

CD MEMSEL pulses low but no data input occurs 

I=igure 13-25, IM6100 DCA Instruction in Control Panel Memory - Timing 
with Indir~-~~ddressing 

Data output to indirectly 
addressed main memory 
location 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
u 
~ 
en 
w 
~ 
U o 
en 
en 
c( 

o!I 
w 
Z 
a: 
o 
ID 
en o 
~ 
c( 
C 
c( 

@ 

You must leave all interrupts disabled while executing the control panel interrupt service routine. This is a prere­
quisite for the CPU to output CPSEL pulses instead of MEMSEL pulses. If you enable interrupts within a control panel 
interrupt service routine. you will immediately disable CPSEL and re-enable MEMSEL. and therefore program logic will 
exit the control panel service routine. When you execute any I/O instruction. you re-enable control panel interrupts and 
external interrupts. Thus. executing any I/O instruction will also cause you to exit thB control panel interrupt service 
routine. Therefore. you cannot use I/O instructions within a control panel interrupt service routine. 

In order to return from a control panel memory interrupt service routine, therefore, you simply re-enable inter­
rupts and execute an indirect jump via memory location O. The following two instructions will terminate the control 
panel interrupt service routine: 

ION 
JMPI a 

/ENABLEINTERRUPTS 
/RETURN FROM INTERRUPT 

When the ION instruction is executed. all interrupts are re-enabled; however. this does not happen until the following 
instruction ~bject code has been fetched. This instruction is a Jump Indirect. When .the direct address (000) is output. 
CPSEL is pulsed low; therefore the contents of control panel memory location a are-fetched. But when the' indirect ad­
dress which was fetched from control panel memory location 000 is output. MEMSEL is pulsed low; therefore we 
branch back to main memory for the next instruction fetch. ION disables CPSEL. so all future memory accesses select 
main memory. 

The RTF instruction is another I/O instruction which is frequ~ntly used (instead of ION) in the control panel interrupt 
service routine exit sequence. 

Note that a Reset enables all interrupts; therefore, if a reset occurs in the middle of a control panel interrupt ser­
vice routine, then when program execution restarts, it will restart out of main memory, as described earlier in 
this chapter for the reset operation. 

Table 13-1. IM6100 External Signal Sampling Priorities 

Priority Operation Associated Signals 

First (highest) Reset RESET 
Second Control panel interrupt request CPREO. CPSEL 
Third Halt RUN/HL T. RUN 
Fourth DMA DMAREO. DMAGNT 
Fifth (lowest) External interrupt request INTREO. INTGNT 

EXTERNAL CONTROL SIGNAL PRIORITIES 
Table 13-1 summarizes the sequence in which external control signals are sampled by the IM6100 CPU. As a 
consequence of these priorities. a RESET input will always be accepted and the IM61 00 CPU will always be reset. ir­
respective of what operations the CPU happens to be performing. 

A control panel interrupt request will be acknowledged unless the CPU is in the process of being reset. Thus. if the CPU 
is in a Halt state. the Halt state will be terminated and the CPU will enter a Run state while the control panel interrupt 
service routine is executed. If a Hold state DMA operation is in progress. then the DMA operation will be suspended for 
the duration of the control panel interrupt service routine. 

The third highest priority condition is the Halt state. This means that a Halt condition will be terminated to execute a 
control panel interrupt service routine; however. a Halt condition has priority over DMA. 

An external device interrupt request is acknowledged as the lowest priority external control input. Thus an external 
device's interrupt service routine will be slowed down by DMA logic. it will be stopped by a Halt and it will be inter­
rupted by a control panel interrupt service routine. 

IM6100 INSTRUCTION SET 
The IM6100 instruction set is unusual because of limitations imposed by the fact that every single instruction gener­
ates a single 12-bit object code. 

The IM6100 is very deficient in memory reference instructions; it has absolutely no immediate instructions. but it has 
an incredible wealth of register operate instructions and I/O instructions. Instructions are summarized in Table 13-2. 

Look first at the memory reference instructions. There is no simple memory read instruction or memory write instruc­
tion. The TAD instruction performs a binary add of memory with the Accumulator. leaving the result in the Accumula­
tor. In order to read the contents of a memory word. you must clear the Accumulator. and then add memory to the Ac­
cumulator. 

13-37 



DCA is a deposit and cle~r instruction whicH is close to a memory write. When this instruction is executed the contents 
of the Accumulator are written to memory and the Accumulator is then cleared. 

The only Boolean logic instructions provided AND the contents of memory with the Accumulator. You can also OR the I 

MQ register and Accumulator contents. If you require XOR. you must create it using the operations available. 

There is a single Jump instruction which uses absolute. paged direct or indirect addressing. There are no conditional 
Jump instructions; however. there are a wealth of conditional Skip instructions. In order to perform conditional 
branches. you must use skip logic. 

The total absence of immediate instructions results from the fact that no instructions have two words of object code. 
Where you would have used an immediate instruction. you must instead use the TAD instruction to add a constaht to 
the zeroed Accumulator. It is important to note that given the architecture of the IM61 00 CPU. immediate instructions 
are not very valuable - and the lack of them is neit consequential. Since you only have one Accumulator and no Data 
Counters. you do not need immediate instructions in order to load initial addresses or data. 

IM6100 1/0 instrUctions are also unusual. At one I:lxtreme. you could say that the IM6100 only has one 1/0 instruction. 
which outputs a 9-bit code oh the Data/Addresp Bus. which external logic can interpret in any way. In practice. the 
PDP-8 minicomputer interprets this 9-bit code as follows: 

" '0 9 8 6 4 3 ,. 0 ,--Sit No. 

I ' I ' I 0 I 1 .1 1 1 
--.-'\.. 

1 
1 1 I· f.-- IOT instruction 

........... - ........... ....I ..... .:.I-....I .......... ....I-J'-+-+ ...... -..... ~~: ___ I/O operation 

I...------------Device selected 

'--------------------'IOT instruc~ion 

If. you are designing a product from scratch. there is rio reason why you must use the 9-bit code output by an lOT in­
struction as illustrated above. If you are usirig existing PDP-8 software. you are forced to conform to the above lOT in­
struction interpretation. 

The most unusual feature of IM61 00110 instructions is the fact that external devices can talk back and control the CPU 
via the CO. CT. C2 and SKP control inputs which 'vve have already described. 

,~I\ " 
THE IM6100 BENCHMARK PROGRAM 
The IM6100 benchmark program may be illustrated as follows: 

CLA ICLEAR THE ACCUMULATOR' 
TAD 10BUF ILOAD 10 BUF BASE ADDRESS INTO 
DCA 8 IAUTO-INCREMENT LOCATION 
TAD TABLE ILOAD TABLE FIRST FREE BYTE ADDRESS 
DCA 9. IINTO AUTO-INCREMENT LOCATION 
TAD CNT ILOAD BYTE COUNT : 
CIA ICOMPLEMENT AC AND INCREMENT 
DCA INDEX ISAVE IN RAM. 

LOOP T ADI 8 ILOAD NEXT WORD FROM 10BUF 
DCAI 9 ISTORE IN NEXT FREE TABLE WORD 
ISZ INDEX IINCREMENT BYTE COUNT COMPLEMENT 
JMP LOOP IRETURN FOR MORE I 

TAD 9 IAT END RESTOR!; NEW TABLE FIRST 
DCA TABLE IFREE BYTE ADDRESS 

The benchmark program illustrated above uses auto-increment memory locations 8 and 9 to indirectly address 10BUF 
and TABLE. These two tables can be of any length within the constraints of the available 4096-word address space. 
Three other words in the base page are reserved to store the 10BUF base address. tHe address of the first free byte in 
TABLE and the byte count. An additional'memory word in the base page is used to store the complement of the byte 
count. This location is represented by the label INDEX. 

13-38 



Q 
w 

~ 
a: 
o 
0. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
(I) 
(I) 

ct 
a!I 
w 
Z 
a: 
o 
en 
(I) 

o 
~ 
ct 
Q 
ct 
@ 

The following symbols are used in Table 13-2. 

A Accumulator 

*ADDR 

CMND 

DEV 

EA 

IE 

L 

MO 

PC 

SR 

x<y> 
[ ] 

A 

v 

Addressing operands. * indicates indirect mode specified. ADDR may be zero page or current page address 
as described in the text. 

Three-bit I/O command. 

Six-bit Device address 

Effective Add ress generated by * AD DR operands. 

Interrupt Enable flipcflop 

Link status 

MO register 

Program Counter 

Switch register - a 12-bit register external to the CPU. 

The yth bit of the quantity x. For example, A<O> specifies the low bit of the Accumulator. 

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets, then 
the designated register's contents are specified. If a memory address is enclosed within the brackets, then 
the contents of the addressed memory location are specified. 

Logical AND 

Logical OR 

Data is transferred in the direction of the arrow. 

Under the heading of STATUS in Table 13-2, an X indicates that the Link is modified in the course of the instruction's 
execution. If there is no X, it means that the Link maintains the value it had before the instruction was executed. 

13-39 



Table 13-2. IM6100 Instruction Set Summary 

12-BIT STATUS 

TYPE MNEMONIC OPERAND(S) 
WORDS 

OPERATION PERFORMED 

C 

g lOT DEV,CMND 1 [DEV]-[CMND] 

Issue the command to the device. "" 

> >w [EA]-[A], a: a:(,J DCA *ADDR 
oct OZ [A]-O 
~ ~~ 
a: WW Deposit the Accumulator in memory; then clear Accumulator. 
a. ~:!; 

a: 

W ... AND *ADDR 1 [A]-[A] A [EA] 
oct 
a: AND Accumulator with memory. 
W 
a. TAD *ADDR 1 X [A]-[A]+ [EA] 
0 
> Add memory to Accumulator. 
a:. 

ISZ *ADDR [EA]-[EA] + 1 
0 1 
~ If [EA] = 0; skip 
W 

~ Increment memory and skip if zero." 

JMP *ADDR [PC]-EA 
a. Branch unconditional. 
~ 
;:) JMS *ADDR [EA]-[PC]+ 1 .., 

[PC]-EA+ 1 

Jump to ·subroutine unconditional. 

lAC 1 X [A]-[AJ+l 

Increment Accumulator. 

RAL 1 X lo_;~;:t*lliO ,J 
W 

Rotate Accum"ulator ieft one bit through Link. ... 
~ 

oct 

L'~ ,--,--. a: 0 
W RTL 1 X a. 
0 I I I I a: o I11111111 W ... I~ '-" '--'" ~t III 
5 
W 
a: 

Rotate Accumulator left two bits through Link. 

RAR 1 X lD--i±+fit~i;£t,J 
Rotate accumulator right one bit through Link. 



TYPE MNEMONIC 

RTR 

w BSW ~ 

'" C a: 
w w 
Q. 

~ 0 z 
a: ~ w Z ~ 
II) 0 
(; g 
w 
a: 

CMA 

w 
1. CIA 

CLA 

CLA lAC 

STA 

SNL 

SZL 
Z 
0 SZA ~ 
C z-

SNA 0 
u 
z 

SZA SNL 0 
:I: 
U 
Z 

'" 
SNA SZL 

a: 
cc 

SMA 

SPA 

OPERAND(S) 
12·81T 

WORDS 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 13-2. IM6100 Instruction Set Summary (Continued) 

STATUS 

C 

x 

OPERATION PERFORMED 

Rotate Accumulator right two bits through Link. 

[A) 

Swap the two halves of the Accumulator. 

[A)-fA) 

Complement Accumulator contents. 
[A)-l'Ai+ 1 

Negate (twos complement) Accumulator contents. (same as CMA lAC) 
[A)-O 

Clear Accumulator. 
[A)-l 

Clear, th!ln increment Accumulator. 

[A)-FFF,. 
Set Accumulator bits to all ones. (same as CLA CMA) 

If [LJo'l; [PC)-[PC)+2 

Skip on Link set. 
If [LJ=O; [pC)-[PC)+2 

Skip on Link reset. 
If [A)=O; [pC)-[PC)+2 

Skip on Accumulator zero. 
If [A);o!O; [pC]-[PC]+2 

Skip on Accumulator nonzero. 
If [A]=O or [LJ=l; [PC)-[PC]+2 

Skip if either Accumulator zero or Link set. 
If [A);4) and [LJ=O; [PC)-[PC]+2-

Skip if Accumulator nonzero and Link reset. 

If A<ll >=1; [PC)-[PC)+2 

Skip if Accumulator negative. 
IfA<ll>=O; [PC]-[PC)+2 

Skip if Accumulator positive or zero. 



Table 13-2. IM6100 Instruction Set Summary (Continued) 

12·BIT STATUS 

TYPE MNEMONIC OPERAND(S) 
WORDS 

OPERATION PERFORMED 

C 

SMA SNL 1 IfA<ll>=lor [L1=l;then [PC]-[PC]+2 
Z 
0 Skip if Accumulator negative or Link set. 
~ 
C C SPA SZL 1 If A< 11> = 0 and [L1=O; then [PC]-[PC] + 2 

z Skip if Accumulator positive and Link reset. 
0 W 

0 ~ 1 If [A] ~O; then [PC]-[PC]+2 z SMA SZA 
Z ~ Skip if Accumulator zero or negative. 
0 Z 
X 0 SPA SNA 1 If [A] >0; then [PC]-[PC]+2 
0 ~ Z Skip if Accumulator positive. 
< 1 If [A] ~O or [L1'1 a: SMA SZA SNL 
In Skip if Accumulator less than or equal to zero or if Link set. 

SPA SNA SZL 1 If [A] > 0 and L"O 

Skip if Accumulator positive and Link reset. 
. . 

SZA CLA 1 If [A]"O; [pC]-[PC]+2. 

Z 
[A]-O 

0 SNA CLA 1 Skip on Accumulator zero. Clear Accumulator. 
~ 
C W 

If [A]tO; [pC]-[PC]+2. 

Z ~ SMA CLA 1 [A]-O 
0 < 0 a: Skip on Accumulator nonzero. Clear Accumulator. 
Z W 

Q. SPA CLA 1 If [A] <0; [PC]-[PC]+2. 
0 0 
X c [A]-O 
0 z Skip on Accumulator negative. Clear Accumulator. Z < < a: If [A] ;;':0; [PC]-[PC]+2. 
In [A]-O 

Skip on Accumulator greater than or equal zero. Clear Accumulator. 

LAS 1 [A]-[SR] 

Load Accumulator from Switch register (same as CLA OSR). 

MOL 1 [MO]-[A] 

[A]-O 

Load MO register from Accumulator. Clear Accumulator. 

W SWP 1 [A]-[MO] 
> 

ffi~ 
Exchange Accumulator and MO (same as MOA MOll. 

~ffi CAM 1 [A]-O 

,,~ 
[MO]-O 

WI/) Clear Accumulator and MO (same as CLA MOL). a:-

" ACL 1 [A]-[MO] W 
a: Load MO into Accumulator (same as CLA MOAI. 

CLA SWP 
1 [Al;"'O~-' ... 

[A]-[MO] 

Clear Acc'!mulator; then swap Accumulator imd MO. 



© ADAM OSBORNE & ASSOCIATES, INCORPORATED 

Table 13-2. IM6100 Instruction Set Summary (Continue9) 

·12·BIT STATUS 
TYPE MNEMONIC OPERANDISI 

WORDS 
OPERATION PERFORMED 

C 

.c: a: w OSR 1 [A]-[A] v [SA] 
ww .. .... ~ OR Accumulator with Switch register . Cl)CI)a: 

SS~ MQA 1 [A]-[A]V [MO] 

a: a:. 0 OR Accumulator with MO . 

Cll RAl 1 X . [L]-O 

[G.-it-;;"'.,. • .,.;;!J c 

Clear Link. then rotate Accumulator left one bit through Link. 

Cll RTl 1 X G-'" ~~~~c - II I I~II I au 1 
w .. 
ct 

I~'-""--' 
a: 
w 

Clear Link. then rotate Accumulator left two bits through Link. D. 
0 
II: 
w 

Cll RAR 1 X [L]-O .. CI) 
C; l 11 0 
w 

~~I++-w.:::::==~ 
a: 
0 
Z 
ct 
in 
:::I .. 
ct Clear Link. then rotate Accumulator right one bit through Link . .. CI) 

Cll RTR 1 X [Ll-o 
~ 

l 11~~~~ 10 
~ II I U I I II ~ H] 
'--+~~ '-" -......J '-" ~ 

Clear Link. then rotate Accumulator right two bits through Link. 

CLA Cll 1 [A]-O 

[L]-O 

Clear Accumulator and Link. 
GTl 1 [A]-O 

[A<O>]-[L] 

Oear Accumulator. then rotate Link into low bit (same as C.~ RAll. 



Table 13-2. IM6100 Instruction Set Summary (Continued) 

12-BIT STATUS 

TYPE MNEMONIC OPERAND IS) 
WORDS. 

OPERATION PERFORMED 

C 

:r 
u [PC]-[PC] +2 z SKP t 
ct Skip next instru"ctiol1- _ II: 
III 

Execution of any of the following instructions will reset'INTGNT. 

SKON t If [IE]=t; [PC]-[PC]+2 

If interrupts enabled; skip next instruction. 

ION t [IE]-t 

Enable interrupts. 

10F t [IE]-O 

Disable interrupts . ... 
SRO t Skip next instruction if Interrupt Request bus is low. Q. 

:l 
II: GTF t A<tl> - [Ll 
II: 
w A <9 > - iNTRffi ... 
~ . A<7> -[IE] 

Get flags. 

RTF. t X [Ll-A<tt >; [IE]-t 

Return Link and enable interrupts after the execution of the next sequential instruction. 

SGT t I/O device logic determines operation 

CAF t X [Ll-O 
[A]-O 

[IE]-O 

Clear all flags. 

CMl t X [Ll-fTI 
(/) . Complement Link. 
:l ... Cll t X [Ll-O 
ct .... Reset Link_ 
(/) 

STl t X [Ll-t 

Set Link. 

HlT t Halt 

NOP t No Operation 

I 



c 
w 

~ 
a: o 
Q. 
a: 
o 
(,J 

~ 
iii 
w 
l­
e( 

g 
(I) 
(I) 
e( 

a1J 
w 
Z 
a: 
o 
In 
(I) 

o 
~ 
e( 
c 
e( 

@ 

The following- symbols are used in Table 13-3: 

a 
b 
ccccccc 
dddddd 
eee 

One bit which determines if indirect addressing is used. 
One- bit which determines if current or zero page is used. 
Seven-bit page address. 
Six-bit device code. 
Three-bit I/O command. 

Most instructions are described in this manner: 

mnemonic xxx x 
yyy 

where xxxx is the octal object code associated with the mnemonic and yyy is the hexadecimal object code associated 
with the mnemonic. IM6100 literature uses octal notation. 

Some instructions have this form in the input clock cycles column: 

albic 

a is the number of cycles required using direct addressing. 
b is the number of cycles required using indirect addressing. 
c is the number of cycles required using auto-indexed addres.sing. 

13-45 



Table 13-3. IM6100 Instruction Set Object Codes 

INPUT 
12-BIT 

INPUT 
12-BIT 

CLOCK INSTRUCTION OBJECT CODE CLOCK INSTRUCTION OBJECT CODE 
WORDS 

CYCLES 
WORDS 

CYCLES 

ACl 7701 1 20 RTF 6005 1 34 

FCl C05 

AND "ADDR OOOabccccccc 1 20/30/32 RTl 7006 1 30 

BSW 7002 1 30 E06 

E02 RTR 7012 1 30 

CAF 6007 1 34 EOA 

C07 SGT 6006 1 34 

CAM 7621 1 20 C06 

F91 SKON 6000 1 34 

CIA 7041 1 20 coo 
E21 SKP 7410 1 20 

CLA 7200 1 20 F08 

E80 SMA 7500 1 20 

CLA Cll' 7300 1 20 F40 

ECO SMA ClA 7700 1 20 

CLA lAC 7201 1 20 FCO 

E81 SMA SNl 7520 1 20 

CLA SWP 7721 1 20 F50 

FDl SMA SZA 7540 1 20 

Cll 7100 1 20 F60 

E40 SMA SZA SNl 7560 1 20 

Cll RAl 7104 1 30 F70 

E44 SNA 7450 1 20 

Cll RAR 7110 1 30 F28 

E48 SNA CLA 7650 1 20 

Cll RTl 7106 1 30 FA8 

E46 SNA SZl 7470 1 20 

Cll RTR 7112 1 30 F38 

E4A SNl 7420 1 20 

CMA 7040 1 20 FlO 

E20 SPA 7510 1 20 

CMl 7020 1 20 F48 

El0 SPA CLA 7710 1 20 

DCA "ADDR 011 abccccccc 1 22/32/34 FC8 

GTF 6004 1 34 SPA SNA 7550 1 20 

C04 F68 

GTl 7204 1 20 SPA SNA SZl 7570 1 20 

E84 F78 

HlT 7402 1 20 SPA SZl 7530 1 20 

F02 F58 
lAC 7001 1 20 SRQ 6003 1 34 

EOl C03 

IOF 6002 1 34 STA 7240 1 20 

CO2 EAO 
ION 6001 1 34 STl 7120 1 20 

COl E50 

lOT DEV,CMND 110ddddddeee 1 20 SWP 7521 1 20 

ISZ "ADDR 010abccccccc 1 20 F51 

JMP "ADDR 101 abccccccc 1 20/30/32 SZA 7440 1 20 

JMS "ADDR l00abccccccc 1 22/32/34 F20 

LAS 7604 1 30 SZA CLA 7640 1 20 

F84 FAO 

MQA 7501 1 20 SZA SNl 7460 1 20 

F41 F30 

MQl 7421 1 20 SZl 7430 1 20 

Fll F18 
NOP 7000 1 20 TAD "ADDR 00 1 abccccccc 1 20/30/32 

EOO 
OSR 7404 1 30 

F04 
RAl 7004 1 30 

E04 
RAR 7010 1 30 

I 

E08 

13-46 



o 
w 
!;t 
a: o 
11. 
a: 
o 
CJ 
~ 
en w 
!;t 
g 
en 
en 
c( 

Gil 
w 
Z 
a: 
o 
CO 
en o 
:i! 
c( 
Q 
c( 

© 

SOME SPECIAL IM6100 HARDWARE CONSIDERATIONS 

The apparently complex System Bus of the IM6100 has some non-obvious advantages. The wealth C?f bus sig­
nals makes it very easy to generate System Busses compatible with other micr9processors and to circumvent 
certain limitations of the IM6100 instruction set. 

IMPLEMENTING A HARDWARE STACK 
Consider first the problem of the Jump-to-Subroutine instruction, which we described earlier in this chapter. Recall 
thai the IM61 00 Jump-to-Subroutine instruction cannot work when programs are stored in read-only merrl6ry; because 
the subroutine return address is stored in the first word of the subroutine - which will be a read-onlY. memory location. 
We can circumvent this pr9blem by creating a special read/write memory stack which is adaressed by an up-
down counter. Appropriate logic is illustrated in Figure 13-28. . 

Before examining the logic in this figure. let us look at what we are trying to accomplish. 

Remember. a Jump-to-Subroutine instruction contains a write machine cycle during which the Program Gounter cqn­
tents are stored in the first memory location of the subroutine. Timing for execution of the Jump-to-Subroutine in­
struction with indirect addressing, along with the logic that accompanies the instruction's execution, is iilustr­
ated in Figure 13-26. Timing for direct addressing or auto-increment addressing variations of the Jump-to-Subroutine 
instruction can be readily deduced from Figures 13-12 and 13-13. 

. ..' . . ./ 

We are going to identify the Jump~to-Subroutine object code; then, for the rest of the Jump-to-SJbroutine in­
struction's execution, we will deflect memory write accesses to an external read/write memory stack. Timing 
and an appropriate event sequence are illustrated in Figure 13-27. Figure 13-28 illustrates the logic used to im­
plement timing in Figure 13-27. Figure 13-28 also shows the logic used to return from subroutines; we will de­
scribe this later. 

In Figures 13-27 and i 3-28 we Lise a 7474 D-type flip-flop to generate a low true select signal (GSEll. This select signal 
is used to differentiate between stack and normal memory accesses; the trailing low-to-high transition of this select 
signal is also used to increment the up-down counter. which generates the stack address. Thus. any "write to stack" 
operation will be a "write and then increment address" operation. The write select signal GSEL is generated low true by 
decoding 100 on Datal Address Bus lines 11. 10 and 9. while the Datal Address Bus is carrying an instruction object 
code. We can identify this condition by the combination of IFETCH high and XTC high. This combination geHerates the 
DIN input to the 7474 flip-flop. which is clocked by DCLK. the AND of MEMSEL and IFETCH. Since the low~to-high 
clock transition is active. it is very important that data be stable on the Datal Address Bus until well after MEMSEL has 
made its low-to-high transition. This may be illustrated as follows: 

XTC 

13-47 



'f 
~ 
00 

T1 

CLOCK 

XTA 

XTB~ 

XTC --1 
LXMAR~ 

MEMSEL 

IFETCH 

\ 

T2 

INSTRUCTION 
FETCH 

T3 

rl 

\ 

I 

T4 T5 T1 

FETCH SUBROUTINE 
ADDRESS 

T2 T3 T4 T5 T1 

WRITE RETURN ADDRESS,. 
TO FIRST SUBROUTINE WORD 

T2 T3 T4 T5 T6 

DXO_DX11~~i ~._"""'" 
~~------~----------------~~--------------------------~----~ 

Output address of JMS Input JMS instruction Output address where· 
instruction object code .. Bits 11. 10 subroutine starting ad-

and 9 are 100 dress is stored 

Input subroutine starting 
address as data. Output 
as an address 

Figure 13-26. IM6100 Jump-to-Subroutine Instruction Timing 
with Indirect Addressing 

Write Program Counter 
contents; as data. to first 
word of the subroutine 



CLOCK 

XTA 

XTB 

XTC 

LXMAR 

DXO - DXll 

IFETCH 

DCLK 

DIN 

QSEL 

T1 

INSTRUCTION 
FETCH 

T2 : TJ 

Output, address of JMS 
instruction 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

T4 T5 T1 

. FETCH SUBROUTINE 
ADDRESS 

I 

T2 TJ : T4 T5 Tl 

WRITE RETURN ADDRESS 
TO FIRST SUBROUTINE WORD 

I 

T2 : TJ T4 T5 T6 

Input JMS instruction 
object code. Bits 11. 10 
and 9 are 100 so DIN 
pulses low and QSEL is 
clocked low 

Output address where 
subroutine starting ad­
dress is stored 

Write Program .Counter' Increment 

main memory. Output as 
an address 

contents. as data. to cur- counter. 
rent Stack location. 

Figure 13-27. IM6100 Jump-to-Subroutine Instruction Timing 
with Stack Access Logic 

Tl 



XTC 
Low-orde r DXO --. . 

DX9 _ . 
DX10 .: 

erDXll _ High-ord 
I FETCH 
RESET 

LXMAR 
MEMSEL 

QSEL 

XTC 

><TS 

XTA 

... 

t ,,-

DCLK 

4 

, 

, ... I, 
()O 

DSEL 
~ 

ADDRESS .. to Stack logic below 
SELECT -

'If Strobe DSEt down count ... r on start of select ,_ 
Up count on ' true 

CLR end 'of Q select 
"--- D Q ... 
DIN QSEL 

-, 
Address 

UP-DOWN ....... STACK 
C 7474 

COUNTER ~ RAM 
Input 

Q 

~ ~L l~ 

"'" :- ..r 
.Ii t.....r 

~ "'" .r I~ ~ 

..J, Write 
;::r n Select 
L .J (low true) 

I 
Read 

'-' ~ Select 

"-(lowtrue) 

Figure 13-28. Using an External Stack Memory to Avoid 
IM6100 JMS ROM Problems 

13-50 

EXMSEL 

.~ 

, 

Iffi 

-: ... 
• .-
';" 

"" 
!" 
~' 

=-':. -

MEMS 
non-St 
Memo 

---ELto 

ack 
ry . . 



Q 
w 

~ 
a: o 
D. 
a: 
o 
u 
~ 
en 
w 

~ 
g 
en 
en 
c:( 

011 
w 
Z 
a: o 
al 
en o 
~ 
c:( 
Q 
c:( 

@ 

Once OSEL has gone low. it will remain low until the next instruction fetch. DCLK will make its next low-to-high transi­
tion at the beginning of T1 for the next instruction fetch machine cycle. at which time DIN will be high again. OSEL will 
then go high. which is what we require. That is to say. QSEL remains low only for the non-instruction fetch machine cy­
cles of the Jump-to-Subroutine instruction. 

While OSEL is low. we want to divert all memory write select pulses from MEMSEL to the stack. We do this by generat­
ing EXMSEL for standard memory selects. EXMSEL is generated as the OR of MEMSEL with two conditioning inputs. 
The truth table for EXMSEL may be illustrated as follows: 

DESL XTC OSEL EXMSEL 

L L L MEMSEL 
. L L H 'fViEMSE[ 

L H L MEMSEL 
L H H H 
H L L H 
H L H . MEMSEL 
H H L MEMSEL 
H H H MEMSEL 

Condition 

Will never arise 
Return from subroutine: non-read part of machine cycle 
Will never arise 
Return from subroutine: read part of machine cycle 
JMS. write part of machine cycle 
Normal machine cycle 
JMS. read part of machine cycle 
Normal machine cycle 

A memory read that implements indirect addressing for a JMS instruction will access normal memory; 
however, you cannot use a Jump-to-Subroutine instruction with auto-increment memory addressing, since the 
incremented address will be written back to the stack instead of being written to the auto-increment location in 
Page O. 

A return from subroutine is executed via a Jump Indirect instruction. The Jump Indirect instruction in a normal 
PDP-8E programwill reference the first subroutine word as the location in which the indirect address is stored. For our 
adaptation. we must select one memory address that is referenced by all Jump Indirect instructions that return from 
subroutines. This may be illustrated as follows: 

IM6100 Subroutine PDP-8E Subroutine 

/PDP-8E stores subroutine return address at START 
/IM6100 does not use this logic 
START JMP ·+1 START 

/Return from subroutine 
JMP I FFF JMPI START 

We have shown the address FFF16 being used as the single address which will always be referenced by Jump Indirect 
ihstructions which are returning from an IM61 00 subroutine. Our logic in Figure 13-28 will decode the address selected 
(in this case FFF16) using the LXMAR high pulse as a strobe. Whenever the required address is detected while LXMAR 
is high. DSEL will be output low. The leading high-to-Iow transition of DSEL must be used as a down count trigger for 
the up-down counter. Thus. all "read from stack" operations will be "decrement and then read" operations. The DSEL 
signal will remain low until another address is detected - that is to say. until the next occurrence of a high LXMAR 
pulse with another address on the Data/Address Bus. While DSEL is low. all memory read operations will be deflected 
to the stack and away from normal memory. See the truth table given earlier. and the logic of Figure 13-28 for verifica-
tion of this logic. . . 

The net effect of Figure 13-28 logic is that all subroutine return addresses will be stored in an external stack. 
IM6100 and PDP-8E Jump-to-Subroutine instructions will be identical. There will, however, be differences in 
the Return-from-Subroutine instructions within an.IM6100 program as compared to a PDP-8E program. A 
PDP-8E program which is to run on an IM6100 must have all Return-from-Subroutine Jump Indirect instructions 
modified to access the single memory location which has been assigned to identify the external stack. 

SUPPORT DEVICES THAT MAY BE USED WITH THE IM6100 
Since the 8080A System Bus is the most useful, in that it supports the most readily available support devices, 
we w'i11 begin by looking at how 8080A-compatible signals may be generated from the standard IM6100 
System Bus. Figure 13-29 provides necessary bus conversion logic. The bus conversion is quite simple. 

The most complex portion of Figur.e 13-29 is the logic which demultiplexes the Address and Data Busses. A 12-bit ad­
dress buffer must be present. using LXMAR as a latching strobe. This buffer will create the Address Bus. while DXO -
DX11 otherwise implements the Data Bus. Remaining control signals are generated using simple gates. Note that no 

13-51 



attempt is made to generate signals that reproduce aOaOA clock signals or exact machine cycle timing. Since the 
aOaOA System Bus is asynchronous. this presents no problem. So long as control signals have the required pulse 
widths and logic levels. they will.work with aOaOA support devices. Thus an aOaOA System Busas illustrated in Figure 
13-29 can be used in a microcomputer system where the IM6100 is the CPU and aOaOA support devices provide addi­
tional logic: however. Figure 13-29 .does not generate a System Bus which could be used in a microcomputer system 
where an IM6100 and an aOaOAwere communicating with each other: For thoseaOaOA support devices that do need 
a clock signal. one can be derived from XTA,.'XTB and/or XTC. . . . 

IM6100 
SIGNALS 

LXMAR 

OXO 

OXll 

-. . 
-' -

.. 
· '.~. · • • • · · · · r---+ 

. ,LATCH 

-· · 12-Bit • · . latched · · Buffer. · • · · -.. 
-· .. · .--!"" 

8080A 
SIGNALS 

AO 

All 

OBO 

OB11 

XTB------------------~~--_a~--------~-­

XTC--------~------~~r-----~----~~~ ~--------------~ .. MEMR 

MEMSEl------------------~~--~ ~----~ 

~--------------_1~MEMW 

kr--------------~I/OR 

~--------~--------~----~~-----e 

D-~------------~ I/OW 

WAIT------------------------------------~~--------------~~ ... · READY 

INTREQ c:{;> ~ IRQ 

INTGNT (>0 .. INTA 

OMAREQ ~ __ ----------~-----------------::... :~~:N 
·OMAGNT------------------------~----------~----~------------~~~HlOA 

RESET-------------------------~~ .. ~------------------------------~ .... RESET 

Figure 13-29. IM6100 System B~s Con~erted to an aOaOA­
Compatible System Bus· 

13-52 



c 
w 
!;( 
a:: o 
D. a:: 
o 
o 
~ 
iii 
w 
!;( 
g 
CI) 
CI) 

ct 
cIS 
w 
z 
a:: 
o 
m 
CI) 

o 
~ 
ct 
C 
oCt 

@ 

. Generating 8085-compatible signals from the IM6100 bus is not so straightforward. This is because the 8085 
generates state signals SO and S 1. and an 10/Memory discriminator (lO/M) whose levels must be specified for the entire 
duration of read and write machine cycles that access memory or I/O devices. The IM61 00 generates RUN and IFETCH 
signals that extend for the duration of a machine cycle. but memory or I/O access control signals are not generated in 
this fashion. If you look at timing for the 8085 support devices - the 8155, the 8355 and the 8755 - it would 
appear that the IM6100 System Bus can generate adequate control inputs for these support devices. However, 
we have no experimental verification of this fact. 

We do not recommend using MC6800 or MCS6500 support devices with the IM6100 because of the peculiar 
synchronous nature of the MC6800 and MCS6500 microcomputer systems. It would be very hard to make IM61 00 
machine cycle timing conform to MC6800 or MCS6500 machine cycle timing. Moreover. MC6800 and MCS6500 sup­
port devices are not attractive enough to make this logic exercise worthwhile. 

THE IM6101 PARALLEL INTERFACE ELEMENT (PIE) 

The IM61 00 CPU, being a copy of the PDP-8 minicomputer, has a number of features which are not well suited 
to the average microcomputer application; but that is no fault of the IM6100 chip designer - his product was 
specified for him. The IM61 01, on the other hand, is a well thought out part that goes a long way towards roc­
tifying the problems that you are likely to encounter if you try to design logic around the IM6100 CPU. 

The IM6101 is best visualized as a control signal interface on the IM6100 System Bus, connecting an IM6100 
CPU and its support devices. This concept may be illustrated as'follows: . 

... Data/ Address Bus ... 
~ ) 

... 
-< > -< > P' 

"< ~ -< >' 
Memory devices 

IM6l00 
and typical 

CPU 
microprocessor 

I/O support 

IM6l0l devices 

Complex PIE 

control 

A 
signals .. ... Simple control signals ... 

) 
... r .... r 

Conceptually. what is important about the illustration above is the fact that the IM61 01 does not lie on the address or 
data path of the microcomputer system. Like a typical DMA controller. the IM61 01 generates and receives control sig­
nals. while memory and I/O devices communicate directly with the System, Data and Address Busses. 

Functionally, Figure 13~1 illustrates that part of our general microcomputer system logic which is implemented 
on the IM6101 Parallel Interface Element (PIE). 

The IM6101. like all members of the IM6100 family. is fabricated using CMOS technology: it requires a single power 
supply that may range between +4V and + 1 OV and is packaged as a 40-pin DIP. 

13-53' 



VCC 
INTGNT 

PRIN 

SENSE4 

SENSE3 

SENSE2 

SENSE1 

SEL3 

SEL4 

LXMAR 

SEL5 

SEL6 

XTC 

SEL7 

(DX11) DXO 

(DX10) DX1 

(DX9) DX2 

(DX8) DX3 

(DX7) DX4 

(DX6) DX5 

Pin Name 

DXO - DX11 
LXMAR. 5EVSE[ XTC 
SKP/INTREO 
INTGNT 
CT. C2 
READ 1. READ2 
WRITE1. WRITE2 
SEL3 - SEL7 
FLAG 1 - FLAG4 
SENSE 1 - SENSE4 
PRIN 
POUT 
VCC. GND 

1 40 

2 39 
3 38 
4 37 

5 36 
6 35 
7 34 

8 33 

9 32 
10 IM6101 31 
11 PIE 30 
12 29 
13 28 
14 27 
15 26 
16 25 
17 24 
18 23 
19 22 
20 21 

Description 

Data and Address Bus 
Control signals from CPU 
CPU control/interrupt request 
Interrupt acknowledge 
CPU control signals 
Read pulse lines 
Write pulse lines 
Individual IM6101 select 
Control flags 
Status lines 
Priority in 
Priority out 
Power and Ground 

POUT 

SKP/INTREO 

WRITE2 

~ 
WRITE1 

READ1 
C2 

CT 
FLAG 1 

FLAG2 

FLAG3 

FLAG4 

DEVSEL 

GND 

DX11 (DXO) 

DX10(DX1) 

DX9 (DX2) 

DX8 (DX3) 

DX7 (DX4) 

DX6 (DX5) 

Type 

Bidirectional 
Input 
Output. open drain 
Input 
Output. open drain 
Output 
Output 
Input 
Output 
Input 
Input 
Output 

Figure 13-30. IM6101 Parallel Interface Element Signals and Pin Assignments 

13-54 



Q 
w 

!i 
a: 
o 
0. 
a: 
o 
o 
~ 
en 
w 

!i g 
CI) 
CI) 

~ 
aIS 
w 
Z 
a: o 
cg 
CI) 

o 
~ 
~ 
Q 
~ 

@ 

IM6100 BUS 

Flag Outputs 

~ 
.- N M ~ 
C) C) C) C) 

~ ~ ~ ~ 

I/O 
INTERFACE 

t---_.WRITE1 
t---_.WRtTE2 
1----.,....·REAQl 
1------11-. READ2 

1-------4 

IM6100 
INTERFACE 

LOGIC 

INTERRUPT 
LOGIC 

w ~ &J ~ 
CI) CI) CI) CI) 

14~---SEL3 

.... ~---SEL4 

.... ~---SEL5 

..... ~---SEL6 

.... t----SEL7 

.... t----PRIN 

1----_ .. POUT 

z z z z w w w w 

~ 
Sense/Interrupt 
Request Inputs 

Figure 13-31. Logic of thelM6101 PIE 

IM6101 PARALLEL INTERFACE ELEMENT PINS AND SIGNALS 

} Write control pulses 

} Read control pulses 

Figure 13-30 illustrates the pins and signals of the IM6101 Parallel Interface Element. Figure 13-31 illustrates 
the important logic components of the IM6101. 

We will begin by summarizing IM6101 signals. 

The IM6101 communicates directly with the IM6100 CPU via the Data/Address Bus (DXO - DX11) together with the 
three control signals LXMAR. DEVSEL and XTC. As per our discussion of the IM61 00 Data/Address Bus. remember that 
we number bus lines. register bits and word bits in an opposite sense to Intersil literature. Thus. in Figure 13-30. 
Data/Address Bus lirie signals are shown as they appear in Intersilliterature. with our equivalents. in brackets. adjacent 
to them. 

Interrupt requests are transmitted to the CPU via INTREO (which shares a pin with SKPl. The IM6101 receives in 
response the CPU interrupt acknowledge signal INTGNT. 

The CPU communicates with the IM6101 PIE via lOT instructions. The IM6101 therefore returns CT. C2 and SKP as I/O 
controls. Recall that IM61 00 I/O logic demands that the selected I/O device return I/O control signals which specify the 
I/O operations to occur. The IM61 01 does not return CO; this signal must be generated externally. SKP shares a pin 
with INTREQ. 

The fact that INTREO and SKP outputs share a pin presents no problem since the two signals are active at different 
times in any machine cycle. You could. if you wish. separate the two signals via the following logic: ' 

""Kiii7iiiDEjiV'RSFi'E1L'~~~~~~~~~~~~~~Eb:=' . I-______ INTREQ 
S~P/INTREQ -

SKP 

13-55 



There is. in fact. no need for SKP/INTREQ to be separated as illustrated above. The CPU distinguishes the two signals 
on the single line via instruction timing. 

External devices capable of transmitting data to or .from the IM6100 CPU use the IM6101 READ1, READ2, 
WRITE1 and WRITE2 control outputs as read/write strobes and device select signals. That is to say. each of these 
signals will connect to a single device. A READ signal pulse will cause data to transfer from the connected device to the 
IM61 00 CPU. A WRITE pulse will cause data to flow from the CPU to the connected device. This may be illustrated as 
follows: 

JI 
Data/ Address Bus ... 

) .. . 
. -< }-

:~ 
.. 

'< ~ 
.. READ .. ..... 

IM6100 I···.,'······· 

CPU 
Control Signals 

A -"- IM6101 I/O ) .. .,. PIE Device 

.WRITE .. 

t, t t ' 
The IM61 01 has five select inputs, SEL3 - SEL7.lnter~allogic compares the levels at these five IM6101 
signals with five I/O instruction object code bit levels (described in detail later) in order to deter- SELECT 
mine whether the IM61 01 is or is not selected when an I/O instruction is being executed. In other LOGIC' 
words. the five signals SEL3 - SELl allow you to specifya unique device codefor the IM6101 by 
tying signals selectively to power or ground. A device code of 0 is not allowed. since special internal CPU I/O instruc­
tions use this device code. The five select lines SEL3 -.SELl therefore allow 31 uniquedevice codes to be specified for. 
IM6101 devices. . . .' 

The IM61 01 PIE provides eight any-purpose control signals. FLAG 1 - FLAG4 constitute fou r flag outputs which may 
be set or reset under program control. SENSE1 - SENSE4 represent four status inputs which may optionally be used as 
interrupt request lines. . . 

When more than one IM6101 PIE is present in a microcompute~ s;stem. the PRIN and POUT signals allo~ daisy-
chained priority interrupt logic to be generate~. For a discussion of daisy-chain logic. see Volume 1: . 

Figure 13-36 illustrates a large IM6100 microcomputer system that includes more than one IM6101 PIE. 

IM6101 FUNCTIONAL LOGIC 
You access an IM6101 Parallel Interface Element using I/O instructions; this is how the 
IM6101 will interpret an I/O instruction code as it appears on the Data/Address Bus: 

IM6101 
PROGRAMMING 

I/O instructiOn} '.' 

-L. i
r-------------Device Select Standard PDP-8 Interpretation 

_ . . r-----Control Code . --.... ~ ,--.... '''~ 
11 10 9 8 7 6 5 4 3 2 o 4--BitNo. 

11 11 I 0 I I I I I I I I I I~I/O Instruction 

'-'~~~L.-' -Control Code } t· ~ .. Devloe S~"t 'M6,O, ""","'''''0' ... --------------------1/0 Instruction 



c 
w 

~ 
a: 
o a.. 
a: 
o 
u 
~ 
en 
w ... 
c( 

u o 
CI) 
CI) 
c( 

ail 
w 
2 
a: 
o 
CD 
CI) 

o 
~ 
c( 
C 
c( 

@ 

Note that the IM6101 and the PDP-8 differ in their interpretation of the I/O instruction code. 

IM6101 logic identifies an I/O instruction object code by examining Data/Address Bus bits 9,'10 and 11 during 
an IOTA machine cycle. Timing is illustrated in Figure 13-16. 

Now. if you look at Figure 13-16 and then examine the signals input to the IM61 01. there appears to be a possibility for 
confusion. The only control inputs received by, the IM61 01 are LXMAR."'E5't"VSEI and XTC. What is to stop the IM61 01 
from being confused by an address output during the instruction fetch machine cycle? LXMAR will be high at this 
time. An address can certainly look like an I/O instruction object code: in fact. any address in the range C 1 016 through 
DFF16 will look like an I/O instruction object code. Since the IM61 01 does not receive the IFETCH signal as an input. it 
cannot identify an instruction fetch machine cycle. There is no problem. however. because the PIE detects the subse­
quent DEVSEL low pulse - ~r lack of low pulse. Indeed. an address in the range mentioned above. output during an in­
struction fet'ch machine cycle. may match an IM61 01 selection code: however. without the subsequent 10w15EVSTI. 
pulse. the IM6101 will not respond to this selection. Since DEVSEL is pulsed low during IOTA. but not during'an in-
struction fetch machine cycle. possible problems of ambiguity are resolved. ' 

In order to determine whether or not it is selected. IM6101 logic compares I/O instruction object code bits 8 through 4 
with select inputs SEL3 through SEL7. as described earlier. ' 

Here is how the bits are compared: 

o 2 3 4 6 8 9 10 11 .- OX line (lntersil numbe~ing) 

11 10 9 8 6 5 4 3 2 1 0"'- OX line (our numbering) 

"'1-1 .,..1-1 .... I-O..,I-......-.....-..,........,......,I .... c-. .,..I-C.,..I-C .... I-C .... I~ I/O Instruction 

3 4 5 6 7 ~'-.SEL inputs 

+L.. _____ Control Code T I/O Instruction 

The low-order four bits of the 1/0 instruction object code are used by IM6101 logic to generate 16 s'pecific I/O 
instructions, which are defined in Table 13-4. This table shows the standard instruction mnemonics recognized by 
the Intersil assembler. together with the low-order four object code bits' settings. . 

Table 13-4. IM6101 Interpretation of I/O Instruction Control Bits 3-0 

Instruction Control Bit 
Mnemonic 3 2 1 0 Interpretation 

READ1 0 0 0 0 Generate a low pulse output on READ1. 
READ2 1 0 0 0 Generate a low pulse output on READ2. 
WRITE1 0 0 0 1 Generate an' active pulse output on WRITE1. 
WRITE2 1 0 0 1 Generate an active pulse output-on WRITE2. 
SKIP1 0 0 1 0 Test the SENSE1 status. If it is active. output a low pulse via SKP/INTREO. to 

, be interpreted by the IM6100 CPU as an SKP pulse. 
SKIP2 0 0 1 1 Test the SENSE2 status. If it is active. output a low pulse via SKP/INTREO. to 

SKIP3 1 0 1 0 
be interpreted by the IM6100 CPU as an SRP'pulse. ' 
Test the SENSE3 status. If it is active. output a low pulse via SKP/INTREO. to 

SKIP4 1 0 1 1 
be interpreted by the IM6100 CPU as an SKP pulse. 
Test the SENSE4 status. If it is active. output a low pulse via SKP/INTREO. to 
be interpreted by the IM6100 CPU as an SKP pu Ise. 

RCRA 0 1 0 0 Place the contents of· Control Register A on the Data Bus as data. The 
IM6100 CPU will OR Control Register A contents with the Accumulator con-
tents. 

WCRA 0 1 0 1 Write the contents of the Accumulator to Control Register A. 
WCRB 1 1 0 1 Write the contents of the Accumulator to Control Register B. 
WVR 1 1 0 0 Write the contents of the Accumulator to the Interrupt Vector register. 
SFLAG1 0 1 1 0 Set Output Signal ~LAG1 high and set Control Register A bit 8 to one. 
SFLAG3 1 1 1 0 Set Output Signal FLAG3 high and set Control Register A bit 10 to one. 
CFLAG1 0 1 1 1 Reset Output Signal FLAG1 low and reset Control Register A bit 8 to zero. 
CFLAG3 1 1 1 1 Reset OutpUt Signal FLAG3 low and reset bit 10 of Control Register A to zero. 

13:-57 



Let us look at the operations which may be performed when the instructions identified in 
Table 13-4 are executed. 

IM6101 I/O 
INSTRUCTIONS 

The two read instructions, READ1 and READ2, cause data to be transferred from an ex- IM6101 READ 
ternal device to the CPU. Timing is illustrated in Figure 13-32. The IM6101 outputs a low INSTRUCTION 
READ1 or READ2 pulse. which acts as both a select signal and a strobe signal for the external 
devicewhich'is to transmit data to the IM6100 CPU. The IM6101 transmitsC1low andU 
high to the CPU in order to identify the 110 instruction as a Read. The actual data transfer occurs directly between the 
selected device an'd the IM61 00 CPU via the Data/Address Bus, .. . 

The two write instructions, WRITE1 and WRITE2, cause the IM6101 to send back TI and IT IM6101 
high at data. input time in order to signal a write operation to the IM61 00 CPU. Subsequently the WRITE 
IM6101 outputs'a WRITE pulse via WRITE1 or WRITE2. Under program control you may select a OPERATION 
high write pulse or a low write pulse. An external device will use the write pulse both as a select 
and as a signal identifying stable data on the Data/Address Bus. which is to be read by the selected device. Timing is 
illustrated, in Figure 13-33. 

Remaining IM6101 I/O instructions affect control signals and interrupt logic. 

The IM61 01 has eight control signals: four Flag outputs and four Sense inputs. The Flag outputs. 
FLAG 1 through FLAG4. are simple control outputs. Under program control. the levels of these four 
outputs can be set or reset. but the manner in which external logic uses these four signals is un­
defined. 

IM6101 
FLAG 
OUTPUTS 

The four Sense inputs. SENSE1 through SENSE4. a,re shar'ed by interrupt logic and control logic. IM6101 
These signals can be used by external devices to transmit control information to an IM6101. SENSE 
and/or they can be used to generate interrupt requests. When used to 'generate interrupt re- INPUTS 
quests. the four Sense inputs constitute four independent interrupt request lines which can be in-
dividually enabled and disabled. Under program control. you can specify that an interrupt request will occur when a 
sense line is. high. low. makes a high-to-Iow transition. or makes alow-to-high transition. . r-----..... 
The various programmable options of the IM6101 are specified by writing control codes to IM6101 
two control registers. . CONTROL 

Control Register A can be written into (by WCRA)or its contents can be read (by RCRA). REGISTERS 
Control Register A contents are interpreted as follows: 

o "--SitNo. 

r-"-T"-,...""'T"-,...""'T"-,... ..... ,-x ..... ,-.,......,,-.,.. ..... f.--,. Control Register A 

~--~~~~~~-~~-~l~-l~-l~-l~ . 

11 10 9 8 6 5 4 3 

1.1 1. L .. 1 = enable. 0 = disab. Ie SENSE1 Interrupts 
- 1 = enable. 0 = disable SENSE2 interrupts 

1 = enable. 0 = disable SENSE3 interrupts 

1 = enable. 0 = disable SENSE4 interrupts 

'--__________ j 1 = output high pulses via WRITE1 
10 = output low pulses via WRITE1 

'--_____________ { 1 = output high pulses via WRITE2 
o = output low pulses via WRITE2 

"----------------~FLAG1 output level 

'-----------------FLAG2 output level 

-------------------FLAG3 O\ltput level 
'---------------------FLAG4 output level 

13-58 



IFETCH 

Tl T2 T3 

CLOCK 

XTC 

.:LXMAR 

I 
I 

T41 T5 T1 T2 T3 

© ADAM OSBORNE & ASSOCIATES,INCORPORATED 

IOTA IOTB 

T4 T5 T6 Tl T2 T3 T4 T5 T6 

DXO-DXll~.--~~~----~--------------~~~~~------~--~--------------------------------------------------~ 

REABT or READ2 

FLAGlorFLAG3 ______________________________________ ~~~~------------~----~~--------------------______________________ ~ 

'ITer 
----------------------~~------~~~~~--~--------~----------------------------~ 

U
IO instruction object 

SFLAG and CFLAG in­
structions change FLAG 1 
or'fLAG3level here 

,IM6l0l is selected by 
appropriate 1/0'instruc­
tion object code '

code low-order four bits 
identify a READ instruc­
tion. READl or REA52 is 
pulsed low. CT is input 

.. low and C2 high to the 
CPU 

The device on the receiv­
ing ,e,nd of the low READ 
pulse must place data on 
the Datal Address Bus 

Figure 13-32. An IM6101 I/O Read Instruction's Timing 



Cf 
en 
o 

CLOCK 

XTC 

LXMAR 

DXO - DXll 

WRITEl or WRITE2 

FLAGl or FLAG3 

IFETCH 

Tl T2 T3 T4 T5 

n"""--_____ _ 

IM610 1 is selected by 
appropriate I/0instruc­
tion object code 

T1 

IOTA 

T2 T3 T4 

/' 
(

1/0 instruction object 
code low-order four bits 
identify a WRITE instruc­
tion. WRITEl or WRITE2 

-is pulsed (high or low). CT 
and C2 are both input 
high to the CPU. 

T5 

Figure 13-33. An IM6101 1/0 Write Instruction's Timing 

T6 Tl 

I 

I 

10TB 

T2 ;1 T3 T4 

The device on the receiv­
ing end of, the WRITE 
pulse must read data off 
the Datal Address Bus. 

T5 T6 



c 
w 
!;( 
IX: 
o 
Il.. 
IX: 
o 
CJ 
~ 
en 
w 
l­
e{ 

U o 
(I) 
(I) 
e{ 

o!I 
w 
Z 
IX: 
o 
a:I 
(I) 

o 
~ 
e{ 
c 
e{ 

@ 

The levels of the four Flag outputs. FLAG 1 - FLAG4. are determined by the contents of the four high-order Control 
Register A bits. In addition. specific control instructions shown in Table 13-4 allow FLAG 1 and FLAG3 to be set or reset 
(by SFLAG 1. SFLAG2. CFLAG 1. CFLAG2). You can therefore modify FLAG 1 and FLAG3 in two ways - by executing 
specific I/O instructions. or by loading appropriate information into th.e flag bits of Control Register A. 

Bits 5 and 7 of Control Register A determine whether the Write ou·tput signals WRITE1 and WRITE2 will pulse high or 
low when a write lOT instruction is executed. Note that you cannot program read pulse levels: a read lOT instruction 
pulses one of the read lines low. . ' 

You use bits 0 through ~ of Control Register A to determine whether the status inputs SENSE1 - SENSE4 are to 
function as ,interrupt requests or as statuses which will trigger IM61 00 CPU skip control logic. You can define 
the function of each signal in any way and trus create any combination of interrupt requests and skip controls. 

Control Register B determines what will constitute an "active" state for each of the four individual sense in­
puts. Each sense input has two control bits in Control Register B. one of which determines whether signal level or tran­
sition will constitute the active state,: the other control bit determines polarity. Here is Control Register B format: 

.7 6 5 4 3 2 o ....-BitNo. 

I I I I I I I I I X I X I X I X c antral Register B 

• ~ . ~ . ~ j • t S 

s 
S 
5 

~~~~~ } 1 = A high level. or a low-to-high transition is active 

ENSE3 0 = A low iavel. or a high-to-Iow transition is active
ENSE4

....
. S

S

S

:~~:~ } 1 = Sense a high or a low level

ENSE3 0 = Sense a high-to-Iow. or a low-to-high transition
ENSE4

By appropriately setting the two bits of Control Register B which are assigned to any sense input. you can cause a high
level. a low level. a high-to-Iow transition or a low-to-high trpnsition to be the active sense signal state. '

Note carefully that Control Register B determines only what will constitute an active sense condition. Control Register B
does not hold sense input information.

You write to Control Registers A and B by executing the WCRA and WCRB instructions, respectively. Timing is
as illustrated in Figure 13-15 for a standard device output operation.

You can read the contents of Control Register A by executing the RCRA instruction, but you cannot read the
contents of Control Register B. When the RCRA instruction is exe~cuted. timing conforms to Figure 13-14.

Recall that instructions which transfer data between the IM6100 CPU and the IM61 01 PIE treat the IM61 01 PIE as a
standard I/O 'device - selected by a 5-bit device code. READ1. READ2. WRITE1 and WRITE2 instructions. in contrast.
select an IM6101 via a 5-bit device code. but subsequently cause a da'ta tr'1nsfer to occur between the IM61 00 and the
I/O device' which is connected to the selected IM6101 READ 'or WRITE control signal.

There are four instructions which directly control the level of FLAG1 and FLAG3 flag out- IM6101 FLAG
puts. These four instructions areSFLAG1, SFLAG3,CFLAG1 and CFLAG3. When anyone INSTRUCTIONS
of these four instructions is executed. the flag output-changes state during 12 of IOTA. as il-
lustrated in Figure 13-32, In addition to changing the level of the flag output. these instructions modify the associated
Control Register A bit.

When you write to Control Register A (via a WCRA instruction) you can modify all four flag output levels, since
the four flag outputs reflect associated bit levels in Cont'rol Register A. However. any changes in flag levels will occur
during T6 of IOTA. as illustrated in Figure 13-33.' .

You cannot sample the level of the Sense inputs. since there is no register which stores Sense IM6101 SKIP
input levels in the form of binary data. You must execute a SKIP instruction in order to test INSTRUCTIONS
a Sense input's level. A SKIP instruction tests for an "active" Sense signi31 condition. This
"active" condition is defined within Control Register B. As explained for Control Register B. the "active"Sense signal
condition may be a high level. a low level. a high-to~low transition. or a low-to-high transition.

13-61

A particular Sense line can be used with skip logic or with interrupt logic. If interrupt logic has been enabled for
the Sense line. then as soon as the active condition occurs at the Sense line. an interrupt will be requested. If interrupt
logic has not beenenab!ed for the Sense line. then the active cOrJdition of the Sense input will be ~ecorded in an inter­
nal flip-flop. Subsequently. when a SKIP instruction identifying t~e Sense line is executed. a skip pulse will be
retLir,,!ed to the IM6100 CPU if the "~ctive"Sense input has occurred. The Sense flip-flop is then cleared.

IM61 Q1 INTERRUPT HAI\!DLlNG LO~IC
The IM6101 has ~ypical daisy-chain ~ri9rity interruRt I~gic, im~lemented via the PRIN and POUT signals.

PRIN must be a high input if an IM6101 is to generate an interrupt request based on one of the four sense lines.
Therefore. the IM61 01 electrically closest to the CPU must have its PRIN input connected to 13 high logic level so that its
interrupt request logic will qlways be enabled. So long as no interrupt request is active at this highest priority IM61 01. a
high signal will be ~utput via POUT; it pe~omes the pRI~input for the' next IM6101 in the daisy chain.

(Highest)

+5V-----'

M '<t
W W
U) U)
z z
w w
U) U)

Enable
Priority ~

Enable
Priority 3

I :

W
U)
z w
U)

N M '<t
W W UJ
U) U) U)
z z z w w w
U) U) U)

IM6101
PRIORITY 3

'---~ etc.

As soon as an interrupt request occurs via one of the sense lines at an IM61 01. it immediately sends an out interrupt re­
quest low level via SKP/INTREQ; simultaneously. the 'itv161 01 outputs FPUT low. thus disabling all interrupt request
logic at lower priority PIEs in'the daisy chain. I,

The IM6100 CPU acknowledges the interrupt request. providing interrupts are enabled at the CPU. by executing a
"Jump-to-Subroutine at memory address 000" instruction. Thus. the interrupt return address is stored in memory loca­
tion 000. and the instruction object code stored in memory location 001 becorne~ th~ first instruction executed follow­
ing the interrupt acknowledge. Upon acknowle'dging an interrupt. the IM61 00 outp'uts INTGNT high. The first lOT in­
struction executed. of any type or to any device. r~set~ INTGNT low. We have described IM6100 interrupt logic earlier
in this chapter. '

The IM6101 has an Interrupt Vector register which you write into via the WVR instruction. The Vector register
contents are interpreted as follows: '1-

11 10 9 8 6 5 4 3 o ~BitNo.

00 SENSE 1 interrupt request
1..-___ -< 01 SENSE2 interrupt request

10 SENSE3 interrupt request
11 ~ENSE4 interrupt request

L..--------------High-order ten bits of interrupt vector address

When an "active" condition occurs at one of the Sense inputs, and interrupt logic for this Sense input has been
enabled, then the IM6101 will generate an interrupt request by outputting SKPflNTREQ low. As soon as the CPU
acknowledges the interrupt by outputting INTGNT high. the '1~~101'~~vice which has highest priority in the daisy
chain (and is requesting an interrupt) will trap the INTGNT signal. W~eri the next I/O instruction is executed. this
IM6101 device will place on the Data Bus the contents of the Interrupt Vector register. while simultaneously outputting
C 1 and C2 low. This causes an absolute Jump to be executed. with the contents of the interrupt vector becoming the
address of the instruction that program logic jumps to. The location a~qressed by the interrupt vector should contain a

13-62

Q
w

~
a: o
a.
a:
o
u
!:
u)
w

~
g
en
en
<
~
w
Z
a:
o en
en o
~
<
Q

<
@

Jump Indirect instruction. since a single word in the interrupt service routine is allocated to each Sense line of an in­
dividual IM61 01. This may be illustrated as follows:

IM6100
MEMORY

Store return address following interrupt service routine here a. ~
~MemOry Address

~~ } Read/Write "Disable interrupts" lOT instruction ----~~ C02

002 memory
003

VECTOR REGISTER 004
CONTENTS I I

I I

~ ~ ,for SENSE2-..,JMP I ADDR1

:/-."1-"1- 2 for SENSE3--..,.JMP I ADDR2 ..

IM6101
~~torS£NS£'~ §: :

~~; 3 for SENSE4-..... JM~ I ADDR3
_-............ V1,.~:oJ..y;, "'JMP I ADDR4

xxx
XXX+ 1
XXX+2
XXX+3

Start of SENSE1 interrupt service routine

Start of SENSE2 interrupt service routine

Start of SENSE3 interrupt service routine

Start of SENSE4 interrupt service routine

, ,
I I

I

ISR1

ISR2

ISR3
ISR4

I I . .

ADR1

ADR2
ADR3
ADR4

I I §'SRI
I •
, I
I I a 5R2

I I
I ,
• I a'SR3
I I
I ,

~'SR4

As we have just stated. the INTGNT signal output by the IM6100 CPU remains high from the time
the interrupt is acknowledged until an I/O instruction is subsequently executed by the CPU. While
the INTGNT signal is high, the acknowledged IM6101 device freezes its internal interrupt
logic; that is to say. no further active transitions at Sense inputs will be recognized. Therefore. the
Sense input which will be acknowledged is the highest priority Sense input at the instant that
INTGNT goes high. Sense inputs have the following priority at any single IM6101 device:

Highest Priority: SENSE1
SENSE2
SENSE3

Lowest Priority: SENSE4

IM6101
SENSE
INTERRUPT
PRIORITY

Normally. an 10F instruction will be the first I/O instruction executed by the CPU within an interrupt service routine.
This instruction disables interrupts at the CPl:J. where they are already disabled: therefore. it constitutes a no operation

13-63

I/O instruction which simply serves.to reset the INTGNT signal low. Thus. the interrupt acknow!edge routine which will
service one or more IM61 01 devices may be illustrated as follows:

*1
10F
*INAK

/Interrupt acknowledge I/O instruction

Iinterrupt acknowledge routine origin
JMPI P1S1 /PIE1.SENSE1 interrupt
JMP I P 1 S2 IPIE 1. SENSE2 interru pt
JMP I P1 S3 IPIE1. SENSE3 interrupt
JMP I P1 S4/PIE1. SENSE4 interrupt
JMP I P2S1 /PIE2. SENSE1 interrupt
JMP I P2S2 /PIE2. SENSE2 interrupt
JMP I P2S3 /PIE2. SENSE3 interrupt
JMP I P2S4 /PIE2. SENSE4 interrupt

P1S1 ADR1
P1S2 ADR2
P1S3 ADR3
P1S4 ADR4
P2S1 ADR5
P2S2 ADR6
P2S3 ADR7
P2S4 AD~~

In the instruction sequence above. INAK is the address for the first Jump Indirect instruction - the JMP I P1 S1 instruc­
tion. All of the Jump Indirect instructions address memory locations which must reside on the same 128-word page of
memory. The :actual starting address for the interrupt service routine will be stored in the memory location addressed
by the Jump Indirect instruction.

You will return from an IM6101 device's interrupt service routine as described for the IM6100. You can either
execute a CAF (Clear A" Flags) instruction, an RTF. (Return Flags) instruction, or an ION (Enable Interrupts) in­
struction. Whichever one of these three instructions you select, it must be followed by a Jump Indirect via
memory location 0 instruction. .

THE IM6102 MEDIC

The IM61 02 MEDIC allows an IM61 00 microcomputer system to access up to 32,768 words of memory. It also
provides bus sharing direct memory access logic, dynamic memory refresh logic and real-time cloq!< I~gic.

Memory expansion logic of the iM61 02 is compatible with the DEC PDP-8/E. KM8-E memory extension option.

The real-time clock logic of the IM61 02 is compatible with the DEC PDP-8/E. DK8-EP programmable real-time clock op­
tion.

IM6102 direct memory access logic is not a reproduction of any PDP-8E option.

Figure 13-34 illustrates that part of our general microcomputer functional logic which is implemented on 'the
IM6102 MEDIC.

13-64

c
w

~
a: o
Do
a:
o
o
!:
u)
w

~ g
(I)
(I)
c:(

olJ
w
z
a:
o
m
(I)

o
:;:
c:(
c
c:(

@

Clock Logic

Arithmetic and
Logic Unit

Accumulator,
Registens)

Data Countens)

Stack Pointer

Program Counter

Interface Logic

I/O Ports

Figure 13-34. Logic of the IM61 02 MEDIC

Memory

The IM6102, like all members of the IM6100 family, is fabricated using CMOS technology; it requires a single
power supply that may range between +4V and +10V. The IM6102 is packaged as a 40-pin DIP.

IM6102 MEDIC PINS AND. SIGNALS.
Figure 13-35 illustrates the pins and signals of the IM6102 MEDIC. We will summarize these pins and signals
before proceeding to examine their functions in detail.

Table 13-5 identifies selected pins of the IM6102 that should be tied to power or ground when specific func­
tions of the device are not used.

13-65

Pin-Name

DXO - DX11
XTA, XTC
LXMAR
DEVSEL
IFETCH
MEMSEL
RESET
CO. CT. C2
SKP/INT
EMAO. EMA 1. EMA2
SKP/INTX
PROUT
XLXMAR
XXTC
UP
DMAEN
DMAGNT
XMEMSEL
INTGNT
CLOCK
OSC IN, OSC OUT

VCC·GND

.. -.. .. -.. -- .. ---

VCC
~

DMAGNT
MEMSEL

IFETCH

XMEMSEL

RESET

UP

XTA
LXMAR

XLXMAR

XXTC

XTC

CLOCK

SKP/INTX
(DX11) DXO

(DX10) DX1

(DX9) DX2

(DX8) DX3

(DX7) DX4

--. .. -.. --- -.. -
-- -- .. - -.. - -.. -- -... .. - -

Description

1

2

3
4

5

6
7

8

9
10

11

12

13

14
15
16

17

18
19

20

Data/ Address Bus
Machine cycle timing

IM6102
MEDIC

External memory address strobe
I/O Device select strobe

40

39

38
37

36

35
34

33

32
31

30

29
28
27

26
25
24

23

22
21

Instruction fetch machine cycle identifier
Memory select strobe
Reset
CPU control during I/O operation

--

.. -

-.. ----

Skip control input to CPU and interrupt request
Extended memory address

.. -
-.. -.. -.. -
.. -.. -
-
..
.. --

PROUT
INTGNT

EMA2 (EMAO)
EMA1

EMAO(EMA2)

SKP/INT

C2

IT
CO
OSC OUT

DEVSEL

OSCIN
DX11 (DXO)

DX10(DX1)

GND
DX9 (DX2)

DX8 (DX3)

DX7 (DX4)

DX6 (DX5)

DX5 (DX6)

Type-

Bidirectional. tristate
Input
Input
Input
Input
Input with pullup
Input
Output with open drain
Output with pullup
Output

Skip control input and interrupt request output from IM6101
Daisy chain priority out

Input with resistive pullup
Output with pullup
Output with pullup
Output with pullup
Output with pullup

DMA external memory address strobe
DMA machine cycle timing
DMA user pulse
DMA enable
DMA grant from CPU
DMA memory select
Interrupt grant from CPU
System Clock
Counter Clock
Power. Ground

Input
Input
Output
Input
Input
Input

Figure 13-35. IM6102 MEDIC Signals and Pin Assignments

13-66

o
w

~
II:
o
Q.
II:
o
o
~
iii
w

~
g
CI)
CI)
c(

CIlI
w
Z
II:
o
CD
CI)

o
~
c(
o
c(

@

Table 13-5. IM6102 MEDIC Pins that should be Tied to Power or Ground
when Certain Functions are Unused

EXTENDED EXTENDED MEMORY
REAL-TIME MEMORY CONTROL AND

PIN CLOCK CONTROL DYNAMIC MEMORY
NUMBER PIN NAME ONLY DMA ONLY ONLY REFRESH

2 DMAEN GND USED GND GND
3 DMAGNT USED USED USED USED
6 XMEMSEL N/C USED N/C USED
8 UP N/C USED N/C N/C

11 XLXMAR N/C USED N/C USED
12 XXTC N/C USED N/C USED
15 SKP/INTX VCC VCC USED USED
29 OSCIN USED GND GND GND
31 OSC OUT USED N/C N/C N/C
34 IT' USED USED N/C N/C
36 EMAO N/C N/C USED USED
37 EMA1 N/C N/C USED USED
38 EMA2 N/C N/C USED USED
40 PROUT USED USED N/C N/C

Only one IM6102 MEDIC can be present in an IM6100 system.

Let us first look at the IM6102 signals which connect directly with the IM6100 CPU.

DXO - DX11 is the system Data/Address Bus. As in the IM6100 and IM6101 descriptions. our Data/Address Bus sig­
nal names are shown in brackets next to names used in Intersilliterature. Addresses and data will flow directly between
the IM61 02 and the IM61 00. via the Datal Address Bus. when the CPU is accessing the IM61 02 via the 1/0 instructions
described in Table 13-6.

Of the IM6100 control and timing Signals. XTA, XTC, LXMAR, DEVSEL, IFETCH and MEMSEL are input to the
IM6102. Note specifically that XTB and DATAF are not transmitted to the IM6102; functions performed by these sig­
nals are implied by logic within the IM6102.

RESET is a standard reset input. RESET input timing must conform to IM6100 reset timing.
When the IM6102 is reset, all of its internal registers and flags are cleared.

The IM61 02 generates the four I/O control signals required by the CPU: CO, CT, C2 and SKP.
However. SKP and the interrupt request signallNT share a single pin. as is the case with the IM61 01 devices ..

If IM6102 and IM6101 devices are present together in an IM6100 microcomputer system, then the IM6102
must be the device with highest interrupt priority. IM6101 devices having lower priority will use the PROUT
output of the IM6102 to initiate interrupt priority daisy chain logic. Interrupt requests from IM6101 devices
must be input to the IM6102 via SKP/INTX. The IM6102 will pass the interrupt request on to the IM6100 via
SKP/INT at the proper time. This is illustrated in Figure 13-36.

In order to address additional "fields" of memory. EMAO. EMA 1. and EMA2 act as three high-order address lines. ex­
tending the normal 12-bit memory address available on DXO - DX11 to a 15-bit address as follows:

. High-order bit Low-order bit
of 15-bit address of 15-bit address

t t
0 :;(N 0 c(ct· 0 X N M v It) co " IX) en X X Intersi! Signal Name ~ ~ ~ X X X X X X X X X
w w w 0 0 0 0 0 0 0 0 0 0 0 0

N :;(~ 0 c(X X en IX) " co It) v M N X 0
Our Signal Name ~ ~ ~ X X X X X X X X X

w w w 0 0 0 0 0 0 0 0 0 0 0 0

13-67

CLOCK

el
d

Control Pan
signals an
infrequent
used signa

Iy
Is

~

DMAEN

XTB
RUN

RUN/HLT
DMAREQ

CPREO
WAIT

LINK
SWSEL
CPSEL

DATAF

::
:: ::
== ::

~ I-
:J
0
U
CIl
0

INTREO
SKP

IM6100
CPU

rl-::0 ~~
X Xlol~IN w~ OOUUUO_

.~j ~, II

~
I/O Ir=f I/O 11.1 I/O

DEVICE DEVICE DEVICE
1A 1B 2A

I +4 DXO· ~lhl d~l II

DX11 T -. T --
LL ~ ~ w·

~~~j CIlCllCllCll CIlCllCllCll 
ZZZZ<tMN~ i5i5i5i5t;G~~ wwww~~~ 

CIl r~ <iif :3 :3 :3 :3 ~ CIl~ CIl Ul :3 <t.,£r;;: 
u..u..u..U::1 lo~ u.. ~ ~ltl \Ci ~ 

~.~ <t w 

~ 
wt:: 

SEL4~ SEL;::: 
~a: I- SEL5~ 

q ~wt:: SEL5 J 
Z :J 

SEL&~ 
a: a: 

SEL~:± 0 IM6101 r- 3: 

~~D~~ 
SEL;::: PIE (1) 

SEL7 IM6101 
SELS SELS-+ t POUT PIE (2) 

f4- f4--
PROUT PR.!.N I-I~ f-- 1-1 f---

MEMSEL • ZW ZW 
:: o~~· ~@ :: o~> fo-iI w IF'F'TCH x ••• x ~ WINI~ a: ~ ••• ~ ~ ~lalu LXMAR ;... o 0 OUU 

I~ ~ 
a: 

IM6102 ~~ DMAGNT _ 
MEDIC d~nj ~~U ~ ~. XTA -:. x~1- :::!: a..U 

XTC .... ~CIlX X ~I-
~ CIlX 

~NT. 
SKP/INT 

~): D~ 
£- -Cb 

CO ~ N~O 

~ o<t<t<t 
X ••• x:::!::::!::::!: o Owww 

T 
IT 

1",t 11 

0 ~o ~ Nua:l~ X ••• x<t<t<tl-<t~ 
0 O~~~X~~ 

~~ 

MEMORY 

Figure 13-36. An IM6100 Microcomputer System that Includes an IM6102 MEDIC 
and IM6101 PIE Device 

~ 

READ2 
WRITE2 

POUT 

I/O 
DEVICE 

2B 

~~ Hili 

;;; 

-. -
. 

I 

XDEVSEL 

XXTC 
SKP/INTX 
XLXMAR 
XMEMSEL 

INTGNT 

C2 
IT 
CO 
DXO 
DX11 
EMAO 
EMA1 
EMA2 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ 
U o 
CI) 
CI) 

oct 
o1J 
w 
Z 
a: 
o 
In 
CI) 

o 
~ 
oct 
c 
oct 
@ 

Any interrupt request from the IM6102 is acknowledged by the CPU via INTGNT, the standard interrupt 
acknowledge signal output by the CPU. 

For direct memory access and dynamic memory refresh functions. the IM6102 generates XLXMAR, XXTC, and 
XMEMSEL, signals derived from LXMAR. XTC and MEMSEL. respectively. In addition. UP is generated as an I/O 
device pulse. 

DMAEN is a master DMA enable which must be input low to the IM61 02 to enable any DMA operation. DMAGNT is 
the standard DMA grant output by the CPU; DMAGNT is received by the IM6102. which suspends DMA operations 
if DMAGNT is high - in which case some other DMA operation. not initiated by the IM61 02. is in progress. 

Counter/timer logic of the IM61 02 is drive'n by an external crystal which must be connected across OSC IN and 
OSC OUT.' , 

The IM61 02 MEDIC requires two sets of clock logic. A crystal must be connected across OSC IN and OSC OUT: 
this crystal is used by the IM6102 real-time logic only. The master IM6100 microcomputer system clock signal 
mus~ also be input to the IM6102. Since no such clock signal is output by the IM61 OOCPU, you must generate this 
clock signal externally. This means you canriot use,the IM6100 internal clock logic if'you are 'also ~sing an IM6102 
MEDIC. External logic must generate the clock Signal. which is input to the OSC OUT pin of the IM61 00 CPU, and to the 
CLOCK input of the IM6102 MEDIC. '" 

The crystal connecting the OSC IN and OSC OUT p!ns of the IM61 02 should have the follow!ng characteristics: 

Rs ~ 150 ohms' 
CM = 3 to 30 fF (10-~5F) 
Co = 10 to 50 pF (12 pF preferred) 

Static 'capacitance = 5 pF 

THE IM6100 - IM6102 INTERFACE ,. \ ";' 

Figur~ 1 ~-36' 'illustrates an IM6100 microcomputer system that includes an IM6102 MEDIC and a number of 
1M,6101 devices {two are shown). The IM6102 has been designed on the assumption that there will be no more than 
orre of the:;;e devices in a single IM61 00 microcomputer system. The IM61 02 will be the highest priority'devi~e in an in­
terrupt daisy chain. 

The CPU communicates with the IM6102 device via a specific set of I/O instructions, which are summarized in 
Table 13-6. A few of the I/O instructions shown in Table 1306 are general instructions that affect all dev'ices ~onnected 
to an IM61 oq CPU, but most of the instructions in Table 13-6 are specific to the single IM61 02 device that can be pre­
sent in the system If you look at Table 13-6, you may notic'e the' possibility for confusion in instruction object codes, 
First of aiL none of the instruction,object codes identify an I/O device - yet in our earlier discussion of IM6100 I/O in­
struction object codes we saw that five or six object code bits were set aside to provide device identific'ation, This prob-
lem is reso!ved in two ways: . 

1) A few of the instructions shown in Table 13-6 are general I/O instructions which must be acted upon by all I/O 
devices in the IM61 00 microcomputer system Since all I/O devices will respond to these instructions, the lack of 
an I/O :device code presents no problem " 

2) There is only one IM6102 device allowed per IM6100 microcomputer system. Therefore, the I/O device numbers 
which happen to be usurped by IM6102 I/O instruction object codes given in Table 13-6 must not be used for 
IM6101 devices, or any other I/O devices in the IM6100'Illicrocomputer syst.em. That 1s to say, the following I/O 
device co~es cannot be used if an IM6102 is present:' ", ' 

Instruction 
Mnemonics 

CLZE, CLSK, CLDE, CLAB, 
CLEN, CLSA, CLBA, CLCA 

CDF, CIF, RDF, RIF, , } 
RIB, RMF, LlF, LCAR, 
RCAR, LWCR, LEAR. REAR, 
LFSR, RFSR, SKOF, WRVR 

, Binary Devic!,! Code 
Used by IM6102 
,xxx0010lXxxx 

{ 

xxx01 OOOXX, x, x 
xxx01001xxxx 
xxxOl0l0xxx)( 
xxx01 011 xxxx 

Five of the 31 allowed IM6101 device codes are used by the IM610210T instructions, therefore a maximum of 
26 IM6101 devices may be present in an IM6100 microcomputer system that indl!de~ an IM6102. 

IM6102 EXTENDED MEMORY CONTROL 
ThelM6102 implements extended memory addressing via the simple expedient of creating three additional 
high-order address lines, over' and above the 12 address lines output on the Datal Address Bus. These three high­
order address lines are EMAO, EMA1 and EMA2. Together with the address output on the Data/Address Bus, these . . . . 

13-69 



three address lines create 15-bit memory addresses. as illustrated earlier in our discussion of IM6102.signals. Note 
again that since we number signals and bits in the opposite sense to Intersilliterature. our signal names compare 
with Intersil signal names as follows: . 

Highest Lowest 
order order 

bit bit 

Intersil signal name: EMAO EMA 1 EMA2 
Our signal name: EMA2 EMA 1 EMAO 

There are two 3-bit registers within the IM6102 which hold the value to be output via 
EMA2, EMA 1 and EMAo. These are the Instruction Field register and the Data Field 
register. The EMA2. EMA 1 and EMAO outputs will. always come from one of these two 

IM6102 DATA 
FIELD REGISTER 

'IM6102 
registers. INSTRUCTION 
The Instruction Field register contents are output as three high-order address lines most FIELD REGISTER 
of the time. The Data Field register contents are output as the three high-order address 
lines only during the third machine cycle of an AND, TAD, ISZ or DCA instruction -
when the instruction is using indirect addressing to reference memory. This machine cycle is identified by the 
DATAF signal. See Figure 13-13 for DATAF signal timing. 

The DATAF signal is not input to the IM6102; logic internal to the device recognizes the third. direct addressing 
machine cycle of an AND. TAD. ISZ or DCA instruction that specifies indirect addressing. Figure 13-40 is a reproduc-
tion of Figure 13-13, including EMA outputs of the IM6102. ' r_----. 
Neither the Instruction Field register nor the Data Field register contents increment IM6100 
along with the Program Counter. Suppose. for example. the Instruction Field register con- MEMORY 
tains the value 3. If the Program Counter contents increment from FFF16 to 00016. the effec- FIELDS 
tive address will change from 3FFF16 to 300016. The effective address will not increment from 
3FFF16 to 400016. This means that the IM6102 memory extension logic divides memory into separate and dis­
tinct 4096-word "fields". Since there are three extended memory address lines. there can be' a, total of eight 4096-
word "fields". for a maximum of 32.768 words of memory. 

There are some important programming implications in the fact that the Instruction Field and Data Field register· con-
tents do not increment. We will examine these programming implications later. . 

When the IM6102 is reset, the Data Field and Instruction Field registers both contain O. 
But the Program Counter is initialized with the value FFF16 when the IM6100 is reset. 
Therefore. initial program execution begins with a bootstrap program origined at location 
FFF16. the highest address within the first 4096-word memory field. 

Following an interrupt acknowledge, the Instruction Field and Data Field registers,: con­
tents are saved in the Save Field register. then zeros are loaded into the Instruction Field 
and Data Field registers. Thus. interrupt service routines will be origined at memory location 
1 of the first 4096-word memory field and the interrupt service routine return address will be 
stored in location 0 of this same memory field. just as though there were no additional memory 
fields present. Thus. additional memory fields have no effect on restart logic or interrupt 
acknowledge logic. 

Base page logic is reproduced in every 4096-word memory field of an IM61 00 microcom­
puter system. That is to say. a memory reference instruction that specifies base page address-

IM6100-IM6102 
RESET 
BOOTSTRAP 

IM61 00-IM61 02 
II"~TERRUPT 

ACKNOWLEDGE 

IM6100 BASE 
PAGE IN 
EXTENDED 
MEMORY 

ing will access one of the first 128 words within the current memory field. Moreover. auto-increment memory address­
ing logic will apply to addresses stored in memory words 00816 through 00F16 of every 4096-word memory field. 

Let us examine the way in which you will use the Instruction Field, Data Field and asso- IM6102 
ciated registers of the IM6102 extended memory address control logic. These registers, EXTENDED 
and instructions which access them, are illustrated in Figure 13-37. MEMORY 

13-70 

ADDRESSING 
REGISTERS 



Q 
w 

~ 
a: o 
a.; 
a: 
o 
U 
~ 
en 
w 

~ g 
en 
en 
c( 

o!I 
w 
Z 
a: 
o 
CD 
en o 
::!: 
c( 
Q 
c( 

@ 

Instruction Field register Data Field register 

Inlitruction Buffer 

register 

INT 

t RDF 

+ + CDF.RTF· 

Save register 

RIF RTF.CIF GIF RIB 

Figure 13-37. IM6102 Extended Memo~y Addressing Registers and Data Paths 

Note that the Instruction Field register has a Buffer register. This is necessary. since the in­
struction that loads a new value into the Instruction Field register 'would otherwise cause an im­
mediate branch into the next sequential memory location of a new memory: field. Using arbitrary 
memory addresses. this may be illustrated as follows: .' , . 

The LlF instruction loads an immediate value. 
here assumed to be "4". directly into the Instruction 

Field register 

Field 1 

13-71 

23A 

pB 

23C 

23P 
'''!r 

- __ 21l 
23F ,.. 

24q 
241 

213 

Field 4 

Program 
execution 

path 

IM6102 
INSTRUCTION 
BUFFER 
Re~TER 



A scheme such as the one illustrated above is feasible. using the LlF instruction. but. without other options. program 
logic would be difficult to handle and would severely reduce the value of extended memory. By buffering the Instruc­
tion Field register. we can load a new memory field identifier into the Instruction Buffer register. then hold it there until 
the next Jump instruction is executed - which is supposed to cause non-sequential instruction execution anyway. 
Using arbitrary memory addresses and real instructions. this may be 'illustrated as follows: 

Load new field number into Buffer register 

Execute an indirect jump. but to field identified by Buffer 
register 

Field 1 

41C 

410 

41E 

4!.f ....... 
.... 

421 

422 

423 
424 

425 

426 

427 

428 

Field 4 

27A 

27B 

27C 

270 

27E 

27F 

280 

281 

282 

283 

284 

285 

286 

Program 
execution 

path 

Let us now examine the ways in which we can access the Instruction Field and Data Field registers of the 
IM6102. 

Special IM6102 I/O instructions transfer data to or from IM6102 extended memory addressing registers. 

The CDF and CIF instructions are equivalent to I/O instructions with immediate addressing. These instructions specify 
(as part of the instruction object code) a 3-bit value which is to be loaded into the Data Field register or the Instruction 
Buffer register. The instruction operand must equal the immediate 3-bi't value left shifted three times to reflect the 
operand bit positions in the instruction object code. For the CDF instruction this may be illustrated as follows: 

"'--~f "TJ~ 
~--------------------====1--__ ~---------COF 40 /Load 4 octal into 0 register 

This is a quirk of the Intersil assembler: it has nothing to do with IM6102 device logic. 

Timing for execution of these instructions is as illustrated in Figure 13-15. 

AND. TAD. ISZ and DCA instructions that specify indirect memory addressing go to the memory field identified by the 
Data Field register for the direct access of memory that occurs during the third machine cycle of the instruction's ex­
ecution: this is illustrated in Figures 13-39 and 13-40. 

When you load a new value into the Instruction Buffer register. the Instruction Field register does 
not change. and therefore program execution continues in the currently specified memory field. 
But when the next Jump or Jump-to-Subroutine instruction is executed. as part of the instruction 
execution logic. the Instruction Buffer register contents are transferred to the Instruction Field 
register. so the Jump or Jump-to-Subroutine occurs across memory field boundaries. as. pre­
viously illustrated. 

13-72 

IM6102 
JUMP 
ACROSS 
MEMORY 
FIELDS 



'f' 
....... 
w 

CLOCK 

XTA 

XTB 

XTC 

LXMAR 

IFETCH 

DXO - DX11 

EMAO - EMA2 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

IFETCH DCA 

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5 T6 

-A __ ~ __ ~-A __ ~~~ __________________ ~ __ ~ __ ~ ____________________________ ~~ __ ~~ 

Instruction 'address from 
PC, memory field 
specified by Instruction 
Field register 

Instruction object code 
input 

Instruction Field register contents 

Direct address computed 
from instruction object 
code and Instruction 
Field register 

Figure 13-38. IM6100 DCA Instruction Timing with Direct 
Addressing Using Extended Memory Addressing 

Data output .. to directly 
addressed memory loca­
tion in memory field 
identified by Instruction 
Field register 



You do. have the option. via the LIS instruction. of directly transferring the Instruction Buffer register contents to the In­
struction Field register. This will cause program execution to branch to the next sequential memory location in the 
newly specified memory field. as previously illustrated. . 

Having examined the extended ~einoi'Y addressing registers It. general, let us now look at sotne of the specific 
ways in which .tHese registers work. 

First of all. recall th!3t the Instruction Field and Data Fiel<;J, registers do hoi increment with th~, Program Couh,ter. Thus. 
program m~mory is divided rigidly into 4096-word fields. where you can only move from one field to another via a 
Juri!p or Jump~to-Subroutine instruction. or by executing an LIS instruction. , 

tetus examiriesom~ of the ways in which instructions will execute out of fields other than field O. Consider the 
DCA instrLlction. 

Using direct memory addressing. the instruction and the word that is referenced must ii.e in the same memofy field; the 
referenced word may be in pa~e 0 of the field. or in the instruction's page of the field. Timing is illustrated in Figure 
13-38. . , 

~ . ,.1 , r -' • 

Now consider aOCA instruction that specifies indirect addressing, The instruction ahd the w,Ord that contains the in­
direct addr~ss must iie ih the same memory field~ but the ultimately accessed memory word will lie in the field specified 
by the Data Field register - which mayor may not be the same field. Timing is illustrated in Figure 13-39. 

A DCA instruction that specifies indirect addressing with auto-increment will directly reference one of the memory 
words with ad&ess 0816·throUgl:l OF16 in the current field of memory~ The contents Of this memory location willbe in­
cremented and written back; thei'lncremented value will become the address of the memory word ultimately. accessed. 
However; this memory word will be in the field identified by the Data Field register. Timing is iilustrated ih Figure 
13-40. 

You also have register-to-register type instructions that access the Instruction Buffer register and the Data Field 
register. Thisis because the IM6100CPU treats IM6102 extended memory addressing registers' contents as status 
flags. The GTF instruction loadS the Data Field and Instruction Buffer registers' contents into the low-order CPU Ac­
cumulator bits. while the RTF instruction transfers the low-order six CPU Accumulator bits to the Instruction Buffer and 
Data Field registers. Results of these instructi6hs are illustrated in Table 13-6. 

13-74 



CLOCK 

XTA 

XTB 

XTC 

LXMAR 

DATAF 

IFETCH 

DXO - DXll 

EMAO - EMA2 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

IFETCH INDIRECT 

-----------------------------------------------------' 

Instruction address from 
PC, memory field 
specified by Instruction 
Reid register 

Instruction object code 
input 

Direct address computed 
from instruction object 
code and Instruction 
Reid register 

dressed memory loca­
tion, input as data, then 
output as an address, 
but in the memory field 
specified by the Data 
Field register 

Figure 13-39. IM6100 DCA Instruction Timing with Indirect 
Addressing Using Extended Memory Addressing 

DCA 

Data Reid register contents 

Data output to indirectly 
addressed memory loca­
tion 



CLOCK 

XTA 

XTB 

XTC 

LXMAR 

'f MEMsEI' ....... 
en 

DATAF 

IFETCH 

DXO - DXll 

EMAO - EMA2 

IFETCH 

T1 T2 T3 T4 T5 T1 

~ 

INDIRECT, 
WITH AUTO-INCREMENT 

I. I 
T2 I· T3 I T4 T5 

I I 
T6 T1 T2 

DCA 

T3 T4 I. T5 
1 

T6 

I \,--------------------------------------~ 

.Instruction Field register contents 

Instruction address from 
PC. memory. field 
specified by Instruction 
Field register 

Instruction object' code 
input 

Direct address computed 
from instruction object 
code and Instruction 
Field register 

memory location: The in­
cremented address is 
output as the next ad­
dress. but in the memory 
field specified by the 
Data Field register . 

. Figure 13-40. IM61 00 DCA Instruction Timing with Indirect Addressing 
and Auto-Increment Using Extended Memory Addressing 

Data Field register contents 

Data output to indirectly 
addressed memory loca-· 
tion in memory field 
specified' by the Data 
Field register. 



c 
w 
~ 
a: 
o 
Do 
a: 
o 
(J 

!!: 
en w 
~ 
g 
CI) 
CI) 

oCt 
o!I 
w 
Z 
a: 
o 
III 
CI) 

o 
::E 
oCt 
c 
oCt 

@ 

IM6102 EXTENDED MEMORY PROGRAMMING CONSIDERATIONS 
Here is the necessary instruction sequence for program logic to branch from any memory 
field into memory field 3: 

CIF 

CDF 
JMPI 
AD DR 

30 

20 
·+1 

IPREPARE TO JUMP TO MEMORY FIELD 3 

ISET DATA FIELD TO 2 
IJUMP TO LOCATION ADDR IN FIELD 3 

IM6100 
EXTENDED 
MEMORY 
JUMP 

Observe that the CIF and CDF instruction operands require the field number to be specified in bit positions 3, 4 and 5: 

5 4 3 2 1 0 "'-Bit No. 

I 0 11 11 I 0 10 10 I 
3 o 

The Intersil assembler assumes octal data in the operand field unless otherwise defined. 

Calling subroutines and returning from subroutines across field boundaries is not nearly as 
simple as the Jump illustrated above. The problem is that a subroutine has no way of knowing 
out of which field it was called. Thus, when it is time to return from the subroutine, the normal 
return sequence will not work. Your program logic must therefore include special instructions that 
transmit to the subroutine the field number out of which the subroutine was called. The technique 
most commonly used is to load the program field number into the Data Field register before call­

IM6100 
EXTENDED 
MEMORY 
SUBROUTINE 
ACCESSES 

ing the subroutine. If we arbitrarily assume that a subroutine in memory field 1 is to be called by a program in memory 
field 4, accessing data in memory field 5, then the subroutine calling sequence can be illustrated as follows: 

IBelow is the subroutine calling sequence 

CDF 40 ILOAD PROGRAM FIELD INTO DATA FIELD REGISTER 
CIF 10 ILOAD SUBROUTINE FIELD INTO INSTRUCTION BUFFER 'REGISTER 
JMS I SADR IJUMP TO SUBROUTINE IN MEMORY FIELD 1 
CDF 50 IAFTER RETURNING FROM SUBROUTINE, RESTORE DATA FIELD REGISTER 

SADR SUBR 112-BIT SUBROUTINE ADDRESS 
ISUBROUTINE IN MEMORY FIELD 1 BEGINS BELOW 
SUBR 0 IRETURN ADDRESS IS STORED HERE 

EXIT 

RET 

CLA ICLEAR ACCUMULATOR AND INPUT DATA FIELD REGISTER CONTENTS 
RDF 
TAD RET 

DCA EXIT 

0 
JMPI SUBR 
CIF 00 

} 

IADD 110010000010 TO CREATE INSTRUCTION FIELD REGISTER RESTORATION 
IINSTRUCTION 
lAND INSERT AT EXIT 

Body of subroutine occurs here 

. /THIS BECOMES A CIF N INSTRUCTION 
IRETURN TO CALLING PROGRAM 
IDATA USED TO CREATE1NSTRUCTION AT EXIT 

Before executing a Jump-to-Subroutine instruction, the CDF instruction loads the current program memory field num­
ber into the Data Field register. Next. the CIF instruction loads the subroutine's memory field into the Instruction Buffer 

13-77 



register. Now when the Jump-to-Subroutine instruction is executed. a subroutine in field 1 will be accessed. since the 
Instruction Buffer register contents are transferred to the Instruction Field register. 

Instructions at the beginning of the subroutine must load the Data Field register contents into the Accumulator. then 
add the appropriate binary digit pattern to create a CIF instruction which will restore the correct Instruction Field 
register contents prior to returning from the subroutine. A memory word at location EXIT is reserved for this instruction. 
This memory word occurs directly in front of the Jump Indirect instruction. which actually causes the return to occur. 

There are two problems with the subroutine logic illustrated above. They are: 

1) A subroutine's object code must reside in read/write memory. since the return address and the memory word 
labeled EXIT are both going to be written into. 

2) Subroutines must be rewritten as soon as you add extended memory. But note that a subroutine which has been 
written to work with extended memory will also work in the absence of extended memory. providing you do not 
pass parameters to the subroutine via the Accumulator. 

If you want to store subroutines in read-only memory and have these subroutines called out of extended memory. then 
you must use an external read/write memory stack as described earlier in this chapter. You· could locate the word 
labeled EXIT on page O. but this is a very expensive solution to the problem. since page 0 has just 128 memory loca­
tions - and these get used up very quickly. 

IM6102 EXTENDED MEMORY INTERRUPT CONSIDERATIONS 
When an interrupt is acknowledged in an IM6100 microcomputer system that is using extended memory ad­
dressing, the following events occur: 

1) The contents of the Instruction Buffer register and the Data Field register are transferred to the Save Field register. 
Note that the Instruction Field register contents are not saved. 

2) Zero values are loaded into the Instruction Field register and the Data Field register. 

3) The Program Counter contents are saved in memory word 0 of memory field O. 

4) The instruction located in memory word 1 of memory field 0 is fetched and executed. 

Thus. the interrupt acknowledge scheme is the same whether or not the IM6100 microcomputer system uses 
extended memory addressing. 

The standard IM6100 interrupt acknowledge procedure would appear to pose a problem. 

From our earlier discussion of programming logic that jumps from one memory field to another. recall that you will nor­
mally load the Instruction Buffer register with the number of the destination memory fierd. This number is held in the 
Instruction Buffer register until a Jump or Jump-to-Subroutine instruction is executed. at which time the Instruction 
Buffer register contents are moved to the Instruction Field register. Thus. the Instruction Buffer register and the Instruc­
tion Field register contents will differ from the time you load a new value into the Instruction Buffer register until you 
subsequently execute a Jump or Jump-to-Subroutine instruction: During this time. if an interrupt were to be 
acknowledged. the Instruction Buffer register contents would be saved and the Instruction Field register contents 
would be lost. Subsequently. upon returning from the interrupt. you would return to the memory field identified by the 
Instruction Buffer register - which wou Id be the wrong memory field. The memory field within which the program was 
executing when the interrupt was acknowledged was the memory field identified by the Instruction Field register. In 
order to overcome this problem. IM6102 logic disables external device interrupts (but not control panel inter­
rupts) when any instruction that loads data into the Instruction Buffer register is executed. The IM6102 keeps 
external device interrupts disabled until a Jump or Jump-to-Subroutine is subsequently executed. Interrupts 
are also re-enabled when an LlF instruction is executed. 

The IM6102 has vectored interrupt acknowledge logic, as is the case for the IM6101 
devices. The IM6102 has an 11-bit Interrupt Vector register. The WRVR instruction transfers the 
contents of the CPU Accumulator to the Interrupt Vector register. but the low-order Interrupt Vec­
tor register bit is automatically set or reset by the IM6102 counterltimer logic. as described later. 

From the' discussion of IM61 00 interrupt acknowledge logic given early in this chapter. recall that 

IM6102 
INTERRUPT 
VECTOR 
REGISTER 

the INTGNT signal is output high by the CPU from the time an interrupt is acknowledged until the end of the second 
machine cycle for the first I/O instruction executed following the interrupt acknowledge. IM6102 interrupt 
acknowledge logic uses the INTGNT high signal occurring during an I/O instruction's execution as a signal to 
output the Interrupt Vector register contents with C1 and C2 I/O control inputs both low. Timing conforms to 
standard I/O data input timing. 

The interrupt service routine initiation instruction sequence described earlier in this chapter for the IM61 01 ap­
plies also for the IM6102. However.'the IM61 02 generates only two vector addresses. whereas the IM61 01 generates 
four vector addresses, 

13-78 



Q 
w 

~ 
a: o 
a. 
a: 
o 
o 
~ 
u) 
w 

~ 
g 
en 
en 
c:( 

all 
w 
Z 
a: 
o eo 
en o 
~ 
c:( 
Q 
c:( 

@ 

The logic used to return from interrupt service routines is also identical in IM6100 microcomputer systems that 
do and do not employ extended memory addressing. In both cases you return from an interrupt service routine by 
jumping indirect via the address stored in memory location 0 of memory field O. But in a microcomputer system that 
employs extended memory addressing, your interrupt service routine's return logic must restore the Instruction 
Buffer and Data Field registers' contents from the Save Field register prior to returning from the interrupt. This is 
done via the RMF instruction. as follows: 

RMF 
ION 
JMPI 

/LOAD INSTRUCTION BUFFER AND DATA FIELD REGISTERS FROM THE SAVE FIELD 
/RE-ENABLE INTERRUPTS 

o /JUMP INDIRECT VIA SAVED ADDRESS IN LOCATION 0 OF FIELD 0 

When the RMF instruction is executed. the Save Field register contents are transferred to the Instruction Buffer and 
Data Field registers. and interrupts are disabled. When the subsequent Jump Indirect instruction is executed. the In­
struction Buffer register contents are transferred to the Instruction Field register. Interrupts are enabled by the ION in­
struction. Thus. program execution returns to the point of interrupt - which may be within an instruction sequence 
stored in any memory field. 

IM6102 DYNAMIC MEMORY REFRESH AND DIRECT MEMORY ACCESS LOGIC 
If you look again at the various machine cycle timing diagrams. you will see that with the exception of data output 
machine cycles. the second half of the machine cycle is used for operations internal to the CPU. This time is therefore 
available to perform a second memory access. The IM6102 uses the second half of non-data output machine cy­
cles in order to perform a second memory access, either to refresh dynamic memory or to perform a direct 
memory access operation. Figures 13-41 and 13-42 illustrate timing for a DMA read and a DMA write, respec­
tively. A memory refresh machine cycle differs from a DMA machine cycle only in pulse timing, as defined in the 
data sheets at the end of this chapter. Also. there is no low UP pulse during a memory refresh machine cycle. 

External devices that are accessed during a DMA operation use the Data/Address Bus (in- IM6102 DMA 
cluding the three extended memory address signals) and three control signals: XXTC, CONTROL 
XMEMSEL, and UJ5: XXTC becomes, in effect, a single read/write control. If this signal is SIGNALS 
high. then it identifies data being transferred from memory to an external device - a DMA read 
machine cycle. If XXTC is low. then a DMA write machine cycle is specified - data being transferred from an external 
device to memory. In either case. the low XMEMSEL pulse is interpreted as a memory enable strobe. while the low ~ 
pulse is interpreted as an I/O device strobe. A DMA operation will occur in an allowed machine cycle only if 
DMAEN is low on the rising edge of XTA. DMAEN is a master external DMA enable/disable control. ,....----..... 
IM6102 DMA logic uses these four registers: IM6102 DMA 

A 12-bit Word Count register. 

A 12-bit Current Address register. 

A 3-bit Extended Current Address register. 

A 7-bit Status register. 

REGISTERS 

The Current Address register identifies the memory location which is to be accessed during the next DMA or 
dynamic memory refresh operation. The contents of this register are incremented after each DMA or dynamic memo­
ry refresh operation. 

The Extended Current Address register is a 3-bit register which creates the three highcorder address lines of a 15-bit 
address. The Extended Current Address register is equivalent to the Instruction Field register of extended 
memory address control logic. Thus. during DMA or dynamic memory refresh operations. the 15-bit'address seen by 
external memory is created as follows: 

N :;{ 0 0 
OJ (Xl co ~ M N 0 c:( c:( :;{ :;{ r-- It) :;{ u u u c:( c:( c:( c:( c:( c:( c:( c:( c:( ,~Our bit names w w w U U U U U U U U U U U u 

Extended Current ~current Address register 
Address register 

0 :;{ 'N 0 :;{ N M ~ It) co r-- (Xl OJ 0 4-lntersil bit names c:( c:( c:( c:( c:( c:( c:( c:( c:( c:( c:( :;{ :;{ u u u u u u u u u u u u u 
"w w w U U 

/ 

V 

15-bit DMA or Dynamic 
Memory Refresh Address 

13-79 



CLOCK 

XTC 

LXMAR 

XXTC 

XLXMAR 

XMEMSEL 

UP 

DXO - OX11 

EMAO-EMA2. 

DMA memory 

----~~~--~~----~------------~~----------~~--------~ 

Instruction execution 
memory address 

Instruction data input, if 
needed 

Figure 13-41. IM6102 DMA Read Timing 

13-80 

Data, from memory to 
I/O device 



C 
w 

~ 
IX: 
0 
a. 
IX: 
0 
U 
~ 
en 
w 

~ 
g 
(I) 
(I) 

ct 
aIS 
w 
Z 
IX: 
0 
a:I 
(I) 

0 

~ 
ct 
C 
ct 

@ 

T1 T2 T3 T4 T5 

XLXMAR 

XMEMSEL 

UP 

DXO - DX11 

EMAO - EMA2 

Instruction execution Instruction data input. if Data. to memory. from 
memory address needed I/O device 

Figure 13-42. IM6102 DMA Write Timing 

But there isa significant difference between the Extended Current Address register and the Instruction Field register of 
extended memory address control logic. Under program control you can specify that the Extended Current Ad­
dress register will increment along with the Current Address register. That is to say. when the Current Address 
register increments from FFF16 to 00016. the Extended Current Add~ess register can be forced to increment. E~tended 
memory address control logic. in contrast does not allow the Instruction Field register to increment when the Program 
Counter increments from FFF16 to 00016· 

Dynamic memory refresh logic requires that the Extended Current Address register be allowed to increment along with 
the Current Address register. Dynamic memory refresh requires that you load 0 into the Extended Current Address and 

13-81 



Current Address registers. which then increment as a single 15-bit Address register. Thus. dynamic memary refresh 
lagic autamatically maves from ane memary field to. the next. If the Extended Current Address register did nat incre­
ment. then in arder to. refresh mare than one memary field. yau wauld have to. execute instructians between each 
memary field to. increment the Extended Current Address register and thus select the new dynamic memary field to be 
refreshed. 

Direct memary access lagic daes nat benefit from the fact that the Extended Current Address register cantents can in­
crement autamatically. A black af data that is maved via direct memary access lagic will rarely be mare than 4096 
wards in length. 

The Word Count register is a 12-bit register that must initially be loaded with the twos complement of the DMA 
block length. The Word Count register is inactive during dynamic memory refresh operations. The Word Caunt 
register's cantents are incremented after every DMA aperatian. When this register's cantents increment fram FFF16 to. 
00016. an end af DMA is signaled via an apprapriate Status register bit setting: aptionally. an interrupt request may be 
generated. Depending an the DMA made. DMA ape rations may cease at the end af a DMA black transfer. ar the DMA 
aperatian may restart. 

The DMA Status and Cantral register is a 7-bit register whase cantents are interpreted as follaws: 

6 

6 7 8 9 10 11 ~ Intersil bit number 

4 2 o .....-- Our bit number 

DMA Status/Control 

{ 
01 Disable interrupts} Appli.e~ o~IY to DMA error 

. condition Interrupts -
Enable Interrupts (see bits 5 and 6) 

"---{~ 

~--{~ 

DMA read - Memory to port 
DMA write - Port to memory 

Do not increment Extended Current Address register 
Increment Extended Current Address register 

{ 

00 Refresh mode 
01 Normal DMA mode 

~-------- 10 Burst DMA mode 

11 Stop 

Word Count register overflowed 
Attempt to increment beyond 32.768 memory words. 
(Field 7 Wrap Around error) 

Status/Cantral register bit 0 is an interrupt enable/disable bit which allaws interrupt requests to. be generated when er­
rar canditians assaciated with bits 5 ar 6 af the Status/Cantrol register occur. 

Status/Cantrol register bit 1 determines whether the DMA aperatian will be a Read ar a Write. A DMA Read constitutes 
a transfer fram memary to. an I/O device. while a Write canstitutes a transfer from the I/O device to memary. 

Status/Cantral register bit 2 determines whether the Extended Current Address register increments as part af a 15-bit 
address. If this bit is O. then the Extended Current Address register daes not increment. If this bit is 1. then when the 
Current Address register increments from FFF16 to. 00016 the Extended Current Address register increments by 1. 
When the Extended Current Address register cantains 111. hawever. itcannat increment to. 000. If the Extended Cur­
rent Address register is suppased to increment when it cantains 111. then instead a "field 7 wrap araund errar" accurs 
and Status/Cantral register bit 6 is set to. 1. At this time an interrupt requestwill also. accur if Status/Cantral register bit 
o has been set to. 1. Once a field 7 wrap around error accurs. Status/Cantral register bit 6 can be reset to. 0 by executian 
af a CAF ar an RFSR instructian. A reset aperatian resets all Status/Cantrol register bits to. O. . 

Whenever the Ward Caunt register increments fram FFF16 to. 00016. Status/Contro.l register bit 5 is set to. 1. If 
Status/Cantrol register bit 0 has also been set to 1. then an interrupt request will accompany the Word Caunt register 
incrementing fram FFF16 to 00016. If you want to identify the end af a DMA data transfer with an interrupt request. 
yau do so. by enabling interrupts via bit 0 of the DMA Status/Cantral register. When the Ward Count registerincre-

13-82 



c 
w 

~ 
IX: 
o 
0. 
IX: 
o 
o 
~ 
en 
w 

~ 
C3 o 
(I) 
(I) 

oct 
~ 
w 
Z 
IX: 
o 
aI 
(I) 

o 
~ 
oct 
C 
oct 

@ 

ments from FFF16 to 00016. you have. in effect. reached the end of a DMA block - which will be identified with an in­
terrupt request. providing the DMA Status/Control register bit 0 is 1. 

Status/Control register bits 3 and 4 allow IM6102 DMA logic to be disabled, or one of three IM6102 
modes to be selected. DMA MODES 

In Refresh mode, a sequence of DMA Read machine cycles is executed; however. the UP sig-
nal is not output and DMAEN as an input is ignored. Thus external logic cannot suppress dynamic memory refresh by 
inputting DMAEN low. But in refresh mode the rest of the Status/Control register is active. which means that yoll must 
set bit 2 to 1 if the Extended Current Address register is to increment. in which case a field 7 wrap around error will oc­
CUr if the Extended Current Address register attempts to increment from 111 to 000. 

In normal DMA mode, a DMA operation will be performed during every allowed machine IM6102 DMA 
cyclel providing DMAEN is low at the beginning of the machine cycle. However. an LWCR PROGRAMMING 
instruction must be executed to start a normal DMA mode operation. As illustrated in Figures 
13-41 and 13-42. '5'fViAEi\jis sampled .()n the rising edge of XTA. IfDM'A'E'N is high at this time. then no DMA operation 
will occur. Logic internal to the IM61 02 decodEils the instruction object code which the IM61 02 receives alohg with the 
1t0.6100 in order to identify machine cycles when no memory vyrite operation is scheduled and a DMA operation can 
therefore be performed. When th~ Word Count register increments from FFF16 to 00016. a normal DMA operation 
stops. Status/Control register bit 5 is set (as already described) and if interrupts have been enabled. an interrupt re­
quest is generated. IM6102 DMA logic remains in normal mode at this time; however. it must be restarted under pro­
gram control by executing another LWCR instruction. Thus. the following instruction sequence will initiate normal 
DMA mode: 

CLA 
TAD 
LCAR 
TAD 
LFSR 
TAD 
LWCR 

DMAD 

SR 

WC 

/CLEAR ACCUMULATOR 
/FETCH STARTINGDMA ADDRESS 
/LOAD INTO CURRENT ADDRESS REGISTER. CLEAR ACCUMULATOR 
/FETCH STATUS/CONTROL REGISTER SETTINGS 
/LOAD INTO STATUS/CONTROL REGISTER. CLEAR ACCUMULATOR 
/FETCH TWOS COMPLEMENT OF WORD COUNT 
/LOAD INTO WORD COUNT REGISTER AND START DMA OPERATION. 

Burst DMA mode is iderttical to normal DMA ,node, except that when the Word Count register increments from 
FFF16 to 00016 the mode immediately reverts to dynamic memory refresh. Burst mode is used when DMA opera­
tions are being performed with dynamic memory. in which case you must be careful to keep DMA transfer blocks short 
enough not to interfere with dynamic memory decay times. Remember. while a DMA operation is being performed. no 
dynamic memory refreshes are occurring. 

In Stop mode, no riMA or dynamic memory refresh operations occur; however. 'any of the DMA registers may be 
accessed. 

. . ,'. ' 

.IM6102 PROGRAMMABLE REAL-TIME CLOCK LOGIC 
The IM6102 has rel~tivel~ simple real-time cl~ck lOgic, which computes time intervals using pulses generated 
by an external crystal. The crystal is connected across the OSC IN and OSC OUT pins of the IM6102 device. 
Crystal characteristics were defined earlier. togethe~, with the description of IM61 02 pins. 

A 12-bit Clock Counter register is at the heart of IM61 02 real-time clock logic. The contents of this register are in­
cremented at time intervals which you select under program control. By selecting the appropriate increment time inter­
val and initial Clock Counter register value. you can compute almost any time interval up to 40.950 milliseconds. 

The Clock Cou~ter register has an associated Clock Buffer register. You actually transfer data between the Clock 
Buffer register and the CPU Accumuii3!or. The Clock Buffer register contents are transferred to the Clock Counter 
register to start computing a time interval. While the Clock Counter register is incrementing. you can. under program 
control. load a new value into the Clock Buffer register; the next time interval computed will then differ from the time 
interval currently being computed. 

13-83 



IM6102 real-time clock registers and the instructions which access.them may be illustrated as follows: 

12-bit Clock Counter register 

CLCAt +CLAB 

12-bit Clock Buffer register 

CLBA or CLCA:, +CLAB 

12-bit Clock Enable register 

CLEN' D +CLZE 0' CLDE 

The pr~grammable options of the IM61 02 real-time clock logic are selected by loading appropriate bits into the 
Clock Enable register. This register's bits are assigned as follows: 

o 3 4 6 8 9 10 11,...-lntersil bit assignments 
11 10 9 8 643 2 0 ......--- Our bit assignments 
r-~~~~~--~~--~~~~~~~ 

Clock Enable register 

1 - Master disable 
'------------<0 - Master enabie 

f
ooo - Stop the counter 
001 - Stop the counter 

010 - Increment once every 40 .. 000 p. ulses 
'--______________ 011 - Increment once every 4000 pulses 

100 - Increment once every 400 pulses 

{ 

101 - Increment once every 40 pulses 
110 - Increment once every 4 pulses 
1 1 1 - Stop the counter 

{ 
0 - One-shot mode 

'-------------------- 1 - Continuous mode 

{
o - Disable interrupts 

'------------~---------- 1 - Enable interrupts 

Clock Enable register bit 4 is a master enable/disable control. When set to 1. this bit stops IM61 02 real-time clock logic. 
When the IM6102 is reset. this bit is cleared: after a reset. therefore. real-time clock logic can run. The CAF instruction 
resets bit 4 to O. 

13-84 



c 
w 

~ 
a: 
o 
D.. 
a: 
o 
u 
~ 
en 
w 

~ 
C3 o 
CI.I 
CI.I 
oCt 
all 
w 
Z 
a: 
o 
m 
CI.I o 
:!! 
oCt 
Q 
oCt 

@ 

Clock Enable register bits 6.7 and 8 select the interval between increment pulses. With a 4 MHz oscillator. the time in­
terval between Clock Counter register increments may vary between 1 microsecond and 10 milliseconds. as follows: 

Bits 

876 

010 
o 1 1 
100 
1 0 1 
1 1 0 

Time interval between 
increments 

10 msec 
1 msec 

100 J.lsec 
10 J.lsec 
1 J.lsec 

Following a reset, or execution of a CAF instruction, all Clock Enable register bits are reset to 0; therefore real-time 
clock logic is effectively disabled. This is because the Clock Counter register increment logic is stopped. even though 
clock logic in general has been enabled by bit 4. 

Clock Enable register bit 9 is used to select One-shot mode or Continuous mode. If this bit is O. then One-shot 
mode is selected; as soon as the Clock Counter register increments from FFF16 to 00016, a clock overflow flag 
is set and the clock stops. If bit 9 is 1. then when the Clock Counter register increments from FFF16 to 00016. the 
clock overflow flag is set. but the Clock Buffer register contents transfer to the Clock Counter register. which starts in­
crementing again. 

Clock Enable register bit 11 enables or disables timer interrupts. Timer interrupts can occur when the Clock 
Counter register overflows. From our earlier discussion of the IM6102 Interrupt Vector register, recall that the 
low-order bit of this register is set in response to an interrupt request coming from real-time clock logic. Thus. if 
Clock Enable register bit 11 is set to 1. then an interrupt request will occur whenever the Clock Counter register incre­
ments from FFF16 to 00016. In response to an interrupt acknowledge. the address vector transmitted to the CPU will 
uniquely identify IM6102 real-time clock logic. 

Programming the IM61 02 real-time clock logic is very straightforward; it may be illustrated by the following instruction 
sequence: 

CLA 
TAD 
CLAB 
TAD 
CLDE 

INIT 

ENAB 

/CLEAR THE ACCUMULATOR 
/LOAD STARTING VALUE INTO THE CLOCK 
/COUNTER BUFFER 
/LOAD CONTROL CODE INTO THE CLOCK 
/ENABLE REGISTER AND START THE CLOCK 

IM6102 MEDIC INSTRUCTIONS 
There are a number ()f special 110 instructions recognized by an IM6102 MEDIC. These instructions, together 
with their object codes and. operands, are listed in Table 13-6. Note carefully that the operands (where they oc­
cur) consist of two octal digits. The high-order octal digit can have any value in the range 0 through 7. The low­
order octal digit must be O. 

The following abbreviations are used in Table 13-6: 

AC CPU Accumulator 

AC <x-y> CPU Accumulator bits x through y inclusive. For example. AC <4-0> represents bits 4.3.2.1. and 0 of 
the CPU Accumulator 

CAR 

CBR 

CC 

COF 

DF 

ECAR 

EN 

H 

IB 

IE 

IF 

Curren! Address register 

Clock Buffer register 

Clock Counter register 

Clock Overflow status 

Data Field register 
\ 

Extended Current Address register 

Clock Enable register 

Hig h level voltage - positive logic "1" 

Instruction Field buffer 

CPU Interrupt Enable status 

Instruction Field register 

13-85 



IIFF .Interrupt Inhibit Flip-Flop (lM6102 internal interrupt enable/disable status) 

L Low level voltage - positive logic "a" 
LINK CPU Link status bit '. 

n An octal operand digit in the range a through 7 

SF Save Field register 

SF <2.1.0> Save Field register bits 2.1. O' 

SF <5.4.3> Save Field register bits 5. 4, 3 

SR DMA Status register 

SR6 . DMA Status register bit 6 - the Field 7 wrap around carry error bit 

SR5 DMA Status register bit 5 - the Word Count Overflow error bit 

VR Interrupt Vector register 

WCR DMA Word Count register 

xxx Three bits of object code corresponding to "n", described above 

[ ] Contents of location enclosed within brackets 

A Logical AND 

V Logical OR 

....,;.. Data is transferred in the direction of the arrow 

13-86 



TYPE MNEMONIC OPERAND 

CAF 

CDF nO 

t ' 
CIF nO 

CDF,ClF nO 

GTF 

UF 

RDF 

RIB 

RIF 

RMF 

RTF 

OBJECT 

CODE 

6007 
C07 

62nl 
ll00IOxxxOOl 

62n2 

ll00IOxxxOl0 
62n3 

ll00IOxxxOll 

6004 
C04 

6254 
CAC 
6214 

cac 
6234 
e9C 
6224 
C94 
6244 

CA4 

600S 

COS 

·H 

H 

H 

H 

H 

H 

H 

H 

H 

'.', 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 13-6. IM6102 MEDIC I/O Instructions 

CONTROLS TO - CPU 

H H H 

H, H H 

H H H 

H H H 

H H 

H H H 

H H 

L H H 

H H 

H H H 

H H H 

OPERATION PERFORMED 

[SRS]-{), [SR6]-{), [COF]-{), [EN]-{), [CBR]-{) 

. Clear all flags: clear Word Count Overflow error bit, Reid 7 wrap around carry error bit, and Clock 

Overflow flag; clear Clock Enable register and Clock Buffer. 

[DF]-" 

Load Data Field register immediate 
[IB]-" 

Load Instruction Field buffer immediate 

[DF]-", [IB]-" 

Load Data Field register and Instruction Field buffer immediate 
Read flags into CPU Accumulator as follows: 

11 10 9 8 7 6 5 4 3 2 o 4-- Bit No. 

l I 1 JxJ 1 CPU Accumulator 

'" -- -" .t, i Save Field register~ These are from IM6102 MEDIC 

UNK INTREQ IE ~ These are from IM6100 CPU 

lIF]-[IB] 

Load Instruction Field register, re-enable interrupts 
[AC<S-3>]-[AC<5-3>]V [OF] 

OR Data Field register into bits 6, 5, 4, and 3 of the CPU Accumulator 

'l-AC<5-0>]-[AC<5-0>] V [SF] 
Sa~e Field register into the low-order 6 bits of the CPU Accumulator 

[AC<S-3>]-[AC<S-3>]V [IF] 

OR Instruction Field register into bits S, 4, and 3 of the CPU Accumulator. 
lIB]-[SF<S.4,3>1. [OF]-[SF<2,I,O>] 
Restor~ memory field. The Instruction Buffer will load the Instruction Field after the n8l(t JMP, 

JMS, or UF instruction. 
Return flags from CPU as follows: 

11 10 9 8 7 6 

I X I I I I I , 
UNK 

5 4 3 2 1 0 4-- Bit No. 

I X I X I X I X I X I X I CPU Accumulator -r--. 
[IB] [OF] 

After the next JMS, JMP, or UF instruction, interrupts wil be enabled and the Instruction Buffer 

will load the Instruction Field. 



W 
I 

00 
00 

TYPE 

.... 
i .. 
Z 
0 
U 
en 
en ... 
U 
U 

'" > a:: 
0 
~ ... 
~ .. 

'U 

'" a:: 
Q 

.... 
0 a:: .. 
2 
0 
U 
~ 
U 
0 ..... 
U 

'" ~ 
j::: 
.:., 

'" '" a:: 

~ .... 
:;)0 
a:: a:: 
a::" ",2 
.. 0 
~U 

MNEMONIC 

LCAR 

LEAR 

LFSA 

LWCR 

RCAR 

REAR 

RFSA 

SKOF 

CLAB. 

CLBA 

CLCA 

CLOE' 

CLEN 

CLSA 

CLSK 

CLZE 

WRVR 

OBJECT 
OPERAND 

CODE 

6205 

Ca5 

nO 62n6 

ll0010xxxll0 

6245 

CA5 

6225 

C95 

6215 

CaD 

6235 

C90 

6255 

CAQ 

6265 
CB5 

6133 

C5B 

6136 

C5E 

6137 

C5F 

6132 
' C5A 

6134 

C5C 

6135 

C50 

6131 
C59 
6130 
C58 

6275 

CBO 

Table 13-6. IM6102 MEDIC I/O Instructions (Continued) 

CONTROLS TO CPU 

Co C1 C2 
OPERATION PERFORMED 

SKP 

L H H H [CAR]-[AC]; [AC]-o 

Transfer CPU Accumulator contents to Current Address register, then clear Accumulator. 

H H H H [ECAR]-n 

Load the Extended Current Address register immediate. 

L H H H [SR]-[AC<4-0>]; [AC]-o 

Transfer low-order five bits of CPU Accumulator contents to OMA Status register, then clear 

Accumulator. 

L H H H [WCR]-[AC]; [AC]-o 

Start DMA and clear Word Count Overflow status. Transfer CPU Accumulator to OMA Word Count 

L L H H [AC]-[CAR] register then clear Accumulator. 

Transfer Current Address register contents to the CPU. 

H L H H [AC<5-3 > ]-[ AC<5-3 >] V [ECAR] 

OR Extended Current Address register contents with CPU Accumulator bits 5, 4, and 3. 

H L H H [AC<6-0>]-[AC<6-0>]V [SR]; [SR6]-o 

OR OMA Status register contents with CPU Accumulator bits 6-0; then clear bit'6 of the OMA. 

Status register. 
H H H L/H If OMA Word Count register has overflowed, return low SKP pulse. 

H H, H H [CBR]-[AC]; [CC]-[CBR] 

Transfer the CPU Accumulator contents to the Clock Buffer register, then transfer the Clock 

Buffer register contents to the Clock Counter register. 

L L H H [AC]-[CBR] 

Transfer the Clock Buffer register contents to the CPU Accumulator 

L L H H [CBR]-[CC]; [AC]-[CBR] 

Transfer the Clock Counter register contents to the Clock Buffer register, then transfer the Clock 

Buffer register contents to the CPU Accumulator. 

H H H H [EN]-[EN]V [AC] 

' Set to 1 all Clock Enable register bits which correspond tol bits in the CPU Accumulator 

L L H H [AC]-[EN] 

Transfer Clock Enable register contents to the CPU Accumulator 

L L H H [AC]-o; [AC<ll >]-[COF]; [COF]-o 

Clear CPU Accumulator, transfer Clock Overflow Rag to high bit of Accumulator, and then reset 

Clock Overflow Flag 
H H H L/H If Clock Overflow FI\lg is set return a low SKP pulse. 

H H H 
[EN]-[EN] A [AC] 

H 
Reset to 0 all Clock Enable register bits which correspond to 1 bits in the CPU Accumulator. 

L H H H [VR]-[AC<11-1 >]; [AC]-o 

Transfer upper 10 bits of CPU Accumulator to the Interrupt Vector register, then clear Ac-

cumulator. 



c 
w 

~ a: o 
a. 
a: o 
CJ 
! 
en 
w 

~ 
Q 
en 
~ . .., 
w 
z 
a: o 
m 
~ 
:E g 
c( 

@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

·IM6100 CPU 
• IM6101 PIE 
• IM6102 MEDIC 

13-01 



IM6100 
ABSOLUTE MAXIMUM RATINGS 
Supply Voltage 

Input or Output Voltage Applied 
Storage Temperature Range 

IM6100/C t4.0V tOr 7.0V 
IM6100A t4.0V to 11.0V 
GND -0.3V to Vee +0.3V 

-65 C to +125 C 

Operating Temperature Range 
Commercial .. ' 
Industrial 
Military 

O'Cto +75°C 
-40°C to +85°C' 

-55°C to +125'C 

DC CHARACTERISTICS Vee = 5.0V ': 10% (IM6100). 10.0V :!: 10% (IM6100A). TA = Commercial. Industrial or Military 

PARAMETER 

Logical "1" Input Voltage 
Logical "0" Input Voltage 
Input Leakage 
Logical "1" Output Voltage 
Logical "1" Output Voltage 
Logical "0" Output Voltage 
Logical "0" Output Voltage 
Output Leakage 
Supply Current 

Input Capacitance 
Output Capacitance 

SYMBOL 

V,H 
V,l 
I'l 
VOH, 
VOH, 
Vou 
Val' 
10 
lee 

C'N 
Co 

CRYSTAL 
FREQUENCY·fe 

STATES 

LX MAR 

CONDITIONS 

OV.;; V,N .;; Vee 
10uT=0 
IOH=-0.2mA 
lOUT =0 
10l =1.6 mA 
OV.,,; Vo '" Vee 
Vee = 5.0 volts 
Vee = 10.0 volts 
Cl = 50 pF; TA = 25°C 
FeLOe• = Operating Frequency 

MEM/OEV/SW/CP ---+--,1 SELECT I'-:-__ ~ __ 

ox 
(0·11) 

XTA _____ ..J 

XTe 

XTC -' 

MIN TYP MAX UNITS 

70% Vee V 
200/0Vee V 

-1.0 1.0 /LA 
Vee-0.01 V 
2.4 V 

GND +0.01 V 
0.45 V 

-1.0 1.0 /LA 
2.5 mA 
10.0 mA 

5.0 pF 
8.0 pF 

'os!--i t-tOH 

WRITE DATA 

IM51CO TIM!~lG AND STATE S!GNALS 

AC CHARACTERISTICS (TA = 25° C), Derate O.390/oC 

PARAMETER 

~Stal9'nme ' .• 
LXMAR Pulse Width 

"~Mir8ee SetUP 'Ib8;'; 
Address Hold Time 

'f ACcetii 1Tme FrOm 1.XMAR . '.':': '. 
. Output Enable TirTl.e,., • ,; 

. . Read Pulse 'Mdlh ..... 
Write Pulse Width 

. Data Setup TIme .: 
Data Hold Time 

SYMBOL 

T. 
tl 

" tM··;.~·;: ;.';'.:>::', 
t'H 
t..l: ; 
tEN 

, tA;' 
twp 
Ie. ., 
tOH 

IM6100 
Vee = 5.0 
Ie = 4MHz 

.,.500' 
240 

"f50,>.) .. ,':r 
250 
50(F 
240 
700 
240 

i 240 . 
100 

IM6100A 
Vee = 10.0 
'e=BMHz 

IM6100C 
Vee = 5.0 

f.:'= 3.3MHz UNITS 

::~;,.~.,.;~~:;; 

:':;~.:~;".~; .. ~:~!75: 
ns 

::.~t.~,:~~ .. ( ;)~~.Q ':~~:!~i2 ~;t:,~~ :.~:: ,~~;~~";;:"':::~~::~ 
280 ns 

>;\~:':=(' .. ~'.C~:~l~; ;f~;:::::~."':~L: 

~;:_;:;):·:Y:'N:;,:·::r·:·~;~:!~f~ 
160 ns 

Data sheets on pages 13·02 through 13·06 reprinted by permission of Intersil. Incorporated. 

'13-02 



Q 
w 
~ 
a: o a. 
a: o 
u 
~ 
en 
w 

~ 
Q 
en 
~ 
elf 
w 
Z 
a: 
o 
a:I 
en o 
~ 

~ 
c( 

@ 

IM6101 

ABSOLUTE MAXIMUM RATINGS 
Supply Voltage 

IM6101 +8.OV 
+12.0V 

Operating Temperature Range 
Industrial 

IM6101A 

Applied Inp'ut or 
Output Voltage GNO --0.3V to Vee +0.3V 

Storage Temperature Range -6So e to 150°C 

, Military 

Operating Voltage Range 
IM6101 
IM6l01A 

DC CHARACTERISTICS Vee == Operating Voltage Range T A = Temperature Range 

PARAMETER SYMBOL CONDITIONS 

Logical "1" Input Voltage 

Logical "0" Input Voltage 

Input Leakage 

Logical "1" Output Voltage 

Logical "1" Output Voltage 

Logical "0" Output Voltage 

logical "0" Output Voltage 

Output Leakage 

Supply Current 

Input Capacitance 

Output Capacitance 

Input/Output Capacitance 

AC CHARACTERISTICS 

PARAMETER 

Delay from OEVSEl to READ 

Delay from OEVSEL to WRITE 

Delay from OEVSEL to FLAG 

Delay from OEVSEL to el. e2 

VIH 

VIL 

IlL OV ~VIN ~Vee 

VOH2 lOUT ~ 0 

VOH1 IOH = -0.2 mA 

VOL2 lOUT = 0 

VOL 1 'IOL -= 2.0 mA 

10 QV ~VO ~Vee 
leel VIN = Vee 

leC2 Vce = 5V flM6100 = 4 MHz 

CI, 

Co 

elD 

TA = 2soe eL = 50pf 

SYMBOL CONDITIONS 

tOR IM6l01 Vee = SV 
IM6101A Vee = 10V 

tow IM6101 Vee = 5V 
IM6101A Vce = 10V 

, tOF IM6101 Vee = 5V -
IM6101A Vee = 10V 

me IM6101 Vee = 5V 
IM6101A Vee = 10V 

Delay from OEVSEL to SKP/INT tOI IM6l0l Vee = SV 
IM6101A Vee = 10V 

Delay from OEVSEL to OX tOA IM6l0l Vce = SV 
IM6l01A Vee = 10V 

LXMAR pulse width tLXMAR IM6101 Vee = 5V 
IM6101A Vce = lOV 

Address setup time tAOOS IM6101 Vee = 5V 
IM6101A Vee = 10V 

Address hold time tAOOH IM6101 Vee = SV 
IM6101A Vee = 10V 

Data setup time tos IM6101 Vee = SV 
IM6101A Vee"; 10V 

Data hold time tOH IM6l01 Vee = SV 
IM6101A Vee = 10V 

13-03 

MIN 

70% Vee 

-1.0 

Vce - 0.01 

2.4 

-1.0 

MIN 

TVP 

,-

1.0 

'1.0 

5 

8 

8 

TYP 

lS0 
- 7S' 

lS0 
75 

200 
100 

200 
100 

200 
100 

200 
100 

200 
100 

SO 
25 

100 
SO 

200 
100 

SO 
2S 

-40°C to 85°C 
-55°C to 125°C 

4V to 7V 
4V to 11V 

MAX 

20% Vee 

1.0 

GNO+O.Ol 

0.4S 

1.0 

7 

10 

10 

MAX 

UNITS 

V 

V 

Il A 

V 

V 

V 

V 

IlA 

IlA 

mA 

pf 

pf 

pf 

UNITS 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 

ns 
ns 



IM6101 

TIMING DIAGRAM 

Timing for a typical lOT transfer is shown below. During 
IFETCH the processor obtains from memory an lOT 
instruction of the form 6XXX. During the IOTA the 
processor places that instruction back on the OX lines 
@ and pulses LXMAR transferring address and control 

information for the lOT transfer to all peripheral devices. 
A low going pulse on DEVSEL while XTC is high @ is 
used by the addressed PI E along with decoded control 

information to generate Cl, C2, SKP and controls for data 
transfers to the processor. Control outputs ~EADl and 
READ2 are used to gate peripheral data to the OX lines 
during this time. A low going pulse on DEVSEL while XTC 
is low ® is used to generate WRITEl and WRITE2 
controls. These signals are used to clock processor accumu­
lator instruction data into peripheral devices. 

I+--------------IOT INSTRUCTION ----------------l 

XTC \\... __ ....J! \\... ___ --J! \\..._--~ 

LXMAR r I-tLXMAR 
'.' 

.... ~tAOOH 
tAOOS ---+--

OX (0-11) ( (j) X (i) Q) @ ~A@ 
ItOA· I- toS~'~tOH 

I'-f--
-l--tOR ~-tow tOR- i-

READ (NEGATIVE POLARITY) 
I'--H tow-I-

WRITE (POSITIVE POLARITY) 
,......, 

(NEGATIVE POLARITY) 
'-" tOF __ 

I-
WRITE 

CFLAG 

SFLAG .... tOF ~ _______________________ 

FLAG (VIA WCRA COMMAND) :t ------------------------ --~:. --~toi------' tOI'" 

SKP/INT INTERRUPT DATA SKIP 

Sense FF are sampled 
when LXMAR is high by 
the PIE_ 

tOC'" ~::t 
I'---

Interrupts are sampled by 
the IM6100 on the rising 
edge of T2_ 

All PIE timing is generated from IM6100 signals LXMAR, 
DEVSEL, and XTC,' No additional timing signals, clocks, 
or one shots are required. Propagation delays, pulse width, 
data setup and hold times are specified for direct inter­
facing with the IM6100, 

INTERRUPT DATA 

i--toc 

OX data, CO, C1, C2, and 
SKI> are read by the IM6100 
on the rising edge of T3_ 

13-04 



c 
w 

~ 
a: o 
Il. 
a: 
o 
U 
~ 
en 
w 

~ 
g 
en 
en 
II( 

III 
w 
Z 
a: o 
III 
en o 
::!: 
II( 
c 
II( 

@ 

IM61Q2 

ABSOLUTE MAXIMUM RATINGS 
Supply Voltage 
Input or Output Voltage applied 
Storage Temperature Range 
Operating Temperature Range 

Operating Voltage Range 

SV 
GND -0.3V to V CC + 0.3V 

_65°C to +150°C 
IM61021 -40°C to +S5°C 

IM6102M _55°C to +125°C 
4-7V 

DC CHARACTERISTICS VCC =.5.0V ±.10% T A = Industrial or Military 

PAR~METER 

Logical "1" Input Voltage 
Logical "a" Input Voltage 
Input Leakage 

Logical "'" Output Voltage 
Logical "a" Output Voltage 
Output Leakage 
Supply Current 

I 

Input Capacitance 
Output Capacitance 

AC CHARACTERISTICS 

SYMBOL 

VIH 
VII.. 
IlL 

VOH 

VOL 
10 

ICC 

CONDiTIONS 

OV ..;;; VIN ..;;; VCC except pins 15.29,31 

I OH = -0.2 mA except pins 32, 33. 34 

IOL = 2.DmA 
OV";;; VO";;; VCC 

VCC = 5.DV 

CL = 50 pF; TA = 25°C 
FCLOCK = Operating Frequency 

MIN 

VCC-2.0 

-1.0 
2.4 

-1.0 

TYP 

7.0. 
8.0 

MAX 

O.S 
l.0 

0.45 

1.0 
2.5 

8.0. 
10..0 

VCC = 5.0V ± 10% TA = Industrial or Military CL = 50pF fc = 4MHZ : TS = 2/fc = 5DDns All times iri ns 

IM61021 
IM6102M 

UNITS 

V 
V 

I1A 
V 
V 

pA 
mA 

pF 
pF 

PARAMETER SYMBOL MIN TYP MAX PARAMETER SYMBOL MIN TYP MAX 

LXMAR pulse width IN tUN 250 
XTA pulse width IN tXAI 500 

Address setup time IN: OX·LXMAR H) IAIS 
Address hold time IN: LXMAR H)·OX tAIH 

Data output enable time: . 
DEVSELW-DX tDEN 

Controls output enable time: 
DEVSEL (~Hines CO, Cl, C2, 5/1 tCEN 

Write pulse width IN tDVW 

Data Input setup time: DX-DEVSEL (t) tOIS 
Data input hold time: DEVSEL (t)-OX tOIH 

RESET input pulse width tRST 
.' 

'. ~KP/INTX to SKP/INT 
propagation delay tSID 

DMA control signals delay: XTC-XTC*; 
MEMSEL- MEMSEL*, LXMAR-
lXMAR* tDMlX 

','!,;. , 
Eriable/Di~bl~ 'time from· 

<. 
. ~,'. 

.DMAG~T to EMA linu 'OEM 

MEMSEL * pulse width - DMA READ tMOR 
MEMSEL' pulse width - OMA WRITE tMOW 
MEMSEL * pulse width-

DMA REAO/REFSH tMDRR 
MEMSEL * pulse width-

DMA WRITE/REFSH tMDWR 

LXMAR* pulse width 
150 

OMA READ access time: 

100 LXMAR* (~)·UP (t) 

100 
OX & EMA addr.ess setup time 

wrt LXMAR* W 
200 

OX & EMA address hold time 

100 wrt lXMAR* (~) 

75 DMA READ enable time: 
MEMSEL * (~)-UP It) 

O. 
50 UP pulse width DMA READ 

100 DMA WRITE access time: 
LXMAR· U)-MEMSEL· (t) 

100 DMA WRITE enable time: 
UP (U-MEMSEl* It) 

MEMSEL * setup tim. DMA WRITE 

100 MEMSEL·U)-LXMAR* (U 

DMAEN setup time w.r.t: XTA (t) 

100 DMAEN hold time w.r.t. XTA (f) 

500 UP pulse width DMA WR ITE 

625 

500 

375 

'13-05 

tLD 

IDRAT 

tOXAS 
tEMAS 

IOXAH 
tEMAH 

tOREN 

tRUP 

tOWAT 

tOWEN 

tMWS 

tOMS 
tOMH 

twuP 

250 

500 

375 
375 

125 
125 

375 

250 

500 

375 

., 

125 

50 
50 

500 

t"\'r 



IM6102 

SOMA OPERATIONS TIMING 

DMAREAD 
LXMAR· .--f\' RV'L ~--------------------~ ~~~----tO-RA-T---'----------------

MEMSEL· 

UP 

DMAWRITE 
LXMAR· 

------towAT--.j 

MEMSEL· 

--~. tMDW---

UP 

DMA 
READ/REFRESH tOMLX 

MEMSEL· 

------i----------------------------------- VIH 
UP 

DMA 
WRITE/REFRESH 

UP 
----~----------4_-~------------~-------VIH 

LXMAR 

MEMSEL 

tAIS tAIH 

ox 

13-06 



c 
w 
~ 
II: 
o 
II. 
II: o 
CJ 
~ 
en 
w 

~ 
g 
en 
en 
<II( 

ill 
w 
Z 
II: o 
CD 
en o 
~ 
~ 
<II( 

@ 

Chapter 1.4. . 
THE 8X300 (OR SMS300) 

We have described this product in previous editions under the designation SMS300. However, its manufacturer 
now calls it 8X300, and that is the standard part riumber. 

The 8X300 is described by its manufacturer as a "microcontroller" rather than a "microprocessor". This distinc­
tion draws attention to the unique capabilities of the 8X300 which make it the most remarkable device de­
scribed in this book. 

The 8X300 is designed to serve as a signal processor or logic controller, operating at very high spee,C;f . .The 
8X300 can handle applications of this type at more than ten times the speed of most other devices described in 
this book. On the other hand, the 8X300 has a very limited ability to access read/write memory, or to perform 
arithmetic operations - particularly when handling multibyte arithmetic. 

If yours is a high-speed, 'signal processing application. then give the 8X300 serious consideration: otherwise. the 
8X300 is probably not for you. 

We describe the 8X300 in Chapter 14 because it lies between the 8-bit microcomputers. which we have just described. 
and the 16-bit devices described beginning with Chapter 15. The 8X300 accesses program memory as 16-bit w()rds. 
while accessing data' in 8-bit units. 

Although Scientific Micro Systems was originally considered the prime source for the 8X300 (then kn~wn as 
the SMS300), the only manufacturer of 8X300 parts to date has been Signetics. Signetics has always manufac­
tured parts for itself and for Scientific Micro Systems. even through Signetics was looked upon as the second source. 
The second source designation came from the fact that the part was initially designed by Scientific Micro Systems. 
which contracted with Signetics for production. Scientific Micro Systems no longer sells the 8X300 or related compo-
nents.· . 

AI18X300 devices are manufactured using bipolar technology. For this reason. devices have very fast logic: but conver~ 
sely. they consume a great deal of power. 

At present. the sole source for 8X300 components is: 

SIGNETICS 
P.O. Box 9052 

811 E. Arques Avenue 
Sunnyvale. CA 94086 

THE 8X300 MICROCONTROLLER 

. Figure 14-1 illustrates that part of our general microcomputer logic which is implemented by the 8X300 Micro­
controller. Figure 14-2 provides a functional overview of this device. 

14-1 



Logic to Handle 
Interrupt Requests 

from 
External Devices 

I 

I/O Communication 
,~ Serial to Parallel 

Interface Logic 

Programmable 
Timers 

.'. .... 

/i. 

i '" ) \i 

Data Counteris) 

Stack Pointer 

...... 

~ .. 1"Li\ •.•••••..•.•.•...•• ,/ ..•..•.. \i·) 
......... 

BX300 Microcontroller 

BT32/3/5/6 

Direct Memory 
'Access Control 

Logic 

it 
.' 1'<' > ..... 

.ii3.if ..... '· ....... · ....... · ..... ·· .... · ...... · ............... · .................. \ ........................ i •.• <r······ .. ··· ... · ••• · •••.. · ••..• <... Irc> ....•.• ,..... ." I .. ··.··.•• .•...•...•• • •.•.•••.••.••••••.•••.••. ~ ,.· •• •· •. · •.•• i· .. ·\. r:'.i': 

~.~~ .... 
·"···.··L 

.i ;ri< J--
I··.· ':.~:9i£< , 

Read Only 
Memory 

•••••••• .'" 

> 

" 1,( ir';j;;~ ..;~~1~~J%f~~:).~~ l~ ~ 
i\.]< U"1~·'·~'; ... ·.0;~:· •••• ••· .. \. <[.Jp~e?~SeLo~IG: I····: .• · 

J~;~~;;;,;; ';XJ;:::~. >;x;V/;:;:;;~ 
::;: ;g;:rpzZ><! .~ 
~~ :;~t~~?;?f§~ 

Read/Write 
Memory 

····_····-··,···'····,········:·'·········,,···,·<1··· ................ -' .... :~ ....•...... 

Figure 14-1. Logic of the SX300 Microcontroller and ST32/3/5/6 

The 8X300 is manufactured using bipolar LSI technology; it is packaged as a 50-pin DIP, A single +5V power supply is 
required, 

Using a 150 nanosecond clock. instructions execute in 250 nanoseconds, However. comparing 8X300.instruction ex­
ecution times with other microcomputer instruction times can be misleading, A single 8X300 instruction. when simply 
manipulating data. can be the equivalent of five "typical" microcomputer instructions; on the other hand. it may take 
four or more 8X300 instructions to perform a memory access which could be accomplished using one "typical" 
microcomputer instruction, 

It is important to note that the very fast 8X300 clock demands external logic with appropriately fast response times, 
You are therefore highly restricted in the size of memory. and the type of I/O device ~hich you can include in an 8X300 
microcomputer system. 

14-2 



C 
w ... 
~ 
a: 
0 
0-
a: 
0 
u 
~ 
en 
w ... 
~ 
(3 
0 
CI) 
CI) 

~ 

cIS 
w 
Z 
a: 
0 
a:I 
CI) 

0 

~ 
~ 
C 
~ 

© 

Program Memory 

Address and 

Instruction Decode 
Logic 

AD-AI2 10 - 115 

General 

Purpose 

Registers 

Auxiliary 

Register 

OVF 

Mask Right 

Logic Rotate 

Logic IVB Bus 

Buffer 

IVBO 

Control Logic 

As tB wc sc ~ ~ I ~ I 

IVB7 

Data Bus 

Figure 14-2. A Logic Overview of the 8X300 Microcontroller 

8X300ADDRESSABLE REGISTERS 
Addressable registers of the 8X300 may be illustrated as follows: 

Rl 

R2 

R3 

R4 G en>eral Purpose Registers (B bits) 

R5 

R6 

Rll 
Auxiliary Re gister (B bits) 

I Program Counter (13 bits) 

IVB Bus Buff er (B bits) 

14-3 



The seven General Purpose registers and the Auxiliary register constitute eight primary Accumulators. The 
result of any ALU operation may be stored in the Auxiliary register. or in anyone of the seven General Purpose registers. 
ALU operations that require a single data input may receive this input from any General Purpose register. or from the 
Auxiliary register. ALU operations that require two data inputs will receive the second data input from the Auxiliary 
reg ister on Iy. . 

The aX300 IVB Bus is equivalent to a microprocessor Data Bus. The IVB Bus buffer operates as a source or destina­
tion for data in the same way as a general purpose register: it can be the destination of an ALU operation. or it can be 
the source for one ALU input. Strictly speaking. the IVB Bus buffer is not a programmaple register. in that there are no 
instructions that will simply load data into the IVB Bus buffer or read data out of the IVB Bus buffer. However. any in­
struction that outputs data on the IVB Bus or reads data off the IVB Bus will also write into the IVB Bus buffer. 

The strange general purpose register numbering reflects instruction object code interpretations which we will describe 
later in this chapter. 8X300 assembly language uses register designations to identify a number of operations that have 
nothing to do with programmable registers: do not be confused. . . 

The Program Counter is thirteen bits wide; thus, a total of a192 program memory words may be acidressed. The 
Program Counter is one feature of 8X300 logic which is not unusual: at all times. this register addresses the next pro­
gram memory location from which an instruction c~de will be fetched. 

Manufacturer's literature describes an Instruction Address register. but this is not a programmable register: it is simply. 
a location within which effective program memory addresses are computed before being output to the program memo­
ry. 

Obs~rve that the aX300 has no Data Counter, Stack Pointer, or other logic via which external data memory can' 
be addressed.' . . 

8X300 STATUS FLAGS 
The aX300 has a single status flag, referred to in the manufacturer's literature as the Overflow (OVF) flag. This flag is. 
in fact. a Carry status, as we woul~ define it. 

In keeping with the generally unusual architecture of the 8X300. the Overflow status flag is addressed as though it 
were the low order bit of General Purpose Register 8 (10 octall. 

8X300 MEMORY ADORESSI~G 
The aX300can access program memory and I/O devices; the aX300 has no logic capable of addressing data 
memory. 

Program memory is addressed in 16-bit words: up to 8192 words of program memory can be 
addressed. You can address program memory in order to fetch instruction object codes. but 
that is all. You cannot store data tables in program memory. because there is aosolutely no 
way of transferring the contents of a program memory word to any data register. Also. there is 
~bsolutelY no way in which you can w.rite into program memory. 

aX300 
PROGRAM 
MEMORY 
ADDRESSING 

All data and external logic is addressed as a-bit data units, via 512 I/O port addresses. If 'aX300 
youwant to have read/write mElmory present in an 8X300 system. you must set aside a block DAT~ AND I/O 
of contiguous I/O port addresses in order to select individual bytes of, read/write memory: ADDRESSIN~ 
alternatively. you must access 8-bit buffers. via I/O port addresses. in order to create the . 
memory address and Data Busses which are needed by external read/write memory. For example. you could adqress 
65.536 bytes 'of external read/write memory by allocating two 8-bit I/O ports to hold 16 bits of data which will create a 
memory Address Bus: a third 8-bit I/O port must be set aside as a buffer. holding data being written out to external 
memory or being read from external memory. . 

. ~ , '. . , . 

The 8T32/3/5/6 Interface Vector Bytes (IV Bytes). which are described later in this chapter. have 
been designed to operate as I/O ports. read/write memory and the 8X300 Microcontroller external 
logic interface. Because of the unique architecture of the 8X300. and particularly because of its 
very high speed. you will probably find that the IV Bytes currently have no substitutes in any 8X300 microcomputer 
system. . 

Looking at the 8X300 from the frame of reference 'of any other microcomputer described in aT~2/3/5/6 
this ~ook. an IV Byte is a simple. 8-bit parallel I/O port. But unlike the I/O ports of other IV BYTE 
microprocessors. 8X300 instructions that access an I/O port do not identify the I/O port that is ADDRESSING 
to be accessed. You must first execute an instruction which selects an I/O port: then any in-
struction which specifies an I/O port access will acc~ss the most recently selected I/O port. You can have two I/O ports 
simultaneously selected. since the 8X300 divides a total of 512 addressable I/O ports into a left bank and a right 
bank -:- within each bank a single IV Byte can be s·elected. 

14-4 



Q 
w 

~ a: o 
0. 
a: 
o u 
!: 
en w 
~ 
g 
(I) 
(I) 
c( 

alS 
w 
Z 
a: 
o 
m 
(I) 

o 
:iE 
c( 
Q 
c( 

@ 

As we have already stated. if you want to have read/write memory present in an 8X300 microcomputer system. you 
must create the address and Data Bus required by the external read/write memory using IV bytes. This is no different 
than using I/O ports of any other microcomputer system described in this book in order to create Address and Data 
Busses. The reason the 8X300 can get away with such an apparently clumsy method of accessing read/write memory 
is because of the very high speed of instruction execution - and because of the fact that the 8~300 is simply not 
designed for data manipulations that use a lot of read/write memory. For the type of signal processing and logic control 
applications that are well su ited to an 8X300. 512 bytes of external read/write memory will be more than sufficient. 

VCR 50 VREG 
(A51:A7 49 A8 (A4) 
(A61,A6 3 48 A9 (A31 
(A71:A5 4 47 A10(A21 
(ASI.A4 46 A11 (A11 
(A9).A3 6 45 A12 (AOI 

(A10)iA2 7 44 . iiAlT 
("11I1Al 8· 43 RESET 
(A12IAO 42 MCLK 

Xl 10 41 iVO W7I 
X2 11 40 iVi Wsl 

GND 12 39 M(iVs) 
(1151· 10 ·13 SX300 38 iV3li\i4l 
(1141 11 14 37 Vcc 

(1131 12 15 36 iV4 (lV31 

(1121 13 16 35. iVs1iV2) 
(111114 17 34 iViliVT) 
(110115 18 33 iV7 (IVai 

(19116 32 
. Rii . 

(lSI 17 31 iB 
(17118 21 30 wc 

(16119 22 29 SC 
(151110 23 28 115 (101 
(141111 24 27 114 (111 
(131,112 25 26 113 (121 

Pin Name Description Type 

AO-A12. Program Memory Addraaa Bus._ Output 

iVa -M Interfece Vector Byte.Bus Bidirectional 
RB. ii. wC. sc Control Signals Output 

MCLK Synchronizing Clock Output 
HALT' CPU Halt Input 
RESET Reset· Input 

X1. X2 Crystal Connections Input. 

10-115 Instruction Bus. Input 

VREG Reference Voltage to Pasa Transistor 

VCR Regulated Supply Voltage from Pasa Traneiator 

Vee.GND Power and Ground 

Figure 14-3. 8X300 Microcontroller Signals and Pin Assignments 

8X300 PINS AND SIGNALS 
8X300 pins and signals are illustrated in Figure 14-3. 

Signetics literature numbers bits and busses beginning with 0 for the high-order bit or line. We number bits and busses 
in the opposite direction. with 0 representing the low-order bit or line. In Figure 14-3. therefore. signals are identified 
fJrst with the nomenclature used by Signetics documentation. then in parentheses with the Signal name using our 
numbering system. Furthermore. all bit numbers throughout this chapter refer to our numbering system. 

All addresses are output to program memory via the Address Bus lines AO - A 12. Note carefully that addresses 
cannot be output via AO - A 12 to data memory. The only time an address will be output via the Address Bus is dur­
ing an instruction fetch operation. The fetched instruction object code will be returned via the sixteen instruction 
pins, 10 - 115. . 

IVO -IV7 is a combined Address and Data Bus via which external logic is accessed by the 8X300,' You will find it 
easiest to understand this bus if you visualize it as a multiplex I/O port address and I/O Data Bus.' . 

14-5 



The two control signals, RB and LB, may be looked upon as an extension to the IVB Bus when an I/O port address 
is being output via this bus. Whenever an address is being output on the IVB Bus. either RB or LB will be low. while the 
other signal is high. You can use these two signals in order.to decode the address on the IVB Bus as selecting one or 
two of the 256 I/O port banks. We will describe how to output 110 port addresses. as against data. later in this chapter. 

The WC and SC control outputs further define the contents of the IVB Bus as follows: 

.SC WC 
. 0 0 Data is input to the 8X300 via the IVB Bus 
o 1 Data is output on the IVB Bus by the 8X300 
1 0 An I/O port address is output on the IVB Bus by the 8X300 
1 1 Never output 

MCLK is a synchronizir)g clock signal which is output as a high pulse during the last quarter of every instruction cy­
cle. 

The HALT and RESET signals are absolutely standard. 

When HALT is input low. the 8X300 will cease executing instructions until HALT is input high again. 

When RESET is input low and is held low for at least one machine cycle. the Program Counter contents are set to zero; 
subsequently. program execution will begin again with execution of the instruction stored in memory location zero. 

The two inputs X1 and X2 are used either to connect a crystal or a capacitor. If the 8X300 Microcontroller is being 
used at maximum speed (125 nanosecond signal frequency) then you must connect a crystal across X 1 and X2. If you 
are using a slower clock. then a capacitor connected across these two inputs will suffice. 

8X300 INSTRUCTION EXECUTION AND TIMING 
8X300 instructions are executed in either one or two machine cycles. Minimum instruction cycle time is 250 
nanoseconds. Each instruction' cycle is divided into 62.5 nanosecond quarters as follows: 

One machine cycle (250 ns) 

r ~ 
'\ 

I I I I 
I I I I 
I I 

~ L MClK I I 

I First I I Founh I 

I Quaner I I Quaner I 
Second I Third I I Input 

I Output 
instruction Quaner I Quaner I I I next 

~ 
via 10-115 

I) 
I instruction I 
I address via I 

-....r' I AO-A12 and I 
Input data via I 

IVB Bus I data via I 
I IVBO-IVB7 I 

\ 
'" 

) 

Perform internal 

logic operations 

During the fourth quarter of a machine cycle. the address for the next machine cycle's instruction object code is output 
via the Address Bus. AO - A 12. 

During the first quarter of the next machine cycle. the addressed instruction object code is input via the Instruction 
Bus. 10 -115. . 

During the second and third quarters of a machine cycle. data is input off the IVB Bus by the 8X300. if necessary; then 
any internal operations on data are performed. 

D~ring the fourth quarter.' in addition to the next address being output to program memory. data is output to the IVB 
Bus. if necessary. 

Within the rather simple-looking instruction timing illustrated above. some very complex event sequences can occur as 
a result 'of the 8X300 Microcontroller's unique internal logic organization. Timing and propagation delays are quite 
complex and must be examined with care ~si~g ~endor data sheets as your guide. 

The 8X300 Microcontroller's internal logic is unique because a good deal of it is distributed along various data 
paths. This is illustrated in ~igure 14-2. 

14-6 



c 
w 

~ 
a: o 
a. 
a: 
o u 
~ 
iii 
w 

~ 
g 
en 
en 
c( ., 
w 
Z 
a: 
o co 
en o 
~ 
c( 
c 
c( 

@ 

Consider the implications of the shift. merge. rotate and mask logic positions. 

Data entering the Arithmetic and Logic Unit. either from the IVB Bus Buffer. or from a general pur­
pose register. mu'st pass through both the rotate and mask logic. The rotate logic optionally allows 
the entering eight data bits to be right-rotated by any number of bit positions: 

The mask logic optionally allows you to take the output from the rotate logic and mask off any 
number of bits. beginning with the high-order bit: 

A 
MaskOut ~ I \ ~ .Keep 

./ \ 
..",., ........ 

/' Range ~f ~, 
, .... mask optiOnS -..", 

1 1 1 1 1 1 I· 1 I 
Mllsked out bit positions .are replaced by O. 

8X300 
ROTATE 
AND MASK 
LOGIC 

Thus. the data entering the ALU from either a general purpose register or the IVB Bus register may be rotated and/or 
masked before being operated on. 

Combining the rotate and mask logic that we have just described. the input to the ALU may be illustrated as follows: 

Bit NumbersQ7 0 1 

4 3 2 
\ 

high order Any 

bit boUndary~.. c::::s 

of bits 

data bits 

Zero bits ~ ~ -... . 

_/ '-, ..... 
,/ range of "\ 1 boundary f 
II I I I II 

Incoming data shown as 
a continuous cylinder to 
illustrate right rotate capability. 

Result of rotate/mask logic 

76 !'i 43210 ",-BitNumber 

Suppose an input is right-rotated three bit pOSitions. then the two high-order bits are masked off: this would be the 
result: 

7 6 5 4 3 2 1 . 0 Bit No. 
Initial value: A7 A6 A5 A4 A3 A2 A 1 AO 

After right rotate: A2 A 1 AO A7 A6 A5 A4 A3 
After mask: 0 0 AO A7 A6 A5 A4 A3 

The result of the rotate/mask logic illustrated above becomes an Arithmetic and Logic Unit (ALU) input: it may be the 
only ALU input. or it may be one of two ALU inputs. If it is the only ALU input. it will simply be passed through the ALU. 

14-7 



If it is one of two ALU inputs. then the second input is the unmodified contents of an 8-bit Auxiliary register: You may 
Adci.' AND or XOR the two operands: 

Auxiliary register 
contents 

mask/rotate logic 

Thus. the ALU output may be the unmodified result of rotate and mask logic. or it may be the output from an arithmetic 
or logical operation. as illustrated above. In either case. the ALU output may be stored in the Auxiliary register. or in one 
of the general purpose registers; or it may be output to thelVB Bus. 

Data being transferred to the IVB Bus passes through shift and merge logic. This shift and merge 8X300 
logic combines in a very unusual way. ALU output. if shifted. may be shifted left from one to seven SHIFT AND 
bits. However. zeros are not shifted in to the low-order bits; rat\1er. any prior contents of the IVB MERGE LOGIC 
Buffer are moved into the vacated bit positions. " , 

In addition. you can specify the number of high-order bits which will retain their IVB Buffer values. This may be illustr-
ated 'as follows:" . , , " , 

Bit Bit 

7 0 

B7 Bs etc. I.tc.~~ I etc. B, So 

t 
{

These low-aider bits equal the number of left 

..... ---- shifts Spe.Cified. and retain prior'lVB buffer bit 
contents . t 

..... --------- Merge specification specifies this bit field width. 1 
I 

{

If sum of shift left and merge fiald'width is 1;;55 

-------------- than 8, rem~ining high-order bits retain prior IVB 
buffer values. 

Thus you create a new IVB Bus output by inserting f'rom one to eight new data bits anywhere in the old data bit field. In 
the illustration above. Ai represents new data bits; Bi represents old IVB Buffer bits. 

Suppose you specify a 2-bit left shift and a 3-bit merge; this would be the result: 

14-8, 



Figures 14-4 through 14-T illustrate the four possible data paths that may be specified by 8X300 instructions. In all four 
figures. data entering the ALU .from. the Auxiliary register is optional. but. if present. requires an Add. AND or XOR 
operation to be performed. 

THE 8X300 INSTRUCTION SET 
We cannot neatly categorize Instructions as we have done for any other product described In this book: one 
8X300 Instruction may perform a data move, plus five additional operations. Therefore, In order to summarize 
the 8X300 Instruction set in Table 14-2, we list Individual Instructions that perform many operations under each 
of the Instruction classes that may apply. 

Table 14-2 will h~lp you understand what the true comparison is between the aX300 instruction set and other 
microcomputer instruction sets. However. Table 14-2 will do nothing to help you understand 8X300 assembly 
language. This is because of the strange assembly language mnemonics adopted by Scientific Micro Systems for the 
aX300 Assembler. But without.some understanding ofaX300 instruction codes. any further discussion of assembly 
language mnemonics will have little meaning: therefor~ let us take a look at these object codes. and simultaneously 
look at the assembly language syntax that goes with them. 

The one general statement that can be made for all 8X300 Instructions is that every instruction has a single, 16-
bit object code: the 3 high-order object code bits define the Instruction class, while the next 13 bits provide ad­
ditional operand or qualifying data. This may be Illustrated as follows: 

. Bit No. 

I I 
~ T' + .. ---------operand 

Instruction C'-ss 

Now we are going to make the discussion which follows conform to the rest of this book by numbering instruction 
words and data byte bits trom right to left: and we are going to use hexadecimal object code notation. Signetics' 
literature. by way of contrast. numbers data words from left to right. and uses a form of bastardized octal notation to 
describe instruction object codes. 

The first four classes of 8X300 Instructions have Identical object code formats which may be illustrated as 
follows: 

IS 14 13 12 11 10 9 B 7 6 5 .. 3 2 1 0 

I I I I I I I I I I I I I I I I I 
~ 

t 

Bit No. 
Instruction Object Code 

Destination definition 

Source rotate or mask, and 
destination merge definition 

Source definition 

'------~: 010 

. 011 

MOVE 
ADD 
AND 
XOR 

The "Source definition" and "Destination definition" are defined as registernu'mbers; since each definition is five bits 
wide. a register number in the range 0016 through 1 F16 (OOa through 37a) may be specified. But you get to specify a 
lot more than a source or destination register. Table 14-1 summarizes the possibilities. 

14-9 



Table 14-1. 8X300 Source and Destination Object Code Interpretations 

.. 

CODE INTERPRETATION 

BINARY OCTAL HEX SOURCE DEFINITION DESTINATION DEFINITION 

00000 00 00 Auxiliary register 

00001 01 01 General Purpose Register R 1 , 

00010 02 02 General Purpose Register R2 

00011 03 03 General Purpose Register R3 

00100 04 04 General Purpose Register R4 

00101 05 05 Generel Purpose Register R5 

00110 06 06 General Purpose Register R6 

00111 07 07 All zero input 

I 
Output an 8-bit I/O port address 

to a left bank IV Byte 

01000 10 08 OVF status Uow-order bit only) Not allowed 

01001 11 09 General Purpose Register R 11 

01010 12 OA 

} through No operation 

01110 16 OE 

01111 17 OF All zero input Output an 8-bit I/O port address to 

a right bank IV Byte. 

10XXX 2X 10 Contents of left bank IV Byte ALU output is shifted left 7-X 

to selected by most recent 07 output bit positions. After passing 

17 is loaded into IVB buffer: this through merge logic. merge logic 
data is then right rotated X bit output will be stored in IVB ' 

positions. on its way to the ALU. buffer. and in left bank IV Byte 

IVB buffer holds unrotated input. most recently selected by an 

07 output. 

l1XXX 3X 18 Identical to 10XXX. except that right bank IV Byte most recently 

to selected by a OF (or 17) output 'is accessed. 

IF 

8X300 assembly language syntax closely follows the object code format: this may be illustrated as follows: 

LABEL OPS. N. 0 

LABEL represents any normal assembly language instruction label: as usual. LABEL is optional. 

OP represents the operation or instruction mnemonic. OP may be MOVE. ADD. AND. or XOR. depending on which of 
the four instructions is being executed. OP corresponds to bits 15. 14 and 13 of the instruction code. 

The assembly language operand field consists of three terms: S. Nand D. 

With reference to the instruction object code we have illustrated above. S represents bits 8 through 12. the source 
definition. 

N represents bits 5 through 7 which may provide rotation. mask or merge parameters. depending on the nature of S 
and D. 

o represents bits 0 through 4 of the instruction object code and provides the destination definition. 

The problem with the S. Nand 0 terms of the operand field is that they are not really operands as one would normally 
define them in an assembly language instruction set. These three fields also help identify part of the instruction opera­
tion. or mnemonic. If you approach 8X300 assembly language realizing that its operand field is really an extension of 
the mnemonic field. you will have less trouble understanding individual instructions. 

The various ways in which a Move. Add. AND.or XOR instruction may be executed are illustrated in Figures 14-4 
through 14-7. Let us look at these possibilities in more detail. 

When a register is specified as both the source and destination of data, Figure 14-4 defines the operation. Refer­
ring to this figure. note that the source data is rotated. but it is not masked. The second ALU input will only occur if you 
are executing an Add. AND. or XOR instruction: and in each case the second ALU input will be the unmodified con­
tents of the Auxiliary register. 

14-10 



Q 
w 
~ 
a: 
o 
D. 
a: 
o 
u a; 
en w 
~ g 
(I) 
(I) 
ct 
ail 
w 
Z 
a: 

.0 
m 
(I) 
o 
~ 
ct 
Q 
ct 

@ 

The classes of instruction illustrated in Figure 14-4 can be listed under the following categories: 

1) . A Register-Register Move. This involves specifying a Move instruction with different registers as the data source 
and destination. but no right rotate. . 

2) Register Operate. By specifying the same register as the source and destination for a MOVE. you can create a 
Register Operate instruction if you also specify some degree of right rotation. You can create additional Register 
Operate instructions by specifying the Auxiliary register as both source and destination for an Add. AND or XOR in­
struction. 

3) Register-Register Operate. By specifying an Add. AND or XOR operation that does not use the Auxiliary register as 
both source and destination. you create Register-Register Operate instructions. 

Consider some possibilities. 

In order to complement any register's contents. load FF16 into the Auxiliary register (using an XMIT instruction). then 
XOR the General Purpose register contents with the Auxiliary register contents. returning the results to the General Pur­
pose register: These two instructions can be executed in 500 nanoseconds. 

You can AND or XOR Auxiliary register bits with other data bits from the same Auxiliary register by specifying the Aux­
iliary register as the source and destination for an AND or XOR instruction with right rotate. The ability to perform logi­
cal operations on bits within a single 8-bit unit is very useful if you are treating the contents of a register as status. 
representing individual signal levels rather than treating the bits contiguously. as data items. 

Apparently absent instructions. such as Register Increment. Register Decrement. OR and Compare. can be generated 
by using the Auxiliary register to hold appropriate intermediate data. 

011 C I 

General 

Purpose 

Register 

2 
3 

010 ,. 

MOVE:: --~ 

Data Bus 

I I I I I I I I I I I I II I I I blatructkH1~(Ade 
15 1" 13 12 11 10 9 8 76· 5 " 3 2 1 0 Bit No. 

Figure 14-4. An 8X300 Register-to-Register Instruction's Execution 

14-11 

IVB7 



Figure 14-5 illustrates Move, . Add, AND and XOR instructions wher~ the IVB Bus is the data source and a 
general purpose register is the. data destination. Referring to Figure 14-5. observe that the mask and right rotate 
logic are both involved. Bits 5. 6 and7 of the instruction object code. which in Figure'14-4 specify the amount of right 
rotation. in Figure 14~5 specify the degree of masking which will occur. Bits 8.9 and 10 in Figure 14-5 specify the 
amount of right rotation which will occur. ' , 

8X300 assembly language mnemonics do not discriminate between this new use of bits 5. 6 and 7. You will ,still write 
assembly language instructions with the format: 

LABEL OP S.N. D 
S now defines the right rotate while N defiries the masking operation. 

Now consider instructions which specify an IV byte as the data destination.' Figure 14-6 illustrates instruction's 
where a General Purpose ,register is the instruction source; Figure 14-7 illustrates IV byte-to-IV byte opera­
tions. 

010 
001 

General 
Purpose 

Register 

2 
3 

9~ MOVE 000 _____ 

I I I I I I I I I I II I I I II 
15 14 13 12 11 10 9 8. 7 6 5 4 3 2 1 0 

IVB7 

Instruction Object Code 

Bit No. 

Figure 14-5. An 8X300 IV Byte-to-Register Instruction's Execution 

There are three instruction classes which include immediate data. 

The XEC instruction, identified by 100 in the three high-order object code bits. uses the 13 operand bits to compute a' 
temporary program memory address out of which the next instruction object code will be fetched. When an XEC in­
struction is executed the Program Counter contents are not incremented, 

14-12 



c 
w 

!i 
a: o 
Q. 
a: 
o 
o 
~ 
en 
w 

!i g 
en 
en 
~ 
ci:I 
w 
Z 
a: 
o 
en 
en o 
~ 
~ c 
~ 

@ 

The NZT instruction, specified by 101 in the three high-order object code bits, provides the 8X300 with its conditional 
logic. 

The XMIT instruction, represented by 110 in the three high-order object code bits, provides the 8X390 with its im-
mediate instructions. . 

010 
.001. 
000 '" \ 

II I 'I I I, 1 I I I ,I 1 II J I 1 
1.5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Figure 14-6. An 8X300 Register-to-IV Byte Instruction's Execution 

14-13 



Register 

000 

I I I I II I I I I I I I I I I I Instruction Ob~ct Code 

lS 1413 12 11 10 9·8 7 6 S .4 3 2 1 0 Bit No. 

Figure 14-7. An 8X300 IV Byte-to-IV Byte Instruction's Execution· 

All three instructions, XEC, NZT and XMIT, use one of the two following instruction object code formats: 

Format A: 

15 14 13 12 11 10 98 6 5 4 3 0 Bit No. 

I I lololvlvlvl I I II I I I I Instruction object code 

~, t -- t'-_____ j __ .8 bits of immediate data 

'-----------------Register specified by yyy 

L------------------------------------{:~~~T 
14-14 



c 
w 

~ 
a: 
o 
0-
a: 
o 
CJ 
!: 
en 
w 

~ g 
(/) 
(/) 
c:( 

01:1 
w 
Z 
a: 
o 
a:I 
(/) 

o 
:;: 
c:( 
c 
c:( 

@ 

Format B: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit No. 

I I I I I I I I I I I I I I I I Instruction object code 

~1· ! t' L ~::::: :::d:';c~::t;O" 
Right rotate or left shift specification 

_ j 10 Left bank IV Byte 

111 Right bank IV Byte 

{

100 XEC (rotate and mask) 

------------------ 101 NZT (rotate and mask) 
110 XMIT (shift and merge) 

For all three instructions. XEC. NZT and XMIT. the Format A object code uses bits 8 through 12 to specify a General 
Purpose register. or the Auxiliary register. 

The Format B instruction object code uses bits 5 through 12 to specify the currently selected left bank or right bank IV 
byte. where byte contents will be subject to a mask and a rotate. as illustrated in Figure 14-5. 

Let us take another look at how the XEC, NZT and XMIT instructions use the data generated by their operand 
bits. 

The XEC instruction allows you to stay at one object code. continuously re-executing this single object code. while it 
points to another object code which actually gets executed. The address of the object code which actually gets ex-
ecuted is computed in one of two ways: . 

1) For the Format A object code. the current five high-order Program Counter bits are concatenated with the 8-bit 
sum of the specified register contents. plus the immediate data: . 

~ 

12 11 10 9 8 7 6 5 .. 3 2 1 0 11 10 9 8 7 6 5 .. 3 2 1 0 

PC I I I I I I I I I I I I I I 

1 
I I II I I I I I Register yyy 

12 11 10 9 8 7 6 5 .. 3 2 1 0 

14-15 



2) With the second object code format. the 8 high-order current Program Counter bits are concatenated with the 5-
bit sum of the immediate data. plus the rotated and masked IV byte data: 

12 11 10 9 8 7 6 5 4 3 2 1 0 

PC I I I I I I I I II I 1 

I --------_ .. ~ 
::~::: I I I I I II I I I I I I 

'12 11 10 9 8 7 6 5 4 3 2 0 

You may use XEC instructions in one of two ways: ' 

765432 0 

II I I I I I I I Object Code 

~ 

Low-order five 

bits of rotated 
and masked IV Byte 

contents 

1) You may create a branch table of Jump instructions: based on the contents of any General Purpose register or IV 
byte. you may jump to one of 256 locations using Format A instruction object code.' or one of 32 locations using 
Format B instruction object code. . 

2) External logic may directly control the sequence in which instructions are executed. The XEC instruction is 
equivalent to a Single instruction which requires 500 nanoseconds to execute: 250 hanoseconds to process the 
XEC instruction's object code and another250 nanoseconds to execute the object code fetched in respqnse to the 
XEC instruction. If you are using the Format B instruction. external logic can use the second 250 'nanosecond time 
interval to load newdata into the selected IV byte. Thus. external logiccan' indefinitely control instruction execu-
tion sequence within an 8X300 microcomputer system. ' 

The NZT instruction uses the 13 operand bits to identify a data byte that will be tested for a zero or a nonzero value. 
Additional operand bits are used to identify a branch address. If the identified data has a nonzero value. then the 
branch address is used to generate an absolute paged jump. 

The Format A NZT instruction object code tests the contents of a general purpose register; upon detecting a nonzero 
value. the eight immediate data bits are loaded into the eight low-order Program Counter bits - thus causing an ab­
solute paged branch to occur within a 256-word program memory page. For zero general purpose register contents. the 
next sequential instruction is executed' in the normal way. ' 

The Format B NZT instruction tests the contents of a selected IV byte. subject to rotate and mask logic. Upon detecting 
a nonzero result. the five immediate data bits are'loaded into the 100N-o~der five Program Counter bits thus causing an 
absolute. paged branch to occur within a 32-word program memory page. If a zero result is detected. program execu­
tion continues with the next sequential instruction. 

Thus the NZT instruction allows you to base branch logic on the contents Of .the Overflow status. or on any bit field. in 
any general purpose register. auxiliary register or external addressable location. We cannot classify s!Jch a wide-rang­
ing instruction as a single instruction; it would not conform with the definition of a single assembly language instruc-
tion as used by any other microcomputer described in this book.' ' 

In the case of the XMIT instruction, the immediate data gets loaded into the general purpose register specified by a 
Format A instruction. or the external IV byte specified by a Format B instruction. In the case of a Format B instruction. 
the immediate data is shifted and merged. as illustrated in Figure 14~7. before being output to the identified IV byte. 
Recall that the identified IV byte will be the byte most recently selected by a Move instruction that ~pecifies Register 7 
or F as the destination. 

The Jump instruction is the only one which remains to be described: it is also the simplest to describe. When this in­
struction is executed. the 13 operand bits are loaded directly into the Program Counter: thus you perform a simple un­
conditional jump to any location in program memory. 

Observe that the 8X300 has no subroutine or interrupt handling logic. 

Subroutine logic can be created using the XEC instruction and an appropriate jump table. but this is rather clumsy. In 
most cases it will be Simpler to do without subroutines. 

The lack of interrupt logic is probably inconsequential. Given the fact that the 8X300 can execute instructions in 300 
nanoseconds. polling on status will invariably be a satisfactory way of allowing external logic to control events within 
the 8X300 microcomputer system. 

14-16 



c 
w 
~ 
a: o 
Do 
a: 
o u 
~ 
en w 
~ g 
U) 
U) 
c( 

alS 
w 
Z 
a: 
o 
CD 
U) 
o 
~ 
c( 
C 
c( 

@ 

A very effective way of allowing external logic to control the 8X300 microcomputer system is to have the system con­
tinuously re-execute an ineffective instruction as the result of an XEC. For example. the XEC could point to an instruc­
tion which simply moves the contents of a General Purpose register back into itself. Using Format B for the XEC instruc­
tion. external logic could modify the contents of the selected external IV byte in order to force program execution to 
branch in one of 31 different directions. . 

THE 8X300 BENCHMARK PROGRAM 
The benchmark program we have been using throughout this book is particularly ill suited to the 8X300: in fact. it 
could well illustrate a benchmark program that a competitor would select in order to make the 8X300 look bad. This is 
because the 8X300 is not good at memory addressing. The 8X300 would never be used in an application that prin­
cipally reads blocks of data into read/write memory. then moves blocks of data around read/write memory. 

The 8X300 has no ability to address read/write memory; as we have already described earlier in this chapter. should 
you require the presence of read/write memory in an 8X300 system. you are going to have to create a memory Address 
Bus and Data Bus for the external read/write memory: IV bytes must be used to create these busses. 

We will therefore change the benchmark program so that a sequence of data bytes entering via the left bank IV byte 
must immediately be output via a right bank IV byte. The first byte read will be interpreted as identifying the number of 
data bytes to follow. Now the benchmark will appear as follows: 

XMIT AUX.377 LOAD 377 OCTAL INTO THE AUXILIARY REGISTER TO DECREMENT COUNTER 
XMIT . 20.0.SRCE SELECT SOURCE IV BYTE IN LEFT BANK 
XMIT· 30.0.DST SELECT DESTINATION IV BYTE IN RIGHT BANK 
MOVE R1.0.SRCE LOAD COUNTER INTO R1 

LOOP MOVE SRCE.O.DST MOVE NEXT DATA BYTE 
ADD R1.0.R1 DECREMENT COUNTER 
NZT R1.LOOP 

The following symbols are used in Table 14-2: 

A Auxiliary register 
ADDR 13-bit address value 
DATA5 

DATA8 

DISP5 

5-bit data unit 
8-bitdata unit 
5,bit address value 

DISP8 8-bit .address value 

IV1. IV2 IV Byte 
(L) Optional Field length for IV Byte 

PC Program Counter. 
(R) Optional rotate value for register· 
RX. RY Any General Purpose registers 
x <y.z> Bits y through z of the specified value. For example. PC <7.0 > is the low byte ofthe Program Counter. 
[[]] Conte~ts of location enclosed within brackets. If a register designation is enclosed within the brackets. then 

the designated register's contents are specified. If a memory address is enclosed within the brackets. then 
the contents of the addressed memory location are specified. 

A Logical AND 
¥ Logical Exclusive-OR 

Data is transferred in the direction .of the arrow. 

Under the heading of STATUS in Table 14-2. an X indicates OVF is modified in the course of the instructions execution. 
If there is no X. it means that the status maintains the value it had before the instruction was executed. 

14-17 



Table 14-2. 8X300 Instruction Set 

STATUS 

TYPE MNEMONIC OPERANDtSI BYTES OV OPERATION PERFORMED 

MOVE IV1,tLI,IV2 2 [IV2]-[IVl] 
.' 

Move data from IV Byte.to IV Byte. 
MOVE IV1,(LI,RX 2 [RX)-[IVl1 

Move data from IV Byte to register. 
MOVE RX,(Ll.IVl 2 [IVl]-[RX] 

Move data from register to IV Byte. 
ADD IV1,tL),IV2 2 X [IV2]-[IV1] + [A] 

Add IV Byte to Auxiliary register, store result in IV Byte. 
ADD IV 1 ,(L),RX 2 X [RX)-[IVl1+ [A] 

Add IV Byte to Auxiliary register, store result in register. 
ADD RX,(LI,IVl 2 X [lVl]-[RX] + [A] 

g Add register to Auxiliary register, store result in IV Byte. 
AND IV 1 ,(L),IV2 2 [IV2]-[IVI1 A [A] 

AND IV Byte with Auxiliary register, store result in IV Byte. 
AND. IV1.ILl.RX 2 [RX]-[IVI1 A [A] 

AND IV Byte with Auxiliary register, store result in register. 
AND RX,(L),IVI 2 [IV1]-[RX] A [A] 

, AND register with Auxiliary register, store result in' IV Byte. 
XOR IV1,tL),IV2 2 [IV2]-[IVI1'o'-[A] 

Exclusive-OR IV Byte with Auxiliary register, store result in IV Byte . 
XOR . IV 1 ,tLl,RX 2 [RX]-[IVI1"'t [A] 

Exclusive-OR IV Byte with Auxiliary register, store result in register. 
XOR RX,(L),IVI 2 [IV1]-[RX]-Y- [A] 

Exclusive-OR register with Auxiliary register, store result in IV Byte. 
XMIT DATA5,(LI.IVI 2 [lvl1-DATA5 

Transmit immediate to IV Byte. 

Ii: a: MOVE 'RX,(R),RY 2 [RY]-[RX] ·w Ww 
I- ~~ Move contents of one General Purpose register to anpther. II) 

S g~ w 
a: II: 



© ADAM OSBORNE & ASSOCIATES,INCORPORATED 

Table 14-2. 8X300 Instruction Set (Continued). 

