
AN ABSTRACT OF THE THESIS OF

JIMMY IVAN RUCKER for the MASTER OF SCIENCE
(Name) (Degree)

in COMPUTER SCIENCE presented on 7:/7..,(91h//e, /27,3
(Major) (Date)

Title: A COMPILER-COMPILER FOR THE CDC 3300

Abstract approved: Redacted for privacy
Curtis R. Cook and Joel Davis

This thesis describes a syntax-directed compiler-compiler

called COMCOM which has been implemented by the author on the CDC

3300 under the OS-3 operating system. The theory and terminology

of the parsing method and compiler-compilers in general are briefly

discussed. COMCOM uses Floyd's operator precedence bottom-up

parsing technique which avoids backup and is very efficient. The syn-

tactic metalanguage is similar to Backus-Naur Form. The source

language semantics may be composed using a library of supplied

routines or the user can expand the semantic capabilities by writing

semantic routines in COMPASS or FORTRAN. System features avail-

able to the user and methods to bypass shortcomings of the theory are

described. The system is briefly compared to the META/OS-3

compiler writing system which uses a top-down parsing technique.

Simplified versions of the algorithms, and a simple compiler built

using COMCOM are included.

A Compiler-Compiler for the CDC 3300

by

Jimmy Ivan Rucker

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed November 1973

Commencement June 1974

APPROVED:

Redacted for privacy
Assistant Professor of Computer Science

in charge of major

Redacted for privacy

Chairman of Department of Computer Science

Redacted for privacy

Dean of Graduate School

Date thesis is presented. 1,771-rj ;/

Typed by Clover Redfern for Jimmy. Ivan Rucker

ACKNOWLEDGMENTS

The author is most grateful to Joel Davis for his assistance in

the early stages of this thesis and to Curtis R. Cook for his super-

vision of the preparation of this paper. Thanks is also extended to

G.A. Bachelor for the use of his various subsystems and to the

members of the examination committee.

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION

II. THEORY 3
A. Terminology and Definitions 3
B. Operator Precedence Grammar Recognizer 12
C. Theory Advantages and Disadvantages 16

III. THE COMCOM SYSTEM 20
A. Description of COMCOM 20
B. Operators in a Postfix Notation 30
C. COMCOM System Disadvantages 34
D. COMCOM System Advantages 35

IV. THE META/OS-3 SYSTEM
A. Brief Description of META/OS-3
B. Comparison of COMCOM to META/OS-3

38
38
39

V. SUMMARY AND CONCLUSIONS 42

BIBLIOGRAPHY 44

APPENDICES 46
Appendix A: COMCOM System Flowchart 46
Appendix B: Constructor Algorithm 48
Appendix C: Parser Algorithm 53
Appendix D: Scanner Algorithm 55
Appendix E: Terminal Classes 60
Appendix F: Semantic and Primitive Routines 62
Appendix G: Complete Simple Compiler 68
Appendix H: META/OS-3 and COMCOM Parsing

Time Comparison 81

LIST OF FIGURES

Figure Page

1. Context free grammar Gi for the unsigned integers.

2. Syntax tree for the sentential form "INT 9 4".

5

6

3. Syntax tree for "FACT i *i". 9

4. Operator precedence grammar G2 for a restricted
subset of arithmetic expressions. 11

5. An ambiguous sentence Hi i" of an operator precedence
grammar. 12

6. Precedence matrix for the grammar G2. 13

7. The parse of 1- i + i * i 14

8. Operator precedence grammar with a precedence conflict. 17

9. COMCOM program for a restricted subset of arithmetic
expressions. 22

10. Sample source program for compiler of Figure 9. 23

11. A simple compiler. 28

12. A sample run of the compiler of Figure II. 29

13. Program and precedence matrix for a language with
"$" in postfix notation. 31

14. Source program for compiler of Figure 13. 31

15. Parse of program in Figure 14. 32

16. Parse of program in Figure 14 using an amended
precedence matrix. 34

LIST OF TABLES

Table Page

1. Semantic and primitive routines. 63

Z. Terminals and their codes. 68

3. Precedence matrix. 70

4. Time comparison results. 84

A COMPILER-COMPILER FOR THE CDC 3300

I. INTRODUCTION

The purpose of this thesis is to present a compiler-compiler

system called COMCOM which has been implemented by the author on

the CDC 3300 under the OS-3 operating system.

A compiler-compiler accepts a description of the structure and

meaning of a language and builds a translator for the language.

Compiler-compilers can be used to build translators for a wide

variety of languages. Plus, the implementer is relieved of many of

the details present in the traditional methods of writing compilers.

Evolution of compiler-compilers began as early as 1960 when Irons

[13] was able to construct a compiler whose structural phase was

independent of the source language being translated. Some compiler

compilers are the META systems [14, 16, 17], Feldman's Formal

Semantic Language (FSL) [7], EULER [18, 19], and Compiler Compiler

[5]. A version of META has been implemented at Oregon State

University, META/OS-3 [2]. Some of the external features of

COMCOM are similar to META/OS-3.

Feldman and Gries [8] give an excellent introduction

and state of the art (1968) survey of translator writing systems (TWS,

of which compiler-compilers are a subclass). It also includes an

extensive bibliography.

2

The heart of a compiler is its method for recognizing or parsing

the source language. The languages for which a compiler can be con-

structed depends heavily on the parsing algorithm selected- Two

general categories of parsers are top-down and bottom-up. Most

top-down processes require backup, a very undesirable feature.

Bottom-up methods using precedence techniques eliminate backup by

using tables of information about the language. Floyd was the first to

formalize the idea of precedence. His operator precedence technique

[9], is used by COMCOM. Other types of precedence are simple

precedence [18, 19], weak precedence [12], and various higher order

precedence methods [10].

Summaries of parsing techniques and compiler construction

methods can be found in the book by Cries [10].

The next chapter defines some key terms, discusses bottom-up

recognizers, and describes the operator precedence recognizer which

is used by COMCOM. The third chapter gives a brief description of

the COMCOM system. A more detailed description of some features

can be found in the Appendices. Chapter IV compares COMCOM and

META /OS -3 .

3

II. THEORY

A. Terminology and Definitions

The first section of this chapter reviews some definitions and

terminology used in this thesis. Most of them are from Gries [10]

where the formal definitions can be found.

Translators are programs which translate a source program

into an equivalent object program, for example, compilers, inter-

preters, and assemblers. A translator writing system (TWS) is a

program or set of programs which aids in writing translators. The

main purpose of a TWS is to simplify the implementation of translators.

TWS's which are tailored towards writing compilers are called

compiler-compilers. COMCOM is a compiler-compiler, but it is

flexible enough to be used for other translating tasks such as format

conversions and interpreters.

A vocabulary is a finite set of symbols. A string is a finite

sequence of symbols from some vocabulary. The empty string is the

string containing no symbols and is denoted E . V denotes the set

of all strings over vocabulary V and includes the empty string. For

example if V {a, then

V = la 1)'({E , a, b, aa, ab, ba, bb aaa, . . }. V denotes V minus

the empty string.

A context free grammar is a four -tuple G (N, T, P, 5) where

4

1. N is a finite set of nonterminals;

Z. T is a finite set of terminals (Nr- T = 4);

3. P is a finite set of productions or rewriting rules of the form

U > x where U in N and x in (1__) T)

4. S in N is the distinguished start symbol.

Henceforth, the term grammar will mean a context free grammar.

If U > u is a production of G and x, y in (1\,-,,JT) then

xUy directly produces xuy (denoted xUy => xuy). We also say

xuy directly reduces to, or is a direct derivation of xUy. If there

exist a sequence of direct derivations

u
0 ul => u

2
=> . . un

where x=u
0

y =un, and n > 0 then x produces

(x > y) or y reduces to x. The sequence is called a derivation

of length n. If n > 0 then x generates y (x => y). Thus

is one, ± >11 is a sequence of one or more, and "=>" is a

sequence of zero or more direct derivations.

A string is called a sentential form if it can be generated from

the distinguished start symbol. A sentential form which contains only

terminal symbols is a sentence. The language defined by a grammar

L(G) is the set of all sentences generated from the start symbol. A

grammar which generates the unsigned integers is shown in Figure 1.

G
1

(N, T, P, INTEGER)

N = {INTEGER, INT , DIGIT}

T = {0,1,2,3,4,5,6,7,8,9}

The elements of P are:

1. INTEGER > INT
2. INT > INT DIGIT
3. INT > DIGIT
4. DIGIT > 0
5. DIGIT > 1
6. DIGIT >
7. DIGIT 3

8. DIGIT > 4
9. DIGIT > 5

10. DIGIT > 6
11. DIGIT > 7
12. DIGIT > 8
13. DIGIT > 9

Figure 1. Context free grammar G1 for the
unsigned integers.

A grammar is a description of a language's structure, or syntax,

and conveys nothing about the meaning, or semantics, of the language.

The derivation of a sentential form can be illustrated by drawing a

syntax tree with the start symbol at the top, the branches extending

downward, and the node labels are the terminals and nonterminals of

the grammar. A syntax tree for the sentential form "INT 9 4"

(generated from G1) is shown in Figure 2. Readers not familiar with

syntax trees are referred to Gries' book [10].

INTEGER

INT

INT DIGIT

INT DIGIT 4

9

Figure 2. Syntax tree for the sentential form "INT 9 4".

A sentence of a grammar is ambiguous if there exists two

different syntax trees for it. A grammar is ambiguous if it contains

an ambiguous sentence; otherwise it is unambiguous. Sometimes an

ambiguous grammar can be converted into an unambiguous grammar

which generates the same language. Notice it is the defining grammar

which is called ambiguous and not the language. However, there are

languages for which no unambiguous grammar exist and these

languages are called inherently ambiguous.

In most theoretical and practical situations the empty string is

not allowed as a production right part. It is well known that given a

context free grammar G and E -free grammar G' can be con-

structecl such that L(G') L(G) {E }.

ous then so is G' [101.

Moreover, if G is unarnbigu-

A language which is used to describe another language is called

a metalanguage. A well known syntactic metalanguage is Backus-Naur

Form (BNF) which was first used in the ALGOL 60 Report [4].

process which uses a syntactic metalanguage in an algorithm for

recognizing sentential forms is called syntax-directed. COMCOM

and most compiler-compilers are syntax-directed.

A parse of a sentential form is the construction of a derivation

and possibly a syntax tree for it. A program which parses sentential

forms is called a parser, or recognizer. The parsers in this thesis

are called left-to-right because they examine the source language

starting at the left and proceed to the right. Most parsers can also be

classified as either top-down or bottom-up. This refers to the way in

which the syntax tree is constructed. The top-down parsers start at

the distinguished symbol, the root, and work towards the end nodes in

a predictive manner testing alternative productions until the sentential

form is parsed. Top-down recognizers can be programmed in many

different ways such as recursive descent [10] or a single routine work-

ing on a stack [8], but the distinguishing feature is their predictive or

goal-oriented nature.

The bottom-up recognizers search the input string for a sub-

string which is the right part of a production and replace the substring

with the left part. This reduction corresponds to building a syntax

tree from the bottom up towards the root. When only the start symbol

remains the parse is complete.

Let w = xuy be a sentential form defined by a grammar

Then u is called a phrase of the sentential form w if > xUy

and U =->u where S is the start symbol; u is a simple phrase

if S => xUy and U => u. For example, in Figure 2 "INT 9 4"

is a phrase for "INT" and "9" is a simple phrase for "DIGIT".