STATUS 

TYPE MNEMONIC OPERANDISI BYTES OV OPERATION PERFORMED 

a: .... w l-I- ~ RX,lRj,RX CI) a: MOVE 2 Rotate contents of a general purpose register and store result in the same register. 
c:; .... 
w IL 
a: 0 

ADD RX,IRI,RY 2 X [RY]-[RX]+ [A] 

a:a:w Add Register X to Auxiliary register, store result in Register Y. 
wWI-
I-I-~ AND RX,(RI.RY 2 X [RY]-[RX] A [A] 

aa~ AND Register X with Auxiliary register, store r~sult in Register Y. 

~~o XOR RX.(RI,RY 2 X [RY]-[RX] ¥ [A] 

Exclusive-OR Register X with Auxiliaiy register, stor~ result in Register Y. 

w 
I-
~ 

i5 XMIT DATAS,RX 2 [RX]-DATAS 
w Load immediate to General Purpose register. :=!: 
~ 

Z NZT RX.DISPS 2 If [RX] 1'0; [PC<7,O>]-DISPS :z: 0 

~zE Branch if register contents nonzero. 
~.o 0 NZT IV 1,(L1,DISP5 2 If [1V1] l' 0; [PC<4,O>]-DISP5 a: Z 
ID 0 Branch if IV Byte is nonzero. Co) 

IL JMP ADDR 2 [PC]-ADDR 
:=!: 
;:) Unconditional jump. ..., 

XEC RX,DISPS 2 ExeciJte instruction at the following address: 
[ADDR < 12;S > ]-[ PC < 12,S >] 
[ADDR <7.0> ]-[ RX] + DISPS. 

Do not increment PC. 

XEC IV1.IL),DISP5 2 Execute instruction at the following address: 

[ADDR < 12,5> ]-[ PC < 12,5 >] 

[ADDR<4,O>]-[IV1] + DISP5 

Do not increment PC 



The following symbols are used in Table 14-3. 

a 
ddddd 

!II 

rrr 

sssss 

one bit of immediate address. 
5 bits choosing destination reg'ister' or IV Byte.' 

one bit of immediate data 

three bits specifying length of IV Byte field. 

three bits specifying the number of rotates performed. 

5 bits choosing source register or IV Byte. 

The sssss and ddddd fields a're restricted in the following ways: , 

If sssss or ddddd -represents a register, it must be in'the range 008 - 178 
If sssss or ddddd represetns an IV Byte, it must be in the range of 208 - 378 

Table 14-3. 8X300 Instruction Set Object Codes 

MACHINE 
INSTRUCTION OBJECT CODE B'f.TES CYCLES 

ADD IV1,(L),IV2 001 ssssslllddddd 2 1 
IV1,(L),RX 
RX,(L),IVI 

ADD RX,(R),RY 00 1 sssssmddddd 2 1 
AND IV 1 ,(Ll,IV2 o 1 Ossssslllddddd 2 1 

IVI,(Ll,RX 
RX,(LI.IVl 

AND ' RX,(R),RY 010sssssmddddd 2 1 

JMP ADDR 1118888888888888 2 1 
MOVE IV1,(Ll,IV2 OOOssssslllddddd . 2 1 

IV1,(L),RX 
RX,(L),IVI 

MOVE RX,(R),RX OOOsssssmsss5s 2 1 
MOVE RX,(RI.RY OOOsssssmddddd 2 1 

NZT IV l,(Ll,DISPS lO15sss511188888 2 1 

NZT RX,DISP8 lO15ssss88888888 2 1 

XEC IV 1 ,(Ll,DISP lOOsss5s11188888 2 1 

XEC RX,DISP l00s55ss88888888 2 1 

XMIT DATAS,IVI 110dddddllliiiii 2 1 

XMIT DATA8 110dddddiiiiiiii 2 1 
XOR IV 1 ,(L),IV2 011sssssIIIddddd 2 1 

IV1,(Ll,RX 
RX,(L),IVI 

XOR RX,(R),RY 011 sssssmddddd 2 1 

14-20 



0 
w 
~ 
a: 
0 
D. 
a: 
0 
u 
~ 
ui w 
~ 
g 
en 
en 
c( 

lIS 
w 
Z 
a: 
0 
CD 
en 
0 

:iE 
c( 
0 
c( 

@ 

(UDO) UD7 24 VCC 
(UDll UD6 2 23 IV7 (iVO) 

(UD2) UD5 3 22 IV6 (Wi) 

(UD3) UD4 4 
8T32 21 IV5 (m) 

(UD4) UD3 5 
8T33 20 IV4(1V3) 

(UDS) UD2 6 8T35 19 IV3 (iV4) 
(UD6) UD1 7 8T36 18 i\i2(iV5\ 
(UD7) UDO 8 17 IV1 (iVa) 

BOC 
IV BYTE 

IVO(lV7) 9 16 
BIC 10 15 WC 

ME 11 14 SC 

GND 12 13 MCLK 

Pin Name Description Type 

iVa - ivi IVB Bus Tristate, Bidirectional 

UDO- UD7 External Logic Data Bus Tristate or Open Collector, Bidirectional 

ME Master Enable Input 

SiC,soc External IV Byte Control Lines Input 

MCLK Master Clock Input 

SC,WC IVB Bus Control Input 

VCC,GND Power and Ground 

Figure 14-8. 8T32/3/5/6 Interface Vector Byte Signals and Pin ASSignments 

THE ST32, ST33, ST35, AND ST36 INTERFACE VECTOR BYTE (IV BYTE) 

This device serves as an I/O port and IVB Bus interface for all external logic communicating with the 8X300 
Mlcrocontroller. 

The various Interface Vector Bytes are summarized in Table 14-4. This table identifies part differences. 

Table 14-4. Interface Vector Byte Options 

Part 
Name Data Input via UDO - UD7 UD Pins Logic IV Byte Address Logic 

8T31 Synchronous. when Tristate None 
MCLK is high 

8T32 Synchronous, when Tristate Present 
MCLK is high 

8T33 Synchronous. when Open Collector Present 
MCLK is high 

8T35 Asynchronous. Open Collector Present 
independent of MCLK 

8T36 Asynchronous. Tristate Present 
independent of MCLK 

The IV Byte is implemented using bipolar LSI technology and is packaged as a 24-pin DIP. It requires a single 
+6V power supply. 

8T32/3/6/6 IV BYTE PINS AND SIGNALS 
Figure 14-8 illustrates the pins and signals of the IV Byte. Figure 14-9 illustrates how an IV Byte will normally 
be used. 

As described for Figure 14-3, we show signal numbers in Figure 14-8 first as given in Signetics literature, then 
In brackets as we would number these signals. 

14-21 



IVO - IV7 represent the pins via which the IV Byte communicates with the IVB Bus. These pins represent the IV Byte in­
terface with the aX300 microcomputer system. 

Pins UDO - UD7 represent the a-bit bus via which the IV Byte communicates with logic beyond the aX300 microcom­
puter system. These pins may be tristate or open collector. as defined in Table 14-4. 

ME is a master enable signal. This signal is connected to TB or RB. output by the aX300 Microcontroller to distinguish 
between two banks of I/O ports with 256 I/O ports addressable in each bank. ME is just one contributor to device select 
logic: we will describe the whole IV Byte select process later. 

IV BYTE - EXTERNAL 

LOGIC INTERFACE 

I 
I ...-;-. 
I 
I 
I 
I 

IV BYTE - INTERPRETER 

INTERFACE 

IV BYTE MCLK Master Clock 

ME Master Enable 

Controls { BIC 
input by 
external 

logic B6C 

UDO 

Data Bus 

to external 

logic 

UD7 ~ ~ 

Figure 14-9. aT32/3/5/6 IV Byte Control Signals and Interfaces 

Controls 

input by 

8X300 Microcontroller 

Data Bus 

to 8X300 

Microcontroller 

BIC and BOC are signals which control data flow between the IV Byte and external logic, via the UD Bus. SiC 
and BOC must be input to the IV Byte by external logic. MCLK. output by the aX300 Microcontroller. synchronizes ac­
tual data transfers. BIC. BOC. and MCLK combine to control events on the UD Bus as follows: 

BIC BOC MCLK 
1 0 X IV Byte output data to external logic 
o X 1 External logic input data to IV Byte (synchronous parts) 
o X X External logic input data to IV Byte (asynchronous parts) 
o X 0 Disable UD Bus for aT31. aT32. aT33. Input data to IV Byte for aT35. aT36 
1 1 X No operation 

X signifies "don't care": the signal may be low or high. 

SC and WC control the IVB Bus which connects alllVB bytes with the 8X300 Microcontroller. Control signals SC 
and WC are automatically output by the aX300 Interpreter. BIC contributes to IVB Bus logic in order to resolve access 
conflicts: external logic accessing the IV Byte via the UD Bus will have priority over an aX300 Microcontroller access 
occurring via the IVB Bus. MCLK synchronizes data transfers occurring via the IVB Bus for synchronous and 

14-22 



c 
w 

~ 
II: 
o 
a. 
II: 
o 
o 
~ 
en 
w 

~ g 
CI) 
CI) 

< 
"' w 
Z 
II: 
o 
en 
CI) 

o 
~ 
< c 
< 
@ 

asynchronous parts. IVB Bus control logic also requires ~ to be low; observe that UD Bus logic ignores 'fiifE. Combin­
ing SC. WC. BIC. MCLK and ME. this is how IVB Bus interface logic responds to control signals: 

SC WC BIC MCLK ME 
X X X X 1 IV Byte not selected; no operation. 

0 0 X X 0 IV Byte must place data contents on IVB Bus. 

0 1 0 IV Byte reads IVB Bus as data. 

0 X ~} IV Byte reads IVB Bus as a select address. (not 8T31). 
1 0 

0 IV Byte reads IVB Bus as a select address. and as data. 
8T31 reads IVB Bus as data only. 

Data is inverted when it flows across an IV Byte. If data is input by external logic via UDO - UD7. then the comple­
ment of this data will be read by the 8X300 on IVBO - IVB7. Conversely. if the 8X300 outputs data via IVBO - IVB7. then 
external logi~ will read the complement of this data via UDO - UD7. 

If the 8X300 Microcontroller reads back data which it wrote out. then it reads back the exact data it wrote out. and not 
the complement of the data it wrote out. Conversely. if external logic reads back the data it wrote out. then it too will 
read back the exact data it wrote out. and not the complement of the data it wrote out. 

aT32/3/S/6 IV BYTE OPERATION 
There is no device address logic on the external logic interface of any IV Byte. The IV Byte inputs and outputs 
data via the UDO - UD7 lines depending on the condition of the BIC and BOC signals. Synchronous IV Bytes. as 
identified in Table 14-4. will input data via UDO - UD7 only while MCLK is high. Asynchronous IV Bytes ignore MCLK 
when recieving data input from external logic. All data output viC! UDO - UD7 is asynchronous. 

On the Microcontroller interface of an IV Byte, all devices (with the exception of the 8T31) have address logic 
and select logic. The 8T31 will always respond on the Microcontroller interface if the SC. WC. ME. BIC. and MCLK Sig­
nals are at the correct levels. 

All IV Bytes (with the exception of the 8T31) have an internal Address regiser. The contents of this internal Ad­
dress register are usually created when the IV Byte is manufactured. You can buy an IV Byte whose internal address 
has not been set. in which case you may set the address followirig a procedure described later. 

The Microcontroller must output select addresses to select IV Bytes. Any IV Byte that detects a select address coincid­
ing with its internal address will consider itself selected. It will remain selected until a new select address that does not 
coincide with its internal address is detected. Once an IV Byte has been selected. it will respond to data input or output 
operations specified by control Signals on the Interpreter interface. An IV Byt~ which is not selected will not respond to 
input or output operations specified by control signals on the Interpreter interface. Select logic has no effect on the ex-
ternal logic interface of the IV Byte. . 

Address and select logic does not exist in the 8T31 IV Byte. which will therefore always respond to control signal levels 
on the Interpreter interface. 

Let us now look at dialogue occurring between an IV Byte and the 8X300 Interpreter via the 
IVB Bus. Note carefully that the following discussion applies only to the IV Byte-8X300 interface. 
The IV Byte-external logic interface is controlled entirely by external logic manipulating the BIC 
and BOC control signals. 

At any time. just one IV Byte should consider itself selected on the left bank of IV Bytes. and just 

8T32/3/5/6 
IV BYTE 
ACCESS 
LOGIC 

one IV Byte should consider itself selected on the right bank of IV Bytes. In order to select an IV Byte. you execute a 
Move instruction which outputs data to Register 7 fhe left bank. or F for the right bank. There is no Register 7 or F; in 
response to either of these Move instruction destination definitions. the 8X30() outputs data on the IVB Bus. just as it 
would for any normal data output operation. but control signals SC and WC are set to 1 and O. respectively. A destina­
tion Register of 7 causes LB to be output low. while the destination address F causes RB to be output low. Thus. the net 
effect of executing a Move instruction specifying Register 7 or F as the destination is that the data moved is the address 
of the IV Byte which is going to consider itself selected; all other IV Bytes will at this time deselect themselves. If no IV 
Byte has CI select address equal to the address output. then all IV Bytes will be dE;lselected. 

Once an IV Byte selects itself. it will remain selected until a subsequent Move to Register 7 or F causes a new Byte to 
select itself. 

Remember. the 8T31 has no select logic; it always considers itself selected. 

14-23 



AllaX300 instructions that specify the IVB Bus as the source or destination of data will automatically access 'the single 
selected IV Byte - on the left or right bank of IV Bytes. whichever is being accessed by the Move instruction. Table 
14-1 describes the way in which you specify whether the IV Byte selected on the left bank or right bank will be ac-
cessed. . 

Observe that external logic will always have priority over the aX300. should both simultaneously attempt to output 
data to an IV Byte. SiC will be input low by external logic whenever it is attempting to write to the IV Byte: but BIC low 
inhibits any attempt by the aX300 Microcontroller to write data into the IV Byte. 

When inputting data from external logic using a synchronous IV Byte. you will have no timing problems. Data'will be 
input only while MCLK is high. at which time the aX300 is guaranteed not to be accessing the IV Byte. 

When using asynchronous IV Bytes. data will be input by external logic to the IV Byte at any time. Unless you provide 
your own logic to guard against it. there is nothing to prevent external logic from inputting data to an asynchronous IV 
Byte while the aX300 is partway through acceSSing the same IV Byte. in which case the aX300 operation will be inac­
curate. 

8T32/3/5/6 IV BYTE ADDRESSES 
IV Bytes can be bought from Signetics with pred~fined 'addresses 01 through OA16. IV Bytes with addresse's 
OB16 through 3216 are held in smaller quantities. You can, if you wish, buy an IV Byte whose address has not 
been set. This IV Byte will. in fact have an address of FF16. You must create the address you want by resetting in­
dividual address bits to O. This is an operation you can do just once. Once an address bit has been resetto O. it cannot 
be set to 1 again. The following procedure is described by Signetics for re~ettingindividual address bits to 0: 

" 
'Table 14-5. Specifications for Signals Illustrated in Figures 14-10 and 14-11 

PARAMETER TEST, LIMITS UNITS 
CONDITIONS Min Typ Max 

VCCP Programming supply voltage 
Address 7.5 a.o V 
Protect 0 V 

ICCp Programming supply current Veep =8.0V 250 mA 

Max time Veep> 5.25V 1.0 s 

Programming voltage 
Address 17.5 la.O V 
Protect 13.5 14.0, V 

Programming current 
Address 75 mA 
Protect 150 mA 

Programming pulse rise time 
Address 1 1 p.s 
Protect 100 p.s 

Programming pulse width 5 1 ms 

Vccp, 1 '.' r---\- 7.75V 

I "I~'" '" . Lov 
PROGR":~~~,~' '.' 1/;:"\'1 ld'C.·. . .'8V 

PULSE 10% I I I 
, , ' , I I OV 

-Itrl-' r-< lmS-t 
lOOns < tr < llJS 

Figure 14-10. aT32/3/5/6 IV Byte Address Programming Pulse 

14-24 



c 
w 
~ 
a: 
0 
D. 
a: 
0 
u 
~ 
en 
w ... 
c( 

g 
(I) 
(I) 
c( 

o/J 
w 
z 
a: 
0 
IX! 
(I) 
0 

~ 
c( 
c 
c( 

@ 

1 ) 

2) 

3) 

4) 

5) 

6) 

71 

~JL
14V 

PROTECT 90% ' 

PROGRAM~ING ,I " " 
PULSE 10% I I I L I OV 

~trl tr <100¢) r-<lms-J 

Figur~ 14-11. 8T32/3/5/~ IV Byte Protect Programming Pulse 

Set all control signals to their inactive state: Ble. BOe. and ME must be tied to power while se. we. and MeLK 
are held at ground. Leave all IVB Bus pins open. 

Increase Vee to 7.75'1, ± 0.25V. 

After Vee has stablized. apply a single programming Pl!lse at the UB ~us lilie corresponding to lhe bit w~ich 
must be reset to 0., Figure 14-10 provides timing for the Address Programming pulse. The current should be 
limited to 75mA. " ' 

If the entire programming operation occurs in I~.~§ than one second. return Vee to 7.75V. If the programming 
operation takes more than one second. Vee must now be reduced to OV: ' ' 

Repeat Steps 3 and 4 for E,38ch additional UD line whose corresponding address bit must be reset to zero. 

Verify thpt the proper add~~ss exists by inserting this address via the IVB Bus. with 1Vlt and we low. while ~~ and 
MeL~ are high. Next. i~pu~ data via the IV~ Bus a~q re~~ it vi~' the up Bus. If th~ correct address exis~s within the 
IV,Byte. the inverted data will appear at t~e UD ~~s. ,'~. . , ' . , 

If the address is correct. proceed to Step 8. If the address is incorrect. you may be able to save the IV Byte by 
hunting for the actual'address using trial and erro'r. If the actual address has one or more bits high which should 
be low. then you can repeat Steps 2 and 3 in an attempt to pull these bits low. If an incorrect bit ha& be~n pulled 
low.t~en you must ei!her m?difythe address ihc;lt yplJ 'were se'~~ing to 'c':e~te. oryou must thro~ away th~ IV 
Byte.·".·':.·· 

8) Set Vee and all control !nputs tq 0 volt~. Leave IVB ?:rAHD Bus !!n~ pins open. 

9) Apply a protect programming pulse as illustrated in Figure 1~-11 to~~very UD Bus pin. This !ncludes UD Bus pins 
which were accessed during Steps 2 and 3; as well as UD Bus pins which were not accessed during Steps 2 and 
3. The currerit should be limi~ed' to 150mA. I:, ' 

10) Apply + 7V to each L!Q Bus pin and measure the amperage. It must be less than 1 mA. If it is more than 1 f'!1A. then 
the par~icularline has heen damaged anci the IV Byte should be di~carded. . ' 

Table 14~p provides specifications for the pulses illu~tratedln Figures 14-10 and 1~:11. 

14-25 



GND 28 
(lVOO) IV07 2 27 
(lVOllIV06 3 
(lV02) IV05 4 
(lV03) IV04 5 24 
(lV04) IV03 6 

8T39 
23 

(lV05) IV02 7 or 22 
GND 8 8T58 21 GND 

(lV06) IV01 9 20 IVI1 (lVI6) 

(lV07) IVOO 10 19 IVIO (lVI7) 

WCO 11 18 WCI 

SCO 12 17 SCI 

MCLKO 13 16 MCLKI 

MEO 14 15 

Pin Name Description Type 

IVIO - IVI7 IVO - IV7 from Interpreter Tristate. Bidirectional 
IVOO - IV07 IVO - IV7 to IV Bytes Tristate. Bidirectional 
WCI WC from Interpreter Input 
WCO WC to IV Bytes Output 
SCI SC from Interpreter Input 
SCO SC to IV Bytes Output 
MCLKI MCLK from Interpreter Input 
MCLKO MCLK to IV Bytes Output 
MEl ME from Interpreter Input 
MEO ME to IV Bytes Output 

Figure 14-12. 8T39 and8T58 Bus Expander Signals and Pin Assignments 

THE 8T39 AND 8T58 BUS EXPANDERS 

These two devices buffer the IVB Bus and control signals output by the 8X300' Microcontroller. Up to 16 IV 
Bytes may be connected to one Bus Expander, which will present a load equivalent toone IV Byte on the 
8X300 Bus. The 8T39 Bus Expander contains internal address and select logic, while the 8T58 Bus Expander 
does not. 

The two Bus Expander parts are implemented using bipolar LSI technology and are packaged in 28-pin DIPs. 
These parts require a +5V power supply. 

Figure 14-12 identifies the pins and signals of the two Bus Expander parts. These signals are not described, 
since they are identical to the signals with the same names as already described for the Microcontroller and IV 
Bytes. Notice that the signals are input on one side of the Bus Expander and output on the other side of the Bus Ex­
pander. The input signals will connect to the 8X300 Microcontroller. while the output signals will generate a bus to 
which up to 16 IV Bytes may be connected. 

A 15 nanosecond propagation delay will occur across each Bus Expander for signals input and then output. You 
must make sure that you add this delay time when computing the total access time for external logic respond­
ing to an8X300 Microcontroller access. 

The 8T39 Bus Expander has internal addressing and select logic. The 8T58 Bus Expander has no internal addressing or 
select logic. For the 8T39 only. the four high~order address lines are examined when the 8X300 outputs an IV Byte ad­
dress. The actual response of the 8T39 to addresses is identical to that which we have described for IV Bytes. The 16 IV 
Bytes connected to an 8T39 Bus Expander must have addresses corresponding to the fixed four high-order address bits 
specified by the Bus Expander. 

There are four address options available to you when buying an 8T39 Bus Expander. These f6ur address options. and 
the allowed IV ~yte addresses that may be connected to each option. are identified in Table .14-6. 

14-26 



c 
w 

~ 
a: 
o 
Il.. 
a: 
o 
CJ 
~ 
en 
w 
~ 
ct g 
en 
en 
ct 
c!I 
w 
Z 
a: 
o 
a:I 
en o 
~ 
ct 
c 
ct 
@ 

Table 14-6. ST39 Bus Expander Addresses and IV Byte Addresses That May Be Connected 

Part ST39 Internal 
Number Address IV Byte addresses that may be connected 

ST39-00 OOOOXXXX 00-OF16 
ST39-01 0001XXXX 1016-1 F16· 2016-2F16. 4016-4F16. S016-SF16 
ST39-03 0011XXXX 3016-3F16· 5016-5F16. 6016-6F16. 9016-9F16. A016-AF16. C016-CF16 
ST39-07 0111XXXX 7016-7F16. B016-BF16. D016-DF16. E016-EF16 
ST39-17 1111XXXX F016-FF16 

14-27 



c 
w 

~ 
a: 
o a. 
a: 
o u 
~ 
en 
w 

~ 
g 
en 
en 
~ 
~ 
w 
Z 
a: 
o 
CD 
en o 
~ 
~ 
c 
~ 

@ 

DATA SHEETS 

The following section contains specific electrical and timing data for the following devices: 

• 8X300 Interpreter 
• 8T32 IV Byte 
• 8T39 Bus Expander 

14-D1 



8X300lNTERPRETER 

DC ELECTRICAL CHARACTERISTICS 

LlM'ITS 
PARAMETER TEST CONDITIONS UNIT 

Min Typ Max 

ViH High level input voltage 
Xl,X2 ,6 V 
All others 2 V 

V IL Low level input voltage 
Xl,X2 A V 
All others ,8 V 

VCL i~put clamp voltage V CC = 4,75V -1,5 V 
(Note 1) II = -10mA 

IIH High level input current 
Xl,X2 V CC = 5,25V 

V IH = ,6V 
2700 JJA 

All others V CC = 5,25V <1 50 JJA 
V IH = 4.5V 

IlL Low level input current 
Xl,X2 V CC = 5,25V -2500 JJA 
IVBO-7 V IL = AV -140 -200 JJA 

iO-115 
V CC = 5,25V 
V IL = AV -880 -1600 JJA 

HALT, RESET 
V CC = 5,25V 
V IL = AV 
V CC =5,25V 

-230 -400 JJA 

V IL =.4V 

VOL Low level output voltage 
AO-A12 V CC = 4,75V ,35 .55 V 

10L = 4,25mA 
All others V CC = 4,75V ,35 ,55 V 

10L = 16mA 

VOH High level output voltage V CC = 4,75V 2.4 V 
10H = 3mA 

lOS Short circuit output current 
(~ote 2) V CC = 5,25V -30 -140 mA 

VCC Supply voltage 4,75 5 5,25 V 

ICC Supply current V CC =,5,25V 300 450 mA 

I REG Regulator control Vec = 5,OV -14 -21 mA 

ICR Regulator current (Note 3) VCR = 0 290 mA 

VCR RegUlator voltage (Note 3) VREG = OV 2,2 3,2 V 

NOTES 

I Crystal Inputs Xl and X2 do not have clamp diodes 

2 Only one output may be grounded at a time 
3 (Limits apply for Vce - 5V , 5% and Doe < T A < 7Doe unless specified otherwise.) 

Smn~tiCs 

Data sheets on pages 14-02 through 14-012 reprinted by permission of Signetics Corporation. Copyright 't'I 1977 by Signetics 
Corporation. 811 East Arques Avenue. Sunnyvale. California. 

14-D2 



c 
w 

~ 
a: o 
Il. 
a: o 
CJ 
~ 
ui 
w 

~ 
g 
en 
en 
ct 
011 
w 
Z 
a: o 
III 
en o 
~ 
ct 
C 
ct 
@) 

8X300lNTERPRETER 
TYPICAL INSTRUCTION CYCLE TIMING 

I INSTRUCTION CYCLE I 
:---INPUT:PHAS'---:---OUTPUT PHAS'--_:_INPUT PHAS' 

I INST &IV IUS : PAgC~~INQ : AOOA'SS & IV: AOOA'SS & IV I 

INSTRUCTION 
ADDRESS 
lAO-AU) 

INSTRUC;~~~ 

(10-1150) 

: INPUTS ACCEPTED I I BUS CH.NGING ! BUS OUTPUT STABlE 

I I I I I 
I I I 
I I 

I I I 

: ! a! ! 
I I I HPAOGAA.. I I 1---MClK .TO AODRESSSTABLE,--_ Sl~6:i'sE---r 

I I TOAOOA'SSST~.LE-_ I I 
I I 

--~\Ir------r-----~ 

MClK TO SC/WC ---1--1 
OUTPUT CONTROL 

_I 1_ MClK TO SCIWC ---t----I INPUT7NTAOL 

: \ I I ~ 
i' 1- LB/~~:~~UCTT~~~~~Ol : 

1_-_ MCl'1( TO lBIRS ----1.--1 =D OUTPrCONTAOL :1 X: >C 
_I I "CL~TOL.'AB I i 

I INPUIT CONTAOL I I 

I I I I 

IVBU$ 
uveO-IVB7) 

I 1--'NSTRUCTIONTO'VBUSSTA~lE --_III 

! ~- IVBUS.! ~Ir--: ---+-1 --'~I ~ ADDRESS STABLE I 
----MCLK TO IV BUSSTABlE---- I 

I I I I 

~ 
-- IV BUS -----... 1_- IV BUS --I!O-I INPUT ACTI\lE OUTPUT ACTIvE 

DEVICE CROSSHATCHED ~ 

ACCESS ,~Ri~S'~~:~~~~~ ~ 

Figure 10 

SOLID AREA 
INDICATES 
CHANGING 
DATA -

AC ELECTRICAL CHARACTERISTICS VCC = 5V ± 5% and O°C ~ T A < 70°C 

DELAY DESCRIPTION 
PROPAGATION CYCLE TIME 

DELAY TIME LIMIT 

X1 falling edge to MCLK (driven from external 
pulse generator) 75ns 

MCLK to SC/WC falling edge (input phase) 25ns 
MCLK to SCIWC riSing edge (output phase) % cycle + 25ns 
MCLK to LS/RS (input phase) 35ns 
Instruction to LS/RS output (input phase) 35ns 
MCLK to LS/RS (output phase) % cycle + 35ns 
MCLK to IV data (output phase) 185ns % cycle + 60ns 

IV data (input phase) to IV data (output phase) 115ns 
Instruction to Address 185ns % cycle + 40ns 
MCLK to Address 185ns % cycle + 40ns 
IV data (input phase) to Address 115ns 
MCLK to IV data (input phase) % cycle.;.. 55ns 

MCLK to Halt falling edge to prevent 
current cycle % cycle - 40ns 

Reset riSing edge to first MCLK o to 1 cycle 

NOTE 
1. Reference to MCLK is to the falling edge when loaded with 300pF. 
2. Loading on Address lines is lS0pF. 

Si!)DotiCS 

14-03 

ABSOLUTE MAXIMUM RATINGS 
Supply Voltage Vee ................................. 7V 
Logic Input Voltage ............................... 5.5V 
Crystal Input Voltage ............................... 2V 



8X300lNTERPRETER 

MCLK 

10-115 

LB. RB 

IV 0-.7 

MCLK 

10-115 

SYSTEM INSTRUCTION CYCLE TIME 

Figure 7 

ICD Program storage access time. 

I@ MCLK to LBIRB "nput pha.el 

I 
or instruction to LB/RS 
(Input phase). 

:~ IV Byte output enable.tTOE) 

I
@J IV dala !Input phase) to 

address. 

SYSTEM INSTRUCTION CYCLE TIME 

I I 

I INSTRUCTION TO I PROGRAM STORAGE I _ AOORESS ___ I ACCESS 1 __ 

I I I I 
I I I I 
I I I I 
I I I I 
I I I I 

Figure 8 

SmDotiCS 

14-04 



ST32/ST33/ST36/ST36 
DC ELECTRICAL CHARACTERISTICS vee = 5V ± 5%, ooe ~ T A ~ 700 e unless otherwise specified 

PARAMETER TEST CONDITIONS 

C 
au 

5 
~ 
a: o 
u 
~ 
ui 
au 
!;i 
g 
en 
~ 
IIJ 
au 
Z 

VIH 
VIL 
Vie 

VOH 

VOL 

IIH 
IlL 

lOS. 

lec 

Input voltage 
High 
Low 
elamp II = -5mA 
Output voltage Vee = 4.75V 
High 
Low 
Input currenP Vee'" 5.25V 
High VIH = 5.25V 
Low VIL = .5V 
Output current4 
Short circuit VCC = 4.75V 
UD bus 
IV bus '.' 

Vec supply current VCC = 5.25V 

~ PROGRAMMING SPECIFICATIONSs 
a:I 
en o 
~ 
c( 
C 
c( 

@ 

TEST 
PARAMETER CONDITIONS 

Vecp Programming supply voltage 
Address 
Protect 

lecp Programming supply current Veep = 8.0V 

Max time V cep > 5.25V 

Programming voltage 
Address 
Protect 

Programming current 
. Address 
Protect 

Programming pulse rise time 
Address 
Protect 

Programming pulse width 

NOTES 

3. The input current includes thetri-statelopen collector leakage current of the output driver on the data 
lines. 

4. Only one output may be shorted at a time. 
S. If all programming can be done in less than 1 second. vee may remain at 7.75V for the entire 

programming cycle. 

SillBUliCS 

.14-05 

Min 

7.5 

17.5 
13.5 

.1 
100 

.5 

LIMITS 
Min Typ Max 

2.0 
.8 
-1 

2.4 
.55 

<10 100 
-350 -550 

10 
20 

100 150 

LIMITS 

Typ Max 

8.0 
0 

250 

1.0 

18.0 
14.0 

75 
150 

1 

1 

UNIT 

V 

V 

p.A 

rnA 

mA 

UNITS 

V 
V 

mA 

s 

V 
V 

mA 
mA 

Ils 
Ils 

ms 



8T32/8T33/8T35/8T36 
8T32/8T33/8T35/8T36-NA,F 
AC ELECTRICAL CHARACTERISTICS 

PARAMETER 

tpD User data delay (Note 1 ) 

tOE User output enable 

taD User output disable 

tpD IV data delay (Note 1) 

tOE IV output enable 

taD IV output disable 

tw Minimum pulse width 

tSETUP Minimum setup time 

t HOLD Minimum hold time 

• Applies for 8T32 and 8T33 only. 
t Applies for 8T35 and 8T36 only. 

INPUT 

UDX 
MCLK' 
BICt 

BOC 

BIC 
BOC 

IVBX 
MCLK 

ME 
SC 
WC 

ME 
SC 
WC 

MCLK 
BICt 

UDo 
BIC' 
IVX 
ME 
SC 
WC 

UDXo 
BIC' 
IVX 
ME 
SC 
SC 

TEST 
CONDITION 

C L = 50pF 

CL = 50pF 

CL = 50pF 

CL = 50pF 

CL = 50pF 

CL = 50pF 

(Note 2) 

(Note 2) 

o Times are referenced to MCLK for 8T32 and 8T33, and are referenced to BIC lor 8T35 
and 8T36. 

NOTES: 

1. Data delays relerenced to the clock are valid only ilthe input data is stableatlhe arriyal 
01 the clock and the hold time requirement is met. 

2. Set up and hold times given are lor "normal" operation. BIC setup and hold times are 
lor a user write operation. SC setup and hold times are lor an tV Byte select operation. 
WC setup and hold tomes are for an IV Bus write operation. Me setup and hold limes 
are lor both IV write and select operations. 

S!!Inotics 

14-06 

LIMITS 

Min Typ Max 
UNIT 

25 38 
45 61 ns 
40 55 

18 26 47 ns 

18 28 35 
ns 

16 23 33 

38 53 ns 
48 61 

14 19 25 ns 

13 17 32 ns 

40 ns 
35 

15 
25 
55 
30 

ns 

30 
30 

25 
10 
10 
5 

ns 

5 
5 



Q 
w 

~ a: o 
Q. 
a: 
o u 
~ 
en 
w 

~ g 
(I) 
(I) 
c( 

all 
w 
Z 
a: 
o 
a:I 
(I) 
o 
~ 
c( 
c 
c( 

@ 

8T32/8T33/8T36/8T36 
8T32/8T33/8T36/8T36-NA,F 

ABSOLUTE MAXIMUM RATINGS 

PARAMETER RATING 

Vee Power supply voltage -0.5 to +7 
VIN Input voltage -0.5 to +5.5 
Va Off-state output voltage -0.5 to +5.5 
TA Operating temperature range -55 to +125 
T stg Storage temperature range I -65 to +150 

ADDRESS PROGRAMMING PULSE 

~r-\
7'75V 

VCCP 

1-, SEC. ----..l OV, AOOREss-IL1 

90% I ~ 18V 
PROGRAMMING I 

PULSE 10% I I I ov 

_I.,L l00nl"l,~ 1.1 1--<.. 1m I .... : .. 

FIgure 1 

PROTECT PROGRAMMING PULSE 

-ILJL'4V PROTECT 90% 
PROGRAMMING I I 

PULSE 

10% I I I 

I 
I I OV 

-I I, - " I, • l00~1 J-> 1m.--+i 

Figure 2 

smootms 

14-07 

UNIT 

Vdc 
Vdc 
Vdc 
°e 
°C 



ST32/ST33/ST35/ST36 
ST32/ST33/ST35/ST36-NA, F 
PARAMETER MEASUREMENT INFORMATION 

LOAD CIRCUIT FOR OPEN COLLECTOR OUTPUTS 

~
; ... VCC: 

. . 390!! 
. . ,. , 

TEST 0"""' . . M'" 

r 

LOAD CIRCUIT FOR TRI-STATE OUTPUTS 

FROM 

~~~~~T ___ ...... __ .. 

TEST

ALL DIODES
ARE lN914
OR EQUIVALENT

NOTE: CL includes fixture capacita~ce.

INPUT
DATA

OUTPUT
DATA

INPUT WAVEFORM

tr~ 5ns
tf" 5 ns

DATA DELAY TIMES
Input Data Reference

14:'08

SIC

CLOCK PULSE WIDTH

DATA DELAY TIMES
- ·Clock Referenced

~:~: -+'-----'

:Y ISV

OUTPUT
DATA

Q
w
~
a: o
a.
a:
o
(J

~
u)
w
~ g
en
en
ct
CI/S
w
z
a:
o
CD
en o
~
ct
Q
ct
@

ST32/ST33/ST35/ST36
ST32/ST33/ST35/ST36-NA,F

PARAMETER MEASUREMENT INFORMATION (Cont'd)

SETUP AND HOLD TIMES

.," _______ JX':- -------

14-09

OUTPUT ENABLE AND DISABLE TIMES
(Tri-State Outputs)

,I '/

LOW LEVEl
ENABLING

CONTROL 15V 15V
OUTPUT , I HIGH LEVEL

: '- _1 _____ -/ : ENABLING

-'OE--1 ~'oo..l

'f/' 1 1 I
OUT~~J ~.;, r /,' . / 1 1

/ /' / / I
..:.....:;+.:.....:.....:...;-lo------+--.:r:..lf..:....~ -VOL

OATA '
OUTPUl2

1-'00-1
WAVEFORM =1 IS FOR AN OUTPUT WITH INTERNAL CONOITIONS SUCH THAT THE
OUTPUT IS lOW WHEN THE TRI STATE DRIVER IS ENABLED. WAVEFORM "2 IS FDA
THE OPPOSITE CONDITION

ST39 BUS EXPANDER
TEST LOAD CIRCUIT

Type for All resistors values are tYPical and In ohms

NOTES

A. C L includes probe and iig capacitance.
B. All diodes are lN916 or lN3064.

DC ELECTRICAL CHARACTERISTICS VCC = 5V ± 5%, O°C ~ T A ~ 70°C

TEST CONDITIONS
LIMITS

UNIT PARAMETER
Min Typ Max

Input voltage V
VIL Low .8
VIH High 2.0
VIC Clamp -1

Output voltage VCC = 4.75V V
VOL Low 10L = 16mA .55
VOH High 10H = -3.2mA 2.4

Input current VCC = 5.25V uA
IlL Low VIL = .5V -250
IIH High VIH = 5.25V < 10 100

lOS Short circuit output current VCC = 4.75V -40 mA
ICC Supply current VCC = 5.25V 200 mA

AC ELECTRICAL CHARACTERISTICS VCC = 5V ± 5%, O°C ~ T A ~ 70°C, CL = 300pF

PARAMETER TO FROM TEST CONDITIONS
Min

LIMITS
Typ Max

UNIT

Path delay
DOX DIX

ns

tpd Data DIX DOX. 15

KifE (out) ME (in)

tpd Control MCLK (out) MCLK (in)
15

SC (out SC (in)
WC (out) WC (in)

SmontiCs

14-D10

c
w

~
a:
o
Il.
a:
o
(J
z
u)
w
I­
<
[)
o
CI)
CI)

<
ell
w
Z
a:
o
en
CI)

o
~
< c
<
@

8T39BUS EXPANDER
VOLTAGE WAVEFORMS

CONTROL PATH DELAY
(THREE-STATE OUTPUTS

OUTPUT
CONTROL

WAVEFORM 1

WAVEFORM 2

8T58 TRANSPARENT BUS EXPANDER

ABSOLUTE MAXIMUM RATINGS

PARAMETER

Vee Power supply voltage
VIN Input voltage
Va Off-state output voltage
TA Operating temperature range
TSTG Storage temperature range

NOTE Includes tri-state leakage.

RATING

+7
+5.5
+5.5

o to +70
-65 to +150

INPUT

IN PHASE
OUTPUT

DATA PATH DELAY TIMES

VOH
OUT OF PHASE ~

PHL tpLH

OUTPUT . t.3V 1.3V

--- VOL

UNIT

Vdc
Vdc
Vdc
°C
°C

AC ELECTRICAL CHARACTERISTICS Vee = 5V ± 5%, O°C:5 TA:5 70°C, CL = 300pF

LIMITS
PARAMETER TO FROM TEST CONDITIONS UNIT

Min Typ Max

Path delay DOX DIX
tpd Data DIX DOX 15 ns

ME(OUT) ME(JN)
tpd Control MCLK(OUT) MCLKUN)

SC(OUT) SC(JN) 15 ns
WC(OUT) WC(JN)

Data ME(JN)
Output DIX SC(JN)

toe Enable DOX WC(JN) 28 56 ns

Data ME(JN)
Output DIX SC(JN) 15

tod Disable DOX WC(IN)

SmnotiCs

14-D11

8T58 TRANSPARENT BUS EXPANDER
PARAMETER TEST CONDITIONS

LIMITS
UNIT

Min Typ Max

Input voltage'
V,L Low
V,H High
Vie Clamp

Output voltage
VOL Low
VOH High

Input current
IlL Low1

IIH High 1

los Short circuit output current
lee Supply current

VOLTAGE WAVEFORMS

OUTPUT
CONTROL

WAVEFORM 1

WAVEFORM2

PROPAGATION DELAY TO
THREE-STATE OUTPUTS

-5mA at Vee min

Vee = 4.75V
10L = 50mA

10H = -3.2mA

Vee =c 5.25V
V,L = .5V

V,H = 5.25V

Vee = 4.75V
Vee = 5.25V

INPUT

IN PHASE
OUTPUT

.8
2.0

-1

.55
2.4

-250
<10 100

-40
200

PROPAGATION DELAY TIMES

TEST LOAD CIRCUIT TYPICAL APPLICATION

TEST
POINT

Cl

. (SEE NOTE 1 '1_

SI

t2
Ali resistors values are typical and in ohms.

NOTES

1. el includes probe and jig capacitance.
2. All diodes are 1N916 or 1N3064.

USING 2 BUS EXPANDERS
TO CREATE 33 1/0 PORTS PLUS WORKING STORAGE

WORKING
STORAGE

SrnnOliCS

14-012

BUS EXPANDER

110 PORTS

BUS EXPANDER

110 PORTS

110 PORT
Address 6

BIC BOC USER
DATA

V

V

/loA

mA
mA

c
w

~ a:
o
a.
a:
o
o
~
iii
w

~
g
CI)
CI)

ct
011
w
Z
a:
o
III
CI)

o
:i:
ct c
ct
@

Chapter 15
THE NATIONAL SEMICONDUCTOR

PACE AND INS8900

PACE was developed by National Semiconductor as a single-chip implementation of the multi-chip IMP-16.
Since it was the first 16-bit, single-chip microprocessor, PACE is the first 16-bit microprocessor described in
this book.' ,

As might be expected of an early entry product. PACE had a number of problems - both in design and fabrication
technology - which limited its acceptance. Therefore the INSS900 was recently introduced by National Semiconduc­
tor. The INS8900 is a redesigned, NMOS PACE, with internal logic problems resolved.

In this chapter we will describe both PACE and the INS8900. Specifically. we will identify the problemsfaced by a
PACE user. which have been eliminated in the INSS900.

PACE and the INSS900 are 16-bit microprocessors because they handle data in 16-bit units. In many ways. however.
the internal architecture of PACE and the INSS900 have an S-bit orientation: this is something you should keep in mind
while reading this chapter. because it does result in PACE and the INSS900 having program execution speeds that are
comparable to. rather than being significantly faster than. the S-bit microprocessors we have described in earlier chap­
ters.

The only current manufacturer for PACE and the INSS900is:

NATIONAL SEMICONDUCTOR. INC.
2900 Semiconductor Drive

Santa Clara. CA 95050

There are agreemen.ts between Rockwell-International and National Semiconductor and between Signetics and Na­
tional Semiconductor to exchange microcomputer technical information and to produce each other's products. At the
present time. neither Signetics nor Rockwell International has elected to second source PACE or the INSS900.

As shown in Figure 15-1. a typical PACE microcomputer will consist of a mixture of special-purpose PACE support
devices and standard device~. The PACE microcomputer devices described in this chapter consist of:

• The PACE CPU
• The System Timing Element (STE), which generates clock signals for PACE and the system.

• The Bidirectional Transceiver Element (BTE), which converts the MOS-Ievel PACE sign'als to TTL-level signals
for other devices. The ,BTE is 8 bits wide.

The Microprocessor I nterface Latch Element (M I LE), which provides an 8-bit" bidirectional latched interface
between the PACE System Bus and external devices, is described in Volume 3.

The INSS900 needs a clock generator: a 2 MHz crystal and a 74C04 inverter are recommended. Otherwise. there are no
special'INSS900 support devices: in fact. you can easily use any NMOS support devices described in Volume 3
with the1NS8900. Specifically. the STE and BTE devices cannot be used with the INSS900. because they provide
MOS-to-TTL signal level conversions for PACE. The MILE can be used with either PACE or the INSS900. -------PACE requires +5V. +SV and. -12V power supplies. The +SV is a substrate voltage require- PACE/INS8900
ment of the CPU and can be derived from the +5V power using a few discrete components. POWER SUPPLY
Therefore. a system can be implemented using only two primary power supplies: -+5V and EXECUTION
-12V. The INSS900 also uses three power supplies: + 12V. +5V and -SV. SPEED

The INSS900 uses a 500 nanosecond clock to provide typical instruction execution times in the range of S to 20
microseconds. PACE (lPC-16A/520D) uses a 750 nanosecond clock to provide typical instruction execution
times in the range of 12 to 30 microseconds.

15-1

Before making direct comparisons of these instruction execution times with those of other devices. however. note
carefully that because of the 16-bit architecture of PACE and the INS8900. it may take many instructions on another
microcomputer to perform the same operations as a single INS8900/PACE instruction.

MOS level signals are input and output by PACE. TTL leve'l signals are input and output by the PACE/INS8900
INS8900. LOGIC LEVEL

P-channel silicon gate. MOS/lSI technology is used with PACE. N-channel MOS technology is
used by the,INS8900. . . .

PACE AND INS8900 MICROCOMPUTER SYSTEM OVERVIEWS
Figure 15-1 concep~ually illustrates a PACE system. Figure 15~2 conceptually illustrates an INS8900 system.

As with any mini~"or microcomputer system, the CPU outputs data. address. a'nd control signals. In the case of
PACE and the INS8900. the data and address signals use the same bus lines; therefore. they are said to be
multiplexed.

Timing'signals needed by PACE ~re generated' by the System Timing Eleme~t (STE). SYSTEM TIMING
PACE signals are all MOS level; the STE therefore generates two sets of timing signals; ELEMENT (STE)
one s~t are IVIOS.level for PACE, the other set are TTL level. for external logic. BIDIRECTIONAL

Since PACE signals are MOS level, Bidirectional Transceiver Elements (BTEs). must be TRANSCEIVER
present to translate outgoing signals from MOS to TTL levels, and to translate incoming ELEMENT (BTE)
signals from TTL to MOS levels. BTEs are quite indiscriminating in the signals they translate:
in either directi·on. any signal arriving at an input pin is faithfully reproduced at the corres-
ponding output pin. Control signal options allow a BTE to operate bidirectionally. to drive output signals only. or to
place qoth the MOS and TTL outputs in·a high-impedance mode. Since the BTE is 8 bits wide. two BTEs operating
bidirectionC!lIyprovide buffering for the 16-bit .AddresslData Bus. A third BTE. operating in the drive-only mode. pro­
vides bufferingfonhe PACE control signals,(NADS. ODS. IDS. and Flags).

A complete' TTL level bus is created by combining BTE outputs with the TTL level timing
signals output by the STE. Remember. though. that the 16 address/data lines are multiplexed.
External logic that can demultiplex these lines and that can respond to the PACE timing and con­
trol signal logic can connect directly to the TTL level address/data lines. For.example. National Semiconductor provides
ROM and RAM devices with on-chip address latches: these devices can interface directly to the TTL level bus.

If memory devices or I/O ports are used that cannot demultiplex the address/data lines. you must
provide separate logic to perform this function. No special PACE family devices are available for
this purpose: however. standard logic devices can be used. For example. two hex flip-flop devices
and a' q~ad flip-flop device would provide a latched 16-bit Address Bus. Tw08212 I/O ports could.

ADDRESS
LATCHES
AND .
DECODERS

also be used to latch the 16 bits of address information. The PACE Address Data Strobe (NADS) ------­
signal can be used as the ClK input to the flip-flops or as the STB input to the 8212s. The ~ACE Address Data Strobe
(NADS) signal can be used as the ClK input to the flip-flops. In many systems this is the most effective approach since
a latched Address Bus allows you to use simpler address decoding techniques to generate memory chip enable, and I/O
port select signals. .' .

Figure 15-2 illustrates an INS8900 mi~~o~&mputer system. logic is quite elementary - and equivalent to. that
which you would expect with any other microcomputer. Control Bus. Data Bus. and Address Bus lines are buffered
using INS8208 bidirectional buffers. These are National Semiconductor standard catalog devices. recommended by
National Semiconductor and illustrated in their literature: however. any other buffer would do equally well. The
Data/Address Bus is shown being demultiplexed by 8212s to create separate Data and Address Busses. This again is
straightforward logic.

15-2

c
w

~
a:
o
a.
a:
o
CJ
~
en
w

~
g
en
en
oCt
IllS
w
Z
a:
o
In
en o
:!E
oCt c
oCt

@)

INTERRUPT
ANDJUMP .

CONDITIONS

SENSE

LINES

IN

PACE STE

1~ ADDR/DATA CONTROL

~'V" ~ ~

- BTE

(2) BTE

:~:~ TIL LEVEL TIMING/CONTROL I.

TIL LEVEL

ADDRESS/DATA

~~v

• CONTROL

LINES

OUT

RAM WITH ROM WITH

ADDRESS ADDRESS

LATCHES LATCHES

D
-------------...---~

l.
ADDRESS

LATCHES •••••• ,.)

AND/OR : •• ".-

I/O PORT

MILE. 8212.

8255
DECODERS ; ~

I I

n ,'
4 ! !

I I

! i
"'-__ ...&...."'1

MEMORY

WITHOUT

ADDRESS

LATCHES

TIL LEVEL TIL LEVEL

ADDRESS DATA

~ 7 ~v

ADDRESS DATA

LINES LINES

OUT IN/OUT

Figure 15-1. A National Semiconductor PACE Microcomputer System

15-3

SENSE LINES IN (

r---~\.

CONTROL BUS

INS8900

TWO
INS8208s

nnw,
74C04

INVERTER
TWO

INS8212s

ROM RAM

Figure 15-2. A National Semiconductor INS8900 Microcomputer System

INS8900 PROGRAMMABLE REGISTERS

PERIPHERAL

The INS8900 (and PACE) has four 16-bit Accumulators and a 16-bit Program Counter; these registers may be il­
lustrated as follows:

E3
ACO
ACl
AC2

AC3

, , PC

Primary Accumulator

Secondary Accumulator

Secondary Accumulators

and Index Registers

Program Counter

Accumulator ACO may be likened to a primary Accumulator as described for our hypothetical microcomputer in
Volume 1.

Accumulator AC1 is a secondary Accumulator.

Accumulators AC2 and AC3 are equivalent to a combination of secondary Accumulators and Index registers.

Recall from Volume 1. Chapter 6 that an Index register differs from a Data Counter in that the Index register contents
are added to a displacement (which is provided by a memory reference instruction) in order to determine the effective
memory address.

The Program Counter serves the same function in an INS8900 system as it does in our hypothetical microcorn­
puter described in Volume 1 .

. Figure 1 5-3 illustrates that part of our general microcomputer system logic which has been implemented in the
INS8900 microprocessor.

15-4

Q
w

~
a: o
Q.
a:
o
o
~
u)
w

~ g
CI)
CI)

ct
o!I
w
Z
a:
o
CD
CI)

o
~
ct
Q
ct

@

Clock Logic

Direct Memory
Access Control

Interface Logic

Programmable
Timers

INS8900 STACK

Interface Logic

Read Only
Memory

I/O Ports
Interface Logic

I/O Ports

Figure 15-3. Logic of the INS8900 Microprocessor

A Stack is provided on the INS8900 (and PACE) chip. The Stack is 16 bits wide and 10 words deep. The Stack is
not a cascade stack. as described in Volume 1. Chapter 6; rather. chip logic maintains its own Stack Pointer to identify
the next free Stack word. The Stack Pointer is automatically incremented and decremented in response to Push and
Pull operations. Stack Push and Pull operations are initiated by CPU logic during execution of Jump-to-Subroutine
(JSR) and Return-from-Subroutine (RTS) instructions. and during interrupt processing. to automatically save and

. restore the Program Counter.

In addition. the Stack can be used for temporary storage of data or status information. There are instructions
which allow you to transfer words between the Stack and any Accumulator. or the Status and Control Flag register.
This capability can significantly reduce the number of memory accesses required (thus increasing system speed) and
can also reduce read/write memory requirements since intermediate values can be sto~ed on the Stack.

Whenever the Stack becomes completely filled or emptied, an Interrupt Request is
generated on the INS8900 chip. If you have enabled Stack Interrupts. program execution will
be suspended. allowing you to deal with the situation. A Stack Full condition will indicate that
it is time to dump data accumulated on the Stack out to read/write memory.

15-5

INS8900 AND
PACE STACK
INTERRUPTS

INS8900 AND PACE ADDRESSING MODES
Most INS8900 (and PACE) memory reference instructions use either ,direct or direct, indexed addressing. A few
instructions also offer indirect addressing and pre-indexed, indirect addressing. Refer to Volume 1. Chapter 6 for a
description of these addressing modes,

All memory reference instructions have the following object code format:

15 1" 13 12 11 10 9 8 7 6 5 " 3 2 1 0 ~ Bit No.

I I I I I I IXIRI I I I I I I I I
" -- .--'" - - ./ - - - l -'

Address displacement

/ Addressing mode selection t 00 = Base Page address

...... -------------<t 01 = Program relative address
10 = Indexed (AC2-relative)

11 = Indexed (AC3-relative)

...... ------------------- Instruction operation code

The 2-bit XR field lets you specify with each instruction the type of direct addressing you want used: base page. pro­
gram relative or indexed (AC2- or AC3-relative). Since the address displacement is an 8-bit field in the instruction word.
direct addresses are paged and each page consists of 256 words. Indexed and paged addressing variations have been
described in Volume 1. Chapter 6.

In addition. the INS8900 (and PACE) offers a variation of base page addressing, which is
not described in Volume 1, Chapter 6. There is a control input signal (BPS) which allows
the base page to be split between the top and bottom 128 words of memory, as follows:

Normal Base Page MEMORY Split Base Page I ~. Page I ~ } ,DisPlacement = 00 through 7F
007F

'6

; i

~
• - FF80 }' Displacement = 80 through FF

Base Page 16 r Frequently these addresses are

I FFFF 16 J reserved for external devices

, { 0000 Displacement = 00

through FF '6 OOFF

BPS high splits the base page: BPS low keeps the base page as the bottom 256 words of
memory.

INS8900 AND
PACE SPLIT
BASE PAGE

Depending on how an INS8900 system has been configured. the base page may be permanently defined as split or as
normal: or the base page may be varied between the two options under program control. There are a number of output
control flags (which are described next) that may be set or reset under program control. If one of these flags is con:
nected to the base page select pin. then setting or resetting this flag determines which base page option will be in
effect:

0." " ,Pin 28 (BPS) Q-..t ", 221F141

15-6

Q
w
~
a:
o
0..
a:
o u
~
en
w

~ g
(I)
(I)
c(

ciS
w
Z
a:
o
a:I
(I)

o
~
c(
Q
c(

@

Splitting the base page between the top and bottom of memory is useful in an INS8900 microcomputer system
because it simplifies external device addressing. If we reserve all memory addresses in the range FF8016 - FFFF16 for
external devices. then external logic merely has to AND the top nine bits of an address and thus determine if an exter­
nal device (rather than a memory location) is being. addressed:

15 1.4 13 12 1110 9 8 7 6 5 .4 3 2 1.0 --Bit No.

1111111111111111111xlxlxlxlxlxlxI

~ T '------------8 or higher

- If these nine bits are all 1. then an
external device is addressed

Splitting the base page also makes it easy to implement half of the base page in ROM. leaving the other half in RAM.

To a programmer. this scheme provides an easy way of generating 128 external device I NSf;l900/PACE
addresses. If the split base page option is in effect. then base page. direct addressing can be SPLIT BASE
interpreted as external device addressing. so long as the high-order bit of the displacement is PAGE TO
1 : ADDRESS I/O

JI"'-------------------Memory Reference instruction code

~ ___ -_.".l1"'--------DisPlacement

15 1 .. 13 12 1110 9 8 '1 6 5. 4 3 2 1 '6.......-- Bit No.
~1~1~~~~I~xl~A~I~I~~I~I~I~I~

1 +"'------------Becomes I/O instruction if there is a 1 here and
split base page is being used to address I/O

'----------------00 specifies
Base Page addressing

The base page and program relative options do not apply when 'the displacement is part of a
direct. indexed address. When indexed addressing is specified. the INS8900 adds the con­
tents of the displacement. as a signed binary number. to the contents of the identified
Index register (AC2 or AC3). The sum becomes the effective address. Here are some ex­
amples:

Index Register
Contents

Displacement
Value Effective

213A

~OO4C

./' 2186

Propagated Sign Bit

"'-.... 213A

C4'6 ~FFC4
20FE

INS8900/PACE
DIRECT INDEXED
ADDRESSING

Observe that the high-order bit of the displacement. being a sign bit. is propagated through the missing high-order dis­
placement byte.

Instructions that allow indirect addressing simply superimpose indirect addressing logic ori the preceding direct
address generation logic. For example. if indirect addressing without indexing is specified. then a base page or pro­
gram relative direct. address will be computed in the normal way. but the effective address is contained in the memory
location identified by the direct address.

15-7 ,

This illustration shows base page. indirect addressing; arbitrary memory addresses are used to make the illustration
easier to u ndersta nd:

0043

0044

OISP =45
11

., 0045 217A Base page word addressed directly
0046

0047

; •)
2178

2179 j
Effective • 2HA

,
This word addressed indirectly

Memory 217B
Address 217C

This illustration shows program relative. indirect addressing; again using arbitrary memory addresses:

Memory

Address
---I"~ OFDC

OISP = 90,. (= -63,.)

Program Counter --..-_, ."

Effective --... -~
Memory

Address

OFOO

OFOE
OFOF
OFEO

1040

1041

1042
1043

2178

2179

217A
217B

MEMORY

217A Program relative. direct addressed word

.

~.
. 1 J ms worn add",.", ;,d;roc"y

15-8

Q
w

~
a:
o
CI..
a:
o
o
~
en
w

~ g
en
en
c:(

ell
w
Z
a:
o
m
en o
~
c:(
Q
c:(

@

If indirect addressing with index.ing is specified. then a direct address is first computed by adding the displacement. as
a signed binary number. to the contents of the specifiedlndex register; the direct indexed address thus computed pro­
vides the memory location where the indirect address will be found. This is illustrated as follows:

MEMORY

Memory • OFOC
Address OFDO

OFOE

AC2 = 1042'6 .. OFOF 217A Direct. indexed addressed word

OISP = 90" OFEO
1042 + FF90 = OFOF

extended sign bit i ·) · ·
= 2178

2179

Effective ... 217A
,

This word addressed indirectly

Memory 217B

Address 217C

INS8900 AND PACE STATUS AND CONTROL FLAGS
The INS8900 has a 16-bit Status and Control Flag register. This register is on the CPU chip and is illustrated as
follows:

Fourteen of the 16 register bits are used. Three of the 14 bits are status flags as we define a status flag. These
three flags are:

Overflow (OVF), which is a typical Overflow status.

Carry (CRY), which is set and reset by arithmetic operations. as described for a typical Carry status.

Link (LINK), which is set and reset by Shift and Rotate instructions. as described for the hypothetical microcom-
puter's Carry status in Volume 1. Chapter 7.

The separation of Carry into two statuses, one for shift and rotate operations, and the other for arithmetic
operations, is a fairly common minicomputer feature; the advantage of separating these two statuses is that the
results of arithmetic operations can be preserved across subsequent Shift and Rotate instructions.

BYTE causes data to be accessed in 8-bit lengths when this status is set to 1. or in 16-bit lengths when this status is
set to O.

Five bits (lE1 through IES) are reserved for interrupt processing. These five bits selectively enable and disable five
interrupt lines. One of these lines (lE1) is reserved for the Stack Overflow interrupt. the other four lines are available for
external device interrupt requests. There is also a master interrupt enable and disable bit (lNT EN!.

Bits F11, F12, F13 and F14 are control flags which are output directly to INS8900 and PACE device pins; they can
be used in any way to control external devices. One use. to select normal or split base page addressing. has already
been described.

Only the three status flags OVF, CRY and LINK are automatically set or reset in the course of instruction execu­
tion. The remaining 11 bits of the Status and Control Flags register are set and reset by instructions or instruction se­
quences that read data into. or write data out of. the Status and Control Flags register.

15-9

INS8900 AND PACE CPU PINS AND SIGNALS
Pins and signals are illustrated in Figure 15-4 for the INS8900 and PACE devices. There
are some small differences between the two sets of pin outs. These differences are
shaded in Figure 15-4. Within the shaded areas. the INS8900 signal is shown closest to the ar­
row. The PACE signal is shown in brackets further out. Here is a summary of pins that differ:

Pin INS8900 PACE
Number Signal Signal

20 GND VSS (+5V)
23 VSS (-8V) VSS (+8V)
24 ClKX NClK
25 VCC (+5V) ClK
29 VDD (+12V) VGG (-12V)

INS8900
AND PACE
SIGNAL
DIFFERENCES

The pin out differences between PACE and the INS8900 are not surprising. Since PACE uses P-channel MOS tech­
nology. while the INS8900 uses N-channel MOS technology. we would expect power supply differences. Also. the
INS8900.being a newer product. requires just one clock signal input (ClKXl. compared to the two required by PACE
(ClK and NClK).

Let us examine the pins and signals in detail.

004

003
002

001

000

IDS

ODS

NADS

NHAlT

C;:ONTIN

JC14

JC15

JC13

NIR5

NIR4

NIR3

-
- ..

-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

40

39

38

37

36

35

34

33

32

INS8900 31

CPU 30

29

28

27

26

25

...

~

-

~

CI

-
...

005

006

007

008

009

010

011

012

013.
014

015

VGG (-12V)

BPS
EXTEND

NINIT

VCC (+ 5v) (ClK)
. ..

17 24 N!R2 ClKX (NClK)

F11 _: ... __ .. 18 23 VBB (-Sv) (VBB (+Sv))
F12 _ 19 22 1: F14

VSs.+5v))VSSGNO ----I 20 21 t---l~~ F13

~------------~
PIN NAME DESCRIPTION TYPE

ClKX (ClK. NClK) Clock Lines Input

·000 - 015 Datal Address Lines Tristate. Bidirectional

·IOS Input Data Strobe Output

·ODS Output Data Strobe Output

·NADS Address Data Strobe Output

·EXTEND Clock Delay Input

·NINIT CPU Initialize Input

·NHAlT . Stop CPU Bidirectional

·CONTIN Continue Jump Condition Bidirectional

·BPS Base Page Select Input

·JC13 - JC15 Control Flags Output

·F11 - F14 Control Flags Output

·NIR2 - NIR5 Interrupt Requests Input

VBB. VGG. VSS. VCC Power and Ground Lines Input

·JC13 - JC15 Jump Conditions Input

·These signals connect to the System Bus.

Figure 15-4. INS8900 and PACE CPU Signals and Pin Assignments

15-10

Q
w

~
a:
o
D..
a:
o
(J

~
en
w
I­
oes:
g
(I)
(I)

oes:
ciS
w
Z
a:
o
to
(I)

o
~
oes:
Q
oes:

@

There are 16 data and address lines (DO - 015), which are multiplexed for data input, data output and address
output. Two control lines, 005 and NAOs, identify output on the data and address lines as either data (005) or
addresses (NAOs). A further control line, IDS, is used to strobe data input.

The EXTEND control input is used by slow memories or external devices to lengthen an instruction's execution
time by increasing the duration of a data input/output cycle: this extends the time available for memories or external
devices to capture data output. or to present input data.

The NINIT input control initializes PACE; the Program Counter is set to O. The Stack Pointer. the Stack and the Status
and Control Flags register are cleared.

BPS has already been described; it is used to select either normal or split base page, for base page direct ad­
dressing.

NHAL T is a bidirectional control signal used by interrupt and halt logic. As an input. NHAL T can induce a Halt state.
or in conjunction with CaNTIN. it can generate a level 0 (highest priority) interrupt request. When the CPU executes a
Halt instruction. NHAL T is output high to identify the Halt state. The various uses of NHAL T and its interaction with
CaNTIN are described in detail later in this chapter.

The CONTIN signal is used to terminate a Halt condition and is also used as an output interrupt acknowledge
signal. When CaNTIN is properly sequenced with the NHAL T signal. it initiates a high priority interrupt. as we men­
tioned in the preceding paragraph. CONTIN can also be used as a Jump condition input in the same way as JC 13. 14
and 15. which are described next.

JC13, 14 and 15 provide an interesting capability found in very few microcomputers discussed in this book: the con­
dition of these three inputs can be tested by a Branch-on-Condition (BOC) instruction, thus allowing external con­
trol signals to directly manipulate PACE program instruction sequences.

F11, 12, 13 and 14 are the outputs for the corresponding flag bits in the Status and Control Flags register.

N1A2, 3, 4 and 5 are the external interrupt request lines. Interrupt priority arbi~ration logic is included on the
INS8900 (and PACE) chip. NIR2 has the highest priority of the external interrupt lines. and NIR5 has the lowest priority.

INS8900 AND PACE TIMING AND INSTRUCTION EXECUTION
PACE uses a combination of two clock signal inputs to time events internally within the
microprocessor CPU. The clock signals and the resultant internal clock phases can be illustr­
ated as follows:

- One Machine Cycle

PACE
CLOCK
SIGNALS

One Clock Period One Clock Period One Clock Period One Clock Period

Internal Clock

Phase

I

T,

CLKLJ

I

NCLKJ I
I
I

I T2

I

\

T3 I T4

I
I

U
I \ I

15-11

T5 I T6 T7 I TS

I I
I I I

U U \
I

\ I I \ r I
I
I

The INSS900 clock logic has been simplified. A single, uniform clock signal generates all timing as follows:

One Machine Cycle .
One Clock Period One Clock Period One Clock Period One Clock Period

T, I T2 T3 I T4 T5 I T6 T7 1 TS

I I I I

CLKX JJ
I

I

\
I

v
I I

\ u
I"'-----~~ ,- I
I I

I I I I

\l'-I --t'r
I

Several points should be noted regarding INS8900 and PACE timing. The internal clock phases
(T1 through TS) are meaningless to external logic since they are not accessible, nor are they
needed for any external synchronization purposes. We have shown them merely because they
will simplify later discussions of data input/output operations. Four clock periods constitute a
single machine cycle. Most instructions require between four and seven machine cycles for ex­
ecution.

So far as external logic is concerned, there are only three types of machine cycles which can
occur during execution of an instruction:

1) A data input operation (read) during which external logic must present a word of data to the
CPU ..

2) A data output operation (write) during which the CPU transmits a word of data to external
logic.

3) An internal operation during which no CPU-initiated activity occurs on the System Bus.

INSS900
AND PACE
MACHINE
CYCLE

INSS900
AND PACE
MACHINE
CYCLE
TYPES

All instr.uctions include one or more data input machine cycles, and two or more internal operation machine cy­
cles. Only a few instructions include data output machine cycles. The first machine cycle of any instruction's execution
must. of course,. be pn instruction fetch operation - which to external logic is simply a data input cycle. Let us
therefore begin by examining the data input machine cycle.

Figure 15-5 illustrates timing for a standard data input machine cycle. Notice that the address INSS900 AND
is only present on the data lines for the first portion of the machine cycle. The NADS Signal is sent PACE DATA
out approximately in the center of the time interval during which the address data is valid; INPUT CYCLE
therefore, either the leading edge or trailing edge of NADS can be used to clock the address data.
The IDS signal is sent out at about the same time as the address information is taken off the data lines - well before
the time when input data is expected by the CPU. This gives external logic time to prepare the input data. The input
data needs to be valid only fqr a short time interval later in the machine cycle. Exact timing is given in the data sheets
at the end of this chapter.

Internal Clock T1 T2 T3 T4 T5 T6 T7 T8 T1 T2
Phase

000 - 015

I I

NAOS LJl
• I

IDS
I I) 1

I'
I

I I
I

Figure 15-5. INS8900 and PACE Data Input Timing

15-12

Q
w

~
a:
o
a..
a:
o
(.)

~
u)
w

~
g
C/)
C/)

ct
all
w
Z
a:
o
al
C/)

o
~
ct
Q
ct

@

Figure 15-6 illustrates timing for a standard data output cycle. The address-output portion of
the cycle is identical to that of the data input cycle just described: the ODS signal is sent out at
the same part of the cycle as IDS was. At approximately the same time that ODS is sent out. the
output data word is placed on the data lines. The output data remains valid beyond the end of the
ODS signal so that the trailing edge of ODS can be used as the clock for external data latches.

Internal Clock T1 T2 T3 T4 T5 I TS
Phase

I

000 - 015 ~ddress Data Output Valid . Output Data Valid

I
NADS LJJ

I ,
I I I

ODS I I
I I

. Figure 15-6. INS8900 and PACE Data Output Timing

The data input/output cycles just described allow approximately two clock periods for ex­
ternallogic to respond. If this time interval is too short, the EXTEND signal input to the CPU
can be used to lengthen the I/O cycle by multiples of the clock period (one clock period equals
two internal clock phases). The EXTEND signal can be placed high during address time or im­
mediately after the start of IDS or ODS. but it must be high before the end of internal clock
phase 6 as shown in Figure 15-7.

One Clock One Clock

Period

: I P:ri~ ito":: I
TS 1-" T1

I ,Input Data

IT3 T4 T5 T2

I I

INS8900 AND
PACE DATA
OUTPUT
CYCLE

INS8900 AND
PACE EXTEND
SIGNAL FOR
SLOW I/O
OPERATIONS

T2

I

I I Valid I (000 - 015 I I Address Data Out (For Input Cycle) ~ _______ ___________ ... __ ... ____ ...

I I
, I , I

I Output Data Valid (DOO-D15!1~-----------~'-----------------------------------­
Address Data Out (For Output Cycle) .. __ ... _______ __________________ ~ ...

I 1 '1

LJr-~I~-----~--~--~--~---~-~--NADS; I' ,
I I I I I I

IDS/ODS 1"1 --t--~ll--..,..-....,~,.-----..... : ---.... _ ---... \",. __ _-+_
I , , I 1

EXTEND I I: I

Figure 15-7. Using the EXTEND Signal to Lengthen 1/0 Cycles

The timing shown in Figure 15-7 provides the minimum I/O cycle extension of one clock period.

15-13

The maximum extension permitted by PACE is 2 microseconds; so with ,a ,clock period of 750 nanosec.onds. this
means that only two clock period extensions can be added to an inp'ut/output cycle. The second clock period extension
is ach'ieved by holding the EXTEND signal high for one additional clock period beyond the timing shown in Figure 15-7.
The INSS900 has no maximum permitted extension.

Notice that the EXTEND signal does just what its name implies; it simply' extends the duration of the data transfer por­
tion of an I/O machine cycle. The trailing edge of the IDS or ODS signal is delayed and. for data input. the time until
valid input data must be present is delayed. On data output cycles. the valid data is simply maintained on the data lines
by the CPU for an extended 'period of time.

The EXTEND signal can also be used to suspend CPU input activity. This use of EXTEND will be described later
under the heading of Direct Memory Access. '

THE INITIALIZATION OPERATION
A NINIT low signal input to the CPU initializes the microprocessor. The NINIT signal is the equivalent of the Reset
Signal described for other microcomputers in this book. While NINIT is held low. CPU operations are suspended; IDS
and ODS are reset low. NINIT must be held low for a minimum of eight clock periods to give the CPU time to respond,
After NINIT goes high again. this is what happens:

1) The internal Stack Pointer is cleared.

2) All flags and 'interrupt enables are set low (except L~vel 0 Interrupt Enable which is set high).

3), , The Accumulators contain arbitrary values.

4) The Program Counter is set to zero.

5) 16 to 24 clock periods after NINIT returns high. the NADS signal is output high. The first instruction is thus fetched
~rom memory location zero (000016).,

Figure 15-8 iIIu~trates the timing for the initialization operation. Note that the NINIT signal is shown going low after
power and clocks are both stable. The NINIT signal must be applied whenever the CPU is powered~up; ifNINIT'is held
low before clocks and/or power have stabilized. the NADS and,NHALT output signals may have undefined states for
eight ~Iock pu Ises after thE!' trailing edge of NINIT. , . , , , " .

Power and Clocks Stabilized

AND:O~~~'~
~" 8 C.I~o1ci~kil Periods

NINIT ',' "~m;:.=:::::(
, " , 1 t---16 to 24 Clock Periods --I

NADS .WM41 ... ~," :=h,'

IDS/ODS \ ... ---------------i~ -------7
Begin to fetch instruction from

memory address 0000'6

Figure 15-S.INSS900 and PACE Initialization Timing

TJ1E HALT STATE AND PROCESSOR STALL OPERATIONS'
Mo~t microprocessors described in this book have a Hold state, which typically describes a CPU condition dur­
ing which there is no CPU-initiated activity on the System Busses; external logic can then perform Direct
Memory Access operations. The INSf;3900 and pACE CPUs have an equivalent 'state that can be initiated under pro­
gram cont~ol or by external logic. When this state is initiated under program control (by executing a Halt instruc­
tion) INS8~OO and PACE literature calls it the Halt state; when initiated by external logic, it is called a Pro­
cessor Stall.

During normal program execution. the CPU NHALT control line provides a high' output. When a
Halt instru'ction is executed. the NHAL T output is driven low to indicate that CPU activity is sus­
pended. While in the Halt state. the NHALT outputhas a 7/S duty cycle; that is. every eighth clock
phase. the NHAL T output goes high. If the NHAL T output is merely used to drive an indicator on a

; ,

15-14

INS8900 AND
THE'PACE
HALT STATE ,

c
w

~
a: o
Q.
a:
o
CJ
~
en
w

~ o o
(I)
(I)

~
01:1
w
Z
a:
o
CD
(I)

o
:!E
~ c
~

@

control panel. this 7/8 duty cycle is of little concern; but. if the NHAL T signal is used as a logic signal. the 7/8 duty cy­
cle must be accounted for. The Halt state is terminated by setting the CONTIN input signal high for a minimum of
16 clock cycles, and then resetting it low for at least four clock cycles, as shown in Figure 15-9. CPU operation
then resumes by executing the next instruction. that is. the instruction that follows the Halt instruction.

~
: Halt instruction exe.cuted CPU operation resumes ~

NHALT f\ (n .;.T'
(Output) . l.t-__ rJ ----...j. f------l \-..f

I ~ T.

I 1 Machine
I cycle 4 Clock

I If Cycles I
~. {t---t==16 Clock CYcies.Minimum----=t::::rr I
~Indefinite Duration~' . . I

CONTIN

(Input)

I I I

Figure 15-9. Terminating INS8900 or PACE Halt State

As we have just seen. the PACE NHALT and CONTIN signals are interrelated. We men- NHAL T AND CONTIN
tioned earlier that these signals are also multifunctional. We will describe separately SIGNALS ARE
each of the functions that can be implemented with NHAL T and CaNTIN. Do not use MULTIFUNCTIONAL
these signals to implement more than one function unless your application absolutely
requires the additional functions. Critical and complicated timing relationships are required by the CPU todifferenti­
ate between various functions. For PACE. but not the INS8900. timing is further complicated by some circuit problems
in the CPU's interrupt system. which we will describe later.

The INS8900 and PACE CPU can be forced into the Halt state by external logic. INS8900
and PACE literature defines this operation as a Processor Stall. A Processor Stall uses both
NHALT and CONTIN as control signal inputs. Figure 15-10 shows the timing sequence re­
quired. The NHAL T input must be driven low by external logic to initiate the sequence. CPU
operation is then suspended after execution of the current instruction is completed. The minimum

INS8900
AND PACE
PROCESSOR
STALL

response time is five clock cycles. The maximum response time is equal to the longest instruction execution time (refer
to Table 15-2). There is no maximum time limit for a Processor Stall. The CPU Simply remains in the Halt state until it is
terminated by the CaNTIN input signal. which must be properly sequenced with the removal of the NHAL T input. as
show~ in Figure 15-10.

Let us take another look at the beginning of the Processor Stall timing sequence. Notice
that when the CPU has completed the current instruction and recognized the stall re­
quest, the CONTIN output signal is briefly driven low by the CPU. This pulse is referred
to as ACK INT (Acknowledge Interrupt) and can be used to let external logic know that the
CPU is responding to the stall request. It may seem inappropriate for the CPU to provide an

PROCESSOR STALL
AND LEVEL 0
INTERRUPT
SIMILARITIES

Acknowledge Interrupt response when we are initiating a Processor Stall. However. as we shall see later in this chapter.
a Level 0 Interrupt request begins with exactly the same timing sequence as a Processor Stall; in fact, the reac­
tion of the CPU is the same for both operations until that point in the sequence where NHAL T goes high.
Therefore. the initial response of ACK INT is always sent out after NHAL T is driven low.

DIRECT MEMORY ACCESS OP.ERATIONS
At the beginning of our Halt state and Processor Stall discussion we mentioned that these are the equivalent of Hold
states provided by other microprocessors. But there are some significant differences between th.e INS8900 and
PACE Halt state, and the Hold state described for other microprocessors in this book. Because of these
differences, Direc"l Memory Access operations with PACE or the INS8900 are not straightforward.

The INS8900 and PACE CPUs never float their Data or Control Busses. But remember that the FLOATING
design of any realistic INS8900 or PACE system is going to require buffer/drivers for the data lines INS8900
and control signals. The BTE. which is part of the PACE microcomputer family. performs this AND PACE
buffering function. . SYSTEM

Any bidirectional three-state buffer can be used to float INS8900 bus lines. In Figure 15-2. BUSSES
INS8208 devices are shown performing this function. Thus it is the control signals input to the
BTE by PACE or to the INS8208 by the INS8900 that actually float bus lines at the proper time. in order to allow DMA
operations.

15-15

EXECUTION SUSPENDED ---1 APPROX . .4 CYCLES

PROCESSOR STALL

DURA TION I RESUME NORMAL OPN EXECUTION @
.... 1----........... --> 11 + Ie CYCLES

(;-2(t---"--1 ~".""....
t:~::==_D_R_IV_E_N_L_O_W_E_X_T_ER_N_A_L_L Y ___ - J DRIVEN HIGH EXTERNA:V ~ NHALT

~~ 3 ClK CYCLES

(OR USING INTL. PULLUP)

o
;::: 5 +te

CYCLES .2 4 CYCLES

CONTINUE DRIVEN

EXTERNALLY
~t--~""'_-CONTINUE DRIVEN BY PACE -----...... ~ __ ----~

CONTINUE
DRIVEN

EXTERNALLY

~:

(EXTERNAL CIRCUITS HIGH IMPEDANCE)

1. EXTERNAllY GENERATED TTL INPUTS

OVERRIDE PACE MOS OUTPUTS.

2, ~ CROSSHATCH INDICATES "DON'T

~ CARE" INPUT STATE.

3. te = DURATION OF EXTEND DURING

PACE I/O CYCLES. TIMING ASSUMES

NO OTHER EXTENDS AND NO SUSPENDS.

Figure 15-10. Timing Diagram for Processor Stall Using
NHAL T and CONTIN Signals

CONT

But we must have a way of determining whether the CPU is going to be using the System Busses. There are
several methods of making this determination: we will conceptually examine each of them within the context of three
different DMA schemes:

1) DMA block data transfers initiated by the CPU

2) DMA block data transfers initiated by external logic

3) Cycle-stealing DMA transfers

From a hardware point of view, the simplest method of implementi'ng DMA in a PACE or
INS8900 system is to have the CPU initiate block transfers of data. Considerthe following
approach. The CPU will treat an external DMA controller as a peripheral device and will estab­
lish initial conditions such as starting address. word count. and direction (memory read or
write). This information can be passed to the controller by treating its registers as memory

CPU
INITIATED
DMA BLOCK
DATA .TRANSFERS

locations and using Store instructions to write into the registers. When the required information has been passed. the
CPU simply executes a Halt instruction. As we described earlier. when a Halt instruction is executed, the NHAL T
control output line from the CPU is driven low (7/8 duty cycle). This signal could thus be used by the DMA con­
troller as an indication that the CPU will not be using the System Bus and the DMA transfer can begin. When the
transfer is completed, the DMA controller will use the CONTIN input to the CPU, as shown in Figure 15-9, to
terminate the Halt instruction. Normal CPU operation will then resume.

15-16

c
w

~
II: o
Do
II:
o
(J

!:
en
w

~
g
(I)
(I)

ct
all
w
Z
II:
o
al
(I)

o
~
ct
C
ct
@

Most microprocessors have a Bus Request input signal that can be used by external logic to re­
quest access to the System Busses. In a PACE or INS8900 system, the NHAL T input signal
can be used to force the CPU into a Processor Stall, as described earlier, and thus free
the System Busses for DMA operations. The Acknowledge Interrupt (ACK INTI pulse on
the CaNTIN output line shown in Figure 15-10 is then equivalent to a Bus Grant signal,
and the DMA controller may begin the data transfer. When the transfer is complete, the
CaNTIN line is used as a control input lirie to the CPU to terminate the Processor Stall.

Cycle.-stealing DMA operations typically transfer a single word via the System Busses during a
brief interval when the CPU is not using the busses. With this method. CPU operations need
not be stopped: instead. they are only slowed down slightly. or in some cases not affected at
all. In order to implement cycle-stealing DMA, external logic must have a way of detect­
ing those time intervals, when the CPU will not be using the System Busses. There are

DMA BLOCK
DATA TRANSFERS
INITIATED BY
EXTERNAL LOGIC
IN PACE AND
INS8900
SYSTEMS

CYCLE-STEALING
DMA IN PACE'
AND INS8900
SYSTEMS

two ways that this can be accomplished with the INS8900 or PACE CPU. The first method involves the use of the EX­
TEND input signal to the CPU to suppress or suspend input/output operations: the second method uses a special tech­
nique to sense when the CPU is beginning an internal (non-I/O) machine cycle.

Earlier we described how to use the EXTEND input signal to lengthen the CPU input/output cy­
cles. The EXTEND signal can also be used to prevent the CPU from beginning an I/O cycle. and
thus ensure that the System Busses will be available to external devices for DMA operations.

Figure 15-11 illustrates both uses of the EXTEND signal. The CPU looks at the EXTEND input sig­
nal at internal clock phases T1 and T6. Notice that during I/O cycles the IDS or ODS signal goes
high at the beginning of T6 and low at the beginning of T1. If EXTEND is high during T6. then ex­
tra clock cycles are inserted after T8: this is the method that would be used to lengthen an I/O cy-

EXTEND USED
TO SUSPEND
INS8900 AND
PACE I/O
DURING DMA
OPERATIONS

cle. If EXTEND is high during Tl. then extra clock cycles are inserted between T3 and T4: this is the method we would
use for DMA operations.

The trailing edge of IDS/ODS indicates that the CPU has just completed an I/O cycle and is therefore not using the
System Busses at this instant. By setting EXTEND high at this time. we suppress the beginning of another I/O cycle
while we use the busses for a DMA transfer.

Notice that we are merely lengthening the beginning of the machine cycle. and thus delaying that part of the machine
cycle where the CPU might begin I/O activity. We do not know whether the current machine cycle will be an internal
machine cycle or an I/O cycle. and we do not care. We have merely stolen the busses by slowing down the CPU.

750 nsec 1.5 JJ.sec

Internal I I ~ ~ . I \.. ~I :
Clock Phase lT1 T2 T3 T4 T5 T6 T7 T8 EEl T1 T2 T3 E E T4 T5 T6 T7 T81T1 T2 T3 E E E E T4 T5 T61

I I I I
IDS/ODS I

i-----'

CPU I/O CYCLE
EXTENDED ONE CLOCK

PERIOD

CPU I/O CYCLE
DELAYED ONE CLOCK

PERIOD

CPU I/O CYCLE
DELAYED TWO CLOCK

PERIODS

AVAILABB~~ --------1 ... r.. ~l~, ---";'-f(.. .)~--....
1.5 JJ.sec 2.25 JJ.Sec

Figure 15-11. Using PACE EXTEND Signal for Cycle-Stealing DMA

15-17

There are two drawbacks inherent in the EXTEND method of cycle-stealing DMA. Firstwhenever we use the System
Busses for a DMA transfer. we slow down the operation of the CPU. Second. we must wait until the CPU has just com­
pleted an input/output cycle before we can perform the cycle steal. Since only about one-third of the CPU machine cy­
cles are used for I/O. this means that bLis access for DMA will be quite limited. Both of these drawbacks can' be elimi­
nated if we can find some technique for determining when the CPU is performing an internal (non-I/O) machine cycle.
We could then use the System Busses any time that the CPU is not using them (which is more than 60%. of the
time) and we could perform the DMA transfer without slowing down CPU operations. We shall now describe'
just such a technique. . '. .

CYCLE-STEALING
DMA DURING
INS8900 AND
PACE INTERNAL
MACHINE CYCLES

We stated earlier in this chapter that the i.nternal clock phases (T1 through T8) are not availa­
ble to external logic. However. National Semiconductor data sheets include a figure that shows
circuits for internal. drivers and receivers. A detailed examination of this figure reveals a very
interesting and useful fact: the JC 13 (Jump Condition 13) pin on the CPU is intended as an in~
put signal: but. because of the way in which the receiver for this signal is designed. it also pro­
duces an output pulse on the JC 13 pin during every machine cycle. The output pulse occurs
during T4 of each machine cycle. and we can use this fact to design a very efficient cycle-stealing DMA arrangement.

~~--- BUS REQUEST
(From DMA Device)

NADS
D Q ~----------------------~~BUSGRANT

(To DMADevice)

ClR

ClK

--
DIVIDE-BY -FOUR

ClR

NINIT --------------1 ------------.....
TClK----------------------------------~~

(From STE)

Figure 15-12. Idealized Circuit for Cycle-Stealing DMA During INS8900 and
PACE Internal Machine Cycles

Figure 15-12 shows a circuit that uses the output pulse provided by JC13 to implement cycle-stealing DMA. Recall .
that the CPU sends out a negative-going NADS pulse at T4 of every input/output cycle. This NADS Signal is ANDed in
our circuit with an external device's DMA Bus Request and applied to the D input of a flip-flop. The JC 13 output pulse.
which also occurs at T4. is inverted via a transistor and applied to the clock input of the flip-flop. Thus. if NADS is high
at T4 !indicating that the current CPU machine cycle is not an I/O cycle) the flip-flop will be set if there is a Bus Request
present. The output of this flip-flop is then used by external logic as a Bus Grant signal and the DMA transfer can be in-

15-18

Q
w

~
II:
o
Q.
II:
o
(J

!:
en
w

~
g
II)
II)

~

o!I
w
Z
II:
o en
II)

o
~
~
Q
~

@

itiated. Since we do not know whether or not the next cycle will be a CPU I/O cycle. we must terminate DMA activity on
the bus prior to the next T4 time. In Figure 15-12. this is accomplished using a divide-by-four counter.

The ClK input to the counter is a combination of the Bus Grant signal and the TClK signal which is available from the
PACE STE. This results in the timing shown in Figure 15-13. Notice that this scheme makes the bus available for about
7/8 of a machine cycle. or approximately 2.25 microseconds. If you refer back to Figure 14-10 you will noti~e that this
is about the same length of time as was obtained by using the maximum duration of EXTEND. So. we have not in­
creased the maximum time available for a DMA transfer. But. we have made two significant gains: DMA transfers can
occur more frequently. and these tra'nsfers do not slow down CPU operations.

We must add a final note of caution to the descriPtion of this otherwise straightforward DMA technique. There are
several critical timing paths in the idealized circuit shown in Figure 15-12. Both the JC13 pulse and the NADS signal
occur at T4. although the trailing edge of NADS does os:cur slightly after the trailing edge of JC 13. Therefore. the com­
ponents used to provide ClK and D inputs to the flip-flop must be selected carefully to ensure that there is not a race
condition. Additionally. we have shown the Bus Grant signal being reset at the end of T3. Since the leading edge of
NADS occurs at T4. this timing relatio!1ship can be critical. However. if external devices such as address latches and
decoders use the trailing edge of NADS. this timing should present no problems.

T3 T4 T5 T6 T7 TB T1 T2 T3 T4 T5 T6 T7 TB T1 T2 T3 T4 T5

NClK

(TClK·)

ClK

(TClK)

JC13 -f' _______ ... f\ ... __________ _

" T1 '

NADS

BUS REQ

BUS GRANT

~2.25 JLsec for DMA Transfer

Figure 15-13, Timing for Cycle-Stealing DMA During INS8900 and PACE Internal Machine Cycle

THE INS8900 AND PACE INTERRUPT SYSTEM'
The INS8900 and PACE CPUs have complete on-chip interrupt systems. Six separate levels of interrupts are
provided: one internal and five external interrupt request inputs, including a non-maskable input. Priority logic is
provided on the CPU, and all interrupts are vectored, thus eliminating any polling rE:!quirements. Because of the
various ways in which interrupts can be initiated, and also because of a few problems that exist in the PACE in-
terrupt system, we will divide our description of the system into three parts: '

1) Low priority external interrupts

2) Internal (Stack) interrupts

3) Non-maskable (Level 0) interrupts

But first. let us take an overview of the INS8900 and PACE interrupt system.

15-19

IRQ

INT
ENABLE

lEN

LEVEL Q

INTERRUPT

STACK FULL OR
EMPTY INT REO

(INTERNAL TO PACE)

----------------~ S

R

S

R

S

R

S

R

S

R

IE5

(IRQ)

IRl

IR2

IR3

IR4

IR5

PRIORITY

ENCODER

INTERRUPT

(TO CPU'S INTERNAL

CONTROL CIRCUIT)

INTERRUPT

POINTER

ADDRESS

Figure 15-14. Internal View o-f INS8900 and PACE Interrupt System

15-20

Q
w

~
a: o
0.
a:
o
o
~
iii
w

~
g
en
en
ct
oIS
w
Z
a:
o en
en o
~
ct
Q
ct
@

Figure 15-14 depicts the interrupt logic that is contained on the CPU. The highest priority in-·
terrupt request is the non-maskable Level 0 interrupt request, whjch is initiated using
the NHAL T control input to the CPU. The lowest priority interrupt request is NIR5.

The Stack Interrupt and each pf the four lower-priority external interrupt requests can be
individually enabled or disabled by setting or clearing associated bits (lE1 - IE5) in the
Status and Control Flag register. Notice in FiQure 15-14 that these bits are shown as provid­
ing the 'R' input to a latch. The 'S' input to each of these latches is the actual interrupt request
line. The significance of this is rather subtle. It means that an interrupt request need not supply
a continuous low level until it is acknowledged. Instead. any pulse exceeding one PACE clock
period will set the associated interrupt· request latch: this ailows narrow timing or control

INS8900
AND PACE
INTERRUPT
PRIORITIES

ENABLING AND
DISABLING
INS8900 AND
PACE INTERRUPTS

pulses to be used as interrupt request inputs. Note. however. that the 'R' input to the latches overrides the 'S' input.
Therefore. if the individual Interrupt Enable flag is reset. it not only prevents the latch from being set by interrupt re­
quests. it will also clear a previously latched request that mayor may not have been serviced. If this logic is not clear to
you. you should study the characteristics of the RS flip-flop.

A master interrupt enable (lEN) flag is also provided in the Status and Control Flag register. lEN must be set true
to allow any of the latched interrupt requests to be recognized by the CPU.

The CPU checks for interrupts at the beginning of every instruction fetch. If an interrupt request is
present (and enabled). the instruction fetch is aborted. the contents of the Program Counter are
pushed onto the Stack. and the master interrupt enable (lEN) is set low. The CPU then loads the
Program Counter with the address vector for your interrupt service routine and executes the in­
struction contained at that address. (We'll describe the address vectors in the next paragraph.)

INS8900 AND
PACE
INTERRUPT
RESPONSE

The interrupt request just described requires a total of 28 clock cycles from the time the interrupt is recognized by the
CPU until the time when the first instruction of your interrupt service routine begins execution.

Memory locations 000216 through 000816 are used as pointer locations or address vectors.
You load each of these locations with the starting address of the interrupt service routine for each
interrupt as follows: .

MEMORY LOCATION

2
3
4
5
6
7
8

INTERRUPT POINTER FOR

Stack Interrupt
NIR2
NIR3
NIR4
NIR5

i

Level 0 Program Counter Pointer}
Level 0 Interrupt Origin

Special
case

INS8900
AND PACE
INTERRUPT
POINTERS

The level 0 interrupt isa special case which we will describe on its own. But first let us look at interrupts in
general.

When the CPU responds to an interrupt. it loads the Program COUllter with the contents of memory locations 2 through
6. depending on the specific level of interrupt that is being acknowledged. Control is thus vectored to the proper ser­
vice routine. Suppose. for example. memory locatio'n 4 contains the value 2A3016. If an interrupt request occurring at
pin NIR3 is acknowledged. then during the acknowledge process the contents of the Program Counter are saved on the
Stack. foliowing which the value 2A3016 is loaded into the Program Counter. Had the value 472816 been in memory
locati,on 4. then 472816 would have been loaded into the Program Counter instead of 2A3016. Thus. whatever memo~
ry address is stored in the memory location associated with the interrupt being acknowledged. this address will be
loaded into the Program Counter. becoming the starting address for the specific interrupt service routine to be ex­
ecuted.

As part of the interrupt response we've just described. the CPU sends out a low-going pulse on
the CQNTIN line. Refer back to Figure 15-10 and associated text for a description of the ACK
INT pulse. The last instruction executed by your interrupt service routine must be a Return­
from-Interrupt (RTI) instruction. This instruction sets lEN high to re-enable interrupts. then
pulls the top of the Stack into the Program Counter. This returns program control to the point
where it was interrupted. The RTI instruction does not clear the internal Interrupt Request
latch; therefore your interrupt service routine must reset the latch (using a Pulse Flag instruc­

INS8900
AND PACE
INTERRUPT
ACKNOWLEDGE
AND RETURN
FROM INTERRUPT

tion). or the same interrupt request will still be present after the RTI instruction has been executed. Once the latch has
been cleared. it can then be re-enabled for subsequent interrupt requests.

15-21

The interrupt sequence does not save the contents of any registers except the Program Counter. If
the program that was interrupted requires that the contents of CPU registers be saved and then
restored. your interrupt service routine must perform these operations.

The CPU's response to a Stack interrupt is as described for external interrupts. However. the inter­
rupt request is generated internally by the CPU chip; it can be caused either by a Stack Full or a
Stack Empty condition. Remember that the 1 O-word Stack is part of the CPU chip. It consists of an
internal RAM and a pointer that can address Stack words 0 through 9. A Stack Empty interrupt re­
quest is generated whenever the pointer is at 0 and a Pull instruction is executed. A Stack Full in­
terrupt request occurs when the pointer is at 7 (eight entries on the Stack) and a Push instruction
is executed to fill the ninth word. The tenth word of the Stack will then be used as part of the in­
terrupt response to store the Program Counter contents. Unless you intend to extend the Stack out

SAVING
INS8900 AND
PACE CPU
REGISTERS
DURING
INTERRUPTS

INS8900 AND
PACE STACK
INTERRUPTS

into main memory. your application program will not require a Stack Empty or Full interrupt. These interrupts become
error conditions and can be avoided by careful programming.

If your program is treating the Stack Empty and Stack Full interrupts as error conditions. then you can disable Stack in­
terrupts. in which case the full ten words of the Stack are available for nested interrupts and subroutines. Of course.
this means that a Stack Full or Empty condition. should it occur. will become an undetected error. with unpredictable
consequences.

When using PACE. but not the INS8900. there is an additional reason for not using the Stack in­
terrupt capability unless you really need it. PACE has an internal circuit problem thatcan cause
improper interrupt response. If a Stack interrupt request occurs at the same time as an NIR3
or NIR5 interrupt request, the Stack interrupt address vector will be incorrectly accessed
from location 0 instead of location 2. The solution recommended in PACE literature is to load

PACE
STACK
INTERRUPT
PROBLEMS

both of these locations with the Stack interrupt vector. This apparently straightforward solution is complicated by the
fact that location 0 also happens to be the initialization address; whenever the CPU is initialized. the first instruction ex­
ecuted is the one that is contained in location O. Thus. the word in location 0 must serve a dual purpose:

1) It serves as an instruction whenever the CPU is initialized.

2) It serves as an address vector if a Stack interrupt occurs at the same time as NIR3 or NIR4.

Here's an example. The object code for a Copy Flags to Register (CFR) instruction is 04001'6. So. if locations 0 and 2
both contain a value of 040016 the problem is solved. Your Stack interrupt service routine would have to begin at
memory address 040016. but you would be correctly vectored to that address regardless of whether or not the inter­
rupt error we've just described occurs. On initialization. the first instruction executed would be the CFR instruction: this
is not a very useful initialization instruction. but at least no damage is done.

For a fuller discussion of this interrupt problem and the solution. refer to PACE literature. Also keep in mind that
the problem has been fixed in the INS8900.

The non-maskable (Level 0) interrupt cannot be disabled and differs from the other interrupt levels both in the
way it is initiated and in the way the CPU responds to it.

The Level 0 interrupt request is initiated using the NHAL T control input signal in com­
bination with the CONTIN input line. Figure 15-15 shows the timing relationships bet­
ween NHAL T and CONTIN that are required to initiate the non-maskable interrupt. If you
compare this figure with Figure 15-10. you will notice that the Level 0 interrupt request and
the Processor Stall begin in exactly the same way; NHAL T is driven low by external logic and
held low for some time after a low-going pulse (ACK INT) has been sent out on the CONTIN

INS8900
AND PACE
NON-MASKABLE
(LEVEL 0)
INTERRUPT

line. The only difference between the two operations is towards the end of the timing sequence. For a Processor Stall.
NHAL T is allowed to return high while CONTIN is still high; for a Level 0 interrupt. the CONTIN line must be driven low
by external logic before the NHAL T line is allowed to go high. This critical timing sequence is the only way that the CPU
has to differentiate between a Processor Stall and a Level 0 interrupt. Notice that this Level 0 interrupt timing sequence
never requires external logic to drive CONTIN high. Therefore. if you're using the CONTIN line for any of its other multi­
ple functions (including the ACK INT output pulse) you can merely tie CONTIN to ground and use NHALT to initiate the
Level 0 interrupt. .

The response ~f the CPU. to the Level 0 interrupt is subtly different from its response to
other interrupts. These subtle differences are related to the slightly different purpose of a non­
maskable interrupt versus a normal program interrupt request. A non-maskable interrupt is
typically used only when there is a catastrophic error or failure (such as loss of power) or to imple­
ment a control panel for program development or debug purposes. Both of these uses require that
an asynchronous. unplanned program termination have a minimum effect upon system status;

INS8900
AND PACE
LEVEL 0
INTERRUPT
RESPONSE

that is. you want to leave behind a picture of the system as it looked immediately before the program termination oc­
curred.

15-22

o
w

~
a:
o
Il..
a:
o
u
~
en
w
I­
ct
(3
o
II)
II)

ct
oll
w
Z
a:
o en
II)

o
~
ct
o
ct

@

CD CD
I-> 11 + '. CYCL£Si " • + '. CYCLES1

~DRIVEN LOW EXTERNALLY .. , til ~m NHALT

DRIVEN HIGH EXTERNALLY

I (OR USING INTERNAL PULLUP) - .. 5 CLOCK CYCLE MIN.
I INTERRUPT RESP. TIME 0
~ ~

~ 15 + 2 te'CYCLESQ), ~ 5 + te CYC~ES

-, $. 3 CLK

CYCLES

WD/4
ACK.

~ \ ~
1/'+te0~
LES

APPROX.2

CLOCK CYC
J-t-

, CONTINUE DRIVEN BY PACE
CONTINUE
DRIVEN

EXTERNALLY

NOTES:

,
EXECUTION , EXECUTION SUSPENDED

I

1. EXTERNALLY GENERATED TTL INPUTS

OVERRIDE PACE MOS OUTPUTS

2. ~ CROSSHATCH INDICATES "DON'T

~ CARE" INPUT STATE.

3. te = DURATION OF EXTEND DURING PACE

I/O CYCLES. TIMING ASSUMES NO OTHER

EXTENDS AND NO SUSPENDS

CONTINUE DRIVEN EXTERNALLY

I INTERRUPT SERVICE STARTS
1* C(

Figure 15-15. Initiating INS8900 and PACE Level 0 Interrupt
Using NHAL T and CaNTIN Signals

I
I

CONT

Remember that other levels of interrupts store the contents of the Program Counter or the Stack and reset the lEN flag
in the Status and Control Flag register. This sequence obviously alters the "picture" of the CPU. since both Stack con­
tents and Status and Control Flag register contents are changed. To avoid this. the Level 0 interrupt response by the
CPU uses an external memory location to store the contents of the Program Counter. Memory location 000716 holds
the address of the memory word where the Program Counter will be stored. The contents of the Status and Control Flag
register are unaltered. CPU internal circuitry resets an "IRa INT ENABLE flag to prevent another interrupt from being
recognized (refer to Figure 15-16), but this is not discernible to you. After the Program Counter has been saved in the
designated memory location. the instruction contained in memory location 000816 is executed: this is the first instruc­
tion of your Level 0 interrupt service routine. Suppose. for example. that memory location 000716 contains the value
FF0016. Following a Level 0 interrupt request. the Program Counter contents will be stored in location FF0016. Follow­
ing the Level 0 interrupt acknowledge, the actual instruction stored in memory location 000816 is executed.

Note that the Level 0 interrupt acknowledge sequence has not altered anything within the CPU that is discernible to
you or to a program: the Stack. Accumulators. and Status and Control Flag register are all unchanged. Additionally.
avoiding use of the Stack ensures that there will not be a Stack overflow - and in consequence a Stack interrupt will
not be generated by this interrupt response sequence.

The normal Return-from-Interrupt (RT!) instruction that must be executed at the end of your inter- RETURN FROM
rupt service routine causes the Program Counter to be restored from the Stack. Since the Level 0 PACE LEVEL 0
interrupt sequence does not utilize. the Stack to store the Program Counter, a different tech- INTERRUPT
nique must be used to return control to the interrupted program. First you must execute a Set
Flag (SFLG) or Pulse Flag (PFLG) instruction. referencing bit 15 in the Status and Control Flag register. This bit always
appears to be set to a '1'. but must be referenced in this case to enable lower levels of interrupts. Next you must ex-

15-23

ecute a Jump Indirect (JMP@) through the location pointed to by the contents of memory location 000716 to restore
the original Program Counter contents.

PACE. but not the INS8900. has some Level 0 interrupt circuitproblems.

If a Level 0 interrupt occurs within the 12-clock-cycle period following the recognition of
any other interrupt, PACE will either perform a Processor Stall (which we described earlier)
or PACE will execute the Level 0 interrupt - but using the wrong pointer address. In short.
you don't know what might happen under these circumstances. There is a solution for this prob-

PACE
LEVEL 0
INTERRUPT
PROBLEMS

lem. It requires that external logic allow NHAL T to be applied to the PACE CP.U only while the NADS signal is present.
provided no Acknowledge Interrupt (ACK INT) has occurred since the last NADS pulse. ACK INT is accompanied by a
negative-going pulse on the CONTIN line. Sound complicated? It is.

The circuit shown in Figure 15-16 is reprqduced from PACE literature and solves the problem we've just described. We
won't attempt to describe here how this circuit solves the problem. Note that this circuit only takes care of Level 0 in­
terrupt problems: if you also want to use NHAL T and CONTIN to cause a Processor Stall. you must design additional ex­
ternal logic.

Once again, we must advise that these interrupt system problems exisJ in PACE CPU chips. The INS8900 has
none of these problems. .

TJiE INS8900 AND PACE INSTRUCTION SET
Table 1 ~-1 summarizes· the INS8900 and ~ACE instruction set.

The primary memory reference instructions have typical minicomputer addressing modes. These instructions will also
be used as I/O instructions. since external devices are identified via selected memory addresses _____ ""

Ln Table 15-1. "direct addressing options" means the instruction can reference memory using any
of the direct or direct indexed addressing options described earlier.

"Indirect addressing options" Similarly specifies any of the indirect addressing options described
earlier. .

Both Branch and Skip instructions are provided. and each differs significantly from the philoso­
phieSdescribed ill Volyme 1. Chapter 6.

INS89PO
AND PACE
DIRECT'
ADDRESSING
OPTION·S

There are 16 condition$ that can cause a Branch. as shown in Table 15-3. Notice that three of the conditions are deter~
mined by external inputs JC 13. 14. and 15. If a Branch-on-Condition is true. then the displacement which is added to
the Program Coun!~r i~ an 8-bit signed binary number as described in Volume 1. Chapter 6.

There are three varieties of Skip-on-Condition instructions. SKNE. SKG and SKAZ compare the contents of an Ac­
cumulator to a memory location which is addressed using direct or direct indexed addressing. Based on the resu Its of
the comparison. the instruction following the Skip mayor may not be executed. These three instructions are therefore
combined Skip ard Memory Reference instructions .. '

ISZ and DSZ· identify a memory location using direct or direct indexed addressing; the contents of the addressed
memory location ;are incremented (iSZ) or decremented (for DSZ); if. after the increment or decrement operation the
memory location contains a 0 value. then the Skip is performed.

The AISZ instruction adds an 8-bitsigned binary number to the contents of an Accumulator; if the result is O. a Skip is
performed. '

These Skip instructions will be very familiar to minicomputer programmers. and on most microcomputers are
equivalent to a secondary Memory Reference or Immediate Operate instruction. followed by q Branch-on-Condition in-
struction. t

15-24

c
w
t-
ct
a:
0
D.
a:
0
tJ
~
en
w
t-
ct
C3
0
en
en
ct
o/l
w
Z
a:
0
!Xl
en
0

~
ct
C
ct
@

LEVEL 0 INTERRUPT REQUEST NOTE: If the Level 0 Interrupt request has not

already been reset to a logic '1' level

before lACK goes to a logic ',', then

v

IDS

7404

NADS

lACK should be used to reset the request signal.

'/.7476

FF1

CLR

INIP

Q ~--------------~

8094

> ---... NHALT

1K

D

'/.7476

FF2

CLR

'/.74L74
FF3

--

CP Q
CP Q

K
CLR

-

lACK (normally '0')

.. --------------------------~ Q

SET

CLR

'/.74L74

FF4

JVV'V-o
1K +5

D

74L08

PACE

---.......... -.I!I CaNTIN

ODS·

INIP

Figure 15-16. Circuit to Prevent Conflicts Between PACE Level a
Interrupts and Lower Priority Interrupts

15-25

The following symbols are used in Table 15-1:

ACO Accumulator 0

C

CC

D

DATA8

DISP(X)

@DISP(X)

EA

FW

lEN

L

n

o
PC

S

ST

x<y,z>

[]

[[]]

A

v

Carry status

4-bit Condition Code described in Table 15-3

Any Destination register

8-bit binary data unit

Direct or indexed addressing operands as explained in the text.

Indirect addressing operands as explained in the text.

The effective address generated by the specified operands.

4-bit quantity selecting a bit in the Flag Word.

Flag Word described in the text.

Interrupt Enable status

A 1-bit unit determining whether LINK is included in the shift/rotate.

Link status

Seven bits determining how many single bit shift/rotates are performed.

Overflow status

Program Counter

Any register.of the Accumulator: ACO, AC1, AC2 or AC3

Any Source register

Top word of on-chip Stack.

Bits y through z of the quantity x. For example, r<7,O> is the low-order byte of the specified register.

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets,
then the designated register's contentsare specified. If a memory address is enclosed within the brackets,
then the contents of the addressed memory loc·ation are specified. .

Implied memory addressing; the contents of the memory location designated by the contents of a register.

Logical AND

Logical OR

Logical Exclusive-OR

Data is transferred in the direction of the arrow.

Data is exchanged between the two locations designated on either side of the arrow.

Under the heading of STATUSES in Table 15-1, an X indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X, it means that the status maintains the value it had before the instruction was ex­
ecuted.

15-26

© ADAM OSBORNE 8r. ASSOCIATES. INCORPORATED

. Table 15-1. INS8900 and .PACE Instruction Set Summary .

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

C 0 L

LD r.DISP(X) 2 [rl-[EA]

w Load any Accumulator. direct addressing options.
U LD O.@DISP(X) 2 [ACO]-[EA] z
w Load Primary Accumulator. indirect addressing options. > c:

c: ~ g ST r.DISP(X) 2 [EA]-[rl «
::E c: c Store any Accumulator. direct addressing options.
~ > Z ST O,(ii)OISP(X) 2 [EA]-[ACO]
Q. c: «

0 Store Primary Accumulator. indirect addressing options.
::E
w LSEX O,DISP(X) 2 [ACOl-[EA](sign extended)
::E Load a signed byte into Primary Accumulator; extend sign bit into high order byte. Direct

addressing options.

ADD r,DISP(X) 2 X X [rl-[r1+ [EA]
III

iii Add to any Accumulator. direct addressing options.
U
Z I- DECA O.DISP(X) 2 X X [ACOl-[ACO]+ 1 EA] ... [C]

> w «
c: c: Add decimal with Carry to any Accumulator. direct addressing options. c: w w « u. Q. SUBB O.DISP(X) 2 X X [ACO]-[ACO]- [EAl_+LC] c w 0

Z c: > Subtract from Primary Accumulator with borrow. direct addressing options.
0 > c: U c: 0 AND O.DISP(X) 2 [ACOl-[ACOlA [EA] w o ::E III ::E w AND with Primary Accumulator. direct addressing options.

W ::E
::E- OR O.DISP(X) 2 [ACO]-[ACOl V [EAl

OR with Primary Accumulator. direct addressing options.

LI r.DATA8 2 [r< 7.0>]- DATA8 (sign extended)

W Load immediate into any Accumulator. DATA8 is an 8-bit signed binary value. The sign'bit
I- is propagated through 8 high order bits. «
C JMP DISP(X) 2 [PCl-EA
W

Jump by loading the effective direct address into the Program Counter. ::E
~ JMP @DISP(X) 2 [PCl-EA

Jump by loading the effective indirect address into the Program Counter.

Table 15-1. INSS900 and PACE Instruction Set Summary (Continued)

STATUSES
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED

C 0 L

JSR DISP(X) 2 [STJ-[PCl

~c
[PCl-EA

ot W Jump to subroutine direct. As JMP direct. but push old Program Counter contents onto
-:I Stack. OZ

~~ JSR @DISP(X) 2 [STJ-[PCl

::EO [PCl-EA
-8 Jump to subroutine indirect. As JMP indirect. but push old Program Counter contents onto

Stack.

w CAl r.DATAB 2 [rJ-[rl +DATAB (sign extended)
f-w
otf- Complement contents of any register. then add immediate data.

o~
Ww
::Ell.
~O

Z Z BOC CC.DISP 2 If CC true: then [PCl- EA
00 Branch on CC true. as defined in Table 14-3.

5 E
ZO
otZ
a:0
alU

w
SKNE r.DISP(X) 2 If [rJ ~ [EAl: then [PCl-[PCl + 1 U

Z Skip if any Accumulator not equal. w
a:Q.~ SKG O.DISP(X) 2 If [ACOl > [EAl: then [PCl-[PC]+ 1
ll!i2~
~(/)f- Skip if Primary Accumulator greater.

>Ow SKAZ O.DISP(X) 2 If ([ACOl /I. (EAl) = 0: then [PCl-[PCl + 1
a: zw
oot!!! Skip if AND with Primary Accumulator is zero.
::E
w
~

TYPE

ci:a: www > cncno
(5(5~
Ww
a: a:

w
e:(

.a: a:w wo..
.... 0
~a:
Ow w
a:cn

(5
w a:

a:w
w
.... e:(
~a:
OW wo..
a:0

MNEMONIC

ISZ

DSZ

AISZ

RCPY

RXCH

RADD

RADC

RAND

RXOR

SHl
SHR
ROl

ROR

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 15-1. INS8900 and PACE Instruction Set Summary ;(Continued)

OPERAND IS)

DISP(X)

DISP(X)

r.DATA8

S.D

S.D

S.D

S.D

S.D

S.D

r.n.l
r.n.l

r.n.l

r.n.l

BYTES

2

2

2

2

2

2

2

2

2
2

2
2

C

x

x

STATUSES

o

x

x

L

x
X
X
X

OPERATION PERFORMED

[EA]-[EA]+l

If [EA] = 0; then [PC]-[PC]+l

Increment memory. skip if zero.
[EA]-[EA] -1

If [EA] = 0; then [PC]-[PClt: 1
Decrement memory. skip if zero.

[r]-[r]+DATA8
If [r] =0; then [PC]-[PC]+l

Add immediate to any Accumulator. Skip if zero. DATA8 is an 8-bit signed binary immedi­

ate data value.

[D]-[S]

Move contents of any Accumulator (S) to any Accumulator (0).

[D]-[S]

Exchange contents of any Accumulators.

[0]-[5]+ [D)

8inary add any Accumulator to any Accumulator.
[O]-[S1+ [D]+[C]

8inary add with Carry any Accumulator to any Accumulator .
[D]-[S] 1\ [D)

AND any Accumulator with any Accumulator.

[0]-[S]'" [D)
Exclusive-OR any Accumulator with any Accumulator.

Shift any Accumulator left n bits. Simple if 1 = 0; through Link if 1 = 1.
Shift any Accumulator left n bits. 'Simple if 1 = O. through Link if 1 = 1.

As SHl. but rotate.

As SHR. but rotate.

Cf
w
o

TYPE

~
(J

~
(I)

.1-
II.
:=)
a:: a::.
w
I-
~

(I)
:=)
I-
ct
I-
(I)

MNEMONIC

PUSH

PUSHF

PULL

PULLF

XCHRS

RTS

RTI

CFR

CRF

SFLG

PFLG

HALT

Table 15-1. INSg900 and PACE Instruction Set Summary (Continued)

STATUSES
OPERAND(S) BYTES OPERATION PERFORMED

C 0 L

r 2 [ST]-[rl

Push any Accumulator contents onto Stack.
2 [STl-[FW]

Push flags onto Stack.

r 2 [rl-[ST]

Pull top of Stack into any Accumulator.

2 X X X [FW]-[ST]

Pull top of Stack into flags.

r 2 [STl--[r]

Exchange contents of any Accumulator with top of Stack.

DISP 2 [PC]-[ST] + DISP

Return from subroutine. Move sum of DISP and top of Stack to PC. DISP .is an 8-bit signed
binary number.

DISP 2 [PC]-[ST]+ DISP
[IEN]-1

Return from interrupt Like RTS. but enable interrupts.

r 2 [rl-[FW]

Copy flags to any Accumulator.

r 2 X X X [FW]-[r]

Move any Accumulator contents to flags.
f 2 [FW<f>]-1

Set flag f to 1. (f= 0 to 151.
f 2 [FW < f>]- 1 for four clock periods

Pulse flag f (invert flag status for four clock periods). (1= 0 to 151.

2 Halt

Q
w

~
a:
0
Cl.
a:
0
CJ
~
en
w ...
~ g
en
en
~
oil
w
z
a:
0
CD
en
0

~
~
Q
~

@

The following symbols are used in Table 15-2:

aa

bb

cccc

ee

ffff

nnnnnnn

PP

00
x

xx

Two bits choosing the destination register.

Two bits choosing the Index register

Four bits choosing the Condition Code. See Table 15-3.

Two bits choosing the source register.

Four bits selecting a bit in the Flag Word.

One bit determining whether Link is included in a shift or rotate.

Seven bits determining how many single bit shifts or rotates are performed.

8-bit signed displacement

Eight bits of immediate data

A "don't care" bit

A "don't care" byte

Table 15-2. INS8900 and PACE Instruction Set Object Codes

MACHINE CYCLES
INSTRUCTION OBJECT CODE BYTES

TOTAL INTERNAL INPUT OUTPUT

ADD r.DISP(X) 1110aabb 2 4 2 2
pp

AISZ r.DATAB 011110aa 2 5/6 4/5 1
aa

AND O.DISP(X) 101010bb 2 4 2 2
pp

BOC CC.DISP 0100cccc 2 5/6 4/5 1
pp

CAl r,DATAB 011100aa 2 5 4 1

aa
CFR f 00000laa 2 4 3 1

XX

CRF f 000010aa 2 4 3 1

XX

DECA O.DISP(X) l000IObb 2 7 5 2
pp

DSZ DISP(X) 101011bb 2 7/B 4/5 2 1
pp

HALT OOOOOOxx 2 - 1

XX

ISZ DISP(X) l00011bb 2 7/B 4/5 2 1
pp

JMP DISP(X) 000110bb 2 4 3 1
pp

JMP e/lOISP(X) l00110bb 2 4 2 2
pp

JSR DISP(X) 000101bb 2 5 4 1
pp

JSR ~/lOISP(X) l00101bb 2 5 3 2
pp

LD r.DISP(X) llOOaabb 2 4 2 2
pp

LD O.@DISP(X) 101000bb 2 5 2 3
pp

LI r,DATAB 010100aa 2 4 3 1
aa

LSEX O,DISP(X) 101111bb 2 4 2 2
pp

OR O.DISP(X) 10100tbb 2 4 2 2
pp

15-31

Table 15-2. INSS900 and PACE Instruction Set Object Codes (Continued)

MACHINE CYCLES
INSTRUCTION OBJECT CODE BYTES

TOTAL INTERNAL INPUT OUTPUT

PFLG f 00llffff 2 6 5 1

Oxxxxxxx

PULL r 01100laa 2 4 3 1

XX

PULLF oool00xx 2 4 ,3 1

XX

PUSH r 011000aa 2 4 3 1

XX

PUSHF 0000llxx 2 4 3 1

XX

RADC S.D 0011101aa 2 4 3 1

eexxxxxx

RADD S,D 011010aa 2 4 3 1

eexxxxxx

RAND S,D 010101aa 2 4 3 1

eexxxxxx

RCPY S,D 010111aa 2 4 3 1

eexxxxxx

ROL r,n,l 00 1 oooaa 2 5+3n '4+3n 1

nnnnnnni

ROR r,n,l 00100laa 2 5 + 3n 4+3n 1

nnnnnnni

RTI 011111xx 2 6 5 1

PP

RTS l00000xx 2 5 4 1

PP

RXCH S,D 011011aa 2 6 5 1

eexxxxxx

RXOR S,D 010110aa 2 4 3 1

eexxxxxx

SFLG f 0011ffff 2 5 4 1

lxxxxxxx

SHL r,n,l 001010aa 2 5 + 3n 4+ 3n 1

nnnnnnni

SHR r,n,l 001011aa 2 5 + 3n 4+3n 1

nnnnnnni

SKAZ O,DISP(X) 101110bb 2 5/6 3/4 2
pp

SKG O,DISP(X) l00111bb 2 7/8 5/6 2

PP

SKNE r,DISP(X) l111aabb 2 5/6 3/4 2

PP

ST r,DISP(X) 1101aabb 2 4 2 1 1

PP

ST O,@lDISP (X) 101100bb 2 4 1 2 1

PP

SUBB O,DISP(X) 1 00 1 OObb 2 4 2 2
PP

XCHRS r ooo111aa 2 6 5 1

XX

*AII instructions may take additional cycles if Extend Read and Extend Write are impleme!"ted.

15-32

c
w

~
a:
o
D.
a:
o
o
~
en
w

~ g
II)
II)

ct
ol:I
w
z
a:
o
aJ
II)

o
~
ct
c
ct
@

Table 15-3. Branch Conditions for INS8900 and PACE BOC Instruction

Condition Mnemonic Condition
Code (CC)

0000 STH.: Stack Full (contains nine or more words).
0001 REOO (ACO) equal to zero (see Note 1).
0010 PSIGN (ACO) has positive sign (see ,Note 2).
0011 BITO Bit 0 of ACO true.
0100 BIT1 Bit 1 of ACO true.
0101 NREOO (ACO) is nonzero (see Note 1).
0110 BIT2 Bit 2 of ACO is true.
0111 CONTIN CONTIN (continue) input is true.
1000 LINK' LINK is true.
1001 lEN IE~ is true.'
1010 CARRY CARRY IS true.
1011 NSIGN (ACO) has negative sign (see Note 2).
1100 OVF OVF is true.
1101 JC13 Jc 13 input is true (see Note 3).
1110 JC14 JC 14 input is true.
1111 JC15 JC 15 input is true.

NOTES:

1. If selected data length is 8 bits. only bits 0 thrQlJgh 7 of ACO are teste~r

2. Bit 7 is sign bit (instead of bit 15) if selected data length is 8 bits.

3. JC13 is used by INS8900 and PACE Microprocessor Development System and is not accessible
during prototyping. .

THE BENCHMARK PROGRAM
For PACE, our standard benchmark program adopts this modified form:

LOOP

LD
LD
RCPY
LD
ST
AISZ
AISZ
DSZ
JMP
RCPY
ST

2.IOBUF
O.@TABLE
O.~
0.0(2)
0.0(3)
2.1
3.1
10CNT
LOOP
3.0
O.@TABLE

LOAD I/O BUFFER ADDRESS INTO AC2
LOAD ADDRESS OF FIRST FREE TABLE BYTE
MOVE TO AC3
LOAD NEXT BYTE FROM I/O BUFFER
STORE IN NEXT TABLE BYTE
INCREMENT AC2
INCREMENT AC3
DECREMENT t/O BUFFER LENGTH. SKIP IF ZERO
RETURN FOR MORE BYTES
MOVE AC3 CONTENTS TO ACO
RESTORE ADDRESS OF FIRST FREE TABLE BYTE

In order to take advantage of INS8900 and PACE indirect addressing. three memory locations are reserved on page 0 as
follows:' .', ;

10BUF holds the beginning address of the I/O buffer.

TABLE holds the address of the first free byte in the permanent data table.

10CNT holds the number of data words in the I/O buffer.
. III

15-33

Memory. as organized for the benchmark program will look like this:

Memory

Addresses

IOBUF ----!.~
TABLE-~"'~

IOCNT--.......

0010 ~ME:~~Y }
0011 YYYY

.' Data on Base Page
0012

0013 '
. 0014 • • · . : ; · . • •
'''' ~S"" of I/O .,If"

· . I •

S-S"" of Dot. T.bl.

i ;
'. I

yyyy ~ ""t f, .. won! of 0." T • .,.

Suppose the benchmark program rules arbitrarily require that a displacement be stored in the first word of the data ta­
ble. and that this displacement be added to the address of the first word of the data table in order to compute the ad­
dress of the first free data table word:

Now the instructions:

LD
RCPY

O.@TABLE
0.3

(~ F;,,, d ... "bl. worn

DISP)! j

~ ~ F;"t f, .. dot ... ble worn

LOAD ADDRESS OF FIRST FREE TABLE BYTE
MOVE TO AC3

must be replaced by these instructions:

LD
LD
RADD

3.TABLE
0.0(3)
0.3

LOAD BEGINNING ADDRESS OF DATA TABLE
LOAD DISPLACEMENT TO FIRST FREE TABLE WORD
ADD DISPLACEMENT TO AC3

The new displacement must be restored to the first data table word, The instructions:

RCPY
ST

3.0
O.@TABLE

MOVE AC3 CONTENTS TO ACO
RESTORE ADDRESS OF FIRST FREE TABLE BYTE

15-34

c
w

~
a:
o
Q.
a:
o
u
~
en
w

~
U o
(/)
(/)

ct
ell
w
Z
a:
o
In
(/)

o
:E
ct c
ct

@

must be replaced by these instructions:

LD
CAl
RADD
RCPY
LD
ST

O,TABLE
0,1
0,3
3,0
3,TABLE
0,0(3)

LOAD BEGINNING ADDRESS OF DATA TABLE IN ACO
FORM TWOS COMPLEMENT
SUBTRACT ACO FROM AC3 TO FORM DISPLACEMENT
MOVE DISPLACEMENT TO ACO
LOAD BEGINNING ADDRESS OF DATA TABLE IN AC3
SAVE DISPLACEMENT IN FIRST FREE TABLE WORD

Forcing an INS8900/PACE programmer to conform to programming logic suited to some other microcomputer's in­
struction set only proves that the two microcomputers have different instruction sets.

THE PACE DP8302 SYSTEM TIMING ELEMENT (STE)

The STE is a very elementary clock device used with PACE. but not with the INS8900; it accepts inputs from an
external crystal and generates the MOS clock signals for PACE. plus a pair of TTL-level clock outputs that can
be used for synchronizing system operations, Figure 15-17 illustrates the pin assignments of the STE,

Xl

X2

EXTC

TCLK

TCLK·

GND

PIN NAME

Xl, X2

CLK, NCLK

CK, NCK

TCLK, TCLK·

EXTC

LCK, LCK·

VCC' VGG

.

-

1 16

2 15

3 14

4 STE 13

5 DP8302 12

6 11

7 10

8 9

imkRIPTION

External crystal connections

D~mped MOS clocks to PACE

Undamped MOS clocks to PACE

--..
.

VCC
CK

CLK

NCLK

VGG
NCK

LCK

LCK·

TYPE

Input

Output

Output

TTL clocks to microcomputer system Output

External oscillator option Input

Non-overlap capacitor connection

Power and Ground

Figure 15-17. DP8302 System Timing Element (STE) Pins and Signals

The frequency of the MOS clocks output by the STE is one-half the input crystal frequency. The
STE is designed to operate with a 2.6667 MHz crystal. The MOS clock frequency is thus 1.3333
MHz which results in a clock period (tp) of 750 nanoseconds (tp = lit); this is the optimal clock
period for the PACE CPU.

STE CLOCK
FREQUENCY

Two pairs of MOS clock outputs are generated by the STE; NCLK!NCLK* and NCK!NCK*, The first pair of outputs
contain a 25 n series of damping resistor; typically, these outputs will be used in circuit board layouts where the STE­
to-PACE interconnect lines are less than two inches. The other MOS outputs, NCK and NCK*, are undamped, and you
can select some other value of series damping resistors that might be better suited for your particular board layout.

In addition to the +5V and -12V power supplies typically needed with MOS devices. the GENERATING
PACE CPU has a third power supply requirement: a substrate bias voltage (VB B) of +8V THE PACE
must be applied to the CPU chip, Since it is unlikely that any other devices in your microcom- SUBSTRATE
puter system would require this voltage level. the need for a third external system power source BIAS
can be eliminated by providing a voltage converter circuit. Figure 15-18 shows a circuit that VOLTAGE
generates the required VBB voltage level; the circuit requires only a few components and uses
one of the STE's TTL clock outputs as a 'charge pump' for the circuit.

15-35

PACE

i+8V) 23
STE VBB

O.lpF lN914

TCLK* ~

lN914 LM103 1°'"' 3V

--

+ 5V

Figure" 1 Q-18. Circuit to Generate Substrate Bias Voltage (VBB) for PACE CPU
I . ~. ", c: " .. i ' .

THE PACE BIDIRECTIONAL TRANSCEIVER ELEMENT (BTE)

The DP8300 BTE is an 8-bit device th'at provides an interface between the PACE MOS-Ievel signals and the
TTL-level signals required' by other devices in a microcomputer system (the BTE is not used in INS8900
systems). If you refer to Figure 15-1 at the beginning of this chapter. you will see that a typical PACE microcomputer
system requires three BTEs: two are used to buffer the CPU's 16 address/data lines. and the third is used as a TTL
driver for the CPU's control signal output,s (NADS. ODS. IDS. F11 - F14).

Figura 15-19 shows the pin assignments fOr the BTE.

MBI/O 00

MBI/O 01

MBI/O 02

MBI/O 03

MBI/O 04

MBI/O 05

MBI/O 06

MBI/O 07

WBO"

GNO

-
i,-

PIN NAME

MBI/O 00 - 07

BOI/O 00 - 07

CE1. CE2*.

STR*. WBO*

VCC·GNO

.:'

;

'.

-; ..

1 24

2 . 23

3

4
5 .

6

7
BTE

8

9

10

11

12 .'

OESCRIPTION

MOS Bus Oata Lines

TTL Bus Oata Lines

Mode Control Signals

22

21

20

19

18

17

16

15

14

13

+ 5V Power and Ground

..
-
--.. -

-

VCC
BOI/O 00

BOI/O 01

BOI/O 02

BOI/O 03

BOI/O 04

BOI/O 05

BOI/O 06

BOI/O 07

CEl

CE2"

STR*

TYPE

Input/Output

. Input/Output

Input

Figure 15-19. BTE Signals and Pin Assignments

15-36

o
w
~
a:
o
a.
a:
o
lJ
~
en
w

~ g
en
en
ct
~
w
Z
a:
o
CD
en o
~
ct
o
ct
@

Table 15-4 summarizes the operating modes of the BTE. BTE MODE
CONTROL

WBD" is the main mode control signal; when this signal is low, the other control signals are ig- SIGNALS
nored and the BTE simply converts the MaS signals from the CPU into TTL-level output signals.
The TTL outputs have a high fan-out capability and can service up to thirty 50 millial11pere loads.
The BTE used to buffer the PACE control signals normally operates continuously in this 'drive-only' mode (Mode
11 and is kept in this mode by simply connecting the WBD" signal to ground.

The BTEs used to buffer bidirectional (address/datal lines must be switched back and forth between Modes 1
and 2; Mode 1 is used for CPU data output and Mode 2 for CPU data input. The simplest way of accomplishing this
is to continuously enable the CE1, CE2", and STW controls by connecting them to appropriate logic levels (+5V or
ground) 'and then use the WBO" signal for directional control. For example, in a PACE system, the lOS signal from the
CPU could be used as the input to WBO". Ouring a PACE data input cycle, lOS will go high at the appropriate portion of
the cycle arid place the BTE in Mode 2: lOS is low at all other times and the BTE will operate in Mode 1.

Table 15-4. PACE BTE Truth Table

MOOE CONTROL INPUTS
MOOE OESCRIPTION

CE1 CE2* STW WBO"

1 X X X 0
Receive MaS signals and
drive TTL signals

2 1. 0 O· 1
Receive TTL signals and
drive MaS signals

0 0 0 1
Outputs in

3 0 1 0 1 high-impedance
state

1 1 0 1

On positive-edge transition

4 X X 1 1
of STR*, latch into Mode 2
or 3 as determined by state
of CEl and CE2*

X = don't care

+5V

15
CE11---'"

BTE

10S-----'"
WBO*

BUS GRANT ___ .. ____;.1 .. -t CE2* 13
STR * 1------.

--
Figure 15-20. Signal Connections to Control BTE in a OMA System

15-37

In a DMA.or mUltiprocessor we wiil need to use BTE Mo~e 3 to place the BTE outputs in a high-impedance state
and thus free the System Busses for use by other devices. In such a system an externally generated Bus Grant sig­
nal could be used to place the BTE in Mode 3. Figure 15-20 illustrates one method ot-doing this: whenever, the BUS
GRANT signal is high. the BTE is in Mode 3. At other times the IDS signal operates as we've just described to sJ.,itch the
BTE back and 'forth between Modes 1 and 2.' .
.' .I I • • • • • • • 1 . ~ !. .

The fourthBTE mode .uses a negative-to-positive transition on the. STR* input to latch the state of,CE1 and
CE2*, and then places the BTE in either Mode 2 or Mode 3. This latch mode function might be useful when ~heBTE
is used as a simple input buffer: For example. ina system with multiplexed address/data lines (such as PACE1'address
outputs could be applied to CEl and CE2*.and an address strobe signal (such as NADS) connected t'o STW. then~
when the BTE is selected by the appropriate address bits. the trailing edge of the strobe signal will gate TTL'data
through the BTE and·apply the data to the MOS lines of the CPU. When the BTE is not selected (addressed!. its outputs
will be in the high ifTlpedance state (Mode 3). '

USING OTHER MICROCOMPUTER SUPPORT DEVICES
WITH THE PACEAND.INS8900·

The INS8900 CPU has numerous control signals which allow general purpose microcomputer support devices to
be included in an INS8900 system.

Let us see how 8080A support devices might be used with the INS8900 CPU. First, we'll take an overview of
the general CPU-to-device interface that all the 8080A family of devices expect. '. .
All of the 8080A family devices require that address information (or enabling/select signals derived froin the ad-
dress lines) be valid during the data transfer (read/write) portion of an input/output cycle. Recall that the INS8900
data lines are multiplexed: at the beginning of an input/output cycle. the data lines are used to output address informa­
tion: the address information is then removed and the data lines are used for the actual input or output of data during
the latter portion of the I/O cycle. .

Thus, the first thing we must do to interface the INS8900 to an 8080A family device is
to demultiplex the INS8900 address/data lines. (This must also be dOhe even with the MILE
device. described in Volume 3. which was specifically designed to operate with the INS8900
CPU. There are several different approaches that we can use to accomplish the required
demultiplexing.

DEMUL TIPLEXING
THEINS8900
ADDRESS/DATA
LINES

The most obvious way is to use D-type flip-flops or data registers with the INS8900 NADS signal as the clock
pulse. Here are some of the standard 7400 family devices that might be used:

·7475 Double 2-Bit Gated Latches with Q and Q Outputs

·7477 Double 2-Bit Gated Latches with Q Output Only

• 74100 Double 4-Bit Gated Latches

·74166 Dual 4-Bit Gated Latches with Clear

• 74174 Hex D-Type Flip-Flops with Common Clock and Clear

• 74175 Quad D-Type Flip-Flops with Common Clock and Clear

Some of these devices require that the NADS signal be inverted to provide the necessary clocking signal. Remember.
though. that PACE address information is valid during both the leading edge (high-to-Iow transition) and trailing edge'
(Iow-to-high transition) of NADS: this generally Simplifies the demultiplexing operation.

In many systems you will not need to latch all16 bits of address information since it would be an unusual applica­
tion that required all of the 64K of address space that this provides. There will usually be some tradeoff between system
address requirements (how many system devices require a latched Address Bus) and the type and amount of address'
decoding required. When a fully latched Address Bus is provided. then simpler non latched address decoders can be:
used. In fact. often address bits can then be used directly as device select signals. or simple AND/OR gate combina-,
tions can perform the decoding.

The alternative method of demultiplexing the address/data lines is to use address decoding devices that are'
clocked by the NADS signal and provide latched outputs. These latched outputs can then' be used as the
device/chip select signals during I/O cycles.

Many systems will use some combination of· a fully latched Address Bus and simple or latched address
decoders. In the discussions that follow, we will not generally describe in detail the method used to obtain the
required addressing or select/enabling signals, since the method used is so dependent on the particular system
that you are designing. .

15-38

Q
w
~
a: o
CI.
a:
o u
~
en
w

~
8
CI)
CI)
c(

IB
w
Z
a: o
ID
CI)

o
~
c(
c
c(

@

Once the INS8900 address/data lines have been demultiplexed, the only major con- INS8900 CONTROL
siderations we are left with are to ensure that the input/output control signals are of SIGNAL POLARITY
the proper polarity, and to verify that there are no timing problems. We will see that CONSIDERATIONS
generally the INS8900 I/O control signals must be inverted to operate with the 8080A
family of devices. although the 8212 offers us a choice of using the IDS and ODS signals. in either their original or in­
verted form.
Now we will provide a few specific examples of how devices from the 8080A family can be used with the
INS8900 CPU.

In our firstexample the 8212 I/O Port is used as a simple input port by the INS8900 CPU.
The interconnections required are shown in the following figure:

THE 8212 USED
AS A SIMPLE
INPUT PORT IN
AN INS8900
SYSTEM

Data to

INS8900 CPU

(System Bus)

Derived from ----~0{]1
Address Lines

10S-~--~"

(from INS89(0)

NAOS

(from INS8900)

000

007

Dsi

OS2

STB
. CLR

NINIT -------~

010

Data from

external logic

017

8212

Tie MO to Ground. Now STB clocks

latches and DSi. OS2 enable buffers.

MO

--
Here, the INS8900 Address Strobe signal (NADS) is inverted and used as the STB input to the 8212. Since MD
is tied to ground, the STB signal clocks the data into the 8212: this will occur every time the INS8900 performs
an input/output cycle, but the latched data will only be placed on the System Bus when the 8212 is selected.
We accomplish device selection by applying a negative-true decoded address signal to the DS1 input and the'n
using the INS8900 IDS strobe signal as the DS2 input. Now, whenever the proper address is decoded, the IDS
signal will cause the data that was previously latched by NADS to be placed on the System Bus for input to the
INS8900. The timing would look like this:

NAOS

STB

010 - 017

OS2 (IDS)

DOO - 007

r---,

Latched data output

onto System Bus

15-39

Notice that the data from external logic will be latched whenever NADS occurs. The actual selection of the 8212 and
input of the latched data to the INS890Q might not occur for quite some time. Frequently. this arrangement will be
completely acceptable. If not. then an input-with-handshaking arrangement. which we will describe next. might pro­
vide a better solution.

Before we proceed to our next example, let us make one more general comment about interfacing devices to
the INS8900 CPU.

The INS8900 is a 16-bit microcomputer: it can transfer 16 bits of parallel data in a single input or output cycle.
All of the other devices that we will be discussing are 8-bit devices. Frequently, you may not need the full
width of the 16-bit Data Bus when transferring data between the CPU and external logic. In these cases, you
can simply connect the data lines to/from the support device to the less significant data lines (DO - 07) of the
INS8900 System Bus, as we have shown in our first example. Masking of the unused. more significant data bits
would then be handled under program control.

When you are going to utilize the full 16 bits of the Data Bus, you merely connect two 8-bit devices in parallel,
as described in more detail for the CP1600 in Chapter 16. One device would be connected as we've already de­
scribed; the data lines of the other device would then be connected to the more significant bits (08 - 015) of
the System Bus. All other connections to the two devices (device select signals, strobe signals, etc.) would be
identical.

In this example, we will use the 8212 interrupt request signal INT to establish an input
port with handshaking. The connection diagram is very similar to our first example:

THE 8212 USED
IN AN INS8900
SYSTEM FOR
INPUT WITH
HANDSHAKING

Data to
INS8900 CPU

(System Bus)

Derived from

Address Lines

IDS

(from INS8900)

to INS8900
Interrupt or

Jump Condition

Input Pin

-- ,.. -

000

·
·
· 007

OS; 8212

DS2

INT

010

. .
017

STB

MD

-
0 ata from

xternal logiC e

E

d

xternal logic strobes

ata into latches

Tie MD to G round. Now STB clocks

DSi. DS2 enable buffers latches and

1 --
Here, the device select signals are the same as in our first example. However, instead of using the INS8900
NADS signal to clock data into the latches, we will require external logic to input the STB signal when it has
data ready. When the data has been latched, the 8212 will output the INT signal, which will be used as the in­
put to one of the INS8900 CPU interrupt request lines (NIR2 - N1R5) or Jump Condition inputs (JC13 - JC15).
The CPU will then execute a service routine program that will include an instruction to read the data from the input
port. This instruction will send out the input port's address. thus generating the DS1 Signal. and then gate the latched

15-40

Q
w
~
a:
o
D..
a:
o
u
~
en
w

~
g
CI)
CI)

~
all
w
Z
a:
o
CD
CI)

o
~
~
Q
~

@

data onto the System Bus when the IDS signal is generated. When the latched data is read out of the 8212. the INT sig­
nal returns high to complete the transaction. This sequence is summarized by the following timing diagram:

010 - 017

STB

0s1

DS2 (IDS)

DOO - 007

---~

Data latched by

external logic

.... --.... ----~ --.... ~ ~ ~ ~
Interrupt request or

Jump condition input

to INS8900 CPU
onto System Bus

Using the 8212 as an output port in an INS8900 system requires a simple reversal of the
connections we have described in the two preceding examples, and we will now use the
ODS (Output Data Strobe) signal from the INS8900 instead of the IDS signal.

010 000
Data from Data to external

INS8900 CPU
logic

(System Bus)
017 007

THE 8212 USED
AS AN OUTPUT
PORT IN AN
INS8900 SYSTEM

8212 Ds'i Select signals generated

ODS by external logic
(from INS8900)

STB DS2

Select Signal MD iNT To external logic
derived from I

I

Address Lines I - : - I

to INS8900
~ ______ J

interrupt lines

or JCinputs

15-41

When the output port's address is sent out and decoded from the Address Bus. one input to the AND gate is enabled.
The ODS signal then goes high to generate the STS signal and latch the contents of the system Data Bus into the 8212.
This will cause the TN'f signal to go low and inform external logic that data has been loaded into the output port. The
external logic will then generate the DS1 and DS2 signals to gate the data out of the latches. When the data has been
gated out. the Tl\fF signal will return high. This low-to-high transition could be used as an interrupt request or jump con­
dition input to an INS8900 to enable output of new data. Notice that if we continuously enable 'the 8212 outputs
by tying DS1 to ground and DS2 to +5V, then whenever the INS8900 loads a new data word into the latch, it
will be immediately output to external logic. This approach may be more advantageous in some applications.

Although the 8255 Programmable Peripheral Interlace (PPl) is a . more complicated
device than the 8212, interfacing the 8255 to an INS8900 CPU is no more complicated
(from a hardware point of view) than the INS8900-to-8212 interfaces we've described.
This is due to the programmability of the 8255; mode control is performed by you~ pro­
gram instead of by hardwired signals. Let us look at an example to illustrate this point:'

To/From

INS8900 CPU

(System Bus)

.... ~---...... ~DO

........... ---...... -.407

Decoded Select ------.0(,,1 CS
signal derived

. from Address Bus .

From latched { ------4~ AO

Address Bus ------4 ... A 1

,';~;; (IDS
:X>--OI R5'

8255

CPU I ~
\ ODS~ .. ~ __ R __ ~~ ____ ~ • RESET

NINIT

8255 PPI
DEVICES
USED IN
AN INS8900
SYSTEM ------"

To/From

Extemal Logic

The CS signal selects the 8255 and this signal would typically be the output of an address decoder. The AO and
A 1 inputs select one of the three I/O ports (A, B or C) or the 8255 Control registers. The RD and WR control sig­
nals are obtained by simply inverting the IDS and ODS signals from PACE. A generalized timing diagram for in­
put/output operations would look like this:

NADS ~
OS-AO-A' .. .

____ Select Device and Port Select

IDS (ODS) __________ ~

RoIWffi ~ ?
Data transferred

15-42

c
w

~
a:
o
Do
a:
o
CJ
!:
en
w
l­
e:(

o o
CI)
CI)
e:(

all
w
Z
a:
o
III
CI)

o
~
e:(
c
e:(

@

If you refer back to the detailed description of the 8255 in Chapter 4, you will see that Port C can be used to provide
handshaking signals for 1/0 control. Since these signals are fully described in Chapter4, we will not discuss the various
possibilities here. Generally, these signals would be used with the INS8900 CPU in the same ways that we earlier de-
scribed for the 8212·INT signal. '

~------------~
If two 8255s are used i~ parallel to provide 16-bit I/O ports, there is one special con­
sideration beyond the gene'ral rules that we discussed earlier. Recall that mode control of
the 8255 is accomplished by writing data into one 8-bit Control register within the
device. When wired in parallel, one 8255 would be connected to bits 0 - 7 of the system
Data Bus, and the other 8255 would be connected to bits 8 - 15. Therefore, when we'
send out a 16-bit control word from the INS8900 CPU to establish the desired mode of
operation, the upper and lower bytes of the word must be identical.

From a hardware point of view, interfacing either of these devices to an INS8900 CPU is
no different than interfacing an 8255 PPI to the INS8900. All we need to do is invert the
IDS and ODS signals from the CPU to obtain RD and WR (or lOR and lOW) signals, and
provide chip select and latched address bits for input to the devices. All other interfacing
and usage considerations are software functions and are described in Chapter 4. We will
not describe them here since those portions of the device descriptions apply regardless
of the CPU being used. -

We will conclude our discussion of the use of S080A devices in INS8900 systems by
comparing INS8900 System Bus signals with those of 8080A systems. This comparison
will be a useful guide for interfacing any 8080A device to an INS8900 system. Table
15-5 is a summary of INS8900 System Bus signals and the corresponding signals availa­
ble in 8080A systems. Two separate columns are provided for 8080A signals: the first ap­

TWO 8255
DEVICES USED
FOR 16-BIT
I/O PORTS
WITH INS8900

THE 8251
USART AND 8253
PROGRAMMABLE
COUNTER/TIMER
USED IN INS8900
SYSTEMS

INS8900 AND
8080A SYSTEM
BUSSES
COMPARED

plies strictly to th-e 8080A' CPU; the right-hand column refers to the signals present in a typical three-chip 8080A
system consisting of the CPU, an 8228 System Controller, and an 8224 Clock Generator and Driver.

, "

Since we have already discussed these signals in preceding paragraphs, we won't perform an item-by-item analysis of
the table. Nonetheless, there are a few signals in this table that do need additional explanation.

We have included the INS8900 BPS signal in the I/O Control Signal group although it is not the type of signal you
would normally classify within this group. However, you will recall that when the BPS input is high, the INS8900
operates in a Base-Page-Split mode; base page then consists of the top 128 words of memory and the bottom 128
words of memory. In our earlier discussion of the BPS signal. we described how this mode can be used to simplify ad­
dressing of I/O devices. If you refer back to that discussion, you will see that by doing a little address decoding we
can come up with a signal that will tell us when the INS8900 is addressing an I/O device (as opposed to memory).
Let us call this decoded signal 1/0 Device' (/00). Now, we can combine this decoded signal with IDS and ODS as
shown below to generate signals equivalent to the 8080A 1I0R and 1I0W signals.

1/00 ----------------8

~---------------------I/OW
ODS--------------------~~ ___ -J

And if we invert-the 1/00 signal we can generate the 8080A MEMR and MEMW signals.

IDS ---------------1-""""'"
rl-----------------------MEiMR

I/OO-----f

~-----------------------MEMVV
ODS~-------------~ __ ~

15-43

One other portion of Table 15-5 requires some explanation. Notice that we have not drawn a line to separate the
I/O control signals from the DMA-Related Signals. We've done this intentionally because there is some overlap­
ping of functions with some of these signal'3. For example. the INS8900 EXTEND signal can be used either to extend
I/O cycles or to suspend I/O to allow DMA operations. We've also compared the INS8900 NHAL T output signal to the
8080A WAIT signal. This comparison is valid if limited to the CPU Halt state initiated in either system by a Halt instruc­
tion. However. in 8080A systems the WAIT signal is also an acknowledgement to 'the READY or RDYIN input signals.
There is no comparable EXTEND acknowledgement signal in PACE systems.

The 6800 family includes many devices that might be useful in INS8900 systems. Unfor­
tunately. all of these devices have one common requirement which effectively makes them in­
compatible for use in an INS8900 system. That requirement is the enabling input signal E
which. as we mentioned in Chapter 9. should more accurately be described as a synchronizing
signal. In 6800 systems. E is usually generated by ANDing one of the primary system clock sig­

6800 SUPPORT
DEVICES NOT
COMPATIBLE
WITH INS8900

nals (4)2) with the Valid Memory Address signal (VMA) from the 6800 CPU. The clock period of the resulting E signal
can be no less than one microsecond. The clock signals (CLK and NCLK) used in PACE systems. however. cannot have a
clock period greater than 850 nanoseconds. and therefore cannot be used to simulate the 6800 4>2 signal. Therefore.
we cannot recommend using 6800 family devices in an INS8900 system.

Table 15-5. Comparing INS8900 System Busses to 8080A System Busses

INS8900 8080A 8080A SYSTEM
SYSTEM BUS SYSTEM CPU (CPU. 8228. 8224)

SIGNALS SIGNALS SIGNALS

Bidirectional 000 - 015 00- 07 DBO - DB7
Data Bus (16 Bits) (8 Bits) (8 Bits)

Address Bus 000 - 015 AO-A15 AO-A15
Address information
must be demultiplexed
from Data Bus

Control Bus

NADS
Strobe signal used.
by external logic - -to demultiplex

I/O address from

Control Data Bus

Signals IDS
,

DBIN MEMR and I/OR

ODS, WR MEMW 'and I/OW

BPS - -
EXTEND READY RDYIN

NHAL T (output) WAIT WAIT

NHALT and HOLD HOLD
DMA- CaNTIN inputs
Related CaNTIN HLDA HLDA

. Signals (ACK INT output)

- - BUSEN
NIR2 - NIR5 INT INT
CaNTIN DO and SYNC· iNTA (ACK INT output)

Interrupt - INTE INTE

Signals Non-maskable
Interrupt - -
(CaNTIN and
NHAL T inputs)

Initialize NINIT RESET RESIN

Jump Condition JC13 - JC15 - -Inputs

Control Flag F11 - F14 - -
Outputs

15-44

c
w
~
a:
o
a..
a:
o
u
~
en
w

~
(;
o
!J)
!J)

oct
all
w
Z
a:
o
m
!J)

o
~
oct c
oct
@

DATA SHEETS

The following section contains specific electrical and timing data for the following devices:

PACE CPU
INS8900
PACE STE
PACE BTE

15-01

PACE CPU

~~
:::~~

I

f-lr~
I 'I. !lItl":

.,." I· .. , ~
(IInnl I ~

I

: ~
r::~r
.," I ~ I

L _____ ~C!!A~A~ _____ ..J

0,
,"·'''''lCTlO.' f i

,-II ..

..... os
ID'
ODS
'II-fIt

FIGURE 4. PACE Driver and Receiver Equivalent Circuits

external clock timing

PACE requires non-overlapping true and complemented
clock inputs as shown in Figure 5. Refer to Electrical
Characteristics for timing specifications.

'p - CLOCK PE RIOO

'NOVA - 'Nove' CLOCK NONOVERLAP

'WCLK • 'WNCLK'= CLOCK WIDTH

FIGURE 5. External Clock Timing

We reprint data sheets on pages 15-02 through 15-017 by permission of National Semiconductor Corporation.

15-02

c
w

~
a:
o
a..
a:
o
u
~
u)
w
l­
e:(
(j
o
en
en
e:(

all
w
Z
a:
o en
en o
~
e:(
c
e:(

@

PACE CPU

For systems utilizing mel110ries with access times greater
than 2 clock periods it may be desirable. to use the
EXTEND input to lengthen the I/O cycle by mUltiples
of the clock period. Timing for this is shown in Figure 9.
In the case of either input or output operations, the
extend· should be brought true prior to the end of
internai phase 6. The timing shown in Figure 9 will
provide the minimum extend of one clock period. Hold·
ing EXTEND true for h additional clock periods
longer will cause an extension of n + 1 clock periods.

In DMA or multiprocessor systems it may be desirable
to prevent I/O operations by PACE when the bus is in
use by another device. Thi$ may be done by using the
EXTEND signal immediately following an IDS or ODS
as shown in Figure 10. Alternatively, the extend timing
of Figure 9 may be used, as the extend function occurs
independent of whether there is an I/O operation, that
is, whenever the internal clock phase 6 occurs.

tlDCKr(RIODS '1

FIGURE 6. Initialization Timing

"'00 ,usa
DATA

NO'I.SttNIs,,.,.t"'ftc::t4tIWlh41011cl_".ncl"',nputl
Int ch.cII:' r.sh_n'or''' ... ''c:tOllly.lh'y.'.not,.,.tllbl' .. IIIIIIUy

·V,IiII",ult •• ··V.-2.lSV.tlhlll"n.,'IDt1c"I .. ,"put

··V'JiII MUII'I .. hlll,wI II t., Vss - II It thllllml htul hm,nl.llows'ol pull up 1111111110r 11m. comtlnt)

Figure 7. Address Output and Data Input Timing

FIGURE 8. Data Output Timing

15-D3

PACE CPU
EXTRA CLOCK
CYCLE(SlOUE

INTERNAL . , " I TO EXTEND I

ClDC'P:;lS:~r--L-~

Cl'_~~~~I'-
ADDDR:TS:~ __ ...tt:'-'J:l'

PACE
DUTPU!S~ ___ ---'''''''''''--___ '''''''

PACE 'ULLUP TRA.SISTDR-+ ____ ..;.;.;.. ______ H"'"

INPUT_L-___ ~!.!.!E. ___ _.E~~~~~~~~~~~~~~~m-DATA

ounUT DA,. -+ ________ ---'-'"4

DDSIIDS-+ ____ ---' ____ -'"4IZ1 _ 1-'," --1-' ..
EXTEND W"~

-I f--'ES

FIGURE 9. Extend I/O Signal Timing

absolute maximum ratings
All Input or Output Voltages with

Respect to Most Positive Supply
Voltage (VBB)

+0.3V to -21.5V Storage Temperature Range
Lead Temperature (Soldering, 10

seconds)

_65°C to +150
b
C

300°C

Operating Temperature Range

electrical characteristics (TA = o°c to +70°C, vss = +5V ±5%, vGG = -12V ±5%, VBB = vss + 3V ±0.5V)

PARAMETER

OUTPUT SPECIFICATIONS;,

000-015, Fll::-F14, OOS, lOS, NAOS (These are
open drain outputs wh ich may be used'to drive
OS3608 sense amplifiers, or,may be used with pull·
down resistors to provide a ~8ltage output.) .

Logic "1" Output Current (Except Fll-F14)
Logic "1" Output Cu~rent, Fll-F14 (Note 7)
Logic "0" Output Current

NHAL T, CONTIN (Low Power TTL Output.)
LogIc "1" Output Voltage
Logic "0" Output Voltage

INPUT SPECIFICATIONS

000-015, NIR2-NIR5, EXTENO, JC13-JC15,
CONTIN, NINIT, NHAL T (These are TTL
compatible inputs.) (Note 2)

Logic "1" Input Voltage
Logic "0" Input Voltage
Pullup Transistor "ON" Resistance
(000-015) (Note 3)
Pullup Transistor "ON" Resistance
(all others)
Logic "0" Input Current (000-015)
Logic "0" Input Current (NHAL T, CONTIN)
Logic "0" Input Current (all others)
Capacitance, Input and Output (except clocks)

BPS (This is a MOS Level Input.) (Note 4) .
Logic "1" Input Voltage
Logic "0" Input Voltage
Logic "1" Input Current . '

CLK, NCLK (These are MOS Clock Inputs)
Clock "1" Voltage (Note 5)
Clock "0" Voltage
Input Capacitance (Note 6)

Bias Supply Current
VGG Supply Current
VSS Supply Current

CONDITIONS I

..

VOUT = 204V
VOUT = 204V
VGG ~ VOUT ~ VSS

lOUT = -650pA
lOUT = 300pA

VIN = VSS-1V

VIN = VSS-1V

VIN=Oo4
VIN = 004
VIN=O.4
VIN = VSS, fT = 500 kHz

VIN = VSS-1V

VBB = VSS +3.0V
tp = .65J.is, T A = 25°C
tp = .65ps, T A = 25°C

15-04

MIN I MAX I UNITS

!

-1.0 -5.0 mA
. -0.7 -5.0 mA

±10 pA

2.4 V

004 V

VSS-l VSS+0.3 V
VSS-7 VSS-4 V

7 kf2

5 kf2

-1.8 mA
-12 mA
-3.6 mA

20 pF

VSS-l VSS+0.3 V
VGG VSS-7 V

100 pA

VSS-l VSS+0.3 V
VGG VGG+1 V
30 150 pF

100 pA
40 mA
85 mA

c
w

~
a: o
D.
a:
o
o
~
u)
w

~
g
CI)
CI)

~

CI/:I
w
Z
a:
o
CD
CI)

o
~
~ c
~

@

PACE CPU

INTERNAL
ClOCK'N"SE

eLK

fIIADS

IDS/ODS

EITUCLOCK
tYCU(SIDUl
TO UTI NO

FIGURE 10. Suspend I/O Signal Timing

TIMING SPECIFICATIONS (See Figures 5 to 10 for additional timing information.)

CLK, NCLK (See Figure 5) (Referenced to
10% and 90% Amplitude)

Rise and Fall Time (tr, tf) 10
Clock Width (tw CLK,tW NCLK) 300
Clock Non·Overlap (tNOVA, tNOVB) 5
Clock Period (tp) .65

EXTENO
Individual Extend Ouration
Extend Setup Time (tES) (Note 10) 100
Extend Hold Time (tEH) (Note 13) 20

Propagation Oelay (tOO)
NHALT, CONTIN (Note 9) CL = 20 pF
NAOS, lOS, DOS, 000-015 (Note 8) VOUT= 2.4V

000-015
Input Setup Time (tOS) (Note 11) 200
Hold Time (tOH) (Note 12) 0
Turn-on or Turn·off Time of Pullup 150
Transistor (to C) (Note 13)

F11-F14 Pulse Flag (PFLG) Pulse Width 4tp -300
NINIT Initialization Pulse Width 8
NIR2-NIR5 Input Pulse Width to Set Latch 1

50 ns
375 ns

ns
.8 p.s

2 • p.s
ns
ns

200 ns
100 ns

ns
ns
ns

4tp +300 ns
clock periods
clock periods

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not intended
and should be limited to those conditions specified under de electrical characteristics. .
Note 2: Pullup transistor provided on chip (See Figure 4.1 • .
Note 3: Pullup transistors on JC13, JC14, JC15 are turned on one out of 8 clock intervals. Pullup transistors on 000-015 are turned on
during last clock period of Input Data Strobe (IDS). Other pullup transistors are on continuously when in data inp'ut mode.
Note 4: Pulldown transistor provided on chip.
Note 5: Clamp diodes "nd series damping resistors may be required to prevent clock overshoot.
Note 6: Capacitance is not constant and varies with clock voltage and internal state of processor.
Note 7: For VSS;' VOUT;' 2.0V output current is a linear function of VOUT.
Note B: Delay measured from valid logic level on clock edge initiating change to valid current output level
Note 9: Delay measured from valid logic level on clock edge initiating change to valid voltage output level.
Note 10: With respect to rising edge of NClK. (See Figure 9 and 10.1
Note 11: With respect to falling edge of ClK. (See Figure 7.1
Note 12: With respect to the valid "0" level on the falling edge of Input Data Strobe (IDS), (See Figure 7.1
Note 13: With respect to valid logic level of appropriate clock. .

15-05,

INS8900

Absolute Maximll11 Ratings
Voltage at Any Pin with Resepct to
Most Negative Supply (VBB) -0.3 V to +20 V
Operating Temperature Range O°C to +70°C
Storage Temperature Range _65°C to +150°C
Lead Temperature (soldering, 10 seconds) +300°C

Electrical Characteristics
(TA = o°c to +70°C, VSS= ov, VOO = +12V ± 5%, Vct = +5V ± 5%, VBB = -BV ± 5%)

..
Symbol Parameter Coriditions Min Max Units

OUTPUT SPECIFICATIONS

000-015, Fll-F14, OOS, lOS, NAOS
(These are low·power Schottky-compatible push-pull outputs.)

VOH Logic "1" Output Voltage lOUT = -500JlA 2.4 V

VOL Logic "0" Output Voltage lOUT = 900iIA 0.4 V

NHAL T, CaNTIN (low-power Schottky outputs)

VOH Logic "1" Output Voltage lOUT = -250JlA . 2.4 V

VOL Logic "0" Output Voltage lOUT = 600JlA 0.4 V

INPUT SPECIFICATIONS

000-015, NIR2-NIR5, EXTENO, JC13-JC15, NINIT,
CaNTIN, NHALT (low-power Schottky inputs)

VIH Logic "1" Input Voltage 2.4 VCC+ 1 V

VIL Logic "0" Input Voltage -1.0 +O.B V.

IL Input Leakage Current (except NHAL T, CaNTIN, JC13-JC15) V ss ..:;; V IN":;; V CC + 1 40 JlA

IlL Logic "0" Input Current, NHALT, CaNTIN (Note 2) VIN = 0.4 V -7.0 mA

IlL Logic "0" Input Current, JC13-JC15 (Note 2) VIN = 0.4 V -3.0 mA

BPS (This is an MaS level input.)

VIH Logic "1" Input Voltage VOO -1 VOO+ 1 V

VIL Logic "0" Input Voltage -1.0 +O.B V

IIH Logic "1" Input Current (Note 3) VIN = 13.6V 750 JlA

CLKX (This is an MaS level input.)

VCIL Clock "0'; Voltage -1.0 +O.B V

VCIH Clock "1" Voltage VOO-1 VOo+ 1 V

CIN Input Capacitance 20 pF

100 Average Supply Current (VOO) (Note 4) tp = 500ns, TA = 25°C 100 mA

icc Average Supply Current (VCC) (Note 4) tp = 500ris, TA = 25°C 10 mA

IBB Average Supply Current (VB B) VBB=.-BV -200 JlA

15-06

C
w

~
a:
0
D.
a:
0
CJ
~
en
w
l-
e:(

g
en
en
e:(

all
w
Z
a:
0
III
en
0

~
e:(
C
e:(

@

INS8900

Tming Specifications

Symbol Parameter Conditions Min Max

CLKX
t r, tf Rise and Fall Times (Note 5) 5 30

(Referenced to 10% and 90% amplitude)
tp Clock Period 500 650

tCLK, tNCLK Pulse Width (Referenced to 50% amplitude) tp/2 - 5% tp/2 + 5%

EXTEND
Individual Extend Duration 2

tES Extend Setup Time (Note 6) 70

tEH Extend Hold Time (Note 6) 120

Propagation Delay

t001 NHAL T, CONTIN (Note 7) CL = 40pF, 200
1 low·power Schottky load

t002 NAOS, IDS, ODS, 000-015 (Note 7) CL = 40pF, 1 INS820810ad 200

000-015

tos Input Setup Time (Note 6) 50

tOH Hold Time (Note 8) 0

tFW F11-F14 Pulse Flag (PFLG) Pulse Width 4tp - 300 4tp + 300

tNW NINIT Initialization Pulse Width 8

tlRW NIR2-NIR5 Input Pulse Width to Set Latch 1

Note 1: Maximum ratings indicate limits beyond which permanent damage may occur. Continuous operation at these limits is not
intended and should be limited to those conditions specified under DC electrical characteristics.
Note 2: NHALT, CONTIN, and JC13-JC15 logic "0" input currents specified when the internal chip loads are putting out a logic "1."
Note 3: Pull·down transistor provided on chip.
Note 4: Supply currents measured with 40 pF and INS820810ads.
Note 5: Clamp diode and series damping resistor may be required to prevent clock overshoot.
Note 6: Measured with respect to appropriate valid logic level of CLKX.
Note 7: Delay measured from valid logic level on CLKX edge initiating change to valid output voltage level.
Note 8: With respect to the valid "0" level on the falling edge of Input Data Strobe (IDS).
Note 9: Typical load circuit:

INS8900
--- -...,
'~T III RL

" u ..

~J±"

R L = 3.6k (3.3k for testing)

CL = 40pF

VREF = 1.72V

Note 10: Typical output delay versus load capacitance CL
for load circuit in Note 9:

Note 11: Typical VOO supply current versus temperature.

250 125.0 •

zoofo 100.0 •

C

-~ .! 75.0 •
Q
Q

50.0 •

~ 150 fo iZ5'C

100
-

- I
I -

Z5.0 ~ - I
- I

50

I
I I I I

120 140 160 110 ZOO ZZO 0 Z5 50 75 100
too (n.) TEMPI'C)

15-07

Units

ns

ns
ns

J.lS
ns
ns

ns

ns

ns
ns

ns

tp

tp

INS8900

Tming Wavefonns

Figure 1. External Clock Timing (CLKX)

POWER
AIIO

CLOCKS

NIlIIT

... --PO'iVER AND CLOCKS STABLE

J..-. CLOCK PEifos MINIMUM-.I

IIAOS_

. 2(I· 16-24 CLOCK PERIOOS

Figure 2. Initialization Timing

INTERNAL
CLOCK PHASE

CLKX

ADDRESS
DATA

lADS

PACE
OUTPUT

j 1-100 I
1-4I0RESS OATA VALID

100 I I- -4J 1-100

~ ~

OUTPUTS ACTIVE'

1= _IIIPUT BUFFER DISABLED

IDS

~
- 1-100

II

----------------------------~
'VIII MUST IE AT THE CORRECT LOGIC LEVEL AT THIS TIME.

I \

OUTPUTS HIGH IMPEDANCE
• I

1I0TE: SIGIIALS ARE REFERENCEO TO VAllO LOGIC LEVELS ON CLOCK INPUT. INTERNAL CLOCK PHASES ARE SHOWN
FDA REFERENCE DNL Y: THEY ARE NOT AVAILAILE EXTERNALLY.

Figure 3. Addrea Output and Dlta Input Timing

15-08

L

\

--0 1--100

'L.I.-

c
w

~
a: o
Q.
a:
o
u
~
en w
~
g
en
en
oCt
~
w
Z
a:
o
al
en o
~
oCt
C
oCt

@

INS8900

Tining Wavefonns (continued)

INTERNAL
CLOCK PHASE

'DD;;~~ __ \'-----'_I ----OO"'~tC I \'--~
.. ,. Ilil Ilil =:!I f-'DD II

OUTPUT LAST - OATA VALID
DATA DATA - II

\~1

VALID ---+l I-IDD -t1 I-IDD
ODS _____________ .I:oI§J~ Io;:®~ _________ _

Figure 4. Oau Output Timing

INTERNAL
CLDCK PHASE

'

EXTRA CLOCK, CYCLES DUE
TO EXTEND

E E

CLKX

ADDRESS
DATA-+ ___ ~

NADS

PACE
DUTPUTS~------A;.;;C~T;.;IV.:.E-----~ HIGH IMPEDANCE

INPUT_~--~--1~~L-----~~~~~~~~~~~~~~~~~~~~~~--DATA DISABLED ~:~I~

OUTPUT

DATA "-1'-------------....... '-1
DATA VALID

DDS/IDS __ I--___________ '"

IES

Figure 5. Extend I/O Signal Timing

INTERNAL
CLOCK PHASE

CLKX

DATA

NADS

IDSIODS

EXTEND

LAST 110 DATA f!a

~ .. t-IEH

...j f-IES

---1

'

EXTRA CLOCK1 CYCLES DUE
TO EXTEND
E E

NEXT ADDRESS DATA

~

t--IES

Figure 6. Suspend I/O Signal Timing

15-09

~

INS8900

Tming Wavefonns (continued)

r-> 11 + Ie CYCLES ~'""I • ...---->. + Ie CYCLESCD.:::J:------t

NHALT I_----DRIVEN LDW EXTERNALLY-----.... -

CONTIN

NDTES:
1. EXTERNALLY GENERATED TTL INPUTS OVERRIDE PACE DUTPUTS.

2. ma CROSSHATCH INDICATES "DON'T CARE"INPUT STATE.
<Die' DURATION OF EXTEND DURING PACE 110 CYCLES TIMING ASSUMES NO OTHER EXTENDS AND NO SUSPENDS.

Figure 7. Relative Timing for Level-O Interrupt Generation

I- EXECUTION -I-EXECUTION SUSPENDED -l-PROCESSOR STALL DURATION-j- RESUME NORMAL OPN-
I > 11 + Ie CYCLES~ ~ I-- APPROX 4 CYCLES

NHALT
---_.I ... --DRIVEN HIGH EXTERNALLY

(OR USING INTL PULLUP)

/--> 5 + Ie CYCLES@.j..->4 CYCLES-!

CDNTIN

CD
I I ---l !-APPROX 2% + Ie CLOCK CYCLES I_CONTINUE DRIVEN_I
I-com~~~frl~EN .. f-o·o-----(E-XT-E~~:rl~I~~~~:~~~yl~~~~A-N-C-E)----.-j· EXTERNALL y

NOTES:
1. EXTERNALLY GENERATED TTL INPUTS OVERRIDE PACE OUTPUTS.

2. ~ CROSSHATCH INDICATES "DON'T CARE"INPUT STATE.

<Die + DURATION OF EXTEND DURING PACE 110 CYCLES TIMING ASSUMES NO OTHER EXTENDS AND NO SUSPENDS.

Figure 8. Relative Timing for Processor Stall

The architecture of the INS8900 (shown in Figure 9)
features a number of resources to minimize system pro­
gram and read/write storage, increase throughput, and
reduce the amount and cost of external support hard­
ware. Principal resources that allow these efficiencies to
be achieved include:

Four 16-bit general purpose working registers available
to the user reduce the number of memory load and store
operations associated with saving temporary and inter­
mediate results in system memory.

An independent 16-bit status and control flag register
automatically and continuously preserves system status.
The user may operate on its contents as data, allowing
masking, testing, and modification of several bit fields
simultaneously.

A ten-word (16-bit) last-in, first-out (LIFO) stack
inherently decreases response time to interrupts while
eliminating both program and read/write system storage
overhead associated with storing stack information
outside the microprocessor chip.

Stack full/stack empty interrupts are provided to facili­
tate off-chip stack storage in those applications where
additional stack capacity is desirable.

A six-level vectored priority interrupt system internal to
the chip provides automatic interrupt identification,
eliminating both program storage overhead and the time
normally required to poll peripherals in order to identify
the interrupting device.

Three sense inputs and four control flag outputs allow
the user to respond directly to specific combinations of
status present in the microprocessor-based system, thus
eliminating costly hardware, program overhead, and
throughput associated with implementing these func­
tions over the system data bus.

A comprehensive set of input/output control signals
provided by the internal control logic simplifies inter­
faces to memory and peripherals and allows flexible
control of INS8900 operations.

Single-phase 2.0 MHz clock input is easily generated with
a minimum of external components.

15-010

Q
w

~
cr::
o
D.
cr::
o
tJ
~
en
w

~
g
en
en
oCt
0/1
w
Z
cr::
o
en
en o
~
oCt
Q
oCt

@

PACE STE
recommended crystal specifications

• AT-cut crystal

• 2.6667 MHz ± 0.1%, fundamental
mode

• 5 mW maximum

• 150 n maximum series resistance

timing diagram

TClK"

TClK

NClK
OR

NCK

ClK
OR---,,=,=,!,"\I
CK 911%

TIMES FOR NClK. NCK. ClK. AND CK MEASURED AT 111% AND 911%

Figur.2.

15-011

PACE STE
absolute maximum ratings [t] operating conditions
Supply Voltage (Vee) 7.0 V

(VGG) -15.0 V

Input Voltage 5.5 V

,Storage Temperature •........... -65°C to +150o C

lead Temperature (solde~ing, 10 seconds) 300°C

dc electrical characteristics (Notes 2 and 3)

Supply Voltage (Vee)
(VGG)

Temperature

Parameter Conditions Min'. "

OUTPUT SPECIFICATIONS:

T ClK, T ClK· (TTL Clocks)

VOH logic "1" Output Voltage Vee= 4.75V 10H = -1 rnA 3.65,

VOL logic "0" Output Voltage Vee= 4.75V 10L = 32mA

los Output Short Circuit Current (Note 4), Vee = 5.25 V, Vo = 0 -10

CK, NCK, ClK, NClK

VOH logic "1" Output Voltage 10H = -100~A Vee':" 0.9

Typ.

4.25

0.25

-33 :

4.5

Min. Max. Units

4.75 5.25 V
-11.40 -12.6 V

0 +70 °c

Max. Units

,. .v
0.4 V

-55 rnA

V

Vee = 4.75V I 10L = 100~ VGG + 0.1 VGG + 0.25 V
VOL logic "0" Output Voltage

VGG = -11.4V J 10L = 5mA VGG + 0.2 VGG + 0.5 V

INPUT SPECIFICATIONS'

EXTC

V/H logic "1" Input Voltage 2.0 V

I V/N = 2.4 V 40 ~
I/H ' logic "1" Input Current Vee= 5.25V

I V/N = 5.5V
" 1.0 rnA

V/L logic "0" Input Voltage 0.8 V

I,L logic "0" Input Current Vee = 5.25V V /L = 0.4 V -0.9 -1.6 rnA

VeLAMP Input Clamp Diode Vee=4.75V I,L = -12mA -0.8 -1.5 V

POWER SUPPLY CURRENT

lee Supply Current from Vee Vee = 5.25V 20 30 rnA

IGG Supply Current from VGG VGG = -12.6V -40 -55 rnA

ac electrical characteristics Crystal Frequency at 2.6667 MHz I A = o°c to +70°C, Vee - VGG = +17 V ± 5%

limits Test Symbol Parameter Units
Min. Typ. Max. Conditions

tNOV1' tNov2 Non·Overlap Time 5 12 ns See Note 5

tpw MOS Clocks Pulse Width (NClK,ClK, NCK, CK) 300 320 ns See Note 5

tR MOS Clocks Rise Time (NClK, ClK, NCK, CK) 40 ns See Note 5

tF MOS Clocks Fall Time (NClK, ClK, NCK, CK) 40 ns See Note 5

tPH1' tPH2 TTL Clocks to MOS Clocks High level Delay -40 40 ns See Note 5

tPL1' tPL2 TTL Clocks to MOS Clocks low level Delay 80 ns See Note 5

tTD1' tTD2 TTL Clock to TTL Clock Delay -25 25 ns See Note 5

tSTART Time Delay from last Power Applied to MOS Clocks Stabilized 100 ms See Figure 7

Not .. :
1. "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply

that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
2. Unless otherwise specified, minImax limits apply across the oOe to +7rfe temperature range and Vee = 4.75 V to 5.25 V, VGG = -11.4 V,

to -12.6 V power supply range. All typicals are given for Vee = 5.0 V, V GG - -12 V. and T A - +25° e.
3. All currents into device pins are shown as positive; currents out of device pins are shown as negative. All voltages are references to ground

unless otherwise noted.
4. Only one output at a time should be shorted.
5. The test conditions for measuring Ae parameters are shown in Figures 2 and 3, with el = e2 • 60pF, e3 = 80pF. eNOV = 60pF. Load

conditions for MOS clocks and TTL clocks are shown in Figures 4 and 5. Including probe and jig capacitance, eLl = 20 to 80pF, and
eL2· 40pF.

15-D12.

c
w

~
a:
o
D.
a: o u
~
en
w

~
g
en
en
ct
all
w
Z
a:
o
CO
en o
::!
ct
c
ct

@

PACE STE
test conditions

OP8302

VCC
18

NC
15

NC CK

14
XI ClK

X2 NClK
\J

12
EXTC VGG

\I
TClK NCK

TClK· lCK

GNO lCK·

CNOV

CI • C2" 60pF, C3" 80pF, CNOV" 60pF"
·All CAPACITORS ARE 15%

Figure 3.

typical characteristics

0

0

TYPICAL NON·OVERLAP TIME VS.
NON-OVERLAP CAPACITOR

VC~" 5 J
VGG"-12V

o ClI" BOpF
TA "25' V

0

/
0

l/
0

V 0

V
0

V
25 50 15 100 125 150 115 200

CNOV(Pf)
NON·OVERlAP CAPACITANCE

Figure 6,

NClK, NCK, ClK, CK lOAD

VCC

VGG

NClK,
ClK,
NCK,

DR CK

OUTPUT UNDER
TEST

Leo" r· .. ·'
Figure 4,

TClK·, TClK lOAD

OUTPUT
UNDER
TEST

Vce

Figure 5,

ISTART

Figure 7.

15-013

PACE BTE/S
absolute maximum ratings (Note 1) recommended operating conditions
Supply Voltage 7V MIN MAX UNITS
Input Voltage (All Inputs Except MBI/O Input Active) 5.5V Supply Voltage (VCC) 4.75 5.25 V
Output Voltage 5.5V
MOS Bus Input Current ±10mA Temperature (T A) 0 +70 °c

Storage Temperature -6SoC to +150°C
Lead Temperature (Soldering, 10 seconds) 300°C

dc electrical characteristics (Notes 2 and 3)

PARAMETER I CONDITIONS I MIN I TYP I MAX I UNITS

TTL BUS PORT (BOlIO 00-07)

VIH Logical "1" Input Voltage 2.0 V

VIL Logical "0" Input Voltage 0.8 ·V

VOH Logical "1" Output Voltage WBO* = 0.8V, IOH = -1 rnA VCC-1.1 VCC-o·8 V

MBI/O = 0.5 rnA IOH = -5.2 mA 204 3.7 V

VOL Logical "0" Output Voltage WBO* = 0.8V, 10L = 20 mA 0.25 004 V

MBIIO = 100/lA 10L = 50 mA 004 0.5 V

lOS Output Short Circuit Current WBO* = 0.8V, MBI/O = 0.5 mA, -10 -35 -75 mA

VOUT = OV, VCC = 5.25V, (Note 4)

IIH Logical "1" Input Current WBO* = 2V, VIH = 2AV 80 /lA

II Input Current at Maximum WBO* = 2V, VIH = 5.5V, 1 mA

Input Voltage VCC = 5.25V

IlL Logical "0" Input Current WBO* = 2V, VIL = OAV -10 -250 /lA

VCLAMP Input Clamp Voltage WBO* = 2V, liN = -12 mA -0.2 -1.5 V

100 Outputllnput Bus Oisable Current WBO* = STR* = 2V, BOI/O = Oo4V -80 80 p.A

"
to 4V, VCC = 5.25V

MOS BUS PORT (MBI/O 00-07) ,

10 Logical "0" Input Current WBO* = 0.8V, 10L(TTL) = 50 mA, -5.0 0.10 mA

VOL::; 0.5V, (Note 5)

11 Logical "1" Input Current WBO* = 0.8V, 10H(TTL) = -1 mA, 0.50 5.0 mA

VOH ::::VCC -l.1V, (Notes 5 and 6)

Vo Logical "0" Input Voltage WBO* = 0.8V, 10L(TTL) = 50 mA, 0.8 V

VOL ::;0.5V

Vl Logical "1" Input Voltage WBO* = 0.8V, 10H(TTL) = -1 mA, 2.0 1.5 V

VOH::::VCC-1.1V

VOH Logical "1" Output Voltage WBO* = CEl = BOI/O = 2V, 2A 3.3 V

10H(MOS) = -1 mA, CE2* =
STR* = 0.8V

VOL Logical "0" Output Voltage WBO* = CEl = 2V, 10L(MOS) = 0.28 0.5 V

5 mA, CE2* = STR* = BOliO = 0.8V

lOS Output Short Circuit Current WBO* = CEl = BOI/O = 2V, -7 -15 -45 mA

VCC = 5.25V, VOUT = OV,

STR* = CE2* = 0.8V, (Note 4)

VCLAMP Input Clamp Voltage liN = -12 mA -1.5 V

100 Outputllnput Bus Oisable Current MBI/O = Oo4V to 4V, VCC = 5.25V -80 80 /lA

CONTROL INPUTS (WBD*, CE1, CE2*, STR*)

VIH Logical "1" Input Voltage 2.0 V

VIL Logical "0" Input Voltage 0.8 V

IIH Logical "1" Input Current VIN = 2.4V 20 p.A

11 Input Current at Maximum VIN = 5.5V 1.0 mA

Input Voltage

15-D14

c
w

~
a:
o
a..
a:
o
o
~
en
w

~ o o
en
en
ct
~
w
Z
a:
o
III
en o
~
ct c
ct
@

PACE BTE/S
dc electrical characteristics (Continued) (Notes 2 and 3)

PARAMETER CONDITIONS MIN TYP MAX UNITS

CONTROL INPUTS (WBD*, CE1, CE2*, STR*) (continued)

IlL Logical "0" Input Current VIN = OAV -250 -400 pA

VCLAMP Input Clamp Voltage liN = -12 mA -D.B5 -1.5 V

POWER SUPPLY CURRENT

ICC Power Supply Current VCC = 5.25V 70 110 mA

I

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to
imply that the devices should be operated at these limits. The table.of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Unless otherwise specified, minImax limits apply across the O°C to +70°C temperature range and the 4.7SV to S.2SV power supply range.
All tYpicals are given for VCC = SV and T A = 2SoC.
Note 3: All currents into device pins are shown as positive, out of device pins are negative. All voltages are referenced to ground unless otherwise
noted.
Note 4: Only one output at a time should be shorted.
Note S: The MBI/O Input Characte~istic Graph illustrates this parameter and defines the regions of guaranteed logical "0" and logical '~1" out-
puts. See equivalent input structure for clarification. When the MBI/O input is loaded with a high impedance source (open). the TTL output will
be in the logic "0" state. , ..

Note 6: The maximum MOS bus positive input current specification is intended to define the upper limit on guaranteed input clamp operation.
At higher input currents (up to the absolute maximum rating) clamp operation is not guaranteed but TTL bus logic state is valid and no device
damage will occur.
Note 7: In most applications the MOS bus data lines are higher impedance and more sensitive to noise coupling than TTL bus lines. Conservative
design practice would dictate routing MOS bus lines away from high speed, low impedance TTL lines and MOS clock lines or providing a ground
shield when they are adjacent.

ac' electrical cha racteristics Vee = 5V ±5%, T A = oOe to +70~C

PARAMETER CONDITIONS MIN TYP MAX UNITS

DATA TRANSFER SPECIFICATIONS

Receiving Mode (BOliO Bus to.MBI/O Bus) WBD" = 3V, CL = 15 pF, tpdO 17 40 ns

RL = 1 kn, (Figures 4 and 6) tpd1 20 40 ns

Driving Mode (MBI/O Bus to WBD" = CEl = OV, tpdO 40 60 ns

~DI/O Bus) STR* = CE2* = 3V, tpdl 40 60 ns

CL = 50 pF, RL = 100 n,

(Figures 3 and 5)

TRANSCEIVER MODE SPECIFICATIONS

Select Bus

tDS Chip Enable Data Set-Up (Figure 1) 45 23 ns

tDH Chip Enable Data Hold (Figure 1) 0 ns

tES Set· Up (Figure 1) 0 ns

TTL Data Bus (BOliO 00-07)

tBD 00 Bus Data Output Disable eL = 5 pF, RL = 100 n, (Figure 1) 5 20 50 ns

tBD OE Bus Data Output Enable CL = 50 pF, RL = 100 n, (Figure 1) 25 BO ns

tBD IE Bus Data Input Enable (Figure 1) 30 ns

timID Bus Data Input Disable (Figure 1) 30 ns

MOS Data Bus (MBI/O 00-07)

tMBOD MaS Bus Output Disable CL = 15 pF, RL = 1 kn. (Figure 1) 15 50 100 ns

tMB OE MaS Bus Output Enable CL = 15 pF. RL = 1 kn. (Figure 1) 50 100 ns

tMB 10 MaS Bus Input Disable (Figure 1) 55 ns

tMB IE MaS Bus Input Enable (Figure 1) 20 ns

Select Bus

tCLR Clear Previous Chip Enable (Figure 2) I 25 I 50 I ns

15-015

PACE BTE/S
switching time waveforms and ac test .circuits

STR-

CEl'---.....,.

CE1-----'

WIO*

nLOATA
IUS

.MOS DATA
BUS

'os

----------------r-
FIGURE 1

STR'~:
CE2' JV----+------------~....;...----......;-

CE1DV---~-----------------------

'CLR

waD*

MOSOATA
BUS _________ _

INPUT1DV~
WAVEFORM SV . SV

(NOTE 1) DV

"'~Pdl"dD
VOH

OUTPUT . I.SV I.SV

VOL

FIGURE 3. BOI/O Bus

FIGURE 2

VCC"SV

ALL DIODES
ARE1NJDB4

*This input network simulates the actual drive characteristic of the PACE outputs

FIGURE 5. MBIIO to BOliO ac Loads

INPUT3V~
WAVEFORM 1.5V I.SV

(NOTE 1) DV

'~Pdl"dD
. VOH

OUTPUT I.SV 1.5V

VOL •

FIGURE 4. MBIIO Bus

ALL DIODES
ARE lNJDB4

VCC"SV

FIGURE 6. BOliO to MBI/O ac Loads
Note 1: Freq = 1 MHz, duty cycle = 50%, tR = tF ::; 10 ns (refer to Figures 5 ;md 6).
Note 2: All capacitance values include probe and jig capacitance (refer to Figures 5 and 6).

15-016

Q
w

~
II:
o
a.
II:
o
tJ
~
en w
~
g
U)
U)

<
c/I
w
Z
II:
o
III
U)

o
~
<
Q
<
@

PACE BTE/S
typical performance characteristics

MOS Bus Input Characteristic
0.1

1
t;:; 0.4 1--f---+--1f---+l'--4---I
a:
a:
:::>

~ 02

z

;(
.!
I­
Z

a:
ex:
::>
u
I­
::>

Z

MOS Bus Input Characteristic MOS Bus Voltagl! Threshold

Vce' sv
STANDARD
OUTPUT

LOAi'NG

TA-
1
70·C '- r-TA ~ 2S·C

lA-O.lC
il

I I I
O'----'---=:=...J'---"--........ --'

;
= '" :;:

0.5 1.0 1.5 2.0 2.5 3.0

INPUT VOLTAGE (V)
MOS BUS

MOS Bus Current Threshold

sr-----r--r---~~

O'---'---'---'--~l..-~

o

120 140 160 180 200 220

INPUT CURRENT (~A)
MOS BUS

High-Level Output Voltage
VI Output Current TTL Bus

Vcc -SV

"
TA -25°C

.....

'\
r\.

\
'\
~

3.5

3.0

~ 2.5
to

~
2.0

I- 1.5
:::>

I- 1.0 :::>
e

0.5

o

o 0.5 1.0 1.5 2.0 2.5 3.0

INPUT VOLTAGE (V)'
MOS BUS

TTL Bus Threshold Characteristic

TA' 70·C I
TA' O·C

I
:- TA =2S·C

I
I

VCC' SV
STANDARD
OUTPUT
LOADING

1.1 12 1.3 1.4 1.5 1.6 1.7

INPUT VOLTAGE (V)
TTL BUS

Output Current vs Output Voltage
High Impedance State TTL Bus

;(
.!
I­
Z

ex:
ex:
::>
u
I­
::> ..
::>
e

;(
.! ..
z
a:
a:
u ..
:::> ..
:::>
e

1.2 1.3 1.4 1.5 1.6 1.7 1.1

INPUT VOLTAGE (V)
MOS BUS

Low-Level Output Voltage
VI Output Current TTL Bus

50--r--r--r---'I7T--'

0'--_J.L.c.c..,--_l..---.-.Jl..-~

o 0.1 02 0.3 0.4 0.5

LOW·LEVEL OUTPUT VOLTAGE (V)
TTL BUS

Low-Level Output Voltage
VI Output Current MOS Bus

0'-----' --''----'---'---'
o -10 -20 -lO -40 -1 0 10 o 0.1 01 D.l 0.4 0.5

HIGH LEVEL OUTPUT CURRENT (mA)
TTL BUS

4.0

~ l.5

'" .. 3.0 l-

e
2.5 >

I-
::>

I- 2.0
::>
e 1.5
> 1.0

= '" 0.5
:;:

o

High-Level Output Voltage
VI Output Current MOS Bus

'"
VCC ~ SV
TA-2S·C-

'\.
r\.
'\.

r\.
'\.

o -4 -B -12 -16 -20

HIGH LEVEL OUTPUT CURRENT (mA)
MOS BUS

OUTPUT VOLTAGE (V)
TTL BUS

;(
.!
I-
Z

ex:
ex:
::>
u
I-
::>

I-
::>
e

15-017

10

-5

-10

LOW LEVEL OUTPUT VOLTAGE (V)
MOS BUS

Output Current VI Output
Voltage High Impedance
State MOS Bus

-2

OUTPUT VOLTAGE (V)
MOS BUS

c
w

~
a:
o
Q.
a:
o
CJ
~
iii
w

~
g
II)
II)

«
olI
w
Z
a:
o
m
II)

o
:!: «
c «
@

Chapter 16
THE GENERAL INSTRUMENT CP1600

The CP1600 and the TMS 9900 were the first two NMOS 16-bit microprocessors commericially available. Even
a superficial inspection of the CP1600 shows it to be more powerful than the National Semiconductor Pace (or 8900).
yet the CP1600 is not widely used. This is because General Instrument does not support the CP1600 to the extent
that National Semiconductor supports Pace. or most manufacturers support their 8-bit microprocessors.

General Instrument's marketing philosophy has been to seek out very high-volume customers; General Instru­
ment supports low-volume customers only to the extent that this support would not require substantial investment on
the part of General Instrument.

From the viewpoint of the low-volume microprocessor user. Generallnstrumenfs marketing philosophy is unfortunate.
The CP1600 is an ideal microprocessor for the more sophisticated video games that are appearing. and its rich instruc­
tion set and capable architecture make it an ideal choice for data processing terminals and home computer systems.
However. due to its limited support. potential low-volume CP1600 customers are likely to choose another equally capa­
ble product.

Three CP1600 parts are available, differentiated only by the clock speeds for which they have been designed.

The CP1600 requires a 3.3 MHz. two-phase clock and generates a 600 nanosecond machine cycle time.

The CP1600 requires a 4 MHz. two-phase clock and generates a 500 nanosecond machine cycle time.

The CP1610 requires a 2 MHz. two-phase clock and generates a 1 microsecond cycle time.

In addition to the CP1600 microprocessors themselves, the CP1680 Input/Output Buffer (lOB) is described in
this chapter. Additional support devices for the CP1600 may be found in Volume 3.

The sole source for the CP1600 is:

GENERAL INSTRUMENT
Microelectronics Division
600 West John Street
Hicksville. New York 11802

There is no second source for the CP1600. General Instrument has a policy of discouraging second sources for its
product line.

The CP1600 is fabricated using NMOS ion implant LSI technology; the device is packaged as a 40-pin DIP.

Three power supplies are required: +12V. +5V and -3V.

THE CP1600 MICROCOMPUTER SYSTEM OVERVIEW
Logic of our general microcomputer system which has been implemented by the CP1600 CPU is illustrated in
Figure 16-1.

Observe that the CP1600 requires external logic to create its various timing and clock signals.

Some bus interface logic is shown as absent because a number of devices must surround the CP1600; these in­
clude:

1) An address buffer. since data and addresses are multiplexed on a single 16-bit bus.

2) Buffer amplifiers to provide the power required by the type of memory and liD devices that will normally be con­
nected to a CP1600 CPU.

3) A one-of-eight decoder chip to create eight individual control signals out of three controls output by the CP1600.

4) A one-of-sixteen multiplex chip to funnel sixteen external status signals into the CP1600 if using external
branches.

16-1

Were you to compare Figure 16~ 1 with an equivalent figure for a low-end microprocessor such as the SC/MP (which is
described in Chapter 3). the CP 1600 might appear to offer fewer logic functions: but within the functions it does pro­
vide. the CP1600 provides considerably more logic and program execution capabilities. Where low-end
microprocessors choose to condense. onto a single chip. simple implementations of different logic functions. high-end
products such as the CP1600 choose to provide more devices - with greater capabilities on each device.

", : :P~~g;a;r,~~b(~
. ··.T.i~e~s· .. '

Clock Logic

Read Only
Memory

,.· ••• · •..• ·· ••.••. · •.• ·.· ••..•• ··· •••..•• · •••••• ·1 CP1600 CPU

1;/>.1 CP1680 I/O Buffer

Figure 16-1. Logic of the CP1600 CPU and CP1680 I/O Buffer

16-2

c
w

~ a:: o
D. a::
o u
~
en
w

~ g
(I)
(I)

<
ell
w
2
a:: o m
(I)

o
::?!
< c
<
@

CP1600 PROGRAMMABLE REGISTERS
The CP1600 has eight 16-bit programmable registers, which may be illustrated as follows:

RO
Rl

} Data Counters R2
R3
R4 } Data Counters with

General Purpose registers

R5 auto-increment

R6 Stack Pointer

R7 Program Counter

The way in- which the registers illustrated above are used is unusual when compared to ,other microcomputers de­
scribed in this book. All eight 16-bit registers can be addressed as though they were general purpose registers:
however. only Register RO has no other assigned function, We may therefore look upon Register RO as the Primary Ac-
cumulator for this CPU. ' ,

Registers Rl. R2. and'R3 serve as general purpose registers. but may also be used as Data Counters.

In addition to serving as general purpose registers. R4 and R5 may be used as auto-incrementing Data Counters.
Memory reference instructions that identify Register R4 or R5 as holding the implied memory address will cause the
contents of Register R4 or R5 to be incremented - after the memory reference instructions have completed execution.

Registers R6 and R7. in addition to being accessible as general purpose registers. also serve as a Stack Pointer and a
Program Cou nter. respectively.

Having the Stack Pointer accessible as a general purpose register makes it quite simple to maintain more than one
Stack in external memory: also. you can easily address the Stack as data memory using the Stack Pointer as a Data
Counter.

Having the Program Counter accessible as a general purpose register can be useful when executing various types of
conditional branch logic.

While having the Stack Pointer and the Program Counter accessible as though they were general purpose registers
may appear strange. this is a feature of the PDP-ll minicomputer - and is a very powerful programming tool.

CP1600 MEMORY ADDRESSING MODE
The CP1600 addresses memory and I/O devices within a single address space.

When referencing external memory, you can use direct addressing, implied addressing, or implied addressing
with auto-Increment.

Direct addressing instructions are all two or more words long, where the secpnd or last
word of the instruction object code provides a 16-bit direct address.

CP1600 direct addressing instructions are complicated by the fact that CP1600 program

CP1600 DIRECT
ADDRESSING

memory is frequently only 10 bits wide. That is to say. even though the CP1600 is a 16-bit microprocessor. its instruc­
tion object codes are only 10 bits wide. If program memory is only 10 bits wide. then direct addresses will only be 10
bits wide. A 1 O-bit direct address will access the first 1024 words of memory only.

16-3

Were you to implement a 16-bit wide program memory. then you could directly address up to 65.536 words of memo­
ry; however. six bits of the first object program word for every instruction in program memory would be wasted. This
may be illustrated as follows: .

Program
Memory

15 10-9 o .- Bit Number

'.i'·./·> ..:: :: ... :·· ... :·.i:·:·.·. " .::.:."0 .':'" }
(----~·~~§LQi§L~2£QiZE1-__________ ~o~b~je:ct~co~d~e~ ______ _J ~i.1 _

, Direct Address

Six unused I --;:t i }/:,! ~ object code \
bits in each f> ... -111---------....

of these Direct Address

memory locations tl~-==~~liliii:'''~'~~~~~~~t~~31 ~ _ object code

object code

, object code } \> i--________ ~

~ -
~--~--~I

Two single
word instructions

Direct Address

Three memory
reference
instructions
that specify
direct addressing

Instructions that reference memory using implied addressing identify general purpose
Register R1, R2, or R3 as containing the implied address.

A memory reference instruction which identifies Register R4 or R5 as providing the external
memory address will always cause Register R4 or R5 contents to be incremented following the

CP1600
IMPLIED
ADDRESSING

memory access; thus you have implied memory addressing with auto-increment.

Memory reference instructions that specify implied memory addressing via Register 1, 2, 3, 4, or 5 can access
a-bit memory. An SDBD instruction executed directly before a valid memory reference instruction forces the memory
reference instruction to access memory one byte at a time. If implied memory addressing via Register 1. 2. or 3 is
specified. then the same byte of memory will be accessed twice. For an instruction that loads the contents of data
memory into Register RO. this may be illustrated as follows:

Memory

RO yy l SDBD

MVI R1.RO Program memory

R1 PP PPQQ XXYY } Data memory

16-4

Q
w

!t
a: o
0..
a:
o
o
!:
en
w

!t g
CI)
CI)

~
all
w
Z
a:
o ra
CI)

o
~
~
Q
~

©

If Register R4 or R5 provides the implied memory address for the instruction which follows an SOSO instruction. then
the implied memory address is incremented twice. and two sequential low-order bytes of data are accessed. For an in­
struction which loads data into Register RO. this may be illustrated as follows:

RO BB YY ______ OJ

R5 I PP

"

SDBD

MVI R5.RO

Memory

t-----I

t-----t Program memory

Data memory

The SOSO instruction may also precede an immediate instruction. Now the immediate data will be fetched from the
low-order byte of the next two sequential program memory locations. This may be illustrated as follows:

Memory

MVII XXYY.RO -~"'""-t

Without the preceding SOSO instruction. an' immediate instruction will access the, next single program memory word
to find the required immecjiate data. Ten or more bits of immediate d~ta will be accessed. depending on the width of
program memory words ..

The CP1600 has no Stack reference instructions such a~ a Push or Pull; rather, a variety of CP16QO
memory reference in'structions can identify Register R6 as providing the implied address. STACK
When Register R6 provides the implied address. it is treated as an upward migrating Stack ADDRESSING
Pointer. When a memory write operation specifies Register R6 as providing the implied memory
address. Register R6 contents will be incremented following the memory write. A memory read instruction that
specifies Register R6 as providing the implied memory address will cause the contents of Register R6 to be decre­
mented before the read operation occurs.

An unusual feature of the CP1600 is the fact that a variety of secondary memory reference instructions can also
reference memory via the Stack Pointer. When these instructions are executed. Register R6 contents are decre­
mented before the memory access occurs - as though a Pull operation frqm the Stack were being executed.

Logically. Register R6. the Stack Pointer. is being handled as though it were a Oata Counter with post-increment and
pre-decrement. '

16-5·

Jump instructions use direct memory addressing. Jump instructions are all three words long. The direct address is
computed from the second and third memory words as follows:

98765432 0

0 0 0 0 0 0 0 1

x X A A A A A A

B B

AAAAAABBBBBBBBBB Jump address (binary)
yy. are enable/disable bits for interrupts

B B B B B

xx identify the register where the return address will be stored for JSR
xx and yy are described in detail in Table 16-4.

B

0 0

Y Y

B B

- JR or JSR

--- Word 2

- Word 3

You can enable or disable interrupts whenever you execute.a Jump or Jump-to-Subroutine instruction.

The only difference between a Jump instruction and a Jump-to-Subroutine instruction is that the Jump-to-Subroutine
instruction saves the Program Counter contents in Register 4. 5, or 6. The two high-order bits (xx) or the second Jump­
to-Subroutine object code word specifies which of the three registers will be used to hold 'the return address.

Jump-to-Subroutine instructions. like the Jump instruction, allow direct memory addressing only.

CP1600 STATUS AND CONTROL FLAGS
The CP1600 CPU has four of the standard status flags; in addition, it has some unusual control signals.

These are the four standard status flags:

Sign (S). This status is set equal to the high-order bit of any arithmetic operation result.

Zero (Z). This status is'set t01 whenany instruction's execution create~ a zero result. The statu~ is set to 0 f~r a nonzero
result. .

The Carry (C) and Overflow (0) statuses are standard carry and overflow, as described in Volume 1.

Four control signals (EBCAO - EVCA3) are output during a Branch-on-External (BEXT) instruction. These four sig­
nals are output to reflect the low-order four bits of the BEXT instruction's object code. External logic receives these four
signals and (depending on their statel. mayor may not return a high input via EBCl.lf EBCI is returned high, then the
BEXT instruction will perform a branch: if EBCI is returned low, then the BEXT instruction will cause the next sequential
instruction to be executed. The four control signals EBCAO - EBCA3 therefore provide the CP1600 with a means of test-
ing 16 external conditions.

CP1600 CPU PINS AND SIGNALS.
CP1600 CPU pins and signals are illustrated in Figure 16-2.

DO - 015 is a multiplexed Address arid Data Bus. Given a total of 40 pins in a package, CP1600 designers have been
forced to share 16 pins between addresses and data. Three control signals, BDIR, BC1, and BC2, identify the traffic
on the Address/Data Bus. External logic (one MSI chip) 'must decode these three signals to create eight control
signals, as summarized in Table 16.;'1. ..

Remaining signals may be divided into four groups: timing, status/control, interrupt, and DMA.

Two timing clock signals are required: «1>1 and «1>2. These are complementary ciocksignals w.hich may be illustrated
as follows:

<111 ---1 \ I

<112 ---'~_-.JI \

\

I

16-6

I L
\ _--Jr

c
w

~
a:
o
a..
a:
o
u
~
en
w

~
g
CI)
CI)

ct
olI
w
Z
a:
o
III
CI)

o
:!:
ct
c
ct
@

Pin Name

DO- 015

BOIR. Bel. Be2

~
MSYNC

EBCAO - EBCA3

EBCI

POT

BOROY
s;;;sr
HALT

MR. iNTiiM
TCI

BUSRa
BUsAK

EBeI

MSYNC
Bel

Be2

BOIR

015

014

013

012

011

010

09

08

DO

01

07

D6
05:

D4
03

VBB.VCC.VOO.GNO

10 CPl600

11 CPU

12

13

14

15

16

17

18

19

20

Oescription

Oata and Address Bus

Bus control signals

Clock signals

Master Synchronization

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

External branch condition address lines

External branch condition input

Program Counter inhibit/software

interrupt signal

WArT
CPU stop or stan on high-to-Iow transition

Halt state signal

Interrupt request lines

Terminate current interrupt

Bus request

External bus control acknowledge

Power and Ground

PCiT
GNO

<1>1
<1>2
Veo
VBB

VCC
BOROY

STPST
BuSRo.
HALT.
BUSAK

iNTR
'iNTRM .
TCI

EBCAO

EOCAl

EBCA2

EBeA3

02

Type

Tristate. Bidirectional

Output

Input

Input

Output

Input

Input

Input

Input

Output

Input

Output

Input

Output

Figure 16-2. CP1600 CPU Signals and Pin Assignments

MSVNC is a somewhat unusual signal, as compared to other microcomputer clock signals in this book. Following
powerup. MSYNC must be held low fo(at'least 10 milliseconds. On the subsequent rising edge of MSYNC. logic inter­
nal to the CP1600 CPU will sync~rpnize the <1>1 and <1>2 clock signals to start a new machine cycle. Most of the CPU
devices we have described in this book us~ a reset signal. or have internal powerup logic which performs this clock
synchronization. .

Now consider the status and control signals. .

First of all. there are the four cont~ol ~utPuts which we have already described: 'EBCAO - EBCA3. There is one con­
ditional Branch instruction (BEXT) which will'only branch if a high signal is input via EBCI. When the BEXT in­
struction is executed. the low-order four BEXT instruction object code bits are output via EBCAO - EBCA3. External
logic is supposed to decode these four signals by whatever means are appropriate - and thence determine whether
EBCI should be input high or low. A high input. as we have just stated. will result in a branch: a low input will cause the
next sequential instruction to be executed. '

In reality. there is no connection within CP16QP CPU logic between the EBCI input and the four EBCAO - EBCA3 out­
puts, So far as external logic is conc'erned. thee:xecution of a BEXT instruction is identified by signal levels output and
maintained on the EBCAO - EBCA3 outputs. while the EBCI input determines whether a branch will or will not occur.
How external logic chooses to determine whether EBCI will be set high or low is entirely up to external logic. The only
vital function served by EBCAO - EBCA3 is to identify the instanlat which a BEXT instruction is executed.

Another unusual control signal provided by the CP1600 is PCIT; this is a bidirectional signal. When input low. this
signal prevents the Program Counter from being in'cremented following an instruction fetch. This signal is also output
as a low pulse following execution of a software interrupt instruction. Instruction timing separates the active input and

16-7

active output of this signal: providing external logic adheres to timing requirements. a conflict between input and out-
put logic will never arise. .

Eii5'RDY is equivalent to the WAIT signal we have described for a number of other microcomputers. "B"5Rt5V is in­
put low by any external logic which requires more time in order to respond to anllO access. Recall that the CP1600
uses a single address space to reference memory or I/O devices. The BD1"IT5V signal causes the CPU to enter a Wait
state for as long as B'i5R5Y is being input low: however. during the Wait state CPU logic is not refreshed. Thus a Wait
state cannot last for more than 40 microseconds. or the contents of internal CPU locations will be lost.

'S'fiiST. a Halt/Reset input, is an edge-triggered signal. When external logic inputs a high-to-Iow transition via STPST.
the CPU will complete execution of any interrupt instruction. then.will enter a Halt state and output HALT high. If a
non-interruptable instruction is being executed. then the Halt state will not being until completion of next interruptable
instruction's execution. The Halt state will last until external logic inputs another high-to-Iow STPST transition. at
which time the Halt output will be returned low and normal programming execution will continue. Execution of the
HL T instruction also causes the CP1600 to enter a Halt state. as described above.

Let us now look at interrupt signals.

The CP1600 has two interrupt request inputs -INTR and INTRM. INTR has higher priority than INTRM. INTR can­
not be di~abled: Typically. 'iNTIr will be used to trigger an interrupt upon power failure or other catastrophes.

The interrupt acknowledge signal is created by external logic which must decode the BC1, BC2, and BOlA sig­
n~ls, as shown in Table 16-1. Observe that' there are. in fact. two interrupt acknowledge signals: the first (lNTAK)
acknowledges the interrupt itself. while the second (DAB) is used as a strobe for external logic to return an interrupt ad­
dress vector. The interrupt sequence is described later in this chapter.

The CP1600 has two additional interrupt-related signals which are unusual when compared to other microcomputers
described in this book.

TCI is output high when an End-of-Interrupt instruction is executed. This signal makes it easy for external logic to
generate interrupt priorities which extend across the execution of an interrupt service routine. Wehave discussed this
subject in some detail ,:",hile desc'riping the 8259 Priority Interrupt Control Unit in Chapter 4.

Table 16-1. CP 1600 Bus Control Signals

.'
BCl BC2 BDIR SIGNAL FUNCTION

0 0 0 NACT The CPU is inactive and the Data/Address Bus is in a high impe-
dance ~tate.

0 0 1 BAR A memory address must be input to the CPU via the Data/Address
Bus.

0 1 0 lAB Acknowledged external interrupt requesting logic must place the
starting address for the interrupt service routine on the Address Bus.

0 1 1 DWS Data write strobe for external memory.

1 0 0 ADAR This signal identifies a time interval during which the Data/Address
Bus is floated. while data input on the Data Bus is being interpreted
as the effective memory address during a direct memory addressing
oper~tion.

1 0 1 DW T[1e CPU is writing data into external memory. DW will precede
DWS by one machine cycle.

1 1 ,0 DTB This is a read strobe which external memory or I/O logic can use in
order to place data on the Data/Address Bus.

1 1 1 INTAK This is an interrupt acknowledge signal. It is followed by lAD which
is a strobe telling t[1e external logic which is being acknowledged to
identify itself by placing an address vector on the Data/Address Bus.

16-8

c
w

~
II:
o
Q.
II:
o
<.J
~
en
w

~ g
en
en
ct
olI
w
Z
II:
o
In
en o
~
ct
C
ct
@

<1>2

BCl

BC2

BDIR

Tl

BC1.BC2.BDIR

DO-D15

Undefined
state
preceding
data output

MC

T2 T3 T4

Data
Output

Tl T2

MC

T3

Data
Input

T4

Figure 16-3. CP1600 Machine Cycles and Bus Timing

T1

BAR
MCl

T2 I T3
I
I

T4 Tl

NACT
MC2

T2 T3 T4 Tl

~ __ ~~ __ +-__________ -+ ____________ --J

DTB
MC3

T2 T3

DO-D15---~

Instruction
address out

Instruction
object code in

Figure 16-4. CP1600 Instruction Fetch Timi~g

16-9

T4

INSTRUCTION FETCH

BAR
MCl

, I I

NACT DTB
MC2 MC3 NACT

I I' I, I I I I

n:T2:T3fT4 I ,I 'I' "I n, T2 ,T3, T4 Tl, T2IT3IT4 Tl, T2, T31T4
I I I

Instruction
address out

, " I I I I I

Instruction
object code in

BAR
MCl

: : ' Tl, T21 T3l T4
"I , I

MEMORY READ

NACT DTB
MC2 MC3

I I I I I I

TlI T2: T3:T4 T'/T21 T3 :T4
, I I "I

Data address out Data in

Figure 16-5. CP1600 Timing for Memory Read Instruction with Implied Memory Addressing

CP1600 INSTRUCTION TIMING AND EXECUTION

CP1600 instructions are executed as a sequence of machine cycles. Each machine cycle has four clock periods,
as illustrated in Figure 16-3. Machin"e cycles are identified by their cycle number and by the levels of.the BCt BC2.

"and BDIR signals. Each of the eight level combinations is given a name. taken from Table 16-1. This name becomes the
name of the machine cycle. Thus in Figure 16-4. and in subsequent instruction timing illustrations. each machine cy­
cle is identified by a signal name from Table 1 ~-1 '.:

Figure 16-3 shows general case timing for data output or input on"the Data/Address Bus. In between data input or out­
put operations the bus is floated.

CP1600 MEMORY ACCESS TIMING
Figure 16-4 illustrates instruction fetch timing for a CP1600 instruction's execution. Three machine cycles are re­
quired. During the first machine cycle an address is output. Nothing happens during the second machine cycle; it is a
"time spacing" machine cycle that routinely separates two CP 1600 Bus access machine cycles. The object code for the
accessed instruction is returned during the third niachine cycle.

Figure 16-5 illustrates timing for the simplest memory read instruction's execution. In this case the data memory
address is taken from one of the CPU registers. There is no difference between timing for the three machine cycles of an
instruction fetch or a data memory read. As illustrated in Figure 16-5. a simple memory read instruction's execution
consists of two three-machine cycle memory read operations. separated by a spacing no operation machine cycle.

16-10

Q
w

~
a: o
Q.
a: o
to)

~
en
w
~ g
en
en
ct
all
w
Z
a:
o m
en o
~
ct
Q
ct
@

INSTRUCTION FETCH

BAR NACT
MCl MC2'

DTB
MC3

NACT BAR
MCl

MEMORY WRITE,

NACT
MC2

OW
MC3 '

DWS
'MC4

I 'J I I I

T'l :T2:T3: T,4 T1: ,T2 IT3 h·4

I I I I 1 I I I I I I • I I • I I

Tll T21T3I,T4 Tl I:T2 l T3;T4 Tl : T2 I'T3 1 T4 T11 T2: T3 IT4 Td T21 T3 :T.~ Tl 1,T2: T3:T4'
I

Instruction
address out

Instruction
object code in

Data address out Data out

Figure 16-6. CP1600 Timing for Memory Write Instruction with Implied Memory Addressing

Figure 16-6 illustrates timing for a simple CP1600 memory write instruction execution. Data is output for two
machine cycles. giving external logic ample time to respond to the data output. External logic uses the DWS machine
cycle as' a write strobe.

Any memory reference instruction that specifies direct memory addressing will require one three-clock-period machine
cycle to fetch each word of the instruction object code: an NACT clock period will seperate each machine cycle, Aft~r
the first instruction fetch machine cycle. an ADAR-NACT clock period combination will be inserted in the second (and
third. if present) instruction fetch machine cycle, During an ADAR clock period. BC1 is high. while BC2 and BDIR are
low. No other control signals are active, Thus. for a two-word m'emory read or memory write instruction that
specifies direct addressing, the following clock periods and machine cycles will be required for instruction ex­
ecution:

Direct Addressing
Memory Read
Machine Cycles

Direct Addressing
Memory Write
Machine Cycle

BAR } Fetch first instruction { BAR
NACT------object code word ------a .. ~ NACT
DTB DTB

, NACT ... 4-------Spacing machine cycle------II .. ~NACT

~~~~} ...... e_----Fetch second instruction-----a .. ~{ ~~~~ 
NACT object code word NACT 
DTB DTB 

NACT ........ -----Spacing machine cycle------Il~~ NACT 

BAR } Memory read Memory write { BAR 
NACT "'4_--machine cycle machine cycle----IlI ... ~ NACT 
DTB OW 

DWS 

16-11 



BAR NACT NACT 

<1>1 

<1>2 

BCl -----------------+------------
BC2 

BDIR 

BDRDY 

Figure 16-7. CP1600 Wait State Timing 

THE CP1600 WAIT STATE , 
The CP1600 has a Wait state equivalent to those described for other microcomputers in this book. External logic that 
requires more time to respond to an access must input BDRDY low before the end of the BAR machine cycle. during 
which an address is output and the device is selected. Timing is illustrated in Figure 16-7. 

Jf you examine Figures 16-4, 16-5 and 16-6, you will see that an address is output during a BAR machine cycle to initi­
ate any external device access. The BAR machine cycle is always followed by an NACT machine cycle; in the middle of 
T1 during this NACT machine cycle, the CP1600 samples BDRDY. If'B"D"RlJ? is low, then a sequence of NACT machine 
cycles occurs. In the middle of T4 for every NACT machine cycle, the CP1600 samples BDRDY again. Upon detecting 
BDRDY high, the CP1600 resumes instruction execution with a DTB machine cycle. 

A Wait state must last for less than 40 microseconds, since the CP1600 is a dynamic device. 

THE CP1600 HALT STATE 
The CP1600 has a Halt state which may follow execution of the Halt instruction, or may be initiated by external 
logic. .. . 

When the Halt instruction is executed, then, following the instruction fetch machine cycle, the HALT signal is output 
high and a sequence of NACT machine cycles is executed. 

External logic initiates a Halt state by making the STPST input undergo a high-to-Iow transition. Following execution of 
the next interruptable instruction, a Halt state begins. The HALT signal is output high and a sequence of NACT 
machine cycles is executed. 

A Halt state, whether it is initiated by execution of a Halt instruction or by a high-to-Iow transition of STPST, must be 
terminated by a high-to-Iow transition of STPST. This will cause the Halt state to end at the conclusion of the next 
NACT machine cycle. Timing for a Halt state which is initiated and terminated by ST~ST may be illustrated as follows: 

::J;:=~~~~----'-I------.~~--
Next inte~uptable 4 \ y ) • 

instruction's J \ 
execution HALT STATE . Next NACT machine 
ends here cycle ends here 

16-12 



c 
w 
!i 
a: 
o 
0.. 
a: 
o 
o 
~ 
en 
w 

!i g 
CI) 
CI) 

ct 
o!J 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
ct 
C 
ct 

@ 

The PciT signal as an input inhibits CP1600 Program Counter increment logic. Thus. external 
logic can input PCIT low - in which case the same instruction will be continuously re-executed 
until PCTf goes high again. However. 1ZT'f should only change levels while the CPU has been 
halted. Thus. PCIT and STPST should be used together as follows: 

PCIT REQUEST 

STPST 

PCIT 

CP1600 INITIALIZATION SEQUENCE 

CP1600 
PCIT 
SIGNAL 

The CP1600 is initialized by inputting the MSYNC signal low for a minimum of 10 milliseconds after power is 
first applied to the CPU. 

MSYNC must make a low-to-high transition. marking the end of the initialization. on a rising edge of the <1>1 clock sig­
nal. On the next rising edge of <1>1. instruction execution will begin. This may be illustrated as follows: 

<1>1 

I I I I I 
I I I 

I T1 I T2 I T3 I T4 I 

MSYNC~ 

When instruction execution begins. interrupts are disabled. The following sequence of machine cycles is executed: 

NACT 
lAB ~ Read Data/Address Bus and load into Program Counter 
NACT 
NACT 
NACT 
BAR.-Output Program Counter contents to fetch first instruction 
NACT 
DTB 
etc 

During the lAB machine cycle. external logic must supply a 16-bit address at DO - 015. Your external logic must pro­
vide this address. which in the simplest case may be 0000 by grounding the bus. or FFFF16 by tying it to +5V following 
a startup. . 

The address which is input at lAB is output at BAR. initiating program execution. 

CP1600 DMA LOGIC 
CP1600 DMA logic is quite standard. When external logic wishes to transfer data under DMA control, it inputs 
BUSRQ low. At the conclusion of the next interruptable instruction's execution, the CPU floats the 
Data/Address Bus and enters a Wait state, during which a sequence of NACT machine cycles is executed. 
BUSAK is output low at the beginning of the first NACT machine cycle. 

The NACT machine cycles that occur during a DMA operation refresh the CPU. NACT machine cycles that occur 
during a Wait state do not refresh the CPU. This means that any number of NACT machine cycles can occur during a 
DMA break. while a Wait state must be shorter than 40 microseconds. 

The DMA break ends when external logic inputs BUSRO high again. BUSRO is sampled during T1 of every DMA NACT 
machine cycle. When BUSRO is sampled high. two additional NACT machine cycles are executed. then BUSAK is out­
put high and normal program execution resumes. 

DMA timing is illustrated in Figure 16-8. 

16-13 



<1>1 

BC1,BC2,BOIR 

BUSRQ 

BUSAK 

INTAK 

Last machine cycle 
of an interruptable 
instruction's 
execution 

I 
nl 

1 

NACT 

NACT 

I '.1 I I 
,T4 Tl I T21 T3 ,T4 Tl, 
1 I I I 1 

NACT NACT NACT 

I 1 I I 1 1 1 I 
I T3 ,T4 n I T2 , T3 1 T4 n I T2 , T3 I T4 
'I 'I 1 I I 1 

Figure 16-8. CP1600 DMA Timing 

ow OWS NACT lAB NACT X 4 BAR 

BAR 

, I I ::. I :: I ::: :: 1 ::: I : i:: 
TdT2:T3h4 Tl1T21T31T4 T11T21T3,T4 TlIT21T31T4 nlT2IT3IT4 Tl1T21T31T4 Tl'T2 'T4 n'T2IT31T4 

I ,I 1 I I I' I I I I I I I I I I I I I I 1 

<1>1 

<1>2 

BC1J \ 

BC2l \ 

BOIR} \ 
00--0 
015 t 

Output 
Stack 
Pointer 

I \ 

I 

I 

0 t 
Current Program 
Counter contents 
written to memory 
stack 

\ 

\ 

External 
logic inputs 
starting 
address 
for interrupt 
service routine 

Figure 16-9. CP1600 Interrupt Service Routine Initialization 

16-14 

uv-v-
rvLfL 

Start executing 
interrupt 
service routine 



Q 
w 

~ a: 
o 
Q. 
a: 
o 
CJ 
~ 
u) 
w 

~ g 
U) 
U) 

ct 
II!I 
w 
Z 
a: 
o 
III 
U) 

o 
~ 
ct 
Q 
ct 
@ 

INSTRUCTION FETCH 

BAR NACT 
MC1 MC2 

I I I I I I 
T1:T2lT3:T4 n:T2IT3:T4 

I I I I I 

Instruction 
address out 

OTB 
MC3 

I I I 
T1: T21 T3 \T4 

I I I 

TCI instruction 
object code in 

NACT 

I 1 I 

T1\T2:T3;T4 
I I I 

INSTRUCTION EXECUTE/FETCH 

BAR NACT 
MC1 MC2 

I I I l : I 
'T1 1T2 1 T3lT4 T1!T2: T3:T4 

I I I I 

Next instruction 
address out 

I I 

OTB 
MC3 

I I I 

T1: T21 T3:T4 
I I 

Next instruction 
object code in 

Figure 16-10. CP1600 Timing for TCI Instruction's Execution 

THE CP1600 INTERRUPT LOGIC 
The CP1600 uses a vectored interrupt processing system. 

External logic requests an interrupt by inputting a low signal at either the INTR or INTRM pins. 

Following the execution of the next interruptable instruction. the CP1600 acknowledges the interrupt by pushing 
Register R7 contents (the Program Counterl onto the Stack; then the CP 1600 outputs 111. followed by 010 at BC 1. 
BC2. and BOlA. External logic must respond by placing 16 bits of data on the Data/Address Bus. These 16 bits of data 
will be loaded into Register R7. the Program Counter. thus causing program execution to branch to an interrupt service 
routine dedicated to the interrupt. Timing is illustrated in Figure 16-9. 

The PC IT signal is output low following execution of a software interrupt instruction (SIN). This is the only microcom­
puter described in this book which allows external logic to respond to a software interrupt in this fashion. Allowing ex­
ternal logic to respond to a software interrupt only makes sense when you anticipate your product being used in a 
minicomputer-like environment. Typically. the software interrupt will interface to logic of a front panel or console. 
When an SIN instruction is executed. a one-machine cycle low PCIT pulse is output. 

You may. if you wish. end an interrupt service routine by executing a Terminate Current Interrupt (TCI) instruction. in 
which case the TCI signal will be output high. 

Timing for TCI is given in Figure 16-10. 

Following an interrupt acknowledge. the interrupt service routine must execute instructions in order to disable inter­
rupts and save the contents of registers on the Stack. The exception is Register R7. the Program Counter. which is auto­
matically pushed onto the Stack following an interrupt acknowledge. 

External logic is entirely responsible for any type of interrupt priority arbitration which may occur. and for the genera­
tion of the interrupt vector address which must be input following an interrupt acknowledge. 

16-15 



It is quite easy to generate signals equivalent to other microcomputer system busses from the CP1600 System Bus. 
Therefore. you can use parts described in Volume 3 to handle CP1600 interrupt requirements. 

THE CP1600 INSTRUCTION SET 
The CP1600 instruction set is relatively straightforward. Addressing modes. which we have already described. are sim­
ple. and instructions are typical of those we have seen and described for other microcomputers. Unusual features relat­
ing to addressing modes available with individual instructions are summarized in Table 16-2, VVhich describes the 
CP1600 instruction set. 

If you have never programmed a PDP-11 minicomputer, then you should pay particular attention to program­
ming techniques that result from the Stack Pointer and Program Counter being accessed as general purpose 
registers. . 

A wide variety of Register Operate instructions allow you to compute data and load the resu It directly into Register R7. 
the Program Counter. In effect. these become computed Jump instructions. 

The ability to manipulate Register R6. the Stack Pointer. as though it were a general purpose register means that it is 
easy to maintain a number of different Stacks in external read/write memory. 

The Jump-to-Subroutine instruction has a minicomputer flavor to it. Rather than saving the return address on the 
Stack. Register R7 contents are moved to General Purpose Register R4 or R5. A number of minicomputers will save a 
subroutine return address in a general purpose register in this fashion. The problem with this logic is that you must ex­
ecute an additional instruction within the subroutine to save the return address on the Stack if you are going to use 
nesting subroutines. If you are passing subroutine parameters. however. this is an excellent arrangement. for the Jump­
to-Subroutine instruction places the address of the parameter list directly in a Data Counter with auto-increment. We 
have described the concept of parameter passing in Volume 1. Chapter 7. 

Note that the CP 1600 instruction set lacks a logical OR. 

In Tables 16-2 and 16-4. instruction length is given in terms of "words" rather than "bytes". as we have done in pre­
vious chapters. Since only the lower 10 bits of the CP1600 object code are presently used. system configurations need 
not have the fu II 16-bit word size. Hence a "word" may be 10 to 16 bits wide. depending on the implementation. 

The following notation is used in Table 16-2: 

ADDR 

cond 

DATA 

DISP 

E 
EBCAO-3 

EBCI 

LABEL 

PCIT 

RB 
RD 

RM 

RR 

RS 

Statuses: 

One word of direct address 
Condition on which a branch may be taken. Table 16-3 lists all 14 branch conditions. 

One word of immediate data. 

One word displacement. See Table 16-4 for location of sign bit. 

External branch condition. 

The external branch condition address lines: EBCAO. EBCA 1, EBCA2. and EBCA3. 

The external branch condition input line. 

A 16-bit direct address. target of a Jump instruction. See Table 16-4 for ~he bit format. 

The software interrupt output line. 

General Purpose Register R4. R5. or R6. 

One of the general purpose registers. used as a destination for operation results. 

One of the general purpose registers used as a Data Counter. R4 or R5. if specified. is auto-incremented 
after the memory access. R6 is incremented after a write. and decremented before a read. 

General Purpose Register RO. R1. R2. or R3. 

One of the general purpose registers. used as the source of an operand. 

S the Sign status 
C the Carry status 
Z the Zero status 
o the Overflow status 
The following symbols are used in the STATUSES column: 
X the status flag is affected by the operation 

a blank means the status flag is not affected 
o the operation clears the status flag 
1 the operation sets the flag 
2 . the Overflow flag is affected only on 2-bit shifts or rotates 

16-16 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
o 
~ 
en 
w 

~ g 
en 
en 
ct 
aIS 
w 
Z 
a: 
o 
CD 
en o 
~ 
ct o 
ct 

@ 

SW The Status Word. whose bits correspond to the condition of the status flags in the following way: 

x<y.Z> 

(.2) 

3 2 1 0 ~ BII No. 

I s I z lole I Status Word 

When the status word is copied into a register. it goes to the upper half of each byte: 

0' 
[SW] 

When the status word is loaded from a register. it comes from the upper half of the lower byte: 

~ll.-5---------------8~1~7----::::tL~-4~3-------'01 ~ 01 
[RS] [SW] 

Bits y through z of the Register x. For example. R7 < 15.8 > 
Counter 

represents the upper byte of the Program 
I 

Indicates that the operand ".2" is optional 

A low pulse 

[ ] Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the brackets. 
then the contents of the addressed memory location are specified. 

[[ ]] Implied memory addressing: the contents of the memory location designated by the contents of a register. 

A ~ogical AND 

¥ Logici31 Exclusive-OR 

± Additic'l~ or subtraction of a displi3cement. depending on the sign bit in the object code. 

Data is. transferred in the direction of the arrow. 

16-17 



Table 16-2. CP1600 Instruction Set Summary 

STAtUSES 

TYPE MNEMONIC OPERAND(SI WORDS SZ C 0 
OPERATION PEitFORMED 

MVI ADDR,RD 2 . [RD]-[ADDR] 

load register from memory, using direct addressing. 

g~w MVI@ RM,RD 1 [RD]-[[RMll 
-OCJ load register from memory, using implied addressing, >:E Z 
a:w w MVO RS,ADDR 2 [ADDR]-[RS] 
< :E ffi 
~ol:i Store register to memory, using direct addressing. 
a:Za: MVO@ RS,RM 1 . [[RMll-[RS] 1:1..< 

Store register to memoiy, using implied addressing. If RS=R4, R5, R6 or R7, then RS=RM is not 

supported. 

ADD ADDR,RD 2 X X X X [RD]-[RD] + [ADDR] 

w Add memory contents to register, using direct addressing. 
CJ ADO@ RM,RD 1 X X X X [RD]-[RD]+ [[RMll 
Z 
w Add memory contents to register, using implied addressing. a: 
w SUB ADDR,RD 2 X X X X [RD]-[RD] - [ADDR] 
II. 
w Subtract memory tontents from register, using direct addressing. a: 

> SUB@ RM,RD 1 X X X X [RD]-[RD] - [[RM]] 
a: Subtract memory contents from register, using implied addressing. ; 0 
~ CMP ADDR,RS 2 X X X X [RS]- [ADDR] 
w 

Compare memory contents with registers, uSing direct addressing. Only the status flags are :E 
0 affected. 
Z CMP@ RM,RS 1 X X X X [RS] - [t RMll < 
g 

Compare memory contents with register's, using implied addressing. Only the status flags are 

affected. 

> AND ADDR,RD 2 X X [RD]-[RD] A [ADDR] 
a: 

AND memory contents with those of register, using direct addressing. < c AND@ RM,RD 1 X X tRD]-[RD] A [[RMll Z 
0 AND memory contents with those of register, using implied addressing. CJ w XOR ADDR,RD 2 X X [RD]-[RD]¥ [ADDR] (/l 

Exclusive-OR memory contents with those of register, using direct addressing. 
XOR@ RM,RD 1 X X [RD]-[ RD]¥- [[ RMll 

Exclusive-OR memory contents witli those of register, using implied addressing. 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 16-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

TYPE MNEMONIC OPERAND(S) WORDS S Z C 0 
OPERATION PERFORMED 

w MVII DATA,RD 2 [RD)-DATA I-« Load immediate to specified register. is 
w MVOI RS,DATA 2 HR7) + l)-[RS) 
:!! Store contents of specified register in immediate field of MVOI instruction, This is only possible if 
~ 

program memory is read/write memory (rather than ROM). 

ADDI DATA,RD 2 X X X X [RD)-[RD) + DATA 
w 
I- Add immediate to specified register. « a: SUBI DATA,RD 2 X X X X [RD)-[RD) - DATA w 
Q. Subtract immediate data from specified register. 0 
w CMPI DATA,RS 2 X X X X [RD)-DATA 
I-

Compare immediate data with conterits of specifl8d register, Only the status flags are affected. « 
is ANDI DATA,RD 2 X X [RD)-[RD) A DATA w 
:!! AND immediate data with contents of specified register. 
~ XORI DATA,RD 2 X X [RD)-[RD)-VDATA 

Exclusive-OR immediate data witl} contents of specified register. 

J LABEL 3 [R7)-LABEL 

Jump to given address. 
Q. JR RS 1 X X [R7)-[RS) 
:!! Jump to address contained in specifl8d register. :l 

JSR ""') RB,LABEL 3 [RB)-[R7]; [:fI7)-LABEL 

. - Jump to given address, saving Program Counter in R4, RS. or R6. 
B DISP 2 [R7)-[R7) + 2±DISP 

Branch relative to Program Counter contents. 

Z Z Bcond DISP 2 If cond is true, [R71-[ R7) + 2±DISP 
0 0 Branch relative on given condition; otherwise, execute next sequential instruction. 
:z:: j:::: 
u is BEXT DISP,E 2 EBCAO-3 -E; 
Z If EBCI=l, [R7)-[R7)+2±DISP « z 
a: 0 

Branch relative if extemal condition is true. III U 



~ 
N 
o 

. TYPE 

a: w 
I!!!( 
U)a: -w 
011. we 
~e 
a:Z 
I!! < U)w 
ffi~ 
a:~ 

w ... 
< a: w 
a. 
e 
a: w ... U) 
Ci 
1&/ 
a: 

MNEMONIC OPERAND(S) 

MOVR RS.RD 

ADDR RS.RD 

SUBR RS.RD 

CMPR RS.RD 

ANDR RS.RD 

XORR RS,RD 

CLRR RD 

TSTR RS 

INCR RD 

DECR RD 

COMR RD 

NEGR RD 

ADCR RD 

SLL RRI.2) 

Table 16-2. CP1600 Instruction Set· Summary (Continued) 

STATUSES 

WORDS S Z C 0 
OPERATION PERFORMED 

1 X x [RD]-[RS] 

Move contents of source register to destination register. 
1 X 'X X X [RD]-[RS]+ [RD] 

Add contents of specified registers. 
1 X X X X [RD]-[RD] - [RS] 

Subtract contents of source register from those of destination register. 
1 X X X X [RD] - [RS] 

Compare registers' contents. Only the status flags are affected. 
1 X X [RD]-[RD] A [RS] 

AND contents of specified registers. 
1 X X [RD]-[ RD]-Y- [RS] 

'Exclu~ive-OR contents of specified registers. 

1 0 'j [RD]--'[ RD] V [RD] 

Clear specified register. 
1 X X [RS]-[RS] 

Test contents of specified register. 
1 X X [RD]-[ RD] + 1 

lricrement contents of specified register. 
1 X X [RD]-[ RD] - 1 

Decrement contents of specified register. 
1 X X [RD]-[RD] 

Complement contents of specified register (ones complement). 
1 X X X X [RD]-[ RD] + 1 

Negate contents of specified register (twos complement). 
1 X X X X [RD]-[RD]+ [C) 

Add Carry bit to specified register contents. 

1 X X 
115 '-- O~O 

[RR] 
Shift logical left one or two bits.: clearing bit 0 (and bit 1 if shifting twice). 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 16-2. CP1600 Instruction Set Summary (Continued) 

STATUSES 

TYPE MNEMONIC OPERAND(S! WORDS S Z C 0 
OPERATION PERFORMED 

L[ri:([§]H15 1 x X x 0;:J RLe RRI.2) 2 
~ 

[RR] 

Rotate left one bit through Carry, or rotate 2 bits left through Overflow and Carry. 

SLLC RRI.2) 1 X X X 2 ~@]H15~ ok-o 
[RR] 

c Shift logical left one bit into Carry, clearing bit 0, or shift left two bits into Overflow and Carry, 

w clearing bits 0 and 1. 
:l 

• 01 Z SLR RRI.2) 1 X X 0-+115 i= z 
[RR] 0 

g Shift logical rightoneur two bits, clearing bit 15 (and bit 14 if shifting twice). 
w 
I- SAR RRI.2) 1 X. X dj 01 < ~ a: 
w 

[RR] ~ 

0 
a: 
w 

Shift arithmetic right one or two bits, copying high order bit. 

I-

4@lHIl+t15 ~ oj] 
en 

RRI.2) a RRC 1 X X X. 2 
w 
a: 

[RR] 
Rotate right one bit through Carry, or rotate. two bits right through Overflow and Carry.·. 

SARC RRI.2) 1 X X X 2 dj OK[[]rm 
[RR] 

Shift arithmetic right one bit into Carry, or two bits into Overflow and Carry. 

SWAP RRI.2) 1 X X 115 3 01 [RR] 

Swap bytes of register once, or twice. 



'r' 
N 
N 

TYPE 

~ 
(.) 

< 
I-m 

I-
Q. 

~ a: 
a: 
w 
I-
~ 

m 
~ 
I-
< 
I-m 

MNEMONIC 

PSHR 

PULR 

SIN 

EIS 
DIS 
TCI 

JE 
JD 

JSRE 
JSRD 

GSWD 

RSWD 

CLRC 

SETC 

NOPP 
NOP 
HLT 

SDBD 

OPERAND IS) 

RS 

RD 

(2) 

LABEL 

LABEL 

RB,LABEl 
RB,LABEL 

RD 

RS 

(2) 

Table 16-2. CP1600 Instruction,Set Summary (Continued) 

STATUSES •.. 

WORDS S Z C. 0 
OPERATION PERFORMED ' 

1 Separate mnemonics for. MVO@ RS,RS. 

1 Separate mnemonics, for MVI@RS,RD. 

1 "PCiT- L.r 
Software interrupt. 

1 Enable interrupt syetem. 
1 Disable interrupt system. 
1 Terminate current interrupt. 
3 Jump to given address and enable interrupt system. 
3 Jump to given address and disable interrupt system. 

3 Jump to given address, saving Program Counter in R4, RS'or RS, and enable interrupt system. 

3 Jump to given address, saving Program Counter in R4, RS or RS, and disable interrupt system. 

1 [RD<IS,12>1-[SWl; [RD<7,4>I-[SWl 
Place Status Word in upper half of each byte of the-specified register. RD may beRO, Rl, R2 or, 

R3. 

1 X X X X [SWl-[RS<7.4>1 
Load Status Word from bits 7 through 4 of the specified register. 

1 0 [CI-O 

Clear Carry. 

1 1 [Cl-l 

Set Carry. 

2 No Operation. 
1 
1 Halt after executing next instruction. 

1 Set double byte data mode' for next instruction, which must be of one of the following types: 

Primary or secondary I/O or memory reference·" 

Immediate or immediate operate 
If implied addressing through R I, R2, or R3 is used, the same byte will be accessed twice; address-

ing through R4, RS, or R7 will give bytes from the addressed location and that addressed after 

auto-increment. Direct addressing and Stack addressing are not allowed in double byte mode. 
-- .-



Q 
w 

~ 
a: o 
Il. 
a: 
o 
u 
~ 
en 
w 

~ g 
CI) 
CI) 
c( 

o!I 
w 
Z 
a: 
o 
CD 
CI) 

o 
~ 
c( 
Q 
c( 

@ 

Table 16-3. CP1600 Branch Conditions and Corresponding Codes 

OBJECT CODE 
MNEMONIC BRANCH CONDITION DESIGNATION 

C C = 1 0001 
LGT Carry 

(logical greater than) 

NC C =0 1001 
LLT No Carry 

(logical leas than) 
OV 0=1 0010 

Overflow 
NOV 0=0 1010 

No overflow 
PI.. S=O 0011 

Plus 
MI S = 1 1011 

Minus 
ZE Z = 1 0100 
EO Zero (equal) 

NZE Z =0 1100 
NEG Nonzero (not equal) 
LT SlJO = 1 0101 

Less than 
GE S .... O =0 1101 

Greater than or equal 
LE ZV(S .... O) = 1 0110 

Less than or equal 
GT ZV(SVO)=O 1110 

Greater than 
USC CVS=1 0111 

Unequal sign and carry 

ESC C¥S=O 1111 
Equal sign ~nd carry 

The following notation is used in Table 16-4: 

Where ten digits are shown. they are the ten low-order bits of a 10 to 16-bit word. (Word .size depends on the system 
implementation.) Where four digits are shown. they represent the hexadecimal notation for an entire word (10 to 16 
bits). 

bb 

cccc 

Two bits indicating one of the first three general purpose registers 

Four bits giving the branch condition. as shown in Table 16-3 

ddd Three bits indicating a destination register. RD 
eeee Four bits giving the external branch condition. E 

1111 One word of 'immediate data 

mmm . Three bits indicating a ,Data Counter ~~gister RM 

m One bit indicating the number of rotates or shifts: 
o one bit position 
1 two bit positions. 

p One bit of immediate address 

P One hexadecimal digit (4 bits) of immediate address 

rr Two bits indicating one of the first four general purpose registers 

sss Three bits indicating a source register. RS 

z Sign of the displacement: 
o add the displacement to PC contents 
1 subtract the displacement from PC contents 

In the "Machine Cycles" column. when two numbers are given with one slash between them (e.g .. 7/9l. execution time 
depends on whether o~ not a branch is taken. When two numbers are given. separated by two slashes (such as 8//11l. 
execution time depends on which register contains the implied address. 

16-23 



Table 16-4, CP1600 Instruction Set Object Codes 

:' MACHINE MACHINE 
INSTRUCTION OBJ~CtCODE WORDS CYCLES INSTRUCTION OBJECT CODE WORDS CYCLES 

ADCR RD OOOOHilddd 1 6 
ADD ADDR,RD 1011000ddd 2 10 

MVII DATA,RD 1010111ddd 2 8 

1111 
PPPP MVO RS,ADDR 1001000555 2 11 

ADD@ RM,lm 1011mmmddd 1 8/ /11 PPPP 
ADDI DATA,RD 1011111ddd 2 8 MVO@ RS,RM lOOlmmm555 1 9 

1111 MVOI RS,DATA 1001111555 2 9 
ADDR RS,RD 001 iS55ddd 1 6 1111 
AND ADDR,RD 1110600ddd 2 10 NEGR RD 0000l00ddd 1 6 

PPPP , NOP (2) 000011010m 1 6 
AND@,RM,RD 1110mmmddd 1 8/ /11 NOPP loooz01ooo 2 7 
ANDI DATA,RD 11101)lddd 2 8 PPPP 

1111, PSHR RS looll1055S 1 9 
ANOR RS,RD 0110S5Sddd 1 6 PULR RD 1010110ddd 1 11 
B DISP loooz00000 2 , 7/9 RLC RR!.2) q001010mrr 1 6/8 

PPPP RRC RR!.2) oooll10mrr 1 6/8 
Bcond DISP loooz0cccc 2 7/9 RSWD RS 0000111555 1 6 

PPPP SAR RR!.2) oool101mrr 1 6/8. 
BEXT DISP,E looozleeee 2 7/9 SARC RR!.2) ooollllmrr 1 6/8 

PPPP SDBD 0001 1 4 
CLRC 0006 1 4 SETC 0007 1 4 
CLRR'RD Qllldddddd 1 6 SIN (2) 000011011m 1 6 
CMP ADDR,RS 1101ooo~5S 2 10 SLL RR!.2) oooloolmrr 1 6/8 

PPPP SLLC RR!.2) ooo1011mrr 1 6/8 
CMP@ RM,RS 1101mmm555 1 8/ /11 SLR RR!.2) ooolloomrr 1 6/8 
CMPI DATA,RS 1101111555 2 8 SUB ADDR,RD ll00000ddd 2 10 

1111 PPPP 
CMPR AS,RD 0101sS5ddd 1 6 
COMR RD 00000llddd 1 6 

SUB@ RM,RD lloommmddd 1 8/ (11 
SUBT DATA,RD llOOlllddd 2 8 

DECR RD 00000lOddd 1 § 1111 
DIS 0003 1 4 SUBR RS,RD 01oo555ddd 1 6 
EIS 0002 1 4 
GSWD RR 0000l100rr 1 6 

SWAP RR!.2) 000 1 ooonrr 1 6/8 
TCI 0005 1 4 

HLT 0000 1 4 
INCR,RD 000000lddd 1 6 

TSTR RS 0010555555 1 6//7 
XOR ADDR,RD llll000ddd 2 10 

J LABEL 0064 3 12 PPPP 
llppppppoo XOR@ RM,RD llllmmmddd 1 8/ /11 

pppp XORI DATA,RD lllll11ddd 2 8 
JD LABEL 0004 3 12 1111 

llpppppp.l0 XORR RSiRD 011155sddd 1 6 
PPPP 

JE LABEL 0004 3 12 
llppppppOl 

PPPP 
JR RS' 0010555111 1 7 
JSR RB,LABEL 0004 3 lZ 

bbppppppoo 

PPPP 
JSRD RB,LABEL 0004 3 12 

bbppppppl0 

PPf>P 
JSRE RB,LABEL 0004 3 12 

bbppppppOl 

PPPP 
MOVR RS,RD 00105s5ddd 1 6/ /7 
MVI ADDR,RD 1010000ddd 2 10 

PPPP 
MVI', RM,RD 1010mmmddd 1 8/ /11 

16-24 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
CJ 
~ 
ui 
w 

~ g 
U) 
U) 

~ 

all 
w 
Z 
a: 
o 
CD 
U) 

o 
~ 
~ c 
~ 

@ 

THE BENCHMARK PROGRAM 
For the CP1600 our. benchmark program may be illustrated as follows: 

MVII IOBUF.R4 LOAD THE 1/0 BUFFER STARTING ADDRESS INTO R4 
MVII TABLE.Rl LOAD THE TABLE STARTING ADDRESS INTO Rl 
MVI@ Rl.R5 LOAD ADDRESS OF FIRST FREE TABLE WORD INTO R5 
MVII CNT.R2 LOAD WORD COUNT INTO R2 

LOOP MVI@ R4.RO LOAD NEXT DATA WORD FROM 10BUF 
MVO@ RO.R5 STORE IN NEXT TABLE WORD 
DECR R2 DECREMENT WORD COUNT 
BNZE LOOP RETURN IF NOT END 
MVO@ R5.Rl RETURN ADDRESS OF NEXT FREE TABLE BYTE 

This benchmark program makes very few assumptions. The input table 10BUF and the data table TABLE can have any 
length. and can reside anywhere in memory. The address of the first free word in TABLE is stored in the first word of the 
TABLE. 

16-25 



CP1600 
System Bus 

Signals 

DO 

015 

BC1 

BC2 

BDIR 

iN'i'R 

iNTRM 

BDSiffi' 

MSYNC 

STSTP 

HALT 

TCI 

EBCAO 

EBCA3 

EBCI 

Latched 
Address - - a 
Buffer -. · + · · MUX · · · · · .. -' - Latched - - - - Data - Buffer - -

• . ~ 
BAR 

DTB 

DWS .- lAB 

.. 1 of B Decoder - INTAK 

- ADAR 

ON 

NACT 

--
-

-

-= -:: 
~ -

• 

...... 
""'" 
...... 
"" 

...... ...., 

~ -
Lt>:; 
- ..... A 

L?), 
--f 

:-.--
-: .. 
: 

: =. -

-
-
-----

---
-
-

BOBOA 
System Bus 

Signals 

AO 

A15 

DO 'I High-order 
07 byte 
DO Low-order 
07 ,byte 

INT 

INT 

BOSEN 

HOLD 

RDYIN 

WAIT ---{>o 
-------------------------------------------~------... ~ RES~ 
<4!1 

4 

Figure 16-11. CP 1600 to 8080A Bus Conversion 

16-26 



c 
w 
~ 
IX: o 
Q. 
IX: 
o 
U 
~ 
en 
w 

~ g 
en 
en 
c( 

all 
w 
Z 
IX: 
o 
CD 
en o 
:!! 
c( 
c 
c( 

@ 

SUPPORT DEVICES THAT MAY BE USED WITH THE CP1600 

A CP1600 microcomputer system with any significant capabilities will use support devices of some other 
microprocessor. Parallel I/O capability is available with the CP1680. (described next}"but priority interrupt logic. DMA 
logic. and serial 110 logic. to mention just a few common options. may need additional support devices. Fortunately. it 
is quite easy to generate an 8080A-compatible system bus from the CP1600 system bus. Logic is illustrated in 
Figure 16-11. 

The CP1600A is the fastest version of the CP1600 CPU; it runs with a 500 nanosecond machine cycle. The CP1600 
machine cycle is equivalent to an 8080A clock period. Since the standard 8080A clock period is also 500 nanoseconds. 
no speed conflicts will arise. 

The bus-to-bus interface logic illustrated in Figure 16-11 is self-evident. with the exception of bus demultiplexing logic. 
The CP1600 Data/Address Bus is shown buffered by a demultiplexing buffer that is connected to two latched buffers. 
One of the latched buffers accepts the demultiplexer outputs only when a valid address is being output. as identified by 
BAR high. The second latched buffer may be a bidirectional latched buffer. or it may be two unidirectional latched 
buffers. Three latching strobes are required: DTB. lAB. and DWS. 

DTB and lAB are data input strobes. DTB strobes data input that is to be interpreted as data. while lAB stroves data in­
put that is to be interpreted as an address. So far as external logic is concerned. both of these signals are simple data in­
put strobes. We could thereforj3 generate a single data input strobe as the OR of DTB and lAB. When this data input 
strobe is high. information on the 8080A System Bus side of the latched data buffer must be input to the buffer; this 
data must simultaneously be transmitted to the multiplexer. 

DWS is the data output strobe. When high. this signal must strobe data from the multiplexer to the latched data buffer; 
this latched data must immediately appear at the 8080A System Bus side of the latched data buffer. 

Since the CP1600 uses a 16-bit Data Bus. you will probably have to generate two external device data busses; a high­
order byte bus and a low-order byte bus. All external devices that transmit or receive'parallel data must be present in 
duplicate. For example. were 8255 parallel interface devices to be present. the following connections would be re­
quired: 

-. -
:: -

j --
-. j ~ 

:= 
.: --- , 

Device 
Select 
Logic 

DO .. 07 , 1-

-- ---- -PA high ......... WR --.. RD - - 8255 -... PPI AO --- - -
PB high 

- ~ .. A1 -- -.. CE --PC high 

16-27 

I~ 

.-

t 

DO .. 07 

• II 

- WR 

-- 1m 8255 
... AO PPI -
- A1 

.. TI--

-.. -
... 
· · ... ;.. 

· .-
-----· · .. -

- .. - -
- --- .. -- -
- .. -- -- ---.. .. - -

RO 

DO 

07 
08 

015 

AO 
A1 
A2 

A15 

PAlow 

PBlow 

PC low 



The CP1600 and MC6800 system busses are singularly incompatible. You should not attempt to use MC6800 support 
devices with the CP1600. 

ro 40 INTRQ 

IMSKO 39 IMSKI 

DO 38 BCl 

01 4 37 BC2 

02 5 36 BOIR 

03 6 35 CE 
04 7 34 ERROR 

05 8 33 VCC 
06 9 32 GNO 

07 10 CP1680 31 VOO 
CRT 11 lOB 30 PE 

PCLR 12 29 AR 

POO 13 28 P015 

POl 14 27 P014 

P02 15 26 P013 

P03 16 25 P012 

P04 17 24 POll 

P05 18 23 POlO 

P06 19 22 P09 

P07 20 21 P08 

Pin Name Description Type 

DO - 07 CPU Data/Address Bus Bidirectional, tristate 
POO - P015 Peripheral I/O Port Bidirectional 
BOlA. BC 1, BC2 Bus Control signals Input 

CKl Clock signal Input 

IT Chip Enable Input 

PE I/O handshake control Output 

AR I/O handshake control Input 
INTRQ Interrupt request Output 
TCI Terminate current interrupt Input 
IMSKI Daisy chain priority Input 

IMSKO Daisy chain priority Output 

ERROR Error interrupt request Input 
PCLR Reset Input 

VCC' Voo,GNO Power, Ground 

Figure 16-12. CP1680 108 Signals and Pin Assignments 

16-28 



'f 
N 
CD 

I~ EBC 
EBCAO 
EBCAl 
EBCA2 
EBCA3 

:= == 
~ PCIT 

BDRDY 
STPST 

BUSRQ 
BUSAK 

=: 
.~ HALT 

INTRM .~ 

$li 

: 
-. . 

CP1flOO 
CPU -

--

i$2 

~H CLOCK 
LOGIC 

MEMORY 

lAB 8 .J~ J~tt~ 00 ::::<! <! 
1 of 8 10 B -./ 0:~'l1Il 

DECODER 
I 
r 

~ 

~ 

Ir 

r r 

I DEVICE I SELECT 

0: 
is 0 ..... w 
CD 0 .~ u 

~ ~ ~ 
~ ~ INTR BDIR 

TCI BC2;: 
CKl CP16BO BCl 

PCLR lOB PCLR'" 

.r t .. t it. 
IMSIO IMSKI 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

f 
0 ..... w 
0 0 u , .. , 

PC16BO 
lOB 

t·4 if ~ 
o II) 

o 
"- ~ 

o:o:w 
O<!"-

ffi 

DEVICE I SELECT 

~ 
~ 
~ BDIR_ 

BC2 
BC1= 

PCLR-

IMSKO IMSKI 

•• 

I 
0 ..... w" 
0 0 u .. 

PC16BO 
lOB 

t·t ii. 
o II) 

~ 0 
"-

o:a::w 
O<!"-
0: 

ffi 

DEVICE I SELECT" 

IMSKO 

Figure 16-13. A CP1600-CP1680 Microcomputer Configuration' 

-

· · 
· .-

~ 

DATA READ 

DWS 
BAR 

DO 

07 
DB 

015 
BCl 
BC2 
BDIR 
NTR 
TCI 
I 

CKl 
MSYNC 



THE CP1680 INPUT/OUTPUT BUFFER (lOB) 

The CP1680 lOB isa parallel I/O device designed specifically for the CP1600 CPU. This device provides a single 
16-bit parallel I/O port. which may optionally be configured as two 8-bit I/O ports. Primitive handshaking control 
signals are available with the parallel I/O logic. Elementary interval timer and prioritized interrupt logic is also 
provided. ' 

Figure 16-1 also illustrates that part of our general microcomputer system logic which has been implemented on 
the CP1680 lOB. 

The CP1600 lOB is packaged as a 40-pin DIP. It requires two power supplies. +5V and +12V. All inputs are TTL com­
patible. The device is implemented using N-channel MaS technology. 

Figure 16-13 illustrates a CP1600 microcomputer system with three CP1680 lOB devices in the configuration. 

CP1680 lOB PINS AND SIGNALS 
The CP1680 lOB pins and signals are illustrated in Figure 16-12. We will summarize these signals and the func­
tions they serve before examining device operations in detail. 

Let us begin by looking at the interface between the CP1680 lOB and the CP1600 CPU. 

DO - 07 provide an 8-bit parallel Data/Address Bus via which all communications between the CPU and lOB oc-
cur. This bus must connect to the low-order eight bits of the 16-bit CPU Datal Address Bus. ' 

The three bus control signals. BC1. BC2. and BDIR. connect the CP1680 to the CP1600 as illustrated in Figure 
16-13. The CP1680 lOB decodes these three bus control signals internally. 

A clock input is required by the CP1680. This clock input (CK1) is used by internal logic to determine whenBC1. 
BC2. and BDIR are valid. CK1 must have the following wave form: ' 

, I I I. 1 I 

T1 I T2 I T3 1 T4 T1 I T2 II T3 I T4 
I I I I 1 

CK 1 must be derived from the CP1600 clock signals by external logic. 

Let us now look at the interface between external logic and the CP 1680 lOB, 

PD~ - PD15 provide a 16-bit parallel,I/O port which can optionally be configured as CP1600 I/O 
two 8-bit I/O ports. While PD~ - PD15 are in theory bidirectional. these pins aremore ac- PORT PIN 
curately described as pseudo-bidirectional. This is because when a zero has been written CHARACTERISTICS 
to one of these pins. the output can sink 1.6 mA for an output voltage of +0.5V. External 
logic will have a hard time overcoming this sink in order to pull the pin high. In contrast. when a 1 is written to one of 
these pins. the output sources just 1 OOI-tA at +5V. External logic will have little problem sinking 100l-tA in order tei pull 
a pin low. Therefore. you should output a 1 to any pin that is subsequently to receive input data. External logic will then 
leave the pin high when inputting '1. while pulling the pin low to input O. 

The handshaking control signals which link the CP1680 lOB with external logic are PE and AR. PE is a control signal 
which is output by the CP1680. andAR is a control signal which is input to the CP1680. 

Now consider CP1680 interrupt signals. 

An interrupt request is transmitted to the CP1600 CPU via INTRQ. The CPU acknowledges the interrupt via the 
INTAK combination of BDIR. BC1. and BC2. TCI must be output low by the CPU at the end of the interrupt ser­
vice routine. This signal is required by CP1680 interrupt logic. which uses the low TCI pulse in its priority arbitration. 
as described later in this chapter. ' 

16-30 



Interrupts may be generated by conditions internal to the CP1680. or by a low input at 'ERRO'R. The ERROR input is 
reserved for error conditions detected by external logic. 

IMSKI and IMSKO are interrupt priority input and interrupt priority output signals, respectively. These signals are 
used to generate daisy chain interrupt priorities between CP1680.IOB devices. as illustrated in Figure 16-13. We will 
describe CP1680 interrupt priorities in more detail later in this chapter. 

~ MCLR is the master reset control input f~r the CP1680. This signal must be input low for at least 10 milliseconds in S order to reset the CP 1680 lOB. 

~ CP1680 ADDRESSABLE REGISTERS 
8 The CP1680 has eight addressable locations, which may be illustrated as follows: 
~ 
iii 
w 

~ 
g 
(I) 
(I) 

c:( POO - P015 
a!I 
w 
Z 
a: 
o 
I:Q 
(I) 

o 
~ 
~ 00 - 07 
c:( 

@ 

These eight addressable locations are all8-bit registers; they are addressed using the first eight addresses in a 256-ad­
dress block. as follows: 

Register 

Control 
Data buffer. low-order byte 
Data buffer. high-order byte 
Timer. low-order byte 
Timer. high-order byte 
I/O interrupt vector 
Timer interrupt vector 
Error interrupt vector 

16-31 

Address 

o 
1 
2 
3 
4 
5 
6 
7 



The actual 256 addresses will be identified by the eight high-order CP1600 Data/Address Bus lines. which will be used 
to create CP1680 device select logic. This device select logic creates CE(the chip enable signaJ); it may be illustrated 
as follows: . 

--
;: --
--

'. , 
xxxxxxxx· 

causes CE 
low 

xxxxxxxx 

THE CP1680 CONTROL REGISTER 

-
= -.. 

" 
r 

DO - - - 07 at CP16BO 

~ 

OOOOOY Y Y 

T 

O~ . 
07 
DB . .. 
015 

Valid CP16BO addresses 

May be 000,001,010,011, 100, 101, 110, 111 

{ May ha~~ any B-bit pattern that device select logic 
has been designed to create CE low in response to. 

We will summarize the individual bits of the CP1680 control register before describing the operations they control. 

Here are CP1680 Control register bit assignments: 

6 5 4' 3 2 

I I I· I I I I I 
~ j j ~ ~ • ~ 

o ....--SitNo. 

I 
I -, 

{ 

{ 

{ 

{ 

{ 

CP 1680 Control register 

. This is called the o - Parallel I/O active } 
Ready bit. 

1 - Parallel I/O inactive PE=Ready 

ERROR input signal level held here 

0- POO-P015 configured as two 8-bit ports 
1 - POO-PO 15 configured as one 16-bit port 

o - Disable parallel i/o and Error interrupts 
1 - Enable parallel I/O and Error interrupts 

o - Disable timer interrupts 
1 - Enable timer interrupts 

o - Disable clock logic 
1 - Enable clock logic 

Pari~y of 08-015 byte} 0 = even parity 

Parity of 00-07 byte 1 = odd parity 

16-32 



c 
w 

~ 
a: 
o 
n. 
a: 
o 
u 
~ 
rJi 
w 

~ 
g 
en 
en 
ct 
~ 
w 
Z 
a: 
o 
CD 
en o 
:!: 
ct c 
ct 
@ 

Bit 0 is always the complement of the PE control output. This bit may be interrogated by the CpU. If parallel data 
transfer interrupts are disabled. this allows the CPU to poll on status when monitoring parallel data transfers. PE signal 
levels are illustrated in Figures 16-14 and 16-15. 

Bit 1 reflects the level of the ERROR input. If parallel data transfer interrupt logic is disabled. then the Error interrupt 
logic is also disabled. Thus. the CPU must also examine the Error status bit when polling the CP1680. 

Bit 2 determines whether PDO - PD15 will act as a single 16-bit I/O port. or as two 8-bit I/O ports. This is only important 
when outputting data. 

Control register bits 3 and 4 are used to enable and disable parallel data transfer and Error iHterrupt logic. and timer in­
terrupt logic. 

Control register bit 5 is used to enable and disable CP1680 interval timer logic. If this bit is D. the interval timer will not 
decrement. 

Bits 6 and 7 report the parity of the high-order byte and low-order byte for data that is input or output via PDO - PD15. 0 
indicates even 'parity while 1 indicates odd parity. 

All Control register bits may be written into or read. You should be very careful when setting or resetting individual bits 
not to simu Itaneously modify other Control register bits. This means you shou Id use a three-instruction sequence with 
an AND or OR mask to set or reset any Control register bit. For details see Volume 1. Basic Concepts. 

CP1680 DATA TRANSFER OPERATIONS 
The CPU inputs and outputs data via the CP1680 lOB by executing MVI and MVO instructions, respectively. 

The CPU must access the CP1680 in byte mode. since an 8-bit Data/Address Bus (DO - 07) connects the CPU and the 
CP1680 lOB. Whether the I/O port PDO - PD15 is configured as a single 16-bit port or as two 8-bit ports has no bearing 
on the fact that the CPU must access the CP1680 in byte mode. 

The most efficient way of accessing the CP1680 is by using the SOBO instruction with implied memory ad­
dressing. Consider data input. If PDO - PD15 is configured as two 8-bit I/O ports and you wish to access just one of 
these I/O ports. then you can use implied memory addressing via R1. R2. or R3. We may illustrate 'input from the high­
order byte of I/O Port PD8 - PD15 as follows: 

Register 01 
POO - P07 

RO 4F 
00 - 07 

R1 2E 02 

'--,..-' 

Register 02 

CP1600 
CPU 

CE 

2E 
generates 

CE=O 

16-33 



If PDO - PD15 are configured as two 8-bitl/0 ports or :as a single 16-bit I/O port. and you want to read both I/O ports. 
then you should use the SDBD instruction with implied memory addressing via R4 or R5. This may be illustrated as 
follows: 

RO 

R4 

CP1600 
CPU 

generates 
CE=O 

Control register bit 2 configures PDO - PD15 as a single 16-bit I/O port or·astwo 8-bit I/O ports. 

PDO - PD7 

Given the fact that MVI and MVO instructions(jn byte mode) should be used to acc~ss the CP1680. when should these 
accesses occu r? . . . 

The answer is that the pE and AR signals control event sequences. 

Consider parallel data input, as illustrated in Figure 16-14. 

PE 

INTAK 

When the CPU is ready to input data in resets the 
Control register READY bit low. This forces the PE 
output high ----_________ "') 

External iogic uses PE high to trigger data transfer 
to the PD1680. External logic signals the end of 
data input by inputting AR low 

Figure 16-14. PD1680 Handshaking with Data Input 

16-34 



Q 
w 

~ 
a: o 
C1. 
a: 
o 
(J 

~ 
en 
w 

~ 
(3 
o 
CI) 
CI) 
c( 

c1J 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
c( 
Q 
c( 

@ 

When the CPU is ready to receive data. it resets Control register bit 0 to 0; this forces the PE control signal high. 

When external logic senses PE high. it must transmit data to the PD~ - PD15 I/O port. At this point it makes no 
difference whether pins have been configured as two 8-bit ports or as a single 16-bit port. External logic will pu II to 
ground selected high pins. while leaving other high pins alone. When external logic has completed data input. it sig­
nals the fact by inputting AR low. It is the high-to-Iow transition of the AR control input which indicates the presence of 
new data for the CPU to read. When A'f1 makes its high-to-Iow transition. PE also makes a high-ta-Iow transition. and 
Control register bit 0 is set to 1. If interrupts have been enabled. then an interrupt is requested via INTRQ. Figure 16-14 
assu mes that interrupts have been enabled; therefore"j'f\jfffij is shown making a high-to-Iow transition. 

The CPU will acknowledge the interrupt request. as described earlier in this chapter. by outputting INTAK via BC1. 
BC2. and BDIR. Logic internal to the CP1680 uses INTAK to reset INTRQ high again. 

There are many ways in which external logic can determine when to set AR high again. In Figure 16-14 we show exter­
nal logic using PE to set "Ali high. Clearly. when PE makes a low-to-high transition. the CPU must have acknowledged 
AR low; therefore external logic can now set AR high. Now that AR is high again. external logic can input new data. An 
alternative scheme would be for external logic to constantly hold AR low. using the level of the PE output to determine 
when new data could be transmitted. When PE is high. external logic will transmit new data to the CP1680 once. As 
soon as it transmits new data. external logic will strobe the data with a short. high AR pulse. then wait for PE to go low 
and high again before inputting more data. This may be illustrated as follows: 

CPU ready 
for input 

Extemal 
logic inputs 
data 

CPU is 
ready 
again 
for input 

Data output handshaking is illustrated in Figure 16-15. 

DO - D7 

PE 

INTAk 

L 
~:hen CPU outputs data. PE is automatically set 

Extemallogic uses PE high as a "valid data ready" 

.. ,i,",1. Aftee ,eodin, 'hi, /'" AR low '\ 

Figure 16-15. PD1680 Handshaking for Data Output 

16-35 

Extemal 
logic inputs 
data 



The most important point to note is that there is no control bit which specifies data input mode or data output 
mode. Thu~, the signal sequences we described for data input and those we are about to describe for data out­
put occur automatically; the input or output mode is purely a function of CPU and external logic interpretation. 

Whenever the CPU outputs data to the P01680. the arrival of data forces PE output high. If POO - P015 has been con­
figured as two 8-bit ports. then the arrival of a single data byte to either port will cause PE to be output high. If POO -
P015 is configured as a single 16-bit 110 port. then PO will not be output high until two bytes of data have been 
received from the CPU by the P01680. 

Once PE is output high. nothing more happens until external logic responds. External logic cannot tell by the simple in­
spection of any control signals whether a data input operation or a data output operation is in progress. It is up to you. 
when designing your system. to dedicate CP1680 devices to input or output; or you must generate your own identifica­
tion logic in the event that a CP1680 lOB is bidirectional. In Figure 16-15 we simply assume that external logic knows 
data is to be read. and knows whether the data is 16 bits or 8 bits wide. Furthermore. if the data is 8 bits wide. external 
logic must know which 8 bits to read. In any event. when external logic has completed its undefined operations. it. must 
input AR low. The high-to-Iow transition of AR forces PE low again. and if interrupts are enabled. an interrupt will be re­
quested via INTRO. When the CPU acknowledges the interrupt by outputting INTAK via BC1. BC2. and BOIR. the 
P01680 uses the INTAK pulse to reset INTRO high. 

The method used by external logic to reset AR high again is undefined. In Figure 16-15. we show PE going high as the 
trigger which external logic uses to reset AR high. This is clearly a viable scheme: PE will not go high again until fresh 
data has been output. at which point it is safe to assume that the CPU knows prior data has been read by external logic. 
It would be equally viable for external logic to hold AR continuously low. transmitting a short. high pulse whenever it 
reads data. This may be illustrated as follows: 

PE 

CPU has 
output 
data 

logic has 
read data 

CPU has 
output 
more data 

logic has 
read data 

I 

Because there are no control signals which identify the PD1680 operating in input mode or output mode, there 
is no straightforward scheme for handling bidirectional data transfers with a single PD1680 device. 

THE CP1680 INTERVAL TIMER 
The CP1680 has very elementary interval timer logic. A 16-bit Timer register. addressed" as two separate 8-bit loca­
tions. decrements once every eight CK1 pulses. providing the timer has been enabled. You enable and disable timer 
logic via Control register bit 5. As a separate event. timer interrupts may be disabled via Control register bit 4. If timer 
interrupts are enabled. then when the timer decrements to O. an interrupt request will occur. (Timer interrupt logic is 
described with other CP 1680 interrupt logic later in this chapter.) If timer interrupts are hot enabled. thEm the timer it­
self is effectively disabled. since you cannot test any timer status flag to see if the timer timed out; nor can you ac­
curately read the contents of the Timer registers on the fly. since there is no protection against reading timer contents 
while it is in the process of being decremented. 

The only timer programmable option you have is to load an initial value before the timer is enabled. The timer 
has no buffer; therefore, once it times out it begins decrementing again, if still enabled, beginning with the 
value FFFF16' This may be illustrated as follows: 

Time intervals 

f t t 
~XXXX*S*CKl ~I- FFFF*S*CKl "I- FFFF*S*CKl ~ 

t , , t 
Load Time out. Time out. Time out. 
Timer Restart Restart Restart 
starting 
value XXXX 
and start 
Timer 

16-36 



c 
w 
~ 
a: 
o 
Il. 
a: 
o 
(J 

~ 
en 
w 

~ 
C3 o 
(I) 
(I) 

ct 
olI 
w 
Z 
a: 
o 
IC 
(I) 

o 
:E 
ct c 
ct 

@ 

The only accurate long time intervals you can compute are exact multiples of FFFF16 * 8 * CK 1. 

The CP1600A uses a 4MHz two-phase clock. which generates a 500 nanosecond cycle time. Thus. CK1 equals 500 
nanoseconds. and long CP1600A time intervals must be an exact multiple of 262.144 milliseconds - the time it will 
take for the counter to decrement from FFFF16 to 0000. 

The CP 1600 uses a 3.3MHz two-phase clock. which generates a 600 nanosecond cycle time; therefore. long time inter­
vals must be exact multiples of 314.572 milliseconds. 

The CP1610. which runs on a 2MHz two-phase clock and has a one microsecond cycle time. will compute long time in­
tervals that are exact multiples of 524.288 milliseconds. 

You cannot attempt to generate clock periods that are multiples of shorter time intervals by loading some initial value 
into the timer following each time out: an unknown amount of time will elapse between the interval timer interrupt oc­
curring and being acknowl~dged. The length of this unknown period of time will depend on the number of non-inter­
ruptable instructions which may be executing in sequence when the interrupt request first occurs. plus any higher 
priority interrupts which may exist. Therefore. if you load an initial value into the timer. it should be to compute an isol­
ated time interval only. Here is an appropriate instruction sequence: 

MVI 
ANDI 
MVO 
MVII 
MVO 
MVII 
MVO 
MVI 
ADDI 
MVO 

10B.RO 
CFH.RO 
RO.IOB 
2AH.RO 
RO.IOB+3 
34H.RO 
RO.JOB+4 
10B.RO 
30H.RO 
RO.IOB 

;INPUT CONTROL REGISTER CONTENTS 
;ZERO BITS 4 AND 5 
;RETURN TO CONTROL REGISTER 
;TRANSMIT LOW-ORDER TIMER 
;INITIAL BYTE 
;TRANSMIT HIGH-ORDER TIMER 
;INITIAL BYTE 
;LOAD PRIOR CONTROL REGISTER CONTENTS 
;SET BITS 4 AND 5 
;START TIMER 

The instruction sequence above begins with three instructions that load the CP1680 Control register contents into 
Register RO. Bits 4 and 5 are zerod. then the result is returned to the Control register. Thus. the timer and timer inter­
rupts are disabled. We do not bother with an SDBD instruction. Since the data source is eight bits wide. only the low­
order byte of Register RO will be significant. This being the case. we can use an 8-bit immediate AND mask to modify 
Register RO contents before returning the low-order byte to the Control register. 

Next. we load the initial timer value. one byte at a time. into Register RO. Each byte is written out to the appropriate half 
of the Control register. Once again we do not need to use the SDBD instruction. Since an 8-bit data path connects the 
CPU to the 1680 lOB. only the low-order byte of Register RO will be significant during the data output. 

Finally. we start the timer by loading Control register contents into Register RO. setting bits 4 and 5 to 1 and writing 
back the resu It. 

When you write into the Timer registers. you clear any timer interrupt requests which may at that time be pending. 

CP1680 INTERRUPT LOGIC 
A CP1680 lOB will generate an interrupt request by outputting a low signal at TNTRQ if anyone of these three 
conditions occurs: 

1) A low input at ERROR. External logic can request an interrupt via the CP1680 using the ERROR input. 

2) The AR handshaking control input makes a high-to-Iow transition. This is illustrated in Figures 16-14 and 16-15. 

3) The Interval Timer decrements from 1 to O. 

Recall that there are two separate interrupt enable/disable control bits in the Control register. One control bit applies to 
the Interval Timer. while the other control bit applies to both the AR handshaking and ERROR interrupts. 

Interrupt priorities among the three sources within a single CP1680 lOB are as follows: 

ERROR highest 
AR handshaking 
Timer lowest 

When more than one CP1680 lOB is present in a CP1600 microcomputer system, then daisy chain priority is im­
plemented using the MSKI input signal and the MSKO output signal. Signal connections are illustrated in Figure 
16-13. The manner in which interrupt priorities are handled by the CP1680 is a little unusual. 

Two or more CP1680 devices may combine their interrupt request signals. which are wired ORed and input to the 
CP1600 via INTRQ. The CP1600 acknowledges an interrupt via the INTAK combination of BC 1. BC2. and BDIR. We de-

16-37 



scribed this process earlier in the chapter. All CP1680 devices simultaneously receive the INTAK combination: 
however. a CP1680 which is acknowledged raises its IMSKO signal high. causing it to becorl)e the IMSKI input to the 
next CP1680 in the daisy chain. Any device that receives ahigh IMSKI input ignores the interrupt acknowledge. Thus. 
only the highest priority. interrupt requesting CP1680 device in the daisy chainwill process the interrupt acknowledge. 
However. it takes a finite amount of time for IMSKO high signals to propagate as IMSKI signals. and thus ripple through 
the daisy chain. Consequently. a maximum of eight CP1680 devices may be present in the daisy chain. A ninth device 
will receive its IMSKI high signal too late and will respond to an interrupt acknowledge. 

CP1680 lOB devices maintain their interrupt priority status until they receive a high TCI pulse. At that time. prior inter­
rupt priorities are reset at all devices. and new priority arbitration begins. Thus. when using CP1680 lOB devices, you 
are required to end all interrupt service routines by executing .a TCI instruction. 

Note that if one CP1680 lOB has more than one active interrupt request (for example. an ERROR interrupt request and a 
timer interrupt request). then this internal interrupt priority will take precedence over the daisy chain interrupt priority. 
That is to say. the ERROR interrupt request will be acknowledged and serviced first. After the next TCI instruction is ex­
ecuted. the timer interrupt request will be serviced before any interrupt request from a lower priority CP 1680 device is 
acknowledged. 

Every CP1680 device has three 8-bit Interrupt Vector registers, one dedicated to each of the three interrupt 
sources. These three Interrupt Vector registers were illustrated earlier in the chapter. Following an interrupt 
acknowledge, when the lAB combination appears at BC1, BC2, and BOIR, the contents of the Interrupt Vector 
register for the highest priority active interrupt will be returned to the CPU. Interrupt acknowledge timing is il­
lustrated in Figure 16-9. At the interrupt service location a Jump-to-Subroutine instruction will probably be stored. 
Since the Jump-to-Subroutine object code is three weirds long. a maximum of 85 interrupts can be origined in the first 
256 words of memory. This is more than sufficient. since only eight CP1680 devices with 24 interrupts can be sup­
ported in a single daisy chain. 

16-38 



Q 
w 
~ 
a: 
o 
0.. 
a: 
o 
CJ 
~ 
en 
w 

~ 
g 
U) 
U) 

oct 
clJ 
w 
Z 
a: 
o 
m 
U) 

o 
:!: 
oct 
Q 
oct 

@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• CP1600 CPU 
• CP1600A CPU 
• CP1610 CPU 
• lOB 1680 I/O Buffer 

16-01 



CP1600·CP1600A·CP1610 

BUS TIMING DIAGRAM 

JS CONTROl @ BAR M NACT M OTB M NACT M BAR M 

00-015 ~ FlDAT)(J( FLOAT ~ 
+---+ +-+ 
OUTPUT IN PUT 

PROGRAM COUNTER &EXT INSTRUCTION 

--j tOE t-

~ 
OUTPUT PCtl TO 

FETCH DISPLACEMENT 

E8~A mxxxx UNDEFINED ~rS-TAB-LE-AS-l-ON-G-AS-A-OIlR-ES-S-IS-S-TAB-LE .... ~ 

I I--tu ~ 
EBCl: • DON'T CARE • )(:)(-- DON'T CARE --; 

~ 
VAUO INPUT 

THROUGHOUT T5 I 

TYPICAL INSTRUCTION SEQUENCE 

r---- Ip CYCLE-=1 

AAA~RA~~R~~~~ 
r--tCy--i 

'I 9.4V 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

--j t-tMS 

MSYNCl y-! I 
I I 
I I 

~tBF-

00-015 : ;,-...,--~ 
r-------~~wu~ I , 

BUS 
CHANGING FROM 
FLOAT IIOOE TO 
OUTPUT MOOE 

~ •• j 
BUS BUS 

OUTPUT OIANGI NG FROM 
VAll 0 OUTPUT IlOO£ TO 

FLOAT MODE 

I 
I 

I 

181 -j t-'1 ;-'B2 
~r--------~ 

W 
INPUT 

INSTRUCTION 
OR DATA 
OPERAND 

BRANCH ON EXTERNAL CONDITION INSTRUCTION 

Data sheets on pages 16-02 through 16-06 reprinted by permission of General Instrument Corporation. 

16-02 



c 
w 

~ 
a: o 
D. 
a: 
o 
(J 

~ 
en 
w 

~ 
g 
en 
en 
~ 

all 
w 
Z 
a: 
o 
m 
en o 
~ 
~ c 
~ 

@ 

CP1600 
ELECTRICAL CHARACTERISTICS (CP1600) 

Maximum Ratings· 
Voo, Vee, GNO and all other inpuVoutput voltages 

with respect to VBB . . . . . . . . . . . . -0.3V to +18.0V 
Storage Temperature ............ -55°C to +150°C 
Operating Temperature ............. O°C to +70°C 

Standard Conditions: (unless othefwise noted) 

·Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-oper6ting conditions are 
specified below. 

Voo=+12V±5%, 70mA(typ), 110mA(max.) VBB= -3V±10%, 0.2mA(typ) ,2mA(maic.) 
Vee=+5V±5%, 12mA(typ) , 25mA(max.) Operating Temperature (TA)=O°C to +70°C 

Characteristic Sym Min 

DC CHARACTERISTICS 

Clock Inputs 
High VIHe 10.4 
Low VILe 0 
Logic Inpull 
Low VIL 0 
High (All Lines except BOROY) VIH 2.4 
High (Bus Data Ready Line 

See Note) VIHB 3.0 

Logic Outputs 
High VOH 2.4 
Low (Data Bus Lines 00-015) VOL -
Low (Bus Control Lines, 

BC1,BC2,BOIR) VOL -
Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pulse Inpull, 4>1 or 4>2 

Pulse Width t4>2, t4>2 120 

Skew (4)1, 4>2 delay) t12, t21 0 

Clock Period tcy 0.3 

Rise & Fall Times tr, If -
Mllster SYNC: 
Delay from 4> tms -
00-015 Bus Signals 
Output delay from 4>1 

(float to output) tBO -
Output delay from 4>2 

(output to float) t BF -
Input setup time before 4>1 tB1 0 
Input hold time after 4>1 tB2 10 

Bus Control Signals 
BC1,BC2,BOIR 

Output delay from 4>1 t DC -

BUSAK Output delay from 4>1 t BU -

TCI Output delay from 4>1 t ro -
TCI Pulse Width trw -
EBCA output delay from BEXT 

input t DE -

EBCA wait time for EBCI input tAl -
CAPACITANCE 

4>1,4>2 Clock Input capacitance C4>1,C4>2 -
Input Capacitance 
00-015 CIN -
All Other - -
Output Capacitance 
00-015 in high impedance state Co -

··Typical values are at +25°C and nommal voltages. 

NOTE: 

Typ·· Max 

- V~o 
- 0.6 

- 0.65 
- Vee 

- Vee 

Vee -
- 0.5 

- 0.45 
- 0.45 

-
- -
- 2.0 

- 15 

- 30 

- 120 

50 -
- -
- -

- 120 

150 --
200 -
300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Conditions 

V 
V 

V 
V 

V 

V 10H = 100,...4 
V 10L = 1.6mA 

V 10L= 2.0mA 
V 10L = 1.6mA 

ns 

ns 

p's 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

TA = +25°C; Voo = +12V; Vee = +5V; 
VBB = -3V; t'4>1 t 4>2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Data ReaOY(BOROY) line is sampled during time period TSI after a BAR or AOAR bus control signal. BOROY must 
go low requesting a wait state 50 ns before the end of T5'1 and remain low for 50 ns minimum. BOROY may go high 
asynchronously. In response to BOROY, the CPU will extend bus cycles by adding additional microcycles up to a maximum 
of 40 p'sec duration. 

16-03 



CP1600A 
ELECTRICAL CHARACTERISTICS (CP1600A) 

Maximum Ratlngs* 
VoD • Vee. GND and all other inpuVoutput voltages 

with respect to Vaa . . . . . . .' . . . . . -0.3V to +18.0V 
Storage Temperature . . . . . . . . . . . . -55° C to +150° C 
Operating Temperature ............. O°C to +70°C 

Standard Conditions: (unless otherwise noted) 

*Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-operating conditions are 
specified below. 

Voo=+12V±5%. 70mA(typ) • 140mA(max.) Vaa= -3V±10%. 0.2mA(typ) • 2mA(max.) 
Vee=+5V±5%.12mA(tYP).25mA(max.) Operating Temperature (TA)=O°Cto +70°C 

Characteristic Sym, Min, 

OC CHARACTERISTICS 
Clock Inputs 
High VIHe 10.4 
Low VILe 0 
Logic Inputs 
Low VIL 0 
High (All Lines except BDRDY) VIH 2.4 
High (Bus Data Ready Line 

See Note) VIHa 3.0 
Logic Outputs 
High VOH 2.4 
Low (Data Bus Lines 00-015) VOL -
Low (Bus Control Lines. 

BC1.BC2.BOIR) VOL -
Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pulse Inputs, 4>1 or 4>2 

Pulse Width t4>2. t4>2 95 

Skew (4)1. 4>2 delay) t12. t21 0 

Clock Period tcy 0.25 

Rise & Fall Times tr.tf -
Master SYNC: 
Oelay from 4> tms -
00-015 Bus Signals 
Output delay from 4>1 

(float to output) tBO -
Output delay from 4>2 

(output to float) t BF -
Input setup time before 4>1 t B1 0 
Input hold time after 4>1 tB2 10 
BUI Control Signals 

BC1,BC2,BOIR 
Output delay from 4>1 t DC -
BUSAK Output delay from 4>1 t BU -
TCI Output delay from 4>1 tro -
TCI Pulse Width trw -
EBCA output delay from BEXT 

input t DE -
EBCA wait time for EBCI input tAl -
CAPACITANCE 

4>1.4>2 Clock Input capacitance C4>1.C4>~ -
Input capacitance 
00-015 CIN -
All Other - -
Output Capacitance 
00-015 in high impedanc~ state Co -
'*Typical values are at +25°C and nom mal voltages. 
NOTE: 

Typ" Max 

- Voo 
- 0.6 

- 0.65 
- Vee 

- Vee 

Vee 
- 0.5 

- 0.45 
- 0.45 

-

- -
- 2.0 

- 15 

- 30 

- 95 

50 -
- -
- -

- 200 

150 -
200 -
300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Conditions 

V 
V 

V 
V 

V 

V IOH= 100~A 
V IOL= 1,6mA 

V IOL= 2.0mA 
V IOL= 1.6mA 

ns 

ns 

~s 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

TA=+25°C; Voo=+12V; Vee = +5V; 
Vaa=-3V; t4>1 t 4>2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Data ReaOY(BOROY) line is sampled during time period TSI after a BAR or AOAR bus control signal. BOROY must 
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BDROY may go high 
asynchronously. In response to BOROY, the CPU will extend bus cycles by adding additional microcycles up to a maxi'mum 
of 40 ~sec duration. , 

16-04 



c 
w 

~ 
0:: o 
n­
o:: 
o 
u 
~ 
en 
w 

~ g 
CI) 
CI) 

ct 
all 
w 
Z 
0:: 
o 
In 
CI) 

o 
:!: 
ct c 
ct 

@ 

CP1610 
ELECTRICAL CHARACTERISTICS (CP1610) 

Maximum Ratings-
Voo, Vee, GND and all other inpuVoutput voltages 

with respect to VBB . . . . . . . . . . . . -0.3V to +1B.OV 
Storage Temperature ............ -55°C to +150°C 
Operating Temperature ............. O°C to +70°C 

Standard Conditions: (unless otherwise noted) 

·Exceeding these ratings could cause 
permanent damage to these devices. 
Functional operation at these conditions is 
not implied-ope(ating conditions are 
specified below. 

Voo=+11V±5%, 70mA(typ) ,110mA(max.) VBB= -3V±10"Io, 0.2mA(typ) , 2mA(max.) 
Vee=+5V±5%, 12mA(typ) ,25mA(max.) Op~rating Temperature (TA)=O°C to +70°C 

Characteristic Sym Min 

OC CHARACTERISTICS 

Clock Inputl 
High VlHe 10.0 
Low VILe 0 
Input current - -
Logic Inputl 
Low VIL 0 
High (All Lines except BDRDY) VIH 2.4 
High (Bus Data Ready Line 

See Note) VIHB 3.0 

Logic OutPUtl 
High VOH 2.4 
Low (Data Bus Lines DO-D15) VOL -
Low (Bus Control Lines, 

BC1,BC2,BDIR) VOL -
Low (All Others) VOL -

AC CHARACTERISTICS 

Clock Pulse Inputl, 4>1 or 4>2 

Pulse Width t4>2,14>2 250 

Skew (4)1, 4>2 delay) t12, t21 0 

Clock Period tcy 0.5 

Rise & Fall Times tr,tt -
Master SYNC: 
Delay from 4> tms -
00-015 BUI Signall 
Output delay from 4>1 

(float to output) tBO -
Output delay from .p2 

(output to float) t BF -
Input setup time before .p1 t B1 0 
Input hold time after 4>1 tB2 10 

BUI Control Signall 
BC1,BC2,BOIR 

Output delay from 4>1 t DC -

BUSAK Output delay from 4>1 t BU -
TCI Output delay from .p1 t ro -
TCI Pulse Width trw -
EBCA output delay from BEXT 

input tOE -
EBCA wait time for EBCI input tAl -

CAPACITANCE 

.p1, 4>2 Clock Input capacitance Cqi1,C4>:1 -
Input Capacitance 
DO-D15 CIN -
All Other - -
Output Capacitance 
DO-D15 in high impedance state Co -
··Typical values are at +25°C and nominal voltages .. 

NOTE: 

Typ·· Max 

- Voo 
- 0.6 

- 15 

- 0.65 
- Vee 

- Vee 

Vee -
- 0.5 

- 0.45 
- 0.45 

-
- -

- 2.0 

- 15 

- 30 

- 200 

50 -
- -
- -

- 200 

150 -

200 -
300 -

- 150 
- 400 

20 30 

6 12 
5 10 

8 15 

Units Conditions 

V 
V 

rnA VIHC = Voo'-1 

V 
V 

V 

V 10H = 100llA 
V 10L= 1.6mA 

V 10L= 2.0mA 
V 10L= 1.6mA 

ns 

ns 

/loS 

ns 

ns 

ns 1 TTL Load & 25 pF 

ns 
ns 
ns 

ns 

ns 
ns 
ns 

ns 
ns 

TA = +25°C: Voo = +12V: Vee = +5V: 
VBB =-3V: 14>1 t .p2 = 120ns 

pF 

pF 
pF 

pF 

The Bus Data ReaDY(BDRDY) line is sampled during time period TSI after a BAR or ADAR bus control signal. BDRDY must 
go low requesting a wait state 50 ns before the end of TS1 and remain low for 50 ns minimum. BDRDY may go high 
asynchronously. In response to BDRDY, the CPU will extend bus cycles by adding additional microcycles up to a maximum 
of 40 ",sec duration. 

16-05 



1081680 
ELECTRICAL CHARACTERISTICS 

Maximum Ratings· 

Voo and Vee and all other input/output voltages 
with respectto GNO ...............•...........••.............. -0.3V to +18V 
Storage Temperature . '.' .•.......•............•......•.... -55° C to +1,50° C 
Operating Temperature ........•......•....................... 0°Cto+70°C 

-Exceeding these ratings could cause 
permanent damage. Functional operation of 
this device at these conditions is not 
implied-operating ranges are specified 
below. 

Standard Conditions (unless otherwise noted) 

All voltages referenced to GNO 
Voo = +12V :!:5% 
Vee = +5V :!:5% 
Operating Temperature (T A) = 0° C to +70° C 

Characteristic Symbol 

DC CHARACTERISTICS 

Clock Input: High Vihc 

Low Vilc 

Logic Inputs: High Vi~ 
Low Vii 

Logic Outp.yts: High Voh 
Low Vol 

AC CHARACTERISTICS 

Clock Inputs 

CK1, Clock period t}Jc 

Clock width tcl 

Rise & Fall times tcr,tcf 

CAPACITANCE (TA =25°C, 

Voo = +12V, 

Vee = +5V) 

Input Capacitance: 00-07 Cin 
All others 

Output Capacitance: Cout 

Min 

2.4 

0 

2.4 

0 

2.4 

-

0.4 

70 

-

-
-
-

--Typical values are at +25° C and nominal voltages. 

TIMING DIAGRAM 

~~ ~ ~ 
I- tpe 

Typ·· Max Unit Condition 

- Voo V 

- .5 V 

- Vee V 

- .65 V 

Vee - V 10h = 100pA 

- .5 V 101 = 1.6mA 

- 4.0 f.1s 

- - ns 

- 10 ns 

6 12 pF Yin = OV 

5 10 pF Yin = OV 

8 15 pF 

~ ~ 
"I 

W' -U U u 
tel -----I ~ f4- ter I tel 

BDIR I -'] 
BC2,BCl , 1 ,... ______ _ 

----.j tDe I+-

CiRCUIT DESCRIPTION 
This circuit is designed to provide all the data buffering and 
control functions required when interfacing the Series 1600 
Microprocessor System to a simple peripheral device. Data is 
transferred to and from the peripheral on 16 bidirectional lines, 
each of which can be considered to be an input or output. The 
transfer of. information with the CPl600 is accomplished via an 8-
bit highway, the 16-bits being transferred as two 8-bit bytes. the 
register addresses are assigned CP1600 memory locations, as 
follows (N is an arbitrary starting address): 

Note: CK1- not drawn to scale. 

Register Address Description 
N Control Register 
N + 1 Data Register Low Order 8-bits 
N + 2 Data Register High Order 8-bits 
N + 3 Timer tow Order a-bits 
N + 4 Timer High Order 8-bits 
N + 5 Peripheral Interrupt Address Vector 
N + 6 Timer Interrupt Address Vector 
N + 7 Error Interrupt Address Vector 

16-06 



c 
w 

~ 
a: 
o 
Q. 

a: 
o 
(J 

~ 
en 
w 

~ 
U o 
en 
en 
c:( 

all 
w 
Z 
a: 
o 
CD 
en o 
~ 
c:( 
c 
c:( 

@ 

Chapter 17 
THE GENERAL INSTRUMENT 1650 

SERIES MICROCOMPUTERS 

The 1650 series of one-chip microcomputers have been manufactured by General Instrument to compete in the high­
volume. price sensitive. digital logic replacement market. If we compare the 1650 series of one-chip microcomputers to 
other one-chip microcomputers. they are most similar to the 3870; in reality. they are copies of no other product. They 
are unique devices in their own right. 

Describing the 1650 family of microcomputers at this point in the book is. perhaps. not strictly accurate. since they are 
not 16-bit microcomputers. nor do they have any re!ationship to the CP 1600 described in the previous chapter. 

The 1650 series have separate on-chip program and data. memories. Program memory is 12 bits wide. while data 
memory is 8 bits wide. Table 17-1 summarizes the 1650 options. None of these microcomputers are expandable. If your 
application outgrows the 1670. th!3n you must look elsewhere for a replacement. 

The prime source for the 1650 series of microcomputers is: 

GENERAL INSTRUMENT CORP. 
Microelectronics Division 
600 West John Street 
Hicksville. New York 11802 

In Europe a second source for the .1650 is: 

INTERMETALL 
19 Hans-Bun Strasse 
7800 Freiburg 
West Germany 

The 1650 series microcomputers use a single +5V power supply. With an oscillator frequency of 1 MHz. instructions 
execute in four or eight microseconds. 

1650 series devices are packaged as 18-pin. 28-pin. or 40-pin DIPs. They are manufactured using NMOS ion implanta­
tion technology and have TTL-compatible signals. 

Figure 17-1 illustrates that part of our general microcomputer system logic which is implemented on the 1650 
series one-chip microcomputers. Once again. we must warn against making direct comparisons using these figures; 
logic shown as present says nothing about the extent to which the logic has been implemented. Re~d/write memory is 
shown only half present because between 11 and 39 bytes of on-chip read/write memory are provided by the various 
1650 options. 64 words is the smaliest amount of read/write memory provided by any other one-chip microcomputer. 

A 1650 FUNCTIONAL OVERVIEW 
Logic of the 1650 series microcomputer~ is illustrated functionally in Figure 17-2. 

The Arithmetic and Logic Unit and the Control Unit are inaccessible to you as a user. therefore we will ignore this por­
tion of the microcomputer. 

Table 17-1. 1650 Series One-Chip Microcomputer Options 

Program 
Memory Data Input Output 

Part 12-Bit Memory Only Only Stack Power Package 
Number Words Bytes I/O lines lines Lines Levels Interrupts Supply Pins 

1650 512 23 8x4 - - 2 No +5V 40 
1655 512 23 8 x 1 4 x 1 8 x 1 2 No +5V 28 
1670 1024 39 8x4 - - 4 Yes +5V 40 
1645 256 16 4 xl 4 x 1 4 x 1 3 Yes + 5V 18 

17-1 



Interrupt Priority 
Arbitration 

I/O Comniuni\iation 
... Serial tP". Par~"'el 

Interface Logil= 

.':' 

Figure 17~ 1. Logic of the 1650 Series Microcomputers 

17-2 

Direct Memory 
Access Control 

Logic 



c 
w 

~ 
II: 
0 
a.. 
II: 
0 
U 
~ 
en 
w ... 
c( 
(3 
0 
en 
en 
c( 

CI/I 
w 
Z 
II: 
0 
a:I 
en 
0 

~ 
c( 
C 
c( 

@ 

R1 RTCe 

R2 =PC 

R3 =PSW 

R4 = FSR 

R5 

R6 

R7 

Control R8 
Unit 

R9 

Scratchpad 
Memory 

Program 
Memory 

R31 

MClR 

OSC 

ClK OUT 

Figure 17-2. 1650 Functional Logic 

Program memory is 12 bits wide. The 1650 has 512 words of program memory. As iIIustr- 1650 
ated in Table 17-1, other variations may have 256 or 1024 words of program memory. All PROGRAM 
program memory is read-only memory. There are currently no EPROM or EAROM program memory MEMORY 
versions of the 1650. For development purposes. there is the 1664. which has no on-chip program 
memory; rather. it generates a memory Address Bus and a program memory Data Bus via a 64-pin DIP. so that external 
program memory can be accessed. Note that General Instrument has strong EAR OM (Electrically Alterable Read-Only 
Memory) technology. but no significant EPROM (Erasable Programmable Read-Only Memory) technology. EPROMs and 
EAROMs are described in Volume 3. 

I/O ports of 1650 series microcomputers are connected directly to a-bit registers which can 
also be accessed as general purpose registers. In Figure 17-2. Registers R5. R6. R7. and R8 are 
shown connected to four 8-bit bidirectional 1/0 ports. I/O variations for other 1650 options are 
summarized in Table 17-1. Register connections for these other options are defined in Table 
17-2. ' 

Those 1650 series microcomputer I/O pins which are defined as bidirectional are, in reality, 
pseudo-bidirectional. Pin logic is illustrated in Figure 17-3. The logic illustrated in this figure 

1650 I/O 
PORT 
REGISTERS 

1650 I/O 
PIN LOGIC 

has become standard pseudo-bidirectional pin logic for one-chip microcomputers. The 3870 and 8048 have similar 
logic. 

When outputting data to a 1650110 port pin. the data is applied to theD input of a D-type flip-flop. which is clocked by 
an internal WRITE control signal. The reason for having two sets of gates on the flip-flop output is to provide a high 
voltage from VXX when switching a pin low. Vee sources 100 microamps. Thus. external logic connected to a. high­
level pin need only sink 100 microamps in order to pull a high pin low. External logic that attempts to write a '1 to a pin 
that is outputting 0 must pull-up Q2. which will be on and connected to ground; this is not feasible. Therefore. as was 

17-3 



the case for other one-chip microcomputers. the CPU can output a 0 or a 1 to any pin. but a pin that is going to receive 
input must first have a 1 written to it. External logic can now leave 1 at the pin. or can pull the 1 to a O. External logic 
cannot write a 1 to a pin that is outputting O. 

For a complete discussion of this pseudo-bidirectional logic, refer to the 8048 functional overview presented in 
Chapter 6. . 

1650 SERIES MICROCOMPUTER PROGRAMMABLE REGISTERS 
All of the 1650 series microcomputers have a single 8-bit Accumulator plus a register file, as illustrated in 
Figure 17-2. 

All registers in the register file are eight bits wide. with the exception of the Program Counter and the Status register. 

The Accumulator, which is referred to in General Instrument's literature as the W 1650 
regis~er, is a primary Accumulator, as described for other microcomputers in this book. It is ACCUMULATOR 
the source of one operand for two-operand instructi~:ms. and an optional destination for any in-
struction that moves or operates on data. 

On 
(INTERNAL - ..... ------1 0 
DATA BUS) 

WRITE 
(INTERNAL 

SIGNAL) 

e S 

Q 

READ 
(INTERNAL 

SIGNAL) 

Vxx 
(lOV) 

':' 

~;:1 vee III I I 

Figure 17-3. 1650 Series Microcomputer Bidirectional 
I/O Port Pin Logic 

Register 0 does not exist. When identified by any instruction, implied register addressing via Register 4 is 
assumed. That is to say. when Register 0 is specified as a source or destination. the register identified by R4 will be 
selected instead. For example. suppose R4 contains OF16. An instruction which selects RO will then. in fact. access 
R15. 

Register R1 C~ln be used as a general purpose register unless you are making use of 1650 real-time clock/counter logic. 
Every high-to-Iow transition of the RTCC input increments the contents of R1. 

Register R2 is the Program Counter. The bit width of Register R2 depends on program memory 1650 
size. For 1650 series microcomputers that have 512 words of program memory. R2 will be nine PROGRAM 
bits wide. The 1670 one-chip microcomputer will have a 10-bit R2 register. while the 1645 will COUNTER 
have an 8-bit R2 register. R2 is a write-only location; however. it is otherwise treated as a 
general purpose register. Thus. any instruction that specifies a general purpose register as a destination. without 

17-4 



c 
w 

~ 
a: o 
0.. 
a: 
o 
o 
~ 
en 
w 

~ g 
en 
en 
c( 

c!I 
w 
Z 
a: 
o 
!XI 
en o 
~ 
c( 
c 
c( 

@ 

specifying the same general purpose register as a source. can select Register R2. But note that all data manipulations 
operate on eight bits of data only. Thus. to a limited extent. 1650 series microcomputer program memory is divided into 
256-word pages. 

Register R3 is the Status register. This register is only three bits wide and contains the 
following status flags: 

2 0 ",--Bit No. 

Register R3. the Status register 

'-----Carry (C) 

------Digit Carry (DC) 

'---------Zero (Z) 

1650 
STATUS 
REGISTER 

The Carry status is absolutely standard. It reflects a carry out of the high-order bit following an arithmetic operation. 
When a subtract instruction is executed. the Carry status is set if twos complement addition causes a carry out of the 
high-order result bit. 

The Digit Carry status is an Auxiliary Carry: it identifies any carry from bit 3 to bit 4: 

6 4 3 2 o "'--BitNo. 

Carry here 
sets DC 

The Zero status is set to 1 when an arithmetic operation produces a 0 resu It: it is reset to 0 when an arithmetic opera­
tion generates a non-zero result. 

Register R3 is a read/write location. Instructions can identify R3 as a source or destination for data. When reading the 
contents of R3. bits 3 through 7 will be read as 1 bits. When writing to R3. bits 3 through 7 will be lost. 

Register R4 is a register pointer similar to the ISAR register described for the 3870. Register R4 is an 8-bit register: 
however. the low-order five bits are interpreted as a register select whenever an instruction identifies RO (which does 
not exist). 

Table 17-2. 1650 Series Microcomputer Register DeSignations 

FUNCTION 

REGISTER 1650 1655 1670 1645 

RO Not implemented. Specifies implied register addressing via R4 

Rl Real-time clock/counter register 

R2 Program Counter 

R3 Status register 

R4 File Select register. holds implied register address 

R5 I/O Port A I/O PortA I/O Port A I/O Port A 
(bits 0-3 only) 

R6 I/O Port B Output Port B I/O Port B Output Port B 
(bits 0-3 only) 

R7 I/O Port C Input Port C I/O Port C Input Port C 
(bits 0-3 only) (bits 0-3 only) 

R8 I/O Port 0 Scratchpad register I/O Port 0 Scratchpad register 
R9-R19 Scratchpad registers present in all versions 

R20-R23 Scratchpad registers 

} Not present R24-R31 Scratchpad registers 

R32-R47 Not present Scratch pad registers 

17-5 



Registers R5 through RS are connected to I/O ports in various ways for different members of. the 1650 family, as 
defined in Table 17-2. When you write to anyone of these four registers. associated I/O port pins. if they contain out­
put logic. will generate a high output level for a 1 and a low output level for a O. When you read the contents of Register 
R5. R6. R7. or R8. then each register bit that is connected to an I/O port input pin will reflect the level of the most re~ 
cently input data. For 'an I/O pin. if no data has been input. then the most recently output data will be read back. Any 
register bit that is not connected to an I/O port pin becomes a standard Scratchpad register. bit. Whatever was most re­
cently written to this bit will be read back. 

Beginning with Register R9, remaining registers are general Scratchpad registers. Different 1650 versions provide 
different numbers of Scratchpad registers. 

1650 SERIES MICROCOMPUTER MEMORY ADDRESSING MODES 
Since the 1650 series microcomputers have a very small number of data registers; they have very simple data memory 
addressing options. Scratch'pad registers up to R31 may be identified directly by any instruction that operates on data. 
If Register RO is identified. however. then the register selected by the low-order five bits of Register R4 will in fact be 
selected. This may be illustrated as follows: 

Select RO-.. ----Rll-__ --f 
R2 

1-----1 
R3 

1-----1 
R4 

1-----1 
9A 9A= l00l...JJ;>.!9 

R51--__ -I 1A16 = 26 10 
R6 

1-----1 
R7 

R21 
1-----1 

R22 
1-----1 

R23 
1-----1 

R24 
1-----1 

R25 
1-----1 

Select Register R26 R26 1------1 

-,-. 

For the 1670 only. six bits of Register R4 are active address bits. This is necessary since.the 1670 has general purpose 
registers numbered up to 4710. Note that for the 1670, general-purpose registers R32 through R47 can be ac­
cessed only via Register R4, using indirect addressing. 

Program memory is addressed by Jump instructions and Jump-to-Subroutine instructions, using direct address­
ing only. 

Jump instructions can identify any 9-bit address - covering the 512 words of program memory. 

The Jump-to-Subroutine instruction can directly address only the first 256 'words of program memory; all subroutines 
must therefore be origined in the first 256 words of program memory. although a subroutine can be called from any 
memory word. 

The 1670 one-chip microcomputer has a four-level Stack; other 1650 series one-chip 
microcomputers have a two-level or three-level Stack. Thus. with the exception of the 1670 
and the 1645. only a single level of subroutine nesting is allowed. The 1670 allows three levels of 
subroutine nesting. the 1645. two. For a program that can only be 512 words long. two levels of subroutine nesting are 
probably quite sufficient. 

1650 SERIES MICROCOMPUTER PINS AND SIGNALS 
Figure 17-4 illustrates pins and signals for the 1650 microcomputer. 

1645 pin assignments are not available at the present time. 

17-6 



The 1650 series microcomputers communicate y.Jith external logic via their I/O ports. In Figure 17-4, three types of 
I/O pins are identified: pseudo-bidirectional, input-only, and output-only pins. We have already described the logic 
of pseudo-bidirectional pins. Input-only and output-only pins, as their names imply, are limited to receiving data from 
external logic only or transmitting data to external logic only. 

The 1650 series microcomputers have just two control signals: MCLR and RTCC. 

ffi MCLR is a master reset control input. This signal should be held low for at least 1 millisecond after the power supply is 
~ valid. It forces all output pins to a high level and it sets all Program Counter bits to 1. Therefore, the first instruction ex-
~ ecuted following a reset will be located at the highest program memory location. 
Q. 
II: 
o 
o 
~ 
u) 
w 

~ g 
(I) 
(I) 

< 
IIi:I 
w 
Z 
II: 
o 
a:I 
(I) 

o 
:!: 
< c 
< 
@ 

(Ground) VSS 40 VXX (+ 10V or + 5V) 

AO 2 39 VCC (+5V) 

Al 3 38 RTCC 

A2 4 37 MClR 

TEST 36 OSC 

A3 6. 35 ClK OUT 

A4 7 34 07 

A5 8 33 06 

A6 9 1650 32 05 

A7 10 MICRO- 31 04 

BO 11 COMPUTER 30 03 

Bl 12 29 02 

B2 13 28 01 

B3 14 27 DO 

B4 15 26 C7 

B5 16 25 C6 

B6 17 24 C5 

B7 18 23 C4 

CO 19 22 C3 

Cl 20 21 C2 

Pin Name . Description Type 

AO - A7 . I/O Port A Pseudobidirectional 
BO - B7 I/O Port B Pseudobidirectional 
CO -'C7 I/O Port C Pseudo bidirectional 

DO - 07 I/O Port 0 Pseudo bidirectional 
MClR System Reset Input 
RTCC Clock/Event Counter Input 
TEST Debug and chip test control Input 
OSC Clock Input 
ClK OUT Clock Output 

Vxx, VCC, Vss Power, .Ground 

Figure 17-4. 1650 Microcomputer Signals and Pin Assignments 

On high-to-Iow transitions of RTCC, the contents of Register R1 are incremented. RTCC will 
not respond to a frequency that is greater than 250 KHz. That is all there is to 1650 counterltimer 
logic. No interrupts are generated on a time-out. nor is there any special logic associated with 
reading the contents of Register R1 or writing to this register. A program will access Register R1 as 
it wou Id any other register, and RTCC will increment register contents without regard to events in­
ternal to the microcomputer. 

If you are not using counterltimer logic, it is a good idea to ground the RTCC pin. 

1650 
COUNTER/ 
TIMER 
LOGIC 

TEST is a-control input used to read the contents of program memory as data. General Instrument purposely pro­
vides no information on the TEST pin or how it is used, since they do not want customers using this pin. 

17-7 



Two pins are associated with clock logic: the OSC input and the CLK OUT output. For very precise execution frequency. 
an external oscillator signal can be input via OSC. For less precise input. an RC network may generate the input as 
follows: 

Vee 

",J . 
}--osc 

c." 1" 
Rext and Cext options are described in the data sheets at the end of this chapter. 

The clock signal which drives the microcomputer is output via ClK OUT. 

The very simple timing associated with 1650 series one-chip microcomputers is given in 
the data sheets at the end of this chapter. 

Although you can run any 1650 series one-chip microcomputer with a single +5V power sup­
ply. it is sometimes desirable to have an additional +10V power supply connected to the 
VXX input. As illustrated in Figure 17-3. this power supply allows the bidirectional I/O port 
pins to sink more current, typically to drive higher current loads such as LED displays. 

1650 TIMING 

1650 VXX 
POWER SUPPLY 

None of the 1650 series microcomputers have any DMA or interrupt logic. The absence of DMA logic makes a lot 
of sense; the whole concept of Direct Memory Access is ridiculous when your data memory consists of 39 bytes or less. 
The absence of interrupt logic is simply a designer's choice. There are plenty of arguments for including interrupt 'Iogic 
in a one-chip microcomputer. since this allows external devices to influence event sequences asynchronously within 
the one-chip microcomputer. In the absence of interrupt logic. a program executed by a 1650 series microcomputer 
must test an input pin looking for a high or low level to trigger specific events. 

1650 SERIES MICROCOMPUTER INSTRUCTION SET 
The 1650 series microcomputer instruction set is summarized in Table 17-3. 

We have arbitrarily chosen to classify instructions which access registers as memory reference instructions. These are 
also I/O instructions if Register R5. R6. R7. or R8 is identified. If Register R3 is identified. they become status instruc­
tions. Furthermore. any of these instructions could also be classified as register-register instructions. 

I nstructions that test. set. and clear bits become I/O instructions if a bit of Register R5. R6. R7. or R8 is specified; they 
are Status registers if Register R3 is specified. 

The more you look at the 1650 instruction set. the more mu Itifaceted many of the instructions become. Generallnstru­
ment recognized this fact by creating assembly language instruction mnemonics to identify special cases of in­
structions. These are summarized in Table 17-4. 

There are two anomalies in ~he 1650 instruction set which you must guard against. 

There is no Add-with-Carry instruction. This makes it difficult to handle multi-byte arithmetic. Consider 16-bit binary 
addition. 

You can start off simply enough by adding the two low-order bytes: this will generate a carry for the two high-order 
bytes: " 

1 ... C 
31 EA 
24 68 

55 

On first inspection. adding the two high-order bytes looks like .no problem. You can add the carry to the augend: 

0 ... 
32 
24 

EA 
68 
55 

C 

17-8 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(J 

~ 
en 
w 

~ g 
en 
en « 
ell 
w 
Z 
a: 
o 
en 
en o 
~ « 
c « 
@ 

Then you add the high-order addend byte to the sum of the high-order augend byte plus the carry: 

o :41 C 
32 EA 
24 6B 
56 55 

A problem arises if the high-order augend byte happens to be FF. Now when you add a carry to FF. you get 00 and the 
carry is reset: 

1..-
FF EA 
24 6B 

55 

C--'l 
00 
24 

EA 
6B 
55 

Upon adding the high-order adden9 byte. the Carry status will be cleared erroneously: 

o ~ C (should be 1) 
00 EA 
24 6B 
24 55 

This becomes a significant problem when dealing with numbers that are three or more bytes long. since you can no 
longer guarantee that the correct carry"will be generated for the second and higher-order bytes. There are ways around 
this problem. but they lead to more complex programs. Fortunately the problem is not particularly severe. since in an 
application that is limited to a data memory as small as that of the 1650 you are most unlikely to have much multi-byte 
arithme·tic anyway. .. 

Note that any time you return from a subroutine you will modify the contents of the Accumulator. 

Table 17-5 summarizes 1650 instruction object codes and execution times. 

THE 1650 BENCHMARK PROGRAM 
Our standard benchmark program is of little use with the 1650 microcomputers. Given the very small amount of 
data memory available. moving blocks of data around makes no sense. We therefore illustrate a modified benchmark 
program in which a number of data bytes are input via I/O Port A and then output via I/O Port B. The first data 
byte input identifies the length of the data block which follows. 

We are going to use bit 0 of I/O Port C to provide handshaking controls between the 1650 and external logic. 
Whenever external logic transmits new data to I/O Port A. it resets bit 0 of I/O Port C low. The 1650 program tests this 
bit before attempting to read data from I/O Port A. As soon as the program outputs data to I/O Port B. it sets I/O Port C 
bit 0 high again. Thus. external logic can wait until it detects I/O Port C bit 0 high before attempting to input new data 
- which will be followed by I/O Port C bit 0 being pulled low by external logic. 

Here is the necessary instruction sequence: 

L1 

LOOP 
L2 

MOVLW 
MOVWF 
BSF 
BTFSC 
GOTO 
MOVF 
MOVWF 
BSF 
BTFSC 
GOTO 
MOVF 
MOVWF 
MOVLW 
MOVWF 
DECFSZ 
GOTO 

FF 
R5 
R7.0 
R7.0 
L1 
R5 
R9 
R7.0 
R7.0 
L2 
R5.0 
R6 
FF 
R5 
R9 
LOOP 

INITIALIZE PORT A FOR INPUT BY 
OUTPUTTING ALL HIGH BITS 
SET PORT C BIT 0 HIGH 
IF PORT C BIT 0 IS O. READ FIRST DATA BYTE 

INPUT FIRST BYTE 
STORE AS A COUNTER IN R9 
SET PORT C BIT 0 HIGH 
IF PORT C BIT 0 IS O. READ NEXT DATA BYTE 

INPUT NEXT DATA BYTE FROM PORT A 
OUTPUT VIA PORT B 
PREPARE PORT A FOR NEW INPUT 

DECREMENT R9 
IF NOT ZERO. RETURN FOR NEXT BYTE 

17-9 



These abbreviations are used in Tables 17-3 and 17-4: 

R 
W 

d 
(Ff] 
DATA 

LABEL9 

[ STACK]­

-[ STACK] 

n 

Any register 

Accumulator. or W register 

Destination identifier digit: must be 0 or 1. 

Ones complement of Register R contents 

Immediate 8-bit data value 

Program memory address (9 bits) 

Push onto Stack 

Pop off Stack 

A bit identification number. in the range 0 through 7. (0 low-order. 7 high-order! 

17-10 



TYPE MNEMONIC OPERAND(SI 

MOVF R,O 

MOVWF R 

ADDWF R,d 

ANDWF R,d 

ClRF R 

COMF R,d 

DECF R,d 

INCF R,d 

IORWF R,d 

RlF R,d 

RRF R,d 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 17-3. A Summary of the 1650 Series Microcomputer Instruction Set 

STATUSES 
BYTES ~--~--~----__ --~--~--~ 

C DC z 

x 

x x x 

x 

x 

x 

x 

x 

x 

x 

OPERATION PERFORMED 

[W]-[R] 

Move register (or I/O portl contents to Accumulator. 
[R]-[W] 

Move Accumulator contents to register or I/O port. 

[W]-[W]+ [R] if d=O. [R]-[W]+ [R] if d=l. 

Add Accumulator and register contents. Store sum in the Accumulator or source register. 
[W]-[W] AND [R] if d=O. [R]-[W] AND [R] if d=l 

AND Accumulator and register contents. Store result in the Accumulator or source register. 

[R]-.O 

Zero Register R contents. 
[W]-nn if d=O. [R]-nn if d=l 

Store the ones complement of register contents in the Accumulator, or back in the register. 
[W]-[R] - 1 if d=O. [R]-[R] - 1 if d=l 

Store decremented register contents in the Accumulator, or back in the register. 
[W]-[R] + 1 if d=O. [R]-[R] + 1 if d=l 

Store incremented register contents in the Accumulator, or back in the register. 
[W]-[R] OR [.w] if d=O. [R]-[R] OR [W] if d=1. 

OR Accumulator and register contents. Store result in the Accumulator or Source register. 

left rotate register contents. Store result in Accumulator if d=O or in register if d=l. 

C n. ··1 ..... 1 ............ 1--'--1 ~I ....... 1--'-1 ...... 1 ..... 1 Register contents L , 
Right rotate registBL"'Contents. Store result in Accumulator if d=O or in register if d=l. 

c 

ltJ ~"'_....I.I_ ... I ......... I __ IL.. .... I_ ..... I_*""'''I ~I Register contents 



TYPE 

a:: 
~ 
r/) 

(; 
w 
a:: 

~~ 
> a:: 
a:: w 
00.. 
~9 
WW 

~~ 
·W o a:: ::::w 
>~ a:: a:: 
< o 
Z 
o 
(J 
w 
r/) 

Z 
a:: 

W::::l 
ZI­-w I-a:: 
::::10 
~Z 
11:1< 
::::I..J 
r/)..J 

w 
I-
~ 
W 
0.. 
o 

'w 
I­
< 
C 
w 
~ 

~ 

< 
(J 

MNEMONIC 

SUBWF 

SWAPF 

XORWF 

MOVlW 

GOTO 

CAll 

RET 

RETlW 

ANDlW 

IORlW 

XORLW 

Table 17-3. A Summary of the 1650 Series Microcomputer Instruction Set (Continued) 

STATUSES 
OPERAND(S) BYTES ~--~----r---'----r--~--~ 

C DC z 

R.d x 'X x 

R.d 

R.d x 

DATA 

LABEl9 

LABEl8 

DATA 

DATA x 

DATA x 

DATA x 

OPERATION PERFORMED 

[W]-[R]- [W] if d=O.[R]-[R]- [W] if d=1 

Subtract Accomulatorc.contents from register contents. Store result in Accumulator or source 

register. 
Swap register nibbles. Store result in Accumulator if·d=O.or in. register if d=l. 

I + 
~'---,/--~'--' 

I I I I I I I I r Register contents 

~~ 

+ I 
:Exclusive-OR Accumulator and register contents. Store result in Accumulator if d =0 or in register if 

d=l. 

[W]-DATA 

load immedrate data into Accumulator. 

[ R2]-LABEl9 

Jump to instruction LABEl9. anywhere in 512 word program memory. 

[STACK]-[R2]+ 1. [R2]-LABEl8 
Jump to subroutine origined at LABEl8. anywhere in first 256 words of program memory. Push 

return address onto Stack .. 

[R2]-[STACKl. [W]-O 

Return from subroutine and clear Accumulator. 

[R2]-[STACKl. [W]-DATA 

Return from subroutine and load immediate data into Accumulator. 

[W]-[W] AND DATA 

AND Accumulator contents with immediate data. Store result in Accumulator. 

[W]-[W] OR DATA 

OR Accumulator contents with immediate data •. Store result in Accumulator. 

[W]-[W] XOR DATA 

Exclusive-OR Accumulator contents with immediate data. Store result in Accumulator. 



© ADAM OSBORNE & ASSOCIATES,INCORPORATED 

Table 17-3. A Summary of the 1650 Series Microcomputer Instruction Set (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

C DC Z 

Z BTFSC R.n 1 Test bit n of Register R. If it is O. skip the next instruction. 
0 
i= BTFSS R.n 1 Test bit n of Register R. If it is 1. skip the next instruction. 
is DECFSZ R.d 1 Decrement Register R contents. If the result is zero. skip the next instruction. 
Z 
0 INCFSZ R.d 1 Increment Register R contents. If the result is zero. skip the next instruction. 
U 
Z 
0 
Il. 
i;;: 
en 

a:w CLRW 1 [W]-O 
WI-

Clear Accumulator. 1-« 
~a: 
OW 
wil. 
a:0 

en 
enl- Z 

BCF R.n Reset bit n of Register R to 0 ::liij2 
I-c~ BSF R.n Set bit n of Register R to 1 
~za: 
en«~ 

.0 

NOP No operation. 



Table 17-4. Mnemonics Recognized by the 1650 Assembler for Special 
Cases of General Instructions 

Special Equivalent Status 
Mnemonic Mnemonic{s) Affected Function 

CLRC BCF 3,0 - Clear Carry 
SETC BSF 3,0 - Set Carry 
CLRDC BCF 3,1 - Clear Digit Carry 
SETDC BSF 3,1 - Set Digit Carry 
CLRZ BCF 3,2 - Clear Zero 
SETZ 8?F 3,2 - Set Zero 
SKPC BTFSS 3,0 - Skip on Carry 
SKPNC BTFSC 3,0 - Skip on No Carry 
SKPDC BTFSS 3,1 - Skip on Digit Carry 
SKPNDC BTFSC 3,1 - Skip on No Digit Carry 
SKPZ BTFSS 3,2 - Skip 0'1 Zero 
SKPNZ BTFSC 3,2 - Skip on No Zero 
TSTF R MOVF R,1 Z Test File 
MOVFW R MOVF R,O Z Move File to W 
NEGF R,d COMF R,1 Negate File 

INCF R,d Z 
ADDCF R,d BTFSC 3,0 Add Carry to Fil~ 

INCF R,d Z 
S~BCF R,d BTFSC 3,0 Subtract Carry from File 

DECF R,d Z 
ADDDCF R,d BTFSC 3,1 Add Digit Carry to File 

INCF R,d Z 
SUBDCF R,d BTFSC 3,1 Subtract Digit Carry from File 

DECF R,d Z 
B LABEL9 GO TO LABEL9 - Branch 
I3c LABEL9 BTFSC 3,0 Branch on Carry 

;. ~ 

GO TO LABEL9 -
~NC LABEL9 BTFSS 3,0 Branch on No Carry 

, ~ GO TO LABEL9 -
Bq~ LABEL9 BTFSC 3,1 Branch on Digit Carry 
,- GO TO LABEL9 -
~NDC LABEL9 BTFSS 3,1 Branch on No Digit Carry 

GO TO LABEL9 -
BZ LABEL9 BTFSC 3,2 Branch on Zero 

GO TO LABEL9 -
BNZ LABEL9 BTFSS 3,2 Branch on No Zero 

GO TO LABEL9 -

The following abbreviations are used in the "Object Code" column of Table 17-5: 

C - a "don't care" binary digit 

n - binary digits that identify a bit number 

r - binary digits that represent a register number 

x - any hexadecimal digit 

a - binary digits of a nine-bit address 

Abbreviations defined for Tab!e 17-3 are preserved in the "Instruction" column of Table 17-5. 

17-14 



c 
w 

~ 
0: 
o 
D­
o: 
o 
CJ 
~ 
en 
w 

~ 
U o 
(I) 
(I) 
c:( 

ell 
w 
Z 
0: 
o 
m 
(I) 

o 
~ 
c:( 
c 
c:( 

@ 

Table 17-5. 1650 Instruction Set Object Codes 

Instruction Object Code 

ADDWF R,d ooo111drrrrr 
ANDLW DATA Exx 
ANDWF R,d ooo101drrrrr 
BCF R,n 0100nnnrrrrr 
BSF R,n 0101nnnrrrrr 
BTFSC R,n 0110nnnrrrrr 
BTFSS R,n 0111nnnrrrrr 
CALL LABEL 9xx 
CLRF R 00000 1 1 rrrrr 
CLRW 0000010ccccc 
COMF R,d 001001drrrrr 
DECF R,d 0000 1 1 drrrrr 
DECFSZ R,d 001011drrrrr 
GOTO LABEL9 101aaaaaaaaa 
INCF R,d 00 1 0 1 Odrrrrr 
INCFSZ R,d 001111drrrrr 
IORLW DATA Dxx 
IORWF R,d 000 1 OOdrrrrr 
MOVF R,d 001000drrrrr 
MOVLW DATA Cxx 
MOVWF R 000000 1 rrrrr 
NOP 000 
RET 800 
RETLW DATA 8xx 
RLF R,d 001101drrrrr 
RRF R,d 001100drrrrr 
SUBWF R,d 00001 Odrrrrr 
SWAPF R,d 001110drrrrr 
XORLW DATA Fxx 

All object codes occupy one 12-bit word. 

All instructions execute in one machine 
cycle, with the exception of conditional 
Skip instructions, which execute in one 
machine cycle for no skip or two machine 
cycles to skip. 

17-15 



c 
w 

~ 
a: 
o a.. 
a: 
o u 
!: 
u) 
w 

~ g 
C/) 
C/) 
c:( 

o1J 
w 
Z 
a: 
o 
!XI 
C/) 

o 
~ 
c:( 
c 
c:( 

@ 

DATA SHEETS 

The following section contains electrical data for the 1650. 

17-01 



1650 ELECTRICAL CHARACTERISTICS 

MAXIMUM RATINGS· 

Storage Temperature ....................................... -55·C to +150·C 
Operating Temperature ......................................... O·C to +70·C 
Vee. Vxx• and all other input/output 

voltages with respect to Vss ................................. -0.3V to +12.0V 

STANDARD CONDITIONS (unless otherwise noted) 

Vee: +5V ± 5% 
Vxx: +4.75V to 10.0V 

Characteristics Sym Min Typ** 

DC CHARACTERISTICS 

Power Supply Currents Ice - 35 
Ixx - 1 

Logic Inputs 
Low VIL 0 -
High VIH 2.4 -

Logic Outputs 
Low (Note 1) VOL - -
High VOH 2.4 -

AC CHARACTERISTICS 

OSC Frequency fIN .2 -
RTCC Frequency - DC -
CLKOUT Frequency - .25 fin -
ClK OUT 

Rise Time tr - -
Fall Time tf - -

I/O Registers A. B, C, D 
Output Mode: 
Delay From CLKOUT too - -

Input Mode 
Set-Up tIS 0 -
hold tlH 100 -

1650 LED Direct Drive 

Vxx drives the gate of the output buffer. allowing adjustment of 
lED drive capability: 

Vxx 
5V 
5V 

10V 
10V 
10V 

1650 OSCILLATOR INPUT 

VOUT 
0.4V 
0.7V 
0.4V 
0.7V 
1.0V 

ISINK (typ.) 
2.5mA 
4.2mA 
5.BmA 

1O.0mA 
14.1mA 

The oscillator input (OSC) can be driven directly by a crystal with 
compatible output or by an external RC network. 

CRYSTAL ~ osc 

Vee 

R ... 1 
~osc 

Max Units 

50 mA 
5 mA 

.65 V 
Vee V 

0.45 V 
Vee V 

1 MHz 
200 KHz 
- -

200 ns 
200 ns 

500 ns 

- ns 
- ns 

"Exceeding these ratings could cause 
permanent damage. Functional operation of 
this device at these conditions is not 
implied-operating ranges are specified 
below. 

Conditions 

Vxx=5V @ IOL=1.6mA 
IOH=100pA min. 

1 TTL load and 100 pF 

1 TTL load and 100 pF 

CLOCK OUT (pSI 

C.XI 

I 1650 TYPICAL OSCILLATOR RC CHART @ 25°C 

We reprint data sheets on pages 17-D2 through 17-D3 by permission of General Instrument Corporation. 

17-02 



c 
w 
!( 
a: o 
a. 
a: 
o 
o 
~ 
u) 
w 
!( 
g 
en 
en 
< 
011 
w 
Z 
a: 
o 
CD 
en o 
:E 
< c 
< 
@ 

1660 I/O TIMING 

INTERNAL 
WAVEFORMS 

elK OUT 

OUTPUT 

INPUT 

1
01 

17-03 



Q 
w 

~ 
a: o 
0.. 
a: 
o 
o 
~ 
en w 
~ 
g 
CI) 
CI) 
c( 

o!J 
w 
Z 
a: 
o 
en 
CI) 

o 
~ 
c( 
Q 
c( 

@ 

Chapter 18 
THE TEXAS INSTRUMENTS TMS 9900, 
TMS 9980, AND TMS 9940 PRODUCTS , ".', 

The TMS 9900 was the first 16-bit microprocessor that could compete effectively in the minicomputer market. In fact. 
the TMS 99QP is a one-chip implementation of the TM 990 series ~inicomputer Central Processing Units. 

The TMS 9900 is packaged as a 64-pin DIP; it generates signals for a 15-bit Addres~ Bus and a separate 16-bit Data 
Bus. whereas other 16-bit microprocessors multiplex their Data and Address Busses. The TMS 9980 series 
microprocessors are 40-pin DIP versions of the TMS 9900; in order to reduce pin counts. the TMS 9980 series 
microprocessors access external memory via an 8-bit Data Bus and 14-bit Address Bus. The TMS 9940 is a one-chip 
microcomputer containing a subset of the TMS 9900 Central Processing Unit. together with on-chip memory and real­
time clock logic. 

The TMS 9900 product line has for some time been one of the enigmas of the microprocessor industry. Even a 
casual examination of the TMS 9900 instruction set shows that from the programmer's viewpoint. this microprocessor 
was at least two years ahead of its time. While it may have ,had problems competing in high-volume. simple applica­
tions. it was certainly the microprocessor of choice for data processing-type. program'-intensive applications. yet it was 
not widely used in these markets. 

The reason for this lack of acceptance has been poor support from Texas Instruments. 

Texas Instruments initially offered little support for the TMS 9900 because this microprocessor was designed as a low­
end product of the TM 990 minicomputer series. That is to say. customers were expected to develpp products around 
the TM 990 minicomputers; then. if they chose to. they could build production models around 'the TMS 9900 
microprocessor. This development path did not call for extensive TMS 9900 support. In:all probability. Texas Instru­
ments was caught by surprise by the buoyancy of the microprocessor market - as a mark~tinits own right. Certainly. 
if Texas Instruments had given the TMS 9900 the same level of support that Intel gave the 8080A. we would see en­
tirely different microprocessor product distributions today. But the TMS 9900 and its derivativeproduc;ts are powerful 
enough that the belated support they are now receiving from Texas Instruments will give the product line a reasonable 
share of future markets. . 

Texas Instruments now provides full support for the TMS 9900 microprocessor line. 

TIV!S 9900 support de'vices are designed specifically for the TMS 9900; therefore, they are described in this 
chapter rather than in Volume 3. Support devices can be used with the TMS 9900, TMS 9980, or TMS 9940 
products. The following devices are described: !. • • 

The TIM 9904 Clock Generator 
The TMS 9901 Programmable System Interface 

Texas Instruments is the primary manufacturer for all of the TMS 9900 series products. TMS 9900 series pro­
ducts are handled out of the following Texas1nstruments office: 

TEXAS INSTRUMENTS. INC. 
P.O. Box 1443 
Houston. Texas 77001 

Second sources for the TMS 9900 family are: 

AMERICAN MICROSYSTEMS. INC. 
3800 Homestead Road 
Santa Clara. California 95051 

SMC MICROSYSTEMS CORP. (TMS 9980 series only) 
35 Marcus Blvd. 
Hauppage. N.Y. 11787 

18-1 



THE TMS 9900 MICROPROCESSOR 

The TMS 9900 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 64-pin DIP. Three 
power supplies are required: -5V. +5V. and +12V. 

Using a 3 MHz clock. instruction execution times range between 3 and 10 microseconds. 

A TMS 9900 FUNCTIONAL OVERVIEW 
Figure 18-1 illustrates that part of our general microcomputer system logic which iS,implemented by the TMS 9900 
CPU. 

The most important features of Figure 18-1 are: 

• The absence of programmable registers 

• The presence of significant interrupt handling logic 

• The presence of serial-to-parallel data conversion logic 

• The absence of .1/0 port interface logic 

Clock Logic 

... ···.··.··.·· ... ·.· .. i t 
. . ".' 

...... 

/} .•• i\ i 

Xi"/ '« ....••• 

i' qdcoMM6~lc; ..... a .. t .. j .. :;o .. n ...•..• [, ...•.•..•.•.... ,)? ry9~~cJ~f~ssll1g,· · ..•. ··.1 ....................... . 
~ III .......... s., .. e .. ~.i.a .•....... lt~ .... ·/ .. p ... a;;.r .....• a ........ ~.I.:I... iii It.· ..•. ···I .• n ..•• t··.··.··e~.·.·rf,·· .•. ··.a~ ... c_.n. e~ .. ·.L.··O······g:I· .•. c··.i.<.· •. · ..• ·· ..• I i···.··.... ! 1 ...... )/// i. ........ . ......... ....... ......... . .......... . 

'.'" 

Programmable 
Timers 

Read Only 
Memory 

Accumulator 
Register(s) 

Data 'Counter(s) 

Stack Pointer 

I/O Ports 
Interface Logic 

I/O Ports 

1 
Figure 18-1. Logic of the TMS 9900 CPU .. 

18-2 

Direct Memory 
Access Control 

. Logic 

•..•••..••• ~ ••••••••••.••••••••••• 

, 
Read/Write 

Memory 



Let us first consider the manner in which the TMS 9900 handles programmable registers. 

TMS 9900 PROGRAMMABLE REGISTERS 
Within the logic of the TMS 9900 itself. there are just three 16-bit programmable registers: a Program Counter. a 
Workspace register. and a Status register. 

~ The Program Counter and Status registor are straightforward. The Program Counter contains the address of the 
~ next instruction to be executed. The Status register maintains various statuses. which we describe later in this chapter. 

~ The Workspace register is a unique and powerful programming feature of the TMS 9900. This register idontifies 
~ the first of sixteen 16-bit memory locations which act as 16 Genoral Purposo registers. This may be illustrated 
8 as follows: 
~ 
en 
w 

~ g 
CI) 
CI) 

< 
CI/J 
w 
z 
a:: 
o 
m 
CI) 

o 
~ 
< o 
< 
@ 

Any memory 

addresses 

xxxx 

WP 

~ xxxx 

xxx x + 2 

xxxx + 4 

xxxx + 6 
xxxx + 8 

xxxx + A 
xxxx + C 

xxxx + E 

xxxx + 10 
xxxx + 12 

xxxx + 14 

xxxx + 16 

xxxx + 18 

xxxx + lA 

xxxx + lC 

xxxx + lE 

16-BIT MEMORY 

LOCATION 

HIGH­
ORDER 

BYTE - ~ ! 
LOW­

ORDER 
BYTE 

........ ,... 

~ 
I I II' 

I 

I 

: 
I 

i 
I 
i 
! 
I 

i 
I 

RO 

Rl 

R2 

R3 
R4 

R5 

R6 

R7 

RB 

Special Functions 

~~--------,~--------~, 

RO cannot be an Index register. 
Shift instruction will seek shift 
count in low-order four RO bits if 
instruction object code specifies 
o shifts. 

R9 • 

Rl0 

Rll 

R12 
R13 

R14 

R15 

Subroutine return address or XOP eft ective 
ss 

CRU Bit address addre 

Save old WP 

Save old PC 

Save old ST 

Some of the 16 registers serve special functions, as defined by the text on the right-hand side of the illustration 
above. For the moment. do not attempt to understand these special functions. They are described later in the chapter. 

In TMS 9900 microcomputer systems, oxternal momory consists of 16-bit momory words. 
Each 16-bit memory word has its own momory addr~ss. Within tho TMS 9900 CPU, 
however, memory is addressod as a sequence of a-bit locations. For this to occur. the CPU 

TMS 9900 
MEMORY 
ADDRESSES 

18-3 



generates an internal 16-bit merT)ory address; the high-order 15 bits of the internal.memory ad­
dress create the external memory addresses. This may be illustrated as follows: 

This 16-bit address is created 
by program logic to address 65536 bytes 

~--------------~~~--------------~ (# 'I 
These 15 address bits are output 

to access 32768 external, 16-bit memory words 1 Byte Discrimination Bit 
y 0 = Even Byte 

A ...... --------"lL!s!j. 1 = Odd Byte 

~51" 13 12 " 10 9 
~SB 

8 7 6 5 4 3 2 1 I 0 Bit No. 

I 1'1 I I I II I I I I I I I 1 J "'!emory Address Inside the CPU 

~ II j ~ j j j j~ j j jll IE AO (LSB) 

A1 

A2 

A3 

A4 

A5 

A6 

A7 External Address Bus 

~8 

A9 

A10 

A11 

A12 

A13 

A 14 (MSB) 

When designing hardware around the TMS 9900. you will implement external memory as 16-bit words. which are ad­
dressed by a 15-line Address Bus. That is to say. 32.768 16-bit words may be addressed. 

But when you are programming the TMS 9900 you will visualize memory as 65.536 bytes. addressed by a 16-bit ad­
dress. An even byte address will access the low-order byte of an external 16-bit memory word, while an odd 
memory address will access the high-order byte of an e~ternal 16-bit memory word. 

Any 16 contiguous words of read/write memory may serve as the current 16 general purpose registers for the 
TMS 9900. . . 

You may ~ave as many setl? of 16-bit registers as you wish, limite~ only by the size of implemented memory. 

If you are using more than one set of 16-bit registers, then at any tim~ just one set of 16-bit registers can be 
selected. The WP register identifies the first ofthe 16 con1iguous memory locations serving as the current 16 
general purpos~ registers. . .' . 

Each of the 16 general purpose registers may be used to stors data or addresses. Thus. each general purpose register 
may serve as an Accumulator or as a Data Counter. 

Regist~rs R11 through R15 are used a~ special Pointer storage buffers; we will be describing the way in which 
these registers ~re used as the chapter proceeds. 

Having 16 general purpose registers in read/write memory, rather than in ttJe CPU, is the single most important 
feature of TMS 9900 architecture. The advantage of having 16 general purpose registers located anywhere in 
read/write rTH,3mory is that you can have many sets of 16 general purpose registers. For example. following an interrupt 
acknowleqge: you no longer need to save the contents of general purpose registers - all you need to do is save the 
conten1s' of the Program Counter. the Workspace register and the Status register. and that is done automatically by 
TMS 9909 interrupt handling logic. By loading new values into the Program Counter and the Workspace register. you 

18-4 



c 
w 

~ 
a: 
o 
0. 
a: 
o 
o 
~ 
rn 
w 

~ 
g 
CI) 
CI) 
c( 

alJ 
w 
Z 
a: 
o 
CD 
CI) 

o 
~ 
c( 
c 
c( 

@ 

can begin executing a new program. accessing 16 new memory words - which will be treated as a new set of 16 
general purpose registers. 

The disadvantage of having 16 general purpose registers in read/write memory is that no TMS 9900 microcom­
puter system can be configured without read/write memory; and if you are going to use many different sets of 16-
bit registers. then you are going to require a significant amount of read/write memory.'Furthermore. you lose the speed 
associated with executing register-to-register operations; there are no source and destination locations left in the CPU. 
Every register access becomes a memory access. 

TMS 9900 literature refers to the process of switching from one set of general purpose 
registers to another as a context switch. This terminology reflects the complete change of pro­
gram environment that results from the switch. 

Special instructions allow you to perform a forward context switch or a backward.context switch. 

TMS 9900 
CONTEXT 
SWITCH 

During a forward context switch. you load new values into the Workspace register and Program Counter. while 
simultaneously saving the old Workspace register. Program Counter. and Status register contents in the new General 
Purpose Registers R13. R14. and R15. 

A backward. or reverse context switch loads the current contents of General Purpose Registers R13 .. R14. and R15 into 
the Workspace register. Program Counter. and Status register. respectively. thus returning you to your previous set of 
general purpose registers. 

You can perform context switches as often as you like and whenever you like. For example. a very effective way of 
using context switching is to group data into contiguous memory words which you can identify as a register set. Upon 
entering a subroutine. you can perform a context switch which automatically creates all necessary initial data and ad­
dress values in appropriate general purpose registers. This may be illustrated as follows: 

RO 

Rl 

R2 

Rl 

~h 
Rll 

R14 

R15 

Data and parameters 
used by subroutine are RO 
stored here by the calling ~ Rl 
program before calling R2 

the subroutine Rl 

R4 

RIO 

18-5 

MEMORY 

WORDS 

0200 

Arbitrary 

Memory 

0218 

0280 

0282 

0284 

0286 

0288 

0294 

0296 



As illustrated above. when you perform a forward context switch, the current Program Counter 
contents. Status register contents. and WP register contents are saved in what will become the 
new Registers R 13. R 14 and R 15. respectively. Here. is the exact sequence in which events oc­
cur: 

1) The new WP register contents are loaded into the CPU and held in temporary storage. 

TMS 9900 
FORWARD 
CONTEXT 
SWITCH 

2) The current Status register contents are written out to the memory location which will become the new Register 
R15. 

3) The current Program Counter contents are written out to the memory location which will become the new Register 
R14. . 

4) The current WP register contents are written out to the memory location which will become the new Register R13. 

5) The new WP register contents. which were held in temporary storage. are moved into the WP register. 

6) The new value is loaded into the Program Counter 

Thus. when a forward context switch is performed. an audit trail ensures that program logic knows the exact machine 
state at the instant of the forward context switch. 

When a backward context switch occurs, the contents of the current General Purpose 
registers R13, R14, and R15 are loaded into the WP register, the Program Counter, and the 
Status register, respectively. Thus. program logic returns to the location of the forward context 
switch. 

TMS 9900 MEMORY ADDRESSING MODES 
The TMS 9900 provides these four methods of addressing memory: 

1) Direct memory addressing 

2) Direct, indexed memory addressing 

3) Implied memory addressing 

4) Implied memory addressing with auto-increment 

TMS 9900 
BACKWARD 
CONTEXT 
SWITCH 

The way in which the TMS 9900 implements these four memory addreSSing modes is exactly as described in Volume 1. 
Chapter 6. The important point to note is that the TMS 9900 looks upon its address space as consisting of 32.768 16-
bit memory words which are addressed using 15. rather than 16. Address Bus lines; yet programs compute all ad­
dresses as 16-bit words. This logic was described earlier. 

Direct memory addressing instructions provide the memory address in the second word 
of an instruction's object code: 

MSB LSB 

15 14 13 12 11 10 9 8 65432 o <)----Bit No. 

TMS 9900 
DIRECT 
ADDRESSING 

Instruction Object Code I I I I II I I I I I II I I I I 
f L Byto Ido"",,, ""ag",ed by CPU lag I, 

'----------------- Direct address output via Address Bus 

\ 

Direct, indexed memory addressing instructions provide a base address in the second 
object code word, but they also identify a general purpose register whose contents are 
to be added, as a signed binary number, to the base address. Again. the low-order bit of the 
computed address is not output via the Address Bus. but' (s interpreted by CPU logic as a byte 
identifier. 

General Purpose Register RO cannot be specified as an index register. 

TMS 9900 
INDEXED 
ADDRESSING 

Direct. indexed addressing is very useful in a TMS 9900 microcomputer system. It allows you to address the previous 
set of general purpose registers. following a context switch. without knowing where the previous registers were. Sup­
pose you want to access the contents of the memory word which was being used as General Purpose Register R5 

18-6 



c 
w 

~ 
0: o 
D­o: 
o 
o 
~ 
ui 
w 

~ 
g 
CI) 
CI) 

oct 
01:1 
w 
Z 
0: 
o 
In 
CI) 

o 
~ 
oct c 
oct 
@ 

before you switched to your current set of general purpose registers. Recall that the previous Workspace register con­
tents are stored in your current General Purpose Register R13. You could thus address the previous General Purpose 
Register R5. without knowing where this general purpose register may have been. by using direct. indexed addressing 
as follows: 

RO 
Rl 

R2 

R3 

R4 

R5 

R6 
R7 

R8 

R9 

RO 
Rl 

R2 
R3 

R4 
R5 

R6 

R7 
R8 

R9 

Rl0 

Rll 

R12 

R13 

R14 
R15 

Instruction 

Base Address 

Read/Write 
Memory 

~ 
High- low-
Order Order 
Byte Byte 

I 

I 

I 

I 
: 
! 
I 

! 
I 

I 

: 
: 
I 

: 
I 

I 

i 
! 
I 

I 

i 
I 
I' 

X); I xx 
I 

I 

I 

ARBITRARY 
MEMORY 
ADDRESSES 

( 
'xxxx 

xxxx + 2 
xxxx + 4 

xxxx + 6 
xxxx + 8 
xxxx+ A 

xxxx + C 

xxxx + E 

xxxx + 10 

xxxx + 12 

xxxx + 14 

xxxx + 16 

xxxx + 18 

xxxx+ lA 

xxxx + lC 

xX')(x + lE 

yyyy 

yyyy+ 2 

yyyy+ 4 

yyyy+ 6 

yyyy+ 8 

yyyy+ A 

yyyy+ C 

yyyy+ E 

yyyy+ 10 

yyyy + 12 

yyyy+ 14 

yyyy+ 16 

yyyy + 18 

yvyy+ lA 

yyyy + lC 

yyyy+ lE 

Previous 

General 

Purpose 

registers 

Current 

General 

Purpose 

registers 

An implied memory addressing instruction will specify one of the 16 current general pur-
pose registers as providing the effective memory address. ' 

TMS 9900 
IMPLIED 

If you specify implied memory addressing with auto-increment, then the contents of the ADDRESSING 
identified general purpose register will be incremented after the memory access has 
been performed. If the instruction specifies a byte operation. the register contents will be incremented by one; the 
register contents will be incremented by two after a full-word operation, 

18-7 



Six object code bits identify the data memory addressing option selected by any TMS 9900 instruction that accesses 
data memory. The six object code bits are interpreted as follows: 

,T R 
~~. 

I 
'-v-'~ 

L { 0000 through 1111 se;ect the general purpose register to be ac­
cessed during the memory address computation 

. {OO - Not a me. mory r~fe. rence instruction. The selected register is 
accessed directly. 

01 - Implied memory addressing 
'"--------- 10 - Direct addressing if register RO is selected. 

Direct, indexed addressing otherwise. 
11 - Implied memory addressing with auto-increment 

Two-address instructions will include 12 memory addressing option bits: 

Two-address instruction object code 

--..-- ~--..--~ 
TO RD TS RS 

~~ 

Destination 
address 

Source 
address 

Some instructions allow a source to be anywhere in memory. but the destination must be a general purpose register. 
These object codes include TS. RS. ~lnd RD. but not TO. 

TMS 9900 Jump instructions use program relative, direct addressing. These are one-word 
instructions. where the low-order byte of the instruction object code provides an 8-bit. signed 
binary value. which is added to the incremented contents of the Program Counter. This is 
straightforward program relative. direct addressing. 

TMS 9900 I/O ADDRESSING 

TMS 9900 
PROGRAM 
MEMORY 
ADDRESSING 

As compared to other microcomputers described in this book. the TMS 9900 has uhusuall/O logic. In addition to ad­
dressing I/O devices as memory locations, you can address a separate I/O field ofup to 4096 bits. Texas Instru­
ments' literature refers to this field as the "Communications Register Unit" (CRU). If you are programming a TMS 
9900 microcomputer system that has already been configured by Texas Instruments. then it is justifiable to look upon 
the Communications Register Unit as a form of I/O port. If you are building your own interface to a TMS 9900 CPU. then 
instructions that are supposed to access the Communications Register Unit in reality simply make alternative use of 
part of the Address Bus in conjunction with three control signals: CRUCLK. CRUIN. and CRUOUT. 

Ttu!re are two classes of TMS 9900 CRU instructions. The first class accesses individual bits (or signals), while 
the second class accesses bit fields that may be between 1 and 16 bits wide. 

There are three single-bit CRU instructions; they set. reset. or test the identified CRU bit. This is equivalent to set­
ting. resetting. or testing an external signal or single I/O port bit. When a bit is to be set or reset. the new level is output 
via CRUOUT. and a CRUCLK pulse indicates that valid data is on the CRUOUT line. When the condition of a bit is to be 
input or tested. then external logic is required to return the level of the tested bit via CRUIN. 