One must be careful with the term phrase. The fact U => u does

not necessarily mean that u is a phrase of a sentential form xuy;

we must also have S => xUy. To illustrate this, consider the

sentential form "INT 9". The existence of a rule

"INTEGER > INT" in GI (Figure 1) does not mean that "INT"

8

is a phrase because "INTEGER 9" can not be generated from the

start symbol "INTEGER".

A prime phrase is a phrase which contains no other phrase but

at least one terminal. For example, "9" in Figure 2 and the left or

right "i" in Figure 3 are prime phrases. Most bottom-up parsers

reduce the handle or leftmost simple phrase which is "FACT" in

Figure 3. However, some recognizers (such as the one described in

this thesis) reduce the leftmost prime phrase, the leftmost "i" in

Figure 3. Notice the difference between the handle ("FACT") and the

leftmost prime phrase (leftmost "i") in Figure 3. The prime phrase

must contain a terminal whereas the handle could consist of only

nonterminals. One would expect the parser which reduces the left-

most prime phrase, instead of the handle to be faster since it does not

have to make reductions such as "FACT" to "TERM" or "TERM" to

"EXPR" in Figure 3.

S

EXPR
I

EXPR TERM

TERM TERM FACT

FACT FACT

Figure 3. Syntax tree for "FACT + i i"

In bottom-up parsing the main problem is finding the phrase to

reduce. One solution is the precedence scheme. If someone is asked

to evaluate "4 + 3 *5" they will reply "19". The multiplication is

performed before or has "precedence" over the addition. A formal-

ization of the precedence idea is the operator precedence technique

developed by Floyd [9]. An operator grammar is a context free

grammar in which no production may be of the form U > xU 1U 2y

for some strings x and y and nonterminals U1 and U2. Thus, no

sentential form contains two adjacent nonterminal symbols [9].

In order to find the leftmost prime phrase to reduce. the fol-

lowing precedence relations are defined between terminal symbols

T1 and T2 of an operator grammar.

10

1. T1 = T if there is a production U > xT 1T 2y or

U > xT 1U
1
T 2y

where

(N.JT)

is a nonterminal and x, y in

2.. T1 > T2 if there is a production U > xU1T2y and a

derivation U1 =*> z where T1 is the rightmost terminal

character of z.

3. T1 < T2 if there is a production U > xT
1 lY

and a deri-

vation U
1

-`> z where T2 is the leftmost terminal

character of z.

An operator precedence grammar is an operator grammar for

which no more than one of the three relations hold between any

ordered pair T1, T2 of terminal symbols. An operator precedence

grammar G2 for a subset of arithmetic expressions is shown in

Figure 4. Languages generated by such grammars are called

operator precedence languages. Any sentence of an operator preced-

ence grammar has a syntax tree with a unique structure. However,

the language may still contain ambiguous sentences since the name of

the nodes could differ. This occurs when the right parts of productions

are identical. For example, if production 1 of Figure 4 were

replaced by productions la through le of Figure 5a the grammar

would still be an operator precedence grammar. Figure 5b shows a

syntax tree for "i + i" in which the third node from the top can be

named "REALEXPR" or "INTEXPR" making the sentence ambiguous.

11

This will be discussed further in Section C of this chapter.

G
2

(N,T,P,S)

N = {5, T, EXPR, TERM, FACT}

T), i}

The elements of P are:

1. S >EXPR
Z. EXPR >EXPR TERM

3. EXPR > TERM
4. TERM > TERM - FACT

5. TERM > FACT
6. FACT > (EXPR

7. FACT -> i

Figure 4. Operator precedence grammar G2 for a restricted
subset of arithmetic expressions.

The parser described in this thesis reduces not the handle but

the leftmost prime phrase. However, the parse is still left to right,

bottom-up. The prime phrase of a sentential form is found using the

precedence relations. These relations can be represented in an

n x n precedence matrix where n is the number of terminals.

Notice that the three precedence relations iii and ">" hold

between ordered pairs of terminals and are not necessarily sym-

metric [10]. For example, "T1 = T 2" does not mean that

"T2

12

la. S >E

lb. E REALEXPR

lc. E INTEXPR

Id. REALEXPR > EXPR

le. INTEXPR > EXPR

S

E

REALEXPR or INTEXPR

EXPR

EXPR TERM

TERM FACT

FACT

(a) (b)

Figure 5. An ambiguous sentence ''i iu of an operator precedence
grammar.

B. Operator Precedence Grammar Recognizer

This section describes Floyd's operator precedence grammar

recognizer used by COMCOM, and briefly compares it to other bottom-

up recognizers which can be constructed automatically from the

grammar's productions.

The operator precedence grammar recognizer uses the

precedence matrix to find a prime phrase. Figure 6 illustrates the

precedence matrix for the grammar G2 of Figure 4. Suppose

To x T is a substring of the sentential form s = x1 To x Tx2 and

that the terminal symbols in the substring x are, in order,

T1, T2 , . ,T
n

(n > 1). If the following relations hold between

13

T , T
1

, . . . , Tn, and T:

< T =
1

. = Tn > T

then x is a prime phrase [10]. A nonterminal to the left of T1

or to the right of Tn always belongs to the prime phrase. The

first symbol in the phrase is the head and the last is the tail.

> < < > <

> > < > <
> < < , <
> > >
> > >

Figure 6. Precedence matrix for the grammar G2

The algorithm for parsing a sentence is quite straightforward.

Starting at the left of the sentence, the symbols are pushed onto a stack

until Tn > T holds between the top terminal on the stack and the next

incoming symbol T, which is called the window. If the string is

actually a sentence in the language, the top stack elements are the

string T
0

x as previously described. One searches back in the

stack using the relations to find the head of x The left most prime

phrase is then x and can be reduced to some nonterminal which is

placed on the top of the stack. This process repeats by comparing To

to T. A parse of "i + i * i" (delimited by "I-" and "-I ") is

illustrated in Figure 7. Note the nonterminals ("N") are just place

holders.

Step

1.

2.

3.

4.

5.

6.

7.

8.

Prime Matching
Stack Relation Window Phrase Production

< i

i > +

N < +

N + <

N 1- i > *

N 1- N <

N + N * < i

N + N *i > -1

N + N *N >
-1

N + N >

N STOP

i 7

i 7

i 7

N *N 4

N + N 2

Figure 7. The parse of I i + i i

14

If one was concerned only with syntactic correctness, the non-

terminals could be completely eliminated and the parse would proceed

essentially unchanged. However, languages have semantic informa-

tion associated with the syntax. When a prime phrase is detected the

productions are searched for a right hand side of the same form and

the associated routine is called to do semantic processing. Thus, the

nonterminals must be retained for at least place holding purposes.

Two other similar precedence schemes are the simple [18, 19]

and weak [121. In the simple precedence method there is no

15

restriction of adjacent nonterminals and the precedence relations

hold between both terminals and nonterminals. Thus, the precedence

matrix is much larger than for the operator precedence method.

Because of the way simple precedence grammars are defined and the

restriction that right parts of productions be unique, all sentences of

simple precedence languages are unambiguous [1]. The simple and

operator precedence parsing algorithms are the same except the

simple reduces the handle ("FACT" in Figure 3) instead of the leftmost

prime phrase (leftmost "i" in Figure 3). The operator parser is

faster since it does not have to make reductions such as "FACT' to

"TERM" and "TERM" to "EXPR" in Figure 3. Also, it is harder to

manipulate a programming language grammar into a simple preced-

ence grammar [10]. Because of the above the operator precedence

recognizer was chosen over the simple precedence scheme.

The weak precedence technique is a slight modification of the

simple. The relations "<" and "=" are combined into one. The

incoming symbols are stacked until the top stack item has the relation

">" to the window. The head of the handle is found by pattern match-

ing the top stack symbols to the right side of productions, the longest

match being the handle. It is easier to construct weak precedence

grammars, but the size of the precedence matrix is again large, and

this procedure is even slower than the simple precedence method

because of the pattern matching required.

16

Higher order precedence methods [10] use more symbols in the

sentential form to detect the head and tail of the handle and thus use

large precedence matrices. Bounded context parsers [10] use tables

consisting of stack configurations and incoming symbols to find the

handle and determine the correct reduction. The higher order preced-

ence and bounded context methods can be made practical but become

complicated [10], especially for a compiler-compiler system.

C. Theory Advantages and Disadvantages

As mentioned in Section A of this chapter, an operator preced-

ence language may contain ambiguous sentences. The structure of the

syntax tree is unique for each sentence but the names of the nodes

may be ambiguous. For a prime phrase x there may be more than

one nonterminal to which it can be reduced, since there is no restric-

tion that right parts of productions be unique. However, nonterminals

are usually manipulated as operands by the semantic routines, and not

so much by the syntax parser. The syntax defines the structure;

whether a node is named say real expression or integer expression as

in Figure 5b is a matter to be handled by the semantic routines.

The restriction of no two adjacent nonterminals and problems

with precedence conflicts can complicate the construction of an opera-

tor precedence grammar for a language with the desired attributes.

Operators in a left recursive rule are usually in an infix notation

17

similar to the "+" and " " in Figure 4. For example, Figure 8 shows

an attempt to write a grammar for a language in which each state-

ment is followed by a dollar sign. The statements of the program are

represented by "PSTATE". The precedence conflicts can be

eliminated using right recursion by replacing productions 2 through 4

(inclusive) with "BODY > STATE $ BODY" and "BODY > STATE $".

But then the last statement and dollar sign of the program must be

reduced before any other dollar signs and the parsing stack becomes

very large. The author has been unable to produce an operator

precedence grammar for operators in a postfix notation (operator

appears after operand or operands) so that the stack does not pro-

liferate. However, there is a method in COMCOM to implement

postfix operators and it will be developed in Chapter III, Section B.

G3 = (N, T, P, PROGRAM)

N = {PROGRAM, BODY, STATEDS, STATE}

T = {BEGIN, END, $, PSTATE}

The elements of P are:
1. PROGRAM > BEGIN BODY END

2. BODY > BODY $ STATEDS
3. STATEDS > STATE $
4. BODY > STATE
5. STATE > PSTATE

Precedence conflict: $ > $
$ < $

Figure 8. Operator precedence grammar with a precedence conflict.

18

The restriction of no two adjacent nonterminals is not serious.

Many programming language's grammars are already in this form

and those which are not can be manipulated into operator precedence

grammars without essentially disturbing the structure of the language.

For example, if productions Z and 3 of Figure 8 are replaced with

"BODY > BODY STATE" the precedence conflicts are eliminated

and the program statements are separated by, instead of followed by,

a dollar sign. The source language is the same except the dollar

sign after the last statement in the source program is omitted.

Precedence conflicts may also occur when the same terminal is

used for multiple purposes, for example, the unary and binary minus

sign. If the preceding operator is checked or if two distinct termi-

nals are used, the unary and binary uses can be distinguished. Thus,

in the operator precedence technique precedence conflicts and the

restriction of no two adjacent nonterminals can require many termi-

nals in the language.