18-8 



c 
w 

~ 
ex: 
o 
Q. 
ex: 
o 
u 
~ 
en 
w 

~ g 
en 
en 
c( 

raZl 
w 
Z 
ex: 
o m 
en o 
~ 
c( 
c 
c( 

@ 

A CRU bit instruction outputs a 12-bit address which is computed as follows: 

Instruction Object Code 

-----------------~~--------------, r \ 
MSB 15 14 13 12 11 10 9 B 7 6 5 4 3 2 0 LSB 

I I I I I I I I I X I y I y I y I y I y I y I y I General Purpose Register R 12 ..... 
~~~~~~~~~~~~--------~----------r ~ 

MSB 15 14 13 12 11 10 9 B 7 6 5 4 3 2

I I I Izlzlzlzlzlzlzlzlzlzlzlzi

x X X X X Y Y Y Y Y Y Y
+ Z Z Z Z Z Z Z Z Z Z Z Z

o LSB

X, Y and Z represent any binary digits

The 12-bit address is output on the 12 lower-order address lines; the three higher-order address lines are all 0 to
designate a CRU address. .

Now during the execution of a CRU bit instruction. the address which is output is supposed to be a bit address - that
is. an address identifying one bit in a possible 4096-bit field. So far as external interface logic is concerned. the address
can be interpreted in any way. However. data output will occur via CRUOUT only; data is input via CRUIN. and
stored in the Equal bit of the Status register.

There are two multi-bit CRU instructions: one. LDCR. transfers data from an addressed memory location to any ad­
dressed CRU bit field. The other. STCA. transfers data from an addressed CRU bit field to any addressed memory loca­
tion. Anywhere from 1 to 16 bits of data may be transferred by the LDCR and STCR instructions. Instruction object
codes are interpreted as follows:

MSB T R LSB
.-A-.~

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit No.

I I I I I I I I I I I I I I I I Multi-bit CRU Instruction
...... ~-.-~

• ~ ~ I ~ L{These four bits identify the general purpose register which is to be
used in the memory address computation 0000 = RO to 1111 =
R15.

/00 - Register is the memory location
01 - Implied memory addressing via address in the register
10 - If Register RO is selected, then direct memory addressing is

specified; the direct address is in the next program memory
word. If any register other than RO is selected, then direct, in­
dexed addressing is specified. The contents of the selected
register are added to the contents of the next program memo­
ry word.

11 - Implied memory addressing with auto-increment

L-.---------CRU bit field length (0 is interpreted as 16)
~ _________________________ j001100=LDCR

1001101 = STCR

18-9

The source/destination memory location is identified as it would be for any memory reference instruction.

The address of the first CRU bit is specified by Register R12. For a multi-bit CRU instruction. the CRU bit address is in­
cremented for each succeeding bit access. but the incremented address is held in a temporary storage location. The
contents of Register R 12 are not incremented.
Thus. multi-bit CRU instructions may transfer anywhere from 1 to 16 bits between any memory location and any CRU
bit field. Note that memory must be divided into 16-bit words, each of which has identified bit boundaries, but
there are no equivalent bit boundaries in the CRU bit field. That is to say. any CRU bit may be identified via Register
R12 as the first bit in a multi-bit field. while the length of the multi-bit field is identified by the instruction object code.
This may be illustrated as follows:

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Ixlxlxlxlxlxlxlxlxlxlxlxl I .
R12 " .~
MSB LSB

15 14 1 ~ 12 11 10 9 8 7 6 5 4· 3 2 0

CRU Instruction
Object Code

l,v1v

If YYYY is 0000. the CRU bit field is assumed to be 16 bits in length.

18-10

<

CRU

/

I
I

"

I
I

Start of CRU
Bit Field

End of CRU
Bit Field

C
ILl

~
IX:
o
Q.
IX:
o
U
~
en
ILl

~
g
(I)
(I)

<
ail
ILl
Z
IX:
o
In
(I)

o
~
< c
<
@

When bits are transferred from a memory location to a CRU bit field, the contents of the memory location are not
actually modified. but the transfer occurs as though bits had been right shifted out of the memory location. Bits
arriving within the addressed CRU bit field are stored in sequential CRU bit locations with ascending addresses. This
may be illustrated as follows:

Data Memory

~
10-""'""

L
xlXlxlxlxl1 11 10 1 0111011111011Jo

\
\
~

~ --

CRU

0
1
0
1
1
0
1
0
0
1
1

I····

Lowest CRU Bit
Address

Highest CRU Bit
Address

Eleven bits have been transferred in the illustration above. If eight or fewer bits are transferred from a general purpose
register. only the more significant byte is accessed:

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

General Purpose Register

CRU

1 Lowest CRU Bit Address

1

o
o

Highest CRU Bit Address

Our illustration shows a transfer of five bits.

18-11

If eight or fewer bits are transferred from? memory location. then the memory address will be considered a byte ad­
dress rather than a word address; that is. the transfer will be from the low-order bits of the addressed byte. which may
be either the upper or lower byte of a 16-bit memory word. Thus you can access the lower byte of.a general purpose
register by addressing it as a memory location.

A data transfer from the CRU to data memory occurs as the exact logical reverse of the illustration above. except
that high-order bits of the destination data memory word are zeroed if unfilled. This may be illustrated as follows:

CRU

Data Memory

Lowest CRU Bit Address

o

o

o
Unused, Therefore Reset

Highest CRU Bit Address

As with data transfers from memory to the CRU. if eight or fewer bits are transferred. only a byte will be affected. This
will be either the addressed memory byte:

CRU

Data Memory

Lowest CRU Bit Address

Highest CRU Bit Address

These Bits Reset to 0

18-12

c
w

~
a:
o
Il..
a:
o
(.)

~
en
w
l­
e(
(3
o
CI)
CI)
e(

all
w
Z
a:
o
ID
CI)

o
:!!
e(
c
e(

©

or the high-order byte of a general purpose register:

MSB LSB

151413,121110,98765432 0

I 0 \ 0 \ 0 \i \1 \ 0 \1 \ 0 \ x \ x \ x \ x \ x \ x \ x \ x I General Purpose Register

'-v-' J j "- -yo ./ -These Bits
This Byte Unaffected CRU Reset to 0

0 Lowest CRU Bit Address

1

0

1

1 Highest CRU Bit Address

TMS 9900 STATUS FLAGS
The TMS 9900 CPU has a 16-bit Status register which may be illustrated as follows:

o 2 3, 4, 5, 6 8 9 1011 12 13 14 15 ...-TMS 9900 Bit Number

15 14 13 12 1.1 19 9 8 ·7 6 5' 4 3 o ..-Our Bit Number

Status register

'------------- XOP instruction executed
'-------------- Parity status

..... --------------- Overflow status

'---------------- Carry status

'------------------ Equal condition

'------------------- Arithmetic Greater Than condition

------------------- Logical Greater Than condition

The low-order four bits of the Status register represent an interrrupt mask which identifies the level of interrupt
which is currently enabled. As the 4-bit interrupt mask would imply. 16 levels of interrupt are allowed, We will describe
interrupt processing later in this chapter.

The X status is set to 1 while an XOP instruction is being executed. This instruction allows you to perform a soft­
ware interrupt - as described later in this c~apter.

The P, 0, and C are standard Parity, Overflow and Carry statuses.

The Equal status (=) identifies a condition that currently exists, as the result of the execution of a previous in,­
struction, that will cause a Branch-if-Equal instruction to branch. A CRU bit to be tested also gets stored in the
Equal status.

The Logical Greater Than arid Arithmetic Greater Than statuses are set or reset following arithmetic. logical. or data
move operations. A Logical Greater Than treats the source data as simple, unsigned binary numbers. An
Arithmetic Greater Than interprets the operand as signed binary numbers.

TMS 9900 CPU PINS AND SIGNALS
Figure 18-2 illustrates the pins and signals of the TMS 9900 CPU.

Being a 64-pin DIP. the TMS 9900 can afford to have separate Address and Data Busses.

18-13

(LSB)

'.,'

(MSB)

VBB

VCC
WAIT

loAi5
HOLOA

R'Esff
lAO

<1>1

<1>2

A14

A13

A12

All

Al0·

A9

AS

A7
A6

A5

A4
A3

A2

Al

AO

<1>4

Vss

VOO
<1>3

OBIN

CRUOUT

CRUIN

iNTREo

Pin Name

AD - A14
00 - 015
<1>1. <1>2. <1>3. <1>4
MEMEN
lAO·
DBIN
WE .
READY
WAIT
CRUCLK

. CRUOUT
CRUIN
iNTRffi
ICO - IC3

" HOiJ).

HOLDA
LOAD
RESET
VBB. VCC. VDD. Vss

Description

Address Bus
Data Bus
Clock Signals
Memory Enable
Instruction Fetch·
Data Bus In
Write Enable
Memory Ready
Wait State Indicator
I/O Clock
Serial I/O Out
Serial I/O In
Interrupt Request
Interrupt Code
DMA Request
Hold Acknowledge
Load Interrupt
Reset
Power and Ground reference

HOLD

MEMEN
READY

.WE
CRUCLK

VCC

D15 (LSB)

D14

013

D12

Dll

Dl0

D9

OS

D7

D6

05

D4
D3

02

01

DO (MSB)

VSS

ICO . (MSB)

ICl

IC2

IC3 (LSB)

Type

Tristate. output
Tristate. bidirectional
Input
Tristate. output
Output
Tristate. output
Tristate. output
Input
Output
Output
Output
Input
Input
Input
Input
Output
Input
Input

Figure 18-2. TMS 9900 Signals and Pin Assignments

18-14

c
w

~
a:
o
D..
a:
o
(J

~
ui
w

~
g
(I)
(I)

oct
all
w
Z
a:
o
al
(I)

o
~
oct
C
oct
@

Pins Ao - A 14 provide the 15-bit Address Bus. Note that Texas Instruments' literature numbers bits and pins
from left to right; therefore, address iine AO represents the most significant address bit, where as address line
A 14 represents the least significant address bit.

DO - 015 provide a 16-bit bidirectional Data Bus. Once again, DO represents the most significant data bit in Texas
Instruments' literature.

Remaining signals may be divided into bus control, interrupt control, and timing.

External logic must provi~e four clock sig~als, 11>1, 11>2, 11>3, and 11>4. These are provided by the TIM 9904, described
later in this chapter.

Any memory access operation begins with an address being output via the Address Bus. The TMS 9900 CPU iden­
tifies a stable addr~~s on the Address Bus by outputting MEMEN low.

If the memory access operation is an instruction fetch, the lAO is output high.

If the memory access is a read, then the TMS 9900 outputs a high level via DBIN. Memory interface logic must in­
terpret the high DBIN level as a signal to place data on the Data Bus.

If the memory access is a memory write, then the TMS 9900 CPU outputs a low pulse via WE. Memory interface
logic must use the low WE pulse to signal that valid data is on the Data Bus, and to store it in the addressed memory
location. WE low does not last as long as DBIN high. .

When external logic cannot respond to a memory access in the available time, it requests a Wait state by input­
ting READY low. The CPU ackno~ledges by outputting WAIT high.

CRUCLK, CRUIN, and CRUOUT are three signals used to implement single:bit or serial data transfers via the
CRU interface.

CRUOUT is used to output bits of data to the liD devices, and CRUIN is used to retrieve input data from the liD devices.
CRUCLK is active during output operations only, and defines when data bits on CRUOUT are valid.

Let us now look at interrupt control signals.

There is a single interrupt request input, INTREO, which must be held low by any external device requesting an
interrupt. External devices identify themselves via control signals ICO - IC3. Thus, an interrupt request must be
accompanied by the appropriate input at ICO - IC3.

Observe that there is no interrupt acknowledge signal.

For DMA operations, external logic requests access to the System Bus by inputting HOLD low. The CPU
acknowledges the Hold request by outputting HOLDA high.

LOAD is a nonmaskable interrupt.

RESET is a typical system Reset signal. However, TMS 9900 Reset logic uses the device's interrupt capabilities;
therefore, we will describe the Reset operation in detail.when discussing TMS 9900 interrupt capabilities in general.

TMS 9900 TIMING AND INSTRUCTION EXECUTION

TMS instructions execute as a sequence of machine cycles, each of which contains two clock periods. Clock
periods are timed by four clock signals, 11>1,11>2, 11>3, and 11>4, as illustrated in Figure 18-3. Note that 11>2 is the first
phase of each clock period, and that 11>1 is the last phase.

The simplest instruction execution machine cycle is an internal operations cycle. No external
bus signals are active during this machine cycle, and no memory or I/O access occurs. Timing for
an internal operations machine cycle will consist of two clock periods, as illustrated in
Figure 18-3.

MEMORY ACCESS OPERATIONS

TMS 9900
INTERNAL
OPERATIONS
MACHINE
CYCLE

TMS 9900 memory access operations may consist of a memory read or a memory write. An instruction fetch is
a minor variation of a memory read.

Figure 18-4 illustrates memory read machine cycle timing.

MEMEN goes low at the beginning of any memory access machine cycle and stays low for the entire machine cycle.

18-15

OSC

¢3

¢4

.... I----CLOCK PERIOD 1---....... I-----CLOCK PERIOD 2--~~

__________________ J

¢1

cf>3

¢4

DBIN

AO-A14

00-015

Figure 18-3. TMS 9900 Clock Periods and Timing Signals as
Generated by the TIM 9904

ONE MACHINE CYCLE~

CLOCK PERIOD 1 I CLOCK PERIOD 2 I

------t+--'

----+-H------oJ

ADDRESS OUT

INPUT MODE

CPU READS DATA

Figure 18-4. A TMS 9900 Memory Read Machine Cycle

18-16

INPUT MODE

c
w

~
a:
o
a.
a:
o
u
a;
en
w

~
(j
o
(/)
(/)

«
all
w
Z
a:
o
CD
(/)

o
~ «
c «
@

DBIN goes high at the beginning of the memory read machine cycle and stays high for the entire machine cycle. Exter­
nal logic can therefore use MEMEN low as a memory address indicator while DBIN high identifies the read operation.

A memory address is output stable on the Address Bus for the entire machine cycle.

The Data Bus operations during a memory read machine. cycle represent the only unusual characteristics of the
machine cycle. Input data needs to be stable during the <1>1 high pulse of the second clock period. However. the Data
Bus is connected to input logic for the entire memory read machine cycle and for a portion of the next machine cycle.
Thus. during a memory read machine cycle. external logic cannot access the Data Bus to perform direct memory ac­
cess. or any other operations. on the assumption that the Data Bus is free until Data In becomes stable. Moreover. since
the Data Bus is held by data input logic of the CPU during the next machine cycle. a memory read machine cycle can­
not be followed by a memory write machine cycle. A memory read machine cycle must be followed by an internal
operations machine cycle, or by another memory read machine cycle.

The only difference between an instruction fetch machine cycle and a memory read machine cycle is the fact that dur­
ing an instruction fetch machine cycle, IAQ is output high, along with DBIN. for the duration of the machine cycle.

..... I---------ONE MACHINE CYCLE -------~~

CLOCK PERIOD 1 CLOCK PERIOD 2

¢2

¢3

¢4 ______ ~--------J
MEMEN

WE

. AO-A14 ADDRESS OUT

00-015 DATA OUT

Figure 18-5. A TMS 9900 Memory Write Machine Cycle

Memory write machine cycle timing is illustrated in Figure 18-5. In this illustration. we see that data is output sta­
ble on the Data Bus for the entire duration of the memory write machine cycle. The Data Bus is not held by output logic
beyond this single machine cycle. Thus. no restrictions are placed on the type of machine cycle which can follow a
memory write machine cycle. Even though data output is stable for the entire memory write machine cycle. the write

18-17

enable strobe wrdoes not go low untii close to the end of the first clock period. In many cases it is easier to use NOT
DBIN as a write control signal. Here is the necessary logic:

MEMEN

I cg WRITE

DBIN READ

TMS 9900 instruction execution machine cycle sequences are not always self-evident; therefore, letus look at
some memory reference examples.

Memory address computations make machine cycle seqL.ie~ces quite complex. particularly for two-operand instruc­
tions. Fortunately. the exact machine cycle sequences are rarely of any consequence to you as a programmer or logic
designer. The eventual number of machine cycles required to execute an instruction (and therefore its execution time)
is important. .

Generally stated. instruction execution proceeds as follows:

1) The instruction object code is fetched.
2) The first operand address is computed.

3) The second operand address (if there is one) is computed.

4) Any operation that may be required is performed.

5) If a result is generated. it is returned to the second operaild address.

TMS 9900
INSTRUCTION
EXECUTION
SEQUENCES

Let us look at operand address computations using the ADD instruction (A) as a general example. First consider the in~
struction in its simplest form - where the contents of one register are added to the contents of another register:

A R1.R2

Cycle Type Figure Function
1 MEMORY READ 18-4 Fetch instruction object code
2 ALU 18-3 Decode instruction
3 MEMORY READ 18-4 Fetch R1 contents
4 ALU 18-3
5 MEMORY READ 18-4 Fetch R2 contents
6 ALU 18-3 Add R1 and R2 contents
7 MEMORY WRITE 18-5 Store sum in R2

Now consider the same instruction's execution. but using implied memory addressing for the first operand:

Cycle
1
2
3
4
5
6
7
8
9

Type
MEMORY READ
ALU
MEMORY READ'
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY WRITE

A *R1.R2

Figure
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-5

Function
Fetch instruction object code
Decode instruction
Fetch R1 contents
Use R1 contents as a memory address (implied addressing)
Fetch contents of implied address location

Fetch R2 contents
Add data fetched in cycles 5 and 7
Store sum in R2

18-18

c
w
~
a:
o
0.
a:
o u
~
u)
w

~
g
en
en
~
olJ
w
z
a:
o
In
en o
:!:
~
c
~

@

If the second (destination) operand uses direct addressing. here is the machine cycle sequence:

Cycle Type
1 MEMORY READ
2 ALU
3 MEMORY READ
4 ALU
5 MEMORY READ

6.7.8 ALU
9 MEMORY READ
10 ALU
11 MEMORY READ
12 ALU
13 MEMORY WRITE

A

Figure
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-5

*R1.@LABEL

Function
Fetch instruction object code
Decode instruction
Fetch R1 contents
Use R1 contents as a memory address
Fetch contents of implied address location

Fetch the second instruction object code word: it holds the direct addres?

Fetch contents of directly addressed memory word
Add words fetched in cycles 5 and 11
Store sum in directly addressed memory word

Indexed. direct addressing results in the following sequence:

Cycle
1
2
3
4
5
6
7
8
9
10
11
12
13

Type
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY WRITE

A *R1.@LABEL(5)

Figure
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-5

Function
Fetch instruction object code
Decode instruction
Fetch R1 contents
Use R1 contents as a memory address
Fetch contents of implied address location

Fetch the second instruction object code word: it holds the direct address

Fetch R5. the Index register contents
Add direct address and index
Fetch contents of memory word addressed by cycle 10 addition
Add memory words fetched in cycles 5 and 11
Store sum in memory word addressed by cycle 10 addition

If the first operand-implied address specified an auto-increment. w~ must add one more machine cycle:

A *R1 +.@LABEL(5)

Cycle
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Type
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY WRITE
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY READ
ALU
MEMORY WRITE

Figure
18-4
18-3
18-4
18-3
18-5
18-4
18-3
18-4
18-3
18-4
18-3
18-4
18-3
18-5

MEMORY SELECT LOGIC

Function
Fetch instruction object code
Decode instruction
Fetch R1 contents
Increment fetched R1 contents
Write incremented R1 contents back to R1
Fetch contents of implied address location

Fetch the second instruction object code word: it holds the direct address

Fetch R5. the Index register contents
Add direct address and index
Fetch contents of IT)emory word addressed by cycle 11 addition
Add memory words fetched in cycles 5 and 12
Store sum in memory word addressed by cycle 11 addition

MEMEN discriminates between memory and I/O accesses. It is therefore very important that MEMEN low be a
necessary component for any memory select.

You can map I/O into the memory space of the TMS 9900. This is tr.ue of any microprocessor. Memory addresses that
select I/O devices will. of course. also require 1\i1EMEN low as a contributor to I/O device select logic.

18-19

MEMEN as a contributor to select logic may be illustrated as follows:

1 CRl)

r4-
SELECT
LOGIC

~

~ j

,. r

MEMORY
AND

0 .. MEMORY
~ MAPPED

I/O SELECT
LOGIC

'-· · · -

--..
• •

!:

---..

· · · · · · ---..

SELECT TRUE ONLY IF
MEMEN IS HIGH AND
A12-A14 ARE 000

MEMEN
AO (LSB)

A11
A12
A14 (MSB)

SELECT TRUE
ONLY IF
MEMEN
IS LOW

The three high-order address lines. A 12. A 13. and A 14. are not used to address CRU bits. When addressing a CRU bit.
these lines are all low. They are not low during execution of externally defined I/O instructions: therefore. A 12. A 13.
and A 14 low must be a prerequisite for any CRU bit select.

TMS 9900 I/O INSTRUCTION TIMING
All TMS ~900 I/O instructions transfer serial data via the Communication Register Unit (CRU). (This excludes I/O which
is addressed as TMS 9900 memory space.)

There are four types of TMS 9900.1/0 instructions. They are:

1) Data input. Anywhere f~om 1 to 16 bits of data may be transferred from the CRU bit field to memory.

2) Data output. This is the simple reverse of data input. Anywhere from 1 to 16 bits of data m'ay be output from
memory to the CRU bit field.

3) Bit test. Any bit in the CRU bit field may be tested, The tested bit is input and stored in the Equal bit of the Status
register. Thence. condition branch instructions can be used to test the bit ·Ievel.

4) Externally defined I/O instructions. These instructions generate I/O control signals. but they transfer no data.

Timing for CRU output and input machine cycles is illustrated in Figures 18-6 and 18-7, respectively. Each of
these figures shows two bits of data being transferred. (You should not attach any special significance to this fact: de­
per:1ding on the instruction being executed. anywhere from 1 to 16 bits may be transferred.) CRU machine cycles are
executed contiguously. one per bit.

18-20

c
w

~
IX:
o
11.
IX:
o
U
~
iii
w

~
g
(I)
(I)
c:(

olJ
w
Z
IX:
o
m
(I)

o
~
c:(
c
c:(

@

Every CRU I/O instruction will require a memory reference machine cycle. together with one or more CRU machine cy­
cles. For example. when an STCR instruction is executed to input data from the CRU to the CPU, the following
machine cycle sequence will occur:

Cycle Type Figure Function

MEMORY READ 18-4 Fetch Instruction Code

2 ALU 18·3 Decode Instruction

a Cycles, where 0 <; a <; 4 } Obtain Destination Address

3+a

4+a

5+a

6+a
7+a

i Cycles

8+a+i
9+a + i

r Cycles

10 + a + i + r to
12+a+i+r

13+a+i+t"

C/>1

C/>2

CP.3

MEMORY READ 18-4 Fetch Destination Memory Word Contents

ALU 18·3

MEMORY READ 18-4 Fetch R12

ALU
18·3 Compute CRU Starting Address and Prepare

ALU

}
Control Signals

CRU IN 18·7 Input i CRU Bits

ALU
18-3 Load CRU Bits in Temporary Register ALU

} Fill Upper Bits of Byte or Word With Zeroes
If i >8, r = 15 - i; if i <; 8, r = 7 - i

ALU 18-3 Prepare to Store Memory Word

MEMORY WRITE 18-5 Output Assembled Word to Memory Location Whose
Contents Were Fetched in Machine Cycle 3 + a

rMACHINE CYCLE' MACHINE CYCLE 2-1

I CLOCK PERIOD 'I CLOCK PERIOD 2 CLOCK PERIOD' I CLOCK·PERIOD 21

--------'

---tt-.....,

C/>4 __ 1+-__

AO-A14

CRUOUT

--~----------~------~--~~---------+------~--~~

CRUCLK

Figure 18-6. Two TMS 9900 Output-to-CRU Machine Cycles

18-21

rMACHINE CYCLE 1 MACHINE CYCLE 2--1

1 CLOCK PE R laD 1 I CLOCK PE R laD 2 CLOCK PE R I 00 1 I CLOCK PE R laD 21

cp1

cp2

cp3 ---..-
cp4

AO-A14

CRUIN

CRU READS BIT CRU READS BIT

Figure 18-7. Two TMS 9900 Input-from-CRU Machine Cycles

An LDCR instruction outputs a sequence of 1 to 16 data bits to a CRU bit field. Here is the LDCR instruction
machine cycle sequence:

Cycle Type Figure Function
1 MEMORY READ 18-4 Fetch instruction object code
2 ALU 18-3 Decode instruction

a Cycles where 0=:;a:::;4 } Obtain source address

3+a MEMORY READ 18-4 Fetch source memory word contents
4+a

to ALU 18-3 Prepare for data transmission
7+a
8+a MEMORY READ 18-4 Fetch R12
9+a ALU 18-3 Compute CRU starting address

i Cycles CRU OUT 18-6 } Output i bits to CRU

10+a+i ALU 18-3 Machine cycle to conclude instruction

The SBO and SBZ instructions set or reset an addressed CRU bit; in essence, these instructions output one data
bit. Here is the machine cycle sequence via which the bit output occurs:

Cycle
1
2
3
4
5
6

Type
MEMORY READ
ALU
ALU
MEMORY READ
ALU
CRU OUT

Figure
18-4
18-3
18-3
18-4
18-3
18-6

Function
Fetch instruction object code
Decode instruction
Decode instruction
Fetch R12
Compute CRU address
Output to addressed CRU bit

The TB instruction inputs one CRU bit; its timing is identical to the SBO and SBZ instructions, except that
machine cycle 6 is a CRU IN machine cycle.

18-22

Q
w

~
a:
o
Q.
a:
o
o
~
en
w

~
(3
o en
en
~

0/1
w
Z
a:
o
en
en o
~
~
Q
~

@

The Address Bus is used in an unusual way during a CRU machine cycle. As we have already stated. the CRU bit
field is 4096 bits wide - addressed by 12 of the 15 Address Bus lines. The three high-order Address Bus lines are
used to identify I/O control instructions, as defined in Table 18-1. We can conclude from Table 18-1 that when
MEMEN is high and the three high-order Address Bus lines are all low. an I/O transfer is occurring. Otherwise. one of
five externally defined I/O control instructions is being executed. There are dedicated functions for these five I/O con­
trols in TM 990 minicomputer systems: these are shown in Table 18-1. But to anyone who is simply building a
microcomputer system around a TMS 9900. these five I/O states are undefined. Thus, Figure 18-8 illustrates TMS
9900 systems' bus utilization during both CRU operations and externally defined I/O operations. If CRU SEL and
MEMEN are high, CRU Select logic will be active.

Table 18-1. High-Order Address Bus Line Used by TMS 9900 I/O Instructions

INSTRUCTION INSTRUCTION (MSB) FUNCTION
MNEMONIC TYPE AI4 AI3 AI2

LDCR Output 0 0 0 Output data to,CRU
SBO Output 0 0 0 Set CRU bit to I

SBZ Output 0 0 0 Reset CRU bit to 0

STCR Input 0 0 0 Input data from CRU

TB Test (Input) 0 0 0 Input CRU bit to Equal status bit

IDLE Control 0 I 0 Enter HALT condition

RSET Control 0 I I Reset the Interrupt mask

CKOF Control I 0 I Real tIme clock on :f These are
CKON Control I I 0 R I t' I k ff TM 990 uses.

ea tme c oc a Instructions
LREX Control 1 I I Execute bootstrap are undefined

in a TMS 9900
system.

Externally defined instructions output 0 on the 12 low-order Address Bus lines, AO - A 11; in addition, CRUCLK
pulses are output as part of the instruction executions.

CRUCLK is an active CRU output strobe only. This signal pulses high whenever a valid level is present on the
CRUOUT signal line. There is no pulse for CRUIN. External logic must generate its own strobe if it is needed. by com­
bining MEMEN high with a valid bit pattern on the Address Bus.

CRU instructions that test the level of a bit are. to external logic. no different from CRU input instructions. External logic
is required to return. via CRUIN the level of the selected bit. The fact that the CPU interprets this input as status. rather
than data. is immaterial to external logic.

THE WAIT STATE
Additional Wait State clock periods may be inserted between clock periods 1 and 2 of any memory access machine cy­
cle. Timing is illustrated in Figure 18-9. At the rising edge of <1>1 of clock period 1. the CPU samples the READY input
signal. If this signal is low. then the next clock period is a Wait clock period. During a Wait cycle. the WAIT output sig­
nal is high: all other output signals hold the levels they had during clock period 1.

A Wait State can last for any number of clock periods. During the <1>1 high pulse of every Wait clock period. the CPU
samples the level of the READY input. As soon as READY is sampled high. the Wait State ends. The next clock period
becomes clock period 2 of the machine cycle. and the memory operation is completed.

18-23

.. . .
-

7
6

~
5

.4
3
2
1
O~

CRU SEL

t

CRU .. SELECT

• .
LOGIC

• • • .. .
If CRU SEl and iiii'EMEN are high. CRU Select logic will be active.

;,
:
:: . -. ..
.;.

.. -

· ~ ..
;,
·
~
..-

·

A14
A13
A12
A11

AO
CFfuCLK
c-Ru60-T·
CFfulN
MEMEN

LREX
CKON
CKOF
UNUSED
RSET
HALT
UNUSED

CRU SELECT
SIGNALS

Figure 18-8. TMS 9900 System Bus Utilization During 1/0 Operations

~f----------- ONE MACHI NE CYCLE;..---------~~

., . WAIT I· WAIT·
CLOCK PERIOD1 CLOCK PERIOD CLOCK PERIOD CLOCK PERIOD 2

cp1

cp2

cp3 __I

cp4 -------1
READY

WAIT

Figure 18-9. The TMS 9900 Wait State

18-24

o
w

~
a:
o
Q.
a:
o
o
~
iii
w

~ g
(I)
(I)
c(

a!I
w
Z
a:
o co
(I)

o
~
c(
o
c(

@

THE HOLD STATE·
The TMS 9900 has a typical microcomputer Hold State, used to enable direct memory access operations. Exter­
nal logic initiates a Hold State by inputting HOLD low. At the beginning of the next nonmemory reference machine cy­
cle. the CPU floats its Address and Data Busses. together with the· DBIN. MEMEN and Wt control signals. HOLDA is
output high as a Hold Acknowledge. Timing is illustrated in Figure 18-10.

(NON-MEMORY

I CLO~~~~~IOD 11 HOLD HOLD

1>1 \ n'--_~j....,

1>2

1>3
--+--'

1>4 _-+-_-+.J

HOLDA

00-015 ---~~---~-----

I CLOCK PERIOD i I

AO-A14, WE, }'
M"'E'M"E'N, DB I N _-'-_.J ---------t~-------.-.-

Figure 18-10. TMS 9900 Hold .State Timing

The Hold State lasts until external logic raises HOLD high again.

It is up to external logic to perform all operations associated with a DMA transfer. The CPU simply floats the
System Bus in response to a Hold request. As soon as the TMS 9911 device is available, this will be the part of
choice to use in all TMS 9900 microcomputer systems that use direct memory access logic. Any of the other
DMA devices described in Volume 3 may also be used. . .

The only nonobvious aspect of Figure 18-10 is the fact that Data Bus timing, during normal instruction execution.
differs from other System Bus signal timing. Figure 18-10 highlights this fact by showing the Data Bus floating at
the beginning of the first HOLD clock period. while other signals float earlier in the preceding clock period. This is not a
particularly significant event. The entire System Bus is floating once the HOLD clock· period has begun. However. the
actual tristate condition for any signal begins at that point in the preceding clock period when the signal is no longer
being driven by current operations.

THE HALT STATE
The TMS 9900 IDLE I/O instruction generates a Halt State. Whel") this instruction is executed. the CPU suspends all
program ~ion and internal operations. You must terminate the Idle condition with an interrupt request or a low
LOAD or RESET input. (LOAD and RESET are treated as interrupts as we will describe soon.)

The TMS 9900 CPU does not relinquish the System Bus while halted. That is to say. after an IDLE instruction has
been executed. no System Bus lines are floated.

18-25

The IDLE instruction is usually executed when program logic requires that the CPU wait for an interrupt. or when exter­
nal logic is computing a real-time interval - which will be terminated with an interrupt request.

You can, if you wish, initiate a DMA transfer by executing an IDLE instruction. In order to do this, you must
create a HOLD request from the Address Bus output characteristic of the IDLE instruction's execution. This may
be illustrated as follows:

A14
A13
A12

CRUCLK

HOi:D --

'---<l ---,
.....J

) + 5V

.= '
:~

I
PRE

'--- D

CK

7474

ClR

4

Q -'
HOLD

Q '---

..
' .. --

A14 (MSB)
A13
A12
CRUCLK

END HOLD

HOLDA --~----... ~ HOLDA

As illustrated above. the combination of 010 on the three high-order Address Bus lines: along with the CRUCLK pulse.
identifies the IDLE instruction, Since the process of floating the System Bus, will remove the conditions which gener­
ated a Hold request. these conditions are used to clock' a flip-flop, Thus. external logic which receives the Hold
acknowledge signal and takes control of the System Bus must subsequently reset the Hold request flip-flop in order to
remove the Hold condition, That is to say. program logic can begin a Hold state within a Halt state, but it cannot
end this combination. Two steps are needed to terminate a Hold within a Halt. The Hold request must be
removed, then an interrupt request must follow to terminate the Halt.

TMS 9900 INTERRUPT PROCESSING LOGIC'
The TMS 9900 has complex and capable interrupt processing logic. Sixteen levels of external interrupt are
available. Sixteen software interrupts are also'available. Fifteen of the sixteen external interrupts are maskable; the
nonmaskable interrupt has highest prioritY and is the system Reset'interrupt. There is. in addition. a non-maskable Load
interrupt. External interrupts may be summarized as follows:

LoAD
RESET

Maskable
Levels of
External
Interrupt

Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority
Priority

~riority

Priority

} 'Non-maskable, Equal Highest
0 ' Priority Interrupts

2
3
4
5
6
7
8
9

10
11
12
13
14
15 Lowest Priority Interrupt

18-26

c
w
~
a:
o
D..
a:
o
o
~
en
w

~
g
CI)
CI)
c(

o!I
w
Z
a:
o en
CI)

o
:iE
c(
o
c(

@

External logic identifies the priority of its interrupt request via the ICO. IC1. IC2. and IC3 inputs. as follows:

ICO IC1 IC2 IC3 Priority

0 0 0 0 Should not be input by external logic - highest external
0 0 0 1 1 '

0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 10
1 0 1 1 11
1 1 0 0 12
1 1 0 1 13
1 1 1 0 14
1 1 1 1 15 low.est external

Software interrupts are executed via the XOP instruction. There are, in addition, instructions that parallel the
RESET and LOAD interrupts. We will describe these instructions in due course.

Each one of the external interrupts has two dedicated memory words via which vectoring is TMS 9900
enabled following an interrupt acknowledge. Figure 18-11 illustrates the memory map asso- INTERRUPT
ciated with interrupt vectoring. The memory addresses in Figure 18-11 are byte addresses as VECTOR MAP
seen by the programmer. Remember. the low-order bit of the address shown in Figure 18-11 is not
output on the Address Bus; therefore. you must divide the memory addresses shown in Figure 18-11 by 2 in order to
generate the address which will be seen by external memory.

The memory words dedicated to interrupt vectoring. as illustrated in Figure 18-11. can be read-only memory.
read/write memory. or any combination of the two. Obviously. read-only memory will be used in applications that have
dedicated interrupt service routines for specific interrupt requests, Read/write memory might be used in minicom­
puter-type applications where the interrupt response will depend on the application being serviced.

Interrupt masking and priorities apply only to external interrupt requests. Interrupt masking priorities cannot be
applied to software interrupts (the XOP instruction). Since program logic must generate the software interrupt. pro­
gram logic can equally be relied on to know which software interrupt is to be executed. and whether the software inter­
rupt is allowed by current program logic. That is to say. from the programmer's viewpoint. a software interrupt is simply
the consequence of an XOP instruction's execution; you. as a programmer. can include an XOP instruction anywhere in
a program. within or outside an interrupt service routine. XOP instructions might be used in response to error condi­
tions. or to call any frequently used sU,broutines.

Let us begin by looking at the way in which external ,interrupts are processed.

'Any external device wishing to request an interrupt must pull the INTREQ input low while simultaneously plac­
ing a 4-bit code at the ICO - IC3 inputs. The CPU will acknowledge the interrupt, provided that its priority, as
identified by the ICO - IC3 inputs, is enabled. The interrupt will be acknowledged at the conclusion of the cur­
rently executing instruction. The BLWP and XOP instructions are exceptions; for the integrity of program logic.
they demand that ,the next sequential instruction be executed. Therefore. if an interrupt request occurs while either of
these two instructions is being executed. the interrupt will not be acknowledged until this instruction and the next in-
struction have been executed. '

18-27

MEMORY MEMORY WORD CONTENT

ADDRESS 1s

AREA DEFINmON

INTERRUPT VECTORS

XOP SOFTWARE TRAP VECTORS

GENERAL MEMORY FOR

PROGRAM. DATA. AND

WORKSPACE REGISTERS

LOAD ~GNAL VECTOR C

0000 WP LEVEL 0 INTERRUPT

0002 PC LEVEL 0 INTERRUPT

0004 WP LEVEL 1 INTERRUPT

0006 PC LEVEL 1 INTERRUPT

OOJC WP LEVEL 15 INTERRUPT

OOJE PC LEVEL. 15 INTERRUPT

0040 WP XOP 0

0042 PC XOPO

007C WP XOP 15

007E PC XOP 15

0080

· · · GENERAL MEMORY AREA
MAY BE ANY

COMBINATION OF

PROGRAM SPACE

OR WORKSPACE · · ·
FFFC WP LOAD FUNCTION

FFFE PC LOAD FUNCTION

Figure 18-11. TMS 9900 Memory Map

When an interrupt is acknowledged, the following machine cycles are executed:

Cycle Type Figure Function
1 ALU 18-3

I

2 MEMORY READ 18-4 Move new WP register contents from vector word to temporary storage
3 ALU 18-3
4 MEMORY WRITE 18-5
5 ALU 18-3
6 MEMORY WRITE 18-5
7 ALU 18-3
8 MEMORY WRITE 18-5
9 ALU 18-3
10 MEMORY READ 18-4
11 ALU 18-3

Store status in new R15
Store ICO - IC3 levels in four low-order Status bits
Store incremented PC in new R14

Store old WP register contents in new R13

Fetch new PC contents from vector word
Fetch new WP contents from temporary storage

Vector words are illustrated in Figure 18-11.

18-28

Q
w

~
a:
o
Q.
a:
o
o
~
u)
w
~
g.
(f)
(f)
c(

o!j

w
Z
a:
o
en
(f)

o
~
c(
o
c(

@

At the conclusion of the interrupt acknowledge sequence listed above. the priority of the
acknowledged interrupt request. less one. is recorded in the four low-order Status register bits.
Thus. subsequent interrupt requests will be acknowledged only if their priority is higher than that
of the interrupt being serviced. That is to say. whenever an interrupt request occurs. CPU logic
compares the levels input at ICO - IC3 With the levels present in the four low-order Status register

TMS 9900
NESTED
INTERRUPT
PRIORITIES

bits. If ICO - IC3 is not greater than the mask. then the interrupt request will be acknowledged. If ICO - IC3 is higher.
then the interrupt request will not be acknowledged. Thus. in the normal course of events, TMS 9900 interrupt
priority logic disablelJ all interrupts of equal or lower priority than an acknowledged interrupt, while leaving high­
er priority interrupts enabled. Priorities are maintained for the duration of the interrupt service routine. This is il­
lustrated in the following figure. which you should read in the sequence ® - ® - © - @ - ® - ® -
@: .

0) 'nt.H"p" w;th 5 ~ 11

priorities 5, 8 and 1!; 0 / " --"
occur SimultaneOUSI/, ./ / '@)

f8\ ., / / \ Interrupt 7, having highest
\V Interru'pt ~Ith, / priority of three pending

PriOrity 5, / interrupts (7,8 and 11) will
acknowledged / immediately be acknowledged'

Main Program /
L

®

Interrupt with
priority 7 occurs

and is denied

/@) ®
/72

/
I ®

c;... __ ---Jo..L.._..,

I nterrupt service
routine 2 executes

Interrupt service routine 5
completes execution

The interrupt priority arbitration logic of the TMS 9900 is exceptional among microcomputers. Most microcomputers
arbitrate priorities at the instant interrupts are being acknowledged. and once an interrupt has been acknowledged. all
interrupts are disabled. That is to say. interrupt priorities apply only during the acknowledge process. In contrast. the
TMS 9900 maintains interrupt priorities for the duration of the interrupt service routine. as illustrated above.

The net effect of the interrupt response steps illustrated above is to perform a context switch while disabling all inter­
rupts that have the same priority as the acknowledged interrupt. or that have a lower priority.

There are some very important and nonobvious advantages to initiating an interrupt service routine with a con­
text switch.

Since the 16 new memory locations that will be used as general purpose registers may lie anywhere in read/write
memory. you can store parameters that will be used by the interrupt service routine. in advance of the interrupt. in
those memory locations that are ultimately to serve as general purpose registers for the duration of the interrupt service
routine.

You can. if you wish. modify the interrupt priority scheme that will control nested interrupts. As we have already
stated. if you do nothing about interrupt priorities. ·then any interrupt !iervice routine may be interrupted by a higher
priority external interrupt. but not by an external interrupt that has the same priority or a lower priority.

If you wish to eliminate nested interrupts entirely. then the first instruction executed within an interrupt service routine
must be an LlMI 0 instruction (Load Interrupt Mask Immediate). which clears the four low-order Status register bits.
thus disabling all maskable interrupts. A RESET or LOAD interrupt -'- or a level 0 external interrupt request - will still
be acknowledged; these should be alarm conditions and not part of the normal interrupt logic of any microcomputer.
You can execute variations of the LlMI instruction to increase or decrease the levels of priority that will be masked for
the duration of any interrupt service routine (or for that matter. any subsequent instruction within the interrupt service
routine) can load appropriate data into the four low-order bits of the Status register. thus changing the priority level at
which all subsequent interrupt requests will be disabled.

18-29

All interrupt service routines should end with an RTWP (Return Workspace Pointer) instruction. The RTWP in­
struction performs a reverse context switch. which puts the central processing unit back to the logical environment
which was interrupted. Observe that since the Status register is also saved during a forward context switch. the return
instruction will restore whatever level of interrupt priorities existed at the instant the interrupt was acknowledged. You
can. of course. modify the contents of General Purpose Registers R13. R14. and R15 in the course of an interrupt ser­
vice routine's execution. This allows program logic to alter the conditions that will be restored when the return instruc­
tion executes a reverse context switch.

The TtylS 9901 PSI, which we describe later in this chapter, provides multiple interrupt handling for TMS 9900
series CPUs. If your system does not include a TMS 9901, then external hardware required to support multiple
interrupts in a T'Y'~ 9900 microcomputer system will not be as straightforward as the software response.

First of' all. we must cope with the fact that if more than one interrupt request occurs TMS 9900
simu Itaneously. then there will be competition on the INTREO input. but there will also be MULTIPLE
competition at the four priority inputs. ICO - IC3. Resolving competition on the INTREQ input is INTERRUPT
no problem; you can wire-OR interrupt requests from many devices to create the CPU input. HARDWARE
But your external logic must make sure that only the highest priority combination of ICO - IC3 CONSIDERATIONS
appears at the TMS 9900 inputs. One method of doing ihis is to use latched decoders that
create a 4-bit output corresponding to the highest level input. provided that the decoder is enabled by a latching sig­
nal. This may be illustrated functionally as follows:

iNTREQ -- i
*0

I

TMS
9900

_ACO
ENABLE

- -= __ AC1 ::
-:

.. AC2 DECODER -

.. AC3 :. - ::.. --

. C; +5V

oc·
oc .

-.... i
~~ * *0

If (HI

(L

GHEST PRIORITY)
INT 1

'.

tNT 15
OWEST PRIORITY)

In the illustration above.15 external interrupt requests are input to a decoder. These interrupt requests are high true.
The 15 interrupt requests are buffered. inverted. and wire-ORed to create the master interrupt request INTREO. which
is input to the CPU. This master interrupt request also enables the decoder. That is to say. when the enable input to the

18-30

Q
w

~
a:
o
0..
a:
o
(.)

~
en
w

~
g
CI)
CI)
c(

oZl
w
Z
a:
o
CD
CI)

o
~
c(
Q
c(

@

decoder is high, the four outputs, ICO - IC3 will be low. When the enable input to the decoder is low, ICO - IC3 will out­
put a 4-bit value as follows:

000 0

000

000

o 0

000

o 0

o 0

o
000

o 0

o 0

o
o 0

o
o

* REPRESENTS A "DON'T CARE" BIT

o NM'O;f1O
N M 'O;f 10 ~ ~ 00 m ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
z z z z z z z z z z z z z z z
o 0 0 0 0 0 0 000 0 0 000

* * * * * * * * * * * * * *
o * * * ~ * * * * * * * * *
o 0 * * * * * * * * * * * *
000 * * * * * * * * * * *
o q 0 0 * * * * * * * * * *
o 0 0 0 0 * * * * * * * * *
o 0 0 0 0 0 * * * * * * * *
o 0 0 0 0 0 0 * ** * * * *
000 0 0 0 0 0 * * * * * *
o 0 0 0 0 0 0 '0 0 * * * * *
o 0 0 0 0 b 0 00 0 * * * *
o 0 0 0 0 0 0 0 000 * * *
o 0 0 0 0 0 0 0 0 0 0 0 * *
o 0 0 0 0 0 0 0 0 0 000 *
o 0 0 0 0 0 0 0 0 o· 0 0 0 0

If you do not use the TMS 9901, Texas Instruments suggests the following circuit to accomplish priority encoding:

+5V

.::D-------C""JII GS

r----I--f A2

,...--+---1 A 1

r---+---f A 0

TMS ICO

EI

74148
(TIM
9907)

EO

9900 ~-------~ ~---+~+-~--------..

L...o GS

IC1 ~
~----<~K ~ ~>---~~----fA2

IC2 ~
t----o()(-)(~

A1

Ica
I-----<:-K c;. .,,_---JP-------f AO

18-31

EI

74148
(TIM
9907)

4)

70-----'
6l)1li"'----

....
-- :: - :: --

7 1C)oI1III_1----

.. -

iNT1 (HIGHEST
• PRIORITY)

•
•

INT8

•
•
•
•

INT 15 (LOWEST
PRIORITY)

External logic must maintain its interrupt request until it receives its own specific interrupt acknowledge. This
need is obvious. since an interrupt request may be denied for a long time while higher priority interrupts are being ser­
viced.

The problem is that the TMS 9900.has no interrupt a~knowledge signals.

Interrupt ac~nowledge signals can be generated in one of two ways:

1) . By using CRU bit instructions to set and reset'external flip-flops that create interrup't acknowledge signals.

2) By decoding appropriate addresses on the Address Bus.

Figure 18-12 illustrates two possible configurations that will allow CRU bit set and reset instructions to gener­
ate interrupt acknowledge signals; The logic in Figure 18-12A generates a short interrupt acknowledge pulse.
CRUOUT becomes the input to a flip-flop which is decoded to generate CRU select signals. The CRU bit select and
MEMEN are gated to the flip~flop's Clear input. Therefore. when CRU bit "n" is selected. CLR is removed and CRUOUT
can be clQckE]d through. A set bit (SBO) instruction switches the flip-flop on. As soon as the flip-flop address is removed
at the end of the CRU 1/0 machine cycle. the flip-flop is cleared. thus terminating the interrupt acknowledge pulse.

The logic illustrated in Figure 18-12A requires that you execute an SBOinstruction at the beginning of every interrupt
service routine in order to generate an interrupt acknowledge. You could require every interrupt service routine to con­
trol the length of the interrupt acknowledge pulse by executing an SBZ instruction to terminate the pulse. Figure
18-12B shows logic to implement this scheme. When the flip-flop is selected by the appropriate CRU address. CRUCLK
will clock CRUOUT to INT ACK n. At other times. CRUCLK will merely clock the flip-flop's output through. thus making
no change. In this way. only SBO and SBZ instructions which address INT ACK n can set or reset the flip-flop.

Figure 18-13 illustrates generation of an interrupt acknowledge signal by identifying specific addresses on the
Address Bus. Following any interrupt acknowledge. specific memory locations will be accessed. as identified in Figure
18-11. in order to fetch the new values for the Program Counter and WP register. Figure 18-13 shows a very simple
scheme whereby Address Bus lines are combined with MEMEN low to generate high pulses for the duration of a valid
address. That isto say. the interrupt acknowledge signal will last for one machine cycle - the time that the valid ad­
dress exists on the Address Bus.

External logic which requested an interrupt removes its interrupt request and priority signals Upol'! receiving an
interrupt acknowledge.

18-32

Q
w
~
a:
o a..
a: o
u
~
en
w

~ g
CI)
CI)
c(

o!l
w
2
a:
o
en
CI)

A14
A13
A12
All

AO
MEMEN

CRUOUT

CRUCLK

T

CRU ,
.... ADDR

CRU'BIT

~ ~ ADDRESS
DECODE

(+ 5V

n SELECT ~

~

~

1~
PRE

D Q

.. CK

7474 Q

Ct:R

6J

:-..
;.,

... ..

--

A14 (MSB)
A13
A12
A~1

AO (LSB)

M'EME'N

INT ACK n

o A) Logic to create a short INT ACK n pulse
~
c(
Q
c(

@

P'R'E
n SE LECT ---4IIt--Q D Q t-..... -_ .. INT ACK n

Cr<.

CRUOUT + 5V. 7474 Q
C'C'R

CRUCLK ----------------

B) Logic to have a programmed INT ACK n pulse length

Figure 18-12. A TMS 9900 Interrupt Acknowledge Pulse Generated Using an SSO Instruction

A14

A5
A4

A1

MEME~

· · · · · ·
· ·

....
r r

INTERRUPT n
SELECT
LOGIC

I n SELECT

... .-
• · ' . · -.:. .-... -

.
0(,)00(')(')(')(') Y INTERRUPT ADDRESS

!.....I
.. -

A14

A5
A4

A1
MEMEN

INT ACK n

Figure 18-13. TMS 9900 Interrupt Acknowledge Generated by Decoding Valid Addresses

18-33

THE TMS 9900 RESET
You reset the 9900 microcomputer system by inputting a low RESET signal. This signal must remain low for at
least 3 clock periods. When the low RESET signal is removed, the following machine cycle sequence is ex-
ecuted: . .

Cycle Type
1 ALU
2 ALU
3 ALU
4 MEMORY READ

5 ALU
6 MEMORY WRITE
7 ALU
8 MEMORY WRITE
9 ALU

10 MEMORY WRITE
11 ALU
12 MEMORY READ
13 ALU

Figure
18-3
18-3
18-3
18-4

18-3
18-5
18-3
18-5
18-3
18-5
18-3
18-4
18-3

Function
Prepare for Level 0 interrupt

Fetch new WP register contents from memory word 000016 to temporary
storage

Store Status register contents in new R15

Store Program Counter contents in new R14

Store old WP register contents in new R13

Fetch new Program Counter contents from memory word 000116
Load WP register from temporary storage

Thus. program execution begins with a program whose starting address is stored in memory word 1. The starting ad­
dress for the 16 general purpose registers is stored in memory word O.

The TMS 9900 has a Reset instruction (RSETl. In reality. this instruction resets only the interrupt mask in the Status
register; it also outputs a code on the Address Bus. as identified in Table 18-1 and illustrated in Figure 18-8. TM 990
minicomputer systems use this signal to generate a program-initiated Reset. If you are designing your own TMS 9900-
based microcomputer system. you are free to use the RSET instruction in any way.

THE TMS 9900 LOAD OPERATION
The LOAD input to the TMS 9900 is a non-maskable, highest priority interrupt. Load must be input low for at
least one instruction's duration. Since the length of an instruction can vary, you must use the IAQ signal to con­
trol the LOAD input pulse width. Texas Instruments' literature recommends the following circuit:

+5V
~)

'. '.

PRE PRE
~ 0 0 --- D 0 -

lAO .. CK 7474 ~ ~CK 7474

TMS Q - Q
9900 a::R CLR

I ~
EXTERNAL LOAD

i:OAD

18-34

Q
w
~
a: o
n.
a:
o
(J

~
en
w

~
g
en
en
oCt
all
w
Z
a:
o
CD
en o
~
oCt
Q
oCt

@

The CPU checks LOAD at the end of each instruction's execution.

After a valid LOAD input has been acknowledged, the following machine cycle sequence is executed:

Cycle Type Figure Function
1 ALU 18-3
2 MEMORY READ 18-4 Input new WP register contents from memory word 7FFE16 to temporary

storage
3 ALU 18-3
4 MEMORY WRITE 18-5 Store in new R15
5 ALU 18-3
6 MEMORY WRITE 18-5 Store incremented Program Counter contents in new R14
7 ALU 18-3
8 MEMORY WRITE 18-5 Store old WP register contents in new R13
9 ALU 18-3

10 MEMORY READ 18-4 Input new Program Counter contents from word 7FFF16
11 ALU 18-3 Load WP register from temporary storage

There are two differences between Reset and Load. First, the RESET input provides a true hardware reset, syn­
chronizing internal operations, as well as a level 0 interrupt; LOAD provides only a non-maskable interrupt. Sec­
ond, the Reset vector in bytes 0 through 3, while the Load vector is in bytes FFFC16 through FFFF16'

In TM 990 minicomputer systems, the LREX instruction is frequently used as a software load. Output due to
LREX is identified in Table 18-1 and Figure 18-8. In a TMS 9900 microcomputer system, you can use the LREX
signal in any way.

THE TMS 9900 INSTRUCTION SET
The TMS 9900 instruction set is extremely powerful when compared to any 16-bit microprocessor described in
this book. When you consider that the TMS 9900 was first manufactured in 1976, the power of this instruction
set becomes. more impressive.

With regard to instructions described in Table 18-2, some explanations are required.

The ABS instruction converts the contents of a memory location to their absolute value. That is to say, this instruction
assumes that the memory location contains a signed binary number. If the number is positive, nothing happens. If the
number is negative, the twos complement of the number is taken.

A number of instructions act on specific bits within source and destination memory words. These include the SOC,
SOCB, SZC, SZCB, COC, and CZC instructions. In the OPERATION PERFORMED column of Table 18-2, the word
"corresponding" means that the source word bits are affected only if selected by the destination word bit pattern. For
example. the SOC instruction will be interpreted as follows:

Source:
Destination:

After SOC:

This is equivalent to an OR operation.

Here are the new destina­

tion contents.

The SOCS instruction is identical to the SOC instruction. except that only one byte is affected. This may be any memo­
ry byte or the high-order byte of a general purpose register.

The SZC instruction may be illustrated as follows:

Source:

Destination:

After SZC:

18-35

This is equivalent to complementing the source operand and then ANDing the two operands. The SZCB instruction is
identical to the SZC instruction. except that only one byte is affected.

The CDC instructio'n compares Source Register 1 bits with general purpose register bits that happen to be in the same
bit positions. If all corresponding general purpose register bits are also 1. then the Equal status is set. Matches are not
significant in bit positions if the source register bit is O.

The CZC instruction operates in the same fashion as the CDC instruction. except that those source memory word bits
that are 0 become significant. That is to say. if every source memory word 0 bit has a corresponding Workspace
register 0 bit. then the Equal status is set. Matches are not significant ~n bit positions iUhe source register bit is 1.

The BLWP instruction is a subroutine call accompanied by a context switch. The operand memory address identifies
the first of two memory words within which the new WP register and Program Counter contents will be stored.

The BLWP instruction is remarkably powerful. The subroutine call and passing parameters to the subroutine become a
single operation. The memory words that are to serve as subroutine general purpose registers can be used as general
data memory locations prior to the subroutine call. Thus. the subroutine finds its registers pre-loaded with data when it
starts executing.

The RTWP instruction should be used to return from a subroutine that is called by the BLWP instruction.

One-bit position arithmetic shifts may be illustrated as follows:

Right Shift Left Shift

101 101 011 01 001 1 0 1011010110100110

~""""""'" """""""" 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 Lost Lost 0 1 1 0 1 0 1 1 0 1 0 0 11 .0 O~

Inserted

A one-bit-position logical right shift may be illustrated as follows:

1011010110100110

"""""""" o 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 Lost

Inserted -I

A one-bit right rotate (Shift Right Circularl may be illustrated as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

You can specify any number of bits. from 1 to 15. as the number of bit positions for any TMS 9900 shift or rotate in­
struction. If you specify 0 for the bit count. then the actual bit count is taken from the four low-order bits of general pur­
pose Register RO. If these fourlow-order bits are 0000. then the bit count is assumed to be 16.

18-36

o
w

~
a:
o
C1.
a:
o
(J

~
en
w

~
g
(/)
(/)

ct
ciS
w
Z
a:
o
CO
(/)
o
~
ct o
ct
@

The following symbols are used in Table 18-2:

AG Arithmetic Greater Than status

C Carry status

CNT 4-bit count field

CRUA

d

DATA4

DATA16

DISP
EQ

G
LG

OP

OV
PC·

R
Rxx
S
ST
WP

x<y.z>

[1

CRU base address from R12
Destination memory word. There are five possible options for the destination memory word. They are
represented by these combinations of addressing modes:
Workspace Register D
Implied through Workspace Register D
Direct address
Direct. indexed address
Implied through Workspace Register D. auto-increment Workspace Register D

4-bit data unit
16-bit data unit

8-bit signed displacement
Equal status bit of Status register

Both the AG and LG statuses

Logical Greater Than status

Odd Parity status

Overflow status
Program Counter

Any of the 16 Workspace registers

Workspace register. For example. R15 is Workspace Register 15

Sour~e memory location. Addressing options identical to destination memory location

Status register

Workspace Pointer register
Bits y through z of the quantity x. For example. ([S1 * [R1) <31.16 > represents the high-order word of
the product of the contents of the Source Register S and the Workspace Register R.
Contents of location enclosed within brackets. If a register designation is enclosed within the brackets.
then the designated register's contents are specified. If a memoiy address is enclosed within the brackets.
then the contents of the addressed memory location are specified.

Mu Itiplication

/ Division

A Logical AND

V Logical OR

4/- Logical Exclusive-OR
Data is transferred in the direction of the arrow

Under the heading of STATUSES in Table 18-2. an X indicates statuses which are modified in the course of the instruc~
tion' s execution. If there is no X. it means that the status maintains the value .it had before the instruction was ex­
ecuted .•

Byte-operand 'instructions will affect half of a 16-bit memory word. If the word is accessed as a general purpose
register, then only the high-order byte will be affected. If the word is accessed as non-register memory, then
the byte affected is determined by the least significant bit of the ·16·bit address: 0 selects the high-order byte;
1 selects the low-order byte.

18-37

r:' w
co

TYPE MNEMONIC OPERAND(S) BYTES

LOCR S.CNT 2

STCR O.CNT 2

g
SBO OISP 2

SBZ OISP" 2

TB OISP 2

w MOV S.D 2 »u
II:II:Z
<tOw
~~II: MOVB S.D 2 -ww
g:~~

A 5.0 2

AB S.O 2

W
l- S S.O 2
<t
II:
w a. SB S.O 2 0
>
II:

S.O 2 0 C
~ CB S.D 2 w
~
w XOR u S.R 2

Z
w
II: MPY w S.R 2
u..
w
II:

>
II:
0
~ OIV S.R 2
w
~
>
II:
<t
0
Z
0 INC 0 2 U
w
CI)

INCT 0 2

DEC 0 2

"OP status is affected only if between 1 and 8 bits are transferred.

G

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Table 18-2. TMS 9900 Instruction Set Summary

STATUSES
OPERATION PERFORMED

EQ C OV OP

X X" [CRUA]-[S<CNT-l.0>]
Transfer the specified number of bits from source memory word to the CRU.

X X" [0 <CNT-l.0 >]-[CRUA]
Transfer the specified number of bits from the CRU to destination memory word.

[CRUA + OISP]-l

Set "bit in CRU to 1.

[CRUA+ OISP]-O

Set bit in CRU to O.

X If [CRUA + OISP] = O. then [EQ] = 1; or else [EQ)'= 0

Test bit in CRU.

X [O]-[S]

16-bit move contents of source memory word to destination memory word.

X X [O]-[S]

8-bit move contents of source memory byte to destination memory byte.

X X X [O]-[S]+ [0]

16-bit add contents of source memory word to contents of destination memory word.

X X X X [O]-[S] + [0]

8-bit add contents of source memory byte to contents of destination memory byte.

X X X [0]-[0] - [S]

16-bit subtract contents of source memory from contents of destination memory word.

X X X X [0]"":'[0] - [S]

8-bit subtract contents of source memory byte from contents of destination memory byte.

X Set status flags based on 16-bit comparison of source and destination memory word contents.

X X Set status flags based on 8-bit comparison of source memory byte contents and destination

memory byte contents.

X [R]-[S]V [R]

Exclusive-OR contents of source memory word with Workspace Register R.
[R]-[([S]" [R])<31.16>]

[R+ 11-[([S]"[R])<15.0>]
Multiply the contents of source memory word by contents of Workspace Register R. Store most

significant word of result in R. Store least significant word of result in Workspace Register R + 1.

X [R]-([R.R+ 111 [S]Xquotient)

[R + 11-([R.R + 111 [S]Xremainder)
Divide the 32-bit quantity represented by R (high-order word) concatenated with R + 1 (low

order) by the contents of the source memory word.· Store the quotient in R. the remainder in

R + 1 and set overflow if quotient will exceed 16 bits.

X X X [0]-[0]+1

Increment contents of memory word by 1.

X X X [0]-[0]+2

Increment contents of memory word by 2.

X X X [0]-[0] -1

Decrement contents of memory word by 1.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 18-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES
·TYPE MNEMONIC OPERAND IS) BYTES OPERATION PERFORMED

G EQ C OV OP

DECT D 2 X X X X [D]-[D]-2

Decrement contents of memory word by 2.

is CLR D 2 [D]-000016. .
ILl Oear the destination memory word.
J
Z SETa D 2 [D]-FFF~16
~
Z Set all.blts of memory word.
0 INV D 2 X X [D]-(O] g
iii Ones complement the destination memory word. ... NEG D 2 X X X X [D]-['DJ+1 q:
a: Twos complement the destination memory word.
ILl
A. ABS D 2 X X X X [D]-I [D]I 0
> a:

Take the absolute (unsigned) value of the'destination memory word's contents.

0
D [D<15.8>]-[D<7.0>] ~ SWPB 2

ILl Exchange the high and low bytes of the memory word.
!
ILl SOC S.D 2 X X If [S<i>]=l. then [D<i>]-l
0 Set the bits in the destination memory word that correspond to 1s in the source-memory word
Z
ILl for all 16 bits. a:

. ILl saCB S.D 2 X X X If [S<i>]=;. then [D<i>]-l ...
ILl Set the bits in the destination memory word that correspond to 1s in the'source memory word a:
> for 8 bits. a:
0 SZC S.D 2 X X If [S<i>]=l, then [D<i>]-P
~
ILl Oear the bits in·theLlestination memory word that correspond to·ls in the source memory word
~ for all 16 bits.
> SZCB S.D 2 X X If [S<i>]=l, then [D<i>]-O a: X
.q:

Clear the bits in the-destination memory word that correspond to 1s in the source memory word 0
Z for 8 bits. 0
0 COC S,R X If for an:[.5<i>]=l, [R<i>]=l. then [EQ]-l ILl
en If the bits in the Workspace Register R ·that correspond to the set bits in the source memory

word are all1s, set the EQUAL status.

CZC S,R 2 X If for all [S<i>]=l, [R<i>]=O, then [EQ]=l
If the bits in the:Workspace Register R that correspond to set bits in the source memory word

lire aliOs, set the EQUAL status.

ILl ...
LI R,DATA16 4 X X [R]-DATA16 q:

C Load immediate to Workspace Register R.
ILl

~ . LWPI DATA 16 -4 [WR]-DATA16

~ Load immediate to Workspace Pointer Register. WR.

Table 18-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES

TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED
G EQ C OV OP

w CI R,DATA16 4 X X Set the status flags based un 16-bit comparison between contents of Workspace Register Rand
l-
e:(immediate data. a:
w AI R,DATA16 4 X X X X [R]-[R] + DATA 16 II-
0 Add immediate to Workspace Register R contents.
w
I- ANDI R,DATA16 4 X X [R]-[R] A DATA 16
e:(

e AND immediate with Workspace Register R contents.
w

ORI R.DATA16 4 X X [R]-[R] V DATA16 :E
~ OR immediate with Workspace. Register R contents.

B S 2 [PC]-[S]
II-
:E Branch unconditional to address in Source memory word.
~ JMP DISP 2 [PC]-[PC]+DISP. -,

Branch unconditional.

BL S 2 [R11l-[PC]+ 1

[PC]-[S]

Branch to subroutine at address in source memory word.
Z BLWP S 2 [R13]-[WP]
a:

w~ [R14]-[PC]
ZI-
-w [R15]-[ST] I-a:
~C [WP]-[S] gz
me:([PC]-[S+2]
~..J Branch to subroutine whose address -is stored in source memory word + 1. Perform context
1/)...1

e:(switch to RO address contained in source memory word.
0

RTWP 2 X X X X X [WP]-[R13]

[PC]-[R14]

[ST]-[R15] Perform a backward context switch.

JEQ DISP 2 If [EQ]=l; then [PC]-[PC] + DISP

Branch if equal.

JNE DISP 2 If [EQ] =0; then [PC] - [PC] + DISP

Branch if not equal.
Z
0 JGT DISP 2 If [AG]=l; then [PC]-[PC] + DISP

~ Branch on arithmetic greater than.
e

JLT DISP 2 If [AG]=O and [EQ]=O; then [PC]-[PC] +DISP Z
0 Branch on arithmetic less than.
0
Z JHE DISP 2 If [LG]=l or [EQ]=l; then [PC]-[PC] +DISP
0 Branch on logical greater than or equal.
l:
0 JH DISP 2 If [LG]=l and [EQ]=O;then [PC]-[PC]+DISP
Z
e:(Branch on logical greater than.
a:
m JL DISP 2 If [LG]=O and [EQ]=O; then [PC]-[PC] +DISP

Branch on logical less than.

JLE DISP 2 If [EQ]=l or [LG]=O; then [PC]-[PC]+DISP

Branch on less than or equal.

© ADAM OSBORNE & ASSOCIATES,INCORPORATED

Table 18-2. TMS 9900 Instruction Set Summary (Continued)

STATUSES
TYPE ,MNEMONIC OPERAND IS) BYTES OPERATION PERFORMED

G EO C OV OP

JNC DISP 2 If [C) =0: then [PC] - [PC] + DISP

ZZC
Branch on carry reset.

OOw JNO DISP 2 If [OV]=O: then [PC]-[PC] +DISP

~Ei Branch on overflow reset.
ZOi= JOC DISP 2 If [C]=l: then [pC]-[PC]+DISP «ZZ
a:00 Branch on carry set. IIIU~

JOP DISP 2 If [OP]=l; then [PC]-[PC]+ DISP

Branch on odd parity set.

a: W SLA R,CNT 2 X X X X Arithmetic shift'the Workspace Register R left the specified number of bits.
W l-
I- « SRA R,CNT 2 X X X Arithmetic shift the Workspace Register R right the specified number of bits. C/l a:
C5 W SRL R,CNT 2 X X X Logical shift the Workspace Register R right the specified number of bits.
W D-
a: 0 SRC R,CNT 2 X X X Rotate the Workspace Register R right the 'Specified number of bits.

STST R 2 [R]-[ST]

Store the Status register into Workspace Register R.

STWP R 2 [R]-[WP]

Store the Workspace Pointer into Workspace Register R.
01-

lIMI DATA4 4 [SR<3,O>] -DATA4 ZD-
«:l Load immediate data into the interrupt mask bits of the Status register. C/la:
:la: XOP S,R 2 X [R13]-[WP] I-w
«I- [R14]-[PC] I- Z
C/l- [R15]-[ST]

[Rl11-[S]

[WP]-[40,. +(4* [R])]

[PC]-[41,. +(4* [R])]

Perform a context switch. This is the software interrupt.

W
X S 2 Execute the instruction represented by the data in the source location. If that instruction has im-I-

:l mediate operand words, those words must be located directly after the X instruction. The instruc-U
W tion [S] will affect the status flags but its fetch will not cause lAO to go high. ><
W

IDLE 2 CPU enters Halt state.
CPU clears interrupt mask and outputs 001 on three high-order Address Bus lines.

RSET 011 on three high-order Address Bus lines.
> CKOF 110 out on three high-order Address Bus lines. -I

0 -I
101.out on three high-order Address Bus lines: « W CKON

Z ~ LREX 111 out on three high-order· Address Bus lines. a: LL
WW

~O
W

THE BENCHMARK PROGRAM
For the TMS 9900, our benchmark program may be illustrated as follows:

~OOP

BLWP

MOV
DEC
JNE
RTWP

MOVE

@IOBUF(R1):R2+
R1
LOOP

CONTEXT SWITCH TO APPROPRIATE REGISTERS

LOAD NEXT INPUT WORD IN NEXT TABLE WORD
DECREMENT COUNT
RETURN FOR 'MORE
RETURN FROM SUBROUTINE

Let us look at how our benchmark program can collapse to just five instructions.

We assume that there is some set of 16 General Purpose registers within which we store the word count and the ad­
dress of the first free word in TABLE. We illustrated this ideawhen describing context switching earlier in the chapter.

Observe that Register R1 contains the word count. and is therefore used as an Index register. while Register R2 ad­
dresses the first free word in TABLE. Note that the contents of Register R2 are incremented automatically when the
next byte is loaded into the table.

The BLWP instruction will branch to the program which performs the required data move. but simultaneously it loads
the Workspace register with the appropriate initial address. We do not need to load any initial addresses or word
counts into registers. since we have adopted the memory space where this data 'is stored to serve as our General Pur­
pose registers.

After the move has been completed. we do not have to update any counters or pointers. because they were updated
"in situ". All we have to do upon completing the move is store the contents of the current General Purpose Registers 13
and 14 to the Workspace register and Program Counter.

The following notation is used in Table 18-3:

aa Two bits determining the addressing mode for the destination memory word

bb . Two bits determining the addressing mode for the source memory word

cccccccc 8-bit signed address displacement

dddd Four bits Hsed with aa to determine the destination memory word

eeee 4-bit count field

rrrr Four pits choosing the Workspace register

ssss Four bits used with bb to determine the source memory word

xx 16 bits of immediate data

If either aa or bb is 1°2. and the corresponding register specified is 02. then an additional 16-bit direct memory address
word. used in computing the effective memory address of the operand. will follow the instruction.

It'aa and bb are 1°2. and both corresponding register specifications are 0. then two additional 16-bit direct memory ad­
dressing words will follow the instruction: the first will be used in computing the source address; the second will be
used in computing .the destination address.

18-42

Q
w

~
a: o
D.
a:
o
u
~
en
w

~ g
(I)
(I)

ct
ail
w
Z
a:
o
CD
(I)

o
::!:
ct
Q
ct
@

Table 18-3. TMS 9900 Instruction Set Object Codes

INSTRUCTION OBJECT CODE BYTES
CLOCK

INSTRUCTION OBJECT CODE
PERIODS·

A S,D 1010aaddddbbssss 2 14-30 (1) JOP DISP 000 111 OOcccccccc

AB S,D 1011aaddddbbssss 2 14-30 (1) LDCR S,CNT 00ll00eeeebbssss

ASS 0 0000011101aadddd 2 12-20 (6) LI R,DATA16 00000o 1 OOOOOrrrr

AI R,DATA16 00000o 1 0001 Orrrr 4 14 (17) XX

XX LlMI DATA4 00000o 1100000000

ANDI R,DATA16 00000o 1 00 1 00rrrr 4 14 (17) XX

XX LREX 00000o 11111 00000

B S 00000 1 000 1 bbssss 2 8-16 (7) LWPI DATA16 00000o 10 11100000

BL S 0000011010bbssss 2 12-20 (9) XX

BLWP S 00000 1 OOOObbssss 2 26-34 (10) MOV S,D l100aaddddbbssss

C S,D l000aaddddbbssss 2 14-30 (1) MOVB S,D 1101aaddddbbssss

CB S,D 100 1 aaddddbbssss 2 14-30(1) MPY S,R 001110rrrrbbssss

CI S,D 00000o 1 0 l000rrrr 4 14 (18) NEG 0 000001 0 l00aadddd

XX ORI R,DATA16 00000o 100 11 Orrrr
CKON 00000o 1111000000 2 6 (14) XX

CKOF 00000o 111 0 1 00000 2 6 (14) RSET 00000o 110 11 00000

CLR 0 00000100llaadddd 2 10-18 (5) RTWP 00000o 111 00000oo

COC S,R 00l000rrrrbbssss 2 10-18 (1) S S,D 0110aaddddbbssss

CZC S,R 001 00 1 rrrrbbssss 2 14-22 (1) SB S,D 0111 aaddddbbssss

DEC 0 0000011000aadddd 2 14-22 (5) SBO DISP 00011101cccccccc

DECT 0 0000011001aadddd 2 10-18 (5) SBZ DISP 000 1111 Occcccccc

DIV S,R 00 1111 rrrrbbssss 2 10-18 (3) SETO 0 0000011100aadddd

IDLE 00000o 1101 00000o 2 6 (14) SLA R,CNT 0000 1 0 lOeeeerrrr

INC 0 0000010110aadddd 16-124 (5) SOC S,D 1110aaddddbbssss

INCT 0 0000010111aadddd 2 10-18 (5) SOCB S,D 1111 aaddddbbssss

INV 0 000001010laadddd 2 10-18 (5) SRA R,CNT ooool000eeeerrrr

JEQ DISP 00010011cccccccc 2 10-18 (15) SRC R,CNT oooo1011eeeerrrr

JGT DISP 00010101cccccccc 2 8/10 (15) SRL R,CNT 0000 1 00 1 eeeerrrr

JH DISP 0001101lcccccccc 2 8/10 (15) STCR D,CNT 001101eeeeaadddd

JHE DISP 00010100cccccccc 2 8/10 (15) STST R 00000o 10 ll00rrrr

JL DISP 00011010cccccccc 2 8/10 (15) STWP R 00000o 10 1 0 1 Orrrr

JLE DISP 000100IOcccccccc 2 8/10 (15) SWPB 0 0000011011aadddd

JLT DISP 00010001cccccccc 2 8/10 (15) SZC S,D 0100aaddddbbssss

JMP DISP 000 1 OOOOcccccccc 2 10 (15) SZCB S,D 0101 aaddddbbssss

JNC DISP 00010111cccccccc 2 8/10 (15) TB DISP 00011111cccccccc

JNE DISP 00010110cccccccc 2 8/10 (15) X S 0000010010bbssss

JNO DISP 00011001cccccccc 2 8/10 (15) XOP S,R 001011rrrrbbssss

JOC DISP 000ll000cccccccc 2 8/10 (15) XOR S,R 001010rrrrbbssss

• The number in brackets identifies the instruction's machine cycle sequence, as defined in the preceding text.

18-43

BYTES
CLOCK

PERIODS·

2 8/10(15)

2 22-52 (11)

4 12 (19)

4 16 (21)

2 6 (14)

4 10(20)

2 14-30(1)

2 14-30(1)

2 52-60 (2)

2 12-20 (5)

14 (17)

2 6 (14)

2 14 (8)

2 14-30(1)

2 14-30 (1)

2 12 (13)

2 12 (13)

2 10-18 (5)

2 14-52 (16)

2 14-30(1)

2 14-30 (1)

2 14-52 (16)

2 14-52 (16)

2 14-52 (16)

2 42-60 (12)

2 8 (23)

2 8 (22)'

2 10-18 (23)

2 14-30 (1)

2 14-30 (1)

2 12 (8)

2 8-16 (7)

2 44-52 (4)

2 14-22 (1)

The minimum and maximum number of clock periods for the execution of each instruction are shown in the
CLOCK PERIODS column of Table 18-3. Remember that a machine cycle consists of two clock periods. The
bracketed number after the number of clock periods identifies the machine cycle sequence. Machine cycle se­
quences associated with each bracketed number are liste~ below. In the machine cycle list below, the follow­
ing abbreviations are used:

R represents a memory read machine cycle as identified in Fig~re 18-4.

A represents an ALU machine cycle as illustrated in Figure 18-3.

W represents a memory write machine cycle as illustrated in Figure 18-5.

C represents a CRU machine cycle as illustrated in Figures 18-6 and 18,-7.

A subscript associated with any machine cycle notation identifies that machine cycle repeated a number of times. Thus
A3 is equivalent to -A-A-A-. "

M represents memory address computation machine cycles. Memory address computations were described earlier in
this chapter. In summary. here are the various possibilities for M:

Register addressing:

Implied memory addressing:

R
R-A-R

Implied memory addressing with auto-increment (for byte operand): R-A-W-R

Implied memory addressing with auto-increment (for word operand): R-A-A-W-R

Direct addressing:

Direct. indexed addressing:

'(1) ,R-A-M-A-M-A-W"
(2) , R-A-M-A-R-A18-W-A-W

. (3) R-A-M-A-R-A-A-R-Ax-W-A-W (51 ~ x :::; 35)
(4) R-A-M-A3-R-A-W-A-W-A-W-A-W-A-R-A
(5) R-A-M-A-W
(6) R-A-M-A3-W-A
(7) R-A-M-A

. (8) R-A-A-R-R-R-A
(9), ' R-A-M-A-A-W

(10)· . R-A-M-A-A-W-A-W-A-W-A-R-A
(11) R-A-M-A4-R-A-Cx-A (16 ~ x < 1)
(12) , R-A-M-A-R~A-A-Cx-Ay-W (16 ~ x ~ 1. 11 < y ~ 5)
(13) R-A-A-R-A-C
(14)' . R-A-A-C-A-A
(15) R-Ax (x=3 or 4) ,',
(16) R-A-R-A-A-H-Ax-W-A (18 < x < 3)
(17) R-A-A-R-R-A-W
(18) R-A-R-A-R-A-A
(19) R-A-A-R-A-W
(20) R-A-A-R-A
(21) R-A-A-R-A3
(221 R-A-A-W
(23) R-A-M-A-R-A4-W

A-A-R-A-R

R-A-R-A-R

THE TMS 9980A AND THE TMS 9981 MICROPROCESSORS

The TMS 9980A and the TMS 9981 are low-cost variations of the TMS 9900. The principal differences bet­
ween the TMS 9900 series and TMS 9980 series microprocessors are summarized in Table 18-4. Differences
between the TMS 9980A and the TMS 9981 are summarized in Table 18-5.

This discussion of the TMS 9980 series microprocessors covers only differences as compared to the TMS 9900.

The TMS 9980 series microprocessors are manufactured using N-channel silicon gate MOS technology. They are
packaged as 40-pin DIPs. The TMS 9980A uses three power supplies: -5V. +5V. and +12V. The TMS 9981 uses two
power supplies: +5V and +12V.

Typically. a clock cycle timE/of 400 nanoseconds will be used with TMS 9980 series microprocessors. This generates
instruction execution times ranging between 4 and 14 microseconds.

18-44

Figure 18-14 illustrates that part of general microcomputer system logic which is implemented by the TMS
9980 series microprocessors. This figure is identical to Figure 18-1. with the exception of clock logic. which is now
shown present.

Programmable registers are implemented and used in exactly the same way the TMS 9900 and TMS 9980
series microprocessors. Note. however. that the TMS 9980 series microprocessors address a 2048-bit CRU;

~ therefore. bits 1 through 11 of Register R 12 identify the origin of any CRU bit field. The TMS 9900 uses bits 1 through
~ 12 of Register R12 to identify the .CRU origin within a 4096-bit CRU.
a:
~ Table 18-4. A Summary of Differences Between the TMS 9900 and TMS 9980 Series Microprocessors
a:
o
CJ
!:
en
w
l­
e(

g
en
en
e(

CI/l
w
z
a:
o
m
en
o
:!:
e(
c
e(

@

FUNCTION TMS 9900 TMS 9980A/TMS 9981

Addressable external memory 32.768 x 16-bit words 16.384 x 8-bit words
DIP pins 64 40
Data Bus 16 bits 8 bits
Address Bus 15 bits 13 bits
External interrupt priorities 15 4
CRU field width 4096 bits 2048 bits
Clock logic Four external inputs One external input

or internal (TMS 9981
only)

Table 18-5. A Summary of Differences Between the TMS 9980A and TMS 9981 Microprocessors

FUNCTION . TMS 9980A TMS 9981

Power supplies -5V. +5V. +12V +5V. +12V

Clock logic One external input One external input
or crystal only

Pin incompatibility ties DO - D7. INTO - INT2. <1>3

The TMS 9980 series microprocessors have a 14-line Address Bus, used to address up to 16,384 bytes of
memory. In contrast. the TMS 9900 addresses up to 32.768 16-bit words of external memory. Thus. TMS 9980 pro­
grams address memory as bytes. while externally generated addresses also select bytes. The TMS 9900. by way of con­
trast. addresses memory as bytes within the CPu. but as 16-bit words externally.

The TMS 9980 series microprocessors use exactly the same memory and CRU addressing techniques as the
TMS 9900. General-purpose registers are used in the same way. and instruction object codes are identical.

The Status register and Status flags used by the TMS 9980 series microprocessors are identical to those which
we have already described for the TMS 9900.

TMS 9980 SERIES MICROPROCESSOR PINS AND SIGNALS
Figure 18-15 illustrates pins and signals for the TMS 9980A. Figure 18-16 provides the same information for the
TMS 9981. In both of these illustrations. signal names conform to Texas Instruments nomenclature. For the Data and
Address Busses. our notation is given in brackets. Differences result from the fact that we number bits from right to left
(0 being the low-order bitl. while Texas Instruments numbers bits from left to right (0 becomes the high-order bit). TMS
9980A/TMS 9981 pin-out differences are shaded in Figures 18-15 and 18-16 so that you can identify them
quickly.

For descriptions of the individual signals, refer to the earlier TMS 9900 discussion.

18-45

.·,".Y·:.Y,.' ",: .. :·.:,,:Y,':Y\':'/::./··)' ,\:,.""":'" Y":·:·'·i.i Y.::·

.,:'.:.'.·, .• ::: ••..• : ..•. :.'i:':., .. , •. ,}(,' i.'YY·:<. ".':\:"':;"":"':',':':",,:." ".". :": .:,' :' .:""',:' ,:'.", .. :'" :'":,: •. ", •. :",,.,:" •.. ,.',/':.:'.:

Programmable
Timers

t
Read-Only
Memory

Data Counterisl

Stack Pointer

I/O Ports
Interface Logic

I/O Ports

Direct Memory
Access Control ~

Logic

,
Read/Write

Memory

Figure 18-14. Logic of the TMS 9980A and TMS9981 Microprocessors

18-46

Q
w
~
ex: o
Q.
ex:
o
CJ
:!!:
en
w

~ g
CI)
CI)

<
oil
w
Z
ex:
o
CD
CI)

o
::!!
<
Q

<
@

HOLD
HLDA

lAO
(LSB) (AO) CRUOUT/A13

(Al) A12
(A2) All
(A3) Al0

(A4) A9
(A5)A8
(A6)A7
(A7)A6
(A8)A5
(A9)A4

(Al0) A3
(All) A2
(A12)Al

(MSB) (A 13) AD

AO·A13

00·07

CKIN

1;3

lAO

DBIN

WE

READY

WAIT

CRUCLK

CRUOUT

CRUIN

DBIN
CRUIN

(+5V) VCC

Pin Name

INTO, INn, INT2

HoLi5

HOLDA

V BB ' V CC' V DD' VSS

40
2 39
3 38

WE

4 37 CRUCLK

5 36 V DD (+.12V)

6 35 vss (GND)

7 34 CKIN

8 33 (LSB)

9 32
10 TMS 31
11 9980A 30
12 29
13 28
14 27
15 26 (MSB)
16 25
17 24
18 23
19 22
20 21

Description Type

Address Bus Tristate, output

Data Bus Tristate, bidirectional

Clock signal in Input

Synchronizing clock Output

Memory Enable Tristate, qutput

I nstruction Fetch Output

Data Bus in Tristate, output

Write Enable Tristate, output

Memory Ready Input

Wait State indicator Output

I/O clock Output

Serial I/O out Output

Serial I/O in Input

Interrupt request and priority Input

DMA request Input

Hold acknowledge Output

Power and Ground reference

Figure 18-15. TMS 9980A Signals and Pin Assignments

18-47

Hc5ID-~ ..
HlDA-4---I

IAO ~--I
(lSB) (AO) CRUOUT/A13 1----1

(A1) A12 1...-.--1
(A2) A 11 ~--4
(A3) A10 1----I

(A4) A9 ---4

(A5)A8
(A6) A7 ---4
(A7) A6 1----1
(A8) A5 ~--t
(A9) A4

. (A10) A3
(A11) A2
(A12) .0.1

(MSB) (A 13) AO
OBI N 1----1

CRUIN
(+5V) VCC

1 40
2 39
3 38
4 37
5 36
6 35
-7 34
8 33
9 32

10 TMS 31
11 9981 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22

21

Pin Name Description

AO-A13 Address Bus

00-07 Data Bus

CKIN Clock or crystal connection

OSCOUT Crystal connection

Synchronizing clock

MEMEN Memory Enable

lAO I nstruction Fetch

DBIN Data Bus in

WE Write Enable

READY Memory Ready

WAIT Wait State indicator

CRUClK I/O clock

CRUOUT Serial I/O out

CRUIN Serial I/O in

INTO, INT1, INT2 I nterrupt request and priority

HOLD DMA request

HOLDA Hold acknowledge

VCC' V DD, VSS Power and Ground reference

(lSB)

(MSB)

Type

Tristate, output

Tristate, bidirectional

Inptlt

Output

Output

Tristate, output

Output

Tristate, output

Tristate, output

Input

Output

Output

Output

Input

Input

Input

Output

Figure 18-16. TMS 9981 Signals and Pin Assignments

18-48

o
w

~
a:
o
a..
a:
o
o
~
en
w

~
g
CI)
CI)

ct
olI
w
Z
a:
o
a:I
CI)

o
:E
ct o
ct
@

TMS 9980 SERIES MICROPROCESSOR TIMING AND II\ISTRUCTION EXECUTION
The TMS 9980A and TMS 9981 microprocessors have the same signal relationships and instruction execution
sequences as the TMS 9900. The few minor waveform differences are identified in the data sheets at the end of
this chapter.

The only significant difference between the TMS 9900 and TMS 9980 series Is in clock logic. The TMS 9900 re­
quires four clock inputs. as identified in Figure 18-3.

The TMS 9980A requires a single clock signal. input via CKIN. The frequency of this clock input
must be four times the desired clock frequency. That is to say. CKIN will be divided by four in
order to create one clock period. The TMS 9981 can operate with the same CKIN input as the TM~
9980A; however. you can also connect a crystal across CKIN and OSCOUT. This may be illustrated
as follows: '

CKIN ~------.-----------__ --__

o
OSCOUT t-----.------,

C 1 and C2 must have values between ,10pf and 25pf. typically 15pf.

TMS 9980
SERIES
CLOCK
LOGIC

The crystal must be of the fundamental frequency type. The frequency will be divided by four in order to create the in­
ternal clock frequency.

80th the TMS 9980A and the TMS 9981 output<l>3. a synchronizing clock signal. <1>3 is the inverse of the <1>3 clock sig­
nal shown in Figure 18-3 and in subsequent timing diagrams for the TMS 9900.

Thus you can create the timing diagram for any TMS 9980 operation by looking at the equivalent timing diagram for
the TMS 9900 and replacing the four TMS 9900 clock signals by a single timing pulse which will be the complement of
<1>3.

The following operations are identical within TMS 9900 and TMS 9980 systems:

• Memory references. However. note that memory reference will consist of two memory access cycles. as a 16-bit word
is handled as two bytes.

·CRU I/O operations (remember that the TMS 9980 series CRU is only 2048 bits wide).

·CRU control operations

• The Wait state

• The Hold state and direct memory access operations

• The Halt state

• The interaction of Hold and Halt states

Refer to the TMS 9900 discussion for any of the above topics.

TMS 9980 SERIES INTERRUPT LOGIC
The TMS 9980A and TMS 9981 microprocessors support four levels of external interrupt. together with a Reset and a
Load. Reset and Load are non-maskable interrupts. In contrast. the TMS 9900 supports 15 levels of external interrupt.
along with Reset.

The TMS 9980 series microprocessors identify external interrupts via the INTO. INT1, and INT2 inputs as
shown in Table 18·6. Figure 18·17 shows the interrupt vector map. ' ,

18-49

Table 18-6. TMS 9980 Interrupts

INTO INT1 INT2 I nterrupt Decoded

0 0 0 Reset

0 0 1 Reset

0 1 0 Load

0 1 1 Level 1 (H ighest Priority)

1 0 0 Level 2

1 0 1 Level 3

1 1 0 Level 4 (Lowest Priority)
,

1 1 1 No Interrupts

Observe that the TMS 9980A and the TMS 9981 have no i'i\ffREQ input. Also. the Reset and Load non-maskable inter­
rupts are decoded from the INTO - INT2 inputs.

Figure 18-18 shows some pin connections for various levels of interrupt complexity in a TMS 9980 series microcom­
puter system. The three illustrations shown are self-evident they simply implement the INTO - INT2 codes defined'
above.

The TMS 9980 series microprocessors provide all 16 XOP software interrupts available with a TMS 9900.

Observe that Figure 18-17 shows memory as 8-bit units in contrast to Figure 18-11. which shows memory as 16-bit
units. This reflects the fact that external memory is addressed as bytes by the TMS 9980A and the TMS 9981.

18-50

c
w

~
a:
o
Q.
a:
o
u
~
en
w
I­
<t
C3 o
en
en
<t
cIS
w
Z
a:
o
III
en o
~
<t
C
<t
@

Memory Memory Byte
Address Content

! 0000 WP HI
"I

Reset 0001 WP LO
} WP I

I

t
0002 PC HI > Reset Vector

0003 PC LO > PC

/ 0004 WP HI <

0005 WP LO
) WP

I

0006 PC HI
,

(LeveJ 1 Vector

0007 PC LO
I ~C

)

0008 WP HI

} 0009 WP LO
> WP

OOOA 'PC HI
Level 2 Vector

External Interrupt <:,' OOOB PC LO
) PC

~

OOOC WP HI I

} 0000 .wp LO
WP

OOOE
L...

PC HI
Level 3 Vector

OOOF PC LO
> PC

0010 WP HI

} Leve' 4 VeeW
0011 WP LO

~ WP

1 0012 PC HI } PC
; 0013 PC LO

Unassigned Memory 1
for Programs or Data <. I I

; L-

0040 WP HI
} WP }

L..

0041 WP LO

0042 PC HI
} PC

XOP a Vector

0043 PC L()

XOP Vectors, Use
Same Memory Space I I

as the TMS 9900

007C WP HI

} XOP 15 Veeto,

L...- \wp OP7D WP LO

007E PC Hi
007F PC LO

PC

-
Unassigned Memory I. I

Load {

3FFC WP HI

} Load Veew
3FFD WP. LO

VP 3FFF PC HI

3FFF PC LO
PC

-:

Figure 18-17. TMS 9980 Memory Map

18.:.51

r INTO

RESET ----41.--1 INT1

LEVEL4 -----IINT2

A) Using Reset and One
External Interrupt

RESET

L:O'A5

LEVEL 1

LEVEL 2

L.EVEL. :3

LEVEL 4

Vee
.)

4~

,.

'-c

TMS 9980A/
TMS 9981

b
7 E1

6

5 A2

4 A1

3 AD

2

1
SN74148

(TIM 9907)

-:!:--

... -

. e) Using Reset, Load and Four External Interrupts

INTO

TMS 9980A/
TMS 9981

RESET --H~-----1INT1

iJ5Ai5 INT2

B) Using Reset, Load and
One External Interrupt

INTO

INT1

INT2

TMS 9980A/
TMS 9981

Figure 18-18. Some TMS 9980A/TMS 9981 Interrupt Interfaces

The interrupt acknowledge process and interrupt priority arbitration logic are identical in TMS 9900 and TMS
9980 series microprocessors. For a discussion of t~ese subjects. refer to the earlier TMS 9900 description.

THE TMS 9980 SERIES INSTRUCTION SET
The TMS 9900 and TMS 9980 series microprocessors have identical instruction sets. Instructions execute in almost the
same sequences of machine cycles - the only difference is that each memory reference will have twice as many
memory access cycles. Refer to Tables 18-2 and 18-3. together with their accompanYing text. for details. Remember to
substitute two memory cycles for each TMS 9900 memory cycle.

THE TMS 9940 SINGLE-CHIP MICROCOMPUTERS

The TM~ 9940 is a single-chip microcomputer based on the TMS 9900 microprocessor. Figure 18-19 illustrates
that. part of our ~eneral microcomputer system logic provided by the TMS 9940 series microcomputer.

Specifically, this is the logic provided by the TMS 9940 series microcomputers:

·A Central Processing Unit. essentially equivalent to the TMS 9900 Central Processing Unit

·2048 bytes of read-only memory. Erasable Programmabl~ Read-Only Memory (EPROM) is provided by the TMS
99400E. Normal mask programmable Read-Only Memory (ROM) is available with the TMS 9940M.

·128 bytes of read/write memory. This read-write memory is frequently organized as four sets of sixteen 16-bit
registers.

18-52

c
w

ti
a:
o
D.
a:
o
(J

~
en
w
l­
e:(

U o
(I)
(I)
e:(

olI
w
Z
a:
o
a:a
(I)
o
~
e:(
C
e:(

@

• Two levels of external interrupt
• An on-chip timer/event counter with its own interrupt logic

·32 I/O pins accessed as 32 CRU bits
·A single +5V power supply

• On-chip clock logic

Clock Logic

Figure 18-19. Logic of the TMS 9940 Single-Chip Microcomputers

The TMS 9940 microcomputer has very iittle expansion logic; 256 external CRU bits can be addressed, but
there is no provision for executing programs directly from external memory. .

But the TMS 9940 is easily included in multiprocessor configurations. For multiprocessor configurations. the TMS
9940 has internal Hold request/acknowledge logic. together with a serial I/O path via which data can be transferred
between processors.

The TMS 9940 has two +5V power supplies: a standard operating power supply and a standby power supply.
Under program control. it is possible to shut down the TMS 9940. in which case only the standby power supply is ac­
tive. An external interrupt can subsequently restart the TMS 9940.

The TMS 9940 is manufactured using N-channel silicon gate MOS technology. It is packaged as a 40-pin DIP ..

Using a 3 MHz clock. instruction execution times range between 3 and 10 microseconds.

18-53

This description of the T!VIS 9940 microcomputer relies on the preceding detailed description of the TMS 9900.
This description of the TMS 9940 does not stand alone, and you should not read it until you understand the TMS
9900 in detail.

TMS 9940 REGISTERS AND READ/WRITE MEMORY
There are some important conceptual differences between the read/write memory/registers of the TMS 9940
and those of the TMS 9900.

The TMS 9940 has only 128 bytes of read/write memory. with all the read/write on the chip itself. and you cannot
create an external Data/Address Bus. Therefore. it makes no difference whether memory is addressed as bytes or
words. The only remaining restriction is that 16-bit words must be origined on even byte address boundaries.

ROM

0000

0002

0004

0006

0008

OOOA

oboc

OOOE

0010

0012

004E'

0050

0052

0054

0056

007C

007E

I

!

WP HI
WP LO

PC HI
PC LO

WP HI
WPLO

PC HI
PC LO

WP HI
WP LO

,pc HI
PC LO

WP HI
WP LO

PC HI
PC LO

WP HI
WPLO

PC HI
PC L.O,

WP HI
WPLO

PC HI
PC LO

WP HI
WP LO

... PC LO

>

>

<

>
1 ~

>
I'

>

}

>
I-

I)
I
I

I
i

>

>
I ~

>
1<

>
I)

WP} R,eset Vector

PC

WP } Level 1 Interrupt Vector

PC

WP} Decrementer Vector

PC

WP } Level 2 Interrupt Vector.

PC

Unused and Available for Programs

WP} XOP 4 Vector

PC

WP } XOP 5 Vector

PC

RAM

} XOP 6 - XOP 14 Vectors

~~~P~C~H~~I:}} :: } XOP 15 Vector 

0080 l ' 
( unus,ed and Ava,ilable for programs, 

07FF ..... __ .... ) 

:~~~E=l:~ 1 
~ : Register Set 1 

::~~ s· · :~: 
8320 R1 
8322 R2 

Register Set 2 

833E R15 
8340 ' R1 

8342 R2 

I , 

835E R15 

:~:~ : ::~ 1 Register Set 4 

837C t-----1R14 

837E c=JR15 

Figure 18-20, TMS 9940 Memory Map 

18-54 



Q 
w 

~ 
II: o 
a. 
II: 
o 
o 
~ 
u) 
w 

!i 
g 
en 
en 
c( 

ail 
w 
Z 
II: o 
CD 
en o 
:;! 

~ 
c( 

@ 

The TMS 9940 does introduce one additional read/write memory restriction: the 128 bytes of read/write memory 
are divided into four non-overlapping sets of sixteen 16-bit registers, as illustrated in Figure 18-20. Note that the 
128 bytes of read/write memory have specifically defined addresses. Both the TMS 9900 and the TMS 9980 series 
microprocessors allow any sixteen 16-bit words of memory to serve as a set of general purpose registers. whether or 
not they overlap with another set. 

:rhe TMS 9940 has the same three CPU registers as the TMS 9900: the Program Counter. the Workspace register. 
and the. Status register, The TMS 9940 sets aside general-purpose registers to serve specific functions. as does the 
TMS 9900. 

Given the configuration of the TMS 9940. many register designations can be justified only as a means of preserving 
TMS9900 series compatibility. For example. a 16-bit TMS 9940 Workspace register makes no sense when there are 
only 64 I'ocations that the Workspace register can possibly address. Moreover. the whole idea of context switching -
and tying up three 16-bit registers in order to execute a context switch - is ridiculous. given the few places to which 
you can context switch. 

But there is long-range sense in the TMS 9940 design. Over the next few years. enhancements of the TMS 9940 will 
appear with substantially more memory - both read-only memory and read/write memory. Since it is absolutely im­
perative that TMS 9940 programs be compatible with new. enhanced one-chip microcomputers that are likely to ap­
pear. it is necessary that addressing modes and architectural features that influence the instruction set be included in 
the TMS 9940 if they. will be useful in later enhancements. 

Despite' the fact that the TMS 9940 has only 128 bytes of read/write memory and 2048 bytes of read-only memory. the 
TMS 9940 has all of the TMS 9900 memory addressing modes. Note carefully that so far as memory addressing is con­
cerned. there .is no difference between rea'd"only memory and read/write memory. Many one-chip microcomputers 
have a scratqhpad re'ad/write memory which can only be accessed as data memory. while a separate program memory 
can only store instruction sequences. the TMS 9940 makes no such distinction between its read-only memory and 
read/write mernory. Data and instructions can be stored in read-only memory or in read/write memory. 

The TMS 9940 and TMS 9900 CRU addressing techniques are identical; however. the TMS 9940 has just 32,exter­
nal CRU bits. each with its own dedicated pin. By configuring 11 of these pins aS,address lines and CRU controls .. you 
can expand external CRU to 256 bits. 

There'are some small differences between the TMS 9930 Status re'gister as compared to the TMS 9900 Status register. 
The TMS 9940 Status register may be illustrated as follows: 

a l' 2 3 4 5 6 7 8 9 10 11 12 13 14 154-TMS99aa 8itNumber 

15'14'1~ 12 11, 10 9 8 7 6 5 4 3 2 0 ... Our Bit Number 

I ~ I ~ I = I C I 0 I P 1. 0 IAcl a I a I 01 a I a I a I I J 
.~ j • ~ 

.. 

.~ 

111' I -~L 
Status Register 

Inter.rupt Mask 

Unused 

Half Carry Status 

Parity Status 

Overflow Status 

Carry Status 

Equal Condit(on 

Arithmetic Greater Than Condition 

Logical Greater Than Condition 

TMS 99,40 L ... N. =. C. O. and P statu,ses.'are the same a~ those of the TMS 9900.' 

The TMS 9940 has no XOP instruction executed status. which the TMS 9900 holds in Status register bit 9. 

18-55 



The TMS 9940 has anAC status in bit 8. This is a half-carry status. For byte-oriented instructions. AC represents the ca-
rry from the low four bits to the higher four: .. 

7 6 5 4 3 2 04-Blt No. 

I pip I pip I Q I Q I Q I Q I Memory Byte 

U 
AC = 1, for Carry 

AC = 0 for NoCarry 

15 14 13 12 '1110 9 8 7 6',5 4 3 2 ',. O_BitNo. 

I ~ IA I A I (51 sis Is I N INI NI N I N I NIN I N I Gono,al-Pu,po," Aeg'''e, 

"- .. V .. ,,/ 

Byte Instructions operate on the 
high-order byte of a register. 

For 16·bit instructions. the AC status represents a carry from bit 11 to bit 12: 

15 14 13 12 11 1 0 9 8 7 6 5 4 3 2·· 1 0.- Bit No. 

I pip I P 10 jaI Q I Q I A I A I A I A I "I sis I s I 

AC = 1 for Carry 

AC = 0 for No Carry 

Mmory Word or­
General-Purpose Register 

Since there are just four levels of external interrupt. the TMS 9940 uses Status .register bits 0 and 1 for its interrupt 
mask. In contrast. the TMS 9900 uses Status register bits 0.-1. 2.and 3.for itsin,terrupt mask. 

TMS 1940 CPU PINS AND SIGNAL ASSIGNMENTS 
Fiture 18-21 illustrates the pins and signals of the TMS 9940 microcomputer. 

po. P31 and 321/0 pins addressed as 32 CRU bits. Some of these pins serve additional functions which can be 
selected under program control. 

18-56 



c 
w 

~ 
a: o 
Q. 
a: 
o 
Co) 

~ 
en w 
~ 
g 
en 
en 
c( 

o2J 
w 
Z 
a: 
o 
III 
en o 
~ g 
c( 

@ 

The TMS 9940 can, in fact. use standard TMS 9900 CRU instructions to address up to 612 CRU bits. But 512 is the 
maximum number of CRU bits that the TMS 9940 can address. Therefore. the TMS 9940 uses just 9 bits of General Pur­
pose Register R12 to create CRU bit addresses._For a single-bit CRU instruction. this may be illustrated as follows: 

Instruction Object Code 

~~-----------------~~----------------~, 
MSB LSB 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I' Ixlvlvlvlvlvlvlvl 

15 14 13 12 11 10 9 8 7 6 5 4 

x X V V V V V V V 
+ Z Z Z Z Z Z Z Z Z 

Sum Becomes Effective 
CRU Address 

18-57 

3 2 



P23 
P22 
P21 
P20 
P19 
P18 

EC/P17 
I DLE/P16 

HL5'A/P15 
H'[i5/P14 

TD/P12 
(+5V) V CC1 
(+5V) V CC2 

TC7P11 
(jJ/P13 

CRUCLK/P10 
CRUOUT/P9 

CRUIN/P8 
INT1/TST 

'"R'S'TjPE 

Pin Name 

PO - P31 
INT1/TST 
INT2/PROG 
RST/PE 
AO - A7 
CRUCLK 
CRUOUT 
CRUIN 
TC 
TO 
EC 
IDLE 
HLD 
HLDA 
<I> 
XT AL2, XT AL1 

VCC1 
VCC2 
VSS 

- .. 1 .. .. 2 -- - 3 - .. 4 .. 5 

-- - 6 .. 7 - .. 8 -- -.. 9 -..... 10 - - 11 
12 
13 

-- - 14 - .. 15 -
~ 16 - . 

- - 17 
~ 18 .. 19 -
~ 20 

Description 

CRU I/O pins 

40 
39 
38 
37 
36 
35 
34 
33 
32 

TMS 31 

9940 30 
29 
28 
27 
26 
25 
24 
23 
22 
21 

External interrupt and Test select 

.. .. -- · .. ----- -.. -
-- -- .. -- _ .. 

~ - · .. - .. - · 
-- -.. -- · 

~ - · .. - --- ~ - · 

VSS (GND) 
P31 
P30 
INT2/PROG 
P29 
P28 
P27 
P26 
P25 
P24 
P7/A8 (LSB) 

P6/A7 
P5/A6 
P4/A5 
P3/A4 
P2/A3 
P1/A2 
PO/A1 (MSB) 
XTAL2 
XTAL1 

Type 

Bidirectional 
Input 

External interrupt and EPROM programmer 
System reset and EPROM programmer enable 
External CRU bit address 

Input 
Input 
Output 
Output 
Output 
Input 
Bidirectional 
Bidirectional 
Input 
Output 
Input 
Output 
Output 

External CRU clock 
External serial I/O output 
External serial I/O input 
Multiprocessor data I/O clock 
Multiprocessor data I/O 
Event counter input 
Idle state indicator 
Hold request 
Hold acknowledge 
Synchronizing clock 
External crystal connections 
Standby + 5V power 
Normal + 5V power 
Ground reference 

(In this figure, Pn and An numbering conforms to Texas Instruments' policy of beginning with N=O for the high-order bit. We use N=O 
for the low-order bit.) 

Figure 18-21. TMS 9940 Microcomputer Signals and Pin Assignments 

18-58 



c 
w 

~ 
a: 
0 
Do 
a: 
0 
0 
~ 
en 
w ... 
c:( 

g 
CI) 
CI) 
c:( 

ail 
w 
2 
a: 
0 
ID 
CI) 

0 

~ 
c:( 
c 
c:( 

@ 

Table 18-7 shows how the TMS 9940 interprets its 512 available bit addresses. 

Table 18-7. TMS 9940 CRU Bit Address Assi~nments 

CRU Read Function Write Function Address 

000 to } External CR U bits; the address is output via A 1-A8. Data is transferred via CR U IN, CR UOUT 
OFF and CRUCLK 

100 to } Unused Unused 17F 

180 INT1 state Unused 

181 Oecrementer interrupt level Clear decrementer interrupt 

182 INT2 state Unused 

183 Unused Configuration bit a (CBO) 

184· Unused Configuration bit 1 (CB 1) 

185 Unused Configuration bit 2 (CB2) 

186 Unused Configuration bit 3 (CB3) 

190 to } Oecrementer register. 190 is the least sign ificant bit and 190 is the most sign ificant bit 
.190 

19E Unused Timer (high) or Counter (low) select 

19F Unused Unused 

1AO to } Multiprocessor System I nterface buffer register 
lAF 1 AO is the least significant bit and 1 AF is the most significant bit 

lBO to } General purpose flag bits lBF 

lCO to } Unused Identify direction for PO (via 1CO) through P31 (via 10F). 
10F 1 specifies output. 0 specifies input 

1 EO to } Local CRU pins (PO = 1 EO, P31 = 1 FF 1FF 
I 

The place to begin looking at Table 18-7 is at CRU bits 183, 184, 185, and 186. These four 
CRU bits represent write-only locations which determine how the 32 CRU pins illustrated in Figure 
18-21 will be used. 

If you look again at Figure 18-21. you will see that PO through P17 have shared functions. P 18 
through P31 are simple I/O pins without other programmable options. 

TMS 9940 
CRU BIT 
UTILIZATION 

CRU addresses 183, 184, 185 and 186 control the functions of PO through P16, as illustrated in Table 18-8. P 17 
options depend on real-time clock logic. which we will describe later. 

Let us look at the programmable options available with CRU pins PO through P31. 

It does not matter what options you have selected; you will actually access the 32 CRU pins PO - P31 via CRU ad­
dresses 1 E016 through 1 FF16. 

In the simplest case, all 32 pins, PO - P31, will be used for input or output. We call this Sim­
ple I/O mode. In order to use all 32 pins for data input or output. {that is. in Simple I/O model. all 
four of the configuration bits. CBO. CB1. CB2. and CB3. must be O. At any time. a CRU bit can 
either input data or output data. but it cannot be used for bidirectional data transfer. You must 
identify the direction for each pin by outputting appropriate data to CRU addresses 1 CO 16 

TMS 9940 
SIMPLE 
CRU I/O 
MODE 

through 1 DF16' As shown in Table 18-7. each pin has a dedicated CRU address. beginning with pin PO controlled by 

18-59 



1 C016 and ending with pin P31 controlled by CRU address 1 DF16. A 1 written to any Direction CRU bit causes the as­
sociated pin to output data only. A 0 written to any CRU Direction bit causes the associated pin to input data only. Of 
course. you can at any time change a pin from input to output or from output to input. under program control. by 
rewriting control information to Direction CRU bits 1 C016 through 1 DF16 

Table 18-8. TMS 9940.CRU Bits Whose Functions are Determined Under Program. Control 

CRU Function as Configured 

Bit Address Pin CBO = 0 CBO = 1 CB1, CB2, CB3 

0-7 1EO-1E7 23-30 PO-P7 A1-A8 No Effect 

8 1E8 18 P8 CRUIN No Effect 

9 1E9 17 P9 CRUOUT No Effect 

10 1EA 16 P10 CRUCLK No Effect 

CB1 = 0 CB1 = 1 CBO, CB2, CB3 

11 1EB 14 P11 TC No Effect 

12 1EC 11 P12 TO No Effect 

CB2 = 0 CB2 = 1 CBO, CB1, CB3 

13 1ED 15 P13 1> No Effect 

CB3 = 0 CB3 = 1 CBO, CB 1, CB2 

14 1EE 10 P14 HLD No Effect 

--15 1EF 9 P15 HLDA No Effect 

16 1FO 8 P16 IDLE No Effect 

You will always have to define the direction of data transfer for pins P18 through P31 - assuming that you are using 
these pins. When pins PO through P17 are being used in any of the special ways which we are about to describe. then 
the data direction associated with the special operation will apply. and it makes no difference what you output to the 
associated Direction CRU bit. 

If you wish to use 256 external CRU bits, then you must set CRU bit 183 (CBO) to 1. This is 
called I/O expansion mode. I/O expansion mode modifies the functions of pins PO through P10. 
When you use CRU addresses 00 through FF16 in I/O expansion mode. the address is output via 
pins PO - P7. which now function as CRU address lines A 1 - A8. P8. P9. and P1 0 serve as the stan­
dard CRU data transfer lines: CRUIN. CRUOUT. and CRUCLK. Timing for data input and output via 

TMS 9940 
CRU I/O 
EXPANSION 
MODE 

these three lines has been described for the TMS 9900. Refer to the TMS 9900 description for details. In order to il­
lustrate the use of external CRU, consider execution of the instructions: 

LI 
LI 
LDCR 

R3.>00 
R12.>140 
R3.4 

LOAD 1010 BINARY INTO UPPER BYTE OF R3 
LOAD A BASE ADDRESS OF 82 HEX INTO R12 
OUTPUT FOUR LOWcORDER BITS OF R3 TO CRU 

Note that R12 contains 014016 to represent the address 08216. since R12 bit 0 is unused: therefore the internal ad­
dress is. in effect. doubled. 

This instruction outputs 1010 to CRU bit 08216 (0). 08316 (1). 08416 (0). and 08516(1). Since fewer than eight bits will 
be transferred. they will come from the upper byte of the general purpose register. This is theevent sequence which 
occurs: 

1) The address 8216 is output via Al - A8. Remember. Texas Instruments' literature uses 0 to represent the high­
order bit: therefore A 1 represents the high-order address bit. and A8 represents the low-order address bit.CRUIN is 
inactive. but CRUOUT is low to represent 0 while CRUCLK is pulsed high to time the 0 bit on CRUOUT. 

18-60 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(J 

~ 
en 
w 

~ 
g 
C/) 
C/) 

~ 

"" w 
Z 
a: 
o 
CD 
C/) 

o 
~ 
~ 
c 
~ 

@ 

2) The address output on A 1 ~ A8 increments to 8316. and CRUOUT goes high. then CRUCLK pulses high. 

3) The address on A 1 - A8 increments to 8416. CRUOUT goes low again. and CRUCLK pulses high. 

4) The address on A 1 - A8 increments to 8516. and CRUOUT goes high. and CRUCLK pulses high. 

1010 has now been transmitted to four external CRU bits. 

Note that it is up to external logic to decode the CRU address output: however. the Parallel System interface (which we 
will describe in later editions) will connect directly to the TMS 9940 Address and CRU outputs that we have just de­
scribed. 

When you write 1 to CRU bit 18416 (CB1), pins P11 and P12 function as serial data 
transfer pins. The purpose of this logic is to allow the TMS 9940 to operate in multi-CPU 
configurations. This logic is very simple. You output data by writing the data to CRU bits 
1 A016 through 1 AF16. This data is immediately transmitted via TD (P12) as a serial data 
stream which is clocked by TC (P11). In keeping with normal bit sequence protocol. data is 
transmitted low-order bit first. Thus. 16 bits of data being output may be illustrated as follows: 

II: 
w 
o 
II: 
o 
± 
CJ 
I 
~tO 

.... 
o 
« 

11 1 0 11 11 11 10 11 10 11 11 11 10 11 10 1 

TC 

TO 

1 

II: 
w 
o 
II: 
o 
-~ 
o 
.J 

to .... 
11. « 

TMS 9940 
MULTIPROCESSOR 
SYSTEM 
INTERFACE 

I-U 
:>­
a... CJ 
1- 0 
:>.J 
O.J 
1-« 
(/)2 
II: II: 
-w 
11.1-
wX 
IW 
1->­
~m 
(/)z 
-w 
Iw 
I-.(/) 

When a TMS 9940 has a 1 written to CB1. it can also receive data via TD. Data input is again clocked by TC.lnput logic 
is the reverse of the output logic illustrated above; that is say. as a data stream is input. the first input bit is loaded into 
CRU bit 1 AF16. and the sixteenth input bit is loaded into CRU bit 1 A016. 

TMS 9940 multiprocessor system interface logic is used to transfer data from a memory location in one TMS 
9940 to a memory location in another TMS 9940. You will not normally use this logic to transfer data between a 
TMS 9940 and external logic; the CRU serves that purpose better. There are three reasons why you may want 
to use the TMS 9940 multiprocessor system interface; they are: 

1) To transmit status information. For example. one TMS 9940 could tell another how far it has progressed through 
various phases of a task by transmitting a status word whose bits have some predefined interpretation.' 

2) To transmit data. One TMS 9940 may generate data which another TMS 9940' needs in order to execute its pro­
grams. 

3) To transmit instruction sequences. Instructions could be transmitted from the read-only memory (or the 
read/write memory) of one TMS '9940 to the read/write memo'ry of another TMS 9940. The. receiving TMS 9940 
cou Id then execute the instruction sequence out of its read/write memory. -

18-61 



P31 -- 0 - P30 ~ INn ... P29 m P27 
P28 

m;: 
P26~ . 

:. Ul-
~--.. -- TO :2 P25 

· I-TC 

P31 - · 0 
INT1 P30 .~ -· P29 ~N P27 1-

:. P26 1-
P28 Ul-

~,.. .. :2 P25 - - TO 
I-TC 

- P31 - 0 - P30 ~ INTi -- m 1-P29 m .... P27 .. 
P28 

M 
P26 - Ul-

~~ - : TO ~ P25, - .. TC I-

P31 

+ 
0 

P30 ~ INT1, -, ,. •• ... P29 m P27 1 I- I m .... 
P28 "" P26 Ul-

10 11 12 13 - .. TO ~ P25 ..,~ 03 02 01 00 - - ... =rc I-
00 ~ .. 4~ 12 

74148 01! 11 -:. 74138 
02 I .. 

10 .. - - ~ - .. 0 
17 16 15 14 TO "" P25, ~- 04 05 06 07 P28 m P26, m .... 
.~ ~~ ~ , - P29 lO P27 I Ul-

P30 ~ TN'fl 
P31 I-

- TC ---: 0 - TO "" P25 ~I. - : P28 m .. m~ P26 ,.. 
P29 

U) 
P27 Ul-.. P30 ~ INT1' - P31 I-

- - iC - - 0 - TO "" P25, ~I-.. P28 m P26 m~ I" . ;., 
P29 I' I .. 

Ul- P27 - P30 ~ INT1 .. --- P31 I-

TC - TO 
0 

"" P25 ~ .. P28 m P26 m~ · P29 OJ P27 
--= 

Ul-
P30 ~ INT1 - P31 I--

Figure 18-22. Handshaking Logic in a TMS 9940 Multi-Microcomputer Network Communicating via the TD Data Line 

18-62 



c 
w 
~ 
a: o 
Q.. 
a: 
o 
CJ 
~ 
en 
w 
l­
e:( 
(; 
o 
CI) 
CI) 
e:( 

ell 
w 
Z 
a: 
o 
aI 
CI) 

o 
~ 
e:( 
c 
e:( 

@ 

You could use the CRU to perform any of the three data transfers described above. but the multiprocessor system inter­
face is somewhat easier to use. We say that data transfer via the multiprocessor system interface is "somewhat" easier 
to use because many problems still remain when you use the multiprocessor system interface. These problems arise 
from the fact that there is absolutely no handshaking protocol associated with the multiprocessor system inter­
face. For example. there is absolutely no protection against two TMS 9940s simultaneously trying to output data via 
TD and TC. There is no predefined protocol whereby a transmitting TMS 9940 identifies the receiving TMS 9940 or the 
instant data has been transmitted and should be read. Any protocol is your responsibility - to be provided by logic ex­
ternal to the TMS 9940s. Fortunately. this protocol is easy to implement. Figure 18-22 shows how eight TMS 
9940s can communicate with each other, such that each TMS 9940 may transmit data to, or receive data from, 
any other TMS 9940. The logic illustrated in Figure 18-22 is more complex than the logic you would need for a small 
system - for example. a two-microcomputer system. or a system where there are dedicated transmitters and receivers. 

While Figure 18-22 shows TMS 9940s communicating with each other. you will in ·fact use TMS 9940s just as fre­
quently with other microprocessors - such as a TMS 9900. Nevertheless. the concepts embodied in Figure 18-22 
would apply. from the viewpoint of the TMS 9940. in any other configuration. 

Let us look at how the logic in Figure 18-22 works. 

The first problem we must resolve is the problem of transmission contentions. How will we make sure that one TMS 
9940 does not try to transmit data while another TMS 9940 is already transmitting data? A simple scheme would be to 
set aside a particular CRU pin to serve as a "Busy" line. For example. every TMS 9940 could use P31 as a "Busy" output 
pin and P30 as a "Sense" input pin. We could wire-OR together all P31 Busy outputs and input this wire-OR to all P30 
Sense inputs. Now any TMS 9940 that wishes to transmit data will read its P30 CRU bit. If this bit is O. then it will out­
put 1 to P31. Outputting 1 to P31 causes all otherTMS 9940s to receive 1 at their P30 inputs. Thus. no other TMS 9940 
will begin transmitting data if another TMS 9940 was in the process of transmitting data. This logic may be illustrated 
as follows: 

P31 

P30 

output 1 
to P31 

All TMS 9940s 
now receive 
a high P30 

Another 
TMS 9940 
senses P30 
high - so 
does not 
try to 
output 

The problem with the logic illustrated above is that two TMS 9940s could simultaneously read P30. find it was O. out­
put 1 to P31. then output competing data on TD. While the chances of two microcomputers executing identical in­
structions at exactly the same time are very small. a well-designed microcomputer system must account for every po­
tential error. In Figure 18-22 we resolve our problem by using a 74148 8-to-3 decoder. The P31 output from every TMS 
9940 is connected to a different 74148 input. The 74148 outputs. via 00. 01. and 02. the line number for the highest 
priority active input. This three-line output is connected to the P28. P29. and P30 pins of every TMS 9940; we assume 
that these three pins are inputs at every TMS 9940. Nowevery TMS 9940 that wishes to transmit data via TD must out­
put a 1 to P31. It must then input the contents of P30. P29. and P28. Upon detecting its own ID on these three inputs. it 
begins data transmission. If a TMS 9940 outputs 1 via P31 and then reads in some other ID via P30. P29. and P28. then 
it must wait. Here is an appropriate instruction sequence: 

LOOP 

LI 
SBO 
STCR 
CI 
JNE 
LI 
LDCR 

R12. >3F8 
3 
R2.3 
R2.ID 
LOOP 
R12. >340 
R3.16 

LOAD P28 ADDRESS. X2. INTO R12 
SET P31 ON . 
INPUT P28. P29. AND P30 
COMPARE INPUT WITH DEVICE ID 
RETURN AND RE-ENTER CODE IF NOT CORRECT ID 
LOAD MPSI OUTPUT DATA BASE ADDRESS X2 
OUTPUT CONTENTS OF R3 VIA TD 

18-63 



Assuming that a TMS 9940 has output 1 to P31 and has received back its own ID via P28. P29. and P30. the TMS 9940 
is ready to transmit data. However. in addition to simply transmitting the data .. the TMS 9940 must tell the intended 
recipient that the data has been transmitted. In Figure 18-22 we use a 74138 3-to-8 demu Itiplexer for- this purpose. 
Pins P25. P26. and P27 of every TMS 9940 are outputs that connect to the 10.11. and 12 inputs of the 74138. The 
transmitting TMS 9940 outputs data which will be received by every other TMS 9940; however. the transmitting TMS 
9940 follows up by outputting a 3-bit code via P25. P26. andP27; this 3-bit code identifies the intended recipient. The 
3-bit code is input to the 74138. which generates one of eight possible outputs. These eight outputs become external 
interrupt request inputs to the eight TMS 9940s. Only the single TMS 9940 will receive the data which was transmitted 
by the eighth TMS 9940. only one TMS 9940 will receive an interrupt request signal: this is the TMS 9940 for which 
the transmitted data was intended. The TMS 9940 which receives data simply executes an STRCR instruction to move 
the data from CRU bits 1 A016 through 1 AF16 to the appropriate general purpose register. 

CRU bit 18516, the CB2 bit, serves the very limited purpose of outputting a synchronizing 
signal. When you output 1 to CB2, P13 ceases to be an I/O pin and instead outputs the inter­
nal TMS 9940 clock signal. 

TMS 9940 
SYNC MODE 

CRU bit 18616 (CB3) controls idle and hold logic for the TMS 9940. When you write a 1 to CRU bit 18616. pins P14 
and P15 act as hold request input (HLD) and hold acknowledge output (HLDA) signals. respectively. P 16 generates an 
IDLE output. 

The Hold request/acknowledge logic of the TMS 9940 is quite standard. The purpose of this TMS 9940. 
logic is to remove the TMS 9940 from any shared busses when some other microprocessor or HOLD LOGIC 
microcomputer is bus master. If CB3 is 1. then a low signal arriving at the TMS 9940 HLD input 
will cause the TMS 9940 to enter a Hold state at the conclusion of the current instruction's execution. A low HiJ5A out­
put marks the beginning of the Hold state. 

The IDLE signal is output low when an IDLE instruction is executed and CB3 is 1. The only 
way in which you can terminate an Idle state is by requesting an interrupt via INTl or TNT2. The 
TMS 9940 three-state signals are not floated in the Idle state. You must additionally enter the Hold 
state for this. 

The purpose of the IDLE instruction and signal is to enable standby power logic. This may be illustrated as follows: 

+5V 

IOLE LOW OPENS SWITCH 

Under normal circumstances. the power supply will input power to VCCl and VCC2. When IDLE goes low. the power 
input to VCC2 is switched off. While VCC 1 only is receiving power. the TMS 9940 read/write memory and interrupt 
logic is active. but all other logic is inactive. since the interrupt logic is active. any arriving interrupt request will be 
acknowledged. The process of acknowledging an interrupt request sets IDLE high again. This closes the switch and 
restores power to VCC2. which allows the TMS 9940 to resume normal execution. 

In the illustration above. note that IDLE is connected to HLD. 

18-64 



o 
w 

~ 
a: 
o 
Q. 
a: 
o 
u 
!: 
u) 
w 

~ 
g 
en 
en 
oct 
all 
w 
Z 
a: 
o 
en 
en o 
~ 
oct 
o 
oct 
@ 

TMS 9940 GENERAL.PURPOSE FLAGS 
If you look again at Table 18~7, you will see that C~U addresses 18016 through 1 BF16 address 16 general pur­
pose flags. These general purpose flags have no special hardware functions. They are programming aids and that 
is all. You can write data out to these flags. and you can read back the data. How you use this data is entirely up to pro­
gram logic. 

T~~ 994.0 ~iM..ER/EVENT ~OUNTE~LO.GIC ..... '. . 
The TMS 9940 has a timer.which can a'.so be used as an event counter. CRU bit 19E 16 determines whether this 
logic will function as a timer or as an everit counter~ If CRU bit 19E16 is high, then this logic serves as a Timer. If 
CRU bit 19E16 is low, then this logic s~ives as an event counter. 

Timer and Event Counter logic both use CRU bjts 19016 'through 19D16 as a 14-bit register whose contents are decre­
mented by Timer or Event Counter logic. This 14-bit register is buffered. That is to say. the initial value which you out­
put to CRU bits 19016 through 19D16 is stored in a buffer. in addition to being loaded into CRU bits 19016 through 
19D16. Subsequently. CRU bits 1 ~016 through 19D16 are decremented. but the buffer contents remain unaltered. 
When CRU bits 19016 through 19D16 decrement to O. they are reloaded from the buffer. Thus Timer/Event Counter 
logic runs continuously. An interrupt request is generated interrially when CRU bits 19016 through 19D16 decrement 
to O. . 

Remember. C~G:blt 19016 is the low-order bit. and CRU 19D16 is th~ high-order bit. This is' the reverse of hormal Texas 
Instruments bit numbering. where the high-order bit has the lowest bit number. However. this is consistent with the 
fact that Texas Instruments outputs data to the CRU low-order bit first. and addresses CRU bits in numerically ascend­
ing address sequence. 

When you write Oto CRL! bits J 90, 6 through 19DH3. you disable Timer/Event Counter logic. 

When the Tim~r/Ev~rit CouHt~r is op~rating as a timer, the 14-bit register represented by CRll bits 19016 
through 19016 are decrement~d once every 30 inierli~1 clock oscillations. The crystal conne'cted across XTAL 1 
and XT AL2determines clock oscillation frequency, When CRU bits 19016 through 19D16 time out to zero. an interrupt 
request is generated. 

When Timer/Even~ Counter logic is operating ~s a~ event counter, pin P17 seryes as ari inpul, receiving the 
event sequence to be counted. Every low-to-high transition of the signal input at P17 decrements the counter. Once 
again. when the counter counts out to O. an interrupt request occurs and the counter is reloaded from its buffer 
register. 

TMS 9940 INTERRUPT LOGIC 
The TMS 994:0 has four ext~rnal iriterrupt~ and twelve internal software interrupts. 

These are the four external inter~uPts: 

1) Reset. Thi~ has ~ighest prio~ity. 

2) A level 1 interrupt occurring at the INT1 pin. This has second highest priority. 
. • • 01. . , 

3) A Decremehter/Event Counter interrupt. This has third highest priority. 

4) A level 2 interrupt occurring at the INT2 pin. Thi~ has lowest priority. 

As described for {he TMS 9900. you execute XOP instructions to generate software interrupts. XOP4 through XOP15 
are active. XOPO through XOP3 do not exist on the TMS 9940. 

TMS 9940 interrupt vectors. togethe~ with a co~plete TMS 9940 memory map. are illustrated in Figure 18-20. 

The actual interrupt acknowledge sequence for a TMS 9940 is identical to that which we have described for the TMS 
9900. .. 

TMS 9940 RESET , 
You Reset the TMS 9940 by i~putting a I~w ~ignal at RSTIPE (pin 20). This low signal' must last for at least five 
clock cycles. A Reset resets to 0 the contents of all pointer regiSters and all CRU configuration bits. Following a Reset. 
level 0 interrupt response begins - which means that read-only memory bytes 0 through 3 provi~e the initial Program 
Counter and Word Pointer register contents. and therefore the address of the program which will be executed follow­
ing the Reset. 

18-65 



Note that the TMS 9940. being a smaller and simpler system than the Tt'v1S9900. car use elementary logic to generate 
an interrupt acknowledge. For the TMS 9900 we suggested an Address Bus decodihg technique in order to create an 
interrupt acknowledge signal. For the .TMS 9940 a CRU bit will do just fine. The foiiowirig circuit. is recommended by 
Texas I nstru ments: 

D a 

INT REa ClK 

7474 0. I NT1 or i'i\iT'2 
Ci::R 

INT ACK 

A simple D-type flip-flop has its D input connected to +5V.Every time an interrupt request'pulse is input to the clock 
pin. the Q output will go low - generating a valid interrupt request at the TMS 9940. In order to acknowledge the in­
terrupt and remove the interrupt request signal. you can output a low pulse via any of the P pins. This low pulse clears 
the D-typ~ flip-flop and forces Q high again. 

PROGRAMMING A TMS 9940E ERASABLE, PROGRAMMABLE READ-ONLY MEMORY 
The TMS .9940E has a transparent q~arti lid over the device in its dual in-line package. In order to erase the TMS 
9940E EPROM, you should expose it to a high-intensity ultravioletlight with a wavelength of 2537 angstroms. 
An intensity of 10 watt-seconds per square centimeter is recommendea. 

After the TMS 9940E EPROM has been erased. all EPROM memory bits will be O. 

These are the steps required in order to program a TMS 9940E EPROM: 

1) Reset the device. 

2) Apply the first data byte - to be stored in memory location 0000 to pins P24 through P31. Remember. P24 repre­
sents the most significant bit of the byte. and P31 represents the least significant bit of the byte. 

3) Apply a 26-volt level to pin 20. the RST/PE pin. This being the first programming pulse. it resets the internal pro­
gram memory address point at 0000 and writes the data byte at P24 through P31 into memory location O. 

4) After at least 80 clock cycles. apply 26 volts to pin 37. INT2/PROG. for 50 milliseconds while changing the data 
byte (step 5). 

5) Apply the next data byte to P24 through P31. At the high-to-Iow transition at PROG. the data will be written into 
the next location. 

6) Remove the 26 volts from pin 37 for a minimum of 50 clock cycles. Then apply 26\1to pin 37 for 50 milliseconds. 

7) Return to Step 5 until all of program memory has been programmed. 

LOADING A PROGRAM INTO TMS 9940 READIWRITE MEMORY 
You can load a program directly into TMS 9940 read/write memory via pins P24 (MSB) through P31 (LSB) for either the 
TMS 9940E or the TMS 9940M. Typically. this is done in order to load a small test program. The procedure for loading 
data into the TMS 9940 read/write memory is exactly as described in the previous section for loading data into EPROM;' 
except: the 26-volt level is applied to pin 19. the TST pin. after the device has been reset by inputting a low signal to 
pin 20. the RST /PE pin: and the high pulses at PROG are logic '1' level rather than 26 volts. 

When you input data to a TMS 9940 read/write memory using the TEST pin and P24 through P31. the address pointer 
is initialized to address 830016. The address keeps incrementing the high-to-Iow transition of each 50 millisecond pro­
gramming pulse applied at pin 37. When you finally stop applying programming pulses. the last 16 bits of data input 
are interpreted as thebeginning address for the program to be executed. This address may point to a read/write'memo­
ry location. or to a read/write memory location. That is to say. the test program may be in read/write memory. in read-
only memory. or in both areas. . 

THE TMS 9940 INSTRUCTION SET 
The TMS 9940 instruction set is identical to the TMS 9900 instruction set, with these exceptions: 

1) The RSET, CKOF, CKON and LREX instructions have been deleted. That is. all the external instructions except 
IDLE. 

18-66 



Q 
w 

~ 
0: 
o 
Q. 
0: 
o 
CJ 
~ 
en 
w 

~ 
g 
en 
en 
< 
011 
w 
2 
0: 
o 
a:J 
en o 
~ 
< 
Q 

< 
@ 

2) The XOP instructions will not work with operands 0, 1, 2, or 3. 

3) There are new DCA and DCS Instructions that enable 8-bit binary-coded decimal arithmetic. 

Assuming that you start with two valid 8-bit binary-coded decimal operands. you can add these two 8-bit operands 
using normal binary addition. The result will be a meaningless 8-bit number: however. if you immediately execute the 
DCA instruction. this meaningless 8-bit number will be converted to a meaningful 8-bit. 2-BCD-digit number. 

DCS. likewise. allows you to perform 8-bit binary-coded decimal subtraction. Assuming that the subtrahend and mi­
nuend are both valid 8-bit binary-coded decimal numbers. you perform a subtraction using binary arithmetic and you 
generate a meaningless 8-bit result. By executing the DCS instruction. you convert this meaningless 8-bit result into a 
valid 8-bit. 2-BCD-digit binary-coded decimal difference. 

The DCA and DCS instructions both generate in the low-order eight bits of the 16-bit word. 

For a discussion of decimal adjust logic in BCD,addition or subtraction. see Volume 1. Chapter 3. 

The LlIM instruction loads a 2-bit interrupt mask into the two low-order bits of the Status register. 

Here are the instruction object codes used by the DCA. DCS. and LlIM instructions: 

Clock 
Instruction Object Code Bytes Periods 

DCA r 0010110000bbssss 2 7 
DCS r 0010110001 bbssss 2 7 
LlIM n 001011001 xxxxxnn 2 10 

The object code notation above conforms to that which we have described for Table 18-3, For the LlIM instruction. x 
represents "don't care'" bits and n represents the two binary digits that get loaded into the two low-order Status 
register bits. ' 

THE TIM 9904 FOUR-PHASE CLOCK GENERATOR/DRIVER 

This part is also given the generic TTL name: the SN74LS362. The TIM 9904 provides TMS 9900 
microprocessors with the four clock signals: <1>1, <1>2, <1>3, and ct>4. These are +12V MOS driver signals. In addi­
tion, four complementary +5V clock signals, ct>1, ct>2, ct>3, and ct>4, are generated for use elsewhere in a TMS 
9900 microcomputer system. 

The TIM 9904 device may be driven by an external crystal, an external LC circuit, or a single external clock sig-
nal. " ' 

The TIM 9904 is manufactured using low-power Schottky technology: hence the 74LS part number. It is packaged as a 
20-pin DIP. All signals. other than the four MaS level clocks. are TTL-compatible. 

The TIM 9904 allows one asynchronous input signal to be synchronized. via a D flip-flop. with the ct>3 signal. The syn­
chronized signal is output. frequently to be used as a RESET input to the TMS9900. 

Figure 18-23 illustrates TIM 9904 pins and signal assignments. 

The four clock signals, ct>1,ct>2, ct>3, and ct>4, conform to Figure 18-3~ ct>1, ct>2, ct>3, and ct>4 are complements of 
ct>1, ct>2, ct>3, and ct>4. ' 

A logic level input at D will be output at Q on the high-to-Iow transition of ct>3: 

cp3 ___ --I 

o 

Q 

18-67 



TANK1 
TANK2 

GND1 
Q 

Pin Name 

D 

<1>4 
<1>3 
<1>3 
<1>4 

GND 

-
--------

<1>1. <1>2. <1>3. <1>4 
<1>1. <1>2. <1>3. <1>4 
D 
Q 

TANK1. TANK2 
XT All. XT AL2 
OSCIN 
OSCOUT 

1 

2 
3 
4 .. - 5 
6 
7 

8 

9 
10 

VCC1. VCC2. GND1. GND2 

20 
19 
18 
17 -TIM -

9904 16 

15 
14 
13 
12 

11 

Description 

,;. -... 
... 
.. --

VCC1 (+ 5V) 
XTAL2 
XTAL1 
OSCIN 
OSCOUT 
<1>2 
iiii 
VCC2 (+ 12V) 
<1>1 
<1>2 

Type 

+ 12V clocks to drive a TMS 9900 Output 
+ 5V clock complements Output 
Asynchronous control Input 
Synchronized control Output 
Crystal overtone controls 
External crystal connections 
External clock 
Clock with frequency 4<1> 
Power. Ground . 

Input 
Output 

Figure 18-23. TIM 9904 Signals and Pin Assignments 

OSCOUT provides a clock frequency four times that of the <I> clocks. Its phase relationship to the <I> clocks may be 
illustrated as follows: 

OSCOUT 

'~----------------~I 
, 

4>2 I ,-----------------~,-
4>3 I ,-------------------
4>4~ _______________________ 1 ,----------

18-68 



Q 
w 
~ a: o 
Q. 
a: 
o 
U 
~ 
en 
w 

~ 
g 
CI) 
CI) 

< 
ail 
w 
Z 
a: o 
CD 
CI) 

o 
:E 
< c 
< 
@ 

When an external quartz crystal Is used to drive the TIM 9904, the following connections are required: 

TANK 1 

0.47 J.LH 

io-.-..... ~_-I2 19 XTAL 1 
TANK2 

TIM 
9904 o 

17 OSCIN 

20 ohm to 75 ohm crystal, 
2 mw power dissipation. 
(May substitute a 
0.1 J.LF capaclton) 

OSCIN must be tied to a high logic level for the internal clock logic to work properly. 

Required capacitor and inductance values are shown in the illustration above for a TMS 9900 microprocessor operating 
with its standard 3 MHz frequency. The crystal must have a resonant frequency of 48 MHz. For 48 MHz operation. a 
third overtone crystal is used. 

For less precise timing. the quartz crystal may be replaced with a 0.1 J.Lf capacitor. The LC-tuned circuit now estab­
lishes the clock frequency according to the following equation: 

fosc = 1/(27T.jCC) 

where L is the inductance. with units of Henries. and C is the capacitance with units of Farads. This includes the 
capacitance of the circuit into which the components are mounted. 

If an external clock signal is Input, It must occur at OSCIN. The crystal connections XTAL 1 and XTAL2 should be 
connected to VCC as follows: 

NOT {TANK 1 
CONNECTED TANK 2 

-
-

1 

2 

20 

19 
TIM 
9904 18 

17 

18-69 

+ 5V 
( 

r---4 

V
Cc

1 

XTAL2 

XTAL1 

OSCIN 

.~ 

:~ 

} TIED TO LOGIC '" 

CLOCK INPUT 



The clock input OSCIN must have a frequency which is four'times the clock period frequency and has a 25% duty cycle. 
Thus. for a 3 MHz frequency. a 12 MHz signal must be input via OSCIN: 

1 ...... ----- 83.3ns ·1 
OSCIN ~-------~r' .. ----

~20.8nsr-

In TMS 9900 microcomputer systems, the D input is used for an asynchronous reset; Q is output as a syn­
chronousreset. This may be illustrated as follows: 

Vee 
c 

TIM TMS 
10Kn : 9904 9900 . 

1000 
.AAA 

0 a RESET 

! 
y y 

1 F--

- -- -
The illustration above shows recommended resistor and capacito'r values. 

TUI: TIUI~ ftftn" DDnt:!DAIUIIUIADI C ~V~TCI\JI II\ITCDCAI'C ID~I\ ....... 111'1~ ""'1 ••.•• ",~ •• _ •••••• __ ...... _ . _ ....... II •• _ .... ,, __ ,I _II 

The TMS 9901 Programmable System Interface (PSI) is a special support part designed for the TMS 9900 series 
of microprocessors. This relatively primitive device uses 32 bits of the TMS 9900 CRU bit field to support 
parallel I/O and interrupt request logic. Programmable timer logic is also available. 

Figure 18-24 illustrates that part of general microcomputer system logic which has been implemented on the 
TMS 9901 PSI. 

The TMS 9901 PSI is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputsand outputs are TTL-com-
patible. The device is, implemented using N-channel silicon gate MOS technology. . 

18-70 



Q 
w 
~ 
a: 
o 
Q. 
a: 
o u 
~ 
en 
w 

~ g 
CI) 
CI) 
0:( 

o1J 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
0:( 
Q 
0:( 

@ 

I/O Communication 
.. Serial to Parallel 

Interface Logic 

:""',,-,, ,,,,." ,"" 

:< .... :. 

(i ". .... ".'" 

". 

} 

'i 

!i 
j)! 

Clock Logic 

Arithmetic and 
Logic Unit 

,." Accumulator 
Registerlsl 

Instruction Register ~ 
.' .. Data Counterlsl 

... Control Unit 

Bus Interface 
Logic 

ROM Addressing 
and 

Interface Logic 

Read Only 
Memory 

.. Stack Pointer 

~ Program Counter 

System Bus 

.)Inl~;~. laic 

'" 
.,."" "" 

i. 
t'c 

:-
i'" 

t 

Direct Memory 
Access Control 

Logic 

t 
t 

RAM Addressing 
and 

Interface Logic 

t 
Read/Write 

Memory 

Figure 18-24. Logic of the TMS 9901 Programmable System Interface 

18-71 

~ 

3 

~ 

~ 



RSTi 
CRUOUT 

CRUCLK 

CRUIN 

iNT6 
iN'f5 
iNT4 
iN'f3 

Ci> 
INTREQ 

(LSB) IC3 

IC2 

IC1 
(MSB) ICO 

VSS 
TFm 
iNi'2 

P6 

P5 

-

--------

---
Pin Name 

CRUIN 
CRUOUT 
CRUCLK 
PO - P15 

.. --.. 

... ----... 

... -

.. ------

iN'ff - INTl5 
iNi'REQ 
ICO - IC3 
CE 
SO - S4 
Rffi 
<i> 
VCC,VSS 

1 40 

2 39 -
3 38 -
4 37 -
5 36 -
6 35 --
7 34 --

·8 33 --
9 32 --

10 TMS 31 --
11 9901 30 --
12 29 :: 13 28 -
14 27 -
15 26 --
16 25 --
17 24 --
18 23 -
19 22 -

-%0 21 
.. -

Description 

CRU data output 
CRU data input 
CRU data input strobe 
I/O data 
External interrupt requests 
Interrupt request to CPU 
Interrupt priority designation 
Chip Enable 
CRU bit select 
Chip reset 
Synchronizing clock signal 
Power, Ground reference 

.. .. -

-.. --.. --.. -... 
.. -.. 
.. -.. --

VCC (+5V) 
SO (MSB) 

PO 
P1 

S1 

S2 

INT7/P15 

INT8/P14 

INT9/P13 

INTlO/P12 

INTll/Pll 

INT12/Pl0 

INTl3/P9 

INT14/P8 

P2 

S3 
S4 (LSB) 

INTl5/P7 

P3 

P4 

Type 

Output 
Input 
Input 
Input or Output 
Input 
Output 
Output 
Input 
Input 
Input 
Input 

Figure 18-25. TMS 9901 Programmable System Interface Signals and Pin Assignments 

In the illustration above, Address lines have been numbered using our standard notation, whereby A 14 is the highest­
order address line and AO is the lowest-order address line. This is the opposite of Texas Instruments' notation. The CRU 
select lines are numbered according to Texas Instruments' notation and Figure 18-25. Therefore, S4 is connected to 
AO, and SO is connected to A4. 

18-72 



c 
w 

~ 
II: 
o 
a.. 
II: 
o 
U 
~ 
en 
w 
I­
ct 
U o 
II) 
II) 

ct 
ell 
w 
Z 
II: 
o 
a:I 
II) 

o 
~ 
ct 
C 
ct 
@ 

TMS 9901 PSI PINS AND SIGNALS 
The TMS 9901 pins and signals are illustrated in Figure 18-25. The signals which connect the TMS 9901 to a 
TMS 9900 series microprocessor are quite straightforward: they consist of the CRU and interrupt signals. 

The CRU signals include CRUIN. CRUOUT. and CRUCLK. 

The interrupt signals consist of INTREQ. ICO .. IC1. IC2. and IC3. 

For a description of CRU and interrupt signals .. refer back to our Tiv1s 9900 discussion. 

Device select logic includes a chip enable input, CE, together with five CRU bit select pins, SO - S4. CE and SO -
. S4 will connect to the Address Bus as follows: 

· · · 

-. .... I I S4 .. 
DEVICE -
SELECT S3 .. 

S2 __ 

S1 .. 

SO .. -
CE_ 

.. .. 
• .-.. 
:. -.. 
.:: 

TMS 
9901 

A14 

A5 
A4 
A3 
A2 
A1 
AO 

In the illustration above. Address lines have been numbered using our standard notation. whereby A 14 is the highest­
order address line and AO is the lowest-order address line. This is the opposite of Texas Instruments' notation. The CRU 
select lines are n.umbered according to Texas Instruments'notation and Figure 18-25. Therefore. S4 is connected to 
AO. and SO is connected to A4. 

18-73 



Device select logic determines the CRU address space that will be reserved for the TMS 9901 PSI. This may be illustr­
ated as follows: 

· · · 

" 
'l) , ...... , 

CRU 
ACCESS 

DEVICE 
SELECT 

CE SO S1 S2 S3 S4 

• l' r r • r r ~ 

o 0 0 n n n n n n n x ,x x x x 
~ """"--.... __ ...... v-",.-__ -'¢I' ............. --..... v~-"-'../ 

These three bits zero These seven bits 
and M"E'ME"N inactive identify the 

(high) indicate a TMS 9901 address 
CRU address space .. 

These five bits select 
a CRU bit in the 

TMS 9901 PSI 

.. 

.: 
:. 
: 
: .-. .... .. 
~ .. 
... .. 

M"E'ME"N 
A14 
A13 
A12 
A11 

A5 
A4 
A3 
A2 . 
A1 
.t;.0 

The high-order three address lines. which we call A 14. A 13. and A 12. are all zero during a CRU access. at which time 
"iViE'f\ii'EN is inactive (high). Thus we decode address lines A 11 through A5 to select a particular TMS 9901 device: 

Since the TMS 9980 uses the Address Bus differently during a CRU operation. TMS 9901 device select logic would 
connect to the Address Bus in a different way. The CRU bit select lines SO - S4 would be tied to lines A5 - A 1: device 
select logic wou Id decode lines A 11 - A6: and lines A 13 and A 12. -along with MEMEN. wou Id indicate a CRU access. 
We illustrate this as' follows: 

MSB LSB 

A 13 A 12 A 11 A 1 0 A9 A8 A 7 A6 A5 A4 A3 A2 A 1 AO .-Address Bus 
o O. n n n n n n x x x x x 

~ ~~--...... --,~~----------~~ , ~~--------~~ 

These two bits zero, 
along with M"E'ME"N 
inactive, indicate a 

CRU address 

These six bits identify 
the TMS 9901 
address space 

These five bits 
select a CRU bit CRUOUT 

CiJis a synchroniz!!:ill. clock signal used to time data output and to sample interrupts .. <1> is the 'complement of <1>3. For 
the TMS 9900, <1>3 is generated by the TMS 9904. The TMS 9980 outputs <1>3 directly. 

The best way of understanding the interface between a TMS 9901 and external logic is to look at functions per-
formed, as illustrated in Figure 18-26. ' 

18-74 



Q 
w 

!i 
a: o 
Do 
a: 
o 
CJ 
~ 
u) 
w 

!i g 
(I) 
(I) 

ct 
all 
w 
Z 
a: 
o 
CD 
(I) 

o 
~ 
ct 
Q 
ct 
@ 

If\lTERRUPT 
MASK BITS 

o SELECT BIT 

ICo .. -~r--...., 

IC1-.---t 

IC2 -40---1 

INTERRUPT 
PRIORITY 
ENCODER 

IC3 ~----1l....._ ..... ...J 

INTREQ <:I---{ 

CRUOUT --......... 

CLOCK 
LOAD 

BUFFER 

CRU 
CRUClK ---I:.IINTE R FACE ~ _______ ---' 

CRUIN ..... ---1 

SO ---II~ 

S1---"~1 

S2----I~ 

\S3----I~ 

S4--_'­

CE .... 

CRU 
BIT 

SELECT 
LOGIC 

Figure 18-26. TMS 9901 PSI General Data Flows and CRU Bit Assignments 

18-75 

PO-P6 



\ j' • 

From the programmer's viewpoint. a TMS 9901 looks like 32 contiguous CRU bits. Thus, you will access any part of a 
TMS 9901 device's logic using CRU input apdoutput instructions. 

• • ' '. r " { 

As you read through the TMS9901 description thatfolloV,Vs, you should bear in mind the power of multi-bit CRU 
load and store ilistrl:lctions as they' apply to TMS 9901 architecture. A single instruction transferring an appropri­
ate bit pattern can ,frequently perform multiple control and data transfer operations. 

The manner in which CRU b.~tS are used by the TMS 9901 is not straightforward. This is because CRU bits share 
functions and pins. ~unctions and Ilins are shared in different ~ays. 

Let us first look at pin connections. CRU bits 1-6 connect to pins INT1 - INT6; thus, in interrupt mode each of these CRU 
bits has its own dedicated input pin. 

CRU bits 7-15 share nine input or output pins with CRU bits 23-31. CRU bits share piris as follows: 

31 7 ... 
30 8 ... 
29 .9, ... 
28 10 ... 
27 11 .. 
26 12 .... 
25 13 -
24 14 ~ 

23 15 ~ 

t t 

" 
~ 

~ 
.~ 

.~ 

~ 

~ 
. ... 
~ ... , 

r 
34 
33 

32 

31 

~O 

29 
28 

27 

23 I 

Device Pii1S 

These CRU bits support interrupt logic 

These CRU bits are dedicated to data I/O 

Each of the CRU bits shown above shares a pin with another CRU bit. That is to say, within the illustrated CRU address 
~ange, there are two CRU bits which will a~cess the same pin, although each CRU bit performs a different operation. 
Thus you use the same pin in one of two different ways, using a bit address to select one operation. This may be illustr­
ated as follows: 

If you select CRU bit 27, 
Pin 30 supports data I/O 

. I . 

If you select CRU bit.11, 
and interrupt mode, 

Pin 30 serves as an 
interrupt request input 

30 

CRU bits 16-22 connect to parallel I/O pins. These bit addresses are not shared with any other TMS 9901 functions. 

CRU bit 0 is a s~lect bit that is not connected to any pin. A 1 written into this bit causes bits 1-15 to support real­
time clock logic. A a written into CRUbit a selects ihterrupt logic. When CAU clock logic is selected, bits 1-14 function 
as two 14-bit real-time Clock Buffer registers - one a read-only register, the other write-only. Real-time clock logic is 
separate from, and operates simultaneously with, and/or parallel I/O logic. That is to say, the process of selecting real­
time clock logic does not disable a.ny other logic. The select bit merely chooses which registers CRU addresses will ac­
cess. rather than enabling or disabling any operations. 

TMS 9901 PSI INTERRUPT LOGIC 
The easiest place to start understanding the TMS 9901 is at its interrupt logic. 

External logic can input data to CRU bits 1-15 via their connected pins. These input data signals will be in­
terpreted as interrupt requests if interrupts are enabled. If interrupts are disabled, then these CRU bits act 
simply as data input. 

18-76 



c 
w 

~ 
IX 
o 
Q" 
IX 
o 
u 
!: 
en 
w 
l­
e:( 

U o 
CI) 
CI) 
e:( 

o/l 
w 
Z 
IX 
o 
a:I 
CI) 

o 
~ 
e:( 
c 
e:( 

@ 

You access interrupt logic through the CRU when the select bit, CRU bit 0, contains a O. 

CRU bit addresses 1-15 each access separate read-only and write-only locations. The read-only location stores the sig­
nal level input at the attached pin. The write-only location accesses an interrupt mask bit. This may pe illustrated as 
follows: 

I 
I 

CRU Bit N { -
CRU Bit N + 1 { -

Write­
Only 
Mask 

Bit' 

N 

N1' 1 
-
~ 

I 
I 

r---

I 
I 

Read­
Only 
Data 
Bit 

N 

N + 1 
-
- } From Pins 

I 
I 

Signals arriving at pins connected to CRU bits 1-15 are immediately reflected by CRU bit contents: 

Read-
Only 
pata I 
Bit I 

0 I: Low 

High 

A low level (that is. a a bit) is. interpreted as i3n interrupt request. The interrupt request is passed on to the mask bit. If 
the mask bit contains 1. the interrupt is enabled and the interrupt request is passed on: 

Write- Read-
Only Only 
Mask , Data I 
Bit 

I 
Bit I 

Interrupt .. 1 I· 0 I: Low 
Request 

High 

If the mask bit is O. the interrupt request is disabled and therefore denied: 

Write- Read-
Only Only 
Mask I Data I Bit I Bil I 

0 I· 0 I: Low 
'0' 
1 High 

18-77 



Quite apart from interrupt logic. the CPU can at any time read the contents of one or more CRU bits in the address 
range 1-15. Here are some instructions that may access CRU bits 1-15 in various ways: 

LI 
LI 
LDCR 

STCR 

R12.PSI+1 
R1.MASK 
R1.15 

R2.15 

LOAD CRU BASE ADDRESS INTO R12 
LOAD INTERRUPT MASK BITS INTO R1 
OUTPUT TO WRITE-ONLY MASK LOCATIONS 

INPUT CRU BITS 1 THROUGH 15 AS DATA TO R2 

For some randomly selected data levels. CRU bits 1-15 may be illustrated as follows: 

1 Bits Pass on 
Interrupt Reque sts 

--

,,-= 

a CRU Oat 
to CPU 

-
-

-

Interrupt 
Mask Bits 

t 
1 1 

2 1 

3 0 

4 1 

5 1 

6 0 

7 0 

8 0 

9 1 

10 0 

11 1 

12 1 

13 0 

-
.. -

... .. 
-
---

14 1 <I 
15 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

CRU 
Bits 

+ 
0 

1 

1 

0 

1. 

0 

0 

1 

1 

0 

0 

0 

1 

0 

15 1 

~Bit Number~ 

.. 
... -
... .. -.. ... .. -.. -... 
... .. 
... 
... 
... .. -

o Bits Generate Interrupt 
Requests 

If one or more CRU bit's interrupt requests are low. and the corresponding mask bit is 1. then interrupt priority encoder 
logic outputs INTREQ low. Simultaneously. the level of the active interrupt request which has highest priority is iden­
tified via ICO - IC3. 

lNIT. input to CRU bit 1. has highest priority; 
INT15. input to CRU bit 15. has lowest priority. 

The levels at ICO - IC3 are maintained until the interrupt request signal is removed at the external pin. or the interrupt 
mask bit for the level is reset to O. 

TMS 9901 PSI DATA INPUT AND OUTPUT 
You can use CRU I/O instructions to input. output. or test external data at CRU bits 16-31. Data is output from 
the CPU to the TMS 9901 via CRUOUT; it is input from the TMS 9901 to the CPU via CRUIN. Bits are addressed via SO­
S4. as we have already described. 

Following a reset. pins connected to CRU bits 16-31 are in input mode. In this mode. external logic can assert high 
or low levels at connected pins. in which case one or two CRU bits will be affected: a signal input to PO - P6 will gener­
ate data in CRU bits 16-22; if interrupt mode is selected (by a a in CRU bit 0). a Signal input to INT7 IP15-INT15/P7 will 

18-78 



c 
w 

~ a: o 
no 
a: o 
o 
~ 
en 
w 

~ g 
U) 
U) 

ct 
GIS 
w 
Z 
a: 
o ca 
U) 

o 
~ 
ct 
C 
ct 

@ 

generate data in two CRU bits. one in the CRU bit range 7 -15. the other in CRU bit range 31-23. In interrupt mode, if 
the CPU inputs data from CRU bits 7-15 or 31-23, then it will input the same data, but In reverse order. This may 
be illustrated as follows: 

CRU 
Bits 

LI R12.PSI + 7 7 0 
srCR R1.9 

8. 
0196

16 
Loaded into R1 

9 

10 0 

11 1 

12 0 
Pins 

13 0 34 ~O 

14 33 ...-1 
15 32 ~1 

31 "'-0 
30 ...-1 
29 .--0 
28 ....--0 

LI R12.PSI + 23 23 
27 ...-1 

srCR R1.9 
24 

23 ....--1 
0003

16 
Loaded into R1 ' 

25 0 

26 0 

27 

28 0 

29 

30 1 

31 0 

Note that. as in all CRU transfers. the first CRU bit transferred goes to the least significant bit position of the destination 
register. 

As soon as the CPU outputs data to any bit capable of supporting data output, the I/O logic associated with this 
bit is put into output mode. In this mode. a pin will output a voltage level reflecting data in the corresponding CRU bit. 
External logic cannot input data·to a CRU bit that is in output mode: in fact. driving input currents into an output pin 
may damage the TMS 9901. . 

Once a CRU bit has been placed in output mode, it remains in output mode until the TMS 9901 is reset. That is to 
say. you cannot selectively return CRU bits from output mode to input mode. However. you can always read output bits 
back to the CPU: that is. although external logic must never attempt to input to a pin that is in output mode, the 
CPU can always read the contents of any I/O bit, whether it is an input or an output. 

You cannot output data via CRU bits 7-15. even though these bits are connected to the same pins as CRU bits 31-23. 
When you output data to CRU bits 7-15. the data is routed to one of two write-only locations. depending on the con­
tents of CRU bit 0: if the select bit is O. the data goes to interrupt mask bits 7-15: if clock mode is selected (CRU bit 0 
contains 1). the data goes to the Clock Load Buffer register (bits 7-14) and RST2 (bit 151. 

In interrupt mode you can input external data from CRU bits 1-6. Once again. you cannot output data via these CRU bit 
addresses. since any data output will be routed to corresponding interrupt mask bits or.Clock Load Buffer bits. 

18-79 



TMS 9901 REAL-TIME CLOCK LOGIC 
If you write a 1 into CRU bit 0 of a TMS 9901 device, then CRU bits 1-14 are used as two 14-bit Clock buffers, 
which may be illustrated as follows: 

2 3 4 5 6 7 8 9 10 11 12 13 14 ... CRU Bit Number 

Clock Load Buffer 

MSB LSB 

CRUI N .--I ......... _L-.-'-...... ....,j ......................... _"---'--'-...... _ ....... ~ Clock Read Buffer 

Besides these two buffers. real-time Clock logic contain's a decrementing register which we call the Clock 
Counter register. The CPU loads the Clock Counter register via the Clock Load Buffer. and reads the Counter contents 
via the Clock Read Buffer. We illustrate this in the following way: 

CRUOUT '" 
CLOCK 

- ) BUFFER v 
REGISTER 

~ ~ 
CRU CLOCK 

INTERFACE COUNTER 
REGISTER 

"< 
A CLOCK - I READ CRUIN 
..... BUFFER 

The Clock Counter register decrements continuously as long as the TMS 9901 is powered up. This will cause no 
problems as long as the clock interrupt is disabled. _ 

When you write any non-zero value into the Clock Load Buffer (CRU bits 1-14), the Clock Counter register 
starts decrementing from that value. A decrement occurs once every 64 (j) clock pulses. Thus. with a 3 MHz clock. a 
decrement occurs once every 21.3 microseconds. When the CRU Clock Counter register decrements to 0, an inter­
rupt request is generated, the previously output starting value is reloaded, and the clock starts to decreme~t 
again. Thus. with a 21.3-microsecond time interval between decrements: the maximum time interval between inter­
rupt requests will be 249 milliseconds. 

An enabled clock interrupt request causes INTREQ to be output low, together with a level 3 interrupt identified 
via ICO -IC3. Thatis to say. the INT3 external interrupt and the Clock logic share the same interrupt level and interrupt 
mask b·it. 'In clock mode. CRU bit 15 is used to record the state of the INTREQsignal. Thus. if interrupt requests are dis­
abled. the CPU program can check for a time-out by testing the level at CRU bit 15. This bit will be low if no time-out 
has occurred. and it will be high if a time-out has occurred: thus this bit is the complement of INTREQ. . , 

Following a CRU real-time clock interrupt request, you must write into interrupt mask bit 3 in order to clear the 
interrupt request: You can write a 0 or a 1 into the interrupt mask bit. Normally. you will write a 1 in order to keep in­
terrupts enabled. Writing a 0 will clear any active real-time clock interrupt request. and will simultaneously disable 
further real-time cloc~ interrupt requests. 

The Clock Read Buffer register contents do not change as long as the TMS 9901 is in clock mode. This charac­
teristic insu res that the Clock Read Buffer will hold a stable value while the CPU is reading it - even though the Clock 
COL!nter may decr~ment during the read operation. 

18-80 



c 
w 

~ 
IX: 
o 
Q. 
IX: 
o 
CJ 
~ 
en w 
~ g 
U) 
U) 

< 
all 
w 
Z 
IX: 
o 
III 
U) 

o 
:!l 
< c 
< 
@ 

Either of the following two events will cause the Clock Counter contents to transfer to the Clock Read Buffer: 

• The Ci> pulse which causes the Clock Counter to decrement. 

• An exit from clock mode. 

Thus, the Clock Read Buffer register is updated whenever the TMS 9901 leaves clock mode, and every time the 
Clock Counter decrements outside of clock mode. 

Beware - even if CRU bit 0 contains a 1. the TMS 9901 will exit clock mode for as long as it sees a 1 on select line SO; 
this will happen whether or not CE is active. Thus the Clock Read Buffer will not hold the same value indefinitely 
just because the TMS 9901 select bit is set. The PSI will leave clock mode whenever the CPU reads to or writes from 
CRU bits 16-31. or if any device accesses a memory address with a 1 on the address line connected to SO (A4 in a TMS 
9900 system). 

The logic controlling clock mode and the Clock Read Buffer may be illustrated as follows: 

7;-----1 +64 

SELECT BIT 
(CRU BIT 0) 

DECREMENT 
CLOCK 

COUNTER 

L--~-""" UPDATE CLOCK READ 

BUFFER 

so 

This logic summarizes our discussion above. There are two important things to note about clock mode and Clock Read 
Buffer update. First. you cannot inadvertently exit clock mode while you are reading the Clock Read Buffer. since you 
access it as CRU bits 1-14. Second. you cannot enter clock mode solely by accessing CRU bits 0-15; SO changes clock 
mode only ilvhen the select bit is 1 (clock mode selected). 

In order to read the most recent Clock Counter value, you must do two things: 

• Exit clock mode so the Clock Read Buffer will receive the current Clock Counter contents. 

• Enter clock mode so the Clock Read Buffer will be stable during the read itself. 

Here is the appropriate instruction sequence: 

LI 
SBZ 
SBO 

\ STCR 

R12.PSI+1 
-1 
-1 
R1.14 

TMS 9901 RESET LOGIC 

LOAD PSI CRU BASE. ADDRESS 
-EXIT CLOCK MODE TO UPDATE READ BUFFER 
ENTER CLOCK MODE TO STABILIZE READ BUFFER 
READ 14-BIT CLOCK READ BUFFER 

You can reset a TMS 9901 in one of two ways: 

1) By inputting a low signal at'iiSf1. 

2) By using a programmed reset via RST2, a CRU bit. 

In order to use RST1. a low level must be input at this pin for at least two clock periods. 

You can reset the TMS 9901 under program control only whim clock mode is selected (CRU bit 0 is 0). At this time. 
writing a 0 to CRU bit 15 (RST2) causes the device to be reset. Thus. the following instruction sequence causes a TMS 
9901 device reset: 

LI 
SBO 
SBZ 

R12.PSI 
o 
15 

LOAD PSI CRU BASE ADDRESS 
ENTER CLOCK MODE 
RESET PSI 

When the TMS 9901 is reset. the INTREQ signal is output high. ICO through IC3 are output low. all interrupt requests 
are disabled. and all I/O CRU bits are placed in input mode. 

18-81 



C 
iLl 

~ 
II: o 
D. 
II: 
o 
U 
~ 
u) 
iLl 

~ g 
en 
en 
c( 

aIS 
iLl 
Z 
II: 
o m 
en o 
~ 
c( 
C 
c( 

@ 

DATA SHEETS 

The following electrical specifications for the TMS 9900 and the TMS 9980A are out of date: we provide them here 
only to give a rough idea of timing and electrical requirements. Texas Instruments is revising its documentation on the 
TMS 9900 series parts. Revised data sheets will appear in updates to this volume and in the next edition. 

18-D1 



TMS 9900 

TMS 9900 ELECTRICAL AND MECHANICAL SPECIFICATIONS 

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE·AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTEO)* 

Supply voltage, VCC (see Note 1) 
Supply voltage, VOO (see Note 1) 
Supply voltage, VSS (see Note 1) 
All input voltages (see Notp 1) 
Output voltage (with respect to VSS) 
Continuous power dissipation 
Operating free·air temperature range 
Storage temperature range. 

-0.3 to 20 V 
-0.3 to 20 V 
-0.3 to 20 V 
-0.3 to 20 V 
-2 V to 7 V 

1.2W 
O°C to 70°C 

. _'5°C to 150°C 

·Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and 
functional operation of the device at these or any other conditions beyond tl10se indicated In the "Recommended Operating Conditions" 

section of this specification Is not implied. Exposure to absolute-maxlmum·rated conditions for extended periods may affect device reliability. 

NOTE 1: Under absolute ma)(lmum ratings voltage values are with respect to the most negative supply, Vee (substrate), unless otherwise 

noted. Throughout the remainder of this section, voltage valuei are with respect to VSS. 

Data sheets on pages 18·02 through 18·08 are reproduced by permission of Texas Instruments, Incorporated. 

18-02 



c 
w 

~ 
II: 
o 
a. 
II: 
o 
CJ 
~ 
en 
w 

~ g 
(/) 
(/) 

~ 
ell 
w 
Z 
II: 
o en 
(/) 

o 
~ 
<t 
C 
<t 

@ 

TMS 9900 
RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX UNIT 

Supply voltage, VSS -5.25 -5 -4.75 V 

Supply voltage, Vee 4.75 5 5.25 V 

Supply voltage, VOO 11.4 12 12.6 V 

Supply voltage, VSS 0 V 

High-level anput voltage, VIH (all inputs except clocks) 2.2 2.4 Vee+ 1 V 

High-level clock input voltage, VIH(¢) VOO-2 VOO V 

Low-level input voltage, VIL (all inputs except clocks) -1 0.4 0.8 V 

Low-level clock input voltage, VI U¢) -0.3 0.3 0.6 V 

Operating ftee-air temperature, T A 0 70 °e 

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(UNLESS OTHERWISE NOTED) 

PARAMETER 

Data bus during OSIN 

WE, MEMEN, OSIN, Address 

II Input current bus, Data bus during HOLDA 

Clock-

Any other inputs 

VaH High-level output voltage 

VaL Low-level output voltage 

ISS Supply current from VSS 

ICC Supply current from VCC 

100 Supply current from VOO 

Ci 
Input capacitance (any inputs except 

clock and data bus) 

Ci(¢l1 Clock-1 input capacitance 

Ci(¢2) Clock-2 input capacitance 

Ci(¢3) Clock-3 input capacitance 

Ci(ct>41 Clock-4 input capacitance 

CDS Data bus capacitance 

Co 
O':!tput capacitance (any output except 

data bus) 

t All typical values are at T A = 25° C and nominal voltages . 
• D.C. Com'ponent C!f Operating Clock 

TEST CONDITIONS 

VI = VSS to Vee 

VI = VSS to Vee 

VI = -0.3 to 12.6 V 

VI = VSS to Vce 

10. = -0.4 mA 

10. = 3.2 mA 

10 = 2 mA 

VSS = -5, f = 1MHz, 

unmeasured pins at VSS 

VSS = -5, f = 1MHz, 

unmeasured pins at VSS 

VSS = -5, f= 1MHz, 

unmeasured pins at VSS 

VSS = -5, f = 1MHz, 

unmeasured pins at VSS 

VSS = -5, f = 1MHz, 

unmeasured pins at VSS 

VSS = -5, f = 1MHz; 

unmeasured pins at VSS 

VSS = -5, f = 1MHz, 

unmeasured pins at VSS 

18-03 

MIN TvPt MAX UNIT 

±50 ±100 

±50 ±100 
IJA 

±25 ±75 

±1 ±10 

2.4 VCC V 
0.65 

V 
0.50 

0.1 1 mA 

50 75 mA 

25 45 mA 

10 15 pF 

100 150 pF 

150 200 pF 

100 150 pF 

100 150 pF 

15 25 pF 

10 15 pF 



TMS 9900 
TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(SEE FIGURES 12 AN'D 13) 

PARAMETER MIN NOM MAX 

tcltP) . Clock cycle time 0.3 0.333 0.5 

tdtP)· Clock rise time ·5 12 1S' 

tf(tP) Clock fall time 10 12 :I.&" 

tw(tP) Pulse width, any clock high 40 45 100 

tl/>1L,1/>2H Delay time, clock 1 low to clock 2 high (time between clock pulses) 0 5 

t1/>2L,<P3H Delay time, clock 2 low to clock 3 high !time between clock pulses) 0 5 

tl/> 3L,I/> 4H Delay time, clock 3 low to clock 4 high (time between clock pulses) ·0 5 

tl/>4L,I/> 1H Delay time, clock 4 low to clock 1 high (time between clock pulses) 0 5 

tl/> 1H,I/>2H Delay time, clock 1 high to clock 2 high !time between leading. edges) 73 80 

tr/>2HAlaH Delay time, clock 2 high to clock 3 high (time between leading edges) 73 80 

tr/>3H,r/>4H Delay time, clock 3 high to clock 4 high (time between leading edges) 73 80 

tl/>4H,I/> 1H Delay time, clock 4 high to clock 1 high (time between leading edges) 73 80 

tsu ' Data or control setup time before clock 1 30 

th Data hold time after clock 1 10 

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(SEE FIGURE 13) 

PARAMETER TEST CONDITIONS MIN TYP MAX 

tpLH or tpHL Propagation delay time, clocks to outputs CL = 200 pF 20 40 

... 1 ...... ------------- tel,,,, ~I 

CLOCK ~'12 

CLOCK (,13 

I I II 
I j4- tr/>4H, r/>1H -r 

_
__________ tr/>_3L_.rf>4_H _I_ .. ~~f \Ch4L.¢lH CLOCK <;,4 t .\: 

NOTE: All timing and voltage levels shown on 4>1 applies to 4>2, 4>3, and 4>4 in the same manner. 

FIGURE 12 - CLOCK TIMING 

18-04 

UNIT 

/..IS 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



Q 
w 

~ 
IX: 
o 
Q. 
IX: o 
lJ 
!: 
en 
w 

~ g 
(/) 
(/) 

ct 
all 
w 
Z 
IX: 
o 
cg 
(/) 

o 
~ 
ct 
Q 
ct 
@ 

TMS 9900 

INPUT 

CLOCK 411 

ID¢::: :~*{fW~ 
--.J ltu j4- ~ th J.- ' 
~~o~.~~v ____________________ 9_'4~V~~ ______________ _ 

CLOCK4l2 

I 

___ ~: ___ 9~.4Vr-\~ ____________ ~~r-\~ ___ _ 
CLOCK4l3 

CLOCK 414 

CRUCLK OUTPUT 

We OUTPUT 

WAIT OUTPUT 

__ ~-..J •• 4Vn •. 
4vn 

I I 
I •. 4Vn i 

----~----------~--~I I 
-J i--tPLH : ---t ~ tpHL I 

_----:...._~: t'AV ~ r
tPLH 

lo.4v : 
--.I i4-tPLH I 

\

r_ -+-__ I __ ----Jt·4V I i-I ,I 
LI I ~ r tPHL 

!PHL-.J r 

_______ ~I-----..Jt~2-.4V----------------~~ 
.-, 

O.4V 

f4- tPLH OR tpHL 

I 

tTha number of cycles over which input/output data must/will remain valid can be determined fro·m Section 3.9. Note that in all cases data 
should not change during <P1. ., , 

FIGURE 13-SIGNAL T'~ING 

18-05 



TMS 9980A 

TMS ~~80A/TMS 9981 ELECT~ICAL AND MECHANICAL SPECIFICATIONS 

ABSqLUTE MAXIMUM RATINGS OV~R OPERATING FREE·AIR TEMPERATURE RANGE 
(!lNLESS OTHERWISE NOTED)* 

Supply voltage, VCC (see Note 1) 
Supply voltage, VDD (see Note 1) 

Supply voltage, VSS (see Note 1) (9980A only) 
AII'input'voltages (see Note 1) . 

Output voltage (see Note 1) • 

Continuous powe; dissipation 
Operatingfree'air tell)perat~re range 
Storage temperature range' . 

-0.3 to 15 V 
-0.3 to 15 V 
-5.25 to 0 V 
-0.3 to 15 V 
-2 V to 7 V 

1.4W 
O°C to 70°C 

-55°C to 150°C 
, . 

·Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and 
functiqnal op'e'ration of the device at these 'or any other conditions beyond those indicated in the "Recommended Operating Cor';ditions" 
section of this sp-:cificationis not implied. ,Expo~ure to absolute-maximum-rated conditions for extended periods may affect devi~e ~eliability. 
NOTE1: Under ab~plute ma~imum ratirgs voltage valu'es are with respect to VSS' 

4.2 RECOMMENDED OPERATING CONDITIONS 

MIN NOM MAX 
Supply voltage, VBB (9980A only) -5.25 -5 -4.75 
Supply voltage, Vee 4.75 5 5.25 
Supply voltage, VDD 11.4 12 12.6 
Supply voltage, VSS 0 
High·level input voltage, VIH 2.2 2.4 Vee+1 
Low·level inpllt voltage, V I L -1 0.4 0.8 
Operating free·air temperature, T A 0 20 70 

4.3 ELECTRICAL CHARACTER!STICS ~VER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS 
(U!'JLESS OTHERWISE NOTED) 

UNIT 

V 

V 

V 

V 

V 

V 

°e 

PARAMETER TEST CONDITIONS MIN TYP* MAX UNIT 

Data bus during DBIN VI = VSS to Vee ±75 

WE, MEMEN, P1iTN 
VI = Yss to Vee ±75 p.A II Input current 

during HOLDA 
Any other inputs' VI =Vss to Vee ±10 

VOH High-Ievel-putput' vol tag!;! 10 = -0.4 rnA 2.4 V 

10 = 2 rnA 0.5 
V VOL Low·level output voltage 

10 = 3.2 m~ 0.65 

IBB Supply cu~r~nt from VBB (9980A Only) 1 rnA 
"f' o'6°c 50 60 

lee Supply CUrrElpt from Vee 
70

0
e 

rnA 
40 50 

oOe 
.-

70 80 
IDD Supply current from VDO 

70
0 e rnA 

65 75 

el 
Input capacitanc::e (any i'lput~ f.;;, 1 MHz, unm~asur~d 

15 pF 
except data bus) pins at vss 

eDB Data bus capacitance 
f = 1 MHz, unme~~ur~q .C 

25 pF 
pins' at VSS ' 

Co 
Output capacitance (any output f = 1 MHz, unmeasured 

15 pF 
except data bflS) pins at VSS 

• All typical values are at T A'= 25°C and nOmi,,!al vOlfages. 

1~-D6 



Q 
w 

~ 
0: 
o 
D­
o: 
o 
o 
~ 
u) 
w 

~ g 
en 
en 
oct 
CI/l 
w 
Z 
0: 
o 
In 
en o 
~ 
oct 
Q 
oct 
@ 

TMS 9980A 
CLOCK CHARACTERISTICS 

The TMS 9980A and TM~ 9981 have an internal 4·phase clock generator/driver. This is driven by an external TTL 
compatible signal to control the phase generation. In addition, the TMS 9981 provides an output (OSCOUT) that in 
conjunction with CKI N forms an on·chip crystal oscillator. This oscillator requires an external crystal and two 
capacitors as shown in Figure 13. The external signal or crystal must be 4 times the desired system frequency. 

TMS 9981 
CKIN OSCOUT 

FIGURE 13 - CRYSTAL OSCILATOR CIRCUIT 

Internal Crystal Oscillator (9981 Only) 

The internal crystal oscillator is used as shown in Figure 13. The crystal should be a fundamental series resonant type. 
Cl and C2 represent the total capacitance on these pins including strays and parasitics. 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 

Crystal frequency O"C·70oC 6 10 MHZ 

C1. C2 (f>C·70oC 10 15 25 I'>f 

External Clock 

The external clock On the TMS 9980A and optional on the TMS 9981, u~es the CKI N pin. In this mode the OSCOUT 
pin of the TMS 99!H must be left floating. The external clock source must conform to the following specifications .. 

PARAMETER MIN TYP MAX UNIT 

fext External source frequency· 6 10 MHz 

VH External sOurce high level 2.2 V 
V· ,L External source low level 0.8 V 

Tr/Tf External source rise/fall time 10 ns 

TWH External source high level pulse width 40 ns 

TWL External source low level pulse width 40 ns 

"This allows a system speed of 1.5 MHz to 2 MHz. 

18-07 



TMS 9980A 
SWITCHI~G CHARACTERISTICS OVER FUll RANGE OF ~ECOMMENDED OPERATING CONDITIONS 

The timing of all the inputs and outputs are controlled by the intern()1 4 phase ciock: thus all timings are based on the 

width of one phase of the internal clock. This is l/f(CKIN) (whether driven or from a crystal). This is also %fsystem. In 
the following table this phase tilTle is denoted two ' 

All external signals are ~ith reference to 1/>3 (see Figure 14). 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 
" t r (rp3) Rise time of rp3 3 5 10 ns 

tf(rp3) Fall time -of rp3 5 7.5 15 ns 

tw (rp3) Pulse width of rp3 tw=1/f(CKIN) t~-15 tw-10 tw+ 1O ns 

tsu Data or control setup time· =%fsystem t w-30 ns 

th Data hold time· 2tw+1O I1S 

tPHL (WE) Propag'ation delay time WE high to low CL = 200pf tw-1O tw. tw+2O ns 

tPLH(WE) Propagation delay time WE low to high tw tw+1O tw+3O ns 
tP.HL(CRUCLK) Propagation delay time. CRUCLK high' to low -20 -10 +10 ns 

tPLH(CRUCLK) Propagation delay time. CRUCLK lowto high 2tw-1O 2tw 2tw+2O ns 

tov Delay time from output valid to rp3 low t....,-50 tw-30 ns 

tox Delay time from output invalid to rp3 low tw-20 tw lis 

• Al! inputs except ICO-I C2 must be synchronized to 'meet these re9uirements. ICO-IC2 may chan~e asynchronously. See section ;2.10,4: 

!NPUTS 

I 
I 
I 
I 
I 

_--!....-----!.-.I~-_tP.LH __ .}Ir--~: ---'--'-~ [~HL 
CRUCLK--------; I -

_I ~tOV.<t>3L I 
OTHER ~,......:.I--_--_-_??,3,L"j= .. , 
OUTPIJTS ~\.. _______ V_A_L_I_D ________ --, 

FIGURE 14 - EXTERNAL SIGNAL TIMING DIAGRAM 

18-08 



Q 
w 

~ 
a: 
o 
D. 
a: 
o 
lJ 
~ 
en 
w 

~ g 
C/) 
C/) 

ct 
~ 
w 
z 
a: 
o 
III 
C/) 

o 
::!! 
ct 
Q 
ct 
@ 

Chapter 19 
SINGLE CHIP' NOVA MINICOMPUTER 

CENTRAL PROCESSING UNITS 

In this chapter we are going to look at two microprocessors which are the world's first single chip reproductions 
of established 16-bit minicomputers. We are going to describe two products which reproduce, on a single chip, 
the logic of a Nova Central ProcessinQ Unit. 
No'va minicomputers are built by Data General Corporation. 

Data General Corporation offer a set of LSI chips centered on the MicroNova microprocessor. These chips are 
described quite superficially in this chapter since Data General is not actively marketing them as LSI devices. 
Rather, Data General favor the sale of MicroNova microcomputer systems. 

Fairchild manufacture the 9440 microprocessor, which is sold primarily as an LSI device. The 9440 is therefore 
described in some detail, together with standard Nova I/O bus and typical memory bus interface bus logic. 

The Nova minicomputer was designed as a next generation enhancement of the PDP-8. The IM61 00. which we have 
described in Chapter 13. is a single chip implementation of the PDP-8 Central Processing Unit. 

If you compare the Nova3rchitectures. which we describe in this chapter. with the IM61 00 described in Chapter 13. 
the two products will indeed look very different. But conceptually they are similar. Both the Nova and the PDP-8 
Central Processing Units have few addressable registers; for computing power they rely upon instructions which may 
perform complex sequences of operations. Similarities between the Nova and the PDP-8 will become more apparent if 
you compare these two devices with the CP1600 and the TMS9900 - which we have described in Chapters 16 and 
18. respectively. . 

What is interesting about the Nova minicomputer is that it is one of the most popular in the world; and Data General 
Corporation is the second largest minicomputer manufacturer in the world. despite the fact that many aspects of the 
Nova Central Processing Unit may. 'on first inspection. appear to be very restricting. 

The MicroNova is manufactured by: 

The 9440 is manufactured by: 

DATA GENERAL CORPORATION 
Mail Stop 6-58 

Southborough. MA 01772 

FAIRCHILD SEMICONDUCTOR 
464 Ellis Street 

Mountain View. CA 94040 

The MicroNova and th'e 9440 are not the same; differences, however, are small. 

The MicroNova is eq~ivalent to the Nova 3 minicomputer. The Nova 3 is a low-end minicomputer recently in­
troduced by Data General. Although it is a low-end product. it includes a number of features not found in the basic 
Nova architecture. 

The 9440 reproduces basic Nova architecture - that is. the lowest common denominator of architectural features 
found in any Nova Central Processing Unit. As such. the 9440 lacks a number of logic features provided by the 
MicroNova. The 9440. however. has higher instruction execution speeds. 

Because the MicroNova and the 9440 are very similar. we are going to describe them together in this chapter. 

The MicroNova is manufactured using NMOS LSI technology. The 9440 is manufactured using Isoplanar integrated in­
jection logic (l3U technology. 

Both products are packaged as 40-pin DIPs. 

The MicroNova requires four power supplies: -4.25V. +5V. +10V and +14V. The 9440 requires two power sup­
plies: +5V and +350 mAo 

19-1 



Using a 240 nanosecond clock. the MicroNova executes instructions in 2.4 to 10 microseconds. Using a 100 nanose­
cond clock. 9440 instructions will execute in 1 to ~.5 microseconds. 

A P~ODUCT OVERVIEW 

Figure 19-1 illustrates that part of our general microcomputer system logic which has been implemented by the 
MicroNova and the 9440. . . 

Note that only the MicroNova has a Stack Pointer, and I?I\I!A logic. 

Most Nova minicomputers do not have a Stack; the 9440 is a reproduction of the basic Nova architecture. which is why 
the 9440 lacks a Stack. ,. 

The MicroNova and Nova 3 db contain Stacks. because the addition of the Stack is technologically straightforward. 
while the lack of a Stack had been one of the most distressing ~ea~ures of earlier Nova minicomputers. 

Both the 9440 and the MicroNova have DMA request and DMA acknowledge signals; however. in response to a DMA 
request. the 9440 does nothing except float the System Bus. it is up' to you to provide any and all external logic needed 
to actually perform a data transfer via direct memory access. The MicroNova. on the other hand. executes the required 
sequence of I/O operations to actually perform the Dt0A transfer. Thill is why in Figure 19-1 DMA logic is shown as 
being present on the MicroNova but not the 9440. . 

What about I/O ports? I/O ports interlace logic is shown as abse~t in Figure 19-1. The I/O port is a microcom­
puter concept. 

In any microcomputer configuration. you will look upon I/O ports as th~ ultimate interface between the microcomputer 
system and external logic. You need a conduit via which data bits or signals can be transferred to. or received from 
logic beyond the microcomputer system. Each conduit becomes an I/O port and an I/O port becomes a set of pins. 
which can be addressed as a unit on a ~upport device. Minicomputer~l~ke a conceptually different approach to I/O 
operations. To begin with. data is generally transferred to or fromthetC:PU - not signals. The data finishes up on a 
System Bus. Therefore a minicomputer's interface with the outside worts:! cqnsists of an I/O System Bus and a memory 
System Bus. In some cases the two busses are one; in other cases. such;a's"the Nova minicomputers. these two are sep­
arate and distinct busses. Canceptually. what is impartant is the facdh~t t~e minicamputer anticipates transferring 
data via its I/O System Bus to line printers. disk units. or other substantial devices each of which is capable of having a 
significant amount of local logic. Thus the System Bus is as far as the minicomputer attempts to. go when defining its 
interface to the outside world, 

Figure 19-1, including bus interface logic within the logic of the Central Processing U nit, needs some clarifica­
tion. As we have just stated. the Nova minicomputer creates two separ?lte System Busses: one for memory. the other 
for 1/0 devices. All the signals af these two busses originate at card edge pins. There is nothing very expensive about 
adding more pins to the edge of a card. as there is to adding more p'ins toa DIP. Therefore the Nova System Bus has 47 
signals. Since neither the MicroNova nor the 9440 can have 47 signals. neither of these two devices creates standard 
Nova System Busses; but each device creates its own System Bu's which could be used to drive external logic. That is 
why interface logic is shown as being present in ~igure i 9-1. . . . 

19-2 



Logic to Handle 
Interrupt Requests 

from External Devices 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Clock Logic 
'--___ ..II MicroNova and~ 

Iltttll~\1 MicroNova on~ 

Figure 19-1. Logic of the Data General MicroNova and the Fairchild 9440 



There is one further major difference between the MicroNova and the 9440 which is not evident from Figure 
19-1. The M icroNova provides transparent dynamic memory refresh logic. The 9440 has no dynamic memory 
refresh logic. 

The MicroNova, but not the 9440, contains an elementary interval timer capability. Providing interrupttimer logic 
is enabled. the MicroNova will generate an interrupt request every 20.000 instruction cycles. Using a standard 8.333 
MHz clock. this translates to an interrupt request occurring every 2.4 msec. 

Note that the MicroNova and the Nova 3 interval timer logic differ. The Nova 3 provides four programmable interval 
timer options; the MicroNova provides just one. 

NOVA PROGRAMMABLE REGISTERS 
These are the programmable registers of the MicroNova and the, 9440: 

15 o 

I Stack Pointer } 

I Frame Pointer 

14 o 

ACO } Primary Accumulator 
ACI 

AC2 Accumulator and Index register 

AC3 Accumulator. Index register and 

Subroutine Return Address register 

MicroNova Only 

Data General literature numbers registers and memory words from left to right. rather than as illustrated above. from 
right to left. Also Data General is one of the few minicomputer manufacturers that uses octal numbering. In order to re­
main consistent with the rest of this book. we will use hexadecimal numbers. and we will number registers from right to 
left: where confusions may arise. we will show both our standard numbers and Data General equivalents. 

ACO and AC1 are typical primary Accumulators. AC2 andAC3 may be used as Accumulators or as Index 
registers. The Jump-to-Subroutine instruction automatically stores the return address in AC3. If one subroutine 
is going to call another (j.e .. you are nesting subroutines!' then the calling subroutine must save the contents of AC3 
before itself calling another subroutine. 

Only the MicroNova has a Stack Pointer. The only instructions that access' the Stack Pointer are "Push" and "Pop" 
i nstru ctions. 

The MicroNova, but not the 9440, also contains a Frame Pointer register. The Frame Pointer register is an address 
buffer used to access the Stack. This may be illustrated as follows: 

Stack Pointer identifies 

current top of Stack 

e Pointer Use Fram 

to hold im 

Stack ad 

portant 

dresses 

MEMORY 

The Frame Pointer is a buffer register; it is not a Data Counter. There are no instructions that access the memory loca-
tion addressed by the Frame Pointer. . 

Observe that we show no programmable registers identified as Data Counters. even though in Figure 19-1 we show 
Data Counter logic as being present. This is because the Data Counter is another microcomputer concept - in effect. a 
subset of the Index register. If a memory reference instruction specifies direct. indexed addressing with a zer'o displace­
ment. then Index Registers AC2 and AC3 are equivalent to Data Counters. 

19-4 . 



c 
w 
~ a:: 
o 
0. a:: 
o u 
~ 
en 
w 

~ g 
CI) 
CI) 
c( 

alJ 
w 
Z a:: 
o 
III 
CI) 

o 
~ 
c( 
c 
c( 

@ 

NOVA MEMORY ADDRESSING MODES 
Both the MicroNova and the 9440 offer the following standard Nova memory addressing modes: 

1) Base page, direct addressing 

2) Program relative, paged, direct addressing 
3) Indirect addressing 

4) Indirect addressing with auto-increment 

5) Indirect addressing with auto-decrement 
6) Direct, indexed addressing 
7) Pre-indexed, indirect addressing 

These addressing modes have been described in Volume 1, Chapter 6. 

Nova memory addressing' modes are heavily influenced by the fact that every Nova instruction generates a single 16-
bit object code - just as the predecessor PDP-8 instructions each generated a single 12-bit object code. Even memory 
reference instructions are confined to 16 bits of object code: therefore the memory reference instruction can only pro­
vide a short address displacement. Whereas PDP-8 memory reference instructions provide a 7-bit address displace­
ment. the Nova provides an 8-bit address displacement. which is handled in a much more intelligent fashion. 

Nova instructions that use simple, direct addressing treat the 8-bit displacements as a direct, page zero ad­
dress, or as a signed binary, program relative displacement. Thus you can directly address the first 256 words of 
memory, or you can address any location within + 127 to -128 words of the memory reference instruction itself: 

yy can directly address 
base page 

Memory reference instruction 

yy can be added, as a 
signed binary number, 

to xxxx, to address 
program relative page 

I 

...:" 

~ 

\ 

§
MEMORY 0000 

0001 
0002 
0003 

~
i iOOFE 

i · 

OOFF 
0100 

(xxxx) + 
(xxxx) + 
(xxxx) + 

!\. .L"'--, , xxx-1 

IVY xxxx 

xxxx + 1 

(xxxx) + 
(xxxx) + 
(xxxx) + 

FF80 (FF80 = -80) 
FF81 (FF81 = -7F) 
FF82 (FF82 = -7E) 

Address displacement 
equals yy 

70 
7E 
7F 

Remember. in microcomputer applications, program relative direct addressing is fine for Jump instructions, but is of 
limited value when accessing data memory. When a microcomputer program is stored in read-only memory, program 
relative. direct addressing can be used to read constant data only. 

Nova instructions that specify direct, indexed addressing, compute the effective memory address as the con­
tents of either AC2 or AC3, plus the 8-bit displacement provided by the instruction object code. The 8-bit dis-

19-5 



placement is treated as a signed binary number. Since the Index registers are 16 bits ·wide. direct indexed addressing 
allows you to address any memory word. This may be illustrated as follows: 

Accumulator AC2 or AC3 

1514 1312 11 10 9 8 7 6 5 4 3 2 1 0 ~Bit No. 

Ixlxlxlxlxlxlxlxlxlxlxlxlxlxlxlxl 

Instruction Code 

ex x x x x x x x x x x x x x x x 
Z Z Z Z Z Z Z Z Y Y y y y y y y 

Sum is the effective memory. address 

L--______ .... 0 selects AC2 

1 selects AC3 

Indirect addressing may be superimposed on any of the memory addressing options de­
scribed thus far. Indirect addressing is identified by a "1" in bit 10 of the Memory Reference in­
struction's object code. When indirect addressing is specified. the effective memory address is the 
contents of the directly addressed memory word. 

Let us examine the various indirect addressing options. First there is page zero indirect ad­
dressing: 

8 3 2 o ____ Bit No. 

~~~~~~~~-r~~~~~ 

'-------+-------- Page Zero

'--------1-------- Indirect addressing

Arbitrary

Memory 1 M~O~ 1:-
0001

0002

0003

! i
0024

1------1 0025

1236 0026 -------~
0027

1-------1 0030

1235
1-------1 1236

1237
1------1 1240

NOVA
DIRECT
MEMORY
ADDRESSING

NOVA
INDIRECT
PAGE ZERO
ADDRESSING

In the illustration above. arbitrary. real memory addresses have been selected to make the illustration easier to unders­
tand.

19-6

c
w

~
a:
o
a..
a:
o
o
~
u)
w
l­
e(

g
en
en
e(

all
w
Z
a:
o
!Xl
en o
~
e(
c
e(

@

Program relative. indirect addressing may be illustrated as follows: NO~A
INDIRECT
PRO~RAM
RELATIV~
ADDRESSING

This instruction
fetched from this

MEMORY

736~

2

1216
~----------~~ ____ ~55

126B __

'-_____________ Program r81ative

~---------------Iooirect

Arbitrary
Memory
Address·

1215
1216
1217
1220
1221
1222

126A
126B
126C
1260
126E
12GF
1270

7362
7363
7364
7365
7366
7367

7370

7371
7372

19-7

Indirect. indexed addressing may be illustrated as follows:
I

Accumulator AC2

15 14 13121110 9 8 7 6· 5 4 3 2 1 O~BitNo.

lololololololqol1lolololqQQQ

Instruction Code

02BF

'-------.... -0020
02BC

'--------------Index via AC2

" '----------------Indirect

Arbitrary
Memory

MEMORY Address

02B~

02BB

7364 02BC
0280
02BE
02BF

.1
7362
7363
7364
7365
7366
7370

NOVA
INDIRECT
INDEXED
ADDRESSING

The illustration above arbitrarily uses indexed addressing via Accumulator AC2. Also the comput~d effective memory
address is identical to that which was obtained in the indireCt. program relative addressing illustration.

Observe that Nova indirect addressing logic results in pre-indexed indirect addressing. As described in Volume 1.
Chapter 6. this is less desirable than post-indexed indirect addressing .

. ·19~8

c
w

!i
a:
o
11.
a:
o
u
~
rn
w

!i g
CI)
CI)

ct
~
w
Z
a:
o
aJ
CI)

o
~
ct
C
ct

@

If. and only if indirect addressing has been specified by a "1" in bit 10 of a Memory Reference in­
struction's object code. then the contents of the data fetched from memory are treated as a direct
address. providing the high-order bit of the direct address is O. If the high-order bit of the address
is 1. then the address is treated as another indirect address pointer. This may be illustrated as
follows:

EffectiVe. indirect ,nemory addresS

NOVA
MULTIPLE
INDIRECT
ADDRESSING

Interpret as. m~IOm:IOI=V :addresa==-======~:==O----=~-1l:==::::1

Interpret as. memory addraa .-

~lo ... I_ ... I ... ,.t ... ,., ,.1.' ' .. 0 .. · ·· .. 1 .. · .1 ·1 1.· .. I·_·· .. I -!'I-------------..... --~
~ ~~~ ~~

Il11erpret as last memory address

Note carefully that multilevel indirect addressing will occur only when indirect addressing is specified in the first place.
If you execute a direct memory reference instruction. data will never be interpreted as an address.

The Nova indirect addressing logic means that. given a 16-bit indirect address. only 15 bits actually address memory:
therefore you are limited to a 32.768 word memory address space:

1.5 1'- 13 12 11 10 9 8 7 6 .5 ~ 3 2 1 0 ~BitNo.

I I I I I I I I I I I I >t--~MemoryAdcha y.
O-dirlc:t

1 - incInIct

The Nova minicomputers and microcomputers also provide indirect addressing with auto-increment and auto­
decrement addressing. If you indirectly address one of the eight memory locations. 001 016 throug~ 001716. then the
contents of the addressed memory location are incremented at the beginning of the memory access~ Thus you have in­
direct addressing with auto-increment.

If you indirectly address anyone of the locations. 001816 through 001 F16 then the contents of the addressed memory
location will be decremented at the beginning of the memory access. Thus you have indirect addressing with auto­
decrement.

Neither the MicroNova nor the 9440 provide memory mapping logic. Memory mapping is a technique whereby
more than 32.768 words of addressable memory may be accessed. The Nova 3 minicomputer is capable of supporting
memory mapping as an option.

Nova minicomputers have separate memory and I/O device spaces. I/O instructions include six
bits which identify one of 64 I/O devices. Because Nova minicomputers and microcomputers treat
I/O devices in a manner that differs significantly from the typical microcomputer. we will defer our
discussion of I/O addressing until we have looked at pins. signals and System Busses.

19-9

NOVA I/O
DEVICE
ADDRESSING

NOVA STATUS FLAGS
Nova minicomputers contain just one status flag, as we would define it, and that is the Carry status. Instn.ic­
tions are able to test for a zero or nonzero condition occurring at the conclusion of an instruction's execution,
but no permanent zero status flag exists.

MicroNova also has these interrupt related status flags:

• Interrupt Enable }
• Real Time Clock Enable
• Real Time Clock Request MicroNova Only
• Stack Overflow Request

The interrupt related status flags do not occur as addressable locations in any Status register; rather they represent flip­
flops which are set or reset during the course of interrupt handling.'

The interrupt enable bit is a master enable which is set to 1 in order to enable all interrupts. Specific instructions allow
all interrupts to be enabled or disabled.

The MicroNova has a Real Time Clock interrupt enable bit and a Real Time Clock request bit. The Real Time Clock ena­
ble bit must be set to 1 in order to enable Real Time Clock interrupts; as soon as a Real Time Clock interrupt occurs. the
Real Time Clock enable bit and the Real Time Clock request bit are reset to O.

The Stack Overflow request bit is only present in the Microf'Jova. since only the MicroNova has a Stack. A Stack over­
flow condition occurs if. following a push operation. the incremented contents of the Stack register have zeros in the
eight low-order bits. What this implies is that the Stack must reside within a 256-word memory page:

Arbitrary

Memory

IM~ORY I Mdffi'_
0800

: 0801
0802

0803 . .

SE;L.", '.
t:::j.:::~
• .',' Pushes that increment Stack Pointer

i : from XXFF to XYOO will cause a Stack

~
::~ . ,?v~/ow interrupt

09FF~~
OAOO~
OAOl

OA02

When a Stack overflow occurs. the Stack Overflow request bit is set to 1 and an' interrupt is requested.

MICRONOVA AND 9440 CPU PINS AND SIGNALS
As we stated earlier in this chapter, minicomputer Central Processing Units are implemented on cards, not
DIPs; therefore they usually have System Busses containi'lg more than 40 signals. The standard Nova System
I/O Bus contains 47 signals; furthermore, the Nova System Bus is, in effect, two busses: one communicating
with memory, while a separate and distinct bus comm~nicates with I/O devices: .

ME
NOVA

I/O'S MOFW sus cpu US

It

MEMORY
I/O DEVICES AND

EXTERNAL LOGIC

19-10

c
w

~
IX:
o
a..
IX:
o
U
~
en
w
l­
e(
(3
o
en
en
e(

oil
w
Z
IX:
o
III
en o
::!:
e(
c
e(

@

Table 19-1 briefly defines the functions of bus signals. The 1/0 Bus is standard for all Nova line computers, while the
Memory Bus is different for each model. We give the Memory Bus signals of the Nova 2 in Table 19-1,

Table 19-1, Nova System Bus Signals

STANDARD NOVA SYSTEM IjO BUS

SIGNAL DIRECTION FUNCTION OR INDICATION

DsO-Ds5 To Device Device selection

DATAO -DArAi5 Bidirectional pata and address lines
DATOA To De~ice Data out to device's A buffer
DATI A To Device Data in from device's A buffer
DATOB To Device Data out to device's B buffer
DATIB To Device Data in from device's B buffer
DATOC To Device Data out to device's C buffer
DATIC To Device Data in from device's t: buffer
STRT To Device Start device-clear Done flag, set Busy flag and clear device's INT REO

flip-flop

CL,R To Device aear device's Busy and Done flags and INT REO flip-flop
10PLS To Device I/O Pulse - user-defined function
SeLB To Proi:e~sor Selec~ed device's Busy flag is set
SIT5 To Processor Selected device's Done flag is set

i«iENB To Device Enable i~terrupt or DMA requests
iNTR To Processor !nte~pt request
iNi'P To DeVice Interrup~ pri,ority
INTA To Device Interrupt acknowledge

MSK5 To Device Interrupt mask out

DcHR To Processor Data channel request (DMA request)
5CHP To Device Data channel priority
DcHA To Device Data channel acknowledge

DCHMO,DCHM 1 To Processor Data channel mode:

DCHMO DcHMi
1 1 Data out
1 0 Increment memory

0 1 Data in
0 0 Add to memory

D<;HI To Device Data channel in
DCHO To Device Data channel out '
OVFlO To Device oVerflow: result of memory increment or add exceeds FFFF '.
10RST To Device aear all i/o devices

THE NOVA 2 MEMORY BUS

SIGNAL' DIRECTION RJNCTION OR INDICATION

AO-A14 To ~emory Memory address lines
DATAO - DATA15 Bidirectional Memory data)!nes
INHIBIT SELECT To Memory Inhibits selection of memory modiJle

BMEMEN To Memory Starts memory cycle
WRITE To Memory Memory write
BRMW To MemorY Causes pause between read and write

WE To Memory Enable write after pause in read-pause-write cycle
SYNC ENABLE To Processor CPU hold control

RELOAD DISABLE To Memory Inhibits loading of memory buffer
WAIT To CPU Disables other memory modules during write portion of memory cycle

MEM CLOCK To Memory Memory Clock
EXTERNAL SELECT To Memory Allows module to be selected despite contents of address lines
EXTERNAL MBLD To Memory Allows data to be stored in memory buffer without starting a memory

cycle

If you are using the MicroNova or 9440 in a new product. then there is no reason why you should create the standard
Nova System Busses, Providing the signals generated by the MicroNova or the 9440 are adequate for your needs, you
can interface external logic directly to these two devices,

Let us first look at the MicroNova pins and signals, which are illustrated in Figure 19-2.

Two clock signals, <1>1 and <1>2, must be input to synchronize all MicroNova logic.

19-11

The Memory Bus consists of a 16-bit Address/Data Bus, plus three control signals: SAE, P
and WE.

The Address/Data Bus connects to pins MBa ~ MB15. P is a synchronization signal. SAE is a read
enable and WE is a write enable.

The I/O Bus consists of just four signals:

110 CLOCK synchronizes I/O transfers.

110 DATAl and 110 DATA2 are bidirectional data and control signals.
-:-:-::~~~

110 INPUT identifies ,1e direction of data transfers occurring via 110 DATAl and 110 DATA2.

MICRONOVA
MEMORY BUS

MICRONOVA
I/O BUS

As compared to other microcomputers described in this book. the MicroNova 110 interface is very unusual. Only the
TMS 9900 I/O logic is at all similar. A l6-bit 110 data transfer occurs as two 8-bit serial units. This may be illustrated as
follows: .

I/O CLOCK

~~~ __ ~I_B_IT_O~I~BI_T_1~I_B_IT_2~I_B_IT_3~1_BI_T_4~I_B_IT __ 5~I_B_IT_6~I_B_IT_7JI 

\ BIT 0 I BIT 1 I BIT 2 I BIT 3 I BIT4 I BIT 5 I BIT 6 I BIT 7 I 

Eight serial bits are input in less than one microsecond: therefore this method of handling 110 is as fast as the parallel 
data input operations described for other microcomputers. 

Each data transfer is preceded by one of four codes generated by levels output via 110 DATA 1 and 110 DATA2. These 
are the four codes: 

110 DATAl I/ODATA2 

1 
INTERPRETATION 

Accompanying I/O low pulse may be used to synchronize interrupt requests 
and DMA requests. 

1 0 DMA request acknowledge. 

o 1 110 data transfer. The transfer direction is specified by 110 INPUT. 

a a 110 command out. 

Thus every 110 operation will begin with I/O DATA 1 and 110 DATA2 being output during a low I/O CLOCK pulse. 110 IN­
PUT will be low at this time since data is being output via 110 DATAl and 110 DATA2. Providing 110 DATAl andl70 
DATA2 specify a data transfer to follow. the actual.data transfer will occur via 110 DATA 1 and 110 DATA2 with 110 IN-' 
PUT identifying the data transfer direction. 

19-12' 



C 
w 

~ a:: 
0 
D. a:: 
0 
U 
~ 
en 
w 

~ 
g 
U) 
U) 
c( 

II/J 
w 
z a:: 
0 a:a 
U) 
0 

:E 
c( 
C 
c( 

@ 

VBB 40 Vss (GROUND) 
P 39 

WE 38 VDD 
SAE 37 HALT. 

DCHINT 36 
EXTiNr 35 CLAMP 

VGG 7 34 
Vss (GROUND) 8 33 PAUSE 

MBO . 32 <111 
Ms1 10 31 <112 
Ms2 11 MICRONOVA 

30 i7Oi>ATA'i 
Mii3 12 29 I/O DATA2 
Me4 13 28 'I/O INPUT 
MaS 14 27 I/O CLOCK 
MB6 15 26 Vss (GROUND) 
~B7 16 25 MiIT5 , .. 
vcc 17 24 MBi4 
MB8 18 23 MBi3 ' 
Ms9 19 22 Ms12 

MBTci 20 21 MBi'i" 

PIN NAME DESCRIPTION TYPE 

<111. <112 Clock Signals Input' 

MOO-Mei5' Address/Data Bus Bidirectional 
P Memory Synchronization Output 
SAE Memory 'Read Enable Output 
WE Memory Write Enable . Output 

I/O CLOCK I/O Synchronization Bidirectional 
I/O DATAl. I/O DATA2 Data and Comrol Bidirectional 
I/O INPUT Transfer Direction Output 

CLAMP Power-Or) Reset Input 
HALT CPU Halti!d Output 

DcHiNr' DMA Request Input 
00iNT Extemal, Interrupt Request Input 

PAUsE Memory Bus Grant Output 

VBB VDD' VGG. Vss Pow~~ and Ground 

Figure 1 ~-2. MicroNova CPU Signals and Pin Assignments 

There are two CPU control signals which are not part of either the Memory Bus or the 1/0 Bus. 

Following power-up, the MicroNova CPU will not perform any operation until a high' input occurs at CLAMP. 
When CLAMP goes high. interrupts are enabled. Real Time Clock and Stack Overflow interrupt requests are cleared. 
and the CPU is halted. Once CLAMPhas been input high. it is ignored until the MicroNova is powered down and then 
powered up again. 

The HALT signal is output by .. the MicroNova as a high pulse whili3'the MicroNova CPU has been, halted - either in 
response to execution. of a H~ltinstruction. or following CLAMP going high. 

There are two MicroNova signals associated with interrupt logic. DMA requests are made via DCH INT while 
any external interrupt is requested via EXT INT. Both the DMA request and the interrupt request must be syn­
chr~nized with instruct.ion execution timing, This synchronization is provided by I/O DATA 1 and I/O DATA2. as we 
have already described. :fhe. DMA acknowledge occurs via I/O DATA 1 and I/O DATA2. There is no external interrupt 
acknowledge signal: however. such a signal can 'be derived from the Memory Bus. as we will describe later in this 
chapter. 

iiAliSEis output low by the CPU when devices other than the CPU are permitted to access memory. 

Now look at 9440 pins and 'signals, which are iHustrated in Figure '19-3. 

These pins and signals create a single System Bus. No attempt is made to create separate Memory and 1/0 
Busses. ' 

You may connect a crystal a,cross CP and XTL in order to create a master clock signal, or you may input a clock 
signal via CPO 

19-13' . 



C3 
C2 
Cl 

co 
DCH REO 

00 
'iNfREQ 

01 
INTON 

GND 

RU.N 

IINJ 
..• CA~ 

(high-order bit) 180 
lSi 
iB2 

8 

10 

H 
12 
13 
14 
15 

16 

40 

39 

38 

37 

36 

35 

34 

33 

32 

9440 
31 

30 

29 

28 

27 

26 

25 

la3 ..... ~-. 1~ 24 

i64 18 23 

iB5..-t~~ 19 22 

iB6 

PIN NAME 

XTl, CP 

SYN.. ' 

ClK OUT 

iOO -iBiS 
Mo-M2 
MsUsY 
00,01 
iNT'REQ 
INTON 

"DcH REa 
RUN 

CARRY 

CO -C3 
MR 
IINJ' VCC; GND 

20 

DescRIPTION 

Oock Signals 

Syitchronization Signal 

SystelTl, COck 

Data/ Address Bus 

Memory Controls 

Me~orY Busy . 

I/O ·~ntrol . 
Interrupt Req"uest 

Interrupt Enable 

DMA Request 
CPU Running . 

carry Status 

21 

Fro~t Panel/Console Control Signals 

Master Rase,t 
Power and Ground 

MO 
Mi 
M2 
ClK OUT 

CP 

XTL 

MR 
SYN 
MBUsY 
VCC 
GND 

iBf5 (low-order bit) 
iBi4 
iEii3 
iim 
iB1i 
iBiO 
iB9 
iB8 
IB7 

TYPE 

Input 

Output 

Output 

Bidirectional 

Output 

Input 

Output 
. Input 

Output 

Input 

Output 

Output 

Input 

Input 

Figure 19~3. 9440 CPU Signals and Pin Assignments 

The 9~40 generates~ s~rigie ~y~~hrOniii~9 output (SyNi. The CPU clock is output to the 
system·via CLK OUT. . 

9440 .~ 
SYSTEM 

iBO - IB15 provides the 9440 with a~ulti~lexed 16-bit Data and Address Bus: This bus car- BUS 
ries addresses to memory prid 1/0 de~ices, and it carries bidirectional data between the CPU and 
memory or 1/0 devices. iBO -iBT5 are. low true: a low Signal level represents a 1 bit. 

TBO is the high-order bus Ii~e while IB15 is the 10w-orderJjus line. This agrees with Nova conventions. This 
chapter, and t,his whole book describe the. low-order bit as bit O-exactly the reverse of IBO -IB15. 

There are three control signals on the 9440 CPU-memory interface. 

MO is output low to identify a memory read. 
MT is output low to iqentify a memory write. 
M2 is output low to identify a memory· address being output. 

Extern~1 memory interface logic inputs MBUSY low while it is responding to any memory access. MBUSY is similar to 
the WAIT signals that we have described for other microcomputers: it can be used to make the CPU wait for slow 
memory to respond to a CPU access request. 

The 9440 has two I/O control Signals 00 and 01. These two control signals define 1/0 and memory accesses as follOws: 

01 0 00 0 Instruction Fetch 
01 0 00 1 . Data Channel Access 
01 1 00 0 Execute 1/0 Operation 
01 1 00 1 No I/O 

19-14 



c 
w 

~ 
ex: 
o 
Q. 
ex: 
o 
o 
~ 
iii 
w 

~ 
g 
U) 
U) 

oct 
CI/I 
w 
Z 
ex: 
o 
ED 
U) 

o 
~ 
oct 
C 
oct 
@ 

There are two signals associated with 9440 interrupt logic. 

An external interrupt is requested by inputting INT REO low. 

INT ON indicates whether or not interrupts are enabled. This signal is high when interrupts are enabled: if this sig­
nal is low. interrupts are disabled. 

A DMA request is made by inputting DCH REQ low. The DMA request is acknowledged by 01 and 00 being output 
low and high. respectively. . 

There are seven signals provided by the 9440 specifically to support a front panel or console. 

Two of the front panel or console signals are outputs; these are the RUN and CARRY signals. 

RUN is output high while the CPU is executing programs: it is output low while the CPU is halted. RUN is used to gener­
ate an appropriate front-panel display light: it is also equivalent to a Halt acknowledge. as described in this book for 
many other microcomputers. 

CARRY represents the condition of the Carry status. This signal is output specifically to drive a front-panel light. 

Five input control signals are provided for switches on a front-panel. Four of these signals are CO, C1, C2 and 
C3; they perform the following operations: 

C3 C2 C1 

0 0 0 
0 0 0 
0 0 1 
0 0 1 
0 1 0 
0 1 0 
0 1 1 
0 1 1 
1 0 0 
1 0 0 
1 0 1 
1 0 1 
1 1 0 
1 1 0 
1 1 1 
1 1 1 

CO 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

FUNCTION 

Display ACO contents at console 
Display AC 1 contents at console 
Display AC2 contents at console 
Display AC3 contents at console 
Increment Program Counter and then display contents of addressed memory word 
Display contents of addressed memory word 
Load memory from console switches 
Halt 
Deposit switches into ACO 
Deposit switches into AC 1 
Deposit switches into AC2 
Deposit switches into AC3 

. Load Program Counter from console switches 
Continue/Run 
Increment Program Counter and then load memory from console switches 
No Operation 

The first 9440 devices decoded the C lines in a slightly different manner. The following combinations were 
different operations: 

C3 C2 C1 CO FUNCTION 

0 0 0 Load Program Counter from console switches 
0 1 0 Not used 
1 0 1 Load memory from console switches 
1 1 0 Continue/Run 

MR is the Reset input to the 9440. When this line is pulled low: the 9440 halts immediately and clears the Interrupt 
Enable flip-flop. Once MR goes high. the CPU will remain in the Halt state until it receives the "Run" command from 
lines C3- CO. 

19-15 



Inhibit da, ta output oPtio~ 1 
Second source t ' ' fr 

(t-",~_r~ __ ~an:d~d:es:tin:a:tio:n __ ~~r-~~~---,~~Da~ta~o~u~tP~ut~.~r--~~----1-~~D~at~a~ou~tP~u~lt~,r----~~--~ 

Data Output To De~tination 

ACO Arithmetic ' Shifter Test 

T~ ACI r First source " and ... and .. Data 

Boolean for ~ AC2 ... 
AC3 Logic 

Byte Swap 
Logic ,--------~ Skip 

r Program Counter 'I 

Carry 
Status 
Logic 

T 1 
r----f.:-:.::=;:::::=~=::._::.:.._=:::=::::_.::_.::: __ :~.::::.:_===:_:::.:_-=~_L _________ J 

.-J-.-J-...-,-~-1- ! ...-l-, 
151 .. 1312 1110 8 7 6 5 .. 3 2 1 0 _Bit No. 

11\ I I I I I I I I I I I I I I I 
l't _________________________________ Arithmetic And logic Instruction Code 

Figure 19-4. The Nova Arithmetic and Logic Unit 

1514 13 12 11 10 9 8 7 6 5 " 3 2 1 0 ~Bit No. 

Arithmetic/Logic instruction Ills SiD DITITITIH Hie elLIKIKIK 

L·OOON',"' 
001 Always skip 
010 Skip if Carry is Zero 

011 Skip if Carry is One 
100 Skip on Zero result 

101 Skip on nonzero result 
110 Skip on either Carry or result zero 

111 Skip on Carry and result both nonzero 

o Store result in destination Accumulator 
1 Discard result 

L-________ ~~ 00 Preserve current Carry status 

01 Zero Carry 

10 Set Carry to 1 

11 Complement current Carry 

These operations are performed on Carry before 
entering the ALU 

'------------- 00 No operation 
01 Left rotate one bit position 
10 Right rotate one bit position 
11 Swap bytes 

These operations are performed on the ALU output 
L.. _____ --_________ 000 Complement 

001 Twos Complement (Negate) 
010 Move 

011 Increment 

100 Add Complement 
101 Subtract 

110Add 

111 AND OOACO 

Destination Accumulator} 01 ACl 

'------------------------------ Source Accumulator 10 AC2 
llAC3 

Figure 19-5. Arithmetic/Logic Instruction Object Code Interpretation 

19-16 

t 
Test 
Carry 
for 

Skip 

l Carry 

-@lstatus 



c 
w 

~ 
IX: 
o 
11. 
IX: 
o 
CJ 
~ 
en w 
~ 
g 
en 
~ 
o!S 
w 
Z 
IX: 
o 
III 
en o 
:!! 
<C 
C 
<C 

@ 

CPU LOGIC AND INSTRUCTION EXECUTION 

The manner in which the Nova CPU executes instructions· differs markedly from microcomputers described 
earlier in this book. We will therefore begin our discussion of CPU operations by Ipoking at overall CPU architec­
ture. 

Our discussion of Nova CPU logic is tied to instruction object code bit patterns; this happens to be the simplest way of 
describing the Nova CPU. We will look at instructions from a programmer's perspective when we examine the Nova in­
struction set. 

Nova instructions may be divided into these three groups: 

1) Arithmetic. Boolean and logical operations which are essentially internal to the CPU. 

2) Memory reference instructions which offer a variety of memory addressing modes and very little else. 

3) I/O instructions which are designed to allow a considerable amount of intelligence in I/O devices. 

Let us examine each group of instructions and associated CPU logic. 

ARITHMETIC/LOGIC INSTRUCTIONS 
The power of the Nova CPU lies in the fact that many logic functions are implemented sequentially along a 
single data path through the CPU. This is illustrated in Figure 19-4. This figure shows how individual bits of 
arithmetic and logic instruction object codes directly identify the many options available as data makes a single tour 
through the CPU. Figure 19·5 provides specific arithmetic and logic instruction object code interpretations. 

Data to be operated on is always fetched from the Accumulators. Results are always returned to an Accumulator. For 
two-operand instructions. such as binary addition. the Destination Accumulator also serves as the second Source Ac­
cumulator. For one-operand instructions. such as a complement. there will be one Source Accumulator and one 
Destination Accumulator; the same Accumulator may serve as source and destinatio.n. 

As the source and destination definitions would imply. the Nova has no Secondary Memory Reference (or Memory 
Operate) i,nstructions as we define them; for example. you cannot directly add the contents of a memory word to the 
contents of an Accumulator. 

In addition to one or two 16-bit data words. the Carry status is input to the Arithmetic and Boolean logic unit. You may 
input the Carry status as is. or you may complement it. reset it to 0 or set it to 1. If you modify the Carry status. then the 
modified Carry status becomes the new input to the Arithmetic and Boolean logic. 

You may specify one of eight Arithmetic and Logic operations. The Move operation serves both as a Move and a No 
Operation. By specifying the same Accumulator as the source and destination for a Move. Arithmetic and Boolean logic 
is bypassed. Notice that only one Boolean operation. the AND. is provided. This is an inconvenience rather than a prob­
lem. As discussed in Volume 1. Chapter 2. you can combine the AND and complement operations to generate an OR or 
an Exclusive-OR. The following Nova instruction sequences substitute for the OR and Exclusive-OR: 

;OR the contents of ACX with ACY. Leave the result in ACY 
COM ACX.ACX Complement ACX 
AND ACX.ACY AND ACX with ACY. Result to ACY 
ADC ACX.ACY Add original 'ACX. Result to ACY 

;Exclusive-OR ACX with ACY. Leave the result in ACY. 
;ACZ is needed for temporary data storage 

MOV ACY.ACZ Save ACY in ACZ 
ANDZL ACX.ACZ Store twice ACX AND ACY in ACZ 
ADD ACX.ACY Add ACX to ACY 
SUB ACZ.ACY Subtract twice ACX AND ACY 

The 16-bit output from the Arithmetic and Boolean logic. together with the Carry status. passes to the Shifter and Byte 
Swap logic; here the 17-bit data unit may be rotated left or right. high and low-order bytes of the 16-bit data unit may 
be swapped. or this logic may be bypassed. 

The Shifter and Byte Swap logic outputs 16 bits of data. plus the Carry status. The data and the Carry status may be 
tested separately. and based on one of eight identifiable conditions. the Program Counter contents may be incre­
mented; this provides conditional skip logic. Figure 19-5 defines the eight conditions that may cause a skip. 

Finally you have the option of preventing results from being stored in the Destination register; this enables conditional 
branch logic without modifying the contents of any Accumulator. 

19-17. 



In summary, the five operations that can be specified by a single arithmetic/logic instruction may be illustrated 
as follows: 

CARRY 
A) Leave as is 

B) Complement 

C) Set to 1 

D) Reset to 0 

OPERATION 

A) Complement 

B) Negate 

C) Move 

D) Increment 

E) Add Complement 

F) Subtract 
G) Add 

H) AND 

SHIFT 

A) Shift left 
B) Shift right 

C) Swap bytes 

D) None of the above 

t 
SKIP 

® 
RESULT 

A) On Carry ~ 0 A) Discard 
B) On Carry = 1 B) To destination 
C) On Result = 0 

D) On Result '10 
E) Either Carry or Result is 0 

F) Neither Carry nor Result are 0 
G) Always skip 

H) Do not skip 

It would take four or five typical microprocessor instructions to perform the same operations that a single Nova instruc­
tion can perform. 

Arithmetic/logic instruction options are specified in the source program using compound mnemonics. The mnemonics 
are created as follows: . 

CD CD CD ® 0 
A) COM A) A) L A) # A) SZC 
B) NEG B) Z B) R B) B) SNC 

C) MOV C)O CVS. C) SZR 

~:I f~~ DI c~ .... tD). ..• ~:I l[ 
G) ADD . G) SKP 
H) AND H) 

~-pr:XyZ ACS.ACd.£"\J 

19-18 



Q 
w 

~ 
IX o 
a. 
IX 
o 
CJ 
~ 
en 
w 

~ 
g 
en 
en 
ct .., 
w 
Z 
IX 
o 
!Xl 
en o 
~ 
ct 
Q 
ct 
@ 

The numbers CD . CD . (3) . 0 and (5) and the letters Al. Bl. Cl. Dl. El. Fl. G) and H) are keyed to the previous 
illustration. ACs represents ~urce Accumtfrator" while ACd represents "Destination Accumulator". Thus the instruc­
tion "set carry to O. then add AC1 contents to AC2. shift the result left one bit. keep the result. but skip on carry set 
"will create the mnemonic: 

ADDZL AC 1.AC2.SNC 

All logic associated with the execution of arithmetic/logic instructions is provided by the MicroNova and the 
9440 chips. 

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ___ lriformation Bus line 

15 14 i 3 12 11 10 9 7 6 5 4 3 2 1 0 -.- Bit No. 

Memory Reference instruction 

r 
'-------- Displacement 

...... ----------- 00 Page 0 addressing 
01 Current page addressing 

10 AC2 indexed addressing 

11 AC3 indexed addressing 

'-------------- 0 Direct addressing 
1 Indirect addressing 

'---------------- 00 Select ACO 
01 Select ACI 

10 Select AC2 
11 Select AC3 

...... ------------------001 Load selected Accumulator from memory 
010 Store selected Accumulator co~nts 

in memory 

Figure 19-6. Load and Store Instruction Object Codes 

6 7 8 9 10 1112 13 14 15-.- Information Bus line 

7 6 5 3 2 0 ____ Bit No. 

Jump and Modify Memory instruction 

...... -------Displacement 

'---------------00 Page 0 addressing 

01 Current page addressing 

10 AC2 indexed addressing 
11 AC3 indexed addressing 

...... ---------------0 Direct addressing 
1 Indirect addressing 

~---------------------OOJump 

01 Jump to subroutine 

10 Increment memory and skip if zero 
11 Decrement memory and skip if zero 

Figure 19-7. Jump and Modify Memory Instruction Object Codes 

19-19 



o 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 ~Information Bus line 

1514 131211 10 9 8 7 6 5 4 3 2 1 0 ~Bit No. 

I 0 11 IliA 1 A I T IT IT Ie 1 c I V I V 1 V 1 V 1 V 1 V r---Input/output instruction - - r-' I/Od"'~ 
00000o Not Used 

000001} . . 
111111 CPU InstructIOns 

L-_________ ...J 00 No operation 

01 Clear Done and set Busy to start device 

10 Clear Done and Busy to idl~ device 

11 Pulse I/O control line 

------------- 000 No I/O operation 
001 Input data from A 

010 Output data to A 

011 Input data from B 

100 Output data to B 

101 Input data from C 

110 Output data to C 

111 Skip (see Figures 17-9 and 17-10) 

....... --------------- Source/Destination register 
OOACO 
01 ACI 
10AC2 
11 AC3 

Figure 19-8. General Input/Output Instruction Object Code Interpretation 

MEMORY REFERENCE INSTRUCTIONS 
Since the four Accumulators of the Nova CPU must provide data sources and destinations for all arithmetic and 
logic instructions, you will constantly move data between memory and one of the four Accumulators. We have 
already described the Nova addressing modes. Figure 19-6 illustrates memory reference instruction object codes 
and addressing mode specifications. You can load data into any Accumulator. or you can store the contents of any 
Accumulator in memory. . 

There are four Jump and Modify Memory instructions. Object codes are given in Figure 19-7. The memory ad­
dressing options described earlier in the chapter apply also to the Jump and Modify Memory instructions. 

The Jump-to-Subroutine instruction requires special mention; this instruction stores the subroutine return address 
in Accumulator AC3. If you are going to nest subroutines then you must write your own subroutine to create a 
software stack. Note that even the MicroNova, which has a stack, do~s not use it when a Jump-to-Subroutine 
instruction is executed. 

MicroNova and 9440 chips provide all effective memory address computation logic and reduce memory 
reference instructions, as external logic sees them, to typical address and data transmissions with accompany­
ing control strobe signals. 

But remember. there is no such thing as a "standard" Nova memory bus. 

INPUT/OUTPUT INSTRUCTIONS 
Figure 19·8 illustrates input/output instruction object code interpretations. 

Every I/O device that communicates with a Nova minicomputer must have a Busy status 
and Done status. These are bidirectional statuses; they are modified by the CPU to control the 
I/O device and they are modified by the I/O device to indicate the status of the I/O operation. 

19-20 

NOVA I/O 
DEVICE 
BUSY AND 
DONE STATUS 



Q 
w 

~ 
a: 
o 
Q., 
a: 
o 
u 
~ 
en 
w 

~ g 
en 
en 
c( 

o1J 
uj 
Z 
a: 
o 
III 
en o 
~ 
c( 
Q 
c( 

@ 

This is how the Busy and Done statuses are interpreted: 

BUSY 

0 
1 
0 

.1 

DONE 

0 
0 
1 

0 

Device Idle 
CPU "starts~' device' by setting Busy to 1 .. 
Device reseis Busy to 0 and sets Done to 1 when device 
operation is complete:. . 
CPU resets Done to idle device. or sets 
Busy for next device operation. 
Illegal 

02 3 4 5 6 7 8 9 10 11 1213 14 15~ Information Bus line 

15 14 13 12 11 10 9 l 8;" 6 5 .4 3 i' 1 0 ~ Bit No. 

I of 1 11 I 0 I 0 11 11 11 I c I c I V I V I V I V I V I V ~ Inpu"t/Output Ski~ instruction 

--~I/O"""" 
00000o Not Used 

000001 Not Used 

111111 CPU. Skip instruction (see Figure 17-10). 

----------- 00 Skip if Busy is One 
01 Skip if BUsy is Zero 

10 Skip if Done is One 

11 Skip if Done is Zero 

Figure 19-9. Input/Output Skip i~struction Object Code Interpretation 

You start and stop I/O devices by manipulating d~vice Busy and Done statuses. 

Every I/O device may optionally have up to three individuaily addressabie registers, referred 
to as Registers A, Band C; 

You transfer data between one of the four CPU Accumulators and one of the three I/O device 
registers. 

o 1 2 ,3 4 5 6 7. 8 9 10 11 12 1314 15 ~ Information Bus line 

i 5 14 13 12 11 10 9 8 7 6 5 4 3· 2 1 0 ~ Bit No. 

10 11 11 I A I A I TIT I Tic Ie 11 11 11 11 11 11 ~ CPU I/O instruction 

- lL.· __________ 00 No operation 

01 Enable interrupts 
10 Disable interrupts 

11 N~ operat.ion 
L-_____________ 000 Nb operation 

001 Read Console switches 

010 Clear I/O devices (MicroNova) 
oi 1 Acknowledge interrupt 

100 Output interrupt mask 
101 Clear I/O devices (9440) 
110Haii 
111 Skip as follows: 

.00 Skip if interrupt request true 

Of Skip if interrupt request false 

10 Skip if power' fail flag is 1 

j i Skip if power fail flag is 0 
'--_____ ~ __________ Source or Destination Accumulato~ 

ooActJ 
01Ael 

10AC2 
liAC3 

NOVA 
I/O DEVICE 
REGISTERS 

Figure 19-10. CPU Device 3F16 Input/Output Instruction Object Code interpretation 

19-21 



Both a status manipulation and a data transfer may be specified by a.single I/O instruction; these two operations occur 
in parailel and are supported by appropriate control signals on the I/O bus. 

The Nova CPU must be abl.e to poll the Busy and Done statuses of an I/O device.dust as most r:nicroprocessors read the 
contents of an I/O device Status register. The Nova CPU responds to status corldition tests by optionally performing a 
Skip {whicH means the Program Counter contents are. incremented}. This variation of I/O instructions is illustrated in 
Figure 19-9. 

Six bits of every I/O instruction object code. are used to identify the 1(0' de\iice being ad­
dressed.This gives you a total of 64 devices in the I/O device address space. But ih order to 
enhance its instruction set. the Nova uses selected I/O device numbers to encode instructions ih­
ternal to the CPU. I/O deyicenumbers 0, 1 and 3F16 are reservedf~:>r this purp~se. I/O.devic~ 
3FH~ selects a number of interrupt related instructions whose object codes are defined .in 
Figure 19-10. I/O device numbers 0 and 1 implement instructions illustrated in Figure 19-11. 

NovA I/O 
DEVICE 
ADDRESS 
SPACE 

, . , 

You will have to add considerable logic beyond the 9440, or the MicroNova, if.Youare going to execute all I/O 
instructions described in Figures 19-8, 19-9, 19-10' and 19-11. The only logic provided by the CPU chips them­
selves support that part of the I/O operation which is exclusively internal to the cpLJ - and that is not much. The CPU 
will route data to or from the selected Accumulator,.if needed, and it will increment the Program Counter in response to 
a Skip true condition. Everything else is the responsi~ility of logic beyond the CPU chip. . 

o 1 2 3 4 5 6 7 8 9 10 11 12 13'14 15 ~ Information Bus line 

"151413121110987 ... 65432'10"-- BitNo. 

I 0 11 11 I x I x Ix I x I x I x I x I 0 I 0 I 0 I 0 I 0 11 ~ CPU I/O instruction 

'--L 1011001 Divide 
101101 i Multipiy 
0010110 Return 

0010100 Save. 
VYOOOOO Move to Frame Pointer MicroNova 
yYOOOiO Move from Fra";e Pointer only' 

VY01000 Move to Stack Pointer 

VY010l0 Move from St.ack Pointer 
VYOlloo'Push Accumuiaior 

to"1O Pop ,"'"m""'m 

Acc:umuhitor specification 

ooACO 
01 ACI 

10AC2 

llAC3 

Figure 19-11. CPU Device 1 Input/Output Instruction Object Code Interpretation 

A NOVA CPU SUMMARY 
If you compare Nova CPU logic with microprocessors described earlier'in this book, a m.im6~n of mi~icomputer 
characteristics become self-evident: These characteristics have important implications when we look at bus 
signals, interfaces and timing; therefore they must be clearly defined. 

Minicomputer Central Processing Units are more complex than their microprocessor counterparts. Look at the number 
of operations which may be performed during execption of a single Nova instruction; only the 8X300 makes any at­
tempt ~o provide such serial logic. The microprocessor CPU architect has been severely restricted by the fact that only a 
limited amount of logic can be put on a chip without drastically affecting chip yield - and therefore the price of the 
microprocessor. When minicomputers were designed, making CPU logic more complex increased the size of the CPU 
card. or cards, which had some effect on eventual product price. but nothing like the microprocessor pric!:! escalations 
that resu It from low chip yields. . 

Thus unconstrained by log'ic limitations. minicompllter CPU architects also designed complexsystem busses. requiring 
equi~alently complex logic within I/O devices attached to the system busses. For example. consider the fact that Figure 
19-5 defines 32,768 different Register-Register Operate instructions, while the instruction format in Figure 19-8 
assumes an I/O System Bus that can simultaneously manipulate I/O device status while transferring data. 

19-22 



c 
w 

~ 
a: 
o 
0. 
a: 
o 
(J 

~ 
en 
w 

~ o o 
(/) 
(/) 

ct 
~ 
w 
Z 
a: 
o 
Ie 
(/) 
o 
~ 
ct 
C 
ct 
@ 

These are formidable burdens placed on the designer of a chip which is supposed to reproduce the Nova CPU - with 
the result that chip designers have elected to tackle only part of the task. Both the MicroNova and the 9440 terminate 
at 40-pin DIPs: their busses are. in consequence. less than the standard Nova System Busses. 

9440 TIMING AND INSTRUCTION EXECUTION 

We will now examine 9440 instruction timing in detail. 

9440 instructions and internal logic are,timed by a master 10 MHz clock signal. Instructions are executed in 
machine cycles. This is the number of ~Iock periods per machine cycle: 

Memory read/instruction fetch 15 clock periods }Depends on actual 
Memory write - 15 clock periods memory timing 

I/O data in - 10 clock periods 
i/o data out - 10 clock periods 

,I;: ' ) 
Let us begin by looking at timing for clr,!; instruction fetch or a memory read; these two 9440 
machine cycles have th'e timing illustrated in FigLire 19-12. INSTRUCTION 

At the end of clock period 2. the three memory control signals MO. m and M2 are output with 
levels that identify the memory access which will be performed during the current machine cycle. 
For a memory read or instruction fetch. MO and M2 are output low while 1VIT remains high. 

00-01 00 for instruction fetch. 1:1 for. memory read 

Figure 19-12. 9440 Memory Read/Instruction Fetch Timing. 

FETCH 

9440 
MEMORY 
READ 

An insthJction fetch and a memory read are differentiated by signals 00 .and 01: these signals are both low for an in­
stru'ction fetch and both high for a memory read. The address of the memory location to be accessed is output on the 
Information Bus (lBO - iBl5) beginning at the end of clock period 8. At the end of clock period 9 SYN is output low: ex­
ternallogic must use the high-to-Iow transition of SYN as a strobe to latch an address off the Information Bus. External 
logic must also use the high-to-Iow transition of SYN as a trigger to input MBUSY low to the 9440. MBUSY must be in­
put low until addressed data has been read from memory and is stable on the Information Bus. At that time MBUSY 
goes high again. When MBUSY goes high. the 9440 will read data off the Infotmation Bus. If the Memory Read 
machine cycle is to execute in the minimum 15 clock periods. then MBUSY must 6e low for one clock period only. 

MBUSY is a signal used by external memory interface logic to synchronize itself with the CPU. If MBUSY is low while 
SYN is high. early in any memory access machine cycle. then the high-to-Iow transition of SYN will be delayed until 

19-23 



MBUSY goes high. For a Memory Read or Instruction Fetch machine cycle. the trailing edge of the low Kii'BO'S'Y pulse 
also acts as an end-of-machine-cycle trigger. Three clock periods after ~ low-to-high transition. the machine 
cycle ends and 'S'YN goes high again. Here is an example ofMBUSY and"SYfiJ interaction during termination of a Memo­
ry Read or Instruction Fetch machine cycle: 

10 11 N N+1 N+2 I N+31 

MBUSY and SYN interaction at the high-to-Iow SYN transition may be illustrated as follows: 

CP 

Figure 19-13, 9440 Memory Write Timing 

Every instruction's execution will begin with :an instruction fetch mathine cycle. This machine cycle will be 
followed by internal operations, another memory read, a memory write, an I/O read, or an I/O write. 

If the instruction to be executed requires internal operations only, that Is. it isan arithmeticilogic instruction. then 
internal operations are executed during clock periods 1 through 8 of the next machine cycle - which must be 
another i nstructi,on fetch machine cycle. 

19-24 



c 
w 
~ 
a: 
o 
c.. 
a: 
o 
(.) 

~ 
en 
w 
I­
ct 
g 
CI) 

.~ 

olJ 
w 
Z 
a: 
o 
a::J 
CI) 

o 
~ 
ct 
C 
ct 
@ 

If a memory read operation is to be performed, then another machine cycle is executed, exactly equivalent to 
Figure 19-12. 

If a memory write is to be performed, then two machine cycles must follow the instruction fetch. During the first 
machine cycle the external memory address is output. During the second machine cycle data to be written to memory 
is output. Timing is illustrated in Figure 19-13. This figure is self-evident. During the first machine cycle only M2is low 
since a memory address is being output without a read or a write operation occurring during the same machine cycle. 
During the second machine cycle only MT is output low since a memory write operation alone will occur. 

During both machine cycles of a Memory Write operation. M'i3LmV acts as a synchronizing Signal. however only the 
high-to-Iow transition of MBUSY can modify instruction execution time. IflViB'ImV is low prior to SYN" making its high­
to-low transition. then the SYN high-to-Iow transition will be delayed until"'fiii'Im'SY goes high. Once SYN goes low. the 
processor waits for MBUSY to go low: three clock periods after the MBUSY high-to"low transition. the memory write 
machine cycle will end. The subsequent low-to-high transition of MBUSY has no effect on the SYN signal. or on inter­
nal CPU operations. 

The only memory addressing modes that change instruction execution time are indirect addressing and indirect 
addressing with auto-increment or auto-decrement. 

Each level of indirect addressing is equivalent to an additional memory read and an additional memory write. In order to 
compute instruction execution times for memory references with indirect addressing. therefore. add one memory read 
machine cycle and one memory write machine cycle for each level of indirection. 

Recall that memory locations 1016 through 1 F16 are used to store addresses which. when accessed indirectly. will be 
incremented or decremented. When you use indirect addressing and specify a memory location from 1016 through 
1716. the address fetched from the specified location will be incremented. An indirect address fetched from locations 
1816 through 1 F16 will be decremented. The increment or decrement operation requires the memory address to be 
loaded into the CPU. incremented or decremented. then written back out. Loading the address into the CPU is a routine 
part of any indirect addressing sequence: however. writing the address back out represents an additional step requir­
ing an additional memory write machine cycle. This may be illustrated as follows: 

Machine Cycle l' Machine Cycle 2 Machine Cycle 3 Machine Cycle 4 
Instruction Fetch address Increment or . Perform memory 

fetch from location decrement access 
1016 - 1 F16 address and (read or write) 

write add ress 
back 
~ 
Memory Write 

The increment or decrement and Skip-if-Zero instructions require an instruction fetch, a memory read and a 
memory write machine cycle. Timing may be illustrated for direct memory addressing as follows: 

Machine Cycle 1 Machine Cycle 2 Machine Cycle 3 Machine Cycle 4-
Instruction Fetch data Increment or Increment 

fetch from memory decrement data Program Counter 
and write if needed 
data back 
~ 
Memory Write 

Let us now look at I/O instruction execution. 

There are no special I/O device select or control signals output by the 9440, rather external I/O devices must 
have select logic which is created by decoding instruction object codes on the Information Bus. This is done by 
decoding the three high-order Information Bus lines during an instruction fetch. as characterized by 00 and 01 both 
low. The three high-order Information Bus lines will at this time be 011 if the instruction to be executed is an 1/0 in­
struction. If these conditions are met. then the six low-order Information Bus lines must be decoded by device select 
logic. If the device code is 3F16. then all 1/0 devices must be selected simultaneously: for this to occur a special over­
riding device select signal must be created in response to device code 3F. If device code 0016 occurs. then no device 
shou Id be selected: this requires no special select logic. rather it means that no external device should have the address 
0016. If any device code other than 0016. or 3F16 appears on the six low-order Information Bus lines. then one external 
device's select logic should go true. 

If device code 3F16 has been output. then one of the operations defined by Figure 19-10 is ~bout to occur. A significant 
amount of external logic associated with execution of these instructions may be required. A specific implementation 

19-25 



consistent with standard Nova 1200 I/O interface logic is given later in this chapter. Alternatively. you may create a 
variety of individual control signals unrelated to the standard Nova I/O bus by suitably decoding I/O instruction object 
code bits 10 through 6. 

An I/O instruction whkh identifies a specific device further identifies the I/O operations which are to occur. via bits 10 
through 6 of the instruction object code (Information Bus lines TB5 through 'iErn). Figures 19-8 and 19-9 show the I/O 
operations which may be specified. If data is to be input or output, then timing will conform to Figures 19-14 and 
19-15. But a significant amount of parallel control logic will accompany any I/O da'ta transfer. 

An I/O Skip on Busy or Done instruction. as illustrated in Figure 19-9. requires the addressed I/O device to return Busy 
and Done statuses to the CPU. The addressed I/O device returns these statuses on the two high-order Information Bus 
lines i"BO and iBT. respectively. with timing conforming to Figure 19-14. 

01 

180-1815 

MO-M:!\ 

01 

180 -1815 

I I 2 I 3 I 4 I 5 I • I 7 I 8 I 9 110 11 I 2 I 3 I 
I I I I I I I I 

I 

I/O Data In 

.1 

.1 

CPU reads data 

Figure 19-14. 9440 I/O Data Input Timing 

I. 
I 

I ' 
I 

Figure 19-15. 9440 I/O Data Output Timing 

19-26 

I 

·1 



MICRONOVA AND 9440 INTERRUPT PROCESSING 

At the most elementary level, the MicroNova and the 9440 respond to interrupts in a very simple way. 

External logic requests an interrupt by inputting a low signal via ~. 

ffi Providing interrupts are enabled, the CPU acknowledges the interrupt upon completing execution of the current 
~ instruction; the CPU disables its own interrupt logic, saves the Program Counter contents in memory location 
~ 0000, then jumps indirect via location 0001. Thus memory location 0001 must contain the address of the first inter-
~ rupt service routine instruction. 
o 
o 
~ 
ui 
w 

~ 
g 
en 
en 
~ 

o1J 
w 
Z 
a: 
o 
III 
en o 
~ 
~ c 
~ 

@ 

Return address following interrupt service 

Starting address for interrupt service routine 

xxx x + 1 0000 

YYYY 0001 

0002 
~----I 

0004 
I---~ 

0005 
I---~ 

r 

Interrupt acknowledged here xxx x ~
• =XXXX-l 

This instruction will be executed , xxxx + 1 
following interrupt service xxxx + 2 

, xxxx + 3 · . · . · . 
, ~,. ·YYYY-l 

Interrupt service routine starts here YYYY 
yyyy+l 

YYYY + 2 

A single interrupt service routine will be executed in response to any external interrupt. In order to discriminate 
between interrupts. the interr-upt service routine must identify the source of the interrupt. then jump to an appropriate 
individual program. This may be illustrated as follows: 

Initial 
yyyy 

In}errupt 

Service 

Routine 

I I 

1 t 
Device 1 Device 2 Device 3 Device 4 Device 5 

Interrupt Interrupt Interrupt Interrupt Interrupt 

Service Service Service Service Service 

Routine Routine Routine Routine Routine 
etc ... 

I 
" 

t· t 
Return 

,19-27 



There will be a separate device interrupt service routine for every I/O device capable of representing an interrupt. 

There are many ways in which the initial interrupt service routine may identify the interrupting I/O device in a 
multiple interrupt configuration. 

The most primitive method used to identify an interrupting I/O device is to·test the device's Done status. Standard 
Nova protocol requires an I/O device to request an interrupt when it sets its Done status. This may be illustrated as 
follows: . 

Interrupt 
Reque?t Busy Done 
False 0 0 Device idle 
False 1 0 Start I/O operation 
True 0 1 End I/O operation 

Primitive I/O device interface logic will request an interrupt by applying a low signal at INT REO when it sets its Done 
status high. Now the initial interrupt service routine will execute a sequence of "Skip on Done False" instructions in 
order to identify the highest priority interrupting device. This may be illustrated as follows: 

SKPDZ DEVI 

JMP IDEVI 

SKPDZ DEV2 

JMP IDEV2 

SKPDZ DEV3 

Done =0 

Done =0 

Jump to Device 1 

Interrupt routine 

Jump to Device 2 

Interrupt routine 

etc etc. 

Done =0 

The order in which the initial interrupt service routine program logic tests device Done statuses becomes interrupt 
priority. You can modify this priority sequence at any time simply by changing the program. 

A faster method of identifying an interrupting device is to daisy chain the interrupting devices. Daisy chain logic 
has been described in Volume 1. and again in Chapter 6 of this book (in conjunction with the 8048). Daisy chains are 
resolved by an interrupt acknowledge signal: but there is no interrupt acknowledge signal output by the MicroNova or 

19-28 



c 
w 

!i 
a:: 
0 
Q. 
a:: 
0 
u 
~ 
en 
w 
I-
c( 

g 
(I) 
(I) 
c( 

o!I 
w 
Z 
a:: 
0 co 
(I) 

0 

~ 
c( 
c 
c( 

@ 

the 9440; rather an interrupt acknowledge instruction is executed. This is an I/O instruction addressing device 3F16; 
bits 10 through 6 (lB5 through IB9) of the instruction object code must be decoded in order to create an interrupt 
acknowledge signal. Here is appropriate logic: 

00 

01 

iiiiO 
lim 
iim 
iim 
iBi4 
iiIT5 

0 Q INTA 

iB5 
iB6 CK 
iB7 

ClR 

SYN 

MBUsY 

Recall that the Information Bus is low true; that is. a low logic level represents a bit value of 1: To ensure that INTA is 
generated only when a valid instruction code is on the Information Bus. it should be qualified by SYN low and MBUSY 
low-to-high transition. This is illustrated in Figu re 19-16. 

The highest priority interrupting device identifies itself by placing its device code on the Information Bus lines. The 
CPU stores the device number in one of the four Accumulators. Thus the interrupt acknowledge instruction is an I/O 
Data In instruction. Interrupt acknowledge timing is illustrated in Figure 19-16. 

Interrupt enable and disable logic exists separately at the CPU and at external I/O devices. 

At the CPU all interrupts are disabled as soon as an interrupt is detected. You can disable interrupts at any other time 
by executing a disable interrupt instruction (NIOC CPU). 

In order to enable interrupts you must execute an interrupt enable instruction (NIOS CPU); when an NIOS CPU instruc­
tion is executed, interrupts are enabled following execution of the next instruction. This next instruction will usually be 
a Return instruction: 

NIOS 
JMP 

CPU 
@O 

;Enable interrupts 
;Return from interrupt service routine 
;Interrupts are now enabled 

When nested interrupts are not allowed, all interrupts are disabled following the interrupt detection; interrupts remain 
disabled until the end of the interrupt service routine. You terminate the interrupt service routine with the two instruc­
tions illustrated above; one re-enables interrupts, the other returns from the interrupt service routine. Interrupts are not 
actually re-enabled until after the Return instruction has been executed; this prevents pending interrupts from being 
acknowledged before you have finally exited the current interrupt service routine. 

19-29 



Machine Cycle 1 Interrupt Acknowledge' Instruction Fetch Machine Cycle.2 Oilta In 

MO 

Mf\. 

M2 

cp 01 
w 
0 

00 

180 - 'iBiS 

SYN 

MsUsY 

INTA 

, Figure 19~ 16, 9440 Interrupt Acknowledge Instruction Execution Timing 



c 
w 

~ 
a: 
o 
Il.. 
a: 
o 
(.) 

~ 
en 
w 

~ 
U o 
(I) 
(I) 

~ 

~ 
w 
Z 
a: 
o 
III 
(I) 

o 
~ 
~ c 
~ 

@ 

If you want to nest interrupts then you must execute an interrupt enable instruction within the interruptable interrupt 
service routine. But make sure that you do not re-enable interrupts until the initial interrupt service routine has ex­
ecuted; remember. the. initial interrupt service routine is determining the source of the interrupt - and it makes no 
sense to allow another interrupt to occur until this determination has been completed. . 

You can disable interrupts selectively at external devices that have local interrupt disable logic. This is done 
using the Mask Out instruction (MSKO); MSKO is another I/O instruction addressing device 3F16. The MSKO in­
struction outputs data from one of the CPU Accumulators onto the Information Bus. Every I/O device capable of having 
its interrupt logic disabled must be connected to one of the Information Bus lines. When the MSKO instruction is ex­
ecuted. the I/O device must first decode the~SKO instruction in order to activate its interrupt disable logic;. subse­
quently. if the Information Bus line to which device interrupt disable logic is connected is low. then interrupt request 
logic must be disabled locally. Timing is illustrated in Figure 19-17. 

In order to re-enable interrupts at any external device you output a new mask with a high level on the Information Bus 
line to which the device's interrupt disable logic is connected. 

Interrupt logic again demonstrates the minicomputer emphasis of the Nova. We have assumed that an external 
device capable of requesting interrupts can decode I/O instruction object codes on the Information Bus and have a con­
siderable amount of logic associated with Busy. Done and Interrupt request flags. 

Machine Cycle 1 Mask Out Instruction Fetch Machine Cycle 2 O.t. Out 

01 

00 

MSKO I_....,.._ ..... --t_-I-_-+---+_ ...... _ ... --+_-;-__ --..J 

Figure 19-17. 9440 Mask Out Instruction Execution Timing 

MICRONOVA AND 9440 DIRECT 
. 'MEMORY ACCESS LOGIC 

MicroNova and 9440 direct memory access logic differ markedly. 

I 
I 

I I 
o sable interrupt il iii line is low (1) 

Enable interrupt if iii line is high (0) 

In both cases external logic represents a DMA access by inputting a low signal via DCH REO. 

The MicroNova responds by acknowledging the DMA request. This is done by outputting a high-:-I/7::0::-:=:'D"':'"A~T"':'"A"::"1 with a low 
I/O DATA2 signal. External logic then identifies the direction of the data transfer via the I/O INPUT control signal. Sub­
sequently. MicroNova logic performs the entire DMA transfer by creating appropriate I/O Bus and Memory Bus signal 
sequences - but only data may be transferred in only one direction. 

19-31 



The '9440 has a more primitive DMA capability. It responds to DCH INT by outputting lines 01 and 00 low and high. 
respectively. and floating the Data Bus. External logic must implement the actual DMA transfer. 

Standard Nova protocol allows four DMA operations to be defined by external logic via the DCHMO and DCHM 1 1/0 
bus signals. These are the four DMA operations that may be defined: 

DCHMO DCHM1 

o 0 
o 1 
1 0 
1 1 

Add to memory 
Data in 
Increment memory 
Data out 

The MicroNova. as we have already stated. handles data in and data out only; increment memory and add to memory 
are not available .. 

The 9440 on the other hand. does nothing in response to a DMA request other than float the Information Bus. All 
external logic associated ~ith DMA operations must exist outside the 9440 chip. 

THE MICRONOVA AND 9440 INSTRUCTION SETS 

Table 19-2 summarizes the instruction sets for the MicroNova and the 9440. Observe that there are some instruc­
tions available with MicroNova that the 9440 lacks. 

The power of the Nova instruction set is derived from the fact that many instructions perform multiple operations. 
Register Operate instructions. for example. allow you to set. or reset or complement a Carry status before the specified 
operation is performed. Primary Memory Reference and Register Operate instructions allow you to also perform data 
shifts. or to swap the high and low-order bytes of the data word being moved or generated. 

Primary Memory Reference and Register Operate instructions also allow you to perform a conditional skip based on the 
resu Its of the operation. . 

It is the ability of the Nova instruction set to perform a combination of operations. during a single instruction's execu­
tion. that makes the instruction set so effective. 

THE BENCHMARK PROGRAM 
Our benchmark program may be illustrated as follows for the MicroNova and the 9440: 

LDA 
LDA 
STA 
LDA 
STA 

LOOP LDA 
STA 
INC 
JMP 
LDA 
STA 

2.CNT 
O.IOBUF 
0.10 
O.@TABLE 
0.11 
0.@10 
0.@11 
2.2.SZR 
LOOP 
0.21 
O.@TABLE 

LOAD WORD COUNT COMPLEMENT INTO AC2 
LOAD 10BUF BASE ADDRESS INTO AUTO­
INCREMENT LOCATION 
LOAD ADDRESS OF FIRST FREE TABLE WORD 
INTO AUTO-INCREMENT LOCATION 
LOAD NEXT BYTE FROM 10BUF 
STORE IN NEXT TABLE WORD 
INCREMENT WORD COUNT SKIP IF ZERO 
RETURN FOR MORE 
RETURN NEW ADDRESS OF FIRST FREE TABLE 
WORD 

This benchmark program uses indirect addressing with auto-incrementing in order to sequentially access 10BUF and 
TABLE. We begin the program by loading the word count (CNT) into Accumulator 2. and table base addresses into 
memory words 1016 and 1116. We assume. that the address of the first free word in TABLE is stored in the first word of 
TABLE; thus we can fetCh the address of the first free TABLE word by executing a load to Register 0 with indirect ad­
dressing. 

Data is moved by a four-instruction loop. Two instructions load data from 10BUF and store data in TABLE using indirect 
addressing with auto-increment. Next we increment the counter stored in Register 2 and skip the following instruction 
upon detecting a zero count. The following instruction is a jump back to the beginning of the loop. 

The final two instructions simply restore the new address for the first free TABLE word into the first word of the TABLE. 

The benchmark program makes no assumptions. The source and destination tables may be any size and any number of 
data words may be transferred. limited only by the available memory space. 

19-32 



c 
w 

~ 
a:: 
0 
0. 
a:: 
0 
CJ 
~ 
en 
w 
I-
ct g 
en 
en 
ct 
CIlI 
w 
z 
a:: 
0 
III 
en 
0 

::!: 
ct c 
ct 
@ 

The following notation is used in Table 19-2. 

An "X" in the column labeled "9440" indicates that the instruction is available on the 9440 CPU. 

AC 

ACX 

C 

D 

DEV 

DEVX 

DEVBD 

EA 

FP 

ION 

PC 

PM 

S 

SP 
(CS#) 

(f) 

Any of the four Accumulators. 

A specific Accumulator. For example. AC1 is Accumulator 1. 

Carry status 

An Accumulator which serves as the destination for the results of an operation. 

A 6-bit device code. 

A specific device register. For example. DEVA is Device Register A. 
Device Busy-Done flags. 

Effective address determined by @DISP CiX ). 

Frame Pointer (not present in 9440). 

Interrupt ON flag 

Program Counter 

Priority Mask 

An Accumulator which serves as the source of an operand. 

Stack Pointer (not present in 9440). 

Represents three options which are used by the Register-Register operations. 

C is a 2-bit field which determines the carry state prior to the ALU operation. 

Coded Character Result Bits Operation 
option omitted 00 No operation 

Z 01 Set carry to 0 
o 10 Set carry to 1 
C 11 Complement carry 

For example. ADDO 2.2 would set carry to 1 before adding AC2 to AC2. 

S is a 2-bit field which determines how the result of the ALU will be shifted. 

Coded Character Result Bits Operation 
option omitted 00 No shift 

L 01 Shift result and carry left 
cine bit 

R 10 Shift resu It and carry right 
one bit 

S 11 Swap result bytes 

For example. MOVS 1.2 would swap the bytes of AC1 and store into AC2. 

# is a 1-bit field which determines whether the result is stored in ACD. 

Coded Character Result Bits Operation 
option omitted 0 Load result into ACD 

# 1 Do not load result into ACD 

For example. NEGOL#.1.2 would set carry to 1 then negate AC1. shift the result and carry left one bit. 
but would not store into AC2. 

A 2-bit I/O command whose meaning 
referenced. 

depends on whether the CPU or another device is being 

CPU 
No operation 
Set Interrupt 
On to 1 
Set Interrupt 
On to 0 
No operation 

f~ 
00 No operation 
01 Start device by setting Busy to 1 

and Done to 0 
10 Id Ie device by setting Busy to 0 

and Done to 0 
11 Pulse a special device dependent 

line 

19-33 



tSKCND) A 3-bit skip-on-condition field which is used by the Register-Register Operate instructioris. 

Coded Character Result Bits Operation 
option omitted 000 No operation 

SKP 001 Always skip 
SZC 010 Skip if Carry = 0 
SNZ 011 Skip if Carry = 1 
SZR 100 Skip if resu It = 0 
SNR 101 Skip if result =t= 0 
SEZ 110 Skip if either carry or result = 0 
SBN 111 Skip if both carry and result =t= 0 

(@ ) DISP (.IX) Generates the address EA 

(t) 

x<y.Z> 
[ ] 

[[ ]] 

A 

@ is the indirect bit. If @=1 then indirection is specified. 
DISP is an 8-bit address value. 
(IX) is a 2-bit field which indicates the addressing Mode: 
Bits are Mode 

00 Zero page addressing. DISP is an unsigned address 
betwe~n 0 and 256. 
EA = DISP 

01 PC relative addressing. DISP is a signed two's 
compiement address displacement. 
EA = DISP+[ PC] 

10 Indexed addressing via AC2. DISP is a signed 
two's complement address displacement. 
EA = DISP+ [ AC2] 

11 Indexed addressing via AC3. DISP is a signed 
two's complement address displacement. 
EA = DISP+ [AC3] 

A 2-bit I/O test field whose meaning depends on whether the CPU or another device is referenced. 
CPU 1. b~Vice 

Test for lmerrupt On=1 60 ~r Busy=1 
Test for Interrupt On=O 01 Test for Busy=O 
Never skip 10 Test for Done=l 
Always skip 11 Test for Done=O 

Bits y through z of the quantity x. [AC] <5.0> is the low six bits of the specified Accumulator. 

Contents of location enclosed within brackets. If a register designation is enclosed within the brackets. 
then the designated register's contents are specified. If a memory address is enclosed within the 
brackets. then the contents of the addressed memory location are specified. 

Implied memory addressing; the contents of the memory location designated by the contents of a 
register. 

Logical AND 

Data is transferred in the direction of the arrow. 

Under the heading of STATUS in Table 19-2. anX indicates statuses which are modified in the course of the instruc­
tion's execution. If there is no X. it means that the status maintains the value it had before the instruction was ex­
ecuted. 

19-34 



© ADAM OSBORNE & ASSOCIATES,INCORPORATED 

Table 19-2. MicroNova and 9440 Instruction Set Summary 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES 9440 OPERATION PERFORMED 

C 

NIO!fl DEV 2 X [DEVBD]-f 

Set the device's Busy and Done flags according to, I/O command. 
DIA(f) AC.DEV 2 X [AC]- [DEVA] 

[DE\(BD]-'f 

Read device's A buffer into Accumulator. Set the device Busy and Done flags. 
DIB(fl AC.DEV 2 X [AC]- [DEVB] . 

[DEVBD]-f 

Read device's B buffer into Accumulator. Set the device.Busy arid Done flags. 
DIC!f) AC.DEV 2 X [AC]- [DEVC] 

to 
. ~ 

01 g DOAlf) AC.DEV 

[DEVim]-f 

Read device's C buffer into Accumulator. Set the device Busy and Done flags . 
2 X IDEVA] - [AC] 

[DEVBD]-f 

DOB(t) 
Write Accumulator int,o device's A'buffer. Set the device Busy and Done flags. 

AC.DEV 2 X [DEVB]- [AC] 
" [DEVBD]-f 

DOC!f) AC.DEV 2 
Write Accumulator into device's B buffer. Set·the·-device Busy and Done flags. 

X [DEVC]- [AC] 

[DEVBD]-f 

Write the Accumulator into device's C·buffer. Set the Busy and Done flags. 
SKPlt) DEV 2 X If T is true for DEV. [PC] - [PC] + 1 

Skip if I/O test true. 
10RST X [PM]-O 

[ION1-l0. 

The Busy and Done flags in all I/O devices are set to O. The Priority Mask is set to 0 and 
interrupts are turned on. 



Table 19-2. MicroNova and 9440 Instruction Set Summary (Continued) 

STATUS 

'tYPE MNEMONIC OPERAND IS) , BYTES 9440' OPERATION PERFORMED' 
C 

w 
LOA AC,I 0) DISP (.IX) 2 X [AC)-:- [EA) »u 

a:a:z 
Load contents of memory to Accumulator. e(Ow 

~~a: STA AC,I 0) DISP (.IX) 2 X [EA)- [AC) 
~~~ Store contents of Accumulator into memory. a: 

ADDICS#) S,DISKCND) 2 X X [0)- [D)dS)

Add contents of Source register to contents of Destination register. Perform the specified
options.

SUBICS#) S,DI.SKCND) 2 X X [D) - (0)- [S)
w Subtract contents of Source register from contents of Destination register. Perform the
l-
e(specified options. a:

NEG (CS#) S,DI.SKCND) [D) - [5) + 1 (twos complement) w 2 X X a..
0 Place twos complement of the Source register contents in the Destination register. Perform
a:

the specified options. w ...
ADC(CStl) S,DI.SKCND) 2 X X [D)- [D)+ [5) III a Add the ones complement of the Source register contents to contents of Destination register. w

a: Perform the specified option. ci:
w MOV(CS/I) S,DI.SKCND) 2 X X [D)-[S)
I-
III Move contents of Source register to Destination register. PerforJT1 the specified options. a INC(CSt:) S,DI.SKCND) 2 X X [D)- [S)+1 w
a:

Place incremented Source register contents into Destination register. Perform specified options.
COM (CS tI) S,DtSKCND) 2 X X [D)-lS)

Complement the Source register contents, then move to Destination register. Perform
specified options.

AND (CS 11) S,DI.SKCND) :2 X X [0)- (0) t\ [S)

AND the Source register contents with the Destination register contents. Perform specified
options.

TYPE MNEMONIC

MUl

DIV

PSHA

POPA

SAY

MTSP

MTFP

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 19-2. MicroNova and 9440 Instruction Set Summary (Continued)

STATI,IS
QPERANDIS) BYTES 9440

C

x

AC 2

AC

AC

AC

OPERATION PERFORMED

[ACO] -(([ACI]" [AC2))+ [ACO]) <31,16>
[ACI] -II [ACl1" [AC2))+ [ACO)) <15,0>

Multiply contents of ACI by contents of AC2 and add contents of ACO to result.
[ACl1':"'l [ACOJ.[ACI))/[AC2] (quotient)
[ACO] -I [ACOJ.[AC1])/[AC2] Iremainder)

Divide the 32-bit quantity contained in ACO (high order) and AClllow order) by the
contents of AC2.

[SP] - [SP] + 1; [[SP)) - [AC]

Push the Accumulator onto the Stack.
[AC] - [[SP]; [SP] - [SP] - I

Pop the top of the Stack to the Accumulator.
[[SP]+ 11- [ACO]
[[SP] + 2] - [AC1]
[[SP] + 3] - [AC2]
[[SP] + 4] - [AC3]
[[SPl+5] <14,0> - [PC]
[[SP] +5] <15> - [C)
[SP] - [Spj + 5
[FP] - [SP]

Save a return block in the Stack.
[SP] - [AC] <14,0>

Move the low 15 bits of the Accumulator to the Stack Pointer.
[FP] - [AC) <14,0>

Move the low 15 bits of the Accumulator to the Frame Pointer.

cp
w
(Xl

TYPE

0 w
~;:)
Oz
~~
C/)Z

0
g

Q.

:E
;:) .,

w
:E~
~g
........
~o
a:

MNEMONIC

'MFSP

MFFP

JMP

JSR

RET

RTCEN(f)

RTCDS(f)

Table 19-2. MicroNova and 9440 Instruction Set Summary (Continued)

STATUS
OPERAND(S) BYTES 9440 OPERATION PERFORMED

C

AC 2 [AC] <14,0> - [SP]
[AC] <15>-0

Move the Stack Pointer to low 15 bits of Accumulator.
AC 2 [AC] <14,0> - [FP]

[AC] <15>-0

Move the Frame Pointer to the Accumulator.

(II)DISPI,IX) 2 X [PC]-[EA]

Branch unconditional.
(")DISPI.IX) 2 X [AC3] - [PC] + 1

[PC]-[EA]

Branch to subroutine.
2 X [SP] - [FP]

[C) - ([SP)) <15>
[PC] - ([SP)) <14,0>
[AC3] - ([SP] - 11
[AC2] - ([sp] - 2]
[ACl] - ([SP] - 3]
[AC2] - [(SP] - 4]
[SP] - [SP] - 5

Retum from subroutine and pop a retum block off the Stack.

2 X (JON]-f

Enable Real Time Clock then set ION via I/O command •
2 X [ION] -f

Disable Real Time Clock then set ION via I/O command.

© ADAM OSBORNE & ASSOCIATES. INCORPORATED

Table 19-2. MicroNova and 9440 Instruction Set Summary (Continued)

STATUS
TYPE MNEMONIC OPERAND(S) BYTES 9440 OPERATION PERFORMED

C

0 ISZ (u)DISPI.IX) 2. x [EA] - [EA] + 1
~~2~ If [EA] =0 then [pc] - [pc]+ 1
owOI-

Increment memory contents and skip if zero. ~!;t~~
:!:ffi~o DSZ (u)DISPI.IX) 2 X [EA] - [EA] - 1
~ u If [EA] =0 then [pc] - [PC] + 1
0

Decrement memory contents and skip if zero.

INTEN 2 X [ION]-l

Enable interrupts. Same as NIOS CPU.
INTDS 2 X [ION]-O

Disable interrupts. Same as NIOC CPU.
INTA(f) AC 2 X [AC] <5,0> -DEV

I- [ION] -f
~

. The 6-bit device code of the device closest to the CPU that is requesting an interrupt is loaded ::;)
a:

into the low si~ bits of the Accumulator. Set ION via I/O command. a: w
MSKOlf) AC [PM] - [AC] l-

.- X
~ [ION] -f

TRAP 2
Move contents of Accumulator to Priority Mask. Set ION via I/O command.

[26 .. 1- [PC]
[pc] - [27 ..]

Performs a software interrupt.
SKPIt) CPU 2 X If t is true, [PC] - (PCI + 1

If interrupt or power fail condition satisfied, skip next instruction.

HALTlf) 2 X [IONI-f

Set ION via I/O command, then halt.

Table 19-3. MicroNova and 9440 Instruction Set Object Codes

INSTRUCTION OBJECT CODE BYTES
CLOCK

9440
PERIODS

ADC(CS#) S,DI.SKCND) 1 ssdd l00rrccnwww 2 5/7 X

ADD(CS#) S,DI.SKCND) 1 ssdd 11 Orrccnwww 2 5/7 X

AND(CS#) S,DI.SKCND) lssddlllrrccnwww 2 5/7 X

COMICS#) S,DI.SKCND) 1 ssddooorrccnwww 2 5/7 X

OlAf AC,DEV 011aaOOlffpppppp 2 15 X

DIBf AC,DEV 011aaOl1ffpppppp 2 15 X

DICf AC,DEV 011aal0lffpppppp 2 15 X

DIV 7641 2 123

DOAf AC,DEV 011aaOl0ffpppppp 2 10 X

DOBt AC,DEV 011aa l00ffpppppp 2 10 X

DOCf AC,DEV 011aall0ffpppppp 2 10 X

DSZ (fI)DISP(.IX) 000 11 ixxbbbbbbbb 2 8/10· X

HALTf 011aall0ffllllll 2 10 X

INC(CSIt) S,DI.SKCND) lssddOllrrccnwww 2 5/7 X

INTAf AC 011aaOl1ffllllll 2 15 X

INTDS 60BF 2 10 X

INTEN 607F 2 10 X

IORST 011aa01Offllllll 2 10 X

ISZ (fI;)DISP(.IX) ooo10ixxbbbbbbbb . 2 8/10· X

JMP ('fI.)DISP(.IX) OOOOOixxbbbbbbbb 2 6/8· X

JSR (rt) Disp I.IX) 0000 1 ixxbbbbbbbb 2 7/9· X

LOA AC (.rl),DISP !.IX) 011aaixxbbbbbbbb 2 6/8· X

MFFP AC 011 aaooo 1 00000o 1 2 8

MFSP AC 011aaOl0l000000l 2 7

MOV(CSttl S,DI.SKCND) lssddO 10rrccnwww 2 5/7 X

MSKOf AC 011aal00ffllllll 2 10 X

MTFP AC 011aaOOOOOOOOOOl 2 6

MTSP AC 011 aaO 1 oooooooo 1 2 6

MUL 76Cl 2 86

NEG(CSt!) S,DI.SKCND) 1 ssddOO 1 rrccnwww 2 5/7 X

NIOf DEV 01100000ffpppppp 2 10 X

POPA AC 011aaOlll000000l 2 7

PSHA AC 011aaOll0000000l 2 7

RET 6581 2 15

RTCDSf 01101010ffllllll 2 10 X

RTCENf 0111oo10ffllllll 2 10 X

SAY 6501 2 16

SKPt 01100lllttpppppp 2 15/17 X

SKPT DEV 01100111ttllllll 2 15/17 X

STA CPU 010aaixxbbbbbbbb 2 6/8· X

SUB(CS til AC,(,,) DISP (.IX) 1 ssdd 101 rrccnwww 2 5/7 X

TRAP S,DI.SKCND) 1 ssddqqqqqqq 1 000 2 9

·Direct addressing. For indirect addressing, add two clock periods for each level of indirection. For auto­

increment or auto- decrement locations, add three clock periods, plus two for each level of indirection.

The following symbols are used in Table 19-3:

aa Two bits selecting an Accumulator

bbbbbbbb a-bit signed two's complement address displacement

cc

dd

ff

n

pppppp

rr

ss

Two bits selecting the carry option

Two bits' selecting the destination Accumulator

Two bits selecting the I/O command

One bit selecting indirect addressing

One bit choosing the no load option

Six-bit device number

Two bits determining the shift option

Two bits choosing the source Accumulator

19-40

c
w

~ a:
o
0.
a:
o u
~
u)
w

~
g
CI)
CI)

oct
ail
w
Z
a:
o
CD
CI)

o
::!:
oct c
oct
@

tt Two bits choosing the I/O test

www Three bits selecting the skip-an-condition option
xx Two bits. selecting the index option

Execution times shown are for MicroNova. Where two execution times are shown (for example, 5/7!. the second is the
instruction time if the skip or branch is taken.

19-41

c
w

~
a:
o
n.
a:
o
(J

~
en
w

~
U o
en
en
c(

o1J
w
Z
a:
o
m
en o
~
c(
c
c(

@

DATA SHEETS

This section contains specific electrical and timing data for the following devices:

• MicroNova
·9440

19-01

MICRONOVA

ABSOLUTE MAXIMUM RATINGS*
Supply Voltage Range V BB

Supply Voltage Range V CC

Supply Voltage Range V DD

Supply Voltage Range V GG

Input. Voltage Range V I

Input Current Range II

Operating Temperature Range T A

Storage Temperature Range T stg

Average Power Dissipation

-2 to -7 Volts

-0.3 to +7 Volts

...::Qd. to ~ Volts

-0.3 to +17 Volts

-0.3 to + 7 Volts

o to _6_mAmps

o to +70 °c

-55 to + 125°C

1 Watt

NOTES All voltages in th{s document are
referenced to Vss (ground).

*Subjecting a circuit to conditions either
outside these limits or at these limits for an
extended period of time may cause irreparable
damage ·to the circuit. As such, these ratings
are not intended tope used during the
operation of the circuit. Operating
specifications are given in the DC (STATIC)
CHAR,ACTERISTICS ,TABLE.

Data sheets on pages 19-02 through 19-03 reprinted by permission of Data General Corporation.

19-D2

Q
w
l­
e(
a: o
Q.
a:
o
o
~
en
w

~ g
CI)
CI)
e(

ell
w
Z
a:
o
CD
CI)

o
~
e(
Q
e(

@

MICRONOVA

TA range_O_to~e

vee 5 t 0.25 Volts

Voo = 10 , 1.0 Volts

D. C. <STATIC) CHARACTERISTICS
mN601

OPERATING SPECIFICATIONS

= 14 , 1.0 Volts

= -4.25 , .25 Vol!s [DO

= 0 ·0.0 Volts [CO

~mAmps AveraKe [DD

~mAmps AVerage ISS

~mAmps Average

~mAmps Average

~mAmps Average

LIMITS
CHARACTE RlSTIC SYMBOL UNITS PINS

MIN.

01,3 and 02,4 -2.0

MB 0·15 • tI:AMP -1.0
INPUT LOW VOLTAGE 'I'lL Volt~ EXTINT. DCH INT

I o CLOCK. I o DATA I. -1.0
I o DATA 2

01,3 and 02 .•
MB O·U

INPUT CURRENT FOR IlL mAnlps EXTIN • DCH INT. cr:AMI' -2.0
LOW STATE

10 CLOCK. 10 DATA I.
IODATA2

-2.0

01,3 and a2,' .13.0

MB 0·\5 . cntrr> +4.25
INPUT HIGH VOLTAGE VIH Volts fX'fINT. I5C'Il'1NT

I 0 CLOCK. I 0 DATA I.
+2.5 I o DATA Z

a 1.3 and 02.4
Ma 0·15

INPUT CURRENT FOR
IIH mAmps I 0 CLOCK. I 0 DATA I. I 0 DATA 2

HIGH STATE t. XTINC • U<.H IN.

cntrr>
HALT
MB 0·15

OUTPUT LOW VOLTAGE VOL Volts I 0 INPUT: PAtiSE.
SAEG. WEG. PG

liD CLOCK 110 DATA I, I/O DATA 2
PG. I 0 INPUT +'.0

OUTPUT CURRENT FOR 10L mAmpoi
M8 O·U • \ o CLOCK

LOW STATE I o DATA I •• o DATA 2 +2.0
/'Am. SAEG. PG. HALT

MB 0·15
I o CLOCK. I o DATA 1.1 ODATA2·

+4.25
OUTPUT HIGH VOLTAGE \'fllIs I 0 INPUT. PAUSE. VOH SAEG. WEG. PG

HALT C -0.
HALT.

M8 0.15
OUTPUT CURRENT FOR 10H mAnl~ 10 INPUT. PG HIGH STATE

I 0 CLOCK. I 0 DATA I. I 0 DATA 2,
PAUSE SAEG. WEG

al t 3and.2,t

~
INPUT CAPACIT ANCE CI pF MB 0·15 , I o CLOCK

I 0 DATA 1. I 0 DATA Z
EifiTII'I'.15C'Il'1NT

NOTE
Logic "1" is defined as the more positive voltage as are the maximum
figures given under voltage limits. Logic "0" is defined as the more
negative voltage as are the minimum ligures given under voltage limits.

Positive current, In the conventional sense, is denned as /lo'wing into
t.he pin.

On power-up. Vee must be within Its speci/led operating range (with
respect to VSS) belore any 01 the other power supply voltages are ap­
piled to the circuit.

19-03

MAX.

.O.S

+1.0

.0.S

+.01
-2.0
-4.0

-4.0

+15.0

.5.8

+5,8

-.01
·.06

-1.0
-.02

+.001
.3,0

.0.4

.0.5

'-.01

-.06

-.01

100

10

9440

ABSOLUTE MAXIMUM RATINGS (beyond which the useful life of the device may be impaired)
Storage Temperature -65° to 150"C
Ambient Temperature Under Bias -55 to +125°C
Vee Pin Pot~fltial to Ground Pin -0.5 to +6.0 V
Input Voltage (de) -0.5 to +5.5 V
Input Current (de) - 20 to +5 rnA
Output Voltage (Output HIGH) -0.5 to +5.5 V
Output Current (de) (Output LOW) +20 rnA
Injector Current (lINJ) +500 rnA
Injector Voltage (VINJ) -0.5 to + 1.5 V

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (0 to 75°C)

liNJ(min) = 300 rnA. liNJ(max) = 400 rnA. Vee(min) = 4.75 V. Vee(max) = 5.25 V

LIMITS'

SYMBOL ,'; 1 CHARACTERISTIC MIN TYP MAx UNITS TEST CONDI~IONS

V,H Input HIGH Vo~~ge 2.0 V Guaranteed Input HIGH Voltage

V,L Input LOW Voltage 0.8 V Guaranteed Input lOW Voltage

Veo 1.!1Put ~Iarnp Diode Voltage -0.9 -1.5 V Vee = 4.75 V. liN =-18 rnA
IINJ = 300 rnA

VOH Output HIGH Voltage 2.4 3.4 V Vee = 4.75 V. 10H = -400 p.A
RUN. CARRY. INT ON. SYN. ClK OUT. 00. 01 IINJ = 300 rnA

Q.utput-ttIGH Voltage 2.4 3.4 V Vee = 4.75 V. 10H = -1.0 rnA
IBo - IB15 IINJ = 300 rnA

ICEX Output leakage Mo. M1• M2 1.0 rnA Vee = 4.75 V. VOH = 5.25 V
IINJ = 300 rnA

VOL 9utput lOW Voltage 0.25 0.5 V Vee = 4.75 V. 10L = 8.0 rnA
IINJ = 300 rnA

IIH Input HIG~ _______ 1.0 20 p.A Vee = 5.25 V. VIN = 2.7 V
Co - C3. DCH REO. INT REO. MBSY. MR IINJ = 300 rnA

Input HIGH Current 2.0 40 p.A Vee = 5.25 V. VIN = 2.7 V
CP IINJ = 300 rnA

!!!put H..!..GH Current 5.0 100 p.A Vee = 4.75 v. VIN= 2.7 V
IBo - IB15 (3-State) IINJ = 300 rnA

Input HIGH Current 1.0 rnA Vee = 4.75 V. VIN = 5.5 V
All Inputs IINJ = 300 rnA

IlL Input lOW Current -0.21 -0.36 rnA Vee = 5.25V. VIN = 0.4 V
All inputs except CP IINJ = 300 rnA

Input lOW Current -0.42 -0.72 rnA Vee = 5.25 \/.. Y,N = 0.4 V
Cpo IINJ = 300 rnA

10ZH OFF State (Hig!!.lrnp~ance) 100 p.A Vee = 5.25 V; Your = 2.4 V
Output Current IBo - IB15 liNJ = 300 rnA

IOZL OFF state (Hig!l.lrnp~ance) -0.21 -0.36 rnA Vee = 5.25 V. Your = 0.4 V
Output Current IBo - IB15 IiNJ = 300 rnA

los Output Short Circui!....Cu~nt_ -15 -100 rnA Vee = 5.25 V~ Your = 0.0 V
All putputs Except Mo. M1. M2 IINJ = 300 rnA

Ice Supply Current
.,

150 200 rnA Vee = 5.25 V

VINJ Injector Voltiige 1.0 V IINJ = 300 rnA

Data sheets on pa~es 19-.04 through 19-010 reprinted by permission of Fairchild Camera and Instr~ment Corporation.

19-04

o
w

~
a:
o
a..
a:
o
o
~
en
w

~
(3
o
en
en
oCt

"" w
Z
a:
o
en
en o
~
oCt o
c(

@

9440

AC CHARACTERISTICS: T A = 0 to 75° C - Figures 8 & 9

SYMBOL CHARACTER ISTIC

tCPSYL Propa9ation Delay, CLOCK to SYN going LOW

tCPSYH Propagation Delay, CLOCK to SYN going HIGH

b.1BSYL propagation Delay, MBSY gOing HIGH to SYN going LOW

tMBW MBSY Min Pul~e Width (HI~H)

tMBS ~et-up Time, ~BSY HIGH to CLOCK

tMBHO Hold Time, MBSY HIGH after CLPCK

tCPMH Propagation qelay, CLqCK to M2, Ml, Mo going HIGH

tCPML Propagation Del~y, CLOCK to ~2, Ml, Mo going LOW

tCPOH Propagation Delay, CLOCK tei ()1, 00 going HIGH

tCPOL Propagation Delay, CLOCK to 91, 00 going LOW

tCPAH Propagation Delay, CLOCK to ADDRESS IBo-15 going HIGH

tCPAL Propagation Delay, CLO~K to ADDRESS IBo-15 going LOW

tMBAF Propagation Delay, CLOCK toADDRESS IBo-15 going 3-state

tos Set-up Time, DATA IBo-15 to CLOQK :

tOHO Hold Time, DATA IBo-15 after CLOCK

tcs ~et-up Time, C3, C2, Cl, Co to C'LOCK

tCHO Hold Time, C3, C2, Cl, Co after CLOCK

tCPRH Propagation Delay, CLOCK to RUN HIGH

tCPRL Propagation Delay, CLOCK to RUN LOW

tocs Set-up Time, DCH REO to CLOCK

tOCHO Hold Time, DCH REO after CLgCK

tiS Set-up Time, INT REO to CLOCK

tlHO Hold Time, INT REO after CLOCK

tCPCYH Propagation Delay, CLOC~ to CARRY HIGH

tCPCYL Propagation Delay, CLOCK to CARRY LOW

tCPIOH PropaQation Delay, CLOqK to INT ON HIGH

tCPIOL Propagation Del~y, CLOCK to INT ON LOW

NOTES:, ,
1. The Information Bus is driven as a result of the ~revious cycle.
2. The Fetch and Read cycles will be stretched out for slower memories.
3. Applies to console operation using t~is cycle type. '

19-05

LlMITS-ns
NOTE

MIN TYP MAX

150

160

70

30

-40

60

160

170

160 Fig. 9 Only

170 Fig. 8 Only

170

180

110

-110

130

-110

130

160

170

-110

130

-100

120
Fig. 8 Only

160

150

200

190

9440

I" FETCH CYCLE "I
o 1 1 1 2 1 3 1 SYNC 1 . PLA

ClKOUT. u~
--~~. I '

SYN V ~~~"J~~-~H-+~~.I".~S~ ____ -+ ______ ~
~ --I I".SYL ~ "1·1 !4--ICPSYH-+l

MBSY ~~\\\\~~+--ir_ll) +1-l~~~~~~~~~~~
\~ ,:<" I".w-.J 14- .1,. -. '''.HOI-

M·--------+~-~IC-P"-H-~~~
M2------~ ___ --IIC-PM-L-~-~~-----------+---~-----~-~,,~-i----~-----------------

~---------1---------~,----------------~~-+----~--~--~I~.~------~--------------------
OO _____ ~-----~~----------_+---~-----H_~I~+_----~----------------_ICPOL-+j

O· _______ ~----~~----------_+--~---~--H_~I~~~~~~~-~~---------
~~~~~~~~~~~-·~l~~---------_1~~~IC+,P ... ~H-~~~I~~~~'M~ •• ~F!j~~E'O[S~~~~.-~'O~H!O~:J~---__ ------iiio-" : :: .1 AOORESS OUT' VI/, DATA II~ OATA IN ~ 

_IC!'L~ ., -.',CS 

CO-, __________ +_-----~------------~-------+_----__ -~-~"~_i----~x~-----~x------~---
_ICPRL--+! ';:"- .1'. ~ICH~ 

RUN .lk.lF " . 
~ICPRH~ -- - - - - - - -- -- - - -:-7 - - -'-!f.-:-- - - - ;107-0-=.:{ -- - -- ---

OCH REQ 

CARRY _____________________________________ +-____ ~~·A-~~~r_l-----~~---~--~~---__ 
._ICPCYL-.J ." ~I'HO-

INTON ______________________________________________ ~-~"~~------~~-------~~:.~~--____ ~ 

_ICPIOL--.j I 
~tcPIOH~ 

ClK OUT 

MBSY 

Mo 

00 

O. 

iiO-15 

RUN, 

Fig. 8 Fetch Cycle 

MEMORY (i) 
BUSY 
"tIME 

\-o\ .. o------------------REAO CYCLE ------------------.-1 
~ 

I PlA 

LILIlJlJL...rL 
I ~ ~ '-IMBSl l 

~ IMBSYL 1.- I I l-ICPSYH_I 

~\\~ JL 1-
IMBWc+j 14- .1L I-- IMBHO I I-

-F 
_ICPMH-.t 

"k-
~lePML---l 

~ " 

.:I- " 
_lepoH_1 

/ 
~tCPAH-------t IMBAF:i -..r los ~ :o<O::::..loHo_1 

AOORESS OUT ) %:::OATA~ OATA IN 

4--tCPAL.~ -"Ies r.-
@ 

MEMORY (i) ~leHo_1 

DCH REO, INT REO, CARRY, INT ON BUSY 

unaffected durlnq this cycle, 
TIME 

Fig. 9 Read Cycle 

19-D6 



c 
w 
~ 
a: o 
0.. 
a: 
o 
(J 

~ 
en 
w 

~ 
U o 
U) 
U) 

< 
o1J 
w 
Z 
a: 
o 
a:I 
U) 

o 
~ 
< c 
< 
@ 

9440 

AC CHARACTERISTICS: TA = 0 to 75°C-Figures 10 & 11 

LlMITS-ns 
SYMBOL CHARACTERISTIC NOTE 

MIN TYP MAX 

ICPSYL Propagation Delay, CLOCK to SYN going LOW 150 

tCPSYH Propagation Delay, CLOCK to SYN going HIGH 160 

tMBSYL Propagation Delay, MBSY going HIGH to SYN going LOW 70 

tMBW MBSY Min Pulse Width (HIGHI 30 

tMBS Set-up Time, MBSY LOW to CLOCK -40 

tMBHD Hold Time, MBSY LOW after CLOCK 60 

tCPMH Propagation Delay, CLOCK to M2, M1, Mo going HIGH 160 

tCPML Propagation Delay, CLOCK to M2, M1, Mo going LOW 170 

tCPOH Propagation Delay, CLOCK to 01,00 going HIGH 160 

tCPOL Propagation Delay, CLOCK to 0" 00 going LOW 170 

tCPDH Propagation Delay, CLOCK to DATA 180-15 going HIGH 170 

tCPDL Propagation Delay, CLOCK to DATA 180-15 going LOW 180 Fig. 10 Only 

tCPDF Propagation Delay, CLOCK to DATA 180-15 going 3-state 110 

tCPAH Prop'agation Delay, CLOCK to ADDRESS 180-15 going HIGH 170 

tCPAL Propagation Delay, CLOCK to ADDRESS 180-15 going LOW 180 Fig. 11 Only 

tCPAF Propagation Delay, CLOCK to ADDRESS 180-15 going 3-state 160 

tcs Set-up Time, C3, C2, C1, Co to CLOCK -110 

tCHD Hold Time, C3, C2, C1, Co after CLOCK 130 

NOTES: 
3. Applies to console operation using this cycle type. 
4. The Information Bus is driven as a result of the previous cycle, 
5, The 9440 waits for MBSY to go LOW. By holding MBSY HIGH, the user may idle the processor. 

r-'-:---I-~'---------WRITE CYCLE -'-----S-YN--:--------P-LA--"\ 

ClK OUT 

MaSY 

00 

o. 

ISu ,~ 

CO·] 

n...rL~ --w-u-L.-ILJ 
. l_tepsYL~ 

V ~ 
-1 .... sYLI .... ,(5) 

~\\\~ 
t ... w-.j I .... J - trvlBHOJ--

-\;- 1 ... s1_ 

~tep"L--.j 

-f-
_ lep .. H---..j 

/ 

-F 
_tepoH_1 

/ 
@ .-tcpoH........---..1 

DATA OUT 

- te.DL---.j 

RUN, DCiiREa, iNTiiEQ, CARRY, INT ON 
unaffected during this cycle. 

Flg.10 Write Cycle 

19-07 

-+l tes 

roo-

r 
l_tepSYH--oH 

...'CPOF ..... 1 

CD 
.... teHo.....j 



9440 

ClK OUT 

SYN 

MBSY 

ii, 

ii, 

Mo 

00 

0, 

iio.,s 

Coo,· 

I-4---------------------------------l0MAR------------SY-N----------------Pl-A--.~-~1 

_tCP"'H~ 

ClK OUT 

SYN 

MBSY 

ii, 

ii, 

iio 

00 

0, 

iSO-IS 

Coo, 

~ICPAL---' 

RUN, i5Cii'R"EQ, i'NT'iiEQ, CARRY, INT ON 
unaffected during this cycle, -

Fig. 11 Load Memory Address Register Cycle 

14 ...--------------------- I/O OUT ---------------------+-1-1 

PLA 

..-tcPD~1 

( 
.-'C~DF ..... I 

OATA OUT >-

RUN ____________________________________________________________ __ 

CARRY ____________________________________________________________ __ 

tNT ON 

---------------------------------------------------------
Flg.12 110 Out Cycle 

19-08 

-4- tCPAF -'1 



c 
w 

~ 
a: 
o 
Q.. 
a: 
o 
u 
~ 
ui 
w 
I­
< o o 
C/) 
C/) 

< 
all 
w 
Z 
a: 
o 
In 
C/) 

o 
::?! 
< c 
< 
@ 

9440 

AC CHARACTERISTICS: TA = 0 to 75°C- Figures 12, 13, 14, 15 

L1MITS-ns 
SYMBOL CHARACTERISTIC NOTE 

MIN TYP MAX 

tCPSVL Propagation Delay, CLOCK to SYN going LOW 150 

tCPSYH Propagation Delay, CLOCK to SYN going HIGH 160 

tCPMH Propagation Delay, CLOCK to M2, M" Mo going HIGH 160 

tCPML Propagation Delay, CLOCK to M2, M" Mo going LOW 170 

tCPOH Propagation Delay, CLOCK to 0" 00 going HIGH ffiO 

tCPOL Propagation Delay; CLOCK to 0" 00 gOing LOW 170 

tCPOH Propagation Delay, CLOCK to DATA IBo-15 going HIGH 170 

tCPOL Propagation Delay, CLOCK to DATA IBo-15 going LOW 180 Fig. 12 Only 

tCPOF Propagation Delay, CLOCK to DATA IBo-15 going 3-state 110 

tos Set-up Time, DATA IBo-15 to CLOCK -110 

tOHO Hold Time, DATA IBo-15 after CLOCK 130 
Fig. 13 Only 

tcs Set-up Time, C3, e2, C" Co to CLOCK .' -110 

tCHO Hold Time, C3, C2, C" Co after CLOCK 130 
Fig. 14 Only 

NOTES: 
6. During DCH, the 94~ is not driving the M lines. An external device can conlrol the memory when a LOW is applied to the appropriate M line. 
7. The 9440 floats the IBo-15. The Information Bus is available to the I/O devices and the memory as needed. 

1..----------- I/OIN -----------~ 

CLKOUT 

SYN _____ ~ 

MI ______ +-___ ~ 
M, ______ +-___ -' 
MO ______ +-___ -' 

OO------~ ___ --IC-P-Ml-~-~-------------~--------

O'-------~~---I-CP-M-H~~I ~ tos -4-tDHOj 

( DATA IN >----iSO'S 

Co·, 

RUN _______________________________________________________ __ 

i5CHREa 

iNTiiEa 

CARRY __________________________________________________________ __ 

INTON _________________________________________ __ 

Flg.13 I/O In Cycle 

19-D9 



9440 

__ ----------WAIT----------~ .. I 
PLA 

ClK OUT 

SiN ----------f 

ii, 
---------+-------'. 

ii, ________ -+ ______ -J 

~----------~-------' 
OO __________ +-______ ~ 

0, ________________ -J 

RUN ____________________________________________________________ __ 

DCH RE,O 

iii"f'iiEQ 

CARRy ____________________________________________________________ __ 

INTON ____________________________________________________________ __ 

Fig. 14 Wall Cycle 

~-----------DCH------------------tl 
PLA 

ClK OUT 

SiN __________ ., 

ii, __________ ~~----~ 

~ ii, __________ +-______ -' 
iio __________ +-______ -' 
Oo __________ +-______ ~ 

O, __________ +-__ ~----~----------------------------------------
(l) iBo-15 _________________________________ _ 

CO_3 ____________________________________________________________ __ 

RUN ____________________________________________________________ __ 

ii'C'ii"iiEO 

INT REO 

CARRy ____________________________________________________________ __ 

INTON ____________________________________________________________ __ 

Fig. 15 Oala Channel Requell Cycle 

19-010 



~ Chapter 20 
~ THE INTEL 8086 
a: 
o 
CJ 
:!: en The 8086 is Intel's first 16-bit microprocessor. It is significantly more powerful than any prior microprocessor. 
w !i The 8086 assembly language instruction set is upward compatible with 8080A - but at the source program 
g level only. That is to say. every 8080A assembly language instruction can be converted into one or more 8086 assem-
(/) bly language instructions. There is no reason why anyone would try to convert 8086 assembly language instructions. 
~ one at a time. into one or more 8080A assembly language instructions. but if you did. you would soon become 
a/I hopelessly tangled in conflicting memory allocations and special translation rules. That is why we say that the 8086 
ltil and 8080A assembly language instruction sets are "upward" compatible. 

~ The 8086 and 8080A assembly language instruction sets are not compatible at the object code level. which means that 
~ 8080A programs stored in read-only memory are useless in an 8086 system. 
o 
:! The 8085 and 8080A assembly language instruction sets are identical. with the exception of the 8085 RIM and SIM in-
~ structions. The 8085 RIM and SIM instructions cannot be translated into 8086 instructions. This is because the RIM and 
~ SIM instructions use the serial I/O logic of the 8085. which has no 8086 counterpart. Without the RIM and SIM instruc-
@ tions. the 8085 and 8080A assembly language instruction sets are identical; therefore the 8086 assembly language 

instruction set must also be upward compatible with the 8085 assembly language instruction set - apart from 
the RIM and SIM instructions. 

The 8085 and 8080A assembly language instruction sets are object code compatible -with the exception of the 8085 
RIM and SIM instructions. That is to say. a program existing in read-only memory could be used with one 
microprocessor or the other. 

The 8080A assembly language instruction set is a subset of the Z80 assembly language instruction set. That is to say. 
the Z80 will execute an 8080A object program - but the reverse is not true. The 8080A cannot execute Z80 programs 
when the full Z80 instruction set is used. The 8086 assembly language instruction set is not upward compatible 
with the Z80 assembly language instruction set. 

As a historical note. it is worth mentioning that the 8008 microprocessor. which preceded the 8080A. was also com­
patible only at the source program level. That is to say. there is an 8080A assembly language instruction for every 8008 
assembly language instruction. but the two microprocessor object code sets are not the same. 

The various instruction set compatibilities that we have described may be illustrated as follows: 

8086 

/ + 
/ I 

. / 

(
excluding RIM ) I 
and SI~instructions I 

/ I 
/ I 

8085 I Z80 

~i~-- Source program of lower microprocessor can be assembled to generate 
upper microprocessor object program. 

8080A 

+ I 
I 

8008 

Lower microprocessor instruction set is a subset of upper microproces­
sor instruction set at the object program level. 

20-1 



These are the most interesting innovations to be found in 8086 hardware design: 

1) 8086 Central Processing Unit logic has been divided into an Execution Unit (EU) and a Bus Interface Unit (BIU). 
These two halves operate asynchronously. The Bus Interface Unit handles all interfaces with the external bus: it 
generates external memory and I/O addresses and has a 6-byte instruction object code queue. Whenever the EU 
needs to access memory or an I/O device, it makes a bus access request to the Bus Interface Unit. Providing the 
Bus Interface Unit is not currently busy, it acknowledges the bus access request from the EU. When the Bus Inter­
face Unit has no active pending bus access requests from the EU, it performs instruction fetch machine cycles to 
fill the 6-byte instruction object code queue. The CPU takes its instruction object codes from the front of the 
queue. Thus instruction fetch time is largely eliminated. 

2) The 8086 has been designed to work in a wide range of microcomputer system configurations, ranging from a sim­
ple one-CPU system to a multiple-CPU network. To support this wide flexibility, a number of 8086 pins output 
alternate signals. This may be illustrated as follows: 

Minimum 
Configurations 

8086 

MN!MX 

+5V 

These signals 
do not 
change 

Simple 
control 

11· •••• ~m:~~~'~ output K for use in 
one-CPU 
system 

Maximum 
Configurations 

8086 

These signals 
do not 
change 

Complex 
control 

~~IIII~~ signals useful 
in multi 
CPU networks 

The same pins output these two sets of signals, based on a level of MN/MX. This wholesale re-allocation of signals 
is a highly imaginative and innovative first for the microprocessor industry. 

3) The 8086 has built-in logic to handle bus access priorities in multi-CPU configurations. (This is not anew concept: 
National Semiconductor's SC/MP has had it for years.) . 

4) In multi-CPU configurations, each 8086 CPU can have its own local memory, while simultaneously sharing com-
mon memory. The common memory may be shared by all CPUs, or by selected CPUs. . 

5) The 8086 has been designed to compete effectively in program intensive applications that have been the domain 
of the minicomputer. Up to a million bytes of external memory can be addressed directly. All memory addressing is 
base relative: this memory addressing technique naturally generates relocatable object programs. (Relocatable ob­
ject programs can be moved from one memory address space to another and re-executed without modification.) 
Also, since the 8086 utilizes stack-relative addressing, re-entrant programs are easily written. (Re-entrant programs 
can be interrupted in mid-execution and re~executed. For example, a subroutine which calls itself is re-entrant: a 
program which can be interrupted in mid-execution by an external interrupt. and then re-executed within the in­
terrupt service routine, is also re-entrant.) 

6) The 8086 uses prefix instructions that modify the interpretation of the next instruction's object code. 

The 8086. like its predecessor. the 8080A. is really one component of a mUltiple-chip microprocessor configura­
tion. 

In addition to the 8086 microprocessor itself. you must have an 8284 Clock Generator/Driver. You cou Id create 
the required clock signal using alternative logic, but it would be neither practical nor economical to do so. 

The third device necessary in some 8086 microprocessor configurations is the 8288 Bus Controller. 

You will usually have an 8288 Bus Controller between an 8086 and its System Bus (or busses). just as you will usually 
have an 8228 System Bus controller. between an 8080A and its System Bus. In the case of the 8086, however, you can 
dispense with the 8288 Bus Controller in single-bus configurations - and pay no penalty for it. 

20-2 



Q 
w 

~ 
a: o 
D. 
a: 
o 
CJ 
~ 
en 
w 

~ g 
CI) 
CI) 

~ 
cIS 
w 
Z 
a: 
o 
10 
CI) 

o 
:!E 
~ 
c 
~ 

@ 

The 8086 has a large family af suppart devices. Mast af these suppart devices are nat yet available. In this chapter we 
describe the fallawing suppart devices: 

• The 8282/8283 8-bit input/autput parts 

• The 8284 Clack Generatar/Driver 

• The 8286/8287 8-bit parallel bidirectianal bus drivers 

• The 8288 Bus Cantraller 

The anly manufacturer af t~e 8086 is: 

INTEL CORPORATION 
3065 Bawers Avenue 
Santa Clara. CA 95051 

It is prabable that Advanced Micra Devices will became a secand saurce far this part within the U.S.A.. while Siemens 
AG becames the secand saurce in Eurape. 

The 8086 is manufactured using N-channel depletian laad. silican gate technalagy. It is packaged in a 40-pin DIP. A 
single +5V pawer supply is required. All signals. with the exceptian af the clack input. are TTL-campatible. The clack 
input must be an MOS level signal: it is generated by the 8284 Clack Generatar/Driver device. which is described later 
in this chapter. 

Instructian executian times will vary depending an haw effectively instructian queuing is used. Typically. between 2 
and 30 clack cycles are required to. execute an instructian. Multiplicatian and divisian instructians require mare execu­
tian time. Clack cycles may be as shart as 125 na·nasecands. Future versians of the 8086 will likely allaw faster clacks. 

THE 8086 CPU 

~unctions implemented on the 8086 microproce~sor chip are illustrated in Figure 20-1. 

Interrupt priarity arbitratian lagic is shawn as anly half present: external lagic. such as an 8259A. must pravide a 
device cade identifying an interrupt. but all arbitratian and vectaring lagic is subsequently handled by lagic within the 
CPU. . 

It is ~arth nating that bus interface logic. which is shawn as present in Figure 20-1. is much mare extensive than ather 
microprocessars provide. One cauld rightfully demand that bus interface lagic therefare be shawn as absent in 
equivalent figures far athermicrapracessars. . 

8086 PROGRAMMABLE REGISTERS AND ADDRESSING MODES 
We describe 8086 programmable registers in conju'nction with 8086 addressing modes, since many 8086 pro­
grammable registers are there only to support memory addressing logic;. 8086 programmable registers are il-
lustrated in Figure 20-2. ., • 

Shaded ~egisters are 8086 equivalents far 8080A regist~rs. 8080A register names are shawn in the left margin. 

L,et us first examine the general purpose registers, AX, BX, ex and OX. These lacatians are 8086 AND 
treated as four 16-bit registers ar eight 8-bit registers; they also. reproduce the 8080A generai pur: 8080A 
pase registers as fallaws: REGISTERS' 

COM JlAT-
AH has no. 8080A equivalent. Do not canfuse it with the 8080A PSW. IBILITY 

AL is equivalent to. the 8080A A register 
BH is equivalent to. the 8080A H register 
BL is equivalent to. the 8080A L register 
CH is equivalent to. the 8080A B register 
CL is equivalent to. the 8080A C register 
DH is equivalent to the 8080A D register 
DL is equivalent to. the 8080A E register 

Cansistent with 8080A register utilizatian. register AX serves as a primary Accumulator. Input 
and autput instructians pass data thraugh AX (ar AU in preference to. at~er general purpase 
registers: also.. selected instructian access AX (ar AU cantents only. 

In addition to serving as a general purpose Accumulator, register ex can serve as a base 
register when computing data memory addresses. 

20-3 

8086 AX 
REGISTER 

8086 ex 
REGI~TER 



Clock Logic 

/ Logic.toliandle> .···....r</, ....... ......( ...< 
_. Ir'l.· ... t .. ·.e.· .. rr .... u .. p ... t. Re.q .... u.e.s. t.s.·· II ..•.. A .•...•. rith .... '"!le ......... t .. iC.a.~ ... ?>. \ ....•.. \·r.· .... · ... A .... d.c.c.y.m.U .... I.aw ... )L .••.••.••• 
~ from .•.. ... . ... 7\< Logic Unit».RegisteHs). ..•.• 

•••••..••••••.••• 0Esx~teirn0aJI o(e~VTIicTIesTIitl?<f. ••.•••..•.• .../. ".ii .................................. ..····ii ./. \.i .(,../ 

.......> .../ >< l~strJctjoriR~~,st~r" it 
.<i<\i::' ...: V:.~'. 

iii) ..i Co~i~olurii~/ i 
))) ......... ...\. . ............ ..... :: ..... 'i> 

Ii. 
i 

",' c' ·•·•· ..... ·.· .•.... c\ .. ·:.· •• • • 

I/O Communication 
... Serial to Parallel 

Interface Logic 

Programmable 
Timers 

.... . ........... . 

Read Only 
Memory 

i 
•• •. • .•• ·1· .. 

' .. 

< 

....... 

i 

\.iL} .. 
~t,'1< 

..... . .... 

r 
.... 

.. 

.... 

·.c··' t· ..... > 

•••.•.... 1/ 

... -~ 

I/O Ports 

~ 

. ... 

i) 
··/i.· 

j 

/ 

'r. 
.... 

Figure 20-1. Logic of the Intel 8086 CPU 

20-4 

.> ... 

< 

Direct Memory 
Access Control 

Logic 

• 
..... 

....... 

~AM···A9~re~sing 
Hi!3M·i}r~ ~ 

..I~tf!~a9f:\'~~*i , •.... 

Read/Write 
Memory 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 

~ 
g 
CI) 
CI) 
c( 

CI/S 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
c( 
c 
c( 

@ 

° +- One 16-bit register 
.---___ -.-___ --,0 +- Two 8-bit registers 

AL (or Al AX (= AH. AL) Primary Accumulator(s) 
~~--~----~ 

BL ". BX (= BH. BLl Accum~lator(s). and Base register 
~----~----~ 
1,-___ -t-_C~L----1 CX (= CH. ~LI Accumulator!s) and Counter register 

DL OX (= DH. DL) AccumulatQns) and I/O Data Counter 

~;;::::::;:::;-=;ft;.:::;;;;:::::;:::;f-=;;L- These names apPI~t~' 16-bit registers '. 

L..-___ -'-_____ These na0es apply to 8-bit registers 

°1 :,::' ;:;:. t::r(SP) } 
.. Base Pointer (BPI 

:================:0 +- Bit num~er . . Index registers 

1----------11 Source Index (SI) 
L--_______ ---J DestlOatlon Index (01) 

o +- Bit number 
r7'"77~~~~~~~1 Program Counter (PC) 

15 0 +- Bit number 

8 
COdeSeQ"'1ent (CS)} '.' 
Data Segment (OS) 

Segment registers 
.' . Stack Segment (SS) 

Extra Segment (ES) 
. , 

1;":15~ _______ 0~ +- Bit number 

1-. ________ ..... 1 Status 

Shaded registers are 8086 equivalents for 8080A registers. 

8080A register names are shown in the left margin. 

Figure 20-2. 8086 Programmable ReQisters 

Register ex serves as an Accumulator; it is also used as a counter by multi-iteration instruc­
tions; these instructions terminate execution when register. ex contents increment or decrement 
to O. . '. 

Some I/O instructions move data between an identified I/O port and the memory location 
addressed'by register OX. Register DX may also serve as an Accumulator. 

When looking at general purpose registers AX. BX. ex and pX. there is plenty of opportunity to be 
confused by terminology. '. 

8086 
ex 
REGISTER 

80a6 
OX 
REGISTER 

Intel literature identifies the four 16-bit registers via the laQels AX. BX. ex and DX.' Each of these 16-bit registers is sub­
divided by Intel literature into two 8-bit registers. as follows: 

20-5 



15 o ~ AX bit numbers 
7 07 o ~ AH. AL bit numbers 

AH I AL I -----15 
AX o ~ BX bit numbers 

7 07 o ~ BH. BL bit numbers 

I B~ I B; I 
15 

BX o ~ CX bit numbers 
7 07 o ~ CH, CL bit numbers 

I CH I CL I -----15 
CX o ~ OX bit numbers 

7 07 o ~ OH, OL bit numbers 

I OH . l' OL I 
ox 

The 8080A Accumulator must be reproduced by AL. since selected 8080A and 8086 instructions access this register 
and none other.' , 

BH and BL must reproduce the 8080A Hand L registers. since only BX can contribute to an 8086 data memory address, 
On the surface this would appear to present a problem. since the 8080A has a limited number of instructions which use 
the Be and DE registers to provide 16-bit memory addresses. When 8080A source programs are reassembled to ex­
ecute on an 8086 microprocessor. 8080A instructions that seek memory addresses out of the Be or DE registers 
become 8086 instructions that use Index registers.' ' 

All 8086 memory addresses are computed by summing the contents of a Segment register 
and an effective memory address. The effective memory address is computed via a variety of 
addressing modes. as it would be for any other microprocessor. The selected Segment register 
contents are left-shifted four bits. then added to the effective memory address to generate the ac­
tual address output as follows: 

Segment Register contents: 

Effective memory address: 

Actual address output: 

xxx~xxxxxxxxxxxxoooo 
+ OOOOyyyyyyyyyyyyyyyy 

ZZZZZZZZZZZZZZZZyyyy 

x, Y and Z represent any binary digits. 

20-6 

8086 
SEG'MENT 
R~GISTERS 



Q 

~ 
a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 

~ 
g 
CI) 
CI) 

ct 
CI/l 
w 
Z 
a: 
o c:a 
CI) 

o 
~ 
ct 
Q 
ct 
@ 

Thus a 20-bit memory ~ddress is computed - which allows 1,048,576 bytes of external memory to be ad­
dressed directly. 

, , . ' I. 

The Segment registers of the 8086 are unlike any other microprocessor registers described in this book. They act as 
base registers which can point to any memory location that lies on an address boundary that is an even multiple of 16 
bytes. Using arbitrary memory addresses. this may be illustrated as follows: 

CS Segment register _ I---------'---i 
contains 234E I6 

334DF I6 

} CS",m,", 

234EO l6 

lA31F I6 

ES segment 
121EF I6 

ES Segment register _ t--~--;c~~~~--;c-i 
contains OA3216 

OA32016 

DS Segment register _ 1--_____ ---'----'--1 

contains021F I6 

021FO l6 

As illust~ated above. each Segment register identifies the beginning of a 65.536-byte memory segment. Since the 
8086 has four Segment registers. there will.at any time be four selected 65.536-byte memory segments. The actual ad­
dress output will always select a memory location within one of these four segments. For example. if an actual address 
output is the sum of the OS Segment register and an effective memory address. then the actual address output must 
select a memory location within the OS segment: that is to say. within the address range 021 FOt6 through 121 EFts in 
the illustration above. Likewise. an actual address output which is the sum of the CS Segment register and an effective 
memory address must select a memory location within the CS segment. which in the illustration above will lie in the 
address range 234EOt6 through 3340Ft6. 

No restrictions are placed on the contents of Segment registers. Therefore 8086 memory is not divided into 65.536-
byte pages. nor do the four Segment registers have to specify non-overlapping memory spaces. Each Segment register 
identifies the origin of a 65.536-byte memory segment which may lie anywhere within addressable memory. and may 
or may not overlap with one or more other segments. 

Even though Segment registers can create overlapping or non-overlapping segments. they do have dedica~ed address­
ing functions. That is to say. different types of memory accesses compute memory address within specific seg­
ments. 

During an instruction fetch, the Program Counter contents are added to the Code Segment 
register (CS) contents in order to compute the memory address for the instruction to be fetched. 
This may be illustrated as follows: 

20-7 

8086 CODE 
SEGI\ijENT 
REGISTER 
AND. PROGRAM 
COUNTER 



15 0 
7 07 0 

AX.=AH+ALm· 
BX = BH+BL 

CX = CH+CL 

OX = OH+OL : 

SP 

BP 
10-, 

51 
01 

PC 

15 o 

M M M M 

.~ 
15 0 0 M M M M 

:~ . ~~~~~ 
ES~ 

Actual program memory 
address output. 

M. Nand P represen! any hexadecimal digits. 

Any Stack instruction such as a push. pop. call or return adds the Stack Pointer contents to 
the Stack Segment register (SS) contents in order to Compute the address of the Stack location 
to be accessed. This may be illustrated as follows: 

15 0 
7 07 0 

:::::::~m 
cx = CH+CL 
o~ ~ OH+OL· .. . 

15 o 

8086 STACK 
SEGMENT 
AND STACK 
POINTER 
REGISTERS 

Actual Stack operation 
. address output. 

Once again. M. Nand P represent any hexadecimal digits. 

Instructions that process data strings use the SI and 01 Index registers, together with thE! 
Data Segment register (OS) and the Extra Segment register (ES), in order to identify string 
source and destination addresses. This may be illustrated as follows: 

·20-8 

8086 
EXTRA 
SEGMENT, 
SOURCE INDEX 
AND 
DESTINATION 
INDEX 
REGISTERS 



c 
w 

~ 
a: 
C 
Q, 
IX 
C c.: 
~ 
ui 
w 
l­
e{ 

U o 
en 
en 
e{ 

III 
u.. 
Z 
a: 
o 
CD 
en o 
::!E 
e{ 
c 
e{ 

@ 

15 0 
7 07 0 

:::::::~~ .. 

cx = CH+CL 

OX = OH+OL 

SP 

BP 

SI 

01 

PC 

15 

, 15 

J J 

K K 

o 

J J 

K K 

o 

CS~ DS M. M MM· 

SS 

ES NNNN 

~ 

J. K. M. Rand 5 all represent any hexadecimal digits. 

0 K K K K 

N N N N 0 

R R R R K If 
Actual data string 
address output. 

As the above illustration would imply. instructions that process strings require that the source and 
destination strings reside within a single 65.536-byte address range. but not necessarily the same 
65.536-byte range. 

Instructions that access data memory add an effective memory address to the Data Seg­
ment register (OS) or the Stack Segment register (SS). This may be illustrated as follows: 

Program 
Memory. 

0 J J J J 

MMMMO 

S S S S J 

Source string 
address. 

8086 
DATA 
SEGMENT AND 
STACK SEG­
MENT 
REGISTERS 

15 0 
7 07 0 

as addressed "'-------.... 
by PC and CS 

:::::::~~. 
CX = CH+CL 

OX = OH+OL . 

15 

SP 
~--------------~ BP 
r---------------~ 

SI 
r---------------~ 01 I __ ----"'"'JIP" 0 X X X X 
r---------------~ 

PC y y Y Y 0 

~:~~/zzzzx 
ESE===:3 

X. Y and Z represent any hexadecimal digits. 

§ 
Effective address segment base. 
Actual data address output. 

When a data memory address is created. as illustrated above. the BX. BP. 51 and DI registers' con­
tents. plus a displacement coming from the instruction object code, may contribute to the effec-
tive memory address. There are, however, very specific register and displacement combinations that can create an 
effective memory address, as summarized in Table 20-1. Each case specifies either the D5 or 55 register as the default 
source for the segment base address. 

20-9 



Table 20-1. A' Summary of Intel 8086 Memory Addressing Options 

POSSIBLE DISPLACEMENTS 

MEMORY SEGMENT BASE INDEX 
8-BIT 

REFERENCE REGISTER REGISTER REGISTER 16-BIT HIGH ORDER BIT 
UNSIGNED EXTENDED 

SI X X 
None 

OS 01 X X 

(Alternate* : SI X X 

NORMAL DATA CS, SS or ES) BX 01 X X 

MEMORY None X X 
REFERENCE OS None None X 

SS SI X X 

. (Alternate*: BP 01 X X 

CS, OS or ES) None X X 
STACK SS SP None 

STRING SI 
DATA ES None 

01 

INSTRUCTION 
CS PC None FETCH 

BRANCH CS PC None X 

I/O DATA OS OX None 

* The segment override allows OS or SS to be replaced by one of the other segment registers 

X These are displacements that can be used to compute memory addresses. 

NONE 

X 

X 

X 

X 

X 

X 

X 

When creating any d,3ta' memory address. you can execute an extra instruction to select a Segment register' other than 
the default Segmetit register. You can only select a Segment register other than the default Segment register when ad­
dressing data memory. You must live with the default Segment register when creating program memory addresses, 
Stack addresses, or string instruction addresses. 

It is very important to nate that the 8086 has a whale set of data memory addressing options aimed at access­
ing the Stack as though it were a data area. That is to say, in addition to the normal "Push" and "Pop" type Stack in­
structions, the 8086 allpws normal data memory acceses instructions to address the Stack. Many assembly language 
programmers use the Stack to store addresses, and as a general depository for data which must be transmitted be­
tween program modules. Anyone favoring this assembly- language programming philosophy will be delighted with 
8086 data memory addressing options. 

20-10 



c 
w 

~ 
a:: 
o 
D.. 
a:: 
o 
o 
~ 
en 
w 

~ g 
C/) 
C/) 

< 
ci:I 
w 
Z 
a:: 
o 
CD 
C/) 

o 
~ 
< c 
< 
@ 

Let us now examine the various data memory addressing options in detail. Refer to Table 20-1. ,..--------, 
In the simplest case. we have straightforward direct memory addressing. A 16-bit displace­
ment provided by tvvo instruction object code bytes' is added to the Data Segment register in order 
to create the actual memory address. This may be illustrated as follows: 

8086 DIRECT 
MEMORY 
ADDRESSING 

15 0 
7 07 0 

CX = CH+CL 

Program 
Memory 

:~:::::~m 
OX = OH+OL 

~~L ::::~+1 
o H H L L ~"""-_-----{J H H PPPPM+2 

BP 

51 

01 

PC M M M 

R R R R 0 

o 5 5 5 5 L 

M 

15 O~OMMMM 
P P PPM 

C5~N. N N 05 R R R R 

55 

ES 

• NNNNO 

H. L. M. N. P. Rand S all represent any hexadecimal digits. 

~ Actual data memory address output for 
direct memory addressing. 

Note that a 16-bit address displacement. when stored in program memory. has the low-order byte preceding the high­
order byte. This is consistent with the way the 8080A stores addresses in program memory. 

DS must provide the Segment base address when addressing data memory directly. as illustrated above. 

20-11 



Direct. indexed addressing is also provided. The 51 or 01 register maybe selected as the Index 
register. You have the option of adding a displacement to the contents of the selected Index 
register in order to generate the effective address. If you do not add a displacement. then you 
have. in effect. implied memory addressing via the SI or 01 register. This may be illustrated as 
follows: 

15 0 
7 07 0 

:::;:::~~ 
cx = CH+CL 

DX = DH+DL 

15 o 
SP 

r---------------~ 
BP 

r---------------~ 
SI 
r---------------~ 

DI 
~--------------~ 

PC 
~--------------~ 

15 0 

DS R R R R ------.,.,. R R R R 0 

8086 
IMPLIED 
MEMORY 
ADDRESSING 

CS~ oxxxx 

SS S S S S X ...... f---- Actual data memory address output for 
ES implied memory addressing. 

(You may substitute CS, SS or ES for DS by executing an additional 1-byte instruction.) 

X. Rand 5 represent any hexadecimal digits. 

If a displacement is added to the contents of the selected Index register. then you may 8086 DIRECT. 
specify an 8-bit displacement or a 16-bit displacement. A 16-bit displacement is stored in two INDEXED 
object code bytes; the low-order byte of the displacement precedes the high-order byte of the dis- ADDRESSING 
placement. as illustrated for direct memory addressing. If an 8-bit displacement is specified, then 
the high-order bit of the low-order byte is propagated into the high-order byte to create a 16-bit displacement. This 
may be illustrated as follows: 

Displacements: 1 0 1 1 0 1 0 1 o 1 1 0 1 0 1 1 

Sign extended: LJ2~~[lill~w]illJ~u 0 1 1 0 1 0 1 
""'19"'-.. -O-i-O->-O-\-O-.·.· .. ·.,....j)""'y.,..,.O-\\-o"....,...,q 11 1 0 1 0 1 

20-12 



c 
w 

~ 
a:: 
o 
a.. 
a:: 
o 
CJ 
~ 
en 
w 

~ 
U o 
(I) 
(I) 

ct 
ell 
w 
Z 
a:: 
o 
en 
(I) 

o 
~ 
ct 
C 
ct 
@ 

We may now illustrate direct, indexed addressing as follows: 

15 0 
7 07 0 

Program 
Memory 

:::::::~m 
CX = CH+CL 

ox = OH+OL 

o y y y.y 

o x x x X 

R R R R 0 

§ PPPPM 

--{. PPPPM+1 

PPPPM+2 

PPPPM+3 

z z z z z o 

BP 
~--------------4 

~ Actual data memory address output for 
direct. indexed memory addressing. 

SI 
r---------------~ 

01 
~--------------4 

PC 

~1-5--------------~0~ 
M M M M 

OMMMM 

CS ~N N N --------I .. ~ N N N N 0 
OS R R R R P P PPM 

SS 

ES 

(You may substitute CS. SS or ES for OS by executing an additional 1-byte instruction.) 

M. N. P. R. X. Y and Z all represent any hexadecimal digits. 

YYYY is the 16-bit or 8-bit displacement taken from program memory. 

XXXX is the index taken from either the 01 or the SI register. 

The effective memory address can be computed using base relative addressing. You have 
two sets of base relative addressing options: 

1) Data memory base relative addressing. which is within the OS segment (data memory). 

2) Stack base relative addressing. which is in the SS segment (Stack memory). 

Data memory base relative addressing uses the BS register contents to provide the base for 
the effective address. All of the data memory addressing options thus far described are 
available with base relative data memory addressing. In effect, base relative data memory 
addressing merely adds the contents of the BX register to the effective memory address 
which would otherwise have been generated. Here. for example. is an illustration of base rela-
tive direct addressing: • 

20-13 

8086 BASE 
RELATIVE, 
INDEXED 
ADDRESSING 

8086 
DATA 
MEMORY BASE 
RELATIVE 
ADDRESSING 



15 0 Program 
7 07 0 Memory 

::: ::::~ rnK . K K: ____ § PPPPM 

CX=CH+CL ~OKKKK .J: PPPPM~l 
Dx = OH+OL . 0 H H L L .... -""''--------"lj PPPPM+2 

R R R R 0 

BP 

SI 

01 

PC 

15 

M M M 

o S S S S S 

M 

OMMMM 

CS~N N N ----------~.~ N N N N 0 
OS R R R R P P PPM 

SS 

ES 

~ Actual data memory address output for 
base relative. direct. indexed memory 
add ressi ng. 

(You may substitute CS. ES or SS for OS by executing an additional '·byte instruction.! 

Simple. direct addressing. which we described earlier. always generated a 16-bit displacement. Base relative. direct ad­
dressing allows the displacement. illustrated above as HHLL. to be a 16-bit displacement. an 8-bit displacement with 
sign extended. or no displacement at all. 

Base relative implied data memory addressing simply adds the contents of the BX register to the selected Index register 
in order to compute the effective memory address. This may be illustrated as follows: 

15 0 

:::::::~rn7 K K.07 K K 0 _______________ _ 
CX = CH+CL 

OX = OH+OL . 

15 o 
SP 

r---------------~ 
BP 

r---------------~ 
SI 
r--------------~ 

01 
r--------------~ 

PC 

15 0 0 K 

~~ 
0 x x x X 

OS R R R R • R R R R 0 

SS S S S S S ...-- Actual data memory address output for 

ES base relative. implied memory addressing. 

(You may substitute CS. SS or ES for OS by executing an additional 1-byte instruction.) 

20-14 



Base relative. direct. indexed data memory addressing may appear to be complicated. but in fact it is not. We simply 
add the contents of the BX register to the effective memory address. as computed for normal direct. indexed address­
ing. Thus. base relative. direct. indexed data memory addressing may be illustrated as follows: 

15 0 Program 
7 07 0 Memory 

• o K K K K §PPPPM 
o y y y y ...., -{ PPPPM" 
0 X X X X PPPPM+2 

~ :::::::~mK K K 
~ CX = CH+CL 

~ OX = OH+OL 
(J 

~ 
en 
w 
I­
~ 
U o 
CI) 
CI) 

~ 

col! 
w 
Z 
a: 
o 
ell 
CI) 

o 
:!: 
~ 
o 
~ 

@ 

R R R R 0 PPPPM+3 

o z z z z z~ 
Actual data memory address output for 
base relative. direct. indexed memory 
addressing. 

BP 

SI 

01 

15 

M M M M 

0---------- OMMMM 

PC 

CS ~N N N -------1~~ N N N N 0 
OS . R R R R P P PPM 

SS 

ES 

(You may substitute CS. s or ES for OS by executing an additional 1-byte instruction.) 

The 8086 also has Stack memory addresing variations of the base relative. data memory addressing options just de­
scribed. Here. for example. is base relative. direcfStack memory addressing: 

15 0 
7 07 0 

0 K K K K 
0 H H L L 

:::::::~m· 
CX = CH+CL 

OX = OH+OL 

R R R R 0 

o S S S S S 

BP KKK K 
~-------------~ 

SI 
~--------------~ 

01 
~--------------~ 

PC MM M M 

,15 0 --------.. 0 M M IV! M 

P P PPM 
CS~N N N 
OS 

SS R R R R 

ES 

• NNNNO 

Program 
Memory 

... 
§PPPPM --{. PPPPM., 

PPPPM+2 

~ Actual Stack memory address out~ut for 
base relative. direct memory addressing. 

(You may substitute CS. ES or SS for OS by executing an additional 1-byte instruction.) 

In the illustration above. the displacement HHLL must be ,present. either as a 16-bit displacement. or as an 8-bit dis­
placement with sign extended. Remember. base relative. direct data memory addressing also allows no displacement. 
However. base relative. direct Stack memory addressing requires a displacement. These options are summarized in Ta­
ble20-1. 

20-15 



Here is an illustration of base relative implied Stack memory addressing: 

15 0 
7 07 0 AX.AH>ALm 

BX = BH+BL 

CX = CH+CL 

OX = OH+OL 

15 0 

5P 

BP K K K K 

51 

01 

PC 

15 0 K K 

;~I 
0 x x x X 

R R R R 0 

R R R R 5 5 S S S ~ Actual Stack memory address output for 
base relative, implied memory addressing. 

(You may substitute CS, OS or ES for SS by executing an additional 1·byte instruction.) 

X, Rand S represent any hexadecimal digits. 

Here is an illustration of base relative. direct. indexed Stack memory addressing: 

15 0 Program 
7 07 0 Memory 

o K K K K §PPPPM 
o Y Y Y Y ..... ~ PPPPM" 
0 X X X X PPPPM+2 

R R R R 0 PPPPM+3 

:::::::~m 
cx = CH+CL 

OX = OH+OL 

o Z Z Z Z Z 

~ Actual Stack memory address output for 
base relative, direct, indexed memory addressing. BP 

~---------------4 
KKK K 

SI 
~---------------4 

01 
~---------------4 

PC M M M M 

15 0 0 M M M M 

C5~N N N ------------~.~ N N N N 0 
OS P P PPM 

55 R R R R 

ES 

(You may substitute CS, OS or ES for SS by executing an additional 1-byte instruction.) 

20-16 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
(J, 

~ 
ui 
w· 
l­
e:( 

U o 
C/) 
C/) 
e:( 

oil 
w 
Z 
a: 
o 
In 
C/) 

o 
~ 
e:( 
c 
e:( 

@ 

There is one anomalous 8086 addressirig mode which can cause confusion. One variation of I/O 8086 I/O . 
instructions addresses an lio port via the DX register. The OX register contents are output Oh PORT 
the Address Bus. to be interpreted as an I/O port address .. This means you can have up to 65.536 ADDRESSING 
I/O port addresses. Since the OX register contents are being output as an I/O port address. it is not 
added to any Segment register contents. Thus, the OX register outputs an address in the range 000016 through FFFFI6. 
This is the only case in which a register's contents ilre output directly as an address on the Address Bus. without first 
passing through segmentation logic. 

All 8086 Branch-on-Condition instructions use program relative addressing. This feature 
allows dynamically relocatable code. The Branch-on-Condition instruction provides an 8-bit. 
signed binary displacement which is added to the contents of the Program Counter. Thus, Branch­
on-Condition instructions have an addressing range of + 128 through -127 bytes from the location 
of the Branch-on-Condition. The queuing of instruction object codes has no impact on Branch­
on-Condition logic, or the branch addressing range. 

8086 Jump and Subroutine Call instructions offer these addressing options: 

8086 
PROGRAM 
RELATIVE , 
ADDRESSING 

1) Program relative addressing. An 8-bit or 16-bit displacement is added to the contents of the Program Counter. 

2) Direct addressing. New 16-bit addresses provided by the instruction are loaded into the Program Counter and the 
CS Segment register. 

3) Indirect addressing. Any of the data memory addressing options may be used to read data 
from data memory. However, the data input is interpreted as a memory address. You have two 
indirect addressing options. A single 16-bit data word may'be read, in which case it is loaded 
into the Program Counter and the Jump or Call references a memory location within the cur­
rent CS segment. You can also read two 16-bit data words; the first is loaded into the Pro­
gram Counter and the second is loaded into the CS Segment register. Thus you can Jump or 
Call indirectly any addressable memory location. 

8086 STATUS 
The 8086 has a 16-bit Status register with the following status bit assignments: 

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ~ Bit No. 

1-1-1-1-1 0 I D II IT I S I Z I-I A I-I pi-I C I Status register 

I I I I I I I t 
L 

20-17 

Reserved bits, normally 0 

Carry 

Parity 

Auxiliary Carry 

Zero 

Sign 

Trap 

Interrupt enable/disable 

Direction 

Overflow 

8086 
INDIRECT 
ADDRESSING 



The Carry, Auxiliary Carry, Overflow and Sign statuses are quite standard; see Volume 1 for a description of these 
statuses: The Auxiliary Carry status is identical to theB080A status with the same name. It represents carries out of bit 
3 in an 8-bit data unit as described in·Volum.e I. Chapter 2. 

Subt~act instruc~ions use twos ci~mpl~ment arithmetic in order to subtract the minuend from the subtrahend. 
However, the Carry status is inverted. That is to say, following a subtract operation, the Carry status is set to 1 
if there was no carry out of the high-order bit, and the Carry status is reset to 0 if there was a carry out of the 
high-order .bit. The Carry Status therefore indicates a borrow. -

The Parity status is sette 1 when there is an even number of 1 bits in the result of a data operation; an odd number of 
1 bits causes the Parity status to be reset to O. 

The Zero status Is completely standard. It is set to 1 when the resu It of a data operation is zero; it is set to 0 when the 
resu It of a data operation Is not zero. 

The Direction ~tatus determi~es whether stringoperati~ns will auto-increment or auto-decrement the contents 
of Index .registers. If the Direction status is 1. then the 51 and DI Index registers' contents will be decremented; that is to 
say. strings will be accessed from the highest memory address down to the lowest memory address. If the Direction 
status is O. then the 51 and Dllridex register contents will be incremented; that is to say. strings will be accessed begin­
ning wit~ the lowest memory address. 

The Interrupt status is a master irite;rupt enable/disable. This status must be 1 in order to enable interrupts within 
the 8086. If this status is O. then all interrupts will be disabled. 

The Trap status is-a special debugging aid which puts the 8086 into a "single step" mode. The single step mode is 
described in detail together with 8086 interrupt logic. since it depends on this interrupt logic for its existence. 

The Carry, Auxiliary Carry, Parity, Sign and Zero statuses are also found in the 8080A. The Overflow, Direction, 
Interrupt and Trap statuses are new in the 8086. 

20-18 



8086 CPU PINS AND SIGNALS 
8086 CPU pins and signals are illustrated in Figure 20-3. 

C 
GND 40 Vee w 

l-
< AD14 • 2 39 • AD15 
a: 
0 AD13 • 3 38 • A16/S3 
n. 
a: AD12 .. 4 37 • A17/S4 
0 
CJ ADll 5 36 • A18/S5 
~ AD10 • 6 35 • A19/S6 
en 

AD9 • 7 34 • BHE/S7 w 
l-
< AD8 .. 8 33 MN/MX 
(j AD7 • 9 32 • RD 0 
en AD6 .. 10 8086 31 • RO/GTO, HOLD en 
< AD5 OIl 11 30 • RO/GT1. HLDA 
~ 

AD4 i:z 29 LOCK, WR w .. • 
Z 
a: AD3 OIl 13 28 • S2, MliO 
0 AD2 • • 14 27 • Sl,DTlR III 
en ADl 15 26 • SO, DEN 0 

~ ADO OIl 16 25 • OSO, ALE 
< NMI 17 24 • OSl,lNTA C 
< INTR 18 23 TEST 
@ eLK 19 22 READY 

GND 20 21 RESET 

Pin Name Description Type 

ADO-AD15 Data/Address Bus Bidirectional, tristate 

A16/S3, A17/S4 Address/Segment identifier Output, tristate 

A18/S5 Address/I nterrupt enable status Output, tristate 

A19/S6 Add ress/status Output, tristate 

BHE/S7 High-order byte/status Output, tristate 

RD Read control Output, tristate 

READY Wait state request Input 

TEST Wait for test control Input 

INTR I nterrupt request Input 

NMI Non-maskable interrupt request Input 

RESET System Reset Input 

CLK System Clock Input 

{ 
MN/MX = GND for a maximum system 

Maximum SO,Sl,S2 Machine cycle status Output, tristate 

System RO/GTO, RO/GTl Local bus priority control Bidirectional 
Signals OSO,OSl Instruction queue status Output 

LOCK Bus hold control Output, tristate 

MN/MX = Vcc for a minimum system 

M/IO Memory or I/O access Output, tristate 

WR Write contro~ Output, tristate 

Minimum ALE Address Latch enable Output 

System DT/R Data transmit/receive Output, tristate 
Signals DEN Data enable Output, tristate 

INTA Interrupt acknowledge Output 

HOLD Hold request Input 

HLDA Hold acknowledge Output 

Vee,GND Power, ground 

Figure 20-3. 8086 Pins and Signal Assignments 

20-19 



The 8086 outputs a 20-bit memory address. Data is accessed as 16-bit words. sUbdivided into a low-order byte and a 
high-order byte. Therefore the 8086 needs a 20-line Address Bus and a 16-line bata Bus. In order to have a 40-pin 
package. the low-order 16 Address Bus lines are multiplexed viiitH the Data Bus. " .' 

BHE may be looked upon as an additional Address Bus line, since it is used to identify the high-order byte of a 
memory word. while ADO identifies the low-order byte of the memory word. -

The four high-order Address Bus lines. together with BHE. are multiplexed with five status lines. thus. we can illustrate 
Address Bus line multiplexing as follows: 

D<1ta/Status 

Status S7 

16-bit data word {
DO 

01 -'015 

Status S3 - S6 

Address 

6R'l: High-order byte of selected word 

AO Low-order byte of selected word 

A1-A15 } 
Address of a 16-bit word 

A16 - A19 

It rs easy to become confused when looking at how the Address Bus, together with BHE, is used 
to access memory. As seen by external memory. Address Bus lines are interpreted as follows: 

ADO 

AD1 

AD7 

AD8 

AD15 

A19 

SHE 

Select 

.. 

Select 

Memory 
select 
logic 

AO ---- A18 

AO ---- A18 

Memory 
select 
logic 

Low-order 
byte 

memory 
bank 

DO ---- 07 

-

DO ---- D7 

High-order 
byte 

memory 
bank 

20-20 

8086 
EXTERNAL 
MEMORY 
ADDRESSING 

ADO 

AD1 

AD7 

AD8 

AD15 

A19 

SHE 



Q 
w 

~ a: 
o 
Do 
a: 
o 
o 
~ 
en 
w 

~ o o 
en 
en 
oCt 
~ 
w 
Z 
a: 
o 
CD 
en o 
::!: 
oCt 
Q 
oCt 

@ 

In the illustration above you will see that memory is indeed organized as bytes. 

The data pins of the low-order byte memory bank connect to ADO-AD7. The high-order byte memory bank data pins 
connect to AD8-AD15. 

The low-order and high-order byte memory banks each have memory select logic which decodes AD 1-A 19. These 19 
address lines become inputs AO-A 18 at the illustrated memory select logic. Since each memory bank receives 19 ad­
dress lines. select logic can address up to 524.288 (512K) bytes of memory. These two memory banks. taken together. 
constitute the advertised one million bytes of directly addressable memory. 

Now. you may well ask why one should bother dividing memory into separate low-order byte and high-order byte 
banks. If a sixteen-bit word lies on an even-byte address boundary. then we could ignore the memory select logic con­
nections to ADO and BRE. The address on AD1-A 19 becomes an address identifying a 16-bit word which just happens 
to be implemented as two separate 8-bit memory banks. 

If an 8086 16-bit memory word does lie on an even-byte address boundary. then the low-order byte address is. in fact. 
the only address output. BHE is pulsed low while the low-order byte address is being output. and both memory banks 
consider themselves selected even though (in theory) the high-order memory bank's address has not been output. 

To illustrate what happens. consider the memory addresses 02A4016 and 02A4116. One would normally expect the two 
addresses to be output sequentially in order to access the low-order byte and then the high-order byte of the 16-bit 
word. This may be illustrated as follows: 

ADO-AD7 

AD8-AD15 

ADl6-AD19 

Output 
address 
02A4016 

Input 
data 
from 
byte 

02A4016 

Output 
address 

02A4116 

Input 
data 
from 
byte 

02A4116 

But we could just as easily output the low-order byte address only. using BHE as an extra address line to substitute for 
the odd-byte address - which is never output. This may be illustrated as follows: 

ADO-AD7 

AD8-AD15 

ADl6-AD19 

Output 
address 

02A4016 

Assume 
address 

02A4116 
has been 
output 

20-21 



If a word lies on an odd-byte address boundary, then two byte addresses must be output to access the two 
halves of the 16-bit word. This may be illustrated as follows: 

First memory 
access is to 
a byte in 
the high­

order byte 
memory 
bank, i.e. 

an odd byte 
address, with 

ADO high 

Return low­
order byte 
of 16-bit 
word via 

AD8-AD15 

Second 
memory 

access is to a 
byte in the 
low-order 

byte memory 
bank, i.e. 

an even byte 
address, with 

ADO low 

Return high­
order byte 
of 16-bit 
word via 

ADO-AD7 

When a 16-bit word lies on an odd-byte address boundary. as illustrated above. the low-order byte is input first via 
AD8-AD15. then the high-order byte is input via ADO-AD7. Logic internal to the 8086 switches the data bytes into 
their correct locations. 

Intel could have elected to implement external memory as 16-bit words, which would eliminate BHE along with 
the Address Bus complexities we have just described. But this would have forced all instruction object codes, 
and data, to be accessed as 16-bit units. Why not do it? 

One of the most interesting hindsight discoveries that 8080A users have made is the fact that the 8080A is extremely 
efficient in its use of memory. By having a large number of 8-bit object codes. the 8080A generates object programs as 
compact as the most powerful minicomputers on the market. 

But if the 8086 is to keep 8-bit object codes. and therefore the efficient memory utilization of the 8080A. then it can no 
longer guarantee that data will lie on even-byte address boundaries. The first 8-bit object code will force the next in­
struction or data entity to begin on an odd-byte boundary. 

By including BHE and the extra logic needed to access 16-bit data units origined at odd-byte boundaries. the 8086 has 
allowed instructions to generate 1-byte. 3-byte or other odd-byte object codes. rather than 2-byte. 4-byte and even­
byte object codes only.' 

Simply stated, this is the trade-off: simplify memory addressing so that external memory is accessed only as 
16-bit data units and you will use memory less efficiently. Intel elected to make memory addressing logic more 
complex and memory utilization more efficient. 

Moving on from the Data/Address Bus, 8086 signals may be grouped into those that do not change with system 
complexity, and those that do. let us first look at the unchanging signals. 

elK is the single clock signal output by the 8284 clock generator to synchronize all 8086 logic. 

READY is the Wait state request which slow external logic inputs if it requires more time to respond to an access. A 
high READY input occurring at the proper time early in a machine cycle causes the 8086 to extend the machine cycle 
by inserting Wait state clock periods. 

20-22 



Q 
w 

~ 
II: o 
D. 
II: 
o 
U 
~ 
en 
w 
I­
ct 
g 
CI) 
CI) 

·ct 
oil 
w 
Z 
II: 
o 
III 
CI) 

o 
~ 
ct 
Q 
ct 

@ 

RD is a single bus control signal which does not change with system configuration. This signal is output low when 
the CPU is inputting data from any external source. 

Even though RD is output by the same physical pin under all circumstances. this signal is functionally part of the group 
which change their nature depending on signal complexity. We will therefore refer again to RD when describing the 
signals which are a function of system complexity. 

There are four interrupt and interrupt-related signals. 

INTR is a normal interrupt request input. 

NMI is a non-maskable interrupt request input. 

RESET is a system reset signal; it must be input high to the 8284 clock generator for at least 
four ClK clock periods. The 8284 transmits a synchronized RESET signal to tho CPU. When 
the 8086 is reset, the following events occur: 

1) The Status register is cleared. This disables external interrupts. 

2) The Program Counter and the three Segment registers. OS. SS. and ES. are cleared. 

8086 
RESET I 

3) The CS Segment register is set to FFFF16. Following a Reset. program execution therefore restarts with the instruc-
tion located at memory byte FFFF016. 

These reset operations take approximately 10 clock periods to occur - during which time no other operations 
should occur. 

TEST is not really an interrupt input. but it is used by program logic that otherwise would rely upon an interrupt. The 
8086 has a special "Wait-for-Test" instruction that puts the CPU in~o a Idle state; this Idle state ends when the 
TEST input goes low. 

An 8080A (and other microprocessors) will duplicate the logic of the 8086 "Wait-for-Test" instruction by executing a 
"no operation" loop which is terminated by an interrupt request: 

ENI Enable interrupts 
LOOP NOP Stay indefinitely in this loop 

JMP • - 1 Only an interrupt will terminate loop execution r_-----_ 
There are eight pins which can output one of two signals, depending on whether MN/MX is 8086 
tied to power or ground. By having two sets of signals. the 8086 can be used in simple con- DUAL BUS 
figurations. best served by elementary control signals. or in complex configurations. where control COMPLEXITY 
signals must provide sufficient information to resolve the contentions and access conflicts that 
complex microcomputer systems may encouter. 

The two sets of signals may be illustrated as follows: 

Minimum 

Systems 

MN/MX = Vee 

M/io ---­
DT/R ---­

DEN 

INTA 

ALE 

WR 

HOLD 

HLDA 

Maximum 

Systems 

MN/MX = GND 

S2 0 , .......... '.
0 

.•. ' •. 1./ •... 
0

.,., ..•.•........•.............•• 1" 51 0 0})1 

SO 0 10 

I I H 

N 0 0 A 

TRW L 

A T 

OSl 0 0 1 

OSO 0 1 0 1 

N 0 0 0 

0 B E B 

0 

P S 

LOCK 

RO/GO 

RQ/G1 

20-23 

•

... , ....• , •.. , .•. .: ...... 1<./ .•....••.••.....•. '.' ........•.•... o 0 .. < .. 1 
o 1 ·.·· .• ·0 

M M N 
FEE 0 

E M M N 
TRW E 
C 

H 



Let us first look at the simple set of control signals which are output when MNli\iiX is con- 8086 SIMPLE 
nected to +5V. These are completely standard microprocessor control signals. CONTROL 

Since data and addresses are multiplexed on a single bus. AlE is output high to identify a valid SIGNALS 
memory address. 

When data are being transmitted or received via the Data/Address Bus. WR is pulsed low to identify data output, 
while RD is pulsed low as a request for external logic to place data on the Data/Address Bus. We have already 
described RD. It is not one of the changing signals; nevertheless. it is used by both simple and complex system busses. 

For a read or a write operation. M/IO indicates whether memory (M/IO high) or an I/O port (M/ffi low) is being ac-
cessed ' 

DT/R and DEN are two new control signals not found in earlier Intel microp~ocessors. These two control signals have 
been designed specifically to control 8286/8287-type bidirectional latched buffers. DTlR identifies the data direc­
tion. while DEN is the latching signal. The 8286 and 8287 latched buffers are described later in this chapter. . 

HOLD and HLDA are standard hold request/acknowledge signals. When external logic inputs HOLD high. the 8086 
CPU enters a Hold state upon completing the current instruction's execution; the 8086 acknowledges the Hold State 
by outputting HLDA high. We will describe the Hold state in more detail later in the chapter. 

Let us now look at the complex System Bus which is generated when MN/MX is tied to 
ground. Control signals are output as a three-signal combination. decoded by a 3-to-8 decoder. 
and a two-signal combination. decoded by a 2-to-4 decoder. Complex System Bus signals have 

8086 COMPLEX 
CONTROL 
SIGNALS 

been designed to act as inputs to an 8288 Bus Controller. _______ ..1 

S2. S1 and SO are decoded to provide eight separate control signals. However. the simple system signals M/IO. DTiR 
and DEN represent a subset of the eight S2. S1 and SO combinations. In our earlier illustration. we identify this simple 
system subset by shading the applicable complex system S2. S1 and SO levels. . 

The eight combinations of S2, S1 and SO generate the following control signals: 

S2 

o 
o 
o 
o 
1 
1 
1 
1 

51 
o 
o 
1 
1 
o 
o 
1 
1 

SO 

o 
1 
o 
1 
o 
1 
o 
1 

INTA 
lOR 
lOW 
HALT 
IFETCH 
MEMR 
MEMW 
NONE 

Interrupt acknowledge 
I/O device read 
I/O device write 
CPU has executed a HALt instruction and is in the Halt state 
The CPU is fetching an instruction object code byte 
Memory read . 
Memory write 
The System Bus is inactive 

The control signal descriptions above use the words "read" and "write" as seen 'by the CPU. That is to say. a "read" 
operation moves data from a memory device or I/O port to the CPU. while a "write" operation moves data from the CPU 
to a memory location or I/O port. . 

OSO and OS 1 combine to identify conditions within the 8086 instruction object code queue - which we will describe 
soon. The aso and aS1 combinations are interpreted as follows: 

OSO OS1 

o 
o 
1 
1 

o 
1 
o 
1 

NOOP 
OB1 
OE 
OBS 

No operation. This is the default case. 
The first instruction object code in the queue is being executed. 
The queue is empty. 
An instruction object code other than the first one in the queue is being executed. 

Observe that the simple bus signals INT A and ALE do not correspond to any combination of OSO and OS 1. This is in 
contrast to M/IO. DT /R and DEN. which constitute a subset of S2. S1 and SO. 

LOCK. RO/GT 0 and RO/GT 1 are not related to their simple system equivalent signals: WR. HOLD and HLDA. LOCK, 
Ra/GT 0 and Ra/GT 1 provide the 8086 with its System Bus priority and control logic in complex configurations. 

LOCK is output high to prevent the 8086 from losing bus control while executing a sequence of machine cycles that 
must not be interrupted. Typically these will be a memory access combination of read-modify-write machine cycles. 
where an error could result if the CPU lost bus control after the read and before the write. 

RO/GTo and RO/GT 1 are two-bus priority. bidirectional type signals. They are used to determine which CPU in a multi­
CPU configuration will at any time have control of a shared bus. We will discuss these signals in more detail later in the 
chapter when looking at the capabilities of the 8086 in multi-CPU shared bus configurations. 

20-24 



c 
w 
~ 
a: 
o 
D.. 
a: 
o 
u 
~ 
u) 
w 
t­
< g 
CI) 
CI) 

< 
a!I 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
< c 
< 
© 

8086 TIMING AND INSTRUCTION EXECUTION 

The most important concept to understand when looking at 8086 instruction execution tim­
ing is the fact that 8086 bus control logic has been separated from the 8086 instruction ex­
ecution logic. That is to say, the 8086 has an Execution Unit (EU), and a Bus Interface Unit 
(BIU). 

The Execution Unit (EU) contains Data and Address registers, the Arithmetic and Logic Unit, 
plus the Control Unit. The Bus Interface Unit (BIU) contains bus interface logic, Segment 
registers, memory addressing logic, and a six-byte instruction object code queue. This may 

8086 
EXECUTION 
UNIT (EU) 

8086 BUS 
INTERFACE 
UNIT (BIU) 

be illustrated as follows: '--------' 

AH AL I PC 

BH BL CS 0000 

CH CL OS 0000 

OH OL SS 0000 

SP ES 0000 

BP ..: ;-. 

SI 

01 

11 I 
I .... ~ A Bus 
I Control 

V 

II I Logic ~ 

I 
I 

Arithmetic 1 
and Logic I 

Unit (ALU) 
I 

2 

~ 3 
Instruction 

Control Unit I object code 

iY (CU) 

I 4 queue 

Status I 5 

I 6 

A I 
L-=t Instruction Reg. I( I ~ 

I 
Execution Unit I Bus Interface Unit 

(EU) I (BIU) 

I 

The Execution Unit (EU) and the Bus Interface Unit (BIU) operate asynchronously. Whenever 8086 

~. 

V 

8086 
Bus 

the Execution Unit is ready to execute a new instruction. it fetches the instruction object code INSTRUCTION 
from the front of the Bus Interface Unit instruction queue. then it executes the instruction in some QUEUE 
number of clock periods that have nothing to do with machine cycles. If the instruction object 
code queue is empty. then the Bus Interface Unit (BIU) executes an instruction fetch machine cycle - and the CPU 
waits for the instruction object code to be fetched. But the queue will rarely be empty. for reasons that will soon 
become apparent: therefore. the EU will usually not have to wait while an instruction fetch is executed. 

20-25 



If memory or an 1/0 device must be accessed in the course of executing an instruction. then the EU informs the BIU of 
its needs. The BIU executes an appropriate external access machine cycle in response to the EU demand. r-------.., 
The Bus Interface Unit (BIU). for its part. is independent of the Execution Unit(EU). and attempts to 8086 
keep the six-byte queue filled with instruction object codes. If two or more of these six bytes are INSTRUCTION 
empty. then .the Bus Interface Unit (BIU) executes instruction fetch machine cycles - providing QUEUE 
the EU does not have an active request for bus access pending. If the EU issues a request for bus 
access while the BIU is in the middle of an instruction fetch machine cycle. then the BIU will complete the instruction 
fetch machine cycle before honoring the EU bus access request. 

8086 BUS CYCLES 
If we look at the way clock logic is used by the 8086, the term "machine cycle" no longer applies. The EU does 
not use machine cycles; it executes instructions in some number of clock periods that are not subject to any type of 
machine cycle grouping. The only time clock periods are grouped is when the bus control logic wishes to access 
memory or I/O devices. Each external access requires four clock periods. This is the minimum amount of time required 
to handle the normal bus protocol which accompanies any transfer of information between a microprocessor and logic 
beyond the microprocessor. Since this is the only time the 8086 groups clock periods, it is more accurate to talk 
about 8086 bus cycles, rather than machine cycles. 

Figure 20-4 illustrates two 8086 bus cycles executed back-to-back. In common with machine cycles. 8086 bus 
cycles. as illustrated in Figure 20-4 assign individual clock periods to time specific events. 

Memory and 1/0 device addresses are output on the Datal Address Bus during T 1-

Data is transferred between the 8086 and memory or 1/0 devices during T 3 and T 4. If these two clock periods provide 
external logic with insufficient time to respond to an access. then Wait state clock periods (T w) may be inserted bet­
ween T3 and T4. 

T 2 is a buffer clock period during which the Datal Address Bus stops outputting an address and starts outputting or in­
putting data. 

During T4 the CPU identifies the status of the next bus cycle or clock period. In simple configurations when MN/MX is 
tied to $5V. DTlRis the only external signal that changes state during T4. When MN/MX is tied to ground. 50.51. and 
52 change state during T4. Thus. by examining these three status outputs. external logic knows whether to expect 
another bus cycle. and. if so. what type of bus cycle. 

Now if you look at Figure 20-4, there is very little about it that differentiates an 8086 bus cycle from any other 
microprocessor's machine cycle. The characteristic of the bus cycle which differentiates it from standard 
machine cycles is the fact that bus cycles occur only on demand. 

ClK 

: ,... 4 __ ---- BUS CYCLE ------II.~lfooIl 4 __ ---- BUS CYCl.E ------II ... ;: 

: Tl T2 T3 T4: Tl T2 T3 T4 I 
I I 

V77J77J/t Plll7ll/1 Output address 
VI///IItt. rI/////I.J du ring T 1 

V///////1 . rIL. / ...... / / ...... / / ...... / /1""""7"7"7"7"7"7"7"7"7"7"7"7"'7"'7"1 Tu rn Bus arou nd ~ ~ duringT2 
V7J7lllllllJll/ t'l7J/:/llllll/ Perform memory 
~ vmt//II/://IIA accesses during T3 

+ 'Wait state clock 
'------------------t.~----periods . 

Figure 20-4. Two 8086 Bus Cycles 

20-26 

In complex systems. 
status output in T4 
identifies subsequent 
operations. 



c 
w 
~ 
a: 
o 
D.. 
a: 
o 
u 
~ 
en 
w 

~ 
(j 
o 
CI) 
CI) 

ct 
oil 
w 
Z 
a: 
o 
m 
CI) 

o 
~ 
ct 
C 
ct 

@ 

8086 INSTRUCTION QUEUE 
Consider what happens when an instruction is executed. Beginning with the simplest case, the instruction ob­
ject code queue within the Bus Interface Unit will be empty. When the EU requests an object code byte there is 
none, so the BIU executes a bus cycle which fetches the first byte of the instruction object code: 

ClK 

T1 i T2 I T3 I T4 

~ 
Bus cycle fetches 
fi rst object code 

byte 

I 
I 
I 
I 

Let us assume that this particular instruction requires two bytes of object code: keeping things simple. we will illustrate 
another instruction cycle executed immediately to fetch the next instruction byte: 

T1 : T2 I T3 I T4 T1: T2 : T3 : T4 
I I I I I 

ClK I 
I 
I 
I 
1 I I I 

~~ 
Bus cycle fetches 
first object code 

byte 

Bus cycle fetches 
second object 

code byte 

Let us suppose that this instruction reads a word of data from memory. then performs an arithmetic operation using 
this data. The instruction is going to require some number of clock periods to compute the effective address for the 
data memory location to be accessed (we will assume seven clock periods are needed!. Some additional number of 
clock periods will also be needed to perform the arithmetic operation (we will assume nine clock periods). In a normal 
microprocessor. this instruction might be executed as the following sequence of machine cycles: 

ClK 

Machine Cycle 1 

T1 : T2 i T3 
I I 

Fetch first 
object code 

byte 

ClK 

Machine Cycle 3 Machine Cycle 4 Machine Cycle 5 Machine Cycle 2 

T1 : T2 I T3 
I I 

T1 1 T2 : T3 : T4 T1: T2 I T 4 T1: T2 : T3 

Fetch second 
object code 

byte 

Machine Cycle 6 

I 1 

Compute data 
memory 
address 

long Machine Cycle 7 

I 1 

Compute data 
memory 
address 

Machine Cycle 8 

Fetch data 
from memory 

T1 : T2 
I 

: T4 T1 
I 

i T41 T5 T1 

I I I 

Execute arithmetic operation 
in a standard machine cycle 

and a long machine cycle 

20-27 

I 
Start executing I 

next instruction by 
fetching object 

code byte 



But the 8086, having asynchronous CPU and Bus Control Unit logic, will use clock periods to execute the instruction il­
lustrated above as follows: 

CLK 

Bus Cycle 1 

T1 I T2 : T3 
I 

EU asks for an 
object code byte. 

EU There is none, so 
the BCU fetches 
one. 

BCI I 
BCI fetches a 
byte of object 
code in one 
bus cycle. 

CLK 

EU 

BIU 

Bus Cycle 2 Bus Cycle 3 Bus Cycle 4 

I T3 I T4 T1 i T2 : T3 i I I I 
T 1 : T2 : T3 l T 4 

The E U needs a 
second object 
code byte. 

I 
BCI fetches a 
second byte of 
object code in 
one bus cycle. 

Bus Cycle 5. 

T1 

Ti Ti 

I I I 

Ti Ti Ti Ti Ti Ti 

The EU computes a data memory 
address in 7 clock periods. At the 
end of the 7th clock period the 
CPU requests bus access. 

Since the EU is not demanding bus 
access, the BCI fetches the next two 
object code bytes and stores them ir, 
the queue. At the end of bus cycle 4 
the EU is requesting bus access, so 
the BCU services the CPU. 

Bus Cycle 6 Bus Cycle 7 

T1 I T2 I T3 i T4 T1: T2 : T3 : T4 
I I I 

Ti Ti Ti : Ti 
I 
I 

I , 
I Ti , 

The EU uses nine clock periods to 
. execute the required arithmetic 

operation. 

: The EU takes the 
I next object code 
I byte from the 

Bus Cycle 4 

T1 

The EU waits for the 
requested data to be 
fetched by the BCU. 

I 

BCI fetches data 
from memory 
location addressed 
by the CPU. 

etc. 

etc. 

I The BI U contin, ues executive bus cycles to fill 
the instruction object code queue. 

: BI U queue and 
I starts executing the 
! next instruction. 

etc. 

20-28 



c 
w 
~ 
a:: 
o 
Q. 
a:: 
o 
U 
~ 
en 
w 

~ 
g 
CI) 
CI) 

ct 
o!I 
w 
Z 
a:: 
o 
III 
CI) 

o 
~ 
ct 
C 
ct 
@ 

Now. the illustration above is not accurate because. you will recall. the 8086 fetches data in 16-bit increments. provid­
ing the data address lies on an even-byte boundary. Also. the BIU fetches instruction bytes and loads them into the 
queue only when there are at least two free bytes in the queue. Let us assume that all data does lie on even-byte boun­
daries. This is how our timing will now look: 

Bus Cycle 1 Bus Cycle 2 Bus Cycle 3 Bus Cycle 4 Bus Cycle 4 

T1 I T2 : T3 i T4 
I I I 

T1 : T2 : T3 I T4 T1: T2 : T3 i T4 T1: T2 I T3 I T4 T1: T2 : T3 : T4 Ti 
I I I I I I I I I I 

Ti : Ti 

ClK 

EU EU asks for an 
object code byte. 
There are none. 
so the BI U exe­
cutes a bus cycle. 

The EU computes a data memory 
address in 7 clock periods. At the 
end of the 7th clock period the 
EU requests bus access. 

The EU waits for the 
requested data to be 
fetched by the BCU. 

The EU uses 9 clock periods to execute 
the arithmetic operation. 

BIU BIU fetches two 
bytes of object 
code in one bus 
cycle. The CPU 
takes both of 
them. so the 
queue is imme­
diately emptied. 

I

BIU fetches four bytes of object code 
in two bus cycles and stores them in 
the queue. which has two empty 
bytes left. 

ClK 
I 

I 
Ti I Ti 

I 

I Ti 

t 

I 

B I U fetches data 
from memory 
location addressed 
by the EU. 

EU The EU ends instruction execution 

etc. 

and fetches one byte of object code 
from queue to execute next instruction. 

BIU. The BIU remains idle since only one 
byte of queue is empty. 

There are some important points to note regarding 8086 bus cycle timing. 

Bus cycles are a Bus Interface Unit (BIU) phenomenon. 

The BIU fetches I The BIU is idl.e. 
two more bytes 
of object code and 
stores them in the 
queue which is 
now full. 

So far as the EU logic is concerned. bus cycles do not exist. The EU experiences periods of activity while executing in­
structions. and periods of inactivity while waiting for instruction object codes or data that the BIU must process via bus 
cycles. Periods of EU activity are timed by a sequence of clock periods. The EU makes no attempt to group clock periods 
into machine cycles. nor do EU clock periods have to occur in any special numeric combinations. 

So far as the BIU is concerned. clock periods are grouped into bus cycles only when data must be transferred to or from 
the 8086. First priority is given to a bus access request coming from the EU. If the EU is not requesting bus access. then 
the BIU executes instruction fetch bus cycles until the queue is full. These are the prerequisites for the BIU to ex­
ecute an instruction fetch bus cycle: 

1) The clock period which initiates the bus cycle would otherwise be an idle clock period. 

2) The EU does not have an active bus access request pending. 

3) There are at least two bytes empty in the queue. 

If the queue is full. then the BIU ceases to execute bus cycles: as illustrated above. a sequence of idle clock periods oc­
curs. 

20-29 



Note that the CPU may have to wait for bus access. In the illustrations above, the CPU requires seven clock periods 
in order to compute a data memory address. At the end of the seventh clock period, the EU issues a bus access request 
to the BIU. But at this time the BIU is part way through executing an instruction fetch bus cycle. The BIU completes the 
instruction fetch bus cycle, then honors the EU bus access request. 

In the final illustration above, no bus cycle accompanies the beginning of a new instruction's execution. We are assum­
ing that the next instruction executed has one byte of object code. This object code byte is fetched from the front of the 
queue - which then has just one empty byte. No bus cycle is executed to fetch the instruction object code, sihce it is 
taken out of the queue. Subsequently, the BIU does not execute an instruction fetch bus cycle since there is only one 
empty byte: there must be at least two empty bytes in the queue before the BIU will execute an instruction fetch bus 
cycle. 

Based on the foregoing discussion of BOB6 instruction fetch queuing, we can see that the BOB6 has essentially 
eliminated instruction fetch time. The only time the EU will have to wait while the BIU fetches instruction object 
codes is when a Branch-on-Condition instruction causes execution to branch out of the queue sequence, or when (for 
any reason) the memory accesses accompanying an instruction's e.xecution are so dense that the BIU has insufficient 
idle clock periods within which to insert instruction fetch bus cycles. 

8086 MEMORY AND I/O DEVICE READ BUS CYCLE FOR SIMPLE CONFIGURATIONS 
Figure 20-5 shows timing for an BOB6 memory read bus cycle when MN/MX equals +5V; that is to say, for the 
minimum mode bus configuration. 

1 ........... ----------- One Bus Cycle ------------.... ~: 
I I 
I T1 T2 T3 T4 I 
I 

ClK 

ADO-AD15 -+----1----( 

A 16-A 19 -1---#----( 

BHE 

ALE 

M/iO 

DT/R" 

DEN 

--+----' 

Trailing edge of 
ALE latches 

address 

Figure 20-5. 8086 Memory Read Bus Cycle for a Minimum Mode System (MN/MX = +5V) 

20-30 



Q 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 
~ 
en 
w 
l­
e( 

o o 
CI) 
CI) 
e( 

ell 
w 
Z 
a: 
o 
aI 
CI) 

o 
~ 
e( 
Q 
e( 

@ 

The memory or 1/0 device address is output via the Address Bus BHE during clock period T 1. ADO-AD 15 starts floating 
in T2 while turning around internal pin logic so that data can be input during T3 and T 4· Address lines A 16 through 
A 19 are all Iqw when an 1/0 device a*hess is being output. These address lines output status during T2. T3 and T 4· 
Close to the end of T4. A16 through A19 start to float. 

BHE timing follows Address lines A 16-A 19: that is to say. BHE is output low for the time that A 16 through A 19 is out-
putting an address. . ,I 

The trailing edge of the high ALE pulse should be used as the "valid address" strobe. If your 8086 configuration 
demultiplexes the Data and Address Busses. then the Address Bus demultiplexing buffers should use the high-to-Iow 
transition of ALE as their latching strobe. 

Remaining control signals consist of MilO and RD. which are directed at external memory or 1/0 devices. plus DTiR and 
DEN. which are directed at b4S buffers. 

MilO differentiates between a memory access and an 1/0 device access. MilO will be high for a memory access bus cy­
cle: it will be low for an 1/0 device access bus cycle. MilO will contribute to memory and 1/0 device select logic when 
memory and 1/0 devices have similar addresses. 

RD is pulsed low as a memory or 1/0 device read strobe. The addressed memory device must use this low signal to 
place data on 'ADO-AD15. 

DTiR and DEN are control signals designed to control bidirectional latched buffers on the Data Bus. DTiR is output low 
for the entire memory or 1/0 device read bus cycle: it should be used to turn the latched buffers around so that they will 
transmit data to the CPU. DEN subsequently acts as a latching strobe. These two signals have been designed 
specifically to work with the 828§ a'ld 8287 Data Bus transceivers: however. their logic is quite general. 

There is no difference between external timing for an instruction fetch or memory read bus cycle. Given the 
pipelining instruction fetch logic of the 8086. this makes sense. 

The only timing difference between a memory read bus cycle and an I/O device input bus cycle occurs at the 
M/IO signal. This signal will be low for the duration of an 1/0 input bus cycle, whereas in Figure 20-5 it is shown high 
for the duration of a memory' ~ead bus cycle. 

Except for this difference, Figure 20-5 also illustrates I/O input bus cycle timing for a simple 8086 configuration. 

During any simple configuration memory access operation, the following status is output on address lines A 16 
through A 19: 

A 19/56 - Always 0 

A 18/S5 - I nterrupt enable status 

A17/S4 - 0 0 1 

A 16/S3 - 0 1 0 1 

t 1 
t L- Data segment access 

_ Code segment access or no access 
L...-_____ Stack segment access 

L...-_______ Extra segment access 

The interrupt enable status appearing on A 18 may be used to illuminate an indicator on a control panel. should there 
be one. This indicator will show whether interrupts ar!3 enabled or disabled at any time. This status has no other value. 

53 and 54 together identify the memory segme~t wttich is being accessed. This is not very useful information. 
Even a code segment access cannot be interpreted as an instruction fetch', since data can be addressed out of the pro-
gram segment. ' 

8086 MEMORY OR I/O DEVICE WRITE BUS CYCLE FQR MINIMUM MODE 
Figure 20-6 illustrates timing for an 8086 memory or 1/0 device ~rite bus cycle when the 8086·is operating in a 
minimum mode with MN/MX tied to +5V. . 

Address output logic is identical in read and write bus cycles. As was the case for a read bus cycle, the address is out­
put on tre Address Bus, together with BHE. during T 1. External logic should use the high-to-Iow transition of the ALE 
pulse in order to latch a valid address. During T2, ADO-AD15 switches to outputting data, while A 16-A 19 outputs 
status. The same status is output in read and write bus cycles. 

MilO is output high for the duration of a memory write bus cycle: it is output low for the duration of an I/O device write 
bus' cycle. 

20-31 



WR is output low beginning early in T 2 and ending shortly after T 3. Note that RD does not go low for a read bus cycle 
until halfway through T 2. 

For an 8286 or 8287 Bus Transceiver. or any similar device. DT iR is output high for the entire duration of the write bus 
cycle. This conditions the device to transmit data from the CPU to external logic. DEN is the chip enable signal provided 
for the bus transceiver. DEN is output high from the end of T 1 until the end of T 4. Note that this high pulse is longer than 
the DE~' pulse accompanying a read bus cycle. 

ADO-AD15 

A16-A19 

BHE 

ALE 

M/iD 

DT/R 

DEN 

1 1 
"""1 ... ._----------- One Bus Cycle --------------t .. ~11 
I I 
I T1 T2 T3 T4 I I I 
I I 

Trailing edge of 
ALE latches 

address 

Data Out 

Status Out 

Figure 20-6. 8086 Memory Write Bus Cycle for a Minimu~ Mode System (MN/MX = +5V) 

An I/O w~ite bus cycle has timing identical to Figure 20-6. except that the M/IO signal will be low for the duration of the 
bus cycle. rather than high as shown in Figure 20-6. Wherever a memory word and an I/O port may have the same ad­
dress. MilO must contribute to device select logic in order to discriminate between memory and I/O devices. 

The status output on A 16-A 19 is no more useful in a write bus cycle than it is in a read bus cycle. 

8086 READ AND WRITE BUS CYCLES FOR MAXIMUM MODE 
It is not very rewarding looking at maximum mode memory or I/O access bus cycle timing. if we look at timing for an 
8086 device on its own. This is bec~use in maximum mode. with MN/MX tied to ground. the 8086 has been designed 
to operate with the 8288 Bus Controller. 

Figures 20-7 and 20-8 provide maximum mode timing for the 8086 on its own when executing read or write bus cy­
cles. Only the status signal levels differentiate memory or I/O access bus cycles. 

Tjming for the Address/Data Bus is id~!ltical in minimum and maximum modes. The read strobe RD does not change; 
however. remaining control signals become control inputs to the 8288 Bus Controller. 

20-32 



c 
w 
I-
oCt 
a: 
0 
D-
a: 
0 
(J 

~ 
en 
w 
I-
oCt 
C3 
0 
en 
en 
oCt 
oll 
w 
Z 
a: 
0 
a:I 
en 
0 

~ 
oCt 
C 
oCt 

© 

Observe that OSO and OS1 change levels on a clock period by clock period basis in order to identify events for in­
dividual clock periods. SO, S 1 and S2 hold their levels from shortly before T 1 until shortly after the end of T 2. 

ClK 

ADG-AD15 

A16-A19 

BHE 

aso, aS1 

SO,Sl,S2 

RD 

I I 
""1 .. ------------- One Bus Cycle ------------..... ~~I 
I I 
I T1 T2 T3 T4 I 
I I 
I I 

Address Out 

Address Out 

Figure 20-7. 8086 Memory or I/O Read Bus Cycle for a Maximum Mode System (MN/MX = OV) 

i. 
I 

One Bus Cycle ~I 
I 

I I I 
I T1 T2 I T3 T4 I 
I I I 
I I I 

ClK 

ADG-AD15 --+---i Address Out Data Out 

A 16-A 19 --t----( Address Out Status Out 

aso, aS1 

SO, Sl, S2 ____ -I 

Figure 20-8. 8086 Memory or I/O Write Bus Cycle for a Maximum Mode System (MN/MX = OV) 

20-33 



The 8288 Bus Controller. described later in this chapter. decodes 50. 51 and 52 in order to generate control signals 
which are comparable to those illustrated in Figures 20-5 and 20-6. For a complete discussion of bus cycle timing in 
complex 8086 microcomputer configurations. see the discussion of 8288 Bus Controller. 

THE 8086 WAIT STATE 
8086 Wait state logic is independent of the MN/MX pin connection and the external access bus cycle being ex-

. ecuted. In any bus cycle it is possible to insert one or more Wait clock periods (T W) between T 3 and T 4. In order to ex­
tend a bus cycle with Wait clock periods. external logic must input a low READY signal during T 2 of the bus cycle 
which is to be extended. The READY input to the 8086 must be synchronized with the falling edge of ClK at the end of 
T 2; this synchronized READY input is created by the 8284 clock generator. External logic will normally input an 
asynchronous READY to the 8284 clock device. which outputs a synchronous READY for the 8086. Wait clock periods 
will continue to be inserted to the bus cycle until READY goes high again. Timing is illustrated in Figure 20-9. All out­
put signal levels are maintained for the duration of the Wait state. 

THE 8086 HOLD STATE 
The 80'86 can be forced into a Hold state, at which time all three-state signals are floated. The 8086 Hold state 
is used to enable direct memory access logic, and in addition to disable inactive 80986 devices when more than 
one CPU accesses' the same System Bus in a multi-CPU configuration. 

Tl T2 T3 TW T4 

ClK 

ROY 

READY 

ROY is input by external logic to the 8284 clock 

READY is output by the 8284 clock, to be input to the 8086 

Figure 20-9. The 8086 READY Input and Wait States 

In a minimum mode configuration,when MN/MX is tied to +5V, the 8086 has a traditional 
Hold request input (HOLD) and a Hold Acknowledge output (HLDA). Upon receiving a high 
HOLD input. the 8086 will complete execution"6f its current instruction bus cycle before entering 
the Hold state and outputting HlDA high. Timing may be !lIustrated as follows: 

T40rTi 

ClK 

HOLD 

HlDA 

20-34 

8086 HOLD 
IN MINIMUM 
MOD~ SYSTEM 



c 
w 

~ 
a: 
o 
0. 
a: 
o 
u 
~ 
en 
w 

~ 
(3 
o 
en 
en 
< 
IllS 
w 
Z 
a: 
o en 
en o 
:'i: 
< c 
< 
@ 

The 8086 samples the HOLD input on the low-to-high transition of ClK. Therefore, HOLD must make its transitions 
away from this sampling point: that is to say, HOLD must be stable when ClK is making its low-to-high transition. 

The 8086 will acknowledge the Hold request by outputting HlDA high during any idle clock period, or at the end of a 
bus cycle. If a bus cycle is being executed when a Hold request occurs, the Hold request will not be acknowledged until 
the end of T 4 for the currently executing bus cycle. 

The Hold state will last until the HOLD input goes low again. The 8086 continues to sample the HOLD input on all low­
to-high transitions of ClK: therefore, HOLD must make its high-to-Iow transition away from the rising edge of ClK. 
When HOLD goes low, the Hold state will immediately end and HlDA will be output low again. 

In 8086 maximum mode configurations where MN/MX is tied to ground, the HOLD and HlDA 
pins convert to bidirectional type control signals. There are two bidirectional signals: RO/GTO and 
RO/GT1. RO/GTO has higher priority than RIT/Gf1. 
Any~ern~o9l£...that wishes to put an 8086 CPU into the Hold state transmits a low pulse to 

8086 HOLD 
IN MAXIMUM 
MODE SYSTEM 

RO/GTO or RO/GT1. The 8086 CPU will acknowledge this Hold request immediately, if a bus cycle is not being ex­
ecuted, or at the conclusion of a currently executing bus cycle. The 8086 acknowledges the Hold request by outputting 
a low pulse via the same RO/GT line: simultaneously the 8086 floats its three-state bus lines. External logic must allow 
at least one clock period to elapse following the Hold Acknowledge pulse, before attempting to input via the same pin. 
External logic terminates the Hold state by inputting another low pulse. Timing may be illustrated as follows: 

I' I 

I T4 or Ti 1....-- Hold State-.,l 
I I 

I I I 

elK 

RO/GT_--_ 

® ® © 

In the illustratio~bove, ® identifies the instant ~ which external logic requests a Hold state by inputting a low 
pulse vi.a either RO/GT line. The 8086 samples RO/GT on the rising edge of ClK; therefore, all signal transitions on 
RO/GT'must occur away from the ClK low-to-high transitions. ' 

The 8086 will now acknowledge a Hold request during a bus cycle. If a bus cycle is in progress, then the Hold 
acknowledge will occur at the end of the bus cycle - that is to say, at the end of T 4. If a bus cycle is not in progress, 
then the Hold request will be acknowledged immediately. In the illustration above, ® identifies the low pulse which 
the 8086 will output as its Hold acknowledge. The Hold state will last until external logic again inputs a low pulse via 
RO/GT. This is identified above as © . Once again the 8086 samples RO/GT on the rising edge of ClK; therefore, 
RO/GT should be stable at this time. 

When the 8086 enters the Hold state, it continues executing instructions which it takes out of the pipeline, un­
til a bus access is required. When the EU requires a bus access, it stops operating until the end of the Hold state­
at which time its bus access request will be honored by the Bus Interface Unit. 

In the event that Hold requests occur simultaneously on RQ/GTO and RQ/GT1, the acknowledge pulse will be 
output on RQ/GTO. RO/GT1 will not be acknowledged until the Hold state initiated via RO/GTO has ended. 

When .one Hold state ends, another Hold state can begin immediately for either of these reasons: 

1) RO/GT1 was active when RO/GTO was acknowledged: the RO/GT1 Hold request. being of lower priority, was 
denied and is pending. 

2) While the 8086 was in a Hold state, a new hold request occurs on the other RO/GT line. 

If a new hold request occurs while the 8086 is in Hold state, priorities no longer apply. For example, if the CPU has 
ack!22...w~ed a Hold request occurring at RO/GT1 and is in a Hold state, then it will deny a new Hoid request arriving 
via RO/GTO until the current Hold state has ended. 

20-35 



If there is an active Hold request when the CPU ends a Hold state .. then the CPU will immediately acknowledge the 
pending Hold request. This may be illustrated as follows: 

Hold for RO/GTl in progress 

r 
Low pulse 
input at 
RO/GTO 

_L 
End RO/GTl Hold 
and immediately 
stand RO/GTO Hold 

Hold for RO/GTO in progress 

When a Hold state ends. if the CPU has a bus access request pending. the.nthe CPU bus access request will be denied 
until all active Hold requests have been acknowledged. 

Note that there are no 8086 instructions that specifically affect the .Ievel of RO/GTO or RO/GT1. That is to say. external 
logic is entirely responsible for the interfaces to .these two signals. 

We will discuss RO/GTO and RO/GTl in more detail later in this chapter when we look at some multiple CPU 8086 con­
figurations, 

THE 8086 HALT STATE 
The 8086 enters a Halt state after a HALT instruction is executed. In the Halt state no signals are floated, and 
undefined data is output on the Data/Address Bus. No bus cycles can be executed while the 8086 is in the Halt 
state. 

When a Halt instruction is executed, a bus cycle initiates the Halt state. This Halt state initializing bus cycle has 
nothing to do with instruction fetch logic.' If the Halt instruction object code is fetched by the CPU from the queue. then 
there will be no preceding instruction fetch bus cycle. If the Halt instruction must be fetched from memory because the 
queue is empty. or is at the conditional end of a Branch-on-Condition. then the Halt initializing bus cycle will be pre­
ceded by an instruction fetch bus cycle. 

For a simple system, the HALT initialization bus cycle is given by Figure 20-5, except that RD, M/IO, DT/R and 
DEN are not active. ALE is active, although the address output has no meaning. 

For a complex system, the HALT initializing bus cycle is illustrated in Figure 20-10. The Halt state combination 
occurring at SO. S1 and S2 causes the 8288 Bus Controller to issue an ALE pulse before entering the Halt state; 
however. the occurrence of ALE could not be deduced simply by looking at 8086 timing. 

1;...11I!!1!t------------ One Bus Cycle --------------lr;r;;.;: 
I Tl T2 T3 T4 I 

I 

ClK 

. ADO-AD15 --+-----( 

A16-A 19 ---+----( 

OSO.OSl 

SO,S1 .-1 ~"-________ _ 
S2---i~ ________________ ~/r---------------

Figure 20-10. 8086 HALT Instruction and Bus Cycle Timing for a Complex Bus Configuration 

20-36 



c 
w 

~ 
a: o 
a. 
a: 
o 
u 
~ 
ui 
w 

~ g 
en 
en 
c( 

all 
w 
Z 
a: 
o 
a:l 
en o 
~ 
c( 
c 
c( 

@ 

The Halt state is terminated by an interrupt request or a Reset. 

You can freely enter and leave a Hold state within an 8086 Halt state via any of the means that we have just de­
scribed. The fact that the 8086 is in a Halt state in no way modifies Hold logic. 

THE 8086 LOCK 
A potential for serious error exists in the Hold request/acknowledge logic of the 8086. 

The 8086 will acknowledge a Hold request occurring on the RO/GTO or RO/GT1 lines at the end of the current bus cy­
cle. if one is being executed. or at the next idle clock period. if a bus cycle is not being executed. The 8086 does not 
wait until the conclusion of the current instruction's execution before acknowledging the Hold request. Therefore. if an 
instruction reads the contents of a memory location (or 1/0 port). modifies these contents. then writes it back. a Hold 
state may separate the read bus cycle from the write bus cycle: 

Read from memory location X Modify data Write back to location X 

HOLD STATE 

This can cause unexpected errors. If the 8086 enters a Hold state after reading memory location X contents and before 
writing these contents back. then it is possible for external logic - either direct memory access logic or another Central 
Processing Unit - to modify the contents of memory location X while the 8086 is in the Hold state. Now when the 
8086 writes back the modified word. it may destroy data which shou Id have been preserved. 

If a 16-bit data word lies on an odd-byte boundary. it will require two bus cycles to access the data word. Under normal 
circumstances. a Hold request could be acknowledged between the first and second memory access bus cycles. But 
what if the word being accessed gets modified during the Hold state? If the Hold state splits two memory read bus cy­
cles. this is what the CPU is going to read: 

7 07 0 

I I I 
'-.... ---""'~, --_./ ~ 

High-order byte Low-order byte 
was read after Hold was read before Hold 

and is modified and is not modified 

If a Hold state splits two memory write bus cycles. this is what ultimately gets written: 

7 07 0 

I I I 
'-.... ___ ~~ ___ ./ ""-.... ___ '-/"""'7? -. ./ 

High-order byte 
is written after Hold 
and is not modified 

Low-order byte 
was written before Hold 

and gets modified 

You use the 8086 LOCK instruction in order to prevent the types of errors described above. 

When a LOCK instruction is executed, the LOCK signal is. output high for the duration of the next sequential in­
struction's execution. Also, while the next sequential instruction is being executed, a Hold request will not be 
acknowledged. 

You cannot extend protection against a Hold acknowledge beyond a single instruction's execution. For example. sup­
pose you have two instructions. each of which is preceded by a Lock: 

LOCK 
AND 
LOCK 
OR 

MEMX. AX 

MEMX. BX 

In the instruction sequence above. MEMX is a label which represents the address of a memory location. The contents of 
this memory location are ANDed with a mask stored in· AX. then ORed with a mask stored in BX. The contents of MEMX 
are read. modified. and written back at each step. 

Now. you may wish to inhibit Hold logic for both the AND and the OR operation. You cannot do so using the LOCK in­
struction. The first LOCK instruction will protect the following AND instruction from being interrupted by a Hold state; 
however. any pending Hold state will be acknowledged before the second LOCK instruction is executed. 

Each Lock instruction extends protection against a Hold Acknowledge for the duration of the next sequential instruc­
tion only. The fact that the following insturction is also a Lock is irrelevant. The second Lock instruction will be the first 
instruction executed following the Hold state. and it will guarantee that no new Hold state begins until it. and the OR 
instruction. have both been executed. 

20-37 



You can use the LOCK instruction and signal to identify individual instruction execution 
times. If for any reason external logic needs to know the execution time for certain instructions. 
then by preceding these instructions with a LOCK instruction you will generate a high pulse on 
the LOCK output. The width of this high pulse exactly equals the execution time of the instruction 

8086 SINGLE 
INSTRUCTION 
TIME 
IDENTIFIED 

which follows the LOCK. ...... _____ --1 

THE 8086 PROCESSOR WAIT FOR TEST STATE 
The 8086 has a program-initiated Wait state which external logic must terminate via the TEST input signal. The 
WAIT instruction initiates this Wait state. After the WAIT instruction is ·executed. the 8086 generates an endless se­
quence of idle clock periods. This sequence lasts until external logic inputs a low signal at the TEST input. 

While the endless sequence of idle clock pulses is being executed. the System Bus is not floated and the Bus Interface 
Unit may execute memory read bus cycles in order to fill up the instruction object code queue. 

The processor Wait state can be used to synchronize an 8086 with any external time sequence. For example. you 
could start two programs. executing in two separate 8086 systems. at exactly the same time. by preceding each pro­
gram with a Wait instruction. If both 8086's receive low TEST inputs simultaneously. then both microprocessors will 
start executing their programs at the same instant. 

THE 8086 PROCESSOR ESCAPE 
The 8086 has a special escape instruction (ESC) intended for use in multi-CPU configurations. When the ESC instruc­
tion is executed, the contents of an addressed memory location are input to the CPU, but the input data is not 
stored anywhere. The purpose of the ESC instruction is to place the'addressed data on the Data/Address Bus so that 
any other microprocessor (or external logic) connected to the Data/Address Bus can receive the data. 

We will examine the value of the ESC instruction later in the chapter when looking at the 8086 in multiple CPU 
configurations. 

THE 8086 RESET OPERATION 
The 8086 has an asynchronous Reset input. This signal can be input high at any time in order to reset the 8086. 
The high RESET must be at least four clocl< cycles long. 

The 8086 terminates all current operations as soon as the RESET input makes a low-to-high transition. Nothing 
more happens until the RESET signal subsequently makes a high-to-Iow transition. It then takes approximately 
ten clock periods in order to execute the following operations: 

1) The Status register is cleared. Among other things. this resets the interrupt enable flag to O. thus disabling inter-
rupts. 

2) The CS Segment register is set to FFFF16. 

3) The OS. SS and ES Segment registers and the Program Counter are all reset to O. 

4) Program execution begins. Since the CS Segment register contains FFFF16 and the Program Counter contains. O. 
the first instruction executed is taken from memory location FFFF016. 

8086 INTERRUPT PROCESSING 
The 8086 allows interrupts to originate in one of three ways: 

1) From software or within program logic. 

2) From external logic as a non-maskable interrupt. 

3) From external logic as a maskable interrupt. 

There is. in addition. a special "single step" condition that makes use of interrupt logic. We will describe single step­
ping after our discussion of interrupt logic. 

In the event that two or more of the three interrupt types occur simultaneously. software generated interrupts have the 
highest priority and maskable interrupts have the lowest priority. 

These are the ways in which a software interrupt request may occur: 

1) Following an attempt to divide by O. A special divide by 0 interrupt request will occur any 
time the divide instruction is executed with a 0 dividend. 