The operator precedence technique yields a recognizer which is

extremely efficient and can be constructed automatically from the

(grammar's) productions. Compared to top-down methods, the

operator precedence technique requires extra processing to produce

the precedence matrix and other tables but is usually justified by the

increased parsing speed and no backup. It is faster and uses less

space than the simple, weak, and other precedence methods mentioned

19

earlier. Floyd [9] has constructed a grammar for an algol like

language for which the precedence matrix is only about 40 x 40, The

other precedence methods would require a substantially larger matrix

because the precedence relations hold between both the terminals and

nonterminals.

Thus, the operator precedence method is very efficient in its

use of time and space, it is easy to understand and is relatively easy

to use. For these reasons it is the recognizer used by COMCOM.

As of 1968 the authors of [8] were not aware of a compiler containing

a mechanically constructed operator precedence recognizer, but indi-

cated the precedence technique itself has been used in quite a few

ALGOL, MAD, and FORTRAN compilers. In a search of the litera-

ture since then the author has been unable to find a TWS using the

operator precedence method. Hence COMCOM appears to be the only

TWS using this scheme.

20

III. THE COMCOM SYSTEM

A. Description of COMCOM

The following is only a brief description of the COMCOM sys-

tem. Additional information may be found in the Appendices.

The components of the COMCOM system are the constructor,

parser, scanner, overlay writer, and semantic routines. A

diagram of how these components interact is in Appendix A. Simpli-

fied versions of the algorithms for some of the components are also in

the Appendices.

The constructor accepts the syntactic metalanguage productions

building the precedence matrix and other tables required by the

parser. Any precedence conflicts are indicated and the precedence

matrix may be printed out if desired. The printed matrix and the

productions enable the users to determine how the parse will proceed.

Using a method described by Floyd in [9] the precedence matrix can

often be reduced to two arrays reducing storage requirements. How-

ever, this is not done by COMCOM because the algorithm fails for

some operator precedence grammars and the matrix cannot be reduced.

Also, in a parse syntax errors would go undetected longer using the

arrays because the relation ''no relation" between two terminals is not

detected immediately.

21

The syntactic metalanguage input to the constructor resembles

BNF and an example is shown in Figure 9. ".SYNTAX" and ".END"

are control statements signifying the beginning and end of the pro-

gram. The two lines following ".SYNTAX" are declarations of the

maximum number of rules, terminals, and semantic routines, and

declare the name of an error routine. In the productions (which may

appear in any order) "=" is used for ">", the terminals are enclosed

in " ' ", and the nonterminals are variables such as "PROGRAM" or

"BODY". Production right sides cannot be the empty string. Seman-

tic routine calls may be associated with each production and are pre-

ceded by a ". "> for example ".OUTEND". Each production is ended

with ". ". The syntax specification in Figure 9 describes a language

consisting of a "BEGIN" followed by a body and an "END ". The body

consists of statements in the form "x =" an arithmetic expression,

where the arithmetic expressions involve the variables '1A" and "B",

the operators "+" and "*" and each statement is separated by a "$".

Notice in the sample source program of Figure 10 there is no dollar

sign after the last statement. The program of Figure 9 specifies that

each statement is separated by, not followed by, the terminal 11$".

Thus, to build a translator using COMCOM one writes the syntax

specification in an operator precedence grammar. Production right

parts containing terminals represent prime phrases. If the user wants

control to do semantic processing when a prime phrase is detected (by

22

the parser) he includes a semantic routine call after the production

right part. Right parts consisting of a single nonterminal will never

be a prime phrase, by definition, and are forbidden to have semantic

routine calls. If several productions have right parts of the same

form, that is, the terminals match and they have nonterminals in the

same positions, then only one of them is allowed to have an associated

semantic routine call. The called routine must either take the same

action for all productions or determine which production is the correct

one. This will be discussed further following the description of

terminal classes. Appendix G shows a simple compiler implemented

using COMCOM, complete with semantic routines and sample runs.

.SYNTAX ARITHMETIC EXPRESSIONS

RULES(15) TERMINALS(15) ROUTINES(1G)
ERROR(ERR.ORSR)

PROGRAM = 'BEGIN' BODY 'END'
BODY = BODY 'S' STATEMENT 1
BODY = STATEMENT .,
STATEMENT z: 'X "= ' EXPR
EXPR = EXPR '+' TERM
EXPR = TERM
TERM = TERM ',lc' OPERAND
TERM = OPERAND .,
OPERAND = 'A'
OPERAND = 'B'

END

OUTE.VD .1

.ASSIGN
*PLUS 4,

MULT

. AOPERAND
pBOPERAVD op

Figure 9. COMCOM program for a restricted subset of
arithmetic expressions.

23

= A * P

X=A+P*A
X = P

END

B *

Figure 10. Sample source program for
compiler of Figure 9.

The scanner reads the source language and classifies each item

as a particular terminal. There is no provision for backup in

COMCOM so this classification is final unless the user changes it with

semantic routines. The properties of the scanner can be changed by

declaring certain terminal classes. For example, an unsigned integer

can either be built from scratch

INTEGER = '01
INTEGER = '1' .

INTEGER = '2' ,

INTEGER =
INTEGER -=
INTEGER =
INTEGER

INTEGER =
OPERAND

'91

INTEGER '0' . ,

INTEGER '1' . ,

INTEGER '2' . ,

INTEGER '9' ,

= INTEGER . ,

or the terminal class . INTEGER (indicated by a period before the

class name) can be declared with the other declarations (line after

.SYNTAX in Figure 9) as follows

24

CLASSES (. INTEGER)

and writing the production

OPERAND = . INTEGER . ,

This will cause the scanner to automatically classify strings of digits

as the terminal class .INTEGER. When the scanner classifies a

string as a terminal class it copies the actual characters into a block

of storage and hands the parser a pointer to the block.

A special terminal class is the end of line (EOL) When it is

declared the scanner supplies the terminal . EOL at the end of each

source record. Figure 11 gives the syntax specification of a simple

compiler which uses EOL between each statement. Notice that the

last source line will contain a statement, the terminal "END", and a

supplied . EOL. The available terminal classes are . ID (identifier),

. INTEGER, . SPECIALC (special character), . LETTER, NUMBER,

.DIGIT, .STRING, .EOL.

The parser is the basis of the constructed translator. The

parser calls the scanner to get terminals pushing them onto a syntax

stack until a prime phrase is detected. The prime phrase's form is

matched to right parts of the productions and control is transferred

to the semantic routine or routines associated with the matching pro

duction. Upon return, the parser performs the reduction by popping

the phrase from the stack and placing a nonterminal on top. As an

example from the simple compiler in Appendix G

25

READ = 'READ' LIST . ,

LIST = LIST . ID READWT
WRITE = 'WRITE' WLIST ,

WLIST = WLIST .ID . ,

When the stack holds a prime phrase of the form "N , .IDI' (where

"N" means nonterminal, "," is a terminal, and ".ID" is the identi-

fier terminal class) control is transferred to the subroutine named

"READWT". Notice the nonterminals are merely place holders on

the stack and an ambiguity problem arises with the write statement.

The prime phrase matches both the "LIST" and "WLIST" produc-

tions thus, the phrase may be part of a read or a write statement.

When a number of right parts are of the same form COMCOM allows

only one to have semantic routine calls. In ambiguous situations,

like "LIST" and "WLIST" or when production right parts are identi-

cal, it is the semantic routine's responsibility to determine the cor-

rect production and take appropriate action. In this example the

user's semantic routine named "READWT" resolves the ambiguity by

a context check. The top item on the stack is the "-ID" and the item

below the "N" of the prime phrase is either the terminal "READ" or

"WRITE". If it is "READ" ("WRITE") the routine "READWT" produces

the code to read (write) the value of the identifier represented by the

terminal class .ID.

There is a library of semantic routines available such as

TPLUS, TMINUS, XLPLUS, or XLMINUS. These routines aid in

Z6

temporary location and label generation. Another option for semantic

processing is the assembler =: -SAM [3]. This feature enables one to

translate a source language into COMPASS assembly language instruc-

tions and call *SAM to assemble them one line at a time avoiding

intermediate output. Semantic routines which call):'SAM are OUT and

PUT.

Semantic routines can also be written by the user in COMPASS

or FORTRAN making COMCOM readily expandable and extremely

flexible. The user's routines may call numerous supplied primitives

performing such tasks as to call *SAM, set up labels and temporary

storage locations in an output buffer (to which the user also has

direct access) for interfacing with *SAM, scan ahead in the source

input string, or do context checks on the stack and input string.

Primitives can also be used to access or change the syntax stack,

precedence matrix, window item, or manipulate a supplied operand

stack. These routines are instrumental in translating, generating

object code, performing syntactic error recovery, and other tasks.

A list of the primitives and supplied semantic routines is in Appendix

F.

Syntax errors often occur in source programs. A practical

translator should recover and continue parsing the remaining source

program. Translators for widely differing languages can have different

error recovery requirements. COMCOM allows the user to write his

27

own error recovery routine so that he may apply the recovery method

most appropriate to his language. When COMCOM's parser detects

structural errors or illegal characters in the source program it

transfers control to the user's error routine passing a code indicating

the exact nature of the error. Using the primitives the error routine

can alter the state of the parse allowing it to continue.

Another feature of the COMCOM system is the implementation

of comments. According to the theory, once the recognizer starts

parsing the source language, everything in the program must consist

of terminals arranged structurally as defined in the productions.

However, comments are usually in a natural language different from

the source language. Both the symbols and their arrangement differ.

Unless the comment's structure and symbols are defined in the pro-

ductions the parser will reject them as illegal. In COMCOM the

user can declare the terminals which constitute the beginning and end

of a comment in his source language. When the scanner encounters

the beginning terminal it skips the entire comment and the parse

proceeds as if the comment never occurred. A similar problem

arises with the terminal class . STRING. The structure and charac-

ters within the string are usually illegal in the source language.

Again the user can declare what terminal characters constitute the

beginning and end of a string. In this case the productions must indi-

cate how the terminal class .STRING fits in the structure of the source

28

language because when the scanner encounters the beginning of a

string, it scans to the end and hands the parser the terminal class

.STRING with a pointer to the actual terminals constituting the string.

The . EOL terminal class can also be declared as the terminal ending

the string or comment. A sample program illustrating these

features is given in Figure 11. The third line declares the terminal

classes used in the compiler. The fourth line declares the beginning

of a string is the terminal " ' " and the end is the end of line terminal

class. The fifth declares the beginning of a comment is the terminal

"COMMENT" and the end is again the end of line terminal class.

.SYNTAX SIMPLE COMPILER

RULES(20) TERMINALS(20) ROUTINES(15) ERRORCERR)
CLASSFS(.ID/.NUMPFRp.INTEGER/.STRING...E0L)

STRING("', EOL)
COMMENT('COMMENT', EOL)

OUTSTART
PROGRAM = ROM 'END' EOL PROG es
BODY = BODY .FOL STATEMENT BODY /
BODY = STATEMENT
STATEMENT = ASSIGN ./
STATEMENT = STRING ./
STRING = STRING .STRI
ASSIGN = VARB '=' E OUTAS
E = F '+' T 'PLUS
F = T
T = T '*' F .STAR
T = F
F = VARB
VARB = .ID .VARP:
F = .NUMBER NUM 4
F = ./NTEGFR .INTFG .,
.OUTEND

END
Figure 11. A simple compiler.

29

The semantic routine call ".01JTSTART" before the productions

is executed before the parse starts, and the call ".OUTEND" after the

productions is executed after the parse is complete. Each semantic

routine in this program just outputs its own name when called.

Figure 12 shows a sample run of the compiler in Figure 11. The

inputs are the indented lines and the others are the outputs of the

semantic routines. Thus, Figure 12 in conjunction with Figure 11

illustrates how the parse proceeds by showing when each semantic

routine is called.

OUTSTART

VARP.
INTEG
MIA S

STRI
Pony

PFGIN A = 10

COMMENT THIS IS A COMMENT

THIS IS A STRING

A = S END

VARR
VARP
MITA S
PODY
PROG
OUTEND

Figure 12. A sample run of the compiler of Figure 11.

30

B. Operators in a Postfix Notation

As discussed in Chapter II Section C the author has been unable

to produce an operator precedence grammar in which left recursive

rules define operators in a postfix notation. The term postfix means

the operators appear after the operand or operands. For example,

the operator "+" in "A f. B" is in infix and in "AB +" is in postfix

notation.

The problem developed in Chapter II was a programming

language in which each statement was followed by a dollar sign.

Here the operand is a program statement and the operator is the dollar

sign. A right recursive scheme was presented like that of Figure 13a

where "PSTATE" of production 4 represents the program statements.

In Figure 13b each terminal is assigned an integer code and Figure

13c is the precedence matrix defined by the productions. Figure 15

is a parse of the sample source program of Figure 14. Notice in

Figure 15 the form "N $" (N means nonterminal) repeats for each

program statement causing the stack to proliferate. When the last

statement and dollar sign are encountered the stack size can finally

decrease as the prime phrase "N $" is reduced using production 3 of

Figure 13a. Then the rest of the dollar signs are reduced in the prime

phrases of the form "N $ N" using production 2. This stack prolifera-

tion and order of reduction is what one would expect from the right

31

recursive production 2 in Figure 13a.

. SYNTAX POSTED(DOLLAR SIGNS
RULFS(5) TERMINALS(5) ROUTINFS(3)
FRROR(FRRORSR)
.BFFORF

(1) PROGRAM = 'BEGIN' Bor.? 'END'
(2) BODY = STATEMENT 'S' BODY 0
(3) BODY = STATEMENT 'S' .0
(4) STATEMENT = 'PSTATE'

FIND

(a)

000 BEGIN
001 END
002 $
003 PSTATE

(b)

000 001 002 003
000 = < <
001
002 > < <
003

(c

Figure 13. Program and precedence matrix for a language with "$"
in postfix notation.

BEGIN

PSTATE $
PSTATE $
PSTATE $

PSTATE $
PSTATE $

END

Figure 14. Source program for compiler of Figure 13.

Stack Relation

BEGIN
-BEGIN PSTATE
BEGIN N
BEGIN N $

-BEGIN N $ PSTATE
BEGIN N $ N

-BEGIN N $ N
BEGIN N $ N $ PSTATE

BEGIN N $ N $$ N $ N
-BEGIN N $ N $..$ N $ N $
BEGIN N $ N $.$ N $ N
BEGIN N $ N $... $ N

1-BEGIN N $ N
-BEGIN N
-BEGIN N END
N STOP

Prime Matching
Window Phrase Production

BEGIN
PSTATE

$
PSTATE

$
PSTATE

$

$
END
END
END

END
END

PSTATE 4

PSTATE

PSTATE 4

N $ 3

N $ N 2

N $ N 2

N $ N 2

BEGIN N END 1

Figure 15. Parse of program in Figure 14.

The order in which the productions are used in a parse can be

seen by generating a program from the start symbol "PROGRAM".

The order is reversed for the parse or reduction of the program.

One can also simulate the parse by hand as shown in Figure 15. Notice

the stack becomes very large because of the precedence relation

H$ <$". Ordinarily one would change the grammar to a left recursive

form to keep the stack small but this produces the precedence conflicts

shown in Figure 8.

In this example the postfix operator parsing problem can be

33

solved by the user writing the "BEFORE" semantic routine of Figure

13 (executed before the parse starts) to change "$ <$" to "$ >$''

This can be done by calling the primitive subroutine "STOREREL".

Figure 16 shows how the parse would procede using the amended

precedence matrix. Notice the nonterminals are just place

holders on the stack and production 2 of Figure 13a is then used to

reduce the prime phrases of the form "N $ N" keeping the stack small.

Notice also, the prime phrases and matching productions occur in a

different order than that of Figure 15. Since there are no semantic

routine calls with productions 2 and 3 of Figure 13a it does not matter

that the changed relation ("$ >$") causes the changed order of the

matching productions. Even if there were routine calls with these

productions the routines could be written to take the proper semantic

action on the basis of how the amended parse of Figure 16 proceeds.

This method of changing the matrix and amending the semantic rou-

tines (if necessary) solves the problem for this example and could

easily he incorporated into the compiler of Appendix G. However, it

departs from the present operator precedence theory. This is not a

general solution and could become awkward in other postfix operator

applications.

34

Stack Relation Window
Prime Matching
Phrase Production

< BEGIN
BEGIN < PSTATE

-BEGIN PSTATE > $ PSTATE
-BEGIN N < $
-BEGIN N $ < PSTATE
-BEGIN N $ PSTATE > $ PSTATE 4

-BEGIN N $ N > $ N $ N 2

-BEGIN N < $
-BEGIN N $ < PSTATE
-BEGIN N $ PSTATE > $ PSTATE 4

-BEGIN N$ N > $ N$ N 2

-BEGIN N < $

-BEGIN N $ PSTATE > $ PSTATE 4

-BEGIN N$ N > $ N$ N 2

-BEGIN N < $
-BEGIN N $ > END N $ 3

-BEGIN N = END
-BEGIN N END > -I BEGIN N END 1

-N STOP

Figure 16. Parse of program in Figure 14 using an amended preced-
ence matrix.

C. COMCOM System Disadvantages

Whenever a theoretical concept is implemented certain restric-

tions and modifications are usually necessary. A compiler-compiler

should not be biased toward any traits of a particular language.

COMCOM departs from the ideal in some instances, for example,

most terminals are restricted to eight characters. An end of file or

end of data is required at the end of each source program. This

could have been avoided by a declaration method where the user

35

declares what terminates his source program similar to the way one

can declare what begins and ends a comment or string in COMCOM.

The concept of end of line (.E0L) as a terminal is implemented in a

limited fashion. When declared it is supplied at the end of every

source record which may cause problems.

As discussed earlier ambiguity problems may arise when

productions have right parts of the same form requiring context checks

to resolve them. However, this is an inadequacy of the theory not of

COMCOM's implementation.

D. COMCOM System Advantages

This section gives some of the general advantages of COMCOM

over other systems.

COMCOM uses a bottom-up precedence parsing method which

avoids backup and is very fast. The metalanguage resembles BNF

making it easy to learn. COMCOM readily accepts left and right

recursive productions and requires no factoring. Most top-down

schemes do not allow left recursive productions and require

factoring of right parts. There is a wide class of languages which

can be generated by operator precedence grammars and the user can

supply the error recovery technique most suitable to his particular

language.

36

The terminal class features may be turned on or off and make

implementation of translators much simpler. Also, the grammatical

productions may be input in any order. The supplied semantic routines

and primitives reduce the number of routines the user must write,

perform the more common tasks required to generate object programs,

and relieve the user of many details. The routines also give the user

access to the parser's internal features. For example, as discussed

in Section B of this chapter, the user could even change the precedence

matrix. Comments in the source program may be implemented by

declaring the terminals which begin and end each comment.

The most important advantage of COMCOM is its extreme

flexibility, owing to the fact the user can supply his own semantic

routines. Thus, the system semantic features are readily expandable

by the user in that he can write his semantic routines in the COMPASS

and FORTRAN languages. For example, a symbol table feature could

be added and since the user would write it himself it would fit his

exact needs. COMCOM could be used to implement the first pass of a

multiple pass compiler and even the later passes if the intermediate

output's structure could be expressed in an operator precedence gram-

mar. COMCOM can also be used to implement other types of

translators such as an interpreter. The difference between compilers

and interpreters is that a compiler produces an object program

37

equivalent to the source program, whereas an interpreter executes

the source program.

38

IV. THE META/OS-3 SYSTEM

A. Brief Description of META/OS-3

The following is an extremely sketchy description of

META/OS-3 [2] which only outlines the main characteristics so it can

be compared to COMCOM.

META/OS-3 is a very good special-purpose, syntax-directed

compiler writing system. It uses a single pass, top-down parsing

method with no backup, and includes provisions for using the):(SAM

assembler. The metalanguage resembles BNF with two additional

syntactic features. One is the use of parentheses for grouping and for

factoring to avoid backup and left recursion which causes endless

loops in top-down methods. The other is a "repeat" feature which

causes the next item (or group of items) to be iterated replacing left

recursion. See Appendix H for a sample program. The metalanguage

productions, or rules, in META/OS-3 are each converted into a sub-

routine which returns a true status if the source input matches one of

its ordered alternatives and false otherwise. Starting with the main

rule each nonterminal encountered calls another rule in a recursive

descent scheme. The system's semantic routine calls are embedded

in the syntax rules and are executed as the rule recognizes the

source langage. When the descent procedure completes the main rule

the parse is complete.

39

B. Comparison of COMCOM to META/OS-3

META/OS-3 and COMCOM are both syntax-directed compiler

compilers which run under the OS-3 operating system, but their

parsing techniques differ sharply. COMCOM is bottom-up and

META/OS-3 is top-down. Bottom-up parsing is usually publicized as

faster [11]. Since META/OS-3 does not allow backup these two

implementations are competitive in their use of computer time.

Appendix H shows a time comparison of the parsing algorithms of

COMCOM and. META/OS-3. In this trial the constructed compilers

required almost an identical amount of time to parse the same source

program. The META/OS-3 parsing algorithm becomes less efficient

when it must try many incorrect alternatives in rules and descend

extensively. This corresponds to building the syntax tree from the

top down and having many choices for a node name each of which has

many possible node names below it and so on. In cases such as this

COMCOM would most likely be faster.

The differing parsing methods also have an effect on the meta-

languages. META/OS-3 users must factor and carefully order the

alternatives in their rules avoiding backup and left recursion.

COMCOM never backs up and uses left recursion as a key feature.

In META/OS-3 the semantic routine calls and parameter strings are

embedded in the syntax specification whereas in COMCOM they follow

40

the syntactic portion of each rule.

Some of the supplied semantic routines and terminal classes of

COMCOM resemble those of META/OS-3. Classes which COMCOM

has but META/OS-3 does not are . DIGIT, . LETTER, and

.SPECI.ALC. The end of line (.E0L) terminal class more closely

resembles an actual terminal in COMCOM making possible compilers

for which the end of a sour ce line separates statements.

Both systems include *SAM as an optional feature. However,

META/OS-3 is a closed system in which it is often rather awkward to

write the semantic processing and code generation aspects of a com-

piler. This is because the semantic routine calls and parameters are

embedded in the rules and the semantic routines lack certain features.

For example, there is no provision for doing arithmetic at compile-

time (other than incrementing and decrementing a temporary storage

counter) for such purposes as computing the storage needed for a

multi dimensional array. COMCOM users have the arithmetic plus

other COMPASS and FORTRAN features available for compile-time

semantic routines since they can write the routines in these languages.