2) Following execution of an Interrupt instruction (lNT). 

3) Following execution of an Interrupt-on-Overflow instruction (INTO) - if theOve:rflow status is 
set. 

20-38 

8086 
SOFTWARE 
INTERRUPTS 



Q 
w 

!i 
a: 
o 
a.. 
a: 
o 
(J 

~ 
en 
w 

!i 
C3 o 
C/) 
C/) 
c:( 

all 
w 
Z 
a: 
o 
In 
C/) 

o 
~ 
c:( 
Q 
c:( 

@ 

A non-maskable interrupt request is initiated when external logic inputs a low-to-high tran­
sition at the NMI pin. This is an edge-triggered signal. A non-maskable interrupt has lower 
priority than a software interrupt. but higher priority than a maskable interrupt. 

A maskable interrupt request will be generated when external logic inputs a high level at 
the INTR pin. This input is level sensitive; it is the high level at INTR that causes the interrupt re­
quests to occur. 

Central to all 8086 interrupt processing is a Vector table that can be up to 1024 bytes in 
length. occupying absolute memory addresses 00000 through 003FF16. This Vector table consists 
of up to 256 four-byte entries. Each entry contains two 16-bit addresses which get loaded into the 
CS Segment reg~ster and th~ Program Counter. . 

Figure 20-11 illustrates tlle 8086 Interrupt Vector table. 

Memory 
Addresses 

00000 

00002 

00004 

00006 

00008 

OOOOA 

OOOOC 

OOOOE 

00010 

00012 

00014 

00016 

00078 

0007A 

0007C 

0007E 

00080 

00082 

00084 

00086 

003F8 

003FA 

oo3FC 

003FE 

Interr'upt 
Ve~tor 
Table 

CSO 

pcb 
r----

CSl 

PCl 

CS2 

PC2 

CS3 

PC3 

CS4 

PC4 

CS5 

PC5 

CS30 

PC30 

CS31 

PC31 

CS32 

PC32 

CS33 

PC33 

CS254 

PC254 

CS255 

PC255 

I 
I 
I 
I 

I 

I 
I 

I I 

} Vector 0 - Divide by 0 

} Vector 1 - Single-step mode 

} Vector 2 - Non-maskable interrupt 

} Vector 3 - I NT software interrupt (default option) 

} Vector 4 - INTO software interrupt 

} Vector 5 

} Vector 3010 

} Vector 3110 

} Vector 3210 

} Vector 3310 

} Vector 25410 

} Vector 25510 

Reserved by Intel 

User vectors 

Interrupt aCk~Owledge sequence 01 events is (2)-0-0-0 
I I 
I I 

CSN ~ 
PCN 4 CS Register 

Program Counter 

8086 NON-
MASKABLE 
INTERRUPT 

8086 
MASKABLE 
INTERRUPT 

8086 
INTERRUPT 
VECTOR 
TABLE 

To stack 
To stack 

Figure 20-11_ 8086 I nterrupt Vector 

20-39 



A number of the Vector table entries serve specific interrupts. Other entries are reserved by Intel and should be 
avoided if compatibility with Intel software is desired. These entries are identified in Figure 20-11. As illustr­
ated in Figure 20-11,32 of the 256 interrupt vectors are not available to external logic; that leaves 224 vectors 
available to maskable external interrupts - which is plenty. 

Taking each of the three interrupt types in turn, let us examine the interrupt acknowledge process. 

When any of the software interrupts are acknowledged, the following steps occur: 

1) The Status register contents are pushed onto the Stack; Stack Pointer contents. in conse­
quence. are decremented by two. 

2) The Interrupt and Test status flags are cleared; this enables maskable interrupts and single 
step logic (which we describe after our discussion of interrupt logic).' 

3) The CS Segment register contents are pushed onto the stack; Stack Pointer contents. in con­
sequence. are decremented by two. 

r-------, 
8086 
SOFTWARE 
INTERRUPT 

4) The new CS Segment register contents are taken from the appropriate interrupt vector location. With the excep­
tion of the INT instruction. software-generated interrupts have dedicated vector locations as illustrated in Figure 
20-11. The INT instruction allows anyone of the 256 vector locations to be selected; a default option selects Vec­
tor 3. 

5) The Program Counter contents are pushed onto the Stack; Stack Pointer contents are decremented by two. 

6) The new Program Counter contents are taken from the interrupt vector. 

When a non-maskable interrupt is acknowledged, the following events occur: 

1) The Status register contents are pushed onto the Stack. The Stack Pointer contents are decre­
mented by two. 

2) The Interrupt and Test statuses are reset to 0; this disables non-maskable interrupts and 
single stepping mode. 

3) The CS Segment register and Program Counter are reloaded from Interrupt Vector 2. See 
Figure 20-11. 

8086 NON­
MASKABLE 
INTERRUPT 

When a maskable interrupt is acknowledged, the following steps occur: 8086 

1) Two interrupt acknowledge bus cycles are executed by the Bus Interface Unit of the 8086. An MASKABLE 
interrupt acknowledge bus cycle is identical to the memory read bus cycles. as illustrated in _I_N_T_E_R_R_U_P_T_-, 
Figures 20-5 and 20-7. with the exception that an interrupt acknowledge low pulse replaces 
the memory read low pulse. For a minimum mode system. INTA will provide the low RD pulse 
shown in Figure 20-5. Figure 20-7 accurately illustrates timing for an interrupt acknowledge 
bus cycle in a maximum mode system; however. SO. S1 and S2 will all be output low. iden-
tifying an interrupt acknowledge. whereas a read I/O port or read memory status combination 
would be output otherwise. 

2) The acknowledged external device must send back a byte of data on lines ADO-AD7 in 
response to the second interrupt acknowledge bus cycle. This data byte is interpreted as a 
pointer into the interrupt vector. Multiplying this 8-bit value by 4 creates the correct begin­
ning address for the interrupt vector. 

3) The Status register contents are pushed onto the Stack. 

4) The Interrupt and Test flags in the Status register are cleared. This disables further maskable interrupts and single 
step logic. 

5) The CS Segment register contents are pushed onto the Stack. 

6) The next CS Segment register contents are taken from the interrupt vector location identified in Step 2. 

7) The Program Counter contents are pushed onto the Stack. 

8) The new Program Counter contents are taken from the interrupt vector location identified in Step 2. 

9) The first instruction of the interrupt routine is fetched using the new PC and CS. 

It takes 60 clock periods to complete the nine interrupt acknowledge steps listed above. 

20-40 



c 
w 
!i 
a:: 
o 
Q. 
a:: 
o 
CJ 
~ 
en 
w 

!i o o 
fI) 
fI) 
c( 

all 
w 
Z 
a:: 
o 
CD 
fI) 
o 
~ 
c( 
Q 
c( 

@ 

You should use the IRET instruction to exit any interrupt service routine. This instruction 
restores Program Counter, CS Segment register, and Status register contents from the 
Stack. . 

SINGLE STEPPING MODE 

8086 
INTERRUPT 
RETURN 

When the T status bit is set to 1, the 8086 operates in single stepping mode. In the single stepping mode the 8086 
executes a software interrupt after each instruction's execution. The software interrupt vectors through Location 1 of 
the interrupt vector table. as illustrated in Figure 20-11. 

Since the process of acknowledging an interrupt resets the TF flag. the single stepping mode will cease to exist once 
the interrupt service routine identified by Vector 1 is executed. But since the Status register contents prior to the inter­
rupt acknowledge are saved on the Stack and are restored when a return from interrupt instruction is executed. single 
stepping mode will be restored as soon as the interrupt service routine corresponding to Interrupt Vector 1 concludes 
execution. Interrupt Vector lshould therefore vector to a debug routine. Any user program executed in the single step 
mode will now execute instructions one at a time. branching to the debug program following execution of each instruc­
tion. . 

A particularly pleasing aspect of the 8086 single step mode is the fact that it can cope with interrupt logic. Fre­
quently. microprocessor programs cannot be debl!gged once interrupt logic is introduced. In the case of the 8086. the 
interrupt acknowledge process automatically takes the 8086 oUl of the single step mode. You can insert instructions 
into any interrupt service routine in order to restore single stepping mode for that particular interrupt service routine. 
Thus. you have the option of executing any program or interrupt service routine in single step mode. without impacting 
any other program or interrupt service routine. 

THE 8086 INSTRUCTION SET 
The 8086 instruction set is summarized in Table 20-4. When compared to other microprocessor instruction sets. the 
8086 instruction set might appear quite large. If you look at Table 20-4. you will see that a single instruction mnemonic 
may appear many times. In reality. these are variations of the same instruction. We show the variations of a single in­
struction as though they were separate instructions in order to make this description of the 8086 instruction set consis­
tent with similar tables for other microprocessors. 

The two I/O instructions, IN and OUT, becom~ eight instruct~ons because each has two sets of options. 

Each I/O instruction can access 16-bit words or 8-bit bytes. In each case. the instruction may have a short addressing 
range or a long addressing range. The short addressing range instruction requires two bytes of object code and can ac­
cess one of the first 256 I/O port addresses. The I/O address is specified in the seconq object code byte. The long-range 
I/O instructions occupy only one byte of object code; however. register OX provides ~re I/O port aqpress - which can 
therefore range between 0 and 65.53610. . 

Primary memory reference instructions, and memory reference instructions in general, all have byte and word 
versions. In Table 20-4, the data memory location accessed is identified by' the operand label DAD DR. Because 
data memory reference instructions mayor may not include a displaceme~l. the object code may be two. three. or four 
bytes long. as defined in Table 20-5. 

By preceding any data memorY reference instruction with the SEG instruction. you can force the data memory 
reference to access a segment other than the data se'gment. Here. for example. are the two instructions that load a byte 
of data from the extra segment to Register AL. using direct. indexed addressing: 

ES Select extra' segment SEG 
MOV AL. (Oil AOOR Load data word from extra segment 

The LEA and LES instructions are unusual in that they load a memory address. rather than the contents of a memory 
location. into an identified 16-bit register. For the LEA instruction. this may be illustrated as follows: 

AX P p p p 

BX 
r-------------~ 

ex 
r-------------~ 

OX 
~------------~ 

LEA AX. (01) AOOR 

QQQQO OS 

RRRRP ~ 
. RR R R P 

20-41 

Data 
Memory 



In the illustration above. RRRRP represents a five hexadecimal digit data memory address - the actual location which 
will be accessed. This address is the sum of 00000. the DS Segment register contents. and PPPP. the operand ad­
dress. The LEA instruction loads the operand address PPPP into the identified 16-bit register. 

The LES instruction serves primarily to initialize the address register for string operations. As discussed earlier in this 
chapter. string ins~ructions access the extra segment via the DI and SI Index registers. 

The XLAT instruction is designed for table look-ups. An obvious application for an XLAT instruction would be to 
convert between ASCII and EBCDIC character codes. EBCDIC character codes being input could be translated into 
ASCII character codes. prior to being stored in memory. via the following instruction sequence: 

LABEL IN PORTS Input an EBCDIC code 
XLAT Convert to ASCII 
STOB AL Store in memory 
LOOP LABEL Return for next byte if there is one 

The instruction sequence above inputs character codes from 1/0 Port 5. These are assumed to be EBCDIC codes which 
arrive at the AL register. The XLAT instruction uses each EBCDIC code as an index into a conversion table whose base 
address is assumed held in the BX register. Part of this conversion table may be illustrated as follows: 

[BX) + [OS)- PPPPP 

PPPPP + 81 

PPPPP+ 82 

PPPPP+ 83 

PPPPP+ 84 

ppppp + 85 

PPPPP+ 86 

PPPPP + 87 

PPPPP+ 88 

PPPPP + 89 
PPPPP+ 8A 

PPPPP+ 8B 

PPPPP+ 8C 

PPPPP+ 80 

PPPPP+ 8E 

PPPPP t 8F 

pppp~ + 90 

PPPPP + 9'1 

Memory 

6 1 

6 2 

6 3 

6 4 

6 5 

6 6 

6 7 

6 8 

6 9 

6 A 

I I 

These bytes not used by the table. 
can be used in other ways 

J i : 

EBCOICcharacter ~ 
c~es Equivalent ASCII character codes 

After the XLAT instruction has executed. the ASCII version of the input EBCDIC code will be in the AL register. The 
STOB instruction stores this ASCII code in the Extra Segment memory location addressed by the DI register: the DI 
register contents are then incremented so that on the next pass of the iterative loop it addresses the next free memory 
byte in the Extra Segment table. 

The LOOP instruction decrements the CX register and branches back to the IN instruction if the CX register contents 
are not zero. 

20-42 



c 
w 
~ 
IX: 
o 
D.. 
IX: 
o 
U 
~ 
en 
w 

~ 
g 
(/) 
(/) 

~ 

all 
w 
Z 
IX: 
o 
III 
(/) 

o 
~ 
~ c 
~ 

@ 

Secondary memory reference instructions occur in four versions. Each instruction may access a memory byte or a 
memory word; in either case. the resHlt of the operation may be returned to a register. or to the memory word from 
which one operand was fetched. 

Note carefully that the Subtract inst~uction inverts the Carry status. 

The following numeric options are available with Add, Subtract, Multiply and Divide instructions: 

Operation 
Unsigned Binary Signed Binary Packed Decimal Unpacked Decimal 

8-bit 16-bit 8-bit 16-bit 2 digit 4 digit 1 digit 2 digit 

Add X X X X X X 

Subtract X X X X X X 

Multiply X X X X X 

Divide X X X X X 

Let us first look at addition and subtraction. 

Little needs to be said about signed and unsigned binary addition or subtraction; these are standard operations de­
scribed in Volume 1. The only point to note is that the 8086 Subtract instructions invert the Carry status. 

r---------, 
Packed binary coded decimal (BCD) addition and subtraction are also quite standard in that 8086 BCD 
tl1ey closely follow the logic describe~ in Volume 1. However, like the 8080A, the 8086 ADDITION 
uses Decimal Adjust instructions to handle packed binary coded decimal data. 

When you add two packed binary coded decimal numbers. it is assumed that the two numbers are indeed valid packed 
binary coded decimal data. The sum. which will not initially be a valid packed binary coded decimal number. is con­
verted into one by the DAA instruction. This may be illustrated as follows: 

ADD AL. BL Add BCD data in BL to AL 
DAA Decimal adjust result 

Note that you can only add bytes. and AL must be the destination when adding packed BCD data. 

Using abbreviations of Table 20-4. DAA instruction logic ll1ay be summar!zed as follows: 

If (AU AND OF16 is greater than 0916. or if (AF) = 1. then: 

(AU ~ (AU +0616 

(AF)~1 

If (All is greater than 9F16 or if (CF) = 1. then: 

(AU ~ (AL) + 6016 

(CF)~1 

If one of the numbers being added is not a valid packed binary coded decimal number. then no error indication is given. 
but the answer will be wrong. For example. there is nothing to stop you from adding 1 F16 to A316 and then executing 
the DAA instruction to modify the sum; however. the result will be meaningless. 

When you subtract packed binary coded decimal numbers, once again it is assumed that the 8086 BCD 
subtrahend and minuend are both valid packed binjlry coded ~ecimal numbers. The difference SiJBTRACT 
will initially be meaningless; however. executing the DAS instrlJciion generates a valid packed 
binary coded decimal result. This may be illustrated~as fQllovys: '.; '1 

SBB AL. BL 
DAS 

20-43 



Once again you must subtract bytes. and the difference must be returned to the AL register. 

Using abbreviations of Table 20-4. DAS instruction logic may be ~ummarized as follows: 

If (All AND OF16 is greater than 0916. or (AF) = 1. then: 

(All +- (All -0616 
(A F) +-1 

If (All is greater than 9F16. or (CF) = 1. then: 

(All +-, (All - 6016 ' 

(CF) +-1 

When you subtract packed binary coded decimal numbers and generate a negative result. the Carry status will be 0 (as 
is the case for binary subtraction) but the numeric negative difference will be a tens complement number rather than a 
twos complement number. Refer to Volume 1 for details. 

Ypu can also add and subtract unpacked binary coded decimal numbers. These numbers may occupy the low-order 
four bits of-a byte. leaving the high-order four bits empty: ' 

101010101 1 1 1 1 
.~ 

o 0 0 0 
through 

1 0 0 1. 

Or you may add and subtract ASCII c~aracters, An ASCII character contains the binary coded decimal digit in the low­
order four bits and 0011 in the high-order four bits,.' 

,If" • 

Wh'en you add unpacked binary coded decimal (BCD) digits, it is assumed that the two numbers being added are in­
deed valid ASCII characters or unpacked BCD digits. The sum is initially meaningless; however, after executing 
the AAA instruction it is converted into one or two valid unpacked binary coded decimal digits. Note carefully 
that the AAA instruction does not generate ASCII characters; it generates'one binary coded decimal digit per byte -
which the four high-order. bits Zero. AAA instruction operations may be illustrated as follows: 

If (AU AND OF16 is greater than 0916 or (AF) = 1. then: 

(All +- (AU + 0616 

(AH) +- (AH) + 1 

(A F) +-1 

Unconditionally: 

(AU +- (All AND OF16 

(CF) +- (A F) 

Note trat AH is incremented if the sum in AX is more than 0916. since 0916 is the highest one-byte unpacked BCD value 
that!s legal. ' 

When you subtracJ unpacked binary coded decimal numbers, you can subtract ASCII characters or.bytes which 
have the four hiQh-order bits blank. It makes no difference which option you choose; if you subtract two ASCII 
chara~ters you wilr~ancel out the four high-order bits - which are identical anyway. 

Assu~ing that th~:s4btrahend and minuend are initially valid un~acked binary coded decimal numbers. the difference. 
which initially is meaningless. will be converted into one or two valid unpacked binary coded decimal digits by execut­
ing th~ AAS instruction. This may be illustrated as follows: 

SUB AL. BL 
AAS 

20-44 



c 
w 
~ 
IX: 
o 
a.. 
IX: 
o 
U 
~ 
ui 
w 

~ 
g 
U) 
U) 

< 
o1J 
w 
Z 
IX: 
o 
IX! 
U) 

o 
~ 
< c 
< 
@ 

AAS instruction operations may be. summarized as follows: 

If (AL) AND OF16 is greater than 0916 or (AF) '" 1 then: 

(AL) +- (All - 6 

(AH) +- (AH) - 1 

(AF) +-1 

Unconditionally: 

(CFf+- (AF) 

(AL) +- (ALl AND OF 16 

If you generate a negative result when subtracting unpacked binary coded decimal numbers. the Carry status will be 
zero and the answer will bein its tens complement form. 

You can multiply unpacked binary coded decimal numbers, but not packed binary coded 8086 BCD 
decimal numbers. The multiplier and multiplicand must each be one byte long. with a single bin- MULTIPLI-
ary coded decimal digit in the low-order four bits and 0000 in the high-order four bits. Consider CATION 
the multiplication 7 x 8 = 5610. The instruction sequence: 

MUL AL. BL 
AAM 

results in these register contents' changes: 

Before After 

o 
I L.. _~ __ : ----II :~ AX 1-1 ....;0~....;5_+1--=-~_:~-f1 :~ 

Assuming that the multiplier and multiplicand are valid. as i'lIustrated above. the product will initially b~ meaningless. 
However. after executing the AAM instruction. a valid two-digit product will be generated. with the high-order digit in 
the AH register and the low-order digit in the AL register. 

AAM instruction logic is, in fact, quite simple. It may be illustrated as follows: 

(AH) +- (All /OA16 (/ means "divided by") . 

(All +- (AL) modulo OA16 

Consider again 7 x 8 = 5610. This is initially computed as 7 x 8 = 381S: therefore. AH contains 00 and AL contains 38 -
before the AAM instruction is executed. 

(AL)/OA16'" 5 

Therefore. 05 is loaded into AH. "Modulo" is the remainder after division: therefore (AU modulo OA1S is the remainder 
following (AU/OAls: it is 6. which is loaded into AL. 

Binary coded decimal multiplication does not take sign into account. It is up to your program logic to keep track of the 
sign. 

Binary coded decimal division, like multiplication, works only with unpacked binary coded 
decimal data. However. you must execute the AAD instruction before the DIV instruction in order 
to generate a valid unpacked binary coded decimal answer. This may be illustrated as follows: 

AAD 
DIV AX. BL 

8086 BCD 
DIVISION 

The AAD instruction takes the dividend. which we assume to be a valid unpacked binary coded decimal number in 
the AX register. and packs it into the AL register as follows: 

(AL) +- (AH) * OA16+ (AL) 

(AH) +-0 

Consider the reverse of our multiplication examples: 

56/8 = 7 

20-45 



Initially. AH contains 05 and AL contains 06. After the AAD instruction is executed. AL contains: 

0516 * OA16 + 0616 

which is 3816. Thus the DIV instruction can perform a pure binary division. 

The 8086 allows you to shift and rotate the contents of memory bytes or words. This is very useful since it allows 
counters and masks to be held in memory. rather than in CPU registers as is the usual case. 

Immediate instructions allow immediate data to be loaded into registers or memory locations. When loading im­
mediate data into memory locations. you can generate 3.4. 5 or 6 byte instruction object codes. depending on the 
length of the immediate data and the addressing options. See Table 20-5 for details. 

The Loop instructions are. in fact. variations of the multi-byte. string-handling 8086 capability. These instructions allow 
you to set up a counter in the CX register. which is decremented in order to identify the number of iterations for any in­
struction loop. This may be illustrated as follows for the 8080A and the 8086: 

8080A 8086 

MVI C. COUNT MOV CX. DATA +- Initialize counter 

NEXT NEXT 

} R,.,.,,,d ;o","otlo", 

OCR C LOOP NEXT +- Gount and loop logic 

JNZ NEXT 

Jump-on-Condition instructions are limited in that they all provide an 8-bit signed binary displacement. Thus. you are 
limited to jumping within a 256-byte program relative memory page. 

Jump-on-Condition instructions are confusing at the best of times. pecause status combinations determine whether a 
jump will or will not occur. This is not very interesting information to you as a programmer. It is much easier to jump 
based on signed and unsigned binary numbers being less than. greater than. or equal to each other. Table 20-2 
therefore summarizes the way in which you should use 8086 Jump-on-Condition instructions. This table is similar 
to the table on page 7-29 of Volume 1; however. the Carry statu's is inverted. since the 8086 Subtract instruction in­
verts the Carry status. 

The way the 8086 creates Block Transfer and Search instructions is interesting. You begin with a set of instruc­
tions; e~ch of which p~rforms a single operation. Each of these instructions can be made to repeat some number 
of times by preceding the instruction with a repeat (REP). For example. the MOVW instruction. executed on its 
own. will move one 16-bit word of data from a source memory location to a destination memory location. using Data 
Segment and Extra Segment addressing as follows: 

I Memory I 

~: I L L L L I .-L 

L L L 0 

M M M M 

I~MMMMO 51 P P P P 

01 Q Q Q Q 

B Origin of extra segment 

I I 
I I 

B 
I I 
I I 
I I 

'\ 
I I 
I I 
I I 

MMMMO+QQQQ .~ 

20-46 



Q 
w 
~ 
a: o n­
a: 
o 
o 
a; 
en 
w 

~ g 
CI) 
CI) 

oct 
ail 
w 
Z 
a: 
o 
CD 
CI) 

o 
:!: 
oct 
Q 
oct 
@ 

Table 20-2. 8086 Branch-an-Condition I nstructians 

BRANCH CONDITION STATUS CONDITIONS 8086 INSTRUCTION 

Unsigned branch on less than or equal . C = 1 or Z = 1 JBE, JNA 
Unsigned branch on less C=1 JB, JNAE i ~ 
Unsigned branch on equal Z = 1 JE, JZ :J il 
Unsigned branch on not equal Z=O JNE, JNZ 15 ~ 
Unsigned branch on greater C = 0 or Z = 0 JA, JNBE 

o u .... ... 
Unsigned branch on greater than or equal C=O JAE, JNB ~ 0 

0'" 

Signed branch on less than or equal Z = 1 or S XOR 0 = 1 JLE, JNG ';: ~ 
u ... 

Signed branch on less S XOR 0 = 1 JL, JNGE 
:J .... 
... .0 
.... :J 

Signed branch on equal Z = 1 JE, JZ .S ~ 
Signed branch on not equal Z=O JNE, JNZ S! ~ 

0) .... 

Signed branch on greater Z = 0 or S XOR 0 = 0 JG, JNLE .r=*-
f- <0 

Signed branch on greater than or equal S XOR 0 = 0 JGE, JNL 

Branch on counter decrement to zero JCXZ - .r= 
Branch on no overflow 0=0 JNO ~ g V) 

Branch on overflow 0=1 JO 
C <0 C 
~.o .g 

Branch on even parity P = 1 JP, JPE ~Eg 
Branch on odd parity P=O JNP, JPO 5l II) II) 

Branch on positive S=O JNS OJ a.~ 
.r= <0 

Branch on negative S = 1 JS f-t; 

But. precede this instruction with a repeat and you move an entire block of data. This may be illustrated as follows: 

I Memory 

:: I 
L L L L • LLLLO § M M M M 

I I Origin of extra segment 
I I 

SI P P P P I I 
DI Q Q Q Q MMMMO B 

I I 

CX I I I 
N N N N I I 

LLLLO+PPPP § 
I I 
I I 
I I 

+NNNN § 
I I 
I I 
I I 

MMMMO+ QQQQ§ 
I I 
I I 
I I 

MMMMO+QQQQ§ 
+NNNN 

I I 

20-47 



When a Block Transfer or Search instruction is executed, the Program Counter contains the address of the prior 
instruction until it and the Block Transfer or Search instruction has completed executing. For example. when the 
REP and MOVW instruCtion pair executes. the Program Counter keeps pointing to the REP instruction as follows: 

REP - PC points here until end of block move 
MOVW 

Only after the MOVW instruction has executed the number of times specified by the repeat will the Program Counter 
advance to the instruction following MOVW. This little piece of logic is designed to protect repeat instructions dur­
ing interrupts. Interrupts are not locked out for the duration of a repeat instruction's execution; that would create in­
tolerable delays between an interrupt request and acknowledge. Providing interrupts are enabled. an interrupt request 
can be acknowledged at any time during a repeat loop. Within the interrupt service routine. it is only necessary that 
you save the contents of the 51. 01. and CX registers in order to preserve the repeat loop logic. When you return from 
the interrupt. the Program Counter is pointing the ,REP instruction which picks up where it left off. using the restored 
contents of the 51. 01. and CX registers. 

A problem arises if you precede a Block Transfer or Search instruction with more than one single prefix. Sup­
pose, for example, y.ou have a LOCK and a REP instruction preceding an MOVW: 

REP 
LOCK. 
MOVW 

The LOCK must directly precede MOVW; otherwise. it wou Id protect REP against a Hold. 

The Program Counter points to the LOCK instruction. not the REP instruction. while the MOVW repeatedly executes the 
specified number of times. If at some point an interrupt request is acknowledged, then after the interrupt service 
routine completes execution you will retu'rn to the LOCK instruction. not the REP. This will cause the MOVW instruc­
tion to be executed once more, rather than the number of times remaining in the repeat loop, as specified by the 
CX register contents and the REP instruction. Thus. if both prefixes must be used. then interrupts should be dis­
abled. 

8086 - 8080A INSTRUCTION COMPATIBILITY 
As we have already stated, the 8086 instruction set is upward compatible with the 8080A at the source pro­
gram level. That is, every 8080A instruction can be converted to one or more 8086 instructions. Table 20-6 
identifies the source program conversions recommended by Intel. These are by no means the only conversions 
which are possible, but they are the ones you should use, since they are the ones that Intel plans to support. 

THE BENCHMARK PROGRAM 
The 8086 makes short work of our Benchmark program, which is well suited to the 8086 block transfer instruction. 
We assume that the 1/0 buffer and the table being filled both lie within single 65.536-byte program segments. The dis­
placement to the beginning of the 1/0 buffer is loaded into the 51 Index register. while the displacement to the first free 
byte of the data table is loaded into the 01 Index register. Our Benchmark program now consists of these few in­
structions: 

MOV 51. 10BUF 

LE5 01. AOOR' 

MOV CX.COUNT' 

REP 
MOVW 
MOV AODR.OI 

Load 1/0 Buffer base address displacement in 51 

Load Data table starting address in E5 and displacement to first free byte in 01 

Load word count into CX 

Move the data block 
Return new address of first free table byte 

20-48 



Q 
w 

~ 
a: 
o 
D.. 
a: 
o 
o 
~ 
u) 
w 

~ 
g 
(I) 
(I) 

~ 

CI/I 
w 
Z 
a: 
o co 
(I) 

o 
:E 
~ 
Q 
~ 

@ 

The following abbreviations are used in Table 20-4: 

AH Accumulator. high-order byte 
AL Accumulator. low-order byte 
AL7 The value of register AL high-order bit (0 or 1) extended to a byte (0016 or FF1S) 
AX Accumulator. both bytes 
AX 15 The value of register AH high-order bit (0 or 1) extended to a 16-bit word (OOOOIS or FFFF1S) 
BH B register. high-order byte 
BL B register. low-order byte 
BRANCH Program memory direct address. used in Branch addressing option shown in Tables 20-1 and 20-2 
BX B register. both bytes 
C Carry status 
CH C register. high-order byte 
CL C register. low-order byte 
CS Code Segment register 
CX C register. both bytes 
DADDR Data memory address operands identified in Table 20-2 

. DATA8 Eight bits of immediate data 
DATA16 16 bits of immediate data 
DH D register. high-order byte 
DI Destination Index register 
DISP An 8-bit or 16-bit signed displacement 
DISP8 An 8-bit signed displacement 
DL D register. low-order byte 
DS Data Segment register 
DX D register. both bytes 
EA Effective data memory address using any of the memory addressing options identified in Table 20-2 
ES Extra Segment register . 
I Status flag set to 1 
I/D Increment/decrement selector for string operations: increment if D is O. decrement if D is 1 
LABEL Direct data memory address. as identified in Table 20-2 
N A binary digit (0 or 1) 
o Status flag reset to 0 
OEA Offset data memory address used to compute EA: 

PC 
PDX 
PORT 
RB 
RBD 
RBS 
RW 
RWD 
RWS 
SEGM 
SFR 
SI 
SP 
SR 
SS 
U 
V 
X 
[[ ]] 

[ ] 

EA = OEA + [DS] • 1 6 
Program Counter 
I/O port addressed by DX register contents: port number can range from 0 through 65.536 
A label identifying an I/O port number in the range 0 through 25510 
Anyone of the eight byte registers: AH. AL. BH. BL. CH. CL. DH or DL 
Any RB register as a destination 
Any RB register as a source 
Anyone of the eight 16-bit registers: AX. BX. CX. DX. SP. BP. SI or DI 
Any RW register as a destination 
Any RW register as a source 
Label identifying a 16-bit value loaded into the CS Segment register to execute a segment jump 
Status Flags register 
Source Index register 
Stack Pointer 
Anyone of the Segment registers CS. DS. ES or SS 
Stack Segment register 
Status flag modified. but undefined 
Any number in the range 0 through 25510 
Status flag modified to reflect result 
Contents of the memory location addressed by the contents of the location enclosed in the double 
brackets 
The contents of the location enclosed in the brackets 
Data on the right-hand side of the arrow is moved to the location on the left-hand side of the arrow 
Contents of locations on each side of -- are exchanged 
The twos complement of the value under the -
Not equal to 

20-49 



Table 20-3. A Summary of I ntel8086 Memory Addressing Options Identified by the EA Abbreviations in Table 20-3 

,-------------- These columns contribute to EA. -----------------., This column 

1 to be provided 

( 
These columns contribute to OEA.----------"""') ! 

POSSIBLE DISPLACEMENTS 

MEMORY 
REFERENCE 

NORMAL DATA 
MEMORY 

REFERENCE 

STACK 

STRING 
DATA 

INSTRUCTION 
FETCH 

BRANCH 

I/O DATA 

SEGMENT 
REGISTER 

ES 

CS 

CS 

DS 

BASE 
REGISTER 

None 

PC 

PC 

DX 

INDEX 
REGISTER 

None 

SI 

01 

None 

None 

None 

16-BIT, 
UNSIGNED 

* The segment override allows DS or SS to be replaced by one of the other segment registers 

X These are displacements that can be used to compute memory addresses. 

/ / Shaded rows apply to EA and DADDR . 

... ,. Shaded row applies to EA and LABEL. 

20-50 

a·BIT, 
HIGH ORDER BIT 

EXTENDED 

X 

NONE 

ASSEMBLY 
LANGUAGE 
OPERAND 

MNEMONIC 



© ADAM OSBORNE & ASSOCIATES, INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary 

STATUSES 
TYPE MN.EMONIC OPERAN.D(S) BYTES OPERATION. PERFORMED 

., 0 D I T S Z A P C 

IN PORT 2 [All - [PORT) 
Load one byte of data from I/O port PORT into AL 

IN [OX) 1 [All - [POX) 
Load into AL one byte of data from I/O port whose address is held in the OX register 

INW PORT 2 [All - [PORT). [AH) - [PORT+1) 
Load 16 bits of data into AX. AL receives data fr~m I/O port PORT. AH receives data from 
I/O port PORT+1 

INW [OX) 1 [All - [POX) • [AH) - [POX+l) 
Load 16 bits of data into AX. ALreceives data from I/O port whose address is held in the OX 
register. AH receives data from·the I/O port whose address is one higher 

g OUT PORT 2 [PORT) - [All 
Output one byte of data from register AL to I/O port PORT 

OUT [OX) 1 [POX) - [All 
Output one byte of data from.register AL to the I/O port whose address is held in the OX 
register 

OUTW PORT 2 [PORT) - [All, [PORT+1) - AH 
Output 16 bits of data. The AL register contents are output to I/O port PORT. The AH 
register contents are output to I/O port PORT + 1 

OUTW [OX) 1 [PORT) - [POX), [PORT+1) - [POX+1) 
Output 16 bits of data. The AL register contents are output to the I/O port whose address is 
held in the OX register. The AH register contents is output to the I/O port whose address is 
one higher 

LOS RW,OAOOR 2,3 or 4 [RW) - [EA), [OS) - [EA+2) 
Load 16 bits of data from the memory word addressed by DAOOR into register RW. Load 16 
bits of data from the next sequential memory word into the OS register 

LEA RW,OAOOR 2,3 or 4 [RW) -OEA 

w Load into RW the 16-bit address displacement which, when added to the segment register 
U contents, creates the effective data memory address Z 
w LES RW,OAOOR 2,3 or 4 [RW) - [EA) , [ES) - [EA+2) a: 
w Load 16 bits of data from the memory word addressed by OAOOR into register RW. Load 16 
II.. 
w bits of data from the next sequential memory word into the ES register 
a: MOV RB,DAOOR 2,3 or 4 [RB) - [EA) 
> a: Load one byte of data from the data memory location addressed by OADOR to register RB 
0 MOV RW,OADOR 2,3 or 4 [RW) - [EA) :2: 
w Load 16 bits of data from the data memory word addressed by DADDR to register RW 
:2: MOV DADDR,RB 2,3 or 4 . [EA) - [RB) > a: Store the data byte from register R B in the memory byte addressed by OAODR 
<t MOV OAOOR,RW 2,3 or 4 [EA) +- [RW) :2: 
~ Store the 16-bit data word from register RW in the memory word addressed by OADDR 
11. MOV AL.LABEL 3 [All +- [EA) 

Load the data memory byte directly addressed by LABEL into register AL 
MOV AX,LABEL 3 [AX) - [EA) 

Load the 16-bit data memory word directly addressed by LABEL into register AX 



N 
C? 
U1 
N 

TYPE 

w 
u 
Z 
w 
II: 
w 
II.. 
W 
II: 

> 
II: 
0 
~ 
w 
~ 
> 
II: 
<l: 
:!§ 
II: 
a.. 

1 
c. 
0 
> 
0 
E 

~ 
w 
u 
z 
w 
II: 
w 
II.. 
w 
II: 

> 
II: 
0 
~ 
w 
~ 
> 
II: 
<l: 
C 
Z 
0 
u 
w 
(/) 

MNEMONIC 

MOV 

MOV 

MOV 

MOV 

XCHG 

XCHG 

XLAT 

ADC 

ADC 

ADC 

ADC 

ADD 

ADD 

ADD 

ADD 

AND 

'. 

OPERAND(S) BYTES 

LABEL.AL 3 

LABEL.AX 3 

SR.DADDR 2,30r4 

DADDR.5R 2,3 or 4 

RB,DADDR 2,3 or 4 

RW,DADDR 2,3 or 4 

1 

RB,DADDR 2,3 or 4 

RW,DADDR 2,3 or 4 

DADDR,RB 2,3 or 4 

DADDR,RW 2,3 or 4 

RB,DADDR 2,3 or 4 

RW,DADDR 2,3 or 4 

DADDR,RB 2,3 or 4 

DADDR,RW 2,3 or 4 

RB,DADDR 2,3 or 4 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
OP.ERATION PERFORMED 

0 D I T S Z A P C 

[EA) +- [All 
Store the 8-bit contents of register AL into the data memory byte directly addressed by 
LABEL 

[EA) +- [AX) 
Store the 16-bit contents of register AX into the data memory word directly addressed by 
LABEL 

[SR) +- [EA) 
Load into Segment register SR the contents of the 16-bit memory word addressed by DADDR 

[EA) +- [SR) 
Store the contents of Segment register SR in the 16-bit memory location addressed by 
DADDR 

[RB) .... [EA) 
Exchange a byte of data between register RB and the data memory location addressed by 
DADDR 

[RWI .... [EA) 
Exchange 16 bits of data between register RW and the data memory location addressed by 
DADDR 

[All +- [[AL) + [BX1) 
Load into AL the data byte stored in the memory location addressed by summing initial AL 
contents with BX contents 

X X X X X X IRB) +- lEA) + [RB) + [C) 
Add the contents of the data byte addressed by DADDR, plus the Carry status, to register RB 

X X X X X X [RW) +- lEA) + [RW) + [C) 
Add the contents of the 16-bit data word addressed by DADDR, plus the Carry status, to 
register RW 

X X X X X X lEA) +- lEA) + [RB) + IC) 
Add the 8~bit contents of register R B, plus the Carry status, to the data memory byte 
addressed by DADDR 

X X X X X X lEA) +- lEA) + IRW) + IC) 
Add the 16-bit contents of register RW, plus the Carry status, to the data word addressed by 
DADDR 

X X X X X X IRB) +- lEA) + IRB) 
Add the contents of the data byte addressed by DADDR to register RB 

X X X X X X IRW) +- lEA) + IRW) 
Add the contents of the 16-bit data word addressed by DADDR to register RW 

X X X X X X lEA) +- lEA) + IRB) 
Add the 8-bit contents of register RB to the data memory byte addressed by DADDR 

X X X X X X lEA) +- lEA) + IRW) 
Add the 16-bit contents of register RW to the data memory word addressed by DADDR 

0 X X U X 0 IRB) +- lEA) AND IRB) 
AND the 8-bit contents of register RB with the data memory byte addressed by DADDR. 
Store the result in RB 



N 
'? 
C1l 
w 

TYPE 

.. 
E .. 
D-
O 
~ 
0 
E .. 
~ 
W 
u 

·2 
W 
a: 
W 
LL 
W 
a: 
> a: 
0 
:E 
·W 

:E 
> a: 
ct 
D 
2 
0 
u 
W 
en 

··MNEMONIC 

AND 

AND 

AND 

CMP 

CMP 

CMP 

CMP 

DEC 

DIV 

DIV 

IDIV 

IDIV 

OPERAND(S) BYTES 

RW,DADDR 2,3 or 4 

DADDR,RB 2,30r4 

DADDR,RW 2,3 or 4 

RB,DADDR 2,3 or 4 

RW,DADDR 2,3 or 4 

DADDR,RB 2,30r4 

DADDR,RW 2,3 or 4 

DADDR 2,3 or 4 

AX,DADDR 2,3 or 4 

DX,DADDR 2,3 or 4 

AX,DADDR 2,30r4 

DX,DADDR 2,3 or 4 

© ADAM OSBORNE & ASSOCIATES,INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 

0 D I T S 
OPERATION PERFORMED 

Z A P C 

0 X X U X 0 [RW) +- [EA) AND [RW) 
. AND the 16-bit contents of register RW with the data memory word addressed by DADDR. 
Store the result in RW 

0 X X U X 0 [EA) +- [EA) AND [RB) 
AND the 8-bit contents of register RB with the data memory byte addressed by DADDR. 
Store the result in the addressed data memory byte 

0 X XU X 0 [EA) +- [EA) AND [RW) 
AND the 16-bit contents of register RW.with the data memory word addressed by DADDR. 
Store the result in the addressed data memory word 

X X X X X X [RB) - [EA) 
Subtract the contents of the data memory byte addressed by DADDR from the contents of 
register RB. Discard the result, but adjust status flags 

X X X X X X [RW) - [EA) 
Subtract the 16-bit contents of the data memory word addressed by DADDR from the 
contents of register RW.Discard the result, but adjust status flags 

X X X X X X [EA) - [RB) 
Subtract the 8-bit contents of register RB from the data memory byte addressed by DADDR . 
Discard the result, but adjust status flags 

X X X X X X [EA) - [RW) 
Subtract the 16-bit contents of register RW from the data memory word addressed by 
DADDR. Discard the result; but adjust status flags 

X X X X X [EA) +- [EA) - 1 
Decrement the contents of the memory location addressed by DADDR. Depending on the 
prior definition of DADDR, an 8-bit or a 16-bit memory location may be decremented 

U U U U U U [AX) +- [AX) /lEA) 
Divide the 16-bit contents of register AX by the 8-bit contents of the memory byte addressed 
by DADDR. Store the integer quotient in AL and the remainder in AH. If the quotient is 
greater than FFJ6> execute a "divide by .0" interrupt 

U U U U U U [OX) [AX) +- [OX) [AX) /lEA) 
Divide the 32-bit contents of registers OX (high order) and AX (low order) by the 16-bit 
contents of the memory word addressed by DADDR. Store the integer quotient in AX and 
the remainder in OX. If the quotient is greater than FFFFJ6 , execute a "divide by 0" interrupt 

U U U U U U [AX) +- [AX) /lEA) 
Divide the 16-bit contents of register AX by the 8-bit contents of the memory byte addressed 
by DADDR, treating both contents as signed binary numbers. Store the quotient, as a signed 
binary number, in AL. Store the:remainder, as an unsigned binary number, in AH. If the 
quotient is greater than 7F16' or less than -80J6;execute a "divide by 0" interrupt 

U U U U U U [OX) [AX) +- [OX) [AX)/[EA) 
Divide the 32-bit contents of register OX (high order) and AX (low order) by the 16-bit 
contents of the memory word addressed by DADDR. Treat both contents as signed binary 
numbers. Store the quotient, CIS a signed binary nymber ,in AX. Store the remainder, as an 
unsigned binary number, in AH. If the quotient is greater than 7FFFJ6 , or less than -800016> 
execute a "divide by 0" interrupt 

-



TYPE. MNEMONIC OPERAND(S) 

IMUL AL,DADDR 

IMUL AX,DADDR 

INC DADDR 

MUL AL,DADDR 

1 MUL AX,DADDR 
c. 
0 
~ 
0 
E NEG 
~ 

DADDR 

N w 
9 0 
Ul z NOT 
~ w 

a: 
DADDR 

_oW 
u.. 

,W 
OR a: RB,DADDR 

> a: 
0 
::iE OR w RW,OADOR 

::iE 
> a: 

OR « DADDR,RB 
0 
z 
0 
0 
w 
en 

OR DADDR,RW 

RCL DADORN 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
BYTES OPERATION PERFORMED o D I. r S ZAP C 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,30r4 X 

2,3 or 4 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

U U U U X [AX) +- [ALI * [EA) 
Multiply the 8-bit contents of register AL by the contents of the memory byte addressed by 
DADDR. Treat both numbers as. signed binary numbers. Store the 16-bit product in AX 

U U U U X [OX) [AX) +- [AX) * [EA) 
Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word 
addressed by DADDR. Treat both numbers as signed binary numbers. Store the 32-bit 
product in DX (high order word) and AX (low order word) 

X X X X [EA) +- [EA) + 1 
Increment the contents of the memory location addressed by DADDR. Depending on the 
prior definition of DADDR, an 8-bit or a 16-bit memory location may be incremented 0 

U U U U X [AX) +- [ALI * [EA) 
Multiply the 8-bit contents of register AL by the contents cif the memory byte addressed by 
DADDR. Treat both numbers as unsigned binary numbers. Store the 16-bit product in AX 

U U U U X [OX) [AX) +- [AX) * [EAi 
Multiply the 16-bit contents of register AX by the 16-bit contents of the memory word 
addressed by DADDR. Treat both numbers as unsigned binary numbers. Store the 32-bit 
product in DX (high order word) and AX (low order word) 

XX X X X [EA) +- [EA) 
Twos complement the contents of the addressed memory location. Depending on the prior 
definition of DADDR, an 8-bit or 16-bit memory location may be twos complemented 

[EA) -NOT [EA) 
Ones complement the contents of the addressed memory location. Depending on the prior 
definition of DADDR, an 8-bit or 16-bit memory location may be ones complemented 

ox. X U X X [RB) +- [EA) OR [RB) 
OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. 

° Store the result in RB 
X X U X X [RW)""': [EA) OR [RW) 

OR the 16-bit contents of register RW with the data memory word addressed by DADDR. 
Store the result in RW 

X X U X X [EA) +- [EA) OR [RB) 
OR the 8-bit contents of register RB with the data memory byte addressed by DADDR. 
Store the result in the data memory byte 

X X U X X [EA) +- [EA) OR [RW) 
·OR the 16-bit contents of register RW with the data memory word addressed by DADDR. 
Store the result in the data memory word 

X Rotate the contents of the data memory location addressed by DADDR left through the 
Carry status. If N = 1, then rotate one bit position. If N = CL, then register CL contents 

. provides the number of bit positions. Depending on prior definition, DADDR may address 
a byte: 

C [EA) 

C:t-tdididid t ' 
or OADDR may address a word: 

C [EA) [EA + 1) 

4tjd4+f4d4dtLd4;+444;+t l 



TYPE 

CD 

~ 
Co o 
~ 
o 
E 

! 
w 
u 
z 
W 
II: 
W 
U. 
W 
II: 

> 
II: 
o 
::a: 
w 
::a: 
> 
II: 
<t 
C 
Z 
o 
U 
w 
CIl 

MNEMONIC 

RCR 
ROL 

ROR 
SAL 

SAR 

SBB 

SBB 

SBB 

SBB 

OPERAND(S) 

DADDR.N 
DADDR,N 

DADDR,N 
DADDR,N 

DADDR,N 

RB,DADDR 

RW,DADDR 

DADDR,RB 

DADDR,RW 

©ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
BYTES 

o D ITS ZAP C 
OPERATION PERFORMED 

2,3 or 4 X 
2,3 or 4 X 

2, 30r 4 X 
2,30r4 X 

2,30r4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

2,3 or 4 X 

X 
X 

As RCL, but rotate right 
Rotate the contents of the data memory location addressed by DADDR left. Move the left 
most bit into the Carry status. If N = 1, then rotate one bit position. If N = CL, then register 
CL contents provides the number of bit positions. Depending on prior definition, DADDR 
may address a byte: 

C [EA] 

~ J i J i J i J ] 
or DADDR may address a word: 

C [EA] [EA+1] 

~ 4 1 4 i 4 14 j--f4 i J i J i J ] 
X As ROL, but rotate right 

X X UX X Shift the contents of the data memory location addressed bV DADDR left. Move the left 

most bit into the Carry status. If N = 1, then shift one bit position. If N = CL, then register 
CL contents provides the number of bit positions. Depending on prior definition, DADDR 
may address a byte: 

C [EA] 

[3-f J i J i J j J +0 
or DADDR may address award: _ 

C [EA] [EA+ll 

~JiJiJiJ~4jJj4jd~ 
X X U X X As SAL, but shift right and propagate.sign.: 

[EA] C 

4Jtfththt+-----f] 
[EA] [EA+1] C 

or [f1 t h t h F h t i-h t h t h t h t +-tJ 
X X X X X [RB] +- [RB] - [EA] - [C] 

Subtract the contents of the data byte addressed by DADDR from the contents of 8-bit 
register RB, using twos complement arithmetic. Decrement the result in RB if the Carry status 
was initially set 

X X X X X [RW] +- IRW] - lEAl - IC] 
Subtract the contents of the 16-bit data word addressed by DADDR from the contents of the 
16-bit register RW, using twos complement arithmetic. Decrement the result in RW if the 
Carry status was initially set 

X X X X X [EA] +- [EA] - [RB] - [C] 

Subtract'the contents of 8-bit register RB from the data byte addressed by DADDR, using 
twos complement arithmetic. Decrement the result in data memory if the Carry status was 
initially set 

X X X X X [EA] +- [EA] - [RW] - [C] 

Subtract the contents of 16-bit register RW from the 16-bit data word addressed by DADDR, 
using twos complement arithmetic. Decrement the result in dat~. memory if the Carry status 
was initially set 



N o 
m 
0) 

TYPE 

Gi 

S 
a. 
0 
~ 
0 
E 

~ 
w 
0 
Z 
w 
ex: 
w 
u. 
w 
'ex: 
>-ex: 
0 
~ 
w 
~ 
>-ex: 
< 
C 
Z 
0 
0 
w 
en 

w 
I-
< 
C 
w 
~ 
;§ 

MNEMONIC 

SHL 
SHR 

SUB 

SUB 

SUB 

SUB 

TEST 

TEST 

XOR 

XOR 

XOR 

XOR 

MOV 

MOV 

OPERAND(S) BYTES 

DADDR,N 2,30r4 
DADDR,N 2,3 or 4 

RB,DADDR '2,3 or 4 

RW,DADDR ,2,3 or 4 

DADDR,RB' 2,3 or 4 

DADDR,RW 2,3 or 4 

DADDR,RB 2,3 or 4 

DADDR,RW 2,30r4 

RB,DADDR 2,30r 4 

RW,DADDR 2,3 or 4 

DADDR,RB 2,3 or 4 

DADDR.RW 2,3 or 4 

DADDR,DATA8 3,4or 5 

DADDR, DATA 16 4,50r6 

Table 20-4~ The 8086 Instr~ction Set Summary (Continued) 

STATUSES 

0 D I T S Z A P 
OPERATION PERFORMED 

C 

X X X U X X This'is an altern'ate mnemonic for SAL 
X X X U X X As SAL, but shift right: 

[EA] C 

°t ~ r ~ r ~ r ~t-EJ 
[EA] [EA+1] C 

orot ~ r tt tt tH-} r t-r t t t t-EJ 
X X X X X X [RB] :.- [RB] - [EA] .-

Subtract the contents of the data memory byte addressed by DADDRfrom the contents of 
8-bit register RB, using twos complement arithmetic 

X XX X X X [RW] -- [RW] - [EA] 
Subtract the contents of. the 16-bit data memory word addressed by DADDR from the 
contents of 16-bit register RW, using twos complement arithmetic 

X X XX X X [EA] -- [EA] - [RB] 
Subtract the contents of 8-bit register R B from the data memory byte addressed by DADDR, 
using twos complement arithmetic 

X X X X X X [EA] -- [EA) - [RW] 
Subtract the contents of-16-bit register RW from the 16-bit data memory word addressed by 
DADDR, using twos complement arithmetic 

0 X X U XO [EA] AND [RB] 
AND the 8-bit contents of the data memory location addressed by DADDR with the contents 
of 8-bitregister RB. Discard the result, but adjust status flags appropriately 

0 X X U X 0 [EA] AND [RW) 
AND the 16-bit contents of the data memory word addressed by DADDR with the contents 
of 16-bit regi,ster RW. Discard the result, but adjust status flags appropriately 

0 X X U X 0 [RB] -- [RB] XOR [EA] 
Exclusive OR the 8-bit contents of register RB with the data memory byte addressed by 
DADDR. St~re the result in RB 

0 X X U X 0 [RW] -- [RW] XOR [EA] 
Exclusive OR the 16-bit contents of register RW with the 16-tiit data memory word addressed 
by DADDR. Store the result in RW 

0 X X U X 0 [EA] -- [RB] XOR [EA] 
Exclusive OR the 8-bit contents of register RB with the data memory byte addressed by 
DADDR. Store the result in the addressed data memory byte 

0 X X U X 0 [EA] -- [RW) XOR [EA) 
Exclusive OR the 16-bit contents of register RW with the data memory word addressed by 
DADDR. Store the result in the addressed data memory word 

[EA) -- DATA8 
Load the immediate data byte DATA8 into the data memory byte addressed by DADDR 

[EA) -- DATA16 

," Load the immediate 16-bit data word DATA 1'6 into the data memory word addressed by 
DADDR 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 D I T S Z A P C 

w 
t-

MOV RB,DATA8 3 [RB] +- DATA8 ct 
Ci Load the immediate data byte DATA8 into 8-bit register RB 
w 

MOV j'W.DATA16 4 [RW] +- DATA16 :E 
~ Load the immediate 16-bit data word DATA16 into 16-bit register RW 

JMP BRANCH 2or3 [PC] +- [PC] + DISP 
Jump direct to program memory location identified by label BRANCH. The displacement 
DISP which must be added to the Program Counter will be computed as an 8-bit or 16-bit 
signed binary number, as needed, by the assembler 

JMP BRANCH.sEGM 5 [PC] +- DATA16, [CS] +- DATA16 
Jump direct into a new segment. BRANCH is a label which becomes a 16-bit unsigned data 

Q.. value which is loaded into PC. SEGM is a label which becomes another 16-bit unsigned data :E 
:::> value that is loaded into the CS segment register ., 

JMP DADDR 2 [PC] +- [EA] 
Jump indirect in current segment. The 16-bit contents of the data memory word addressed 
by DADDR is loaded into PC 

JMP .DADDR,CS 2 [PC] +- [EA] , [CS] +- [EA+2] 
Jump indirect into a new segment. The 16-bit contents of the data memory word addressed 
by DADDR is loaded into PC. The next sequential 16-bit data memory word's contents is 
loaded into the CS segment register 

CALL BRANCH 3 [[SP]) +- [PC) , [SP] +- [SP] -2, [PC] +- [PC) + DISP 
Call a subroutine in the current program segment using direct addressing 

CALL BRANCH.sEGM 5 [[SP]] +- [CS] , [SP] +- [SP] -2, [[SP]] +- [PC] , [SP] +- [SP] -2, [PC] +- DATA 16, 

[CS] +- DATA16 

z Call a subroutine in another program segment using direct addressing. BRANCH and SEGM 
a: are labels that become different 16-bit data words; they are loaded into PC and CS, :::> 
t- respectively w 
a: CALL DADDR 2 [[SP]] +- [PC] , [SP] +- [SP] -2, [PC] +- [EA] 
Q Call a subroutine in the current program segment using indirect addressing. The address of the 
Z 
ct subroutine called is stored in the 16-bit data memory word addressed by DADDR 
-I CALL DADDR,CS 2 [[SP]] +- [CS] , [SP] +- [S2] -2, [[SP]] +- [PC] , [SP] +- [SP] -2, [PC] +- [EA] , 
-I 
ct [CS] +- [EA+2] 
U Call a subroutine in a different program segment using indirect addressing. The address of the w 
Z subroutine called is stored in the 16-bit data memory word addressed by DADDR. The new 
~ 
:::> CS register contents is stored in the next sequential program memory word 
0 RET 1 [PC] +- [[SP]] , [SP] +- [SP] +2 
a: 
m Return from a subroutine in the current segment 
:::> 

RET CS 1 [PC] +- [[SP]] , [SP] +- [SP] +2, [CS] +- [[SP]] , [SP] +- [SP] +2 en 
Return from a subroutine in another segment 

RET DATA16 3 [PC] +- [[SP]] , [SP] +- [SP] +2 +DATA 16 
Return from a subroutine in the current segment and add an immediate displacement to SP 

RET CS,DATA16 3 [PC] +- [[SP]] , [SP] +- [SP] +2, [CS] +- [[SP]] , [SP] +- [SP] +2 +DATA 16 
Return from a subroutine in another segment and add an immediate displacement to SP 



N 
9 
tn 
00 

TYPE 

w 
I-
oct 
a: 
w 
a.. 
0 
w 
I-
oct 
i5 
w 
:E 
~ 

MNEMONIC 

ADD 

ADD 

ADD 

ADD 

ADD 

ADD 

ADe 

ADe 

ADe 

ADe 

ADe 

ADe 

AND 

AND 

AND 

AND 

AND 

AND 

eMP 

eMP 

eMP 

eMP 

OPERAND(S) BYTES 

AL,DATAB 2 

AX,DATA16 3 

RB,DATAB' 3 

RW,DATA16 4 

DADDR,DATAB 3,4 or 5 

DADDR,DATA16 4,5 or 6 

AL,DATAB 2 

AX,DATA16 3 

RB,DATAB 3 

RW,DATA16 4 

DADDR,DATAB 3,4 or 5 

DADDR,DATA 16 4,5 or 6 

AL,DATAB 2 

AX,DATA16 3 

RB,DATAB 3 

RW,DATA16 4 

DADDR,DATAB 3,4 or 5 

DADDR,DATA 16. 4,5 or 6 

AL,DATAB 2 

AX,DATA16 3 

RB,DATAB 3 

RW,DATA16 4 

Table 20-4. The 8086 Instruction S€t SummarY'(Continued) 

STATUSES 
OPERATION PERFORMED. 

0 D I T S Z A P C 

X X X X X :X [All +- [All + DATA8 
Add B-bit immediate data to the.AL register 

X X X X X X [AX) +- [AX)'+ DATAlO 
Add 16-bit immediate data to the AX register 

X X X X X X [RB) +- [RB) + DATA8 ,. 
j' Add B-bit immediate data to the.AB register 

X X X X X X [RW) +- [RW] + DATA16 
Add 16-bit immediate data to the RW register 

X X X X X X [EA] +- [EA] + DATA8 
Add B-bit immediate data to the data memory byte addressed by DADDR 

X X X X X X [EA] +- [EA] + DATA16 
Add 16-bit immediate data to the data memory word addressed by DADDR 

X X X X X X [All +- [All + DAT A8 + [e] 
Add 8-bit immediate data, plus carry, to the AL register 

X X X X X X [AX] +- [AX] + DATA16 + [e] 
Add 16-bit immediate data, plus carry, to the AX register 

X X X X X X [RB] +- [RB] + DATA8+ [e] 
Add B-bit immediate data, plus carry, to the R B register 

X X X X X X [RW] +- [RW] + DATA16+ [e] 
Add 16-bit immediate data, plus carry, to the RW register 

X X X X X X [EA] +- [EA] + DATA8 + [e] 
Add 8-bit immediate data, plus carry, to the data memory byte addressed by DADDR 

X X X X X X [EA] +- [EA] + DATA16+ [e] 
Add 16-bit immediate data, plus carry, to the data memory word addressed by DADDR 

0 X X U X 0 [All +- [AL] AND DATAB 
AND 8-bit immediate data with AL register contents 

0 X X U X 0 [AX] +- [AX] AND DATA16 
AN D 16-bit immediate data with AX register contents 

0 X X U X 0 [RB] +- [RB] AND DATA8 
AND B-bit immediate data with RB register contents 

0 X X U X 0 [RW] +- [RW] AND DATA16 
AN D 16-bit immediate data with RW register contents 

0 X X U X 0 [EA] +- [EA] AND DATAB 
AND B-bit im·nediate data with contents of data memory byte addressed by DADDR 

0 X X U X 0 [EA] +- [EA] Ai'lD DATA16 
AND 16-bit immediate data with contents of 16-bit data memory word addressed by DADDR 

X X X X X X [All - DATAB 
Subtract B-bit immediate data from AL register contents. Discard result, but adjust status flags 

X X X X X X [AX] - DATA16 
Subtract 16-bit immediate data from AX register contents. Discard result, but adjust status flags 

X X X X X X [RB] - DATAB 
Subtract B-bit immediate data from RB register contents. Discard result, but adjust status flags 

X X X X X X [RW] - DATA16 
Subtract 16-bit immediate data from RW register contents. Discard result, but adjust status flags 



© ADAM OSBORNE & ASSOCIATES, INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 D I T S Z A P C 

CMP DADDA.DATAS 3.4 or 5 X X X X X X [EA] - DATAS 

Subtract S-bit immediate data from contents of data memory byte addressed by DADDR. 
Discard result. but adjust status flags 

CMP DADDR.DATA 16 4.5 or 6 X 'X X X X X [EA] - DATA16 
Subtract 16-bit immediate data from contents of 16-bit data memory word addressed by 
DADDR. Discard result, but adjust status flags 

OR AL.DATAS 2 0 X X U X 0 [All +- [All OR DATAS 
OR S-bit immediate data with AL register contents 

OR AX.DATA16 3 0 X X U X 0 [AX] +- [AX] OR DATA16 
OR 16-bit immediate data with AX register contents 

OR RB.DATAS 3 0 X X U X 0 [RB] +- [RB] OR DATAS 

OR S-bit immediate data with RB register contents 
OR RW.DATA16 4 0 X X U X 0 [AW] +- [RW] OR DATA16 

OR 16-bit immediate data with RW register contents 
OR DADDR.DATAS 3.4 or 5 0 X X U X 0 [EA] +- [EA] OR DATAS 

OR S-bit immediate data with contents of data memory byte addressed by DADDR 
OR DAD 0 R.DATA 16 4.5 or 6 0 X X U X 0 [EA] +- [EA] OR DATA16 

w OR 16-bit immediate data with contents of 16-bit data memory word addressed by DADDR 
I- SBB AL.DATAS 2 X X X X X X [All +- [All - DATAS - [C] < a: Subtract S-bit immediate signed binary data from AL register contents using twos w 
D.. complement arithmetic. If the Carry status was originally 1 decrement the result 0 

SBB AX.DATA16 3 X X X X X X [AX] +- [AX] - DATA16 - [C] w 
I-

Subtract 16-bit immediate signed binary data from AX register contents using twos < 
0 complement arithmetic. If the Carry status was originally 1 decrement the result 
w SBB RB.DATAS 3 X X X X X X [RB) +- [RB] - DATAS - [C] :E 
~ Subtract S-bit immediate signed binary data from RB register contents using twos 

complement arithmetic. If the Carry status was originally 1 decrement the result 
SBB RW.DATA16 4 X X X X X X [RW] +- [RW] - DATA16 - [C] 

Subtract 16-bit immediate signed binary data from RW register contents using twos 
complement arithmetic. If the Carry status was originally 1 decrement the result 

SBB DADDR.DATAS 3.4 or 5 X X X X X X [EA) +- [EA] - DATAS - [C] 

Subtract S-bit immediate signed binary data from contents of data memory byte addressed 
by DADDR using twos complement arithmetic. If the Carry status was originally 1 
decrement the result 

SBB DADDR.DATA 16 4.5 or 6 X X X X X X [EA) +- [EA] - DATA 16 - [C] 

Subtract 16-bit immediate signed binary data from contents of 16-bit data memory word 
addressed by DADDR using twos complement arithmetic. If the Carry status was originally 
1 decrement the result 

SUB AL.DATAS 2 X X X X X X [All +- [All - DATAS 

Subtract the S-bit immediate signed binary data from AL register contents using twos 
complement arithmetic 

SUB AX.DATA16 3 X X X X X X [AX] +- [AX] - DATA16 

Subtract the 16-bit immediate signed binary data from AX register contents using twos 
complement arithmetic 



Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 D I T S Z A P C 

SUB RB,DATA8 3 X X X X X X [RB] .... [RB] - DATA8 
Subtract the 8-bit immediate signed binary data from RB register contents using twos 

complement arithmetic 

~,UB RW,DATA16 4 X X X X X X [RW] .... [RW] - DATA16 
Subtract the 16-bit immediate signed binary data from RW register contents using twos 
complement arithmetic 

SUB DADDR,DATA8 3,4 or 5 X X X X X X [EA) .... [EA] - DATA8 
Subtract the 8-bit immediate signed binary data from the contents of the data memory byte 
addressed by DADDR using twos complement arithmetic 

SUB DADDR,DATA 16 4,5 or 6 X X X X X X [EA) .... [EA) - DATA16 
Subtract the 16-bit immediate signed binary data from the contents of the 16-bit data 
memory word addressed by DADDR using twos complement arithmetic 

TEST AL,DATA8 2 0 X X U X 0 [AL! AND DATA8 
AND the 8-bit immediate data and AL register contents. Discard the result but adjust status 
flags 

TEST AX,DATA16 3 0 X X U X 0 [AX] AND DATA16 
AND the 16-bit immediate data and AX register contents. Discard the result but adjust status 
flags 

N 
9 
0) 
o 

w TEST RB,DATA8 3 0 X X U X 0 [RB] AND DATA8 I-« AND the 8-bit immediate data and RB register contents. Discard the result but adjust status a: 
w flags 
Q. 

0 TEST RW,DATA16 4 0 X X U X 0 [RW] AND DATA16 
w AND the 16-bit immediate data and RW register contents. Discard the result but adjust status 
I-« flags 
a TEST DADDR,DATA8 3,4 or 5 0 X X U X 0 [EA) AND DATA8 w 
:E AND the 8-bit immediate data and the contents of the data memory location addressed by 
~ DADDR. Discard the result but adjust status flags 

TEST DADDR,DATA 16 4, 50r 6 0 X X U X 0 [EA] AND DATA16 
AN D the 16-bit immediate data and the contents of the 16-bit data memory word addressed 
by DADDR. Discard the result but adjust status flags 

XOR AL,DATA8 2 0 X X U X 0 [AL! .... [AL] XOR DATA8 
Exclusive OR 8-bit immediate data with AL register contents 

XOR AX,DATA16 3 0 X X U X 0 [AX) .... [AX) XOR DATA16 
Exclusive OR 16-bit immediate data with AX register contents 

XOR RB,DATA8 3 0 X X U X 0 [RB] .... [RB) XOR DATA8 
Exclusive OR 8-bit immediate data with RB register contents 

XOR RW,DATA16 4 0 X X U X 0 [RW) .... [RW] XOR DATA16 
Exclusive OR 16-bit immediate data with RW register contents 

XOR DADDR,DATA8 3,4 or 5 0 X X U X 0 [EA) .... [EA] XOR DATA8 
Exclusive OR 8-bit immediate data with contents of the data memory byte addressed by 

DADDR 

XOR DADDR,DATA 16 4,5 or 6 0 X X U X 0 [EA] .... [EA] X,-'R DATA16 
Exclusive OR 16-bit immediate data with contents of the 16-bit data memory word addressed 
by DADDR .' 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED o D I T S Z A P C 

LOOP DISP8 2 [CX) +- [CX) -1 If [CX) "* a then [PC) +- [PC) + DISP8 
Decrement CX register and branch if CX contents is not a 

z LOOPE DISP8 2 [CX) +- [CX) -1 If [CX) "* a and [Z) = 1 then [PC) +- [PC) + DISP8 
0 Decrement CX register and branch if CX contents is not a and Z status is 1 
j::: 

LOOPNE DISP8 2 [CX) +- [CX) -1 If [CX) "* a and [Z) = a then [PC) +- [PC) :" DISP8 is z Decrement CX register and branch if CX contents is not a and Z status is a 
0 LOOPNZ DISP8 2 See LOOPNE U 
Z LOOPZ DISP8 2 See LOOPE 
0 JA DISP8 2 [PC) +- [PC) + DISP8 
Q. 

Branch if C or Z is a :E 
~ JAE DISP8 2 [PC) +- [PC) + DISP8 

Branch if C is a 
JB DISP8 2 [PC) +- [PC) + DISP8 

Branch if C is 1 

JBE DISP8 2 [PC) +- [PC) + DISP8 
Branch if C or Z is 1 

JCXZ DISP8 2 [PC) +- [PC) + DISP8 
Branch if the CX register contents is a 

JE DISP8 2 [PC) +- [PC) + DISP8 
Branch if Z is 1 

JG DISP8 2 [PC) +- [PC) + DISP8 
Branch if Z is a or the Sand 0 statuses are the same 

JGE DIS.P8 2 [PC) +- [PC)·+ DISP8 
Branch if the Sand 0 statuses are the same 

Z JL DISP8 2 [PC) +- [PC) + DISP8 
0 
j::: Branch if the Sand 0 statuses differ 

is JLE DISP8 2 [PC) +- [PC) + DISP8 
Z Branch if Z is 1 or the Sand 0 statuses differ 0 
U JNA DISP8 2 See JBE 
Z JNAE DISP8 2 See JB 0 
:t JNB DISP8 2 See JAE 
u 

JNBE DISP8 2 See JA Z 
< JNE DISP8 2 [PC) +- [PC) + DISP8 a: 
CD Branch if Z is a 

JNG DISP8 2 See JLE 

JNGE DISP8 2 See JL 

JNL DISP8 2 See JGE 

JNLE DISP8 2 See JG 

JNO DISP8 2 [PC) +- [PC) + DISP8 
Branch if 0 is a 

JNP DISP8 2 [PC) +- [PC) + DISP8 
Branch if P is a 

JNS DISP8 
.. 

2 [PC) +- [PC) + DISP8 
Branch if S is a 



N 
9 
0'> 
N 

TYPE 

z 
0 
~ 
Q 
z 
0 
CJ 
z 
0 
:x: 
CJ 
Z 
q: 
IE: 
III 

w 
> 
0 
:E 
IE: 
w ... 
en 
C; 
w 
IE: 
I 

IE: 
w ... 
en 
C; 
w 
IE: 

:x: 
CJ 
IE: 
q: 
w 
en 
C 
Z 
q: 
IE: 
w 
u. 
en 
Z 
<t 
IE: ... 
~ 
CJ 
0 
..I 
III 

MNEMONIC 

JNZ 
JO 

JP 

JPE 
JPO 
JS 

JZ 

MOV 

MOV 

MOV 

MOV 

XCHG 

XCHG 

XCHG 

CMPB 

CMPW 

LODB 

LODW 

MOVB 

MOVW 

OPERAND(S) BYTES 

DISP8 2 
DISP8 2 

DISP8 2 

DISP8 2 
DISP8 2 
DISP8 2 

DISP8 2 

RBD,RBS 2 

RWD,RWS 2 

SR,RW 2 

RW,SR 2 

AX,RW 1 

RB,RB 2 

RW,RW 2 

1 

1 

1 

1 

1 

1 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 

0 D I T S Z A P 
OPERATION PERFORMED 

C 

See JNE 
[PC] +- [PC] + DISP8 

Branch if 0 is 1 
[PC] +- [PC] + DISP8 

Branch if P is 1 
SeeJP 
See JNP 

[PC] +- [PC] + DISP8 
Branch if 5 is 1 
See JE 

[RBD] +- [RBS] 

Move the contents of any RB register to any RB re~ister 
[RWD] +- [RWS] 

Move the contents of any RW register to any RW register 
[SR] +- [RWS] 

Move the contents of any RW register to any Segment register 
[RWD] +- [SR] 

Move the contents of any Segment register to any RW register 
[AX] .... [RW] 

Exchange the contents of AX and any RW register 
[RB] .... [RB] 

Exchange the contents of any two RB registers 
[Rwl .... [Rwl 

Exchange the contents of any two RW registers 

X lID X X X X X [[51]1 - [[DI]l. [51] +- [511 + 1, [DI] +- [DIl + 1 
Compare the extra segment data bytes addressed by the 51 and DI Index registers using string 
data addressing 

X lID X X X X X [[511] - [[D11], [511 +- [51] + 2, [DIl +- [Dll + 2 
Compare the extra segment 16-bit data words addressed by the 51 and DI Index registers using 

string data addressing 

liD [All +- [[51]] , [511 +- [51] ± 1 
Move a data byte from the extra segment location addressed by the 51 Index register to the 

AL register using string data addressing 

I/D [AX] +- [[51]1. [511 +- [511 ± 1 
Move a data word from the 16-bit extra segment location addressed by the 51 Index register 
to the AX register using string data addressing 

lID [[D11] +- [[Sill, [51] +- [511 + 1, [DIl +- [DI] + 1 
Move a data byte from the extra segment location addressed by the 51 Index register to the 
extra segment location addressed by the DI register using string data addressing 

lID [[DIl] +- [[Sill, [51] +- [51] + 2, [DI] +- [Dll + 2 
Move a 16-bit data word from the extra segment location addressed by the 51 Index register 
to the extra segment location addressed by the DI Index register using string data addressing 



N 
c;:> 
O'l 
W 

TYPE 

J: 
u 
a: 
<t 
w 
(I) 

C 
Z 
<t 
a: 
w 
u. 
(I) 

z 
<t 

.a: 
t-
~ 
u 
0 
...J 
en 

w 
t-
<t a:. 
w 
a.. 
0 
a: 
w 
t-
(I) 

C; 
w 
a: 
I 

a: 
w 
t-
~ 
C!J 
w 
a: 

MNEMONIC 

REP 

SCAB 

SCAW 

STOB 

STOW 

AOC 

AOC 

ADD 

ADD 

AND 

AND 

CBW 

CWO 

OR 

OR 

SBB 

SBB 

OPERAND(S) BYTES 

N 1 

1 

1 

1 

1 

RBO,RBS 2 

RWO,RWS 2 

RBO,RBS 2 

RWO,RWS 2 

RBO,RSS 2' 

RWO,RWS 2 

1 

1 

RBO,RSS 2 

RWO,RWS 2 

ABO,RBS 2 

AWO,AWS 2 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 

0 D I T S 
OPERATION PERFORMED 

Z A P C 

liD Repeat the next sequential instruction (which must be a Block Transfer and Search 
instruction) until CX contents decrements to O. Decrement CX contents on each repeat. If 
the next instruction is CMPB, CMPW, SCAB or SCAW then repeat until CX contents 
decrements to 0 or Z status does not equal N 

X liD X X X X X [ALI - [[01)), (01) +- (01) ± 1 
Compare AL register contents with the extra segment data byte addressed by the 01 Index 
register using string data addressing 

X liD X X X X X [AX)-[[OI)),[OI) +-[011 ±2 
Compare AX register contents with the extra segment 16-bit data word addressed by the 01 

Index register using string data addressing 
X liD X X X X X [[011) +- [All, (01) +- (01) ± 1 

Store the AL register contents in the extra segment data memory byte addressed by the 01 

Index register using string data addressing 
X liD X X X X X [[01)) +- [AX), (01) +- (01) ± 2 

Store the AX register contents in the extra,segment 16-bitdata memory:wardaddressed by 
the 01 Index register using string data addressing. 

X X X X X X [RBO) +- [RBO) + [RBS] + [C] 
Add the 8-bit contents of register RBS;plus the Carry status, to register RBO 

X X X X X X [Rwol +- [RWO] + [RWS] + [C] 
Add the 16-bit contents of register RWS, plus the Carry status, to register RWO 

X X X X X X .[RBO] +- [RBEl] + [RBS] 
Add the 8-bit contents of register _R BS to register. R BO 

X X' X X X X. [RWO) +- [RWO) + [RWS) 
Add the 16-bit contents of registerRWS to register RWO 

0 X X U X 0 [RAD)-+- [RBO) AND [RBS) . 

AND the 8-bit contents of register· RBS with register RBO 
0 X X U X 0 [RWO) +- [RWO) AND [AWS) 

AND the 16-bit contents of register RWS with register RWO 
[AH) +- [AL7] 

Extend AL sign bit into AH 
[OX) ..- [AX15) 

Extend AX sign bit into OX 
0 X X U X 0 [RBO] +- [RBO] OR [RBS] 

OR the 8-bit contents of register ABS with register ABO 
0 X X U X 0 [RWO)+- [AWO)OR [RWS) 

OR the 16-bit contents of register AWS with register RWO 
X X X X X X [RBO) +- [RBO) - [ABS) ,- [C) 

Subtract the 8-bit contents of register ABS from RBO using twos complement arithmetic. 
If the Carry status was originally 1 decrement the result 

X o- X X X X X [AWO) +- [AWO) - [RWS) - [C) 
Subtract the 16-bit contents of register RWS from AWO using twos complement arithmetic. 
If the Carry status was originally 1 decrement the result 



Table 20-4; The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 D I T S Z A P C 

w 
I- SUB RBO,RBS 2 X X X X X X [RBO) +- [RBO) - [RBS) 
I~ Subtract the 8-bit contents of register RBS from RBO using twos complement arithmetic 

a: W 
SUB RWO,RWS 2 X X X. X X X [RWO) +- [RWO) - [RWS) wo.. 

1- 0 Subtract the 16-bit contents of register RWS from RWO using twos complement arithmetic 
~a: 
CJW XOR ABO,RBS 2 0 X X U X 0 [RBO) +- [RBO) XOR [RBS) 
wI-

Exclusive OR the 8-bit contents of register R BS with register R BO a:~ 
CJ XOR RWO,.R1/v'S 2 0 X X U X 0 [RWO) +- [RWO) XOR [RWS) 
W 
a: Exclusive OR the 16-bit contents of register RWS with register RWO 

AAA 1 U U U X U X ASCII adjust AL register contents for addition (as described in accompanying text) 

AAO 2 U X X U X U Oecimal adjust dividend in AL prior to dividing an unpacked decimal divisor, to generate an 
unpacked decimal quotient. (See accompanying text for details) 

AAM 2 U X X U X U After multiplying two unpacked decimal operands, adjust product in AX to become an 
unpacked decimal result. (See accompanying text for details) 

AAS 1 U U U X U X After subtracting two unpacked decimal numbers, adjust the difference in AL so that it too 
is an unpacked decimal number. (See accompanying text for details) 

OAA 1 U X X X X X After adding two packed decimal numbers, adjust the sum in AL so that it too is a packed 
decimal number_ (See accompanying text for details) 

OAS 1 U X X X X X After subtracting two packed decimal numbers, adjust the difference in AL so that it too is 
a packed decimal number_ (See accompanying text for details) 

OEC RB 2 X X X X X [RB) +- [RB) -1 
Oecrement the 8-bit contents of register RB 

W OEC RW lor 2 X X X X X [RW) +- [RW) -1 
I- Decrement the 16-bit contents of register RW 
ct 
a: INC RB 2 X X X X X [RB) +- [RB) +1 
W Increment the 8-bit contents of register RB 0.. 
0 INC RW lor 2 X X X X X [RW) +- [RW) +1 
a: 

I ncrement the 16-bit contents of register RW W 
I-

NEG RB 2 X X X X X X [RB) +- [RB] +1 en 
C; Twos complement the 8-bit contents of register RB 
W 
a: NEG RW 2 X X X X X X [RW) +- [RW] +1 

Twos complement the 16-bit contents of register RW 

NOT RB 2 [RB] +- [RB] 
Ones complement the 8-bit contents of register RB 

NOT RW 2 [RW] +- [RW] 

Ones complement the 16-bit contents of register RW 

RCL RB 2 X X Rotate left through Carry the 8-bit contents of R B register, or the 16-bit contents of RW 

RCL RW 2 X X register, as illustrated for memory operate 
RCR RB 2 X X Rotate right through Carry the 8-bit contents of RB register, or the 16-bit contents of RW 

RCR RW 2 X X register, as illustrated for memory operate 
ROL RB 2 X X Rotate left the 8-bit contents of RB register, or the 16-bit contents of RW register. as 

ROL RW 2 X X illustrated for memory operate 

ROR RB 2 X X Rotate right the 8-bit contents of RB register, or the 16-bit contents of RW register, as 

ROR RW 2 X X illustrated for memory operate 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 20-4. The 8086 Instruction Set Summary (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 D I T S Z A P C 

w 
Shift left the 8-bit contents of RS register, or the 16-bit contents of RW register, as illustrated I- SAL RS 2 X X X U X X 

e{ 
SAL RW 2 X X X U X X for memory operate 0: 

w 
SAR RS 2 X X X U X X Shift right the 8-bit contents of register RS, or the 16-bit contents of register RW, as e.. 

0 SAR RW 2 X X X U X X illustrated for memory operate 
0: 
w SHL RS 2 X X X U X X' See SAL 
I-

SHL RW 2 X X X U X X See SAL (/) 

C; SHR RS 2 X X X U X X Shift right the 8-but contents of register RS, or the 16-bit contents of register RW, as 
w 
0: SHR RW 2 X X X U X X illustrated for memory operate 

POP DADDR 2 [EA] +- [[SP]] , [SP] +- [SP] +2 
Load the 16-bit stack word, addressed using stack addressing, into the.16-bit data memory 

word addressed by DADDR_ Increment SP by 2 
POP RW lor 2 [RW or SR]' +- [[SP]] , [SP] +- [SP] +2 
POP SR 1 Load the 16-bit stack word, addressed using stack addressing, into the'Specified 16-bit register_ 

Increment SP by 2 
POPF 1 X X X X X X X X X [SFR] +- [[SP]] , [SP] +- [SP] +2 

~ Load the 16-bit stack word, addressed using stack addressing, into the Status flags register 
U 
e{ PUSH DADDR 2 [SP] +- [SP] -2, [[SP]] +- [EA] 
I-

Store the 16-bit contents of the data memory word addressed by DADDR in the 16-bit stack (/) 

word addressed using stack addressing_ Decrement SP by 2 
PUSH RW lor 2 [SP] +- [SP] -2, [(SP]] +- [RW orSR] 

PUSH SR 1 Store the contents of the specified 16-bit register in the 16-bitstack word addressed using 
stack addressing_ Decrement SP by 2 

PUSHF 1 [SP] +- [SP] +2, [[SP]] +- [SFR] 
Store the Status flags register contents in the 16-bit stack word addressed using stack 
addressing. Decrement SP by 2 

'(/) INT 3 1 0 0 Execute a software interrupt and vector through table entry 3 
0:1-

INT V 2 0 0 Execute a software interrupt and vector through table entry V we.. 
1-:) INTO 1 0 0 If the 0 status is 1, execute a software interrupt and vector through table entry 10)6 ~o: 

IRET 1 Return from interrupt service routine 

CLC 1 0 [C] +-0 

Clear Carry status 
CLD 1 0 [D] -0 

(/) Clear Decrement/Increment select 
:) 

CLI 1 0 II] -0 l-
e{ Clear Interrupt enable status, disabling all interrupts l-
(/) CMC 1 X [C] - [e] 

Complement Carry· status 

FALC 1 [All - 0 if [C] = o. [AL] .... FF if [C] = 1 
Fill AL with Carry 



Table 20-4. The 8086 Instruction Set Summary (Continued} 

STATUSES 
TYPE MNEMONIC OPERAND(S) . BYTES ; OPERATION PERFORMED 

0 D I T S Z A P. C 

LAHF 1 Transfer flags to AHregister-as follows: 
7 6 5 432 1 0 Bit no. 

I I I I I I I I I AH register 

S Z 0 A 0 P I C 
SAHF 1 X X X X X Transfer AH register contents·to status flags as follows: 

CI) 7 6 5 4 3 2 1 0 Bit no .. 
::l 
l- I I I I I I I I I AH register <t 
l- S Z A P C' CI) 

STC 1 1 [C] -1 
Set Carry status to 1 

STO 1 1 [0] -1 
Set Decrement/Increment status to 1 

STI 1 1 II] - 1 
Set Interrupt enable status to 1, enabling all interrupts 

ESC OAOOR 2 ?- [EA] 
The contents of the data memory location addressed by OAOOR is read out of memory and 
placed on the data bus; however, it is not input to the CPU 

HLT 1 CPU Halt 
LOCK 1 Guarantee the CPU bus control during execution of the next sequential instruction 

SEG SR 1 The next sequential allowed memory reference instruction accesses the segment identified 
by Segment register SR. See Table.20-1 for allowed memory reference instructions 

WAIT 1 CPU enters the WAIT state until TEST pin receives a high input signal 



c 
w 
I­

'e:( 
a: o 
D. 
a: 
o 
CJ 
~ 
u) 
w 

~ g 
C/) 
C/) 
e:( 

GI'J 
w 
Z 
a: 
o 
ID 
C/) 

o 
~ 
e:( 
C 
e:( 

@ 

INSTRUCTION EXECUTION TIMES AND CODES 
Table 20-5 lists instructions in alphabetical order. showing object codes and execution times. expressed in whole clock 
cycles. Execution time is the time required from beginning execution of an instruction that is in the queue to beginning 
execution of the next instruction in the queue. The time required to place an instruction from memory into the queue 
(instruction fetch time) is not shown in the table: because of queuing. instruction fetch time occurs concurrently with 
instruction execution time and thus has no effect on overall timing. except as specifically noted in the table. 

Instruction object codes are represented as two hexadecimal digits for instruction bytes without variations. 

Instruction object codes are represented as eight binary digits for instruction bytes with variations for the instruction. 

The following notation is used in Table 20-5: 

a 

aa 

bbb 

OISP 

ddd 

rr 

reg 

sss 

ppqq 

v 

x 
yy 

yyyy 

Z 

EA 

indicate an optional object code byte 

one bit choosing data length: 
aO = 1 data byte a 1 0 = 2 data bytes 
1 = 2 data bytes 1 = 1 data byte 

two bits choosing address length: 
no OISP 00 
one OISP byte = 01 
two OISP bytes = 10. or 00 with bbb = 110 

three bits choOSing addressing mode: 
000 EA (BX) + (SI) + OISP 
001 EA (BX) + (01) + OISP 
010 EA (BP) + (SI) + OISP 
all EA (BP) + (01) + OISP 
100 EA (SI) + OISP 
101 EA (01) + OISP 
110 EA (BP)' + OISP 
111 EA (BX) + OISP 

represents two hexadecimal digit memory displacement 

represents three binary digits identifying a destination register (see reg!. 

two binary digits identifying a segment register: 
00 ES 
01 CS 
10 SS 
11 OS 

three binary digits identifying a register: 

16-bit 8-bit 

000 AX AL 
001 CX CL 
010 OX OL 
all BX BL 
100 SP AH 
101 BP CH 
110 SI OH 
111 01 BH 

represents three binary digits identifying a source register (see reg!. 

represents four hexadecimal digit memory address 

one bit choosing shift length: 
a count = 1 
1 count = (CLl 

"don't care" bit 

represents two hexadecimal data digits 

represents four hexadecimal data digits 

one bit where Z XOR (ZF) = 1 terminates loop 

Execution time is less than or equal to instruction fetch time, 

Includes up to eight clock cycles of overhead on each transfer due to queue maintenance, For condi­
tional jumps. the lesser figure is when the test fails (no jump taken!' 

= from five to twelve additional cycles. depending on addressing mode. required for address calcula­
tion only (R/W cycles are included above), 

20-67 



Table 20-5. A Summary of 8086 I nstruction Object Codes and Execution Cycles 

OBJECT CODE BYTES 
CLOCK 

INSTRUCTION PERIODS 

AAA 37 1 4* 
AAD D50A 2 60 
AAM D40A 2 S3 
AAS 3F 1 4* 
ADC AL,DATAS 14 yy 2 4* 
ADC AX,Q';>'TA16 15 yyyy 3 4* 
ADC DADDR,DATAS SO aa010bbb 3,4 or 5 17+EA 

[DISP] [DISP] YY 
ADC DADDR.DATA16 100000a1 aa010bbb 3,4,5 or 6 17+EA 

[DISP] [DISP] YY[YY] 
ADC 'DADDR,RB 10 aadddbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
ADC DADDR,RW 11 aadddbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
ADC RB,DADDR 12 aasssbbb 2,30r4 9+EA 

[DISPj [DISP] 
ADC RB,DATAS SO 11010ddd YY 3 4* 
ADC RBD,RBS 12 11dddsss 2 3* 
ADC RW,DADDR 13 aasssbbb 2, 30r 4 9+EA 

[DISP] [DISP] 
ADC RW,DATA16 100000a111010ddd 30r4 4* 

YY[YY] 
ADC RWD.RWS 1311dddsss 2 3* 
ADD AL,DATAS 04YY 2 4* 
ADD AX,DATA16 05 YYYY 3 4* 
ADD DADDR,DATAS SO aaOOObbb 3,4 or 5 17+EA 

[DISP] [DISP] YY 
ADD DADDR,DATA16 100000a1 aaOOObbb 3,4,5 or 6 17+EA 

[DISP] [DISP] YY[YY] 
ADD DADDR.RB 00 aadddbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
ADD DADDR,RW 01 aadddbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
ADD RB,DADDR 02 aasssbbb 2,3 or 4 9+EA 

[DISP] [DISP] 
ADD RB,DATAS SO 11 OOOddd YY 3 4* 
ADD RBD,RBS 0211dddsss 2 3* 
ADD RW,DADDR 03 aasssbbb 2,3 or 4 9+EA 

[DISP] [DISP] 
ADD RW,DATA16 1 OOOOOa 1 11000ddd 30r4 4* 

YY[YY] 
ADD RWD,RWS 0311dddsss 2 3* 
AND AL,DATAS 24 YY 2 4* 
AND AX,DATA16 25 YYYY 3 4* 
AND DADDR,DATAS SO aa100bbb ' 3,4 or 5 17+EA 

[DISP] [D1spj YY 
AND DADDR,DATA16 Sl aa100bbb 4,5 or 6 17+EA 

[DISP] [DISP] YYYY 
AND DADDR,RB 20 aasssbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
AND DADDR,RW 21 aasssbbb 2,3 or 4 16+EA 

[DISP] [DISP] 
AND RB,DADDR 22 aadddbbb 2,30r4 9+EA 

[DISP] [DISP] 
AND RB,DATAS SO 111 OOsss YY 3 4* 
AND RBD,RBS 2211dddsss 2 3* 
AND RW,DADDR 2.3 aadddbbb 2,30r4 9+EA 

[DISP] [DISP] 
AND RW,DATA16 S1111:JOsssYYYY 4 4* 
AND RWD,RWS 2311dddsss 2 3* 
CALL BRANCH ES DISP DISP 3 19** 
CALL BRANCH,SEGM 9A ppqqppqq 5 2S** 
CALL DADDR FF aa010bbb 2,30r4 21+EA** 

[DISP] [DISP] 

20-68 



c 
w 

~ a: 
o 
Do 
a: 
o 
CJ 

~ 
en 
w 
I­
~ 
U o 
en 
en 
~ 

o1J 
w 
Z 
a: 
o 
ID 
en o 
~ 
~ 
C 
~ 

@ 

Table 20-5. A Summary of 8086 I nstruction Object Codes and Execution Cycles (Continued) 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

PERIODS 

CALL DADDR,CS FF aa011bbb 2,3 or 4 37+EA** 
[DISPI [DISPI 

CALL RW FF 11010reg 2 21+EA** 
CBW 98 1 5 
CLC F8 1 2* 
CLD FC 1 2* 
CLI FA 1 2* 
CMC F5 1 2* 
CMP AL,DATA8 3C YY 2 4* 
CMP AX,DATA16 3D YYYY 3 4* 
CMP DADDR ,OAT A8 80 aa111bbb 3,4 or 5 17+EA 

[DISPI [DISPI YY 
CMP DADDR,DATA16 100000a1 aa111bbb 3,4,50r6 17+EA 

[DISPI [DISPI YY[YYI 
CMP DADDR,RB 38 aadddbbb 2,3 or 4 16+EA 

[DISpl [DISPI 
CMP DADDR,RW 39 aadddbbb 2,3 or 4 16+EA 

[DISPI [DISpl 
CMP RB,DADDR 3A aasssbbb 2,30r4 9+EA 

[DISPI [DISPI 
CMP RB,DATA8 80 11111 ddd YY 3 4* 
CMP RBD,RBS 3A 11dddsss 2 3* 
CMP RW,OAOOR 3B aasssbbb 2,30r4 9+EA 

[DISPI [DISPI 
CMP RW,DATA16 100000a111111ddd 30r4 4* 

YY[YYI 
CMP RWD,RWS 3B 11dddsss 2 3* 
CMPB A6 1 22 
CMPW A7 1 22 
CWO 99 1 5 
DAA 27 1 4* 
DAS 2F 1 "- 4* 
DEC DADDR 1111. 111 a aa001 bbb 2,3 or 4 15+EA 

[DISPI [DISPI 
DEC RB FE 11001ddd 2 2* 
DEC RW 01001ddd 1 2* 
DIV AX,DADDR F6 aa11 Obbb 2,3 or 4 90+EA 

[DISPI [DISPI 
DIV DX,DADDR F7 aa110bbb 2,3 or 4 155+EA 

[DISPI [DISPI 
ESC DADDR 11011 xxx aaxxxbbb 2,30r4 7+EA 

[DISPI [DISPI 
FALC 06 1 4* 
HLT F4 1 2* 
IDIV AX,DADDR F6 aa111bbb 2,3 or 4 112+EA 

[DISPI [DISPI 
IDIV DX,DADDR F7 aa111bbb 2,3 or 4 177+EA 

[DISPI [DISPI 
IMUL AL,DADDR F6 aa101bbb 2,3 or 4 90+EA 

[DISPI [DISPI 
IMUL AX,DADDR F7 aa101bbb 2,3 or 4 144+EA 

[DISPI [DISPI 
IN EC 1 8 
IN PORT E4 YY 2 10 
INC DADDR 1111111 a aaOOObbb 2,3 or 4 15+EA 

[DISpl [DISPI 
INC RB FE 11000ddd 2 2* 
INC RW 01000ddd 1 2* 
INT 3 CC 1 60 
INT V CD YY 2 60 
INTO CE ' 1 60 
INW ED 1 8 
INW PORT E5 YY 2 10 
IRET CF 1 32** 

20-69 



Table 20-5. A Summary of 8086 I nstruction Object Codes and Execution Cycles (Continued) 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

PERIODS 

JA/JNBE DISP8 77 DISP 2 4 or 16** 
JAE/JNB DISP8 73 DISP 2 .. 
JB/JNAE DISP8 72 DISP 2 .. 
JBE/JNA DISP8 76 DISP 2 .. 
JCXZ DISP8 63 DISP 2 .. 
JE/JZ DISP8 74 DISP 2 .. 
JG/JNLE DISP8 7F DISP 2 .. 
JGE/JNL DISP8 7D DISP 2 .. 
JL/JNGE DISP8 7C DISP 2 .. 
JLE/JNG DISP8 7E DISP 2 .. 
JMP BRANCH 111010Xl DISP [DISP) 2or3 15** 
JMP BRANCH,SEGM EA ppqq ppqq 5 . 15** 
JMP DADDR . FF aal OObbb 2,3 or 4 15+EA** 

[DISP) [DISP) 
JMP DADDR,CS FF aal0lbbb 2,3 or 4 24+EA** 

[DISP) [DISP) 
JMP RW FF 11100reg 2 9+EA** 
JNE/JNZ DISP8 75 DISP 2 4or16** 
JNO DISP8 71 DISP 2 .. 
JNP/JPO DISP8 . 68 DISP 2 .. 
JNS DISP8 79 DISP 2 .. 
JO DISP8 70 DISP 2 " 
JP/JPE DISP8 7A DISP 2 .. 
JS DISP8 78 DISP 2 .. 
LAHF ·9F 1 4* 
LDS RW,DADDR C5 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
LEA RW,DADDR 8D aasssbbb 2,3 or 4 2+EA 

[DISP) [DISP) 
LES RW,DADDR C4 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
LOCK FO 1 2* 
LOD8 AC 1 12 
LODW AD 1 12 
LOOP DISP8 E2 DISP 2 5 or 17** 
LOOPE/LOOPZ DISP8 El DISP 2 5 or 19** 
LOOPN E/LOOPN Z DISP8 EO DISP 2 5 or 19** 
MOV AL,LABEL AO ppqq 3 8+EA 
MOV AX,LABEL .Al ppqq 3 8+EA 
MOV DADDR,DATA8 C6 aaOOObbb 3,4 or 5 10+EA 

[DISP) [DISP) YY 
MOV DADDR,DATA16 C7 aaOOObbb 4,5 or 6 10+EA 

[DISP) [DISP) YYYY 
MOV DADDR,RB 88 aasssbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
MOV DADDR,RW 89 aasssbbb 2,30r4 9+EA 

[DISP) [DISP) 
MOV DADDR,SR 8C aaOrrbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
MOV LABEL,AL A2 ppqq 3 9+EA 
MOV LABEL,AX A3 ppqq 3 9+EA 
MOV RB,DADDR 8A aadddbbb 2,3 or 4 8+EA 

[DISP) [DISP) 
MOV RB,DATA8 10110ddd YY 2 4" 
MOV RBD,RBS 8A lldddsss 2 2" 
MOV RW,DADDR 8B aadddbbb 2,3 or 4 8+EA 

[DISP) [DISP) 
MOV RW,DATA16 10111ddd YYYY 3 4" 
MOV RW,SR 8C 11 Orrsss 2 2* 
MOV RWD,RWS 8B 11dddsss 2 2* 
MOV SR,DADDR 8E aaOrrbbb 2,30r4 8+EA 

[DiSP) [DISP) 
MOV SR,RW 8E 110rrsss 2 2* 
MOVB A4 1 17 

20-70 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
u 
~ 
en 
w 

~ 
U o 
CI) 
CI) 

< 
o/J 
w 
Z 
a: 
o 
III 
CI) 

o 
:E 
< c 
< 
@ 

Table 20-5. A Summary of 8086 I nstruction Object Codes and Execution Cycles (Continued) 

OBJECT CODE BYTES 
CLOCK 

INSTRUCTION PERIODS 

MOVW A5 1 17 
MUL AL,DADDR F6 aa100bbb 2,30r4 71+EA 

[DISP] [DISP] 
MUL AX,DADDR F7 aa100bbb 2,3 or 4 124+EA 

[DISP] [DISP] 
NEG DADDR 1111011a aa011bbb 2,3 or 4 16+EA 

[DISP] [DISP] 
NEG RB F611011ddd 2 3* 
NEG RW F711011ddd 2 3* 
NOT DADDR 1111011a aa010bbb 2,3 or 4 16+EA 

[DISP] [DISP] 
NOT RB F611010sss 2 3* 
NOT RW F711010sss 2 3* 
OR AL,DATAS OCYY 2 4* 
OR AX,DATA16 OD YYYY 3 4* 
OR DADDR,DATAS SO aa001bbb 3,4 or 5 17+EA 

[DISP] [DISP] YY 
OR DADDR,DATA16 Sl aa001bbb 4, 5·or 6 17+EA 

[DISP) [DISP] YYYY 
OR DADDR,RB OS aasssbbb 2,3 or 4 16+EA 

[DISP] [DISP) 
OR DADDR,RW 09 aasssbbb 2,3 or 4 16+EA 

[DISP) [DISP) 
OR RB,DADDR OA aadddbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
OR RB,DATAS 80 11001ss YY 3 4* 
OR RBD,RBS OA 11dddsss 2 3* 
OR RW,DADDR OB aadddbbb 2,3 or 4 9+EA 

(DISP) (DISP) 
OR RW,DATA16 8111001sssYYYY 4 4* 
OR RWD,RWS OB 11dddsss 2 3* 
OUT EE 1 8 
OUT PORT E6 YY 2 10 
OUTW EF 1 8 
OUTW PORT E7 YY 2 10 
POP DADDR 8F aaOOObbb 2,3 or 4 17+EA 

[DISP] [DISP) 
POP RW 01011ddd 1 8 
POP SR 000rr111 1 8 
POPF 9D 1 8 
PUSH DADDR FF aa110bbb 2,3 or 4 16+EA 

[DISP] [DISP) 
PUSH RW 01010sss 1 10 
PUSH· SR 000rr110 1 10 
PUSHF 9C 1 10 
RCL DADDR,N 110100va aa01 Obbb 2,3 or 4 15+EA (single) 

[DISP] [DISP] or 4/bit+20+EA 
RCL RB,N 11010OVO 11010sss 2 2* (single) 

or 4/bit+8· 
RCL RW,N 11010Ov111010sss 2 .. 
RCR DADDR,N 110100va aa011 bbb 2,3 or 4 15+EA (single) 

[DISP] [DISP) or 4/bit+20+EA 
RCR RB,N 110100vO 11011sss 2 2* (single) 

or 4/bit+8 
RCR . RW,N 11010Ov111011sss 2 .. 
REP/REPNE/REPNZ N F3 1 +6 per loop 
REPE/REPZ N F2 1 +6 per loop 
RET C3 1 16** 
RET CS CB 1 26** 
RET CS,DATA16 CA YYYY 3 25** 
RET DATA16 C2 YYYY 3 20** 
ROL DADDR,N 110100va aaOOObbb 2,3 or 4 15+EA (single) 

[DISP] [DISP] or 4/bit+20+EA 

20-71 



Table 20-5. A Summary of 8086 I ns'truction Object Codes and Execution Cycles (Continued) 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

PERIODS 

ROL RB,N 11010OVO 11 OOOsss 2 2* (single) 
or 4/bit+S 

ROL RW,N 11010Ov1 11000sss 2 .. 
ROR DADDR,N 110100va aa001 bbb 2,30r4 15+EA (single) 

[OISP) [DISP) or 4/bit+20+EA 
ROR RB,N 11010OVO 11001sss 2 2* (single) 

or 4/bit+S 
ROR RW,N 110100v1 11oo1sss 2 .. 
SAHF 9E 1 4* 
SAL/SHL DAODR,N 110100va aa100bbb 2,3 or 4 15+EA (single) 

[DISP) [DISP) or 4/bit+20+EA 
SAL/SHL RB,N 11010OVO 111 OOsss 2 2* (single) 

or 4/bit+S 
SAL/SHL RW,N 11010Ov1 11100sss 2 .. 
SAR OAODR,N 110100va aa111bbb 2,30r4 15+EA (single) 

[DISP) [DISP) or 4/bit+20+EA 
SAR RB,~ 11010OVO 11111sss 2 2* (single) 

or 4/bit+S 
SAR RW,N 110100v1 11111sss 2 .. 
SBB AL,OATAS 1C YY 2 4* 
SBB AX,OATA16 10 YYYY 3 4* 
SBB OAODR,DATAS SO aa011bbb 3,4 or 5 17+EA 

[DISP) [DISP) YY 
SBB OAODR,DATA16 100000a1 aa011 bbb 3,4,5 or 6 17+EA 

[DISP) [DISP) YYlYY) 
SBB DADOR,RB lS aadddbbb 2,30r4 16+EA 

[DISP) [DISP) 
SBB DADDR,RW 19 aadddbbb 2,3 or 4 16+EA 

[DISP) [OISP) 
SBB RB,DAODR 1A aasssbbb 2,3 or 4 9+EA 

[DISP) [DISP) 
SBB RB,DATAS SO 11011ddd YY 3 4* 
SBB RBO,RBS 1A 11dddsss 2 3* 
SBB RW,OADDR 1 B aasssbbb 2,3 or 4 9+EA 

[OISP) [DISP) 
SBB RW,DATA16 100000a111011ddd 3 or 4 4* 

YY[YY) 
SBB RWO,RWS 1 B 11dddsss 2 3* 
SCAB AE 1 15 
SCAW AF 1 15 
SEG Prefix SR 001rr101 1 +2 
SHR OAOOR,N 110100va aa101bbb 2,30r4 15+EA (single) 

[DISP) [OISP) or 4/bit+20+EA 
SHR RB,N 110100vO 11101 sss 2 2* (single) 

or 4/bit+S 
SHR RW,N 11010Ov1 11101s55 2 .. 
STC F9 1 2* 
STO FO 1 2* 
STI FB 1 2* 
STOB AA 1 10 
STOW AB 1 10 
SUB AL,DATAS 2C YY 2 4* 
SUB AX,OATA16 20 YYYY 3 4* 
SUB OAOOR,DATAB SO aa101bbb 3,4 or 5 17+EA 

[DISP) [DISP) YY 
SUB OAOOR,DATA16 100000a1 aa101bbb 3,4,5 or 6 17+EA 

[DISP) [OISP) YY[YY) 
SUB DADDR,RB 28 aadddbbb 2,30r4 16+EA 

[DISP) [DISP) 
SUB OAOOR,RW 29 aadddbbb 2,30r4 16+EA 

[OISP) [OISP) 
SUB RB,DADDR 2A aasssbbb 2,3 or 4 9+EA 

[OISP) [DISP) 

20-72 



Q 
w 
~ 
a: 
o n­
a: 
o 
(J 

~ 
en 
w 

~ 
g 
CI) 
CI) 

« 
o1J 
w 
Z 
a: 
o m 
CI) 

o 
::! « 
Q 
« 
@ 

Table 20-5. A Summary of 8086 I nstruction Object Codes and Execution Cycles (Continued) 

INSTRUCTION OBJECT CODE BYTES 
CLOCK 

PERIODS 

SUB RB,DATA8 80 11101ddd YY 3 4* 
SUB RBD,RBS 2A 11dddsss 2 3· 
SUB RW,DADDR 2B aasssbbb 2,30r4 9+EA 

[DISP) [DISP) 
SUB RW,DATA16 100000a1 11101ddd 3 or 4 4* 

yy[yy) 

SUB RWD,RWS 2B 11dddsss 2 3· 
TEST AL,DATA8 A8 YY 2 4* 
TEST AX,DATA16 A9 YYYY 3 4* 
TEST DADDR,DATA8 F6 aaOOObbb 3,4 or 5 10+EA 

[DISP) [DISP) YY 
TEST DADDR,DATA16 F7 aaOOObbb 4,5 or 6 10+EA 

[DISP) [DISP) YYYY 
TEST DADDR,RB 84 aaregbbb 2,30r4 9+EA 

[DISP) [DISP) 
TEST DADDR,RW 85 aaregbbb 2,30r4 9+EA 

[DISP) [DISP) 
TEST RB,DATA8 F6 11000reg YY 3 4* 
TEST RBD,RBS 8411regreg 2 3* 
TEST RW,DATA16 F7 11 OOOreg YYYY 4 4* 
TEST RWD,RWS 8511regreg 2 3* 
WAIT 9B 1 3 
XCHG AX,RW 10010reg 1 3* 
XCHG RB,DADDR 86 aaregbbb 2,30r4 17+EA 

[DISP) [DISP) 
XCHG RB,RB 8611regreg 2 4* 
XCHG RW,DADDR 87 aaregbbb 2,3 or 4 17+EA 

[DISP) [DISP) 
XCHG RW,RW 87 11 regreg 2 4* 
XLAT D7 1 11 
XOR AL,DATA8 34 YY 2 4* 
XOR AX,DATA16 35 YYYY 3 4* 
XOR DADDR,DATA8 80 aa010bbb 3,4 or 5 17+EA 

[DISP) [DISP) YY 
XOR DADDR,DATA16 81 aa010bbb 4,5or6 17+EA 

[DISP) [DISP) YYYY 
XOR DADDR,RB 30 aasssbbb 2,30r4 16+EA 

[DISP) [DISP) 
XOR DADDR,RW 31 aasssbbb 2,30r4 16+EA 

[DISP) [DISP) 
XOR RB,DADDR 32 aadddbbb 2,30r4 9+EA 

[DISP) [DISP) 
XOR RB,DATA8 80 11110sss YY 3 4* 
XOR RBD,RBS 3211dddsss 2 3* 
XOR RW,DADDR 33 aadddbbb 2,30r4 9+EA 

[DISP) [DISP) 
XOR RW,DATA16 81 11110sss YYYY 4 4* 
XOR RWD,RWS 3311dddsss 2 3* 

20-73 



Table 20-6. 'SOSOA to SOS6 Instruction Mapping 

8080A EQUIVALENT 8086 8080A EQU IVALENT 8086 
, INSTRUCTION INSTRUCTION(S) INSTRUCTION 'INSTRUCTION(S) 

IN DEV IN PORT RM JNS next-inst 
OUT DEV OUT PORT RET 

RP , JS next-inst 
LDAX B * MOV SI,CX RET 

LODB RPE ,JPO next-inst 
LDAX 0 MOV , SI,DX RET 

LODB RPO JPE next-inst 
STAX B MOV DI,CX RET 

STOB 
STAX "0 'MOV DI,DX ADI DATA ADD AL,DATA8 

STOB ACI DATA ADC AL,DATA8 
MOV ' REG,M MOV RB,DADDR SUI DATA SUB AL,DATA8 
MOV M,REG MOV DADDR,RB SBI DATA SBB AL,DATA8 
LOA ADDR MOV AL,LABEL ANI DATA " AND AL,DATA8 
STA ADDR MOV LABEL,AL XRI DATA XOR AL,DATA8 
LHLD ADDR MOV BX,DADDR ORI DATA OR AL,DATA8 
SHLD ADDR MOV i DADDR,BX ' CPI DATA CMP AL,DATA8 

ADD M ADD AL,DADDR JC ADDR JB DISP8 *** 
ADC M ADC AL,DADDR JNC ADDR JNB DISP8 
SUB M SUB AL,DADDR JZ ADDR JZ DISP8 
SBB M SBB AL,DADDR JNZ ADDR JNZ DISP8 
ANA M AND AL,DADDR JP ADDR JNS DISP8 
XRA M XOR AL,DADDR JM ADDR JS DISP8 
ORA M OR AL,DADDR JPE ADDR JPE DISP8 
CMP M CMP AL,DADDR JPO ADDR JPO DISP8 
INR M 'INC DADDR 
OCR M DEC DADDR MOV d,s MOV RBD,RBS 

XCHG XCHG DX,BX 
LXI RP,DATA16 MOV RW,DATA16 SPHL MOV SP,BX 

MVI M,DATA MOV DADDR,DATA8 ADD REG ADD AL,RBS 
MVI " REG,DATA MOV RB,DATA8 ADC REG AOC AL,RBS 
JMP ADDR JMP BRANCH ** , SUB REG SUB AL,RBS 
PCHL JMP BX SBB REG SBB AL,RBS 

ANA REG AND AL,RBS 
CALL ADDR CALL BRANCH XRA REG XOR AL,RBS 
CC ADDR JNB next-inst ,ORA REG OR AL,RBS 

CALL BRANCH CMP REG CMP AL,RBS 
CNC ADDR JB next-inst DAD RP LAHF 

CALL BRANCH ADD BX,RW 
CZ ADDR JNZ next-inst RCR AL 

CALL BRANCH 'SAHF 
CNZ' ADDR JZ next-inst RCL AL 

CALL BRANCH or ADD BX,RW (unlike DAD-
CP AD DR JS next-inst will affect AF, PF, SF, and ZF) 

CALL BRANCH 
CM ADDR JNS next-inst INR REG INC RB 

CALL' , 'BRANCH OCR REG DEC RB 
CPE ADDR JPO next-inst CMA NOT AL 

CALL BRANCH DAA DAA 
CPO ADDR JPE next-inst RLC ROL AL 

CALL BRANCH RRC ROR AL 
RET RET RAL RCL AL 

RAR RCR AL 
RC JNB next-inst INX RP LAHF 

RET INC RW 
RNC JB next-inst SAHF 

RET or INC RW (unlike INX - will 
RZ JNZ next-inst affect AF, PF, SF, and ZF) 

RET DCX RP LAHF 
RNZ JZ next-inst DEC RW 

RET 

20-74 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
u 
~ 
en 
w 

~ 
g 
(I) 
(I) 

oct 
ail 
w 
Z 
a: 
o 
m 
(I) 

o 
~ 
oct 
C 
oct 
@ 

Table 20-6. 8080A to 8086 I nstruction Mapping (Continued) 

B080A EQUIVALENT B086 BOBOA EQUIVALENT 8086 
INSTRUCTION INSTRUCTION(S) INSTRUCTION INSTRUCTION(S) 

SAHF EI STI 
or DEC RW (unlike DCX - will DI CLI 
affect AF, PF, SF, and ZF) RST N CALL S*N 

PUSH RP PUSH RW 
STC STC PUSH PSW LAHF 

PUSH AX CMC CMC 

POP RP POP RW 
POP PSW POP AX NOP XCHG AX,AX 

SAHF HLT HLT 
XTHL POP SI 

XCHG BX,SI 
PUSH SI 

*SOSOA registers map into SOS6 registers as follows: 

BOBOA B086 B080A 8086 

A AL L BL 
B CH BC CX 
C CL DE DX 
D DH HL BX 
E DL SP SP 
H BH PC IP 

.. Addresses on SOS6 jumps and calls are adjusted to be self-relative. 

**·Conditional jumps to a location out of the short self-relative range must be implemented by using a reversed-sense conditional jump 
around a normal jump to the location, e.g.: 

JC ADDR becomes JNB 
JMP 

Refer to Table 4-4 for a complete description of SOSOA mnemonics shown above. 

Refer to Table 20-4 for a complete description of SOS6 mnemonics shown above. 

20-75 

next-inst 
BRANCH 



X1 

X2 

TANK 

XTAl 
OSCll: 
LATOR 

FIC -rt>0 
EFI 

CSYNC 

£T..>----lD Q RESET 

CK 

~'------4 ~,o---~---- OSC 

t----.. ClK 

+3 

SYNC 

peLK 

RDY1 ~ 
AEN1 -----[>o----L...I 
AEN2 l>o--=-=-n 

READY 
SYNC 
lOGIC 

READY 

RDY2 -------L-I 

Pin Name 

RESET 

RES 

RDY1. RDY2 

AEN1. AEN2 

READY 

X1. X2 
TANK 

EF1 

FIC 
ClK 
PClK 

OSC 

CSYNC 

Vee· GND 

Figure 20-12. Logic of the 8284 Clock Generator and Driver 

CSYNC-1 

PClK 2 

AEN1 3 

ROY1 4 

READY 5 8284 

RDY2 6 

AEN2 7 

ClK 8 

GND 9 

Description 

Control signal output to 8086 

Reset logic input 

Wait state ready inputs 

18 Vee (+5V) 
17 X1 

16 X2 

15 TNK 

14 EFI 

13 F/C 

12 OSC 

RES 

RESET 

Address enable qualifiers for RDY1 and RDY2 

Control signal output to 8086 

External crystal connections 

. Overtone crystal tank circuit connection 

Alternate clock input 

Clock source select 

MOS level clock signal to 8086 

TTL clock for peripherals 

Crystal oscillator output 
Clock synchronizer 

Power. ground 

Figure 20-13. 8284 Clock Generator and Driver Pins and Signal Assignments 

20·76 

Type 

Output 

Input 

Input 

Input 

Output 

Input 

Input 

Input 

Input 

Output 
Output 

Output 
'Input 



Q 
w 

~ 
II: o 
D. 
II: 
o 
CJ 
~ 
en 
w 

~ g 
(I) 
(I) 

< 
oll 
w 
Z 
II: 
o 
III 
(I) 

o 
~ 
< 
Q 

< 
@ 

THE INTEL 8284 CLOCK GENERATOR/DRIVER 

The 8284 Clock Generator/Driver Is a standard component that will be present in every 8086 microcomputer 
system. In a multlmlcroprocessor system, each 8086 microprocessor will have its own 8284 Clock Genera­
,tor/Driver. While one could conceivably have a single 8284 servicing more than one 8086 microprocessor. it will rarely 
make any economic sense to design a system in this fashion. 

Logic implemented on the 8284 Clock Generator/Driver corresponds generally to the block labeled clock logic in 
Figure 20-1. To be completely accurate. however. a small portion of the bus interface logic should also be illustrated as 
provided by the 8284 device. 

Figure 20-12 illustrates 8284 device internal logic. 

The 8284 is manufactured using bipolar technology. It is packaged as a 18-pin DIP. All signals are TTL compatible. 

8284 CLOCK GENERATOR/DRIVER PINS AND SIGNALS 
8284 device pins and signals are illustrated In Figure 20-13. Figure 20-19 illustrates the 8284 device in a single 
8086 microprocessor configuration. 

Signals may be divided between timing and control logic. 

Clock frequency is controlled by a crystal connected across tho X1 and X2 pins. Clock frequency must be exactly 
three times the required clock period. Since the standard 8086 clock period is 200 nanoseconds. a 15MHz crystal fre­
quency is required. 

If an overtone mode crystal is employed, then it must be supported by an external LC network connected to 
TANK to insure oscillation of the overtone frequency. This is standard clock logic practice; for the 8284 it is il­
lustrated along with other normal connections in Figure 20-14. 

You have the option of connecting a crystal across X 1 and X2 in order to generate a fundamental frequency. or you can 
input the fundamental frequency via EFI. The level of F/C determines whether an external crystai or a signal in­
put will provide the fundamental frequency. If F/C is high. then the fundamental frequency is taken from the EFI in­
put. If F/C is low. then the crystal connected across X1 and X2 provides the fundamental frequency. 

Three clock outputs are generated: 

1) ClK is an MOS level signal designed to meet the requirements of the 8086. 

2) PClK is a TTL level clock signal. output for support circuits. PClK runs at half the frequency of ClK. 

3) OSC is an oscillator output running at the crystal or EFI input frequency. 

These timing signals may be iIIustratod as follows: 

EFI 
or 

Crystal 

OSC 

CLK) 

PCLK 

2 3 

___ --II 

4 5 6 7 

20-77 

8 9 10 .etc. 



XTAl 

Cx 

Xl X2 

RDYl 

OSC r----------~ OSC 

AENl 

RDY2 ClK r----------~ClK 

AEN2 

PClK r----------~ PClK 

vcc-o-----, 
8284 

READY r----------~ READY 

RES 

Fie RESET r----------_ RESET 

EFI 

CSYNC 

TANK 

1----- -----, 
I I Tank circuit used 

I I 
with overtone 
crystals only. 

I I 
I I 
I IT CT 

I 

I I 

I I 
I 

I I 
I I 
L ___________ --1 

NOTES: 

1. Cx should be 3 to 10 pF 

2. Cc (when used) should be 1 to 10 nF 

3. CR and RR determine Reset time constant 
1 

4. CT and IT determine tank frequency: fo = ~ 
2 Try lTCT 

Figure 20-14. Normal 8284 Clock Generator Circuit 

2078 



c 
w 

~ 
a: 
o 
Il. 
a: 
o 
CJ 
~ 
en 
w 
I­
< 
(3 
o 
en 
en 
< 
olS 
w 
Z 
a: 
o 
al 
en o 
~ 
< 
C 
< 
@ 

In multi-CPU configurations you will probably need to synchronize all 8086 clock signals. 
You use the CSYNC signal for this purpose. When CSYNC is input high. logic internal to the 
8284 Clock Generator/Driver is stopped. When CSYNC subsequently goes low. clock outputs 
restart. If the same CSYNC signal is input to a number of 8284 devices that receive the same EFI 
input. then all microprocessors in a multi-CPU configuration will be exactly synchronized. Ap-

SYNCHRON­
IZING 
MULTI-8086 
CLOCK 
SIGNALS 

propriate logic is illustrated in Figure 20-15. "-_____ ---1 

Note that you cannot use individual crystals for 8284 Clock Generator/Drivers that are supposed to be synchronized 
with each; minor variations in crystal frequency. which must occur. will quickly distort clock signal synchronization. 
You can use a crystal to generate the fundamental frequency for one 8284 Clock Generator/Driver. then use the OSC 
output of this Clock Generator/Driver as the EFI input to other 8284 Clock Generator/Drivers. 

The 8086 requires its RESET input to be synchronized with clock logic. The 8284 will 
receive an asynchronous Reset input at RES and will generate synchronized RESET output 
which the 8086 requires. Appropriate logic is illustrated in Figure 20-14. Timing is illustrated in 
the data sheets at the end of the chapter. 

8086 
RESET 

The 8284 RES input need not make a sharp transition. The 8284 inputs RES to a Schmit trigger that generates the 
RESET output. RES can make a slow low-to-high transition. 

rlD~ 
T 

X1 X2 

Master 
Synchronizer D Q D Q CSYNC 

8284 
7474 7474 

,.- ClK ------ ClK 

<}~ OSC 

CSYNC Input 
to other 

8284 devices 

EFI input to 
other 8284 devices 

Figure 20-15. Clock Synchronization Logic in a Multi-CPU 8086 Configuration 

We have described earlier in this chapter how external logic can extend a bus cycle by inserting 8284 
Wait clock periods between T3 and T4. Figure 20-9 illustrates the READY input which controls WAIT STATE 
Wait states within the 8086 bus controller. As illustrated in Figure 20-9. the 8086 READY input LOGIC 
must be synchronized with the clock signal. The 8284 Clock Generator/Driver outputs an ap- ..... _____ ~ 
propriately synchronized READY signal to the 8086. The 8284 creates its READY output from one of two inputs: 
RDY1 or RDY2. The 8284 has two READY inputs to support MUL TIBUS configurations. as illustrated in Figure 20-22. 
A single 8086 may connect to two separate System Busses. Memory or I/O devices attached to either bus may wish to 
create a Wait state within a bus cycle. Each System Bus may therefore have its own READY line. In order to arbitrate 
bus priorities. RDY 1 and RDY2 have companion enable signals AEN 1 and AEN2. respectively. The 8284 will respond to 
RDY1 only when AEN1 is low. Similarly. the 8284 will respond to RDY2 only when AEN2 is low. 

AEN1 and AEN2 are general bus priority signals which you must generate through your own bus priority arbitration 
logic. We will describe these two signals. and methods of generating them. later in this chapter. 

20-79 



THE INTEL 8288 BUS CONTROLLER 

In maximum 8086 configurations, wherethe 8086 MN/MX signal is low, you must use an 8288 Bus Controller 
in order to decode the SO, S1 and S2 status lines, and thus create System Bus control signals. You can also use 
the 8288 Bus Controller in order to connect more than one 8086 to a single System Bus, or in order to create 
more than one System Bus for a single 8086. 

Although the primary purpose of the 8288 Bus Controller is to decode the three 8086 status signals SO, S 1 and 
S2, a simple 1-of-8 decoder could accomplish this limited task. The 8288 has these additional capabilities: . 

1) The 8288 can generate control signals for a System Bus or an I/O device only bus. 

2) You can float a System Bus's control signals to enable direct memory access. or to arbitrate bus priorities. 

3) The two Write control lines have alternate advanced outputs designed for slow memories or I/O devices. 

4) You can supress control signals as a means of implementing memory protect logic in multi-bus or multimicropro-
cess or configurations. 

5) The 8288 generates control signals needed by line drivers. 

6) The 8288 generates control signals needed by simple or complex interrupt logic. 

The 8288 Bus Controller is manufactured using bipolar technology. It is packaged as a 20-pin DIP. All signals are TTL 
compatible. 

8288 BUS CONTROLLER SIGNALS AND PIN ASSIGNMENTS 
Figure 20-16 illustrates 8288 Bus Controller signals and pin assignments. Figure 20-20 illustrates an 8288 with­
in an 8086 microcomputer system. 

Signal 

SO, S1, S2 

ClK 
AEN 
CEN 

lOB 
MRDC 

MWTC 

AMWC 

10RC 

10WC 
AIOWC 

INTA 

MCE/PDEN 

ALE 

DT/R 
DEN 

VCc,GND 

lOB 20 

ClK 2 19 

S1 3 18 

DT/R 4 17 

ALE 5 16 

AEN 
8288 

6 15 

MRDC 7 14 

AMWC 8 13 

MWTC 9 12 

GND 10 11 

Function 

Bus cycle state signals 

TTL clock signal 
Bus priority control/enable 
Command enable 

Mode control 

Memory read strobe 

Memory write strobe 
Early memory write strobe 

I/O read strobe 

I/O write strobe 

Early I/O write strobe 

I nterrupt acknowledge 

Cascade/peripheral data enable 

Address latch enable 

Data direction control 

Data buffer enable 
Power, ground 

VCC(+5V) 
SO 

S2 

MCE/PDEN 

DEN 

CEN 

INTA 

10RC 

AIOWC 

10WC 

Direction 

Input 

Input 
Input 
Input 

Input 

Output, tristate 

Output, tristate 
Output, tristate 

Output, tristate 

Output, tristate 
Output, tristate 

. Output, tristate 

Output 

Output 

Output 

Output 

Figure 20-16. 8288 Bus Controller Pins and Signal Assignments 

2080 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 
I­
< g 
en 
en 
< 
II!! 
w 
Z 
a: 
o 
In 
en o 
~ 
< c 
< 
@ 

Control signals are generated from SO, S1 and S2 as follows: 

SO S1 S2 8086 State 8288 Control Out~ut 

0 0 0 I nterrupt acknowledge INTA and MCE 

0 0 I/O read 10RC 

0 0 I/O write 10WC,AIOWC 

0 Halt None 

0 0 Code access MRDC 

0 Memory read MRDC 

0 Memory write MWTC,AMWC 

1 No operation None 

8288 and 8086 control signal timing is essentially the same. For details. see the data sheets given at the end of this 
chapter. .' 

If you look again at the Read and Write bus cycle timing descriptions given earlier in this chapter 
for the 8086 you will see that Read control signals pulse low approximately one clock period 
earlier than Write control signals. The 8288 creates two alternate Write control signals whose 
timing is the same as the Read control signals. These alternative Write control signals are refer­
red to as advanced Write control signals. because they go low one clock pulse in advance of the 
standard Write control signals. 

We can thus summarize 8288 System Bus control signals as follows: 

MRDC is the memory read control. 

MWTC is the memory write control. 

AMWC is a memory write control whose timing conforms to MRDC. 

8288 
ADVANCED 
WRITE 
CONTROL 
SIGNALS 

INTA is a memory read control signal which is output during the two interrupt acknowledge bus cycles. 

10RC is an I/O device read control signal. 

10WC is an I/O device write control signal. 

AIOWC is an alternative I/O device write control signal with timing that conforms to 10RC. 

Devices connected to a bus are likely to use both 10WC and MWTC orAIOWC and AMWC. but not all four signals. 
That is. you will use either the normal write control Signals or you will use the advanced write control signals. 

All 8288 control signals are tri-state. They can be disabled and thus disconnected from the System Bus. 

You have two control options which modify the control signal logic of the 8288 Bus Controller. 

Using the lOB pin, you can operate the 8288 device in I/O bus mode or in System Bus mode. 

Using the CEN pin, you can suppress control signals. 

Let us examine each of these capabilities in turn. 

When the lOB pin is connected to +5V. the 8288 Bus Controller generates an I/O bus. lOB high 8288 I/O 
floats MRDC. MWTC and AMWC all of the time. but continuously outputs INTA. 10RC. 10WC and BUS MODE 
AIOWC. In I/O bus mode. these four I/O control signals cannot be floated. Since the four I/O con-
trollines will always be active. itis assumed that the I/O bus generated by an 8288 is a local bus. You cannot share this 
local I/O bus with another microprocessor. nor can it be used by direct memory access logic. 

The 8288 I/O bus has two control signals. PDEN and DT /R. which drive I/O ports and line drivers. DT iff. which we have 
described for the 8086. is used to control a bidirectional bus driver. When high. DT/A' puts the bus driver in output 
mode. while when low. DT /A' puts the bus driver in input mode. PDEN pulses low as a data enable signal. PDEN is 
equivalent to DEN. the standard bus data enable signal output by the 8086. 

When lOB is low. a normal System Bus is generated. All seven control signals are active: however. AEN is a bus enable 
control (much as the BUSEN input is used by the 8228 Bus Controller in an 808A system). 

20-81 



AEN is inactive when lOB is high and an 110 bus is being generated. AEN is active only when lOB is low and a System 
Bus is generated. 

When lOB is low and AEN is high. all control signals are floated. When lOB is low and AEN is low. control signals are 
connected to the System Bus. You will use AEN to implement bus priority arbitration logic. or direct memory access 
logic. as described later in this chapter. 

CEN is used to disable, but not float, control signals. CEN can be used when an 8288 is 
generating a System Bus or an I/O bus. CEN will normally be high. When CEN is low, control 
signals are inactive. CEN does not float signals; it just disables the logic which might other-
wise have made a control signal pulse low.;, " 

Table 20-7 summarizes the effect of lOB and CEN on control signals generated by the 8288 
Bus Controller. 

8288 BUS 
CONTROLLER 
MEMORY 
PROTECT 

Table 20-7. Effect of lOB, CEN and AEN on Control Signals Output by the 8288 Bus Controller 

CONTROL INPUT EFFECT ON CONTROL OUTPUT 

lOB 
INTA, IORC, IOWC, AIOWC MRDC, MWTC, AMWC 

CEN AEN 
Mode Floated? Active? Mode Floated? Active? 

0 0 0 System Floated Active System Floated Active 

0 0 1 System ' Floated Inactive System Floated Inactive 

0 1 0 System Connected " A'ctive System Connected Active 

0 1 1 System Connected Inactive System Conrected inactive 

, 1 0 0 I/O Floated Active Not Used Floated Inactive 

1 0 1 I/O Floated Active Not Used Floated Inactive 

1 1 0 I/O Connected Active Not Used Floated Inactive 

1 1 1 I/O Connected Active Not Used Floated Inactive 

The CEN control enables memory mapping. Here are some possibilities: 

1) In multi-bus configurations. one block of memory addresses may access memory on two or more busses. In order to 
avoid contentions. you can use the CEN signal to selectively disable busses so that only one bus will actually res­
pond when the 8086 accesses duplicated memory addresses .. 

2) Privileged memory is frequently present in large microcomputer systems. Privileged memory is likely to become 
more common in microcomputer systems 'as they grow larger. Privileged memory is memory which can be ac­
cessed only under special circumstances. Frequently. system programs are run out of privileged memory. while ap­
plication programs are run out of non-privileged memory. This prevents errors in application programs from 
destroying system programs; it also prevents unauthorized access of reserved memory spaces. 

DT/R and DEN, the two standard buffer control signals, are generated by the 8288 when it is creating a normal 
System Bus. These two control signals: wh~ generated by the 8288 Bus Controller. are identical in form and purpose 
to the signals which the 8086 creates. DT IR determines the data direction for bidirectional buffers. while DEN is 'a 
latching strobe. 

The 8288 generates two interrupt control signals: INTA and MCE. INTAis active on a 
System Bus or an I/O Bus. MCE shares a pin with PDEN and is active only. on a System Bus. 

As we discussed earlier in this chapter. the 8086 executes two bus cycles when acknowledging 
an interrupt. During each bus cycle. INTA is 'output as a low read pulse. On the second low INTA 
pulse. the acknowledged device must return an 8-bit 'code which the 8086 uses as an interrupt 

8288 BUS 
CONTROLLER 
INTERRUPT 
SIGNALS 

vector. The INT A control Signal which is generated by the 8288 Bus Controller is identical to the 8086 INTA control sig­
nal and serves the same purpose. on a System Bus or an 110 Bus. The MCE control signal has been added for use in 
large 8086 microcomputer systems that use a variation of theB259A Priority Interrupt Control Unit. (The 8259A Priority 
Interrupt Control Unit is described in Chapter 4.) When you have a master 8259A Priority Interrupt Control Unit and 
slave 8259A Priority Interrupt Control Units. you will use MCE as a control to the master. while INTA becomes a control 
to the slaves. The 8086 version 'of the 8259A Priority Interrupt Control Unit is not described .in this chapter. We will 
therefore defer further discussion of the MCE signal until a subsequent revision of this c~apter. ' 

20-82 



c 
w 
~ 
a:: 
o 
a. 
a:: 
o 
o 
~ 
en 
w 

~ g 
VJ 
VJ 
< 
IllS 
w 
Z 
a:: 
o 
IXl 
VJ o 
~ 
< 
Q 

< 
@ 

THE 8282/8283 8-BIT INPUT/OUTPUT PORT 

These are simple unldirectlonal8-bit latch buffers. The 8283 inverts inp~ts in order to create outputs; the 8282, 
does not. That is the only difference between these two devices. 

Both devices have three-state outputs. When a device Is not selected, its outputs are floated. 

These devices are manufactured using bipolar technology. All signals are TTL compatible, Outputs have a high drive' 
capability. as defined in the data sheets at the end of this chapter. The devices are packaged as 20-pin DIPs. 

THE 8282/8283 INPUT/OUTPUT PORT PINS AND SIGNAL ASSIGNMENTS 
Figure 20-17 illustrates the pins and signal assignments for the 8282 and 8283 8-bit input/output ports. 

Data must be input at 010-017. 

When STS is high. the internal latches appear transparent and data on the output pins track data on the input pins. The 
transition from high to low of STS latches the data. The outputs remain stable while STS is low. 

Data which is latched internally is output when CS is low. The 8282 outputs data unaltered. while the 8283 inverts 
the data. ' 

Were you to simply ground DE and tie STS to +5V. the 8282 or 8283 I/O ports will function as simple bus drivers. The 
outputs will continuously track the inputs. but will support heavier signal loads. 

If you tie STS high. but use the low DE pulse. then input data is constantly available but outputs only become valid 
while DE is low. Timing may be illustrated as follows: ' ' 

DiO-DI7 A 1 B X c 

1 
D 

t 
Latches A ~ B X C 

~ 
I? 

~l i 5 C ~ DOo-D07 ~ A B } , { C D 

20-83 



010 20 Vee (+5V) 
011 2 19 000 

012 3 18 001 

013 4 17 002 

014 5 8282 16 003 
or 

015 6 8283 15 004 

016 7 14 005 

017 8 13 006 

OE 9 12 007 

GNO 10 11 STB 

Pin Name Description Type 

010-017 Data input Input 

000-007 Data output Output. tristate 

OE Output Enable . Input 

STB I nput data strobe Input 

Vee. GNO Power. ground 

Figure 20-17. 8282 and 8283 I nput/Output Port Pins and Signal Assignments 

When the Strobe and Output Enable signal are both active. I/O port logic may be illustrated as follows: 

010-017 A X B X e X 0 

T rr STB 

Latches A 

t 
B ~ e 

OE 3 ~ ~ 000-007 A B 

20-84 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
(J 
z 
en 
w 
I­« 
U o 
C/) 
C/) 

« 
~ 
w 
z 
a: 
o en 
C/) 

o 
~ « c « 
@ 

AO 
A1 

A2 
A3 

A4 
A5 

GND 

Pin Name 

AO-A7 
BO-B7 
OE 
T 

Vee. GND 

1 

2 

3 

4 

5 
8286 

or 
6 

8287 
7 

8 

10 

Description 

Local Bus 
System Bus 
Output Enable 
Direction select 
Power. ground 

20 Vee 
19 BO 
18 B1 
17 B2 

16 B3 
15 B4 
14 B5 
13 B6 

12 B7 
11 T 

Type 

Bidirectional. tristate 
Bidirectional. tristate 
Input 
Input 

Figure 20-18. 8286 and 8287 Bidirectional Bus Transceiver Pins and Signal Assignments 

THE 8286/8287 8-BIT BIDIRECTIONAL BUS TRANSCEIVERS 

These two devices are used to buffer bidirectional lines on a System Bus. The 8286 transmits data unaltered, 
while the 8287 inverts the data. The two devices are otherwise the same. 

The 8286 and 8287 bidirectional bus drivers are manufactured using bipolar technology. All pins are TTL-compatible. 
The devices are packaged as 20-pin DIPs. 

8286 AND 8287 BIDIRECTIONAL BUS TRANSCEIVER PINS 
AND SIGNAL ASSIGNMENTS 

Figure 20-18 illustrates pins and signal assignments for the 8286 and 8287 bidirectional bus drivers. 

AO-A7 constitute eight parallel data lines that connect with the microprocessor Data/Address Bus. BO-B7 con­
stitute eight equivalent lines that connect with the System Bus. System Bus outputs have a higher line drive 
capability (as defined in the data sheets at the end of this chapter); otherwise. there is no difference between the two 
busses. 

When the T input is low, data arriving at the B pins is output via the A pins. When T is high, data arriving at the A 
pins is output via the B pins. The actual data transfer occurs only while OE is low. When used as an 8086 Data Bus 
tranceiver. T should be connected to DT fR and OE connected to DEN. 

20-85 



SOME'SOS6 MICROPROCESSOR BUS CONFIGURATIONS 

We are now going to look at some 8086 microprocessor bus configurations. 

The flexibility of the 8086 gives rise to such a bewildering array of system configuration possibilities that a 
whole book could be written on the subject. We are going to fulfill the more limited objective of identifying 
possibilities. 

Figure 20-19 illustrates the simplest case. Here we are using the 8086 to generate a simple microcomputer system. 
Addresses taken off the bidirectional 8086 Data/Address 8us are unidirectional. We therefore use 8282 I/O ports to 
latch addresses of the 8086 Data/Address Bus. In Figure 20-19, we show just two 82821/0 ports generating a 16-line 
Address Bus. Address'lines A16 through A19 are wasted. By adding one more.8282 I/O port to the logic in Figure 
20-19, you could include the four missing Address Bus lines. . 

GND .. 
tOE 

ADO ~ 
= 

AD7 

r 8282 OE 

STEi ALE 
8282 

.~ 
\ 
J 

V 

~DO 
~ 

8086 KAD7 

~T/R / 8286 -.l.... 
Vee MN/HX 

DEN cs OE 
-
OE -AAD8 ~ 8286 

V \ 
1\ AD15 J 

'I y 

>- ~ 
~ 0 LU 
..J <l: (f) 

U LU LU .. .0:: 0:: 

---'--'- ROYl 

Vee 

~ + t _RES 

8284 I~~? 
AENl 
~ 

r t Xl X2 I ~/C I 

~D1 ¥' 

Figure 20-19. Generating a System Bus for a Simple 8086 Configuration 

20-86 

M!I5 
INTA 

RD 

WR 

AO 

A7 

A8 

A15 

SHE 

DO 

07 

08 

015 

READY 

PCLK 



c 
w 

~ a: 
o 
Q. 
a: 
o 
u 
~ 
en 
w 

~ g 
fI) 
fI) 

ct 
ail 
w 
Z 
a: 
o 
CD 
fI) 

o 
:!: 
ct 
c 
ct 
@ 

In Figure 20-19. we ground the Output Enable inputs of the 82821/0 ports; the Address Bus will therefore never be flo­
ated. We use the 8086 ALE pulse to strobe addresses into the 8282 I/O ports. 

Since the Data Bus is bidirectional. we use 8286 bidirectional Bus Transceivers in order to create a separate Data Bus 
from the 8086 Address/Data Bus. Two 8286 bidirectional Bus Transceivers are required to create the 16-line Data Bus. 
We can use the DT/R and DEN outputs of the 8086 as the 8286 T and CS inputs. 

We can now illustrate timing for creation of the Address Bus and 'Data Bus during a read bus cycle. as follows: 

Tl 

elK 

ADG-AD15 -+-----+---f 

BHE 

ALE 

M/io 

DT/R 

DEN 

. .828201 ------I Address Out 
---r--~~---

8282 DO Address Out 

T2 T3 T4 

I 
I 
I 
I 
I 

1-11-_1--___ -+0(=8282 01 
'--__ ......,.... __ ~ and 8286A) 

(=8282 STB) 

(=8286 T) 

Data In )--------(=ADO-AD15) 

AO-A15 

8286 B Data In DG-D15 _____________ ~-J~------~-~~--/L-------

8286A ---------------~ Data In }-----------(=ADO-AD15) 

The simple system illustrated in Figure 20-19 will not make use of the dual READY clock logic. A single READY input is 
connected to RDY1. and both of the READY enables are grounded. Thus. the 8086 READY input will be created directly 
from the 8284 RDY1 input.' 

20-87 



Figure 20-20 illustrates a slightly more complex 8086 microcomputer configuration. Figure 20-20 uses an 8288 
Bus Controller to generate System Bus control signals. The DEN. DT IR. and ALE control outputs. which in Figure 
20-19 were generated by the 8086 microprocessor. are now generated by the 8288 Bus Controller .. 

As a stand-alone microcomputer configuration. Figure 20-20 offers little or 1)0 advantage over Figure 20-19. In a single 
bus. single 8086 microcomputer configuration. there is no compelling reason to use the 8288 Bus Controller. All it does 
is add an extra (;omponent to the system without offering any significant logic enhancement. 

GND 

~ 

SHE 

ADO 

8086 AD7 

GND MN/HX 
~-¥ 

AD8 

AD15 

>- I-
l.I: Cl llJ 
....J « CIl 
u llJ llJ 

0: 0: 

RDY1 

Vee -

~t 8284 I<AEN2 
AEN1 
~ 

RES Il/C • 
~ 

1 
X1 X2 

~o& .,- + ..,.,-;-
r 

SO 

S1 

S2 

8288 
lOB 
DEN 
DT/R 

~ 

ADO 
-

AD7 

~ 8282 

ADO 
-

AD7 

T 8286 

DE 

elK 

O_E 

~ 
STB 
AD8 

AD15 

~ 
~ 
AD8 

IAD15 

8282 

8286 

AD 

A7 

A8 

A15 

BHE 

DO 

07 

08 

015 

READY 

PClK 

Figure 20~20. Generating a System Bus in an 8086 Microcomputer System Using an 8288 Bus Controller 

20·88 



c 
w 

~ 
a: 
o 
c. 
a: 
o 
(J 

~ 
en 
w 
I­« 
(; 
o 
CI) 
CI) 

« 
~ 
w 
Z 
a: 
o 
III 
CI) 

o 
:E « c « 
@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

.8086 CPU 
• 8282/8283 I/O Ports 
• 8284 Clock Generator 
• 8286/8287 Bidirectional Bus Drivers 
• 8288 Bus Controller 

20-01 



8086 

ABSOLUTE MAXIMUM RATINGS· 

Ambient Temperature Under Bias ......... O°C to 70°C 
Storage Temperature .•....•...... - 65°C to + 150°C 
Voltage on Any Pin with 

Respect to Ground ..•..........•.... - 0.3 to + 7V 
Power Dissipation ........................ 2.5 Watt 

D.C. CHARACTERISTICS 
8086·4: T A = O°C to 50°C, Vee = 5V ± 5%, Vss = OV 

Symbol Parameter Min. 

III Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

III Input Leakage Current 

Ilo Output Leakage Current 

Vel Clock Input Low Voltage -0.5 

,"4~.\~ 
~~ ::1/,. 

" :'" .. ~~: .. 
'COMMENT: Stresses above those listed under "Absolute Ma)(lm&Wt?:~f • 
Ratings" may cause permanent damage to the device. This Is'a str&6S";';.r ... 
rating only and functional operation of the device at these or any'other {. 
conditions above those indicated in the operational sections of it1~ • 
specification Is not Implied. Exposure to absolute maximum rating con· 
dltlons for extended periods may affect device reliability. 

Max. Units Test Conditions 

+0.8 V 

Vee+ 0.5 V 

0.45 V IOl = 2.0 rnA 

V IOH 7 400,..A 

275 rnA 

±10 ,..A VIN = Vee 

± 10 f.I 0.45V ~ VOUT ~ Vee 

+0.6 V 

VeH Clock Input High Voltage Vee- 0.5 Vee + 1.0 V 

Capacitance of Input Buffer 
CIN (All input except 10 pF fc = 1 MHz 

ADo- AD 15, RO/Gn 

CIO 
Capacitance of I/O Buffer 20 pF fc = 1 MHz 
(ADo-AD15, RO/Gn 

Data sheets on pages 20-02 through 20-015 reprinted by permission of Intel Corporation. Copyright 1978. 

20-D2 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
(J 

~ 
en 
w 
l­
e:( 
(j 
o 
CI) 
CI) 
e:( 

ci!l 
w 
Z 
a: 
o 
a:I 
CI) 

o 
~ 
e:( 
c 
e:( 

@ 

8086 

A.C. CHARACTERISTICS 
8086·4: T A = O·C to 50·C, Vee = 5V ± 5%, Vss = OV 

8086 MINIMUM COMPLEXITY SYSTEM (Figure 8) 
TIMING REQUIREMENTS 

Symbol Parametor 

TClCl ClK Cycle Period 

TCL1CH1 ClK low Time 

TCH2Cl2 ClK High Time 

TCH1CH2 ClK Rise Time 

TCl2Cl1 ClK Fall Time 

TDVCl Data In Setup Time 

TClDZ Data In Hold Time 

TR1VCl ROY Setup Time into 8284 (SEE NOTES 1,2) 

TClR'1X ROY Hold Time into 8284 (SEE NOTES 1,2) 

TRYVCH READY Setup Time into 8086 

TCHRYX READY Hold Time into 8086 

THVCH HOLD Setup Time 

TlVCH INTR, NMI, TEST Setup Time (SEE NOTE 2) 

TIMING RESPONSES 

Symbol Parameter 

TClAV Address Valid Delay 

TClAX Address Hold Time 

TClAZ Address Float Delay 

TlHll ALE Width' 

TCllH ALE Active Delay 

TCHll ALE Inactive Delay 

TllAZ ALE Inactive to Address Float 

TClDV Data Valid Delay 

TCHDZ Data Float Delay 

TWHDZ Data Hold Time After WR 

TCVCTV Control Active Delay 1 

TCHCTV Control Active Delay 2 

TCVCTX1 Control Hold Time 

TCVCTX2 Control Inactive Delay 

TAZRL1 Address Float to READ Active 

TClRl2 RD Active Delay 

TClRH RD Inactive Delay 

TRHAV RD Inactive to Next Address Active 

NOTES: 1. SIGNAL AT 8284 SHOWN FOR REFERENCE ONLY. 

Min. Max. Units Test Conditions 
'., 

200 2000 ns 

115 ns 

60 ns 

10 ns From VClmax + .4 to VCH mln - 1.0 

10 ns From VCHmln - 1.0 to VClmax + .4 

30 ns 

10 ns 

50 ns 

0 ns 

TCl1CH1 + 10 ns 

TClCl+30 ns 

35 ns 

30 ns 

Min. Max. Units Test Conditions 

15 110 ns Cl = 100 pF 

10 ns 

TClAX 80 ns 

TCL1CH1-20 ns 

80 ns 

85 ns 

TCH2Cl2-10 ns 

15 110 ns 

TClAX ns 

TCL1CH1-30 85 ns 

10 110 ns 

15 110 ns 

10 ns 

10 110 ns 

0 ns 

10 165 ns 

10 150 ns 

TClCl-45 ns 

2. SETUP REQUIREMENT FOR ASYNCHRONOUS SIGNAL ONLY TO GUARANTEE RECOGNITION AT NEXT ClK. 

20-D3 



8086 

8086 MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) (Figure 9) 
TIMING REQUIREMENTS': 

Symbol Parlmeter Min. MIx. Units 

TClCl ClK Cycle Period 200 2000 ns 

TCllCHl ClK low Time 115 ns 

TCH2CL2 ClK High Time 60 ns 

TCH1CH2 ClK Rise Time 10 ns 

TCL2Cll ClK Fall Time 10 ns 

TDVCl Data In Setup Time 30 ns 

TClDZ Data In Hold Time 10 ns 

TRWCl ROY Setup Time Into 8284 (See Notes t.2) 50 ns 

TClR1X ROY Hold Time Into 8284 (See Notes 1,2) 0 n~ 

TRYVCH READY Setup Time Into 8086 TCL1CHl + 10 ns 

TCHRYX READY Hold Time Into 8086 TClCl+30 ns 

TlVCH Setup Time lor Recognition (INTR. NMI. 30 ns 
TEST)(See Note 2) 

TGVCH RQ/GT Setup Time 35 ns 

TIMING RESPONSES 

Symbol Plrlmeter Min. Max. 

TCHSV Status Active Delay 10 110 

TClSX Status Inactive Delay 130 

TClAV Address Valid Delay 15 110 

TCLAX Address Hold Time 10 

TCLAZ Address Float Delay TCLAX 80 

TSVlV Status Valid to ALE Valid (See Note 1) 15 

TClLA ClK Valid to ALE Active (See Note 1) 0 

TCllV ClK Valid to ALE Valid (See Note 1) 15 

TCHll ALE Inactive Delay (See Note 1) 15 

TClDV Data Valid Delay 15 110 

TCHDZ Data Float Delay TCLAX 85 

TCVCTV Control Active Delay 10 35 

TCVCTXl Control Hold Time 10 

TCVCTX2 Control Inactive Delay 10 40 

TAZRL1 Address Float to Read Active 0 

TClRL2 RD Active Delay 10 165 

TClRH RD Inactive Delay 10 150 

TRHAV RD Inactive to Next Address Active TClCl-45 

TCHDCVl Direction Control Active Delay (SEE NOTE 1) 50 

TCHDCV2 Direction Control Inactive Delay (SEE NOTE 1) 30 

TCVEV Data Enable Active Delay (SEE NOTE 1) 5 45 

TCVEX Data Enable Inactive Delay (SEE NOTE 1) 10 45 

TClGV GT Active Delay 85 

TClGX GT Inactive Delay 85 

rest Conditions 

From VClmax +.4 to VCHmin - 1.0 

From VCHmln - 1.0 to VClmax +.4 

Units Test Conditions 

ns local Bus & Control 

ns Cl = 100 pF 

ns 

ns 8288 RD. WR. & 
INTA Signals 

ns (See Note 1) 
Cl = 300 pF 
10l =32 mA 
10H= -2 mA 

ns 
8288 Other 

ns (See Note 1) 

ns Cl =80 pF 

ns 
IOl =10 mA 
10H= -1 mA 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

TCHMV Master Cascade Enable Delay (SEE NOTE 1) TCHSV + TSVlV ns 

TClMV ClK low to Master Cascade Enable 0 ns 
(SEE NOTE 1) 

NOTES: 1. SIGNAL AT 8284 OR 8288 SHOWN FOR REFERENCE ONLY. 

2. SETUP REQUIREMENT FOR ASYNCHRONOUS SIGNAL ONLY TO GUARANTEE RECOGNITION AT NEXT ClK. 

20-04 



c 
w 
~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ 
g 
en 
en 
c:( 

ell 
w 
Z 
a: 
o 
III 
en o 
~ 
c:( 
c 
c:( 

@ 

8086 

READ - (Viii iliTA. VOH) 

ALE 

ROY (8284 Inpuli 
SEE NOTE 5 

READY (8086 Inpul) 

RD 

TCLLH- r-TlHLL~ I-TlLAZ 

FlOAT 
SEE NOTE 3 

r--

\~----+---~----r---+---~----~~---
- TCHLLi- --j I-TR1VCL 

::~~~-~~~~~~ 
1= TRYVCH-

::~~~. (SEE N0lTE 2) I~'~~~ 
!-TCHRYX-

- TCLAV!- - r-TCLAZ r--TD~CL-i-TCLDZ1 
i--+-A-15-_A-o-+-~\' I DATA IN \)+-o-::.-=l::--( _

-+---1-..1 '---+ __ -+---J/ FLOAT #A'------If---{ FlOAT 
- ~ SEE N?lE 3_1 

-I __ -+-__ -+ __ T_AZ-fR_Ll_-l"-'\l\.......... I - TCLRH j-l TRHAV~ 

:::.._ r TCHCTV 

DT/R -~ 
I ",cr,,_ 7- r.L 

TCVCTX1-TCVCTV- rt ,,11'"1--,------+--..1 
DEN .f"J 

--+----+------+-----+------41 I~--~----~-----
TCVCTX2- or: 

TCHDZ_ f--- TCLAV I- - TCLDV r-
-t---t---'"\. TCLAX- I-

WRITE - (RD,INTA DT/A. VOH) 

AD15-ADo A15-AO DATA OUT '--~ 
rFL~ 

TCVCTV- L-. i-TWHDZ+j~SE_E NOTE 3 

. -- 11r--+------+-----------------+--+----+~ TCVCTX2 

DEN _\--_-+-___ .J 

TCVCTV_ { TCVCTX2- f--

'~--+-----------------~ 
TCVCTX1-- I-TDVCL- I-TClDZ 

r-TCLAZ 

AD15-ADo --+---1--"",\ 
FLOAT ( POINTER )>--+-=-=FL'=O':":AT:+--< 

2--. if-TCHCTV So. Noto 4 / ~ - ICTCHCTV 

DT/A \k A "" 
~---T-C-VC-T-V_--+-~-CV-_:_-TV--~~~t=L~~~/~~~~~~T-T-:-V-:_C-:_X-:_'-~-~~~~~~r-=::~:~-+----

DEN ______ -+ __________ -+ ______ ...JIJ -X 
SOFTWARE HALT - (DEN. VOL;RO.W'R.iNTA DTJR = VOH: TI', follow T1. then NMI or INTR - BegIn • new T1 

I-TCVCTX2. 

.. ".,,,, J X '~'~'''''''~ 
TCLAV ~ 

Figure 8. 8086 Bus Timing - Minimum Mode System 

20-05 



8086 

~~ . _[\~S\\\~\\\~'® 
I I I t-TCHRYX-l 

READ - ,iNTA.MWTC,AMWTC,IOWC.AIOWC ~ YOH) I _ r- TCLAY - ~_TCIAZ - TOVCL- TClDZ-1 

ADuAOo --,---,-"",\ ...... HLo.t-\ D.TAIN I~~ 

--;--r- TAlRlI~ TClRH -r- TRH.V~ 

., 1"." .. - {--+"'''' .~ ;~ 
I 

DnA 

'2" OUTPUTS MADC OR ~ 

SEE NOTES UI 0'" 

.. 'A .. II2IIOUTPUTl 

SfENOTE' \ 

.. ROY 1121-4 INPUT) 

QSe.OS, 

'" 'I 

~ 
~;tlH1CH' _TCl2Cll Tw 

VCH r\ r'\ '\ 
LJ TCltCHt ~ ~ '---

-TCLAVr- :-TCLCL_ 

-~IJ( . 
-~~ _ ,~TClSX 
~---+~--~--+---~---+~r-~--~--~~- ----

1'---+--+-.--±=--t--J1 . 
L...TCLAV - I-!--TClDV TCHDZ- L... 
rl--+T~Cl=.X-+-~rl--+ __ --+ ____ ~ __ -+-__ --t--i.I~ 

=====:~ IHEA, .. "" X S7'S) r.LOAr 
TSVlY R: -{' '--+--+----l---t--~~(SEENOTE31 

TCllV_ - TCHll r--
I 

-f---- ~---+---~---+---r----+---~----
- TCll. --l -TRlYCl 

=~m~=1~~~~~~~~~~~ ~~I_TClRIX 
I- TRVYCH_ 

T. 

\ 

\.. ----

TCVCTY- {. TCvCTX,- l-
I-

TCYCTY- Ir- TCVCTX1-

~ lCVCTX1-

9' 
TCYCTX2- I--

WRIT( - (RD.MADC.iOiiC.fIifi.,DTIA ·'11'0"'_ ---=cx-I-_T-tCl_.V_-+T_Cl""\DV;I---t_---'-____ +-T_CH_DZ_-+--i.r-~~~T 

AOl$'''Oo _ _ .15-"0 X,--+-_:--_D._TA_O_U_T -+ __ +--' NOTE ') 

-+_-+-__ f-TC_VE_V_-+-, I- TCVEX- { _ 

"-t--'--+--'---'-+--.-+ -..:..{TCVCTV 
__ I 
'E~ ~?TES 5.1 .1 .MWTC OR Alowe 

,iiWfCOAI15W"e 

TCYCTX2-

; 

-+---+---+--+---t---,.-{ TCvCTV - .;IrI-_'TC_VCt-TX_'--t __ 

INT.- lim,IIIIl!C.IO"C,IIWTe..(JlWTl:,IOWC.~. Vo.·II![. VoJ 

''1. FLOA" J "£SEAVED FOR / 

. (EE N:j' ;rCT:~,::DE·T \ FlD.T ~TDVCl- r-TClD:lOAT 

fr-~P;OIN;TE;Rt-\-~~~~ 
TC~CTX,;Df~rE" / \ flOAT 

,J" / I \-
TCVCTV-j n TCVCT'2-' 1- \ 

"---.y+------_-. -'!::!vCTXl - I-TCYEY 

--------~----~ \,~-------

I
"CE ~ 

. DTiA 

.. 1I80UlPVT5 

"'~''']~: 

... 0,· ... 00 

~TCHMV 
r--

I 

IOfTW'JltE HAlT - IDEN.VoL:RD ... "DC.iOiiC.MWTC .... -MWTC.IOWC.AIOWC.iru.DTIR.VoH:TI'$ FOLLOW',. 
THEN NMI OR INTA-BEGIN NEw Td 

.0"· ... 00 

MOTU , ALlllDNALllWITCM IIT'WUN VOH AND VOL UNUII O'"EIIWI.E ,'fClfIED 

J fIIOT 'S ...... "LtO N(A" '"liND 0' 'it '3 .NO '. TO Dl"TUIIIIN( •• '.IIIACH'lfl tuTU ... ". TO I( 1"'11""0 

J :~~OT~~"IO '''":~:ACLT~~: ! .. ;~o~~~~:! ;~!I:!N;:~,l~:~ ~~:~::!~ ~ ~:=~~ ' .. Uc'It=~::~I:::~O ItUN AMOTHER 

• nwO'H'ACYCUI IIIUN lAC. '0 IACII. 'H'_lOCALADOWOAT".UltlflOAT'NOOUIII,NCI'MIIlCONOIIiIITACYCLI . 

• • HlldUANel 0' 'MI ... COMMAND .... 0 CONTIIOL StQN .. UI .. IIIDC ... WTC ..... 'C.tO"C.tOWC.AIOWC .... 'A. .... O DIN! LAOS 'HI 
ACtlVIHIOM,HlCINI ... NI 

Figure 9. 8086 Bus Timing - Maximum Mode System (Using 8288) 

20-06 



o 
w 

~ 
IX: 
o 
11. 
IX: 
o 
(.) 

~ 
en 
w 

~ g 
C/) 
C/) 

ct 
CI/S 
w 
2 
IX: 
o 
en 
C/) 

o 
~ 
ct o 
ct 

@ 

8086 

ClK 

iii .... 

l"~ iNrR 

irn 

NOTE: 

1. SETUP REQUIREMENTS FOR ASYNCHRONOUS SIGNALS ONLY TO GUARANTEE RECOGNITION AT NEXT ClK 

Figure 10. Asynchronous Signal Recognition 

_Any eLK c,e'.-I 
ClK 

LOCK 

Figure 11. Bus Lock Signal Timing (Maximum Mode Only) 

'''~''~0-Lj{ 
(s •• noll 3) (s •• nol. C) 

~ .. MASTEAGT 

Previous o"nl Mille' requI.1 II .ampled by 80M Mille, granl i, 'Impled by lOIS 

NOTES: 

1. THE 80806 FLOATS S2. 51. SO FROM 1.1.1 STATE ON THIS EDGE 

2. THE 8086 FLOATS AxDx BUS. BHE. AND lOCK ON THIS EDGE 

3. THE OTHER MASTER FLOATS 52. 51. SO FROM 1.1.1 STATE ON THIS EDGE 

4. THE OTHER MASTER FLOATS AxDx BUS. BHE. AND lOCK ON THIS EDGE 

Figure 12. RequesllGrant Sequence Timing (Maximum Mode Only) 

Flguro 13. Hold/Hold Acknowledge liming (Minimum Modo Only) 

20-07 



8282/8283 

D.C. CHARACTERISTICS FOR 828218283 
Conditions: Vee = 5V ± 10%, T A = O·C to 70·C 

Symbol Parameter Min Max Units Test Conditions 

Ve Input Clamp Voltage -1 V Ie = -5 mA 

lee Power Supply Current 160 mA 

IF Forward Input Current -0.2 IJlA VF = 0.45V 

IA Reverse Input Current 50 IJft. VA = 5.25V 

VOL Output Low Voltage 0.50 V 10L = 32 mA 

VOH Output High Voltage 2.4 V 10H = -5 mA 

10FF Output Off Current 50 IJft. VOFF = 0.45 to 5.25V 

VIL Input Low Voltage 0.8 V 

VIH Input High Voltage 2.0 V 

F= 1 MHz 
CIN Input Capacitance 12 pF VBIAS = 2.5V, Vee= 5V 

TA=25·C 

A.C. CHARACTERISTICS FOR 8282/8283 

Conditions: Vee = 5V ± 10%, TA = O·C to 70·C 

Loading: Outputs - 10L = 32 mA, 10H = - 5 mA, CL = 300 pF 

Symbol Parameter Min Max Units 

TIVOV Input to Output Delay 
Inverting 25 ns 
Non·lnverting 35 ns 

TSHOV STB to Output Delay 
Inverting 45 ns 
Non·lnverting 55 ns 

TEHOZ Output Disable Time 25 ns 

TELOV Output Enable Time 10 50 ns ._---
TIVSL Input to STB Setup Time 0 ns 

TSLIX Input to STB Hold Time 25 nt 

Not •• : 1. See waveforms and test load circuit on following page. 

20-08 



Q 
.W 

~ c: 
o 
Q. 
c: 
o 
o 
~ 
en 
w 

~ 
g 
en 
en 
c:( 

cIS 
w 
2 
c: 
o 
CO 
en o 
~ 
c:( 
Q 
c:( 

@ 

8282/8283 

828218283 TIMING 

INPUTS 

STB 

OUTPUTS 

NOTE: 1.8283 ONLY - OUTPUT MAY BE MOMENTARILY INVALID FOLLOWING THE HIGH GOING STB TRANSITION. 

OUTPUT TEST LOAD CIRCUITS 

1.5V 

t, 
'~~ 

r~PF 

:J.STATE TO VOL 

D.C. CHARACTERISTICS FOR 8284 
Conditions: TA=0·Cto70·C;Vee =5 ±10% 

Symbol Parameter 

IF Forward Input Current 

IR Reverse Input Current 

Ve Input Forward Clamp Voltage 

lee Power Supply Current 

VIL Input lOW Voltage 

VIH Input HIGH Voltage 

VIHR Reset Input HIGH Voltage 

VOL Output lOW Voltage 

VOH Output HIGH Voltage ClK 
Other Outputs 

VIHR-VILR RES Input Hysteresis 

1.SV 2.14V 

,",~'M' 
r~PF 

'"'~~" 
r~PF 

3·STATE TO VOH SWITCHING 

Min Max Units Test Conditions 

-0.5 mA VF=0.45V· 

50 I-4A VR= 5.25V 

-1.0 V le= -5 mA 

140 mA 

0.8 V Vee= 5.0V 

2.0 V Vee =5.0V 

2.6 V Vee= 5.0V 

0.45 V 5mA 

Vee- 0.5 V -1 mA 
2.4 V -lmA 

0.25 V Vee= 5.0V 

20-09 



8284 

A.C. CHARACTERISTICS FOR 8284 
Conditions: TA=o·c to 70·C; Vcc=5 ± 10% 
TIMING REQUIREMENTS 

Symbol Parameter 

TEH2EL2 External Frequency High Time 

TEL1EH1 External Frequency low Time 

TElEl EFI Period 

XTAl Frequency 

TR1VCl RDY1, RDY2 Set-Up to ClK 

TClR1X RDY1, RDY2 Hold to ClK 

TNVR1V Aml, A£N2 Set-Up to RDY1, RDY2 

TClNX AEN1, AEN2 Hold to ClK 

TYHEH CSYNC Set-Up to EFI 

TEHYL CSYNC Hold to EFI 

TYlEH CSYNC Width 

TCU1H RES Set-Up to ClK 

Tl1HCl RES Hold to ClK 

TIMING RESPONSES 

Symbol Parameter 

TCLCl ClK Cycle Period 

TCH2CL2 ClK High Time 

TCL1CH1 ClK low Time 

TCH1CH2 ClK Rise and Fall Time 
TCl2Cl1 

TPH2PL2 PClK High Time 

TPL1PH1 PClK low Time 

TRYHCl Ready Set-Up to ClK 

TClRYl Ready Hold to ClK 

TElRYl EFI to Ready Inactive Delay 

TCUl ClK to Reset Delay 

Note: 1. d = EFI rise + EFI fall_ 

Min 

20 

20 

TEH2EH2 + TEll EH 1 + d 

12 

45 

0 

15 

0 

20 

20 

2,tc 

50 

20 

Min 

125 

(TClCU3)-11.7 

(TClCU3) - 23,3 

TClCl- 20 

TCLCl- 20 

0 

TClCl+ 30 

40 

?-. Violating these parameters will not create metastable conditions, 

NAME 110 n n 
EFI 1-1 LJ \.. 

ClK 0 

PClK 0 

RDY1.2 I -~---, 

AEN1.2 1--+----

READY 0 -+---
-TEHYL 

RYD-

Max 

25 

Max 

10 

60 

1-----TClRYl---+--

CSYNC I 

-TYlEH-

RESET 0 --=--------', 
ALL MEASUREMENTS ARE MADE AT 1,5 VOLTS. EXCEPT Tl. T2. TR. TF WHICH ARE MADE AT 0,8 AND 3,5 VOLTS, 

Figure 3 

20-010 

,r' ,',9 :' 

Units Test Conditions ' ~" 

ns 

ns 

ns (Note 1) 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns (Note 2) 

ns (Note 2) 

Units Test Conditions 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 



c 
w 

~ 
0:: o 
D­
o:: 
o 
o 
~ 
en 
w 

~ 
g 
en 
en 
~ 
cI:I 
w 
Z 
0:: 
o 
III 
en o 
:!: 
~ 
c 
~ 

@ 

8286/8287 

D.C. CHARACTERISTICS FOR 828~~8287 
Conditions: Vee = 5V ± 10%, T A = O·C to 70·C 

Symbol Parameter Min 

Ve Input Clamp Voltage 

lee Power Supply Current 
8287 
8286 

IF Forward Input Current 

IR Reverse Input Current 

VOL Output Low Voltage 
B Outputs 
A Outputs 

VOH Output High Voltage 
B Outputs 2.4 
A Outputs 2.4 

IOFF Output Off Current 

MIL Input Low Voltage 

VIH Input High Voltage 2.0 
~~;.~.; 

CIN Input Capacitance 

A.C. CHARACTERISTICS FOR 8286/8287 
Conditions: Vee = 5V ± 10%, T A = O·C to 70·C 

Max 

-1. 

130 
160 

-0.2 

50 

0.50 
0.60 

IF 

0.8 

12 

Loading: B Outputs - IOL = 32 mA, 'IOH = - 5 mA, CL = 300 pF 
A Outputs - IOL = 16 mA, 10H = ..,. 1 inA, CL = 100 pF 

0 ',' 

S'ymbol Parameter Min 

TIVOV Input to Output Delay 

", Inverting 
Non·lnvertlng 

TEHTV Transmit/Receive Hold Time TEHOZ 

nVEL Transmlt/~ecelve Setup 30 

TEHOZ Output Disable Time 

TELOV Output Enable Time 10 

Nole: 1. ~ea ~aveforms and tast load circuit on following page, 

20-D11 

Unlls Test Conditions 

V Ie = -5 rnA 

mA 
mA 

mA VF = O.45V 

~ 'fR = 5.25V 

V 10L = 32 mA 
V 10L = 16 mA 

V IOH = -:5 mA 
V IOH = -1mA' 

~ VOFF = 0.45to 5.25V 

V " 

V 

F= 1 MHz 
pF VBIAS=2.5V, Vee::=5V 

TA=25°C " 

Max Units Test Conditions 

25 ns (S~e Note 1)-
35 ns 

ns 

. ns 

25 n!!l 

50 os 



8286/8287 

8286/8287 TIMI NG 

INPUTS 

CS 

\V 
11\ 

!-TIVOV-

II 
) 

OUTPUTS 
\V 
Jf\. 

-"'"' ~~:!~':O~t L---
'------------4--....., VOL+O.1V ~ 

______________________ ~ __ .-T_E_H_TV_~.)\(~ ___ TT_V_EL ____ ___ 

TEST LOAD CIRCUITS 

1.5V 

O"'~'" 
I~PF 

3·STATE TO VOL 

B OUTPUT 

1.SV 

L~ 
OO.~ 

r~PF 

3·STATE TO VOH 

B OUTPUT 

1.5V 

o",~H' 
r100PF 

3-STATE TO VOL 

A OUTPUT 

1.5V 

O"'~-r 100pF 

3·STATE TO VOH 

A OUTPUT 

20-D12 

2.14V 

J.uo 
O"'i . r~PF 

SWITCHING 

B OUTPUT 

2.28V 

o",~,,·o 
r100PF 

SWITCHING 

A OUTPUT 



o 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ o o 
CI) 
CI) 
c( 

c!I 
w 
2 
a: 
o 
en 
CI) 

o 

8288 

D.C. CHARACTERISTICS FOR THE 8288 
Conditions: Vcc = 5V ± 10%, TA = O·C to 70·C 

Symbol Parameter Min 

Vc Input Clamp Voltage 

Icc Power Supply Current 

IF Forward Input Current 

IA Reverse Input Current 

VOL Output low Voltage 
Command Outputs 
COfltrol Outputs 

VOH Output High Voltage 
Command Outputs 2.4 
Control Outputs 2.4 

V1L Input low Voltage 

V1H Input, High Voltage 2.0 

10FF Output Off Current 

~ A.C. CHARACTERISTICS FOR THE 8288 
c( Conditions: Vcc = 5V ± 10%, T A = O·C to 70·C 
@ TIMING REQUIREMENTS 

Symbol Parameter Min 

TClCl ClK Cycle Period 125 

TCL1CH1 ClK Low Time 65 

TCH2CL2 ClK High Time 35 

TSVCH Status Active Setup 65 

TSHCl Status Inactive Setup 55 

TIMING RESPONSES 
Symbol P~ramoter Min 

TClNH 
Control.Active Delay 5 TCHNH 

TCLNL 
Cpntrol Inactive Delay 10 TCHNl 

TCllH ALE Active Delay (from ClK) 

TSVlH ALE Active Delay (from Status) 

TCHll ALE Inactive Delay 

TCLRL Command Active Delay 10 

TClRH Command Inactive Delay 10 

TCHDTL Direction Control Active Delay 

TCLDTH Direction Control Inactive Delay 

TAElCV Command Enable Time ' 

TAEHCZ Command Disable Time 

TAEVCV Enable Delay Time 85 

TAEVNV AEN to DEN 

TCEVNV, CEN to DEN 

TCEVNV CEN to PDEN 

20-013 

'. , 

" 
: ' 

Max Units Test ~ondUions 

-1 V Ic = -5 rnA 
, ... ;-. 

,~ ," .... ,. 
170 mA ,4 ~:~y 

-0.2 rnA VF = 0.45V 

50 ~ VA = 5.25V 

0.45 V 10L = 32 mA 
0.45 V 10L = 16 mA 

V 10H = -5 mA 
V 10H = -1 mA 

0.8 V 

V 

100 ~ VOFF = 0.4 to 5.25V 

Max Unit Loading 

ns 

ns 

ns 

tCy-10 ns 

tCy-10 ns 

Max Unit Loading 

45 ns 

45 ns 

15 ns 

MADe} 15 ns i5RC 
15 ns MWTC 10L = 32 mA 

IOWC 10H = -2mA 
35 ns INTA CL = 300 pF 

40 ns AMWTC 
AIOWC 

50 ns 

30 ns {'OL = 10 rnA 
Other 10H = -1 mA 

, 30 ns CL = 80 pF 

30 ns 

190 ns 

20 ns 

20 ns 

20 ns 



8288 

8288 TIMING DIAGRAM 

STATE _--T4~ ---T1-- T2 T3 T4-

~ /n /n n ~ /n 
1- -

ClK 

-:- TSVCH - - TSHCL ~ 

\ \ / / 

ADDRESS/DATA I AD DR WRITE CD VALID DATA VALID 

TCLLH-

l 
_1~TSVlHr- TCHLL 

cr \ ALE 

- f--TCLRH 

\ I 
- -TCLRL - I.-TCLRL - _TCLRH 

\ J 
- -TCHNH 

/ \ 
TCLNL- l-

I \ J'-
I 

TCLNH- l-

DEN (WRITE) I \ 
-. 4- TCHNL 

PDEN (WRITE) \ / 

DT/Ji (READ) 

------- ~ 

V \ / -------
TCLDTH- r-- - ;- TCHDTL TCLDTH----

MCE ;1 / ® \ 
TCLLH- r- t-TSVLH - -TCHLL 

, ... OORE5S1DAT ... aUStSS .... OWNQNLYFORR(F(R(NCEPURPQSES 

2 LEAOINGEOGEO"Al£ ...... OMC(ISOET(RI ...... E08yT .... E" ... ll'NG£OG£OFCLKORSTATUSC.OtNG ... CTIVE WH,CHEVEROCCURSLAST 

l ALL ', .. ,NG"E"'SUR(M(NTS ... R(M"'OT ATO.YOlTS ...... 020vOlTSUNlESSS PEeiFleOOTHERWISE 

20-D14 



Q 
w 

~ 
a: 
o 
D.. 
a: 
o 
o 
~ 
en 
w ... 
oct o o 
C/) 
C/) 

oct 
c1J 
w 
Z 
a: 
o 
m 
C/) 

o 
~ 
oct 
Q 
oct 
@ 

8288 

DEN, PDEN QUALIFICATION TIMING 

CEN 

TAEVNV-

DEN 

8288 ADDRESS ENABLE (AEN) TIMING (3·STATE ENABLE/DISABLE) 

OUTPUT 
COMMAND 

TEST LOAD CIRCUITS 

l.SV l.SV 

o",~ .. oo o",~uo 
1300 pF 

3·STATE TO LOW 

1300 pF 

3·STATE TO HIGH 

3·STATE COMMAND OUTPUT 
TEST LOAD 

20-015 

2.14V 

o",~"N 
I 300 pF 

COMMAND OUTPUT 
TEST LOAD 

2.2SV 

J"" 
O"'~ 

I
SOPF 

CONTROL OUTPUT 
TEST LOAD 



~ Chapter 21 
~ THE ZILOG Z8000 
II: 
o 
U 
~ 
en This chapter will be provided at a later date as an update. 
w 
l-
e:( 

(3 
o 
en 
en 
<I; 
ail 
w 
Z 
II: 
o 
m 
en o 
::i!! 
e:( 
c 
e:( 

@ 

21-1 



c 
w 

~ 
a: o 
11. 
a: 
o 
(,) 

!: 
en 
w 

~ g 
CI) 
CI) 

ct 
o1J 
w 
Z 
a: 
o 
In 
CI) 

o 
~ 
ct 
C 
ct 
@ 

Chapter 22 
2900 SERIES AND 6700 SERIES 

CHIP SLICE PRODUCTS 

In the next two chapters of this book we are going to summarize chip slice logic products. The chip slice product 
descriptions given in the next two chapters have not been updated from the previous revision (which appeared in June 
of 1977). Since that time the 10800 series chip slice products. described in Chapter 23. have not progressed; however. 
the 2900 series chip slice products. described in this chapter. have become the standard of the industry. Moreover. 
many of the 2900 series parts have been enhanced. while new parts have been added to the family. In order to do 
justice to the 2900 series chip slice products. this chapter should have been significantly expanded. When reading this 
chapter. therefore. you should understand that it does not do justice to the 2900 series chip slice products. nor does it 
describe some of the new powerful parts that have been added to the family. This chapter will be updated with one of 
the early updates. 

The 2900 and 6700 series 4-bit slice products conform very closely to the general chip slice logic description given in 
Volume 1. Chapter 4. The 6700 series product came first. and the 2900 series represents a relatively small enhance­
ment. 

Since the 2900 and 6700 series devics are very similar. this chapter is going to concentrate on the 2900 series - the 
more recent product. Differences between the 2900 series and 6700 series products. where they exist. will be iden­
tified. 

In this chapter we are going to describe the general capabilities of the various devices. relying upon Volume 1. Chapter 
4 to provide basic concepts. If you do not already have a basic understanding of chip slice products. then you should 
refer to Volume 1. Chapter 4 before proceeding with this chapter. 

All 2900 series and 6700 series devices use bipolar LSI technology. 

The 2900 series microinstruction execution time is 100 nanoseconds: the 6700 series microinstruction execu­
tion time is 200 nanoseconds. 

The primary source for the 2900 series chip slice logic is: 

ADVANCED MICRO DEVICES 
901 Thompson Place 

Sunnyvale. CA 94086 

There are two second sources for the 2900 series logic: 

MOTOROLA SEMICONDUCTOR 
Box 20912 

Phoenix. AZ 85036 

RAYTHEON SEMICONDUCTOR 
350 Ellis Street 

Mountain View. CA 94042 

The primary source for the 6700 series chip slice logic is: 

MONOLITHIC MEMORIES 
1165 East Arques Avenue 

Sunnyvale. CA 94086 

22-1 



DATA IN 

4-bit wide shifter 

DATA OUT 

Figure 22-1. The 2901/6701 Arithmetic and Logic Unit 

16 x 4-bits of 

unassigned 

Register Block 

4-bit wide 

Complementer. 

Addition and 

Boolean logic 

(ALU Block) 

4-bit wide shifter 

4-bit wide 

Buffer Register 

THE 2901/6701 ARITHMETIC AND LOGIC UNIT 
(ALU) 

These devices constitute the center of any chip slice logic product. 

Figure 22-1 illustrates the logic provided by a 2901 or 6701 ALU. Figure 22-'1 is a reproduction of Figure 4-3 from 
Volume 1. except that the AA and BB Register Block ports have been switched in order to become compatible with 
2901 literature. 

The first thing to notice about the 2901/6701 ALU is the fact that it represents a 4-bit slice through the arithmetic and 
logic unit of a typical central processing unit. But being a discrete logic device. it must provide more than simple 
arithmetic and Boolean logic: it must provide some method of identifying data sources and destinations. Also. as we 
saw in Volume 1, Chap'ter 4. an ALU chip slice is going to acquire some additional responsibilities toward its neighbors. 
Within this context. let us examine the pins and signals of the 2901 and 6701, as illustrated in Figure 22-2. 

22-2 



Q 
w 
!i 
a: 
0 
a. 
a: 
0 
0 
~ 
en 
w ... 
c( 

g 
en 
en 
c( 

aB 
W 
Z 
a: 
0 
III 
en 
0 

:!! 
c( 
c 
c( 

@ 

AWORol 
ADDRI!" 

DI.EeT I 
DATA 

INP'UTI 

CONTROL 

iii 
YI 

DO- -_-------___ 00 
letters separated by a broken line relate this figure to Figure 22-1. 

Figure 22-2. 2901 ALU Logic 

Table 22-1. 2901 ALU Function Control Table 22-2. ALU Source Operand Control 

MICRO CODE 
AlU 

SYMBOL 
OCTAL FUNCTION 

16 14 13 
CODE 

MICRO CODE 
ALU SOURCE 
OPERANDS 

12 11 10 OCTAL 
R S 

CODE 

l l l 0 R Plus S R+S l l l 0 A a 
l l H 1 S Minus R S-R L l H 1 A B 
l H l 2 R Minus S R-S l H l 2 0 a 
l H H 3 RORS RVS l H H 3 0 B 
H l l 4 RANDS R AS H l l 4 0 A 
H L H 5 RANDS n AS· H L H 

, 
5 D A/B· 

H H l 6 REX-OR S R¥S H H l 6 D a 
H H H 7 REX-NOR S . iPiS· H H H 7 D 0 

·2901 ONLY 

First of all, note that the ALU device receives two types of input: 

1) Status and control signals via which. it communicates with its neighbors. 

2) An instruction code, plus data, via which it is sequenced by a Control Unit. 

22-3 

·A for 2901 

B for 6701 



The focus of attention for the 2901/6701 ALU is the logic which actually performs arithmetic 2901 AlU 
and logic operations - the ALU Block. This block of logic performs eight operations which OPERATIONS 
are specified by instruction signal inputs 13, 14 and IS, as defined in Table 22-1. Observe SPECIFICATION 
that these eight functions consist of three arithmetic functions and four Boolean functions. 
Shift logic is missing. Shift logic is taken out of the ALU and placed within source and destination data paths. 

There are two ALU Block ·sources. shown in Figure 22-2 as the Rand S inputs; they are the P--- 2901 AlU 
P and 0---0 inputs of Figure 22-1. Each source is four bits wide. since we are dealing with a 4- SOURCE 
bit chip slice. . . SPECIFICATION 

Inputs may consist of: 

1) External data transmitted from the control unit to data pins DO - D3. 

2) Temporary data extracted from a small.. 16 x 4-bit read/write memory within the 2901/6701. 

3) The output of a shifter or temporary 4-bit register. identified in Figures 22-1 and 22-2 as the 0 register. In reality. 
the 0 register is a short circuit from ALU logic to ALU logic input. ..' . 

The results of AlUoperations may be output directly from the 2901/6701 via the YO - Y3 output pins (00---00 
in Figure 22-1); alternatively; the data may be routed to the Register Block, or the Q register. 

The three instruction code bits, 10 - 12, define what the Rand S inputs to the AlU will be. Table 22-2 defines 
how 10 - 12 will be interpreted. 

Now take a look at the 16 x 4-bit read/write memory. We have seen that 2901/6701 logic allows the contents of any 
two 4-bit registers to be output: also. data is input to anyone of the sixteen registers. External logic must define input 
and output registers using select pins. Ideally. three 4-bit select c0ges would be required: 

ZO 

t 
Zl 
Z2 

Select destination register for Z input 

Z3 

BO 

t 
B1 
B2 

Select source register for B output 

B3 

AO 

t 
A1 
A2 

Select source register for A output 

A3 

But that is going to require 12 pins - and that is too many pins; therefore. the B output address code does double 
duty. also providing the Z input address: this eliminates the four Z pins. b'ut reduces your options .. 

In summary. these 11 signals constitute a complete set of inputs: 

• Three microinstruction signals. 10. 11 and 12 . 