This expandable feature can make COMCOM harder to use, however

the flexibility gained appears to be well worth the effort.

One of the major limitations of META/OS-3 is its lack of a

symbol-table facility. This means one can not record the attributes

of an identifier and therefore one can not efficiently generate code

41

whose form depends on the types of variables involved. However,

COMCOM users can implement a symbol-table feature to fit his exact

needs since he will supply it himself. The only limitation in adding

these extra features is the user's COMPASS and FORTRAN program-

ming abilities.

META/OS-3 can be used to implement compilers for a wider

class of languages than COMCOM. However, COMCOM can be used

to implement interpreters whereas META/OS-3 is not designed for

this purpose.

42

V. SUMMARY AND CONCLUSIONS

This thesis has presented a potentially useful syntax-directed

compiler-compiler called COMCOM. The theory and terminology of

the parsing method and compiler-compilers in general were briefly

discussed. COMCOM uses Floyd's operator precedence bottom-up

parsing technique which avoids backup and is very efficient. The

syntactic metalanguage is similar to BNF. The source language

semantics may be composed using a library of supplied routines or

the user can expand the semantic capabilities by writing semantic

routines in COMPASS or FORTRAN. The user may supply an error

recovery routine applying the methods most suited to his source

language. Optional features such as terminal classes, a source

language comment facility, and the *SAM assembler also aid in

implementing translators. Many implementation techniques were not

discussed because of their detailed nature.

A comparison of COMCOM to META/OS-3 revealed that

META/OS-3 may be able to implement compilers for a wider class of

languages and is probably easier to use. However, COMCOM users

can expand the system's semantic features, hence it is a more

flexible system. Also, COMCC.M can be used to implement interpre-

ters whereas META/OS-3 was not designed for this purpose.

Possible additions to this system or others built like it could

43

include a more flexible scanner. A "scanner compiler" could be used

in conjunction with the compiler-compiler. Its input could be declara-

tions of characters to serve as delimiters, digits, special characters,

and parts of identifiers. One could also declare characters he wanted

completely ignored by the constructed scanner or declare other char-

acter uses. Another modification which would save storage and

increase parsing speed is to reduce the precedence matrix to two

arrays when possible and use the entire matrix only when the reduc-

tion algorithm fails. COMCOM is expandable by the user in

COMPASS and FORTRAN but could be made expandable in other

assembly language compatible langauges such as PL /1.

In order for TWS's to be more practical there must be an ade-

quate formalization of metalanguages for syntax and semantics.

There has been much progress in the syntax but very little in

semantics. There is a need for more developments in formal lan-

guage theory. In particular, as brought out in Chapter II Section C,

can an operator precedence grammar left recursively generate a

language which has operators in postfix notation? Every context free

language has an operator grammar [1], but does every context free

language have an operator precedence grammar? In general, the

properties and limitations of a class of languages generated from a

particular type of grammars requires more research.

44

BIBLIOGRAPHY

1. Aho, Alfred V. , and Ullman, Jeffery D. The Theory of Parsing,
Translation, and Compiling. Englewood Cliffs, N. J. :Prentice-
Hall, Inc. , 1972.

2. Bachelor, G.A. META/OS-3 Reference Manual. Unpublished
manual, Oregon State University, February 28, 1973.

3. :'SAM. Unpublished class notes Mth457/8/9,
Oregon State University, January 26, 1972.

4. Backus T. W. "The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-GAMM
Conference." Proceedings of the International Conference on
Information Processing. UNESCO, Paris, June 1959, 125-132.

5. Brooker, R.A. , MacCallurn, I.R. , Morris, D. , and Rohl, J.S.
The Compiler Compiler." Annual Review in Automatic Pro-

gramming, New York: The MacMillan Co. , 1963, 229-275.

6. Colmerauer, Alain. "Total Precedence Relations. " Journal
of the ACM, 17 (January, 1970), 14-30.

7. Feldman, Jerome A. "A Formal Semantics for Computer
Language and its Application in a Compiler-Compiler." Com-
munications of the ACM; 9 (January, 1966), 3-9.

8. , and Gries, David. "Translator Writing Sys-
tems. " Communications of the ACM, 11 (February, 1968). 77-
112.

9 Floyd, Robert W. "Syntactic Analysis and Operator Precedence."
Journal of the ACM, 10 (July, 1963), 316-333.

10. Gries, David. Compiler Construction for Digital Computers.
New York: John Wiley & Sons, Inc. , 1971.

11. Griffiths, T. V. , and Petrick, S. R. "On the Relative Efficiencies
of Context-Free Grammar Recognizers. " Communications of the
ACM, 8 (May, 1965). 289-299.

45

12. Ichbiah, J. D., and Morse, S. P. "A Technique for Generating
Almost Optimal Floyd-Evans Productions for Precedence
Grammars. " Communications of the ACM, 13 (August, 1973),
501-508.

13. Irons, E. T. "A Syntax Directed Compiler for Algol 60. "
Communications of the ACM, 4 (January, 1961), 51-55.

14. Oppenheim, David K. , and Haggerty, Daniel P. "METAS: A
Tool to Manipulate Strings of Data. " Proceedings of the ACM
21st National Conference. 1966, 465-468.

15. Rosen, Saul. "A Compiler-Building System Developed by
Brooker and Morris. " Communications of the ACM, 7 (July,
1964), 403-414.

16. Schneider, F. W. , and Johnson, G. D. "META-3: A Syntax-
Directed Compiler Writing Compiler to Generate Efficient Code."
Proceedings of the ACM 19th National Conference. 1964,
p. DI . 5-1.

17. Schorre, D. V. "META-II: A Syntax-Oriented Compiler Writing
Language. " Proceedings of the ACM 19th National Conference.
1964, p. D1.3.

18. Wirth, Nicklaus, and Weber, Helmut. "EULER: A Generaliza-
tion of ALGOL, and its Formal Definition: Part 1. " Communi-
cations of the ACM, 9 (January, 1966), 13-25.

19. "EULER: A Generalization of ALGOL, and its
Formal Definition: Part 2. " Communications of the ACM, 9
(February, 1966), 89-99.

APPENDICES

46

APPENDIX A

COMCOM System Flowchart

The diagram on the next page is a COMCOM system flowchart.

Inputs and outputs are signified by "--->" and time flow is signified

by " " The programs on the left are user supplied and the files

and programs on the right are system supplied.

The constructor accepts the syntactic metalanguage productions

and builds the precedence matrix, tables, and semantic routine link.

The overlay writer writes out an absolute copy of memory or overlay

of the constructed translator. When the overlay writer gets control

the semantic routine link has been loaded forming a jump table linking

the parser to the user's and system's semantic routines. The parser

is the controlling program of the constructed translator. When the

translator overlay is copied back into memory and run its output could

be a compiler's object program. This program would be loaded and

run with its own inputs and outputs but is not shown in the flowchart

on the next page.

User Supplied

User COMCOM
Program

User Semantic
Routines
(0 tional)

/ User Error
Recovery
Routine

Source
Program

Run
Constructor

System Supplied

(Constructor
and *SAM

Precedenc
Matrix and
Tables

Semantic
Routine
Link

Run
Overlay
Writer

Run Translator

Parser iScanner
Semantic
Routines

Primitives

Overlay /
Writer
(Optional

overlay of
Constructe
Translator

(Object
Program or
Interpreter

\Output

COMCOM System Flowchart

47

48

APPENDIX B

Constructor Algorithm

This appendix contains a simplified version of the constructor

algorithm. The constructor accepts the syntactic metalanguage pro-

ductions and builds the precedence matrix and other tables. It

stores the productions by assigning an integer code to each termi-

nal and nonterminal. Semantic routine names appearing with a

production are also coded and stored with the rule. If a semantic

routine has a parameter string, the string is not assigned codes by

the constructor, but it is stored character for character including its

ending parenthesis in BCD codes. When the parser calls a semantic

routine the parameters, if any, are supplied in the BCD codes in

COMMON (PARA in semantic routine listings in Appendix G).

The constructor orders the terminal table so that if two

terminals match character for character from the left the longest is

first. For example, say "**" is used for the power operator and

"*" is used for multiplication, "**" will appear first in the terminal

table. This is done so that when the scanner is searching the termi-

nal table for a match to a source string, the longest match is found

first.

49

Constructor Algorithm

1. Read source records until get ".SYNTAX".

2. Process the declarations of the number of rules, terminals,

semantic routines, and put the name of the user's error routine

in the semantic routine name table. Process the declaration of

the terminal classes if any. Process the declaration of the

beginning and ending of the comment and string if they are to be

implemented.

3. If there are any semantic routine calls before the syntax rules

put the names in the semantic routine name table and store the

parameters if any.

4. Read a syntax rule (terminated by ". ,")

5. Place the terminals of the rule in the terminal table and non-

terminals in the nonterminal table (if not already present).

6. If the production is of the form U
1
> T

1
x or U

1
> U

2
T

1
x

(where T1 is a terminal, U
1

and U
2

are nonterminals, and

x is a string of terminals or nonterminals, or both, or empty),

enter T1 as a leftmost terminal character of the derivatives of

Ul (LTCD of U1) and each LTCD of U2 as a LTCD of U

7. If the production is of the form Ul > xT1 or Ul > xT 1U2

enter T1 as a rightmost terminal character of the derivatives

of U
1

(RTCD of U1) and each RTCD of U2 as a RTCD of Ul.

8. If the production contains terminals T1*T2 in the form

Ul > xT 1T 2y or U
1

> xT1 U2 T 2y enter T1 ,I=u in the

50

precedence matrix. If the two terminals already have a relation

different from T1 "=" T2, then there is a precedence relation

conflict and the grammar is not an operator precedence grammar.

Print the conflicting relations and terminals, set an error flag,

and go to 4.

9. If the rule has two adjacent nonterminals set an error flag and go

to 4 (not an operator precedence grammar).

10. Store the rule (in coded form) in the rule table. If there are any

semantic routine calls with the rule, place the names in the

semantic routine name table (if not already there), store each

call and parameter string with the rule in the rule table.

11. If the rule is of the form U
1

> U2 and it has semantic routine

calls, set an error flag and go to 4 (a right part consisting of a

single nonterminal U2 will never become the prime phrase by

definition).

12. If the next item is not a semantic routine call or ".END" go to 4.

13. Done inputing productions. If there are any semantic routine

calls after the productions put the names in the table (if not

already there) and store the calls and parameter strings (if any).

4. Read the ".END" record. Complete the LTCD and RTCD tables

as follows.

51

15. Go through the stored syntax rules from the last to the first

(algorithm usually converges faster this way). If a rule is of the

form U
1

> U2x enter each LTCD of U2 as a LTCD of U1.

16. Repeat 15 until the process converges.

17. Go through the stored syntax rules from the last to the first. If

a rule is of the form U
1

> xU
2

enter each RTCD of U2 as a

RTCD of U1.

18. Repeat 17 until process converges.

19. Go through the stored rules once. For every occurrence of TU

in a right part (where T is a terminal and U is a nonterminal)

enter T "<" each LTCD of U into the precedence matrix. For

every occurrence of UT enter each RTCD of U as ">"T into

the precedence matrix. When each new relation is being stored

if the old relation is not the "no relation" and is different from

the new relation then there is a precedence conflict. Print the

conflicting terminals and relations, set an error flag and continue.

20. Print precedence matrix if requested.

21. If any errors occurred print errors and STOP.

22. Order the terminal table so that if two terminals match character

for character (from the left) the longest is first.

23. Produce a jump table from the semantic routine name table and

call =;,SAM to assemble it into a binary deck. This deck is called

the link and is used by the parser to convert the semantic routine

52

name's code (in the rule table) into the address of the semantic

routine to jump to.

24. Write out the tables required by the parser (terminal table,

precedence matrix, coded rules, and others) and the link binary

deck.

25. If no errors print NO COMCOM DIAGNOSTICS" and STOP.

53

APPENDIX C

Parser Algorithm

This appendix contains a simplified version of the parser

algorithm used by COMCOM. The parser is the controlling program

of the constructed translator. It calls the scanner to read and

classify the source characters as particular terminals. When the

parser detects a prime phrase it uses the semantic routine link to call

the appropriate semantic routine. When it detects errors in the source

program it calls the user's error routine. When the parse is complete

it terminates the run.

Parser Algorithm

1. Call user semantic routines which are to be executed before parse

starts, if any.

2. Call scanner to get first terminal; if end of file print error and

STOP.

3 Push terminal onto top of stack.

4. Call scanner to get next terminal (the window); if end of file go

to 7-

5. If top stack terminal u>" window go to 7; if no relation call the

user's error routine and go to 4.

6. Push terminal onto stack; go to 4.

54

7. Look down in stack until find "<" between two terminals or find

bottom of stack.

8. Prime phrase is now the terminals and nonterminals above the

"<" relation on the stack. Match the phrase's form to the produc-

tion right parts. If find a match call associated semantic

routines passing parameter characters if any. If no match call

user's error routine (illegal stack configuration) and go to 4.

9. Pop prime phrase off stack and place a nonterminal on top. If

window is end of file go to 10 else go to 5.

10. Window is end of file. If there is a single nonterminal on stack

the parse is done, else go to 7.

11. Call user semantic routines which are to be executed after parse,

if any. STOP.

55

APPENDIX D

Scanner Algorithm

This appendix contains a simplified version of the scanner

algorithm. The scanner is called as a subroutine by the parser. The

scanner reads the source records into an input buffer eighty charac-

ters long. The input pointer, denoted l'I" in the algorithm, keeps

track of the current scanner position in the buffer. The scanner

classifies strings of characters as a particular terminal in the termi-

nal table and returns the terminal's integer code. When the scanner

classifies a string as a declared terminal class it copies the actual

characters into a block of storage and passes the parser the terminal

class code and a pointer to the block. The terminal classes . DIGIT

and INTEGER can not be declared at the same time. An end of file

is required at the end of each source program.

Scanner Algorithm

1. If input pointer (I) is less than 80 go to 3. If 80 < I < 100 (i e,
first time have end of line) and . EOL is a declared class set Ito

1ZO and RETURN with terminal class .EOL Else, read a source

record and set I to zero.

Z. If record is end of file RETURN with end of file.

56

3. Increase input pointer to first nonblank character (if record all

blanks go to 1 with I = 80). If first character is a special charac-

ter go to 4; if a letter go to 15; if a digit go to 24; else have a

system error.

4. First character is a special character. If it is a period followed

by a digit and .NUMBER is declared RETURN with the period and

digits as the terminal class . NUMBER.

5. Match the first character to each first character of the terminals

in the terminal table. If found go to 6. If .SPECIALC is a

declared class set input pointer to second character and RETURN

with the first as the terminal class .SPECIALC. Else, call the

user's error routine (illegal character), set input pointer to sec-

ond character and go to 1.

6. The terminal table is ordered so that the first match will be the

longest match (see constructor explanation Appendix B). Match

the terminals character by character. If the entire terminal in

the table matches the source input this is the correct terminal,

go to 7. Else, the table item is longer or they do not match, go

to 5 and resume the first character search.

7. If terminal is the comment beginning terminal go to 10.

8. If terminal is the .STRING class beginning terminal go to 12.

9. RETURN with terminal.

57

10. Have a comment. If comment ending terminal is . EOL (end of

line) terminal class read a source record and set input point to

zero; else go to 11. If record is end of file RETURN with end of

file. If record not end of file go to 1 to get a new terminal

(ignoring the comment).

11. Scan to end of comment terminal and go to 1 to get a new terminal.

12. Have a string. If string ending terminal is .EOL terminal class

copy rest of source line into a block of storage, set input pointer

to eighty, and go to 14.

13. Copy string and end of string terminal into a block of storage.

14. RETURN with terminal class .STRING (and a pointer to block).

15. First character is a letter. Scan to end of consecutive letters

and digits and search the terminal table for a matching terminal.

If found go to 16. If not found return input pointer to first letter

and go to 19.

16. If terminal is the comment beginning terminal go to 10.

17. If terminal is the .STRING class beginning terminal go to 12.

18. RETURN with the terminal.

19. String not found in the terminal table. If the .ID class is not

declared go to 23. If . ID is declared but . LETTER is not declared

go to 21 to make the terminal an ID.

20. Both . ID and . LETTER are declared terminal classes. If there

are one or more consecutive letters or digits after the first letter

58

go to 21 else go to 22.

21. Copy the consecutive letters and digits into a block of storage

(skipping remaining if more than eight), and RETURN with . ID

terminal class.

22. Copy first letter into a block of storage. Set input pointer to

character after letter, and RETURN with . LETTER terminal

class.

23. If . LETTER is a declared class go to 22. Since the terminal is

not in the terminal table and . LETTER and . ID are not declared

it is an illegal character. Call user's error routine, skip letter,

and go to 1.

24. The first character is a digit. If digits have an associated period

go to 30.

25. If . INTEGER is declared copy digits and RETURN with terminal

class . INTEGER (note that . INTEGER and . DIGIT can not be

declared at the same time).

26. If . NUMBER and . DIGIT are both declared but there is more than

one digit, copy consecutive digits to a block of storage supplying

a decimal point at the end and RETURN with . NUMBER terminal

class.

27. . INTEGER is not a declared class. If .DIGIT is declared set

input pointer to next character and RETURN with terminal class

.DIGIT.

59

28. .INTEGER, . DIGIT, and . NUMBER are not declared. Match the

first digit to the first characters of the terminals in the terminal

table. If found go to 29. If not, call user's error routine (illegal

character), set input pointer to second character, and go to 1.

29. Match the terminals character by character. If the entire termi-

nal in the table matches the source input this is the correct

terminal; go to 7. Else, the table item is longer or they do not

match. Go to 28 and resume the first character search. (Note

that the terminal table is ordered so the first match is the longest

and so on.)

30. There is a period adjacent to digits. If . NUMBER is declared

scan to end of number and RETURN with . NUMBER terminal

class.

31. If . INTEGER is declared set input pointer to period and RETURN

with the digits before the period as the terminal class .INTEGER

(.INTEGER and . DIGIT can not be declared at the same time).

32. If DIGIT is declared set input pointer to second character and

RETURN with the first as the terminal class . DIGIT; else go to

28 to try the terminal table.

60

APPENDIX E

Terminal Classes

This appendix lists the terminal classes and briefly describes

the strings which can be each class. When the scanner classifies a

string as a class it copies the characters into a block of storage (see

scanner, Appendix D).

The classes .DIGIT and .INTEGER can not be declared at the

same time. If . DIGIT and .NUMBER are declared and there is no

decimal point associated with a string of digits they will be classified

as . NUMBER if more than one digit in string or as . DIGIT if the string

is just one digit. If NUMBER and . INTEGER are both declared, a

string of digits will be classified as a . NUMBER if there is a decimal

point associated with the digits and . INTEGER if there is no decimal

point. If . LETTER and .ID are declared at the same time a string

will be classified as . LETTER if the string is only one letter long and

as .ID if longer.

The following is a list of the terminal classes and a brief

description of the properties of the strings which can be classified as

that class.

. DIGIT a single digit.

.EOL a special terminal class. When declared it is supplied

by the scanner at the end of each source record.

61

.ID a string of letters or digits or both, beginning with a

letter. If the string which is classified as an . ID is

longer than eight letters and digits the remaining char-

acters are ignored.

INTEGER a string of digits.

LETTER a single letter.

.NUMBER a string of digits. If the scanner classifies a string as

NUMBER and there is no decimal point in the string

one will be supplied in the storage block to which the

string is copied.

.SPECIALC a single special character.

.STRING a string of characters beginning and ending with the

declared beginning and ending .STRING terminals.

The string is copied into the block including the ending

terminal.

62

APPENDIX F

Semantic and Primitive Routines

This appendix contains information about the semantic and

primitive routines supplied to the user. Table 1 lists the semantic

and primitive routines and shows what they are usually used for

The routines can either be called by including them in a syntax pro-

duction or by calling them from a user supplied semantic routine. As

illustrated by Table 1, those which can be called in a production are

semantic routines, those called in a user routine are primitives, and

those which can be called from either serve as both semantic and

primitive routines.

The items on the parser's syntax stack and in the window are

coded. Thus, primitives are required to code and uncode the termi-

nals for context checks and error recovery. Some of the routines

work with an output buffer eighty characters in length. If =;SAM is

called it assembles the COMPASS code in the buffer, and blank fills

the buffer. The user has direct access to the output buffer, and to the

parser's window, input buffer, and input buffer pointer in COMMON.

When the user includes a semantic routine call with parameters in a

production, the parameters are supplied character for character in

BCD codes in COMMON (PARA in listings of Appendix Gl.

63

Table 1. Semantic and primitive routines.

Can be Called in
Routine Syntax User Semantic Usual Routine
Name Specification o Routine Use

OUTSAM x Call =:rSAM
TERMINAL x Context check
COPYSTK x Context check
STACK x x User operand stack
UNSTACK x User operand stack
TPLUS x x Temporary storage

generation
TMINUS x x Temporary storage

generation
TBUF x Temporary storage

generation
RESET x x Temporary storage

generation
XLPLUS x x Label generation
XL MINUS x x Label generation
XLBUF x Label generation
PUT x x Generate strings in

output buffer
OUT x x Generate strings in

output buffer and
call *SAM

STOREREL x Change precedence
matrix

READ x Read source records
and error recovery

POP x Error recovery
SCAN x Error recovery
PUSH x Error recovery
STOREWIN x Error recovery
GETWIN x x Error recovery
ICODE x Error recovery
IGETREL x Error recovery

o4

The routines are listed in the following pages in alphabetic order

and include a brief explanation of the action each performs. Primi-

tives are listed with formal parameters if they are required. Most

of the routines are FORTRAN subroutines except IGETREL,

TERMINAL, and ICODE which are FORTRAN functions. OUT and

PUT do not have formal parameters but operate on BCD character

strings put in PARA in COMMON. The primitives can be called

from a FORTRAN or COMPASS subroutine.

Semantic and Primitive Routines

COPYSTK (IPOS, CHARAD) copy the terminal (in BCD character

codes) at stack position IPOS (where IPOS = 1 is top, IPOS = 2

is next to top, etc.) placing the first character at the character

address CHARAD.

GETWIN gets the next terminal in the source string and stores it in

the window; updates the input pointer.

ICODE (TERM, IFCLASS) FORTRAN integer function returns the

integer code of the terminal TERM (BCD codes) in ICODE.

Returns IFCLASS 1 if TERM is a terminal class.