• Two 4-bit register select codes. BO - B3 and AO - A3. 

External logic must provide all11 signal inputs simultaneously for every microinstruction's execution. simply to define 
the data entering the ALU Block. 

We have not yet defined destination logic within the 2901/6701 ALU because the shifter and destination logic are 
combined. The single AlU 4-bit result can go to one of three places: 

1) The output pins YO - Y3 

2) The 0 register 

3) The 4-bit read/write memory register addressed by the B input 

Of these three destinations. two - the 0 register and the read/write memory - are optionally preceded by shifter 
logic. 

You could specify a variety of destination options for the ALU Block resu Its which are output via R---R. This data may 
be transmitted to one. two or all three of the identified destinations: and for two of the destinations data may optionally 
be shifted. It would require five pins simply to define the possible combinations of shifting and destination: but there 

22-4 



Q 
w 

~ 
a: 
o 
D. 
a: 
o 
CJ 

~ 
fIi w 
l­
e( 

U o 
CI) 
CI) 
e( 

GlJ 
w 
Z 
a: 
o 
CD 
CI) 

o 
~ 
e( 
Q 
e( 

@ 

are additional options. Observe that the contents of the 4-bit register addressed by the A address lines may be output 
directly to DO---DO. This data path is an important one. since we must have some means of outputting shifting data 
without transmitting it through the ALU Block. To enable all destination combinations would require too many pins; 
not only would more pins be expensive in terms of device packaging. but each pin must be backed ·up by a 
microinstruction - and if you increase the size of the microinstruction word.' you will also increase the size of the con­
trol read-only memory within which the microprogram must be stored. Therefore. a judicious subset of the possible 
destination combinations is selected via the three microinstruction input pins 16.17 and 18. Table 22-3 defines the way 
in which these three microinstructions are decoded. 

Let us then summarize the signals which must be input to a 2901/6701 simply to identify a single microinstruc­
tion. 

The actual microinstruction object code must be input via the nine pins 10 - 18. 

Two 4-bit register select codes must be input via AO - A3 and BO - B3. These address inputs must occur with the ex­
ecution of every microinstruction. 

A 4-bit direct data nibble mayor may riot be needed. If it is needed. it must be input along with the microinstruction 
object code via pins BO - B3. . 

The principal output created following the execution of each microinstruction appears via the pins YO - Y3. 

A number of timing and status signals remain to be described. 

Timing is controlled by a single clock signal input via CPo 

The ALU Block has two sets of status signals. One set allows normal CPU statuses to be created. the other set enables 
carry look ahead logic. The carry look 'ahe'ad Signals have been described in Volume 1. Chapter 4. 

These are the normal status signals provided: 

1) A Zero status shown in Figure 22-2 as FO. This signal is the NOR ofALU Block outputs. For 
a number of 2901/6701 devices. you can create an overall Zero status by a wire-OR of the 
FO outputs. 

2) The high order bit of the ALU Block output appears as the F3 status in Figure 22-2. This 
status. when output by the high order 4-bit ALU slice. can be used to create a Sign status. 
The 6701 does not provide this status. 

Cn+4 and OVR are outputs which. when taken from the high order slice. can be used to gener­
ate Carry and Overflow statuses. respectively: 

'i 

Each of the two shifters has a shift-in and a shift"out pin so that shifts may be rippled from one 
ALU slice to the next." ' 

Two enhancements of the 2901 have appe~red; The 2901 A is a higher speed version ofthe 

ZERO STATUS 
IN CHIP SLICE 
LOGIC 

SIGN 
STATUS 
IN CHIP SLICE 
LOGIC 

OVERFLOW 
AND 
CARRY STATUS 
IN CHIP SLICE 
LOGIC 

2901. while the 2903 is an enhancement of th~ 2901. The most important enhancement that the 2903 has is its ability 
to address external high-speed read/write memory as additional registers. Thus. if the 16 registers available in a 2901 
are insufficient for your needs. you should look at the 2903. ' 

The 2901A and the 2903 ALU devices are not described further in this chapter. 

THE 2909 MICROPROGRAM SEQUENCER 

A group of 2901/6701 ALU slices must be driven by microprograms which will be stored in read-only memory. 
The read-only memory requires address logic. The responsibility of the address logic is to ensure that 
microinstructions are fetched in the correct sequence, so that in response to an instruction's object code, the 
ALU logic will perform necessary operations. 

The 2909 microprogram sequencer provides you with the logic needed to create any address sequence for in­
structions stored in a microprogram ROM. Figure 22-3 illustrates the logic of the 2909 microprogram sequencer. 

22-5 



l-POP 
PUSH/POP o--r-t> 

H-PUSH I 
i~ [~ rc5 i2 l-ENABlE 

FllE_ " I ENABLE UP STAC:::TER 

rc5 ~ 
ENABLE .... 1 I· TWO BIT 

" rc5 I 
CP UP DOWN COUNTER 

<5:0 aD QI 01 

.~ 
~ .... 00 

~ ~ bW o 0 01 

CP CP CP CP 02 

n-{> • CP 03 

03 f-- 1:0 
: W1 1 W2 I W3 

. DO (' ,5 [~ 
REAO/wRITE -,---t--l--

~ " 51 
lOGIC 

D' f-- I/O I 4. 4 ~ATRIX I 
V .... 51 

13 
- OF MEMORY CellS -

~v so " 
01 f-- I/O I I I 

~!Q~~ ... ~ J J ~~ ... ~~ 
- f-- f--f-- 11 -+--!--f---

~IO 
oaf-- 1/0 IE-::~lEE I 

CP w~ r-- d~-C-~Q,yy,-- lY~I-- 6"1: r" .. ",I J 
MICROPROGRAM 

~~UNTER REGISTER 
LTIPLEXER 

I ~ eJ' 'tJ .\:).: D3 02 01 00 

L:-_. ___ ...; ____ "- __ ~ ___ f---- _______ . ___ J 

n-{>o- 1> 

~ Y3 Cn +4 F3 

Y2 F2 

Y1 f1 

0--{> 
YO - FO 

L:7 ~ W7 Y7 INCREMENTER 

[ C C 

Figure 22-3. 2909 Microprogram Sequencer Block Diagram 



Q 
w 

~ 
a: 
o 
a.. 
a: 
o 
o z 
iii 
w 

~ 
(3 
o 
CI) 
CI) 

ct 
all 
w 
Z 
a: 
o 
In 
CI) 

o 
~ 
ct 
Q 
ct 
@ 

Table 22-3. ALU Destination Control 

MICRO CODE 
RAM a·REG. RAM. a 

FUNCTION FUNCTION V SHIFTER, SHIFTER 
OCTAL OUTPUT RAMO RAM3 ao a3 

18 17 16 CODE SHIFT LOAD SHIFT LO~D LOIRI LliRO LOIRI LIIRO 

L L L 0 NONE 
ALU 
(Fi) F x X x X 

L L H 1 " F X X X x 29010NLV 

L 
ALU 

L H 1 (Fi) B x X x X 6701 ONLY 

2 • NONE 
ALU 

L H L (Fi) 
A x X x X 

L H H 3 NONE 
ALU 

F X X X x 
(Fi) 

H L L 4 
LEFT ALU LEFT O·REG 

00 
(DOWN) (FI + 1) (DOWN) (Oi+ 1) 

F FO IN3 IN3 

H L H 5 LEFT ALU 
F FO IN3 00 X 

(DOWN) (FI+ 1) -
6 

RIGHT ALU RIGHT a·REG 
H H L 

(UP) (Fi-l) (UP) (ai-I) F INO F3 INO 03 

H H H 7 RIGHT ALU 
F INO F3 

(UP) (Fi-l) 
x 03 

x ' Don't care. Electrically, the shift pin is a TTL input internally connected to a three·state output which is in the high-impedance state. 

Monolithic Memories provides the 67110 Control Unit which performs the same functions as the 2909, but in a 
substantially different way. The 67110 is not described in this chapter. 

The most important thing to note about microprogram sequencer logic is that it bears a striking resemblance to the pro­
gram memory addressing logic which will be provided on any microprocessor CPU. The principal difference is that 
microprogram sequencer logic is more elementary and therefore can execute faster - a necessary prerequisite if 
microprogram instruction executions are to concatenate in order to generate macroprogram instruction executions. 

The next important point to note is that the 2909 microprogram sequencer logic, like the 2901 ALU, is a chip slice pro­
duct. Each 2909 is a4-bit chip slice. One 2909 device is capable of generating four address lines - addressing just six­
teen microinstructions stored in ROM. By having two 2909 devices in parallel. you can create an 8-bit address which 
will access 256 microinstructions stored in program ROM. Each additional 2909 will increase the size of the address by 
four bits; and the number of microinstructions that can be accessed will increase accordingly. 

Let us take a look at Figure 22-3. You should begin by looking at the multiplexer. This logic selects and outputs 
one of four possible address inputs. The two control signals, SO and S1, determine which of the four addresses will 
be output. 

The four lines of the address which is selected for output are ORed individually with external inputs ORO - OR3, then 
the result of the OR is ANDed with a possible zero input. 

The reason for having the individual ORO - OR3 inputs is to allow branch logic to unilaterally modify an address which 
is being created. This is the point at which you would implement logic associated with a conditional branch. 

The AND with zero allows you to unilaterally zero the output address - which you might want to do in response to a 
RESTART or other initialization. 

These are the four possible address inputs: 

1) A direct address input via the pins DO - D3. This is an input which you would use initially to start the execution of a 
microinstruction sequence, after decoding a macroinstruction object code. You could also use these inputs subse­
quently to force a unilateral branch. 

2) The incremented contents of the Microprogram Counter register. The Microprogram Counter register serves ex­
actly the same function as the Program Counter register in a microcomputer. You would initially load a starting ad­
dress into the Microprogram Counter register. Subsequently the Microprogram Counter register is going to be the 
normal location from which the mu Itiplexer chooses its output address. After each address from the Microprogram 
Counter register is selected, the address will be incremented and returned, just as it would be in any 
microprocessor Program Counter. But there is a difference; since we are dealing with a chip slice product. the total 
Microprogram Counter register will consist of a number of 4-bit sections. There will accordingly be a carry-in pin 
and a carry-out pin. so that incrementing can ripple down from one 4-bit section to the next. 

22-7 



There is an additional feature of Microprogram Counter register logic. As described in Volume I. Chapter 4. it is fre­
quently necessary to re-execute the same microinstruction many times. For example. you may execute a no opera­
tion code a number of times in order to maintain synchronization between microinstructions and the macroinstruc­
tion system clock. You may also re-execute a Shift or Rotate microinstruction many times to perform multiple shifts 
or rotates. In order to save on microprogram ROM. you can inhibit the Microprogram Counter register increment 
logic by inputting a high value at the CI input to the low order four bits of the Microprogram Counter register. 
Clearly. this carry input must be zero in the normal course of events. since there is no lower shift that could possi­
bly generate a legitimate carry input. 

3) Just as assembly language programs can contain subroutines. so a microinstruction program can also contain 
subroutines. From our discussion of microprogramming in Chapter 4 of Volume I. you will recall that having 
subroutines in a microprogram is a very desirable feature. For example. large portions of an instruction fetch. a 
memory read and a memory write will be implemented via exactly the same microinstruction sequences. By in­
cluding these microinstruction sequences in a microprogram subroutine. you can save significant amounts of 
microprogram memory. Microprogram subroutines are just as useful and memory-saving devices as assembly 
language subroutines. However. since microprograms are likely to be shorter than assembly language programs. 
the 2909 provides a four-level subroutine Stack. This means that you can nest microprogram subroutines to a 
depth of four. By inputting FILE ENABLE low. you can pop the top of the four-deep Stack into the multiplexer. or 
you can push the Microprogram Counter contents into the top of the Stack. Signal PUP. when high. forces the 
push: when low. PUP forces a pop. 

4) The fourth possible input for the multiplexer address is the contents of the Address register. You can at any time 
input an address to the Address register via the RO - R4 pins. 

The OE control input allows you to disconnect the microprogram sequencer from the Address Bus. Thus, ad­
dress outputs may be floated. 

Observe that although the 2909 microprogram sequencer provides a good deal of the logic needed in order to 
create address sequences, a great deal of additional logic must still be provided in order to access microprogram 
sequencer logic appropriately. . 

The 2910 microprogram sequencer is essentially equivalent to three 2909 slices. That is to say. it provides a 4096 in­
struction addressing range. The 2910 microprogram sequencer is not described in this chapter. 

The 2930 and 2931 address generation devices are also new additions to the 2900 series chip slice products. The 2930 
and 2931 devices cOrT1pute effective memory addresses needed by assembly language memory reference instructions. 
Thus. the 2930 and 2931 devices are used to compute external memory addresses which may be required by assembly 
language level macroinstructions. while the 2909 and the 2910 compute internal memory addresses that may be 
needed within the microprogram itself. 

THE 2902 CARRY LOOK AHEAD 

This device serves Just one function: when performing binary addition, it creates parallel carry inputs for those 
4-bit slices that are going to need a carry. Carry look ahead logic has been described in detail, in Volume 1, 
Chapter 4. We will therefore provide a simple summary of this device in this chapter. 

Suppose two 16-bit binary numbers are to be added. If each 16-bit number is implemented in four 4-bit slices. then 
how are you going to generate the carry for the second. third and fourth 4-bit slice? You could perform the binary addi­
tion in four steps - in which case at the conclusion of each step you would generate the necessary carry for the next 
step. This is an unsatisfactory method of performing binary addition when using chip slice logic because it is slow. The 
whole purpose of chip slice logic is to obtain maximum execution speed. The alternative is to create a device which will 
anticipate the carry that would be generated and provide it so that all four segments of the 16-bit binary addition can 
be performed simultaneously. That is exactly what the 2902 device does. 

Figure 22-4 illustrates the way in which a 2902 Carry Look Ahead device will connect to 2901 ALU slices. 

As illustrated in this figure. the 2902 device can compute carry look ahead for up to three 4-bit slices - which means 
that it will support a 16-bit word: remember. the low order slice does not need any carry look ahead. 

You can generate c~my look ahead for larger words by using a number of 2902s together. 

In order to generate carry look ahead. the 2902 receives. as inputs. the Carry Generate and Carry Propagate signals 
from the 2901/6701 ALU slices. For a discussion of this carry look ahead logic see Volume 1. Chapter 4. 

22-8 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

00-3 04-7 08-11 012-15 

00 I/O 00 00, 03 00 0151/0 

RAMO RAMO RAM3 RAMO RAM15 I/O 

CARRY-IN Cn Cn Cn Cn Cn+4 C 

OVR V 
F3 N 
FO Z 

YO-3 Y12-15 
Rl 

N Y4-7 4700 
t;" 
<D 

VCC 

PO GO P 1 G 1 P2 G2 P3 G3 

G 

P 
'Cn + x Cn+2 

Figure 22-4. Four 29015 In a 16-Bit CPU Using the 2902 for Carry Look Ahead 



Q 
w 

~ 
a: 
o 
Q. 
a: 
o 
CJ 

~ 
en 
w 

~ 
U o 
C/) 
C/) 

ct 
c1:I 
w 
2 
a: 
o 
en 
C/) 

o 
~ 
ct 
Q 
ct 
@ 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• Am2901 Arithmetic and Logic Unit 
• Am2902 Carry Look Ahead 
• Am2909 Microprogram Sequencer 

22-01 



Am2901 

MICROCODE 
ALUSOURCE 
OPERANDS 

'2 '1 '0 
Ocu. R S 
Code 

MICROCODE 
ALU 

Octa. Function Symbol 

115 '. '3 Code 

L L L 0 A a L L L 0 R PlusS R+S 

L L H 1 A 8 L L H 1 S Minus R S-R 

L H L 2 0 a L H L 2 R MinusS R-S 

L H H 3 0 8 L H H 3 RORS RVS 

H L L 4 0 A H L L 4 RANDS RA S 

H L H 5 0 A H L H 5 RANDS RAS 

H H L 6 0 a H H L 6 REX-OR S RVS 

H H H 7 0 0 H H H 7 REX-NOR S R'VS 

Figure 2. ALU Source Operand Control. Figure 3. ALU Function Control. 

MICROCODE RAM a-REG. RAM a 
FUNCTION FUNCTION Y SHIFTER SHIFTER 

18 17 '6 OCUI Shift Lood Shift Lood 
OUTPUT 

RAMO RAM3 00 03 
Code 

L L L 0 X NONE NONE F-+O F X X X X 

L L H 1 X NONE X NONE F X X X X 

L H L 2 NONE F-+B X NONE A X X X X 

L H H 3 NONE F-+B X NONE F X X X X 

H L L 4 DOWN F/2 -+ B DOWN 0/2-+0 F FO IN3 00 IN3 

H L H 5 DOWN F/2 -+ B X NONE F FO IN3 00 X 

H H L 6 UP 2F-+B UP 20-+0 F INO F3 INO 03 

H H H 7 UP 2F -+B X NONE F INO F3 X 03 

X= Don't care_ Electrically, the shift pin Is a TTL Input Internally connected to a three-state output which is In the high­
impedance state_ 

B= Register Addressed by B Inputs_ 
Up Is toward MSB, Down Is toward LSB_ 

Figure 4. ALU Destination Control. 

~2100CTAL 0 1 2 3 4 5 6 7 

CI~ T 5 Source 
A,a A,B o,a O,B O,A D,A D,a D,O A 4 ALU 

L 3 Function 

Cn - L A+O A+B a B A O+A 0+0 0 
0 R Plus S 

Cn-H A+O+l A+B+l 0+1 B+l A+l O+A+l 0+0+' 0+' 

Cn - L O-A-' B-A-' 0-' B-1 A-I A-O-' 0-0-' -0-' 
1 S Minus R 

Cn - H a-A B-A a B A A-O 0-0 -0 

Cn- L A-a-I A-B-l -0-1 -8-' -A-I O-A-l 0-0-' 0-' 
2 R MinusS 

Cn-H A-a A-B -a -B -A O-A 0-0 0 

3 RORS AVO AVB a B A OVA ova 0 

4 RANDS Alia AIIB 0 0 0 OIlA OAO 0 

5 RANDS Alia AIIB a B A OIlA OliO 0 

6 REX-OR S AVO AVB a B A OVA ova 0 

7 R EX-NORS AVa AV B a li A OVA ova 5 

+ = Plus; - - Minus; V· OR; /\ = AND; "I - EX-OR 

Figure 5. Source Operand and ALU Function Matrix. 

Data sheets on pages 22-02 through 22-010 Copyright © 1978 by Advanced Micro Devices, Inc. Rproduced with permission of 
copyright owner. 

22-D2 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
o 
~ 
en 
w 
I­
oCt 
C3 o 
Cf.I 
Cf.I 
oCt 
oll 
w 
Z 
a: 
o 
In 
Cf.I o 
:!! 
oCt c 
oCt 

@ 

Am2901 

MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential -0.5 V to +6.3 V 

DC Voltage Applied to Outputs for HIGH Output State -O.S V to +Vcc max. 

DC Input Voltage -O.S V to +S.S V 

DC Output Current, Into Outputs 30mA 

DC Input Current -30 rnA to +S.O rnA 

OPERATING RANGE 
PIN Ambient Temperature Vcc 

I Am2901PC, DC 10°C to +70°C I 4.75 V to 5.25 V I 
I Am2901 OM, FM I -55°C to +125°C I 4.50 V to 5.50 V I 

STANDARD SCREENING 
(Conforms to MIL·STD·883 for Class C Parts) 

MI L-STD-883 
Step Method 

Pre·Seal Visual Inspection 2010 

Stabilization Bake 1008 

Temperature Cycle 1010 

Centrifuge 2001 

Fine Leak 1014 

Gross Leak 1014 

Electrical Test 

Subgroups 1 and 7 
5004 

Insert Additional Screening here for Class B Parts 

Group A Sample Tests 

Subgroup 1 

Subgroup 2 

Subgroup 3 
Subgroup 7 

Subgroup 8 

Subgroup 9 

5005 

Conditions 

24·hour 
C 150°C 

C 
_65°C to +150°C 

10 cycles 

B 10,000 G 

A 5 x 10 -8 atm-cc/cm3 

C2 Fluorocarbon 

See below for 
definitions of subgroups 

See below for 
definitions of subgroups 

Level 
Am2901PC, DC Am2901DM, FM 

100% 100% 

100% 100% 

100% 100% 

100% • 100% 

100% • 100% 

100% • 100% 

100% 100% 

LTPD = 5 LTPD = 5 

LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

LTPD = 7 LTPD = 7 

• Not applicable for Am2901 PC 
ADDITIONAL SCREENING FOR CLASS B PARTS 

Step 

Burn-In 

Electrical Test 
Subgroup 1 
Subgroup 2 
Subgroup 3 
Subgroup 7 
Subgroup 9 

MI L-STD-883 
Method 

1015 

5004 

Conditio~s 

D 160 ~~~:; min. 

Return to Group A Tests in Standard Screening 

Level 

Am2901DMB, FMB 

100% 

100% 
100% 
100% 
100% 
100% 

GROUP A SUBGROUPS ORDERING INFORMATION 
(as defined in M I L·STD·883, method SODS) 

Package Temperature 
Type Range 

Molded DIP O°C to +70°C 
Hermetic DIP O°C to +70°C 
Hermetic DIP -SSoC to +12SoC 

Hermetic Flat Pack -SSoC to +12SoC 
Dice O°C to +70°C 

Order 
Number 

AM2901PC 
AM2901DC 
AM2901DM 
AM2901FM 
AM2901XC 

22-03 

Subgroup 

10 
11 

Parameter 

DC 
DC 
DC 
Function 
Function 

Switching 
Switching 
Switching 

Temperature 

25°C 
Maximum rated temperature 
Minimum rated temperature 
25°C 
Maximum and minimum rated 

temperature 
25°C 
Maximum Rated Temeperature 
Minimum Rated Temperature 



Am2901 
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 
(Group A, Subgroups 1, 2 and 3) 

Parameters Description 

VOH Output HIGH Voltage 

ICEX 
Output Leakage Current 
for F - 0 Output 

VOL Output LOW Voltage 

VIH Input HIGH Level 

VIL Input LOW Level 

VI Input Clamp Voltage 

IlL Input LOW Current 

IIH Input HIGH Current 

II Input HIGH Current 

10ZH Off State (High Impedance) 

10ZL Output Current 

lOS Output Short Circuit Current 
(Note 3) 

ICC Power Supply Current 

Test Conditions (Noto 1) 

10H - -1.6mA 

Yo. Y,. Y2. Y3 

10H - -1.0mA. Cn+4 

VCC - MIN. 10H - -BOO"A, OVR. P-
VIN - VIH or VIL IOH - -600"A, F3 

10H --600IlA 

RAMO. 3. 00. 3 

10H - -1.6mA. G 

Vce - MIN .• VOH - 5.5V 

VIN - VIH or VIL 

10L -16mA 

YO. Y" Y2. Y3. G 

VCC - MIN .• 10L - 10mA. Cn+4, F-O 

VIN - VIH or VIL 10L ~ B.OmA. OVR. P 

10L - 6.0mA. F3 

RAMp. 3. 00. 3 

Guaranteed input logical HIGH 
voltage for all inputs 

Guaranteed input logical LOW I Military 
voltage for all inputs I Commercial 

VCC = MIN .• liN = -lBmA 

Clock.OE 

AO. AI. A2. A3 

BO. B,. B2. B3 

VCC = MAX. 00. 0 ,. 02. 03 

VIN - 0.5V 10.1,. 12;16. IB 

13. 14. 15. 17 

RAMO. 3. 00. 3 (Note 4) 

Cn 

Clock.OE 

AO. AI. A2. A3 

BO. Bl. B2. B3 

00. 0 ,. 0 2. 0 3 
VCC = MAX. 
V IN = 2.7V 10.1,. 12. 16. IB 

13. 14. 15. 17 

RAMO. 3. 00. 3 (Note 4) 

Cn 

VCC = MAX .• VII' • .j = 5.5V 

YO. Yl. Vo -2.4V 

Y2. Y3 Vo -0.5V 

VCC ~ MAX. Vo ~ 2.4V 

RAMO.3. (Note4) 

00.3 VO·0.5V 

(Note 4) 

YO. Y,. Y2. Y3.G 

Cn+4 
VCC - 5.75V 

OVR.P 
Vo -0.5V 

F3 

RAMO. 3. 00. 3 

VCC= MAX. 
Military 
Commercial 

Min 

2.4 

2.4 

2.4 

2.4 

2.4 

2.4 

2.0 

-15 

-15 

-15 

-15 

-15 

Typ. 
(Noto 2) 

185 
185 

Max Units 

Volts 

250 IlA 

0.5 

0.5 
Volts 

0.5 

0.5 

Volts 

0.7 Volts 
0.8 

-1.5 Volts 

-0.36 

-0.36 

-0.36 

-0.72 
mA 

-0.36 

-0.72 

-O.B 

-3.6 

20 

20 

20 

40 

20 
IlA 

40 

100 

200 

1.0 mA 

50 

-50 

100 IlA 

-800 

-40 

-40 

-:-40 mA 

-40 

-40 

2BO mA 
2BO 

Notes: 1. For conditions shown as MIN. or MAX .• use the appropriate value specifIed under Electrical Characteristics for the applicable device type. 
2. Typical limits are at VCC - S.OV. 2SoC ambient and maximum loading. 
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. 
4. These are three·state outputs Internally connected to TTL Inputs. Input characteristics are measured with 1678 In a state such that the 

three·state outpU\ i. 0 F F. 

22-04 



c 
w 
~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 

~ 
g 
II) 
II) 

ct 
a/I 
w 
2 
a: 
o en 
II) 

o 
~ 
ct 
C 
ct 
@ 

Am2901 
GUARANTEED OPERATING CONDITIONS 
OVER TEMPERATURE AND VOLTAGE 

TABLE I 

Tables I, II, and III below define the timing requirements of 
the Am2901 in a system. The Am2901 is guaranteed to 
function correctly over the operating range when used within 
the delay and set·up time constraints of these tables for the 
appropriate device type. The tables are divided into three 
types of parameters; clock characteristics, combinational delays 
from inputs to outputs, and set·up and hold time requirements. 
The latter table defines the time prior to the end of the cycle 
(i.e., clock LOW·to·HIGH transition) that each input must be 
stable to guarantee that the correct data is written into one of 
the internal registers. 

CYCLE TIME AND CLOCK CHARACTERISTICS 

TIME Am2901DC,PC Am2901DM,FM 

The performance of the Am2901 within the limits of these 
tables is guaranteed by the testing defined as "Group A, 
Subgroup 9" Electrical Testing. For a copy of the tests and 
limits used for subgroup 9, contact Advanced Micro Devices' 
Product Marketing. 

Read·Modify-Write Cycle 
(time from $election of 
A, B registers to end of 
cycle) 

Maximum Clock Frequency to 
Shift a Register (50% duty 
cycle) 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

Minimum Clock Period 

TABLE II 

MAXIMUM COMBINATIONAL PROPAGATION DELAYS (all in ns, CL" 15pF) 

105ns 120ns 

9.5MHz 8.3MHz 

30ns 30ns 

30ns 30ns 

105ns 1200$ 

Am29010C, PC (O°C to +70°C; 5V ±5%) Am29010M, FM (-55°C to +125°C; 5V ±10%) 

~ 
Shift Shift 

F. Output 
F"O Outputs F=O Outputs 

rom Y F3 Cn+4 G,P RL" OVR Y F3 Cn+4 G,P RL= OVR 
Input 470 RAMO 00 470 

RAMO .00 
RAM3 Q3 RAM3 Q3 

A, B 110 85 80 80 110 75 110 - 120 95 90' 90 120 85 120 -
o (arithmetic mode) 100 70 70 70 100 60 .95 - 110 80 75 75 110 65 105 -
o (I = X37) (Note 5) 60 50 - - 60 - 60 - 65 55 - - 65 - 65 -
Cn 55 35 30 - 50 40 55 - 60 40 30 - 55 45 60 -
1012 85 65 65 65 80 65 80 - 90 70 70 70 85 70 85 -
1345 70 55 60 60 70 60 65 - 75 60 65 65 75 65 70 -
1678 55 - - - - - 45 45 60 - - - - - 50 50 

OE Enable/Disable 40/25 - - - - - - - 40/25 - - - - - - -
A bypassing 

60 - ""7 - - - -ALU (I = 2xx) - 65 - - - - - - -

Clock S (Note 6) 115 85 100 100 110 95 105 60 125 95 110 110 120 105 115 65 

SET-UP AND HOLD TIMES (all in ns) (Note 1) TABLE III 

From Input Notes 
Am2901 ~C, PC {O°C to :l"70°C, 5V ±5%) Am2901 OM, FM (_55°C to +125°C, 5\l ±1 0%) 

Set-Up Time Hold Time "Set-UpTime Hold Time 

A,B 2,4 105 0 
120 0 

Source 3,5 tpwL + 30 tpwL + 30 

B Dest. 2,4 tpwL + 15 0 tpwL +15 0 

o (arithmetic mode) 100 0 110 0 

0(1 = X37) (Note 5) 60 0 65 0 
Cn 55 0 60 0 

1012 85 0 90 0 

1345 70 0 75 0 

1678 4 tpwL + 15 0 tpwL + 15 0 

RAMO, 3, 00, 3 30 0 30 0 

Not .. : 1. S .. Figura 11 and 12. 
2. If the B addre .. II u .. d al a lource operand, allow for the "A, B lource" set-up time; If It II u .. d only for the destination .ddre .. , use the 

"8 dest." 18t·Up time. 
3. Where two numbe .. ara shown, both must ba met. 
4. "tpwL" I. the clock LOW time. 
5. OVO is the fastest way to load the RAM from the 0 inputs. This function is obtained with I - 337. 
6. Using Q register as source operand in arithmetic mode. Clock is not normally in critical speed path when Q is not a source. 

22-05 



Am2902 
SET-UP AND HOLD TIMES (minimum cycles from each input) time prior to the clock until the hold time after the clock. The 

set-up times allow sufficient time to perform the correct 
operation on. the correct data so. that the correct ALU data 
can be written into one of the registers. 

Set-up and hold times are defined relative to the clock LOW·to­
HIGH edge. Inputs must be steady at all times from th.e set-up 

Cp 

Figure 11. Minimum Cycle Times from Inputs. Numbers Shown are Minimum Data Stable 
Times for Am2901 DC, in ns. See Table III for Detailed Information •. 

CLOCK 

A.B.D.I 

il. JS OUTPUTS 

Cn TOml' 
ICn + x FROM 29021 

YOUTPUT 

SHIFT OUTPUTS 

SHIFTINPUTS 

----I 

.' 

r---NOTE6 

1&-8IT CPU CYCLE TIME 

\\\\\\\\\\' \\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\ 
ATLE~ 

r-NOTE 1- r----30 n, f2!:LE:~ lOn, 

xxxxxm 
I---80-'---

-- 10 I--NOTES 2. 4 

!----56NOTE4-

1---56
-

1---56--":"-

r--NOTE3-

-S~~P-

Note" 1. This delay II the max. tpd of the regllter containing A, B, 0, and I. For the Am2918, ule 13n •. 
2. 10ns for look·ahead carry. For ripple carryover 16 bits use 2 x (C n -+ Cn+4), or 60n •. 

It-

3. This II the delay associated with the multiplexer between the shift outputs and shift Inputs on the Am29011. See 
Figure 19. 

4. Not applicable for logic operations. 
5. Clock rl.lng edge may occur here If add and Ihift do' not occur 0'; lame cycle. 

Figure 12. Switching Waveforms for 16-Bit System A~suming A, B, 0 and I are all Driven from 
Registers with the same Propagation Delay, Clocked by the Am2901 Clock. 

22-06 



c 
w 
~ 
IE: 
o 
D. 
IE: 
o 
o 
~ 
en 
w 
~ 
(3 
o 
CJ) 
CJ) 

ct 
all 
w 
Z 
IE: 
o 
al 
CJ) 

o 
:!: 
ct c 
ct 
@ 

MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature 

Temperature (Ambient) Under Bias 

Supply Voltage to Ground Potential -O.SV to +7.0V 

DC Voltage Applied to Outputs for !"lIGH Output State -0.5V to +Vcc max. 

DC Input Voltage -0.5V to +5.5V 

DC Output Current, Into Outputs 30mA 

DC Input Current -30 mA to +5.0 mA 

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted) 

Am2902XC 
Am2902XM 

Parameters 

VOH 

VOL 

VIH 

VIL 

VI 

IlL 
(Note 3) 

IIH 
(Note 3) 

II 

ISC 

ICC 

TA - oOc to +70o C 
TA - -55·C to +125·C 

Description 

Output HIGH Voltage 

Output LOW Voltage 

Input HIGH Level 

Input LOW Level 

Input Clamp Voltage 

Input LOW Current 

Input HIGH Current 

Input HIGH Current 

Output Short Circuit 
(Note 4) 

Power Supply Current 

VCC - 5.0V :1:5% (COM'L) MIN. - 4.75V 
VCC - 5.0V :1:10% (MIL) MIN. - 4.50V 

Test Conditions (Note 1) 

VCC - MIN., IOH - -0.8mA 

VIN - VIH or VIL 

VCC - MIN., IOL - 1SmA 

VIN - VIH or.VIL 

Guaranteed input logical HIGH 
voltage fOr all inputs 

Guaranteed input logical LOW 
voltage for all inputs 

VCC - MIN.,IIN - -12mA 

Cn 

P3 

P2 
VCC - MAX., VIN· O.4V 

PO, P1, G3 

GO,G2 

G1 

Cn 

P3 

P2 
VCC· MAX., VIN = 2.4V 

PO, P1, G3 

GO,G2 

G1 

VCC = MAX.,VIN ·5.5V 

VCC = MAX., VOUT - O.OV 

VCC-MAX. MIL 

All Outputs LOW COM'L 

VCC· MAX. MIL 

All Ouputs HIGH COM'L 

MAX. - 5.25V 
MAX. - 5.50V 

Min. 

2.4 

2.0 

-40 

Typ. 
(Note 2) 

3.0 

0.2 

62 

58 

37 

35 

Max. Units 

Volts 

0.4 Volts 

Volts 

0.8 Volts 

-1.5 Volts 

-3.2 

-4.8 

-S.4 
mA 

-B.O 

-14.4 

-16 

80 

120 

160 
JJA 

200 

360 

400 

1.0 mA 

-100 mA 

99 
mA 

94 

mA 

Note •. 1. For condition •• hown a. MIN. or M~X., use the appropriate value specified under Electrical Characteristic. for the applicable device type. 
2. Typical limits are at VCC - 5.0V, 25 C ambient and maximum loading. . 
3. Actual Input currents· Unit Load Current X Input Load Factor (see Loading Rule.). 
4. Not more than on. output should be shorted at a time. Duration of the short circuit te.t .hould not exceed one .econd. 

SWITCHING CHARACTERISTICS Vce = 5.0V, T A = 2S
o
e, ~L = lSpF, RL = 400n 

Parameter From (Input) To (Output) . Telt Figure Telt Condltlonl Min Typ Max Unit. 

tPLH 
Cn Cn+J 

Po = P, = P2 = 0 V 11 14 
ns 

tpHL 0 0 =0, =G2 =4.5V 11 14 

tpLH 
P, Cn+) PI=~V(j~1) _ 6.0 8.0 

3 ns 
tpHL Cn = Go = G I = G2 = 4.5 V . S.O 8.0 

tpLH 
G j 

°1=~V(j?I) _ 8.0 10 
Cn+) ·3 ns 

tPHL Cn = Po = P, = P2 = 4.5 V 8.0 10 
tpLH 

P, GorP PI = '~.Y (j ~ I) 11 14 
ns 

tpHL Cn = Go =-G , = G2 = 4.5 V 11 14 

. tpLH 
G j GorP 2 Gi=~V(j?I) _ 12 14 

ns 
tpHL Cn = Po = P, = P2 = 4.5 V 12 14 

22-D7 



Am2909/11 
MAXIMUM RATINGS (Above which the useful life may be impaired) 

Storage Temperature -65°C to +150°C • 

Temperature (Ambient) Under Bias -55°C to +125°C 

Supply Voltage to Ground Potential -0.5 V to +7.0 V 

DC Voltage Applied to OutPu_ts_f_o_r_H_I_G_H_O_u_tP'-u_t_S_t_a_te ____________________ -_0_.5_V_t_o_+v,-"-cc=--m_a_x_. 

DC Input Voltage -0.5 V to +7.0 V 

DC Output Current, Into Outputs 30 rnA 

DC Input Current -30 rnA to +5.0 rnA 

OPERATIN~ RANGE 
PIN Ambient Temperature Vcc 

I Am2909/2911 DC, PC I O°C to +70°C I 4.75V to S.2SV I 
I Am2909/2911 OM, FM I -55°C to +12So C I 4.50V t~ S.SOV I 

STANDARD SCREENING 
(Conforms to MIL·STD·883 for Class C Parts) 

MI L-STD-883 Level 
Step Method Conditions Am2909/Am2911 PC, DC Am2909/Am2911 OM, FM 

Pre·Seal Visual Inspection 2010 B 100% 100% 

24-hour 
Stabilization Bake 1008 C 150°C 100% 100% 

Temperature Cycle 1010 C 
-6S"C to +150'C 

100% 100% 
10 cycles 

Centrifuge 2001 B 10,000 G 100% • 100% 

Fine leak 1014 A 5 x 10-8 atm-cc/cm3 100% • 100% 

Gross leak 1014 C2 Fluorocarbon 100% • 100% 

Electrical Test 
5004 

See below for 
100% 100% 

Subgroups 1 and 7 definitions of subgroups 

Insert Additional Screening here for Class B Parts 

c;roup A Sample Tests 
Subgroup 1 LTPD c 5 LTPD = 5 
Subgroup 2 LTPD = 7 lTPD = 7 
Subgroup 3 See below for LTPD = 7 LTPD = 7 
Subgroup 7 5005 definitions of subgroups LTPD = 7 LTPD = 7 
Subgroup 8 LTPD= 7 LTPD = 7 
Subgroup 9 LTPD = 7 LTPD = 7 

• Not applicable for 
Am2909PC or 
Am2911PC. 

ADDITIONAL SCREENING FOR CLASS B PARTS 

MI L·STD-883 Level 
Step Method Conditions 

Am2909/Am2911DMB. FMB 

Burn-In 1015 D 125°C 100% 160 hours min. 

Electrical Test 5004 
Subgroup 1 100% 
Subgroup 2 100% 
Subgroup 3 100% 
Subgroup 7 100% 
Subgroup 9 100% 

Return to Group A Tests in Standard Screening 

ORDERING INFORMATION GROUP A SUBGROUPS 
(as defined in MIL-STD-883, method 5005) 

Am2909 Am2911 Subgroup Parameter Temperature 
Package Temperature Order Order 1 DC 2S'C 
Type Range Number Number 2 DC Maximum rated temperature 

O°C to +70°C 
3 DC Minimum rated temperature 

Molded DIP AM2909PC AM2911PC 7 Function 25'C 
Hermetic DIP O°C to +70°C AM2909DC AM2911DC 8 Function Maximum and minimum rated 
Hermetic DIP _55°C to +125°C AM2909DM AM2911DM temperature 

Hermetic Flat Pak _55°C to +125°C Am2909FM - 9 Switching 25°C 

Dice OOC to +70°C Am2909XC - 10 Switching Maximum Rated Temeperature 
11 Switching Minimum Rated Temperature 

22-08 



Q 
w 

~ 
a: o 
11. 
a: 
o 
u 
~ 
en 
w 

~ g 
CI) 
CI) 

ct 
CIll 
w 
Z 
a: 
o 
ID 
CI) 

o 
~ 
ct 
Q 
ct 
@ 

Am2909/11 
ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted) 

Parameters Description 

VOH Output HIGH Voltage 

VOL Output LOW Voltage 

VIH Input HIGH Level 

VIL Input LOW Level 

VI Input Clamp Voltage 

IlL Input LOW Current 

IIH Input HIGH Current 

II Input HIGH Current 

lOS 
Output Short Circuit Current 
(Note 3) 

ICC Power Suppl)' Cur:ent 

10ZL 
Output OFF Current 

10ZH 

Test Conditions (Nota '1 

VCC· MIN., MIL IIOH ~ -1.0mA 

VIN· VIH or VIL COM'L I 10H· -2.6mA 

10L ·4.0mA 

VCC·MIN., 10L· B.OmA 

VIN • VIH or VIL 10L ·12mA 
(Note 5) 

Guaranteed input logical HIGH 
voltage for all inputs 

Guaranteed input logical LOW I MIL 

voltage for all inputs I COM'L 

VCC· MIN., liN· -1BmA 

Cn 
VCC· MAX., 

Push/Pop, OE 
VIN • 0.4 V 

Others (Note 6) 

Cn 
VCC· MAX., 

. Push/Pop 
VIN·2.7V 

Others (Note 6) 

VCC·MAX., Cn, Push/Pop 

VIN·7.0V Others (Note 6) 

VCC· MAX. 

VCC - MAX. (Note 4) 

VCC· MAX., VOUT" 0.4V 

5E·2,7V VOUT = 2.7V 

Min. 

2.4 

2.4 _ 

2.0 

-40 

Typ. 
(Nota 21 

80 

Max. Units 

Volts 

0.4 

0.45 
Volts 

0.5 

Volts 

0.7 
Volts 

O.B 

-1.5 Volts 

-1.0B 

-0.72 mA 

-0.36 

40 

40 jl.A 

20 

0.2 
mA 

0.1 

-100 mA 

130 mA 

-20 

20 
jl.A 

Notas: 1. For conditions shown as MIN. or MAX .• usa the appropriate value specified under Electrical Characteristics for the applicable device tYpe. 
2. Typical IImltsar. at VCC· S.OV. 2SoC ambient and maximum loadjng. 
3. Not mora than on. output should ba shorted at a time. Duration of the short circuit test should not excead one second. 
4. Apply GNO to Cn• AO. A1. A2, A3, OAO. OA,. OA2. OA3. DO. 0" 02. and 03' Other inputs open. All outputs open. Measured after a 

LOW-to-HIGH clock transition. . 
6. Th. 12mA guarant •• appll.s only to VO. V 1. V 2 and Y 3' 
6. For the Am2911. 01 and AI ar. Int.rnally conn.cted. Loading Is doubled (to same values 8S Push/Pop I. 

22-D9 



Am2909/11 
SWITCHING CHARACTERISTICS OVER OPERATING RANGE 
All parameters are guaranteed worst case over the operating voltage and temperature range for the device type. 
(Grade C = O°C to +70°C, 4.75V to 5.25V; Grade M = _55°C to +125°C, 4.5V to 5.5V) 

TABLE II 
MAXIMUM COMBINATORIAL 

PROPAGATION DELAYS 

~ Vi Cn +4 
INPUTS 

OE 25 -

ZERO 35 45 

ORi 20 32 

So. S1 40 50 

°i 20 32 

Cn - 18 

TABLE I 
MINIMUM CLOCK REQUIREMENTS 

Minimum Clock LOW Time 

Minimum Clock HIGH Time 

TABLE III 
MAXIMUM DELAYS 

FROM CLOCK TO OUTPUTS 

FUNCTIONAL GRADE CLOCK CLOCK 
PATH TOVi TO Cn +4 

Register 
C. 48 58 

(51 So = LH) 
M 55 65 

J.I Program Counter 
C 48 58 

(S1 So = LL) 
M 55 65 

File 
C 70 80 

(51 SO· HL) 
M 80 90 

Figure 12. Switching Waveforms. See Tables for Specific Values. 

22-010 

TABLE IV 
SET·UP AND HOLD TIME 

REQUIREMENTS 

EXTERNAL 
t. th INPUTS 

FiE 20 5.0 

Ri 15 0 

PUSH/POP 20 5.0 

FE 20 0 

Cn 15 0 

Di 20 o· 

ORi 20 0 

50,51 40 0 

ZERO 40 0 



c 
w 

~ 
II: o 
Do 
II: 
o 
o 
~ 
en 
w 

~ 
g 
en 
en 
c( 

"" w 
2 
II: 
o 
aI 
en o 
~ 
c( 
C 
c( 

@ 

Chapter 23 
THE MC1 0800· SERIES CHIP SLICE LOGIC 

The MC10800 chip slice logic devices manufactured by Motorola Semiconductor represent the most recently 
introduced chip slice logic products. 

Figure 23-1 illustrates the devices which constitute the MC10800 device set and the way in which they con­
nect in order to generate a central processing unit. 

The MC10800 ALU represents a 4-bit slice through an Arithmetic and Logic Unit. In contrast to the 2901 and 
6701. the MC 1 0800 does not include read/write memory for registers. You create a register file with external memory: 
that allows you to design central processing units with a substantial number of programmable registers. Combining the 
register file and the MC10800 ALU chip slice. you have logic equivalent to an ALU chip slice as described in Volume I. 
Chapter 4. 

The microprogram which drives the entire system will be stored in a control memory which is sequenced by the 
MC10801 Microprogram Control Unit. Each MC10801 provides a 4-bit slice of the total control memory sequencing 
logic. Conceptually the MC 1 0801 does not differ from the description given in Volume I. Chapter 4: however. in imple­
mentation it does. The MC 1 0801 Microprogram Control Unit has 16 instruction codes which allow you to sequence 
microinstructions within control memory using branch-on-condition. subroutine and interrupt logic. There is no limit to 
the manner in which you create microinstruction execution sequence logic: sequences may depend on status condi­
tions created within. or beyond the ALU: moreoever. external interrupts may directly influence microinstruction se­
quences. 

CONTROL - REGISTER • MEMORY FILE 

~ -
j 

o Bus A Bus 

r 't 

MICROPROGRAM 4~ 
ALU 

~ - ~) CONTROL 
MC10BOO 

MC10BOl 

+ 
I Bus 

'--- MEMORY 
TIMING 

~ f4 MC10B02 
INTERFACE .. MC10803 -

~ ~ 
Address Data 

Figure 23-1. MC 1 0800 Series Devices in a Central Processing Unit Configuration 

The MC10803 Memory Interface device performs all of the memory addressing operations required to address 
program and data memory. This device contains its own small arithmetic and logic unit. so that computations needed 
by indexed addressing or any other addressing scheme do not use the ALU logic - and can therefore proceed in 
parallel. The MC 10803 is also a 4-bit slice product which can be cascaded to any word size: it has sufficient 
capabilities to handle all common memory addressing schemes. ranging from the simplest microcomputer to the 

23-1 



largest mainframe computer. Using a 2901 or 6701 ALU slice product. you must perform memory addressing opera­
tions using ALU logic and the 16 RAM locations provided within the ALU slice itself. 

The Me1 0802 timing device can, under program control, create four timing signals, with any requ ired signal in­
teractions or interdependences. This is not a chip slice part. but if four timing signals are insufficient. additional 
MC 10802 devices will be needed to create additional timing signals. 

If you look at Figure 23-1. you will see that the various devices described cover a substantial portion of the logic within 
any central processing unit. This is in marked contrast to 2900 series or 6700 series devices which leave undefined a 
great deal of memory interface logic. timing logic and control memory - ALU interface logic. 

We will now look at each of the- Me1 0800 series devices in overview. These overviews will summarize the 
capabilities of devices; however, refer to manufacturer's literature for detailed information. 

Me10800 series devices are manufactured by: 

MOTOROLA SEMICONDUCTOR 
Box 20912 

Phoenix. Arizona 85036 

At the present time there is no second source. 

All devices are manufactured using Emitter Coupled Logic. Devices are fabricated using unique Quad Inline Packages. 
which provide two sets of parallel pins on each side of the package. This configuration will require special modifica­
tions to existing PC cards: however. it results in very compact packaging. 

AS16 (lC) 

PG 

GG 

CoUT 

PAR CAR 

OF 

R4 

ZO 

PAR RES 

----
~ 

-

-
... -

I 
V • ; • • 

t LATCH I MUX 

t--
MASK .. f<r "- OUTPUT 

+ r. BUS , ~ CONTROL 

.~ 

ARITHMETIC 
lOGIC 

UNIT 

1 ACCUMULATOR -
V I " 

-
MUX 

SHIFT ~ ~ .~ • NETWORK -
1 

i .r 
INPUT 

BUS 
CONTROL 

r 
~ 

I BUS 

Figure 23-2. The MC10800 ALU Slice Functional Diagram 

23-2 

-- A BUS 

.. - o BUS 

CIN 

ClK 

.. 
R-1 -



Q 
w 

~ 
II: 
o 
a. 
II: 
o 
(.J 

~ 
en 
w 
I­« c:; 
o 
CI) 
CI) 

« 
ell 
w 
Z 
II: 
o 
CD 
CI) 

o 
~ « 
Q 
« 
@ 

THE MC10800 ARITHMETIC AND LOGIC UNIT SLICE 

Figure 23-2 illustrates the data flows and logic functions of the Me10800 ALU slice. 

The Arithmetic and Logic Unit block is similar to logic with the same name. as described for the 2901/6701 - or the 
general case ALU logic. as described in Volume I. Chapter 4. 

Functions which the Arithmetic and Logic Unit can perform include: 

• Binary and BCD addition and subtraction 
• Boolean operations. AND. OR and Exclusive-OR 
• Status signals generated by the Arithmetic and Logic Unit are comprehensive and adequate. PG and GG are standard 

carry look ahead signals. OF is an Overflow status. Carry In (CIN) and Carry Out (COUT) allow arithmetic operations to 
be performed by a number of cascaded ALU slices. Notice that there is a Parity status. 

• ALU logic automatically creates statuses appropriate for BCD or binary arithmetic. 

Table 23-1. MC 10800 ALU Logical Operations 

Y MUX 

ASO AS1 

0 1 

0 0 

0 0 

0 0 
0 0 

0 0 

0 1 
1 0 

0 0 
0 1 

0 1 
0 1 

0 1 
0 0 

q 0 

0 1 

1 0 

0 1 

1 0 

0 1 
0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

0 0 
0 0 

AS2 --~ 
AS3 

AS10 

AS4 = 1 
AS11 =2 
AS12 =0 

o BUS 

X MUX 

AS2 AS3 

0 1 

1 0 
0 1 

1 0 
0 1 

1 1 

0 0 

0 0 
0 0 

1 1 
0 0 
1 0 
1 0 
0 0 
1 1 
0 1 

1 0 
0 1 
1 0 

0 1 
1 0 

1 0 
0 1 
0 1 

0 0 
0 0 
1 1 
1 1 

INVERT ACC FUNCTION 

AS10 AS5AAS6 

1 0 LOGIC 0 
1 0 A 
j 0 0 
0 0 A 
0 0 ~ 
1 0 AVO 
0 0 AVO 
0 0 AVO 
1 0 A AO 
1 0 AAO 
1 0 AAO 
1 0 A¥O 
0 0 A¥O 
0 0 A AO 
0 0 A"VO 
0 0 LOGIC 1 
1 1 ACC AX: 

1 1 ACCAO 
0 1 ACCVA 
0 1 AcCVO 
1 1 ACC¥A 
0 1 ACC¥A 
1 1 ACC¥O 
0 1 .ACCY-O 
1 1 ACC¥A AO 
0 1 ACC¥AAO 
1 1 ACC¥AVO 
0 1 ACC¥AVO 

r ..... ~ ...... ,.....E--- ASO 

AS1 

..... -,-;::=:!..._- ACC 

V = Logical Inclusive OR 
A = Logical AND 

¥ = Logical Exclusive OR 

TO SHIFT NETWORK 

23-3 



Table 23-2, Me 1 0800 Arithmetic Operations 

YMUX XMUX ±2 

ASO ASI AS2 AS3 AS4 

1 0 0 1 1 
1 0 0 1 1 
0 1 1 0 1 
0 0 1 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 0 1 1 
1 1 1 0 1 
1 1 0 1 1 
1 1 1 0 0 
1 1 0 1 0 
0 0 1 0 0 
0 0 0 1 0 
1 0 1 0 1 
0 I' 0 1 1 
0 0 1 0 1 
0 0 0 1 1 
0 0 1 0 1 
0 0 0 1 1 
0 0 0 0 1 
0 0 0 0 1 
0 0 1 1 1 
0 0 1 1 1 

·Not defined in BCD 

AS2 

AS3 

ASl0 

AS 11 

COMPo 

ASl0 

1 

0 

0 
1 

1 
0 
0 

1 
1 

1 
1 
1 

1 
1 
1 
1 

1 

0 
0 
1 
0 

1 
0 

ACC 

AS5AAS6 

0 

0 
0 

0 

0 
0 
0 

0 
0 

0 

0 
0 
0 
0 
0 

1 
1 

1 
1 

1 
1 

1 

1 

ADDER 
(ASI2=1I 

BINARY FUNCTION 
(PlUS CIN) 

ASl1=1 

A PlUS 0 
A PlUS 0' 
o PlUS A 

A 

0 
A 

0 
-1 PlUS A 

-1 PlUS 0 
-2 PlUS A 
-2 PlUS 0 
+2 PlUS A 

+2 PlUS 0 
A PlUS A 

o PlUS 0 
ACC PLUS A 

ACC PlUS 0 
ACC PlusA' 

ACC PlUS 0 
ACC PLUS Aha 
ACC PLUSAAo 

ACCPLUS~ 

ACC PlUS AVO 

FOUT 

TO SHIFT NETWORK 

23-4 

BCD FUNCTION 
(PlUS CIN) 

ASll=O 

A PlUS 0 
A PLUS 9s COMPo 0 
o PlUS 9s COMPo A 

A 

0 
9's COMPo A 

9s COMPo 0 

· · · · 
+ 2 PLUS A 
+2 PLUS 0 
A PlUS A 

o PlUS 0 
ACC PLUS A 
ACC PLUS 0 

ACC PLUS 9s COMPo A 
ACC PlUS 9s COMPo 0 

ACC PLUS AhO 
ACC PLUS 9s COMPo Aha 

· · 

ASO 

ASI 

AS4 

ACC 



c 
w 
~ 
a: 
o 
a.. 
a: 
o 
u 
~ 
en 
w 

~ g 
(I) 
(I) 

ct 
all 
w 
Z 
a: 
o c:c 
(I) 

o 
:E 
ct 
c 
ct 
@ 

MC 1 0800 shift logic is confined to one location; it is on the Arithmetic and Logic Unit output path. However. data 
paths do allow you to bypass the Arithmetic and Logic Unit if a simple shift operation is to be performed. 

The most important aspect of the MC 1 0800 ALU is the freedom you have to move data via innumerable paths. Overall. 
there are three busses: the A. I and 0 Busses. Each is a 4-bit bus. The A Bus is input only. while the I and 0 Busses are 
bidirectional. The various data paths are illustrated in Figure 23-2. . 

The mask logic needs definition. 

When activated. this logic allows one of the ALU .inputs to be the AND or OR of the A and I Bus inputs. 

The various operations which can be performed by the MC10800 ALU are summarized. along with the 
microinstruction codes. in Tables 23-1 and 23-2. 

Table 23-1 defines the logical operations which may be performed while Table 23-2 defines the arithmetic operations 
which may be performed .. 

THE MC10801 MICROPROGRAM CONTROL UNIT 

The MC10801 Microprogram Control Unit consists of "Next Address" logic. plus eight 4-bit registers. Four of 
the 4-bit registers are organized as a Stack. while the remaining four may be defined as follows: 

CRO Microprogram Counter 
CRl Retry. post-interrupt CRO buffer or cycle counter 
CR2 General purpose storage or microinstruction data storage 
CR3 Status register 

Program sequencing is controlled by 16 instructions which are specified via a 4-bit instruction code, input to the 
next address logic as four signals. The 16 instructions I,isted below refer to the contents of the four programmable 
registers. two branch flags. plus two external 4-bit inputs. . 

The external 4-bit inputs are referred to as the "NA inputs" and the "0 Bus". 

The NA (Next Address) inputs. along with the 4-bit instruction code. must conie from the control read~only memory. 
along with microinstruction code. Thus. as each microinstruction code is being executed. the address for the next 
microinstruction code is being computed. 

The 0 Bus represents external data which may be input from any source. 

One of the two branch flags is common to all MC 1 0801 slices ina unit the other branch flag may be individually cre­
ated for each MC1 0801 slice. 

Any instruction listed below which causes a Branch- or Jump-to-Subroutine automatically pushes the contents of CRO 
onto the Stack before loading the microsubroutine starting address into CRO. Any instruction which causes a Return­
from-Subroutine pops the Stack into CRO. 

By combining the 16 instructions listed below in various ways. it is possible to create virtually any type of branch logic 
to access the control read-only memory. 

INC - Increment 
JMP - Jump to NA inputs 
JIB - Jump to I Bus 
JIN - Jump to I Bus and load CR2 
JPI - Jump to CR2 
JEP - Jump to External Port (0 Bus) 
JL2 - Jump to NA inputs and load CR2 
JLA Jump to NA inputs and load CR1 
JSR - Jump-to-Subroutine 
RTN - Return-from-Subroutine 
RSR - Repeat subroutine (load CR1 from NA inputs) 
RPI - Repeat Instruction 
BRC, - Branch to NA inputs on condition; otherwise increment 
BSR - Branch-to-Subroutine on condition; otherwise increment 
ROC - Return-from-Subroutine on condition or jump to NA inputs 
BRM - Branch and Modify address with branch inputs (multiway branches), 

23-5 



THE MC10802 TIMING DEVICE 

This device is capable of creating four output clock signals. Clock signals can be output in 1, 2, 3 or 4 phases; 
and the duration of any single clock phase may be doubled by inputting an appropriate control signal. This allows 
single slow steps in asynchronous logic sequences to be accommodated. 

A number of MC1 0802 devices may be cascaded together if more than four clock signals are required. 

A number of control signals allow the MC1 0802 to be started and stopped on demand. Thus, almost any timing 
sequence that you require may be generated. 

THE MC10803 MEMORY INTERFACE DEVICE 
You will use this device in a CPU configuration in order to create memory addresses. Program Counter logic, 
Da~a Counter logic, indexed addressing, indirect addressing or any other address computations can be handled 
by this device. Logic is illustrated inFigure 23-3. Each MC10803 memory interface device is a 4-bit slice. You 
can create memory addresses of any width by cascading MC10803 4-bit slices. . 

In order to provide total address creation flexibility, the MC10803 has five separate 4-bit data ports, five 4-bit 
registers, plus an arithmetic and logic unit. 

Let us first look at the MC10803 data ports. 

The two 4-bit bidirectional 0 and I Bu~ses ~onnect to internal CPU logic busses. Via these two busses data is transfer­
red to or from other parts of the CPU. The bidirectional4-bit Data Bus allows data transfers between the memory inter­
face device and logic beyond the CpU. The final effective memory address is output via the 4-bit Address Bus. There is 
a·further 4-bit Pointer input bus via which data can be input directly to the arithmetic and logic unit. 

The arithmetic and logic unit is capable of performing binary addition or subtraction, logical AND, OR or Ex­
clusive-OR, plus shift left and shift right operations. The possible sources and destinations for ALU operations 
are illustrated in Figure 23-3. 

There are six 4-bit registers within ·the MC10803 memory interface device. 

MA'R. is the Memory Address register, ou~ of which the final effective memory address will be output to external memo­
ry.' 

MDR is a 4-bit Data register within which temporary data can be held in any way. 

MS4 

Mse 

MS7 

MS6 

MS9 

MS10 

MSll 

DATA 
BUS 

.. 

CONTROL 
TO 
FUNCTIONAL 
BLOCKS 

I BUS 

o BUS 

t+-t---t-t-....... CLOCK 
'"--..,-_.1 

MS12 

MS13 

Figure 23-3. MC10803 Memory Interfa~~ Device Block Diagram 

23-6 



c 
w 
~ 
a: o 
D. 
a: 
o 
CJ 
~ 
u) 
w 

~ 
U o 
en 
en 
ct 
all 
w 
Z 
a: 
o 
III 
en o 
~ 
ct o 
ct 
@ 

Four 4-bit registers in a register file are used to hold frequently needed data. For example. RO will invariably become the 
Program Counter. R 1. R2 and R3 can be used to hold indexes. base addresses or other similar data. Note that the four 
registers in the register file represent additional logic over and above the external register file. which can have any size. 
Thus. a number of Index registers could be maintained in the external register file. while data that is being frequently 
manipulated will be maintained in the MC1 0803 internal register file. 

The data matrix has a number of control signals which usually will be input from the microprogram control read-only 
memory; the control signals allow one of the following data transfers to be specified: 

FOB Register File to 0 Bus 
ROB Data Register to 0 Bus 
ROB Register File to Data Bus 
ODB 0 Bus to Data Bus 
ROB Data Register to Data Bus 
ADR ALU to Data Register 
BDR Data Bus to Data Register 
AlB ALU to I Bus 
BIB Data Bus to I Bus 
lOR I Bus to Data Register 
ODR 0 Bus to Data Register 
NOP No Operation 
BRF Data Bus to Register File 
BAR Data Bus to Address Register 
MDR Modify Data.Register (I Bus to Data Register and Data Register to 0 Bus) 
PFB Pipeline from Data Bus (Data Bus to Register File and Data Register to 0 Bus) 
PTB Pipeline to Data Bus (I Bus to Data Register and Data Register to Data Bus) 

23-7 



c 
w 

~ 
a: o 
n. 
a: 
o 
(J 

~ 
en 
w 

~ 
g 
en 
en 
c:( 

ciJ 
w 
Z 
a: 
o 
en 
en o 
:E 
c:( 
c 
c:( 

© 

DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• MC10800 4-Bit ALU Slice 
• MC1080l Microprogram Control Function 

23-01 



MC10800 
ABSOLUTE MAXIMUM RATINGS (see Note 1) 

RATING SYMBOL VALUE UNIT 

Supply Voltage VEE -8 to 0 Vde 
(Vce=O) VTT -4 to 0 Vde 

I nput Voltage Std Vin o to VEE Vde 
(V ce = 0) Bus Vin Note 2 Vde 

Output Source Cont 10 < 50 mAde 
Current Surge 10 <100 mAde 

Storage Temp. Tstg. -55to+150 °c 
Junction Temp. T; 165 °c 

NOTE: 1. Permanent device damage may occur if absolute 
maximum ratings are exceeded. Functional operation 
should be restricted to RECOMMENDED OPER· 
ATiNG CONDITIONS. Exposure to higher than 
recommended voltages for extended periods of 
time could affect device realiability. 

NOTE: 2. Input voltage limit is VCC to -2 Volts when the bus 
is used as an input and the output drivers are disabled. 

Data sheets on pages 2'3.02 through 23·09 reprinted by permission of Motorola Semiconductor Products. Inc. 

23-D2 



@ 
~ 
0 
a 
lJ 
0 r-
:b 
CI) 
Ib 

I'-l 3 w .. , 
6 (') 
w Q 

:3 
Q. 
c: 
(') ... 
Q ., 

" ., 
Q 
Q. 
c: 
(') ... 
" ... 
:3 
~ 

RECOMMENDED OPERATING CONDITIONS 

PARAMETER SYMBOL VALUE 

Supply Voltage VTT 
(VCC = 0 Volts) VEE 

Operating Temp, 
(Functional) TA 

Output Drive -

Maximum Clock Input 
Rise and. Fall Time tr,tf 
(20% to 80%) 

Minimum Clock 
Pulse Width PW 

Pin 
-30oe 

Under 

Characteristic Symbol Test Min Ma. 

Power Supply Drain lEE 1,24 
Current ITT 25,48 

I nput Current 'inH 23 
31 
27 

linL 31 

logic "0" VOH 13 ·1.060 ·.89 
Output Voltage 10 -1.060 -.89 

Logic "'" ... VOL 13 -1.94 -1.675 
Output Voltage 10 _ -1.89 ·-Hi75. 

LogiC "O·~ VOHA 13 1.08 
Threshold Voltage 10 -1.08 

Logic·"," VOLA 13 --1.655 
'Threshold Voltage 10 -1.655 

• VIH on pins 19, 26. 30, 31, 32, 33, 34, 35,37 

•• The bi-directional outputs are specified at --1.90 volts for VOL min. 
, This is lower than the normal VOL min. output to give increased 

noise margin for bussing applications. 

-1,9 to -2,2 
-4,68 to- -5.72 

-30 to +85 

50n to -2.0 Vdc 

10 

5 

TEST LIMITS 

+250e 

Min Typ Ma. 

195 
180 

65 
350 
435 

0.5 

- .960 -.810 
-·.960 -.810 

, -1.90 -1.65 
~·1.85 -1.65 

.980 -

.980 

-1.63 
-1.63 

.' 

© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

UNIT 

Vde 
Vdc 

°c 
-

ns 

ns 

@Test 
Temperature 

-300 e 
+250 e 
+850 e 

+B50e 

Min Ma. Unit 

mAde 

"Adc 

"Adc 

-.890 -.700 Vdc 
-.890 -.700 Vdc 

-1-.875 -1.615 'Vdc 
.-1.825 -1.615 Vdc 

-·.910 Vdc 
-.910 Vdc 

--1.595 Vdc 
-1.595 Vdc 

VIHmax 

-.890 
-.810 

.700 

ELECTRICAL CHARACTERISTICS 

Each MECL 10,000 series circuit has been 
designed:to meet the dc specifications shown 
in the test table, after thermal equilibrium 
has been established. The circuit is in a test 
socket or mounted on a printed circuit 
board and transverse air flow greater than 
500 linear fpm is .maintained. Outputs are 
terminated through. a 50-ohm resistor to 
-2.0 volts. Test procedures are shown for 
only one input, or for one set of input con­
ditions. Other inputs tested in the same 
manner, 

TEST VOLTAGE VALUES 

Volts 

I VILmin VIHAmin VILAmax VEE VTT 

I -1.890 I -1.205 I -1.500 -5.2 --2 

I -1.85 I ·-1-.105 I -1.475 -5.2 -2 

I 1.825 " 0'.' l.D35 I -1.440 -5.2 -2 

VOLTAGE APP.LlED·TO PINS LISTED BELOW, 

VIHmax Vllm;n VIHAmin VILAmox VEE Vn 

1,24 25,4B 

23 
31 
27 

31 

8,26,46,47 

26,·46,47 
',47 

26,46,47 
47 

,26,46,47 
47 

(Vee l 
Gnd 

12,36 
7,17 



MC10800' '(" 

SET UP AND HOLD TIMES (NANOSECONDS AT 25°C) 

LONGEST PATH SHORTEST PATH 

PATH SETUP HOLD SET UP 

MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX. MIN. 

A BUS-ACC (Via ALU) 31.0 -17.0 15.0 
£I BUS-ACC (via ALU) 32.5 -16.5 16.0 
o BUS-ACC ( DIRECT) 3.5 + 5.5 3.5 
I BUS-ACC (DIRECT) 4.0 + 4.5 4.0 
ASO, AS1, AS4 -ACC 28.5 -18.5 12.0 
AS2, AS3-ACC 31.0 -21.0 17.5 
AS5, AS6-ACC 40.0 -23.5 19.0 
AS10, AS11-ACC 35.5 -26.0 17.5 
AS12 ACC 23.0 -10.5 13.0 
R·1,R4-ACC 6.5 + 1.0 5.5· 
AS7-ACC 7.5 + 4.5 7.5 
AS13, AS14-ACC 12.5 + 4.5 8.0 
AS9, AS15 ACC 5.0 + 1.5 4.5 
AS16-ACC 35.5 -18.5 19.0 
CIN-ACC 19.0 - 8.0 10.0 
o BUS-LATCH 1.0 + 4.5 1.5 

PROPAGATION OELAY TIMES (NANOSECONDS AT 250C) 

ABUS,0BUS 

19.0 

SUBTRACT Ace 

A I,R4 

AS7.ASI3,ASI4 

AS9, AS1S 

ASS,AS6 

Ace TO I, IP BUS 

315 

OUTPUT RISE TIME.l r (20% 10 80%1 35 

. OUTPUT FALL TIME. II (;20"'010 80'\.1 

ASO, AS1, AS2, ASJ. AS4, ASS, AS6, ASIC. AS11, AS12 

@ MOTOROLA SelTJiconductor Products Inc. 

23-04 

HOLD 

TYP. MAX. 

- 7.5 
- 7.5 
+.4.5 
+ 5.0 
- 5.0 
- 8.0 
- 6.0 

- 5.0 
- 3.0 
+ 2.5 
+ 4.5 

0.0 
+ 7.0 
- 9.5 
- 2.5 
+ 5.0 

.. 



c 
w 
~ 
a: 
o 
Il.. 
a: 
o 
(J 

~ 
iii 
w 

~ 
U o 
en 
en 
~ 

all 
w 
Z 
a: 
o 
In 
en o 
~ 
~ c 
~ 

@ 

, } , " ' , ...... 
Mel0800 'I I ,,' • I I, " ' ." " 

• ,," I' III ~ "e,::,,"'. , : ~".J', ~ ....\ • ~.. • • . !. ,\, ~ I 

SWITCHING WAVEFORMS 

PROPAGATION DELAYS 

_1_N_P_U_T_J*50% .. 

-~'''j-. 
_O_U __ T_PU_T ____________ -'~~5-00-v.-------

_IN_P_U_T ___ * 50% 

_ _______ --J ~I 50% Clk or AS16 r.: 

AS 16 I ,-------------------C L K 
C L K ________ 

5
_
0

.J% X AS 1 6 

~'"j,----
,,*~-----OUTPUT 

SETUP AND HOLD 

TEST PROCEDURE: 

a) Establish setup time with long thold' 

b) Keeping the leading edge of the input constant 
(tsetup) vary the trailing edge of the input to 
determine thold' 

NOTE: tsetup and thold as defined are positive. 
Internal delays in the data path may result in 
a shift of the data waveform to the left, 
with respect to the clock, resulting in nega­
tive hold times. 

SWITCHING TIME TEST ClRCUIT 

50 ohm termination to ground located in each scope 
channel input. 

All input and output cables to the scope are equal 
lengths of 50 ohm coaxial cable. Wire length should be 
<Yo inch from TPin to input pin and TPout to output 
pin. 

Clock Input 

Vin 

Veco = Vee = +2.0 Vdc 

25).lF l' 
17 12 36 

MC10aOO 
UNDER 

TEST 

25 

VTT = Gnd 

VEE = -3.2Vdc 

V out 

JO.1!lF 

TPout 

l" O.1!lF 

@ MOTOROLA Semiconductor Products Inc. _______ ---J 

23-05 



MC10801 

ABSOLUTE MAXIMUM RATINGS (see Note 11 

RATING SYMBOL VALUE 

Supply Voltage VEE -8 to 0 
(Vee = 0) VTT -4to 0 

Input Voltage Std V in o to VEE 
(Vee = 0) 8us Vin Note 2 

Output Source Cont 10 < 50 
eurrent Surge 10 <100 

Storage Temp. Tstg. -55to+150 

Junction Temp. Tj 165 

UNIT 

Vdc 
Vdc 

Vdc 
Vdc 

mAdc 
mAdc 

°e 

°e 

23-06 

NOTE: 1. Permanent device damage may occur if absolute 
maximLim ratings are exceeded. Functional operation 
should be restricted to RECOMMENDED OPER· 
ATING CONDITIONS. Exposure to higher than 
recommended voltages for extended periods of 
time could affect device reliability. 

NOTE: 2. Input voltage limit is VCC to -2 Volts when the bus 
is used as an input and the output drivers are disabled. 



N 
W o 
....... 

RECOMMENDED OPERATING CONDITIONS 

PARAMETER SYMBOL VALUE 

Supply Voltage VTT -1.9 to -2.2 
(VCC '" 0 Volts) VEE -4.68 to -S.72 

Operating Temp. 
(FunctionaJ) TA -30 to +8S 

Output Driva - son to -2.0 Vdc 

Maximum Clock Input 
Rise and Fall Time tr,tf 10 
(20% to 80%) 

Minimum Clock 
PUlS8Width PW S 

TEST LIMITS 
Pin 

-30oe +2Soe Under 
Characteristic Symbol Tnt Min Max Min Typ Max 

Power Supply Drain lee 1.24 200 
Current ITT 25.48 210 

Input Current 'inH 23 45 
42 310 
40 410 

linL 18 0.5 

Logic "0" VOH 16 -1.060 -0.890 -0.960 -0.810 
Output Voltage -1.060 -0.890 -0.960 -0.810 

Logic "1"t VOL 16 ~1.940 -1.615 -1.900 -1.650 
Output Voltage 2 -1.890 -1.615 -1.850 -1.650 

Logic "0" VOHA -1.080 -0.980 
Threshold Voltage 

Logic "I" VOLA -1.655 -1.630 
Threshold Voltage 

t The bi~irectional outputs are specified at -1.90 volts for VOL min. 

UNIT 

Vdc 
Vdc 

°c 
-

ns 

ns 

@Test 

© ADAM OSBORNE & ASSO:CIATES, INCORPORATED 

ELECTRICAL CHARACTERISTICS 

Each MECL 10,000 series circuit has been 
designed to meet the dc specifications shown 
in the test table, after thermal equilibrium 
has been established. The circuit is in a test 
socket or mounted on a printed circuit 
board and transverse air flow greater than 
SOO linear fpm is maintained. Outputs are 
terminated through a SO-ohm resistor to 
-2.0 volts. Test procedures are shown for 
only one input, or for one set of input con· 
ditions. Other inputs tested in the same 
manner. 

TEST VOLTAGE VALUES 

Volts 
Temperature VIHmox I VILmin VIHAmin VILAmox VEE VTT 

-30oe -0.890 1 -1.890 1 -1.205 ~ -1.500 I -5.21 -2.0 
+250 e -0.810 1 -1.85 1 -1.105 I -1.415 1 -5.21 -2.0 
+850 e -0.100 1 -1.825 1 -1.035 I -1.440 1 -5.21 -2.0 

+BSoe VOLTAGE APPLIED TO PINS LISTED BELOW, 
IVeel 

Min Mo. Unit VIHmax Vilmin VIHAmin VILAmox VEE VTT Gnd 

mAde 1.24 25.48 1.12.11.36 
1.24 25.48 1.12.11.36 

.,Adc 23 1.24 25.48 1.12.11.36 

+ 
42 

+ + + 
40 

18 

-0.890 -0.100 Vdc '18.26,21.45 16 1.24 25.48 1.12.11.36 
-0.890 -0.100 Vdc 41.44.46 40.42,43 1.24 25.48 1.12.11.36 

-1.815 -1.615 Vdc 45 26.21.40 16 1.24 25.48 1.12.11.36 
-1.825 -1.615 Vdc "42,43,45 40,4\44.46,41 1.24 25.48 1.12.11.36 

-0.910 Vdc "42,43,45 40,41.44,41 46 1.24 25.48 1.12.11.36 

-1.595 Vdc "42,43,45 40,41,44.41 46 1.24 25.48 1.12.11.36 

Preset Conditions 
'PSI: Apply VIH at 31. 43; VIL at 40. 41. 42. 44; then clock once I Lr I. 

"PS2: Apply VIH at 41. 42. 43. 44; VIL at 33. 34. 35. 31. 40. 41; then clock once (Lr I. 



MC10801 

SET UP AND HOLD TIMES (NANOSECONDS AT 25°C) 

SETUP HOLD 
INPUT MIN. TYP. MIN. TYP. 

ICO-IC3 (1) 17 -6.0 

ICO-IC3 (2,3) 30 -10 

NAO-NA3 14 -1.0 

I Bus, ¢ Bus 19 -4.0 

CSO-CS3 24 -2.0 

CS4 (4) 15 -4.0 

CS6-CS8 14 -1.0 

B (4) 14 -3.0 

Cin 9.0 0 

. Din 13 0 

RST 13 +3.0 

XB 13 -4.0 

XB (4) 19 -7.0 

NOTES: 

(1) All instructions except 2 and 3 below. 
(2) BSR, BRC, BRM or ROC instruction when B • CS4 = 1. 
(3) BSR, BRC, BRM, ROC, JSR, RPI or RTN instruction when RSQ = 1. 
(4) BRM instruction only. 

PROPAGATION DELAY TIMES (NANOSECONDS AT 25°C) 

~ 
CRO CR3 I BUS,r/J BUS XB 

INPUT TYP. MAX. TYP. MAX TYP. MAX. TYP. MAX 

Clock 11 10 17 17 

ICO-IC3 - - 19 15 

CSO, CS1, CS3, CS4 - - - 12 

CS5 4.0 - - -
CS6-CSa - - 13 -
B - - - a.o 

Cin - - - -
XB,RST - - 21 -

*Cout cannot change if RSQ = O. 

Cout 

TYP. MAX. 

15 

18* 

-
-
-
-

3.0 

-

® MOTOROLA Serniconducf:or Producf:s Inc.' 

23-08 



c 
w 

~ 
a: 
o 
D. 
a: 
o u 
~ 
en 
w 

~ g 
en 
en 
ct 
oi'J 
w 
Z 
a: 
o a:a 
en o 
~ 
ct 
o 
ct 
@ 

MC10801 : . ~ 
( 

SWITCHING WAVEFORMS 

PROPAGATION DELAYS 

_1_N_P_U_T __ -J~50% ________________ ___ 

I ,.-------------------CI k 

50%1 

~'''j 
_O __ U_T_P_U_T __________ --J~~5-0.-Yo-------

Clk---------....J ~.,j 

,,*""-----OUTPUT 

_I N_P_U_T __ ....J>K 50% 

Clk 

SETUP AND HOLD 

TEST PROCEDURE: 

a) Establish setup time with long thold' 

b) Keeping the leading edge of the input constant 
(tsetup) vary the trailing edge of the input to 
determine thold' 

NOTE: tsetup and thold as defined are positive. 
Internal delays in the data path may result in 
a shift of the data waveform to the left, 
with respect to the clock, resulting in nega­
tive hold times. 

SWITCHING TIME TEST CIRCUIT 

50 ohm termination to ground located in each scope 
channel input. 

All input and output cables to the scope are equal 
lengths of 50 ohm coaxial cable. Wire length should be 
<Yo inch from TPin to input pin and TPout to output 
pin. 

Clock Input 

Vin 

VCCO = VCC = +2.0 Vdc 

251lF J 
17 12 36 

1'0.1IlF 

MC10801 
UNDER 

TEST 

25 

VTT = Gnd 

-= "I 0
.
WF 

VEE = -3.2Vdc 

® MOTOROLA SetniconduC'for Produc'fs Inc. 

23-09 

V out 

TPout 



c 
w 

~ 
a: o 
Q. 
a: 
o 
u 
~ 
en 
w 
l­
e( 

g 
CI) 
CI) 
e( 

Gil 
w 
Z 
a: 
o 
ID 
CI) 

o 
~ 
e( 
C 
e( 

@ 

, Chapter 24 
THE HEWLETT PACKARD MC2 

The MC2 is the first microprocessor mariu{actured by Hewlett Packard. The MC2 is a 16-bit microprocessor 
designed specifically ~or ~rocess ,control applications: it has been designed for internal use within the many in­
struments and electronic products manufactured by Hewlett Packard. The MC2 is most unlikely to be sold as a 
single chip in the foreseeable future: even its availability as a computer card is not guaranteed at the present 
time. 

Since the MC2 microproces~or..is unlikely to be available to anyone outside Hewlett Packard. we may question the 
value of describing it in this book. We have decided to do so since MC2 includes many interesting conceptual innova­
tion~. However. we do not plan to upgrade the coverage of MC2 beyond the superficial level presented on the following 
pages until (and unless) the part becomes generally available. 

The most important aspect of the MC2 is its technology: it is built using CMOS logic with Silicon On Sapphire 
(SOS technology). The CMOS logic gives the MC2 typical CMOS low power requirements and noise insen-
sitivity. while Silicon On Sapphire technology gives it high speed. ' 

Using a + 12V power supply. the MC2 operates with a 125 nanosecond clock and executes instructions in 4 to 
12 clock cycles. Typical instructions are therefore executed in less than one microsecond. 

The MC2 is packaged on a squared. 48-pin lead less ceramic substrate. 

The sole manufacturer of the MC2 is: 

HEWLETT PACKARD COMPANY 
Data Systems Division 

11000 Wolfe Road 
Cupertino. CA 95014 

A second source for this microprocessor is unlikely in the foreseeable future. 

AN Me2 SYSTEM OVERVIEW 
Logic implemented on the MC2 CPU chip is illustrated in Figure 24-1. A number of support devices for the MC2 
has been manufactured. but no information on these support devices is available at the present time. 

Clock logic is external to the MC2 chip: however a simple Jingle waveform external clock signal will suffice. 

Figure 24-1 shows liD interface logic as being implemented on the MC2 CPU chip. This reflects the unusual wayiri 
which the MC2 handles external devices. The MC2 CPU has eight 16-bit general-purpose programmable registers. Ev­
ery liD device is assumed to have a CPU equivalent set of eight programmable registers. Instructions and control sig­
nals of the MC2 treat registers of the CPU and liD devices similarly. which means that no special liD interface logic is 
required. 

24-1 



Logic to Handle 
___ Interrupt Requests 
---- from 

External Devices 

II 

. Interrup't Priority 
Arbitration 

Clock Logic 

I/O Communication ROM Addressing 
.. Serial to Parallel and 

Interface Logic Interface Logi~ 

I Programmable 1.-.. 
Timers I Read Only 

. Memory 

System .......... "':: 

.':'.': .... 
.i .'.: .. .. ·.· ... ·i.(i , 
······.iii.···> 

I I/O Port, I 
t 

Figure 24-1. Logic of the Hewlett Packard MC2 Microprocessor 

MC2 PROGRAMMABLE REGISTERS AND STATUS 

Direct Memory 
Access Control ~ 

Logic 

t 
~ 

t 
RAM Addressing 

and ~ 
Interface Logic 

t 
Read/Write ~ Memory 

The MC2 has eight 16-bitprogrammable,registers and an a-bit Stack Pointer. In addition there is an a-bit I/O 
Device Identification register. Registers may be illustrated as follows: 

15 o 
RD Also Status register 

A1 
R2 
R3 Any ,register may serve as 

R4 a Data Counter 

AS 
R6 

R7 

I Stack Pointer (SP) 

I Device Identification register (01) 

Anyone of the eight 16-bit registers may be used as a Data Counter. 

24-2. 



c 
w 

~ 
a: 
o 
Q. 
a: 
o 
o 
~ 
en 
w 
l­
e:( 

g 
CI) 
CI) 
e:( 

all 
w 
Z 
a: 
o en 
CI) 

o 
~ 
e:( 
c 
e:( 

@ 

Register RO serves as the Status register. Its contents are interpreted as follows: 

15 14 13 12 11 10 9 8 7 6 5 .. 3 2 o -:I-- Bit No. 

Status register (RO) 

L F;"t b;t of low onl" by to 

Priority code 

L-____ - Low order byte Zero 

..... ------ Low order byte Negative 
L-__________ Interrupt enable 

..... ---------------- Word Zero 

'-------------------Word Negative 

'--------------------Word Carry 

"---------------------Word Overflow 

The Zero. Negative. Carry and Overflow statuses in bits 11. 12. 13 and 14. respectively. apply to the 16-bit result of the 
most recent data operation performed. Zero. Carry and Overflow are standard statuses. as described in Volume I. 
Chapter 6. The Negative status reflects the sign of the 16-bit result that is to say. it is set to the value of the result's 
high-order bit. 

The Interrupt Enable flag in Status register bit 7 is set to 1 in order to enable interrupts. It is reset toD in order to disable 
interrupts. 

The low-order byte Zero and Negative statuses are identical to standard Zero and Negative statuses. except that they 
reflect the low-order 8 bits of the most recent operation's result. This may be illustrated as follows: 

15 14 13 12 11 10 9 8 7 6 5 .. 3 2 1 0 -=t-- Bit No. 

I I I I ( I I I I I I I I I I I I Most recent operation result 

~~::=:' 
I 'L ______ ZL status = 1 if all 0; = 0 otherwise 

'------------NL status acquires value of this bit 

The low-order three Status register bits are referred to as a Priority Code. This Priority Code identifies the highest order 
1 bit in the low-order byte of the most recent operation's result. The Priority Code has the value of the bit position being 
identified. Here are some examples of Priority Codes: 

Result 

15 14 13 12 11 10 9 8 7 6 5 .. 3 2 1 0 -=!-- Bit No. 

Ixlxlxlxlxlxlxlxlol111 10101 ,0101 

15 14 13 12 11 10 9 8 7 6 5 .. 3 2 O~BitNo. 

Priority Code 

.. 

The Stack Pointer enables a 256-word Stack. The Stack occupies the first 256 words of read/write memory, 
with memory word 0 being the top of the Stack. 

24-3 



CPU 
registers , 

SO RO 

S1 R1 

S2 R2 

S8 RO 1---------1 
S9 R11-_______ -I 

510 R2 

S3 R3 

S4 R4 

S5 R5 

511 R3 t--------....... 
S12 R4 
S13 R5 1---------1 

S6 R6 

S7 R7 

S14 R6 
515 R7 ;'. ---------f~ 

~ : J) I/O devl"". Esen k>oks ... "7) 
_____ 16 register bank accessed bY.-/ general purpose registers 

instructions 

selected I/O device registers 

source and destination 

operands 
source operands 

(destinations for MOVE only) 

Figure 24-2. CPU and ,I/O Device Registers' Organization for the MC2 

The I/O Device Identification register, also referred to as a Base register, identifies one of 256 possible external 
I/O devices. The identified external I/O device will be interpreted as consisting of eight 16-bit registers. When execut-
inn RAni ...... r_RAni ..... r in .... r",. .. inn.. ..hArA i .. 1i-t .. IA l'IiffArAn .. i::. .. inn m::.I'IA hAhAlAAn .. hA Ainh .. r.PII rAnic:tArc: ::.nl'l th~ .. _;, ."-:;,----- .. -::1----- ... _------_ .. -..... _-_.- .. __ .- _ .... _._ ...... __ ._ ...... --- --_ ... __ .. _ ... - -.. ~ .. - -- - --..,------ _ ... - .. _--
eight regisiets oi ihe ideiiiiiied external device. The two sets of eight registers constitute a 16-register bank out of 
which two operands are selected. The two operands mayor may not come from the same register. The destination. 
which is the first identified operand register. is usually one of the CPU registers (RO - R7); only the Register-Register 
Move instruction permits an external register (RS - R15) to be the destination. This scheme is illustrated in Figure 
24-2. 

MC2 MEMORY ADDRESSING MODES 
The MC2 is quite limited in its memory reference capabilities. Instructions allow you to load data from memory into a 
CPU register. or to store data from CPU registers to memory. Data access instructions use direct memory addressing 
or implied memory addressing. 

Direct memory addressing instructions are two words long; the second instruction object code word provides the 16-
bit direct memory address. 

Instructions that use implied memory addressing allow anyone of the eight CPU registers to specify the 16-bit memory 
address. 

Conditional Branch instructions and Subroutine Call instructions allow direct and indirect addressing; however direct 
addressing is program relative and the displacement is an S-bit signed binary number. 

HARDWARE ASPECTS OF THE MC2 
We are not going to describe pins and signals of the MC2 because Hewlett Packard has not made sufficient infor­
mation available at the present time. Also. such information will be irrelevant until you can buy the MC2 as a chip. In­
stead we will provide a brief summary of principal MC2 hardware characteristics. 

The MC2 is packaged as a 4S-pin package. This allows separate 16-bit Data and Address Buses. together with an ade­
quate set of control signals. Control logic on the System Bus is asynchronous. having a request/acknowledge control 

24-4 



c 
w 

~ 
a: 
o 
c.. 
a: 
o 
CJ 
~ 
iii 
w 

~ 
U o 
en 
en 
ct 
oi:I 
w 
Z 
a: 
o 
a:I 
en 
o 
~ 
ct 
C 
ct 
@ 

philosophy. This simplifies multiple CPU configurations. Execution of a "No Operation" instruction puts any CPU into a 
slave state on the System Bus. at which time its internal registers may be accessed by some other "master" CPU. A 
slave CPU may be converted into the master via an interrupt request. 

MC2 interrupt logic is primitive but effective. There is one interrupt request line: when an interrupt is acknowledged. a 
subroutine call to memory location FFFE16 is executed. Memory location FFFE16 must contain the beginning address 
for the interrupt service routine. 

THE MC2 INSTRUCTION SET 
The MC2 instruction set is characterized by a lack of distinction between CPU registers and I/O devices. Most instruc­
tions that operate on data or move data are Register-Register instructions: as illustrated in Figure 24-2. each register 
may be an internal CPU register or a register out of an I/O device. Thus there is no difference between Move instruc­
tions that access two CPU registers. one CPU register and an I/O device. or two registers from the same I/O device. This 
similarity between Register-Register and I/O instructions is manifest by the way in which the MC2 instruction set has 
been defined in Table 24-1. 

For a better understanding of MC2 instructions. you must understand the way in which Register-Register instruction 
object codes are defined. This may be illustrated as follows: 

15 14 13 12 11 10 9 8 7 6 5 " 3 2 0 ~ Bit No. 

t I I I I I I I I I I I I I I I IlnstructiL,n object code 

~ .~'-C L So"". R.g;"., 'l 
I Source Register 1 r ~ 

X y y y --<l~-----...1 

t 4 - Som," "g;".' ""mb., 
o· CPU register 

1 - I/O device register 

'----------- Source Register 2 field descriptor 

0000 - Swap bytes 

24-5 

000 1 - Swap bytes and clear low order byte 

0010 - No operation 

0011 - Oear low order byte 

0100 - Swap bytes and clear high order byte 

0110 - Oear high order byte 

1100 - Move bits 12 - 15 to 0 - 3. Clear bits 4 - 15 

1101 - Move bits 8 - 11 to 0 - 3. Clear bits 4 - 15 

1110 - Move bits 4 - 7 to 0 - 3. Clear bits 4 - 15 

1111 - Oear bits 4 - 15 

Operation Field (Bit III 

0000 - Logical AND 0 

0000 - Reset Bit 1 

000 1 - Logical OR 0 

000 1 - Set Bit 1 

00 10 - Compare Registers 0 

0010 - Test Bit 1 

0011 - Logical Exclusive-OR 0 

0011 - Compare Bit 1 

0100 - Branch 0 

0101 - Move Register-to-Register X 

0111 - Add 0 

0111 - Subtract 

1100 - Load from Memo:y X 

1101 - Store to Memory X 



Source registers 1 and 2 may each be identified as anyone of the eight CPU 16-bit registers, or anyone of the eight I/O 
device 16-bit registers. The particular I/O device which is currently selected is defined by the contents of the I/O 
Device Identification register. 

Source register 1 also becomes the Destination register for the result of the operation. In all instructions except MOVE. 
Source. register 1 must be one of the eight CPU registers. 

The contents of Source register 2 are manipulated before becoming an operand for the operation to be performed. The 
manipulation performed on Source register 2 contents is defined by the field descriptor. Register-Register instructions 
therefore perform an operation identified by bits 12 through 15 of the instruction object code; the operation uses two 
16-bit operands as inputs. These two operands may come from the CPU register or the currently selected I/O device's 
registers. One 16-bit operand may be manipulated as defined by the field descriptor before it becomes an input to the 
operation specified by the instruction code. 

THE BENCHMARK PROGRAM 
For the Hewlett Packard MC2 our benchmark program may be illustrated as follows: 

LDWI R1 = 10BUF LOAD INPUT BUFFER ADDRESS IN REGISTER 1 
LOAD R2 = COUNT LOAD BUFFER SIZE IN REGISTER 2 . 
LOAD R3 = TABLE LOAD NEXT FREE TABLE LOCATION IN REGISTER 3 

LOOP: LOAD R4 = (R1) INPUT DATA WORD TO REGISTER 4 
STOR (R3) = R4 STORE WORD TO NEXT FREE TABLE LOCATION 
ADDI R1.1 INCREMENT BUFFER ADDRESS 
ADDI R3.1 INCREMENT TABLE ADDRESS 
SUBI R2.1 DECREMENT WORD COUNT 
CBR LOOP IF G REITERATE IF COUN1STILL GREATER THAN ZERO 
STOR TABLE = R3 SAVE AD DR OF NEXT TABLE WORD 

This benchmark program makes very few assumptions. Memory is addressed in 16-bit units (rather than 8-bit bytes). 
and data is transferred 16 bits at a time. The input table 10BUF and the data table TABLE can have any length. and can 
reside anywhere in memory. The address of the first free word in TABLE is stored in the first word of the TABLE. 

The following notation is used in Table 24-1: 

BYTE 8 bits of immediate data - the lower byte of the instruction word. 

CDST} 
CREG 
CSRC 

DST 
DI 

F 
<.FD> 

REG (FD) 

SRC (K) 

SRC<K> 

<.1> 

Any of the CPU registers (Registers 0 through 7). 

Any of the i 6 registers. used as the destination of a move or result 

The I/O Device Identification register (Base register). 

Fill specification for register shift: if F is O. the bit is reset to 0; if F is 1, the bit is set to 1. 

Optional field descriptor: 
SWB Swap bytes 
LJL Left justify lower byte 
LJU Left justify upper byte 
RJU Right justify upper byte 
RJL Right justify lower byte 
RJO Right justify high-order nibble 
RJ 1 Right justify next-to-high-order nibble 
RJ2 Right justify next-to-Iow-order nibble 
RJ3 Right justify low-order nibble 

The resu It of the operation of the field descriptor on the specified register. 

Operand field specification of one bit of the register. Register may be any of the 16 registers; K may 
be any number from 0 to 15. 

Bit K of Register SRC. 

Optional indirection specification. When I is present. the address used is the contents of the memo­
ry location addressed. 

24-6 



c 
w 

~ 
a: o 
0. 
a: 
o 
o 
~ 
u) 
w 
~ g 
U) 
U) 
c:( 

all 
w 
Z 
a: 
o 
al 
U) 

o 
:!E 
c:( 
c 
c:( 

@ 

<.IF CC> 

LABEL. 

REG 

Optional Condition Code representing a linear combination of the Zero and Negative status flags 
and "Greater Than": 
N Z NVZ 
000 
o 0 1 
o 1 0 
o 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

Not true 
G - greater than 0 
E - equal to 0 
GE - greater than or equal to 0 
L - less than 0 
LG - not equal to 0 
LE - less than or equal to 0 
Unconditional branch 

A 16-bit address; it may be the second word in the instruction. or its lower byte may be the lower 
byte of a one-word instruction. 

Any of the CPU or external registers. 

< (REG <.FD » > Optional indexing specification. For example. the instruction: 

RO 
PC 

SP 

SRC 

STATUSES 

WORD 

x <y.z> 

[ ] 

[[]] 

A 
V 
¥ 

IBR T ABLE(9.RJU 
will calculate an address by clearing the upper byte of the contents of Register 9 and adding the 
result to the 16-bit word TABLE. Then the contents of the location thus addressed will be the ad­
dress at which instruction execution continues. 

Register O. the Status register. as described earlier in this chapter. 

. The Program Counter. 

The Stack Pointer. 

Any of the 16 registers. used as the source of an operand. 

The following status flags are affected by the instructions: 
o The Overflow status 
C The Carry status 
N The Negative or Sign status 
Z The Zero status 
L The lower byte statuses NL and ZL 

The following symbols are used in the STATUSES columns: 
A blank means the status flag is not affected by the operation. 

X The operation affects the status flag in a meaningful manner. 
? The operation affects the status flag. but it is meaningless. 

16 bits of immediate data. 

Bits y through z of the Register x. For example. PC < 15.8> represents the upper byte of the Pro­
gram Counter. 

Contents of location enclosed within brackets. If a register designation is enclosed within the 
brackets. then the designated register's contents are specified. If a memory address is enclosed 
within the brackets. then the contents of the addressed memory location are specified. 

Implied memory addressing: the contents of the memory location designated by the· contents of a 
register. 

Logical AND 

Logical OR 

Logical Exclusive-OR 

Data is transferred in the direction of the arrow. 

Exponentiation. 2**K represents a 16-bit word with a 1 in bit K. and 0 in all the other bits. 

24-7 



Table 24-1. /-\ Summary of the MC2 Instruction Set 

p---~~------~------------~----~-----------
TYPE 

> a: 
o 
;:Ew 
w U 
;:EZ w 
> a: a: w 
ctL&. 
;:E~ 
a: 
0.. 

w 
I-W 

~~ 
Ww 
;:Eo.. 
~o 

2 
o 
i= 
C 
2 
o 
U 
2 o 
::I: 
U 
Z 
ct 
a: 
III 
c 
2 
ct 
a: 
:E 
:;) ., 
g 

MNEMONIC 

LOAD 

LOAD 

STOR 

STOR 

LOWI 

LOBI 

AOOI 

SUBI 

CMPRI 

BR 

IBR 

CALL 

RTN 

OPERAND(S) 

COST = LABEL 
«CSRC<,FO»> 

COST = (CSRC) 

LABEL «COST 

<,FO»> =CSRC 

(COST) = CSRC 

COST = WORD 

REG = BYTE 

COST,BYTE 

COST,BYTE 

CREG,BYTE 

REG <,FO> 

LA'3EL «REG < ,FD » > 

LABEL <,I> <IF CC> 

CREG 

STATlIS :s 
BYTES I---.----r----r- OPERATION PERFORMED 

o c N ;~ L 

[COSTJ- [LABEL + [CSRC(FO))) 

Load CPU register from memory using direct addressing or indexed addressing via a CPU 

register. 
[COST]-[[CSRC]) 

Load CPU register from memory using implied addressing via a CPU' register. 

[LABEL + [COST(FOIll-[ CSRC] 

Store CPU register to memory using direct addressing or indexed addressing via a CPU register. 
[[ COST])-[ CSRC] 

Store CPU register to memory using implied addressing via a CPU register. 

[COST]-WORO 

Load immediate 16 bits to CPU register. 

X : X [REG <7,O>]-BYTE 

Load immediate 8 bits to CPU or extemal register. 

x x X X [COST]-[COST] + BYTE 

Add immediate 8 bits to lower half of CPU register. 

x x X X [COST]-[COST] - BYTE 

Subtract immediate 8 bits from lower half of CPU register. 

x x X X [CREG] - BYTE 

Compare immediate 8 bits with lower half of CPU register. Only the statuses are affected. 

[ PC] - [REG(FD)l 
Branch to memory location addressed by register contents or by some operation on the 

register's contents. 
[PC1-[ LABEL + [REG(FOIll 

Branch using direct addressing or indexed addressing via any CPU or extemal register. 

" 7 If CC is true then 
[[SPll-[RO] 

[SP1-[SP] + 1 
[RO]-[PC] 

[PC]-[PC] <15.8>LABEL<7,O> or 

[PC]-[[PC] <'5,8>LABEL<7.0>] if I is specified 

Subroutine call- may be conditional or unconditional. If condition is not satisfied, Program 

Counter is incremented and next instruction is executed. If condition is satisfied. statuses are 

saved on the stack, the incremented Program Counter is saved in Register O. and the lower 8 bits 

of,the Program Counter are replaced by the second byte of the instruction. Subroutine starting 

location must be within 256 words of CALL instruction location. 

[PC]-[CREG] 

[CREG1-[[SP] - 1] 
[SP]-[SP] - 1 

Subroutine retum - get return address from specified CPU register and pop the stack into that 

register. 



© ADAM OSBORNE & ASSOCIATES. INCORPORATED 

Table 24-1. A Summary of the MC2 Instruction Set (Continued) 

STATUSES 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

0 C N Z L 

Z 
0 CBR LABEL <,I > <IF CC> 2 If CC is true then cE [PC]....,.[PC] <15,8>LABEL<7,0> or ZC Q 

el:Z w [pc]-[[ PC) < 15,8 >LABEL <7,0 » if I is specified .0 ;:) 
Q.U Z Conditional branch - if condition is satisfied, then replace lower 8 bits of Program Counter with 
:!E Z j: 

lower 8 bits of instruction, Branch destination must be within 256 'words of CBR instruction, ~o Z 
• :I: 0 

OU Y 
::::Z 

el: 
a: 
CD 

a: MOVE OST -SRC<,FO> 2 7 7 X X X [ OST)-[SRClFOIl w 
I- Move data from register to register. optionally operating on source word. 

Caw STRB COST [COsT]-[OI] Zw> 
el:a:O Move contents of Device Identification register into specifted CPU register. 
gffi~ LORB CSRC<.FO> 2 [Ol)-[CSRC(FDII 

I-
Load Device Identification register with contents of a CPU register. or with lome function of (/) 

(; those contents, w 
a: 

a: ADD COST,SRC <,FO > 2 X X X X X [COST)-[SRClFOIl+ [COST) 
w 

Add contents of CPU register and any register; deposit result in CPU register. l-
(/) 

(; SUBR COST,SRC < ,FO > 2 X X X X X [COST)-[SRClFO)) - [COST] • 
w Subtract contents of CPU register from any register's .contents; delXlsit result in CPU register. a: 
'w 

COST,SRC <.FO > 7 X [COST]-[SRClFO)) A [COST) ffi!i AND 2 7 X X 

~ffi AND CPU register contents with any register's contents; deposit result in CPU register. 
CJQ. OR COST,SRC<,FO> 2 7 7 X X X [COST]-[SRClFO)) V [COST] 
~o OR CPU register contents with any register's contents; deposit result in CPU register. 
C XOR COST.SRC<,FO> 2 7 7 X X X [COST]-[SRClFO))...,. [COST] Z 
el: Exclusive-OR CPU register contents with any register's contents; deposit result in CPU register, 
g CMPR COST.SRC <.FO > 2 X X X X X [SRClFO)) - [COST] 

Compare contents of CPU register with those of any register. Only the statuses are aHected, 

AODC CREG 2 X X X X X [CREG]-[CREG)+ [C) 

Add Carry bit to contents of CPU register. 

NEG CREG 2 X X X X X [CREG]-O- [CREG] 
w Negate contents of CPU register !twos complement). I-
el: CMPL CREG 2 7 7 X X X [CREG]-[CReGl a: 
w Complement contents of CPU register (ones complement!. Q. 
0 

[(0) .. -+5 a: oJ;J w 
I- SHFTL RRL.CREG<,C> 2 X X X X X ... (/). 

(; 
w [CREG] a: 

Rotate CPU register contents left one bit position, through Carry if specified. 



TYPE MNEMONIC OPERAND(S) 

SHFTL LSL,CREG,F 

w 

~ 0 a: w w 
Q. ;:) 

0 z SHFTR RRR,CREG<,C> 
a: i= 
w Z 
I- 0 
m g a 
w 
a: 

SHFTR LSR,CREG,F 

z SBIT CDST,SRC(K) 
0 
i= 
<I: 
...J 
;:) 

RBIT CDST,SRC{K) Q. 

Z 
<I: 
:!: 
I- CBIT CDST,SRC(K) 
iii 
c 
Z 
<I: TBIT CDST,SRC{K) g 

~ 
PUSH CREG 

U 
<I: 
I-
m pop CREG 

HALT 

Table 24-1. A Summ3ry of the MC2 Instruction Set (Continued) 

'3TATU 
BYTES 

0 C N 

2 X X X 

2 ? X X 

2 ? X X 

2 ? ? X 

2 ? ? X 

2 ? ? X 

2 ? ? X 

2 

2 

2 

SES 

Z L 

x x 

x x 

x x 

x x 

x x 

x x 

x x 

OPERATION PERFORMED 

[CREG] 

Shift CPU register contents left one bit position, filling bit 0 according to F. 

Rotate CPU register contents right one bit position, through Carry if specified. 

[F) ~15 ---...... ~ 0 I 
[CREG] 

Shift CPU register contents right one bit position, filling bit 15 according to F. 

[SRC<K>]-1 
[CDST]-[SRC] 

Set the specified bit of the specified register to 1, then deposit result in a CPU register . 

[SRC<K>]-O 
[CDST]-[SRC] 

Reset the specified bit of the specified register to 0, then deposit result in a CPU register. 
[SRC<K>]-[SRC<K>] 
[CDST]-[SRC] 

Complement the specified bit of the specified register, then deposit 'result in a CPU register. 
[CDST]-[SRC] A 2··K 

Set all bits of the specified register, except the specified bit, to 0; deposit result in a CPU register. 

[[SP]]-[CREG] 

[SP]-[SP] + 1 

Store CPU register's contents on top of stack. 
[CREG]-[[SP] -11; [SP]-[SP] - 1 

Load CPU register from top of stack. 

CPU enters idle state. 



c 
w 
!i 
a: 
o 
a.. 
a: 
o 
u 
~ 
en 
w 
l­
e( 

U o 
en 
en 
e( 

oil 
w 
Z 
a: 
o 
m 
en o 
:!! 
e( 
c 
e( 

@ 

Chapter 25 
SELECTING A MICROCOMPUTER 

So you have a product and you may want to build it using microcomputer devices. You have two decisions to 
make: 

1) Should you use a microcomputer at all7 
2) And if so, which 7 

Of course, both decisions must be based on minimizing costs. 

The eventual unit price for any product, whether or not it includes a microcomputer, is given by the equation: 

F 
P =- + V 

N 

In the above equation. P represents unit price, F represents fixed costs, V represents variable costs and N 
represents the number of units you plan to build. 

Fixed costs are the front-end expense which is essentially insensitive to the number of 
units you plan to build. Fixed cos~s include the following items: 

1) Product evaluation expense. including preliminary market research. 

2) Product advertising and promotion expense. 

3) The cost of doing a competitive analysis to select a microcomputer. 

4) The cost of going from specification to product. 

Variable costs are the costs that must be incurred for every unit built. These are the con­
tributors to variable costs: 

1) The cost of logic components and particularly. whether you have access to second 
sources for all logic components. A product without a second source may be a product 

. that becomes significantly more expensive as time goes by. 

2) Assembly line expenses. 

3) Product testing expenses. 

FIXED COST 
CONTRIBUTING 
FACTORS 

VARIABLE COST 
CONTRIBUTING 
FACTORS 

While you are still deciding whether to use microcomputer logic or discrete logic, two further considerations 
must be taken into account: 

1) Subsequent product modification 
2) After sales servicing 

Remember, if your product is built around a microcomputer you can make very drastic 
changes to the product simply by rewriting the microcomputer program. That will result in a 
single ROM or PROM device having to be replaced. Were the product completely implemented 
using discrete logic. a similar product change may require one or more boards of logic to be com­
pletely replaced. 

The cost of servicing a product built around a microcomputer is significantly less than the 
cost of servicing a product that uses discrete logic. There are two reasons why this is so. 

First, a product that is built around a microcomputer is likely to have far fewer components . 

CONTINUING 
ENGINEERING 
COSTS 

AFTER SALES 
SERVICE 

than the same product implemented entirely out of discrete logic. This means that not on Iy are there fewer parts to 
malfunction. but when a part does malfunction. it is easier to locate. 

The second reason that servicing a microcomputor-basod product is cheaper than servicing the same product 
implemented in discrete logic is that you can write a diagnostic program to test every logic device on a card. 
Suppose there are 200 logic devices on a large card that includes a microcomputer system. Give each device a number. 

25-1 



and place eight light-emitting diodes at the card edge. Then write a program which systematically tests every single 
device on the card to ensure that it is functioning correctly. Any malfunctioning device may be identified using the 
eight light-emitting diodes to display a binary device number. There are, of course, numerous applications where this 
simplistic approach to diagnostics will not work, but in many applications the concept has potential. 

In order to determine whether you should use a microcomputer at all, you must estimate costs, based on fixed 
and variable expenses, for a product built around a microcomputer, and for a product built entirely out of dis­
crete logic. You must then consider continuing engineering and after sales service economies that may accrue 
when you build your product around a microcomputer. 

Assuming that you are going to use a microcomputer, which should you use? Let us examine the impact that 
microcomputer selection has on fixed and variable costs. First consider variable costs. 

It may not be immediately apparent, but a microcomputer's instruction set and execution 
speed will usually have very little impact on variable costs, being overwhelmed by simple 
pricing considerations. For example, the F8 has an instruction set that will invariably generate 
longer object programs than an equivalent 8080A system. On the other hand, by combining the 3850 CPU with a 3851 
PSU, you have a two-device system which includes a CPU, 1024 bytes of ROM, 64 bytes of RAM, four I/O ports (each 
of which are 8 bits wide). a programmable timer and a single external interrupt line. Providing your application is sim­
ple enough to fit into this small configuration, the fact that the 8080A instruction set is superior, or that 8080A pro­
grams execute faster, becomes irrelevant. If your F8 program fits in the minimum 1 K bytes of memory, memory savings 
become irrelevant and it would take seven 8080A devices to give you the same functional capacity as the two F8 
devices. Clearly, the seven 8080A devices will cost considerably more. 

If the FS-based product provides lower parts costs (Variable Costs), but the SOSOA-based product costs less to 
develop (Fixed Costs), at what point will fixed costs become more important than variable rc_os_t_s_? ___ __ 

Let us answer·the question by looking more clo~elY at factors that contribute to fixed costs. I FIXED COSTS I 
Of the four cost factors that contribute to fixed costs, only the fourth, the cost of going from 
specification to pro~uct, can be critically evaluated. 

We will begin by summarizing, without comment, the steps that lead from a specification to an end product. 
Using this sequence of events as a framework, we will describe the decisions you must make, and the basis on 
which you should m~ke these decisions. 

DESIGNING LOGIC WITH 
MICROCOMPUTERS-A SEQUENCE OF EVENTS 

1) Specify the product. The need for clear and accurate specifications is more critical when a product is to be built 
around a microcomputer than it would be if the product were to be built around discrete logic. 

Remember that designing with discrete logic involves a single set of choices - the selection of discrete logic com­
ponents. When you use a microcomputer, there are two sets of choices: having decided on the CPU and the 
devices that will surround the CPU, you still have to create a program. which means that enormous flexibilities and 
variables remain unresol~·ed even after the hardware has been selected. In other words, you are going to be faced 
with constant hardware/software tradeoffs. Unless an excellent specification defines the product which is to be 
built the process of compromising between hardware and software will be difficult at best and will result in un­
foreseen errors at worst. 

2) Prepare a preliminary hardware design. Even before you have selected a microcomputer, you will layout a 
preliminary product design, leaving as "black boxes" those parts of the product which will eventually become the 
microcomputer system. 

3) Specify the microcomputer requirements. The "black boxes" from step 2 can now be expanded into a set of per­
formance criteria uponwhich the selection of a microcomputer will be based. Some iteration between steps 2 and 
3 may be required. 

If the first time you perform step 3, you discover that no microcomputer on the market can meet your performance cri­
teria, redo step 2; relax the demands placed on the microcomputer by identifying the critical steps that the microcom­
puters cannot handle, then implement these critical steps using discrete logic. In other words, shrink the "black box". 

If you find that virtually every microcomputer provides overkill for your job as specified, it is worth going back to step 2 
to see if some additional logic functions can be performed by the microcomputer. In other words, expand the "black 
box". 

25-2 



Q 
w 

!i 
a: 
o 
D.. 
a: 
o 
o 
~ 
en 
w 

!i g 
(I) 
(I) 

« 
011 
w 
Z 
a: 
o 
m 
(I) 

o 
~ « 
Q 
« 
@ 

A frequently made error. when specifying the logic that must be implemented by a microcomputer. is to needlessly in­
clude steps that demand extremely fast logic. Remember. none of the microcomputers described in this book are capa­
ble of performing real-time events in much less than ten microseconds. 

Erring in the other direction. another common mistake is to underestimate what a microcomputer can do. A microcom­
puter can handle large volumes of data. and can perform complex data manipulations. providing program execution 
speed is unimportant. 

4) Depending on your history as a microcomputer user, it mayor may not be worthwhile doing a competitive 
analysis of microcomputer products. If it is worthwhile, you will, at this point, narrow the field to two or 
three products. 

5) Write source programs. You must now make a major decision: do you write source programs in assembly 
language or in a higher level language 7 

Most microcomputer manufacturers now allow you to write source programs in FORTRAN Inters new program­
ming language. PL/M. is also being adopted by a number of microcomputer manufacturers. In all probability. a 
growing number of nigher level languages will be made available to microcomputer users. As we will discuss later 
in this chapter. however. using assembly language is frequently less expensive. 

6) Convert the source program to an object program. This step may be handled in one of two ways: you may use a 
time-sharing computer service or you may use a microcomputer development system. 

A microcomputer development system looks like a minicomputer system. but is built around the microcomputer of 
your choice. 

Until you have made a final microcomputer selection. you will likely use a time-sharing service to convert your 
source programs to object program format. Eventually you are going to need access to a microcomputer develop­
ment system (for step 7); therefore. it makes sense to get off the time-sharing service and to start using a 
microcomputer development system as soon as you have made your final microcomputer selection. 

7) Convert the object program into Programmable Read Only Memory devices (PROMs). You will do this using 
the microcomputer development system that supports the microcomputer of your final choice. 

8) Build a prototype of your product. Now is the time to ensure that all conceivable errors have been detected and 
corrected. both in the programs driving the microcomputer and in the logic supporting it. Correcting programming 
errors and logic design errors will require constant iteration between development steps. perhaps as far back as 
step 2. 

9) Create a ROM mask. Unless your product is a low volume item. or is still being developed. economics dictate that 
you stop using PROMs and start using ROMs. 

When you are certain that all your programs are correct. you will define ROM masks for your read only memory 
devices. ROMs will likely be created for you by the microcomputer manufacturer. 

Programs that drive your microcomputer now become nothing more than logic devices. and will be handled 
routinely on the production line. like any other logic device. 

Within the framework of these nine steps, we are now in a position to explain how you go about estimating pro­
duct development costs. 

The most important factor determining microcomputer-based product development costs is the type of assis­
tance you receive, either from the microcomputer manufacturer, or from an alternative source. Product develop­
ment assistance can be divided into development hardware and system software. 

Development hardware consists of a minicomputer-like device which you will use to implement some or all of 
steps 6 through 9. System software consists of program~ that make the hardware usable. 

We will describe microcomputer development hardware first, and system software next. 

MICROCOMPUTER DEVELOPMENT HARDWARE 
At the center of any hardware development system, there will be a box that looks like a minicomputer. 

In its simplest form, this box closely parallels a minicomputer. Its Central Processing Unit is a microcomputer. 
which is surrounded by read/write memory. I/O interface. and logic to support the various options available with the 
microcomputer. All this is packaged in a minicomputer-like box. with a power supply and a front console. This "micro­
minicomputer" will have minicomputer-style peripherals. including an input device. an output device and bulk storage 
devices. 

25-3 



A very simple micro-minicomputer system' will consist of the microcomputer box and a 
teletype. The teletype keyboard is the input device. the teletype printer is the output device. 
and the teletype paper tape reader/punch is the bulk storage device. 

Source programs and any other human readable documentation will be printed by the 
teletype printer. 

SIMPLE 
MICROCOMPUTER 
DEVELOPMENT 
SYSTEMS 

The source program you enter and the object program which the computer creates will both be output by the 
teletype paper tape punch. Subsequently, these paper tapes may be input via the teletype paper tape reader. 

The first enhancement of this very simple hardware development system will be to stop using the teletype 
paper tape reader/punch as the bulk storage device, replacing it with a tape cartridge or floppy disk system, 
which is much faster and easier to handle. . 

The next enhancements will be to replace the teletype keyboard with a CRT terminal, and the teletype printer 
with a line printer. 

. .' , 
At this point your microcomputer development system looks remarkably like a small minicomputer system, and 
you will use it. just as you would use a minicomputer system. to create source programs. and to convert source pro-
grams into object programs. . 

However, your microcomputer development system will have one feature which no minicomputer ever had: on 
the console of the microcomputer box there will be a plug, into which you can insert unused Programmable 
Read Only Memory devices. The development system will give you the ability to write any part of your object pro­
gram into a PROM. via the console plug. You may take the PROM. plug it into a prototype board. and test the prototype 
product in the traditional way. 

Every microcomputer manufacturer provides a straightforward microcomputer development system, as de­
scribed above. The oldest and most popular microcomputers; such as the Intel 8080, now have more sophisti-' 
cated development systems available. These more sophisticated development systems are produced not only by the 
microcomputer manufacturer. but by a number of independent companies who are rapidly entering the microcomputer 
development products business. 

The first enhancement of the straightforward microcomputer development product, as 
described above, is a product that allows you to include a hardware simulation of the 
logic you are developing, within the microcomputer development system. Conceptually, 
such a system may be illustrated as follows: 

MICRO­

COMPUTER 

CPU 

PRINTER 

RAM CONSOLE 

MICROCOMPUTER DEVELOPMENT SYSTEM BUS 

BULK 
STORAGE 

DEVICE 

SIMULATING 
MICROCOMPUTER 
DEVELOPMENT 
SYSTEMS 

DATA 

ENTRY 
DEVICE 

LOGIC TO 

YOUR MICROCOMPUTER PRODUCT 

25-4 



Q 
w 
~ 
a: o 
Q. 
a: 
o 
o 
~ 
u) 
w 

~ 
g 
CI) 
CI) 
c( 

o!I 
w 
Z 
a: 
o en 
CI) 

o 
:!: 
c( 
Q 
c( 

@ 

Since there is no established term to describe microcomputer development systems as illustrated above, we 
will call it a "Simulating Microcomputer Development Systemi

,. In reality, the only parts of your system that 
will indeed be simulated are read only memory, interrupts, direct memory access and I/O. 

If read only memory can be accurately simulated within the development system. then you will be able to bypass the 
Programmable Read Only Memory creation step. at least until you are certain (to the extent that you can be certain) 
that your programs are error-free. 

By allowing the product you are developing to be handled as though it is an external device. the microcomputer 
development system serves the double purpose of allowing you to create object programs and. at the same time. of 
allowing you to check that the object programs. together with your external digital logic. perform as required. In theory. 
the microcomputer development system can now take you right up to the point where you can define your ROMs and 
organize a production line. 

Another development system enhancement that is appearing with greater frequency is the system that can 
handle more than one microcomputer. Intel. for example. sells not only the Intel 8080A, which is described in this 
book. but also the Intel 8008. two 4-bit microprocessors and the 3000 Series chip slice. You can use Inters ICE 
microcomputer development system to develop logic around any of the microcomputers sold by Intel 

Independent manufacturers of microcomputer development products are attracted to the idea of a microcomputer 
development system that can be used with more than one microcomputer. since this gives them the flexibility of selling 
into more than one manufacturer's market. 

MICROCOMPUTER SYSTEM SOFTWARE 
Neither a time-sharing computer service nor a microcomputer development system is of any value without pro­
grams that give you access .to the capabilities of the system. We refer to these programs collectively as system 
software. 

We have described in Volume I, Chapter 6 how a program must first be written in a programming language using 
pencil and paper. The program is then converted into a sequence of binary digits, stored in computer memory. 
Microcomputer systems demand an additional step, that is, the creation of a read only memory device, within 
which the object program is implemented. 

Figure 25-1 illustrates the components of system software which are routinely found in I EDITOR I 
microcomputer systems. The Editor. Assembler and Compiler have already been .described in 
Volume I. Chapter 6. Referring to Figure 25-1. step 1 shows how an Editor program, is loaded into computer memory 
and is used to create a source program. which is then stored in a computer-readable form on paper tape. magnetic 
cartridge or disk. 

The Monitor is a small resident program that simply lets you identify and load individual I MONITOR I 
system software modules. 

In Figure 25-1, step 2, the source program is either assembled or compiled, depending upon I ASSEMBLER I 
whether the source program was written in assembly language or a higher level language. 
An object program is created. 

A number of aspects of source and object program creation are not self-evident. The first and most obvious 
question to ask is whether the amount of memory available in the microcomputer development system for 
source and object programs will be sufficient. In Figure 25-1. step 2. memory is illustrated holding. at one time. 
source programs. object programs. an Assembler or Compiler. and a Monitor. What if the source program and object 
program are simply too big to fit into memory as illustrated? 

There is another potential problem. the object program developed in step 2 is almost certain to,contain errors. and it is 
not unreasonable for a source program to be corrected and re-assembled ten. twenty or more times before an error-free 
object program results. How long will it take to load the Editor for step 1, then reload the Assembler for step 21 

Let us first consider those problems associated with the need to constantly edit and re-as- EDITOR/ 
semble a source program, while detecting and correcting program errors. Are there any hid- ASSEMBLER 
den problems to watch out for in this process? COMBINED 

25-5 



Monitor 

Editor 

Source 

Program 

STEP 1 

Monitor 

Simulator 

Debug 

Object 

Program 

Linking 

Loader 

STEP 3 

60xes represent microcomputer memory space. 

Monitor 

A!:sembler 

or Compiler 

Source 

Program 

Object 

Program 

STEP 2 

Object 

Program 

STEP 4 

If your development system uses magnetic tape cassettes or floppy disks as the bulk storage device. you will have no 
problems; it will just take a few seconds to load either the Assembler or Editor into memory; therefore. an inconsequen­
tial amount of time will be wasted shuttling between steps 1 and 2 of Figure 25-1. 

On the other hand. if you are working with a very low budget and your development system uses the teletype 
paper tape reader/punch as the storage medium for all programs, you could be faced with a very severe prob­
lem; it could take as much as half an hour simply to load the Editor and Assembler into memory. This being the case. 
you will waste a very substantial amount of time and money watching the teletype paper tape reader monotonously 
load and punch paper tapes. Some microcomputer manufacturers get around this problem by combining an Editor 
and Assembler into one program. By breaking up your application into sufficiently small modules. you can generate a 
single memory load as follows: . 

MONITOR 

EDITORi ASSEMBLER 

SOURCE 

PROGRAM 

OBJECT 

PROGRAM 

25-6 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
o 
~ 
en 
w 

~ 
g 
CI) 
CI) 

< 
a!I 
w 
Z 
a: 
o 
en 
CI) 

o 
:E 
< c 
< 
@ 

Now you do not need to waste time reloading the Editor. and then the Assembler. every time you wish to makeacor­
rection to your source program. 

Let us first describe how you go about developing programs which are too big to constitute RELOCATABLE 
a single memory load, as illustrated in step 2 of Figure 25-1. The solution is self-evi- OBJECT 
dent: create the program in pieces. Implementation of this solution is not quite so PROGRAMS 
straightforward. 

If the program is to be developed in pieces. then clearly the pieces will each occupy different areas of memory. On the 
other hand. one specific area of memory may be assigned to object programs by the Assembler. This is the situation 
which arises: 

DEVELOPMENT 

SYSTEM 

OOOO~--'"" 

1800 .... --..... This space l reserved for 

2000 .... --..... obJect program 

0000 

0800 

1000 

1800 

2000 

2800 

YOUR 

PRODUCT 

This space 

used by 

object 

programs 

etc. 

The necessary solution is to create object programs which are one step removed from being truly executable. In these 
"pseudo-object programs". every object program byte that encodes an absolute memory address will instead encode a 
displacement from the beginning of the object program. This may be illustrated as follows: 

OBJECT 

PROGRAM 

0400~ 0401 

0402 

0403 

I I 
I I 

061e 

Program 

Origin 

PSEUDO­

OBJECT 

0400 §PROGRAM 

0401 . 

0402 

0403 

I I 
I I 

0618 
Jump to memory 

061A~1 I 
06 1 C Jump to memory 

0610 3A } location 083A 

061E 

061A§§1 I 

061C 

0610 A } 
06lE 

location "Program Origin" 

plus 043A 

This pseudo-object program will be loaded into memory by a system software program 
referred to as a "Relocatable Loader"; the Relocatable Loader acqu ires its name from the fact 
that it can relocate the pseudo-object program anywhere in memory. changing all the displace­
ment addresses to reflect a new origin. 

An Assembler which is able to create pseudo-object programs as described above is called a 
Relocating Assembler. 

25-7 

RELOCATABLE 
LOADER 

RELOCATING 
ASSEMBLER 



If programs have been written in pieces and the pieces must be loaded into memory to form 
a unit, then it is quite possible that a memory reference instruction in one piece of program 
may reference a label in another piece of program: . 

PROGRAM 

061A [§MEMORY 

061B 

061C } Jump to memory location ADDR 
0610 in program module 3 
061E 

A loader that can relocate program modules and, in addition, link memory references from 
one module to another is' called a "Linking Loader". 

A Linking Loader works in conjunction with an Assembler that generates linkable object 
program modules. 

A Relocating Assembler will replace every absolute address in the object program with a code I LABEL TABLE I 
which represents a label number. Then, at the end of the object program. the Assembler will 
generate a Label Table identifying every label number as representing a specific object program byte in a defined 
object program module. 

When the Linking Loader loads object program modules, it will identify the real memory address into which ev­
ery object program byte which owns a label actually gets loaded. Now the Linking Loader can replace label num­
bers in object programs with the actual memory address that happens to correspond to the label number. For example, 
the Jump instruction illustrated above may get encoded by the Assembler as three bytes which say: 

Jump to label number 4 in program module number 3. 

At the end of the object program. the Assembler will. in some coded fashion, identify label number 4 as corresponding 
to byte number 32A16 of program module 3. 

The Linking Loader will wait until program module number 3 has been loaded into memory, at which time it can deter­
mine the exact memory address for byte number 32A16 of program module 3. This memory address is equal to the 
origin of program module 3, plus 32A16. This becomes the address which the Linking Loader inserts into the Jump in­
!';tnJ(~tinn 

The only thing that is important to you, as a microcomputer programmer, is to realize that, given a Relocating 
Assembler and a Linking Loader, you can write programs in small modules and not have to worry about changing 
object code depending upon where each module resides in memory. 

It is very important to ascertain whether a microcomputer development system offers Relocating Assemblers 
and Linking Loaders, because they will make the task of developing object programs much simpler. 

Once an object program has been created, it must be executed in order to check it for errors. I DEBUG I 
Another system software module, referred to as a Debug program, will always be required 
at this point. The Debug program allows you to conditionally execute your object code. stopping at will to examine the 
contents of memory or programmable registers. or to temporarily make changes to the object program as a means of 
determining what went wrong. 

While you are debugging your object programs, there are certain parts of your system which do not exist and 
whose presence must therefore be simulated. If you have a Simulating Microcomputer Development System, 
then the Simulator program only has to simulate interrupts, direct memory access, and external devices com­
municating through I/O ports. 

If you have a simple microcomputer development system, then it must have a Simulator capable of representing 
the entire environment beyond your microcomputer. 

There is one further set of software modules which is extremely important in the world of I UTILITIES I 
minicomputers, but less important in the world of microcomputers; these are Utility and In-
put/Output routines. 

There are a number of programming procedures which virtually every microcomputer application SUBROUTINE 
is going to encounter: these include routines to move data around memory. to transfer data bet- LIBRARY 
ween memory and external devices. or to perform arithmetic operations. In the world of minicom-
puters. such programs are bundled up as a package so that a minicomputer programmer never has to write programs to 

25-8 



c 
w 

~ 
a: 
o 
a.. 
a: 
o 
CJ 
~ 
en 
w 
~ o o 
en 
en 
c:( 

oil 
w 
Z 
a: 
o en 
en o 
~ 
c:( 
c 
c:( 

@. 

perform such basic operations. Instead. a minicomputer program will simply call subroutines out of a subroutine library 
in order to perform standard operations. 

Is the same idea feasible in the world of microcomputers? Unfortunately. not always. 

The concept of an I/O subroutine library is doubtful. since from one application to the next. you cannot even be sure 
that I/O will be implemented in the same way. let alone that external devices will be similar enough to allow any form of 
general purpose program to control input/output operations. Remember that we are no longer dealing with a CPU that 
interfaces with standard peripheral devices. such as disk. line printer. card reader. etc: we are dealing with a microcom­
puter that is connected to various and sundry discrete logic systems. 

Even such routine operations as multibyte arithmetic frequently cannot. be standardized. One microcomputer system 
may have a total of 512 bytes of memory: another may have 4096 bytes of memory. In each case. saving bytes will be 
extremely important. Any type of generalized program will be unacceptable if generality is bought at the price of extra 
memory bytes. An application that will never require more than 16 binary digit numbers cannot efficiently use a 
multibyte addition subroutine which has been written to handle multibyte numbers of indefinite length. The fact that 
someone else has already written that very general purpose multibyte addition program will not prevent you from 
rewriting your own addition program to serve your very limited needs - and nothing more~ Your highly specialized ad­
dition program may only require half as much memory and in a product that may be reproduced thousands of times. 

A microcomputer program written making liberal use of subroutines out of a library may well finish up using twice as 
much memory as a.program written to meet the immediate needs of a single application. Suppose writing your own 
program allows you to reduce program memory from 2K bytes to 1 K bytes of ROM. Realistically, your programming 
expenses may be increased $3,000 or $4,000 because you did not use an existing subroutine library (presuming 
that such a library exists). However, your product does not have to have a very large volume before the extra 
programming expense becomes trivial compared to the money spent on extra memory devices, larger PC cards, 
more power supply and higher assembly expenses. 

The very same argument determines whether you will write your source programs in assembly language or in a 
higher level language. A higher level language will result in object programs that are anywhere from 2 to 1.4 times as 
long as the object program would have been had the source program been written in assembly language. On the other 
hand. it will probably take twice as long to develop programs in assembly language as it would to develop the same 
programs in a higher level language. You may have to deduct from the time saved. time your programmers spend 
learning a new language. In any event. it is clear that for very low volume systems. programming in a higher level 
language has always got to be more economical. In high volume systems. programming in assembly language has al­
ways got to be more economical and. depending upon individual circumstances. it becomes a tossup at some inter­
mediate level. 

AN ECONOMIC EXAMPLE 
We will now give substance to the discussion of microcomputer development economics by looking at some 
hypothetical but realistic numbers. Table 25-1 lists possible numbers for three different microcomputers. If we 
assume that fixed costs consist of programming expense and product development expense only. while variable costs 
consist of CPU and support device costs only. then Table 25-2 shows how unit costs will vary as a function of product 
volume. 

Observe from Table 25-2 that at very low volume, higher language program development is less expensive. If you 
are building more than a thousand units, on the other hand, in almost every case it will be cheaper to use assem­
bly language programming. 

Costs associated with products A. Band C have been purposely skewed to demonstrate the impact of fixed and varia­
ble costs. Notice that product C. having lower fixed costs. generates the smallest unit price at low volume even though 
the cost of the microcomputer devices themselves is high. 

The problem with Table 25-2 is that it oversimplifies the factors which influence eventual unit price. You should look at 
Table 25-2 as an illustration of general price versus volume relationships and nothing more. 

25-9 



Table 25-1. Some Typical Microcomputer Based Product and Development Costs 

MICROCOMPUTER SELECTED 

SOURCE OF EXPENSE PRODUCT A PRODUCT B' 

Microcomputer CPU. plus supportdevices 
and logic ($/unit) 63 78 

Cost of extra memory if programs are written 
in higher level language ($/unit) 10 8 

Cost of writing programs ($ total): 
a) .In assembly language 8000 7500 
b) In higher level language 5500 5000 

Cost of developing prototype ($ total) 42000 40000 

Table 25-2. Unit Prices For Microcomputer Based Products 

UNIT PRICE ($) 

PRODUCT A PRODUCT A PRODUCT B 
VOLUME ASSEMBLY HIGHER ASSEMBLY 

100 563.00 548.00 553.00 
500 163.00 168.00 173.00 

1000 113.00 120.50 125.30 
5000 73.00 82.50 87.50 

10000 68.00 77.75 82.75 

Assembly = Assembly language programming. 
Higher = Higher level language programming 

PRODUCT B 
HIGHER 

'536.06 . 
176.00 
131.00 
95.00 
90.95 

A LOOK AT THE FUTURE 

Let us take a moment to gaze into a crystal ball. 

PRODUCT C 
ASSEMBLY 

556.00 
184.00 
137.50 
100.30 
95.65 

PRODUCTC 

91 

3 

6500 
3000 

40000 

PRODUCTC 
HIGHER 

524.00 
180.00 
137.00 
102.60 
98.30 

What types of microcomputer products can we expect to see in the future, and what impact will they have on 
the minicomputer market? 

!f thc:-c :: vi'iC ~~uy u:;;igct uf iii;~iuCuiii~utgi dg~iijii whict waS iiut iliiiiicdiatciy Ci~~di-i:iii. uui. i~ Ut:l;UllliIl9 ,,,urt: 
apparent every day, it is that the way logic is distributed among various devices of a microcomputer chip set is 
fundamentally the most important feature of any microcomputer product.Asse~bly language instruction sets. ad­
dressing modes and even instruction execution times are all of secondary importance in that they become inconse­
quential providing they meet modest criteria of sufficiency. The logic designer IJsing microcomputers is likely to be far 
more influenced by control signals on the system bus and by the number of devit'es he 'has t6work with. rather than by 
the complexity of the instruction set or its addressing modes. And this. we believe. ist:he'key to a future drift into two 
types of microcomputer product: the logic device and the computer. . ,r":' .' 

If there will"be a branch of the microcomputer industry which builds minicomputer look-alikes. whqt impact will this 
have on the microcomputer industry? In truth. most manufacturers of computers. mini or larger. are already scrambling 
to build their central processing units and support logic out of large scale integration devices; therefore. we may con­
clude that within ten years every computer will be a microcomputer in that every computer will be built out of large 
scale integrated logic. This does not mean that the microcomputer manufacturers of today wilt overwhelm the 
mini~omputer and large computer manufacturers of yesterday. This. is because programming expellsesconstitute an 
already expended front end fixed cost for most users of minicomputers and larger computers: the hardware savings 
that might be gained by switching from a minicomputer to a microcomputer are simply insignificant when compared to 
reprogramming expenses. 

Therefore. those minicomputer manufacturers who can defend their current sales with existing software are likely to be 
impacted very little by microcomputers. Those minicomputer manufacturers who are essentially seliing components 
are likelytq be eliminated from the component market entirely. unless they are able to scale down their minicomputers 
into microcomputers and survive as component suppliers at the new microcomputer price levels. It' is this reduction in 
prices that'opens a window for new products such as the National Semiconductor and Signetics microcomputers to at­
tack markets that, look- characteristically like minicomputer markets. These are markets which were suited to minicom­
puter-tYpe. products. ,but in the past could not use minicomputers because of pricing considerations. Now that 
minicomputer~!ike dyvices are available for a few hundred dollars. a large number of new markets open up. none of 

25-10 



c 
w 

~ 
a: 
o 
D. 
a: 
o 
o 
~ 
en 
w 
~ 
U o 
tJ) 
tJ) 

oCt 
ell 
w 
Z 
a: 
o 
al 
tJ) 

o 
~ 
oCt 
C 
oCt 

@ 

which have used minicomputers before and none of which have invested in the front end program development fixed 
costs; the new markets are therefore equally likely candidates for the old minicomputer manufacturer's product or the 
new microcomputer manufacturer's product. This pseudo-minicomputer buyer will be interested in buying a great deal 
of support in addition to hardware and will not be quite so influenced by small dollar differences going from one pro­
duct to another. 

It is in the area of discrete logic replacement that we may expect to see the greatest volatility among microcomputer 
manufacturers. The microcomputer user in this market will usually be buying in huge volumes with very little front end 
programming expense; therefore. this user has a much greater incentive to switch from one microcomputer to another. 
based solely on pricing considerations. This being the case. the logic device replacement market is the one which will 
be hardest for established microcomputer manufacturers to defend. and the most attractive to latecomers into the field. 

It is quite probable that a microcomputer manufacturer who has not established a market for mls on the system bus 
and by the number of devices he has to work with. rather than by the complexity of the instruction set or its addressing 
modes. And this we believe is the key to a future drift into two types of microcomputer product: the logic device and 
the computer. 

If there will be a branch of the microcomputer industry which builds minicomputer look-alikes. what impact will this 
have on the microcomputer industry? In truth. most manufacturers of computers. mini or larger. are already scrambling 
to build their central processing units and support logic out of large scale integration devices; therefore. we may con­
clude that within ten years every computer will be a microcomputer in that every computer will be built out of large 
scale integrated logic. This does not mean that the microcomputer manufacturers of today will overwhelm the 
minicomputer and large computer manufacturers of yesterday. This is because programming expenses constitute an 
already expended front end fixed cost for most users of minicomputers and larger computers; the hardware savings 
that might be gained by switching from a minicomputer to a microcomputer are simply insignificant when compared to 
reprogramming expenses. 

Therefore. those minicomputer manufacturers who can defend their current sales with existing software are likely to be 
impacted very little by microcomputers. Those minicomputer manufacturers who are essentially selling components 
are likely to be eliminated from the component market entirely. unless they are able to scale down their minicomputers 
into microcomputers and survive as component suppliers at the new microcomputer price levels. It is this reduction in 
prices that opens a window for new products such as the National Semiconductor and Signetics microcomputers to at­
tack markets that look characteristically like minicomputer markets. These are markets which were suited to minicom­
puter-type products. but in the past could not use minicomputers because of pricing considerations. Now that· 
minicomputer-like devices are available for a few hundred dollars. a large number of new markets open up. none of 
which have used minicomputers before and none of which have invested in the front end program development fixed 
costs; the new markets are therefore equally likely candidates for the old minicomputer manufacturer's product or the 
new microcomputer manufacturer's product. This pseudo-minicomputer buyer will be interested in buying a great deal 
of support in addition to hardware and will not be quite so influenced by small dollar differences going from one pro­
duct to another. 

It is in the area of discrete logic replacement that we may expect to see the greatest volatility among microcomputer 
manufacturers. The microcomputer user in this market will usually be buying in huge volumes with very little front end 
programming expense; therefore. this user has a much greater incentive to switch from one microcomputer to another. 
based solely on pricing considerations. This being the case. the logic device replacement market is the one which will 
be hardest for established microcomputer manufactu rers to defend. and the most attractive to latecomers into the field. 

It is quite probable that a microcomputer manufacturer who has not established a market for minicomputer-like devices 
within the next two or three years will have no further opportunity to do so. however interesting the products he 
designs. No such window exists in the logic replacement market. where ten years from now a manufacturer who is able 
to sell microcomputer devices for 1 O¢ each. where the going rate has been 25¢ each. will be able to establish himself. 

In conclusion, we predict that microcomputer devices will separate into minicomputer look-alike and logic 
device replacements. The minicomputer look-alike market will become increasingly harder to break into and 
will stabilize fairly quickly. The logic device replacement market will continue to spawn products that look 
nothing like minicomputers and will continue to be extremely volatile until prices have been driven so low that 
there is simply no room left for further economie.s. 

(We have not changed a word of this prediction from the first edition of December, 1975.) 

25-11 



AN INTRODUCTION 
TO MICROCOMPUTERS 
VOLUME 2 

SOME REAL MICROPROCESSORS 

1978-1979 Update Series 
Update 5 
July 1979 

OSBORNE/McGraw-Hili 
Berkeley, California 



Update 5 of six of 1978-1979 Update Series to AN INTRODUCTION TO MICROCOMPUTERS: VOLUME 
2 -SOME REAL MICROPROCESSORS September 1978, by Adam Osborne with Jerry Kane, published 
by the Osborne division of McGraw-Hili, Inc. Updates sold on a yearly subscription basis. 

This update contains the following pages: 

Table of Contents .......................... xx-c through xx-d 
replace current page xx-c 

List of Figures ............................. xxx-a through xxx-b 
replace current page xxx-a 

List of Tables .............................. xxxiv-a through xxxiv-b 
replace current page xxxiv-a 

Quick Index ................................ xlvi-g through xlvi-h 
replace current page xlvi-g 

Chapter 1, The PPS4/1 ..................... 1-49 through 1-D2 
insert new material in page number order 1-D 17 through 1-D22 

Chapter 9, The MC6809 Microprocessor ...... 9-175 through 9-02 
insert new material in page number order 9-D31 through 9-D39 

OSBORNE/McGraw-Hili 
630 Bancroft Way, Berkeley, California 94710 

United States of America 
(415) 548-2805 

TWX 910-366-7277 

Copyright ~ 1979 by McGraw-Hili, Inc. All rights reserved. Printed in the United States of America. No 
part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by 
any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written per­
mission of the publishers. 

ii 



9 

1: 
C) 
';: 
>­a. 
o 
U 

CHAPTER 

8 

CHAPTER 

9 

TABLE OF CONTENTS - UPDATE 4 

The Zilog Z8 
ZS Programmable Registers. Memory Spaces. and Addressing Modes 
ZS Status 
ZS Microcomputer Pins and Signals 
ZS External Memory Select Logic 

ZS Timing and Instruction Execution 
Interrupt Logic 
ZS Reset Operation 
ZS Power-Down and Standby Power Supply 
ZS I/O Ports and I/O Data Transfers 
ZS Serial Input/Output 
ZS Counter/rimer Logic 

The ZS Instruction Set 
The ZS Senchmark Program 

The ZS/64 Development Microcomputer 
Data Sheets 

TABLE OF CONTENTS - UPDATE 5 

The PPS4/1 
PPS4/1 Programmable Registers 
PPS4/1 Memory Addressing 
PPS4/1 Status Flags 
PPS4/1 Input and Output Logic 
PPS4/1 Pins and Signals 
PPS4/1 MM76C High-Speed Counter Option 

Description of PPS4/1 MM76C Counter Subsystem 
PPS4/1 Series Microcomputer Instruction Execution 
PPS4/1 Series Microcomputer I nstruction Set 
The Senchmark Program 
PPS4/1 Instruction Mnemonics 
PPS4/1 Instruction Object Codes 
PPS4/1 Instruction Execution Times 

PPS4/1 Abbreviations 
Data Sheets 

The MC6S09 Microprocessor 
The MC6S09 CPU 
The MC6S09 Programmable Registers 
MC6S09 Memory Addressing Modes 
MC6S09 Status Flags 
MC6S09 CPU Pins and Signals 
MC6S09 Timing and Instruction Execution 
MC6S09 Direct Memory Access 
MC6S09 Interrupt Processing and Reset 
The MC6S09 Instruction Set 

Data Sheets 

xx-c 

PAGE 

8·1 
S-3 
S-14 
S-14 
S-19 
S-21 
S-23 
S-26 
S-27 
S-2S 
S-37 
S-39 
S-44 
S-44 
S-53 
S-D1 

PAGE 

1-50 
1-52 
1-53 
1-53 
1-54 
1-55 
1-59 
1-60 
1-65 
1-65 
1-65 
1-65 
1-65 
1-66 
1-66 
1-01 

9-175 
9-175 
9-176 
9-17S 
9-1S6 
9-1S6 
9-1S9 
9-191 
9-193 
9-19S 
9-01 

Volume 2 
Rev, A, Update 5 

6-79 



xx-d 



LIST OF FIGURES - UPDATE 3 
FIGURE PAGE 

1-10 Logic of the COP400 Series of Microcomputers 1-24 
U 1-11 MICROBUSB Read Sequence 1-29 .E 

1-12 MICROBUSB Write Sequence 1-29 
J: 1-13 COP410L Signals and Pin Assignments 1-32 

~ 1-14 COP411 L Signals and Pin Assignments 1-33 
~ 1-15 COP420. COP420C. and COP420L Signals and Pin Assignments 1-34 

(!) 
u 1-16 COP421. COP421 C. and COP421 L Signals and Pin Assignments 1-35 
~ 1-17 COP402 and COP402M Signals and Pin Assignments 1-36 en 

1-18 COP400 Clock Options 1-38 " en 

@ 9-40 Logic of the MC6801 Microcomputer 9-132 
:E 9-41 MC6801 Functional Block Diagram 9-134 
C) 

9-42 MC6801 Port 3 and Port 4 Usage 9-136 .~ 

a. 9-43 MC6801 Memory Map 9-137 
0 
u 9-44 MC6801 Internal Registers 9-138 

9-45 MC6801 Signals and Pin Assignments 9-141 
9-46 MC6801 Typical Mode Selection Circuit 9-143 
9-47 MC6801 Interrupt Vectors 9-144 
9-48 MC6801 Port 3 Control/Status Register 9-146 
9-49 MC6801 Port 3 Used in Handshake Mode 9-147 
9-50 MC6801 Single-Chip Mode (Mode 7) 9-149 
9-51 MC6801 Expanded. Non-Multiplexed Mode (Mode 5) 9-149 
9-52 Interfacing Standard MC6800 Peripherals to the MC6801 9-151 
9-53 MC6801 Non-Multiplexed Bus Timing (Read Cycle) 9-151 
9-54 MC6801 Non-Multiplexed Bus Timing (Write Cycle) 9-152 
9-55 Expanded. Multiplexed Mode (Mode 6) 9-152 
9-56 MC6801 Expanded. Multiplexed System 9-154 
9-57 MC6801 Bus Timing for MUX Operation (Read and Write) 9-154 
9-58 MC6801 Memory Maps for Multiplexed Operation 9-155 
9-59 MC6801 Timer Control/Status Register (TCSR) 9-157 
9-60 MC6801 Transmit/Receive Control and Status Register (TRCS) 9-162 
9-61 MC6801 SCI Rate/Mode Control Register 9-162 

10-1 Logic of MCS6500 Series CPU Devices 10-3 
10-2 MCS6502 Signals and Pin Assignments 10-9 
10-3 MCS6503 Signals and Pin Assignments 10-10 
10-4 MCS6504 Signals and Pin Assignments 10-11 
10-5 MCS6505 Signals and Pin Assignments 10-12 
10-6 MCS6506 Signals and Pin Assignments 10-13 
10-7 MCS6512 Signals and Pin Assignments 10-14 
10-8 MCS6513 Signals and Pin Assignments 10-15 
10-9 MCS6514 Signals and Pin Assignments 10-16 
10-10 MCS6515 Signals and Pin Assignments 10-17 
10-11 Time Base Generation for MCS650X CPU Input Clocks 10-21 
10-12 Logic of the MCS6522 PIA 10-35 
10-13 MCS6522 PIA Signals and Pin Assignments 10-36 
10-14 Auxiliary Control Register Bit Assignments 10-40 
10-15 Peripheral Control Register Bit Assignments 10-40 
10-16 Logic of the MCS6530. the R6531 and MCS6532 Multifunction Support Devices 10-55 
10-17 Logic Provided by the MCS6530 Multifunction Device 10-56 
10-18 MCS6530 Multifunction Device Signals and Pin Assignments 10-57 
10-19 Logic Provided by the MCS6532 Multifunction Device 10-60 
10-20 MCS6532 Multifunction Device Signals and Pin Assignments 10-61 
10-21 Logic Provided by the R6531 Multifunction Device 10-64 
10-22 R6531 Multifunction Device Signals and Pin Assignments 10-65 
10-23 SY6551 ACIA Signals and Pin Assignments 10-77 
10-24 SY6551 Interrupt Service Routine. Status Register Testing Logic Portion 10-85 

Volume 2 
Rev. A, Update 5 

xxx-a 6-79 



LIST OF FIGURES - UPDATE 4 
FIGURE PAGE 

8-1 Functional Logic Included in the Z8 Microcomputer 8-2 
8-2 Z8 Microcomputer Block Diagram 8-3 
8-3 Z8 Microcomputer Address Spaces 8-4 
8-4 Z8 Microcomputer Internal Registers 8-5 
8-5 Z8 Microcomputer Signals and Pin Assignments 8-13 
8-6 A Z8 Memory Read or Instruction Fetch Machine Cycle 8-22 
8-7 A Z8 Memory Write Machine Cycle 8-23 
8-8 Z8 Interrupt Acknowledge Sequence 8-26 
8-9 Z8 Counter/Timer Logic 8-39 

LIST OF FIGURES - UPDATE 5 
FIGURE PAGE 

1-19 Logic of the PPS4/1 Family of Microcomputers 1-51 
1-20 PPS4/1 MM75 Pins and Signals 1-55 
1-21 PPS4/1 MM76 and MM76E Pins and Signals 1-56 
1-22 PPS4/1 MM76L and MM76EL Pins and Signals 1-57 
1-23 PPS4/1 MM77 and MM78 Pins and Signals 1-58 
1-24 MM76C Counter Logic 1-61 
1-25 PPS4/1 MM76C Pins and Signals 1-62 
1-26 Generation of Quadrature Inputs 1-63 

9-62 Logic of the MC6809 Microprocessor 9-176 
9-63 MC6809 Direct Page Addressing Scheme 9-178 
9-64 MC6809 Post Byte Bit Assignments 9-179 
9-65 MC6809 Constant Offset {Indexed Model Addressing 9-180 
9-66 MC6809 Constant Offset Indexed Indirect Addressing 9-183 
9-67 MC6809 Long Branch Addressing· 9-184 
9-68 MC6809 Relative Indirect Addressing 9-185 
9-69 MC6809 CPU Signals and Pin Assignments 9-187 
9-70 MC6809 E and Q Timing for Write Cycles 9-190 
9-71 MC6809 E and Q Timing for Read Cycles 9-190 
9-72 MC6809 Timing and Signals for Cycle-Stealing DMA 9-192 
9-73 MC6809 Signals for Externally Vectored Interrupts 9-195 
9-74 MC6809 SYNC Instruction Logic 9-197 

xxx-h 



TABLE 

8-1 
c.i 8-2 .= 

8-3 
:I: 8-4 

~ 8-5 
co 8-6 t5 
u 8-7 
~ 8-8 
en ..... 
en 
@ 

:E 
.Ql TABLE >-c. 
0 1-11 u 

1-12 
1-13 
1-14 
1-15 
1-16 

9-19 
9-20 
9-21 
9-22 

LIST OF TABLES - UPDATE 4 

Z8 Interrupt Sources 
Z8 Control Register Contents Following a Reset 
Z8 I/O Port Data Transfers with Handshaking 
Z8 I/O Ports O. 1. and 2 Options Su mmary 
Counter/Timer 0 Baud Rate Generation 
Mnemonics. Object Code Bits and Interpretation for Z8 Condition Codes 
A Summary of the Z8 Microcomputer Instruction Set 
Z8 Instructions Listed by Op-code 

LIST OF TABLES - UPDATE 5 

Summary of the PPS4/1 Family of Microcomputers 
PPS4/1 ROM Addressing Sequence 
A Summary of the PPS4/1 Microcomputer Instruction Set 
PPS4/1 Instruction Mnemonics 
PPS4/1 MM75. MM76 Instruction Object Codes 
PPS4/1 MM77. MM78 Instruction Object Codes 

MC6809 Indexed Addressing Post Byte Register Bit Assignments 
MC6809 Bus Status Signals 
MC6809 Mnemonics (New and Modified Instructions are Shaded) 
A Summary of the New and Enhanced Instructions for the MC6809 

xxxiv-a 

PAGE 

8-24 
8-27 
8-29 
8-30 
8-41 
8-45 
8-46 
8-55 

PAGE 

1-50 
1-53 
1-68 
1-75 
1-76 
1-77 

9-179 
9-188 
9-202 
9-204 

Volume 2 
Rev. A, Update 5 

6-79 



xxxiv-b 



c.i 
.E 

@ 

1: 
Cl 
.~ 

0. 
o 

U 

INDEX 

QUICK INDEX - UPDATE 4 (Continued) 

Z8 Register Indirect Addressing 
Z8 Registers 
Z8 Serial I/O Character Format 
Z8 Serial I/O Counter/Timer 0 Baud Rate Generator 
Z8 Serial I/O Overflow Error 
Z8 Serial I/O Overrun 
Z8 Serial I/O Parity Error 
Z8 Serial I/O Parity Logic 
Z8 Serial I/O Receive Logic 
Z8 Serial I/O Select 
Z8 Serial I/O Transmit Logic 
Z8 Stack 
Z8 Stack Location Select 
Z8 Stack Pointer 
Z8 Word Addressing 
Z8 Working Registers 

xlvi-g 

PAGE 

8-9 
8-6 
8-38 
8-40 
8-38 
8-38 
8-38 
8-37 
8-38 
8-37 
8-38 
8-12 
8-35 
8-35 
8-9 
8-6 

Volume 2 
Rev. A. Update 5 

6-79 



INDEX 

E 

M 

P 

QUICK INDEX - UPDATE 5 

External VMA 

MC6809 Accessing Slow Devices 
MC6809 Accumulator Offset Addressing 
MC6809 Added Mnemonics 
MC6809 Auto Decrement Addressing 
MC6809 Auto Increment Addressing 
MC6809 Bus Grant 
MC6809 Bus State Controls 
MC6809 C lock Options 
MC6809 Constant Offset Indexing Addressing 
MC6809 Cycle-Stealing DMA 
MC6809 Direct Page Addressing 
MC6809 Exchange Register and Transfer Register Post Byte 
MC6809 Fast Interrupt Request 
MC6809 Halt Mode DMA 
MC6809 Hardware-Software Synchronization 
MC6809 Indexed AddreSSing 
MC6809 Indexed Indirect Addressing 
MC6809 I nterrupt Priorities 
MC6809 Interrupt Vector Addresses 
MC6809 Interrupt Vectoring by External Devices 
MC6809 LEA Instruction 
MC6809 Missing Mnemonics 
MC6809 Non-Maskable Interrupt 
MC6809 Post Byte 
MC6809 Push and Pull Instructions 
MC6809 Read Timing 
MC6809 Relative AddreSSing 
MC6809 Relative Indirect Addressing 
MC6809 Reset 
MC6809 Software Interrupts SWI. SWI2 and SWI3 
MC6809 Stacking During Interrupts 
MC6809 Standard Hardware Interrupts 
MC6809 SYNC Instruction 
MC6809 Use of SYNC for DMA 
MC6809 VMA Condition 
MC6809 Write Timing 
MC6809 Zero Offset Addressing 

PPS4/1 Clock Logic 
PPS4/1 MM76C Clock Logic 
PPS4/1 MM76C Counter Instructions 
PPS4/1 Decode Matrix 
PPS4/1 Interrupt Inputs 
PPS4/1 Memory Addressing 
PPS4/1 Parallel I/O 
PPS4/1 Serial I/O 
PPS4/1 Status Flags 

xlvi-h 

PAGE 

9-192 

9-191 
9-181 
9-199 
9-182 
9-182 
9-191 
9-188 
9-189 
9-180 
9-192 
9-178 
9-200 
9-194 
9-191 
9-196 
9-178 
9-182 
9-194 
9-193 
9-194 
9-200 
9-199 
9-194 
9-178 
9-199 
9-190 
9-182 
9-185 
9-194 
9-194 
9-196 
9-194 
9-196 
9-198 
9-188 
9-190 
9-181 

1-58 
1-65 
1-64 
1-54 
1-54 
1-53 
1-54 
1-54 
1-53 



c..i 
E 

1: 
C'l 
.~ 

a. 
o 

U 

ATTENTION WRITERS 

OSBORNE/McGraw-Hili is seeking qualified contributors to future updates of 
Volumes 2 and 3. Qualified contributors must have an excellent technical back­
ground, and they must be able to write clearly and without bias toward any manufac­
turer of products covered. Faculty at universities are particularly welcome as contribu­
tors. 

A contributor, when selected, will be assigned a specific category of parts to keep up~ 
dated. Keeping parts updated will include describing new parts in the category as they 
appear, and improving the description of parts that are already covered. Individual 
one-time contributions are also welcome. 

If you would like to become a contributor to Volume 2 and/or Volume 3, please write 
stating your qualifications and the categories that you believe you could cover com­
petently. If possible, send us a sample of your work; we suggest two or three pages of 
a part description following the format presented in these books as closely as possi­
ble. Send material to: 

OSBORNE/McG.raw-Hili 
630 Bancroft Way 

Berkeley, California 94710 

Attention: Volume 2/3 Contributors 

Volume 2 
Rev. A. Update 5 

7-79 



o 
.5 

@ 

E 
.~ 
>. 
Co 
o 

U 

Table 1-10. National Semiconductor COP400 Series Instruction Object Codes 

INSTRUCTION OBJECT CODE BYTES 

ADD 31 1 
ADT 4A 1 * AISC data4 0101dddd 1 
ASC 30 1 
CAB 50 1 
CAMO 333C 2 
CASC 10 1 * CBA 4E 1 
CLRA 00 1 
COMP 40 1 
COMA 332C 2 * HLTT 3339 2 * ING 332A 2 
INIL 3329 2 * ININ 3328 2 * INL 332E 2 
JID FF 1 
JMP addr10 011000pp 2 

mm 
JP addr6 11qqqqqq 1 
JP addr7 1 nnnnnnn 1 
JSR addr10 011010pp 2 * mm 
JSRP addr6 10qqqqqq 1 
LBI reg.digit 33 2 * 10rrdddd 
LBI reg.digitp OOrreeee 1 
LD reg 00rr0101 1 
LDD reg.digit 23 2 

OOrrdddd 

* This instruction is not available on all COP400 models. 

1-49 

INSTRUCTION 9BJECT CODE BYTES 

LEI data4 33 2 
0110dddd 

LOID BF 1 
NOP 44 1 
OBD 333E 2 
OGI data4 33 2 * 0101dddd 
OMG 333A 2 
RC 32 1 
RET 48 1 
RETSK 49 1 
RMB bit 0100bbbb 1 
SC 22 1 
SKC 20 1 
SKE 21· 1 
SKGBZ bit 33 2 

000cccc1 
SKGZ 3321 2 
SKMBZ bit 000cccc1 1 
SKT 41 1 * 5MB bit 0100aaaa 1 
STII data4 0111dddd 1 
X reg 00rr0110 1 
XABR 12 1 * XAD reg.digit 23 2 

10rrdddd 
XAS 4F 1 
XDS reg OOrr0111 1 
XIS reg OOrr0100 1 
XOR 02 1 

* This instruction is not available on all COP400 models. 

Volume 2 
Rev. A. Update 5 

7-79 



THE PPS4/1 

The PPS4/1 family of microcomputers was developed as the single-chip replacement for the Rockwell. PPS4 
family. The PPS4/1 family has been used extensively in consumer products. Its sales. like those of the other established 
4-bit microcomputers. number in the millions. The PPS4/1 is very similar to the TMS 1000. Both share similar ap­
proaches to memory organization. both have a similar I/O structure. and both lack a true interrupt capability. The major 
differences between the two families are: 

1) Most models of the PPS4/1 family have a serial I/O capability. 

2) The PPS4/1 microcomputers are not microprogrammable. as is the TMS1 000. 

3) The PPS4/1 family has a special purpose member. the PPS4/1 MM76C. which handles high-speed 
counting. The TMS 1000 has no counterpart to this processor. 

There are ten members of the PPS4/1 family. They are summarized in Table 1-11. 

Figure 1-19 illustrates those parts of our general microcomputer model implemented by the PPS4/1 microcomputer. 
This figure is deceptive. since it would appear that a PPS4/1 has a System Bus. This is not the case. The bus illustrated 
is purely internal. The only means available to a PPS4/1 for communication to the outside world is. via its I/O pins. No 
provision for external RAM or ROM has been made. Furthermore. the operations provided are primitive compared to 
those in 8-bit microprocessors or their support devices. For example. the serial I/O logic of the PPS4/1 cannot be com­
pared to that of the Intel8251 USART. or even the 1602 UART. The serial I/O logic merely serializes a 4-bit nibble into a 
bit stream (and the inverse). No provision is made for synchronization or for detecting framing or overrun errors. Buffer­
ing must be explicitly performed by the software. Nonetheless. the serial I/O interface is a very useful feature. 

Table 1-11. Summary of the PPS4/1 Family of Microcomputers 

MM75 MM76 MM76C MM76E MM76EL MM76L MM77 MM77L MM78 MM78L 

ROM (bytes) 640 640 640 1024 1024 640 1344 1536 2048 2048 

RAM (nibbles) 48 48 48 48 48 48 96 96 128 128 

Total I/O Lines 22 31 39 31 31 31 31 31 31 31 

Conditional 
Interrupt 1 2 2 2 2 2 2 2 2 2 

Input 4 8 8 8 8 8 8 8 8 8 

Bidirectional 17 18 18 18 18 18 18 18 18 18 

Serial -- 3 3 3 3 3 3 3 3 3 

Package 
(Dual In-Line or 28-pin 42-pin 52-pin 42-pin 40-pin 40-pin 42-pin 40-pin 42-pin 40-pin 
Quad In-Line) dual quad quad quad dual dual quad dual quad dual 

Supply Voltage (V) -15 -15 -15 -15 -11 to -11 to -15 -11 to -15 -11 to 
-6.5 -6.5 -6.5 -6.5 

Supply Current (rnA) 8 8 12 3 3 3 8 3 8 3 

All devices of the PPS4/1 family are implemented using PMOS technology. 

A single -15 volt power supply is required for all members of the PPS4/1 family except the L series parts 
(MM76EL. MM76L, MM77L, and MM78L). The L series parts will work with a power supply in the range of 
-11.0 to -6.5 volts with as little as 3 mA of current. This makes them quite suitable for battery powered applications. 

Most members of the PPS4/1 family operate at a maximum clock frequency of 80 kHz, which gives a 12.5 
microsecond cycle time. The L series parts can run at up to 100 kHz, yielding a 10 microsecond cycle time. Since 
all instructions execute in one or two clock cycles. the PPS4/1 has a slight speed advantage over the TMS 1000. but is 
at a severe speed disadvantage to the COP series. 

The primary manufacturer of the PPS4/1' series is: 

.r 

ROCKWELL INTERNATIONAL 
Microelectronic Device Division 

P.O. Box 3669 
Anaheim. CA 92803 

1-50 



U 
.E 

@ 

:E 
.~ 
>. 
a. 
o 
u 

Logic to Handle 
Interrupt Requests 

from 
External Devices 

Interrupt Priority 
Arbitration 

Interface Logic 

Clock Logic 

Arithmetic and 
Logic Unit 

Interface Logic 

Read Only 
Memory 

System Bus 

Accumulator 
Registeris) 

Data Counterisl 

Stack Pointer 

Program Counter 

Interface Logic 

I/O Ports 

* Not present on MM75 

** Present only on MM76C 

Figure 1-19. Logic of the PPS4/1 Family of Microcomputers 

1, -51 

Volume 2 
Rev. A, Update 5 

7-79 



PPS4/1 PROGRAMMABLE REGISTERS 
PPS4/1 programmable registers may be illustrated as follows: 

r--co L __ 

4-bit Accumulator 

6- or 7-bit 8 register 
17-bit on MM77. MM77L. 
MM78. MM78L) 

Data Counter 

5-bit Page register 

6-bit Offset register 

.} ll-bit Program 
Counter 

ll-bit SA register 

r-'--~--'--T--r--r--r--~-'--T·' 
I i I I I J I I I I I Ill-bit S8 register 
L.-,-__ l._L __ L •• _J __ .L_.L • ..L._..L. __ I (MM77. MM77L. MM78. 

MM78L only) lOne or Two 
level subro.utine 
stack 

L I I I J . I I I 4-bit X register 
__ J. __ 1. __ L._ (MM77. MM77L. MM78. MM78L only) 

4-bit S register 

The Accumulator acts as a primary Accumulator in a single-address machine architecture. It is the principal 
source and destination of every arithmetic and logical operation. 

The B register is the primary Data Counter. The only way to access locations in RAM is implied addressing via the B 
register. RAM cannot be directly addressed on the PPS4/1. The RAM memory is addressed as a contiguous block of 4-
bit nibbles. The B register is often .treated as two separate registers concatenated together, called B lower and B 
upper. B lower consists of the least significant four bits of the B register. while B upper consists of the most significant 
two or three bits of the B register. This division is necessary due to the 4-bit data paths within the PPS4/1. Many in­
structions will operate on B lower differently than on B upper. For example. the INCB instruction increments Blower 
while exclusive-ORing B upper with an immediate value. For this reason it is often convenient to view the RAM 
memory as a collection of16~nibble pages. Many operations will show a wrap-around effect within a single 16-nib­
ble page. since these operations modify B lower but not B upper. 

The X register is used as a scratch register and as a buffer register for certain I/O operations. The X register is pre­
sent on the MM77. MM77L. MM78. and MM78L models of the PPS4/1 family. 

The S register is used by serial 110 logic. It holds parallel data that is being shifted in or shifted out. 

The P register is the Program Counter. It consists of two parts. a 5-bit Page register and a 6-bit Offset register. Pro­
gram memory is separate from data memory and is read-only. Program memory is organized as 32 pages of 64 bytes 
each. Single-byte subroutine call instructions always transfer to the two highest pages of the program address space. 
i.e .. pages 30 and 31 (addresses 78016 - 7FF16). The PPS4/1 uses circular shift logic rather than an adder to increment 
the Program Counter. This means that the instructions in a given page are not in sequential order. This is of no signifi­
cance except to the assembler and other program development software. Table 1-12 lists the correspondence between 
execution sequence and physical addresses within a page. 

The SA register is a return address save register. It is used for saving the return address during a subroutine call. 
The MM77. MM77L. MM78. and MM78L all have an additional save register called the SB register. The SA and SB 
registers function as a two-level Stack. Hence the MM77. MM77L. MM78. and MM78L can have two levels of 
subroutine nesting rather than just one. 

1-52 



o 
.s 

@ 

1: 
C) 

.~ 

c. 
o 

U 

Table 1-12. PPS4/1 ROM Addressing Sequence 

Execution Address Execution Address 

Sequence Binary Value Hex Value Sequence Binary Value Hex Value 

0 000000 00 32 001001 09 

1 100000 20 33 ]00100 24 

2 010000 10 34 010010 12 

3 001000 08 35 101001 29 
4 000100 04 36 1 10100 34 

5 000010 02 37 01 1.010 1A 

6 100001 21 38 101101 20 

7 110000 30 39 1 101 10 36 

8 01 1000 18 40 111011 3B 
9 001100 OC 41 011 101 10 

10 000110 06 42 101 1 10 2E 

11 100011 23 43 1 1 01 1 1 37 
12 010001 11 44 011011 1B 

13 101000 28 45 001101 00 

14 010100 14 46 100110 26 
15 001010 OA 47 110011 33 

16 100101 25 48 011001 19 

17 1 10010 32 49 101100 2C 
18 1 1 1001 39 50 010110 16 

19 111100 3C 51 101011 2B 

20 011110 1E 52 010101 15 

21 1 01 1 1 1 2F 53 101010 2A 

22 0101 1 1 17 54 110101 35 
23 001011 OB 55 1 1 1010 3A 
24 000101 05 56 111101 3D 

25 100010 22 57 1 11 110 3E 

26 110001 31 58 111111 3F 

27 1 1 1000 38 59 011111 1F 

28 011 100 1C 60 001111 OF 

29 001110 OE 61 000111 07 

30 100111 27 62 000011 03 
31 010011 13 63 000001 01 

PPS4/1 MEMORY ADDRESSING 
The PPS4/1 contains separate and distinct program and data memories. Program memory is 
strictly read-only. Instructions cannot be executed out of data memory. Program memory can be 
addressed only by instruction execution. No means of storing constants in program memory 
has been provided other than as the operand of immediate instructions. The branch instructions 

PPS4/1 
MEMORY 
ADDRESSING 

provided allow program memory to be addressed in its entirety. in banks of 15 pages or as 54-byte pages. The top two 
pages of program memory are the primitive subroutine pages. These pages can be addressed from anywhere in the pro­
gram address space by the TM instruction with only a 6-bit address. Frequently used subroutines should be located in 
these pages. 

Data memory is addressed via implied addressing. The B register is used as a data counter which addresses data 
memory. There are no other means of accessing data memory. 

PPS4/1 STATUS FLAGS 
The PPS4/1 has only one program-accessible status flag - the Carry. 

There is also an internal skip status bit; if this bit is set during an instruction execution. the follow­
ing instruction will be skipped. 

1-53 

PPS4/1 
STATUS 
FLAGS 

Volume 2 
Rev. A. Update 5 

7-79 



PPS4/1 INPUT AND OUTPUT LOGIC 
All members of the PPS4/1 family have parallel I/O capability. All members of the PPS4/1 family except the MM75 also 
have a serial I/O capability. . 

There are four types of parallel I/O available in the PPS4/1 series They are: 

1) 4-bit parallel inpuLpcirts 

2) 4-bit bidirectional ports 

3) Discrete I/O lines 

4) Conditional interrupts 

PPS4/1 
PARAllEL 
I/O 

All members of the PPS4/1 family except the MM75 have two parallel input ports. The MM75 has only one 
parallel input port. These 4-bit ports are referred to as the P inputs. The two P ports are referred to as Channell (pins 
P1 - P4) and Channel 2 (pins P5 - PS)' The signals entering Channel 2 are internally inverted before reaching the Ac­
cumulator. The MM75 implements only Channell. 

All members of the PPS4/1 family have two bidirectional 4-bit ports. referred to as the R 
ports. On all PPS4/1 microprocessors pins R1 - R4 are called Channel A. On the MM75. MM76. 
MM76E. MM76EL. and MM76L pins R5 - R8 are called Channel B. On the MM75. MM76 .. MM76E. 
MM76EL. and MM76L both the A and B channels' outputs can be obtained from a 16 x S decode 

PPS4/1 
DECODE 
MATRIX 

matrix. This matrix allows a 4-bit quantity inthe Accumulator to generate an S-bit output. This is very helpful for ap­
plications using seven-segment displays. The contents of the decode matrix are alteraqle as a mask option. The stan­
dard chip comes with a BCD toseven-segment conversion table in the decode matrix. Loading the Accumulator with 
the digits 0 - F16 allows Channels A and B to output the seven-segment codes for 0 - 9. A. -. P. D. E. and blank. respec­
tively. The MM77. MM77L. MM7S. and MM78L lack this decode matrix capability. On these processors R5 - R8 are 
referred to as Channel X. Channel X is routed through the X register on both input and output. Channel A functions 
normally except for the lack of the decode matrix on output. 

All members of the PPS4/1 family except the MM75 have a 10-bit discrete I/O port called the D port. The 
MM75 has a 9-bit D port. The lines comprising the D port can be read or written independently {i.e .. individual bits of 
the port can be manipulated), This port is designed for use with asynchronous inputs. 

All members of the PPS4/1 family have two conditional interrupt lines. The MM75. has only 
one dedicated conditional interrupt input. However. RS can be used as either an R input or an in­
terrupt line. The conditional interrupt lines INTO and INT1 are very similar to the D port lines. ex­
cept that they can be tested by a single instruction. This feature allows the rapid testing of the 

PPS4/1 
INTERRUPT 
INPUTS 

conditional interrupt lines Note that this is not a true interrupt capability. The microprocessor is not interrupted 
asynchronously. Instead. the program must test for the interrupt condition and take appropriate a,.c_ti_o_". __ _ 

All members of the PPS4/1 family except the MM75 have a serial I/O facility. This facility is imple­
mented via three I/O lines connected to the S register: a serial input line. a serial output line. and 
a bidirectional serial shift clock line The serial output line is connected to the high-order bit of the 
S register. Data to be shifted out is first transferred from the Accumulator to the S register. When the S register is 
shifted. the new high-order bit appears on the serial output line. and the value of the serial input line is shifted into the 
low-order bit of S. Two types of serial I/O timing are allowed: internal and external. Ifoperation with the internal shift 
clock is selected. then the shift operation begins after an lOS instruction and takes two cycles of the internal clock 
(CLKA) for each bit or eight cycles for four bits. A data clock is output on the Shift Clock line. The timing can be illustr­
ated as follows: 

Internal lOS 2 3 4 5 6 7 8 9 
Clock 

(CLKAI 

. Shift 

Clock 
Output 

Serial 
Data 

Output 

1-54 



© 

E 
.!2l 
>-c. 
o 
U 

If an externally supplied shift clock is provided, the S register is shifted left once for each CLKA cycle that the shift clock 
is input high. This timing is shown below: 

Internal Clock 
(CLKAI 

Shift Clock 
Input _____ ~ 

Serial Data ---------~~"---------~~,,,..--------~~'\,..-----
Output ----------_,'-_____________ J~ ________________ J~ _____ _ 

PPS4/1 PINS AND SIGNALS 
Figures 1-20 through 1-23 illustrate the pins and signals for most members of the PPS4/1 family. Note that the 
majority of the signals are consistent across the entire PPS4/1 family. For this reason we will combine the discussions 
of pins and signals for all members of the PPS4/1 ~amily. The MM76C and its pins and signals are described later in this 
section. 

Data inputs are provided by P1 - P8. P1 - P4 constitute the Channel 1 input port. while P5 - P8 constitute the Channel2 
input port. 

RB/INT1 28 R7 

R1 27 R6 

R2 26 R5 

R3 25 INTO 

R4 24 PO 

DO 6 23 P4 

D1 7 PPS4/1 22 P3 

D2 8 MM75 21 P2 

D3 9 20 P1 

D4 10 19 TEST 

D5 11 18 VDD 
D6 12 17 Vc 
D7 13 16 CLKA 

VSS 14 15 DB 

Pin Name Description Type 

DO-DB Discrete I/O Pins Bidirectional, Open Drain 
P1-P4 Input Port Input 
R1-RB/INT1 I/O Port Bidirectional, Open Drain 
INTO,RB/INT1 Interrupt Request Input 
PO Power-on Reset Input 
Vc Clock Input 
CLKA Clock Output 
TEST Device Test Input 
VDD,VSS Power, Ground 

Figure ·1-20. PPS4/1 MM75 Pins and Signals 

1-55 

Volume 2 
Rev. A, Update 5 

7-79 



CLKA 
EXCLK 
CLKIN 

Vc 
VOO 
VSS 

TEST 
P2 
P6 
Pl 
P5 
P7 
P3 
P8 

'P4 

VOO 
PO 

INTO 
INTl 

R5 
R6 

Pin Name 

00-09 
Pl-P8 
R1-R8 
SOl 
SOO 
SSC 
INTO, INn 
PO 

... -.. 

VC, EXCLK, CLKIN 
CLKA,CLKB 
TEST 
VOO,VSS 

... 
.. · 

--
~ .. 
... 
:. 
... · 
~ 

.. -.. · .. ---.. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 PPS4/1 
11 MM76, 
12 MM76E 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Description 

Oiscrete 1/0 Pins 
Input Port 
1/0 Port 
Serial Oata Input 
Serial Oata Output 
Serial Shift Clock 
Interrupt Request 
Power-on Reset 
Clock 
Clock 
Oevice Test 
Power, Ground 

42 
41 ..... .-
40 -
39 
38 -
37 --
36 -
35 -
34 --
33 --
32 
31 -
30 -
29 -
28 

. 27 -
26 -
25 :: 24 -
23 -
22 ---

-
~ 

... -

.. ---.. -.. -.. ... .. 

.. -
... ... 

-. 
:. 
... ... 
-" ... 

CLKB 
09 
08 
nc 
07 
06 
05 
04 
03 
02 
01 
00 
SSC 
SOl 
SOO 
R4 
R3 
R2 
R1 
R8 
R7 

Type 

Bidirectional, Open Orain 
Input 
Bidirectional, Open Orain 
Input 
Output 
Bidirectional, Open Orain 
Input 
Input 
Input 
Output 
Input 

Figure 1-21. PPS4/1 MM76 and MM76E Pins an? Signals 

1-56 



U 
-= 
J: 
~ 
~ 

(!) 
u 
~ 
en 
f' 
en 

@ ... 
~ 
Cl 
.~ 

a. 
0 
U 

ClKB 1 40 ClKA 
Vc 2 39 D9 

XTLIN 3 38 D8 
XTlOUT 4 37 D7 

VDD 5 36 D6 
P2 6 35 D5 

TEST 7 34 D4 
P6 8 33 D3 
P1 9 PPS4/1 32 D2 
P5 10 MM76l. 31 D1 
P7 11 MM76El 30 DO 
P3 12 29 SSC 
P8 13 28 SDO 
P4 14 27 SDI 
PO 15 26 R4 

INTO 16 25 R3 
INT1 17 24 R2 

R5 18 23 R1 
R6 19 22 R8 

VSS 20 21 R7 

Pin Name Description Type 

DO-D9 Discrete I/O Pins Bidirectional. Open Drain 
P1-P8 Input Port Input 
R1-R8 I/O Port Bidirectional. Open Drain 
SDI Serial Data Input Input 
SDO Serial Data Output Output 
SSC Serial Shift Clock Bidirectional. Open Drain 
INTO.INT1 Interrupt Request Input 
PO Power-on Reset Input 
VC. XTLIN. 
XTlOUT Clock Input 
ClKA.ClKB Clock Output 
TEST Device Test Input 
VDD·VSS Power. Ground 

Figure 1-22. PPS4/1 MM76L and MM76EL Pins and Signals· 

1-57 

Volume 2 
Rev. A, Update 5 

7-79 



CLKB 
CLKA 
CLKIN 
EXCLK 

Vc 
VDD 
VSS 

nc 
TEST 

P4 
P8 
P3 
P7 
P6 
P2 
P5 

VDD 
Pl 
PO 
R5 
R6 

Pin Name 

DO-D9 
Pl-P8 
Rl-R8 
SDI 
SDO 
SSC 
INTO.INTl 
PO 
VC. CLKIN. 
EXCLK 
CLKA. CLKB 
TEST 
VDD. VSS 

----

--

1 
2 .. 
3 -... 4 ... 5 
6 
7 
8 -- 9 ... 10 PPS4/1 -... 11 MM77. p .. 12 MM78 ... 13 ... 14 -- 15 ... 16 p 

17 ... 18 .. 
19 -.. 
20 -... 21 -

Description 

Discrete 1/0 Pins 
Input Port 
1/0 Port 
Serial Data Input 
Serial Data Output 
Serial Shift Clock 
Interrupt Request 
Power-on Reset 

Clock Inputs 
Clock Outputs 
Device Test 
Power. Ground 

42 -
41 --
40 .. -
39 .. -
38 --
37 --
36 --
35 

.. 
34 --
33 ---
32 --
31 -
30 --
29 --
28 
27 --
26 -
25 -
24 -
23 --
22 -

.. -.. -... -... 
--"" -... 
... -
-----
.. -.. -... .. -.. 
p ... 
... 
.. -

D9 
D8 
D7 
D6 
D5 
D4 
D3 
D2 
Dl 
DO 
INTl 
INTO 
SDI 
SDO 
SSC 
R4 
R3 
R2 
Rl 
R8 
R7 

Type 

Bidirectional. Open Drain 
Input 
Bidirectional. Open Drain 
Input 
Output. Open Drain 
Bidirectional. Open Drain 
Input 
Input 

Input 
Output 
Input 

Figure 1-23. PPS4/1 MM77 and MM78 Pins and Signals 

The bidirectional I/O port is provided by pins R1 - R8. R1 - R4 implement the A port while R5 - R8 implement the B or X 
port. depending on the microcomputer. 

The discrete I/O lines are provided by DO - 09. 

Serial I/O logic is implemented via the SOO. SOl. and SSC pins. SOO is the Serial Data Output line. SOl is the Serial Data 
Input line. and sse is the Serial Shift Clock line. 

ClKA ClKB (except MM751. VC. and PO are common timing and reset pins present on all mem­
bers of the PPS4/1 family. There are differences in the clock oscillator options for the low power l 
series. The l series uses two pins. called XTlOUT and XTLIN. while the other members of the 
PPS4/1 family use EXClK and ClKIN. The standard PPS4/1 (except the MM75) can be connected 

PPS4/1 
CLOCK 
LOGIC 

for either an internal or an external clock. To use the internal clock. a resistor is connected between Vc and VOO. A 56 
k 0 resistor will S8t the clock frequency to a nominal 80 kHz ±50%. If more precise timing is required. a precision exter­
nal oscillator can be used. The external oscillator is connected to ClKIN. and the EXClK pin is tied to VOO. Frequencies 
within the range 40 kHz to 80 kHz are allowed. 

1-58 



U 
.E 

@ 

:c 
en 
.~ 

c. 

The l series microcomputers have four timing options available: internal oscillator. external oscillator. crystal. and 
slave. The internal oscillator and external oscillator options are the same as the standard internal and external clock 
modes. The crystal mode allows connection of a crystal to drive the internal oscillator. Slave mode is used to synchron­
ize two microcomputers. In this mode ClKA and ClKB are employed as inputs which accept the ClKA and ClKB out­
puts from another PPS4. The table below shows how an l series device is connected for the four clock options . 

Mode Vc XTLIN XTLOUT ClKA. ClKS Frequency (kHz @ VOO = -8 VI 

Internal VOO VSS nc Outputs 70-130 

External 
VSS Clock Input Outputs 400-800 

Clock 
nc 

External 
VSS 

One side Other side 
Outputs :::::800 

Crystal of crystal of crystal 

Slave VOO VOO nc Inputs 50-100 

8 The PO input pin is the standard power-on reset input. The following circuit will generate a proper reset pulse: 

VSS~ 
0.47 /LF . 

o-----,o---ilI~ PO 

180 kfi 

VOO ----()----' 

The standard power-on reset causes the microprocessor to start execution at location 3C016· This location must con­
tain either a Nap. a Reset Carry. or a Set Carry instruction. The following location may contain any valid PPS4/1 in­
struction. 

The INTO and INTl inputs can cause conditional branching when tested by the INTOl. INTOH. INn L. INn H. DINO. and 
DIN 1 instructions. 