IGETREL (ICODE1,ICODE2) FORTRAN integer function returns

the precedence relation between the two terminals whose codes

are ICODE1 and ICODE2- IGETREL = 0 if no relation, 1 if

greater than, 2 if less than, and 3 if equal.

65

OUT(...) - sets up strings in the output buffer at the current output

buffer pointer character position. The output pointer is initially

equal to ten.

Parameters: .0P sets output pointer to one.

.LABEL - sets output pointer to ten.

SXX - copies terminal at stack position XX to

current pointer position in output buffer

(XX = 1 is top, XX = 2 is next to top, etc)

the string in the quotes is copied to

current pointer position in output buffer.

/ call *SAM with current output buffer

configuration.

The parameters are executed left to right and *SAM is called

when done. *SAM blanks output buffer and sets output buffer

pointer to ten before returning.

OUTSAM (INUM) calls *SAM where INUM is the maximum number

of nonblank words in the output buffer (four characters per word).

POP(I) pop I items off the syntax stack.

PUSH(X) - pushes the coded item X onto the syntax stack.

PUT() puts items into the output buffer at the current output

pointer position the same as OUT, but it does not call *SAM.

The parameter "/" is not allowed.

66

READ(I) reads one source record and sets the input pointer to I. If

the record is end of file or end of data I is returned greater than

200, else I is returned as zero.

RESET empties the user operand stack and sets the temporary

storage location counter to zero.

SCAN(I, X) scans input buffer starting at position I (positions are

numbered 0-79 for this subroutine) and classifies the first

terminal encountered. If want .EOL set 80 < I < 100. If want

first item on next source record set 100 < I < ZOO. Returns

with terminal coded in X ready to be put on stack or in window

and I is character position after terminal. If item was end of

file or end of data then I > 200. (Note. If want Ito be new

scanner input pointer position, user must set I equal to the

input pointer in COMMON.)

STACK pushes contents of output buffer onto user operand stack

and blank fills the output buffer. Resets output pointer to ten.

STOREREL (ICODE1, ICODE2, IREL) stores the precedence relation

IREL (where IREL = BCD codes NR, GT, LT, or EQ) between

the two terminals whose integer codes are ICODE1 and ICODE2.

STOREWIN(X) - stores the coded terminal in the window.

TBUF(CHARAD) - stores the string T. XX at the character address

CHARAD where XX is the current decimal value of the

temporary storage location counter.

67

TERMINAL(I) FORTRAN real function searches the terminal table

and returns the BCD codes of the terminal whose integer code

is I. If terminal is a class the first character will be a period.

TMINUS decreases the temporary storage location counter one.

TPLUS increases the temporary storage location counter one

UNSTACK(CHARAD) pops the user operand stack and copies the

string at the character address CHARAD.

XLBUF(CHARAD) copies the characters L.XXX at the character

address CHARAD where XXX is the current decimal value of the

label generation counter.

XLMINUS decreases the label generation counter one.

XLPLUS increases the label generation counter one.

68

APPENDIX G

Complete Simple Compiler

This appendix contains a complete listing of a compiler built

using COMCOM. The COMCOM program is shown on the next page.

A source program accepted by this compiler begins with "BEGIN",

the program name, and a ". , ", followed by a body of statements

separated by "$u, and ended with "END". The statements can be

labeled or unlabeled assignment, go to, read, write, if then, or if

then else statements. Table 2 shows the terminals and their integer

codes and Table 3 is the precedence matrix. The constructed

compiler produces assembly language code and uses *SAM to

assemble one line at a time. Input and output of floating point num-

bers is done using "FIN", "FOUT", and "ENDOUT" routines from

the *SYSLIB library under the OS-3 operating system.

Table 2. Terminals and their codes.

000
0 01
.3 02

.IL)
.NUHat... <<

ENO

313
0 14
3 1.,

)

GU

Tp
Li 33 .f 310 READ
L I J4 a . G i tl 3 IT
0 11 5 1 0 I:1 WRITE

36 . J14 ELSE.
J07 = y20 THEN
j005 + 321 -T
0 0'3 3 2'.. kiE

0 10 * ,:i 2.; 7.-.G

Li 11 / 0 .?4+ NE
012 i 02) IF

.uYNTAX OoMPILLIR
RUUTINLS(25) kULLS(5J) T
OLAUSL:)(.IJI.NUMBER)
c:RRoRioR)
P .oGRA1 = UJY1

JOLIYI = BLG t.,x BUOY .,
3LG = zriLuiNt

69

kmiNALS(35)

. OUT(*RTJ ENOOUT*/*SBJP*/*OEF*/
2*/*ENO START*) .1

. OUT(tIOLNT # .S1/*ENTRY START*/
LXT FiNtFOUTIENOOUT*/
.LABEL *START* .OP *NOF 130).,

JUDY = 300Y ;t LSIAT, et
300Y = LSTalL .,
LsIAT_ = LiALL =.x SIATLMNT

= STAILM_N1
LABEL = .1u
)TATEALNT = ASS Gr .9
'_A'AILmONT = GOTO *9
4ATL1ENT = RLU st
,3fATE1,AT = WR1f *9
_A-ArtiLNT = IF1FILNELSL
ASSIGA = ExPR
LXPR = EXPR -t TiRM
LXPR = LXPR *; TERm
ixPR = fERM .1
TLRM = TE-Rm #4.# OF
T_RM = TLR */# OP
TcRM = OP .,
i? = .i0
)P = .NUM6ER
JP = *(t EXPR *)* *9
uoTO = tGUt fl*() .Ii
\LAD = xRLAut LIST .,
LIST = LIST .13
LIST = .1D .,

ITL = .tWRITL; WLIS1
4O131 = WLIST .11J

4LiS1 = *ID .,
NiNIFST = ASSIAN *,
loAIFuT = uOTO *9
40NIFsT = 0,LAO .9
.4ONIFsT = ORITL .9

IFTHr.NLLS1:. = IFTHEN 1.LLS,Li NOUFST
IFTHL,4LLSL = 1FTHLN .9
IFTH:LA = iFoL #T 1ENx NONIFST
IFCL = RLS1 $L EXPR
IFCL = RLST ZGLt EXPR
IFCL = REST $E.C.t EXPR
IFCL = RLS1 .tNLt EXPR

= EXPR
.LNO

. ASSIGN .1

. PLUS et

. XMINUS .1

40(MULI 09

41,

. XIOENTF

. XNUM 09

. OUT(*UJF * .S1) et

.REAOWT .9

'THEN et
. XLTSR .9
. 17t.SF< *9
.LOSR
. XNLSk .1
. XIFEXP 119

Table 3. Precedence matrix.

003 001 002 003 004 005 006 007 008 009 013 011 012 013 014 C15 016 017 018 019 020 021 022 023 024 025
010 > > > > = > > > > > > > > > > > >
011 > > > > > > > > > > > > >
302
003 < > < < < < < < < < < < < <
034 =

035 < > > < < < < < < < < < < <
0)6 < > > < < < < < < < < < <
031 < < > > < < < < < >
038 < < > > > > < < < > > > > > > >
3 J-J < < > > > > < < < > > > > > > >
01) < < > > > > > > < > > > > > > >
011 < < > > > > > > < > > > > > > >
012 < < < < < < < :
013 > > > > > > > > > > > > >
014 =
01:, =

016 < > > < >
317 =

016 < > > < >
01j < > > < < <
X20 < > > < < < >
0:1 < < < < < < < >
-_,22 < < < < < < < >
023 < < < < < < <
024 < < < < < < < >
02.-,' < < < < < < < > > > >

71

The following is a sample source program for the compiler and

a run's inputs and outputs. The next page is the assembly language

code (COMPASS) of this program which was produced by the con-

structed compiler. This code was put in the output buffer and passed

to the *SAM assembler one line at a time avoiding intermediate output.

The code "DEF" and "BSS a" appearing just before "END START"

causes *SAM to allocate storage and define all previously undefined

identifiers as using two words of storage.

Thus, this constructed compiler using the =1'SAM assembler

reads in a source program and writes out the equivalent binary object

deck.

PF(3IN FIRST
`.RAP AsP
WRITF ApP
IF A FO P THEN WRITF A "LI

+ 2.0 *
WETIF C
FLIP

IVDTIT IS

6.0 5.0

rtITPITT

6.000000000 5.000000000 16.00000000

72

10E NT F kST
tNT S TAkT

XT F IN .FOUT1ENJOUT
START NUP 00

kTJ FIN
STAQ A

RTJ FIN
STAQ ct

DA0 A

kTJ FOUT
LOAQ
Tik FLUT

LUAU A

X0AIS -0
X0Q.S
FAO a
ZJ L.001

LOAQ A

kTJ FUJI
L. 001 'EQU

LOAQ =202.0
FMU
STAQ T . 01

LUAU A

F AU I.01
STAQ T 02
OAQ T.U2

STAQ
LOA()

RTJ FOUT
kTJ ENO OUT
SBJP
OEF
eSS 2
ENO START

73

The following seven pages are FORTRAN semantic routines

supplied by the user. The first is the error recovery routine. In

case of a parsing error, this simple compiler outputs the value of

the current input buffer scanner position, outputs the nature of the

error, and stops. The remaining six pages are the other FORTRAN

semantic routines. When the parser detects a prime phrase, the

phrase's form is matched to the production right hand sides. The

semantic routine associated with the matching production is called.

Each FORTRAN subroutine may contain several semantic routines.

These inner routines begin with "ENTRY" followed by the routine

name, and are ended with "RETURN". Some of the following

semantic routines call other subroutines which are also listed.

74

SUPPOUTINF FRE
C PARSINO, SUPPOUTINF

INTFGFR OUTRUF,PARA
COMMON IDUM(23),OUTPUE(20),XDUM(P450),WINDOW
COMMON INPOINT,PAEA(50)

C
100 FORMAT(' INPUT POINTFR = 14)

WRITF(61,100) INPOINT
I = PARA(1)

GO TO (1, 2, 3, 4, 5)

C

101 FORMAT(' LOOKFP DOWN STACK AND NO < RELATION')
1 WR1TF (61,101)

GO TO 6

102 FORMAT(' TWO VONTFRMINALS TOGFTPFR ON STACK')
2 WRITF(61,102)

GO TO 6
C

103 FORMAT(' NO EULF MATOPFS PRIME. PHRASE')
3 WRITF(61,103)

GO TO 6
C
104 FORMAT(' ILLEGAL CPAFACTER IN SOURCE PROGRAM')
4 WR1TF(61,104)

GO TO 6
C

105 FORMAT(' NO RFLATION PFT FFN TOP STACK AND WINDOW')
5 WRITF(61,105)

GO TO 6
C
106 FORMAT(' COMPILATION TFRMIVATEP')
6 WRITF(61,106)

STOP
END

hi

hi

SUEIROUTIN ASSIGN
IATEGE CUTBUFIPAkA
COMMON 10UM(23),OUTBUF(20),XCUM(8450),WINOOW
COMMON INPOINT,PAKA(50)
LOUIVALLNCL (XIXCHAi<A0),(XREAO,IREA0),(XeCOII8CD)
LOOIVAL:.J,CE (XINkITL'IWRITL)
DIMLNSIOt\: IAD(2),IWRITL(2/1IBCD(2),IFERI00(2)
CHAACTER Gt-'OS1,GPOS211XCHARAU,CPOS5
LOUIVALETZE (003UF(6),000)
LOUIVALLNCE (OOD,CPOS21)
CQUIVALLNCE (OUTBUFpCPOS1)
-L-QUIVALNCE (CO13UF(2),XXX)
:QUIVALLNCt. (XXX,C1-'055)
EQUIVALEVCE (XPE100,IPERI00)

OUT3UF(3)=4H LOA
OUT3UF(4) =4HQ
CALL UNSTACK(CPOS21)
CALL OOTSAM(10)
OUTaUF(J) = 4H STA
OUT3UF(4) = 4MQ
CALL COPYSTK(JICPOS21)
CALL COISAM(10)
CALL kc:SUT
1..L TURN

EN-NY PLUS
10;-=AH FA)
CALL COM(IJP)
)\LlURN

EN1t'Y XMINUj
Idt-'=4H FA
CALL COM(IJP)
Li JN

t\INY XiULT
10P=4H FMU
CALL COM(I0P)
-<LTOKN

ENTcO DIVIDE
IOP=4H FOV
CALL COM(I0P)
rLTUN

75

76

J
EN1RY XILLATF

T OF STACK Is .10, IS NEXT ITEM DOWN A READ OR WRITE
14.(IFLAG .EQ. 173) GU TO 40

FI-61 IIML xiOLNTF IS CALLED
IFLAG = 178
X.:)CD=0.0

IPcRIuu(1) = 4H.
IPLk100(2) = 4H
iRLA0(1) = 4HkEAD
1.,-<LA0(2) = 4H
IWRiTL(1) = 4HWkIT
IWF.iTL(2) = +r1E

rt3 X = TERMINAL(wINOUW)
IF(x ...0. XPC.RIu0) GU TO 84

XCHARAJ IS tQUIVALENT TO X
ALL COTK(2,X6HARAD)

IF (X .L.. XRLAG) OUTO /1
IF (x x61fE) GOTO 81

10T B. IN AN EXPRE:JSIuN
GALL LOFYSTK(1,CPOS1)
CALL SiALK
k_TURN

/1 CALL_ REAcsO3
Iii tN

61 CALL WRITE
R:ITORN

HA4E A LA3t_
64 CALL c0f-YsIK(1,CP0J1)

OUT3uF(3) = 4H LAU
OuT3OF(4; = 4H *
UAL_ OuTt-.Am(10)
TURN

L t-0 ,LAOWT
o HA.q. FORM T NT .IO ON STACK, IS TREAD OR WFUTE

CALL COP/STK(4,XLHARAO)
IF (X ."LQ. xREA0) GOTO 31
IF (X ..Q. X1TE) GOTO 32

ri-olL A sYSTi_M ERROR
1)0 Fu,\mAT(RD WT

WRIT: (o1/100)
sToh

R_AO S1A1,;.miTii CALL kEAL)SUd
RLTO-',N

W-alL TAT. 'ENT
32 CALL

kEiOkN

ENTRY XNUM
OUTBUF(1)= 4H =20
CALL COPYSTK(19CPUS5)
CALL STACK
RETURN

ENI'RY LL&E
CALL XLPLUS
CALL XL3UF(CPUS1)
OUTBUF(3) = 4H 'LOU
OTTBUF(4) = *

CALL OUTSAM(10)
RETURN

ENTRY THEN
C. I THERE AN-ELSL TO TH. IF STATEMENT

IBCO(1)= 4HLLSE
I3CO(2) = 4H
X = TERMINAL(WIN004)
1F (XBCO oNL. X) CO TO 82

HAVE ELSE
CALL XLPLUS
OUTBUF(3) = 4H (JUT-
CALL XL3UF(CPOS21)
CALL XLMINUS
CALL OUTSAM(10)

62 CALL XLBUF(CPOSI.)
OUT3UF(3) = 4H EQU
OUTBUF(4) = 41
CALL UUTSAM(10)
RETURN

C

ENTRY XLTSR
CALL COMPARE
UUTBUF(4) = 4A,GE
CALL XLPLUS
k;ALL XLBUF(CPUS21)
CALL UUTSAM(10)
RETURN

ENTRY GESR
CALL COMPARE
OUT8UF(4)
GALL XLPLUS
CALL XL3UF(CPUS21)
CALL UUTSAM(10).
RETURN

77

78

ENTRY ELIS
CALL COHPARE
3UTaUF(4) = 4H,NE
CALL XLPLUS
CALL XL9UF(CP0321)
CALL OUTSAM(10)
''ETURN

LATRY XNESR
CALL CulFAE
OUT3UF(4) = 4149EQ
CALL XLPLUS
CALL XL3UF(CPU'e1)
CALL OUTSAM(10)
12TURN

L.NTr(Y XIFEXP

UUT3UF(3) = 4H LOA
OUT6UF(4) = 4HQ
CALL UNSTAOK(OPOS21)
CALL JUTSAM(10)
ETUKO

ENO

79

Stit3OUTiNL GOM(i0H)
iNT.Gtr CUT9UFIPAkA
COAMON IUUM(3),UUCBUF(20),XUUM(840),WINOUW
00kiMON INPOI4T,P4RA(50)
LUU/VAL-W,E (X9XLHAA0),(KRLAO,IRLA0) (XWRITE,IWRITE,
DIMENSIUN IRLAL)(2)IiV,kITE(2)
LHAKACTEk OPOS110:0S21,XCHARAO
LQUIVALLN0E (OUT3UF(6),000)
L:QUIVALLNOE (DOU,CPUS21)
LQUIVALLNCE (OUTaUF,u0S1)
0111LtiSION ITtAP(1C)

OUTSUF(3)=I0P
GALL UNSTALK(CPOS21)
00 6 i=1,10
fir_MP(1)=0U1,3UF(1)
30 o5 1=1,10
0d'HUF(I)=411
OUT8UF(3)=4H LJA
OUTBLIF(-0=ihtl
CALL UNSIACK(CPOS21)
CALL OUTSAM(10)
JO ab i=1,10
OUT3UF(i)=ITLMP(1)
CALL OUESAM(10)
GUT3UF(3) = 411 STA
OUTSUF(4) = 4HQ
GALL 1PLUS
GALL TOOF(CP321)
LALL OUTEAM(a)

STALK THL TAMP
CALL 130F(CP061)
LALL STALK
kLTURN

ND

80

SUBROUTINE OUMPARL
INTEGER OUTBUF,PARM
COMMON IDUM(23),OUT3UF(20),XDUM(8450),WINDOW
SUMMON INPUINT,FARA(56)
EQUIVALENCE (XIXCHARA0),(XREAO,IREA0),(XWRITEIIWRITE)
JIMENSION IREAD(2),IWRITE(2)
;.HARAOTEN CPOS1,CFOS219XCHARAO
LOUi4ALENCE (OUT3UF(6),O00)
EQUIVALENCE (3JO,CPUS21)
EQUIVALENCE (0013UF,CPO51)

JUTBUF(3) = 4H)(OA
OUT3UF(4) = 4H,S -
OUTBUF('.)) = 4HU
CALL OUTSA4(10)
OUTBUF(3) = 4H X00
OUTBUF(4) = 44,3 -
OJIBUF(5) = 4H5
CALL OUTSAM(1O)
OUT3UF(3) = 4H FAO
CALL UNSIACK(CPOS21)
CALL UUTSAM(/0)
OUTdUF() = 4H AZJ
RETURN

ENTRY REAUSUB
HAVE A REA0 STATEMENT

OUTBUF(3) =4H RTJ
JUTBUF(4) = 4H FIN
CALL GUTLAM(10)
OUTBUF(3) = 4H STA
OUTBUF(4) = 4HQ
CALL CUPNSTK(1,CP0621)
CALL OUTSAM(10)
RETURN

LNTRY WRITE
HAVE A WRIT[STATEMENT

UUTBUF(3) = 414 LOA
JUT6UF(4) = 4H Q.
ALL OOPYSTK(1,CPOS1)

CALL OUTSAM(20)
CUT3UF(3) = 4H RTJ
OUTBUF(5) = 4HFOUT
CALL OUTSA1(10)
RETURN
END

81

APPENDIX H

META/OS-3 and COMCOM Parsing Time Comparison

This appendix contains a parsing time comparison of

META/OS -3 to COMCOM. The following page is the syntax specifi-

cation for two translators. The first is a COMCOM program, and

the second a META/OS-3 program. The constructed translators

accept the same source language except COMCOM requires an end of

file after the source program. The only semantic processing the

translators perform is to print out "DONE" when the parse is com-

plete.

82

THE FOLLOWING IS A COMCUM Pk3GRAM

.SYMT,X COMDARL
jLASS(al:j,.NUM3ER)
TERMi4auS(20) tWUTINLS(4) L1/4R0k(EkR) RULES(15)
PROGRAM 3EGFN= 8JOY ENO= .OUT(00N.Et)

300Y = BODY tIt STATEMENT op
JOJY = STATLILT
STATEALNT = ASSIGN .1
ASSIGN = .10 t== LXPR 41,

iXPR = LXPR t+t TERM op
.XPR = EXk TEl .,

= TERM .1
TLRM = TERM P'sx OP .,
TLR1 = TERM X/t OP
TURI = JP
-)P = .10 .,
JP = .NU:+3LR
JP = t(t LXPR t)t
.LNO

FDLLONING I A MTA PROGRAM

.SYATAX Pm:)GRAM
*s'ROGRY, = =BEGiNt STATEMLNT i(t17 STATEMENT) tENO$

.OUT(tOCNLt)

.jTAT-.mLNT = AS:IGN .1
ASSi6j = .104-t=t EXPR $1
_XPR = TE.r.1 $(;'+-1* T.RM / =t TERM)

JP 1:(t*t OP / ti=) op
ir = 11.) / / EXPR t)4

83

The following is the sample source program used in this parsing

time comparison. Table 4 on the next page is the results of the

sample run. The two sets of programs were run consecutively under

the OS-3 operating system. This operating system is a time sharing

system, thus the cost and time figures are not extremely reliable.

However, the programs were run several times and the figures appear

to be representative. The important comparison is the parsing times

since this indicates the efficiency of the constructed translator's

recognizer. One must keep in mind that these are two specific

implementations run on one specific set of inputs and that no real con-

clusions other than estimates can be drawn from this trial.

HD8 = 5426 + HFGFG -(HG - .452)

A = (0.673 + t. 3 * A) / (10) + C $
JAS = E +) * + 6.8
iFU = JHO 4(UF+OFL4 FGB)

= HG - JH - HGFV -HGFV4GVO .-(FDD*GY) /YT $
4ASF = KJj*JH + (JH 4(KH4(KJG34(KJ+KG) /KGB)))
JFOFZ= OFF4t0F4(0FGT4(0F+SF)/RG))
SOLF =542.45 +ASW 4(0F+65476.52+SC4(0F+SX))

= 3 + C $

LHGKJGJ = JHG4(H-6) GGF
JF = NGGB 4 (EOFk+ HG)
3j= UFSOFG + KJH-(SO-JH)

84

Table 4. Time comparison results.

COMCOM META/OS-3
Cost

($)
Time
(sec)

Cost
($)

Time
(sec)

Compile -compile
time

Load and write
overlay

Parse time

Total

.17

. 20

.10

1.3

2. 4

.8

.12

. 09

. 1 0

1.3

1. 1

.7

. 47 4. 5 .31 3. 1