The TEST input is normally connected to VSS. ROM. RAM. and instruction logic can be tested by connecting TEST to 
VDD· 

PPS4/1 MM76C HIGH-SPEED COUNTER OPTION 
The PPS4/1 MM76C is an enhanced version of the standard PPS4/1 MM76 that contains 16 bits of high-speed counter 
capability. Fourteen programmable modes of counter operation are available. The options available include: 

1) Single 16-bit counter 

2) Dual 8-bit counters 

3) Quadrature input 

4) Event input 

5) Up or down counting 

6) Automatic preset of counters 

7) Shifting of counters 

Counter control is provided by assigning special meanings to five of the standard PPS4/1' MM76 I/O instructions when 
the microprocessor is executing in the special counter mode. The rich variety of counter configurations makes the 
PPS4/1 MM76C a very powerful tool in producing minimal hardware systems. Applications for the PPS4/1 MM76C in­
clude motor control with direction sensing. frequency counting. digital-to-analog conversion. and frequency synthesis. 
Entire control systems can be implemented with only a PPS4/1 MM76C microcomputer. 

1-59 

Volume 2 
Rev. A. Update 5 

7-79 



Description of PPS4/1 MM76C Counter Subsystem 
In addition to the standard PPS4/1 MM76 hardware the PPS4/1 MM76C contains logic for the counters. This logic con­
sists of the following functional blocks: 

1) Input circuitry 

2) Lower counter register (S bits) 

3) Lower data register (S bits) 

4) Lower carry 

5) Upper counter register (S bits) 

6) Upper data register (S bits) 

7) Upper carry 

S) Control register (4 bits) 

9) Control flip-flops (3 bits) 

Figure 1-24 shows the relationship of each of these functional blocks to the architecture of the PPS4/1 MM76. The ad­
ditions to the standard PPS4/1 MM76 are shaded. Eight additional pins are provided for counter control and status. 
Figure 1-25 shows the device's pins and signals and summarizes those signals not present on the PPS4/1 MM76. 

The 16-bit counter of the PPS4/1 MM76C is divided into two S-bit counters called the Upper Counter and the Lower 
Counter. When the counter circuitry is configured as a single 16-bit counter the Upper Counter contains the most sig­
nificant eight bits and the Lower Counter contains the least significant eight bits. Both counters can be preset using 
the C/DI serial input line. Data is clocked onto the C/DI serial input line by the serial shift clock SCCID. The timing of 
this serial input operation is exactly the same as the standard PPS4/1 serial 110 explained above. By this arrangement. 
external logic can preset the counters. To preset the counters under program control by the PPS4/1 MM76C, simply 
wire the microprocessor as shown below: 

Since the PPS4/1 serial I/O logic handles only four bits at a time, two serial transmissions must be executed to load an 
S-bit counter. The first serial transmission loads the least significant four bits of the Lower Counter; the second loads 
the most significant four bits of the Lower Counter; the third loads the least significant four bits of the Upper Counter; 
and the fourth loads the most significant four bits of the Upper Counter. Note that the serial input line C/DI will also be 
used to load the Control register. Care should be taken to preset the counters only when the PPS4/1 MM76C expects to 
receive counter data on the C/Dlline. Each counter has a carry bit that is set whenever the counter overflows or under­
flows. The state of these carries is made available to external logic at the CAS (Lower Counted and CA 16/0 (Upper 
Counted pins. Associated with each counter is an S-bit buffer register; these are called the Upper Data register and the 
Lower Data register. Via the Data registers, the Counters may be read while counting is taking place. The Upper Data 
register has two special functions not implemented in the Lower Data register: shifting and presetting. Shifting of the 
Upper Data register can occur in only two of the 14 operational modes. Data can be shifted into the Upper Data register 
via the control/data serial input pin (C/DO and out of the Upper Data register via the Upper Counter's carry bit 
(CA 16/0). Control of all shifting operations is governed by the control/data serial shift clock (SCc/D). The presetting 
function automatically transfers the contents of the Upper Data register to the Upper Counter register whenever the 
Upper Counter overflows. 

Two input modes are implemented: these are event input and quadrature input. Event input simply counts transitions 
on the input line. PC 1 is the event input for the Lower Counter and SYEV is the event input for the Upper Counter. Both 
the Upper and Lower Counters can count up or down. The control of up or down counting on the Lower Counter is set 
by PC2. When PC2 is high the Lower Counter will count up; when PC2 is low the Lower Counter counts down. The Up­
per Counter can be set by the program to count either up or down. If the Upper Counter has been configured as the 
most significant eight bits of a 16-bit counter, its counting direction follows that of the Lower Counter. Event counting 
can take place at rates up to 2 MHz. 

1-60 



iQ) 

E 
.21 
>-0. 
a 

U 

VSS----t 

VOD----t 

,-'OnF 

VSS ---1 
TEST 

VDO 

8P-~~---~----~ 

PI 1-4 
Channel 1 

PI 5-8 
Channel 2 

PC2 PCI 
IUp/DowniIE vent/lnputi 

~ 
Serves 8S Counter 

Input or Quadrature 
Inputs 

ENABl 

100lscrete 
Inputs/Outputs 

I.I"-_....;R,;;;I/.:..O ..:..'-..:..4 _--.J'-'\. 1/0 

f'v--------r--./ Channel A 

RI/O 5-8 1/'-__ ...:..-__ ---1"""- 1/0 

f\.---------._' Channel 8 

r----,.._------------+-- DATA IIS.riallnl 

~---------------lf,. DATA 0 IS.rial Outi 

Upper Data 
Register 

IlatchlShiftl 

rn:ot---~ 
Control 
Register 

CA8 Ciol SCCIO IShift Clockl 
(Lower (Controll for Control/Detat 
Conry Oat. 
outi Inputl 

SYEV IS.riel 
Event Input) 

CAl SID 
IUpper Carryl 
Serial Data Outl 

Figure 1-24_ MM76C Counter Logic 

1-61 

Volume 2 
Rev. A, Update 5 

7-79 



Pin Name 

00-09 
P1-P8 
R1-R8 
SOl 
SOO 
SSC 
INTO.INT1 
PO 

R5 
R6 
R7 
R8 
R1 
R2 
R3 
R4 

SOl 
SOO 
SSC 

DO 
01 
02 
03 
04 
05 
06 
07 
08 
09 

XTLIN 
XPWR 

XTLOUT 

CLKB 
CLKA 

XTLIN. XTLOUT 
CLKA.CLKB 
TEST 
PC1.PC2 
ENABL 
CA8 
CA16/0 
SYEV 
C/OI 
SCC/O 
XPWR 
VOO·VSS 

- · 1 52 ... -- - 2 51 -- · 3 50 - -- .. 4 49 .. .. 5 48 - -- .. 6 47 .- -· 7 46 - -
8 45 .. 9 44 -- 10 43 .. 11 42 ... :- 12 41 .. 13 PPS4/1 40 -

14 MM76C 
39 

15 38 -- .. 16 37 - .. 17 36 - .. 18 35 -.. .. 19 34 - -.. 20 33 - .. 21 32 .. 22 31 .. 23 30 

· 24 29 -
25 28 - 26 27 -
Description 

Discrete I/O Pins 
Input Port 
I/O Port 
Serial Data Input 
Serial Data Output 
Serial Shift Clock 
Interrupt Request 
Power-on Reset 
Clock 
Clock 
Device Test 
Input to Lower Counter 
Upper & Lower Counter Enable 
Lower Counter Carry Status 
Upper Counter Carry Status 
Input to Upper Counter 
Serial Control or Data Input 
Shift Clock for C/OI Input 
Clock Control 
Power. Ground 

---.. -
--
-.. -
-
.. --------

--
---

.. -

.... 

INT1 
INTO 
PO 
TEST 
CA16/0 
SCC/O 
C/OI 
SYEV 
P4 
nc 
P8 
P3 
P7 
P6 
P2 
P5 
P1 
nc 
nc 
nc 
CA8 
ENABL 
PC2 
PCl 

VOO 
VSS 

Tvpe 

Bidirectional. Open Drain 
Input 
Bidirectional. Open Drain 
Input 
Output 
Bidirectional. Open Drain 
Input 
Input 
Input 
Output 
Input 
Input 
Input 
Output 
Output 
Input 
Input 
Input 
Input 

Figure 1-25. PPS4/1 MM76C Pins and Signals 

Quadrature input mode measures the frequency and relative phase relationship of two input signals. It uses two signals 
90 degrees out of phase at PC1 and PC2. Input signals of this type are commonly generated by standard incremental 
rotation sensors. (See Figure 1-26.) A count is generated any time a transition occurs at PC1 or PC2. The counting 
direction is determined by the phase relationship between the two inputs. If the signal at PC1 leads the signal at PC2. 
the counter counts up; if the signal at PC1 lags the signal at PC2. the counter counts down. In systems such as the one 
outlined in Figure 1-26. a change of phase indicates a change of direction of rotation. The count recorded in the 
counter over a fixed period is proportional to the rotational velocity. 

1-62 



c.i 
.E: 

I 
~ e 

(!) 
u 
~ 
m 
I' 
m 

@ 

:E 
.Q> 
>-
0. 
0 

U 

INCREMENTAL 
ROTATION 
ENCODER 

OPTICAL 
PICKUP 

e + 90° signal to PC2 

I I 
~----- Forward Rotation------..... I •• -- Stopped ---l~.----Reverse Rotation--------~I 

I I 

Figure 1-26. Generation of Quadrature Inputs 

In quadrature input mode a maximum input frequency of 500 kHz on each input is allowed. Quadrature input imposes 
a few timing constraints that must be maintained to ensure proper operation of the input logic. A count reversal must 
not occur sooner than 500 ns after the last count. This timing is illustrated below: 

PCl 

\ ... L_as_t _up_c_o_un_' ~__ ( ,;,,' Dow" CO,"' 

\_-----~I~I~--_I \~ ______ __ 
\ 

PC2 -.l 
-I F 500 ns minimum 

------Count Up _I_ Count Down ----------

1-63 

Volume 2 
Rev. A, Update 5 

7-79 



Another constraint exists when quadrature input is used with a 16-bit counter. When a carry is produced from the 
Lower Counter to the Upper Counter. a single phase reversal is handled as outlined above. However. any subsequent 
phase reversals must not occur for at least three cycles of the microprocessor's CLKA. This timing may be illustrated as 
follows: 

\ 
,;,,' Re,e",' ~ r-- 3 CLKA cvcle,-</ Secood Reve,,,' ··m mm,mum 'T' . r PC1 

Pc2--1 .. _r_-_-_-_-_-~~~~c-o-u-n-t -U-p~~~\""--:::::::~t..;~I-.:::::::-C ... !uo, Dowo -----It~I .... ---Co",, u~""--------:.------_-~-
The Control register and the Control flip-flops control the operation of the counter logic. One of the 14 possible modes 
of counter operation is selected by writing an appropriate bit pattern into the Control register. The Control flip-flops are 
set and reset by the special I/O instructions used in counter mode to control the state of the counter logic. 

Control register contents are interpreted as illustrated below: 

3 2 0 ",-Bit No. 

Control register 

\.---- Upper Counter Preset Control 
a = Software preset 
1 = Automatic or software preset 

\.------ Lower Counter Input Mode Control 
a = Quadrature inputs 
1 = Event and up/down inputs 

L-______ 16-bit Counter Configuration 

OOxx = Full 16-bit operation 
01 Ox = Upper Data register is shift register 

whose MSB shifts through Upper Carry 
to CA16/D 

011 x = Upper Data Register is shift register 
with carry output disabled 

...... -------- Counter Length Control 
a = One 16-bit counter 
1 = Two a-bit counters 

Rather than adding new instructions to the MM76 instruction set to control the counter on the 
MM76C. a second meaning is given to a subset of MM76 instructions when the MM76C is 
operated in counter mode. On the MM76C the SEG 1 instruction performs the combined func­
tions of the standard SEG1 and SEG2 instructions. SEG2 does not perform its regular function: 
rather. it initiates the counter mode of operation. In the counter mode the instructions SEG2. 

PPS4/1 
MM76C 
COUNTER 
INSTRUCTIONS 

lAM. IBM. 11. and 12C are used to control the counter logic. You must use these instructions carefully since their func­
tion depends on their sequence in the program. For example. 11 transfers the lower bits of the Lower Data register to 
the Accumulator if it precedes an 12C instruction. while it transfers the lower bits of the Upper Data register if it follows 
an 12C instruction. 

1-64 



@ 

~ 
.!? 

The PPS4/1 MM76C internal clock provides a slightly different set of operating modes than the 
rest of the PPS4/1 family. These operating modes are summarized below: 

Mode XPWR XTLIN XTLOUT 
CLKA 

Frequency (kHz) 
ClKe 

Internal VSS VDD No Connection Outputs 75-125 

External 
VDD 

One side of Other side of 
Outputs 89 

Crystal 3.57 MHz crystal 3.57 MHz crystal 

Slave VSS VSS No Connection Inputs Unspecified 

PPS4/1 
MM76C 
CLOCK 
LOGIC 

~ PPS4/1 SERIES MICROCOMPUTER INSTRUCTION EXECUTION 
8 Almost all PPS4/1 instructions execute in a single clock cycle. Notable exceptions are transfer. cond'itional transfer. and 

macro instructions. 

PPS4/1' SERIES MICROCOMPUTER INSTRUCTION SET 
There are variations in the instruction sets of the different microcomputers of the PPS4/1 series. However. the 
similarities outweigh the differences. so all the instruction sets are described in Table 1-13. Separate columns have 
been provided to show which instructions correspond to which microcomputer. 

The PPS4/1 instruction set is weak when compared to that of other microprocessors. However. the PPS4/1 series was 
designed as a low-cost digital logic replacement and functions more than adequately in this role. The economics of its 
use in a high-volume product make any programmer inconvenience irrelevant. The type of product for which tho 
PPS4/1 is designed is produced in the tens of thousands. An extra week or two of programming offort is insignificant in 
such an application. 

THE BENCHMARK PROGRAM 
As stated in the TMS1 000 section of this chapter. a special benchmark more suited to the 4-bit microcomputers will be 
used. This benchmark consists of inputting a 1- to 16-nibble packet of data from an input port. 

LOOP 

LBL 
11 
LBA 
11 
XDSK 
T 

PPS4/1 INSTRUCTION MNEMONICS 

BUFFER 

o 
LOOP 

GET BUFFER ADDRESS 
INPUT BUFFER lENGTH 
SAVE BUFFER LENGTH 
INPUT DATA 
STORE DATA 
GET MORE DATA 

Table 1-13 summarizes the PPS4/1 instruction set. The MNEMONIC column shows the instruction mnemonic, 
and the operands, if any, are shown in the OPERAND column. Macro instructions (combinations of basic instruc­
tions) are not included. 

The fixed part of an assembly language instruction is shown in UPPER CASE. The variable part (immediate data, 
label or address) is shown in lower case. 

PPS4/1 INSTRUCTION OBJECT CODES 
For instruction bytes without variations, object codes are represented as two hexadecimal digits (e.g., 40). 

For instruction bytes with variations in one of the two digits, the object code is shown as one 4-bit binary num­
ber and one hexadecimal digit (e.g., 5 dddd). For other instruction bytes with variations, the object code is 
shown as eight binary digits (e.g., 11aa aaaa). 

The object code, execution time, and instruction length in bytes is shown in Table 1-14 for each instruction. Ta­
bles 1-15 and 1-16 list the object codes in numerical order. 

1-65 

Volume 2 
Rev. A, Update 5 

7-79 



PPS4/1 INSTRUCTION EXECUTION TIMES 
Tables 1-13 and 1-14 list the instruction execution times in clock periods. Realtime can be obtained by dividing 
the given number of clock periods by the clock frequency. For example, for an instruction that requires one clock 
period, a 100 kHz clock will result in a 10 microsecond execution time. 

PPS4/1 ABBREVIATIONS 
These are the abbreviations used in this chapter: 

A The 4-bit Accumulator 
aaaaaa A 6-bit address used to specify an offset within a page !low-order address bits) 
AB The 4-bit Accumulator Buffer register 
addr6 A 6-bit address constant 
addr7 A 7-bit address constant 
addr10x A 10-bit address constant in the range 0-37F16 
addr10y A 1 O-bit address constant in the range 0-3FF16 
addr10z A 10-bit address constant in the range 40016 - 77F16 
B The 6-bit Data Counter (7 bits in MM77, MM78) 
bit2,bb A 2-bit immediate field used to specify a single bit in a 4-bit nibble as follows: 

C 
CR 
CR1 
CR2 
CR3 
D 
dnw2 
dnW3 
data4 
data4x 
dd 
ddd 
dddd 
DM 
eeee 
ffff 
gg 
ggg 
hhhh 
[INTO] 
[lNT1] 
LC 
LDR 
P 
PC 
PPPP 
R 
S 
SA 
SB 
UC 
UDR 
X 
XB 
xx 
xxxx 
[] 

002 - selects least significant bit 
012 - selects next to least significant bit 
102 - selects next to most significant bit 
112 - selects most significant bit 

Carry flag 
The 4-bit Control register (MM76C only) 
Control flip-flop 1 (MM76C only) 
Control flip-flop 2 (MM76C only) 
Control flip-flop 3 (MM76C only) 
The 1 O-bit discrete I/O port (9 bits on MM75) 
A 2-bit immediate field 

. A 3-bit immediate field 
A 4-bit immediate field 
A 4-bit non-zero immediate field 
Two bits of immediate data 
Three bits of immediate data 
Four bits of immediate data 
The 128-bit Decode Matrix (not on MM77, MM78) 
A 4-bit non-zero immediate field 
Least significant four bits of an immediate data field wider than four bits 
Most significant two bits of a 6-bit immediate value 
Most significant three bits of a 7-bit immediate value 
Four bits of non-zero immediate data 
The INTO flip-flop 
The INT1 flip-flop 
The 8-bit Lower Counter register 
The 8-bit Lower Data register 
The 8-bit Input Port (4 bits on MM75) 
The 1 O-bit Program Counter (11 bits in MM77, MM78) 
A 4-bit page address (high-order address bits) 
The 8-bit Input/Output port 
The 4-bit Serial Input/Output register 
The 10-bit Subroutine Save register (11 bits in MM77, MM78) 
The 11-bit Subroutine Save register (MM77, MM78 only) 
The 8-bit Upper Counter register (MM76C only) 
The 8-bit Upper Data register (MM76C only) 
The 4-bit X register (MM77, MM78 only) 
The 4-bit X register buffer 
A 2-bit "don't care" 
A 4-bit "don't care." Values of 00002 and 00012 are not allowed. 
Contents of the location within brackets. If a register is enclosed by brackets, then the contents of that 
register 

1-66 



< 

0 
.!: 

:I: 
~ 
CO 

~ iff u 
~ 
0) 

A ..... 
0) 

IQ) + 
1: x 
C) If) .~ 

a. 
0 

U 

> Subfield specifier. Specifies a subset for a register or memory location. A single digit enclosed by angle 
brackets specifies only a single bit. Two numbers separated by a comma and enclosed by angle brackets 
specify a range of bits. The first number specifies the least significant bit position of the subfield. while 
the second digit specifies the most significant bit. All bits are numbered from least to most significant. 
with bit 0 being the least significant bit. For example: 

A <0 > specifies the least significant bit of the Accumulator 
UC<4.7> specifies the most significant four bits of the Upper Counter register 

Data is transferred in the direction of the arrow 
Data is exchanged between two locations 
If and only if 
Test for equality between two values 
Logical AND 
Multiplication 
Addition 
Complement of x 
Exclusive OR 
New carry not valid until second cycle after instruction execution completes 
Value of Carry during previous cycle is used 
New B register contents may not be valid until second cycle following execution of this instruction 
lOS executes in one cycle. I/O register shifting continues for B more cycles. 

Volume 2 
Rev. A. Update 5 

7-79 



Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set 

OBJECT CODE STATUS 

TYPE MNEMONIC OPERAND(S) MM75 MM77 
CLOCK 

OPERATION PERFORMED 
CYCLES C SKIP 

MM76 MM78 

lAM 1A 1 [A)- [R) <0,3> A [A) 
Input least significant 4 bits of the R port, ANOed with A, to A. 

IBM 1B 1 [A)- [R) <4,7> A [A) 
, Input most significant 4 bits of the R port. ANOed with A, to A. 

lOA 7B 1 [A)new - [AB)old A [R)old <0,3> 

[AB)new - [A)old 

[R)new < 0,3> - [AB)new 
Simultaneously input the least significant 4 bits of the R port, ANOed with the 
A buffer, to A while transferring the contents of A to the least significant 4 
bits of the R port via the A buffer. 

11 4A 1 [A)- [P) <0,3> 
Input least significant 4 bits of the P port to A. 

11SK 60 1 X [A) - [P) <0,3> + [A) 
Input and add least significant 4 bits of the P port to A. Skip if no overflow. 

Serial 

lOS 40 20 1···· ~3~ O~ 
Shift the Serial I/O register left 4 times. Shifting takes 8 cycles after lOS ex-

g ecutes. 

12C 4B 78 1 [A)- [P) <4,7> 
Input the complement of the most significant 4 bits of the P port to A. 

IX 72 1 [X)- [XB) A [R) <4,7> 
Input most significant 4 bits of the R port, ANOed with the X register buffer, 
to the X register. 

OA 18 1 [R) <0,3> - [A) 
Output Accumulator to least significant 4 bits of the R port. 

OB 19 1 [R) <4,7> -[A) 
Output Accumulator to most significant 4 bits of the R port. 

OX 73 1 [XB)-[X) 

[R) <4,7> - [X B) 
Output X register to 4 most significant bits of the R port via the X buffer. 

ROS 1 01xx 71 1 [0) <[B) <0,3> > - 0 
Reset the discrete I/O pin selected by the least significant 4 bits of B when 

B·<4,5> = 112 (MM75, MM76) or B <6> = 0 (MM77, MM78). If 
B <0,3> = 10102, reset INn flip-flop. If B <0,3> = 10112, reset INTO 
flip-flop. 



Copyright © 1979 McGraw-Hili, Inc. 

Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OBJECT CODE 
CLOCK 

STATUS 
TYPE MNEMONIC OPERAND(S) MM75 MM77 CYCLES 

OPERATION PERFORMED 

MM76 MM78 
C SKIP 

SEG1 OE 1 [R] <0,3> +- [DM] < [A]-S, ([A]-S) +3 > 
Output the lower order 4 bits of the Decode Matrix entry selected by A to the 
least significant 4 bits of the R port. B must point to the complement of A. 
(Except MM76C). 

SEG1 OE 1 [R] +- [DM]· < [A] -S, ([A] -S) + 7 > 
Output to the R port the S bits selected from the Decode Matrix by the con-

-:a tents of the Accumulator. The B register must point to a RAM location that 
G 
:J holds the complement of A. A mask option allows the most significant bit of 
.~ R to display the current state of C. (MM76C only) c 
0 

SEG2 OF 1 [R] <4,7> +- [DM] < ([A]-S) +4, ([A]-S) +7 > g 
g Output the higher order 4 bits of the Decode Matrix entry selected by A to the 

most significant 4 bits of the R port. B must point to the complement of A. 
Also, a mask option allows R < 7 > to be set to the current state of C. (Except 
MM76C) 

SOS 1 OOxx 70 1 [D < [B] <0,3> > +-1 
Set the discrete 1/0 pin selected by the least significcmt 4 bits of B when 

B <4,5>= 112 (MM75, MM76) or B <6> = 0 (MM77, MM7Sl. If 

B < 0,3> = 10102, reset INT1 flip-flop. If B < 0,3> = 10112, reset INTO 
flip-flop. 

lAM 1A 1 [A] +- [R] <0,3> A [A] 
[UC] +- [LC] +- 0 iff modes 1-5 (16-bit counter modes) 
[UC] +- 0 iff modes 6-14 A [CR2] = 1 (S-bit counter modes) 
[LC] +- 0 iff modes 6-14 A [CR 1] = 1 (S-bit counter modes) 
Input least significant 4 bits of R port, ANDed with A, to A. Clear both coun-

g ters if configured as a single 16-bit counter. If configured as two a-bit coun-

a: ters clear Lower Counter register if CR 1 flip-flop set. and clear Upper Counter 
w register if CR2 set. I-
Z IBM 1B 1 [AJ- [RJ<4,7> A [AJ ~ 
0 [UC] +- [UDR] u 
u Input most significant 4 bits of R port, ANDed with A, to A. Load Upper 
co 

Counter register from Upper Data register. ,... 
:!E 11 4A 1 [A]- [LDR] <0,3> iff [CR1] = 1 A[CR2] = 0 
:!E 

[A]- [UDR] <0,3> iff [CR1] = 0 A [CR2] = 1 
If no 12C instruction has been executed, then load A with the least significant 
4 bits of the Lower Data register. If an 12C instruction has been executed, then 
load A with the least significant 4 bits of the Upper Data register. 



Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OBJECT CODE 
CLOCK 

STATUS 

TYPE MNEMONIC OPERAND(S) MM75 MM77 CYCLES C SKIP 
OPERATION PERFORMED 

MM76 MM78 

12C 4B 1 [A]- [LDR] <4,7> iff [CR1] = 1 A [CR2] = 0 
or 
[A]- [UDR] <4,7> iff [CR1] = 1 A [CR2] = 0 
[CR1]-O 
[CR2] - [CR2] 
[CR3]-O 

The first 12C instruction wi" load A with the most significant 4 bits of the 
Lower Data register. The second 12C wi" load A with the most significant 4 

~ bits' of the Upper Data register and exit counter mode. 
a! 
:::J SEG2 OF 1 Enables counter logic iff [CR 1]= 0 c 

" .. [LDR]- [LC] iff [CR1] = 0 c 
0 [UDR] - [UC] iff [CR1] = 0 . 
~ 

g Gate serial data input to UDR iff [CR1] = 0 
Gate serial data input to CR iff [CR 1] ~ 0 

a: 
w UC configured to count up iff [CR 1] ~ 0 
~ 
Z Disable UC enable input iff [CR 1] ~ 0 ..... 

.!.J o 
:J Disable UC preset iff [CR1] ~O 0 
t) LC configured to -quadrature mode iff [CR 1] ~ 0 
t) 
CD [CR3]-1 iff [CR1] = 0 ,... 

[CR1]-1 ~ 
~ First SEG2 executed enables counter logic, loads the Upper and Lower Data 

registers from their respective counters, gates the serial control/data input to 
the Upper Data register, and sets the CR 1 flip-flop. The second and a" subse-

. quent SEG2s executed (until counter mode terminates) cause the Upper 
Counter register to be configured as an up counter, the Lower Counter register 
to be configured for quadrature inputs, the serial control/data input to be 
gated to the Control register, the Upper Counter register enable input and 
preset control to be disabled, and the CR 1 and CR3 flip-flops to be set 
(MM76C only). 

L data2 500dd 500dd 1 [A]-[[B]]; 
> [B] <4,5> - [B] <4,5> + data2 a: 
0 w Load the Accumulator from the RAM location addressed by B. Exclusive-OR 
~ t) bits 4,5 of B with data2. w Z 
~ w X data2 510dd 5 11dd 1 [A]--[[Bll; 
>15 
a:u. [B] <4,5> - [B] <4,5> + data2. 
C(W Exchange the Accumulator with the RAM location addressed by B. Exclusive-~a: 

a: OR bits 4,5 of B with data2 
Q. 



TYPE 

;; 
~ !l 
o .: 
::E E 
w 0 

::E 2 
>w 
a:O 
<Z 
::E~ 
a:.~ 
Q.w 

a: 

w 
o 
z 
w 
a: 
w u.. 
w 
a: 
> a: 
o 
::E 
w 
::E 
> a: 
< c 
z o 
o 
w 
(/) 

w 
I­
< a: 
w 
Q. 
o 
w 
I­
< 
Q 
w 
::E 
~ 

MNEMONIC 

XDSK 

XNSK 

A 

AC 

ACSK 

ASK 

RB 

SB 

AISK 

DC 

EOB 

EOB 

LAI 

Copyright (Q 1979 McGraw-Hili, Inc. 

Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OPERAND(S) 

data2 

data2 

bit2 

bit2 

data4x 

data2 

data3 

data4 

I-:":":,O,:":B=:J:-EC_Tr-::C-:-O:-:D:-::E~~ CLOCK STATUS 

MM75 MM77 CYCLES C SKIP 
MM76 MM78 

5 11dd 5 10dd 

501dd 

42 

40 

41 

43 

1 01bb 

1 OObb 

6 eeee 

66,00 

1 11dd 

7 dddd 

501dd 

7E 

7C 

70 

201bb 

200bb 

6 eeee 

66,00 

01ddd 

4 dddd 

1'" 

1'" 

l' 

l' 

2 

1 

x 

x 

x 

x X 

X 

X 

X 

X 

x 

x 

OPERATION PERFORMED 

[A]- -[[Bll; 
[B] <0,3> - [B] <0,3>-1 
[B] <4,5> - [B] <4,5> EBdata2 

Exchange the Accumulator with the RAM location addressed by B. Ex­
clusive-OR bits 4,5 of B with data2. Decrement least significant 4 bits of B. 
Skip if least significant 4 bits of B equal 11112. 

[A]-- [[Bll; [B] <0,3>-1 
[B] <0,3> - [B] <4,5> - [B] <4,5> ~data2 

Exchange the Accumulator with the'RAM location addressed by B. Exclusive­
OR bits 4,5 of B with data2. Increment least significant 4 bits of B. Skip if 
least significant 4 bits of B equal 00002. 

[A] - [A] + [[Bll 
Add contents of RAM location addressed by B to Accumulator. 

[A] - [A] + [[Bll + C 
Add contents of RAM location addressed by B with Carry to Accumulator. 
Carry not valid for one additional cycle. 

[A] - [A] + [[Bll + C 
Add contents of RAM location addressed by B with Carry to Accumulator. 
Skip if no carry (overflow). Carry not valid for one additional cycle. 

[A] - [A] + [[Bll 
Add contents of RAM location addressed by B to Accumulator. 

[[Bll <bit2> - 0 
Reset bit bit2 of the RAM location addressed by B. 

[[Bll <bit2> -1 
Set bit bit2 of the RAM location addressed by B. 

[A] - [A] +data4 
Add immediate to Accumulator. Skip if no overflow. 

Same as AISK 6. Must always be followed by NOP as shown. 
[B] <4,5> - [B] <4,5> (f)data2 

Exclusive-OR data2 with most significant 2 bits of B. Skip until next non-LB, 
-EOB or -LBL instruction. 

[B] <4,6> - [B1<4,6> (f)data3 
Exclusive-OR data3 with most significant 3 bits of B. Skip until next non-LB, 
-EOB or -LBL instruction. 

[A]-data4 
Load Accumulator immediate. Skip until first non-LAI instruction. 



Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OBJECT CODE STATUS 
TYPE MNEMONIC OPERAND(S) MM75 MM77 

CLOCK OPERATION PERFORMED 

MM76 MM78 
CYCLES C SKIP 

w ... 
< LB data4 2 dddd 1 dddd 1 X [B] <0,3> - data4 a: 
~.~ [B] <4,5>-0 
o ! 

. Clear bits 4,5 of B and load least significant 4 bits with data4. Execute any w.: ..... EOB instruction that immediately follows. Skip until next non-LB,-EOB, or < 5 
e.g -LBL instruction. 
w 
~ 

~ 

T addr6 11 aa aaaa 2 [PC] <0,5> - addr6 
[PC] <6,9> - 11.102 iff PC is 38016 - 3FF16 

On-page transfer if executing from pages 0-13. If executing on pages 14-15, 
always jump to page 14. 

T addr6 11 aa aaaa 2 [PC] <0,5> - addr6 
[PC] <6,10> -111102 if PC is 78016 -7FF16 

Q. On-page transfer if executing on pages 0-29. If executing on pages 30-31, 
~ always jump to page 30. 
:::) .., 

TL addr10x 3 pppp 3 [PC]- addr1 Ox 
11 aa aaaa Transfer to an address on pages 0-13. 

TL addr10y 3 pppp 3 [PC] - addr1 Oy 

11aa aaaa Transfer to an address on pages 0-15. 
TLB addr10z 3 pppp 4 [PC] - addr1 Oz 

3 xxx x Transfer to an address on pages 16-29. 

11 aa aaaa 

Z RT 02 2F 2 [PC]~[SA] 

a: [SA] - [SB] (MM77, MM78 only) 
:::) ... Return from subroutine. w 

~ a: RTSK 03 2E 2 X [PC]-[SA] 
c [SA]- [SB] (MM77, MM78 only) Z 
< Return from subroutine and skip next instruction . 
...I 
...I TM addr6 10aa aaaa 2 [SA]- [PC] + 1 iff executing from 0 - 37F16 < u [PC] <0,5> - addr6 
w [PC] < 6,9 > - 11112 Z 
i= Subroutine call to primitive subroutine page (page 15) if executing on pages 
:::) 

0-13. Jump to primitive subroutine page if executing on pages 14-15. 0 
a: TM addr6 10aa aaaa 2 [SB] - [SA] iff executing from 0-77F 16 CD 
:::) [SA] +- [PC] + 1 iff executing from 0-77F 16 CI) 



Copyright © 1979 McGraw-Hili, Inc. 

Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OBJECT CODE 
CLOCK 

STATUS 
TYPE MNEMONIC OPERAND(S) MM75 MM77 

CYCLES C SKIP 
OPERATION PERFORMED 

MM76 MM78 

[PC] <0,5> -addr6 
Z [PC] < 6, 1 0> 111112 II: 
~ Subroutine call to primitive subroutine page (page 31) if executing on pages I-
w 0-29. Jump to primitive subroutine page if executing on pages 30-31. II: 
c_ TMl addr10x 3 pppp 3 [SA] - [PC] + 1 
Z"C 10aa aaaa [PC] - addr1 Ox < CD :s 

Subroutine call to pages 0-13 . ..J C 
..J '';::: 
< C TMl addr10y 3 pppp 3 [SB]-[SA] CJ 0 
w g 10aa aaaa [SA] - [PC] + 1 
z [PC] - addr1 Oy 
~ 
~ Subroutine call to pages 0-15. 
0 TMlB addr10z 30 4 [SB]-[SA] II: 
a:I 3 pppp [SA] - [PC] + 1 ~ 
(I) 10aa aaaa [PC]- addr10z 

Subroutine call to pages 16-29. 

DINO 07 1 X [INTO]-1 
Skip next instruction if INTO = O. Set INTO = 1. 

DIN1 06 1 X [INT1]-1 

Skip next instruction if INT1 = O. Set INT1 = 1. 
INTOH 03 1 X Skip next instruction if INTO = 1. 
INTOl 04 1 X Skip next instruction if INTO = O. 

Z INT1H 05 1 X Skip next instruction if INT1 = 1. 0 
~ INT1l 04 1 X Skip next instruction if INT1 = O. 
C SKBF bit2 o 10bb 210bb 1 X Skip if bit of RAM location addressed by B and selected by bit2 is O. Z 
0 SKISl o 10xx 1 X Skip if discrete input selected by least significant 4 bits of B is O. 
CJ 
Z B <4,5> must be 112. 
0 SKISl 01 1 X Skip if discrete input selected by least significant 4 bits of B is O. B < 6 > must 
:J: be O. (.) 
Z 8 <0,3> = 10102 selects INT1 flip-flop. < 
II: 8 < 0,3> = 10112 selects INTO flip-flop. a:I 

SKMEA 47 7F 1 X Skip if A equals contents of RAM location addressed by B. 
SKNC 01 02 1" X Skip if Carry = O. 
TAB 2C 3+[A] X Table lookup based on contents of A. Executes the next instruction, which must 

be a NOP, TM, T, RT, RTSK, SC, RC, SB, RB, SOS, ROS, OX, IX, or TL. Then 
skips the next [A] + 1 instructions. 
[A]- 11112 



Table 1-13. A Summary of the PPS4/1 Microcomputer Instruction Set (Continued) 

OBJECT CODE 
CLOCK 

STATUS 

TYPE MNEMONIC OPERAND(S) MM75 MM77 CYCLES C SKIP 
OPERATION PERFORMED 

MM76 MM78 

a:w COM 45 77 1 [A]-[A] 
WI- Complement Accumulator. I-~ 
~a: DC 66,00 66,00 2 X [A] -[A] + 6 CJW 
wQ. Decimal correct Accumulator by adding 6. a:O 

LBA 44 76 1··· [B] <0,3> - [A] 
Load least significant 4 bits of B from A. 

W LSA 4C 1 [S]-[A] 
> Load S register from A. 0 
::E LXA 75 1 [Xl-rAJ 
a: Load X register from A: W 
I- SAG 07 1 [B] <4,6> 0112 (for next instruction only) U) 

(; Causes B to address roW' 3 for the next instruction only. The contents of Bare 
W 
a: not modified. 
Ii: 

XAB 46 7A 1··· [B]--[A] W 
I- Exchange B with A. U) 

(; XAS 4E 74 1 [S]--[A] 
W 
a: Exchange S with A: 

XAX 79 1 [X]-"-[A] 
Exchange X with A. 

U) RC 00 05 1 0 [C]-O 
::l Reset Carry. I-
~ SC DC 06 1 1 [C]-1 
I-

.U) Set Carry. 

NOP 00 00 1 No operation. 



@ 

1: 
C) 

.~ 

c. 
o 

U 

MNEMONIC 

A 
AC 
ACSK 
AISK data4x 
ASK 

COM 

DC 
DINO 
DIN1 

EOB data2 
EOB data3 

lAM 
IBM 
INTOL 
INTOH 
INT1L 
INT1H 
lOA 
lOS 
IX 
11 
11SK 
12C 

L data2 
LAI data4 
LB data4 
LBA 
LSA 
LXA 

NOP 

OA 
OB 
OX 
RB bit2 
RC 

MM76, MM76 
OBJECT CODE 

42 
40 
41 

6 eeee 
43 

45 

66,00 
07 
06 

1 11dd 

1A 
1B 
04 

05 

40 

4A 

4B 

500dd 
7 dddd 
2 dddd 

44 
4C 

00 

18 
19 

1 01bb 
00 

Table 1-14. PPS4/1 Instruction Mnemonics 

MM77, MM78 
BYTES CLOCK MNEMONIC 

MM76, MM76 
OBJECT CODE OBJECT CODE 

7E 1 1 ROS 1 01xx 
7C 1 l' RT 02 
70 1 l' RTSK 03 

6 eeee 1 1 SAG 
SB bit2 100bb 

77 1 1 SC OC 

66,00 2 2 
SEG1 OE 
SEG2 OF 

1 1 
SKBF bit2 o 10bb 

1 1 
SKISL o 10xx 

1 1 SKMEA 47 
o 1ddd 1 1 SKNC 01 

1 1 SOS 1 OOxx 

1 1 T addr6 11 aa aaaa 
1 1 TAB 

03 1 1 TL addrl0x 3 pppp 
04 1 1 11 aa aaaa 

1 1 TL addrl0y 
7B 1 1 
20 1 1···· TLB addrl0z 
72 1 1 

1 1 
60 1 1 TM addr6 10aa aaaa 
78 1 1 TML addrl0x 3 pppp 

500dd 1 1 10aa aaaa 

4 dddd 1 1 TML addrl0y 

1 dddd 1 1 
76 1 1'" TMLB addrl0z 

1 1 
75 1 1 

00 1 1 X data2 510dd 
XAB 46 

1 1 XAS 4E 
1 1 XAX 

73 1 1 XDSK data2 511dd 
201bb 1 1 XNSK data2 501dd 

05 1 1 

1-75 

MM77, MM78 
BYTES CLOCK 

OBJECT CODE 

71 
2F 
2E 

07 
200bb 

06 

210bb 
01 
7F 
02 
70 

l1aa aaaa 
2C 

3 pppp 
11 aa aaaa 

3 pppp 
3 xxx x 

11 aa aaaa 
10aa 110110 

3 pppp 
10aa aaaa 

30 

3 PPPP 
10aa aaaa 

5 lldd 
7A 
74 
79 

510dd 
501dd 

1 1 
1 1 
1 2 

1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1" 
1 1 

1 2 
1 3 + [AI 
2 3 

2 3 

3 4 

1 2 
2 3 

2 3 

3 4 

1 1 
1 1'" 
1 1 
1 1 
1 1'" 
1 1'" 

Volume 2 
Rev. A, Update 5 

7-79 



Table 1-15. PPS4/1 MM75, MM76 Instruction Object Codes 

OBJECT CODE MNEMONIC OBJECT CODE MNEMONIC 

00 NOP 42 A 

01 SKNC 43 ASK 

02 RT 44 LBA 
03 RTSK 45 COM 

04 INTOL 46 XAB 

05 INT1H 47 SKMEA 

06 DIN1 48,49 not used 
07 DINO 4A 11 

08 -OB SKISL or 4B 12C 

SKBF 0 - SKBF 3 4C LSA 
OC SC 40 lOS 
00 RC 4E XAS 
OE SEG1 4F not used 
OF SEG2 

50 - 53 L 0 - L 3 
10 - 13 SOS or 54 - 57 XNSK 0 - XNSK 3 

SB 0 - SB 3 58 - 5B X 0 -X 3 
14 - 17 ROS or 5C - 5F XDSK 0 - XDSK 3 

RB 0 - RB 3 
60 - 6F AISK 0 - AISK F 

18 OA 66,00 DC,NOP 
19 OB 70 - 7F LAI 0 - LAI F 
1A lAM 

80 - 8F TM 3F - TM 30 
1B IBM 

90 - 9F TM 2F - TM 20 
1C - 1 F EOB 0 - EOB 3 AO -AF TM'1F - TM 10 
20 - 2F LB 0 - LB F BO - BF TM OF - TM 00 

3 pppp 10aa aaaa TML pp ppaa aaaa 
CO - CF T 3F - T 30 

3 pppp 11aa aaaa TL pp ppaa aaaa 
DO - OF T 2F - T 20 

40 AC EO - EF T1F-T10 
41 ACSK FO - FF T OF - TOO 

1-76 



iQ) 

:E 
Cl 
.~ 

0.. 
o 
U 

OBJECT CODE 

00 
01 
02 
03 

04 
05 
06 
07 

08 - OF 
10 - 1F 
20 - 23 
24 - 27 

28 - 2B 
2C 
20 
2E 
2F 

30, 3 pppp, 10aa aaaa 
30, 3 pppp, 11 aa aaaa 

3 pppp, 1 Oaa aaaa 
3 pppp, 11 aa aaaa 

40 -4F 

50 - 53 
54 - 57 
58 - 5B 

5C - 5F 
60 

Table 1-16. PPS4/1 MM77, MM78 Instruction Object Codes 

MNEMONIC OBJECT CODE 

NOP 61 - 6F 
SKISL 66,00 
SKNC 

70 
INTOH 

71 
INT1L 72 

RC 73 
SC 

74 
SAG 

75 
EOB 0 - EOB 7 76 

LB 0 - LB F 77 
SB 0 - SB 3 

78 
RB 0 - RB 3 

79 
SKBF 0 - SKBF 3 7A 

TAB 7B 
lOS 

7C 
RTSK 

RT 
70 
7E 

TMLB 01 pp ppaa aaaa 7F 
TLB 01 pp ppaa aaaa 

80 - 8F 
TML OOpp ppaa aaaa 

90 - 9F 
TL OOpp ppaa aaaa 

AO - AF 
LAI 0 - LAI F BO - BF 

L 0 - L 3 
XNSK 0 - XNSK 3 

CO - CF 
DO - OF 

XDSK 0 - XDSK 3 
EO - EF 

X 0 - X 3 FO - FF 
11SK 

1-77 

MNEMONIC 

AISK 1 - AISK F 
DC 

SOS 
ROS 
IX 
OX 

XAS 
LXA 
LBA 
COM 

12C 
XAX 
XAB 
lOA 

AC 
ACSK 

A 
SKMEA 

TM 3F - TM 30 
TM 2F - TM 20 
TM 1F - TM 10 
TM OF - TM 00 

T 3F - T 30 
T 2F - T 20 
T1F-T10 
T OF - TOO 

Volume 2 
Rev. A. Update 5 

7-79 



1-78 



DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• TMS1000 series microcomputer 
• COP420/421 microcomputers 
• COP402/COP402M ROM less microcomputers 
• PPS4/1 Series Microcomputers 

1-01 

Volume 2 
Rev. A, Update 5 

7-79 



'TMS 1000/1200 AND TMS 1100/1300 

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE·AIR TEMPERATURE RANGE 
(UNLESS OTHERWISE NOTED)* 

Voltage applied to any device terminal (see Note 1) 
Supply voltage, VDD 
Data input voltage 
Clock input voltage . 
Average output current (see Note 2): 0 outputs 

R outputs 
Peak output current: 0 outputs . 

R outputs . 
Continuous power dissipation: TMS 1000/1100 N L . 

TMS 1200/1300 N L . 
Operating free-air temperature range 
Storage temperature range. 

. -20V 
"":'20 V to 0.3 V 
-20 V to 0.3 V 
-20 V to 0.3 V 

-24mA 
-14mA 
-48mA 
-28mA 
400mW 
600mW 

O°C to 70°C 
-55°C to 150°C 

·Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to thll' device. This is a stress rating only 
and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" section of this specification is not Implied. Exposure to absolute-maximum-rated conditions for extend~d periods may affect 

device reliability. 

RECOMMENDED OPERATING CONDITIONS 

PARAMETER MIN NOM MAX UNIT 

Supply voltage. VDD (see Note 3) -14 -15 -17.5 V 

High-level input voltage, VIH (see Note 4) 
K -1.3 -1 0.3 

INIT or Clock 
V 

-1.3 -1 0.3 

Low-level input voltage, VIL (see Note 4) 
K VDD -4 

INIT or Clock 
V 

VDD -15 -8 

Clock cycle time, tclcP) 2.5 3 10 J,lS 

Instruction cycle time, tc 15 60 J,lS 

Pulse width, clock high, tw(<t>H) 1 J,lS 

Pulse width, clock low, twlcbLl 1 /lS 

Sum of rise time and pulse width, clock high, tr + twlthHI 1.25 /lS 

Sum of fall time and pulse width, clock low. tf + twlcbLl 1.25 /lS 

Oscillator frequency. fosc 100 400 kHz 

Operating free-air temperature. T A 0 70 °c 

NOTES: 1. Unless otherwise noted. all voltages are with respect to VSS. 
2. These average values apply for any 1 OO-ms period. 
3. Ripple must not exceed 0.2 volts peak-to-peak in the operating frequency range. 
4. The algebraic convention where the most-positive (least-negative) limit is designated as maximum is used in this specification 

for logic voltage levels only. 

VSS 

~ .... ~_-_______ V:~'~I 
I 

-J 
I 

VDD J1-~ ~ 
-+I I--tf -+/ j+-tr 

/4- twlc,'lL) -+/ j.- twlr,'>H) 

IIC"~----- tclc;» -----~~I 
NOTE: Timing points are90% (high) and 10% (low), 

EXTERNALLY DRIVEN CLOCK INPUT WAVEFORM 

Data sheets on pages '-02 through '-07 are reproduced by permission of Texas Instruments Incorporated. 

1-D2 



COP402/COP402M 

VOUT (VOLTS) DEVICE 1 

Output Sink Current 

< ..s 

~ 

4 

VOUT (YOLTS) DEVICE 2h 

High Drive Source Current 

18~r-T-~~~~~~-r~ 

1& I-+-+--+---+--+--.t--M+-A-X+-V-t.·..:, 

14~+--+-+-4-4--+-~-~~~+--

12 I-+-
Y
""

O
-
U
-+
T 

-. 2~.0'-Y-vf-""",,"+--+-+--I 

1 10~~~+-~~-+--+-~-+-.... ~v 
E 8 V 

.. ' 

.. , .... I--+-

5.5 

YCC (VOLTS) 

6.5 

DEVICE4 

LED Output Direct LED Drive 

< ..s 

D. 4 

D.3 

~ 0.2 

1 

~ 
'\ 

1\ MAX 

MIN "\ 
D~ '\ 

YOUT (YOLTS) OEVICEZ 

Depletion Load OFF Source Current 

< ..s .... 
:> 
0 

YOUT (YOLTS) DEYICEl 

Push· Pull Source Current 

15 

< 10 ..s .... 
0 

2 3 4 

VOUT (YOL TS) DEYICE 5 

TRI·STAT~ Output Source Current 

Output Characteristics 

1-017 

1.15 

1.5 

< 1.25 

..s 1.0 .... 
0 

0.15 

0.5 

0.25 

VOUT (VOLTS) OEVICE 2 

Standard Output Source Current 

20 

11 

16 

14 

< 12 
..s .... 10 
:> 
0 

8 

1.5 

< 1.0 ..s 
.... 
:> 
0 

0.5 

/1\. I I 
17 \. VCC' 6.3V (MAX) I I 

I I 
..... \. VCC· 4.5V (MAX) 

1\ .... .....- 1 1 
\ \ VCC· 4.1 V (MIN) , V I I 

\ VCC· B.lV (MIN) 

t-- X / I I 

"" ~ ~~ _'-1. I 

VOUT (VOLTS) OEVICE 4 

LED Output Source Current 

Input Load Source Current 

Volume 2 
Rev. A, Update 5 

7-79 



PPS4/1 MM75 

SPECI FICATIONS 

OPERATING CHARACTERISTICS 

Supply Voltage: 

VOO = 15 Volts ±.S% 
(Logic "1" = most negative voltage VIL and VOL') 

VSS = 0 Volts (Gnd.) 
(Logic "0" = most positive voltage VIH and VOH.) 

System Operating Frequencies: 

BO kHz ±.SO% with external resistor 

Device Power Consumption: 

7S mw, typical 

Input Capacitance: 

<S pf 

Input Leakage: 

<10 ",a 

LIMITS (VSS = 0) 

INPUT/OUTPUT SYMBOL MIN TYP MAX 

Supply Current (Average) 100 Sma B ma 
for VOO 

Discrete I/O's VIH -1.0V 

01/00-01/0 B VIL -4.2V 

01/00·5 RON SOO ohms 

01/0 G-B RON 400 ohms 

Channel 1 Input VIH -1.SV 

P11-P14 V IL -4.2V 

I/O Channel A VIH -1.SV 

RI/01-RI/04 VIL -4.2V 

RON 2S0 ohms 

I/O Channel B VIH -1.SV 

RI/OS·RI/OB VIL ·4.2V 

RON 2S0 ohms 

INTO VIH -1.SV 

V IL -4.2V 

Clock VO H -1.0V 

A VOL -10.0V 

VC VIH 

VIL 

PO VIH -2.0V 

VIL -6.0V 

'State established by </l2 (minimum impedance after </l4) . 
•• Same as above except </l4 minimum at </l2 of next cycle. 

Open Drain Driver Leakage (R OFF): 

-:::::10 ",a at ·30 Volts 

Operating Ambient Temperature (TA): 

OOC to 70 0 C (T A = 2SoC unless otherwise specified.) 

Storage Temperature: 

·SSoC to 1200 C 

ABSOLUTE MAXIMUM VOLTAGE RATINGS 
(with respect to VSS) 

Maximum negative voltage on any pin -30 volts. 

Maximum positive voltage on any pin +0.3 volts. 

LIMITS (VSS = +5V) TIMING 
(SAMPLE/ . TEST 

MIN TYP MAX GOOD) CONDITIONS 

Sma B ma VOO = ·1S.7SV 
T = 2So C 

+4.0V </l34 

+O.BV 

SOO ohms I </l2' 3.0 ma max. 
400 ohms I 

+3.SV 
</l1 

+O.BV 

+3.SV 
</l3 

+O.BV 

2S0 ohms 02' 6.0 ma max. 

+3.SV 
</l3 

+O.BV 

2S0 ohms </>2' 6.0 ma max. 

+3.SV 
</l3 

+O.BV 

+4.0V 
CL = SO pf (max) 

-S.OV 
-S.OV 

S6K ±.S% 

+3.0V Special circuit 
-1.0V 

Data sheets on pages 1-018 through 1-022 are reproduced by permission of Rockwell International. 

1-018 



PPS4/1 MM76 and MM76E 

SPECI FICATIONS 

OPERATING CHARACTERISTICS 

Supply Voltage: 

VDD· 15 Volts ±.5% 
(Logic "1" a most negative voltage VIL and VOL') 

VSS a 0 Volts (Gnd.) . 
(Logic "0" = most positive voltage VIH and VOH') 

System Operating Frequencies: 

80 kHz ±.50"10 with external resistor 

Device Power Consumption: 

75 mw, typical 

Input Capacitance: 

<5 pf 

Input Leakage: 

<10jla 

Open Drain Driver Leakage (R OF F): 

~10 jla at ·30 Volts 

Operating Ambient Temperature (TA): 

OOC to 700 C (TA = 250 C unless otherwise specified.) 

Storage Temperature: 

·550 C to 1200 C 

ABSOLUTE MAXIMUM VOLTAGE RATINGF 
(with respect to VSSI 

Maximum negative voltage on any pin ·30 volts. 

Maximum positive voltage on any pin +0.3 volts. 

LIMITS (VSS· 01 LIMITS (VSS· +SVI TIMING 
1---------+---------/ (SAMPLE/ 

INPUT/OUTPUT SYMBOL MIN TYP MAX MIN TYP MAX GOODI 

Supply Current (Average) 100 ·Sma B m. Sma 8ma 
for voe 
Discr.tel/O', VIH ·1.0V +4.QV .34 

01/00-01/09 VIL ·4.2V +o.SV 

Ol/Oo-S ROtJ 500 ohms 500 ohms 

01/06·9 RON 400 ohms 400 ohms 
• 2' 

Channel 1 Input VIH ·1.SV +3.5V .1 
PI'.PI4 VIL ·4.2V +o.ev 

Channel 2 Input VIH ·1.SV +3.SV .3 
PIS·PIB VIL ·4.2V +O.SV 

I/O Chlnnel A VIH ·1.5V .3 
R1/01·R1/04 VIL ·4.2V +O.SV 

RON 250 ohms 250 ohms .2' 

I/O Channel B VIH ·1.5V +3.5V .3 
RI/OS·RI/OB VIL ·4.2V +O.8V 

RON 250 ohms 250 ohms f2' 

DATA I VIH ·1.0V +4.0V .4 

VIL ·4.2V +O.SV 

DATA 0 RON 500 ohms 500 ohms f.·· 
INTO VIH ·1.5V +3.SV .3 

VIL ·4.2V +o.av 

INTI VIH ·1.5V +3.SV 
.1 

VIL ·4.2V +O,SV 

Clock VOH ·1.0V +4.0V 

A. BP.IBI VOL ·10.0V ·5.0V 
·5.0V 

EXCLK" , VIH ·1.5V +3.5V 

V'L ·9.0V .4.0V ·4.0V 

CLK IN VIH ·1.0V +4.0V 

VIL ·10.0V ·5.0V 

Shift Clock VIH ·1.0V .34 
Clock VIL ·4.2V +O.8V 

RON 500 ohms 500 ohms • 4" 

VC VIH 

VIL 

VIH ·2.0V +3.0V 

V'L 6.0V ·1.0V 

·State established by.2 (minimum impedance after .4) . 
• ·Same as above e"cept (/)4 minimum at (/)2 of nt"t cycle . 

••• Requires selected resistor at VC. Contact Rockwell for specific reQuirements when using e"ternal oscillator. 

1-019 

TEST 
CONDITIONS 

VOO· ·15.75V 
T - 250C 

3.0ml m.~ . 

6.0 ma max, 

6.0mamax. 

3.0mama'" 

CL • SO pf (max) 

F max.· 80 kHz 

2.0 m. rna" . 

56K i.5% 

Special circuit 

Volume 2 
Rev, A, Update 5 

7-79 



PPS4/1 MM76C 
SPECIFICATIONS 

Input Capacitance: 

52-PIN IN-LINE SOCKET <5pf 

Burndy PIN: DILE-52P1 Input Leakage: 

Burndy Corp_, 931 S_ Douglas <1O lla 

EI Segundo, Calif. 90245 Open Drain Driver Leakage (R OFF): 
OPERATING CHARACTERISTICS ':::10 Ila at -30 Volts 

VDD = -15 Volts ±5% Operating Ambient Temperature (TA): 
(Logic "1" = most negative voltage VIL and VOL) OoC to 70°C (T A = 25°C unless otherwise specified) 

VSS = 0 Volts (GND) Storage Temperature: 
(Logic "0" = most positive voltage VIH and VOH) _55°C to 120°C 

System Operating Frequencies: ABSOLUTE MAXIMUM VOL TAGE RATINGS 
89 kHz ±25% (internal clock) (with respect to VSS) 

Device Power Consumption: Maximum negative voltage on any pin -30 volts_ 
200 mw, typical Maximum positive voltage on any pin +0_3 volt. 

Limits (VSS = 0) Limits (VSS = +5V) Timing -- (Sample/ Test 
Input/Output Symbol Min Typ Max Min Typ Max Good) Conditions 

Supply Current (Average) 100 12 ma VDD = -15.75V 
for VOD T = 250C 

Discrete I/O's VIH -1.0V +4.0V 03&04 
01/00-01/09 VIL -4.2V +O.BV 

f--------
01/00-5 RON 500 ohms 500 ohms 

02' 3.0 ma max. 
01/06-9 RON 400 ohms 400 ohms 

Channel 1 Input VIH -1.5V +3.5V 01 
P11-P14 VIL -4.2V +O.BV 

Channel 2 Input VIH -1.5V +3.5V 
PI5-PIB VIL -4.2V +O.BV 03 

I/O Channel A VIH -1.5V +3.5V 
R1/01-FW04 VIL -4.2V +O.BV 03 

RON 250 ohms 250 ohms (]2' 6.0 ma max. 
f----- - -

I/O Channel B VIH -1.5V +3.5V 
RI/05-RI/OB VIL -4.2V +O.BV 03 

RON 250 ohms 250 ohms 02' 6.0 ma max. 
1----:-------- .. 

-1.0V DATAl VIH +4.0V 
VIL -4.2V +O.BV 04 

~- ---
500 ohms 500 ohms 04" 3.0 ma max. RON 

1----------------- -~----- f--:-'=-c- ---
INTO VIH -1.5V +3.5V 03 

VIL -4.2V +O.BV 

INT1 VIH -1.5V +3.5V 
VIL -4.2V +O.BV 01 

f----- . -~--.-- ------------ r--
Clock VOH -1.0V +4.0V -5.0V CL" 50 pf (max) 

A, BP, (B) VOL -10.0V -5.0V 

XPWR VIH VSS VSS 

VIL VDD VDD 

XTLlN, XTLOUT VIH Crystal 
VIL 3.579 MHz 

Shift Clock VIH -1.0V +4.0V 03&04 
CLOCK VIL -4.2V +O.BV 

RON 500 ohms 500 ohms 04' , 2.0 ma max. 

PO VIH -2.0V +3.0V 
VIL -6.0V -1.0V Special circuit 

PC1 VIH -1.5V +4.5V DC 
VIL -4.2V +O.BV 

-- .-
PC2 VIH -1.5V +4.5V DC 

VIL -4.2V +O.BV 

'cAaL:oWER CARRY RON 500 ohms DC 
OUT 500 ohms 

CA16/0 UPPER CARRY' RON 500 ohms 
03&04 SERIAL DATA OUT 500 ohms ,..------- -.--- .- -

SYEV SERIAL EVENT VIH -1.5V +3.5V 
03 INPUT VLL -4.2V +O.BV 

SCC/O SHIFT CLOCK VIH -1.0V +4.0V 
CONTROL/DATA VIL -10.0V +O.BV 03&04 

C/DI CONTROL/DATA V IH 
-1.0V +4.0V 

03 INPUT VIL -10.0V +O.BV 

ENABL VIH -1.5V +3.5V 
DC 

VIL -4.2V +O.BV 

'State established by 02 (minimum impedance after 04) 
"Same as above except 04 minimum at 02 of next cycle. 

1-D20 



PPS4/1 MM76L and MM76EL 

SPECI F ICATIONS 

OPERATING CHARACTERISTICS 

Supply Voltage: 

VDD = -8.5 Volts -2.5. +2.0 Volts 
(Logic "1" = most negative voltage VIL and VOL.) 

VSS = 0 Volts (Gnd.) 
(Logic "0" = most positive voltage VIH and VOH.) 

System Operating Frequencies: 

(1) Internal: 100 kHz N~mlnal at V DD = ·8.5V 

(2) External 800 kHz Crystal: 100 kHz 

Input Capacitance: <5 pf 

Input Leakage: <10 iJa 

Open Drain Driver Leakage (R OFF): ~10iJa at -30 Volts 

Operating Ambient Temperature (T A) 

OOC to +700 C (Commercial): MM76L and MM76EL 
.400 C to +850 C (Industrial): MM76L·2 and MM76EL·2 

Storage Temperature: -550 C to 1200 C 

ABSOLUTE MAXIMUM VOLTAGE RATINGS 
(with respect to VSS) 

Maximum negative voltage on any pm -30 volts. 

Device Power Consumption; 15 mw. typical Maximum positive voltage on any pin +0.3 volts. 

TEST CONDITIONS' VDD = ·8.5V, T A = 25°C 

LIMITS (VSS = 0) 

INPUT/OUTPUT SYMBOL MIN TYP MAX 

Supply Current 100 1.75 ma 3 ma 
(Average) for VDD 
Discrete 1I0's VIH -1.0V 

01/00·9 VIL -4.2V 

RON 100 ohms 
Channell Input VIH -1.5V 

Pll-P14 VIL -4.2V 

Channel 2 Input VIH -1.5V 
P15-P18 VIL -4.2V 

I/O Channel A VIH -1.5V 
R101-R104 VIL -4.2V 

RON 250 ohms 
I/O Channel B VIH -1.5V 

R105-R108 VIL -4.2V 

RON 250 ohms 
DATA I VIH -1.0V 

VIL ~4.2V 

DATA 0 RON 500 ohms 
INTO VIH -1.5V 

VIL -4.2V 

INTl VIH -1.5V 

VIL -4.2V 

Clock VOH -1.0V 
A. BP. (8) VOL -6.0V 

XTLIN VIH -1.5V 

VIL -6.0V 

Shift Clock VIH -1.0V 

VIL -4.2V 

RON 500 ohms 
VC VIH 

VIL 

PO VIH -1.5V 

VIL -4.2V 

'State established by 92 (minimum impedance after 941. 
• 'Same as above except 04 minimum at 02 of next cycle. 

NOTES: 

MASK PROGRAMMED PULL·UP RESISTORS ON OUTPUTS 

Resistor pull·ups are available as an option on all RIO and 0110 
outputs. These pull·ups are connected to VDD. The following 
values ± 25% are available: 3K. 5K. 10K. 15K. 25K. and Open 
Circuit. 

LIMITS (VSS = +5V) TIMING 
(SAMPLE/ TEST 

MIN TYP MAX GOOD) CONDITIONS 

1.75 ma 3 ma 

+4.0V 934 
+0.8V 

100 ohms 92' 10.0 ma max. 
+3.5V 

91 
+0.8V 

+3.5V 
93 

+0.8V 

+3.5V 
04 

+0.8V 

250 ohms 92' 6.0 ma max. 
+3.5V 

94 
+0.8V 

250 ohms 92' 6.0 ma max. 
+4.0V 

~)4 
+0.8V 

500 ohms 94" 3.0 ma max. 
+3.5V 

93 
+0.8V 

+3.5V 
91 

+0.8V 

+4.0V CL = 50 pf (max) 

-1.0V 

+3.5V 
-4.0V 

-1.0V 

+4.0V 
934 

+0.8V 

500 ohms 94" 2.0 ma max. 
V = 11.0V max. 

+3.0V Special Circuit 
-1.0V 

PULL·UPS ON INPUTS 

MOS FET Pull·ups are also available on'the PI. INT. and DATA I 
inputs. The connection of this pull·up is optional. The output 
current IS 50 iJa ± 25 iJa with the input grounded and VDD at 
-8.5 volts. 

1-021 

Volume 2 
Rev. A, Update 5 

7-79 



PP24/1 MM77 and MM78 

SPECI FICATIONS 

OPERATING CHARACTERISTICS 

Supply Voltage: 

VDD = 15 Volts ±.5% 
(Logic "I" = most negative voltage V,L and VOL') 

VSS = 0 Volts (Gnd.) 
(Logic "0" = most positive voltage V,H and VOH') 

System Operating Frequencies: 

80 kHz ±.50% with external resistor 

Device Power Consumption: 

75 mw, typical 

I nput Capacitance: 

<5 pf 

Input Leakage: 

< lO l'a 

LIMITS IVSS • 01 

FUNCTION SYMBOL MIN TYP MAX 

Supply Current (Average) 100 Sma 
for VOO 

DIscrete I/O', V,H 

0110001/09 V,L 

RON 500 ohms 

Channel 1 Input . VIH ·1.5V 

V'L ·4.2V 

Channel 2 Input V,H 

PI5·PIB V,L ·4.2V 

1/0 Channel A V,H ·1.SV 

A 110 1· A 1/04 V'L 4.2V 

500 ohms 

I/O Channel X V,H 1.0V 

RI/OS·RI/OS V'L 4.2V 

500 ohms 

DATA I V,H 

~--
. VIL 

RON 

V,H 

V'L 4.2V 

V,H 

V 'L 
4.2V 

Clock VOH 

A. BP. 16/ ... VOL 10.0V 

EXCLK o •• V,H 1.5V 

V,L 7.0V 

eLK IN V,H 

V,L 10.0V 

Shift Clock V,H 1.0V 

Clock V,L ·4.2V 

500 ohms 

VC V,H 

V,L 

V,H 2.0V 

V,L 

·State established hy tb2 (mln,murn Impp.dance after tb4) . 
• ·Same as ahove except 414 minimum at ~2 of next cycle 

Open Drain Driver Leakage (R OFF): 

~1 0 I'a at ·30 Volts 

Operating Ambient Temperature (TA): 

DoC to 700 C (TA = 250 C unless otherwise specified.) 

Storage Temperature: 

·550 C to 1200 C 

ABSOLUTE MAXIMUM VOLTAGE RATINGS 
(with respect to VSS) 

Maximum negative voltage on any pin ·30 volts. 

Maximumpositive voltage on a ... y pin +0.3 volts. 

LIMITS IVSS • +5VI TIMING 
ISAMPLEI 

GOOOI MIN TYP MAX 

Sm. 8ma 

+O.SV 

500 ohms 

+3.SV 

+O.SV 

+3.SV 

+O.8V 

+3.SV 

+O.SV 

500 ohm 

+4.QV 

+O.8V 

500 ohm 

+O.SV 

+3.5V 

+O.8V 

·S.OV 

+3.5V 

2.0V 

·S.OV 

+4.0V 

+O.8V 

500 ohms 

+3.0V 

1.0V 

.3 

.2' 

.1 

.3 

.3 
• 2· 

Not sync. 
Must be 
stabl.at 
~1 and 2. 

.2' 

.4 

.4·· 

.3 

.1 

STRAP 

.34 

.4" 

TEST 
CONOITIONS 

VOO· ·1S.7SV 
T·2SoC 

3.0m. max, 

3.0 ma mal< . 

3.0mama., 

CL "'.50 pf (male.) 

F max:I 80kHl 

56K is% 

Special circuit 

••• ReQulre~ sel ... cted resistor at VC. Contact Rockwell for speCifiC reQulremen" when uSing external oscillator. 

1-022 



@ 

:E 
C) 

-.:: 
>­c­
o 
U 

THE MC6809 MICROPROCESSOR 

The MC6809 is an advanced processor within the 6800 family. It is a high performance machine, both faster and 
more powerful than its predecessor (the MC6800), yet it retains hardware and software compatibility (at the 
source code leven with existing MC6800 parts. 

The MC6809 has been developed with particular attention to the software needs of the user. Because it provides 
powerful new addressing modes and an extended register complement, the MC6809 is capable of supporting 
modern software techniques. such as modular programming. position independent (self-relative) coding. recursive pro­
gramming. reentrancy. and high level language generation. 

The MC6809 instruction set contains fewer instructions than the MC6800; some existing 6800 instructions have been 
combined into more general and powerful ones. leaving room for some new ones. Many of these new MC6809 instruc­
tions perform 16-bit manipulations. 

The MC6809 retains all the MC6800 addressing modes and adds some new ones. These modes include long 
relative branches, sixteen variations of indexed addressing, Program Counter relative modes, and extended in­
direct modes. This extension of existing modes retains the ease and familiarity of the 6800 language. but adds high 
performance capability where needed. 

Hardware improvements have also been implemented on the MC6809. On-chip clock facilities have been ad­
ded, an internal Schmitt trigger circuit has been incorporated to permit the use of an RC Reset Circuit, and the 
bus timing specifications have been improved to make the system easier to use. Some bus signals have been 
redefined, and new ones have been added, to permit the CPU to function in multiprocessor applications while 
still retaining compatibility with existing parts. In all. these enhancements. combined with the software enhance­
ments. simplify the use. increase the throughput. and make the CPU tremendously more capable than its predecessor. 

Motorola has clearly aimed the MC6809 at the vast consumer markets yet to come. as well as at existing markets that 
have already been penetrated by the MC6800. With the MC6809. Motorola has maximized the performance of its mid­
range 6800 family. and now offers an updated product line that spans the range from the low-end single-chip MC6805 
series through the expandable single-chip MC6801 and the mid-range MC6809. up to the newly introduced 16·bit pro' 
cessor. the MC68000. . 

The principal manufacturer is Motorola. The primary second source is AMI. and other firms that second source the 
MC6800 may also second source the MC6809. 

The MC6809 family is fabricated using N-channel, silicon gate, ion-implanted depletion load technology. It has 
TTL-level compatible inputs and outputs and operates from a single +5 volt power supply. All outputs are able 
to drive 130 pf (typically eight MaS devices) plus one standard TTL load (or four Low Power Schottky loads) at 
full rated bus speed. 

THE MC6809 CPU 
Figure 9-62 illustrates that part of our general microcomputer system that is implemented on the MC6809. 
Enhancements over the MC6800 include an on-chip clock. control logic for cycle-stealing DMA. and interrupt-priority 
arbitration. Not evident in this illustration is the enhanced register complement provided by the MC6809. 

9-175 

Volume 2 
Rev _ A, Update 5 

7-79 



Programmable 
Timers 

Interface Logic 

--Read Only 
Memory 

I/O Ports 
Interface Logic 

I/O Ports 

Figure 9-62. Logic of the MC6809 Microprocessor 

THE MC6809 PROGRAMMABLE REGISTERS 

Memory 

The MC6809 has an enriched set of registers as compared to the basic MC6800. The register complement con­
sists of two Accumulators, a Status register, two Index registers, two stack Pointers, a Program Counter and a 
Direct Page register. The mobility of data between the registers has been improved by the introduction. of a 
"Transfer Registers" instruction (TFRI. This instruction. and the indexing capability of four of the MC6809 registers. 
overcomes most of the weaknesses of the 6800 CPU identified at the beginning of this chapter. 

9-176 



.... 
~ 

.~ 
>. 
c. 
o 

U 

The following illustration shows the programmable registers provided by the MC6809. The registers that have been ad­
ded beyond the basic 6800 CPU complement are shown shaded. 

.. 
16 bits -

... 16 bits -

... 
16 bits -

... 16 bits -- 16 bits 

8 bits 

8 bits 

8 bits 

8 bits 

Accumulator A 

Accumulator B 

Index Register X 

Index Register Y 

Program Counter 

Stack Pointer S 

Stack Pointer U 

Status Register 

Direct Page Register DP 

These four registers function as Index Registers 

The Program Counter has limited indexing capabilities 

Sixteen-bit operations are implemented by concatenating the A and B Accumulators to form one double-preci­
sion Accumulator D as follows: 

ACCA ACCB 

~,--------~~~--------~~ 
ACCD 

This concatenated Accumulator is referred to as ACCD. 

Four registers (X, y, S, and U) pro"ide indexing capability. They permit a 16-bit Effective Address (EA) to be formed 
by the addition of an optional offset to the pre-loaded contents of the specified register. There are some differences in 
the ways in which these registers operate and can be used. . . 

Registers X and Y have been designated the Index registers. Both are capable of performing the same indexing 
functions as were implemented on the basIc MC6800. plus a great deal more. Full details are included below. in the 
memory addessing section. 

Two Stack Pointers have been provided, permitting the implementation of two independent Stacks. These 
Stacks are implemented in read/write memory at the locations pointed to by their respective Stack Pointers. These 
Stacks function on a "Last-In. First-Out" (LIFO) basis 

Stack Pointer S is a hardware stack pointer used by the processor to automatically save machine status and ac­
tive register contents during subroutines and interrupts in a manner similar to that of the MC6800. With the 
MC6809 .. however. the user has the option to save a subset only. or the entire register complement. 

Stack Pointer U is a User's Stack Pointer, controlled exclusively by the user's software. It facilitates the passage 
of arguments to and from subroutines. 

The Stack Pointers U and S feature the same indexing capabilities as the X and Y registers: thus. Sand U are essen­
tially enhanced index registers. (There are some differences when using the "Load Effective Address" (LEA) instruc­
tions. This will be discussed later.) 

The Program Counter points to the next instruction to be executed. Its capability has been enhanced such that Pro­
gram Counter relative addressing is now provided. This capability' effectivelyp~rmits the Program Counter to be 
used as an index register with limited capabilities. 

The Direct Page register (DPR) permits enhanced direct addressing by allowing a page (in addition to the base 
page) to be software relocated anywhere in memory during program execution. By way of contrast. the MC6800 
does not have a Direct Page register. All MC6800 instructions using the direct mode have their high-order address 
bytes fixed at 00 by hardware. This limits direct addreSSing in the MC6800 to the first 256 memory locations (0000 to 
OOFF). 

9-177 

Volume 2 
Rev. A, Update 5 

7-79 



D;,ec' Page Reg;'''' 9 
+ } Two-Byte Instruction 

! !: 
EA = xx + pp ----j.~I: =======Ilocatton Accessed 

Op-Code - pp 

EA = Effective Address 

Figure 9-63. MC6809 Direct Page Addressing Scheme 

To enforce compatibility with the MC6800, the contents of the Direct Page register on the MC6809 are automatically 
cleared on Reset. To move the page to some other location, the Liser must software relocate it by loading the high-order 
address bytes into the Direct Page register during program execution. When an instruction using Direct Page address­
ing is executed, the contents of the Direct Page register are automatically concatenated with the usual 8-bit address 
byte contained in a direct instruction. 

MC6809 MEMORY ADDRESSING MODES 
Let us now look at the addressing enhancements provided by the MC6S09. , 

With the incorporation of a Direct Page register, direct addressing has been extended 
throughout all memory. Direct page addressing uses a two-byte instruction format in which the 
second byte specifies the address to be added to the Direct Page register contents. This scheme is 
illustrated in Figure 9-63. The Direct Page register contains the most significant byte of the 16-bit 
address to be accessed, while the second byte of the instru'ction contains the least significant byte. 

MC6S09 
DIRECT PAGE 
ADDRESSING 

Since the contents of the Direct Page register are software defined, this page can be dynamically relocated within the 
read/write memory as desired during program execution. 

Many of the new addressing modes require a byte immediately following the operation code 
to further define the interpretation of the instruction. This is called a Post Byte. 

Op-Code 

Post Byte 

While this added byte may at first seem wastefu I of memory space, the extra power and flexibility provided far out­
weigh the small additional amount of memory required. It should also be noted that many programs will be composed 
primarily of familiar 6800-type instructions and that the amount of additional memory space consumed by those in­
structions requiring Post Bytes will usually constitute a relatively small percentage of the total memory ·used. 

~ 

The meaning ascribed to the various bits in the Post Byte depends on the addressing mode - see Table 9-19. 

The four registers X, y, S, and U are indexable. The Post Byte in this case defines the options ac- MC6S09 
cording to the scheme shown in Figure 9-64. INDEXED 

ADDRESSING 

9-178 



... 
.r:; 
.~ 
S-
a. 
o 

U 

7 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Op·Code 

Post Byte 

Offset 1 

Offset 2 

7 

I 

I 

6 5 4 3 2 1 O~ Bit No. 

I I I I I I I I T"'-r Addressing Mode Field 
Indirect Field 
(Sign bit when B7 = 0) 

Register Field 
00: R = X 
01: R =Y 
10: R =U 
11: R =S 

Figure 9-64. MC6809 Post Byte Bit Assignments 

Table 9-19. MC6809 Indexed Addressing Post Byte Register Bit Assignments 

Bit Number 

6 5 4 3 2 1 

R R X X X X 
R R 0 0 0 0 
R R I 0 0 0 
R R 0 0 0 1 
R R I 0 0 1 
R R I 0 1 0 
R R I 0 1 0 
R R I 0 1 1 
R R I 1 0 0 
R R I 1 0 0 
R R I 1 0 1 
X X I 1 1 0 
X X I 1 1 0 
X X 1 1 1 1 

L 
" - t -• 

0 

X 
0 
1 
0 
1 
0 
1 
0 
0 
1 
1 
0 
1 
1 

./ 

9-179 

Addressing Mode Line 

±4·Bit Offset 1 
Auto Increment by One 2 
Auto' Increment by Two 3 
Auto Decrement by One 4 
Auto Decrement by Two 5 
Zero Offset 6 
Accumulator B Offset 7 
Accumulator A Offset 8 
±7·Bit Offset 9 
± 15·Bit Offset 10 
Accumulator D Offset 11 
Program Counter ±7·Bit Offset 12 
Program Counter ±15·Bit Offset 13 
Indirect 

Addressing Mode Field 
Indirect Field 
(Sign bit when B7 = 0) 
Register Field 
00: R = X 
01: R =Y 
10: R = U 
11: R = S 

14 

Volume 2 
Rev. A. Update 5 

7-79 



···L 
Op-Code 

Post Byte 

Sele""" Reg;"e, ~ 

{ aa 
} Off'e' (Two by'e, Hiu""ted) + ... 

j 
bb 

.. 
~ .... 

..... , .. 
.... 

... 

........ 

~,·:'~2·' 
EA = xxyy + aabb .. -- Location Accessed - -.... 

Figure 9-65. MC6809 Constant Offset (Indexed Model Addressing 

Many options are provided - they are constant offset, accumulator offset (using Accumulator A, Accumulator 
B, or Accumulator 0), auto increment or decrement (by one or two) and indirection. 

Figure 9-65 illustrates a two-byte offset. However. some options do not require any offset. while others require one and 
still others require two Thus. depending on the option chosen. the indexed mode may require two. three. or four bytes. 

Note: Most MC6S00 indexed instructions map into an equivalent two bytes on the MC6S09. 

In the constant offset mode, the offset is temporarily added to the value contained in the 
specified register to form an Effective Address (EA). Note that these offsets may be positive or 
negative. I n contrast. the MC6800 permits only positive offsets. 

Several variations of constant offset indexing are provided. One of the variations uses bit 
space in the Post Byte itself to specify the offset. In this case. the offset is limited to that which 
may be specified by four bits. The instruction thus consists of the op-code and the Post Byte - no 
additional offset bytes are used. The offset is specified by the bit pattern contained in bit positions 
o through 3. Bit position 4 contains the sign of the displacement. this can be illustrated as follows: 

.. ' .. 

Op-Code 
7 6 5 4 3 2 1 0.-Bit No. 

Offset :-:ojxlxlxlx Ixlxlxl 
....... 

, 

............ , .. ' ..... ~ 
J 

Offset 

MC6S09 
CONSTANT 
OFFSET 
INDEXING 
ADDRESSING 

T~-r 
Twos Complement Sign Bit 
Register Select 

Bit 7 = ° 

9-180 



@ 

1: 
.~ 
>-c­
o 

U 

The second constant offset mode is a three-byte instruction. consisting of an op-code. a Post Byte. and a 7-bit twos 
complement offset. This mode can be illustrated as follows: 

Op-Code 

Post Byte 

Offset 

7 6 5 4 3 2 1 0.....--Bit No. 

:-i1 IxIxl o l1 1 0 1 0 1 0 1 
j 
~ 

t 
j .,--

. Pattern for 7-Bit Offset 
Address is Direct 
Register Select 
Bit 7 = 1 

To achieve longer offsets than provided above. two offset bytes are used; a four-byte instruction results. The offset IS 
specified in twos complement form. The applicable Post Byte is shown as line 10 in Table 9-19 ... _______ -. 

Accumulator offset is implemented as a two-byte instruction. There are three variations, 
one for each of the Accumulators A, B, and D (see lines 8. 7. and 11 of Table 9-19), The con­
tents of the specified accumulator are treated by the instruction as a twos complement offset. 
Since this is rather complex. let us illustrate With an example. Suppose Accumulator 0 con­
tains 110716 and Index Register X contains 103216 The Post Byte. shown here. 

6 4 3 o '--BitNo. 

MC6809 
ACCUMULATOR 
OFFSET 
ADDRESSING 

~p'ttem fm Accumulata, 0 ,efe,en .. 
L...----------Address is Direct 

'-------------Register Select 
00 = X 

'---------------- Bit 7 =1 

specifies that the contents of Accumulator 0 are to be added to the contents of the X register to form an Effective Ad­
dress (EA): 

EA = 110716 + 103216 = 213916 

This is the address to be accessed by the instruction 

A zero offset addressing option is also defined in which the selected pointer register (X, Y, 
S, or U) contains the effective address of the data to be used by the instruction. ThiS IS a two­
byte instruction which may Incorporate an automatic increment or automatic decrement of the 
addressing register's contents as part of the addressing mode mechanization. 

9-181 

MC6809 
ZERO OFFSET 
ADDRESSING 

Volume 2 
Rev. A, Update 5 

7-79 



When 8utoincrement is employed, the address in the designated register (X, Y, U, or S) 
is used to access the desired memory location, then the contents of the register are au­
tomatica"y incremented. Incrementation is by one or two. depending on the bit configura­
tion of the Post Byte - see Table 9-19. lines 2 and 3 (reproduced below). 

11 X I X 0 I 0 I 0 I 0 I 0 ~ Increment by One 

X I X X I 0 0 I 0 I I..-Increment by Two 

T ,""---------Specify Direct or Indirect Addressing 

- Select Desired Register 

When auto decrement is employed, the address in the designated register (X, Y, U, or S) 
is decremented, then the updated address is used to access the desired memory loca­
tion. Decrementation is by one or two. depending on the bit configuration of the Post Byte-
see Table 9-19. lines 4 and 5. . 

Indexed indirect addressing is also provided for a" indexed options except the ± 5-bit offset 
case and the auto increment/decrement-by-one cases. Bit 4 of the Post Byte is used to define 
whether the instruction is indirect or not (see Table 9-19). Indexed indirect addressing as imple­
mented on the MC6809 is a pre-indexed mechanization. as described in Volume 1. Chapter 6. The 
offset value referenced by the instruction is temporarily added to the contents of the designated 

MC6809 AUTO 
INCREMENT 
ADDRESSING 

MC6809 AUTO 
DECREMENT 
ADDRESSING 

MC6809 
INDEXED 
INDIRECT 
ADDRESSING 

pointer register {X. Y. U. or S} to form an indexed address. The memory location pointed to by this indexed address con-
tains the actual address desired. . 

The offset for indexed indirect addressing is specified as 8-bit or 16-bit twos complement offset following the Post 
Byte. as illustrated in Figure 9-66. 

Accumulator indexed indirect addressing obtains the offset as a twos complement number from one of the Ac­
cumulators A. B. or 0 as specified by the instruction. 

Indirect addressing for the auto increment/decrement cases is implemented only for the increment by two and 
decrement by two cases - thus indirect increment and indirect decrement by one are not permitted. 

For the case of auto increment indirect, the address in the designated pointer register (X, Y, U, or SP) is used to 
recover an address from memory. This recovered address is the address of the location to be accessed (the 
Effective Address). Fo"owing this transaction, the contents of the Pointer register are incremented by two. Post 
Byte bit definitions are indicated in Table 9-19. . 

Auto decrement indirect is similar to auto increment indirect. In this case, however, the specified register con­
tents are decremented twice before the indirect address is abstracted from the register. Post Byte bit definitions 
are indicated in Table 9-19. 

Limited indexed mode addressing is also permitted with the Program Counter. This is detailed in Table 9-19 (lines 
12 and 13). Note that 8-bit and 16-bit offsets only are provided. 

Relative addressing in the MC6809 has been greatly enhanced over that provided in the 
basic MC6800. First, it is no longer limited to branch instructions and, second, the relative 
range has been extended-through the use of a 16-bit twos complement offset. 

MC6809 
RELATIVE 
ADDRESSING 

Relative addressing is an important ingredient in position-independent coding. and the enhanced scheme provided on 
the MC6809 greatly facilitates this method of program structuring. . 

All branch instructions have been implemented in the traditional MC6800 form {referred to as the short form} and in a 
long form. The short form takes a one-byte op-code with a one-byte offset. while the long form takes a one- or two-byte 
op-code with a two-byte offset. For the long branch case. the actual address is formed by adding the 'two bytes follow­
ing the op-code as a twos complement number to the Program Counter. {Remember. the Program Counter points to the 
next instruction - thUS. it has already stepped over the offset bytes.} 

9-182 



@ 

1: 
Ol ·c 
>­c. 
o 
U 

Selected Reg'''e, 'T Op-Code 

Post Byte 

{ aa 
} Offset (Two bytes illustrated) + ~ bb 

I I • I • I • 

} EA = qqrr 
xxyy + aabb --- qq -

rr 

I I I 

i ; 

.. Location Accessed 

Figure 9-66. MC6809 Constant Offset Indexed Indirect Addressing 

Relative addressing has been extended to include all memory reference instructions. It has been implemented 
as Program Counter relativo indexed addressing. Two variations are permitted; one uses an 8-bit twos complement 
offset (for short reaches!' and the other uses a 16-bit twos complement offset (for long reaches). Table 9-19 defines the 
Post Bytes for these two cases !lines 12 and 13). The general address formation scheme is similar to that of Figure 9-67. 
This is illustrated below for a short relative transfer. 

9-183 

Volume 2 
Rev. A. Update 5 

7-79 



,...., 

Op-Code 1 lOP-COde: One or Two 
Op-Code 2 Bytes long 

{ 

aa 
Offset (One or Two Bytes) 

Updated Contents J bb 

Program Counter 

of Program Counter = ppqq I Next. ......- Destination if Branch 
nstructlon 

t .. ....... not taken 
I • 

+ I I t. I I 

Ppqq + aabb .1. I ~~~~"at;O" ;1 .""h 

Figure 9-67. MC6809 Long Branch Addressing 

This example illustrates the position-independent nature of this form of addressing: 

LDA $104A. PCR 

T TIo-__ .... :~ Data to be accessed is at location $1 04A 

. - Load the data into Accumulator A 

The MC6809 assembler requires that you use the mnemonic "PCR" for Program Counter relative addressing. The as­
sembler then automatically computes the distance or offset from the "present" Program Counter value to the specified 
location. 

From Table 9-21. we determine that the hex code for LOA (indexed) is A6. From Table 9-19. line 12. we get the Post 
Byte. 

8 C 
~~ 

11101010111110101 

T t LIo-_. ---- None of the Registers X. Y. U or S is used 
- Reference is Direct 

Bit Pattern from line 12 of Table 9-19 

9-184 



... 
.t: 
.~ 
~ 
Co 
o 

U 

Program Counter Op-Code 

Post Byte ..- Table 9-19 Line 12 or 13 

{ 
aa } Offset (One or Two Bytes) 

Updated Contents = xxy:J bb 
of Program Counter t 

t----~~ Next Instruction 
+ , I 

t
il 
I I 

xxyy + aabb----t~ Pointer .. _I pp } 

+ "I 'J---q-----tq I Eff"H,. Add,." J 
ppqq S-- location Ace"'ed 

Figure 9-68. MC6809 Relative Indirect Addressing 

Assume the program segment starts at address 100016. 

Add ress 

Program Counter 1000 

1001 

1002 

Updated Contents 1003 
of Program Counter J/ 

+ ---, 
104A 

'104A. 

A6 

8C 

47 

/ 
........ r . . . 

• --
--

Code for LDA (Indexed) 

Post Byte 

Offset (computed by assembler! 

Next Instruction 

~ Dot_ i. ,.'''e,ed "om ~this address 

During execution. the updated Program Counter value is added to the offset: thus. if the program is relocated. it still 
functions correctly since the location referenced remains the same relative distance away. 

Long reaches are similar to the above. except that the Post Byte is 8016 (line 13 of Table 9-19). and two bytes are re­
quired for the twos complement offset. 

Relative indirect addressing is an extension of relative addressing. The Program Counter is 
used again as an indexed register. The general scheme is illustrated in Figure 9-68. 

The offset (one or two bytes. twos complement) is added to the updated contents of the Program 
Counter to form a pointer to a pair of memory locations which contain the actual address to be ac­
cessed. For a one-byte offset. the Post Byte is 9C 16: for a two-byte offset. the Post Byte is 9D 16 -
see Table 9-19. lines 12 and 13. 

MC6809 
RELATIVE 
INDIRECT 
ADDRESSING 

Instructions that use indirect addressing require four bytes of object code: an op-code, a Post Byte and two 
bytes which specify a 16-bit address. These last two bytes are a pointer to a location that contains the actual 
address to be referenced. This approach to indirect addressing differs from that of Volume 1. Chapter 6 only in that a 
Post Byte is used. The Post Byte has a value of 10011111 (9F16) as defined by line 14 of Table 9-19. (This mode is 
shown in Table 9-19. since .it is actually implemented as an indexed. indirect instruction. relative to the Program 
Counter.) 

9-185 

Volume 2 
Rev. A, Update 5 

7-79 



Me6S09 STATUS FLAGS 
The MC6809 has a Status register which maintains five status flags and three interrupt control bits. The five 
status flags are: 

Carry (C) 
Overflow (V) 
Sign (S) 
Zero (Z) 
Auxiliary or Half-Carry (H) 

Statuses are assigned bit positions within the Status register as follows: 

7 6 5 4 3 2 0 .-Bit No. 

IEIFIHlllslzlvlcl 
Note that the two high-order condition codes (bits 6 and 7) are used here: in the MC6800, MC6801. and MC6802 they 
are permanently set to 1. . 

Bits 0 through 5 are the same as the corresponding MC6800/MC6801/MC6802 Status register bits; however, 
there are differences in how some of the instructions affect these bits: 

1) On the MC6800 and MC6802, only the Z bit is set correctly when the CPX instruction is executed. On the MC6809. 
all bits are handled correctly. 

2) The multiply instruction (MUll on the MC6809 sets the Z bit (if appropriate). The MUL instruction of the MC6801 
does not. 

3) On the MC6800, MC6801. and MC6802, the right shift instructions (ASR, LSR, and ROR) set the overflow bit (V) if 
applicable: the corresponding instructions on the MC6809 do not affect Overflow status. 

4) The TST instruction on the MC6800. MC6801, and MC6802 clears the C bit: the MC6809 TST does not affect it. 

5) The H bit is undefined on the MC6809 after the operations CMP, NEG, SBC, and SUB. The corresponding MC6800, 
MC6801, and MC6802 instructions all clear H. 

Details of the effect of each instruction on the Status register bits are included in the MC6809 Instruction Set Sum­
mary - Table 9-23. 

Before describing the three remaining status bits, we must look at the .hardware and software interrupts that 
are provided on the MC6809. 

An additional maskable hardware interrupt, designated FIRQ, has been provided on the MC6809. This is a Fast 
Interrupt Request input, masked by bit 6(F) of the Status register. FIRO causes only a subset of registers to be 
pushed onto the Stack. The three hardware interrupts are, in order of priority, NMI (highest and non-maskablel. FIRO 
(maskable by the F bit) and IRO (lowest and maskable by the I bit). 

Three software interrupts are provided. They are SWI, SWI2 and SWI3. 

Let us now return to the three status bits I, F, and E. 

I is the external interrupt disable flag associated with hardware interrupt input IRQ. When I = 1, interrupts via 
IRO are disabled: when I = 0, interrupts via IRO are enabled. NMI. FIRO, IRO, RESET and SWI all set I to 1. SWI2 and 
SWI3 have no effect on I. 

F is the external interrupt disable flag associated with hardware interrupt input FIRQ. When F = 1, interrupts via 
FIRO are disabled: when F = 0, interrupts via FIRO are enabled. NMI. FIRO, SWI and RESET all set F to 1: IRO, SWI2 
and SWI3 have no effect on F. 

E is the Entire flag bit. The occurrence of NMI. IRO, SWI. SWI2 or SWI3 sets E and stacks the entire machine register 
complement. while FIRO clears Eand stacks only the Program Counter and the Status register. Note that only the E bit 
in the saved or Stack Status register has any significance. 

E is used at the end of interrupt processing to determine how much to unstack. When the RTI instruction is ex­
ecuted at theend of an interrupt. the processor checks the E bit from the recovered Status register. If E = 1, the full 
complement of registers is restored from the' Stack. whereas. if E = 0, only the subset consisting of the Program 
Counter and Status register is retrieved. 

MC6S09 CPU PINS AND SIGNALS 
The MC6809 CPU pins and signals are illustrated in Figure 9-69. A description of these signals is useful as a 
guide to the way in which the MC6809 works and to the ways in which it differs from the MC6800. 

9-186 



'" -= 
J: 
~ 
E 

(!) 
(J 

~ 
m 
r-. 
m 

@ ... 
.r: 
.!2l :;. 
0. 
0 
U 

VSS 1 
NMI 

.. 
2 ~ 

IRQ 
.. 

3 ~ 

FIRQ .. 
4 

BS -- 5 
BA - 6 -

VOO 7 
AO - 8 
A1 -- 9 
A2 
A3 

- 10 - MC6809 - 11 -
A4 -- 12 
A5 -- 13 -
A6 -- 14 
A7 -- 15 
A8 -- 16 
A9 - 17 

A10 - 18 -
A11 -- 19 
A12 -- 20 

Pin Name Description 

"AO-A 15 Address Lines 
"00-07 Data Bus Lines 
"E, Q Clock Signals 
"R/W Read/Write 
"BA Bus Available 
"BS Bus State 
EXTAL,XTAL Crystal 

"MROY Memory Ready 
"OMA/BREQ OMA/Bus Request 
"HALT Halt 
"RESET Reset 
NMI Non-Maskable Interrupt 

"FIRQ Fast Interrupt Request 
"IRQ Interrupt Request 
VOO,VSS Power and Ground 

"These signals connect to the System Bus. 

40 
39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 
24 
23 
22 
21 

-----
---

~ -.. 
~ 

- -.. - -
~ - -- -

-- -
~ -- -

-- -
~ -- ~ .. -- ~ .. . .. .. -

HALT 
XTAL 
EXTAL 
RESET 
MREAOY 
Q 

E 
OMA/BREQ 
Rm 
DO 
01 
02 
03 
04 
05 
06 
07 
A15 
A14 
A13 

Type 

Tristate, Output 
Tristate, Bidirectional 
Output 
Tristate, Output 
Output 
Output 
Input 
Input 
Input 
Input 
Input 
Input 
Input 
Input 

Figure 9-69.' MC6809 CPU Signals and Pin Assignments 

The RESET input is used to initialize the CPU. To reset it. the RESET line must be asserted low for at least one bus cycle. 
This aborts the current operation. An internal Schmitt Trigger circuit on the RESET input permits the use of a simple RC 
network to reset the entire system. 

RESET ---------... ~ 

"Abort current instructions 

"Set F and I of Status 

"Clear OP 

"Disarm NMI 

9-187 

Restart CPU if . 
not in HALT 

or OMA state 

Volume 2 
Rev. A. Update 5 

7-79 



EXTAL and XTAL are inputs for a parallel resonant crystal; alternatively, EXTAL may be driven by an external TTL-; 
level compatible clock by grounding the XTAL pin. 

The Enable pin E distributes the clocking signal to the rest of the system. It is a standard 6800 Bus system timing 
signal and is usually connected to the E inputs of MC6800 family devices. 

Q is a new clocking output signal that has no counterpart in the MC6800. MC6801. or MC6802 versions. Its 
positive transition indicates when stable address exist on the system busses. 

Memory Ready (MRDY) is an input control signal that is used to extend the data access time when slow memories are 
used. It is also used to extend the access time in multiprocessor applications when shared memories are used. 

The Address Bus lines (AO to A 15) and Data Bus lines (DO to 07) are standard 6800 peripheral-compatible 
busses. Their relationship with bus control signals is detailed later. 

RIW is the same as the MC6800 signal. It is valid with the positive transition of Q. 

Control signals on the MC6809 Control Bus may be divided into bus state controls. bus data 
identification. and interrupt processing. There are some lines here that do not exist on the 
MC6800. 

These are the bus state control lines: 

MC6809 
BUS STATE 
CONTROLS 

DMA/Bus Request (DMA/BREQ): T.his is an input line used for DMA or memory refresh operations. When asserted 
low, it suspends CPU operation (by stretching the internal CPU clock), takes the processor off the bus and tristates the 
system busses. (There is no equivalent to this line on the MC6800 - in fact. it tClkes two lines, TSC and DBE. just to 
float the system busses.) 

No DBE (Data Bus Enable) input is provided on the MC6809. The equivalent of DBE is generated internally by the 
processor. 

HALT: When this input is asserted low, the CPU ceases operation at the end of the current instruction and the system 
busses (Address, Data and R/Wl are tristated. The CPU may remain in the halted state indefinitely without loss of data. 

Bus Available (BA): This output line (when driven high by internal logic) indicates that the system busses (Address, 
Data and R/W) are in their high impedance state and available to external devices for Direct Memory Access (DMA) 
transactions or any other form of bus sharing activities permitted. BA high does not imply that the bus will be available 
for more than one cycle, however. When driven low (by internal logic) an additional bus cycle at high impedance oc-
curs before resuming operation. . 

Bus State (BS): This is an encoded output Which, in conjunction with output BA, indicates the current state of the 
CPU. Combinations are listed in Table 9-20. 

Table 9-20. MC6809 Bus Status Signals 

BA BS . Function 

0 0 Normal Operation (Running) 
0 1 Interrupt Acknowledge 
1 0 SYNC Acknowledge 
1 1 BUS GRANT or HAL T Acknowledge 

Status indications are valid on the leading edge of Q. 

No VMA (Valid Memory Address) output is provided on the MC6809 - instead. when the 
processor does not need to use the system busses for a data transfer. it simultaneously sets 
all address lines high (FFFF16) and R/W = 1. This is a "dummy" read of address FFFF. During 
this dummy read, both BA and BS = O. The only other required read of address FFFF occurs during 

MC6809 
VMA 
CONDITION 

a fetch of the low-order Reset vector address. During this access of FFFF, however, BA = 0 and BS = 1 (see Table 9-20). 
Thus, the status of lines BA and BS permits the user to differentiate between these two situations. (Note that MRDY 
cannot be used to extend one of these dummy cycles.) 

These are the three interrupt processing signals: 

Non-Maskable Interrupt (NMI): This interrupt cannot be masked. It is an edge-sensitive (as opposed to level-sensi­
tive) input that responds to a high-to-Iow transition. On NMI. the full register complement is stacked. NMI has the high­
est priority. 

9-188 



... 
~ 
C) 

.~ 

a. 
o 

U 

IRQ is a hardware Interrupt Request input. An interrupt generated at IRO stacks the full complement of CPU 
registers. IRO has lowest priority. 

FIRQ is a Fast Hardware Interrupt Request input. It provides fast response by stacking only the return address and 
the Status register. It has higher priority than IRO but less than NMI. 

MC6809 TIMING AND INSTRUCTION EXECUTION 
An internal divide-by-four circuit on the MC6809 permits the use of inexpensive, parallel 
resonant crystals. Alternatively, EXTAL may be driven by an external TTL-level compatible 
clock. Since the internal divide-by-four circuit is still utilized. the bus frequency is 1/4 input fre­
quency. 

Clock 

Crystal Operation 

EXTAL 

XTAL 
~ 

-r::-f EXTAL E 

} f 
4f t?ZA 

.-e-f XTAL Q 

MC6809 MC6809 

E 

Q 

MC6809 
CLOCK 
OPTIONS 

4f 

-
~ -. 

The phase relationship between the MC6809 timing outputs E and Q is shown below. Q is a quadrature clocking 
signal that leads E. 

E 

Q 

I<r Start of Cycle I<J- End of Cycle 
I I 
I I 
I I 

1--1/4 Cycle·-.+144-----1 /2 Cycle ---__ +1 ... 4 -1 /4 Cycle---j 

I I I I 
I I I 

--------\ I; \~I ____ _ 
I 

: Ir----------------------~ ________________ ~1 ,~I ______ ~-------
I 
I 
I 

'"""'1
41---------1 Machine Cycle----------t~ I 

9-189 

Volume 2 
Rev. A, Update 5 

7-79 



E 

.Q Guaranteed 
Stable 

Address 
Address:==============~~~~~~~r:t:======================:=======~t=~~~~~. Bus 

Data Bus Data Out 
is tristate 

Figure 9-70. MC6809 E and Q Timing for Write Cycles 

is tristate 

Figure 9-71. MC6809 E and Q Timing for Read Cycles 

Addresses from the CPU may start to change after the hold time from the falling edge of E. but 
they are guaranteed to be stable on the leading edge of Q. as shown in Figure 9-70. The timing 
shown in this figure is for an MC6809 write cycle. 

MC6809 
WRITE 
TIMING 

During the write cycle. the processor starts to propagate data onto the Data Bus at the positive transition of Q; this data 
is guaranteed to be valid on. the trailing edge of Q. 

Figure 9-71 illustrates the timing for an MC6809 read cycle. MC6809 

9-190 

READ 
TIMING 



.... 
J::. 
C) 

.~ 

a. 
o 

U 

Peripherals generally propagate data into the system via the Data Bus during E high. Data needs 
to be stable a short time before and after E goes low. This is the hold time. 

Note that the Data Bus is floated during the interval when both E and Q are low (on a write cycle) or for 1/2 cycle when 
E is low (on a read cycle.) This interval allows "turn-around" time on the bidirectional Data Bus. 

Several control signals are provided to increase timing parameters so that the MC6S09 can 
be easily interfaced to slow devices. 

If E (high) is too short for the external device logic to respond to during the write cycle. the slow 
device may be accommodated if we stretch the bus clocks. MRDY permits this stretching. By 
asserting MRDY low. the clocks are stretched as indicated in the following illustration: 

Stretched Clock Signal -----l 
accommodates slow memories I 

E \ I \ .... _--', 
Q I \ I 

MRDY \~----------------I 

\ 

MC6S09 
ACCESSING 
SLOW 
DEVICES 

\_-

A low input on MRDY when E goes high causes E to remain high: stretching terminates when MRDY is returned high. 
Stretching will always be an integral number of high-frequency clock cycles (that is. 1/4 bus cycles) and must not ex­
ceed 10 microseconds in order to maintain the integrity of the CPU internal registers. 

Note that MRDY alters the system E signal. Devices which require a constant clock frequency must therefore use a 
different clock source if this clock stretching technique is implemented. 

MC6809 DIRECT MEMORY ACCESS 
The MC6S09 bus state control monitoring signals permit all three,of the most widely used DMA techniques 
(Halt mode, cycle stealing, and bus multiplexing) to be implemented. With the on-chip clock version of the 
MC6S09, cycle-stealing DMA is controlled by the chip itself. 

Consider first Halt mode DMA. This is the simplest mode. as one simply shuts down the CPU MC6S09 
while transactions take place on the bus. The MC6809 Halt state is equivalent to the Halt on the HALT MODE 
6800. or the Hold state of the 8080A. The CPU will float its Address Bus. Data Bus. and R/W line DMA 
and suspend instruction execution in response to a low level applied to the HALT input. The CPU . 
will maintain this condition indefinitely (without loss of data) until the HALT input is driven high again. While in this 
state. BA and BS are asserted high by internal CPU logic. When HALT is driven low. the CPU will continue to run until 
the end of the current instruction before it enters the Hold state. The worst case latency is 20 machine cycles. This oc­
curs with the Software Interrupt instructions SWI2 and SWI3. 

CPU output lines Bus Available (BA) and Bus State (BS) both go high in the Halt mode. These lines 
may be asynchronously decoded to yield a BUS GRANT signal. 

BA 1-----1 J-----BUS GRANT 
BS I-----I_J 

9-191 

MC6S09 
BUS 
GRANT 

Volume 2 
Rev. A, Update 5 

7-79 



CPU CPU DMA DMA 
~ is Bus -+-Coming~Coming-+-- .DMA Device - __ +-!4_--Coming--_. 1ooI14t-

Master 1 Off 1 On 1 IS Bus Master Off 

CPU 

1 I 1 
,.... ___ .... 1 I I 

, E 

Q 

Address 
Bus 

DMA Address 

Data Bus 

DMA/BREO 

DMAVMA 

BA I 
Externally 
Generated 

Figure 9-72. MC6809 Timing and Signals for Cycle-Stealing DMA 

In most cases. it will be sufficient to use BA ,alone as a BUS GRANT signal. 

With the above as background. we can summarize the Halt mode DMA activity as follows: 

• The external device asserts the CPU HALT line low. 

• At the end of the current instruction. the CPU suspends operation. floats the system busses (Address. Data and 
R/W). and outputs BA high to signify to the DMA device that it may take over the busses and commence a DMA 
tra nsaction. 

• The bus clocks E and 0 continue to furnish synchronization signals to the DMA interface. 

• At the end of the transaction. the external device asserts HALT high. This terminates the DMA activity by making 
BA =0 and restores the CPU to normal operation one cycle later. 

Now consider cycle-stealing DMA. This mode is easily implemented because the inter­
nal circuitry of the MC6S09 incorporates all the clock stretching and bus floating logic 
required. 

The external DMA device initiates cycle-stealing DMA by pulling the MC6809 Bus Request 

MC6S09 
CYCLE-STEALING 
DMA 

line DMA/BREO low. Recognition of this low on DMA/BREO causes the internal CPU clocks to be stretched. while the 
bus clocks (E and 0) continue to function normally. In addition. both BA and BS go high. and the system busses (Ad­
dress. Data and R/W) are floated. Figure 9-72 illustrates the timing sequence for cycle-stealing DMA. 

A DMA transaction is initiated by pulling the DMA/BREO line low before the trailing edge of O. This suspends opera­
tion of the internal clocks (it stretches them an integral number of basic machine cycles). and starts to float the system 
busses (a hold time after the trailing edge of E). 

To prevent false reads or writes to memory and peripherals as the address and RNllines I EXTERNAL VMA I 
are floated, the system must generate an external VMA signal (denoted DMAVMA). This 

9-192 



@ ... 
..r:. 
Cl 
.~ 

C. 
o 

U 

DMAVMA signal is used to disable the memory and peripherals until the DMA device has control of the system busses. 
A circuit that could be used to generate this DMAVMA signal is as follows: 

SA --0---1 0 Q 

Latch 

E-~r>lEn 

The CPU acknowledges DMA/BREO by asserting BA and BS high. This is the BUS GRANT signal. It signifies to the DMA 
device that the CPU has been removed from the busses. and that a DMA transaction may take place. The bus clock sig­
nals E and 0 continue to furnish bus timing to the DMA interface. 

At the end of the transfer. the external device returns DMA/BREO high. restoring the CPU to normal operation. This 
must occur before the trailing edge of O. and the DMA device must get off the bus a hold time after the trailing edge of 
E (in the same cycle). The CPU busses will begin to emerge from their floating condition after the dead cycle. Again. the 
system must provide a low VMA signal (DMAVMA) to prevent false accesses while the Address Bus and R/IN line are 
going through this floating state. 

Dynamic memory refresh can also be implemented on a cycle-stealing basis by making the 
refresh controller a high priority DMA device. and accessing the required number of consecu­
tive locations within the time required to maintain data integrity. Another way of refreshing 
dynamic memory would be to simply perform a high-speed scan through 64 or 128 consecu­
tive memory locations. This is easily done through a single-instruction subroutine consisting of 
63 (or 127) pre-bytes and an RTS (or RTI). 

MCSS09 INTERRUPT PROCESSING AND RESET 
Interrupt capabilities implemented on the MC6809 are: 

o Hardware Interrupts NMI. FIRO. and IRO 

o Software Interrupts SWI. SWI2 and SWI3 

o RESTART 

NMI and IRQ are equivalent to the corresponding interrupts on the MC6800. 

MC6809 
DYNAMIC 
MEMORY 
REFRESH 
OPERATIONS 

FIRQ is a Fast Interrupt Request that has no counterpart on the MC6800. It is a maskable, hardware interrupt of 
higher priority than IRQ. Its implementation provides the MC6809 with an easy to use two-level vectored inter­
rupt scheme. An interrupt on IRO automatically vectors to its own software handler routine. while an interrupt on FIRO 
automatically vectors to its unique software handler routine. The higher priority device is connected to FIRO to achieve 
priority response. 

Within each of these levels. software polling may be used if more than one interrupt device is connected on each inter­
rupt input. However. as noted in the MC6800 description. software polling greatly increases interrupt latency and can 
quickly become untenable. 

An alternate scheme that permits direct vectoring by the interrupting device itself to anywhere in memory may be im­
plemented. This is described later. 

The MC6809 sets aside the sixteen highest addressable memory locations for interrupt pro­
cessing purposes. Seven 16-bit addresses are stored in these locations (one pair of locations 
is reserved for future definition). These seven addresses identify the starting addresses of 
the service routines for the seven possible sources of interrupt. 

9-193 

MC6809 
INTERRUPT 
VECTOR 
ADDRESSES 

Volume 2 
Rev. A, Update 5 

7-79 



This is how the memory locations are used to store the interrupt vectors: 

FFFO and FFF1 Reserved 
FFF2 and FFF3 SWI3 
FFF4 and FFF5 SWI2 
FFF6 and FFF7 Ffi'ID 
FFF8 and FFF9 IRQ 
FFFA and FFF8 SWI 
FFFC and FFFD NMI 
FFFE and FFFF RESET 

The lower address of each pair (FFFO. FFF2. FFF4 .... FFFE) holds the high-order byte of the starting address . .... ----.,. 
In the event of simultaneous interrupt requests. this is the priority sequence during the MC6809 
acknowledge process: INTERRUPT 

PRIORITIES 
Highest 1) RESET 

Jest 
2) Non-Maskable Interrupt (NMIl 
3) Software Interrupt (SWI) 
4) Fast Interrupt Request FIRQ 
5) Standard H,ardware Interrupt (iRQ) 

We will begin our discussion of MC6809 interrupt processing by describing the various interrupts . ..-----
Consider first F'iiffi.. Fiiffi. permits high-speed response to hardware interrupts by stacking MC6809 
only a subset of the register complement - only the return address and the Stack register con- FAST 
tents are pushed onto the Stack. At the end of the interrupt. these two items only are restored INTERRUPT 
from the Stack. Status register flag bits F and I are set to. mask out the present FIRQ and further REQUEST 
IRQ and FIRQ interrupts. (If you wish to admit multiple-level interrupts. you can now clear the F 
and I flags.) 

We wm refer to IRQ as the standard hardware interrupt. It provides slower response than 
FIRQ. because it stacks the entire machine state. Thus. IRQ functions in the same way 
as the MC6800 IRQ. FIRQ can interrupt IRQ. but IRQ cannot interrupt FIRQ. since FIRQ disa­
bles IRQ by setting the I bit of the Status register. 

The MC6809 includes three software interrupts. SWI has higher priority than IRQ and 
FIRQ. and disables these interrupts by setting the Status flags F and I. SWI2 and SWI3 
do not disable any interrupts. All three save the entire machine status by pushing the 
contents of all the active registers onto the Stack. 

SWI is implemented on the MC6800. but the MC6800 has no counterpart to SWI2 and SWI3. 

MC6809 
STANDARD 
HARDWARE 
INTERRUPTS 

MC6809 
SOFTWARE 
INTERRUPTS SWI. 
SWI2 AND SWI3 

Note that these instructions cause the MC6809 to go through the complete logic of an interrupt request. even though 
the interrupting source is within the CPU. . 

The non-maskable interrupt NMI. as with the MC6800. cannot be disabled. Like IRQ. it MC6809 
stacks the entire machine status. NON-MASKABLE 

8ecause NMI is not masked. repeated NMI interrupts occurring before the previous ones have 
been terminated by an RTI (Return from Interrupt) instruction can cause the Stack to overflow. 
This will cause a fatal error. 

A detailed discussion of RESET versus Interrupt response is included with the MC6800 descrip­
tion and will not be repeated here. However. the following points should be noted: 

INTERRUPT 

• If the HALT or DMA/BREQ inputs are asserted low when RESET makes its low-to-high transition. it will be 
latched. and the CPU will wait until the resumption of a running state before completing the reset. 

• Asserting RESET will 'not bring the CPU out of tristat~ during a HALT or DMA condition. 

• Because a Schmitt trigger is used on the RESET input. a simple RC network can be used to reset the CPU. This 
is'much less stringent than the 100 nanosecond rise time limit of the MC6800. 

Normally. the reset action takes five bus cycles. However. since DMA may occur during reset. the actual reset may take 
considerably longer. 

Through the use of some external logic. it is possible for the interrupting device to force 
a vectored jump to anywhere in memory. This scheme makes use of the Interrupt 
Acknowledge (lACK) Signal. 

Table 9-20 shows the lACK is indicated by BA = 0 and BS = 1. These status indications are 
valid on the leading edge of Q. 

9-194 

MC6809 
INTERRUPT 
VECTORING 
BY EXTERNAL 
DEVICES 



e,j 
.E 

:I: 
~ 
co 

c!J 
(,) 

~ 
m 
" m 

@ 

1: 
.~ 
>-a. 
0 

U 

E 

Q 

lACK 

Address 
Bus 

Data Bus 

________ "'-~""".... ------,-- j Use lACK to remove the 
~ ROM from the Data Bus 

( 

Address FFFX 

Address Byte ) .. ------'={ Address Byte jammed on 
by the external device. 

Figure 9-73. MC6B09 Signals for Externally Vectored Interrupts 

lACK indicates that a byte of vector address is being retrieved from one of the memory locations FFFO to FFFF as a result 
of an interrupt (RESET. NMl. FIRG. fRO. SWI. SWI2 or SWI3). lACK is valid during both the high-order and low-order 
vector address byte fetches. 

Note that the address locations corresponding to the seven vectors are all of the form FFFX. where X is between 0 and 
F; thus. only the last four bits of the address differ. By externally decoding these four low-order bits plus the lACK sig­
nals BA and BS. you can determine what type of interrupt has been accepted. disable the ROM containing addresses 
FFFO to FFFF. and jam onto the Data Bus the address of an appropriate interrupt service routine. This is done in turn for 
both the high-order and low-order address bytes by external device logic. Figure 9-73 illustrates the sequence for exter­
nally vectoring an interrupt. 

Note that the address byte jammed onto the Data Bus is loaded into the Program Counter by the CPU as its normal 
response to an interrupt request. but now the 16-bit address loaded is the address supplied by the eXLernal device. not 
the address normally retrieved from the applicable address pairs FFFO/FFFl to FFFE/FFFF. 

At the end of this transaction. the program commences execution at the address supplied by the interrupting device. 
Thus. a vectored jump to the device service routine has been effected. ' 

This technique can drastically reduce interrupt response time as compared to a polled approach. ' 

9-195 

Volume 2 
Rev. A, Update 5 

7-79 



Stack Pointer SP is used during interrupts. For all interrupts except FIRQ, the full comple­
ment of registers is stacked. The sequence in which the registers are saved on the Stack can be 
illustrated as follows: 

FFFF ElE 
-.--. • o· . I I I Irectlon 

:LI ~ 
B --r--, • 
, I 
I I 

PC (low) 

PC (high) 

U (low) 

U (high) 

STACK .Y (low) 

Y (high) 

X (low) 

X (high) 

OP 

B 

A 

~ , 
Status 

0000 
Before Interrupt After Interrupt 

MC6S09 
STACKING 
DURING 
INTERRUPTS 

The MC6S09 Stack Pointer(s) points to the last item placed in the Stack, instead of to the next empty location 
as with the MC6S00, MC6S01, and MC6S02. The new stacking order interchanges the order of Accumulators A 
and B to make A the high-order byte instead of B. as is the case on the MC6800. MC6801. and MC6802. 

The MC6S09 provides two methods of achieving external process synchronization. MC6S09 
The first method we will consider is similar to the one implemented on the MC6S00. HARDWARE-
It uses the CWAI instruction, which is similar to the MC6800 sequence CLI WAI. SOFTWARE 
However. CWAI does not float the system busses as WAI does on the MC6800. (No WAI in- SYNCHRONIZATION 
struction exists on the MC6809.) . 

When the CWAI instruction is executed. the processor logically ANDs the immediate-b'lte of the instruction into the 
status register. stacks the entire machine status. then sits idle until an interrupt occurs. When an interrupt occurs. it 
can be processed immediately. as no time need be spent in stacking machine status. 

The CWAI instruction is an immediate mode instruction. with the immediate data being a mask byte. During execution. 
this byte is automatically ANDed with the Status register byte to clear interrupt bits F and I if required. 

When an interrupt occurs. it wi" (if it hasn't been masked) cause a 'transfer to the appropriate interrupt service routine. 
Note that when an FIRG occurs. it will enter its service routine with the entire machine status stacked (instead of just 
the Program Counter and Status register); however. the corresponding RTI instruction wi" correctly unstack it. since 
the state of the stacked E bit wi" properly indicate how much status was stacked. 

The second method of synchronization uses the new MC6S09 SYNC instruction. When ex- MC6S09 SYNC 
ecuted, SYNC causes the processor to cease further execution and wait for an interrupt to INSTRUCTION 
occur. Any of the interrupts NMI, FIRQ or IRQ may release the processor from the SYNC 
state. If the interrupt is enabled, the processor will service it; if it is disabled, the processor simply continues on 
to the next instruction in sequence, without stacking the machine status. The logic of the SYNC Instruction is il­
lustrated in Figure .9-74. 

9-196 



@ 

1: 
.g> 
>-c. 
o 
u 

Float the System Busses 
Set BA = 1 

BS = 0 

SYNC 

Interrupt 
Occurs 

I 
I 

Continue execution at 
the next instruction 
in sequence. 

No 

Begin execution of 
the SYNC instruction. 

Wait for any 
interrupt. 

Stack the entire 
machine Status and 
transfer to the 
applicable Interrupt 
Service Routine. 

Figure 9-74. MC6809 SYNC Instruction Logic 

9-197 

Volume 2 
Rev. A. Update 5 

7-79 



One obvious use of the SYNC instruction would be to implement high-throughput program/device synchroniza­
tion. The following diagram illustrates this concept. (To keep it simple. we have assumed that only one interrupting 
device is connected to the system.) 

SYNC 

t 
Interrupt 
Occurs 

I 

Load byte into 
Accumulator and 

store in buffer area. 

Decrement Byte 
Counter 

Wait for data 
byt'e available 

Device generates an 
interrupt when a 
byte of data is 
available. 

Has all the 
data been 
transferred? 

External logic can determine when the CPU is in the SYNC state by decoding the MC6809 8A and 8S signals. A SYNC 
acknowledge status is indicated by 8A = 1 and BS = O. as shown in Table 9-20, Note that since BA = 1. the system 
busses are floated. 

SYNC can also be used to mechanize block transfer of data under DMA control. When SYNC MC6809 USE 
is executed, the busses are floated and BA = 1, BS = 0 announces to the DMA device that' OF SYNC 
it may take over the system busses. At the end of each block transfer. the DMA device advises FOR DMA 
the CPU by asserting an interrupt request. and the program resumes execution. 

Note that the MC6800 does not have a SYNC instruction. Block transfer DMA for the 6800 can be implemented via the 
. WAI instruction as described in the MC6800 section. 

THE Me6S09 INSTRUCTION SET 
Table 9-21 lists the MC6809 instruction mnemonics, while Table 9-22 summarizes the instructions which differ 
from those that appear in the MC6800 instruction set. Note that all MC6800 addressing modes have been imple­
mented. plus the enhanced modes that we described at the beginning of this section. 

When' comparing the MC6809 instruction set to the MC6800 set. you will notice that Direct Page addressing for the 
MC6809 applies to all memory reference instructions. not just the primary memory reference instructions as is the case 
for the MC6800. In addition. the Direct page can be dynamically relocated. 

During our discussion of the MC6800, we noted the paucity of index registers and the lack of data mobility be­
tween them. These deficiencies have been corrected and the MC6809 set includes two types of instructions 
for register-to-register transfers - the Exchange and the Transfer instructions. The only restriction on the use of 
these instructions is that the source and destination registers must be the same size (Le .. both 8 bis or both 16 bits). 

9-198 



@ 

E 
.2l 
>-
0. 
o 
(J 

An examination of the MC6809 set reveals that some of the familiar MC6800 instructions MC6809 
are missing. However, provision has been made to perform the missing operations in alter- MISSING 
nate ways. For example. the instruction to clear the Carry bit C is implemented on the MC6800 as MNEMONICS 
CLC; to perform this on the MC6809. one must use ANOCC #$FE. The result of these changes is 
that. even though the MC6809 is fully software compatible (at the source code level) and much more powerful. it uses 
fewer mnemonics than the MC6800 (59 versus 72). 

The MC6809 contains many instructions that the MC6800 does not. Some of these we have MC6809 
already noted. such as Synchronize with Interrupt (SYNC). Clear and Wait for Interrupt (CWAI). ADDED 
Exchange Registers (EXGl. Transfer Register (TFRl. and the Software Interrupts SWI2 and SWI3. MNEMONICS 
Some of the remaining differences are simply extensions of the existing instructions to make them 
apply to the new registers - e.g .. ANOCC. LOY. etc. - while others are totally new - e.g .. Sign Extend (SEX) and 
Load Effective Address (LEA). 

Some mnemonics that are used with both the MC6800 and the MC6809 have slightly altered meanings. This is 
illustrated below for the "Load Accumulator" instruction. 

MCGSOO/MCGS01/MCGS02 

. Generic Form: LOA 

LOAA = Load Accumulator A 
LOAB = Load Accumulator B 

The "Store Accumulator" instruction has similarly been altered. 

MCGS09 

Generic Form: LO 

LOA = Load Accumulator A 
LOB = Load Accumulator B 
LOO = Load Accumulator 0 
LOS = Load Hardware Stack Pointer 
LOU = Load User Stack Pointer 
LOX = Load Index Register X 
LOY = Load Index Register Y 

The Push and Pull instructions have been enhanced such that any, all, any subset, or none of 
the CPU registers can be pushed or pulled from the stacks. PSHS and PULS access the Hard­
ware Stack. while PSHU and PULU access the User Sta,ck. These instructions require a Post Byte. 
as shown in the following illustration: 

MC6809 PUSH 
AND PULL 
INSTRUCTIONS 

Push or Pull -I> Op-Code 7 6 5 4 3 

Post Byte .... I I I I • I 

I~ I ~ . ~ I • 

9-199 

2 1 0 

I I I 
~ , ~ 

<r--Bit No. 

If "'. Stack contents of: 

Status Register 

Accumulator A 
Accumulator B 
Direct Page Register 
Index Register X 
Index Register Y 
Stack Pointer (S)/User Pointer IU) 
Program Counter 

Volume 2 
Rev. A, Update 5 

7-79 



To illustrate. the assembler instruction PSHS D is encoded as follows: 

PSHS ---I> 34 6 4 3 0 ~BitNo. 

06 t1 0 0 
1

0 
1

0 
11 11 1 

0 
1

0 r--- (Post Byte) 

tt } Stack 
Accumulators A and B 

Note the interpretation of bit 6. When executing PSHS. if bit 6 = 1. the contents ofU are saved. When executing PSHU. 
if bit 6 = 1. the contents of SP are saved. Note that PSHS cannot save the contents of SP and PSHU cannot save the 
contents of U. 

The Exchange Registers and Transfer Register instructions also require a Post Byte to 
identify the source and destination registers, as shown in the following diagram: 

MC6809 EXCHANGE 
REGISTER AND 
TRANSFER REGISTER 
POST BYTE 

6 4 o -<l--Bit No. 

1 I 
~~ 

Source Destination 

--------,~,--------~~ Register Field 

0000 = D (A,B) 

0001 = X 
0010 = Y 
0011 = U 
0100 = S 

0101 = PC 

1000= A 
1001 = B 
1010 = CCR 
1011 = DPR 

One of the strengths of the MC6809 system is the ease with which position independent 
code can be generated. The Load Effective Address instruction (LEA) is provided to help 
facilitate this. This instruction can be used with any of the indexed registers. yielding the four 
source forms LEAK LEAY. LEAS. and LEAU.A Post Byte is required (from Table 9-19). 

MC6809 
LEA 
INSTRUCTION 

The following program segment illustrates how LEA is used to generate position independent code. During the assem­
bly process. the offset (from the end of the LEA instruction) to the beginning of the table is determined and inserted as 
the two-byte offset 0009. 

Op Post 
Address Code Byte Offset Source Code 

0100 30 8D 0009 START LEAX i T ABLE,PCR 
0104 A6 80 LOOP LDA ,X+ 
0106 

010D TABLE FCC ITABLE OF CHARACTERSI 

9-200 



..... 
~ 
C'l 
.~ 

a. 
o 
U 

Assume that the program is stored at the locations shown. During execution. the offset 0009 is added to the updated 
Program Counter value 0104 to yield the start of table address 010D. This value is loaded into Index Register X. rather 
than put out on the Address Bus. When the indexed instruction LDA.X+ is executed. this newly computed. address 
(stored in the Index register! is used to access data from the table. 

Address 

0100 

0101 

~~~~J{ 
0104

Y i

30

80

00

09

A6

} LE AX T ABLE.PCR

~ Next instruction

V :
01 00 __ -I_~t-F-i-rs-t -E-nt-ry-f T

(Index Register Xl

Tf
PCR = Program Counter Relative

Notice what happens if the above block of code is moved to another location in memory as shown below.

Address

0400

0401

30

80

00

09

} LE AX TABLE. PCR

0404
~:~J2 {

A6 <l- Next Instruction

V I
+ I

9 :
0400 -- First Entry T

(Index Register Xl

Table

j

During execution. the new table address 040D is formed in Index Register X when LEAX is executed and used by the
instruction LDAX+ to correctly abstract entries from the table. Truly. this is position independent code.

The instructions shown shaded in Table 9-21 are the new (or modified) instructions. They are summarized in
detail in Table 9-22. The remaining instructions have already been summarized in the MC6800 soction (Tablo
9-1). It should be noted that many of the unchanged instructions take fewer machine cycles to execute on the MC6809
than on the MC6800.

When comparing the MC6800 family processors. it should be noted that the MC6800 and MC6802 have the same in­
struction set. and the MC6801 has a superset of the MC6800. but a subset of the MC6809.

9-201

Volume 2
Rev. A. Update 5

7-79

Instruction

ABX
ADC

ADD

AND

ASl3

ASR3,6

BCC

BCS

BEQ

BGE

BGT

BHI

Notes

Table 9-21. MC6809 Mnemonics (New and Modified Instructions are Shaded)

Source Forms Instruction

BlS
ADCA
ADCB BlT
ADDA
ADDB BMI
ADDD
ANDA BNE
ANDB

ANDCC BPl
ASlA
ASlB· BRA
ASl

ASRA
ASRB
ASR BSR

~~~ 
LBCC BVC 
BCS 

LBCS BVS 
BEQ 

.lBEQ ClR 
BGE 

·I..BGE 

BGT CMP3 
.· .• lBGT 

BHI 
lBHI 
BHS 
lBHS 
BITA 
BITB COM 
BlE 
lBlE 
BlO CWAI 

.LBlO DAA 

Source Forms 

BlS 
lBlS 
BlT 
lBlT 
BMI 
lBMI 
BNE 

······lBNE 

BPL. 
lBPl 
BRA 
lBRA 
BRN 
LBRN 
BSR 

. LSSR.' 
BVC , .. ,," 

LBVe 
BVS 

LI:lVS' 
ClRA 
ClRB 
ClR 

CMPA 
CMPB 
CMPO 
CMPS 

.CMPU 
CMPX7 

"CMPY 
COMA 
COMB 
COM 

Instruction Source Forms Instruction 

DEC DEC A OR 
DECB 
DEC 

EaR EaR A PSH 
EORB 

EXG Rl ,R2 PUl 
INC INCA 

JMP 

...... ,."JS~ 
lD 

'MUL4' 
. NEG3 

Nap 

INCB ROl 
INC 

lDA10 
lDB10 

lDD: 
lDS 

lDU. 
lDX 
LDY 
lEAS 
lEAU 
LEAX 
LEAY 
LSLA 
LSLB 
lSl 

lSRA 
LSRB 
lSR 

NEGA 
NEGB 

SUB3 

NEG SYNC 
TFR Rl, R2 

TST 

Source Forms 

ORA 
ORB 

ORCC 
PSHS1 .. 1 

PSHU 
PUlS12 

PULU 
ROlA 
ROlB 
ROl 

RORA 
RORB 
ROR 

SBCA 
SBCB 

STA10 

ST.Bl? 
STD 
STS 
srt)'" 

TSTA 
TSTB 
TST 

1. The un shaded instructions are described in the MC6800 section. They have the same object codes for both the MC6800 
and the MC6809 processors. 

2. R 1 and R2 may be any pair of 8-bit or 16-bit registers. The 8-bit registers are A, B, SR and BPR. The 16-bit registers are X, 
Y, U, SP, D, and PC. 

3. The Auxiliary or Half-Carry bit H is undefined for these cases. 

4. This MUl sets the Z bit if appropriate. The MC6801 MUl does not. 

5. This instruction does not affect the C bit. On the MC6800/6801 16802 it clears C. 

,6. These do not affect the overflow bit (V). On the MC6800/680116802 they may. 

7. This instruction correctly sets all flags. On the MC6800/6802 it does not. 

8. On the MC6809, the E status bit is checked during RTI to determine how much to unstack - the complete register comple­
ment or just the Stack register and Return Address. 

9. SWI sets bits F and I: SWI2 and SWI3 have no effect on F and I. 

.10. These instructions are implemented on the MC6800 with slightly different mnemonics, as discussed above. 

11. This instruction is implemented on the MC6800 as PSH. 

12. This instruction is implemented on the MC6800 as PUL. 

9-202 



@ 

.E 

.2> 
~ 
c. 
o 

U 

In Table 9-22. the following symbols are used in addition to those used in Table 9-1. 

ACD.D Accumulator D 
bO-b7 Bits of Post Byte or other registers 
U User Stack Pointer 
Y Y Index Register 
DP Direct Page Register. 

B4 
DISP16 
REG 

Instruction Byte 4 
A 16-bit. twos complement displacement 
A 16-bit register (S. U. X. or Y. as the context demands) 

[PC'] Contents of the Program Counter after it has "stepped over" the offset bytes in a multi-byte instruc­
tion - thus. PC' is the address of the next instruction in sequence. 

R1. R2 

LIST 

Register pairs. both 8-bit or both 16-bit 

List of registers to be stored on or retrieved from the Stack 

Effective Address EA 

OFFSET.R This symbology is used to denote all forms of indexed addressing and all forms of indirect addressing. For 
this addressing scheme. the total byte count is the sum of the base count indicated inTable 9-22 and the 
appropriate value from the following chart. 

Non-indirect Indirect 
1/1 1/1 

Type Form Assembler Post-Byte ~ Assembler Post-Byte 
CD 

>- >-
Form Op-code aI Form Op-code aI 

No Offset • A lAA00100 a L Al lAA10l00 a 
Constant Offset from A 

5-Bit Offset n. A OAAnnnnn a defaults to a-bit 
a-Bit Offset n. A lAA01000 1 [n.Al lAAll000 1 

16-Bit Offset n. A lAA0100l 2 [n.Al lAA11001 2 

A - Aegister Offset A.A lAAOOll0 a IA.Al lAA10110 b 
Accumulator Offset 

B '-- Aegister Offset B. A lAA00101 a [B. Al lAA10101 a 
from A 

o - Aegister Offset D. A lAA01011 a [D. Al lAA11011 a 

Increment by 1 • A + lAAOOOOO a not aI/owed 

Auto Increment/ Increment by 2 • A + + lAAOOOOl a [. A + +l lAA10001 0 

Decrement A Decrement by 1 • -A lAAOO010 a not aI/owed 

Decrement by 2 • --A lAAOOOll a L Al lAA10011 a 

a-Bit Offset n. PCA lXX01100 1 In. PCAl lXX11100 1 
Constant Offset from PC 

n.PCA lXXOll0l 2 In. PCAl lXXlll0l 2 1 6-Bit Offset 

Extended Indirect 16-Bit Address - - - [nl 10011111 2 

A = X. Y. U. or S 
X = Don't Care 

Note: This chart conforms to Motorola nomenclature; their use of square brackets [ 1 indicates to the assembler that the addressing 
mode is indirect - thus. their use of I 1 differs from the use in Table 9-22. 

9-203 

Volume 2 
Rev. A. Update 5 

7-79 



Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

LDD ADR8 2 X X 0 [ACA] +- [MEMl. [ACB] +- [MEM + 1] 

ADR16 3 Load double Accumulator using base page direct, extended direct, indirect or 

OFFSET,R 2+ indexed addressing. 
w 

ADR8 2 X X [MEM] +- [ACAl. [MEM + 1] +- [ACB] 0 STD 0 z 
ADR16 3 Store double Accumulator using direct, extended, indirect or indexed w 

a: 
OFFSET,R 2+ addressing. w 

u.. 
2 X X [REG(HIl] +- [MEMl. [REG(LO)] - [MEM + 1] w LDU ADR8 0 a: 

Load specified register (U or Yl using direct, extended, indirect or indexed ad-> ADR16 3 
a: OFFSET,R 2+ dressing. 0 
:E LDY ADR8 3 X X 0 Sign status reflects REG bit 15. 
w 

ADR16 4 :E 
> OFFSET,R 3+ 
a: 

STU ADR8 2 X X 0 [MEM] - [REG(Hlll. [MEM + 1] - [REG(LO)] ct 
:E ADR16 3 Store contents of specified register (U or Yl using direct, extended, indirect or a: 
D. OFFSET,R 2+ indexed addressing. Sign status reflects REG bit 15. 

STY 'ADR8 3 X X 0 
ADR16 4 

OFFSET,R 3+ 

ADDD ADR8 2 X X X X X (ACD] - (ACD] + [MEM]: (MEM + 1] 
ADR16 3 Add 1 6-bit value from locations MEM and MEM + 1 to D Accumulator using 

OFFSET, R 2+ direct, extended, indirect or indexed addressing. 
CMPD ADR8 3 X X X X [ACD]- [MEM]: [MEM + 1] 

w ADR16 4 Compares 16-bit number from locations M and M + 1 with contents of D Ac-
0 
z OFFSET,R 3+ cumulator and sets status bits as appropriate, Only Status register is affected. 
w 
a: W CMPS ADR8 3 X X X X [REG]- [MEM]: [MEM + 1] w 
u.. I- CMPU ADR16 4 Compares 16-bit number from locations M and M + 1 with contents of w ct a: a: CMPY OFFSET,R 3+ register (5, U, Y or Xl specified in the mnemonic and sets status bits as ap-
> w 
a: D. CMPX ADR8 2 X X X X propriate. Only Status register is affected. 
0 0 
:E > ADR16 3 
w a: OFFSET,R 2+ :E 0 

> ~ LSL ADR8 2 X X X X EJ<a-174 01'-0 0= b7.l1- b6 
a: :E ADR16 3 
ct-

2+ (M] Q OFFSET,R z Logical Shift Left. 
0 
0 

X [ACD]- (ACD]- [MEM]: [MEM + 1] w SUBD ADR8 2 X X X 
(I) 

ADR16 3 Subtract 16-bit number contained in locations MEM and MEM + 1 from num-

OFFSET,R 2+ ber contained in D Accumulator using direct, extended, indirect or indexed ad-
dressing. 



Copyright © 1979 McGraw-Hili. Inc. 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

w LDD DATA16 3 X X 0 [ACA) - [B2). [ACB) - [B3) 
I- Load Accumulator immediate. Sign e( 

C LDU DATA16 3 X X 0 [U(HII) - [B2). [U(LOI) - [B3) status 
w 
~ Load User Pointer immediate. reflects 

~ bit 15 
LDY DATA16 4 X X 0 [Y(HII) - [B3). [Y(LO)) - [BA) 

ADDD DATA16 3 X X X X X [ACD) - [ACD) + [B2): [B3) 
Add 16-bit number following Op-code to contents of D Accumulator. 

w 
SUBD DATA16 3 X X X X [ACD) - [ACD) - [B2): [B3) l-

e( 
Subtract 16-bit number following Op-Code from contents of D Accumulator. a: 

w 
Q. 

0 CMPD DATA16 4 X X X X [ACD) - [B3]: [B4] 
w 
I- Compare immediate contents of D Accumulator and 16-bit number following 
e( 

C (two by tel Op-code. Only status bits are affected. 
w CMPS DATA16 4 X X X X [REG) - [B3): [B4) 
~ 

~ CMPU Compare immediate contents of designated Register (S. U. Y or xl specified 

CMPY in instruction with 16-bit number following (two by tel Op-code. Only Status 

CMPX DATA16 3 X X X X bits are affected. 

LBRA DISP16 3 [PC) - [PC') + DISP16 
Unconditional long branch relative to present Program Counter contents. 

Q. 
LBSR . DISP16 3 [[SP) - 1) - [PC(LOI), [[SP) - 2] - [PC(HII), [SP) - [SP) - 2 

~ 
::::I 

[PC) - [PC') + DISP16 -, 
Unconditional long branch to subroutine located relative to present Program 
Counter contents. 

[PC) - [PC') + DISP if condition true 

Z BHS DISP 2 C=O 
0 BLO DISP 2 C=1 
i= [PC) - [PC') + DISP 1 6 if condition true C 
Z 
0 
CJ 
Z 
0 
:J: 
CJ 
Z 
e( 
a: 
III 



co 
N 
o 
en 

TYPE 

~ 
Q) 
::J 

oS 
c 
0 g 
Z 
0 
i= 
C 
Z 
0 
CJ 
z 
0 
:t: 
CJ z 
4( 
a: 
a:I 

W 
0> 
1- 0 
a: ~ 
Wa: 
I-w 
~ti CJ_ 
WCJ 
a:w 

a: 

a: 
w 
I-
en 
S~ 
~~ 
a:w 
We.. 
ti° 
S 
w 
a: 

MNEMONIC 

LBCC 
LBCS 
LBEQ 
LBGE 
LBGT 
LBHI 
LBHS 
LBLE 
LBLO 
LBLS· 
LBLT 
LBMI 
LBNE 
LBPL 
LBVC 
LBVS 

EXG 

TFR 

ABX 

MUL 

SEX 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
OPERAND(S) BYTES OPERATION PERFORMED 

E ·F C Z S .V H I 

DISP16 4 
DISP16 4 
DISP16 4 
DISP16 4 
DISP16 4 
DISP16 4 
DISP16 4 
DISP16 4 Conditions are the same as shown in the Branch On Condition Table for the 
DISP16 4 MC6800. 
DISP16 4 
DlSP16 4 
DISP16 4 
DlSP16 4 
DISP16 4 
DISP16 . 4 
DISP16 4 

Rl. R2 2 [Rl] -- [R2] 
Exchange contents of specified registers. Status register not affected unless 
R 1 or R2 is Status register. 

R1. R2 2 [R2]- [Rl] 
Transfer contents of Rl to R2. Status register is not affected unless R2 is 
Status register. 

1 [X) - [X) + [B) 
Add unsigned contents of B Accumulator to Index register. 

1 X [D) - [A) x [B) 
Multiply unsigned' numbers in Accumulators A and B and place result in D. 
Carry bit is set if Accumulator B bit 7 is set. 

1 X ;X 0 [A) - FF 1 6 if Accumulator B bit 7 = 1 
[A) - 00 l6if Accumulator B bit 7 = 0 

Transform an 8-bit twos complement number in B to a l6-bit twos comple-
ment number in D. 



Copyright © 1979 McGraw-Hili, Inc. 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

LEAS OFFSET,R 2+ [S]-EA 

w LEAU OFFSET,R 2+ [U]-EA EA is the Effective .-
LEAX OFFSET,R 2+ [X]-EA Address ~ X a: 
LEAY OFFSET,R 2+ X [Y]-EA w 

Q. 

0 Form the Effective Address EA according to the addressing variation used. a: 
w Load this address into designated register (for later use) rather than output-.-
CI) ting it on Address Bus at this time. 
S 
w 

80-17 .. oJ.-o a: 
LSL ACX 1 X X X X ~ = b7 .lJ.b6 

(ACX) 

PSHS LIST 2 Test Post Byte and stack as follows. 
Condition: 
b7 = 1; [SP] - [SP] -1, [[SPll - [PC(LO)] 

[SP] - [SP] - 1, [[SPll - [PC(HIll 
b6 = 1; [SP] - [SP] - 1. [[SPll - [U(LO)] 

[SP] - [SP] - 1. [[SPll -[U(HIll 
b5 = 1; [SP] ...... [SP] - 1. [[SPll ...... [Y(LO)] 

[SP] ...... [SP] - 1. [[SPll ...... [Y(HIll 
b4 = 1; [SP] ...... [SP] - 1. [[SPll ...... [X(LO)] 

[SP] - [SP] - 1. [[SPll ...... [X(HIl] 
b3 = 1; [SP] ...... [SP] - 1. [[SPll - [DP] 
b2 = 1; [SP] ...... [SP] - 1. [[SPll ...... [B] 

~ b1 = 1; [SP]-[SP] - 1. [[SPll ...... [A] (,) 
~ bO = 1; [SP] ...... [SP]- 1. [[SPll ...... [SR] .-
CI) 

~ Push any. all. none or any subset of registers onto Hardware Stack (except the 
Hardware Stack Pointer itself). 



co 
~ 
o 
to 

TYPE 

~ 
CD 
~ 

~ 
c 
0 
~ 
::.:: 
CJ 
ct 
t-
CI) 

MNEMONIC 

PSHU 

PUlS 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC68()9 (Continued) 

STATUS 
OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

LIST 2 Test Post Byte and stack as follows. 
Condition: 
b7 = 1; [U) - [U) - 1. [[UJ) - [PC(lOI) 

[U) - [U) - 1. [[UJ) - [PC(HIl) 
b6 = 1; [U) - [U) - 1. [[UJ) - [SP(lO)) 

[U) - [U) - 1. [[UJ) - [SP(HI)) 
b5 = 1; [U)- [U) - 1. [[UJ) - [Y(lO)) 

[U) - [U) ~ 1. [[UJ) - [Y(HIl) 
b4 = 1; [U)-[U) - 1. [[UJ) - [X(lOI) 

[U) - [U) - 1. [[UJ) - [X(HIl) 
b3 = 1; [U) - [U) - 1. [[UJ) - [OP) 

. 

b2 = 1; [U) - [U) - 1. [[UJ) - [B) 
b1 = 1; [U)-[U)-l. [[UJ)-[A) 
bO = 1; [U) - [U) - 1. [[UJ) - [SR) 

Push any. all. none or any subset of registers onto User Stack (except the User 
Stack Pointer itself). 

LIST 2 Test Post Byte and unstack as follows. 
Condition: 
bO = 1; [SR) - [[SPJ). [SP) - [SP) + 1 
b1 = 1; [A) - [[SP)). [SP) - [SP) + 1 
b2 = 1; [B) - [[SP)). [SP) - [SP) + 1 
b3 = 1; [OP) - [[SP)). [SP) - [SP) + 1 
b4 = 1; [X(HIl) - [[SP)). [SP) - [SP) + 1 

[X(lO)) - [[SP)). [SP) - [SP) + 1 
b5 = 1; [Y(HIl) - [ISP)). [SP) - [SP) + 1 

. [Y(lOI) - [[SPJ). [SP) ~ [SP) + 1 
b6 == 1; [U(HIl) - [[SP)). [SP) - [SP) + 1 

[U(lOI) - [[SP)). [SP) - [SP) + 1 
b7 = 1; [PC(HIl) - [[SP)J. [SP) - [SP) + 1 

[PC(lOI) - [[SP)). [SP) - [SP) + 1 

Pull any. all. none or any subset of registers from Hardware Stack (except the 
Hardware Stack Pointer itselfl. The Status register bits are determined by 
byte pulled from Stack. -



co 
N 
o 
CO 

c< 
-02-
Q.c 

..... !!!3 .!.,,(l)(l) 
COOl/\) 

TYPE MNEMONIC 

PUlU 

-:a 
II 
:::J 

.~ 
c 
0 

.2 
~ 
(J 
« 
t-
CI) 

RTI 

t-a.. 
::I 
a: 
a: 
w 
t-
~ 

Copyright ~ 1979 McGraw-Hili. Inc. 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

LIST 2 Test Post Byte and unstack as follows. 
Condition: 
bO = 1 ; [SRI - HU]l. [U] - [U] + 1 
b1 = 1; [A] - [[U]l. [U] - [U] + 1 
b2 = 1; [B] - [[Ull. [U] - [U] + 1 
b3 = 1; [DP] - [[Ull. [U] - [U] + 1 
b4 = 1; [X(HIl] - [[Ull. [U] - [U] + 1 

[X(lOI] - [[Ull, [U] - [U] + 1 
b5 = 1; [V(HIlI - [[Ull. IU] - [U] + 1 

[V(lOI] - [[Ull. [U] - [U] + 1 
b6 = 1; [SP(HIl] - [[UIl, [U] - [U] + 1 

[SP(lOI] - [[Ull. [U] - [U] + 1 
b7 = 1; [PC (Hill - [[Ull. [U] - [U] + 1 

[PC(lOI] - [[U]l. [U] - IU] + 1 

Pull any, all. none or any subset of registers from User Stack (except the User 
Stack Pointer its·elf): Status register bits are determined by byte pulled from 
Stack. 

1 Pull registers from Hardware Stack in accordance with value of E of Status 
Register. 

If E = 0, pull the subset. 
[SRI - [[SP]I. [SPI - [SP] + 1 
[PC(Hil] - [[SP]l. [SP] - [SP] + 1 
[PC(LO)] - [[SP]l. [SP] - [SP] + 1 

If E = 1, pull the full complement. 
[SRI - [[SP]I. [SP] - [SPI + 1 
[Ai - [[SP]I. [SP] - ISP] + 1 
[B] - [[SP]l. ISP] - [SP] + 1 
[DP] - [[SPll, [SP] - [SP] + 1 
[X(Hil]- [[SPIt [SP]-I.SP] + 1 
[X(lO)] - [[SPIl, [SP] - [SP] + 1 
[V(Hil] - [[SPIl. [SP] - ISP] + 1 
[V(lO)] - [[SPIt [SP] - [SP] + 1 
[U(HI)] - [[SPIt [SP] - [SP] + 1 
[U(lO)] - [[SPIl, [SP] - [SP] + 1 
[PC (Hill - [[SPIt [SP] - [SP] + 1 
[PC(lOI] - [[SP]l. [SP] - [SP] + 1 

Status bits are as received from Stack. 



'Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

[SR] - [SR] A [B2] This may clear SR bits. 

CWAI 2 E-1 

[SP] - [SP] - 1, [[SPJ] - [PC] 
[SP] - [SP] - 1, [[SPJ] - [PC] 
[SP] - [SP] - 1, [[SPJ] - [U] 
[SP] - [SP] - 1, [[SPJ] - [U] 
[SP] - [SP] - 1, [[SPJ] - [Y] 
[SP] - [SP] - 1, [[SPJ] - [Y] 
[SP] - [SP] -1, [[SPJ] - [X] 
[SP] - [SP] - 1, [[SPJ] - [X] 
[SP] - [SP] - 1, [[SPJ] - [OP] 
[SP] - [SP] - 1, [[SPJ] - [B] 
[SP] - [SP] - 1, [[SPJ] - [A] 

;:; [SP] - [SP] - 1, [[SPJ] - [SR] 
II) 

Pushes registers onto Stack and waits for an interrupt. When non-masked in-:s 

'E terrupt occurs, vectors to corresponding interrupt service routine. FIRQ enters c 
0 its serVice routine with all registers saved, but since E = 1, they will un stack 2 .- correctly on RT\' (System busses are not floated by CWAI.) 

Q. 

:l 
a: 
a: 
LLI .-
!: 



Copyright (Q 1979 McGraw-Hili, Inc. 

Table 9-22. A Summary of the New and Enhanced Instructions for the MC6809 (Continued) 

STATUS 
TYPE MNEMONIC OPERAND(S) BYTES OPERATION PERFORMED 

E F C Z S V H I 

SWI 1 E-1 

[SP] - [SP] - 1, ([SP)) - [PC(lO)] 
[SP] - [SPl- 1, ([SP)) - [PC (Hill 
[SP] - [SP] - 1, ([SP)) - [U(lO)] 
[SP] - [SP] - 1, ([SP)) - [U(HIll 

t [SP] - [SP] - 1, ([SP)) - [Y(lO)) 
[SP] - [SP] - 1, ([SP)) - [Y(HIll 
[SP] - [SP] - 1, ([SP)) - [X(lO)) 
[SP] - [SP] - 1, ([SP)) - [X(HIll 
[SP] - [SP] - 1, ([SP)) - [DP] 
[SP] - [SP] - 1, ([SP)) - [B] 

-:c [SP] - [SP] - 1, ([SP)) - [A] GI 
:l [SP] - [SP] - 1, ([SP)) - [SRI c 
~ 

F - 1. [PC] - [FFFA]: [FFFB] c 1 -1. 0 g 
Transfer control to interrupt subroutine. 

l-e.. SWI2 2 E-1 ::l 
a: 
a: Push registers onto Hardware Stack (same as above). w -
I- [PC] - [FFF4]: [FFF5] 
!: Transfer control to interrupt subroutine. 

SWI3 2 E-1 

Push registers onto Hardware Stack (same as above). --
[PC]- [FFF2]: [FFF3] 

Transfer control to interrupt subroutine. 

SYNC 1 Stop processing instructions: float system busses: wait for an interrupt. When 
an interrupt occurs, resume processing as follows: 

j) If interrupt is enabled. transfer to the service routine. 

ij) If interrupt is disabled, continue execution at next instruction in sequence. 

(/) ANDCC DATA 2 1 [SR] - [SR] A DATA 
::l 

AND immediate. Used to clear SR bits. l-
e( 

ORCC DATA 2 [SR]- [SRI V DATA l-
(/) 

OR immediate. Used to set SR bits. 

BRN DISP 2 Branch Never. This is a No Operation 
lBN DlSP16 4 long Branch Never. This is a No Operation. 



DATA SHEETS 

This section contains specific electrical and timing data for the following devices: 

• MC6800 CPU 
• MC6802 CPU/RAM 
• MC6870A Clock 
• MC6871A Clock 
• MC6871 B Clock 
• MC6820 PIA 
• MC6850 ACIA 
• MC6852 SSDA 
• MC6840 PTM 
• MC6844 DMAC 
• MC6846 ROM-I/O-Timer 
• MC6801 One-Chip Microcomputer 
• MC6809 CPU 

9-01 

Volume 2 
Rev. A, Update 5 

7-79 



MC6800, MC68AOO, MC68BOO 

TABLE 1 - MAXIMUM RATINGS 

Rating Symbol 

Supply Voltage VCC 
Input Voltage Vin 

Operating Temperature Range-TL to TH TA 
MC6800, MC68AOO, MC68BOO 
MC6800C, MC68AOOC 
MC6800BQCS, MC6800CQCS 

Storage Temperature Range Tstg 
Thermal Resistance (JJA 

Plastic Package 
Ceramic Package 

Value 

-0.3 to +,7.0 

-0.3 to +7.0 

o to +70 
-40 to +85 
-55 to +125 

-55 to +150 

70 
50 

Unit 

Vdc 

Vdc 

°c 

°c 

°C/W 

This device contains circuitry to protect the 
inputs against damage due to high static voltages 
or electric fields; however, it is advised that 
normal precautions be taken to avoid appli­
cation of any voltage higher than maximum 
rated voltages to this high impedance circuit. 

TABLE 2 - ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, ± 5%, VSS = 0, TA = TL to TH unless otherwise noted) 

Characteristic Symbol Min Typ Max Unit 

Input High Voltage Logic VIH VSS + 2.0 - VCC Vdc 

\ 
1/>1,1/>2 VIHC Vce -0.6 - VCC +.0.3 

Input Low Voltage Logic VIL VSS - 0.3 - VSS + 0.8 Vdc 

1/>1,1/>2 VILC VSS - 0.3 - Vss + 0.4 

Input Leakage Current lin /lAdc 
(Vin =0 to 5.25 V, VCC = max) Logic' - 1.0 2.5 
(V in = 0 to 5.25 V, VCC = 0.0 V) 1/>1,¢2 - - 100 

Three-State (Off State) Input Current 00-07 ITSI - 2.0 10 /lAdc 
(Vin = 0.4 to 2.4 V, VCC = max) AO-AI5,R/W - - 100 

Output High Voltage VOH Vdc 

(I Load = -205 /lAdc, VCC = min) 00-07 VSS + 2.4 - -
(I Load = -145 /lAdc, VCC = min) AO-AI5,R/W,VMA VSS + 2.4 - -
(I Load = -100 /lAdc, VCC = min) BA VSS + 2.4 - -

Output Low Voltage (I Load - 1.6 mAdc, VCC = min) VOL - - VSS + 0.4 Vdc 

Power Dissipation Po - 0.5 1.0 W 

Capacitance Cin pF 

(Vin = 0, T A = 250 C, f = 1.0 MHz) 1/>1 - 25 35 
¢2 - 45 70 

00-07 - 10 12.5 
Logic Inputs - 6.5 10 

AO-A 15,R/W, VMA Cout - - 12 pF 

TABLE 3 - CLOCK TIMING (VCC = 5.0 V, ± 5%, VSS = 0, T A = TL to TH unless otherwise noted) 

Characteristics Symbol Min Typ Max Unit 

Frequency of Operation MC6800 f 0.1 - 1.0 MHz 

MC68AOO 0.1 - 1.5 
MC68BOO 0.1 - 2.0 

Cycle Time (Figure 1) MC6800 tcyc 1.000 - 10 /lS 
MC68AOO 0.666 - 10 

MC68BOO 0.500 - 10 

Clock Pulse Width 1/>1,¢2 - MC6800 PW¢H 400 - 9500 ns 

:(Measured at VCC - 0.6 V) 1/>1,¢2 - MC68AOO 230 - 9500 
1/>1,¢2 - MC68BOO 180 - 9500 

Total 1/>1 and cf>2 Up Time MC6800 tut 900 - - ns 
MC68AOO 600 - -
MC68BOO 440 - -

Rise and Fall Times tl/>r, t¢f - - 100 ns 

(Measured between VSS + 0.4 and VCC - 0.6) 

Delay Time or Clock Separation (Figure 1) td - 9100 
ns 

(Measured at VOV = VSS + 0.6 V @ tr = tf .;; 100 ns) 0 

(Measured at VOV = VSS + 1.0 V @ tr = tf';; 35 ns) 0 - 9100 

Data sheets on pages 9-02 through 9-030 reprinted by permission of Motorola Semiconductor Products, Inc. 

9-02 



Me6809, MC68A09, MC68B09 

MAXIMUM RATINGS 
Rating Symbol Value Unit This device contains circuitry to protect the 

Supply Voltage VCC -0.3 to +7.0 Vdc inputs against damage due to high static 

~<?lta!l.e Vin -0.3 to +7.0 Vdc voltages or electric fields; however. it is 
Operating Temperature Range TA o to +10 uC advised that normal precautions be taken 

Storage Temperature Range TSl 9 -55 to +150 DC to avoid application of any voltage higher 

Thermal Resistance 8JA 70 DC/W than maximum rated voltages to this high 
impedance circuit. 

ELECTRICAL CHARACTERISTICS (Vcc = 5.0 V ±5%. VSS = O. TA = 0 to 70DC unless otherwise noted.) 

Characteristic Symbol Min Typ Max Unit 

Input High Voltage Logic. EXtal VIH VSS + 2.0 - VOO Vdc 
RESET VSS + 4.0 - VOO 

Input Low Voltage Logic. EXtal. RESET VIL VSS - 0.3 - VSS + O.B Vdc 

Input Leakage Current Logic lin - 1.0 2.5 pAdc 
IVin = 0 to 5.25 V. VCC = max) 

Output High Voltage VOH Vdc 
(I Load = -205 pAdc. VCC = min) DO·D7 VSS + 2.4 - -
(lLoad = ·145 pAdc. VCC = min) AO-A 15. R/w' O. E VSS + 2.4 - -
(ILoad = ·100 pAdc. VCC = min) BA. BS VSS + 2.4 - -

Output Low Voltage VOL - - VSS +0.5 Vdc 
(lLoad = 2.0 mAdc. VCC = min) 

Power Dissipation Po - - 1.0 W --
Capacitance # Cin pF 

IVin = O. T A = 25 0C. f = 1.0 MHz) DO-D7 - 10 15 
Logic Inputs. EXtal - 7 10 
AO-A15. R/W Cout - - 12 

Frequency of Operation MC6B09 f - - 4 MHz 
MC6BA09 fXTAL - - 6 

(Crystal or External Input) MC6BB09 fXTAL - - B 

Three-State (Off State) Input Current DO-D7 ITSI - 2.0 10 pAdc 
IVin = 0.4 to 2.4 V. VCC = max) AO·A15. R/W - - 100 

READ/WRITE TIMING (Reference Figures 1 and 2) 

MC6809 MC6BA09 MC68B09 

Characteristic Symbol Min Typ Max Min Typ Max Min Typ Max Unit 
Cycle Time tCYC 1000 - - 667 - - 500 - - ns 

Total Up Time tUT 975 - - 640 - - 4BO - - ns 
Peripheral Read Access Time tACC 695 - - 440 - - 320 - - ns 

tac = (tAO = tOSR) 
Data Setup Time (Read) tOSR BO - - 60 - - 40 - - ns 
Input Data Hold Time tOHR 10 - - 10 - - 10 - - ns 
Output Data Hold Time tOHW 30 - - 30 - - 30 - - ns 
Address Hold Time tAH 30 - - 30 - - 30 - - ns 

(Address. R/W) 

Address Delay tAO - - 200 - - 140 - - 110 ns 
Data Delay Time (Write) tDOW - - 225 - - 180 - - 145 ns 
Elow to Ohigh Time tAVS - - 250 - - 165 - - 125 ns 
Address Valid to Ohigh tAO 25 - - 25 - - 15 - - ns 
Processor Clock Low tPWEL 450 - - 295 - - 210 - - ns 
Processor Clock High tPWEH 450 - - 2BO - - 220 - - ns 
MRDY Set Up Time tPCSR 60 - - 60 - - 60 - - ns 
Interrupts Set Up Time tpcs 200 - - 140 - - 110 - - ns 

HAL T Set Up Time tPCSH 200 - - 140 - - 110 - - ns 

RESET Set Up Time tpCSR 200 - - 140 - - 110 - - ns 
DF:iiA/BRE(j Set Up Time tpCSO 125 - - 125 - - 125 - - ns 
Crystal Osc Start Time trc 100 - - 100 - - 100 - - ms 
E Rise and Fall Time tER. tEF 5 - 25 5 - 25 5 - 20 ns 
Processor Control Rise/Fal1 tPCR. - - 100 - - 100 - - 100 ns 

tPLF 
o Rise and Fall Time tOR. tOF 5 - 25 5 - 25 5 - 20 ns 
o Clock High tPWOH 450 - - 2BO - - 220 - - ns 

Data sheets on pages 9-031 through 9-039 reprinted by permission of Motorola Semiconductor Products. Inc. Volume 2 

Rev. A. Update 5 
9-031 7-79 



MC6809, MC68A09, MC68B09 

READ DATA FROM MEMORY OR PERIPHERALS 

~----------------- leye 

2.4 V 2.4 V 

IPWEH _____ .-! ~O:..:..5::....:.V---

2.4 V 
Q 

R/W 

AD DR 

lAce 

lAO 

DATA --------------------------------------~C\ 

MRDY 

~----------------------------------------------~~~~~---------

WRITE DATA TO MEMORY OR PERIPHERALS 

E 

Q 

AD DR 

BA. BS _--..:::.:.::....!.+l ....... 

DATA DATA VALID 

9-032 



MC6809, MC68A09, MC68B09 

BUS TIMING TEST LOAO 

4.75 V 
( 

RL=2.2K 

Test Point o-o-..... -..,.t ............. MM06150 
I" , ~ or Equiv. 

c = 30 pF for BA. BS 
130 pF for 00-07. E. Q 

90 pF for AO-A 15. R IW 

-
,~ MM07000 

~~ or Equlv. 

~ 

R= 11.7kOforOO-07 
16.5 kO for AO-A 15. E. Q 

24 kO for BA. BS 

9-033 

Volume 2 
Rev. A. Update 5 

7-79 



RESET TIMING 

voo 

RESET· 

Add,,,,, rT"'rnC"t"""!~·!n-TT"",,, 
Bus 

BA ~~~~~~~ _____________________ H_'B_y_te __ L_O_By_t. _______ 'n_st_,uc_t'_on ______ ~~-----------------------------------------H,-BY-t,-. __ L"_8_"_' _______________ 1 

BS\SS\\W~ I \L ____________ ~rr~----------------------------~/ \L __________ I 

·Note Parts WIth dilte codes pref,xed by 7F WIll come out of Reset one cycle sooner than shown 

CRYSTAL CONNECTIONS AND OSCILLATOR START UP 

75 V 
Voo 

-+-----;~ 

Fmrr 
--------4-----~t~R-C---f~r-~-08V 

Yl em Cout 

8 MHz 18 pF 18 pF 

6 MHz 20 pF 20 pF 

4 MHz 24 pF 24 pF 

MC6809 

38 Yl 39 

D 
CI'I' 'I'l.O 

6809 Crystal Parameters' 

3.58 MHz 4.00 MHz 6.0 MHz 8.0 MHz 

RS 600 500 30-500 20-400 

Co 3.5 pF 6.5 pF 4-6 pF 4-6 pF 

C1 015 pF 025 pF 01-.02 pF 01- 02 pF 

Cin. Cout 25 pF 25 pF 25 pF 25 pF 

...U 40 K 30 K 20 K 20 K 
All Parameters Are· 10')-0 
"Note: These are representative AT-cut crystill parameters only. 
Crystals of other types of cut that work may also be lIsed 

38------11 D 1-1 -----39 

~~ 
3B~'E----J39 

Co 

s: 
(") 
en 
CO 
o 
!:D 
s: 
(") 
en 
CO 
:t> o 
!:O 
s: 
(") 
en 
CO 
CD 
o 
CD 



MC6809, MC68A09, MC68B09 

Q 

HALT 

Address 
Bus 

RN/ 

BA 

BS 

Data 
Bus 

2nd To Last Last Cycle 

H'A'tT AND SINGLE INSTRUCTION 
EXECUTION FOR SYSTEM DEBUG 

~~~Ir:~f Cu~r~nt Dead Dead Instruction Instruction Dead 

I
Inst I Inst I Cycle I· _____ ~H:::al.:::te:::..d ______ .,If4 • ...:c:..:.y~Cle:......+,...:....:Fe:::tc::.:.h-r+..:E:.;.:x.:.:ec.::.ut.::.e~I_C...:.YC_le-lI~I_H_a_lt_ed_ .• ad •.• I.' ,"P ... I.'1 o.

)

C

('l

,
(

/
c.)2

/ t'c.'l

('

9-035

\
\

~
Fetch Execute

~
/
/

~
Instruction

Opcode

Volume 2
Rev. A. Update 5

7-79

IRQ AND NMT INTERRUPT TI MING

I--n -----/.- n , '--+-n '2--1-n 'J--!--n • '--!--n • 5--+-n • 6 -+-n • 7--j.-n • 8--1-n '9--+-n , lO+n , 11-\.-n , 12...j-n' 13--+-n , 14-1-n' 15../.·n' 16-1-n + 17.J..n • 18.J..n , 19.J..n , 20.J..n + 21..1

AJdress -. ,--, r------.
Bus

SP 4 SP 7 SP B SP 9 SP 10 SP 11 SP 12 FFFC (NMll FFFO (NMII FFFF New PC New PCH
FFF8 tiRO) FFF91IRO) I

Next SP 2 SP 3 SP 5 FFFF SP· 1

tPC'S ~ Fetch

IROor I ~
Instruwon

NMI ~O.~8V~ _____________________________ ___

Data Bus

RIW~

8A:\\SSSS\,

BS~

\~--~/

RIW~

BA~

BS~

FiRCi INTERRUPT TIMING

\'--___ ~r_

/

/

\~--------

Of Interrupt
ServLce
Routme

'C

\'--------

3:
(")
en
CD
o
!.D
3:
(")
en
CD » o
!.D
3:
(")
en
CD
III o
CD

MC6809, MC68A09, MC68B09

F\

0 I
MRDY

E/Q RELATIONSHIP

51.1" "f C:yc!t· Elld "f Cyell' fL.llr" Dal,,)

I I

E ---{'----_----JI ~I....----
I_"vs-<{ I
: ~-7-4V-----------'\~ ____ ~i ____ __ o

I Add,,·s' V"I,d I

FIGURE 13 MRDY TIMING

I \ / \IS~ 1'-. ____
1

\ / \ 1

I

\\\\\~
I

"I
I
I

9-037

JJ
If'CSH

f~

I

Volume 2
Rev. A. Update 5

7-79

MC6S09, MC6SA09, MC6SB09

TYPICAL DMA TIMING ("14 CYCLES)

MPU DEAD DMA DEAD MPU

Q

r- 'peso

SA. BS \~--

\'------.J1
ADDRIMPU) __________________ ~)~--~~

ADDRIDMACI------------------------~(~ __ _J)~------------I
NOTE:
5"MAViiiiA IS iI Signal which

IS (h,v"lofJed ",wrnally bll'
I~ (l svstt-!1l1 rp.qUHt>mt'nt for DMA

AUTO-REFRESH DMA TIMING (14 CYCLES)

I 1 I I
IDEAD 1"1141-----------------14 DMA CYCLES-------------------~~IDEADI MPU DFADI.--DMA--'

I I 1 I I 1

1 I 1 I I 1

Q

I
DMA BREO~~I __ +I--~I--~I-----------------

I
I I I I

BA BS---1lr~--~~r~~-----------

~ j ________________________________ ~\1 "I I~----------

D M A VM A "----/ "---../ "---../

. 9-038

<0

6
w
<0

::0
(I)

:.::
}>

~~
Q.c:

~~~ ..... 

SYNC TIMING 

Last 
Cycle Of Sync 
Previous Opcode Dead 

1~.~ln~s~t~.+I.~F~et=c~h~.~I~.~E~xe=c~ut~e~.~I.~C~y~CI~e~.~I •• ____ ~~f-------_SYNCACK 

Q 

Address 

Data 

RM 

BA =x:==A'---____ ----'! l 

Dead 

-i- Cycle 

Instruct 

I 
Fetch I I.. •. 

Fetch 

BS~~ ____________________ ~~------+_----------------------------------
IRQ { 

FIRQ 
NMI 

NOTE: 
1. If the mask bit is set when the interrupt is requested 

processing will continue with instruction execution 
fetched from previous step. However, if an NMI or an 
unmasked FI RQ or IRQ caused interrupt, the address 
placed on bus from previous cycle 1M + 1) remains on 
bus and processing continues with this cycle as 
(m + 1) or (n + 1) of interrupt timing. 

2. If mask bits are clear IRQ & FIRQ must be held low 
for three cycles to guarantee interrupt to be taken, 
although only one cycle is necessary to bring the 
processor out of SYNC. 

See Note 2 

tPCS 

<O~ N ~ __________________________________________________________________________________________________________________ --J 

s: 
n 
en 
CO 
o 
!,D 

s: 
n 
en 
CO 
l> o 
!,D 

s: 
n 
en 
CO 
m o 
CD 



:c 
C> 

''::: 
>­a. 
o 

U 

ATTENTION WRITERS 

OSBORNE/McGraw-Hili is seeking qualified contributors to future updates of 
Volumes 2 and 3. Qualified contributors must have an excellent technical back­
ground, and they must be able to write clearly and without bias toward any manufac­
turer of products covered. Faculty at universities are particularly welcome as contribu­
tors. 

A contributor, when selected, will be assigned a specific category of parts to keep up­
dated. Keeping parts updated will include describing new parts in the category as they 
appear, and improving the description of parts that are already covered. Individual 
one-time contributions are also welcome. 

: If you would like to become a contributor to Volume 2 and/or Volume 3, please write 
stating your qualifications and the categories that you believe you could cover com­
petently. If possible, send us a sample of your work; we suggest two or three pages of 
a part description following the format presented in these books as closely as possi-
ble. Send material to: 

OSBORNE/McGraw-Hili 
630 Bancroft Way 

Berkeley, California 94710 

Attention: Volume 2/3 Contributors 

Volume 2 
Rev, A. Update 5 

7-79 


	00-01_TOC
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	00-13
	00-14
	00-15
	00-16
	00-17
	00-18
	00-19
	00-20
	00-21
	00-22
	00-23
	00-24
	00-25
	00-26
	00-27
	00-28
	00-29
	00-30
	00-31
	00-32
	00-33
	00-34
	00-35
	00-36
	00-37
	00-38
	00-39
	00-40
	00-41
	00-42
	00-43
	00-44
	00-45
	00-46
	00-47
	00-48
	00-49
	00-50
	01-01_TMS1000
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-D1
	01-D2
	01-D3
	01-D4
	01-D5
	02-01_F8
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	02-53
	02-54
	02-55
	02-56
	02-D01
	02-D02
	02-D03
	02-D04
	02-D05
	02-D06
	02-D07
	02-D08
	02-D09
	02-D10
	02-D11
	02-D12
	02-D13
	02-D14
	02-D15
	02-D16
	02-D17
	02-D18
	02-D19
	02-D20
	02-D21
	02-D22
	02-D23
	02-D24
	02-D25
	02-D26
	02-D27
	02-D28
	02-D29
	02-D30
	02-D31
	02-D32
	02-D33
	03-01_SCMP
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-D01
	03-D02
	03-D03
	03-D04
	03-D05
	03-D06
	03-D07
	03-D08
	03-D09
	03-D10
	03-D11
	04-01_8080A
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-D01
	04-D02
	04-D03
	04-D04
	04-D05
	04-D06
	04-D07
	04-D08
	04-D09
	04-D10
	04-D11
	04-D12
	04-D13
	04-D14
	04-D15
	04-D16
	05-01_8085
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-D01
	05-D02
	05-D03
	05-D04
	05-D05
	05-D06
	05-D07
	05-D08
	05-D09
	05-D10
	05-D11
	05-D12
	05-D13
	05-D14
	05-D15
	05-D16
	05-D17
	05-D18
	06-01_8048
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-D01
	06-D02
	06-D03
	06-D04
	06-D05
	06-D06
	06-D07
	06-D08
	06-D09
	06-D10
	06-D11
	06-D12
	06-D13
	06-D14
	07-01_Z80
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	07-47
	07-48
	07-49
	07-50
	07-51
	07-52
	07-53
	07-54
	07-55
	07-56
	07-57
	07-58
	07-59
	07-60
	07-61
	07-62
	07-D01
	07-D02
	07-D03
	07-D04
	07-D05
	07-D06
	07-D07
	07-D08
	07-D09
	07-D10
	07-D11
	07-D12
	07-D13
	08_01_Z8
	09_001_MC68000
	09_002
	09_003
	09_004
	09_005
	09_006
	09_007
	09_008
	09_009
	09_010
	09_011
	09_012
	09_013
	09_014
	09_015
	09_016
	09_017
	09_018
	09_019
	09_020
	09_021
	09_022
	09_023
	09_024
	09_025
	09_026
	09_027
	09_028
	09_029
	09_030
	09_031
	09_032
	09_033
	09_034
	09_035
	09_036
	09_037
	09_038
	09_039
	09_040
	09_041
	09_042
	09_043
	09_044
	09_045
	09_046
	09_047
	09_048
	09_049
	09_050
	09_051
	09_052
	09_053
	09_054
	09_055
	09_056
	09_057
	09_058
	09_059
	09_060
	09_061
	09_062
	09_063
	09_064
	09_065
	09_066
	09_067
	09_068
	09_069
	09_070
	09_071
	09_072
	09_073
	09_074
	09_075
	09_076
	09_077
	09_078
	09_079
	09_080
	09_081
	09_082
	09_083
	09_084
	09_085
	09_086
	09_087
	09_088
	09_089
	09_090
	09_091
	09_092
	09_093
	09_094
	09_095
	09_096
	09_097
	09_098
	09_099
	09_100
	09_101
	09_102
	09_103
	09_104
	09_105
	09_106
	09_107
	09_108
	09_109
	09_110
	09_111
	09_112
	09_113
	09_114
	09_115
	09_116
	09_117
	09_118
	09_119
	09_120
	09_121
	09_122
	09_123
	09_124
	09_125
	09_126
	09_127
	09_128
	09_129
	09_130
	09_D01
	09_D02
	09_D03
	09_D04
	09_D05
	09_D06
	09_D07
	09_D08
	09_D09
	09_D10
	09_D11
	09_D12
	09_D13
	09_D14
	09_D15
	09_D16
	09_D17
	09_D18
	09_D19
	09_D20
	09_D21
	09_D22
	09_D23
	09_D24
	09_D25
	09_D26
	09_D27
	09_D28
	09_D29
	09_D30
	10-01_MCS6500
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-D1
	10-D2
	10-D3
	10-D4
	10-D5
	10-D6
	10-D7
	11-01_2650
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-D1
	11-D2
	11-D3
	11-D4
	11-D5
	11-D6
	12-01_COSMAC
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-D1
	12-D2
	12-D3
	12-D4
	12-D5
	13-01_IM6100
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	13-59
	13-60
	13-61
	13-62
	13-63
	13-64
	13-65
	13-66
	13-67
	13-68
	13-69
	13-70
	13-71
	13-72
	13-73
	13-74
	13-75
	13-76
	13-77
	13-78
	13-79
	13-80
	13-81
	13-82
	13-83
	13-84
	13-85
	13-86
	13-87
	13-88
	13-D1
	13-D2
	13-D3
	13-D4
	13-D5
	13-D6
	14-01_8X300
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-D01
	14-D02
	14-D03
	14-D04
	14-D05
	14-D06
	14-D07
	14-D08
	14-D09
	14-D10
	14-D11
	14-D12
	15-01_PACE
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	15-27
	15-28
	15-29
	15-30
	15-31
	15-32
	15-33
	15-34
	15-35
	15-36
	15-37
	15-38
	15-39
	15-40
	15-41
	15-42
	15-43
	15-44
	15-D01
	15-D02
	15-D03
	15-D04
	15-D05
	15-D06
	15-D07
	15-D08
	15-D09
	15-D10
	15-D11
	15-D12
	15-D13
	15-D14
	15-D15
	15-D16
	15-D17
	16-01_CP1600
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-D1
	16-D2
	16-D3
	16-D4
	16-D5
	16-D6
	17-01_GI1650
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12
	17-13
	17-14
	17-15
	17-D1
	17-D2
	17-D3
	18-01_TMS9900
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	18-11
	18-12
	18-13
	18-14
	18-15
	18-16
	18-17
	18-18
	18-19
	18-20
	18-21
	18-22
	18-23
	18-24
	18-25
	18-26
	18-27
	18-28
	18-29
	18-30
	18-31
	18-32
	18-33
	18-34
	18-35
	18-36
	18-37
	18-38
	18-39
	18-40
	18-41
	18-42
	18-43
	18-44
	18-45
	18-46
	18-47
	18-48
	18-49
	18-50
	18-51
	18-52
	18-53
	18-54
	18-55
	18-56
	18-57
	18-58
	18-59
	18-60
	18-61
	18-62
	18-63
	18-64
	18-65
	18-66
	18-67
	18-68
	18-69
	18-70
	18-71
	18-72
	18-73
	18-74
	18-75
	18-76
	18-77
	18-78
	18-79
	18-80
	18-81
	18-D1
	18-D2
	18-D3
	18-D4
	18-D5
	18-D6
	18-D7
	18-D8
	19-01
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	19-11
	19-12
	19-13
	19-14
	19-15
	19-16
	19-17
	19-18
	19-19
	19-20
	19-21
	19-22
	19-23
	19-24
	19-25
	19-26
	19-27
	19-28
	19-29
	19-30
	19-31
	19-32
	19-33
	19-34
	19-35
	19-36
	19-37
	19-38
	19-39
	19-40
	19-41
	19-D01
	19-D02
	19-D03
	19-D04
	19-D05
	19-D06
	19-D07
	19-D08
	19-D09
	19-D10
	20-01_8086
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	20-11
	20-12
	20-13
	20-14
	20-15
	20-16
	20-17
	20-18
	20-19
	20-20
	20-21
	20-22
	20-23
	20-24
	20-25
	20-26
	20-27
	20-28
	20-29
	20-30
	20-31
	20-32
	20-33
	20-34
	20-35
	20-36
	20-37
	20-38
	20-39
	20-40
	20-41
	20-42
	20-43
	20-44
	20-45
	20-46
	20-47
	20-48
	20-49
	20-50
	20-51
	20-52
	20-53
	20-54
	20-55
	20-56
	20-57
	20-58
	20-59
	20-60
	20-61
	20-62
	20-63
	20-64
	20-65
	20-66
	20-67
	20-68
	20-69
	20-70
	20-71
	20-72
	20-73
	20-74
	20-75
	20-76
	20-77
	20-78
	20-79
	20-80
	20-81
	20-82
	20-83
	20-84
	20-85
	20-86
	20-87
	20-88
	20-D01
	20-D02
	20-D03
	20-D04
	20-D05
	20-D06
	20-D07
	20-D08
	20-D09
	20-D10
	20-D11
	20-D12
	20-D13
	20-D14
	20-D15
	21-01_Z8000
	22-01_2900
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	22-09
	22-D01
	22-D02
	22-D03
	22-D04
	22-D05
	22-D06
	22-D07
	22-D08
	22-D09
	22-D10
	23-01_MC10800
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-D1
	23-D2
	23-D3
	23-D4
	23-D5
	23-D6
	23-D7
	23-D8
	23-D9
	24-01_HP_MC2
	24-02
	24-03
	24-04
	24-05
	24-06
	24-07
	24-08
	24-09
	24-10
	25-01
	25-02
	25-03
	25-04
	25-05
	25-06
	25-07
	25-08
	25-09
	25-10
	25-11
	Upd_5_0001
	Upd_5_0002
	Upd_5_0020-C
	Upd_5_0020-D
	Upd_5_0030-A
	Upd_5_0030-B
	Upd_5_0034-A
	Upd_5_0034b
	Upd_5_0056-g
	Upd_5_0056-h
	Upd_5_0056-i
	Upd_5_01-49
	Upd_5_01-50
	Upd_5_01-51
	Upd_5_01-52
	Upd_5_01-53
	Upd_5_01-54
	Upd_5_01-55
	Upd_5_01-56
	Upd_5_01-57
	Upd_5_01-58
	Upd_5_01-59
	Upd_5_01-60
	Upd_5_01-61
	Upd_5_01-62
	Upd_5_01-63
	Upd_5_01-64
	Upd_5_01-65
	Upd_5_01-66
	Upd_5_01-67
	Upd_5_01-68
	Upd_5_01-69
	Upd_5_01-70
	Upd_5_01-71
	Upd_5_01-72
	Upd_5_01-73
	Upd_5_01-74
	Upd_5_01-75
	Upd_5_01-76
	Upd_5_01-77
	Upd_5_01-78
	Upd_5_01-D01
	Upd_5_01-D02
	Upd_5_01-D17
	Upd_5_01-D18
	Upd_5_01-D19
	Upd_5_01-D20
	Upd_5_01-D21
	Upd_5_01-D22
	Upd_5_09-175
	Upd_5_09-176
	Upd_5_09-177
	Upd_5_09-178
	Upd_5_09-179
	Upd_5_09-180
	Upd_5_09-181
	Upd_5_09-182
	Upd_5_09-183
	Upd_5_09-184
	Upd_5_09-185
	Upd_5_09-186
	Upd_5_09-187
	Upd_5_09-188
	Upd_5_09-189
	Upd_5_09-190
	Upd_5_09-191
	Upd_5_09-192
	Upd_5_09-193
	Upd_5_09-194
	Upd_5_09-195
	Upd_5_09-196
	Upd_5_09-197
	Upd_5_09-198
	Upd_5_09-199
	Upd_5_09-200
	Upd_5_09-201
	Upd_5_09-202
	Upd_5_09-203
	Upd_5_09-204
	Upd_5_09-205
	Upd_5_09-206
	Upd_5_09-207
	Upd_5_09-208
	Upd_5_09-209
	Upd_5_09-210
	Upd_5_09-211
	Upd_5_09-D01
	Upd_5_09-D02
	Upd_5_09-D31
	Upd_5_09-D32
	Upd_5_09-D33
	Upd_5_09-D34
	Upd_5_09-D35
	Upd_5_09-D36
	Upd_5_09-D37
	Upd_5_09-D38
	Upd_5_09-D99
	Upd_5_Z2

